xref: /linux/net/bluetooth/rfcomm/sock.c (revision 12871a0bd67dd4db4418e1daafcd46e9d329ef10)
1 /*
2    RFCOMM implementation for Linux Bluetooth stack (BlueZ).
3    Copyright (C) 2002 Maxim Krasnyansky <maxk@qualcomm.com>
4    Copyright (C) 2002 Marcel Holtmann <marcel@holtmann.org>
5 
6    This program is free software; you can redistribute it and/or modify
7    it under the terms of the GNU General Public License version 2 as
8    published by the Free Software Foundation;
9 
10    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
11    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
12    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
13    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
14    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
15    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 
19    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
20    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
21    SOFTWARE IS DISCLAIMED.
22 */
23 
24 /*
25  * RFCOMM sockets.
26  */
27 
28 #include <linux/module.h>
29 
30 #include <linux/types.h>
31 #include <linux/errno.h>
32 #include <linux/kernel.h>
33 #include <linux/sched.h>
34 #include <linux/slab.h>
35 #include <linux/poll.h>
36 #include <linux/fcntl.h>
37 #include <linux/init.h>
38 #include <linux/interrupt.h>
39 #include <linux/socket.h>
40 #include <linux/skbuff.h>
41 #include <linux/list.h>
42 #include <linux/device.h>
43 #include <linux/debugfs.h>
44 #include <linux/seq_file.h>
45 #include <net/sock.h>
46 
47 #include <asm/system.h>
48 #include <linux/uaccess.h>
49 
50 #include <net/bluetooth/bluetooth.h>
51 #include <net/bluetooth/hci_core.h>
52 #include <net/bluetooth/l2cap.h>
53 #include <net/bluetooth/rfcomm.h>
54 
55 static const struct proto_ops rfcomm_sock_ops;
56 
57 static struct bt_sock_list rfcomm_sk_list = {
58 	.lock = __RW_LOCK_UNLOCKED(rfcomm_sk_list.lock)
59 };
60 
61 static void rfcomm_sock_close(struct sock *sk);
62 static void rfcomm_sock_kill(struct sock *sk);
63 
64 /* ---- DLC callbacks ----
65  *
66  * called under rfcomm_dlc_lock()
67  */
68 static void rfcomm_sk_data_ready(struct rfcomm_dlc *d, struct sk_buff *skb)
69 {
70 	struct sock *sk = d->owner;
71 	if (!sk)
72 		return;
73 
74 	atomic_add(skb->len, &sk->sk_rmem_alloc);
75 	skb_queue_tail(&sk->sk_receive_queue, skb);
76 	sk->sk_data_ready(sk, skb->len);
77 
78 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
79 		rfcomm_dlc_throttle(d);
80 }
81 
82 static void rfcomm_sk_state_change(struct rfcomm_dlc *d, int err)
83 {
84 	struct sock *sk = d->owner, *parent;
85 	unsigned long flags;
86 
87 	if (!sk)
88 		return;
89 
90 	BT_DBG("dlc %p state %ld err %d", d, d->state, err);
91 
92 	local_irq_save(flags);
93 	bh_lock_sock(sk);
94 
95 	if (err)
96 		sk->sk_err = err;
97 
98 	sk->sk_state = d->state;
99 
100 	parent = bt_sk(sk)->parent;
101 	if (parent) {
102 		if (d->state == BT_CLOSED) {
103 			sock_set_flag(sk, SOCK_ZAPPED);
104 			bt_accept_unlink(sk);
105 		}
106 		parent->sk_data_ready(parent, 0);
107 	} else {
108 		if (d->state == BT_CONNECTED)
109 			rfcomm_session_getaddr(d->session, &bt_sk(sk)->src, NULL);
110 		sk->sk_state_change(sk);
111 	}
112 
113 	bh_unlock_sock(sk);
114 	local_irq_restore(flags);
115 
116 	if (parent && sock_flag(sk, SOCK_ZAPPED)) {
117 		/* We have to drop DLC lock here, otherwise
118 		 * rfcomm_sock_destruct() will dead lock. */
119 		rfcomm_dlc_unlock(d);
120 		rfcomm_sock_kill(sk);
121 		rfcomm_dlc_lock(d);
122 	}
123 }
124 
125 /* ---- Socket functions ---- */
126 static struct sock *__rfcomm_get_sock_by_addr(u8 channel, bdaddr_t *src)
127 {
128 	struct sock *sk = NULL;
129 	struct hlist_node *node;
130 
131 	sk_for_each(sk, node, &rfcomm_sk_list.head) {
132 		if (rfcomm_pi(sk)->channel == channel &&
133 				!bacmp(&bt_sk(sk)->src, src))
134 			break;
135 	}
136 
137 	return node ? sk : NULL;
138 }
139 
140 /* Find socket with channel and source bdaddr.
