1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * BlueZ - Bluetooth protocol stack for Linux 4 * 5 * Copyright (C) 2021 Intel Corporation 6 * Copyright 2023 NXP 7 */ 8 9 #include <linux/property.h> 10 11 #include <net/bluetooth/bluetooth.h> 12 #include <net/bluetooth/hci_core.h> 13 #include <net/bluetooth/mgmt.h> 14 15 #include "hci_codec.h" 16 #include "hci_debugfs.h" 17 #include "smp.h" 18 #include "eir.h" 19 #include "msft.h" 20 #include "aosp.h" 21 #include "leds.h" 22 23 static void hci_cmd_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode, 24 struct sk_buff *skb) 25 { 26 bt_dev_dbg(hdev, "result 0x%2.2x", result); 27 28 if (hdev->req_status != HCI_REQ_PEND) 29 return; 30 31 hdev->req_result = result; 32 hdev->req_status = HCI_REQ_DONE; 33 34 /* Free the request command so it is not used as response */ 35 kfree_skb(hdev->req_skb); 36 hdev->req_skb = NULL; 37 38 if (skb) { 39 struct sock *sk = hci_skb_sk(skb); 40 41 /* Drop sk reference if set */ 42 if (sk) 43 sock_put(sk); 44 45 hdev->req_rsp = skb_get(skb); 46 } 47 48 wake_up_interruptible(&hdev->req_wait_q); 49 } 50 51 struct sk_buff *hci_cmd_sync_alloc(struct hci_dev *hdev, u16 opcode, u32 plen, 52 const void *param, struct sock *sk) 53 { 54 int len = HCI_COMMAND_HDR_SIZE + plen; 55 struct hci_command_hdr *hdr; 56 struct sk_buff *skb; 57 58 skb = bt_skb_alloc(len, GFP_ATOMIC); 59 if (!skb) 60 return NULL; 61 62 hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE); 63 hdr->opcode = cpu_to_le16(opcode); 64 hdr->plen = plen; 65 66 if (plen) 67 skb_put_data(skb, param, plen); 68 69 bt_dev_dbg(hdev, "skb len %d", skb->len); 70 71 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; 72 hci_skb_opcode(skb) = opcode; 73 74 /* Grab a reference if command needs to be associated with a sock (e.g. 75 * likely mgmt socket that initiated the command). 76 */ 77 if (sk) { 78 hci_skb_sk(skb) = sk; 79 sock_hold(sk); 80 } 81 82 return skb; 83 } 84 85 static void hci_cmd_sync_add(struct hci_request *req, u16 opcode, u32 plen, 86 const void *param, u8 event, struct sock *sk) 87 { 88 struct hci_dev *hdev = req->hdev; 89 struct sk_buff *skb; 90 91 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); 92 93 /* If an error occurred during request building, there is no point in 94 * queueing the HCI command. We can simply return. 95 */ 96 if (req->err) 97 return; 98 99 skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, sk); 100 if (!skb) { 101 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)", 102 opcode); 103 req->err = -ENOMEM; 104 return; 105 } 106 107 if (skb_queue_empty(&req->cmd_q)) 108 bt_cb(skb)->hci.req_flags |= HCI_REQ_START; 109 110 hci_skb_event(skb) = event; 111 112 skb_queue_tail(&req->cmd_q, skb); 113 } 114 115 static int hci_req_sync_run(struct hci_request *req) 116 { 117 struct hci_dev *hdev = req->hdev; 118 struct sk_buff *skb; 119 unsigned long flags; 120 121 bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q)); 122 123 /* If an error occurred during request building, remove all HCI 124 * commands queued on the HCI request queue. 125 */ 126 if (req->err) { 127 skb_queue_purge(&req->cmd_q); 128 return req->err; 129 } 130 131 /* Do not allow empty requests */ 132 if (skb_queue_empty(&req->cmd_q)) 133 return -ENODATA; 134 135 skb = skb_peek_tail(&req->cmd_q); 136 bt_cb(skb)->hci.req_complete_skb = hci_cmd_sync_complete; 137 bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB; 138 139 spin_lock_irqsave(&hdev->cmd_q.lock, flags); 140 skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q); 141 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); 142 143 queue_work(hdev->workqueue, &hdev->cmd_work); 144 145 return 0; 146 } 147 148 static void hci_request_init(struct hci_request *req, struct hci_dev *hdev) 149 { 150 skb_queue_head_init(&req->cmd_q); 151 req->hdev = hdev; 152 req->err = 0; 153 } 154 155 /* This function requires the caller holds hdev->req_lock. */ 156 struct sk_buff *__hci_cmd_sync_sk(struct hci_dev *hdev, u16 opcode, u32 plen, 157 const void *param, u8 event, u32 timeout, 158 struct sock *sk) 159 { 160 struct hci_request req; 161 struct sk_buff *skb; 162 int err = 0; 163 164 bt_dev_dbg(hdev, "Opcode 0x%4.4x", opcode); 165 166 hci_request_init(&req, hdev); 167 168 hci_cmd_sync_add(&req, opcode, plen, param, event, sk); 169 170 hdev->req_status = HCI_REQ_PEND; 171 172 err = hci_req_sync_run(&req); 173 if (err < 0) 174 return ERR_PTR(err); 175 176 err = wait_event_interruptible_timeout(hdev->req_wait_q, 177 hdev->req_status != HCI_REQ_PEND, 178 timeout); 179 180 if (err == -ERESTARTSYS) 181 return ERR_PTR(-EINTR); 182 183 switch (hdev->req_status) { 184 case HCI_REQ_DONE: 185 err = -bt_to_errno(hdev->req_result); 186 break; 187 188 case HCI_REQ_CANCELED: 189 err = -hdev->req_result; 190 break; 191 192 default: 193 err = -ETIMEDOUT; 194 break; 195 } 196 197 hdev->req_status = 0; 198 hdev->req_result = 0; 199 skb = hdev->req_rsp; 200 hdev->req_rsp = NULL; 201 202 bt_dev_dbg(hdev, "end: err %d", err); 203 204 if (err < 0) { 205 kfree_skb(skb); 206 return ERR_PTR(err); 207 } 208 209 return skb; 210 } 211 EXPORT_SYMBOL(__hci_cmd_sync_sk); 212 213 /* This function requires the caller holds hdev->req_lock. */ 214 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 215 const void *param, u32 timeout) 216 { 217 return __hci_cmd_sync_sk(hdev, opcode, plen, param, 0, timeout, NULL); 218 } 219 EXPORT_SYMBOL(__hci_cmd_sync); 220 221 /* Send HCI command and wait for command complete event */ 222 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 223 const void *param, u32 timeout) 224 { 225 struct sk_buff *skb; 226 227 if (!test_bit(HCI_UP, &hdev->flags)) 228 return ERR_PTR(-ENETDOWN); 229 230 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); 231 232 hci_req_sync_lock(hdev); 233 skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout); 234 hci_req_sync_unlock(hdev); 235 236 return skb; 237 } 238 EXPORT_SYMBOL(hci_cmd_sync); 239 240 /* This function requires the caller holds hdev->req_lock. */ 241 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen, 242 const void *param, u8 event, u32 timeout) 243 { 244 return __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, 245 NULL); 246 } 247 EXPORT_SYMBOL(__hci_cmd_sync_ev); 248 249 /* This function requires the caller holds hdev->req_lock. */ 250 int __hci_cmd_sync_status_sk(struct hci_dev *hdev, u16 opcode, u32 plen, 251 const void *param, u8 event, u32 timeout, 252 struct sock *sk) 253 { 254 struct sk_buff *skb; 255 u8 status; 256 257 skb = __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, sk); 258 if (IS_ERR(skb)) { 259 if (!event) 260 bt_dev_err(hdev, "Opcode 0x%4.4x failed: %ld", opcode, 261 PTR_ERR(skb)); 262 return PTR_ERR(skb); 263 } 264 265 /* If command return a status event skb will be set to NULL as there are 266 * no parameters, in case of failure IS_ERR(skb) would have be set to 267 * the actual error would be found with PTR_ERR(skb). 268 */ 269 if (!skb) 270 return 0; 271 272 status = skb->data[0]; 273 274 kfree_skb(skb); 275 276 return status; 277 } 278 EXPORT_SYMBOL(__hci_cmd_sync_status_sk); 279 280 int __hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen, 281 const void *param, u32 timeout) 282 { 283 return __hci_cmd_sync_status_sk(hdev, opcode, plen, param, 0, timeout, 284 NULL); 285 } 286 EXPORT_SYMBOL(__hci_cmd_sync_status); 287 288 int hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen, 289 const void *param, u32 timeout) 290 { 291 int err; 292 293 hci_req_sync_lock(hdev); 294 err = __hci_cmd_sync_status(hdev, opcode, plen, param, timeout); 295 hci_req_sync_unlock(hdev); 296 297 return err; 298 } 299 EXPORT_SYMBOL(hci_cmd_sync_status); 300 301 static void hci_cmd_sync_work(struct work_struct *work) 302 { 303 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_work); 304 305 bt_dev_dbg(hdev, ""); 306 307 /* Dequeue all entries and run them */ 308 while (1) { 309 struct hci_cmd_sync_work_entry *entry; 310 311 mutex_lock(&hdev->cmd_sync_work_lock); 312 entry = list_first_entry_or_null(&hdev->cmd_sync_work_list, 313 struct hci_cmd_sync_work_entry, 314 list); 315 if (entry) 316 list_del(&entry->list); 317 mutex_unlock(&hdev->cmd_sync_work_lock); 318 319 if (!entry) 320 break; 321 322 bt_dev_dbg(hdev, "entry %p", entry); 323 324 if (entry->func) { 325 int err; 326 327 hci_req_sync_lock(hdev); 328 err = entry->func(hdev, entry->data); 329 if (entry->destroy) 330 entry->destroy(hdev, entry->data, err); 331 hci_req_sync_unlock(hdev); 332 } 333 334 kfree(entry); 335 } 336 } 337 338 static void hci_cmd_sync_cancel_work(struct work_struct *work) 339 { 340 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_cancel_work); 341 342 cancel_delayed_work_sync(&hdev->cmd_timer); 343 cancel_delayed_work_sync(&hdev->ncmd_timer); 344 atomic_set(&hdev->cmd_cnt, 1); 345 346 wake_up_interruptible(&hdev->req_wait_q); 347 } 348 349 static int hci_scan_disable_sync(struct hci_dev *hdev); 350 static int scan_disable_sync(struct hci_dev *hdev, void *data) 351 { 352 return hci_scan_disable_sync(hdev); 353 } 354 355 static int interleaved_inquiry_sync(struct hci_dev *hdev, void *data) 356 { 357 return hci_inquiry_sync(hdev, DISCOV_INTERLEAVED_INQUIRY_LEN, 0); 358 } 359 360 static void le_scan_disable(struct work_struct *work) 361 { 362 struct hci_dev *hdev = container_of(work, struct hci_dev, 363 le_scan_disable.work); 364 int status; 365 366 bt_dev_dbg(hdev, ""); 367 hci_dev_lock(hdev); 368 369 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 370 goto _return; 371 372 status = hci_cmd_sync_queue(hdev, scan_disable_sync, NULL, NULL); 373 if (status) { 374 bt_dev_err(hdev, "failed to disable LE scan: %d", status); 375 goto _return; 376 } 377 378 /* If we were running LE only scan, change discovery state. If 379 * we were running both LE and BR/EDR inquiry simultaneously, 380 * and BR/EDR inquiry is already finished, stop discovery, 381 * otherwise BR/EDR inquiry will stop discovery when finished. 382 * If we will resolve remote device name, do not change 383 * discovery state. 384 */ 385 386 if (hdev->discovery.type == DISCOV_TYPE_LE) 387 goto discov_stopped; 388 389 if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED) 390 goto _return; 391 392 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) { 393 if (!test_bit(HCI_INQUIRY, &hdev->flags) && 394 hdev->discovery.state != DISCOVERY_RESOLVING) 395 goto discov_stopped; 396 397 goto _return; 398 } 399 400 status = hci_cmd_sync_queue(hdev, interleaved_inquiry_sync, NULL, NULL); 401 if (status) { 402 bt_dev_err(hdev, "inquiry failed: status %d", status); 403 goto discov_stopped; 404 } 405 406 goto _return; 407 408 discov_stopped: 409 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 410 411 _return: 412 hci_dev_unlock(hdev); 413 } 414 415 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val, 416 u8 filter_dup); 417 418 static int reenable_adv_sync(struct hci_dev *hdev, void *data) 419 { 420 bt_dev_dbg(hdev, ""); 421 422 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) && 423 list_empty(&hdev->adv_instances)) 424 return 0; 425 426 if (hdev->cur_adv_instance) { 427 return hci_schedule_adv_instance_sync(hdev, 428 hdev->cur_adv_instance, 429 true); 430 } else { 431 if (ext_adv_capable(hdev)) { 432 hci_start_ext_adv_sync(hdev, 0x00); 433 } else { 434 hci_update_adv_data_sync(hdev, 0x00); 435 hci_update_scan_rsp_data_sync(hdev, 0x00); 436 hci_enable_advertising_sync(hdev); 437 } 438 } 439 440 return 0; 441 } 442 443 static void reenable_adv(struct work_struct *work) 444 { 445 struct hci_dev *hdev = container_of(work, struct hci_dev, 446 reenable_adv_work); 447 int status; 448 449 bt_dev_dbg(hdev, ""); 450 451 hci_dev_lock(hdev); 452 453 status = hci_cmd_sync_queue(hdev, reenable_adv_sync, NULL, NULL); 454 if (status) 455 bt_dev_err(hdev, "failed to reenable ADV: %d", status); 456 457 hci_dev_unlock(hdev); 458 } 459 460 static void cancel_adv_timeout(struct hci_dev *hdev) 461 { 462 if (hdev->adv_instance_timeout) { 463 hdev->adv_instance_timeout = 0; 464 cancel_delayed_work(&hdev->adv_instance_expire); 465 } 466 } 467 468 /* For a single instance: 469 * - force == true: The instance will be removed even when its remaining 470 * lifetime is not zero. 471 * - force == false: the instance will be deactivated but kept stored unless 472 * the remaining lifetime is zero. 473 * 474 * For instance == 0x00: 475 * - force == true: All instances will be removed regardless of their timeout 476 * setting. 477 * - force == false: Only instances that have a timeout will be removed. 478 */ 479 int hci_clear_adv_instance_sync(struct hci_dev *hdev, struct sock *sk, 480 u8 instance, bool force) 481 { 482 struct adv_info *adv_instance, *n, *next_instance = NULL; 483 int err; 484 u8 rem_inst; 485 486 /* Cancel any timeout concerning the removed instance(s). */ 487 if (!instance || hdev->cur_adv_instance == instance) 488 cancel_adv_timeout(hdev); 489 490 /* Get the next instance to advertise BEFORE we remove 491 * the current one. This can be the same instance again 492 * if there is only one instance. 493 */ 494 if (instance && hdev->cur_adv_instance == instance) 495 next_instance = hci_get_next_instance(hdev, instance); 496 497 if (instance == 0x00) { 498 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, 499 list) { 500 if (!(force || adv_instance->timeout)) 501 continue; 502 503 rem_inst = adv_instance->instance; 504 err = hci_remove_adv_instance(hdev, rem_inst); 505 if (!err) 506 mgmt_advertising_removed(sk, hdev, rem_inst); 507 } 508 } else { 509 adv_instance = hci_find_adv_instance(hdev, instance); 510 511 if (force || (adv_instance && adv_instance->timeout && 512 !adv_instance->remaining_time)) { 513 /* Don't advertise a removed instance. */ 514 if (next_instance && 515 next_instance->instance == instance) 516 next_instance = NULL; 517 518 err = hci_remove_adv_instance(hdev, instance); 519 if (!err) 520 mgmt_advertising_removed(sk, hdev, instance); 521 } 522 } 523 524 if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING)) 525 return 0; 526 527 if (next_instance && !ext_adv_capable(hdev)) 528 return hci_schedule_adv_instance_sync(hdev, 529 next_instance->instance, 530 false); 531 532 return 0; 533 } 534 535 static int adv_timeout_expire_sync(struct hci_dev *hdev, void *data) 536 { 537 u8 instance = *(u8 *)data; 538 539 kfree(data); 540 541 hci_clear_adv_instance_sync(hdev, NULL, instance, false); 542 543 if (list_empty(&hdev->adv_instances)) 544 return hci_disable_advertising_sync(hdev); 545 546 return 0; 547 } 548 549 static void adv_timeout_expire(struct work_struct *work) 550 { 551 u8 *inst_ptr; 552 struct hci_dev *hdev = container_of(work, struct hci_dev, 553 adv_instance_expire.work); 554 555 bt_dev_dbg(hdev, ""); 556 557 hci_dev_lock(hdev); 558 559 hdev->adv_instance_timeout = 0; 560 561 if (hdev->cur_adv_instance == 0x00) 562 goto unlock; 563 564 inst_ptr = kmalloc(1, GFP_KERNEL); 565 if (!inst_ptr) 566 goto unlock; 567 568 *inst_ptr = hdev->cur_adv_instance; 569 hci_cmd_sync_queue(hdev, adv_timeout_expire_sync, inst_ptr, NULL); 570 571 unlock: 572 hci_dev_unlock(hdev); 573 } 574 575 static bool is_interleave_scanning(struct hci_dev *hdev) 576 { 577 return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE; 578 } 579 580 static int hci_passive_scan_sync(struct hci_dev *hdev); 581 582 static void interleave_scan_work(struct work_struct *work) 583 { 584 struct hci_dev *hdev = container_of(work, struct hci_dev, 585 interleave_scan.work); 586 unsigned long timeout; 587 588 if (hdev->interleave_scan_state == INTERLEAVE_SCAN_ALLOWLIST) { 589 timeout = msecs_to_jiffies(hdev->advmon_allowlist_duration); 590 } else if (hdev->interleave_scan_state == INTERLEAVE_SCAN_NO_FILTER) { 591 timeout = msecs_to_jiffies(hdev->advmon_no_filter_duration); 592 } else { 593 bt_dev_err(hdev, "unexpected error"); 594 return; 595 } 596 597 hci_passive_scan_sync(hdev); 598 599 hci_dev_lock(hdev); 600 601 switch (hdev->interleave_scan_state) { 602 case INTERLEAVE_SCAN_ALLOWLIST: 603 bt_dev_dbg(hdev, "next state: allowlist"); 604 hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER; 605 break; 606 case INTERLEAVE_SCAN_NO_FILTER: 607 bt_dev_dbg(hdev, "next state: no filter"); 608 hdev->interleave_scan_state = INTERLEAVE_SCAN_ALLOWLIST; 609 break; 610 case INTERLEAVE_SCAN_NONE: 611 bt_dev_err(hdev, "unexpected error"); 612 } 613 614 hci_dev_unlock(hdev); 615 616 /* Don't continue interleaving if it was canceled */ 617 if (is_interleave_scanning(hdev)) 618 queue_delayed_work(hdev->req_workqueue, 619 &hdev->interleave_scan, timeout); 620 } 621 622 void hci_cmd_sync_init(struct hci_dev *hdev) 623 { 624 INIT_WORK(&hdev->cmd_sync_work, hci_cmd_sync_work); 625 INIT_LIST_HEAD(&hdev->cmd_sync_work_list); 626 mutex_init(&hdev->cmd_sync_work_lock); 627 mutex_init(&hdev->unregister_lock); 628 629 INIT_WORK(&hdev->cmd_sync_cancel_work, hci_cmd_sync_cancel_work); 630 INIT_WORK(&hdev->reenable_adv_work, reenable_adv); 631 INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable); 632 INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire); 633 INIT_DELAYED_WORK(&hdev->interleave_scan, interleave_scan_work); 634 } 635 636 static void _hci_cmd_sync_cancel_entry(struct hci_dev *hdev, 637 struct hci_cmd_sync_work_entry *entry, 638 int err) 639 { 640 if (entry->destroy) 641 entry->destroy(hdev, entry->data, err); 642 643 list_del(&entry->list); 644 kfree(entry); 645 } 646 647 void hci_cmd_sync_clear(struct hci_dev *hdev) 648 { 649 struct hci_cmd_sync_work_entry *entry, *tmp; 650 651 cancel_work_sync(&hdev->cmd_sync_work); 652 cancel_work_sync(&hdev->reenable_adv_work); 653 654 mutex_lock(&hdev->cmd_sync_work_lock); 655 list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) 656 _hci_cmd_sync_cancel_entry(hdev, entry, -ECANCELED); 657 mutex_unlock(&hdev->cmd_sync_work_lock); 658 } 659 660 void hci_cmd_sync_cancel(struct hci_dev *hdev, int err) 661 { 662 bt_dev_dbg(hdev, "err 0x%2.2x", err); 663 664 if (hdev->req_status == HCI_REQ_PEND) { 665 hdev->req_result = err; 666 hdev->req_status = HCI_REQ_CANCELED; 667 668 queue_work(hdev->workqueue, &hdev->cmd_sync_cancel_work); 669 } 670 } 671 EXPORT_SYMBOL(hci_cmd_sync_cancel); 672 673 /* Cancel ongoing command request synchronously: 674 * 675 * - Set result and mark status to HCI_REQ_CANCELED 676 * - Wakeup command sync thread 677 */ 678 void hci_cmd_sync_cancel_sync(struct hci_dev *hdev, int err) 679 { 680 bt_dev_dbg(hdev, "err 0x%2.2x", err); 681 682 if (hdev->req_status == HCI_REQ_PEND) { 683 /* req_result is __u32 so error must be positive to be properly 684 * propagated. 685 */ 686 hdev->req_result = err < 0 ? -err : err; 687 hdev->req_status = HCI_REQ_CANCELED; 688 689 wake_up_interruptible(&hdev->req_wait_q); 690 } 691 } 692 EXPORT_SYMBOL(hci_cmd_sync_cancel_sync); 693 694 /* Submit HCI command to be run in as cmd_sync_work: 695 * 696 * - hdev must _not_ be unregistered 697 */ 698 int hci_cmd_sync_submit(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 699 void *data, hci_cmd_sync_work_destroy_t destroy) 700 { 701 struct hci_cmd_sync_work_entry *entry; 702 int err = 0; 703 704 mutex_lock(&hdev->unregister_lock); 705 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 706 err = -ENODEV; 707 goto unlock; 708 } 709 710 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 711 if (!entry) { 712 err = -ENOMEM; 713 goto unlock; 714 } 715 entry->func = func; 716 entry->data = data; 717 entry->destroy = destroy; 718 719 mutex_lock(&hdev->cmd_sync_work_lock); 720 list_add_tail(&entry->list, &hdev->cmd_sync_work_list); 721 mutex_unlock(&hdev->cmd_sync_work_lock); 722 723 queue_work(hdev->req_workqueue, &hdev->cmd_sync_work); 724 725 unlock: 726 mutex_unlock(&hdev->unregister_lock); 727 return err; 728 } 729 EXPORT_SYMBOL(hci_cmd_sync_submit); 730 731 /* Queue HCI command: 732 * 733 * - hdev must be running 734 */ 735 int hci_cmd_sync_queue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 736 void *data, hci_cmd_sync_work_destroy_t destroy) 737 { 738 /* Only queue command if hdev is running which means it had been opened 739 * and is either on init phase or is already up. 740 */ 741 if (!test_bit(HCI_RUNNING, &hdev->flags)) 742 return -ENETDOWN; 743 744 return hci_cmd_sync_submit(hdev, func, data, destroy); 745 } 746 EXPORT_SYMBOL(hci_cmd_sync_queue); 747 748 static struct hci_cmd_sync_work_entry * 749 _hci_cmd_sync_lookup_entry(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 750 void *data, hci_cmd_sync_work_destroy_t destroy) 751 { 752 struct hci_cmd_sync_work_entry *entry, *tmp; 753 754 list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) { 755 if (func && entry->func != func) 756 continue; 757 758 if (data && entry->data != data) 759 continue; 760 761 if (destroy && entry->destroy != destroy) 762 continue; 763 764 return entry; 765 } 766 767 return NULL; 768 } 769 770 /* Queue HCI command entry once: 771 * 772 * - Lookup if an entry already exist and only if it doesn't creates a new entry 773 * and queue it. 774 */ 775 int hci_cmd_sync_queue_once(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 776 void *data, hci_cmd_sync_work_destroy_t destroy) 777 { 778 if (hci_cmd_sync_lookup_entry(hdev, func, data, destroy)) 779 return 0; 780 781 return hci_cmd_sync_queue(hdev, func, data, destroy); 782 } 783 EXPORT_SYMBOL(hci_cmd_sync_queue_once); 784 785 /* Run HCI command: 786 * 787 * - hdev must be running 788 * - if on cmd_sync_work then run immediately otherwise queue 789 */ 790 int hci_cmd_sync_run(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 791 void *data, hci_cmd_sync_work_destroy_t destroy) 792 { 793 /* Only queue command if hdev is running which means it had been opened 794 * and is either on init phase or is already up. 795 */ 796 if (!test_bit(HCI_RUNNING, &hdev->flags)) 797 return -ENETDOWN; 798 799 /* If on cmd_sync_work then run immediately otherwise queue */ 800 if (current_work() == &hdev->cmd_sync_work) 801 return func(hdev, data); 802 803 return hci_cmd_sync_submit(hdev, func, data, destroy); 804 } 805 EXPORT_SYMBOL(hci_cmd_sync_run); 806 807 /* Run HCI command entry once: 808 * 809 * - Lookup if an entry already exist and only if it doesn't creates a new entry 810 * and run it. 811 * - if on cmd_sync_work then run immediately otherwise queue 812 */ 813 int hci_cmd_sync_run_once(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 814 void *data, hci_cmd_sync_work_destroy_t destroy) 815 { 816 if (hci_cmd_sync_lookup_entry(hdev, func, data, destroy)) 817 return 0; 818 819 return hci_cmd_sync_run(hdev, func, data, destroy); 820 } 821 EXPORT_SYMBOL(hci_cmd_sync_run_once); 822 823 /* Lookup HCI command entry: 824 * 825 * - Return first entry that matches by function callback or data or 826 * destroy callback. 827 */ 828 struct hci_cmd_sync_work_entry * 829 hci_cmd_sync_lookup_entry(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 830 void *data, hci_cmd_sync_work_destroy_t destroy) 831 { 832 struct hci_cmd_sync_work_entry *entry; 833 834 mutex_lock(&hdev->cmd_sync_work_lock); 835 entry = _hci_cmd_sync_lookup_entry(hdev, func, data, destroy); 836 mutex_unlock(&hdev->cmd_sync_work_lock); 837 838 return entry; 839 } 840 EXPORT_SYMBOL(hci_cmd_sync_lookup_entry); 841 842 /* Cancel HCI command entry */ 843 void hci_cmd_sync_cancel_entry(struct hci_dev *hdev, 844 struct hci_cmd_sync_work_entry *entry) 845 { 846 mutex_lock(&hdev->cmd_sync_work_lock); 847 _hci_cmd_sync_cancel_entry(hdev, entry, -ECANCELED); 848 mutex_unlock(&hdev->cmd_sync_work_lock); 849 } 850 EXPORT_SYMBOL(hci_cmd_sync_cancel_entry); 851 852 /* Dequeue one HCI command entry: 853 * 854 * - Lookup and cancel first entry that matches. 855 */ 856 bool hci_cmd_sync_dequeue_once(struct hci_dev *hdev, 857 hci_cmd_sync_work_func_t func, 858 void *data, hci_cmd_sync_work_destroy_t destroy) 859 { 860 struct hci_cmd_sync_work_entry *entry; 861 862 entry = hci_cmd_sync_lookup_entry(hdev, func, data, destroy); 863 if (!entry) 864 return false; 865 866 hci_cmd_sync_cancel_entry(hdev, entry); 867 868 return true; 869 } 870 EXPORT_SYMBOL(hci_cmd_sync_dequeue_once); 871 872 /* Dequeue HCI command entry: 873 * 874 * - Lookup and cancel any entry that matches by function callback or data or 875 * destroy callback. 876 */ 877 bool hci_cmd_sync_dequeue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 878 void *data, hci_cmd_sync_work_destroy_t destroy) 879 { 880 struct hci_cmd_sync_work_entry *entry; 881 bool ret = false; 882 883 mutex_lock(&hdev->cmd_sync_work_lock); 884 while ((entry = _hci_cmd_sync_lookup_entry(hdev, func, data, 885 destroy))) { 886 _hci_cmd_sync_cancel_entry(hdev, entry, -ECANCELED); 887 ret = true; 888 } 889 mutex_unlock(&hdev->cmd_sync_work_lock); 890 891 return ret; 892 } 893 EXPORT_SYMBOL(hci_cmd_sync_dequeue); 894 895 int hci_update_eir_sync(struct hci_dev *hdev) 896 { 897 struct hci_cp_write_eir cp; 898 899 bt_dev_dbg(hdev, ""); 900 901 if (!hdev_is_powered(hdev)) 902 return 0; 903 904 if (!lmp_ext_inq_capable(hdev)) 905 return 0; 906 907 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 908 return 0; 909 910 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 911 return 0; 912 913 memset(&cp, 0, sizeof(cp)); 914 915 eir_create(hdev, cp.data); 916 917 if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0) 918 return 0; 919 920 memcpy(hdev->eir, cp.data, sizeof(cp.data)); 921 922 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp, 923 HCI_CMD_TIMEOUT); 924 } 925 926 static u8 get_service_classes(struct hci_dev *hdev) 927 { 928 struct bt_uuid *uuid; 929 u8 val = 0; 930 931 list_for_each_entry(uuid, &hdev->uuids, list) 932 val |= uuid->svc_hint; 933 934 return val; 935 } 936 937 int hci_update_class_sync(struct hci_dev *hdev) 938 { 939 u8 cod[3]; 940 941 bt_dev_dbg(hdev, ""); 942 943 if (!hdev_is_powered(hdev)) 944 return 0; 945 946 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 947 return 0; 948 949 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 950 return 0; 951 952 cod[0] = hdev->minor_class; 953 cod[1] = hdev->major_class; 954 cod[2] = get_service_classes(hdev); 955 956 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) 957 cod[1] |= 0x20; 958 959 if (memcmp(cod, hdev->dev_class, 3) == 0) 960 return 0; 961 962 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CLASS_OF_DEV, 963 sizeof(cod), cod, HCI_CMD_TIMEOUT); 964 } 965 966 static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable) 967 { 968 /* If there is no connection we are OK to advertise. */ 969 if (hci_conn_num(hdev, LE_LINK) == 0) 970 return true; 971 972 /* Check le_states if there is any connection in peripheral role. */ 973 if (hdev->conn_hash.le_num_peripheral > 0) { 974 /* Peripheral connection state and non connectable mode 975 * bit 20. 