1 /* 2 HIDP implementation for Linux Bluetooth stack (BlueZ). 3 Copyright (C) 2003-2004 Marcel Holtmann <marcel@holtmann.org> 4 Copyright (C) 2013 David Herrmann <dh.herrmann@gmail.com> 5 6 This program is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License version 2 as 8 published by the Free Software Foundation; 9 10 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 11 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 12 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 13 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 14 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 15 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 19 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 20 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 21 SOFTWARE IS DISCLAIMED. 22 */ 23 24 #include <linux/kref.h> 25 #include <linux/module.h> 26 #include <linux/file.h> 27 #include <linux/kthread.h> 28 #include <linux/hidraw.h> 29 30 #include <net/bluetooth/bluetooth.h> 31 #include <net/bluetooth/hci_core.h> 32 #include <net/bluetooth/l2cap.h> 33 34 #include "hidp.h" 35 36 #define VERSION "1.2" 37 38 static DECLARE_RWSEM(hidp_session_sem); 39 static LIST_HEAD(hidp_session_list); 40 41 static unsigned char hidp_keycode[256] = { 42 0, 0, 0, 0, 30, 48, 46, 32, 18, 33, 34, 35, 23, 36, 43 37, 38, 50, 49, 24, 25, 16, 19, 31, 20, 22, 47, 17, 45, 44 21, 44, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 28, 1, 45 14, 15, 57, 12, 13, 26, 27, 43, 43, 39, 40, 41, 51, 52, 46 53, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 87, 88, 47 99, 70, 119, 110, 102, 104, 111, 107, 109, 106, 105, 108, 103, 69, 48 98, 55, 74, 78, 96, 79, 80, 81, 75, 76, 77, 71, 72, 73, 49 82, 83, 86, 127, 116, 117, 183, 184, 185, 186, 187, 188, 189, 190, 50 191, 192, 193, 194, 134, 138, 130, 132, 128, 129, 131, 137, 133, 135, 51 136, 113, 115, 114, 0, 0, 0, 121, 0, 89, 93, 124, 92, 94, 52 95, 0, 0, 0, 122, 123, 90, 91, 85, 0, 0, 0, 0, 0, 53 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 54 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 55 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 56 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 57 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 58 29, 42, 56, 125, 97, 54, 100, 126, 164, 166, 165, 163, 161, 115, 59 114, 113, 150, 158, 159, 128, 136, 177, 178, 176, 142, 152, 173, 140 60 }; 61 62 static unsigned char hidp_mkeyspat[] = { 0x01, 0x01, 0x01, 0x01, 0x01, 0x01 }; 63 64 static int hidp_session_probe(struct l2cap_conn *conn, 65 struct l2cap_user *user); 66 static void hidp_session_remove(struct l2cap_conn *conn, 67 struct l2cap_user *user); 68 static int hidp_session_thread(void *arg); 69 static void hidp_session_terminate(struct hidp_session *s); 70 71 static void hidp_copy_session(struct hidp_session *session, struct hidp_conninfo *ci) 72 { 73 u32 valid_flags = 0; 74 memset(ci, 0, sizeof(*ci)); 75 bacpy(&ci->bdaddr, &session->bdaddr); 76 77 ci->flags = session->flags & valid_flags; 78 ci->state = BT_CONNECTED; 79 80 if (session->input) { 81 ci->vendor = session->input->id.vendor; 82 ci->product = session->input->id.product; 83 ci->version = session->input->id.version; 84 if (session->input->name) 85 strlcpy(ci->name, session->input->name, 128); 86 else 87 strlcpy(ci->name, "HID Boot Device", 128); 88 } else if (session->hid) { 89 ci->vendor = session->hid->vendor; 90 ci->product = session->hid->product; 91 ci->version = session->hid->version; 92 strlcpy(ci->name, session->hid->name, 128); 93 } 94 } 95 96 /* assemble skb, queue message on @transmit and wake up the session thread */ 97 static int hidp_send_message(struct hidp_session *session, struct socket *sock, 98 struct sk_buff_head *transmit, unsigned char hdr, 99 const unsigned char *data, int size) 100 { 101 struct sk_buff *skb; 102 struct sock *sk = sock->sk; 103 104 BT_DBG("session %p data %p size %d", session, data, size); 105 106 if (atomic_read(&session->terminate)) 107 return -EIO; 108 109 skb = alloc_skb(size + 1, GFP_ATOMIC); 110 if (!skb) { 111 BT_ERR("Can't allocate memory for new frame"); 112 return -ENOMEM; 113 } 114 115 *skb_put(skb, 1) = hdr; 116 if (data && size > 0) 117 memcpy(skb_put(skb, size), data, size); 118 119 skb_queue_tail(transmit, skb); 120 wake_up_interruptible(sk_sleep(sk)); 121 122 return 0; 123 } 124 125 static int hidp_send_ctrl_message(struct hidp_session *session, 126 unsigned char hdr, const unsigned char *data, 127 int size) 128 { 129 return hidp_send_message(session, session->ctrl_sock, 130 &session->ctrl_transmit, hdr, data, size); 131 } 132 133 static int hidp_send_intr_message(struct hidp_session *session, 134 unsigned char hdr, const unsigned char *data, 135 int size) 136 { 137 return hidp_send_message(session, session->intr_sock, 138 &session->intr_transmit, hdr, data, size); 139 } 140 141 static int hidp_input_event(struct input_dev *dev, unsigned int type, 142 unsigned int code, int value) 143 { 144 struct hidp_session *session = input_get_drvdata(dev); 145 unsigned char newleds; 146 unsigned char hdr, data[2]; 147 148 BT_DBG("session %p type %d code %d value %d", 149 session, type, code, value); 150 151 if (type != EV_LED) 152 return -1; 153 154 newleds = (!!test_bit(LED_KANA, dev->led) << 3) | 155 (!!test_bit(LED_COMPOSE, dev->led) << 3) | 156 (!!test_bit(LED_SCROLLL, dev->led) << 