1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * BlueZ - Bluetooth protocol stack for Linux 4 * 5 * Copyright (C) 2021 Intel Corporation 6 */ 7 8 #include <linux/property.h> 9 10 #include <net/bluetooth/bluetooth.h> 11 #include <net/bluetooth/hci_core.h> 12 #include <net/bluetooth/mgmt.h> 13 14 #include "hci_request.h" 15 #include "hci_codec.h" 16 #include "hci_debugfs.h" 17 #include "smp.h" 18 #include "eir.h" 19 #include "msft.h" 20 #include "aosp.h" 21 #include "leds.h" 22 23 static void hci_cmd_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode, 24 struct sk_buff *skb) 25 { 26 bt_dev_dbg(hdev, "result 0x%2.2x", result); 27 28 if (hdev->req_status != HCI_REQ_PEND) 29 return; 30 31 hdev->req_result = result; 32 hdev->req_status = HCI_REQ_DONE; 33 34 if (skb) { 35 struct sock *sk = hci_skb_sk(skb); 36 37 /* Drop sk reference if set */ 38 if (sk) 39 sock_put(sk); 40 41 hdev->req_skb = skb_get(skb); 42 } 43 44 wake_up_interruptible(&hdev->req_wait_q); 45 } 46 47 static struct sk_buff *hci_cmd_sync_alloc(struct hci_dev *hdev, u16 opcode, 48 u32 plen, const void *param, 49 struct sock *sk) 50 { 51 int len = HCI_COMMAND_HDR_SIZE + plen; 52 struct hci_command_hdr *hdr; 53 struct sk_buff *skb; 54 55 skb = bt_skb_alloc(len, GFP_ATOMIC); 56 if (!skb) 57 return NULL; 58 59 hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE); 60 hdr->opcode = cpu_to_le16(opcode); 61 hdr->plen = plen; 62 63 if (plen) 64 skb_put_data(skb, param, plen); 65 66 bt_dev_dbg(hdev, "skb len %d", skb->len); 67 68 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; 69 hci_skb_opcode(skb) = opcode; 70 71 /* Grab a reference if command needs to be associated with a sock (e.g. 72 * likely mgmt socket that initiated the command). 73 */ 74 if (sk) { 75 hci_skb_sk(skb) = sk; 76 sock_hold(sk); 77 } 78 79 return skb; 80 } 81 82 static void hci_cmd_sync_add(struct hci_request *req, u16 opcode, u32 plen, 83 const void *param, u8 event, struct sock *sk) 84 { 85 struct hci_dev *hdev = req->hdev; 86 struct sk_buff *skb; 87 88 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); 89 90 /* If an error occurred during request building, there is no point in 91 * queueing the HCI command. We can simply return. 92 */ 93 if (req->err) 94 return; 95 96 skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, sk); 97 if (!skb) { 98 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)", 99 opcode); 100 req->err = -ENOMEM; 101 return; 102 } 103 104 if (skb_queue_empty(&req->cmd_q)) 105 bt_cb(skb)->hci.req_flags |= HCI_REQ_START; 106 107 hci_skb_event(skb) = event; 108 109 skb_queue_tail(&req->cmd_q, skb); 110 } 111 112 static int hci_cmd_sync_run(struct hci_request *req) 113 { 114 struct hci_dev *hdev = req->hdev; 115 struct sk_buff *skb; 116 unsigned long flags; 117 118 bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q)); 119 120 /* If an error occurred during request building, remove all HCI 121 * commands queued on the HCI request queue. 122 */ 123 if (req->err) { 124 skb_queue_purge(&req->cmd_q); 125 return req->err; 126 } 127 128 /* Do not allow empty requests */ 129 if (skb_queue_empty(&req->cmd_q)) 130 return -ENODATA; 131 132 skb = skb_peek_tail(&req->cmd_q); 133 bt_cb(skb)->hci.req_complete_skb = hci_cmd_sync_complete; 134 bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB; 135 136 spin_lock_irqsave(&hdev->cmd_q.lock, flags); 137 skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q); 138 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); 139 140 queue_work(hdev->workqueue, &hdev->cmd_work); 141 142 return 0; 143 } 144 145 /* This function requires the caller holds hdev->req_lock. */ 146 struct sk_buff *__hci_cmd_sync_sk(struct hci_dev *hdev, u16 opcode, u32 plen, 147 const void *param, u8 event, u32 timeout, 148 struct sock *sk) 149 { 150 struct hci_request req; 151 struct sk_buff *skb; 152 int err = 0; 153 154 bt_dev_dbg(hdev, "Opcode 0x%4x", opcode); 155 156 hci_req_init(&req, hdev); 157 158 hci_cmd_sync_add(&req, opcode, plen, param, event, sk); 159 160 hdev->req_status = HCI_REQ_PEND; 161 162 err = hci_cmd_sync_run(&req); 163 if (err < 0) 164 return ERR_PTR(err); 165 166 err = wait_event_interruptible_timeout(hdev->req_wait_q, 167 hdev->req_status != HCI_REQ_PEND, 168 timeout); 169 170 if (err == -ERESTARTSYS) 171 return ERR_PTR(-EINTR); 172 173 switch (hdev->req_status) { 174 case HCI_REQ_DONE: 175 err = -bt_to_errno(hdev->req_result); 176 break; 177 178 case HCI_REQ_CANCELED: 179 err = -hdev->req_result; 180 break; 181 182 default: 183 err = -ETIMEDOUT; 184 break; 185 } 186 187 hdev->req_status = 0; 188 hdev->req_result = 0; 189 skb = hdev->req_skb; 190 hdev->req_skb = NULL; 191 192 bt_dev_dbg(hdev, "end: err %d", err); 193 194 if (err < 0) { 195 kfree_skb(skb); 196 return ERR_PTR(err); 197 } 198 199 return skb; 200 } 201 EXPORT_SYMBOL(__hci_cmd_sync_sk); 202 203 /* This function requires the caller holds hdev->req_lock. */ 204 