976 */ 977 if (!connectable && !(hdev->le_states[2] & 0x10)) 978 return false; 979 980 /* Peripheral connection state and connectable mode bit 38 981 * and scannable bit 21. 982 */ 983 if (connectable && (!(hdev->le_states[4] & 0x40) || 984 !(hdev->le_states[2] & 0x20))) 985 return false; 986 } 987 988 /* Check le_states if there is any connection in central role. */ 989 if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) { 990 /* Central connection state and non connectable mode bit 18. */ 991 if (!connectable && !(hdev->le_states[2] & 0x02)) 992 return false; 993 994 /* Central connection state and connectable mode bit 35 and 995 * scannable 19. 996 */ 997 if (connectable && (!(hdev->le_states[4] & 0x08) || 998 !(hdev->le_states[2] & 0x08))) 999 return false; 1000 } 1001 1002 return true; 1003 } 1004 1005 static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags) 1006 { 1007 /* If privacy is not enabled don't use RPA */ 1008 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 1009 return false; 1010 1011 /* If basic privacy mode is enabled use RPA */ 1012 if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) 1013 return true; 1014 1015 /* If limited privacy mode is enabled don't use RPA if we're 1016 * both discoverable and bondable. 1017 */ 1018 if ((flags & MGMT_ADV_FLAG_DISCOV) && 1019 hci_dev_test_flag(hdev, HCI_BONDABLE)) 1020 return false; 1021 1022 /* We're neither bondable nor discoverable in the limited 1023 * privacy mode, therefore use RPA. 1024 */ 1025 return true; 1026 } 1027 1028 static int hci_set_random_addr_sync(struct hci_dev *hdev, bdaddr_t *rpa) 1029 { 1030 /* If we're advertising or initiating an LE connection we can't 1031 * go ahead and change the random address at this time. This is 1032 * because the eventual initiator address used for the 1033 * subsequently created connection will be undefined (some 1034 * controllers use the new address and others the one we had 1035 * when the operation started). 1036 * 1037 * In this kind of scenario skip the update and let the random 1038 * address be updated at the next cycle. 1039 */ 1040 if (hci_dev_test_flag(hdev, HCI_LE_ADV) || 1041 hci_lookup_le_connect(hdev)) { 1042 bt_dev_dbg(hdev, "Deferring random address update"); 1043 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 1044 return 0; 1045 } 1046 1047 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RANDOM_ADDR, 1048 6, rpa, HCI_CMD_TIMEOUT); 1049 } 1050 1051 int hci_update_random_address_sync(struct hci_dev *hdev, bool require_privacy, 1052 bool rpa, u8 *own_addr_type) 1053 { 1054 int err; 1055 1056 /* If privacy is enabled use a resolvable private address. If 1057 * current RPA has expired or there is something else than 1058 * the current RPA in use, then generate a new one. 1059 */ 1060 if (rpa) { 1061 /* If Controller supports LL Privacy use own address type is 1062 * 0x03 1063 */ 1064 if (use_ll_privacy(hdev)) 1065 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED; 1066 else 1067 *own_addr_type = ADDR_LE_DEV_RANDOM; 1068 1069 /* Check if RPA is valid */ 1070 if (rpa_valid(hdev)) 1071 return 0; 1072 1073 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); 1074 if (err < 0) { 1075 bt_dev_err(hdev, "failed to generate new RPA"); 1076 return err; 1077 } 1078 1079 err = hci_set_random_addr_sync(hdev, &hdev->rpa); 1080 if (err) 1081 return err; 1082 1083 return 0; 1084 } 1085 1086 /* In case of required privacy without resolvable private address, 1087 * use an non-resolvable private address. This is useful for active 1088 * scanning and non-connectable advertising. 1089 */ 1090 if (require_privacy) { 1091 bdaddr_t nrpa; 1092 1093 while (true) { 1094 /* The non-resolvable private address is generated 1095 * from random six bytes with the two most significant 1096 * bits cleared. 1097 */ 1098 get_random_bytes(&nrpa, 6); 1099 nrpa.b[5] &= 0x3f; 1100 1101 /* The non-resolvable private address shall not be 1102 * equal to the public address. 1103 */ 1104 if (bacmp(&hdev->bdaddr, &nrpa)) 1105 break; 1106 } 1107 1108 *own_addr_type = ADDR_LE_DEV_RANDOM; 1109 1110 return hci_set_random_addr_sync(hdev, &nrpa); 1111 } 1112 1113 /* If forcing static address is in use or there is no public 1114 * address use the static address as random address (but skip 1115 * the HCI command if the current random address is already the 1116 * static one. 1117 * 1118 * In case BR/EDR has been disabled on a dual-mode controller 1119 * and a static address has been configured, then use that 1120 * address instead of the public BR/EDR address. 1121 */ 1122 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 1123 !bacmp(&hdev->bdaddr, BDADDR_ANY) || 1124 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && 1125 bacmp(&hdev->static_addr, BDADDR_ANY))) { 1126 *own_addr_type = ADDR_LE_DEV_RANDOM; 1127 if (bacmp(&hdev->static_addr, &hdev->random_addr)) 1128 return hci_set_random_addr_sync(hdev, 1129 &hdev->static_addr); 1130 return 0; 1131 } 1132 1133 /* Neither privacy nor static address is being used so use a 1134 * public address. 1135 */ 1136 *own_addr_type = ADDR_LE_DEV_PUBLIC; 1137 1138 return 0; 1139 } 1140 1141 static int hci_disable_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance) 1142 { 1143 struct hci_cp_le_set_ext_adv_enable *cp; 1144 struct hci_cp_ext_adv_set *set; 1145 u8 data[sizeof(*cp) + sizeof(*set) * 1]; 1146 u8 size; 1147 struct adv_info *adv = NULL; 1148 1149 /* If request specifies an instance that doesn't exist, fail */ 1150 if (instance > 0) { 1151 adv = hci_find_adv_instance(hdev, instance); 1152 if (!adv) 1153 return -EINVAL; 1154 1155 /* If not enabled there is nothing to do */ 1156 if (!adv->enabled) 1157 return 0; 1158 } 1159 1160 memset(data, 0, sizeof(data)); 1161 1162 cp = (void *)data; 1163 set = (void *)cp->data; 1164 1165 /* Instance 0x00 indicates all advertising instances will be disabled */ 1166 cp->num_of_sets = !!instance; 1167 cp->enable = 0x00; 1168 1169 set->handle = adv ? adv->handle : instance; 1170 1171 size = sizeof(*cp) + sizeof(*set) * cp->num_of_sets; 1172 1173 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, 1174 size, data, HCI_CMD_TIMEOUT); 1175 } 1176 1177 static int hci_set_adv_set_random_addr_sync(struct hci_dev *hdev, u8 instance, 1178 bdaddr_t *random_addr) 1179 { 1180 struct hci_cp_le_set_adv_set_rand_addr cp; 1181 int err; 1182 1183 if (!instance) { 1184 /* Instance 0x00 doesn't have an adv_info, instead it uses 1185 * hdev->random_addr to track its address so whenever it needs 1186 * to be updated this also set the random address since 1187 * hdev->random_addr is shared with scan state machine. 1188 */ 1189 err = hci_set_random_addr_sync(hdev, random_addr); 1190 if (err) 1191 return err; 1192 } 1193 1194 memset(&cp, 0, sizeof(cp)); 1195 1196 cp.handle = instance; 1197 bacpy(&cp.bdaddr, random_addr); 1198 1199 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_SET_RAND_ADDR, 1200 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1201 } 1202 1203 int hci_setup_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance) 1204 { 1205 struct hci_cp_le_set_ext_adv_params cp; 1206 bool connectable; 1207 u32 flags; 1208 bdaddr_t random_addr; 1209 u8 own_addr_type; 1210 int err; 1211 struct adv_info *adv; 1212 bool secondary_adv; 1213 1214 if (instance > 0) { 1215 adv = hci_find_adv_instance(hdev, instance); 1216 if (!adv) 1217 return -EINVAL; 1218 } else { 1219 adv = NULL; 1220 } 1221 1222 /* Updating parameters of an active instance will return a 1223 * Command Disallowed error, so we must first disable the 1224 * instance if it is active. 1225 */ 1226 if (adv && !adv->pending) { 1227 err = hci_disable_ext_adv_instance_sync(hdev, instance); 1228 if (err) 1229 return err; 1230 } 1231 1232 flags = hci_adv_instance_flags(hdev, instance); 1233 1234 /* If the "connectable" instance flag was not set, then choose between 1235 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. 1236 */ 1237 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || 1238 mgmt_get_connectable(hdev); 1239 1240 if (!is_advertising_allowed(hdev, connectable)) 1241 return -EPERM; 1242 1243 /* Set require_privacy to true only when non-connectable 1244 * advertising is used. In that case it is fine to use a 1245 * non-resolvable private address. 1246 */ 1247 err = hci_get_random_address(hdev, !connectable, 1248 adv_use_rpa(hdev, flags), adv, 1249 &own_addr_type, &random_addr); 1250 if (err < 0) 1251 return err; 1252 1253 memset(&cp, 0, sizeof(cp)); 1254 1255 if (adv) { 1256 hci_cpu_to_le24(adv->min_interval, cp.min_interval); 1257 hci_cpu_to_le24(adv->max_interval, cp.max_interval); 1258 cp.tx_power = adv->tx_power; 1259 } else { 1260 hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval); 1261 hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval); 1262 cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE; 1263 } 1264 1265 secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK); 1266 1267 if (connectable) { 1268 if (secondary_adv) 1269 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND); 1270 else 1271 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND); 1272 } else if (hci_adv_instance_is_scannable(hdev, instance) || 1273 (flags & MGMT_ADV_PARAM_SCAN_RSP)) { 1274 if (secondary_adv) 1275 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND); 1276 else 1277 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND); 1278 } else { 1279 if (secondary_adv) 1280 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND); 1281 else 1282 cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND); 1283 } 1284 1285 /* If Own_Address_Type equals 0x02 or 0x03, the Peer_Address parameter 1286 * contains the peer’s Identity Address and the Peer_Address_Type 1287 * parameter contains the peer’s Identity Type (i.e., 0x00 or 0x01). 1288 * These parameters are used to locate the corresponding local IRK in 1289 * the resolving list; this IRK is used to generate their own address 1290 * used in the advertisement. 1291 */ 1292 if (own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) 1293 hci_copy_identity_address(hdev, &cp.peer_addr, 1294 &cp.peer_addr_type); 1295 1296 cp.own_addr_type = own_addr_type; 1297 cp.channel_map = hdev->le_adv_channel_map; 1298 cp.handle = adv ? adv->handle : instance; 1299 1300 if (flags & MGMT_ADV_FLAG_SEC_2M) { 1301 cp.primary_phy = HCI_ADV_PHY_1M; 1302 cp.secondary_phy = HCI_ADV_PHY_2M; 1303 } else if (flags & MGMT_ADV_FLAG_SEC_CODED) { 1304 cp.primary_phy = HCI_ADV_PHY_CODED; 1305 cp.secondary_phy = HCI_ADV_PHY_CODED; 1306 } else { 1307 /* In all other cases use 1M */ 1308 cp.primary_phy = HCI_ADV_PHY_1M; 1309 cp.secondary_phy = HCI_ADV_PHY_1M; 1310 } 1311 1312 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS, 1313 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1314 if (err) 1315 return err; 1316 1317 if ((own_addr_type == ADDR_LE_DEV_RANDOM || 1318 own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) && 1319 bacmp(&random_addr, BDADDR_ANY)) { 1320 /* Check if random address need to be updated */ 1321 if (adv) { 1322 if (!bacmp(&random_addr, &adv->random_addr)) 1323 return 0; 1324 } else { 1325 if (!bacmp(&random_addr, &hdev->random_addr)) 1326 return 0; 1327 } 1328 1329 return hci_set_adv_set_random_addr_sync(hdev, instance, 1330 &random_addr); 1331 } 1332 1333 return 0; 1334 } 1335 1336 static int hci_set_ext_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 1337 { 1338 DEFINE_FLEX(struct hci_cp_le_set_ext_scan_rsp_data, pdu, data, length, 1339 HCI_MAX_EXT_AD_LENGTH); 1340 u8 len; 1341 struct adv_info *adv = NULL; 1342 int err; 1343 1344 if (instance) { 1345 adv = hci_find_adv_instance(hdev, instance); 1346 if (!adv || !adv->scan_rsp_changed) 1347 return 0; 1348 } 1349 1350 len = eir_create_scan_rsp(hdev, instance, pdu->data); 1351 1352 pdu->handle = adv ? adv->handle : instance; 1353 pdu->length = len; 1354 pdu->operation = LE_SET_ADV_DATA_OP_COMPLETE; 1355 pdu->frag_pref = LE_SET_ADV_DATA_NO_FRAG; 1356 1357 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA, 1358 struct_size(pdu, data, len), pdu, 1359 HCI_CMD_TIMEOUT); 1360 if (err) 1361 return err; 1362 1363 if (adv) { 1364 adv->scan_rsp_changed = false; 1365 } else { 1366 memcpy(hdev->scan_rsp_data, pdu->data, len); 1367 hdev->scan_rsp_data_len = len; 1368 } 1369 1370 return 0; 1371 } 1372 1373 static int __hci_set_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 1374 { 1375 struct hci_cp_le_set_scan_rsp_data cp; 1376 u8 len; 1377 1378 memset(&cp, 0, sizeof(cp)); 1379 1380 len = eir_create_scan_rsp(hdev, instance, cp.data); 1381 1382 if (hdev->scan_rsp_data_len == len && 1383 !memcmp(cp.data, hdev->scan_rsp_data, len)) 1384 return 0; 1385 1386 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data)); 1387 hdev->scan_rsp_data_len = len; 1388 1389 cp.length = len; 1390 1391 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_RSP_DATA, 1392 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1393 } 1394 1395 int hci_update_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 1396 { 1397 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1398 return 0; 1399 1400 if (ext_adv_capable(hdev)) 1401 return hci_set_ext_scan_rsp_data_sync(hdev, instance); 1402 1403 return __hci_set_scan_rsp_data_sync(hdev, instance); 1404 } 1405 1406 int hci_enable_ext_advertising_sync(struct hci_dev *hdev, u8 instance) 1407 { 1408 struct hci_cp_le_set_ext_adv_enable *cp; 1409 struct hci_cp_ext_adv_set *set; 1410 u8 data[sizeof(*cp) + sizeof(*set) * 1]; 1411 struct adv_info *adv; 1412 1413 if (instance > 0) { 1414 adv = hci_find_adv_instance(hdev, instance); 1415 if (!adv) 1416 return -EINVAL; 1417 /* If already enabled there is nothing to do */ 1418 if (adv->enabled) 1419 return 0; 1420 } else { 1421 adv = NULL; 1422 } 1423 1424 cp = (void *)data; 1425 set = (void *)cp->data; 1426 1427 memset(cp, 0, sizeof(*cp)); 1428 1429 cp->enable = 0x01; 1430 cp->num_of_sets = 0x01; 1431 1432 memset(set, 0, sizeof(*set)); 1433 1434 set->handle = adv ? adv->handle : instance; 1435 1436 /* Set duration per instance since controller is responsible for 1437 * scheduling it. 1438 */ 1439 if (adv && adv->timeout) { 1440 u16 duration = adv->timeout * MSEC_PER_SEC; 1441 1442 /* Time = N * 10 ms */ 1443 set->duration = cpu_to_le16(duration / 10); 1444 } 1445 1446 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, 1447 sizeof(*cp) + 1448 sizeof(*set) * cp->num_of_sets, 1449 data, HCI_CMD_TIMEOUT); 1450 } 1451 1452 int hci_start_ext_adv_sync(struct hci_dev *hdev, u8 instance) 1453 { 1454 int err; 1455 1456 err = hci_setup_ext_adv_instance_sync(hdev, instance); 1457 if (err) 1458 return err; 1459 1460 err = hci_set_ext_scan_rsp_data_sync(hdev, instance); 1461 if (err) 1462 return err; 1463 1464 return hci_enable_ext_advertising_sync(hdev, instance); 1465 } 1466 1467 int hci_disable_per_advertising_sync(struct hci_dev *hdev, u8 instance) 1468 { 1469 struct hci_cp_le_set_per_adv_enable cp; 1470 struct adv_info *adv = NULL; 1471 1472 /* If periodic advertising already disabled there is nothing to do. */ 1473 adv = hci_find_adv_instance(hdev, instance); 1474 if (!adv || !adv->periodic || !adv->enabled) 1475 return 0; 1476 1477 memset(&cp, 0, sizeof(cp)); 1478 1479 cp.enable = 0x00; 1480 cp.handle = instance; 1481 1482 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE, 1483 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1484 } 1485 1486 static int hci_set_per_adv_params_sync(struct hci_dev *hdev, u8 instance, 1487 u16 min_interval, u16 max_interval) 1488 { 1489 struct hci_cp_le_set_per_adv_params cp; 1490 1491 memset(&cp, 0, sizeof(cp)); 1492 1493 if (!min_interval) 1494 min_interval = DISCOV_LE_PER_ADV_INT_MIN; 1495 1496 if (!max_interval) 1497 max_interval = DISCOV_LE_PER_ADV_INT_MAX; 1498 1499 cp.handle = instance; 1500 cp.min_interval = cpu_to_le16(min_interval); 1501 cp.max_interval = cpu_to_le16(max_interval); 1502 cp.periodic_properties = 0x0000; 1503 1504 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_PARAMS, 1505 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1506 } 1507 1508 static int hci_set_per_adv_data_sync(struct hci_dev *hdev, u8 instance) 1509 { 1510 DEFINE_FLEX(struct hci_cp_le_set_per_adv_data, pdu, data, length, 1511 HCI_MAX_PER_AD_LENGTH); 1512 u8 len; 1513 struct adv_info *adv = NULL; 1514 1515 if (instance) { 1516 adv = hci_find_adv_instance(hdev, instance); 1517 if (!adv || !adv->periodic) 1518 return 0; 1519 } 1520 1521 len = eir_create_per_adv_data(hdev, instance, pdu->data); 1522 1523 pdu->length = len; 1524 pdu->handle = adv ? adv->handle : instance; 1525 pdu->operation = LE_SET_ADV_DATA_OP_COMPLETE; 1526 1527 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_DATA, 1528 struct_size(pdu, data, len), pdu, 1529 HCI_CMD_TIMEOUT); 1530 } 1531 1532 static int hci_enable_per_advertising_sync(struct hci_dev *hdev, u8 instance) 1533 { 1534 struct hci_cp_le_set_per_adv_enable cp; 1535 struct adv_info *adv = NULL; 1536 1537 /* If periodic advertising already enabled there is nothing to do. */ 1538 adv = hci_find_adv_instance(hdev, instance); 1539 if (adv && adv->periodic && adv->enabled) 1540 return 0; 1541 1542 memset(&cp, 0, sizeof(cp)); 1543 1544 cp.enable = 0x01; 1545 cp.handle = instance; 1546 1547 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE, 1548 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1549 } 1550 1551 /* Checks if periodic advertising data contains a Basic Announcement and if it 1552 * does generates a Broadcast ID and add Broadcast Announcement. 1553 */ 1554 static int hci_adv_bcast_annoucement(struct hci_dev *hdev, struct adv_info *adv) 1555 { 1556 u8 bid[3]; 1557 u8 ad[4 + 3]; 1558 1559 /* Skip if NULL adv as instance 0x00 is used for general purpose 1560 * advertising so it cannot used for the likes of Broadcast Announcement 1561 * as it can be overwritten at any point. 1562 */ 1563 if (!adv) 1564 return 0; 1565 1566 /* Check if PA data doesn't contains a Basic Audio Announcement then 1567 * there is nothing to do. 1568 */ 1569 if (!eir_get_service_data(adv->per_adv_data, adv->per_adv_data_len, 1570 0x1851, NULL)) 1571 return 0; 1572 1573 /* Check if advertising data already has a Broadcast Announcement since 1574 * the process may want to control the Broadcast ID directly and in that 1575 * case the kernel shall no interfere. 1576 */ 1577 if (eir_get_service_data(adv->adv_data, adv->adv_data_len, 0x1852, 1578 NULL)) 1579 return 0; 1580 1581 /* Generate Broadcast ID */ 1582 get_random_bytes(bid, sizeof(bid)); 1583 eir_append_service_data(ad, 0, 0x1852, bid, sizeof(bid)); 1584 hci_set_adv_instance_data(hdev, adv->instance, sizeof(ad), ad, 0, NULL); 1585 1586 return hci_update_adv_data_sync(hdev, adv->instance); 1587 } 1588 1589 int hci_start_per_adv_sync(struct hci_dev *hdev, u8 instance, u8 data_len, 1590 u8 *data, u32 flags, u16 min_interval, 1591 u16 max_interval, u16 sync_interval) 1592 { 1593 struct adv_info *adv = NULL; 1594 int err; 1595 bool added = false; 1596 1597 hci_disable_per_advertising_sync(hdev, instance); 1598 1599 if (instance) { 1600 adv = hci_find_adv_instance(hdev, instance); 1601 /* Create an instance if that could not be found */ 1602 if (!adv) { 1603 adv = hci_add_per_instance(hdev, instance, flags, 1604 data_len, data, 1605 sync_interval, 1606 sync_interval); 1607 if (IS_ERR(adv)) 1608 return PTR_ERR(adv); 1609 adv->pending = false; 1610 added = true; 1611 } 1612 } 1613 1614 /* Start advertising */ 1615 err = hci_start_ext_adv_sync(hdev, instance); 1616 if (err < 0) 1617 goto fail; 1618 1619 err = hci_adv_bcast_annoucement(hdev, adv); 1620 if (err < 0) 1621 goto fail; 1622 1623 err = hci_set_per_adv_params_sync(hdev, instance, min_interval, 1624 max_interval); 1625 if (err < 0) 1626 goto fail; 1627 1628 err = hci_set_per_adv_data_sync(hdev, instance); 1629 if (err < 0) 1630 goto fail; 1631 1632 err = hci_enable_per_advertising_sync(hdev, instance); 1633 if (err < 0) 1634 goto fail; 1635 1636 return 0; 1637 1638 fail: 1639 if (added) 1640 hci_remove_adv_instance(hdev, instance); 1641 1642 return err; 1643 } 1644 1645 static int hci_start_adv_sync(struct hci_dev *hdev, u8 instance) 1646 { 1647 int err; 1648 1649 if (ext_adv_capable(hdev)) 1650 return hci_start_ext_adv_sync(hdev, instance); 1651 1652 err = hci_update_adv_data_sync(hdev, instance); 1653 if (err) 1654 return err; 1655 1656 err = hci_update_scan_rsp_data_sync(hdev, instance); 1657 if (err) 1658 return err; 1659 1660 return hci_enable_advertising_sync(hdev); 1661 } 1662 1663 int hci_enable_advertising_sync(struct hci_dev *hdev) 1664 { 1665 struct adv_info *adv_instance; 1666 struct hci_cp_le_set_adv_param cp; 1667 u8 own_addr_type, enable = 0x01; 1668 bool connectable; 1669 u16 adv_min_interval, adv_max_interval; 1670 u32 flags; 1671 u8 status; 1672 1673 if (ext_adv_capable(hdev)) 1674 return hci_enable_ext_advertising_sync(hdev, 1675 hdev->cur_adv_instance); 1676 1677 flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance); 1678 adv_instance = hci_find_adv_instance(hdev, hdev->cur_adv_instance); 1679 1680 /* If the "connectable" instance flag was not set, then choose between 1681 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. 1682 */ 1683 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || 1684 mgmt_get_connectable(hdev); 1685 1686 if (!is_advertising_allowed(hdev, connectable)) 1687 return -EINVAL; 1688 1689 status = hci_disable_advertising_sync(hdev); 1690 if (status) 1691 return status; 1692 1693 /* Clear the HCI_LE_ADV bit temporarily so that the 1694 * hci_update_random_address knows that it's safe to go ahead 1695 * and write a new random address. The flag will be set back on 1696 * as soon as the SET_ADV_ENABLE HCI command completes. 1697 */ 1698 hci_dev_clear_flag(hdev, HCI_LE_ADV); 1699 1700 /* Set require_privacy to true only when non-connectable 1701 * advertising is used. In that case it is fine to use a 1702 * non-resolvable private address. 