1 /* 2 RFCOMM implementation for Linux Bluetooth stack (BlueZ). 3 Copyright (C) 2002 Maxim Krasnyansky <maxk@qualcomm.com> 4 Copyright (C) 2002 Marcel Holtmann <marcel@holtmann.org> 5 6 This program is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License version 2 as 8 published by the Free Software Foundation; 9 10 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 11 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 12 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 13 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 14 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 15 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 19 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 20 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 21 SOFTWARE IS DISCLAIMED. 22 */ 23 24 /* 25 * RFCOMM sockets. 26 */ 27 #include <linux/compat.h> 28 #include <linux/export.h> 29 #include <linux/debugfs.h> 30 #include <linux/sched/signal.h> 31 32 #include <net/bluetooth/bluetooth.h> 33 #include <net/bluetooth/hci_core.h> 34 #include <net/bluetooth/l2cap.h> 35 #include <net/bluetooth/rfcomm.h> 36 37 static const struct proto_ops rfcomm_sock_ops; 38 39 static struct bt_sock_list rfcomm_sk_list = { 40 .lock = __RW_LOCK_UNLOCKED(rfcomm_sk_list.lock) 41 }; 42 43 static void rfcomm_sock_close(struct sock *sk); 44 static void rfcomm_sock_kill(struct sock *sk); 45 46 /* ---- DLC callbacks ---- 47 * 48 * called under rfcomm_dlc_lock() 49 */ 50 static void rfcomm_sk_data_ready(struct rfcomm_dlc *d, struct sk_buff *skb) 51 { 52 struct sock *sk = d->owner; 53 if (!sk) 54 return; 55 56 atomic_add(skb->len, &sk->sk_rmem_alloc); 57 skb_queue_tail(&sk->sk_receive_queue, skb); 58 sk->sk_data_ready(sk); 59 60 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 61 rfcomm_dlc_throttle(d); 62 } 63 64 static void rfcomm_sk_state_change(struct rfcomm_dlc *d, int err) 65 { 66 struct sock *sk = d->owner, *parent; 67 68 if (!sk) 69 return; 70 71 BT_DBG("dlc %p state %ld err %d", d, d->state, err); 72 73 lock_sock(sk); 74 75 if (err) 76 sk->sk_err = err; 77 78 sk->sk_state = d->state; 79 80 parent = bt_sk(sk)->parent; 81 if (parent) { 82 if (d->state == BT_CLOSED) { 83 sock_set_flag(sk, SOCK_ZAPPED); 84 bt_accept_unlink(sk); 85 } 86 parent->sk_data_ready(parent); 87 } else { 88 if (d->state == BT_CONNECTED) 89 rfcomm_session_getaddr(d->session, 90 &rfcomm_pi(sk)->src, NULL); 91 sk->sk_state_change(sk); 92 } 93 94 release_sock(sk); 95 96 if (parent && sock_flag(sk, SOCK_ZAPPED)) { 97 /* We have to drop DLC lock here, otherwise 98 * rfcomm_sock_destruct() will dead lock. */ 99 rfcomm_dlc_unlock(d); 100 rfcomm_sock_kill(sk); 101 rfcomm_dlc_lock(d); 102 } 103 } 104 105 /* ---- Socket functions ---- */ 106 static struct sock *__rfcomm_get_listen_sock_by_addr(u8 channel, bdaddr_t *src) 107 { 108 struct sock *sk = NULL; 109 110 sk_for_each(sk, &rfcomm_sk_list.head) { 111 if (rfcomm_pi(sk)->channel != channel) 112 continue; 113 114 if (bacmp(&rfcomm_pi(sk)->src, src)) 115 continue; 116 117 if (sk->sk_state == BT_BOUND || sk->sk_state == BT_LISTEN) 118 break; 119 } 120 121 return sk ? sk : NULL; 122 } 123 124 /* Find socket with channel and source bdaddr. 