141  * Returns closest match.
142  */
143 static struct sock *rfcomm_get_sock_by_channel(int state, u8 channel, bdaddr_t *src)
144 {
145 	struct sock *sk = NULL, *sk1 = NULL;
146 	struct hlist_node *node;
147 
148 	read_lock(&rfcomm_sk_list.lock);
149 
150 	sk_for_each(sk, node, &rfcomm_sk_list.head) {
151 		if (state && sk->sk_state != state)
152 			continue;
153 
154 		if (rfcomm_pi(sk)->channel == channel) {
155 			/* Exact match. */
156 			if (!bacmp(&bt_sk(sk)->src, src))
157 				break;
158 
159 			/* Closest match */
160 			if (!bacmp(&bt_sk(sk)->src, BDADDR_ANY))
161 				sk1 = sk;
162 		}
163 	}
164 
165 	read_unlock(&rfcomm_sk_list.lock);
166 
167 	return node ? sk : sk1;
168 }
169 
170 static void rfcomm_sock_destruct(struct sock *sk)
171 {
172 	struct rfcomm_dlc *d = rfcomm_pi(sk)->dlc;
173 
174 	BT_DBG("sk %p dlc %p", sk, d);
175 
176 	skb_queue_purge(&sk->sk_receive_queue);
177 	skb_queue_purge(&sk->sk_write_queue);
178 
179 	rfcomm_dlc_lock(d);
180 	rfcomm_pi(sk)->dlc = NULL;
181 
182 	/* Detach DLC if it's owned by this socket */
183 	if (d->owner == sk)
184 		d->owner = NULL;
185 	rfcomm_dlc_unlock(d);
186 
187 	rfcomm_dlc_put(d);
188 }
189 
190 static void rfcomm_sock_cleanup_listen(struct sock *parent)
191 {
192 	struct sock *sk;
193 
194 	BT_DBG("parent %p", parent);
195 
196 	/* Close not yet accepted dlcs */
197 	while ((sk = bt_accept_dequeue(parent, NULL))) {
198 		rfcomm_sock_close(sk);
199 		rfcomm_sock_kill(sk);
200 	}
201 
202 	parent->sk_state  = BT_CLOSED;
203 	sock_set_flag(parent, SOCK_ZAPPED);
204 }
205 
206 /* Kill socket (only if zapped and orphan)
207  * Must be called on unlocked socket.
208  */
209 static void rfcomm_sock_kill(struct sock *sk)
210 {
211 	if (!sock_flag(sk, SOCK_ZAPPED) || sk->sk_socket)
212 		return;
213 
214 	BT_DBG("sk %p state %d refcnt %d", sk, sk->sk_state, atomic_read(&sk->sk_refcnt));
215 
216 	/* Kill poor orphan */
217 	bt_sock_unlink(&rfcomm_sk_list, sk);
218 	sock_set_flag(sk, SOCK_DEAD);
219 	sock_put(sk);
220 }
221 
222 static void __rfcomm_sock_close(struct sock *sk)
223 {
224 	struct rfcomm_dlc *d = rfcomm_pi(sk)->dlc;
225 
226 	BT_DBG("sk %p state %d socket %p", sk, sk->sk_state, sk->sk_socket);
227 
228 	switch (sk->sk_state) {
229 	case BT_LISTEN:
230 		rfcomm_sock_cleanup_listen(sk);
231 		break;
232 
233 	case BT_CONNECT:
234 	case BT_CONNECT2:
235 	case BT_CONFIG:
236 	case BT_CONNECTED:
237 		rfcomm_dlc_close(d, 0);
238 
239 	default:
240 		sock_set_flag(sk, SOCK_ZAPPED);
241 		break;
242 	}
243 }
244 
245 /* Close socket.
246  * Must be called on unlocked socket.