2) | 157 (!!test_bit(LED_CAPSL, dev->led) << 1) | 158 (!!test_bit(LED_NUML, dev->led) << 0); 159 160 if (session->leds == newleds) 161 return 0; 162 163 session->leds = newleds; 164 165 hdr = HIDP_TRANS_DATA | HIDP_DATA_RTYPE_OUPUT; 166 data[0] = 0x01; 167 data[1] = newleds; 168 169 return hidp_send_intr_message(session, hdr, data, 2); 170 } 171 172 static void hidp_input_report(struct hidp_session *session, struct sk_buff *skb) 173 { 174 struct input_dev *dev = session->input; 175 unsigned char *keys = session->keys; 176 unsigned char *udata = skb->data + 1; 177 signed char *sdata = skb->data + 1; 178 int i, size = skb->len - 1; 179 180 switch (skb->data[0]) { 181 case 0x01: /* Keyboard report */ 182 for (i = 0; i < 8; i++) 183 input_report_key(dev, hidp_keycode[i + 224], (udata[0] >> i) & 1); 184 185 /* If all the key codes have been set to 0x01, it means 186 * too many keys were pressed at the same time. */ 187 if (!memcmp(udata + 2, hidp_mkeyspat, 6)) 188 break; 189 190 for (i = 2; i < 8; i++) { 191 if (keys[i] > 3 && memscan(udata + 2, keys[i], 6) == udata + 8) { 192 if (hidp_keycode[keys[i]]) 193 input_report_key(dev, hidp_keycode[keys[i]], 0); 194 else 195 BT_ERR("Unknown key (scancode %#x) released.", keys[i]); 196 } 197 198 if (udata[i] > 3 && memscan(keys + 2, udata[i], 6) == keys + 8) { 199 if (hidp_keycode[udata[i]]) 200 input_report_key(dev, hidp_keycode[udata[i]], 1); 201 else 202 BT_ERR("Unknown key (scancode %#x) pressed.", udata[i]); 203 } 204 } 205 206 memcpy(keys, udata, 8); 207 break; 208 209 case 0x02: /* Mouse report */ 210 input_report_key(dev, BTN_LEFT, sdata[0] & 0x01); 211 input_report_key(dev, BTN_RIGHT, sdata[0] & 0x02); 212 input_report_key(dev, BTN_MIDDLE, sdata[0] & 0x04); 213 input_report_key(dev, BTN_SIDE, sdata[0] & 0x08); 214 input_report_key(dev, BTN_EXTRA, sdata[0] & 0x10); 215 216 input_report_rel(dev, REL_X, sdata[1]); 217 input_report_rel(dev, REL_Y, sdata[2]); 218 219 if (size > 3) 220 input_report_rel(dev, REL_WHEEL, sdata[3]); 221 break; 222 } 223 224 input_sync(dev); 225 } 226 227 static int hidp_get_raw_report(struct hid_device *hid, 228 unsigned char report_number, 229 unsigned char *data, size_t count, 230 unsigned char report_type) 231 { 232 struct hidp_session *session = hid->driver_data; 233 struct sk_buff *skb; 234 size_t len; 235 int numbered_reports = hid->report_enum[report_type].numbered; 236 int ret; 237 238 if (atomic_read(&session->terminate)) 239 return -EIO; 240 241 switch (report_type) { 242 case HID_FEATURE_REPORT: 243 report_type = HIDP_TRANS_GET_REPORT | HIDP_DATA_RTYPE_FEATURE; 244 break; 245 case HID_INPUT_REPORT: 246 report_type = HIDP_TRANS_GET_REPORT | HIDP_DATA_RTYPE_INPUT; 247 break; 248 case HID_OUTPUT_REPORT: 249 report_type = HIDP_TRANS_GET_REPORT | HIDP_DATA_RTYPE_OUPUT; 250 break; 251 default: 252 return -EINVAL; 253 } 254 255 if (mutex_lock_interruptible(&session->report_mutex)) 256 return -ERESTARTSYS; 257 258 /* Set up our wait, and send the report request to the device. */ 259 session->waiting_report_type = report_type & HIDP_DATA_RTYPE_MASK; 260 session->waiting_report_number = numbered_reports ? report_number : -1; 261 set_bit(HIDP_WAITING_FOR_RETURN, &session->flags); 262 data[0] = report_number; 263 ret = hidp_send_ctrl_message(session, report_type, data, 1); 264 if (ret) 265 goto err; 266 267 /* Wait for the return of the report. The returned report 268 gets put in session->report_return. */ 269 while (test_bit(HIDP_WAITING_FOR_RETURN, &session->flags) && 270 !atomic_read(&session->terminate)) { 271 int res; 272 273 res = wait_event_interruptible_timeout(session->report_queue, 274 !test_bit(HIDP_WAITING_FOR_RETURN, &session->flags) 275 || atomic_read(&session->terminate), 276 5*HZ); 277 if (res == 0) { 278 /* timeout */ 279 ret = -EIO; 280 goto err; 281 } 282 if (res < 0) { 283 /* signal */ 284 ret = -ERESTARTSYS; 285 goto err; 286 } 287 } 288 289 skb = session->report_return; 290 if (skb) { 291 len = skb->len < count ? skb->len : count; 292 memcpy(data, skb->data, len); 293 294 kfree_skb(skb); 295 session->report_return = NULL; 296 } else { 297 /* Device returned a HANDSHAKE, indicating protocol error. */ 298 len = -EIO; 299 } 300 301 clear_bit(HIDP_WAITING_FOR_RETURN, &session->flags); 302 mutex_unlock(&session->report_mutex); 303 304 return len; 305 306 err: 307 clear_bit(HIDP_WAITING_FOR_RETURN, &session->flags); 308 mutex_unlock(&session->report_mutex); 309 return ret; 310 } 311 312 static int hidp_set_raw_report(struct hid_device *hid, unsigned char reportnum, 313 unsigned char *data, size_t count, 314 unsigned char report_type) 315 { 316 struct hidp_session *session = hid->driver_data; 317 int ret; 318 319 switch (report_type) { 320 case HID_FEATURE_REPORT: 321 report_type = HIDP_TRANS_SET_REPORT | HIDP_DATA_RTYPE_FEATURE; 322 break; 323 case HID_INPUT_REPORT: 324 report_type = HIDP_TRANS_SET_REPORT | HIDP_DATA_RTYPE_INPUT; 325 break; 326 case HID_OUTPUT_REPORT: 327 report_type = HIDP_TRANS_SET_REPORT | HIDP_DATA_RTYPE_OUPUT; 328 break; 329 default: 330 return -EINVAL; 331 } 332 333 if (mutex_lock_interruptible(&session->report_mutex)) 334 return -ERESTARTSYS; 335 336 /* Set up our wait, and send the report request to the device. */ 337 data[0] = reportnum; 338 set_bit(HIDP_WAITING_FOR_SEND_ACK, &session->flags); 339 ret = hidp_send_ctrl_message(session, report_type, data, count); 340 if (ret) 341 goto err; 342 343 /* Wait for the ACK from the device. */ 344 while (test_bit(HIDP_WAITING_FOR_SEND_ACK, &session->flags) && 345 !atomic_read(&session->terminate)) { 346 int res; 347 348 res = wait_event_interruptible_timeout(session->report_queue, 349 !test_bit(HIDP_WAITING_FOR_SEND_ACK, &session->flags) 350 || atomic_read(&session->terminate), 351 10*HZ); 352 if (res == 0) { 353 /* timeout */ 354 ret = -EIO; 355 goto err; 356 } 357 if (res < 0) { 358 /* signal */ 359 ret = -ERESTARTSYS; 360 goto err; 361 } 362 } 363 364 if (!session->output_report_success) { 365 ret = -EIO; 366 goto err; 367 } 368 369 ret = count; 370 371 err: 372 clear_bit(HIDP_WAITING_FOR_SEND_ACK, &session->flags); 373 mutex_unlock(&session->report_mutex); 374 return ret; 375 } 376 377 static int hidp_output_report(struct hid_device *hid, __u8 *data, size_t count) 378 { 379 struct hidp_session *session = hid->driver_data; 380 381 return hidp_send_intr_message(session, 382 HIDP_TRANS_DATA | HIDP_DATA_RTYPE_OUPUT, 383 data, count); 384 } 385 386 static int hidp_raw_request(struct hid_device *hid, unsigned char reportnum, 387 __u8 *buf, size_t len, unsigned char rtype, 388 int reqtype) 389 { 390 switch (reqtype) { 391 case HID_REQ_GET_REPORT: 392 return hidp_get_raw_report(hid, reportnum, buf, len, rtype); 393 case HID_REQ_SET_REPORT: 394 return hidp_set_raw_report(hid, reportnum, buf, len, rtype); 395 default: 396 return -EIO; 397 } 398 } 399 400 static void hidp_idle_timeout(unsigned long arg) 401 { 402 struct hidp_session *session = (struct hidp_session *) arg; 403 404 /* The HIDP user-space API only contains calls to add and remove 405 * devices. There is no way to forward events of any kind. Therefore, 406 * we have to forcefully disconnect a device on idle-timeouts. This is 407 * unfortunate and weird API design, but it is spec-compliant and 408 * required for backwards-compatibility. Hence, on idle-timeout, we 409 * signal driver-detach events, so poll() will be woken up with an 410 * error-condition on both sockets. 411 */ 412 413 session->intr_sock->sk->sk_err = EUNATCH; 414 session->ctrl_sock->sk->sk_err = EUNATCH; 415 wake_up_interruptible(sk_sleep(session->intr_sock->sk)); 416 wake_up_interruptible(sk_sleep(session->ctrl_sock->sk)); 417 418 hidp_session_terminate(session); 419 } 420 421 static void hidp_set_timer(struct hidp_session *session) 422 { 423 if (session->idle_to > 0) 424 mod_timer(&session->timer, jiffies + HZ * session->idle_to); 425 } 426 427 static void hidp_del_timer(struct hidp_session *session) 428 { 429 if (session->idle_to > 0) 430 del_timer(&session->timer); 431 } 432 433 static void hidp_process_report(struct hidp_session *session, 434 int type, const u8 *data, int len, int intr) 435 { 436 if (len > HID_MAX_BUFFER_SIZE) 437 len = HID_MAX_BUFFER_SIZE; 438 439 memcpy(session->input_buf, data, len); 440 hid_input_report(session->hid, type, session->input_buf, len, intr); 441 } 442 443 static void hidp_process_handshake(struct hidp_session *session, 444 unsigned char param) 445 { 446 BT_DBG("session %p param 0x%02x", session, param); 447 session->output_report_success = 0; /* default condition */ 448 449 switch (param) { 450 case HIDP_HSHK_SUCCESSFUL: 451 /* FIXME: Call into SET_ GET_ handlers here */ 452 session->output_report_success = 1; 453 break; 454 455 case HIDP_HSHK_NOT_READY: 456 case HIDP_HSHK_ERR_INVALID_REPORT_ID: 457 case HIDP_HSHK_ERR_UNSUPPORTED_REQUEST: 458 case HIDP_HSHK_ERR_INVALID_PARAMETER: 459 if (test_and_clear_bit(HIDP_WAITING_FOR_RETURN, &session->flags)) 460 wake_up_interruptible(&session->report_queue); 461 462 /* FIXME: Call into SET_ GET_ handlers here */ 463 break; 464 465 case HIDP_HSHK_ERR_UNKNOWN: 466 break; 467 468 case HIDP_HSHK_ERR_FATAL: 469 /* Device requests a reboot, as this is the only way this error 470 * can be recovered. */ 471 hidp_send_ctrl_message(session, 472 HIDP_TRANS_HID_CONTROL | HIDP_CTRL_SOFT_RESET, NULL, 0); 473 break; 474 475 default: 476 hidp_send_ctrl_message(session, 477 HIDP_TRANS_HANDSHAKE | HIDP_HSHK_ERR_INVALID_PARAMETER, NULL, 0); 478 break; 479 } 480 481 /* Wake up the waiting thread. */ 482 if (test_and_clear_bit(HIDP_WAITING_FOR_SEND_ACK, &session->flags)) 483 wake_up_interruptible(&session->report_queue); 484 } 485 486 static void hidp_process_hid_control(struct hidp_session *session, 487 unsigned char param) 488 { 489 BT_DBG("session %p param 0x%02x", session, param); 490 491 if (param == HIDP_CTRL_VIRTUAL_CABLE_UNPLUG) { 492 /* Flush the transmit queues */ 493 skb_queue_purge(&session->ctrl_transmit); 494 skb_queue_purge(&session->intr_transmit); 495 496 hidp_session_terminate(session); 497 } 498 } 499 500 /* Returns true if the passed-in skb should be freed by the caller. */ 501 static int hidp_process_data(struct hidp_session *session, struct sk_buff *skb, 502 unsigned char param) 503 { 504 int done_with_skb = 1; 505 BT_DBG("session %p skb %p len %d param 0x%02x", session, skb, skb->len, param); 506 507 switch (param) { 508 case HIDP_DATA_RTYPE_INPUT: 509 hidp_set_timer(session); 510 511 if (session->input) 512 hidp_input_report(session, skb); 513 514 if (session->hid) 515 hidp_process_report(session, HID_INPUT_REPORT, 516 skb->data, skb->len, 0); 517 break; 518 519 case HIDP_DATA_RTYPE_OTHER: 520 case HIDP_DATA_RTYPE_OUPUT: 