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 205 const void *param, u32 timeout) 206 { 207 return __hci_cmd_sync_sk(hdev, opcode, plen, param, 0, timeout, NULL); 208 } 209 EXPORT_SYMBOL(__hci_cmd_sync); 210 211 /* Send HCI command and wait for command complete event */ 212 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 213 const void *param, u32 timeout) 214 { 215 struct sk_buff *skb; 216 217 if (!test_bit(HCI_UP, &hdev->flags)) 218 return ERR_PTR(-ENETDOWN); 219 220 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); 221 222 hci_req_sync_lock(hdev); 223 skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout); 224 hci_req_sync_unlock(hdev); 225 226 return skb; 227 } 228 EXPORT_SYMBOL(hci_cmd_sync); 229 230 /* This function requires the caller holds hdev->req_lock. */ 231 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen, 232 const void *param, u8 event, u32 timeout) 233 { 234 return __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, 235 NULL); 236 } 237 EXPORT_SYMBOL(__hci_cmd_sync_ev); 238 239 /* This function requires the caller holds hdev->req_lock. */ 240 int __hci_cmd_sync_status_sk(struct hci_dev *hdev, u16 opcode, u32 plen, 241 const void *param, u8 event, u32 timeout, 242 struct sock *sk) 243 { 244 struct sk_buff *skb; 245 u8 status; 246 247 skb = __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, sk); 248 if (IS_ERR(skb)) { 249 if (!event) 250 bt_dev_err(hdev, "Opcode 0x%4x failed: %ld", opcode, 251 PTR_ERR(skb)); 252 return PTR_ERR(skb); 253 } 254 255 /* If command return a status event skb will be set to NULL as there are 256 * no parameters, in case of failure IS_ERR(skb) would have be set to 257 * the actual error would be found with PTR_ERR(skb). 258 */ 259 if (!skb) 260 return 0; 261 262 status = skb->data[0]; 263 264 kfree_skb(skb); 265 266 return status; 267 } 268 EXPORT_SYMBOL(__hci_cmd_sync_status_sk); 269 270 int __hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen, 271 const void *param, u32 timeout) 272 { 273 return __hci_cmd_sync_status_sk(hdev, opcode, plen, param, 0, timeout, 274 NULL); 275 } 276 EXPORT_SYMBOL(__hci_cmd_sync_status); 277 278 static void hci_cmd_sync_work(struct work_struct *work) 279 { 280 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_work); 281 282 bt_dev_dbg(hdev, ""); 283 284 /* Dequeue all entries and run them */ 285 while (1) { 286 struct hci_cmd_sync_work_entry *entry; 287 288 mutex_lock(&hdev->cmd_sync_work_lock); 289 entry = list_first_entry_or_null(&hdev->cmd_sync_work_list, 290 struct hci_cmd_sync_work_entry, 291 list); 292 if (entry) 293 list_del(&entry->list); 294 mutex_unlock(&hdev->cmd_sync_work_lock); 295 296 if (!entry) 297 break; 298 299 bt_dev_dbg(hdev, "entry %p", entry); 300 301 if (entry->func) { 302 int err; 303 304 hci_req_sync_lock(hdev); 305 err = entry->func(hdev, entry->data); 306 if (entry->destroy) 307 entry->destroy(hdev, entry->data, err); 308 hci_req_sync_unlock(hdev); 309 } 310 311 kfree(entry); 312 } 313 } 314 315 static void hci_cmd_sync_cancel_work(struct work_struct *work) 316 { 317 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_cancel_work); 318 319 cancel_delayed_work_sync(&hdev->cmd_timer); 320 cancel_delayed_work_sync(&hdev->ncmd_timer); 321 atomic_set(&hdev->cmd_cnt, 1); 322 323 wake_up_interruptible(&hdev->req_wait_q); 324 } 325 326 static int hci_scan_disable_sync(struct hci_dev *hdev); 327 static int scan_disable_sync(struct hci_dev *hdev, void *data) 328 { 329 return hci_scan_disable_sync(hdev); 330 } 331 332 static int hci_inquiry_sync(struct hci_dev *hdev, u8 length); 333 static int interleaved_inquiry_sync(struct hci_dev *hdev, void *data) 334 { 335 return hci_inquiry_sync(hdev, DISCOV_INTERLEAVED_INQUIRY_LEN); 336 } 337 338 static void le_scan_disable(struct work_struct *work) 339 { 340 struct hci_dev *hdev = container_of(work, struct hci_dev, 341 le_scan_disable.work); 342 int status; 343 344 bt_dev_dbg(hdev, ""); 345 hci_dev_lock(hdev); 346 347 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 348 goto _return; 349 350 cancel_delayed_work(&hdev->le_scan_restart); 351 352 status = hci_cmd_sync_queue(hdev, scan_disable_sync, NULL, NULL); 353 if (status) { 354 bt_dev_err(hdev, "failed to disable LE scan: %d", status); 355 goto _return; 356 } 357 358 hdev->discovery.scan_start = 0; 359 360 /* If we were running LE only scan, change discovery state. If 361 * we were running both LE and BR/EDR inquiry simultaneously, 362 * and BR/EDR inquiry is already finished, stop discovery, 363 * otherwise BR/EDR inquiry will stop discovery when finished. 364 * If we will resolve remote device name, do not change 365 * discovery state. 