247  */
248 static void rfcomm_sock_close(struct sock *sk)
249 {
250 	lock_sock(sk);
251 	__rfcomm_sock_close(sk);
252 	release_sock(sk);
253 }
254 
255 static void rfcomm_sock_init(struct sock *sk, struct sock *parent)
256 {
257 	struct rfcomm_pinfo *pi = rfcomm_pi(sk);
258 
259 	BT_DBG("sk %p", sk);
260 
261 	if (parent) {
262 		sk->sk_type = parent->sk_type;
263 		pi->dlc->defer_setup = bt_sk(parent)->defer_setup;
264 
265 		pi->sec_level = rfcomm_pi(parent)->sec_level;
266 		pi->role_switch = rfcomm_pi(parent)->role_switch;
267 	} else {
268 		pi->dlc->defer_setup = 0;
269 
270 		pi->sec_level = BT_SECURITY_LOW;
271 		pi->role_switch = 0;
272 	}
273 
274 	pi->dlc->sec_level = pi->sec_level;
275 	pi->dlc->role_switch = pi->role_switch;
276 }
277 
278 static struct proto rfcomm_proto = {
279 	.name		= "RFCOMM",
280 	.owner		= THIS_MODULE,
281 	.obj_size	= sizeof(struct rfcomm_pinfo)
282 };
283 
284 static struct sock *rfcomm_sock_alloc(struct net *net, struct socket *sock, int proto, gfp_t prio)
285 {
286 	struct rfcomm_dlc *d;
287 	struct sock *sk;
288 
289 	sk = sk_alloc(net, PF_BLUETOOTH, prio, &rfcomm_proto);
290 	if (!sk)
291 		return NULL;
292 
293 	sock_init_data(sock, sk);
294 	INIT_LIST_HEAD(&bt_sk(sk)->accept_q);
295 
296 	d = rfcomm_dlc_alloc(prio);
297 	if (!d) {
298 		sk_free(sk);
299 		return NULL;
300 	}
301 
302 	d->data_ready   = rfcomm_sk_data_ready;
303 	d->state_change = rfcomm_sk_state_change;
304 
305 	rfcomm_pi(sk)->dlc = d;
306 	d->owner = sk;
307 
308 	sk->sk_destruct = rfcomm_sock_destruct;
309 	sk->sk_sndtimeo = RFCOMM_CONN_TIMEOUT;
310 
311 	sk->sk_sndbuf = RFCOMM_MAX_CREDITS * RFCOMM_DEFAULT_MTU * 10;
312 	sk->sk_rcvbuf = RFCOMM_MAX_CREDITS * RFCOMM_DEFAULT_MTU * 10;
313 
314 	sock_reset_flag(sk, SOCK_ZAPPED);
315 
316 	sk->sk_protocol = proto;
317 	sk->sk_state    = BT_OPEN;
318 
319 	bt_sock_link(&rfcomm_sk_list, sk);
320 
321 	BT_DBG("sk %p", sk);
322 	return sk;
323 }
324 
325 static int rfcomm_sock_create(struct net *net, struct socket *sock,
326 			      int protocol, int kern)
327 {
328 	struct sock *sk;
329 
330 	BT_DBG("sock %p", sock);
331 
332 	sock->state = SS_UNCONNECTED;
333 
334 	if (sock->type != SOCK_STREAM && sock->type != SOCK_RAW)
335 		return -ESOCKTNOSUPPORT;
336 
337 	sock->ops = &rfcomm_sock_ops;
338 
339 	sk = rfcomm_sock_alloc(net, sock, protocol, GFP_ATOMIC);
340 	if (!sk)
341 		return -ENOMEM;
342 
343 	rfcomm_sock_init(sk, NULL);
344 	return 0;
345 }
346 
347 static int rfcomm_sock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
348 {
349 	struct sockaddr_rc *sa = (struct sockaddr_rc *) addr;
350 	struct sock *sk = sock->sk;
351 	int err = 0;
352 
353 	BT_DBG("sk %p %s", sk, batostr(&sa->rc_bdaddr));
354 
355 	if (!addr || addr->sa_family != AF_BLUETOOTH)
356 		return -EINVAL;
357 
358 	lock_sock(sk);
359 
360 	if (sk->sk_state != BT_OPEN) {
361 		err = -EBADFD;
362 		goto done;
363 	}
364 
365 	if (sk->sk_type != SOCK_STREAM) {
366 		err = -EINVAL;
367 		goto done;
368 	}
369 
370 	write_lock_bh(&rfcomm_sk_list.lock);
371 
372 	if (sa->rc_channel && __rfcomm_get_sock_by_addr(sa->rc_channel, &sa->rc_bdaddr)) {
373 		err = -EADDRINUSE;
374 	} else {
375 		/* Save source address */
376 		bacpy(&bt_sk(sk)->src, &sa->rc_bdaddr);
377 		rfcomm_pi(sk)->channel = sa->rc_channel;
378 		sk->sk_state = BT_BOUND;