125 * Returns closest match. 126 */ 127 static struct sock *rfcomm_get_sock_by_channel(int state, u8 channel, bdaddr_t *src) 128 { 129 struct sock *sk = NULL, *sk1 = NULL; 130 131 read_lock(&rfcomm_sk_list.lock); 132 133 sk_for_each(sk, &rfcomm_sk_list.head) { 134 if (state && sk->sk_state != state) 135 continue; 136 137 if (rfcomm_pi(sk)->channel == channel) { 138 /* Exact match. */ 139 if (!bacmp(&rfcomm_pi(sk)->src, src)) 140 break; 141 142 /* Closest match */ 143 if (!bacmp(&rfcomm_pi(sk)->src, BDADDR_ANY)) 144 sk1 = sk; 145 } 146 } 147 148 read_unlock(&rfcomm_sk_list.lock); 149 150 return sk ? sk : sk1; 151 } 152 153 static void rfcomm_sock_destruct(struct sock *sk) 154 { 155 struct rfcomm_dlc *d = rfcomm_pi(sk)->dlc; 156 157 BT_DBG("sk %p dlc %p", sk, d); 158 159 skb_queue_purge(&sk->sk_receive_queue); 160 skb_queue_purge(&sk->sk_write_queue); 161 162 rfcomm_dlc_lock(d); 163 rfcomm_pi(sk)->dlc = NULL; 164 165 /* Detach DLC if it's owned by this socket */ 166 if (d->owner == sk) 167 d->owner = NULL; 168 rfcomm_dlc_unlock(d); 169 170 rfcomm_dlc_put(d); 171 } 172 173 static void rfcomm_sock_cleanup_listen(struct sock *parent) 174 { 175 struct sock *sk; 176 177 BT_DBG("parent %p", parent); 178 179 /* Close not yet accepted dlcs */ 180 while ((sk = bt_accept_dequeue(parent, NULL))) { 181 rfcomm_sock_close(sk); 182 rfcomm_sock_kill(sk); 183 } 184 185 parent->sk_state = BT_CLOSED; 186 sock_set_flag(parent, SOCK_ZAPPED); 187 } 188 189 /* Kill socket (only if zapped and orphan) 190 * Must be called on unlocked socket. 191 */ 192 static void rfcomm_sock_kill(struct sock *sk) 193 { 194 if (!sock_flag(sk, SOCK_ZAPPED) || sk->sk_socket) 195 return; 196 197 BT_DBG("sk %p state %d refcnt %d", sk, sk->sk_state, refcount_read(&sk->sk_refcnt)); 198 199 /* Kill poor orphan */ 200 bt_sock_unlink(&rfcomm_sk_list, sk); 201 sock_set_flag(sk, SOCK_DEAD); 202 sock_put(sk); 203 } 204 205 static void __rfcomm_sock_close(struct sock *sk) 206 { 207 struct rfcomm_dlc *d = rfcomm_pi(sk)->dlc; 208 209 BT_DBG("sk %p state %d socket %p", sk, sk->sk_state, sk->sk_socket); 210 211 switch (sk->sk_state) { 212 case BT_LISTEN: 213 rfcomm_sock_cleanup_listen(sk); 214 break; 215 216 case BT_CONNECT: 217 case BT_CONNECT2: 218 case BT_CONFIG: 219 case BT_CONNECTED: 220 rfcomm_dlc_close(d, 0); 221 fallthrough; 222 223 default: 224 sock_set_flag(sk, SOCK_ZAPPED); 225 break; 226 } 227 } 228 229 /* Close socket. 230 * Must be called on unlocked socket. 231 */ 232 static void rfcomm_sock_close(struct sock *sk) 233 { 234 lock_sock(sk); 235 __rfcomm_sock_close(sk); 236 release_sock(sk); 237 } 238 239 static void rfcomm_sock_init(struct sock *sk, struct sock *parent) 240 { 241 struct rfcomm_pinfo *pi = rfcomm_pi(sk); 242 243 BT_DBG("sk %p", sk); 244 245 if (parent) { 246 sk->sk_type = parent->sk_type; 247 pi->dlc->defer_setup = test_bit(BT_SK_DEFER_SETUP, 248 &bt_sk(parent)->flags); 249 250 pi->sec_level = rfcomm_pi(parent)->sec_level; 251 pi->role_switch = rfcomm_pi(parent)->role_switch; 252 253 security_sk_clone(parent, sk); 254 } else { 255 pi->dlc->defer_setup = 0; 256 257 pi->sec_level = BT_SECURITY_LOW; 