366 */ 367 368 if (hdev->discovery.type == DISCOV_TYPE_LE) 369 goto discov_stopped; 370 371 if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED) 372 goto _return; 373 374 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) { 375 if (!test_bit(HCI_INQUIRY, &hdev->flags) && 376 hdev->discovery.state != DISCOVERY_RESOLVING) 377 goto discov_stopped; 378 379 goto _return; 380 } 381 382 status = hci_cmd_sync_queue(hdev, interleaved_inquiry_sync, NULL, NULL); 383 if (status) { 384 bt_dev_err(hdev, "inquiry failed: status %d", status); 385 goto discov_stopped; 386 } 387 388 goto _return; 389 390 discov_stopped: 391 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 392 393 _return: 394 hci_dev_unlock(hdev); 395 } 396 397 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val, 398 u8 filter_dup); 399 static int hci_le_scan_restart_sync(struct hci_dev *hdev) 400 { 401 /* If controller is not scanning we are done. */ 402 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 403 return 0; 404 405 if (hdev->scanning_paused) { 406 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 407 return 0; 408 } 409 410 hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00); 411 return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, 412 LE_SCAN_FILTER_DUP_ENABLE); 413 } 414 415 static int le_scan_restart_sync(struct hci_dev *hdev, void *data) 416 { 417 return hci_le_scan_restart_sync(hdev); 418 } 419 420 static void le_scan_restart(struct work_struct *work) 421 { 422 struct hci_dev *hdev = container_of(work, struct hci_dev, 423 le_scan_restart.work); 424 unsigned long timeout, duration, scan_start, now; 425 int status; 426 427 bt_dev_dbg(hdev, ""); 428 429 hci_dev_lock(hdev); 430 431 status = hci_cmd_sync_queue(hdev, le_scan_restart_sync, NULL, NULL); 432 if (status) { 433 bt_dev_err(hdev, "failed to restart LE scan: status %d", 434 status); 435 goto unlock; 436 } 437 438 if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) || 439 !hdev->discovery.scan_start) 440 goto unlock; 441 442 /* When the scan was started, hdev->le_scan_disable has been queued 443 * after duration from scan_start. During scan restart this job 444 * has been canceled, and we need to queue it again after proper 445 * timeout, to make sure that scan does not run indefinitely. 446 */ 447 duration = hdev->discovery.scan_duration; 448 scan_start = hdev->discovery.scan_start; 449 now = jiffies; 450 if (now - scan_start <= duration) { 451 int elapsed; 452 453 if (now >= scan_start) 454 elapsed = now - scan_start; 455 else 456 elapsed = ULONG_MAX - scan_start + now; 457 458 timeout = duration - elapsed; 459 } else { 460 timeout = 0; 461 } 462 463 queue_delayed_work(hdev->req_workqueue, 464 &hdev->le_scan_disable, timeout); 465 466 unlock: 467 hci_dev_unlock(hdev); 468 } 469 470 static int reenable_adv_sync(struct hci_dev *hdev, void *data) 471 { 472 bt_dev_dbg(hdev, ""); 473 474 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) && 475 list_empty(&hdev->adv_instances)) 476 return 0; 477 478 if (hdev->cur_adv_instance) { 479 return hci_schedule_adv_instance_sync(hdev, 480 hdev->cur_adv_instance, 481 true); 482 } else { 483 if (ext_adv_capable(hdev)) { 484 hci_start_ext_adv_sync(hdev, 0x00); 485 } else { 486 hci_update_adv_data_sync(hdev, 0x00); 487 hci_update_scan_rsp_data_sync(hdev, 0x00); 488 hci_enable_advertising_sync(hdev); 489 } 490 } 491 492 return 0; 493 } 494 495 static void reenable_adv(struct work_struct *work) 496 { 497 struct hci_dev *hdev = container_of(work, struct hci_dev, 498 reenable_adv_work); 499 int status; 500 501 bt_dev_dbg(hdev, ""); 502 503 hci_dev_lock(hdev); 504 505 status = hci_cmd_sync_queue(hdev, reenable_adv_sync, NULL, NULL); 506 if (status) 507 bt_dev_err(hdev, "failed to reenable ADV: %d", status); 508 509 hci_dev_unlock(hdev); 510 } 511 512 static void cancel_adv_timeout(struct hci_dev *hdev) 513 { 514 if (hdev->adv_instance_timeout) { 515 hdev->adv_instance_timeout = 0; 516 cancel_delayed_work(&hdev->adv_instance_expire); 517 } 518 } 519 520 /* For a single instance: 521 * - force == true: The instance will be removed even when its remaining 522 * lifetime is not zero. 523 * - force == false: the instance will be deactivated but kept stored unless 524 * the remaining lifetime is zero. 525 * 526 * For instance == 0x00: 527 * - force == true: All instances will be removed regardless of their timeout 528 * setting. 529 * - force == false: Only instances that have a timeout will be removed. 530 */ 531 int hci_clear_adv_instance_sync(struct hci_dev *hdev, struct sock *sk, 532 u8 instance, bool force) 533 { 534 struct adv_info *adv_instance, *n, *next_instance = NULL; 535 int err; 536 u8 rem_inst; 537 538 /* Cancel any timeout concerning the removed instance(s). */ 539 if (!instance || hdev->cur_adv_instance == instance) 540 cancel_adv_timeout(hdev); 541 542 /* Get the next instance to advertise BEFORE we remove 543 * the current one. This can be the same instance again 544 * if there is only one instance. 545 */ 546 if (instance && hdev->cur_adv_instance == instance) 547 next_instance = hci_get_next_instance(hdev, instance); 548 549 if (instance == 0x00) { 550 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, 551 list) { 552 if (!