379 	}
380 
381 	write_unlock_bh(&rfcomm_sk_list.lock);
382 
383 done:
384 	release_sock(sk);
385 	return err;
386 }
387 
388 static int rfcomm_sock_connect(struct socket *sock, struct sockaddr *addr, int alen, int flags)
389 {
390 	struct sockaddr_rc *sa = (struct sockaddr_rc *) addr;
391 	struct sock *sk = sock->sk;
392 	struct rfcomm_dlc *d = rfcomm_pi(sk)->dlc;
393 	int err = 0;
394 
395 	BT_DBG("sk %p", sk);
396 
397 	if (alen < sizeof(struct sockaddr_rc) ||
398 	    addr->sa_family != AF_BLUETOOTH)
399 		return -EINVAL;
400 
401 	lock_sock(sk);
402 
403 	if (sk->sk_state != BT_OPEN && sk->sk_state != BT_BOUND) {
404 		err = -EBADFD;
405 		goto done;
406 	}
407 
408 	if (sk->sk_type != SOCK_STREAM) {
409 		err = -EINVAL;
410 		goto done;
411 	}
412 
413 	sk->sk_state = BT_CONNECT;
414 	bacpy(&bt_sk(sk)->dst, &sa->rc_bdaddr);
415 	rfcomm_pi(sk)->channel = sa->rc_channel;
416 
417 	d->sec_level = rfcomm_pi(sk)->sec_level;
418 	d->role_switch = rfcomm_pi(sk)->role_switch;
419 
420 	err = rfcomm_dlc_open(d, &bt_sk(sk)->src, &sa->rc_bdaddr, sa->rc_channel);
421 	if (!err)
422 		err = bt_sock_wait_state(sk, BT_CONNECTED,
423 				sock_sndtimeo(sk, flags & O_NONBLOCK));
424 
425 done:
426 	release_sock(sk);
427 	return err;
428 }
429 
430 static int rfcomm_sock_listen(struct socket *sock, int backlog)
431 {
432 	struct sock *sk = sock->sk;
433 	int err = 0;
434 
435 	BT_DBG("sk %p backlog %d", sk, backlog);
436 
437 	lock_sock(sk);
438 
439 	if (sk->sk_state != BT_BOUND) {
440 		err = -EBADFD;
441 		goto done;
442 	}
443 
444 	if (sk->sk_type != SOCK_STREAM) {
445 		err = -EINVAL;
446 		goto done;
447 	}
448 
449 	if (!rfcomm_pi(sk)->channel) {
450 		bdaddr_t *src = &bt_sk(sk)->src;
451 		u8 channel;
452 
453 		err = -EINVAL;
454 
455 		write_lock_bh(&rfcomm_sk_list.lock);
456 
457 		for (channel = 1; channel < 31; channel++)
458 			if (!__rfcomm_get_sock_by_addr(channel, src)) {
459 				rfcomm_pi(sk)->channel = channel;
460 				err = 0;
461 				break;
462 			}
463 
464 		write_unlock_bh(&rfcomm_sk_list.lock);
465 
466 		if (err < 0)
467 			goto done;
468 	}
469 
470 	sk->sk_max_ack_backlog = backlog;
471 	sk->sk_ack_backlog = 0;
472 	sk->sk_state = BT_LISTEN;
473 
474 done:
475 	release_sock(sk);
476 	return err;
477 }
478 
479 static int rfcomm_sock_accept(struct socket *sock, struct socket *newsock, int flags)
480 {
481 	DECLARE_WAITQUEUE(wait, current);
482 	struct sock *sk = sock->sk, *nsk;
483 	long timeo;
484 	int err = 0;
485 
486 	lock_sock(sk);
487 
488 	if (sk->sk_state != BT_LISTEN) {
489 		err = -EBADFD;
490 		goto done;
491 	}
492 
493 	if (sk->sk_type != SOCK_STREAM) {
494 		err = -EINVAL;
495 		goto done;
496 	}
497 
498 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
499 
500 	BT_DBG("sk %p timeo %ld", sk, timeo);
501 
502 	/* Wait for an incoming connection. (wake-one). */
503 	add_wait_queue_exclusive(sk_sleep(sk), &wait);
504 	while (!(nsk = bt_accept_dequeue(sk, newsock))) {
505 		set_current_state(TASK_INTERRUPTIBLE);
506 		if (!timeo) {
507 			err = -EAGAIN;
508 			break;
509 		}
510 
511 		release_sock(sk);
512 		timeo = schedule_timeout(timeo);
513 		lock_sock(sk);
514 
515 		if (sk->sk_state != BT_LISTEN) {
516 			err = -EBADFD;
517 			break;
518 		}
519 
520 		if (signal_pending(current)) {
521 			err = sock_intr_errno(timeo);