258 pi->role_switch = 0; 259 } 260 261 pi->dlc->sec_level = pi->sec_level; 262 pi->dlc->role_switch = pi->role_switch; 263 } 264 265 static struct proto rfcomm_proto = { 266 .name = "RFCOMM", 267 .owner = THIS_MODULE, 268 .obj_size = sizeof(struct rfcomm_pinfo) 269 }; 270 271 static struct sock *rfcomm_sock_alloc(struct net *net, struct socket *sock, 272 int proto, gfp_t prio, int kern) 273 { 274 struct rfcomm_dlc *d; 275 struct sock *sk; 276 277 d = rfcomm_dlc_alloc(prio); 278 if (!d) 279 return NULL; 280 281 sk = bt_sock_alloc(net, sock, &rfcomm_proto, proto, prio, kern); 282 if (!sk) { 283 rfcomm_dlc_free(d); 284 return NULL; 285 } 286 287 d->data_ready = rfcomm_sk_data_ready; 288 d->state_change = rfcomm_sk_state_change; 289 290 rfcomm_pi(sk)->dlc = d; 291 d->owner = sk; 292 293 sk->sk_destruct = rfcomm_sock_destruct; 294 sk->sk_sndtimeo = RFCOMM_CONN_TIMEOUT; 295 296 sk->sk_sndbuf = RFCOMM_MAX_CREDITS * RFCOMM_DEFAULT_MTU * 10; 297 sk->sk_rcvbuf = RFCOMM_MAX_CREDITS * RFCOMM_DEFAULT_MTU * 10; 298 299 bt_sock_link(&rfcomm_sk_list, sk); 300 301 BT_DBG("sk %p", sk); 302 return sk; 303 } 304 305 static int rfcomm_sock_create(struct net *net, struct socket *sock, 306 int protocol, int kern) 307 { 308 struct sock *sk; 309 310 BT_DBG("sock %p", sock); 311 312 sock->state = SS_UNCONNECTED; 313 314 if (sock->type != SOCK_STREAM && sock->type != SOCK_RAW) 315 return -ESOCKTNOSUPPORT; 316 317 sock->ops = &rfcomm_sock_ops; 318 319 sk = rfcomm_sock_alloc(net, sock, protocol, GFP_ATOMIC, kern); 320 if (!sk) 321 return -ENOMEM; 322 323 rfcomm_sock_init(sk, NULL); 324 return 0; 325 } 326 327 static int rfcomm_sock_bind(struct socket *sock, struct sockaddr *addr, int addr_len) 328 { 329 struct sockaddr_rc sa; 330 struct sock *sk = sock->sk; 331 int len, err = 0; 332 333 if (!addr || addr_len < offsetofend(struct sockaddr, sa_family) || 334 addr->sa_family != AF_BLUETOOTH) 335 return -EINVAL; 336 337 memset(&sa, 0, sizeof(sa)); 338 len = min_t(unsigned int, sizeof(sa), addr_len); 339 memcpy(&sa, addr, len); 340 341 BT_DBG("sk %p %pMR", sk, &sa.rc_bdaddr); 342 343 lock_sock(sk); 344 345 if (sk->sk_state != BT_OPEN) { 346 err = -EBADFD; 347 goto done; 348 } 349 350 if (sk->sk_type != SOCK_STREAM) { 351 err = -EINVAL; 352 goto done; 353 } 354 355 write_lock(&rfcomm_sk_list.lock); 356 357 if (sa.rc_channel && 358 __rfcomm_get_listen_sock_by_addr(sa.rc_channel, &sa.rc_bdaddr)) { 359 err = -EADDRINUSE; 360 } else { 361 /* Save source address */ 362 bacpy(&rfcomm_pi(sk)->src, &sa.rc_bdaddr); 363 rfcomm_pi(sk)->channel = sa.rc_channel; 364 sk->sk_state = BT_BOUND; 365 } 366 367 write_unlock(&rfcomm_sk_list.lock); 368 369 done: 370 release_sock(sk); 371 return err; 372 } 373 374 static int rfcomm_sock_connect(struct socket *sock, struct sockaddr *addr, int alen, int flags) 375 { 376 struct sockaddr_rc *sa = (struct sockaddr_rc *) addr; 377 struct sock *sk = sock->sk; 378 struct rfcomm_dlc *d = rfcomm_pi(sk)->dlc; 379 int err = 0; 380 381 BT_DBG("sk %p", sk); 382 383 if (alen < sizeof(struct sockaddr_rc) || 384 addr->sa_family != AF_BLUETOOTH) 385 return -EINVAL; 386 387 sock_hold(sk); 388 lock_sock(sk); 389 