(force || adv_instance->timeout)) 553 continue; 554 555 rem_inst = adv_instance->instance; 556 err = hci_remove_adv_instance(hdev, rem_inst); 557 if (!err) 558 mgmt_advertising_removed(sk, hdev, rem_inst); 559 } 560 } else { 561 adv_instance = hci_find_adv_instance(hdev, instance); 562 563 if (force || (adv_instance && adv_instance->timeout && 564 !adv_instance->remaining_time)) { 565 /* Don't advertise a removed instance. */ 566 if (next_instance && 567 next_instance->instance == instance) 568 next_instance = NULL; 569 570 err = hci_remove_adv_instance(hdev, instance); 571 if (!err) 572 mgmt_advertising_removed(sk, hdev, instance); 573 } 574 } 575 576 if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING)) 577 return 0; 578 579 if (next_instance && !ext_adv_capable(hdev)) 580 return hci_schedule_adv_instance_sync(hdev, 581 next_instance->instance, 582 false); 583 584 return 0; 585 } 586 587 static int adv_timeout_expire_sync(struct hci_dev *hdev, void *data) 588 { 589 u8 instance = *(u8 *)data; 590 591 kfree(data); 592 593 hci_clear_adv_instance_sync(hdev, NULL, instance, false); 594 595 if (list_empty(&hdev->adv_instances)) 596 return hci_disable_advertising_sync(hdev); 597 598 return 0; 599 } 600 601 static void adv_timeout_expire(struct work_struct *work) 602 { 603 u8 *inst_ptr; 604 struct hci_dev *hdev = container_of(work, struct hci_dev, 605 adv_instance_expire.work); 606 607 bt_dev_dbg(hdev, ""); 608 609 hci_dev_lock(hdev); 610 611 hdev->adv_instance_timeout = 0; 612 613 if (hdev->cur_adv_instance == 0x00) 614 goto unlock; 615 616 inst_ptr = kmalloc(1, GFP_KERNEL); 617 if (!inst_ptr) 618 goto unlock; 619 620 *inst_ptr = hdev->cur_adv_instance; 621 hci_cmd_sync_queue(hdev, adv_timeout_expire_sync, inst_ptr, NULL); 622 623 unlock: 624 hci_dev_unlock(hdev); 625 } 626 627 void hci_cmd_sync_init(struct hci_dev *hdev) 628 { 629 INIT_WORK(&hdev->cmd_sync_work, hci_cmd_sync_work); 630 INIT_LIST_HEAD(&hdev->cmd_sync_work_list); 631 mutex_init(&hdev->cmd_sync_work_lock); 632 mutex_init(&hdev->unregister_lock); 633 634 INIT_WORK(&hdev->cmd_sync_cancel_work, hci_cmd_sync_cancel_work); 635 INIT_WORK(&hdev->reenable_adv_work, reenable_adv); 636 INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable); 637 INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart); 638 INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire); 639 } 640 641 void hci_cmd_sync_clear(struct hci_dev *hdev) 642 { 643 struct hci_cmd_sync_work_entry *entry, *tmp; 644 645 cancel_work_sync(&hdev->cmd_sync_work); 646 cancel_work_sync(&hdev->reenable_adv_work); 647 648 mutex_lock(&hdev->cmd_sync_work_lock); 649 list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) { 650 if (entry->destroy) 651 entry->destroy(hdev, entry->data, -ECANCELED); 652 653 list_del(&entry->list); 654 kfree(entry); 655 } 656 mutex_unlock(&hdev->cmd_sync_work_lock); 657 } 658 659 void __hci_cmd_sync_cancel(struct hci_dev *hdev, int err) 660 { 661 bt_dev_dbg(hdev, "err 0x%2.2x", err); 662 663 if (hdev->req_status == HCI_REQ_PEND) { 664 hdev->req_result = err; 665 hdev->req_status = HCI_REQ_CANCELED; 666 667 cancel_delayed_work_sync(&hdev->cmd_timer); 668 cancel_delayed_work_sync(&hdev->ncmd_timer); 669 atomic_set(&hdev->cmd_cnt, 1); 670 671 wake_up_interruptible(&hdev->req_wait_q); 672 } 673 } 674 675 void hci_cmd_sync_cancel(struct hci_dev *hdev, int err) 676 { 677 bt_dev_dbg(hdev, "err 0x%2.2x", err); 678 679 if (hdev->req_status == HCI_REQ_PEND) { 680 hdev->req_result = err; 681 hdev->req_status = HCI_REQ_CANCELED; 682 683 queue_work(hdev->workqueue, &hdev->cmd_sync_cancel_work); 684 } 685 } 686 EXPORT_SYMBOL(hci_cmd_sync_cancel); 687 688 /* Submit HCI command to be run in as cmd_sync_work: 689 * 690 * - hdev must _not_ be unregistered 691 */ 692 int hci_cmd_sync_submit(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 693 void *data, hci_cmd_sync_work_destroy_t destroy) 694 { 695 struct hci_cmd_sync_work_entry *entry; 696 int err = 0; 697 698 mutex_lock(&hdev->unregister_lock); 699 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 700 err = -ENODEV; 701 goto unlock; 702 } 703 704 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 705 if (!entry) { 706 err = -ENOMEM; 707 goto unlock; 708 } 709 entry->func = func; 710 entry->data = data; 711 entry->destroy = destroy; 712 713 mutex_lock(&hdev->cmd_sync_work_lock); 714 list_add_tail(&entry->list, &hdev->cmd_sync_work_list); 715 mutex_unlock(&hdev->cmd_sync_work_lock); 716 717 queue_work(hdev->req_workqueue, &hdev->cmd_sync_work); 718 719 unlock: 720 mutex_unlock(&hdev->unregister_lock); 721 return err; 722 } 723 EXPORT_SYMBOL(hci_cmd_sync_submit); 724 725 /* Queue HCI command: 726 * 727 * - hdev must be running 728 */ 729 int hci_cmd_sync_queue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 730 void *data, hci_cmd_sync_work_destroy_t destroy) 731 { 732 /* Only queue command if hdev is running which means