1703 */ 1704 status = hci_update_random_address_sync(hdev, !connectable, 1705 adv_use_rpa(hdev, flags), 1706 &own_addr_type); 1707 if (status) 1708 return status; 1709 1710 memset(&cp, 0, sizeof(cp)); 1711 1712 if (adv_instance) { 1713 adv_min_interval = adv_instance->min_interval; 1714 adv_max_interval = adv_instance->max_interval; 1715 } else { 1716 adv_min_interval = hdev->le_adv_min_interval; 1717 adv_max_interval = hdev->le_adv_max_interval; 1718 } 1719 1720 if (connectable) { 1721 cp.type = LE_ADV_IND; 1722 } else { 1723 if (hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance)) 1724 cp.type = LE_ADV_SCAN_IND; 1725 else 1726 cp.type = LE_ADV_NONCONN_IND; 1727 1728 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) || 1729 hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { 1730 adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN; 1731 adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX; 1732 } 1733 } 1734 1735 cp.min_interval = cpu_to_le16(adv_min_interval); 1736 cp.max_interval = cpu_to_le16(adv_max_interval); 1737 cp.own_address_type = own_addr_type; 1738 cp.channel_map = hdev->le_adv_channel_map; 1739 1740 status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM, 1741 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1742 if (status) 1743 return status; 1744 1745 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 1746 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 1747 } 1748 1749 static int enable_advertising_sync(struct hci_dev *hdev, void *data) 1750 { 1751 return hci_enable_advertising_sync(hdev); 1752 } 1753 1754 int hci_enable_advertising(struct hci_dev *hdev) 1755 { 1756 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) && 1757 list_empty(&hdev->adv_instances)) 1758 return 0; 1759 1760 return hci_cmd_sync_queue(hdev, enable_advertising_sync, NULL, NULL); 1761 } 1762 1763 int hci_remove_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance, 1764 struct sock *sk) 1765 { 1766 int err; 1767 1768 if (!ext_adv_capable(hdev)) 1769 return 0; 1770 1771 err = hci_disable_ext_adv_instance_sync(hdev, instance); 1772 if (err) 1773 return err; 1774 1775 /* If request specifies an instance that doesn't exist, fail */ 1776 if (instance > 0 && !hci_find_adv_instance(hdev, instance)) 1777 return -EINVAL; 1778 1779 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_REMOVE_ADV_SET, 1780 sizeof(instance), &instance, 0, 1781 HCI_CMD_TIMEOUT, sk); 1782 } 1783 1784 static int remove_ext_adv_sync(struct hci_dev *hdev, void *data) 1785 { 1786 struct adv_info *adv = data; 1787 u8 instance = 0; 1788 1789 if (adv) 1790 instance = adv->instance; 1791 1792 return hci_remove_ext_adv_instance_sync(hdev, instance, NULL); 1793 } 1794 1795 int hci_remove_ext_adv_instance(struct hci_dev *hdev, u8 instance) 1796 { 1797 struct adv_info *adv = NULL; 1798 1799 if (instance) { 1800 adv = hci_find_adv_instance(hdev, instance); 1801 if (!adv) 1802 return -EINVAL; 1803 } 1804 1805 return hci_cmd_sync_queue(hdev, remove_ext_adv_sync, adv, NULL); 1806 } 1807 1808 int hci_le_terminate_big_sync(struct hci_dev *hdev, u8 handle, u8 reason) 1809 { 1810 struct hci_cp_le_term_big cp; 1811 1812 memset(&cp, 0, sizeof(cp)); 1813 cp.handle = handle; 1814 cp.reason = reason; 1815 1816 return __hci_cmd_sync_status(hdev, HCI_OP_LE_TERM_BIG, 1817 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1818 } 1819 1820 static int hci_set_ext_adv_data_sync(struct hci_dev *hdev, u8 instance) 1821 { 1822 DEFINE_FLEX(struct hci_cp_le_set_ext_adv_data, pdu, data, length, 1823 HCI_MAX_EXT_AD_LENGTH); 1824 u8 len; 1825 struct adv_info *adv = NULL; 1826 int err; 1827 1828 if (instance) { 1829 adv = hci_find_adv_instance(hdev, instance); 1830 if (!adv || !adv->adv_data_changed) 1831 return 0; 1832 } 1833 1834 len = eir_create_adv_data(hdev, instance, pdu->data); 1835 1836 pdu->length = len; 1837 pdu->handle = adv ? adv->handle : instance; 1838 pdu->operation = LE_SET_ADV_DATA_OP_COMPLETE; 1839 pdu->frag_pref = LE_SET_ADV_DATA_NO_FRAG; 1840 1841 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_DATA, 1842 struct_size(pdu, data, len), pdu, 1843 HCI_CMD_TIMEOUT); 1844 if (err) 1845 return err; 1846 1847 /* Update data if the command succeed */ 1848 if (adv) { 1849 adv->adv_data_changed = false; 1850 } else { 1851 memcpy(hdev->adv_data, pdu->data, len); 1852 hdev->adv_data_len = len; 1853 } 1854 1855 return 0; 1856 } 1857 1858 static int hci_set_adv_data_sync(struct hci_dev *hdev, u8 instance) 1859 { 1860 struct hci_cp_le_set_adv_data cp; 1861 u8 len; 1862 1863 memset(&cp, 0, sizeof(cp)); 1864 1865 len = eir_create_adv_data(hdev, instance, cp.data); 1866 1867 /* There's nothing to do if the data hasn't changed */ 1868 if (hdev->adv_data_len == len && 1869 memcmp(cp.data, hdev->adv_data, len) == 0) 1870 return 0; 1871 1872 memcpy(hdev->adv_data, cp.data, sizeof(cp.data)); 1873 hdev->adv_data_len = len; 1874 1875 cp.length = len; 1876 1877 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_DATA, 1878 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1879 } 1880 1881 int hci_update_adv_data_sync(struct hci_dev *hdev, u8 instance) 1882 { 1883 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1884 return 0; 1885 1886 if (ext_adv_capable(hdev)) 1887 return hci_set_ext_adv_data_sync(hdev, instance); 1888 1889 return hci_set_adv_data_sync(hdev, instance); 1890 } 1891 1892 int hci_schedule_adv_instance_sync(struct hci_dev *hdev, u8 instance, 1893 bool force) 1894 { 1895 struct adv_info *adv = NULL; 1896 u16 timeout; 1897 1898 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) && !ext_adv_capable(hdev)) 1899 return -EPERM; 1900 1901 if (hdev->adv_instance_timeout) 1902 return -EBUSY; 1903 1904 adv = hci_find_adv_instance(hdev, instance); 1905 if (!adv) 1906 return -ENOENT; 1907 1908 /* A zero timeout means unlimited advertising. As long as there is 1909 * only one instance, duration should be ignored. We still set a timeout 1910 * in case further instances are being added later on. 1911 * 1912 * If the remaining lifetime of the instance is more than the duration 1913 * then the timeout corresponds to the duration, otherwise it will be 1914 * reduced to the remaining instance lifetime. 1915 */ 1916 if (adv->timeout == 0 || adv->duration <= adv->remaining_time) 1917 timeout = adv->duration; 1918 else 1919 timeout = adv->remaining_time; 1920 1921 /* The remaining time is being reduced unless the instance is being 1922 * advertised without time limit. 1923 */ 1924 if (adv->timeout) 1925 adv->remaining_time = adv->remaining_time - timeout; 1926 1927 /* Only use work for scheduling instances with legacy advertising */ 1928 if (!ext_adv_capable(hdev)) { 1929 hdev->adv_instance_timeout = timeout; 1930 queue_delayed_work(hdev->req_workqueue, 1931 &hdev->adv_instance_expire, 1932 msecs_to_jiffies(timeout * 1000)); 1933 } 1934 1935 /* If we're just re-scheduling the same instance again then do not 1936 * execute any HCI commands. This happens when a single instance is 1937 * being advertised. 1938 */ 1939 if (!force && hdev->cur_adv_instance == instance && 1940 hci_dev_test_flag(hdev, HCI_LE_ADV)) 1941 return 0; 1942 1943 hdev->cur_adv_instance = instance; 1944 1945 return hci_start_adv_sync(hdev, instance); 1946 } 1947 1948 static int hci_clear_adv_sets_sync(struct hci_dev *hdev, struct sock *sk) 1949 { 1950 int err; 1951 1952 if (!ext_adv_capable(hdev)) 1953 return 0; 1954 1955 /* Disable instance 0x00 to disable all instances */ 1956 err = hci_disable_ext_adv_instance_sync(hdev, 0x00); 1957 if (err) 1958 return err; 1959 1960 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CLEAR_ADV_SETS, 1961 0, NULL, 0, HCI_CMD_TIMEOUT, sk); 1962 } 1963 1964 static int hci_clear_adv_sync(struct hci_dev *hdev, struct sock *sk, bool force) 1965 { 1966 struct adv_info *adv, *n; 1967 int err = 0; 1968 1969 if (ext_adv_capable(hdev)) 1970 /* Remove all existing sets */ 1971 err = hci_clear_adv_sets_sync(hdev, sk); 1972 if (ext_adv_capable(hdev)) 1973 return err; 1974 1975 /* This is safe as long as there is no command send while the lock is 1976 * held. 1977 */ 1978 hci_dev_lock(hdev); 1979 1980 /* Cleanup non-ext instances */ 1981 list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) { 1982 u8 instance = adv->instance; 1983 int err; 1984 1985 if (!(force || adv->timeout)) 1986 continue; 1987 1988 err = hci_remove_adv_instance(hdev, instance); 1989 if (!err) 1990 mgmt_advertising_removed(sk, hdev, instance); 1991 } 1992 1993 hci_dev_unlock(hdev); 1994 1995 return 0; 1996 } 1997 1998 static int hci_remove_adv_sync(struct hci_dev *hdev, u8 instance, 1999 struct sock *sk) 2000 { 2001 int err = 0; 2002 2003 /* If we use extended advertising, instance has to be removed first. */ 2004 if (ext_adv_capable(hdev)) 2005 err = hci_remove_ext_adv_instance_sync(hdev, instance, sk); 2006 if (ext_adv_capable(hdev)) 2007 return err; 2008 2009 /* This is safe as long as there is no command send while the lock is 2010 * held. 2011 */ 2012 hci_dev_lock(hdev); 2013 2014 err = hci_remove_adv_instance(hdev, instance); 2015 if (!err) 2016 mgmt_advertising_removed(sk, hdev, instance); 2017 2018 hci_dev_unlock(hdev); 2019 2020 return err; 2021 } 2022 2023 /* For a single instance: 2024 * - force == true: The instance will be removed even when its remaining 2025 * lifetime is not zero. 2026 * - force == false: the instance will be deactivated but kept stored unless 2027 * the remaining lifetime is zero. 2028 * 2029 * For instance == 0x00: 2030 * - force == true: All instances will be removed regardless of their timeout 2031 * setting. 2032 * - force == false: Only instances that have a timeout will be removed. 2033 */ 2034 int hci_remove_advertising_sync(struct hci_dev *hdev, struct sock *sk, 2035 u8 instance, bool force) 2036 { 2037 struct adv_info *next = NULL; 2038 int err; 2039 2040 /* Cancel any timeout concerning the removed instance(s). */ 2041 if (!instance || hdev->cur_adv_instance == instance) 2042 cancel_adv_timeout(hdev); 2043 2044 /* Get the next instance to advertise BEFORE we remove 2045 * the current one. This can be the same instance again 2046 * if there is only one instance. 2047 */ 2048 if (hdev->cur_adv_instance == instance) 2049 next = hci_get_next_instance(hdev, instance); 2050 2051 if (!instance) { 2052 err = hci_clear_adv_sync(hdev, sk, force); 2053 if (err) 2054 return err; 2055 } else { 2056 struct adv_info *adv = hci_find_adv_instance(hdev, instance); 2057 2058 if (force || (adv && adv->timeout && !adv->remaining_time)) { 2059 /* Don't advertise a removed instance. */ 2060 if (next && next->instance == instance) 2061 next = NULL; 2062 2063 err = hci_remove_adv_sync(hdev, instance, sk); 2064 if (err) 2065 return err; 2066 } 2067 } 2068 2069 if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING)) 2070 return 0; 2071 2072 if (next && !ext_adv_capable(hdev)) 2073 hci_schedule_adv_instance_sync(hdev, next->instance, false); 2074 2075 return 0; 2076 } 2077 2078 int hci_read_rssi_sync(struct hci_dev *hdev, __le16 handle) 2079 { 2080 struct hci_cp_read_rssi cp; 2081 2082 cp.handle = handle; 2083 return __hci_cmd_sync_status(hdev, HCI_OP_READ_RSSI, 2084 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2085 } 2086 2087 int hci_read_clock_sync(struct hci_dev *hdev, struct hci_cp_read_clock *cp) 2088 { 2089 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLOCK, 2090 sizeof(*cp), cp, HCI_CMD_TIMEOUT); 2091 } 2092 2093 int hci_read_tx_power_sync(struct hci_dev *hdev, __le16 handle, u8 type) 2094 { 2095 struct hci_cp_read_tx_power cp; 2096 2097 cp.handle = handle; 2098 cp.type = type; 2099 return __hci_cmd_sync_status(hdev, HCI_OP_READ_TX_POWER, 2100 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2101 } 2102 2103 int hci_disable_advertising_sync(struct hci_dev *hdev) 2104 { 2105 u8 enable = 0x00; 2106 int err = 0; 2107 2108 /* If controller is not advertising we are done. */ 2109 if (!hci_dev_test_flag(hdev, HCI_LE_ADV)) 2110 return 0; 2111 2112 if (ext_adv_capable(hdev)) 2113 err = hci_disable_ext_adv_instance_sync(hdev, 0x00); 2114 if (ext_adv_capable(hdev)) 2115 return err; 2116 2117 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 2118 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 2119 } 2120 2121 static int hci_le_set_ext_scan_enable_sync(struct hci_dev *hdev, u8 val, 2122 u8 filter_dup) 2123 { 2124 struct hci_cp_le_set_ext_scan_enable cp; 2125 2126 memset(&cp, 0, sizeof(cp)); 2127 cp.enable = val; 2128 2129 if (hci_dev_test_flag(hdev, HCI_MESH)) 2130 cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 2131 else 2132 cp.filter_dup = filter_dup; 2133 2134 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_ENABLE, 2135 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2136 } 2137 2138 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val, 2139 u8 filter_dup) 2140 { 2141 struct hci_cp_le_set_scan_enable cp; 2142 2143 if (use_ext_scan(hdev)) 2144 return hci_le_set_ext_scan_enable_sync(hdev, val, filter_dup); 2145 2146 memset(&cp, 0, sizeof(cp)); 2147 cp.enable = val; 2148 2149 if (val && hci_dev_test_flag(hdev, HCI_MESH)) 2150 cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 2151 else 2152 cp.filter_dup = filter_dup; 2153 2154 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_ENABLE, 2155 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2156 } 2157 2158 static int hci_le_set_addr_resolution_enable_sync(struct hci_dev *hdev, u8 val) 2159 { 2160 if (!use_ll_privacy(hdev)) 2161 return 0; 2162 2163 /* If controller is not/already resolving we are done. */ 2164 if (val == hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) 2165 return 0; 2166 2167 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 2168 sizeof(val), &val, HCI_CMD_TIMEOUT); 2169 } 2170 2171 static int hci_scan_disable_sync(struct hci_dev *hdev) 2172 { 2173 int err; 2174 2175 /* If controller is not scanning we are done. */ 2176 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 2177 return 0; 2178 2179 if (hdev->scanning_paused) { 2180 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2181 return 0; 2182 } 2183 2184 err = hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00); 2185 if (err) { 2186 bt_dev_err(hdev, "Unable to disable scanning: %d", err); 2187 return err; 2188 } 2189 2190 return err; 2191 } 2192 2193 static bool scan_use_rpa(struct hci_dev *hdev) 2194 { 2195 return hci_dev_test_flag(hdev, HCI_PRIVACY); 2196 } 2197 2198 static void hci_start_interleave_scan(struct hci_dev *hdev) 2199 { 2200 hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER; 2201 queue_delayed_work(hdev->req_workqueue, 2202 &hdev->interleave_scan, 0); 2203 } 2204 2205 static void cancel_interleave_scan(struct hci_dev *hdev) 2206 { 2207 bt_dev_dbg(hdev, "cancelling interleave scan"); 2208 2209 cancel_delayed_work_sync(&hdev->interleave_scan); 2210 2211 hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE; 2212 } 2213 2214 /* Return true if interleave_scan wasn't started until exiting this function, 2215 * otherwise, return false 2216 */ 2217 static bool hci_update_interleaved_scan_sync(struct hci_dev *hdev) 2218 { 2219 /* Do interleaved scan only if all of the following are true: 2220 * - There is at least one ADV monitor 2221 * - At least one pending LE connection or one device to be scanned for 2222 * - Monitor offloading is not supported 2223 * If so, we should alternate between allowlist scan and one without 2224 * any filters to save power. 2225 */ 2226 bool use_interleaving = hci_is_adv_monitoring(hdev) && 2227 !(list_empty(&hdev->pend_le_conns) && 2228 list_empty(&hdev->pend_le_reports)) && 2229 hci_get_adv_monitor_offload_ext(hdev) == 2230 HCI_ADV_MONITOR_EXT_NONE; 2231 bool is_interleaving = is_interleave_scanning(hdev); 2232 2233 if (use_interleaving && !is_interleaving) { 2234 hci_start_interleave_scan(hdev); 2235 bt_dev_dbg(hdev, "starting interleave scan"); 2236 return true; 2237 } 2238 2239 if (!use_interleaving && is_interleaving) 2240 cancel_interleave_scan(hdev); 2241 2242 return false; 2243 } 2244 2245 /* Removes connection to resolve list if needed.*/ 2246 static int hci_le_del_resolve_list_sync(struct hci_dev *hdev, 2247 bdaddr_t *bdaddr, u8 bdaddr_type) 2248 { 2249 struct hci_cp_le_del_from_resolv_list cp; 2250 struct bdaddr_list_with_irk *entry; 2251 2252 if (!use_ll_privacy(hdev)) 2253 return 0; 2254 2255 /* Check if the IRK has been programmed */ 2256 entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, bdaddr, 2257 bdaddr_type); 2258 if (!entry) 2259 return 0; 2260 2261 cp.bdaddr_type = bdaddr_type; 2262 bacpy(&cp.bdaddr, bdaddr); 2263 2264 return __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_RESOLV_LIST, 2265 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2266 } 2267 2268 static int hci_le_del_accept_list_sync(struct hci_dev *hdev, 2269 bdaddr_t *bdaddr, u8 bdaddr_type) 2270 { 2271 struct hci_cp_le_del_from_accept_list cp; 2272 int err; 2273 2274 /* Check if device is on accept list before removing it */ 2275 if (!hci_bdaddr_list_lookup(&hdev->le_accept_list, bdaddr, bdaddr_type)) 2276 return 0; 2277 2278 cp.bdaddr_type = bdaddr_type; 2279 bacpy(&cp.bdaddr, bdaddr); 2280 2281 /* Ignore errors when removing from resolving list as that is likely 2282 * that the device was never added. 2283 */ 2284 hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type); 2285 2286 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_ACCEPT_LIST, 2287 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2288 if (err) { 2289 bt_dev_err(hdev, "Unable to remove from allow list: %d", err); 2290 return err; 2291 } 2292 2293 bt_dev_dbg(hdev, "Remove %pMR (0x%x) from allow list", &cp.bdaddr, 2294 cp.bdaddr_type); 2295 2296 return 0; 2297 } 2298 2299 struct conn_params { 2300 bdaddr_t addr; 2301 u8 addr_type; 2302 hci_conn_flags_t flags; 2303 u8 privacy_mode; 2304 }; 2305 2306 /* Adds connection to resolve list if needed. 2307 * Setting params to NULL programs local hdev->irk 2308 */ 2309 static int hci_le_add_resolve_list_sync(struct hci_dev *hdev, 2310 struct conn_params *params) 2311 { 2312 struct hci_cp_le_add_to_resolv_list cp; 2313 struct smp_irk *irk; 2314 struct bdaddr_list_with_irk *entry; 2315 struct hci_conn_params *p; 2316 2317 if (!use_ll_privacy(hdev)) 2318 return 0; 2319 2320 /* Attempt to program local identity address, type and irk if params is 2321 * NULL. 2322 */ 2323 if (!params) { 2324 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 2325 return 0; 2326 2327 hci_copy_identity_address(hdev, &cp.bdaddr, &cp.bdaddr_type); 2328 memcpy(cp.peer_irk, hdev->irk, 16); 2329 goto done; 2330 } 2331 2332 irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type); 2333 if (!irk) 2334 return 0; 2335 2336 /* Check if the IK has _not_ been programmed yet. */ 2337 entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, 2338 ¶ms->addr, 2339 params->addr_type); 2340 if (entry) 2341 return 0; 2342 2343 cp.bdaddr_type = params->addr_type; 2344 bacpy(&cp.bdaddr, ¶ms->addr); 2345 memcpy(cp.peer_irk, irk->val, 16); 2346 2347 /* Default privacy mode is always Network */ 2348 params->privacy_mode = HCI_NETWORK_PRIVACY; 2349 2350 rcu_read_lock(); 2351 p = hci_pend_le_action_lookup(&hdev->pend_le_conns, 2352 ¶ms->addr, params->addr_type); 2353 if (!p) 2354 p = hci_pend_le_action_lookup(&hdev->pend_le_reports, 2355 ¶ms->addr, params->addr_type); 2356 if (p) 2357 WRITE_ONCE(p->privacy_mode, HCI_NETWORK_PRIVACY); 2358 rcu_read_unlock(); 2359 2360 done: 2361 if (hci_dev_test_flag(hdev, HCI_PRIVACY)) 2362 memcpy(cp.local_irk, hdev->irk, 16); 2363 else 2364 memset(cp.local_irk, 0, 16); 2365 2366 return __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_RESOLV_LIST, 2367 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2368 } 2369 2370 /* Set Device Privacy Mode. */ 2371 static int hci_le_set_privacy_mode_sync(struct hci_dev *hdev, 2372 struct conn_params *params) 2373 { 2374 struct hci_cp_le_set_privacy_mode cp; 2375 struct smp_irk *irk; 2376 2377 /* If device privacy mode has already been set there is nothing to do */ 2378 if (params->privacy_mode == HCI_DEVICE_PRIVACY) 2379 return 0; 2380 2381 /* Check if HCI_CONN_FLAG_DEVICE_PRIVACY has been set as it also 2382 * indicates that LL Privacy has been enabled and 2383 * HCI_OP_LE_SET_PRIVACY_MODE is supported. 2384 */ 2385 if (!(params->flags & HCI_CONN_FLAG_DEVICE_PRIVACY)) 2386 return 0; 2387 2388 irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type); 2389 if (!irk) 2390 return 0; 2391 2392 memset(&cp, 0, sizeof(cp)); 2393 cp.bdaddr_type = irk->addr_type; 2394 bacpy(&cp.bdaddr, &irk->bdaddr); 2395 cp.mode = HCI_DEVICE_PRIVACY; 2396 2397 /* Note: params->privacy_mode is not updated since it is a copy */ 2398 2399 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PRIVACY_MODE, 2400 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2401 } 2402 2403 /* Adds connection to allow list if needed, if the device uses RPA (has IRK) 2404 * this attempts to program the device in the resolving list as well and 2405 * properly set the privacy mode. 2406 */ 2407 static int hci_le_add_accept_list_sync(struct hci_dev *hdev, 2408 struct conn_params *params, 2409 u8 *num_entries) 2410 { 2411 struct hci_cp_le_add_to_accept_list cp; 2412 int err; 2413 2414 /* During suspend, only wakeable devices can be in acceptlist */ 2415 if (hdev->suspended && 2416 !(params->flags & HCI_CONN_FLAG_REMOTE_WAKEUP)) { 2417 hci_le_del_accept_list_sync(hdev, ¶ms->addr, 2418 params->addr_type); 2419 return 0; 2420 } 2421 2422 /* Select filter policy to accept all advertising */ 2423 if (*num_entries >= hdev->le_accept_list_size) 2424 return -ENOSPC; 2425 2426 /* Accept list can not be used with RPAs */ 2427 if (!use_ll_privacy(hdev) && 2428 hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type)) 2429 return -EINVAL; 2430 2431 /* Attempt to program the device in the resolving list first to avoid 2432 * having to rollback in case it fails since the resolving list is 2433 * dynamic it can probably be smaller than the accept list. 2434 */ 2435 err = hci_le_add_resolve_list_sync(hdev, params); 2436 if (err) { 2437 bt_dev_err(hdev, "Unable to add to resolve list: %d", err); 2438 return err; 2439 } 2440 2441 /* Set Privacy Mode */ 2442 err = hci_le_set_privacy_mode_sync(hdev, params); 2443 if (err) { 2444 bt_dev_err(hdev, "Unable to set privacy mode: %d", err); 2445 return err; 2446 } 2447 2448 /* Check if already in accept list */ 2449 if (hci_bdaddr_list_lookup(&hdev->le_accept_list, ¶ms->addr, 2450 params->addr_type)) 2451 return 0; 2452 2453 *num_entries += 1; 2454 cp.bdaddr_type = params->addr_type; 2455 bacpy(&cp.bdaddr, ¶ms->addr); 2456 2457 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST, 2458 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2459 if (err) { 2460 bt_dev_err(hdev, "Unable to add to allow list: %d", err); 2461 /* Rollback the device from the resolving list */ 2462 hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type); 2463 return err; 2464 } 2465 2466 bt_dev_dbg(hdev, "Add %pMR (0x%x) to allow list", &cp.bdaddr, 2467 cp.bdaddr_type); 2468 2469 return 0; 2470 } 2471 2472 /* This function disables/pause all advertising instances */ 2473 static int hci_pause_advertising_sync(struct hci_dev *hdev) 2474 { 2475 int err; 2476 int old_state; 2477 2478 /* If already been paused there is nothing to do. */ 2479 if (hdev->advertising_paused) 2480 return 0; 2481 2482 bt_dev_dbg(hdev, "Pausing directed advertising"); 2483 2484 /* Stop directed advertising */ 2485 old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING); 2486 if (old_state) { 2487 /* When discoverable timeout triggers, then just make sure 2488 * the limited discoverable flag is cleared. Even in the case 2489 * of a timeout triggered from general discoverable, it is 2490 * safe to unconditionally clear the flag. 2491 */ 2492 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 2493 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 2494 hdev->discov_timeout = 0; 2495 } 2496 2497 bt_dev_dbg(hdev, "Pausing advertising instances"); 2498 2499 /* Call to disable any advertisements active on the controller. 2500 * This will succeed even if no advertisements are configured. 2501 */ 2502 err = hci_disable_advertising_sync(hdev); 2503 if (err) 2504 return err; 2505 2506 /* If we are using software rotation, pause the loop */ 2507 if (!ext_adv_capable(hdev)) 2508 cancel_adv_timeout(hdev); 2509 2510 hdev->advertising_paused = true; 2511 hdev->advertising_old_state = old_state; 2512 2513 return 0; 2514 } 2515 2516 /* This function enables all user advertising instances */ 2517 static int hci_resume_advertising_sync(struct hci_dev *hdev) 2518 { 2519 struct adv_info *adv, *tmp; 2520 int err; 2521 2522 /* If advertising has not been paused there is nothing to do. */ 2523 if (!hdev->advertising_paused) 2524 return 0; 2525 2526 /* Resume directed advertising */ 2527 hdev->advertising_paused = false; 2528 if (hdev->advertising_old_state) { 2529 hci_dev_set_flag(hdev, HCI_ADVERTISING); 2530 hdev->advertising_old_state = 0; 2531 } 2532 2533 bt_dev_dbg(hdev, "Resuming advertising instances"); 2534 2535 if (ext_adv_capable(hdev)) { 2536 /* Call for each tracked instance to be re-enabled */ 2537 list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) { 2538 err = hci_enable_ext_advertising_sync(hdev, 2539 adv->instance); 2540 if (!err) 2541 continue; 2542 2543 /* If the instance cannot be resumed remove it */ 2544 hci_remove_ext_adv_instance_sync(hdev, adv->instance, 2545 NULL); 2546 } 2547 } else { 2548 /* Schedule for most recent instance to be restarted and begin 2549 * the software rotation loop 2550 */ 2551 err = hci_schedule_adv_instance_sync(hdev, 2552 hdev->cur_adv_instance, 2553 true); 2554 } 2555 2556 hdev->advertising_paused = false; 2557 2558 return err; 2559 } 2560 2561 static int hci_pause_addr_resolution(struct hci_dev *hdev) 2562 { 2563 int err; 2564 2565 if (!use_ll_privacy(hdev)) 2566 return 0; 2567 2568 if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) 2569 return 0; 2570 2571 /* Cannot disable addr resolution if scanning is enabled or 2572 * when initiating an LE connection. 2573 */ 2574 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) || 2575 hci_lookup_le_connect(hdev)) { 2576 bt_dev_err(hdev, "Command not allowed when scan/LE connect"); 2577 return -EPERM; 2578 } 2579 2580 /* Cannot disable addr resolution if advertising is enabled. */ 2581 err = hci_pause_advertising_sync(hdev); 2582 if (err) { 2583 bt_dev_err(hdev, "Pause advertising failed: %d", err); 2584 return err; 2585 } 2586 2587 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00); 2588 if (err) 2589 bt_dev_err(hdev, "Unable to disable Address Resolution: %d", 2590 err); 2591 2592 /* Return if address resolution is disabled and RPA is not used. */ 2593 if (!err && scan_use_rpa(hdev)) 2594 return 0; 2595 2596 hci_resume_advertising_sync(hdev); 2597 return err; 2598 } 2599 2600 struct sk_buff *hci_read_local_oob_data_sync(struct hci_dev *hdev, 2601 bool extended, struct sock *sk) 2602 { 2603 u16 opcode = extended ? HCI_OP_READ_LOCAL_OOB_EXT_DATA : 2604 HCI_OP_READ_LOCAL_OOB_DATA; 2605 2606 return __hci_cmd_sync_sk(hdev, opcode, 0, NULL, 0, HCI_CMD_TIMEOUT, sk); 2607 } 2608 2609 static struct conn_params *conn_params_copy(struct list_head *list, size_t *n) 2610 { 2611 struct hci_conn_params *params; 2612 struct conn_params *p; 2613 size_t i; 2614 2615 rcu_read_lock(); 2616 2617 i = 0; 2618 list_for_each_entry_rcu(params, list, action) 2619 ++i; 2620 *n = i; 2621 2622 rcu_read_unlock(); 2623 2624 p = kvcalloc(*n, sizeof(struct conn_params), GFP_KERNEL); 2625 if (!p) 2626 return NULL; 2627 2628 rcu_read_lock(); 2629 2630 i = 0; 2631 list_for_each_entry_rcu(params, list, action) { 2632 /* Racing adds are handled in next scan update */ 2633 if (i >= *n) 2634 break; 2635 2636 /* No hdev->lock, but: addr, addr_type are immutable. 2637 * privacy_mode is only written by us or in 2638 * hci_cc_le_set_privacy_mode that we wait for. 2639 * We should be idempotent so MGMT updating flags 2640 * while we are processing is OK. 2641 */ 2642 bacpy(&p[i].addr, ¶ms->addr); 2643 p[i].addr_type = params->addr_type; 2644 p[i].flags = READ_ONCE(params->flags); 2645 p[i].privacy_mode = READ_ONCE(params->privacy_mode); 2646 ++i; 2647 } 2648 2649 rcu_read_unlock(); 2650 2651 *n = i; 2652 return p; 2653 } 2654 2655 /* Clear LE Accept List */ 2656 static int hci_le_clear_accept_list_sync(struct hci_dev *hdev) 2657 { 2658 if (!