390 if (sk->sk_state != BT_OPEN && sk->sk_state != BT_BOUND) { 391 err = -EBADFD; 392 goto done; 393 } 394 395 if (sk->sk_type != SOCK_STREAM) { 396 err = -EINVAL; 397 goto done; 398 } 399 400 sk->sk_state = BT_CONNECT; 401 bacpy(&rfcomm_pi(sk)->dst, &sa->rc_bdaddr); 402 rfcomm_pi(sk)->channel = sa->rc_channel; 403 404 d->sec_level = rfcomm_pi(sk)->sec_level; 405 d->role_switch = rfcomm_pi(sk)->role_switch; 406 407 /* Drop sock lock to avoid potential deadlock with the RFCOMM lock */ 408 release_sock(sk); 409 err = rfcomm_dlc_open(d, &rfcomm_pi(sk)->src, &sa->rc_bdaddr, 410 sa->rc_channel); 411 lock_sock(sk); 412 if (!err && !sock_flag(sk, SOCK_ZAPPED)) 413 err = bt_sock_wait_state(sk, BT_CONNECTED, 414 sock_sndtimeo(sk, flags & O_NONBLOCK)); 415 416 done: 417 release_sock(sk); 418 sock_put(sk); 419 return err; 420 } 421 422 static int rfcomm_sock_listen(struct socket *sock, int backlog) 423 { 424 struct sock *sk = sock->sk; 425 int err = 0; 426 427 BT_DBG("sk %p backlog %d", sk, backlog); 428 429 lock_sock(sk); 430 431 if (sk->sk_state != BT_BOUND) { 432 err = -EBADFD; 433 goto done; 434 } 435 436 if (sk->sk_type != SOCK_STREAM) { 437 err = -EINVAL; 438 goto done; 439 } 440 441 if (!rfcomm_pi(sk)->channel) { 442 bdaddr_t *src = &rfcomm_pi(sk)->src; 443 u8 channel; 444 445 err = -EINVAL; 446 447 write_lock(&rfcomm_sk_list.lock); 448 449 for (channel = 1; channel < 31; channel++) 450 if (!__rfcomm_get_listen_sock_by_addr(channel, src)) { 451 rfcomm_pi(sk)->channel = channel; 452 err = 0; 453 break; 454 } 455 456 write_unlock(&rfcomm_sk_list.lock); 457 458 if (err < 0) 459 goto done; 460 } 461 462 sk->sk_max_ack_backlog = backlog; 463 sk->sk_ack_backlog = 0; 464 sk->sk_state = BT_LISTEN; 465 466 done: 467 release_sock(sk); 468 return err; 469 } 470 471 static int rfcomm_sock_accept(struct socket *sock, struct socket *newsock, 472 struct proto_accept_arg *arg) 473 { 474 DEFINE_WAIT_FUNC(wait, woken_wake_function); 475 struct sock *sk = sock->sk, *nsk; 476 long timeo; 477 int err = 0; 478 479 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 480 481 if (sk->sk_type != SOCK_STREAM) { 482 err = -EINVAL; 483 goto done; 484 } 485 486 timeo = sock_rcvtimeo(sk, arg->flags & O_NONBLOCK); 487 488 BT_DBG("sk %p timeo %ld", sk, timeo); 489 490 /* Wait for an incoming connection. (wake-one). */ 491 add_wait_queue_exclusive(sk_sleep(sk), &wait); 492 while (1) { 493 if (sk->sk_state != BT_LISTEN) { 494 err = -EBADFD; 495 break; 496 } 497 498 nsk = bt_accept_dequeue(sk, newsock); 499 if (nsk) 500 break; 501 502 if (!timeo) { 503 err = -EAGAIN; 504 break; 505 } 506 507 if (signal_pending(current)) { 508 err = sock_intr_errno(timeo); 509 break; 510 } 511 512 release_sock(sk); 513 514 timeo = wait_woken(&wait, TASK_INTERRUPTIBLE, timeo); 515 516 lock_sock_nested(sk, SINGLE_DEPTH_NESTING); 517 } 518 remove_wait_queue(sk_sleep(sk), &wait); 519 520 if (err) 521 goto done; 522 523 newsock->state = SS_CONNECTED; 524 525 BT_DBG("new socket %p", nsk); 526 527 done: 528 release_sock(sk); 529 return err; 530 } 531 532 static int rfcomm_sock_getname(struct socket *sock, struct sockaddr *addr, int peer) 533 { 534 struct