it had been opened 733 * and is either on init phase or is already up. 734 */ 735 if (!test_bit(HCI_RUNNING, &hdev->flags)) 736 return -ENETDOWN; 737 738 return hci_cmd_sync_submit(hdev, func, data, destroy); 739 } 740 EXPORT_SYMBOL(hci_cmd_sync_queue); 741 742 int hci_update_eir_sync(struct hci_dev *hdev) 743 { 744 struct hci_cp_write_eir cp; 745 746 bt_dev_dbg(hdev, ""); 747 748 if (!hdev_is_powered(hdev)) 749 return 0; 750 751 if (!lmp_ext_inq_capable(hdev)) 752 return 0; 753 754 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 755 return 0; 756 757 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 758 return 0; 759 760 memset(&cp, 0, sizeof(cp)); 761 762 eir_create(hdev, cp.data); 763 764 if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0) 765 return 0; 766 767 memcpy(hdev->eir, cp.data, sizeof(cp.data)); 768 769 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp, 770 HCI_CMD_TIMEOUT); 771 } 772 773 static u8 get_service_classes(struct hci_dev *hdev) 774 { 775 struct bt_uuid *uuid; 776 u8 val = 0; 777 778 list_for_each_entry(uuid, &hdev->uuids, list) 779 val |= uuid->svc_hint; 780 781 return val; 782 } 783 784 int hci_update_class_sync(struct hci_dev *hdev) 785 { 786 u8 cod[3]; 787 788 bt_dev_dbg(hdev, ""); 789 790 if (!hdev_is_powered(hdev)) 791 return 0; 792 793 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 794 return 0; 795 796 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 797 return 0; 798 799 cod[0] = hdev->minor_class; 800 cod[1] = hdev->major_class; 801 cod[2] = get_service_classes(hdev); 802 803 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) 804 cod[1] |= 0x20; 805 806 if (memcmp(cod, hdev->dev_class, 3) == 0) 807 return 0; 808 809 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CLASS_OF_DEV, 810 sizeof(cod), cod, HCI_CMD_TIMEOUT); 811 } 812 813 static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable) 814 { 815 /* If there is no connection we are OK to advertise. */ 816 if (hci_conn_num(hdev, LE_LINK) == 0) 817 return true; 818 819 /* Check le_states if there is any connection in peripheral role. */ 820 if (hdev->conn_hash.le_num_peripheral > 0) { 821 /* Peripheral connection state and non connectable mode 822 * bit 20. 823 */ 824 if (!connectable && !(hdev->le_states[2] & 0x10)) 825 return false; 826 827 /* Peripheral connection state and connectable mode bit 38 828 * and scannable bit 21. 829 */ 830 if (connectable && (!(hdev->le_states[4] & 0x40) || 831 !(hdev->le_states[2] & 0x20))) 832 return false; 833 } 834 835 /* Check le_states if there is any connection in central role. */ 836 if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) { 837 /* Central connection state and non connectable mode bit 18. */ 838 if (!connectable && !(hdev->le_states[2] & 0x02)) 839 return false; 840 841 /* Central connection state and connectable mode bit 35 and 842 * scannable 19. 843 */ 844 if (connectable && (!(hdev->le_states[4] & 0x08) || 845 !(hdev->le_states[2] & 0x08))) 846 return false; 847 } 848 849 return true; 850 } 851 852 static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags) 853 { 854 /* If privacy is not enabled don't use RPA */ 855 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 856 return false; 857 858 /* If basic privacy mode is enabled use RPA */ 859 if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) 860 return true; 861 862 /* If limited privacy mode is enabled don't use RPA if we're 863 * both discoverable and bondable. 864 */ 865 if ((flags & MGMT_ADV_FLAG_DISCOV) && 866 hci_dev_test_flag(hdev, HCI_BONDABLE)) 867 return false; 868 869 /* We're neither bondable nor discoverable in the limited 870 * privacy mode, therefore use RPA. 871 */ 872 return true; 873 } 874 875 static int hci_set_random_addr_sync(struct hci_dev *hdev, bdaddr_t *rpa) 876 { 877 /* If we're advertising or initiating an LE connection we can't 878 * go ahead and change the random address at this time. This is 879 * because the eventual initiator address used for the 880 * subsequently created connection will be undefined (some 881 * controllers use the new address and others the one we had 882 * when the operation started). 883 * 884 * In this kind of scenario skip the update and let the random 885 * address be updated at the next cycle. 