522 			break;
523 		}
524 	}
525 	set_current_state(TASK_RUNNING);
526 	remove_wait_queue(sk_sleep(sk), &wait);
527 
528 	if (err)
529 		goto done;
530 
531 	newsock->state = SS_CONNECTED;
532 
533 	BT_DBG("new socket %p", nsk);
534 
535 done:
536 	release_sock(sk);
537 	return err;
538 }
539 
540 static int rfcomm_sock_getname(struct socket *sock, struct sockaddr *addr, int *len, int peer)
541 {
542 	struct sockaddr_rc *sa = (struct sockaddr_rc *) addr;
543 	struct sock *sk = sock->sk;
544 
545 	BT_DBG("sock %p, sk %p", sock, sk);
546 
547 	sa->rc_family  = AF_BLUETOOTH;
548 	sa->rc_channel = rfcomm_pi(sk)->channel;
549 	if (peer)
550 		bacpy(&sa->rc_bdaddr, &bt_sk(sk)->dst);
551 	else
552 		bacpy(&sa->rc_bdaddr, &bt_sk(sk)->src);
553 
554 	*len = sizeof(struct sockaddr_rc);
555 	return 0;
556 }
557 
558 static int rfcomm_sock_sendmsg(struct kiocb *iocb, struct socket *sock,
559 			       struct msghdr *msg, size_t len)
560 {
561 	struct sock *sk = sock->sk;
562 	struct rfcomm_dlc *d = rfcomm_pi(sk)->dlc;
563 	struct sk_buff *skb;
564 	int sent = 0;
565 
566 	if (test_bit(RFCOMM_DEFER_SETUP, &d->flags))
567 		return -ENOTCONN;
568 
569 	if (msg->msg_flags & MSG_OOB)
570 		return -EOPNOTSUPP;
571 
572 	if (sk->sk_shutdown & SEND_SHUTDOWN)
573 		return -EPIPE;
574 
575 	BT_DBG("sock %p, sk %p", sock, sk);
576 
577 	lock_sock(sk);
578 
579 	while (len) {
580 		size_t size = min_t(size_t, len, d->mtu);
581 		int err;
582 
583 		skb = sock_alloc_send_skb(sk, size + RFCOMM_SKB_RESERVE,
584 				msg->msg_flags & MSG_DONTWAIT, &err);
585 		if (!skb) {
586 			if (sent == 0)
587 				sent = err;
588 			break;
589 		}
590 		skb_reserve(skb, RFCOMM_SKB_HEAD_RESERVE);
591 
592 		err = memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size);
593 		if (err) {
594 			kfree_skb(skb);
595 			if (sent == 0)
596 				sent = err;
597 			break;
598 		}
599 
600 		err = rfcomm_dlc_send(d, skb);
601 		if (err < 0) {
602 			kfree_skb(skb);
603 			if (sent == 0)
604 				sent = err;
605 			break;
606 		}
607 
608 		sent += size;
609 		len  -= size;
610 	}
611 
612 	release_sock(sk);
613 
614 	return sent;
615 }
616 
617 static int rfcomm_sock_recvmsg(struct kiocb *iocb, struct socket *sock,
618 			       struct msghdr *msg, size_t size, int flags)
619 {
620 	struct sock *sk = sock->sk;
621 	struct rfcomm_dlc *d = rfcomm_pi(sk)->dlc;
622 	int len;
623 
624 	if (test_and_clear_bit(RFCOMM_DEFER_SETUP, &d->flags)) {
625 		rfcomm_dlc_accept(d);
626 		return 0;
627 	}
628 
629 	len = bt_sock_stream_recvmsg(iocb, sock, msg, size, flags);
630 
631 	lock_sock(sk);
632 	if (!(flags & MSG_PEEK) && len > 0)
633 		atomic_sub(len, &sk->sk_rmem_alloc);
634 
635 	if (atomic_read(&sk->sk_rmem_alloc) <= (sk->sk_rcvbuf >> 2))
636 		rfcomm_dlc_unthrottle(rfcomm_pi(sk)->dlc);
637 	release_sock(sk);
638 
639 	return len;
640 }
641 
642 static int rfcomm_sock_setsockopt_old(struct socket *sock, int optname, char __user *optval, unsigned int optlen)
643 {
644 	struct sock *sk = sock->sk;
645 	int err = 0;
646 	u32 opt;
647 
648 	BT_DBG("sk %p", sk);
649 
650 	lock_sock(sk);
651 
652 	switch (optname) {
653 	case RFCOMM_LM:
654 		if (get_user(opt, (u32 __user *) optval)) {
655 			err = -EFAULT;
656 			break;
657 		}
658 
659 		if (opt & RFCOMM_LM_AUTH)
660 			rfcomm_pi(sk)->sec_level = BT_SECURITY_LOW;