sockaddr_rc *sa = (struct sockaddr_rc *) addr; 535 struct sock *sk = sock->sk; 536 537 BT_DBG("sock %p, sk %p", sock, sk); 538 539 if (peer && sk->sk_state != BT_CONNECTED && 540 sk->sk_state != BT_CONNECT && sk->sk_state != BT_CONNECT2) 541 return -ENOTCONN; 542 543 memset(sa, 0, sizeof(*sa)); 544 sa->rc_family = AF_BLUETOOTH; 545 sa->rc_channel = rfcomm_pi(sk)->channel; 546 if (peer) 547 bacpy(&sa->rc_bdaddr, &rfcomm_pi(sk)->dst); 548 else 549 bacpy(&sa->rc_bdaddr, &rfcomm_pi(sk)->src); 550 551 return sizeof(struct sockaddr_rc); 552 } 553 554 static int rfcomm_sock_sendmsg(struct socket *sock, struct msghdr *msg, 555 size_t len) 556 { 557 struct sock *sk = sock->sk; 558 struct rfcomm_dlc *d = rfcomm_pi(sk)->dlc; 559 struct sk_buff *skb; 560 int sent; 561 562 if (test_bit(RFCOMM_DEFER_SETUP, &d->flags)) 563 return -ENOTCONN; 564 565 if (msg->msg_flags & MSG_OOB) 566 return -EOPNOTSUPP; 567 568 if (sk->sk_shutdown & SEND_SHUTDOWN) 569 return -EPIPE; 570 571 BT_DBG("sock %p, sk %p", sock, sk); 572 573 lock_sock(sk); 574 575 sent = bt_sock_wait_ready(sk, msg->msg_flags); 576 577 release_sock(sk); 578 579 if (sent) 580 return sent; 581 582 skb = bt_skb_sendmmsg(sk, msg, len, d->mtu, RFCOMM_SKB_HEAD_RESERVE, 583 RFCOMM_SKB_TAIL_RESERVE); 584 if (IS_ERR(skb)) 585 return PTR_ERR(skb); 586 587 sent = rfcomm_dlc_send(d, skb); 588 if (sent < 0) 589 kfree_skb(skb); 590 591 return sent; 592 } 593 594 static int rfcomm_sock_recvmsg(struct socket *sock, struct msghdr *msg, 595 size_t size, int flags) 596 { 597 struct sock *sk = sock->sk; 598 struct rfcomm_dlc *d = rfcomm_pi(sk)->dlc; 599 int len; 600 601 if (test_and_clear_bit(RFCOMM_DEFER_SETUP, &d->flags)) { 602 rfcomm_dlc_accept(d); 603 return 0; 604 } 605 606 len = bt_sock_stream_recvmsg(sock, msg, size, flags); 607 608 lock_sock(sk); 609 if (!(flags & MSG_PEEK) && len > 0) 610 atomic_sub(len, &sk->sk_rmem_alloc); 611 612 if (atomic_read(&sk->sk_rmem_alloc) <= (sk->sk_rcvbuf >> 2)) 613 rfcomm_dlc_unthrottle(rfcomm_pi(sk)->dlc); 614 release_sock(sk); 615 616 return len; 617 } 618 619 static int rfcomm_sock_setsockopt_old(struct socket *sock, int optname, 620 sockptr_t optval, unsigned int optlen) 621 { 622 struct sock *sk = sock->sk; 623 int err = 0; 624 u32 opt; 625 626 BT_DBG("sk %p", sk); 627 628 lock_sock(sk); 629 630 switch (optname) { 631 case RFCOMM_LM: 632 err = copy_safe_from_sockptr(&opt, sizeof(opt), optval, optlen); 633 if (err) 634 break; 635 636 if (opt & RFCOMM_LM_FIPS) { 637 err = -EINVAL; 638 break; 639 } 640 641 if (opt & RFCOMM_LM_AUTH) 642 rfcomm_pi(sk)->sec_level = BT_SECURITY_LOW; 643 if (opt & RFCOMM_LM_ENCRYPT) 644 rfcomm_pi(sk)->sec_level = BT_SECURITY_MEDIUM; 645 if (opt & RFCOMM_LM_SECURE) 646 rfcomm_pi(sk)->sec_level = BT_SECURITY_HIGH; 647 648 rfcomm_pi(sk)->role_switch = (opt & RFCOMM_LM_MASTER); 649 break; 650 651 default: 652 err = -ENOPROTOOPT; 653 break; 654 } 655 656 release_sock(sk); 657 return err; 658 } 659 660 static int rfcomm_sock_setsockopt(struct socket *sock, int level, int optname, 661 sockptr_t optval, unsigned int optlen) 662 { 663 struct sock *sk = sock->sk; 664 struct bt_security sec; 665 int err = 0; 666 u32 opt; 