886 */ 887 if (hci_dev_test_flag(hdev, HCI_LE_ADV) || 888 hci_lookup_le_connect(hdev)) { 889 bt_dev_dbg(hdev, "Deferring random address update"); 890 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 891 return 0; 892 } 893 894 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RANDOM_ADDR, 895 6, rpa, HCI_CMD_TIMEOUT); 896 } 897 898 int hci_update_random_address_sync(struct hci_dev *hdev, bool require_privacy, 899 bool rpa, u8 *own_addr_type) 900 { 901 int err; 902 903 /* If privacy is enabled use a resolvable private address. If 904 * current RPA has expired or there is something else than 905 * the current RPA in use, then generate a new one. 906 */ 907 if (rpa) { 908 /* If Controller supports LL Privacy use own address type is 909 * 0x03 910 */ 911 if (use_ll_privacy(hdev)) 912 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED; 913 else 914 *own_addr_type = ADDR_LE_DEV_RANDOM; 915 916 /* Check if RPA is valid */ 917 if (rpa_valid(hdev)) 918 return 0; 919 920 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); 921 if (err < 0) { 922 bt_dev_err(hdev, "failed to generate new RPA"); 923 return err; 924 } 925 926 err = hci_set_random_addr_sync(hdev, &hdev->rpa); 927 if (err) 928 return err; 929 930 return 0; 931 } 932 933 /* In case of required privacy without resolvable private address, 934 * use an non-resolvable private address. This is useful for active 935 * scanning and non-connectable advertising. 936 */ 937 if (require_privacy) { 938 bdaddr_t nrpa; 939 940 while (true) { 941 /* The non-resolvable private address is generated 942 * from random six bytes with the two most significant 943 * bits cleared. 944 */ 945 get_random_bytes(&nrpa, 6); 946 nrpa.b[5] &= 0x3f; 947 948 /* The non-resolvable private address shall not be 949 * equal to the public address. 950 */ 951 if (bacmp(&hdev->bdaddr, &nrpa)) 952 break; 953 } 954 955 *own_addr_type = ADDR_LE_DEV_RANDOM; 956 957 return hci_set_random_addr_sync(hdev, &nrpa); 958 } 959 960 /* If forcing static address is in use or there is no public 961 * address use the static address as random address (but skip 962 * the HCI command if the current random address is already the 963 * static one. 964 * 965 * In case BR/EDR has been disabled on a dual-mode controller 966 * and a static address has been configured, then use that 967 * address instead of the public BR/EDR address. 968 */ 969 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 970 !bacmp(&hdev->bdaddr, BDADDR_ANY) || 971 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && 972 bacmp(&hdev->static_addr, BDADDR_ANY))) { 973 *own_addr_type = ADDR_LE_DEV_RANDOM; 974 if (bacmp(&hdev->static_addr, &hdev->random_addr)) 975 return hci_set_random_addr_sync(hdev, 976 &hdev->static_addr); 977 return 0; 978 } 979 980 /* Neither privacy nor static address is being used so use a 981 * public address. 982 */ 983 *own_addr_type = ADDR_LE_DEV_PUBLIC; 984 985 return 0; 986 } 987 988 static int hci_disable_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance) 989 { 990 struct hci_cp_le_set_ext_adv_enable *cp; 991 struct hci_cp_ext_adv_set *set; 992 u8 data[sizeof(*cp) + sizeof(*set) * 1]; 993 u8 size; 994 995 /* If request specifies an instance that doesn't exist, fail */ 996 if (instance > 0) { 997 struct adv_info *adv; 998 999 adv = hci_find_adv_instance(hdev, instance); 1000 if (!adv) 1001 return -EINVAL; 1002 1003 /* If not enabled there is nothing to do */ 1004 if (!adv->enabled) 1005 return 0; 1006 } 1007 1008 memset(data, 0, sizeof(data)); 1009 1010 cp = (void *)data; 1011 set = (void *)cp->data; 1012 1013 /* Instance 0x00 indicates all advertising instances will be disabled */ 1014 cp->num_of_sets = !!instance; 1015 cp->enable = 0x00; 1016 1017 set->handle = instance; 1018 1019 size = sizeof(*cp) + sizeof(*set) * cp->num_of_sets; 1020 1021 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, 1022 size, data, HCI_CMD_TIMEOUT); 1023 } 1024 1025 static int hci_set_adv_set_random_addr_sync(struct hci_dev *hdev, u8 instance, 1026 bdaddr_t *random_addr) 1027 { 1028 struct hci_cp_le_set_adv_set_rand_addr cp; 1029 int err; 1030 1031 if (!instance) { 1032 /* Instance 0x00 doesn't have an adv_info, instead it uses 1033 * hdev->random_addr to track its address so whenever it needs 1034 * to be updated this also set the random address since 1035 * hdev->random_addr is shared with scan state machine. 1036 */ 1037 err = hci_set_random_addr_sync(hdev, random_addr); 1038 if (err) 1039 return err; 1040 } 1041 1042 memset(&cp, 0, sizeof(cp)); 1043 1044 cp.handle = instance; 1045 bacpy(&cp.bdaddr, random_addr); 1046 1047 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_SET_RAND_ADDR, 1048 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1049 } 1050 1051 int hci_setup_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance) 1052 { 1053 struct hci_cp_le_set_ext_adv_params cp; 1054 bool connectable; 1055 u32 flags; 1056 bdaddr_t random_addr; 1057 u8 own_addr_type; 1058 int err; 1059 struct adv_info *adv; 1060 bool secondary_adv; 1061 1062 if (instance > 0) { 1063 adv = hci_find_adv_instance(hdev, instance); 1064 if (!adv) 1065 return -EINVAL; 1066 } else { 1067 adv = NULL; 1068 } 1069 1070 /* Updating parameters of an active instance will return a 1071 * Command Disallowed error, so we must first disable the 1072 * instance if it is active. 1073 */ 1074 if (adv && !adv->pending) { 1075 err = hci_disable_ext_adv_instance_sync(hdev, instance); 1076 if (err) 1077 return err; 1078 } 1079 1080 flags = hci_adv_instance_flags(hdev, instance); 1081 1082 /* If the "connectable" instance flag was not set, then choose between 1083 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. 