521 case HIDP_DATA_RTYPE_FEATURE: 522 break; 523 524 default: 525 hidp_send_ctrl_message(session, 526 HIDP_TRANS_HANDSHAKE | HIDP_HSHK_ERR_INVALID_PARAMETER, NULL, 0); 527 } 528 529 if (test_bit(HIDP_WAITING_FOR_RETURN, &session->flags) && 530 param == session->waiting_report_type) { 531 if (session->waiting_report_number < 0 || 532 session->waiting_report_number == skb->data[0]) { 533 /* hidp_get_raw_report() is waiting on this report. */ 534 session->report_return = skb; 535 done_with_skb = 0; 536 clear_bit(HIDP_WAITING_FOR_RETURN, &session->flags); 537 wake_up_interruptible(&session->report_queue); 538 } 539 } 540 541 return done_with_skb; 542 } 543 544 static void hidp_recv_ctrl_frame(struct hidp_session *session, 545 struct sk_buff *skb) 546 { 547 unsigned char hdr, type, param; 548 int free_skb = 1; 549 550 BT_DBG("session %p skb %p len %d", session, skb, skb->len); 551 552 hdr = skb->data[0]; 553 skb_pull(skb, 1); 554 555 type = hdr & HIDP_HEADER_TRANS_MASK; 556 param = hdr & HIDP_HEADER_PARAM_MASK; 557 558 switch (type) { 559 case HIDP_TRANS_HANDSHAKE: 560 hidp_process_handshake(session, param); 561 break; 562 563 case HIDP_TRANS_HID_CONTROL: 564 hidp_process_hid_control(session, param); 565 break; 566 567 case HIDP_TRANS_DATA: 568 free_skb = hidp_process_data(session, skb, param); 569 break; 570 571 default: 572 hidp_send_ctrl_message(session, 573 HIDP_TRANS_HANDSHAKE | HIDP_HSHK_ERR_UNSUPPORTED_REQUEST, NULL, 0); 574 break; 575 } 576 577 if (free_skb) 578 kfree_skb(skb); 579 } 580 581 static void hidp_recv_intr_frame(struct hidp_session *session, 582 struct sk_buff *skb) 583 { 584 unsigned char hdr; 585 586 BT_DBG("session %p skb %p len %d", session, skb, skb->len); 587 588 hdr = skb->data[0]; 589 skb_pull(skb, 1); 590 591 if (hdr == (HIDP_TRANS_DATA | HIDP_DATA_RTYPE_INPUT)) { 592 hidp_set_timer(session); 593 594 if (session->input) 595 hidp_input_report(session, skb); 596 597 if (session->hid) { 598 hidp_process_report(session, HID_INPUT_REPORT, 599 skb->data, skb->len, 1); 600 BT_DBG("report len %d", skb->len); 601 } 602 } else { 603 BT_DBG("Unsupported protocol header 0x%02x", hdr); 604 } 605 606 kfree_skb(skb); 607 } 608 609 static int hidp_send_frame(struct socket *sock, unsigned char *data, int len) 610 { 611 struct kvec iv = { data, len }; 612 struct msghdr msg; 613 614 BT_DBG("sock %p data %p len %d", sock, data, len); 615 616 if (!len) 617 return 0; 618 619 memset(&msg, 0, sizeof(msg)); 620 621 return kernel_sendmsg(sock, &msg, &iv, 1, len); 622 } 623 624 /* dequeue message from @transmit and send via @sock */ 625 static void hidp_process_transmit(struct hidp_session *session, 626 struct sk_buff_head *transmit, 627 struct socket *sock) 628 { 629 struct sk_buff *skb; 630 int ret; 631 632 BT_DBG("session %p", session); 633 634 while ((skb = skb_dequeue(transmit))) { 635 ret = hidp_send_frame(sock, skb->data, skb->len); 636 if (ret == -EAGAIN) { 637 skb_queue_head(transmit, skb); 638 break; 639 } else if (ret < 0) { 640 hidp_session_terminate(session); 641 kfree_skb(skb); 642 break; 643 } 644 645 hidp_set_timer(session); 646 kfree_skb(skb); 647 } 648 } 649 650 static int hidp_setup_input(struct hidp_session *session, 651 struct hidp_connadd_req *req) 652 { 653 struct input_dev *input; 654 int i; 655 656 input = input_allocate_device(); 657 if (!input) 658 return -ENOMEM; 659 660 session->input = input; 661 662 input_set_drvdata(input, session); 663 664 input->name = "Bluetooth HID Boot Protocol Device"; 665 666 input->id.bustype = BUS_BLUETOOTH; 667 input->id.vendor = req->vendor; 668 input->id.product = req->product; 669 input->id.version = req->version; 670 671 if (req->subclass & 0x40) { 672 set_bit(EV_KEY, input->evbit); 673 set_bit(EV_LED, input->evbit); 674 set_bit(EV_REP, input->evbit); 675 676 set_bit(LED_NUML, input->ledbit); 677 set_bit(LED_CAPSL, input->ledbit); 678 set_bit(LED_SCROLLL, input->ledbit); 679 set_bit(LED_COMPOSE, input->ledbit); 680 set_bit(LED_KANA, input->ledbit); 681 682 for (i = 0; i < sizeof(hidp_keycode); i++) 683 set_bit(hidp_keycode[i], input->keybit); 684 clear_bit(0, input->keybit); 685 } 686 687 if (req->subclass & 0x80) { 688 input->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_REL); 689 input->keybit[BIT_WORD(BTN_MOUSE)] = BIT_MASK(BTN_LEFT) | 690 BIT_MASK(BTN_RIGHT) | BIT_MASK(BTN_MIDDLE); 691 input->relbit[0] = BIT_MASK(REL_X) | BIT_MASK(REL_Y); 692 input->keybit[BIT_WORD(BTN_MOUSE)] |= BIT_MASK(BTN_SIDE) | 693 BIT_MASK(BTN_EXTRA); 694 input->relbit[0] |= BIT_MASK(REL_WHEEL); 695 } 696 697 input->dev.parent = &session->conn->hcon->dev; 698 699 input->event = hidp_input_event; 700 701 return 0; 702 } 703 704 static int hidp_open(struct hid_device *hid) 705 { 706 return 0; 707 } 708 709 static void hidp_close(struct hid_device *hid) 710 { 711 } 712 713 static int hidp_parse(struct hid_device *hid) 714 { 715 struct hidp_session *session = hid->driver_data; 716 717 return hid_parse_report(session->hid, session->rd_data, 718 session->rd_size); 719 } 720 721 static int hidp_start(struct hid_device *hid) 722 { 723 return 0; 724 } 725 726 static void hidp_stop(struct hid_device *hid) 727 { 728 struct hidp_session *session = hid->driver_data; 729 730 skb_queue_purge(&session->ctrl_transmit); 731 skb_queue_purge(&session->intr_transmit); 732 733 hid->claimed = 0; 734 } 735 736 static