667 668 BT_DBG("sk %p", sk); 669 670 if (level == SOL_RFCOMM) 671 return rfcomm_sock_setsockopt_old(sock, optname, optval, optlen); 672 673 if (level != SOL_BLUETOOTH) 674 return -ENOPROTOOPT; 675 676 lock_sock(sk); 677 678 switch (optname) { 679 case BT_SECURITY: 680 if (sk->sk_type != SOCK_STREAM) { 681 err = -EINVAL; 682 break; 683 } 684 685 sec.level = BT_SECURITY_LOW; 686 687 err = copy_safe_from_sockptr(&sec, sizeof(sec), optval, optlen); 688 if (err) 689 break; 690 691 if (sec.level > BT_SECURITY_HIGH) { 692 err = -EINVAL; 693 break; 694 } 695 696 rfcomm_pi(sk)->sec_level = sec.level; 697 break; 698 699 case BT_DEFER_SETUP: 700 if (sk->sk_state != BT_BOUND && sk->sk_state != BT_LISTEN) { 701 err = -EINVAL; 702 break; 703 } 704 705 err = copy_safe_from_sockptr(&opt, sizeof(opt), optval, optlen); 706 if (err) 707 break; 708 709 if (opt) 710 set_bit(BT_SK_DEFER_SETUP, &bt_sk(sk)->flags); 711 else 712 clear_bit(BT_SK_DEFER_SETUP, &bt_sk(sk)->flags); 713 714 break; 715 716 default: 717 err = -ENOPROTOOPT; 718 break; 719 } 720 721 release_sock(sk); 722 return err; 723 } 724 725 static int rfcomm_sock_getsockopt_old(struct socket *sock, int optname, char __user *optval, int __user *optlen) 726 { 727 struct sock *sk = sock->sk; 728 struct sock *l2cap_sk; 729 struct l2cap_conn *conn; 730 struct rfcomm_conninfo cinfo; 731 int err = 0; 732 size_t len; 733 u32 opt; 734 735 BT_DBG("sk %p", sk); 736 737 if (get_user(len, optlen)) 738 return -EFAULT; 739 740 lock_sock(sk); 741 742 switch (optname) { 743 case RFCOMM_LM: 744 switch (rfcomm_pi(sk)->sec_level) { 745 case BT_SECURITY_LOW: 746 opt = RFCOMM_LM_AUTH; 747 break; 748 case BT_SECURITY_MEDIUM: 749 opt = RFCOMM_LM_AUTH | RFCOMM_LM_ENCRYPT; 750 break; 751 case BT_SECURITY_HIGH: 752 opt = RFCOMM_LM_AUTH | RFCOMM_LM_ENCRYPT | 753 RFCOMM_LM_SECURE; 754 break; 755 case BT_SECURITY_FIPS: 756 opt = RFCOMM_LM_AUTH | RFCOMM_LM_ENCRYPT | 757 RFCOMM_LM_SECURE | RFCOMM_LM_FIPS; 758 break; 759 default: 760 opt = 0; 761 break; 762 } 763 764 if (rfcomm_pi(sk)->role_switch) 765 opt |= RFCOMM_LM_MASTER; 766 767 if (put_user(opt, (u32 __user *) optval)) 768 err = -EFAULT; 769 770 break; 771 772 case RFCOMM_CONNINFO: 773 if (sk->sk_state != BT_CONNECTED && 774 !rfcomm_pi(sk)->dlc->defer_setup) { 775 err = -ENOTCONN; 776 break; 777 } 778 779 l2cap_sk = rfcomm_pi(sk)->dlc->session->sock->sk; 780 conn = l2cap_pi(l2cap_sk)->chan->conn; 781 782 memset(&cinfo, 0, sizeof(cinfo)); 783 cinfo.hci_handle = conn->hcon->handle; 784 memcpy(cinfo.dev_class, conn->hcon->dev_class, 3); 785 786 len = min(len, sizeof(cinfo)); 787 if (copy_to_user(optval, (char *) &cinfo, len)) 788 err = -EFAULT; 789 790 break; 791 792 default: 793 err = -ENOPROTOOPT; 794 break; 795 } 796 797 release_sock(sk); 798 return err; 799 } 800 801 static int rfcomm_sock_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *optlen) 802 { 803 struct sock *sk = sock->sk; 804 struct bt_security sec; 805 int err = 0; 806 size_t len; 807 808 BT_DBG("sk %p", sk); 809 810 if (level == SOL_RFCOMM) 811 return rfcomm_sock_getsockopt_old(sock, optname, optval, optlen); 812 813 if (level != SOL_BLUETOOTH) 814 return -ENOPROTOOPT; 