1084 */ 1085 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || 1086 mgmt_get_connectable(hdev); 1087 1088 if (!is_advertising_allowed(hdev, connectable)) 1089 return -EPERM; 1090 1091 /* Set require_privacy to true only when non-connectable 1092 * advertising is used. In that case it is fine to use a 1093 * non-resolvable private address. 1094 */ 1095 err = hci_get_random_address(hdev, !connectable, 1096 adv_use_rpa(hdev, flags), adv, 1097 &own_addr_type, &random_addr); 1098 if (err < 0) 1099 return err; 1100 1101 memset(&cp, 0, sizeof(cp)); 1102 1103 if (adv) { 1104 hci_cpu_to_le24(adv->min_interval, cp.min_interval); 1105 hci_cpu_to_le24(adv->max_interval, cp.max_interval); 1106 cp.tx_power = adv->tx_power; 1107 } else { 1108 hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval); 1109 hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval); 1110 cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE; 1111 } 1112 1113 secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK); 1114 1115 if (connectable) { 1116 if (secondary_adv) 1117 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND); 1118 else 1119 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND); 1120 } else if (hci_adv_instance_is_scannable(hdev, instance) || 1121 (flags & MGMT_ADV_PARAM_SCAN_RSP)) { 1122 if (secondary_adv) 1123 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND); 1124 else 1125 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND); 1126 } else { 1127 if (secondary_adv) 1128 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND); 1129 else 1130 cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND); 1131 } 1132 1133 /* If Own_Address_Type equals 0x02 or 0x03, the Peer_Address parameter 1134 * contains the peer’s Identity Address and the Peer_Address_Type 1135 * parameter contains the peer’s Identity Type (i.e., 0x00 or 0x01). 1136 * These parameters are used to locate the corresponding local IRK in 1137 * the resolving list; this IRK is used to generate their own address 1138 * used in the advertisement. 1139 */ 1140 if (own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) 1141 hci_copy_identity_address(hdev, &cp.peer_addr, 1142 &cp.peer_addr_type); 1143 1144 cp.own_addr_type = own_addr_type; 1145 cp.channel_map = hdev->le_adv_channel_map; 1146 cp.handle = instance; 1147 1148 if (flags & MGMT_ADV_FLAG_SEC_2M) { 1149 cp.primary_phy = HCI_ADV_PHY_1M; 1150 cp.secondary_phy = HCI_ADV_PHY_2M; 1151 } else if (flags & MGMT_ADV_FLAG_SEC_CODED) { 1152 cp.primary_phy = HCI_ADV_PHY_CODED; 1153 cp.secondary_phy = HCI_ADV_PHY_CODED; 1154 } else { 1155 /* In all other cases use 1M */ 1156 cp.primary_phy = HCI_ADV_PHY_1M; 1157 cp.secondary_phy = HCI_ADV_PHY_1M; 1158 } 1159 1160 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS, 1161 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1162 if (err) 1163 return err; 1164 1165 if ((own_addr_type == ADDR_LE_DEV_RANDOM || 1166 own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) && 1167 bacmp(&random_addr, BDADDR_ANY)) { 1168 /* Check if random address need to be updated */ 1169 if (adv) { 1170 if (!bacmp(&random_addr, &adv->random_addr)) 1171 return 0; 1172 } else { 1173 if (!bacmp(&random_addr, &hdev->random_addr)) 1174 return 0; 1175 } 1176 1177 return hci_set_adv_set_random_addr_sync(hdev, instance, 1178 &random_addr); 1179 } 1180 1181 return 0; 1182 } 1183 1184 static int hci_set_ext_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 1185 { 1186 struct { 1187 struct hci_cp_le_set_ext_scan_rsp_data cp; 1188 u8 data[HCI_MAX_EXT_AD_LENGTH]; 1189 } pdu; 1190 u8 len; 1191 struct adv_info *adv = NULL; 1192 int err; 1193 1194 memset(&pdu, 0, sizeof(pdu)); 1195 1196 if (instance) { 1197 adv = hci_find_adv_instance(hdev, instance); 1198 if (!adv || !adv->scan_rsp_changed) 1199 return 0; 1200 } 1201 1202 len = eir_create_scan_rsp(hdev, instance, pdu.data); 1203 1204 pdu.cp.handle = instance; 1205 pdu.cp.length = len; 1206 pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; 1207 pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG; 1208 1209 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA, 1210 sizeof(pdu.cp) + len, &pdu.cp, 1211 HCI_CMD_TIMEOUT); 1212 if (err) 1213 return err; 1214 1215 if (adv) { 1216 adv->scan_rsp_changed = false; 1217 } else { 1218 memcpy(hdev->scan_rsp_data, pdu.data, len); 1219 hdev->scan_rsp_data_len = len; 1220 } 1221 1222 return 0; 1223 } 1224 1225 static int __hci_set_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 1226 { 1227 struct hci_cp_le_set_scan_rsp_data cp; 1228 u8 len; 1229 1230 memset(&cp, 0, sizeof(cp)); 1231 1232 len = eir_create_scan_rsp(hdev, instance, cp.data); 1233 1234 if (hdev->scan_rsp_data_len == len && 1235 !memcmp(cp.data, hdev->scan_rsp_data, len)) 1236 return 0; 1237 1238 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data)); 