(hdev->commands[26] & 0x80)) 2659 return 0; 2660 2661 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL, 2662 HCI_CMD_TIMEOUT); 2663 } 2664 2665 /* Device must not be scanning when updating the accept list. 2666 * 2667 * Update is done using the following sequence: 2668 * 2669 * use_ll_privacy((Disable Advertising) -> Disable Resolving List) -> 2670 * Remove Devices From Accept List -> 2671 * (has IRK && use_ll_privacy(Remove Devices From Resolving List))-> 2672 * Add Devices to Accept List -> 2673 * (has IRK && use_ll_privacy(Remove Devices From Resolving List)) -> 2674 * use_ll_privacy(Enable Resolving List -> (Enable Advertising)) -> 2675 * Enable Scanning 2676 * 2677 * In case of failure advertising shall be restored to its original state and 2678 * return would disable accept list since either accept or resolving list could 2679 * not be programmed. 2680 * 2681 */ 2682 static u8 hci_update_accept_list_sync(struct hci_dev *hdev) 2683 { 2684 struct conn_params *params; 2685 struct bdaddr_list *b, *t; 2686 u8 num_entries = 0; 2687 bool pend_conn, pend_report; 2688 u8 filter_policy; 2689 size_t i, n; 2690 int err; 2691 2692 /* Pause advertising if resolving list can be used as controllers 2693 * cannot accept resolving list modifications while advertising. 2694 */ 2695 if (use_ll_privacy(hdev)) { 2696 err = hci_pause_advertising_sync(hdev); 2697 if (err) { 2698 bt_dev_err(hdev, "pause advertising failed: %d", err); 2699 return 0x00; 2700 } 2701 } 2702 2703 /* Disable address resolution while reprogramming accept list since 2704 * devices that do have an IRK will be programmed in the resolving list 2705 * when LL Privacy is enabled. 2706 */ 2707 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00); 2708 if (err) { 2709 bt_dev_err(hdev, "Unable to disable LL privacy: %d", err); 2710 goto done; 2711 } 2712 2713 /* Force address filtering if PA Sync is in progress */ 2714 if (hci_dev_test_flag(hdev, HCI_PA_SYNC)) { 2715 struct hci_cp_le_pa_create_sync *sent; 2716 2717 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_PA_CREATE_SYNC); 2718 if (sent) { 2719 struct conn_params pa; 2720 2721 memset(&pa, 0, sizeof(pa)); 2722 2723 bacpy(&pa.addr, &sent->addr); 2724 pa.addr_type = sent->addr_type; 2725 2726 /* Clear first since there could be addresses left 2727 * behind. 2728 */ 2729 hci_le_clear_accept_list_sync(hdev); 2730 2731 num_entries = 1; 2732 err = hci_le_add_accept_list_sync(hdev, &pa, 2733 &num_entries); 2734 goto done; 2735 } 2736 } 2737 2738 /* Go through the current accept list programmed into the 2739 * controller one by one and check if that address is connected or is 2740 * still in the list of pending connections or list of devices to 2741 * report. If not present in either list, then remove it from 2742 * the controller. 2743 */ 2744 list_for_each_entry_safe(b, t, &hdev->le_accept_list, list) { 2745 if (hci_conn_hash_lookup_le(hdev, &b->bdaddr, b->bdaddr_type)) 2746 continue; 2747 2748 /* Pointers not dereferenced, no locks needed */ 2749 pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns, 2750 &b->bdaddr, 2751 b->bdaddr_type); 2752 pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports, 2753 &b->bdaddr, 2754 b->bdaddr_type); 2755 2756 /* If the device is not likely to connect or report, 2757 * remove it from the acceptlist. 2758 */ 2759 if (!pend_conn && !pend_report) { 2760 hci_le_del_accept_list_sync(hdev, &b->bdaddr, 2761 b->bdaddr_type); 2762 continue; 2763 } 2764 2765 num_entries++; 2766 } 2767 2768 /* Since all no longer valid accept list entries have been 2769 * removed, walk through the list of pending connections 2770 * and ensure that any new device gets programmed into 2771 * the controller. 2772 * 2773 * If the list of the devices is larger than the list of 2774 * available accept list entries in the controller, then 2775 * just abort and return filer policy value to not use the 2776 * accept list. 2777 * 2778 * The list and params may be mutated while we wait for events, 2779 * so make a copy and iterate it. 2780 */ 2781 2782 params = conn_params_copy(&hdev->pend_le_conns, &n); 2783 if (!params) { 2784 err = -ENOMEM; 2785 goto done; 2786 } 2787 2788 for (i = 0; i < n; ++i) { 2789 err = hci_le_add_accept_list_sync(hdev, ¶ms[i], 2790 &num_entries); 2791 if (err) { 2792 kvfree(params); 2793 goto done; 2794 } 2795 } 2796 2797 kvfree(params); 2798 2799 /* After adding all new pending connections, walk through 2800 * the list of pending reports and also add these to the 2801 * accept list if there is still space. Abort if space runs out. 2802 */ 2803 2804 params = conn_params_copy(&hdev->pend_le_reports, &n); 2805 if (!params) { 2806 err = -ENOMEM; 2807 goto done; 2808 } 2809 2810 for (i = 0; i < n; ++i) { 2811 err = hci_le_add_accept_list_sync(hdev, ¶ms[i], 2812 &num_entries); 2813 if (err) { 2814 kvfree(params); 2815 goto done; 2816 } 2817 } 2818 2819 kvfree(params); 2820 2821 /* Use the allowlist unless the following conditions are all true: 2822 * - We are not currently suspending 2823 * - There are 1 or more ADV monitors registered and it's not offloaded 2824 * - Interleaved scanning is not currently using the allowlist 2825 */ 2826 if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended && 2827 hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE && 2828 hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST) 2829 err = -EINVAL; 2830 2831 done: 2832 filter_policy = err ? 0x00 : 0x01; 2833 2834 /* Enable address resolution when LL Privacy is enabled. */ 2835 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x01); 2836 if (err) 2837 bt_dev_err(hdev, "Unable to enable LL privacy: %d", err); 2838 2839 /* Resume advertising if it was paused */ 2840 if (use_ll_privacy(hdev)) 2841 hci_resume_advertising_sync(hdev); 2842 2843 /* Select filter policy to use accept list */ 2844 return filter_policy; 2845 } 2846 2847 static void hci_le_scan_phy_params(struct hci_cp_le_scan_phy_params *cp, 2848 u8 type, u16 interval, u16 window) 2849 { 2850 cp->type = type; 2851 cp->interval = cpu_to_le16(interval); 2852 cp->window = cpu_to_le16(window); 2853 } 2854 2855 static int hci_le_set_ext_scan_param_sync(struct hci_dev *hdev, u8 type, 2856 u16 interval, u16 window, 2857 u8 own_addr_type, u8 filter_policy) 2858 { 2859 struct hci_cp_le_set_ext_scan_params *cp; 2860 struct hci_cp_le_scan_phy_params *phy; 2861 u8 data[sizeof(*cp) + sizeof(*phy) * 2]; 2862 u8 num_phy = 0x00; 2863 2864 cp = (void *)data; 2865 phy = (void *)cp->data; 2866 2867 memset(data, 0, sizeof(data)); 2868 2869 cp->own_addr_type = own_addr_type; 2870 cp->filter_policy = filter_policy; 2871 2872 /* Check if PA Sync is in progress then select the PHY based on the 2873 * hci_conn.iso_qos. 2874 */ 2875 if (hci_dev_test_flag(hdev, HCI_PA_SYNC)) { 2876 struct hci_cp_le_add_to_accept_list *sent; 2877 2878 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST); 2879 if (sent) { 2880 struct hci_conn *conn; 2881 2882 conn = hci_conn_hash_lookup_ba(hdev, ISO_LINK, 2883 &sent->bdaddr); 2884 if (conn) { 2885 struct bt_iso_qos *qos = &conn->iso_qos; 2886 2887 if (qos->bcast.in.phy & BT_ISO_PHY_1M || 2888 qos->bcast.in.phy & BT_ISO_PHY_2M) { 2889 cp->scanning_phys |= LE_SCAN_PHY_1M; 2890 hci_le_scan_phy_params(phy, type, 2891 interval, 2892 window); 2893 num_phy++; 2894 phy++; 2895 } 2896 2897 if (qos->bcast.in.phy & BT_ISO_PHY_CODED) { 2898 cp->scanning_phys |= LE_SCAN_PHY_CODED; 2899 hci_le_scan_phy_params(phy, type, 2900 interval * 3, 2901 window * 3); 2902 num_phy++; 2903 phy++; 2904 } 2905 2906 if (num_phy) 2907 goto done; 2908 } 2909 } 2910 } 2911 2912 if (scan_1m(hdev) || scan_2m(hdev)) { 2913 cp->scanning_phys |= LE_SCAN_PHY_1M; 2914 hci_le_scan_phy_params(phy, type, interval, window); 2915 num_phy++; 2916 phy++; 2917 } 2918 2919 if (scan_coded(hdev)) { 2920 cp->scanning_phys |= LE_SCAN_PHY_CODED; 2921 hci_le_scan_phy_params(phy, type, interval * 3, window * 3); 2922 num_phy++; 2923 phy++; 2924 } 2925 2926 done: 2927 if (!num_phy) 2928 return -EINVAL; 2929 2930 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_PARAMS, 2931 sizeof(*cp) + sizeof(*phy) * num_phy, 2932 data, HCI_CMD_TIMEOUT); 2933 } 2934 2935 static int hci_le_set_scan_param_sync(struct hci_dev *hdev, u8 type, 2936 u16 interval, u16 window, 2937 u8 own_addr_type, u8 filter_policy) 2938 { 2939 struct hci_cp_le_set_scan_param cp; 2940 2941 if (use_ext_scan(hdev)) 2942 return hci_le_set_ext_scan_param_sync(hdev, type, interval, 2943 window, own_addr_type, 2944 filter_policy); 2945 2946 memset(&cp, 0, sizeof(cp)); 2947 cp.type = type; 2948 cp.interval = cpu_to_le16(interval); 2949 cp.window = cpu_to_le16(window); 2950 cp.own_address_type = own_addr_type; 2951 cp.filter_policy = filter_policy; 2952 2953 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_PARAM, 2954 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2955 } 2956 2957 static int hci_start_scan_sync(struct hci_dev *hdev, u8 type, u16 interval, 2958 u16 window, u8 own_addr_type, u8 filter_policy, 2959 u8 filter_dup) 2960 { 2961 int err; 2962 2963 if (hdev->scanning_paused) { 2964 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2965 return 0; 2966 } 2967 2968 err = hci_le_set_scan_param_sync(hdev, type, interval, window, 2969 own_addr_type, filter_policy); 2970 if (err) 2971 return err; 2972 2973 return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, filter_dup); 2974 } 2975 2976 static int hci_passive_scan_sync(struct hci_dev *hdev) 2977 { 2978 u8 own_addr_type; 2979 u8 filter_policy; 2980 u16 window, interval; 2981 u8 filter_dups = LE_SCAN_FILTER_DUP_ENABLE; 2982 int err; 2983 2984 if (hdev->scanning_paused) { 2985 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2986 return 0; 2987 } 2988 2989 err = hci_scan_disable_sync(hdev); 2990 if (err) { 2991 bt_dev_err(hdev, "disable scanning failed: %d", err); 2992 return err; 2993 } 2994 2995 /* Set require_privacy to false since no SCAN_REQ are send 2996 * during passive scanning. Not using an non-resolvable address 2997 * here is important so that peer devices using direct 2998 * advertising with our address will be correctly reported 2999 * by the controller. 3000 */ 3001 if (hci_update_random_address_sync(hdev, false, scan_use_rpa(hdev), 3002 &own_addr_type)) 3003 return 0; 3004 3005 if (hdev->enable_advmon_interleave_scan && 3006 hci_update_interleaved_scan_sync(hdev)) 3007 return 0; 3008 3009 bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state); 3010 3011 /* Adding or removing entries from the accept list must 3012 * happen before enabling scanning. The controller does 3013 * not allow accept list modification while scanning. 3014 */ 3015 filter_policy = hci_update_accept_list_sync(hdev); 3016 3017 /* If suspended and filter_policy set to 0x00 (no acceptlist) then 3018 * passive scanning cannot be started since that would require the host 3019 * to be woken up to process the reports. 3020 */ 3021 if (hdev->suspended && !filter_policy) { 3022 /* Check if accept list is empty then there is no need to scan 3023 * while suspended. 3024 */ 3025 if (list_empty(&hdev->le_accept_list)) 3026 return 0; 3027 3028 /* If there are devices is the accept_list that means some 3029 * devices could not be programmed which in non-suspended case 3030 * means filter_policy needs to be set to 0x00 so the host needs 3031 * to filter, but since this is treating suspended case we 3032 * can ignore device needing host to filter to allow devices in 3033 * the acceptlist to be able to wakeup the system. 3034 */ 3035 filter_policy = 0x01; 3036 } 3037 3038 /* When the controller is using random resolvable addresses and 3039 * with that having LE privacy enabled, then controllers with 3040 * Extended Scanner Filter Policies support can now enable support 3041 * for handling directed advertising. 3042 * 3043 * So instead of using filter polices 0x00 (no acceptlist) 3044 * and 0x01 (acceptlist enabled) use the new filter policies 3045 * 0x02 (no acceptlist) and 0x03 (acceptlist enabled). 3046 */ 3047 if (hci_dev_test_flag(hdev, HCI_PRIVACY) && 3048 (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)) 3049 filter_policy |= 0x02; 3050 3051 if (hdev->suspended) { 3052 window = hdev->le_scan_window_suspend; 3053 interval = hdev->le_scan_int_suspend; 3054 } else if (hci_is_le_conn_scanning(hdev)) { 3055 window = hdev->le_scan_window_connect; 3056 interval = hdev->le_scan_int_connect; 3057 } else if (hci_is_adv_monitoring(hdev)) { 3058 window = hdev->le_scan_window_adv_monitor; 3059 interval = hdev->le_scan_int_adv_monitor; 3060 3061 /* Disable duplicates filter when scanning for advertisement 3062 * monitor for the following reasons. 3063 * 3064 * For HW pattern filtering (ex. MSFT), Realtek and Qualcomm 3065 * controllers ignore RSSI_Sampling_Period when the duplicates 3066 * filter is enabled. 3067 * 3068 * For SW pattern filtering, when we're not doing interleaved 3069 * scanning, it is necessary to disable duplicates filter, 3070 * otherwise hosts can only receive one advertisement and it's 3071 * impossible to know if a peer is still in range. 3072 */ 3073 filter_dups = LE_SCAN_FILTER_DUP_DISABLE; 3074 } else { 3075 window = hdev->le_scan_window; 3076 interval = hdev->le_scan_interval; 3077 } 3078 3079 /* Disable all filtering for Mesh */ 3080 if (hci_dev_test_flag(hdev, HCI_MESH)) { 3081 filter_policy = 0; 3082 filter_dups = LE_SCAN_FILTER_DUP_DISABLE; 3083 } 3084 3085 bt_dev_dbg(hdev, "LE passive scan with acceptlist = %d", filter_policy); 3086 3087 return hci_start_scan_sync(hdev, LE_SCAN_PASSIVE, interval, window, 3088 own_addr_type, filter_policy, filter_dups); 3089 } 3090 3091 /* This function controls the passive scanning based on hdev->pend_le_conns 3092 * list. If there are pending LE connection we start the background scanning, 3093 * otherwise we stop it in the following sequence: 3094 * 3095 * If there are devices to scan: 3096 * 3097 * Disable Scanning -> Update Accept List -> 3098 * use_ll_privacy((Disable Advertising) -> Disable Resolving List -> 3099 * Update Resolving List -> Enable Resolving List -> (Enable Advertising)) -> 3100 * Enable Scanning 3101 * 3102 * Otherwise: 3103 * 3104 * Disable Scanning 3105 */ 3106 int hci_update_passive_scan_sync(struct hci_dev *hdev) 3107 { 3108 int err; 3109 3110 if (!test_bit(HCI_UP, &hdev->flags) || 3111 test_bit(HCI_INIT, &hdev->flags) || 3112 hci_dev_test_flag(hdev, HCI_SETUP) || 3113 hci_dev_test_flag(hdev, HCI_CONFIG) || 3114 hci_dev_test_flag(hdev, HCI_AUTO_OFF) || 3115 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 3116 return 0; 3117 3118 /* No point in doing scanning if LE support hasn't been enabled */ 3119 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 3120 return 0; 3121 3122 /* If discovery is active don't interfere with it */ 3123 if (hdev->discovery.state != DISCOVERY_STOPPED) 3124 return 0; 3125 3126 /* Reset RSSI and UUID filters when starting background scanning 3127 * since these filters are meant for service discovery only. 3128 * 3129 * The Start Discovery and Start Service Discovery operations 3130 * ensure to set proper values for RSSI threshold and UUID 3131 * filter list. So it is safe to just reset them here. 3132 */ 3133 hci_discovery_filter_clear(hdev); 3134 3135 bt_dev_dbg(hdev, "ADV monitoring is %s", 3136 hci_is_adv_monitoring(hdev) ? "on" : "off"); 3137 3138 if (!hci_dev_test_flag(hdev, HCI_MESH) && 3139 list_empty(&hdev->pend_le_conns) && 3140 list_empty(&hdev->pend_le_reports) && 3141 !hci_is_adv_monitoring(hdev) && 3142 !hci_dev_test_flag(hdev, HCI_PA_SYNC)) { 3143 /* If there is no pending LE connections or devices 3144 * to be scanned for or no ADV monitors, we should stop the 3145 * background scanning. 3146 */ 3147 3148 bt_dev_dbg(hdev, "stopping background scanning"); 3149 3150 err = hci_scan_disable_sync(hdev); 3151 if (err) 3152 bt_dev_err(hdev, "stop background scanning failed: %d", 3153 err); 3154 } else { 3155 /* If there is at least one pending LE connection, we should 3156 * keep the background scan running. 3157 */ 3158 3159 /* If controller is connecting, we should not start scanning 3160 * since some controllers are not able to scan and connect at 3161 * the same time. 3162 */ 3163 if (hci_lookup_le_connect(hdev)) 3164 return 0; 3165 3166 bt_dev_dbg(hdev, "start background scanning"); 3167 3168 err = hci_passive_scan_sync(hdev); 3169 if (err) 3170 bt_dev_err(hdev, "start background scanning failed: %d", 3171 err); 3172 } 3173 3174 return err; 3175 } 3176 3177 static int update_scan_sync(struct hci_dev *hdev, void *data) 3178 { 3179 return hci_update_scan_sync(hdev); 3180 } 3181 3182 int hci_update_scan(struct hci_dev *hdev) 3183 { 3184 return hci_cmd_sync_queue(hdev, update_scan_sync, NULL, NULL); 3185 } 3186 3187 static int update_passive_scan_sync(struct hci_dev *hdev, void *data) 3188 { 3189 return hci_update_passive_scan_sync(hdev); 3190 } 3191 3192 int hci_update_passive_scan(struct hci_dev *hdev) 3193 { 3194 /* Only queue if it would have any effect */ 3195 if (!test_bit(HCI_UP, &hdev->flags) || 3196 test_bit(HCI_INIT, &hdev->flags) || 3197 hci_dev_test_flag(hdev, HCI_SETUP) || 3198 hci_dev_test_flag(hdev, HCI_CONFIG) || 3199 hci_dev_test_flag(hdev, HCI_AUTO_OFF) || 3200 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 3201 return 0; 3202 3203 return hci_cmd_sync_queue_once(hdev, update_passive_scan_sync, NULL, 3204 NULL); 3205 } 3206 3207 int hci_write_sc_support_sync(struct hci_dev *hdev, u8 val) 3208 { 3209 int err; 3210 3211 if (!bredr_sc_enabled(hdev) || lmp_host_sc_capable(hdev)) 3212 return 0; 3213 3214 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT, 3215 sizeof(val), &val, HCI_CMD_TIMEOUT); 3216 3217 if (!err) { 3218 if (val) { 3219 hdev->features[1][0] |= LMP_HOST_SC; 3220 hci_dev_set_flag(hdev, HCI_SC_ENABLED); 3221 } else { 3222 hdev->features[1][0] &= ~LMP_HOST_SC; 3223 hci_dev_clear_flag(hdev, HCI_SC_ENABLED); 3224 } 3225 } 3226 3227 return err; 3228 } 3229 3230 int hci_write_ssp_mode_sync(struct hci_dev *hdev, u8 mode) 3231 { 3232 int err; 3233 3234 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) || 3235 lmp_host_ssp_capable(hdev)) 3236 return 0; 3237 3238 if (!mode && hci_dev_test_flag(hdev, HCI_USE_DEBUG_KEYS)) { 3239 __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE, 3240 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3241 } 3242 3243 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE, 3244 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3245 if (err) 3246 return err; 3247 3248 return hci_write_sc_support_sync(hdev, 0x01); 3249 } 3250 3251 int hci_write_le_host_supported_sync(struct hci_dev *hdev, u8 le, u8 simul) 3252 { 3253 struct hci_cp_write_le_host_supported cp; 3254 3255 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED) || 3256 !lmp_bredr_capable(hdev)) 3257 return 0; 3258 3259 /* Check first if we already have the right host state 3260 * (host features set) 3261 */ 3262 if (le == lmp_host_le_capable(hdev) && 3263 simul == lmp_host_le_br_capable(hdev)) 3264 return 0; 3265 3266 memset(&cp, 0, sizeof(cp)); 3267 3268 cp.le = le; 3269 cp.simul = simul; 3270 3271 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED, 3272 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3273 } 3274 3275 static int hci_powered_update_adv_sync(struct hci_dev *hdev) 3276 { 3277 struct adv_info *adv, *tmp; 3278 int err; 3279 3280 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 3281 return 0; 3282 3283 /* If RPA Resolution has not been enable yet it means the 3284 * resolving list is empty and we should attempt to program the 3285 * local IRK in order to support using own_addr_type 3286 * ADDR_LE_DEV_RANDOM_RESOLVED (0x03). 3287 */ 3288 if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) { 3289 hci_le_add_resolve_list_sync(hdev, NULL); 3290 hci_le_set_addr_resolution_enable_sync(hdev, 0x01); 3291 } 3292 3293 /* Make sure the controller has a good default for 3294 * advertising data. This also applies to the case 3295 * where BR/EDR was toggled during the AUTO_OFF phase. 3296 */ 3297 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 3298 list_empty(&hdev->adv_instances)) { 3299 if (ext_adv_capable(hdev)) { 3300 err = hci_setup_ext_adv_instance_sync(hdev, 0x00); 3301 if (!err) 3302 hci_update_scan_rsp_data_sync(hdev, 0x00); 3303 } else { 3304 err = hci_update_adv_data_sync(hdev, 0x00); 3305 if (!err) 3306 hci_update_scan_rsp_data_sync(hdev, 0x00); 3307 } 3308 3309 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) 3310 hci_enable_advertising_sync(hdev); 3311 } 3312 3313 /* Call for each tracked instance to be scheduled */ 3314 list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) 3315 hci_schedule_adv_instance_sync(hdev, adv->instance, true); 3316 3317 return 0; 3318 } 3319 3320 static int hci_write_auth_enable_sync(struct hci_dev *hdev) 3321 { 3322 u8 link_sec; 3323 3324 link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY); 3325 if (link_sec == test_bit(HCI_AUTH, &hdev->flags)) 3326 return 0; 3327 3328 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE, 3329 sizeof(link_sec), &link_sec, 3330 HCI_CMD_TIMEOUT); 3331 } 3332 3333 int hci_write_fast_connectable_sync(struct hci_dev *hdev, bool enable) 3334 { 3335 struct hci_cp_write_page_scan_activity cp; 3336 u8 type; 3337 int err = 0; 3338 3339 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 3340 return 0; 3341 3342 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 3343 return 0; 3344 3345 memset(&cp, 0, sizeof(cp)); 3346 3347 if (enable) { 3348 type = PAGE_SCAN_TYPE_INTERLACED; 3349 3350 /* 160 msec page scan interval */ 3351 cp.interval = cpu_to_le16(0x0100); 3352 } else { 3353 type = hdev->def_page_scan_type; 3354 cp.interval = cpu_to_le16(hdev->def_page_scan_int); 3355 } 3356 3357 cp.window = cpu_to_le16(hdev->def_page_scan_window); 3358 3359 if (__cpu_to_le16(hdev->page_scan_interval) != cp.interval || 3360 __cpu_to_le16(hdev->page_scan_window) != cp.window) { 3361 err = __hci_cmd_sync_status(hdev, 3362 HCI_OP_WRITE_PAGE_SCAN_ACTIVITY, 3363 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3364 if (err) 3365 return err; 3366 } 3367 3368 if (hdev->page_scan_type != type) 3369 err = __hci_cmd_sync_status(hdev, 3370 HCI_OP_WRITE_PAGE_SCAN_TYPE, 3371 sizeof(type), &type, 3372 HCI_CMD_TIMEOUT); 3373 3374 return err; 3375 } 3376 3377 static bool disconnected_accept_list_entries(struct hci_dev *hdev) 3378 { 3379 struct bdaddr_list *b; 3380 3381 list_for_each_entry(b, &hdev->accept_list, list) { 3382 struct hci_conn *conn; 3383 3384 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr); 3385 if (!conn) 3386 return true; 3387 3388 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 3389 return true; 3390 } 3391 3392 return false; 3393 } 3394 3395 static int hci_write_scan_enable_sync(struct hci_dev *hdev, u8 val) 3396 { 3397 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE, 3398 sizeof(val), &val, 3399 HCI_CMD_TIMEOUT); 3400 } 3401 3402 int hci_update_scan_sync(struct hci_dev *hdev) 3403 { 3404 u8 scan; 3405 3406 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 3407 return 0; 3408 3409 if (!hdev_is_powered(hdev)) 3410 return 0; 3411 3412 if (mgmt_powering_down(hdev)) 3413 return 0; 3414 3415 if (hdev->scanning_paused) 3416 return 0; 3417 3418 if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) || 3419 disconnected_accept_list_entries(hdev)) 3420 scan = SCAN_PAGE; 3421 else 3422 scan = SCAN_DISABLED; 3423 3424 if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 3425 scan |= SCAN_INQUIRY; 3426 3427 if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) && 3428 test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY)) 3429 return 0; 3430 3431 return hci_write_scan_enable_sync(hdev, scan); 3432 } 3433 3434 int hci_update_name_sync(struct hci_dev *hdev) 3435 { 3436 struct hci_cp_write_local_name cp; 3437 3438 memset(&cp, 0, sizeof(cp)); 3439 3440 memcpy(cp.name, hdev->dev_name, sizeof(cp.name)); 3441 3442 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LOCAL_NAME, 3443 sizeof(cp), &cp, 3444 HCI_CMD_TIMEOUT); 3445 } 3446 3447 /* This function perform powered update HCI command sequence after the HCI init 3448 * sequence which end up resetting all states, the sequence is as follows: 3449 * 3450 * HCI_SSP_ENABLED(Enable SSP) 3451 * HCI_LE_ENABLED(Enable LE) 3452 * HCI_LE_ENABLED(use_ll_privacy(Add local IRK to Resolving List) -> 3453 * Update adv data) 3454 * Enable Authentication 3455 * lmp_bredr_capable(Set Fast Connectable -> Set Scan Type -> Set Class -> 3456 * Set Name -> Set EIR) 3457 * HCI_FORCE_STATIC_ADDR | BDADDR_ANY && !HCI_BREDR_ENABLED (Set Static Address) 3458 */ 3459 int hci_powered_update_sync(struct hci_dev *hdev) 3460 { 3461 int err; 3462 3463 /* Register the available SMP channels (BR/EDR and LE) only when 3464 * successfully powering on the controller. This late 3465 * registration is required so that LE SMP can clearly decide if 3466 * the public address or static address is used. 3467 */ 3468 smp_register(hdev); 3469 3470 err = hci_write_ssp_mode_sync(hdev, 0x01); 3471 if (err) 3472 return err; 3473 3474 err = hci_write_le_host_supported_sync(hdev, 0x01, 0x00); 3475 if (err) 3476 return err; 3477 3478 err = hci_powered_update_adv_sync(hdev); 3479 if (err) 3480 return err; 3481 3482 err = hci_write_auth_enable_sync(hdev); 3483 if (err) 3484 return err; 3485 3486 if (lmp_bredr_capable(hdev)) { 3487 if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE)) 3488 hci_write_fast_connectable_sync(hdev, true); 3489 else 3490 hci_write_fast_connectable_sync(hdev, false); 3491 hci_update_scan_sync(hdev); 3492 hci_update_class_sync(hdev); 3493 hci_update_name_sync(hdev); 3494 hci_update_eir_sync(hdev); 3495 } 3496 3497 /* If forcing static address is in use or there is no public 3498 * address use the static address as random address (but skip 3499 * the HCI command if the current random address is already the 3500 * static one. 3501 * 3502 * In case BR/EDR has been disabled on a dual-mode controller 3503 * and a static address has been configured, then use that 3504 * address instead of the public BR/EDR address. 