661 		if (opt & RFCOMM_LM_ENCRYPT)
662 			rfcomm_pi(sk)->sec_level = BT_SECURITY_MEDIUM;
663 		if (opt & RFCOMM_LM_SECURE)
664 			rfcomm_pi(sk)->sec_level = BT_SECURITY_HIGH;
665 
666 		rfcomm_pi(sk)->role_switch = (opt & RFCOMM_LM_MASTER);
667 		break;
668 
669 	default:
670 		err = -ENOPROTOOPT;
671 		break;
672 	}
673 
674 	release_sock(sk);
675 	return err;
676 }
677 
678 static int rfcomm_sock_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen)
679 {
680 	struct sock *sk = sock->sk;
681 	struct bt_security sec;
682 	int len, err = 0;
683 	u32 opt;
684 
685 	BT_DBG("sk %p", sk);
686 
687 	if (level == SOL_RFCOMM)
688 		return rfcomm_sock_setsockopt_old(sock, optname, optval, optlen);
689 
690 	if (level != SOL_BLUETOOTH)
691 		return -ENOPROTOOPT;
692 
693 	lock_sock(sk);
694 
695 	switch (optname) {
696 	case BT_SECURITY:
697 		if (sk->sk_type != SOCK_STREAM) {
698 			err = -EINVAL;
699 			break;
700 		}
701 
702 		sec.level = BT_SECURITY_LOW;
703 
704 		len = min_t(unsigned int, sizeof(sec), optlen);
705 		if (copy_from_user((char *) &sec, optval, len)) {
706 			err = -EFAULT;
707 			break;
708 		}
709 
710 		if (sec.level > BT_SECURITY_HIGH) {
711 			err = -EINVAL;
712 			break;
713 		}
714 
715 		rfcomm_pi(sk)->sec_level = sec.level;
716 		break;
717 
718 	case BT_DEFER_SETUP:
719 		if (sk->sk_state != BT_BOUND && sk->sk_state != BT_LISTEN) {
720 			err = -EINVAL;
721 			break;
722 		}
723 
724 		if (get_user(opt, (u32 __user *) optval)) {
725 			err = -EFAULT;
726 			break;
727 		}
728 
729 		bt_sk(sk)->defer_setup = opt;
730 		break;
731 
732 	default:
733 		err = -ENOPROTOOPT;
734 		break;
735 	}
736 
737 	release_sock(sk);
738 	return err;
739 }
740 
741 static int rfcomm_sock_getsockopt_old(struct socket *sock, int optname, char __user *optval, int __user *optlen)
742 {
743 	struct sock *sk = sock->sk;
744 	struct sock *l2cap_sk;
745 	struct rfcomm_conninfo cinfo;
746 	struct l2cap_conn *conn = l2cap_pi(sk)->chan->conn;
747 	int len, err = 0;
748 	u32 opt;
749 
750 	BT_DBG("sk %p", sk);
751 
752 	if (get_user(len, optlen))
753 		return -EFAULT;
754 
755 	lock_sock(sk);
756 
757 	switch (optname) {
758 	case RFCOMM_LM:
759 		switch (rfcomm_pi(sk)->sec_level) {
760 		case BT_SECURITY_LOW:
761 			opt = RFCOMM_LM_AUTH;
762 			break;
763 		case BT_SECURITY_MEDIUM:
764 			opt = RFCOMM_LM_AUTH | RFCOMM_LM_ENCRYPT;
765 			break;
766 		case BT_SECURITY_HIGH:
767 			opt = RFCOMM_LM_AUTH | RFCOMM_LM_ENCRYPT |
768 							RFCOMM_LM_SECURE;
769 			break;
770 		default:
771 			opt = 0;
772 			break;
773 		}
774 
775 		if (rfcomm_pi(sk)->role_switch)
776 			opt |= RFCOMM_LM_MASTER;
777 
778 		if (put_user(opt, (u32 __user *) optval))
779 			err = -EFAULT;
780 		break;
781 
782 	case RFCOMM_CONNINFO:
783 		if (sk->sk_state != BT_CONNECTED &&
784 					!rfcomm_pi(sk)->dlc->defer_setup) {
785 			err = -ENOTCONN;
786 			break;
787 		}
788 
789 		l2cap_sk = rfcomm_pi(sk)->dlc->session->sock->sk;
790 
791 		cinfo.hci_handle = conn->hcon->handle;
792 		memcpy(cinfo.dev_class, conn->hcon->dev_class, 3);
793 
794 		len = min_t(unsigned int, len, sizeof(cinfo));
795 		if (copy_to_user(optval, (char *) &cinfo, len))
796 			err = -EFAULT;
797 
798 		break;
799 
800 	default:
801 		err = -ENOPROTOOPT;
802 		break;
803 	}
804 
805 	release_sock(sk);
806 	return err;