struct hid_ll_driver hidp_hid_driver = { 737 .parse = hidp_parse, 738 .start = hidp_start, 739 .stop = hidp_stop, 740 .open = hidp_open, 741 .close = hidp_close, 742 .raw_request = hidp_raw_request, 743 .output_report = hidp_output_report, 744 }; 745 746 /* This function sets up the hid device. It does not add it 747 to the HID system. That is done in hidp_add_connection(). */ 748 static int hidp_setup_hid(struct hidp_session *session, 749 struct hidp_connadd_req *req) 750 { 751 struct hid_device *hid; 752 int err; 753 754 session->rd_data = memdup_user(req->rd_data, req->rd_size); 755 if (IS_ERR(session->rd_data)) 756 return PTR_ERR(session->rd_data); 757 758 session->rd_size = req->rd_size; 759 760 hid = hid_allocate_device(); 761 if (IS_ERR(hid)) { 762 err = PTR_ERR(hid); 763 goto fault; 764 } 765 766 session->hid = hid; 767 768 hid->driver_data = session; 769 770 hid->bus = BUS_BLUETOOTH; 771 hid->vendor = req->vendor; 772 hid->product = req->product; 773 hid->version = req->version; 774 hid->country = req->country; 775 776 strncpy(hid->name, req->name, sizeof(req->name) - 1); 777 778 snprintf(hid->phys, sizeof(hid->phys), "%pMR", 779 &l2cap_pi(session->ctrl_sock->sk)->chan->src); 780 781 /* NOTE: Some device modules depend on the dst address being stored in 782 * uniq. Please be aware of this before making changes to this behavior. 783 */ 784 snprintf(hid->uniq, sizeof(hid->uniq), "%pMR", 785 &l2cap_pi(session->ctrl_sock->sk)->chan->dst); 786 787 hid->dev.parent = &session->conn->hcon->dev; 788 hid->ll_driver = &hidp_hid_driver; 789 790 /* True if device is blacklisted in drivers/hid/hid-core.c */ 791 if (hid_ignore(hid)) { 792 hid_destroy_device(session->hid); 793 session->hid = NULL; 794 return -ENODEV; 795 } 796 797 return 0; 798 799 fault: 800 kfree(session->rd_data); 801 session->rd_data = NULL; 802 803 return err; 804 } 805 806 /* initialize session devices */ 807 static int hidp_session_dev_init(struct hidp_session *session, 808 struct hidp_connadd_req *req) 809 { 810 int ret; 811 812 if (req->rd_size > 0) { 813 ret = hidp_setup_hid(session, req); 814 if (ret && ret != -ENODEV) 815 return ret; 816 } 817 818 if (!session->hid) { 819 ret = hidp_setup_input(session, req); 820 if (ret < 0) 821 return ret; 822 } 823 824 return 0; 825 } 826 827 /* destroy session devices */ 828 static void hidp_session_dev_destroy(struct hidp_session *session) 829 { 830 if (session->hid) 831 put_device(&session->hid->dev); 832 else if (session->input) 833 input_put_device(session->input); 834 835 kfree(session->rd_data); 836 session->rd_data = NULL; 837 } 838 839 /* add HID/input devices to their underlying bus systems */ 840 static int hidp_session_dev_add(struct hidp_session *session) 841 { 842 int ret; 843 844 /* Both HID and input systems drop a ref-count when unregistering the 845 * device but they don't take a ref-count when registering them. Work 846 * around this by explicitly taking a refcount during registration 847 * which is dropped automatically by unregistering the devices. */ 848 849 if (session->hid) { 850 ret = hid_add_device(session->hid); 851 if (ret) 852 return ret; 853 get_device(&session->hid->dev); 854 } else if (session->input) { 855 ret = input_register_device(session->input); 856 if (ret) 857 return ret; 858 input_get_device(session->input); 859 } 860 861 return 0; 862 } 863 864 /* remove HID/input devices from their bus systems */ 865 static void hidp_session_dev_del(struct hidp_session *session) 866 { 867 if (session->hid) 868 hid_destroy_device(session->hid); 869 else if (session->input) 870 input_unregister_device(session->input); 871 } 872 873 /* 874 * Asynchronous device registration 875 * HID device drivers might want to perform I/O during initialization to 876 * detect device types. Therefore, call device registration in a separate 877 * worker so the HIDP thread can schedule I/O operations. 878 * Note that this must be called after the worker thread was initialized 879 * successfully. This will then add the devices and increase session state 880 * on success, otherwise it will terminate the session thread. 881 */ 882 static void hidp_session_dev_work(struct work_struct *work) 883 { 884 struct hidp_session *session = container_of(work, 885 struct hidp_session, 886 dev_init); 887 int ret; 888 889 ret = hidp_session_dev_add(session); 890 if (!ret) 891 atomic_inc(&session->state); 892 else 893 hidp_session_terminate(session); 894 } 895 896 /* 897 * Create new session object 898 * Allocate session object, initialize static fields, copy input data into the 899 * object and take a reference to all sub-objects. 900 * This returns 0 on success and puts a pointer to the new session object in 901 * \out. Otherwise, an error code is returned. 902 * The new session object has an initial ref-count of 1. 