3505 */ 3506 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 3507 (!bacmp(&hdev->bdaddr, BDADDR_ANY) && 3508 !hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))) { 3509 if (bacmp(&hdev->static_addr, BDADDR_ANY)) 3510 return hci_set_random_addr_sync(hdev, 3511 &hdev->static_addr); 3512 } 3513 3514 return 0; 3515 } 3516 3517 /** 3518 * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address 3519 * (BD_ADDR) for a HCI device from 3520 * a firmware node property. 3521 * @hdev: The HCI device 3522 * 3523 * Search the firmware node for 'local-bd-address'. 3524 * 3525 * All-zero BD addresses are rejected, because those could be properties 3526 * that exist in the firmware tables, but were not updated by the firmware. For 3527 * example, the DTS could define 'local-bd-address', with zero BD addresses. 3528 */ 3529 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev) 3530 { 3531 struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent); 3532 bdaddr_t ba; 3533 int ret; 3534 3535 ret = fwnode_property_read_u8_array(fwnode, "local-bd-address", 3536 (u8 *)&ba, sizeof(ba)); 3537 if (ret < 0 || !bacmp(&ba, BDADDR_ANY)) 3538 return; 3539 3540 if (test_bit(HCI_QUIRK_BDADDR_PROPERTY_BROKEN, &hdev->quirks)) 3541 baswap(&hdev->public_addr, &ba); 3542 else 3543 bacpy(&hdev->public_addr, &ba); 3544 } 3545 3546 struct hci_init_stage { 3547 int (*func)(struct hci_dev *hdev); 3548 }; 3549 3550 /* Run init stage NULL terminated function table */ 3551 static int hci_init_stage_sync(struct hci_dev *hdev, 3552 const struct hci_init_stage *stage) 3553 { 3554 size_t i; 3555 3556 for (i = 0; stage[i].func; i++) { 3557 int err; 3558 3559 err = stage[i].func(hdev); 3560 if (err) 3561 return err; 3562 } 3563 3564 return 0; 3565 } 3566 3567 /* Read Local Version */ 3568 static int hci_read_local_version_sync(struct hci_dev *hdev) 3569 { 3570 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_VERSION, 3571 0, NULL, HCI_CMD_TIMEOUT); 3572 } 3573 3574 /* Read BD Address */ 3575 static int hci_read_bd_addr_sync(struct hci_dev *hdev) 3576 { 3577 return __hci_cmd_sync_status(hdev, HCI_OP_READ_BD_ADDR, 3578 0, NULL, HCI_CMD_TIMEOUT); 3579 } 3580 3581 #define HCI_INIT(_func) \ 3582 { \ 3583 .func = _func, \ 3584 } 3585 3586 static const struct hci_init_stage hci_init0[] = { 3587 /* HCI_OP_READ_LOCAL_VERSION */ 3588 HCI_INIT(hci_read_local_version_sync), 3589 /* HCI_OP_READ_BD_ADDR */ 3590 HCI_INIT(hci_read_bd_addr_sync), 3591 {} 3592 }; 3593 3594 int hci_reset_sync(struct hci_dev *hdev) 3595 { 3596 int err; 3597 3598 set_bit(HCI_RESET, &hdev->flags); 3599 3600 err = __hci_cmd_sync_status(hdev, HCI_OP_RESET, 0, NULL, 3601 HCI_CMD_TIMEOUT); 3602 if (err) 3603 return err; 3604 3605 return 0; 3606 } 3607 3608 static int hci_init0_sync(struct hci_dev *hdev) 3609 { 3610 int err; 3611 3612 bt_dev_dbg(hdev, ""); 3613 3614 /* Reset */ 3615 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) { 3616 err = hci_reset_sync(hdev); 3617 if (err) 3618 return err; 3619 } 3620 3621 return hci_init_stage_sync(hdev, hci_init0); 3622 } 3623 3624 static int hci_unconf_init_sync(struct hci_dev *hdev) 3625 { 3626 int err; 3627 3628 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) 3629 return 0; 3630 3631 err = hci_init0_sync(hdev); 3632 if (err < 0) 3633 return err; 3634 3635 if (hci_dev_test_flag(hdev, HCI_SETUP)) 3636 hci_debugfs_create_basic(hdev); 3637 3638 return 0; 3639 } 3640 3641 /* Read Local Supported Features. */ 3642 static int hci_read_local_features_sync(struct hci_dev *hdev) 3643 { 3644 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_FEATURES, 3645 0, NULL, HCI_CMD_TIMEOUT); 3646 } 3647 3648 /* BR Controller init stage 1 command sequence */ 3649 static const struct hci_init_stage br_init1[] = { 3650 /* HCI_OP_READ_LOCAL_FEATURES */ 3651 HCI_INIT(hci_read_local_features_sync), 3652 /* HCI_OP_READ_LOCAL_VERSION */ 3653 HCI_INIT(hci_read_local_version_sync), 3654 /* HCI_OP_READ_BD_ADDR */ 3655 HCI_INIT(hci_read_bd_addr_sync), 3656 {} 3657 }; 3658 3659 /* Read Local Commands */ 3660 static int hci_read_local_cmds_sync(struct hci_dev *hdev) 3661 { 3662 /* All Bluetooth 1.2 and later controllers should support the 3663 * HCI command for reading the local supported commands. 3664 * 3665 * Unfortunately some controllers indicate Bluetooth 1.2 support, 3666 * but do not have support for this command. If that is the case, 3667 * the driver can quirk the behavior and skip reading the local 3668 * supported commands. 3669 */ 3670 if (hdev->hci_ver > BLUETOOTH_VER_1_1 && 3671 !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks)) 3672 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_COMMANDS, 3673 0, NULL, HCI_CMD_TIMEOUT); 3674 3675 return 0; 3676 } 3677 3678 static int hci_init1_sync(struct hci_dev *hdev) 3679 { 3680 int err; 3681 3682 bt_dev_dbg(hdev, ""); 3683 3684 /* Reset */ 3685 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) { 3686 err = hci_reset_sync(hdev); 3687 if (err) 3688 return err; 3689 } 3690 3691 return hci_init_stage_sync(hdev, br_init1); 3692 } 3693 3694 /* Read Buffer Size (ACL mtu, max pkt, etc.) */ 3695 static int hci_read_buffer_size_sync(struct hci_dev *hdev) 3696 { 3697 return __hci_cmd_sync_status(hdev, HCI_OP_READ_BUFFER_SIZE, 3698 0, NULL, HCI_CMD_TIMEOUT); 3699 } 3700 3701 /* Read Class of Device */ 3702 static int hci_read_dev_class_sync(struct hci_dev *hdev) 3703 { 3704 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLASS_OF_DEV, 3705 0, NULL, HCI_CMD_TIMEOUT); 3706 } 3707 3708 /* Read Local Name */ 3709 static int hci_read_local_name_sync(struct hci_dev *hdev) 3710 { 3711 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_NAME, 3712 0, NULL, HCI_CMD_TIMEOUT); 3713 } 3714 3715 /* Read Voice Setting */ 3716 static int hci_read_voice_setting_sync(struct hci_dev *hdev) 3717 { 3718 return __hci_cmd_sync_status(hdev, HCI_OP_READ_VOICE_SETTING, 3719 0, NULL, HCI_CMD_TIMEOUT); 3720 } 3721 3722 /* Read Number of Supported IAC */ 3723 static int hci_read_num_supported_iac_sync(struct hci_dev *hdev) 3724 { 3725 return __hci_cmd_sync_status(hdev, HCI_OP_READ_NUM_SUPPORTED_IAC, 3726 0, NULL, HCI_CMD_TIMEOUT); 3727 } 3728 3729 /* Read Current IAC LAP */ 3730 static int hci_read_current_iac_lap_sync(struct hci_dev *hdev) 3731 { 3732 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CURRENT_IAC_LAP, 3733 0, NULL, HCI_CMD_TIMEOUT); 3734 } 3735 3736 static int hci_set_event_filter_sync(struct hci_dev *hdev, u8 flt_type, 3737 u8 cond_type, bdaddr_t *bdaddr, 3738 u8 auto_accept) 3739 { 3740 struct hci_cp_set_event_filter cp; 3741 3742 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 3743 return 0; 3744 3745 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 3746 return 0; 3747 3748 memset(&cp, 0, sizeof(cp)); 3749 cp.flt_type = flt_type; 3750 3751 if (flt_type != HCI_FLT_CLEAR_ALL) { 3752 cp.cond_type = cond_type; 3753 bacpy(&cp.addr_conn_flt.bdaddr, bdaddr); 3754 cp.addr_conn_flt.auto_accept = auto_accept; 3755 } 3756 3757 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_FLT, 3758 flt_type == HCI_FLT_CLEAR_ALL ? 3759 sizeof(cp.flt_type) : sizeof(cp), &cp, 3760 HCI_CMD_TIMEOUT); 3761 } 3762 3763 static int hci_clear_event_filter_sync(struct hci_dev *hdev) 3764 { 3765 if (!hci_dev_test_flag(hdev, HCI_EVENT_FILTER_CONFIGURED)) 3766 return 0; 3767 3768 /* In theory the state machine should not reach here unless 3769 * a hci_set_event_filter_sync() call succeeds, but we do 3770 * the check both for parity and as a future reminder. 3771 */ 3772 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 3773 return 0; 3774 3775 return hci_set_event_filter_sync(hdev, HCI_FLT_CLEAR_ALL, 0x00, 3776 BDADDR_ANY, 0x00); 3777 } 3778 3779 /* Connection accept timeout ~20 secs */ 3780 static int hci_write_ca_timeout_sync(struct hci_dev *hdev) 3781 { 3782 __le16 param = cpu_to_le16(0x7d00); 3783 3784 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CA_TIMEOUT, 3785 sizeof(param), ¶m, HCI_CMD_TIMEOUT); 3786 } 3787 3788 /* BR Controller init stage 2 command sequence */ 3789 static const struct hci_init_stage br_init2[] = { 3790 /* HCI_OP_READ_BUFFER_SIZE */ 3791 HCI_INIT(hci_read_buffer_size_sync), 3792 /* HCI_OP_READ_CLASS_OF_DEV */ 3793 HCI_INIT(hci_read_dev_class_sync), 3794 /* HCI_OP_READ_LOCAL_NAME */ 3795 HCI_INIT(hci_read_local_name_sync), 3796 /* HCI_OP_READ_VOICE_SETTING */ 3797 HCI_INIT(hci_read_voice_setting_sync), 3798 /* HCI_OP_READ_NUM_SUPPORTED_IAC */ 3799 HCI_INIT(hci_read_num_supported_iac_sync), 3800 /* HCI_OP_READ_CURRENT_IAC_LAP */ 3801 HCI_INIT(hci_read_current_iac_lap_sync), 3802 /* HCI_OP_SET_EVENT_FLT */ 3803 HCI_INIT(hci_clear_event_filter_sync), 3804 /* HCI_OP_WRITE_CA_TIMEOUT */ 3805 HCI_INIT(hci_write_ca_timeout_sync), 3806 {} 3807 }; 3808 3809 static int hci_write_ssp_mode_1_sync(struct hci_dev *hdev) 3810 { 3811 u8 mode = 0x01; 3812 3813 if (!lmp_ssp_capable(hdev) || !hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 3814 return 0; 3815 3816 /* When SSP is available, then the host features page 3817 * should also be available as well. However some 3818 * controllers list the max_page as 0 as long as SSP 3819 * has not been enabled. To achieve proper debugging 3820 * output, force the minimum max_page to 1 at least. 3821 */ 3822 hdev->max_page = 0x01; 3823 3824 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE, 3825 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3826 } 3827 3828 static int hci_write_eir_sync(struct hci_dev *hdev) 3829 { 3830 struct hci_cp_write_eir cp; 3831 3832 if (!lmp_ssp_capable(hdev) || hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 3833 return 0; 3834 3835 memset(hdev->eir, 0, sizeof(hdev->eir)); 3836 memset(&cp, 0, sizeof(cp)); 3837 3838 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp, 3839 HCI_CMD_TIMEOUT); 3840 } 3841 3842 static int hci_write_inquiry_mode_sync(struct hci_dev *hdev) 3843 { 3844 u8 mode; 3845 3846 if (!lmp_inq_rssi_capable(hdev) && 3847 !test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) 3848 return 0; 3849 3850 /* If Extended Inquiry Result events are supported, then 3851 * they are clearly preferred over Inquiry Result with RSSI 3852 * events. 3853 */ 3854 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01; 3855 3856 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_INQUIRY_MODE, 3857 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3858 } 3859 3860 static int hci_read_inq_rsp_tx_power_sync(struct hci_dev *hdev) 3861 { 3862 if (!lmp_inq_tx_pwr_capable(hdev)) 3863 return 0; 3864 3865 return __hci_cmd_sync_status(hdev, HCI_OP_READ_INQ_RSP_TX_POWER, 3866 0, NULL, HCI_CMD_TIMEOUT); 3867 } 3868 3869 static int hci_read_local_ext_features_sync(struct hci_dev *hdev, u8 page) 3870 { 3871 struct hci_cp_read_local_ext_features cp; 3872 3873 if (!lmp_ext_feat_capable(hdev)) 3874 return 0; 3875 3876 memset(&cp, 0, sizeof(cp)); 3877 cp.page = page; 3878 3879 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_EXT_FEATURES, 3880 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3881 } 3882 3883 static int hci_read_local_ext_features_1_sync(struct hci_dev *hdev) 3884 { 3885 return hci_read_local_ext_features_sync(hdev, 0x01); 3886 } 3887 3888 /* HCI Controller init stage 2 command sequence */ 3889 static const struct hci_init_stage hci_init2[] = { 3890 /* HCI_OP_READ_LOCAL_COMMANDS */ 3891 HCI_INIT(hci_read_local_cmds_sync), 3892 /* HCI_OP_WRITE_SSP_MODE */ 3893 HCI_INIT(hci_write_ssp_mode_1_sync), 3894 /* HCI_OP_WRITE_EIR */ 3895 HCI_INIT(hci_write_eir_sync), 3896 /* HCI_OP_WRITE_INQUIRY_MODE */ 3897 HCI_INIT(hci_write_inquiry_mode_sync), 3898 /* HCI_OP_READ_INQ_RSP_TX_POWER */ 3899 HCI_INIT(hci_read_inq_rsp_tx_power_sync), 3900 /* HCI_OP_READ_LOCAL_EXT_FEATURES */ 3901 HCI_INIT(hci_read_local_ext_features_1_sync), 3902 /* HCI_OP_WRITE_AUTH_ENABLE */ 3903 HCI_INIT(hci_write_auth_enable_sync), 3904 {} 3905 }; 3906 3907 /* Read LE Buffer Size */ 3908 static int hci_le_read_buffer_size_sync(struct hci_dev *hdev) 3909 { 3910 /* Use Read LE Buffer Size V2 if supported */ 3911 if (iso_capable(hdev) && hdev->commands[41] & 0x20) 3912 return __hci_cmd_sync_status(hdev, 3913 HCI_OP_LE_READ_BUFFER_SIZE_V2, 3914 0, NULL, HCI_CMD_TIMEOUT); 3915 3916 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_BUFFER_SIZE, 3917 0, NULL, HCI_CMD_TIMEOUT); 3918 } 3919 3920 /* Read LE Local Supported Features */ 3921 static int hci_le_read_local_features_sync(struct hci_dev *hdev) 3922 { 3923 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_LOCAL_FEATURES, 3924 0, NULL, HCI_CMD_TIMEOUT); 3925 } 3926 3927 /* Read LE Supported States */ 3928 static int hci_le_read_supported_states_sync(struct hci_dev *hdev) 3929 { 3930 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_SUPPORTED_STATES, 3931 0, NULL, HCI_CMD_TIMEOUT); 3932 } 3933 3934 /* LE Controller init stage 2 command sequence */ 3935 static const struct hci_init_stage le_init2[] = { 3936 /* HCI_OP_LE_READ_LOCAL_FEATURES */ 3937 HCI_INIT(hci_le_read_local_features_sync), 3938 /* HCI_OP_LE_READ_BUFFER_SIZE */ 3939 HCI_INIT(hci_le_read_buffer_size_sync), 3940 /* HCI_OP_LE_READ_SUPPORTED_STATES */ 3941 HCI_INIT(hci_le_read_supported_states_sync), 3942 {} 3943 }; 3944 3945 static int hci_init2_sync(struct hci_dev *hdev) 3946 { 3947 int err; 3948 3949 bt_dev_dbg(hdev, ""); 3950 3951 err = hci_init_stage_sync(hdev, hci_init2); 3952 if (err) 3953 return err; 3954 3955 if (lmp_bredr_capable(hdev)) { 3956 err = hci_init_stage_sync(hdev, br_init2); 3957 if (err) 3958 return err; 3959 } else { 3960 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED); 3961 } 3962 3963 if (lmp_le_capable(hdev)) { 3964 err = hci_init_stage_sync(hdev, le_init2); 3965 if (err) 3966 return err; 3967 /* LE-only controllers have LE implicitly enabled */ 3968 if (!lmp_bredr_capable(hdev)) 3969 hci_dev_set_flag(hdev, HCI_LE_ENABLED); 3970 } 3971 3972 return 0; 3973 } 3974 3975 static int hci_set_event_mask_sync(struct hci_dev *hdev) 3976 { 3977 /* The second byte is 0xff instead of 0x9f (two reserved bits 3978 * disabled) since a Broadcom 1.2 dongle doesn't respond to the 3979 * command otherwise. 3980 */ 3981 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 }; 3982 3983 /* CSR 1.1 dongles does not accept any bitfield so don't try to set 3984 * any event mask for pre 1.2 devices. 3985 */ 3986 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 3987 return 0; 3988 3989 if (lmp_bredr_capable(hdev)) { 3990 events[4] |= 0x01; /* Flow Specification Complete */ 3991 3992 /* Don't set Disconnect Complete and mode change when 3993 * suspended as that would wakeup the host when disconnecting 3994 * due to suspend. 3995 */ 3996 if (hdev->suspended) { 3997 events[0] &= 0xef; 3998 events[2] &= 0xf7; 3999 } 4000 } else { 4001 /* Use a different default for LE-only devices */ 4002 memset(events, 0, sizeof(events)); 4003 events[1] |= 0x20; /* Command Complete */ 4004 events[1] |= 0x40; /* Command Status */ 4005 events[1] |= 0x80; /* Hardware Error */ 4006 4007 /* If the controller supports the Disconnect command, enable 4008 * the corresponding event. In addition enable packet flow 4009 * control related events. 4010 */ 4011 if (hdev->commands[0] & 0x20) { 4012 /* Don't set Disconnect Complete when suspended as that 4013 * would wakeup the host when disconnecting due to 4014 * suspend. 4015 */ 4016 if (!hdev->suspended) 4017 events[0] |= 0x10; /* Disconnection Complete */ 4018 events[2] |= 0x04; /* Number of Completed Packets */ 4019 events[3] |= 0x02; /* Data Buffer Overflow */ 4020 } 4021 4022 /* If the controller supports the Read Remote Version 4023 * Information command, enable the corresponding event. 4024 */ 4025 if (hdev->commands[2] & 0x80) 4026 events[1] |= 0x08; /* Read Remote Version Information 4027 * Complete 4028 */ 4029 4030 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) { 4031 events[0] |= 0x80; /* Encryption Change */ 4032 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 4033 } 4034 } 4035 4036 if (lmp_inq_rssi_capable(hdev) || 4037 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) 4038 events[4] |= 0x02; /* Inquiry Result with RSSI */ 4039 4040 if (lmp_ext_feat_capable(hdev)) 4041 events[4] |= 0x04; /* Read Remote Extended Features Complete */ 4042 4043 if (lmp_esco_capable(hdev)) { 4044 events[5] |= 0x08; /* Synchronous Connection Complete */ 4045 events[5] |= 0x10; /* Synchronous Connection Changed */ 4046 } 4047 4048 if (lmp_sniffsubr_capable(hdev)) 4049 events[5] |= 0x20; /* Sniff Subrating */ 4050 4051 if (lmp_pause_enc_capable(hdev)) 4052 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 4053 4054 if (lmp_ext_inq_capable(hdev)) 4055 events[5] |= 0x40; /* Extended Inquiry Result */ 4056 4057 if (lmp_no_flush_capable(hdev)) 4058 events[7] |= 0x01; /* Enhanced Flush Complete */ 4059 4060 if (lmp_lsto_capable(hdev)) 4061 events[6] |= 0x80; /* Link Supervision Timeout Changed */ 4062 4063 if (lmp_ssp_capable(hdev)) { 4064 events[6] |= 0x01; /* IO Capability Request */ 4065 events[6] |= 0x02; /* IO Capability Response */ 4066 events[6] |= 0x04; /* User Confirmation Request */ 4067 events[6] |= 0x08; /* User Passkey Request */ 4068 events[6] |= 0x10; /* Remote OOB Data Request */ 4069 events[6] |= 0x20; /* Simple Pairing Complete */ 4070 events[7] |= 0x04; /* User Passkey Notification */ 4071 events[7] |= 0x08; /* Keypress Notification */ 4072 events[7] |= 0x10; /* Remote Host Supported 4073 * Features Notification 4074 */ 4075 } 4076 4077 if (lmp_le_capable(hdev)) 4078 events[7] |= 0x20; /* LE Meta-Event */ 4079 4080 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK, 4081 sizeof(events), events, HCI_CMD_TIMEOUT); 4082 } 4083 4084 static int hci_read_stored_link_key_sync(struct hci_dev *hdev) 4085 { 4086 struct hci_cp_read_stored_link_key cp; 4087 4088 if (!(hdev->commands[6] & 0x20) || 4089 test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) 4090 return 0; 4091 4092 memset(&cp, 0, sizeof(cp)); 4093 bacpy(&cp.bdaddr, BDADDR_ANY); 4094 cp.read_all = 0x01; 4095 4096 return __hci_cmd_sync_status(hdev, HCI_OP_READ_STORED_LINK_KEY, 4097 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4098 } 4099 4100 static int hci_setup_link_policy_sync(struct hci_dev *hdev) 4101 { 4102 struct hci_cp_write_def_link_policy cp; 4103 u16 link_policy = 0; 4104 4105 if (!(hdev->commands[5] & 0x10)) 4106 return 0; 4107 4108 memset(&cp, 0, sizeof(cp)); 4109 4110 if (lmp_rswitch_capable(hdev)) 4111 link_policy |= HCI_LP_RSWITCH; 4112 if (lmp_hold_capable(hdev)) 4113 link_policy |= HCI_LP_HOLD; 4114 if (lmp_sniff_capable(hdev)) 4115 link_policy |= HCI_LP_SNIFF; 4116 if (lmp_park_capable(hdev)) 4117 link_policy |= HCI_LP_PARK; 4118 4119 cp.policy = cpu_to_le16(link_policy); 4120 4121 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY, 4122 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4123 } 4124 4125 static int hci_read_page_scan_activity_sync(struct hci_dev *hdev) 4126 { 4127 if (!(hdev->commands[8] & 0x01)) 4128 return 0; 4129 4130 return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 4131 0, NULL, HCI_CMD_TIMEOUT); 4132 } 4133 4134 static int hci_read_def_err_data_reporting_sync(struct hci_dev *hdev) 4135 { 4136 if (!(hdev->commands[18] & 0x04) || 4137 !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) || 4138 test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) 4139 return 0; 4140 4141 return __hci_cmd_sync_status(hdev, HCI_OP_READ_DEF_ERR_DATA_REPORTING, 4142 0, NULL, HCI_CMD_TIMEOUT); 4143 } 4144 4145 static int hci_read_page_scan_type_sync(struct hci_dev *hdev) 4146 { 4147 /* Some older Broadcom based Bluetooth 1.2 controllers do not 4148 * support the Read Page Scan Type command. Check support for 4149 * this command in the bit mask of supported commands. 4150 */ 4151 if (!(hdev->commands[13] & 0x01)) 4152 return 0; 4153 4154 return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_TYPE, 4155 0, NULL, HCI_CMD_TIMEOUT); 4156 } 4157 4158 /* Read features beyond page 1 if available */ 4159 static int hci_read_local_ext_features_all_sync(struct hci_dev *hdev) 4160 { 4161 u8 page; 4162 int err; 4163 4164 if (!lmp_ext_feat_capable(hdev)) 4165 return 0; 4166 4167 for (page = 2; page < HCI_MAX_PAGES && page <= hdev->max_page; 4168 page++) { 4169 err = hci_read_local_ext_features_sync(hdev, page); 4170 if (err) 4171 return err; 4172 } 4173 4174 return 0; 4175 } 4176 4177 /* HCI Controller init stage 3 command sequence */ 4178 static const struct hci_init_stage hci_init3[] = { 4179 /* HCI_OP_SET_EVENT_MASK */ 4180 HCI_INIT(hci_set_event_mask_sync), 4181 /* HCI_OP_READ_STORED_LINK_KEY */ 4182 HCI_INIT(hci_read_stored_link_key_sync), 4183 /* HCI_OP_WRITE_DEF_LINK_POLICY */ 4184 HCI_INIT(hci_setup_link_policy_sync), 4185 /* HCI_OP_READ_PAGE_SCAN_ACTIVITY */ 4186 HCI_INIT(hci_read_page_scan_activity_sync), 4187 /* HCI_OP_READ_DEF_ERR_DATA_REPORTING */ 4188 HCI_INIT(hci_read_def_err_data_reporting_sync), 4189 /* HCI_OP_READ_PAGE_SCAN_TYPE */ 4190 HCI_INIT(hci_read_page_scan_type_sync), 4191 /* HCI_OP_READ_LOCAL_EXT_FEATURES */ 4192 HCI_INIT(hci_read_local_ext_features_all_sync), 4193 {} 4194 }; 4195 4196 static int hci_le_set_event_mask_sync(struct hci_dev *hdev) 4197 { 4198 u8 events[8]; 4199 4200 if (!lmp_le_capable(hdev)) 4201 return 0; 4202 4203 memset(events, 0, sizeof(events)); 4204 4205 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) 4206 events[0] |= 0x10; /* LE Long Term Key Request */ 4207 4208 /* If controller supports the Connection Parameters Request 4209 * Link Layer Procedure, enable the corresponding event. 4210 */ 4211 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC) 4212 /* LE Remote Connection Parameter Request */ 4213 events[0] |= 0x20; 4214 4215 /* If the controller supports the Data Length Extension 4216 * feature, enable the corresponding event. 4217 */ 4218 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) 4219 events[0] |= 0x40; /* LE Data Length Change */ 4220 4221 /* If the controller supports LL Privacy feature or LE Extended Adv, 4222 * enable the corresponding event. 4223 */ 4224 if (use_enhanced_conn_complete(hdev)) 4225 events[1] |= 0x02; /* LE Enhanced Connection Complete */ 4226 4227 /* If the controller supports Extended Scanner Filter 4228 * Policies, enable the corresponding event. 4229 */ 4230 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY) 4231 events[1] |= 0x04; /* LE Direct Advertising Report */ 4232 4233 /* If the controller supports Channel Selection Algorithm #2 4234 * feature, enable the corresponding event. 4235 */ 4236 if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2) 4237 events[2] |= 0x08; /* LE Channel Selection Algorithm */ 4238 4239 /* If the controller supports the LE Set Scan Enable command, 4240 * enable the corresponding advertising report event. 4241 */ 4242 if (hdev->commands[26] & 0x08) 4243 events[0] |= 0x02; /* LE Advertising Report */ 4244 4245 /* If the controller supports the LE Create Connection 4246 * command, enable the corresponding event. 4247 */ 4248 if (hdev->commands[26] & 0x10) 4249 events[0] |= 0x01; /* LE Connection Complete */ 4250 4251 /* If the controller supports the LE Connection Update 4252 * command, enable the corresponding event. 4253 */ 4254 if (hdev->commands[27] & 0x04) 4255 events[0] |= 0x04; /* LE Connection Update Complete */ 4256 4257 /* If the controller supports the LE Read Remote Used Features 4258 * command, enable the corresponding event. 4259 */ 4260 if (hdev->commands[27] & 0x20) 4261 /* LE Read Remote Used Features Complete */ 4262 events[0] |= 0x08; 4263 4264 /* If the controller supports the LE Read Local P-256 4265 * Public Key command, enable the corresponding event. 4266 */ 4267 if (hdev->commands[34] & 0x02) 4268 /* LE Read Local P-256 Public Key Complete */ 4269 events[0] |= 0x80; 4270 4271 /* If the controller supports the LE Generate DHKey 4272 * command, enable the corresponding event. 4273 */ 4274 if (hdev->commands[34] & 0x04) 4275 events[1] |= 0x01; /* LE Generate DHKey Complete */ 4276 4277 /* If the controller supports the LE Set Default PHY or 4278 * LE Set PHY commands, enable the corresponding event. 4279 */ 4280 if (hdev->commands[35] & (0x20 | 0x40)) 4281 events[1] |= 0x08; /* LE PHY Update Complete */ 4282 4283 /* If the controller supports LE Set Extended Scan Parameters 4284 * and LE Set Extended Scan Enable commands, enable the 4285 * corresponding event. 4286 */ 4287 if (use_ext_scan(hdev)) 4288 events[1] |= 0x10; /* LE Extended Advertising Report */ 4289 4290 /* If the controller supports the LE Extended Advertising 4291 * command, enable the corresponding event. 4292 */ 4293 if (ext_adv_capable(hdev)) 4294 events[2] |= 0x02; /* LE Advertising Set Terminated */ 4295 4296 if (cis_capable(hdev)) { 4297 events[3] |= 0x01; /* LE CIS Established */ 4298 if (cis_peripheral_capable(hdev)) 4299 events[3] |= 0x02; /* LE CIS Request */ 4300 } 4301 4302 if (bis_capable(hdev)) { 4303 events[1] |= 0x20; /* LE PA Report */ 4304 events[1] |= 0x40; /* LE PA Sync Established */ 4305 events[3] |= 0x04; /* LE Create BIG Complete */ 4306 events[3] |= 0x08; /* LE Terminate BIG Complete */ 4307 events[3] |= 0x10; /* LE BIG Sync Established */ 4308 events[3] |= 0x20; /* LE BIG Sync Loss */ 4309 events[4] |= 0x02; /* LE BIG Info Advertising Report */ 4310 } 4311 4312 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EVENT_MASK, 4313 sizeof(events), events, HCI_CMD_TIMEOUT); 4314 } 4315 4316 /* Read LE Advertising Channel TX Power */ 4317 static int hci_le_read_adv_tx_power_sync(struct hci_dev *hdev) 4318 { 4319 if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) { 4320 /* HCI TS spec forbids mixing of legacy and extended 4321 * advertising commands wherein READ_ADV_TX_POWER is 4322 * also included. So do not call it if extended adv 4323 * is supported otherwise controller will return 4324 * COMMAND_DISALLOWED for extended commands. 