807 }
808 
809 static int rfcomm_sock_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *optlen)
810 {
811 	struct sock *sk = sock->sk;
812 	struct bt_security sec;
813 	int len, err = 0;
814 
815 	BT_DBG("sk %p", sk);
816 
817 	if (level == SOL_RFCOMM)
818 		return rfcomm_sock_getsockopt_old(sock, optname, optval, optlen);
819 
820 	if (level != SOL_BLUETOOTH)
821 		return -ENOPROTOOPT;
822 
823 	if (get_user(len, optlen))
824 		return -EFAULT;
825 
826 	lock_sock(sk);
827 
828 	switch (optname) {
829 	case BT_SECURITY:
830 		if (sk->sk_type != SOCK_STREAM) {
831 			err = -EINVAL;
832 			break;
833 		}
834 
835 		sec.level = rfcomm_pi(sk)->sec_level;
836 
837 		len = min_t(unsigned int, len, sizeof(sec));
838 		if (copy_to_user(optval, (char *) &sec, len))
839 			err = -EFAULT;
840 
841 		break;
842 
843 	case BT_DEFER_SETUP:
844 		if (sk->sk_state != BT_BOUND && sk->sk_state != BT_LISTEN) {
845 			err = -EINVAL;
846 			break;
847 		}
848 
849 		if (put_user(bt_sk(sk)->defer_setup, (u32 __user *) optval))
850 			err = -EFAULT;
851 
852 		break;
853 
854 	default:
855 		err = -ENOPROTOOPT;
856 		break;
857 	}
858 
859 	release_sock(sk);
860 	return err;
861 }
862 
863 static int rfcomm_sock_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
864 {
865 	struct sock *sk __maybe_unused = sock->sk;
866 	int err;
867 
868 	BT_DBG("sk %p cmd %x arg %lx", sk, cmd, arg);
869 
870 	err = bt_sock_ioctl(sock, cmd, arg);
871 
872 	if (err == -ENOIOCTLCMD) {
873 #ifdef CONFIG_BT_RFCOMM_TTY
874 		lock_sock(sk);
875 		err = rfcomm_dev_ioctl(sk, cmd, (void __user *) arg);
876 		release_sock(sk);
877 #else
878 		err = -EOPNOTSUPP;
879 #endif
880 	}
881 
882 	return err;
883 }
884 
885 static int rfcomm_sock_shutdown(struct socket *sock, int how)
886 {
887 	struct sock *sk = sock->sk;
888 	int err = 0;
889 
890 	BT_DBG("sock %p, sk %p", sock, sk);
891 
892 	if (!sk)
893 		return 0;
894 
895 	lock_sock(sk);
896 	if (!sk->sk_shutdown) {
897 		sk->sk_shutdown = SHUTDOWN_MASK;
898 		__rfcomm_sock_close(sk);
899 
900 		if (sock_flag(sk, SOCK_LINGER) && sk->sk_lingertime)
901 			err = bt_sock_wait_state(sk, BT_CLOSED, sk->sk_lingertime);
902 	}
903 	release_sock(sk);
904 	return err;
905 }
906 
907 static int rfcomm_sock_release(struct socket *sock)
908 {
909 	struct sock *sk = sock->sk;
910 	int err;
911 
912 	BT_DBG("sock %p, sk %p", sock, sk);
913 
914 	if (!sk)
915 		return 0;
916 
917 	err = rfcomm_sock_shutdown(sock, 2);
918 
919 	sock_orphan(sk);
920 	rfcomm_sock_kill(sk);
921 	return err;
922 }
923 
924 /* ---- RFCOMM core layer callbacks ----
925  *
926  * called under rfcomm_lock()
927  */
928 int rfcomm_connect_ind(struct rfcomm_session *s, u8 channel, struct rfcomm_dlc **d)
929 {
930 	struct sock *sk, *parent;
931 	bdaddr_t src, dst;
932 	int result = 0;
933 
934 	BT_DBG("session %p channel %d", s, channel);
935 
936 	rfcomm_session_getaddr(s, &src, &dst);
937 
938 	/* Check if we have socket listening on channel */
939 	parent = rfcomm_get_sock_by_channel(BT_LISTEN, channel, &src);
940 	if (!parent)
941 		return 0;
942 
943 	bh_lock_sock(parent);
944 
945 	/* Check for backlog size */
946 	if (sk_acceptq_is_full(parent)) {
947 		BT_DBG("backlog full %d", parent->sk_ack_backlog);
948 		goto done;
949 	}
950 
951 	sk = rfcomm_sock_alloc(sock_net(parent), NULL, BTPROTO_RFCOMM, GFP_ATOMIC);