903 */ 904 static int hidp_session_new(struct hidp_session **out, const bdaddr_t *bdaddr, 905 struct socket *ctrl_sock, 906 struct socket *intr_sock, 907 struct hidp_connadd_req *req, 908 struct l2cap_conn *conn) 909 { 910 struct hidp_session *session; 911 int ret; 912 struct bt_sock *ctrl, *intr; 913 914 ctrl = bt_sk(ctrl_sock->sk); 915 intr = bt_sk(intr_sock->sk); 916 917 session = kzalloc(sizeof(*session), GFP_KERNEL); 918 if (!session) 919 return -ENOMEM; 920 921 /* object and runtime management */ 922 kref_init(&session->ref); 923 atomic_set(&session->state, HIDP_SESSION_IDLING); 924 init_waitqueue_head(&session->state_queue); 925 session->flags = req->flags & BIT(HIDP_BLUETOOTH_VENDOR_ID); 926 927 /* connection management */ 928 bacpy(&session->bdaddr, bdaddr); 929 session->conn = l2cap_conn_get(conn); 930 session->user.probe = hidp_session_probe; 931 session->user.remove = hidp_session_remove; 932 INIT_LIST_HEAD(&session->user.list); 933 session->ctrl_sock = ctrl_sock; 934 session->intr_sock = intr_sock; 935 skb_queue_head_init(&session->ctrl_transmit); 936 skb_queue_head_init(&session->intr_transmit); 937 session->ctrl_mtu = min_t(uint, l2cap_pi(ctrl)->chan->omtu, 938 l2cap_pi(ctrl)->chan->imtu); 939 session->intr_mtu = min_t(uint, l2cap_pi(intr)->chan->omtu, 940 l2cap_pi(intr)->chan->imtu); 941 session->idle_to = req->idle_to; 942 943 /* device management */ 944 INIT_WORK(&session->dev_init, hidp_session_dev_work); 945 setup_timer(&session->timer, hidp_idle_timeout, 946 (unsigned long)session); 947 948 /* session data */ 949 mutex_init(&session->report_mutex); 950 init_waitqueue_head(&session->report_queue); 951 952 ret = hidp_session_dev_init(session, req); 953 if (ret) 954 goto err_free; 955 956 get_file(session->intr_sock->file); 957 get_file(session->ctrl_sock->file); 958 *out = session; 959 return 0; 960 961 err_free: 962 l2cap_conn_put(session->conn); 963 kfree(session); 964 return ret; 965 } 966 967 /* increase ref-count of the given session by one */ 968 static void hidp_session_get(struct hidp_session *session) 969 { 970 kref_get(&session->ref); 971 } 972 973 /* release callback */ 974 static void session_free(struct kref *ref) 975 { 976 struct hidp_session *session = container_of(ref, struct hidp_session, 977 ref); 978 979 hidp_session_dev_destroy(session); 980 skb_queue_purge(&session->ctrl_transmit); 981 skb_queue_purge(&session->intr_transmit); 982 fput(session->intr_sock->file); 983 fput(session->ctrl_sock->file); 984 l2cap_conn_put(session->conn); 985 kfree(session); 986 } 987 988 /* decrease ref-count of the given session by one */ 989 static void hidp_session_put(struct hidp_session *session) 990 { 991 kref_put(&session->ref, session_free); 992 } 993 994 /* 995 * Search the list of active sessions for a session with target address 996 * \bdaddr. You must hold at least a read-lock on \hidp_session_sem. As long as 997 * you do not release this lock, the session objects cannot vanish and you can 998 * safely take a reference to the session yourself. 999 */ 1000 static struct hidp_session *__hidp_session_find(const bdaddr_t *bdaddr) 1001 { 1002 struct hidp_session *session; 1003 1004 list_for_each_entry(session, &hidp_session_list, list) { 1005 if (!bacmp(bdaddr, &session->bdaddr)) 1006 return session; 1007 } 1008 1009 return NULL; 1010 } 1011 1012 /* 1013 * Same as __hidp_session_find() but no locks must be held. This also takes a 1014 * reference of the returned session (if non-NULL) so you must drop this 1015 * reference if you no longer use the object. 1016 */ 1017 static struct hidp_session *hidp_session_find(const bdaddr_t *bdaddr) 1018 { 1019 struct hidp_session *session; 1020 1021 down_read(&hidp_session_sem); 1022 1023 session = __hidp_session_find(bdaddr); 1024 if (session) 1025 hidp_session_get(session); 1026 1027 up_read(&hidp_session_sem); 1028 1029 return session; 1030 } 1031 1032 /* 1033 * Start session synchronously 1034 * This starts a session thread and waits until initialization 1035 * is done or returns an error if it couldn't be started. 1036 * If this returns 0 the session thread is up and running. You must call 1037 * hipd_session_stop_sync() before deleting any runtime resources. 1038 */ 1039 static int hidp_session_start_sync(struct hidp_session *session) 1040 { 1041 unsigned int vendor, product; 1042 1043 if (session->hid) { 1044 vendor = session->hid->vendor; 1045 product = session->hid->product; 1046 } else if (session->input) { 1047 vendor = session->input->id.vendor; 1048 product = session->input->id.product; 1049 } else { 1050 vendor = 0x0000; 1051 product = 0x0000; 1052 } 1053 1054 session->task = kthread_run(hidp_session_thread, session, 1055 "khidpd_%04x%04x", vendor, product); 1056 if (IS_ERR(session->task)) 1057 return PTR_ERR(session->task); 1058 1059 while (atomic_read(&session->state) <= HIDP_SESSION_IDLING) 1060 wait_event(session->state_queue, 1061 atomic_read(&session->state) > HIDP_SESSION_IDLING); 1062 1063 return 0; 1064 } 1065 1066 /* 1067 * Terminate session thread 1068 * Wake up session thread and notify it to stop. This is asynchronous and 1069 * returns immediately. Call this whenever a runtime error occurs and you want 1070 * the session to stop. 1071 * Note: wake_up_process() performs any necessary memory-barriers for us. 1072 */ 1073 static void hidp_session_terminate(struct hidp_session *session) 1074 { 1075 atomic_inc(&session->terminate); 1076 wake_up_process(session->task); 1077 } 1078 1079 /* 1080 * Probe HIDP session 1081 * This is called from the l2cap_conn core when our l2cap_user object is bound 1082 * to the hci-connection. We get the session via the \user object and can now 1083 * start the session thread, link it into the global session list and 1084 * schedule HID/input device registration. 1085 * The global session-list owns its own reference to the session object so you 1086 * can drop your own reference after registering the l2cap_user object. 