4325 */ 4326 return __hci_cmd_sync_status(hdev, 4327 HCI_OP_LE_READ_ADV_TX_POWER, 4328 0, NULL, HCI_CMD_TIMEOUT); 4329 } 4330 4331 return 0; 4332 } 4333 4334 /* Read LE Min/Max Tx Power*/ 4335 static int hci_le_read_tx_power_sync(struct hci_dev *hdev) 4336 { 4337 if (!(hdev->commands[38] & 0x80) || 4338 test_bit(HCI_QUIRK_BROKEN_READ_TRANSMIT_POWER, &hdev->quirks)) 4339 return 0; 4340 4341 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_TRANSMIT_POWER, 4342 0, NULL, HCI_CMD_TIMEOUT); 4343 } 4344 4345 /* Read LE Accept List Size */ 4346 static int hci_le_read_accept_list_size_sync(struct hci_dev *hdev) 4347 { 4348 if (!(hdev->commands[26] & 0x40)) 4349 return 0; 4350 4351 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_ACCEPT_LIST_SIZE, 4352 0, NULL, HCI_CMD_TIMEOUT); 4353 } 4354 4355 /* Read LE Resolving List Size */ 4356 static int hci_le_read_resolv_list_size_sync(struct hci_dev *hdev) 4357 { 4358 if (!(hdev->commands[34] & 0x40)) 4359 return 0; 4360 4361 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_RESOLV_LIST_SIZE, 4362 0, NULL, HCI_CMD_TIMEOUT); 4363 } 4364 4365 /* Clear LE Resolving List */ 4366 static int hci_le_clear_resolv_list_sync(struct hci_dev *hdev) 4367 { 4368 if (!(hdev->commands[34] & 0x20)) 4369 return 0; 4370 4371 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL, 4372 HCI_CMD_TIMEOUT); 4373 } 4374 4375 /* Set RPA timeout */ 4376 static int hci_le_set_rpa_timeout_sync(struct hci_dev *hdev) 4377 { 4378 __le16 timeout = cpu_to_le16(hdev->rpa_timeout); 4379 4380 if (!(hdev->commands[35] & 0x04) || 4381 test_bit(HCI_QUIRK_BROKEN_SET_RPA_TIMEOUT, &hdev->quirks)) 4382 return 0; 4383 4384 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RPA_TIMEOUT, 4385 sizeof(timeout), &timeout, 4386 HCI_CMD_TIMEOUT); 4387 } 4388 4389 /* Read LE Maximum Data Length */ 4390 static int hci_le_read_max_data_len_sync(struct hci_dev *hdev) 4391 { 4392 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 4393 return 0; 4394 4395 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL, 4396 HCI_CMD_TIMEOUT); 4397 } 4398 4399 /* Read LE Suggested Default Data Length */ 4400 static int hci_le_read_def_data_len_sync(struct hci_dev *hdev) 4401 { 4402 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 4403 return 0; 4404 4405 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL, 4406 HCI_CMD_TIMEOUT); 4407 } 4408 4409 /* Read LE Number of Supported Advertising Sets */ 4410 static int hci_le_read_num_support_adv_sets_sync(struct hci_dev *hdev) 4411 { 4412 if (!ext_adv_capable(hdev)) 4413 return 0; 4414 4415 return __hci_cmd_sync_status(hdev, 4416 HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS, 4417 0, NULL, HCI_CMD_TIMEOUT); 4418 } 4419 4420 /* Write LE Host Supported */ 4421 static int hci_set_le_support_sync(struct hci_dev *hdev) 4422 { 4423 struct hci_cp_write_le_host_supported cp; 4424 4425 /* LE-only devices do not support explicit enablement */ 4426 if (!lmp_bredr_capable(hdev)) 4427 return 0; 4428 4429 memset(&cp, 0, sizeof(cp)); 4430 4431 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 4432 cp.le = 0x01; 4433 cp.simul = 0x00; 4434 } 4435 4436 if (cp.le == lmp_host_le_capable(hdev)) 4437 return 0; 4438 4439 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED, 4440 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4441 } 4442 4443 /* LE Set Host Feature */ 4444 static int hci_le_set_host_feature_sync(struct hci_dev *hdev) 4445 { 4446 struct hci_cp_le_set_host_feature cp; 4447 4448 if (!cis_capable(hdev)) 4449 return 0; 4450 4451 memset(&cp, 0, sizeof(cp)); 4452 4453 /* Connected Isochronous Channels (Host Support) */ 4454 cp.bit_number = 32; 4455 cp.bit_value = 1; 4456 4457 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_HOST_FEATURE, 4458 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4459 } 4460 4461 /* LE Controller init stage 3 command sequence */ 4462 static const struct hci_init_stage le_init3[] = { 4463 /* HCI_OP_LE_SET_EVENT_MASK */ 4464 HCI_INIT(hci_le_set_event_mask_sync), 4465 /* HCI_OP_LE_READ_ADV_TX_POWER */ 4466 HCI_INIT(hci_le_read_adv_tx_power_sync), 4467 /* HCI_OP_LE_READ_TRANSMIT_POWER */ 4468 HCI_INIT(hci_le_read_tx_power_sync), 4469 /* HCI_OP_LE_READ_ACCEPT_LIST_SIZE */ 4470 HCI_INIT(hci_le_read_accept_list_size_sync), 4471 /* HCI_OP_LE_CLEAR_ACCEPT_LIST */ 4472 HCI_INIT(hci_le_clear_accept_list_sync), 4473 /* HCI_OP_LE_READ_RESOLV_LIST_SIZE */ 4474 HCI_INIT(hci_le_read_resolv_list_size_sync), 4475 /* HCI_OP_LE_CLEAR_RESOLV_LIST */ 4476 HCI_INIT(hci_le_clear_resolv_list_sync), 4477 /* HCI_OP_LE_SET_RPA_TIMEOUT */ 4478 HCI_INIT(hci_le_set_rpa_timeout_sync), 4479 /* HCI_OP_LE_READ_MAX_DATA_LEN */ 4480 HCI_INIT(hci_le_read_max_data_len_sync), 4481 /* HCI_OP_LE_READ_DEF_DATA_LEN */ 4482 HCI_INIT(hci_le_read_def_data_len_sync), 4483 /* HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS */ 4484 HCI_INIT(hci_le_read_num_support_adv_sets_sync), 4485 /* HCI_OP_WRITE_LE_HOST_SUPPORTED */ 4486 HCI_INIT(hci_set_le_support_sync), 4487 /* HCI_OP_LE_SET_HOST_FEATURE */ 4488 HCI_INIT(hci_le_set_host_feature_sync), 4489 {} 4490 }; 4491 4492 static int hci_init3_sync(struct hci_dev *hdev) 4493 { 4494 int err; 4495 4496 bt_dev_dbg(hdev, ""); 4497 4498 err = hci_init_stage_sync(hdev, hci_init3); 4499 if (err) 4500 return err; 4501 4502 if (lmp_le_capable(hdev)) 4503 return hci_init_stage_sync(hdev, le_init3); 4504 4505 return 0; 4506 } 4507 4508 static int hci_delete_stored_link_key_sync(struct hci_dev *hdev) 4509 { 4510 struct hci_cp_delete_stored_link_key cp; 4511 4512 /* Some Broadcom based Bluetooth controllers do not support the 4513 * Delete Stored Link Key command. They are clearly indicating its 4514 * absence in the bit mask of supported commands. 4515 * 4516 * Check the supported commands and only if the command is marked 4517 * as supported send it. If not supported assume that the controller 4518 * does not have actual support for stored link keys which makes this 4519 * command redundant anyway. 4520 * 4521 * Some controllers indicate that they support handling deleting 4522 * stored link keys, but they don't. The quirk lets a driver 4523 * just disable this command. 4524 */ 4525 if (!(hdev->commands[6] & 0x80) || 4526 test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) 4527 return 0; 4528 4529 memset(&cp, 0, sizeof(cp)); 4530 bacpy(&cp.bdaddr, BDADDR_ANY); 4531 cp.delete_all = 0x01; 4532 4533 return __hci_cmd_sync_status(hdev, HCI_OP_DELETE_STORED_LINK_KEY, 4534 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4535 } 4536 4537 static int hci_set_event_mask_page_2_sync(struct hci_dev *hdev) 4538 { 4539 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 4540 bool changed = false; 4541 4542 /* Set event mask page 2 if the HCI command for it is supported */ 4543 if (!(hdev->commands[22] & 0x04)) 4544 return 0; 4545 4546 /* If Connectionless Peripheral Broadcast central role is supported 4547 * enable all necessary events for it. 4548 */ 4549 if (lmp_cpb_central_capable(hdev)) { 4550 events[1] |= 0x40; /* Triggered Clock Capture */ 4551 events[1] |= 0x80; /* Synchronization Train Complete */ 4552 events[2] |= 0x08; /* Truncated Page Complete */ 4553 events[2] |= 0x20; /* CPB Channel Map Change */ 4554 changed = true; 4555 } 4556 4557 /* If Connectionless Peripheral Broadcast peripheral role is supported 4558 * enable all necessary events for it. 4559 */ 4560 if (lmp_cpb_peripheral_capable(hdev)) { 4561 events[2] |= 0x01; /* Synchronization Train Received */ 4562 events[2] |= 0x02; /* CPB Receive */ 4563 events[2] |= 0x04; /* CPB Timeout */ 4564 events[2] |= 0x10; /* Peripheral Page Response Timeout */ 4565 changed = true; 4566 } 4567 4568 /* Enable Authenticated Payload Timeout Expired event if supported */ 4569 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) { 4570 events[2] |= 0x80; 4571 changed = true; 4572 } 4573 4574 /* Some Broadcom based controllers indicate support for Set Event 4575 * Mask Page 2 command, but then actually do not support it. Since 4576 * the default value is all bits set to zero, the command is only 4577 * required if the event mask has to be changed. In case no change 4578 * to the event mask is needed, skip this command. 4579 */ 4580 if (!changed) 4581 return 0; 4582 4583 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK_PAGE_2, 4584 sizeof(events), events, HCI_CMD_TIMEOUT); 4585 } 4586 4587 /* Read local codec list if the HCI command is supported */ 4588 static int hci_read_local_codecs_sync(struct hci_dev *hdev) 4589 { 4590 if (hdev->commands[45] & 0x04) 4591 hci_read_supported_codecs_v2(hdev); 4592 else if (hdev->commands[29] & 0x20) 4593 hci_read_supported_codecs(hdev); 4594 4595 return 0; 4596 } 4597 4598 /* Read local pairing options if the HCI command is supported */ 4599 static int hci_read_local_pairing_opts_sync(struct hci_dev *hdev) 4600 { 4601 if (!(hdev->commands[41] & 0x08)) 4602 return 0; 4603 4604 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_PAIRING_OPTS, 4605 0, NULL, HCI_CMD_TIMEOUT); 4606 } 4607 4608 /* Get MWS transport configuration if the HCI command is supported */ 4609 static int hci_get_mws_transport_config_sync(struct hci_dev *hdev) 4610 { 4611 if (!mws_transport_config_capable(hdev)) 4612 return 0; 4613 4614 return __hci_cmd_sync_status(hdev, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 4615 0, NULL, HCI_CMD_TIMEOUT); 4616 } 4617 4618 /* Check for Synchronization Train support */ 4619 static int hci_read_sync_train_params_sync(struct hci_dev *hdev) 4620 { 4621 if (!lmp_sync_train_capable(hdev)) 4622 return 0; 4623 4624 return __hci_cmd_sync_status(hdev, HCI_OP_READ_SYNC_TRAIN_PARAMS, 4625 0, NULL, HCI_CMD_TIMEOUT); 4626 } 4627 4628 /* Enable Secure Connections if supported and configured */ 4629 static int hci_write_sc_support_1_sync(struct hci_dev *hdev) 4630 { 4631 u8 support = 0x01; 4632 4633 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) || 4634 !bredr_sc_enabled(hdev)) 4635 return 0; 4636 4637 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT, 4638 sizeof(support), &support, 4639 HCI_CMD_TIMEOUT); 4640 } 4641 4642 /* Set erroneous data reporting if supported to the wideband speech 4643 * setting value 4644 */ 4645 static int hci_set_err_data_report_sync(struct hci_dev *hdev) 4646 { 4647 struct hci_cp_write_def_err_data_reporting cp; 4648 bool enabled = hci_dev_test_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED); 4649 4650 if (!(hdev->commands[18] & 0x08) || 4651 !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) || 4652 test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) 4653 return 0; 4654 4655 if (enabled == hdev->err_data_reporting) 4656 return 0; 4657 4658 memset(&cp, 0, sizeof(cp)); 4659 cp.err_data_reporting = enabled ? ERR_DATA_REPORTING_ENABLED : 4660 ERR_DATA_REPORTING_DISABLED; 4661 4662 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING, 4663 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4664 } 4665 4666 static const struct hci_init_stage hci_init4[] = { 4667 /* HCI_OP_DELETE_STORED_LINK_KEY */ 4668 HCI_INIT(hci_delete_stored_link_key_sync), 4669 /* HCI_OP_SET_EVENT_MASK_PAGE_2 */ 4670 HCI_INIT(hci_set_event_mask_page_2_sync), 4671 /* HCI_OP_READ_LOCAL_CODECS */ 4672 HCI_INIT(hci_read_local_codecs_sync), 4673 /* HCI_OP_READ_LOCAL_PAIRING_OPTS */ 4674 HCI_INIT(hci_read_local_pairing_opts_sync), 4675 /* HCI_OP_GET_MWS_TRANSPORT_CONFIG */ 4676 HCI_INIT(hci_get_mws_transport_config_sync), 4677 /* HCI_OP_READ_SYNC_TRAIN_PARAMS */ 4678 HCI_INIT(hci_read_sync_train_params_sync), 4679 /* HCI_OP_WRITE_SC_SUPPORT */ 4680 HCI_INIT(hci_write_sc_support_1_sync), 4681 /* HCI_OP_WRITE_DEF_ERR_DATA_REPORTING */ 4682 HCI_INIT(hci_set_err_data_report_sync), 4683 {} 4684 }; 4685 4686 /* Set Suggested Default Data Length to maximum if supported */ 4687 static int hci_le_set_write_def_data_len_sync(struct hci_dev *hdev) 4688 { 4689 struct hci_cp_le_write_def_data_len cp; 4690 4691 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 4692 return 0; 4693 4694 memset(&cp, 0, sizeof(cp)); 4695 cp.tx_len = cpu_to_le16(hdev->le_max_tx_len); 4696 cp.tx_time = cpu_to_le16(hdev->le_max_tx_time); 4697 4698 return __hci_cmd_sync_status(hdev, HCI_OP_LE_WRITE_DEF_DATA_LEN, 4699 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4700 } 4701 4702 /* Set Default PHY parameters if command is supported, enables all supported 4703 * PHYs according to the LE Features bits. 4704 */ 4705 static int hci_le_set_default_phy_sync(struct hci_dev *hdev) 4706 { 4707 struct hci_cp_le_set_default_phy cp; 4708 4709 if (!(hdev->commands[35] & 0x20)) { 4710 /* If the command is not supported it means only 1M PHY is 4711 * supported. 4712 */ 4713 hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M; 4714 hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M; 4715 return 0; 4716 } 4717 4718 memset(&cp, 0, sizeof(cp)); 4719 cp.all_phys = 0x00; 4720 cp.tx_phys = HCI_LE_SET_PHY_1M; 4721 cp.rx_phys = HCI_LE_SET_PHY_1M; 4722 4723 /* Enables 2M PHY if supported */ 4724 if (le_2m_capable(hdev)) { 4725 cp.tx_phys |= HCI_LE_SET_PHY_2M; 4726 cp.rx_phys |= HCI_LE_SET_PHY_2M; 4727 } 4728 4729 /* Enables Coded PHY if supported */ 4730 if (le_coded_capable(hdev)) { 4731 cp.tx_phys |= HCI_LE_SET_PHY_CODED; 4732 cp.rx_phys |= HCI_LE_SET_PHY_CODED; 4733 } 4734 4735 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_DEFAULT_PHY, 4736 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4737 } 4738 4739 static const struct hci_init_stage le_init4[] = { 4740 /* HCI_OP_LE_WRITE_DEF_DATA_LEN */ 4741 HCI_INIT(hci_le_set_write_def_data_len_sync), 4742 /* HCI_OP_LE_SET_DEFAULT_PHY */ 4743 HCI_INIT(hci_le_set_default_phy_sync), 4744 {} 4745 }; 4746 4747 static int hci_init4_sync(struct hci_dev *hdev) 4748 { 4749 int err; 4750 4751 bt_dev_dbg(hdev, ""); 4752 4753 err = hci_init_stage_sync(hdev, hci_init4); 4754 if (err) 4755 return err; 4756 4757 if (lmp_le_capable(hdev)) 4758 return hci_init_stage_sync(hdev, le_init4); 4759 4760 return 0; 4761 } 4762 4763 static int hci_init_sync(struct hci_dev *hdev) 4764 { 4765 int err; 4766 4767 err = hci_init1_sync(hdev); 4768 if (err < 0) 4769 return err; 4770 4771 if (hci_dev_test_flag(hdev, HCI_SETUP)) 4772 hci_debugfs_create_basic(hdev); 4773 4774 err = hci_init2_sync(hdev); 4775 if (err < 0) 4776 return err; 4777 4778 err = hci_init3_sync(hdev); 4779 if (err < 0) 4780 return err; 4781 4782 err = hci_init4_sync(hdev); 4783 if (err < 0) 4784 return err; 4785 4786 /* This function is only called when the controller is actually in 4787 * configured state. When the controller is marked as unconfigured, 4788 * this initialization procedure is not run. 4789 * 4790 * It means that it is possible that a controller runs through its 4791 * setup phase and then discovers missing settings. If that is the 4792 * case, then this function will not be called. It then will only 4793 * be called during the config phase. 4794 * 4795 * So only when in setup phase or config phase, create the debugfs 4796 * entries and register the SMP channels. 4797 */ 4798 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4799 !hci_dev_test_flag(hdev, HCI_CONFIG)) 4800 return 0; 4801 4802 if (hci_dev_test_and_set_flag(hdev, HCI_DEBUGFS_CREATED)) 4803 return 0; 4804 4805 hci_debugfs_create_common(hdev); 4806 4807 if (lmp_bredr_capable(hdev)) 4808 hci_debugfs_create_bredr(hdev); 4809 4810 if (lmp_le_capable(hdev)) 4811 hci_debugfs_create_le(hdev); 4812 4813 return 0; 4814 } 4815 4816 #define HCI_QUIRK_BROKEN(_quirk, _desc) { HCI_QUIRK_BROKEN_##_quirk, _desc } 4817 4818 static const struct { 4819 unsigned long quirk; 4820 const char *desc; 4821 } hci_broken_table[] = { 4822 HCI_QUIRK_BROKEN(LOCAL_COMMANDS, 4823 "HCI Read Local Supported Commands not supported"), 4824 HCI_QUIRK_BROKEN(STORED_LINK_KEY, 4825 "HCI Delete Stored Link Key command is advertised, " 4826 "but not supported."), 4827 HCI_QUIRK_BROKEN(ERR_DATA_REPORTING, 4828 "HCI Read Default Erroneous Data Reporting command is " 4829 "advertised, but not supported."), 4830 HCI_QUIRK_BROKEN(READ_TRANSMIT_POWER, 4831 "HCI Read Transmit Power Level command is advertised, " 4832 "but not supported."), 4833 HCI_QUIRK_BROKEN(FILTER_CLEAR_ALL, 4834 "HCI Set Event Filter command not supported."), 4835 HCI_QUIRK_BROKEN(ENHANCED_SETUP_SYNC_CONN, 4836 "HCI Enhanced Setup Synchronous Connection command is " 4837 "advertised, but not supported."), 4838 HCI_QUIRK_BROKEN(SET_RPA_TIMEOUT, 4839 "HCI LE Set Random Private Address Timeout command is " 4840 "advertised, but not supported."), 4841 HCI_QUIRK_BROKEN(LE_CODED, 4842 "HCI LE Coded PHY feature bit is set, " 4843 "but its usage is not supported.") 4844 }; 4845 4846 /* This function handles hdev setup stage: 4847 * 4848 * Calls hdev->setup 4849 * Setup address if HCI_QUIRK_USE_BDADDR_PROPERTY is set. 4850 */ 4851 static int hci_dev_setup_sync(struct hci_dev *hdev) 4852 { 4853 int ret = 0; 4854 bool invalid_bdaddr; 4855 size_t i; 4856 4857 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4858 !test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) 4859 return 0; 4860 4861 bt_dev_dbg(hdev, ""); 4862 4863 hci_sock_dev_event(hdev, HCI_DEV_SETUP); 4864 4865 if (hdev->setup) 4866 ret = hdev->setup(hdev); 4867 4868 for (i = 0; i < ARRAY_SIZE(hci_broken_table); i++) { 4869 if (test_bit(hci_broken_table[i].quirk, &hdev->quirks)) 4870 bt_dev_warn(hdev, "%s", hci_broken_table[i].desc); 4871 } 4872 4873 /* The transport driver can set the quirk to mark the 4874 * BD_ADDR invalid before creating the HCI device or in 4875 * its setup callback. 4876 */ 4877 invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks) || 4878 test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks); 4879 if (!ret) { 4880 if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks) && 4881 !bacmp(&hdev->public_addr, BDADDR_ANY)) 4882 hci_dev_get_bd_addr_from_property(hdev); 4883 4884 if (invalid_bdaddr && bacmp(&hdev->public_addr, BDADDR_ANY) && 4885 hdev->set_bdaddr) { 4886 ret = hdev->set_bdaddr(hdev, &hdev->public_addr); 4887 if (!ret) 4888 invalid_bdaddr = false; 4889 } 4890 } 4891 4892 /* The transport driver can set these quirks before 4893 * creating the HCI device or in its setup callback. 4894 * 4895 * For the invalid BD_ADDR quirk it is possible that 4896 * it becomes a valid address if the bootloader does 4897 * provide it (see above). 4898 * 4899 * In case any of them is set, the controller has to 4900 * start up as unconfigured. 4901 */ 4902 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) || 4903 invalid_bdaddr) 4904 hci_dev_set_flag(hdev, HCI_UNCONFIGURED); 4905 4906 /* For an unconfigured controller it is required to 4907 * read at least the version information provided by 4908 * the Read Local Version Information command. 4909 * 4910 * If the set_bdaddr driver callback is provided, then 4911 * also the original Bluetooth public device address 4912 * will be read using the Read BD Address command. 4913 */ 4914 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 4915 return hci_unconf_init_sync(hdev); 4916 4917 return ret; 4918 } 4919 4920 /* This function handles hdev init stage: 4921 * 4922 * Calls hci_dev_setup_sync to perform setup stage 4923 * Calls hci_init_sync to perform HCI command init sequence 4924 */ 4925 static int hci_dev_init_sync(struct hci_dev *hdev) 4926 { 4927 int ret; 4928 4929 bt_dev_dbg(hdev, ""); 4930 4931 atomic_set(&hdev->cmd_cnt, 1); 4932 set_bit(HCI_INIT, &hdev->flags); 4933 4934 ret = hci_dev_setup_sync(hdev); 4935 4936 if (hci_dev_test_flag(hdev, HCI_CONFIG)) { 4937 /* If public address change is configured, ensure that 4938 * the address gets programmed. If the driver does not 4939 * support changing the public address, fail the power 4940 * on procedure. 4941 */ 4942 if (bacmp(&hdev->public_addr, BDADDR_ANY) && 4943 hdev->set_bdaddr) 4944 ret = hdev->set_bdaddr(hdev, &hdev->public_addr); 4945 else 4946 ret = -EADDRNOTAVAIL; 4947 } 4948 4949 if (!ret) { 4950 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 4951 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4952 ret = hci_init_sync(hdev); 4953 if (!ret && hdev->post_init) 4954 ret = hdev->post_init(hdev); 4955 } 4956 } 4957 4958 /* If the HCI Reset command is clearing all diagnostic settings, 4959 * then they need to be reprogrammed after the init procedure 4960 * completed. 4961 */ 4962 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) && 4963 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4964 hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag) 4965 ret = hdev->set_diag(hdev, true); 4966 4967 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4968 msft_do_open(hdev); 4969 aosp_do_open(hdev); 4970 } 4971 4972 clear_bit(HCI_INIT, &hdev->flags); 4973 4974 return ret; 4975 } 4976 4977 int hci_dev_open_sync(struct hci_dev *hdev) 4978 { 4979 int ret; 4980 4981 bt_dev_dbg(hdev, ""); 4982 4983 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 4984 ret = -ENODEV; 4985 goto done; 4986 } 4987 4988 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4989 !hci_dev_test_flag(hdev, HCI_CONFIG)) { 4990 /* Check for rfkill but allow the HCI setup stage to 4991 * proceed (which in itself doesn't cause any RF activity). 4992 */ 4993 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) { 4994 ret = -ERFKILL; 4995 goto done; 4996 } 4997 4998 /* Check for valid public address or a configured static 4999 * random address, but let the HCI setup proceed to 5000 * be able to determine if there is a public address 5001 * or not. 5002 * 5003 * In case of user channel usage, it is not important 5004 * if a public address or static random address is 5005 * available. 5006 */ 5007 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 5008 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 5009 !bacmp(&hdev->static_addr, BDADDR_ANY)) { 5010 ret = -EADDRNOTAVAIL; 5011 goto done; 5012 } 5013 } 5014 5015 if (test_bit(HCI_UP, &hdev->flags)) { 5016 ret = -EALREADY; 5017 goto done; 5018 } 5019 5020 if (hdev->open(hdev)) { 5021 ret = -EIO; 5022 goto done; 5023 } 5024 5025 hci_devcd_reset(hdev); 5026 5027 set_bit(HCI_RUNNING, &hdev->flags); 5028 hci_sock_dev_event(hdev, HCI_DEV_OPEN); 5029 5030 ret = hci_dev_init_sync(hdev); 5031 if (!ret) { 5032 hci_dev_hold(hdev); 5033 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 5034 hci_adv_instances_set_rpa_expired(hdev, true); 5035 set_bit(HCI_UP, &hdev->flags); 5036 hci_sock_dev_event(hdev, HCI_DEV_UP); 5037 hci_leds_update_powered(hdev, true); 5038 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 5039 !hci_dev_test_flag(hdev, HCI_CONFIG) && 5040 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 5041 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 5042 hci_dev_test_flag(hdev, HCI_MGMT)) { 5043 ret = hci_powered_update_sync(hdev); 5044 mgmt_power_on(hdev, ret); 5045 } 5046 } else { 5047 /* Init failed, cleanup */ 5048 flush_work(&hdev->tx_work); 5049 5050 /* Since hci_rx_work() is possible to awake new cmd_work 5051 * it should be flushed first to avoid unexpected call of 5052 * hci_cmd_work() 5053 */ 5054 flush_work(&hdev->rx_work); 5055 flush_work(&hdev->cmd_work); 5056 5057 skb_queue_purge(&hdev->cmd_q); 5058 skb_queue_purge(&hdev->rx_q); 5059 5060 if (hdev->flush) 5061 hdev->flush(hdev); 5062 5063 if (hdev->sent_cmd) { 5064 cancel_delayed_work_sync(&hdev->cmd_timer); 5065 kfree_skb(hdev->sent_cmd); 5066 hdev->sent_cmd = NULL; 5067 } 5068 5069 if (hdev->req_skb) { 5070 kfree_skb(hdev->req_skb); 5071 hdev->req_skb = NULL; 5072 } 5073 5074 clear_bit(HCI_RUNNING, &hdev->flags); 5075 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 5076 5077 hdev->close(hdev); 5078 hdev->flags &= BIT(HCI_RAW); 5079 } 5080 5081 done: 5082 return ret; 5083 } 5084 5085 /* This function requires the caller holds hdev->lock */ 5086 static void hci_pend_le_actions_clear(struct hci_dev *hdev) 5087 { 5088 struct hci_conn_params *p; 5089 5090 list_for_each_entry(p, &hdev->le_conn_params, list) { 5091 hci_pend_le_list_del_init(p); 5092 if (p->conn) { 5093 hci_conn_drop(p->conn); 5094 hci_conn_put(p->conn); 5095 p->conn = NULL; 5096 } 5097 } 5098 5099 BT_DBG("All LE pending actions cleared"); 5100 } 5101 5102 static int hci_dev_shutdown(struct hci_dev *hdev) 5103 { 5104 int err = 0; 5105 /* Similar to how we first do setup and then set the exclusive access 5106 * bit for userspace, we must first unset userchannel and then clean up. 5107 * Otherwise, the kernel can't properly use the hci channel to clean up 5108 * the controller (some shutdown routines require sending additional 5109 * commands to the controller for example). 5110 */ 5111 bool was_userchannel = 5112 hci_dev_test_and_clear_flag(hdev, HCI_USER_CHANNEL); 5113 5114 if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) && 5115 test_bit(HCI_UP, &hdev->flags)) { 5116 /* Execute vendor specific shutdown routine */ 5117 if (hdev->shutdown) 5118 err = hdev->shutdown(hdev); 5119 } 5120 5121 if (was_userchannel) 5122 hci_dev_set_flag(hdev, HCI_USER_CHANNEL); 5123 5124 return err; 5125 } 5126 5127 int hci_dev_close_sync(struct hci_dev *hdev) 5128 { 5129 bool auto_off; 5130 int err = 0; 5131 5132 bt_dev_dbg(hdev, ""); 5133 5134 cancel_delayed_work(&hdev->power_off); 5135 cancel_delayed_work(&hdev->ncmd_timer); 5136 cancel_delayed_work(&hdev->le_scan_disable); 5137 5138 hci_cmd_sync_cancel_sync(hdev, ENODEV); 5139 5140 cancel_interleave_scan(hdev); 5141 5142 if (hdev->adv_instance_timeout) { 5143 cancel_delayed_work_sync(&hdev->adv_instance_expire); 5144 hdev->adv_instance_timeout = 0; 5145 } 5146 5147 err = hci_dev_shutdown(hdev); 5148 5149 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) { 5150 cancel_delayed_work_sync(&hdev->cmd_timer); 5151 return err; 5152 } 5153 5154 hci_leds_update_powered(hdev, false); 5155 5156 /* Flush RX and TX works */ 5157 flush_work(&hdev->tx_work); 5158 flush_work(&hdev->rx_work); 5159 5160 if (hdev->discov_timeout > 0) { 5161 hdev->discov_timeout = 0; 5162 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 5163 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 5164 } 5165 5166 if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE)) 5167 cancel_delayed_work(&hdev->service_cache); 5168 5169 if (hci_dev_test_flag(hdev, HCI_MGMT)) { 5170 struct adv_info *adv_instance; 5171 5172 cancel_delayed_work_sync(&hdev->rpa_expired); 5173 5174 list_for_each_entry(adv_instance, &hdev->adv_instances, list) 5175 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb); 5176 } 5177 5178 /* Avoid potential lockdep warnings from the *_flush() calls by 5179 * ensuring the workqueue is empty up front. 