952 	if (!sk)
953 		goto done;
954 
955 	rfcomm_sock_init(sk, parent);
956 	bacpy(&bt_sk(sk)->src, &src);
957 	bacpy(&bt_sk(sk)->dst, &dst);
958 	rfcomm_pi(sk)->channel = channel;
959 
960 	sk->sk_state = BT_CONFIG;
961 	bt_accept_enqueue(parent, sk);
962 
963 	/* Accept connection and return socket DLC */
964 	*d = rfcomm_pi(sk)->dlc;
965 	result = 1;
966 
967 done:
968 	bh_unlock_sock(parent);
969 
970 	if (bt_sk(parent)->defer_setup)
971 		parent->sk_state_change(parent);
972 
973 	return result;
974 }
975 
976 static int rfcomm_sock_debugfs_show(struct seq_file *f, void *p)
977 {
978 	struct sock *sk;
979 	struct hlist_node *node;
980 
981 	read_lock_bh(&rfcomm_sk_list.lock);
982 
983 	sk_for_each(sk, node, &rfcomm_sk_list.head) {
984 		seq_printf(f, "%s %s %d %d\n",
985 				batostr(&bt_sk(sk)->src),
986 				batostr(&bt_sk(sk)->dst),
987 				sk->sk_state, rfcomm_pi(sk)->channel);
988 	}
989 
990 	read_unlock_bh(&rfcomm_sk_list.lock);
991 
992 	return 0;
993 }
994 
995 static int rfcomm_sock_debugfs_open(struct inode *inode, struct file *file)
996 {
997 	return single_open(file, rfcomm_sock_debugfs_show, inode->i_private);
998 }
999 
1000 static const struct file_operations rfcomm_sock_debugfs_fops = {
1001 	.open		= rfcomm_sock_debugfs_open,
1002 	.read		= seq_read,
1003 	.llseek		= seq_lseek,
1004 	.release	= single_release,
1005 };
1006 
1007 static struct dentry *rfcomm_sock_debugfs;
1008 
1009 static const struct proto_ops rfcomm_sock_ops = {
1010 	.family		= PF_BLUETOOTH,
1011 	.owner		= THIS_MODULE,
1012 	.release	= rfcomm_sock_release,
1013 	.bind		= rfcomm_sock_bind,
1014 	.connect	= rfcomm_sock_connect,
1015 	.listen		= rfcomm_sock_listen,
1016 	.accept		= rfcomm_sock_accept,
1017 	.getname	= rfcomm_sock_getname,
1018 	.sendmsg	= rfcomm_sock_sendmsg,
1019 	.recvmsg	= rfcomm_sock_recvmsg,
1020 	.shutdown	= rfcomm_sock_shutdown,
1021 	.setsockopt	= rfcomm_sock_setsockopt,
1022 	.getsockopt	= rfcomm_sock_getsockopt,
1023 	.ioctl		= rfcomm_sock_ioctl,
1024 	.poll		= bt_sock_poll,
1025 	.socketpair	= sock_no_socketpair,
1026 	.mmap		= sock_no_mmap
1027 };
1028 
1029 static const struct net_proto_family rfcomm_sock_family_ops = {
1030 	.family		= PF_BLUETOOTH,
1031 	.owner		= THIS_MODULE,
1032 	.create		= rfcomm_sock_create
1033 };
1034 
1035 int __init rfcomm_init_sockets(void)
1036 {
1037 	int err;
1038 
1039 	err = proto_register(&rfcomm_proto, 0);
1040 	if (err < 0)
1041 		return err;
1042 
1043 	err = bt_sock_register(BTPROTO_RFCOMM, &rfcomm_sock_family_ops);
1044 	if (err < 0)
1045 		goto error;
1046 
1047 	if (bt_debugfs) {
1048 		rfcomm_sock_debugfs = debugfs_create_file("rfcomm", 0444,
1049 				bt_debugfs, NULL, &rfcomm_sock_debugfs_fops);
1050 		if (!rfcomm_sock_debugfs)
1051 			BT_ERR("Failed to create RFCOMM debug file");
1052 	}
1053 
1054 	BT_INFO("RFCOMM socket layer initialized");
1055 
1056 	return 0;
1057 
1058 error:
1059 	BT_ERR("RFCOMM socket layer registration failed");
1060 	proto_unregister(&rfcomm_proto);
1061 	return err;
1062 }
1063 
1064 void __exit rfcomm_cleanup_sockets(void)
1065 {
1066 	debugfs_remove(rfcomm_sock_debugfs);
1067 
1068 	if (bt_sock_unregister(BTPROTO_RFCOMM) < 0)
1069 		BT_ERR("RFCOMM socket layer unregistration failed");
1070 
1071 	proto_unregister(&rfcomm_proto);
1072 }
1073