1087 */ 1088 static int hidp_session_probe(struct l2cap_conn *conn, 1089 struct l2cap_user *user) 1090 { 1091 struct hidp_session *session = container_of(user, 1092 struct hidp_session, 1093 user); 1094 struct hidp_session *s; 1095 int ret; 1096 1097 down_write(&hidp_session_sem); 1098 1099 /* check that no other session for this device exists */ 1100 s = __hidp_session_find(&session->bdaddr); 1101 if (s) { 1102 ret = -EEXIST; 1103 goto out_unlock; 1104 } 1105 1106 if (session->input) { 1107 ret = hidp_session_dev_add(session); 1108 if (ret) 1109 goto out_unlock; 1110 } 1111 1112 ret = hidp_session_start_sync(session); 1113 if (ret) 1114 goto out_del; 1115 1116 /* HID device registration is async to allow I/O during probe */ 1117 if (session->input) 1118 atomic_inc(&session->state); 1119 else 1120 schedule_work(&session->dev_init); 1121 1122 hidp_session_get(session); 1123 list_add(&session->list, &hidp_session_list); 1124 ret = 0; 1125 goto out_unlock; 1126 1127 out_del: 1128 if (session->input) 1129 hidp_session_dev_del(session); 1130 out_unlock: 1131 up_write(&hidp_session_sem); 1132 return ret; 1133 } 1134 1135 /* 1136 * Remove HIDP session 1137 * Called from the l2cap_conn core when either we explicitly unregistered 1138 * the l2cap_user object or if the underlying connection is shut down. 1139 * We signal the hidp-session thread to shut down, unregister the HID/input 1140 * devices and unlink the session from the global list. 1141 * This drops the reference to the session that is owned by the global 1142 * session-list. 1143 * Note: We _must_ not synchronosly wait for the session-thread to shut down. 1144 * This is, because the session-thread might be waiting for an HCI lock that is 1145 * held while we are called. Therefore, we only unregister the devices and 1146 * notify the session-thread to terminate. The thread itself owns a reference 1147 * to the session object so it can safely shut down. 1148 */ 1149 static void hidp_session_remove(struct l2cap_conn *conn, 1150 struct l2cap_user *user) 1151 { 1152 struct hidp_session *session = container_of(user, 1153 struct hidp_session, 1154 user); 1155 1156 down_write(&hidp_session_sem); 1157 1158 hidp_session_terminate(session); 1159 1160 cancel_work_sync(&session->dev_init); 1161 if (session->input || 1162 atomic_read(&session->state) > HIDP_SESSION_PREPARING) 1163 hidp_session_dev_del(session); 1164 1165 list_del(&session->list); 1166 1167 up_write(&hidp_session_sem); 1168 1169 hidp_session_put(session); 1170 } 1171 1172 /* 1173 * Session Worker 1174 * This performs the actual main-loop of the HIDP worker. We first check 1175 * whether the underlying connection is still alive, then parse all pending 1176 * messages and finally send all outstanding messages. 1177 */ 1178 static void hidp_session_run(struct hidp_session *session) 1179 { 1180 struct sock *ctrl_sk = session->ctrl_sock->sk; 1181 struct sock *intr_sk = session->intr_sock->sk; 1182 struct sk_buff *skb; 1183 1184 for (;;) { 1185 /* 1186 * This thread can be woken up two ways: 1187 * - You call hidp_session_terminate() which sets the 1188 * session->terminate flag and wakes this thread up. 1189 * - Via modifying the socket state of ctrl/intr_sock. This 1190 * thread is woken up by ->sk_state_changed(). 1191 * 1192 * Note: set_current_state() performs any necessary 1193 * memory-barriers for us. 1194 */ 1195 set_current_state(TASK_INTERRUPTIBLE); 1196 1197 if (atomic_read(&session->terminate)) 1198 break; 1199 1200 if (ctrl_sk->sk_state != BT_CONNECTED || 1201 intr_sk->sk_state != BT_CONNECTED) 1202 break; 1203 1204 /* parse incoming intr-skbs */ 1205 while ((skb = skb_dequeue(&intr_sk->sk_receive_queue))) { 1206 skb_orphan(skb); 1207 if (!skb_linearize(skb)) 1208 hidp_recv_intr_frame(session, skb); 1209 else 1210 kfree_skb(skb); 1211 } 1212 1213 /* send pending intr-skbs */ 1214 hidp_process_transmit(session, &session->intr_transmit, 1215 session->intr_sock); 1216 1217 /* parse incoming ctrl-skbs */ 1218 while ((skb = skb_dequeue(&ctrl_sk->sk_receive_queue))) { 1219 skb_orphan(skb); 1220 if (!skb_linearize(skb)) 1221 hidp_recv_ctrl_frame(session, skb); 1222 else 1223 kfree_skb(skb); 1224 } 1225 1226 /* send pending ctrl-skbs */ 1227 hidp_process_transmit(session, &session->ctrl_transmit, 1228 session->ctrl_sock); 1229 1230 schedule(); 1231 } 1232 1233 atomic_inc(&session->terminate); 1234 set_current_state(TASK_RUNNING); 1235 } 1236 1237 /* 1238 * HIDP session thread 1239 * This thread runs the I/O for a single HIDP session. Startup is synchronous 1240 * which allows us to take references to ourself here instead of doing that in 1241 * the caller. 1242 * When we are ready to run we notify the caller and call hidp_session_run(). 