5180 */ 5181 drain_workqueue(hdev->workqueue); 5182 5183 hci_dev_lock(hdev); 5184 5185 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 5186 5187 auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF); 5188 5189 if (!auto_off && !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 5190 hci_dev_test_flag(hdev, HCI_MGMT)) 5191 __mgmt_power_off(hdev); 5192 5193 hci_inquiry_cache_flush(hdev); 5194 hci_pend_le_actions_clear(hdev); 5195 hci_conn_hash_flush(hdev); 5196 /* Prevent data races on hdev->smp_data or hdev->smp_bredr_data */ 5197 smp_unregister(hdev); 5198 hci_dev_unlock(hdev); 5199 5200 hci_sock_dev_event(hdev, HCI_DEV_DOWN); 5201 5202 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 5203 aosp_do_close(hdev); 5204 msft_do_close(hdev); 5205 } 5206 5207 if (hdev->flush) 5208 hdev->flush(hdev); 5209 5210 /* Reset device */ 5211 skb_queue_purge(&hdev->cmd_q); 5212 atomic_set(&hdev->cmd_cnt, 1); 5213 if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) && 5214 !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 5215 set_bit(HCI_INIT, &hdev->flags); 5216 hci_reset_sync(hdev); 5217 clear_bit(HCI_INIT, &hdev->flags); 5218 } 5219 5220 /* flush cmd work */ 5221 flush_work(&hdev->cmd_work); 5222 5223 /* Drop queues */ 5224 skb_queue_purge(&hdev->rx_q); 5225 skb_queue_purge(&hdev->cmd_q); 5226 skb_queue_purge(&hdev->raw_q); 5227 5228 /* Drop last sent command */ 5229 if (hdev->sent_cmd) { 5230 cancel_delayed_work_sync(&hdev->cmd_timer); 5231 kfree_skb(hdev->sent_cmd); 5232 hdev->sent_cmd = NULL; 5233 } 5234 5235 /* Drop last request */ 5236 if (hdev->req_skb) { 5237 kfree_skb(hdev->req_skb); 5238 hdev->req_skb = NULL; 5239 } 5240 5241 clear_bit(HCI_RUNNING, &hdev->flags); 5242 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 5243 5244 /* After this point our queues are empty and no tasks are scheduled. */ 5245 hdev->close(hdev); 5246 5247 /* Clear flags */ 5248 hdev->flags &= BIT(HCI_RAW); 5249 hci_dev_clear_volatile_flags(hdev); 5250 5251 memset(hdev->eir, 0, sizeof(hdev->eir)); 5252 memset(hdev->dev_class, 0, sizeof(hdev->dev_class)); 5253 bacpy(&hdev->random_addr, BDADDR_ANY); 5254 hci_codec_list_clear(&hdev->local_codecs); 5255 5256 hci_dev_put(hdev); 5257 return err; 5258 } 5259 5260 /* This function perform power on HCI command sequence as follows: 5261 * 5262 * If controller is already up (HCI_UP) performs hci_powered_update_sync 5263 * sequence otherwise run hci_dev_open_sync which will follow with 5264 * hci_powered_update_sync after the init sequence is completed. 5265 */ 5266 static int hci_power_on_sync(struct hci_dev *hdev) 5267 { 5268 int err; 5269 5270 if (test_bit(HCI_UP, &hdev->flags) && 5271 hci_dev_test_flag(hdev, HCI_MGMT) && 5272 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) { 5273 cancel_delayed_work(&hdev->power_off); 5274 return hci_powered_update_sync(hdev); 5275 } 5276 5277 err = hci_dev_open_sync(hdev); 5278 if (err < 0) 5279 return err; 5280 5281 /* During the HCI setup phase, a few error conditions are 5282 * ignored and they need to be checked now. If they are still 5283 * valid, it is important to return the device back off. 5284 */ 5285 if (hci_dev_test_flag(hdev, HCI_RFKILLED) || 5286 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) || 5287 (!bacmp(&hdev->bdaddr, BDADDR_ANY) && 5288 !bacmp(&hdev->static_addr, BDADDR_ANY))) { 5289 hci_dev_clear_flag(hdev, HCI_AUTO_OFF); 5290 hci_dev_close_sync(hdev); 5291 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) { 5292 queue_delayed_work(hdev->req_workqueue, &hdev->power_off, 5293 HCI_AUTO_OFF_TIMEOUT); 5294 } 5295 5296 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) { 5297 /* For unconfigured devices, set the HCI_RAW flag 5298 * so that userspace can easily identify them. 5299 */ 5300 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 5301 set_bit(HCI_RAW, &hdev->flags); 5302 5303 /* For fully configured devices, this will send 5304 * the Index Added event. For unconfigured devices, 5305 * it will send Unconfigued Index Added event. 5306 * 5307 * Devices with HCI_QUIRK_RAW_DEVICE are ignored 5308 * and no event will be send. 5309 */ 5310 mgmt_index_added(hdev); 5311 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) { 5312 /* When the controller is now configured, then it 5313 * is important to clear the HCI_RAW flag. 5314 */ 5315 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 5316 clear_bit(HCI_RAW, &hdev->flags); 5317 5318 /* Powering on the controller with HCI_CONFIG set only 5319 * happens with the transition from unconfigured to 5320 * configured. This will send the Index Added event. 5321 */ 5322 mgmt_index_added(hdev); 5323 } 5324 5325 return 0; 5326 } 5327 5328 static int hci_remote_name_cancel_sync(struct hci_dev *hdev, bdaddr_t *addr) 5329 { 5330 struct hci_cp_remote_name_req_cancel cp; 5331 5332 memset(&cp, 0, sizeof(cp)); 5333 bacpy(&cp.bdaddr, addr); 5334 5335 return __hci_cmd_sync_status(hdev, HCI_OP_REMOTE_NAME_REQ_CANCEL, 5336 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5337 } 5338 5339 int hci_stop_discovery_sync(struct hci_dev *hdev) 5340 { 5341 struct discovery_state *d = &hdev->discovery; 5342 struct inquiry_entry *e; 5343 int err; 5344 5345 bt_dev_dbg(hdev, "state %u", hdev->discovery.state); 5346 5347 if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) { 5348 if (test_bit(HCI_INQUIRY, &hdev->flags)) { 5349 err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL, 5350 0, NULL, HCI_CMD_TIMEOUT); 5351 if (err) 5352 return err; 5353 } 5354 5355 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 5356 cancel_delayed_work(&hdev->le_scan_disable); 5357 5358 err = hci_scan_disable_sync(hdev); 5359 if (err) 5360 return err; 5361 } 5362 5363 } else { 5364 err = hci_scan_disable_sync(hdev); 5365 if (err) 5366 return err; 5367 } 5368 5369 /* Resume advertising if it was paused */ 5370 if (use_ll_privacy(hdev)) 5371 hci_resume_advertising_sync(hdev); 5372 5373 /* No further actions needed for LE-only discovery */ 5374 if (d->type == DISCOV_TYPE_LE) 5375 return 0; 5376 5377 if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) { 5378 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY, 5379 NAME_PENDING); 5380 if (!e) 5381 return 0; 5382 5383 return hci_remote_name_cancel_sync(hdev, &e->data.bdaddr); 5384 } 5385 5386 return 0; 5387 } 5388 5389 static int hci_disconnect_sync(struct hci_dev *hdev, struct hci_conn *conn, 5390 u8 reason) 5391 { 5392 struct hci_cp_disconnect cp; 5393 5394 if (test_bit(HCI_CONN_BIG_CREATED, &conn->flags)) { 5395 /* This is a BIS connection, hci_conn_del will 5396 * do the necessary cleanup. 5397 */ 5398 hci_dev_lock(hdev); 5399 hci_conn_failed(conn, reason); 5400 hci_dev_unlock(hdev); 5401 5402 return 0; 5403 } 5404 5405 memset(&cp, 0, sizeof(cp)); 5406 cp.handle = cpu_to_le16(conn->handle); 5407 cp.reason = reason; 5408 5409 /* Wait for HCI_EV_DISCONN_COMPLETE, not HCI_EV_CMD_STATUS, when the 5410 * reason is anything but HCI_ERROR_REMOTE_POWER_OFF. This reason is 5411 * used when suspending or powering off, where we don't want to wait 5412 * for the peer's response. 5413 */ 5414 if (reason != HCI_ERROR_REMOTE_POWER_OFF) 5415 return __hci_cmd_sync_status_sk(hdev, HCI_OP_DISCONNECT, 5416 sizeof(cp), &cp, 5417 HCI_EV_DISCONN_COMPLETE, 5418 HCI_CMD_TIMEOUT, NULL); 5419 5420 return __hci_cmd_sync_status(hdev, HCI_OP_DISCONNECT, sizeof(cp), &cp, 5421 HCI_CMD_TIMEOUT); 5422 } 5423 5424 static int hci_le_connect_cancel_sync(struct hci_dev *hdev, 5425 struct hci_conn *conn, u8 reason) 5426 { 5427 /* Return reason if scanning since the connection shall probably be 5428 * cleanup directly. 5429 */ 5430 if (test_bit(HCI_CONN_SCANNING, &conn->flags)) 5431 return reason; 5432 5433 if (conn->role == HCI_ROLE_SLAVE || 5434 test_and_set_bit(HCI_CONN_CANCEL, &conn->flags)) 5435 return 0; 5436 5437 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CREATE_CONN_CANCEL, 5438 0, NULL, HCI_CMD_TIMEOUT); 5439 } 5440 5441 static int hci_connect_cancel_sync(struct hci_dev *hdev, struct hci_conn *conn, 5442 u8 reason) 5443 { 5444 if (conn->type == LE_LINK) 5445 return hci_le_connect_cancel_sync(hdev, conn, reason); 5446 5447 if (conn->type == ISO_LINK) { 5448 /* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E 5449 * page 1857: 5450 * 5451 * If this command is issued for a CIS on the Central and the 5452 * CIS is successfully terminated before being established, 5453 * then an HCI_LE_CIS_Established event shall also be sent for 5454 * this CIS with the Status Operation Cancelled by Host (0x44). 5455 */ 5456 if (test_bit(HCI_CONN_CREATE_CIS, &conn->flags)) 5457 return hci_disconnect_sync(hdev, conn, reason); 5458 5459 /* CIS with no Create CIS sent have nothing to cancel */ 5460 if (bacmp(&conn->dst, BDADDR_ANY)) 5461 return HCI_ERROR_LOCAL_HOST_TERM; 5462 5463 /* There is no way to cancel a BIS without terminating the BIG 5464 * which is done later on connection cleanup. 5465 */ 5466 return 0; 5467 } 5468 5469 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 5470 return 0; 5471 5472 /* Wait for HCI_EV_CONN_COMPLETE, not HCI_EV_CMD_STATUS, when the 5473 * reason is anything but HCI_ERROR_REMOTE_POWER_OFF. This reason is 5474 * used when suspending or powering off, where we don't want to wait 5475 * for the peer's response. 5476 */ 5477 if (reason != HCI_ERROR_REMOTE_POWER_OFF) 5478 return __hci_cmd_sync_status_sk(hdev, HCI_OP_CREATE_CONN_CANCEL, 5479 6, &conn->dst, 5480 HCI_EV_CONN_COMPLETE, 5481 HCI_CMD_TIMEOUT, NULL); 5482 5483 return __hci_cmd_sync_status(hdev, HCI_OP_CREATE_CONN_CANCEL, 5484 6, &conn->dst, HCI_CMD_TIMEOUT); 5485 } 5486 5487 static int hci_reject_sco_sync(struct hci_dev *hdev, struct hci_conn *conn, 5488 u8 reason) 5489 { 5490 struct hci_cp_reject_sync_conn_req cp; 5491 5492 memset(&cp, 0, sizeof(cp)); 5493 bacpy(&cp.bdaddr, &conn->dst); 5494 cp.reason = reason; 5495 5496 /* SCO rejection has its own limited set of 5497 * allowed error values (0x0D-0x0F). 5498 */ 5499 if (reason < 0x0d || reason > 0x0f) 5500 cp.reason = HCI_ERROR_REJ_LIMITED_RESOURCES; 5501 5502 return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_SYNC_CONN_REQ, 5503 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5504 } 5505 5506 static int hci_le_reject_cis_sync(struct hci_dev *hdev, struct hci_conn *conn, 5507 u8 reason) 5508 { 5509 struct hci_cp_le_reject_cis cp; 5510 5511 memset(&cp, 0, sizeof(cp)); 5512 cp.handle = cpu_to_le16(conn->handle); 5513 cp.reason = reason; 5514 5515 return __hci_cmd_sync_status(hdev, HCI_OP_LE_REJECT_CIS, 5516 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5517 } 5518 5519 static int hci_reject_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, 5520 u8 reason) 5521 { 5522 struct hci_cp_reject_conn_req cp; 5523 5524 if (conn->type == ISO_LINK) 5525 return hci_le_reject_cis_sync(hdev, conn, reason); 5526 5527 if (conn->type == SCO_LINK || conn->type == ESCO_LINK) 5528 return hci_reject_sco_sync(hdev, conn, reason); 5529 5530 memset(&cp, 0, sizeof(cp)); 5531 bacpy(&cp.bdaddr, &conn->dst); 5532 cp.reason = reason; 5533 5534 return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_CONN_REQ, 5535 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5536 } 5537 5538 int hci_abort_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, u8 reason) 5539 { 5540 int err = 0; 5541 u16 handle = conn->handle; 5542 bool disconnect = false; 5543 struct hci_conn *c; 5544 5545 switch (conn->state) { 5546 case BT_CONNECTED: 5547 case BT_CONFIG: 5548 err = hci_disconnect_sync(hdev, conn, reason); 5549 break; 5550 case BT_CONNECT: 5551 err = hci_connect_cancel_sync(hdev, conn, reason); 5552 break; 5553 case BT_CONNECT2: 5554 err = hci_reject_conn_sync(hdev, conn, reason); 5555 break; 5556 case BT_OPEN: 5557 case BT_BOUND: 5558 break; 5559 default: 5560 disconnect = true; 5561 break; 5562 } 5563 5564 hci_dev_lock(hdev); 5565 5566 /* Check if the connection has been cleaned up concurrently */ 5567 c = hci_conn_hash_lookup_handle(hdev, handle); 5568 if (!c || c != conn) { 5569 err = 0; 5570 goto unlock; 5571 } 5572 5573 /* Cleanup hci_conn object if it cannot be cancelled as it 5574 * likelly means the controller and host stack are out of sync 5575 * or in case of LE it was still scanning so it can be cleanup 5576 * safely. 5577 */ 5578 if (disconnect) { 5579 conn->state = BT_CLOSED; 5580 hci_disconn_cfm(conn, reason); 5581 hci_conn_del(conn); 5582 } else { 5583 hci_conn_failed(conn, reason); 5584 } 5585 5586 unlock: 5587 hci_dev_unlock(hdev); 5588 return err; 5589 } 5590 5591 static int hci_disconnect_all_sync(struct hci_dev *hdev, u8 reason) 5592 { 5593 struct list_head *head = &hdev->conn_hash.list; 5594 struct hci_conn *conn; 5595 5596 rcu_read_lock(); 5597 while ((conn = list_first_or_null_rcu(head, struct hci_conn, list))) { 5598 /* Make sure the connection is not freed while unlocking */ 5599 conn = hci_conn_get(conn); 5600 rcu_read_unlock(); 5601 /* Disregard possible errors since hci_conn_del shall have been 5602 * called even in case of errors had occurred since it would 5603 * then cause hci_conn_failed to be called which calls 5604 * hci_conn_del internally. 5605 */ 5606 hci_abort_conn_sync(hdev, conn, reason); 5607 hci_conn_put(conn); 5608 rcu_read_lock(); 5609 } 5610 rcu_read_unlock(); 5611 5612 return 0; 5613 } 5614 5615 /* This function perform power off HCI command sequence as follows: 5616 * 5617 * Clear Advertising 5618 * Stop Discovery 5619 * Disconnect all connections 5620 * hci_dev_close_sync 5621 */ 5622 static int hci_power_off_sync(struct hci_dev *hdev) 5623 { 5624 int err; 5625 5626 /* If controller is already down there is nothing to do */ 5627 if (!test_bit(HCI_UP, &hdev->flags)) 5628 return 0; 5629 5630 hci_dev_set_flag(hdev, HCI_POWERING_DOWN); 5631 5632 if (test_bit(HCI_ISCAN, &hdev->flags) || 5633 test_bit(HCI_PSCAN, &hdev->flags)) { 5634 err = hci_write_scan_enable_sync(hdev, 0x00); 5635 if (err) 5636 goto out; 5637 } 5638 5639 err = hci_clear_adv_sync(hdev, NULL, false); 5640 if (err) 5641 goto out; 5642 5643 err = hci_stop_discovery_sync(hdev); 5644 if (err) 5645 goto out; 5646 5647 /* Terminated due to Power Off */ 5648 err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF); 5649 if (err) 5650 goto out; 5651 5652 err = hci_dev_close_sync(hdev); 5653 5654 out: 5655 hci_dev_clear_flag(hdev, HCI_POWERING_DOWN); 5656 return err; 5657 } 5658 5659 int hci_set_powered_sync(struct hci_dev *hdev, u8 val) 5660 { 5661 if (val) 5662 return hci_power_on_sync(hdev); 5663 5664 return hci_power_off_sync(hdev); 5665 } 5666 5667 static int hci_write_iac_sync(struct hci_dev *hdev) 5668 { 5669 struct hci_cp_write_current_iac_lap cp; 5670 5671 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 5672 return 0; 5673 5674 memset(&cp, 0, sizeof(cp)); 5675 5676 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { 5677 /* Limited discoverable mode */ 5678 cp.num_iac = min_t(u8, hdev->num_iac, 2); 5679 cp.iac_lap[0] = 0x00; /* LIAC */ 5680 cp.iac_lap[1] = 0x8b; 5681 cp.iac_lap[2] = 0x9e; 5682 cp.iac_lap[3] = 0x33; /* GIAC */ 5683 cp.iac_lap[4] = 0x8b; 5684 cp.iac_lap[5] = 0x9e; 5685 } else { 5686 /* General discoverable mode */ 5687 cp.num_iac = 1; 5688 cp.iac_lap[0] = 0x33; /* GIAC */ 5689 cp.iac_lap[1] = 0x8b; 5690 cp.iac_lap[2] = 0x9e; 5691 } 5692 5693 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CURRENT_IAC_LAP, 5694 (cp.num_iac * 3) + 1, &cp, 5695 HCI_CMD_TIMEOUT); 5696 } 5697 5698 int hci_update_discoverable_sync(struct hci_dev *hdev) 5699 { 5700 int err = 0; 5701 5702 if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 5703 err = hci_write_iac_sync(hdev); 5704 if (err) 5705 return err; 5706 5707 err = hci_update_scan_sync(hdev); 5708 if (err) 5709 return err; 5710 5711 err = hci_update_class_sync(hdev); 5712 if (err) 5713 return err; 5714 } 5715 5716 /* Advertising instances don't use the global discoverable setting, so 5717 * only update AD if advertising was enabled using Set Advertising. 5718 */ 5719 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) { 5720 err = hci_update_adv_data_sync(hdev, 0x00); 5721 if (err) 5722 return err; 5723 5724 /* Discoverable mode affects the local advertising 5725 * address in limited privacy mode. 5726 */ 5727 if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) { 5728 if (ext_adv_capable(hdev)) 5729 err = hci_start_ext_adv_sync(hdev, 0x00); 5730 else 5731 err = hci_enable_advertising_sync(hdev); 5732 } 5733 } 5734 5735 return err; 5736 } 5737 5738 static int update_discoverable_sync(struct hci_dev *hdev, void *data) 5739 { 5740 return hci_update_discoverable_sync(hdev); 5741 } 5742 5743 int hci_update_discoverable(struct hci_dev *hdev) 5744 { 5745 /* Only queue if it would have any effect */ 5746 if (hdev_is_powered(hdev) && 5747 hci_dev_test_flag(hdev, HCI_ADVERTISING) && 5748 hci_dev_test_flag(hdev, HCI_DISCOVERABLE) && 5749 hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) 5750 return hci_cmd_sync_queue(hdev, update_discoverable_sync, NULL, 5751 NULL); 5752 5753 return 0; 5754 } 5755 5756 int hci_update_connectable_sync(struct hci_dev *hdev) 5757 { 5758 int err; 5759 5760 err = hci_update_scan_sync(hdev); 5761 if (err) 5762 return err; 5763 5764 /* If BR/EDR is not enabled and we disable advertising as a 5765 * by-product of disabling connectable, we need to update the 5766 * advertising flags. 5767 */ 5768 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 5769 err = hci_update_adv_data_sync(hdev, hdev->cur_adv_instance); 5770 5771 /* Update the advertising parameters if necessary */ 5772 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 5773 !list_empty(&hdev->adv_instances)) { 5774 if (ext_adv_capable(hdev)) 5775 err = hci_start_ext_adv_sync(hdev, 5776 hdev->cur_adv_instance); 5777 else 5778 err = hci_enable_advertising_sync(hdev); 5779 5780 if (err) 5781 return err; 5782 } 5783 5784 return hci_update_passive_scan_sync(hdev); 5785 } 5786 5787 int hci_inquiry_sync(struct hci_dev *hdev, u8 length, u8 num_rsp) 5788 { 5789 const u8 giac[3] = { 0x33, 0x8b, 0x9e }; 5790 const u8 liac[3] = { 0x00, 0x8b, 0x9e }; 5791 struct hci_cp_inquiry cp; 5792 5793 bt_dev_dbg(hdev, ""); 5794 5795 if (test_bit(HCI_INQUIRY, &hdev->flags)) 5796 return 0; 5797 5798 hci_dev_lock(hdev); 5799 hci_inquiry_cache_flush(hdev); 5800 hci_dev_unlock(hdev); 5801 5802 memset(&cp, 0, sizeof(cp)); 5803 5804 if (hdev->discovery.limited) 5805 memcpy(&cp.lap, liac, sizeof(cp.lap)); 5806 else 5807 memcpy(&cp.lap, giac, sizeof(cp.lap)); 5808 5809 cp.length = length; 5810 cp.num_rsp = num_rsp; 5811 5812 return __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY, 5813 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5814 } 5815 5816 static int hci_active_scan_sync(struct hci_dev *hdev, uint16_t interval) 5817 { 5818 u8 own_addr_type; 5819 /* Accept list is not used for discovery */ 5820 u8 filter_policy = 0x00; 5821 /* Default is to enable duplicates filter */ 5822 u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE; 5823 int err; 5824 5825 bt_dev_dbg(hdev, ""); 5826 5827 /* If controller is scanning, it means the passive scanning is 5828 * running. Thus, we should temporarily stop it in order to set the 5829 * discovery scanning parameters. 5830 */ 5831 err = hci_scan_disable_sync(hdev); 5832 if (err) { 5833 bt_dev_err(hdev, "Unable to disable scanning: %d", err); 5834 return err; 5835 } 5836 5837 cancel_interleave_scan(hdev); 5838 5839 /* Pause address resolution for active scan and stop advertising if 5840 * privacy is enabled. 5841 */ 5842 err = hci_pause_addr_resolution(hdev); 5843 if (err) 5844 goto failed; 5845 5846 /* All active scans will be done with either a resolvable private 5847 * address (when privacy feature has been enabled) or non-resolvable 5848 * private address. 5849 */ 5850 err = hci_update_random_address_sync(hdev, true, scan_use_rpa(hdev), 5851 &own_addr_type); 5852 if (err < 0) 5853 own_addr_type = ADDR_LE_DEV_PUBLIC; 5854 5855 if (hci_is_adv_monitoring(hdev) || 5856 (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) && 5857 hdev->discovery.result_filtering)) { 5858 /* Duplicate filter should be disabled when some advertisement 5859 * monitor is activated, otherwise AdvMon can only receive one 5860 * advertisement for one peer(*) during active scanning, and 5861 * might report loss to these peers. 5862 * 5863 * If controller does strict duplicate filtering and the 5864 * discovery requires result filtering disables controller based 5865 * filtering since that can cause reports that would match the 5866 * host filter to not be reported. 5867 */ 5868 filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 5869 } 5870 5871 err = hci_start_scan_sync(hdev, LE_SCAN_ACTIVE, interval, 5872 hdev->le_scan_window_discovery, 5873 own_addr_type, filter_policy, filter_dup); 5874 if (!err) 5875 return err; 5876 5877 failed: 5878 /* Resume advertising if it was paused */ 5879 if (use_ll_privacy(hdev)) 5880 hci_resume_advertising_sync(hdev); 5881 5882 /* Resume passive scanning */ 5883 hci_update_passive_scan_sync(hdev); 5884 return err; 5885 } 5886 5887 static int hci_start_interleaved_discovery_sync(struct hci_dev *hdev) 5888 { 5889 int err; 5890 5891 bt_dev_dbg(hdev, ""); 5892 5893 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery * 2); 5894 if (err) 5895 return err; 5896 5897 return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN, 0); 5898 } 5899 5900 int hci_start_discovery_sync(struct hci_dev *hdev) 5901 { 5902 unsigned long timeout; 5903 int err; 5904 5905 bt_dev_dbg(hdev, "type %u", hdev->discovery.type); 5906 5907 switch (hdev->discovery.type) { 5908 case DISCOV_TYPE_BREDR: 5909 return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN, 0); 5910 case DISCOV_TYPE_INTERLEAVED: 5911 /* When running simultaneous discovery, the LE scanning time 5912 * should occupy the whole discovery time sine BR/EDR inquiry 5913 * and LE scanning are scheduled by the controller. 5914 * 5915 * For interleaving discovery in comparison, BR/EDR inquiry 5916 * and LE scanning are done sequentially with separate 5917 * timeouts. 5918 */ 5919 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, 5920 &hdev->quirks)) { 5921 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 5922 /* During simultaneous discovery, we double LE scan 5923 * interval. We must leave some time for the controller 5924 * to do BR/EDR inquiry. 5925 */ 5926 err = hci_start_interleaved_discovery_sync(hdev); 5927 break; 5928 } 5929 5930 timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout); 5931 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery); 5932 break; 5933 case DISCOV_TYPE_LE: 5934 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 5935 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery); 5936 break; 5937 default: 5938 return -EINVAL; 5939 } 5940 5941 if (err) 5942 return err; 5943 5944 bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout)); 5945 5946 queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable, 5947 timeout); 5948 return 0; 5949 } 5950 5951 static void hci_suspend_monitor_sync(struct hci_dev *hdev) 5952 { 5953 switch (hci_get_adv_monitor_offload_ext(hdev)) { 5954 case HCI_ADV_MONITOR_EXT_MSFT: 5955 msft_suspend_sync(hdev); 5956 break; 5957 default: 5958 return; 5959 } 5960 } 5961 5962 /* This function disables discovery and mark it as paused */ 5963 static int hci_pause_discovery_sync(struct hci_dev *hdev) 5964 { 5965 int old_state = hdev->discovery.state; 5966 int err; 5967 5968 /* If discovery already stopped/stopping/paused there nothing to do */ 5969 if (old_state == DISCOVERY_STOPPED || old_state == DISCOVERY_STOPPING || 5970 hdev->discovery_paused) 5971 return 0; 5972 5973 hci_discovery_set_state(hdev, DISCOVERY_STOPPING); 5974 err = hci_stop_discovery_sync(hdev); 5975 if (err) 5976 return err; 5977 5978 hdev->discovery_paused = true; 5979 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 5980 5981 return 0; 5982 } 5983 5984 static int hci_update_event_filter_sync(struct hci_dev *hdev) 5985 { 5986 struct bdaddr_list_with_flags *b; 5987 u8 scan = SCAN_DISABLED; 5988 bool scanning = test_bit(HCI_PSCAN, &hdev->flags); 5989 int err; 5990 5991 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 5992 return 0; 5993 5994 /* Some fake CSR controllers lock up after setting this type of 5995 * filter, so avoid sending the request altogether. 5996 */ 5997 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 5998 return 0; 5999 6000 /* Always clear event filter when starting */ 6001 hci_clear_event_filter_sync(hdev); 6002 6003 list_for_each_entry(b, &hdev->accept_list, list) { 6004 if (!