815 816 if (get_user(len, optlen)) 817 return -EFAULT; 818 819 lock_sock(sk); 820 821 switch (optname) { 822 case BT_SECURITY: 823 if (sk->sk_type != SOCK_STREAM) { 824 err = -EINVAL; 825 break; 826 } 827 828 sec.level = rfcomm_pi(sk)->sec_level; 829 sec.key_size = 0; 830 831 len = min(len, sizeof(sec)); 832 if (copy_to_user(optval, (char *) &sec, len)) 833 err = -EFAULT; 834 835 break; 836 837 case BT_DEFER_SETUP: 838 if (sk->sk_state != BT_BOUND && sk->sk_state != BT_LISTEN) { 839 err = -EINVAL; 840 break; 841 } 842 843 if (put_user(test_bit(BT_SK_DEFER_SETUP, &bt_sk(sk)->flags), 844 (u32 __user *) optval)) 845 err = -EFAULT; 846 847 break; 848 849 default: 850 err = -ENOPROTOOPT; 851 break; 852 } 853 854 release_sock(sk); 855 return err; 856 } 857 858 static int rfcomm_sock_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 859 { 860 struct sock *sk __maybe_unused = sock->sk; 861 int err; 862 863 BT_DBG("sk %p cmd %x arg %lx", sk, cmd, arg); 864 865 err = bt_sock_ioctl(sock, cmd, arg); 866 867 if (err == -ENOIOCTLCMD) { 868 #ifdef CONFIG_BT_RFCOMM_TTY 869 err = rfcomm_dev_ioctl(sk, cmd, (void __user *) arg); 870 #else 871 err = -EOPNOTSUPP; 872 #endif 873 } 874 875 return err; 876 } 877 878 #ifdef CONFIG_COMPAT 879 static int rfcomm_sock_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) 880 { 881 return rfcomm_sock_ioctl(sock, cmd, (unsigned long)compat_ptr(arg)); 882 } 883 #endif 884 885 static int rfcomm_sock_shutdown(struct socket *sock, int how) 886 { 887 struct sock *sk = sock->sk; 888 int err = 0; 889 890 BT_DBG("sock %p, sk %p", sock, sk); 891 892 if (!sk) 893 return 0; 894 895 lock_sock(sk); 896 if (!sk->sk_shutdown) { 897 sk->sk_shutdown = SHUTDOWN_MASK; 898 899 release_sock(sk); 900 __rfcomm_sock_close(sk); 901 lock_sock(sk); 902 903 if (sock_flag(sk, SOCK_LINGER) && sk->sk_lingertime && 904 !(current->flags & PF_EXITING)) 905 err = bt_sock_wait_state(sk, BT_CLOSED, sk->sk_lingertime); 906 } 907 release_sock(sk); 908 return err; 909 } 910 911 static int rfcomm_sock_release(struct socket *sock) 912 { 913 struct sock *sk = sock->sk; 914 int err; 915 916 BT_DBG("sock %p, sk %p", sock, sk); 917 918 if (!sk) 919 return 0; 920 921 err = rfcomm_sock_shutdown(sock, 2); 922 923 sock_orphan(sk); 924 rfcomm_sock_kill(sk); 925 return err; 926 } 927 928 /* ---- RFCOMM core layer callbacks ---- 929 * 930 * called under rfcomm_lock() 931 */ 932 int rfcomm_connect_ind(struct rfcomm_session *s, u8 channel, struct rfcomm_dlc **d) 933 { 934 struct sock *sk, *parent; 935 bdaddr_t src, dst; 936 int result = 0; 937 938 BT_DBG("session %p channel %d", s, channel); 939 940 rfcomm_session_getaddr(s, &src, &dst); 941 942 /* Check if we have socket listening on channel */ 943 parent = rfcomm_get_sock_by_channel(BT_LISTEN, channel, &src); 944 if (!parent) 945 return 0; 946 947 lock_sock(parent); 948 949 /* Check for backlog size */ 950 if (sk_acceptq_is_full(parent)) { 951 BT_DBG("backlog full %d", parent->sk_ack_backlog); 952 goto done; 953 } 954 955 sk = rfcomm_sock_alloc(sock_net(parent), NULL, BTPROTO_RFCOMM, GFP_ATOMIC, 0); 956 if (!sk) 957 goto done; 958 959 bt_sock_reclassify_lock(sk, BTPROTO_RFCOMM); 