1243 */ 1244 static int hidp_session_thread(void *arg) 1245 { 1246 struct hidp_session *session = arg; 1247 wait_queue_entry_t ctrl_wait, intr_wait; 1248 1249 BT_DBG("session %p", session); 1250 1251 /* initialize runtime environment */ 1252 hidp_session_get(session); 1253 __module_get(THIS_MODULE); 1254 set_user_nice(current, -15); 1255 hidp_set_timer(session); 1256 1257 init_waitqueue_entry(&ctrl_wait, current); 1258 init_waitqueue_entry(&intr_wait, current); 1259 add_wait_queue(sk_sleep(session->ctrl_sock->sk), &ctrl_wait); 1260 add_wait_queue(sk_sleep(session->intr_sock->sk), &intr_wait); 1261 /* This memory barrier is paired with wq_has_sleeper(). See 1262 * sock_poll_wait() for more information why this is needed. */ 1263 smp_mb(); 1264 1265 /* notify synchronous startup that we're ready */ 1266 atomic_inc(&session->state); 1267 wake_up(&session->state_queue); 1268 1269 /* run session */ 1270 hidp_session_run(session); 1271 1272 /* cleanup runtime environment */ 1273 remove_wait_queue(sk_sleep(session->intr_sock->sk), &intr_wait); 1274 remove_wait_queue(sk_sleep(session->intr_sock->sk), &ctrl_wait); 1275 wake_up_interruptible(&session->report_queue); 1276 hidp_del_timer(session); 1277 1278 /* 1279 * If we stopped ourself due to any internal signal, we should try to 1280 * unregister our own session here to avoid having it linger until the 1281 * parent l2cap_conn dies or user-space cleans it up. 1282 * This does not deadlock as we don't do any synchronous shutdown. 1283 * Instead, this call has the same semantics as if user-space tried to 1284 * delete the session. 1285 */ 1286 l2cap_unregister_user(session->conn, &session->user); 1287 hidp_session_put(session); 1288 1289 module_put_and_exit(0); 1290 return 0; 1291 } 1292 1293 static int hidp_verify_sockets(struct socket *ctrl_sock, 1294 struct socket *intr_sock) 1295 { 1296 struct l2cap_chan *ctrl_chan, *intr_chan; 1297 struct bt_sock *ctrl, *intr; 1298 struct hidp_session *session; 1299 1300 if (!l2cap_is_socket(ctrl_sock) || !l2cap_is_socket(intr_sock)) 1301 return -EINVAL; 1302 1303 ctrl_chan = l2cap_pi(ctrl_sock->sk)->chan; 1304 intr_chan = l2cap_pi(intr_sock->sk)->chan; 1305 1306 if (bacmp(&ctrl_chan->src, &intr_chan->src) || 1307 bacmp(&ctrl_chan->dst, &intr_chan->dst)) 1308 return -ENOTUNIQ; 1309 1310 ctrl = bt_sk(ctrl_sock->sk); 1311 intr = bt_sk(intr_sock->sk); 1312 1313 if (ctrl->sk.sk_state != BT_CONNECTED || 1314 intr->sk.sk_state != BT_CONNECTED) 1315 return -EBADFD; 1316 1317 /* early session check, we check again during session registration */ 1318 session = hidp_session_find(&ctrl_chan->dst); 1319 if (session) { 1320 hidp_session_put(session); 1321 return -EEXIST; 1322 } 1323 1324 return 0; 1325 } 1326 1327 int hidp_connection_add(struct hidp_connadd_req *req, 1328 struct socket *ctrl_sock, 1329 struct socket *intr_sock) 1330 { 1331 u32 valid_flags = BIT(HIDP_VIRTUAL_CABLE_UNPLUG) | 1332 BIT(HIDP_BOOT_PROTOCOL_MODE); 1333 struct hidp_session *session; 1334 struct l2cap_conn *conn; 1335 struct l2cap_chan *chan; 1336 int ret; 1337 1338 ret = hidp_verify_sockets(ctrl_sock, intr_sock); 1339 if (ret) 1340 return ret; 1341 1342 if (req->flags & ~valid_flags) 1343 return -EINVAL; 1344 1345 chan = l2cap_pi(ctrl_sock->sk)->chan; 1346 conn = NULL; 1347 l2cap_chan_lock(chan); 1348 if (chan->conn) 1349 conn = l2cap_conn_get(chan->conn); 1350 l2cap_chan_unlock(chan); 1351 1352 if (!conn) 1353 return -EBADFD; 1354 1355 ret = hidp_session_new(&session, &chan->dst, ctrl_sock, 1356 intr_sock, req, conn); 1357 if (ret) 1358 goto out_conn; 1359 1360 ret = l2cap_register_user(conn, &session->user); 1361 if (ret) 1362 goto out_session; 1363 1364 ret = 0; 1365 1366 out_session: 1367 hidp_session_put(session); 1368 out_conn: 1369 l2cap_conn_put(conn); 1370 return ret; 1371 } 1372 1373 int hidp_connection_del(struct hidp_conndel_req *req) 1374 { 1375 u32 valid_flags = BIT(HIDP_VIRTUAL_CABLE_UNPLUG); 1376 struct hidp_session *session; 1377 1378 if (req->flags & ~valid_flags) 1379 return -EINVAL; 1380 1381 session = hidp_session_find(&req->bdaddr); 1382 if (!session) 1383 return -ENOENT; 1384 1385 if (req->flags & BIT(HIDP_VIRTUAL_CABLE_UNPLUG)) 1386 hidp_send_ctrl_message(session, 1387 HIDP_TRANS_HID_CONTROL | 1388 HIDP_CTRL_VIRTUAL_CABLE_UNPLUG, 1389 NULL, 0); 1390 else 1391 l2cap_unregister_user(session->conn, &session->user); 1392 1393 hidp_session_put(session); 1394 1395 return 0; 1396 } 1397 1398 int hidp_get_connlist(struct hidp_connlist_req *req) 1399 { 1400 struct hidp_session *session; 1401 int err = 0, n = 0; 1402 1403 BT_DBG(""); 1404 1405 down_read(&hidp_session_sem); 1406 1407 list_for_each_entry(session, &hidp_session_list, list) { 1408 struct hidp_conninfo ci; 1409 1410 hidp_copy_session(session, &ci); 1411 1412 if (copy_to_user(req->ci, &ci, sizeof(ci))) { 1413 err = -EFAULT; 1414 break; 1415 } 1416 1417 if (++n >= req->cnum) 1418 break; 1419 1420 req->ci++; 1421 } 1422 req->cnum = n; 1423 1424 up_read(&hidp_session_sem); 1425 return err; 1426 } 1427 1428 int hidp_get_conninfo(struct hidp_conninfo *ci) 1429 { 1430 struct hidp_session *session; 1431 1432 session = hidp_session_find(&ci->bdaddr); 1433 if (session) { 1434 hidp_copy_session(session, ci); 1435 hidp_session_put(session); 1436 } 1437 1438 return session ? 0 : -ENOENT; 1439 } 1440 1441 static int __init hidp_init(void) 1442 { 1443 BT_INFO("HIDP (Human Interface Emulation) ver %s", VERSION); 1444 1445 return hidp_init_sockets(); 1446 } 1447 1448 static void __exit hidp_exit(void) 1449 { 1450 hidp_cleanup_sockets(); 1451 } 1452 1453 module_init(hidp_init); 1454 module_exit(hidp_exit); 1455 1456 MODULE_AUTHOR("Marcel Holtmann <marcel@holtmann.org>"); 1457 MODULE_AUTHOR("David Herrmann <dh.herrmann@gmail.com>"); 1458 MODULE_DESCRIPTION("Bluetooth HIDP ver " VERSION); 1459 MODULE_VERSION(VERSION); 1460 MODULE_LICENSE("GPL"); 1461 MODULE_ALIAS("bt-proto-6"); 1462