(b->flags & HCI_CONN_FLAG_REMOTE_WAKEUP)) 6005 continue; 6006 6007 bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr); 6008 6009 err = hci_set_event_filter_sync(hdev, HCI_FLT_CONN_SETUP, 6010 HCI_CONN_SETUP_ALLOW_BDADDR, 6011 &b->bdaddr, 6012 HCI_CONN_SETUP_AUTO_ON); 6013 if (err) 6014 bt_dev_dbg(hdev, "Failed to set event filter for %pMR", 6015 &b->bdaddr); 6016 else 6017 scan = SCAN_PAGE; 6018 } 6019 6020 if (scan && !scanning) 6021 hci_write_scan_enable_sync(hdev, scan); 6022 else if (!scan && scanning) 6023 hci_write_scan_enable_sync(hdev, scan); 6024 6025 return 0; 6026 } 6027 6028 /* This function disables scan (BR and LE) and mark it as paused */ 6029 static int hci_pause_scan_sync(struct hci_dev *hdev) 6030 { 6031 if (hdev->scanning_paused) 6032 return 0; 6033 6034 /* Disable page scan if enabled */ 6035 if (test_bit(HCI_PSCAN, &hdev->flags)) 6036 hci_write_scan_enable_sync(hdev, SCAN_DISABLED); 6037 6038 hci_scan_disable_sync(hdev); 6039 6040 hdev->scanning_paused = true; 6041 6042 return 0; 6043 } 6044 6045 /* This function performs the HCI suspend procedures in the follow order: 6046 * 6047 * Pause discovery (active scanning/inquiry) 6048 * Pause Directed Advertising/Advertising 6049 * Pause Scanning (passive scanning in case discovery was not active) 6050 * Disconnect all connections 6051 * Set suspend_status to BT_SUSPEND_DISCONNECT if hdev cannot wakeup 6052 * otherwise: 6053 * Update event mask (only set events that are allowed to wake up the host) 6054 * Update event filter (with devices marked with HCI_CONN_FLAG_REMOTE_WAKEUP) 6055 * Update passive scanning (lower duty cycle) 6056 * Set suspend_status to BT_SUSPEND_CONFIGURE_WAKE 6057 */ 6058 int hci_suspend_sync(struct hci_dev *hdev) 6059 { 6060 int err; 6061 6062 /* If marked as suspended there nothing to do */ 6063 if (hdev->suspended) 6064 return 0; 6065 6066 /* Mark device as suspended */ 6067 hdev->suspended = true; 6068 6069 /* Pause discovery if not already stopped */ 6070 hci_pause_discovery_sync(hdev); 6071 6072 /* Pause other advertisements */ 6073 hci_pause_advertising_sync(hdev); 6074 6075 /* Suspend monitor filters */ 6076 hci_suspend_monitor_sync(hdev); 6077 6078 /* Prevent disconnects from causing scanning to be re-enabled */ 6079 hci_pause_scan_sync(hdev); 6080 6081 if (hci_conn_count(hdev)) { 6082 /* Soft disconnect everything (power off) */ 6083 err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF); 6084 if (err) { 6085 /* Set state to BT_RUNNING so resume doesn't notify */ 6086 hdev->suspend_state = BT_RUNNING; 6087 hci_resume_sync(hdev); 6088 return err; 6089 } 6090 6091 /* Update event mask so only the allowed event can wakeup the 6092 * host. 6093 */ 6094 hci_set_event_mask_sync(hdev); 6095 } 6096 6097 /* Only configure accept list if disconnect succeeded and wake 6098 * isn't being prevented. 6099 */ 6100 if (!hdev->wakeup || !hdev->wakeup(hdev)) { 6101 hdev->suspend_state = BT_SUSPEND_DISCONNECT; 6102 return 0; 6103 } 6104 6105 /* Unpause to take care of updating scanning params */ 6106 hdev->scanning_paused = false; 6107 6108 /* Enable event filter for paired devices */ 6109 hci_update_event_filter_sync(hdev); 6110 6111 /* Update LE passive scan if enabled */ 6112 hci_update_passive_scan_sync(hdev); 6113 6114 /* Pause scan changes again. */ 6115 hdev->scanning_paused = true; 6116 6117 hdev->suspend_state = BT_SUSPEND_CONFIGURE_WAKE; 6118 6119 return 0; 6120 } 6121 6122 /* This function resumes discovery */ 6123 static int hci_resume_discovery_sync(struct hci_dev *hdev) 6124 { 6125 int err; 6126 6127 /* If discovery not paused there nothing to do */ 6128 if (!hdev->discovery_paused) 6129 return 0; 6130 6131 hdev->discovery_paused = false; 6132 6133 hci_discovery_set_state(hdev, DISCOVERY_STARTING); 6134 6135 err = hci_start_discovery_sync(hdev); 6136 6137 hci_discovery_set_state(hdev, err ? DISCOVERY_STOPPED : 6138 DISCOVERY_FINDING); 6139 6140 return err; 6141 } 6142 6143 static void hci_resume_monitor_sync(struct hci_dev *hdev) 6144 { 6145 switch (hci_get_adv_monitor_offload_ext(hdev)) { 6146 case HCI_ADV_MONITOR_EXT_MSFT: 6147 msft_resume_sync(hdev); 6148 break; 6149 default: 6150 return; 6151 } 6152 } 6153 6154 /* This function resume scan and reset paused flag */ 6155 static int hci_resume_scan_sync(struct hci_dev *hdev) 6156 { 6157 if (!hdev->scanning_paused) 6158 return 0; 6159 6160 hdev->scanning_paused = false; 6161 6162 hci_update_scan_sync(hdev); 6163 6164 /* Reset passive scanning to normal */ 6165 hci_update_passive_scan_sync(hdev); 6166 6167 return 0; 6168 } 6169 6170 /* This function performs the HCI suspend procedures in the follow order: 6171 * 6172 * Restore event mask 6173 * Clear event filter 6174 * Update passive scanning (normal duty cycle) 6175 * Resume Directed Advertising/Advertising 6176 * Resume discovery (active scanning/inquiry) 6177 */ 6178 int hci_resume_sync(struct hci_dev *hdev) 6179 { 6180 /* If not marked as suspended there nothing to do */ 6181 if (!hdev->suspended) 6182 return 0; 6183 6184 hdev->suspended = false; 6185 6186 /* Restore event mask */ 6187 hci_set_event_mask_sync(hdev); 6188 6189 /* Clear any event filters and restore scan state */ 6190 hci_clear_event_filter_sync(hdev); 6191 6192 /* Resume scanning */ 6193 hci_resume_scan_sync(hdev); 6194 6195 /* Resume monitor filters */ 6196 hci_resume_monitor_sync(hdev); 6197 6198 /* Resume other advertisements */ 6199 hci_resume_advertising_sync(hdev); 6200 6201 /* Resume discovery */ 6202 hci_resume_discovery_sync(hdev); 6203 6204 return 0; 6205 } 6206 6207 static bool conn_use_rpa(struct hci_conn *conn) 6208 { 6209 struct hci_dev *hdev = conn->hdev; 6210 6211 return hci_dev_test_flag(hdev, HCI_PRIVACY); 6212 } 6213 6214 static int hci_le_ext_directed_advertising_sync(struct hci_dev *hdev, 6215 struct hci_conn *conn) 6216 { 6217 struct hci_cp_le_set_ext_adv_params cp; 6218 int err; 6219 bdaddr_t random_addr; 6220 u8 own_addr_type; 6221 6222 err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 6223 &own_addr_type); 6224 if (err) 6225 return err; 6226 6227 /* Set require_privacy to false so that the remote device has a 6228 * chance of identifying us. 6229 */ 6230 err = hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL, 6231 &own_addr_type, &random_addr); 6232 if (err) 6233 return err; 6234 6235 memset(&cp, 0, sizeof(cp)); 6236 6237 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND); 6238 cp.channel_map = hdev->le_adv_channel_map; 6239 cp.tx_power = HCI_TX_POWER_INVALID; 6240 cp.primary_phy = HCI_ADV_PHY_1M; 6241 cp.secondary_phy = HCI_ADV_PHY_1M; 6242 cp.handle = 0x00; /* Use instance 0 for directed adv */ 6243 cp.own_addr_type = own_addr_type; 6244 cp.peer_addr_type = conn->dst_type; 6245 bacpy(&cp.peer_addr, &conn->dst); 6246 6247 /* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for 6248 * advertising_event_property LE_LEGACY_ADV_DIRECT_IND 6249 * does not supports advertising data when the advertising set already 6250 * contains some, the controller shall return erroc code 'Invalid 6251 * HCI Command Parameters(0x12). 6252 * So it is required to remove adv set for handle 0x00. since we use 6253 * instance 0 for directed adv. 6254 */ 6255 err = hci_remove_ext_adv_instance_sync(hdev, cp.handle, NULL); 6256 if (err) 6257 return err; 6258 6259 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS, 6260 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6261 if (err) 6262 return err; 6263 6264 /* Check if random address need to be updated */ 6265 if (own_addr_type == ADDR_LE_DEV_RANDOM && 6266 bacmp(&random_addr, BDADDR_ANY) && 6267 bacmp(&random_addr, &hdev->random_addr)) { 6268 err = hci_set_adv_set_random_addr_sync(hdev, 0x00, 6269 &random_addr); 6270 if (err) 6271 return err; 6272 } 6273 6274 return hci_enable_ext_advertising_sync(hdev, 0x00); 6275 } 6276 6277 static int hci_le_directed_advertising_sync(struct hci_dev *hdev, 6278 struct hci_conn *conn) 6279 { 6280 struct hci_cp_le_set_adv_param cp; 6281 u8 status; 6282 u8 own_addr_type; 6283 u8 enable; 6284 6285 if (ext_adv_capable(hdev)) 6286 return hci_le_ext_directed_advertising_sync(hdev, conn); 6287 6288 /* Clear the HCI_LE_ADV bit temporarily so that the 6289 * hci_update_random_address knows that it's safe to go ahead 6290 * and write a new random address. The flag will be set back on 6291 * as soon as the SET_ADV_ENABLE HCI command completes. 6292 */ 6293 hci_dev_clear_flag(hdev, HCI_LE_ADV); 6294 6295 /* Set require_privacy to false so that the remote device has a 6296 * chance of identifying us. 6297 */ 6298 status = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 6299 &own_addr_type); 6300 if (status) 6301 return status; 6302 6303 memset(&cp, 0, sizeof(cp)); 6304 6305 /* Some controllers might reject command if intervals are not 6306 * within range for undirected advertising. 6307 * BCM20702A0 is known to be affected by this. 6308 */ 6309 cp.min_interval = cpu_to_le16(0x0020); 6310 cp.max_interval = cpu_to_le16(0x0020); 6311 6312 cp.type = LE_ADV_DIRECT_IND; 6313 cp.own_address_type = own_addr_type; 6314 cp.direct_addr_type = conn->dst_type; 6315 bacpy(&cp.direct_addr, &conn->dst); 6316 cp.channel_map = hdev->le_adv_channel_map; 6317 6318 status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM, 6319 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6320 if (status) 6321 return status; 6322 6323 enable = 0x01; 6324 6325 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 6326 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 6327 } 6328 6329 static void set_ext_conn_params(struct hci_conn *conn, 6330 struct hci_cp_le_ext_conn_param *p) 6331 { 6332 struct hci_dev *hdev = conn->hdev; 6333 6334 memset(p, 0, sizeof(*p)); 6335 6336 p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect); 6337 p->scan_window = cpu_to_le16(hdev->le_scan_window_connect); 6338 p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 6339 p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 6340 p->conn_latency = cpu_to_le16(conn->le_conn_latency); 6341 p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 6342 p->min_ce_len = cpu_to_le16(0x0000); 6343 p->max_ce_len = cpu_to_le16(0x0000); 6344 } 6345 6346 static int hci_le_ext_create_conn_sync(struct hci_dev *hdev, 6347 struct hci_conn *conn, u8 own_addr_type) 6348 { 6349 struct hci_cp_le_ext_create_conn *cp; 6350 struct hci_cp_le_ext_conn_param *p; 6351 u8 data[sizeof(*cp) + sizeof(*p) * 3]; 6352 u32 plen; 6353 6354 cp = (void *)data; 6355 p = (void *)cp->data; 6356 6357 memset(cp, 0, sizeof(*cp)); 6358 6359 bacpy(&cp->peer_addr, &conn->dst); 6360 cp->peer_addr_type = conn->dst_type; 6361 cp->own_addr_type = own_addr_type; 6362 6363 plen = sizeof(*cp); 6364 6365 if (scan_1m(hdev) && (conn->le_adv_phy == HCI_ADV_PHY_1M || 6366 conn->le_adv_sec_phy == HCI_ADV_PHY_1M)) { 6367 cp->phys |= LE_SCAN_PHY_1M; 6368 set_ext_conn_params(conn, p); 6369 6370 p++; 6371 plen += sizeof(*p); 6372 } 6373 6374 if (scan_2m(hdev) && (conn->le_adv_phy == HCI_ADV_PHY_2M || 6375 conn->le_adv_sec_phy == HCI_ADV_PHY_2M)) { 6376 cp->phys |= LE_SCAN_PHY_2M; 6377 set_ext_conn_params(conn, p); 6378 6379 p++; 6380 plen += sizeof(*p); 6381 } 6382 6383 if (scan_coded(hdev) && (conn->le_adv_phy == HCI_ADV_PHY_CODED || 6384 conn->le_adv_sec_phy == HCI_ADV_PHY_CODED)) { 6385 cp->phys |= LE_SCAN_PHY_CODED; 6386 set_ext_conn_params(conn, p); 6387 6388 plen += sizeof(*p); 6389 } 6390 6391 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_EXT_CREATE_CONN, 6392 plen, data, 6393 HCI_EV_LE_ENHANCED_CONN_COMPLETE, 6394 conn->conn_timeout, NULL); 6395 } 6396 6397 static int hci_le_create_conn_sync(struct hci_dev *hdev, void *data) 6398 { 6399 struct hci_cp_le_create_conn cp; 6400 struct hci_conn_params *params; 6401 u8 own_addr_type; 6402 int err; 6403 struct hci_conn *conn = data; 6404 6405 if (!hci_conn_valid(hdev, conn)) 6406 return -ECANCELED; 6407 6408 bt_dev_dbg(hdev, "conn %p", conn); 6409 6410 clear_bit(HCI_CONN_SCANNING, &conn->flags); 6411 conn->state = BT_CONNECT; 6412 6413 /* If requested to connect as peripheral use directed advertising */ 6414 if (conn->role == HCI_ROLE_SLAVE) { 6415 /* If we're active scanning and simultaneous roles is not 6416 * enabled simply reject the attempt. 6417 */ 6418 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) && 6419 hdev->le_scan_type == LE_SCAN_ACTIVE && 6420 !hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) { 6421 hci_conn_del(conn); 6422 return -EBUSY; 6423 } 6424 6425 /* Pause advertising while doing directed advertising. */ 6426 hci_pause_advertising_sync(hdev); 6427 6428 err = hci_le_directed_advertising_sync(hdev, conn); 6429 goto done; 6430 } 6431 6432 /* Disable advertising if simultaneous roles is not in use. */ 6433 if (!hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) 6434 hci_pause_advertising_sync(hdev); 6435 6436 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); 6437 if (params) { 6438 conn->le_conn_min_interval = params->conn_min_interval; 6439 conn->le_conn_max_interval = params->conn_max_interval; 6440 conn->le_conn_latency = params->conn_latency; 6441 conn->le_supv_timeout = params->supervision_timeout; 6442 } else { 6443 conn->le_conn_min_interval = hdev->le_conn_min_interval; 6444 conn->le_conn_max_interval = hdev->le_conn_max_interval; 6445 conn->le_conn_latency = hdev->le_conn_latency; 6446 conn->le_supv_timeout = hdev->le_supv_timeout; 6447 } 6448 6449 /* If controller is scanning, we stop it since some controllers are 6450 * not able to scan and connect at the same time. Also set the 6451 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete 6452 * handler for scan disabling knows to set the correct discovery 6453 * state. 6454 */ 6455 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 6456 hci_scan_disable_sync(hdev); 6457 hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED); 6458 } 6459 6460 /* Update random address, but set require_privacy to false so 6461 * that we never connect with an non-resolvable address. 6462 */ 6463 err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 6464 &own_addr_type); 6465 if (err) 6466 goto done; 6467 6468 if (use_ext_conn(hdev)) { 6469 err = hci_le_ext_create_conn_sync(hdev, conn, own_addr_type); 6470 goto done; 6471 } 6472 6473 memset(&cp, 0, sizeof(cp)); 6474 6475 cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect); 6476 cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect); 6477 6478 bacpy(&cp.peer_addr, &conn->dst); 6479 cp.peer_addr_type = conn->dst_type; 6480 cp.own_address_type = own_addr_type; 6481 cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 6482 cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 6483 cp.conn_latency = cpu_to_le16(conn->le_conn_latency); 6484 cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 6485 cp.min_ce_len = cpu_to_le16(0x0000); 6486 cp.max_ce_len = cpu_to_le16(0x0000); 6487 6488 /* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E page 2261: 6489 * 6490 * If this event is unmasked and the HCI_LE_Connection_Complete event 6491 * is unmasked, only the HCI_LE_Enhanced_Connection_Complete event is 6492 * sent when a new connection has been created. 6493 */ 6494 err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CONN, 6495 sizeof(cp), &cp, 6496 use_enhanced_conn_complete(hdev) ? 6497 HCI_EV_LE_ENHANCED_CONN_COMPLETE : 6498 HCI_EV_LE_CONN_COMPLETE, 6499 conn->conn_timeout, NULL); 6500 6501 done: 6502 if (err == -ETIMEDOUT) 6503 hci_le_connect_cancel_sync(hdev, conn, 0x00); 6504 6505 /* Re-enable advertising after the connection attempt is finished. */ 6506 hci_resume_advertising_sync(hdev); 6507 return err; 6508 } 6509 6510 int hci_le_create_cis_sync(struct hci_dev *hdev) 6511 { 6512 DEFINE_FLEX(struct hci_cp_le_create_cis, cmd, cis, num_cis, 0x1f); 6513 size_t aux_num_cis = 0; 6514 struct hci_conn *conn; 6515 u8 cig = BT_ISO_QOS_CIG_UNSET; 6516 6517 /* The spec allows only one pending LE Create CIS command at a time. If 6518 * the command is pending now, don't do anything. We check for pending 6519 * connections after each CIS Established event. 6520 * 6521 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E 6522 * page 2566: 6523 * 6524 * If the Host issues this command before all the 6525 * HCI_LE_CIS_Established events from the previous use of the 6526 * command have been generated, the Controller shall return the 6527 * error code Command Disallowed (0x0C). 6528 * 6529 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E 6530 * page 2567: 6531 * 6532 * When the Controller receives the HCI_LE_Create_CIS command, the 6533 * Controller sends the HCI_Command_Status event to the Host. An 6534 * HCI_LE_CIS_Established event will be generated for each CIS when it 6535 * is established or if it is disconnected or considered lost before 6536 * being established; until all the events are generated, the command 6537 * remains pending. 6538 */ 6539 6540 hci_dev_lock(hdev); 6541 6542 rcu_read_lock(); 6543 6544 /* Wait until previous Create CIS has completed */ 6545 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) { 6546 if (test_bit(HCI_CONN_CREATE_CIS, &conn->flags)) 6547 goto done; 6548 } 6549 6550 /* Find CIG with all CIS ready */ 6551 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) { 6552 struct hci_conn *link; 6553 6554 if (hci_conn_check_create_cis(conn)) 6555 continue; 6556 6557 cig = conn->iso_qos.ucast.cig; 6558 6559 list_for_each_entry_rcu(link, &hdev->conn_hash.list, list) { 6560 if (hci_conn_check_create_cis(link) > 0 && 6561 link->iso_qos.ucast.cig == cig && 6562 link->state != BT_CONNECTED) { 6563 cig = BT_ISO_QOS_CIG_UNSET; 6564 break; 6565 } 6566 } 6567 6568 if (cig != BT_ISO_QOS_CIG_UNSET) 6569 break; 6570 } 6571 6572 if (cig == BT_ISO_QOS_CIG_UNSET) 6573 goto done; 6574 6575 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) { 6576 struct hci_cis *cis = &cmd->cis[aux_num_cis]; 6577 6578 if (hci_conn_check_create_cis(conn) || 6579 conn->iso_qos.ucast.cig != cig) 6580 continue; 6581 6582 set_bit(HCI_CONN_CREATE_CIS, &conn->flags); 6583 cis->acl_handle = cpu_to_le16(conn->parent->handle); 6584 cis->cis_handle = cpu_to_le16(conn->handle); 6585 aux_num_cis++; 6586 6587 if (aux_num_cis >= cmd->num_cis) 6588 break; 6589 } 6590 cmd->num_cis = aux_num_cis; 6591 6592 done: 6593 rcu_read_unlock(); 6594 6595 hci_dev_unlock(hdev); 6596 6597 if (!aux_num_cis) 6598 return 0; 6599 6600 /* Wait for HCI_LE_CIS_Established */ 6601 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CIS, 6602 struct_size(cmd, cis, cmd->num_cis), 6603 cmd, HCI_EVT_LE_CIS_ESTABLISHED, 6604 conn->conn_timeout, NULL); 6605 } 6606 6607 int hci_le_remove_cig_sync(struct hci_dev *hdev, u8 handle) 6608 { 6609 struct hci_cp_le_remove_cig cp; 6610 6611 memset(&cp, 0, sizeof(cp)); 6612 cp.cig_id = handle; 6613 6614 return __hci_cmd_sync_status(hdev, HCI_OP_LE_REMOVE_CIG, sizeof(cp), 6615 &cp, HCI_CMD_TIMEOUT); 6616 } 6617 6618 int hci_le_big_terminate_sync(struct hci_dev *hdev, u8 handle) 6619 { 6620 struct hci_cp_le_big_term_sync cp; 6621 6622 memset(&cp, 0, sizeof(cp)); 6623 cp.handle = handle; 6624 6625 return __hci_cmd_sync_status(hdev, HCI_OP_LE_BIG_TERM_SYNC, 6626 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6627 } 6628 6629 int hci_le_pa_terminate_sync(struct hci_dev *hdev, u16 handle) 6630 { 6631 struct hci_cp_le_pa_term_sync cp; 6632 6633 memset(&cp, 0, sizeof(cp)); 6634 cp.handle = cpu_to_le16(handle); 6635 6636 return __hci_cmd_sync_status(hdev, HCI_OP_LE_PA_TERM_SYNC, 6637 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6638 } 6639 6640 int hci_get_random_address(struct hci_dev *hdev, bool require_privacy, 6641 bool use_rpa, struct adv_info *adv_instance, 6642 u8 *own_addr_type, bdaddr_t *rand_addr) 6643 { 6644 int err; 6645 6646 bacpy(rand_addr, BDADDR_ANY); 6647 6648 /* If privacy is enabled use a resolvable private address. If 6649 * current RPA has expired then generate a new one. 6650 */ 6651 if (use_rpa) { 6652 /* If Controller supports LL Privacy use own address type is 6653 * 0x03 6654 */ 6655 if (use_ll_privacy(hdev)) 6656 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED; 6657 else 6658 *own_addr_type = ADDR_LE_DEV_RANDOM; 6659 6660 if (adv_instance) { 6661 if (adv_rpa_valid(adv_instance)) 6662 return 0; 6663 } else { 6664 if (rpa_valid(hdev)) 6665 return 0; 6666 } 6667 6668 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); 6669 if (err < 0) { 6670 bt_dev_err(hdev, "failed to generate new RPA"); 6671 return err; 6672 } 6673 6674 bacpy(rand_addr, &hdev->rpa); 6675 6676 return 0; 6677 } 6678 6679 /* In case of required privacy without resolvable private address, 6680 * use an non-resolvable private address. This is useful for 6681 * non-connectable advertising. 6682 */ 6683 if (require_privacy) { 6684 bdaddr_t nrpa; 6685 6686 while (true) { 6687 /* The non-resolvable private address is generated 6688 * from random six bytes with the two most significant 6689 * bits cleared. 6690 */ 6691 get_random_bytes(&nrpa, 6); 6692 nrpa.b[5] &= 0x3f; 6693 6694 /* The non-resolvable private address shall not be 6695 * equal to the public address. 6696 */ 6697 if (bacmp(&hdev->bdaddr, &nrpa)) 6698 break; 6699 } 6700 6701 *own_addr_type = ADDR_LE_DEV_RANDOM; 6702 bacpy(rand_addr, &nrpa); 6703 6704 return 0; 6705 } 6706 6707 /* No privacy so use a public address. */ 6708 *own_addr_type = ADDR_LE_DEV_PUBLIC; 6709 6710 return 0; 6711 } 6712 6713 static int _update_adv_data_sync(struct hci_dev *hdev, void *data) 6714 { 6715 u8 instance = PTR_UINT(data); 6716 6717 return hci_update_adv_data_sync(hdev, instance); 6718 } 6719 6720 int hci_update_adv_data(struct hci_dev *hdev, u8 instance) 6721 { 6722 return hci_cmd_sync_queue(hdev, _update_adv_data_sync, 6723 UINT_PTR(instance), NULL); 6724 } 6725 6726 static int hci_acl_create_conn_sync(struct hci_dev *hdev, void *data) 6727 { 6728 struct hci_conn *conn = data; 6729 struct inquiry_entry *ie; 6730 struct hci_cp_create_conn cp; 6731 int err; 6732 6733 if (!hci_conn_valid(hdev, conn)) 6734 return -ECANCELED; 6735 6736 /* Many controllers disallow HCI Create Connection while it is doing 6737 * HCI Inquiry. So we cancel the Inquiry first before issuing HCI Create 6738 * Connection. This may cause the MGMT discovering state to become false 6739 * without user space's request but it is okay since the MGMT Discovery 6740 * APIs do not promise that discovery should be done forever. Instead, 6741 * the user space monitors the status of MGMT discovering and it may 6742 * request for discovery again when this flag becomes false. 6743 */ 6744 if (test_bit(HCI_INQUIRY, &hdev->flags)) { 6745 err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL, 0, 6746 NULL, HCI_CMD_TIMEOUT); 6747 if (err) 6748 bt_dev_warn(hdev, "Failed to cancel inquiry %d", err); 6749 } 6750 6751 conn->state = BT_CONNECT; 6752 conn->out = true; 6753 conn->role = HCI_ROLE_MASTER; 6754 6755 conn->attempt++; 6756 6757 conn->link_policy = hdev->link_policy; 6758 6759 memset(&cp, 0, sizeof(cp)); 6760 bacpy(&cp.bdaddr, &conn->dst); 6761 cp.pscan_rep_mode = 0x02; 6762 6763 ie = hci_inquiry_cache_lookup(hdev, &conn->dst); 6764 if (ie) { 6765 if (inquiry_entry_age(ie) <= INQUIRY_ENTRY_AGE_MAX) { 6766 cp.pscan_rep_mode = ie->data.pscan_rep_mode; 6767 cp.pscan_mode = ie->data.pscan_mode; 6768 cp.clock_offset = ie->data.clock_offset | 6769 cpu_to_le16(0x8000); 6770 } 6771 6772 memcpy(conn->dev_class, ie->data.dev_class, 3); 6773 } 6774 6775 cp.pkt_type = cpu_to_le16(conn->pkt_type); 6776 if (lmp_rswitch_capable(hdev) && !(hdev->link_mode & HCI_LM_MASTER)) 6777 cp.role_switch = 0x01; 6778 else 6779 cp.role_switch = 0x00; 6780 6781 return __hci_cmd_sync_status_sk(hdev, HCI_OP_CREATE_CONN, 6782 sizeof(cp), &cp, 6783 HCI_EV_CONN_COMPLETE, 6784 conn->conn_timeout, NULL); 6785 } 6786 6787 int hci_connect_acl_sync(struct hci_dev *hdev, struct hci_conn *conn) 6788 { 6789 return hci_cmd_sync_queue_once(hdev, hci_acl_create_conn_sync, conn, 6790 NULL); 6791 } 6792 6793 static void create_le_conn_complete(struct hci_dev *hdev, void *data, int err) 6794 { 6795 struct hci_conn *conn = data; 6796 6797 bt_dev_dbg(hdev, "err %d", err); 6798 6799 if (err == -ECANCELED) 6800 return; 6801 6802 hci_dev_lock(hdev); 6803 6804 if (!hci_conn_valid(hdev, conn)) 6805 goto done; 6806 6807 if (!err) { 6808 hci_connect_le_scan_cleanup(conn, 0x00); 6809 goto done; 6810 } 6811 6812 /* Check if connection is still pending */ 6813 if (conn != hci_lookup_le_connect(hdev)) 6814 goto done; 6815 6816 /* Flush to make sure we send create conn cancel command if needed */ 6817 flush_delayed_work(&conn->le_conn_timeout); 6818 hci_conn_failed(conn, bt_status(err)); 6819 6820 done: 6821 hci_dev_unlock(hdev); 6822 } 6823 6824 int hci_connect_le_sync(struct hci_dev *hdev, struct hci_conn *conn) 6825 { 6826 return hci_cmd_sync_queue_once(hdev, hci_le_create_conn_sync, conn, 6827 create_le_conn_complete); 6828 } 6829 6830 int hci_cancel_connect_sync(struct hci_dev *hdev, struct hci_conn *conn) 6831 { 6832 if (conn->state != BT_OPEN) 6833 return -EINVAL; 6834 6835 switch (conn->type) { 6836 case ACL_LINK: 6837 return !hci_cmd_sync_dequeue_once(hdev, 6838 hci_acl_create_conn_sync, 6839 conn, NULL); 6840 case LE_LINK: 6841 return !hci_cmd_sync_dequeue_once(hdev, hci_le_create_conn_sync, 6842 conn, create_le_conn_complete); 6843 } 6844 6845 return -ENOENT; 6846 } 6847 6848 int hci_le_conn_update_sync(struct hci_dev *hdev, struct hci_conn *conn, 6849 struct hci_conn_params *params) 6850 { 6851 struct hci_cp_le_conn_update cp; 6852 6853 memset(&cp, 0, sizeof(cp)); 6854 cp.handle = cpu_to_le16(conn->handle); 6855 cp.conn_interval_min = cpu_to_le16(params->conn_min_interval); 6856 cp.conn_interval_max = cpu_to_le16(params->conn_max_interval); 6857 cp.conn_latency = cpu_to_le16(params->conn_latency); 6858 cp.supervision_timeout = cpu_to_le16(params->supervision_timeout); 6859 cp.min_ce_len = cpu_to_le16(0x0000); 6860 cp.max_ce_len = cpu_to_le16(0x0000); 6861 6862 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CONN_UPDATE, 6863 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6864 } 6865