960 961 rfcomm_sock_init(sk, parent); 962 bacpy(&rfcomm_pi(sk)->src, &src); 963 bacpy(&rfcomm_pi(sk)->dst, &dst); 964 rfcomm_pi(sk)->channel = channel; 965 966 sk->sk_state = BT_CONFIG; 967 bt_accept_enqueue(parent, sk, true); 968 969 /* Accept connection and return socket DLC */ 970 *d = rfcomm_pi(sk)->dlc; 971 result = 1; 972 973 done: 974 release_sock(parent); 975 976 if (test_bit(BT_SK_DEFER_SETUP, &bt_sk(parent)->flags)) 977 parent->sk_state_change(parent); 978 979 return result; 980 } 981 982 static int rfcomm_sock_debugfs_show(struct seq_file *f, void *p) 983 { 984 struct sock *sk; 985 986 read_lock(&rfcomm_sk_list.lock); 987 988 sk_for_each(sk, &rfcomm_sk_list.head) { 989 seq_printf(f, "%pMR %pMR %d %d\n", 990 &rfcomm_pi(sk)->src, &rfcomm_pi(sk)->dst, 991 sk->sk_state, rfcomm_pi(sk)->channel); 992 } 993 994 read_unlock(&rfcomm_sk_list.lock); 995 996 return 0; 997 } 998 999 DEFINE_SHOW_ATTRIBUTE(rfcomm_sock_debugfs); 1000 1001 static struct dentry *rfcomm_sock_debugfs; 1002 1003 static const struct proto_ops rfcomm_sock_ops = { 1004 .family = PF_BLUETOOTH, 1005 .owner = THIS_MODULE, 1006 .release = rfcomm_sock_release, 1007 .bind = rfcomm_sock_bind, 1008 .connect = rfcomm_sock_connect, 1009 .listen = rfcomm_sock_listen, 1010 .accept = rfcomm_sock_accept, 1011 .getname = rfcomm_sock_getname, 1012 .sendmsg = rfcomm_sock_sendmsg, 1013 .recvmsg = rfcomm_sock_recvmsg, 1014 .shutdown = rfcomm_sock_shutdown, 1015 .setsockopt = rfcomm_sock_setsockopt, 1016 .getsockopt = rfcomm_sock_getsockopt, 1017 .ioctl = rfcomm_sock_ioctl, 1018 .gettstamp = sock_gettstamp, 1019 .poll = bt_sock_poll, 1020 .socketpair = sock_no_socketpair, 1021 .mmap = sock_no_mmap, 1022 #ifdef CONFIG_COMPAT 1023 .compat_ioctl = rfcomm_sock_compat_ioctl, 1024 #endif 1025 }; 1026 1027 static const struct net_proto_family rfcomm_sock_family_ops = { 1028 .family = PF_BLUETOOTH, 1029 .owner = THIS_MODULE, 1030 .create = rfcomm_sock_create 1031 }; 1032 1033 int __init rfcomm_init_sockets(void) 1034 { 1035 int err; 1036 1037 BUILD_BUG_ON(sizeof(struct sockaddr_rc) > sizeof(struct sockaddr)); 1038 1039 err = proto_register(&rfcomm_proto, 0); 1040 if (err < 0) 1041 return err; 1042 1043 err = bt_sock_register(BTPROTO_RFCOMM, &rfcomm_sock_family_ops); 1044 if (err < 0) { 1045 BT_ERR("RFCOMM socket layer registration failed"); 1046 goto error; 1047 } 1048 1049 err = bt_procfs_init(&init_net, "rfcomm", &rfcomm_sk_list, NULL); 1050 if (err < 0) { 1051 BT_ERR("Failed to create RFCOMM proc file"); 1052 bt_sock_unregister(BTPROTO_RFCOMM); 1053 goto error; 1054 } 1055 1056 BT_INFO("RFCOMM socket layer initialized"); 1057 1058 if (IS_ERR_OR_NULL(bt_debugfs)) 1059 return 0; 1060 1061 rfcomm_sock_debugfs = debugfs_create_file("rfcomm", 0444, 1062 bt_debugfs, NULL, 1063 &rfcomm_sock_debugfs_fops); 1064 1065 return 0; 1066 1067 error: 1068 proto_unregister(&rfcomm_proto); 1069 return err; 1070 } 1071 1072 void __exit rfcomm_cleanup_sockets(void) 1073 { 1074 bt_procfs_cleanup(&init_net, "rfcomm"); 1075 1076 debugfs_remove(rfcomm_sock_debugfs); 1077 1078 bt_sock_unregister(BTPROTO_RFCOMM); 1079 1080 proto_unregister(&rfcomm_proto); 1081 } 1082