1239 hdev->scan_rsp_data_len = len; 1240 1241 cp.length = len; 1242 1243 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_RSP_DATA, 1244 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1245 } 1246 1247 int hci_update_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 1248 { 1249 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1250 return 0; 1251 1252 if (ext_adv_capable(hdev)) 1253 return hci_set_ext_scan_rsp_data_sync(hdev, instance); 1254 1255 return __hci_set_scan_rsp_data_sync(hdev, instance); 1256 } 1257 1258 int hci_enable_ext_advertising_sync(struct hci_dev *hdev, u8 instance) 1259 { 1260 struct hci_cp_le_set_ext_adv_enable *cp; 1261 struct hci_cp_ext_adv_set *set; 1262 u8 data[sizeof(*cp) + sizeof(*set) * 1]; 1263 struct adv_info *adv; 1264 1265 if (instance > 0) { 1266 adv = hci_find_adv_instance(hdev, instance); 1267 if (!adv) 1268 return -EINVAL; 1269 /* If already enabled there is nothing to do */ 1270 if (adv->enabled) 1271 return 0; 1272 } else { 1273 adv = NULL; 1274 } 1275 1276 cp = (void *)data; 1277 set = (void *)cp->data; 1278 1279 memset(cp, 0, sizeof(*cp)); 1280 1281 cp->enable = 0x01; 1282 cp->num_of_sets = 0x01; 1283 1284 memset(set, 0, sizeof(*set)); 1285 1286 set->handle = instance; 1287 1288 /* Set duration per instance since controller is responsible for 1289 * scheduling it. 1290 */ 1291 if (adv && adv->timeout) { 1292 u16 duration = adv->timeout * MSEC_PER_SEC; 1293 1294 /* Time = N * 10 ms */ 1295 set->duration = cpu_to_le16(duration / 10); 1296 } 1297 1298 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, 1299 sizeof(*cp) + 1300 sizeof(*set) * cp->num_of_sets, 1301 data, HCI_CMD_TIMEOUT); 1302 } 1303 1304 int hci_start_ext_adv_sync(struct hci_dev *hdev, u8 instance) 1305 { 1306 int err; 1307 1308 err = hci_setup_ext_adv_instance_sync(hdev, instance); 1309 if (err) 1310 return err; 1311 1312 err = hci_set_ext_scan_rsp_data_sync(hdev, instance); 1313 if (err) 1314 return err; 1315 1316 return hci_enable_ext_advertising_sync(hdev, instance); 1317 } 1318 1319 static int hci_disable_per_advertising_sync(struct hci_dev *hdev, u8 instance) 1320 { 1321 struct hci_cp_le_set_per_adv_enable cp; 1322 1323 /* If periodic advertising already disabled there is nothing to do. */ 1324 if (!hci_dev_test_flag(hdev, HCI_LE_PER_ADV)) 1325 return 0; 1326 1327 memset(&cp, 0, sizeof(cp)); 1328 1329 cp.enable = 0x00; 1330 cp.handle = instance; 1331 1332 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE, 1333 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1334 } 1335 1336 static int hci_set_per_adv_params_sync(struct hci_dev *hdev, u8 instance, 1337 u16 min_interval, u16 max_interval) 1338 { 1339 struct hci_cp_le_set_per_adv_params cp; 1340 1341 memset(&cp, 0, sizeof(cp)); 1342 1343 if (!min_interval) 1344 min_interval = DISCOV_LE_PER_ADV_INT_MIN; 1345 1346 if (!max_interval) 1347 max_interval = DISCOV_LE_PER_ADV_INT_MAX; 1348 1349 cp.handle = instance; 1350 cp.min_interval = cpu_to_le16(min_interval); 1351 cp.max_interval = cpu_to_le16(max_interval); 1352 cp.periodic_properties = 0x0000; 1353 1354 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_PARAMS, 1355 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1356 } 1357 1358 static int hci_set_per_adv_data_sync(struct hci_dev *hdev, u8 instance) 1359 { 1360 struct { 1361 struct hci_cp_le_set_per_adv_data cp; 1362 u8 data[HCI_MAX_PER_AD_LENGTH]; 1363 } pdu; 1364 u8 len; 1365 1366 memset(&pdu, 0, sizeof(pdu)); 1367 1368 if (instance) { 1369 struct adv_info *adv = hci_find_adv_instance(hdev, instance); 1370 1371 if (!adv || !adv->periodic) 1372 return 0; 1373 } 1374 1375 len = eir_create_per_adv_data(hdev, instance, pdu.data); 1376 1377 pdu.cp.length = len; 1378 pdu.cp.handle = instance; 1379 pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; 1380 1381 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_DATA, 1382 sizeof(pdu.cp) + len, &pdu, 1383 HCI_CMD_TIMEOUT); 1384 } 1385 1386 static int hci_enable_per_advertising_sync(struct hci_dev *hdev, u8 instance) 1387 { 1388 struct hci_cp_le_set_per_adv_enable cp; 1389 1390 /* If periodic advertising already enabled there is nothing to do. */ 1391 if (hci_dev_test_flag(hdev, HCI_LE_PER_ADV)) 1392 return 0; 1393 1394 memset(&cp, 0, sizeof(cp)); 1395 1396 cp.enable = 0x01; 1397 cp.handle = instance; 1398 1399 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE, 1400 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1401 } 1402 1403 /* Checks if periodic advertising data contains a Basic Announcement and if it 1404 * does generates a Broadcast ID and add Broadcast Announcement. 1405 */ 1406 static int hci_adv_bcast_annoucement(struct hci_dev *hdev, struct adv_info *adv) 1407 { 1408 u8 bid[3]; 1409 u8 ad[4 + 3]; 1410 1411 /* Skip if NULL adv as instance 0x00 is used for general purpose 1412 * advertising so it cannot used for the likes of Broadcast Announcement 1413 * as it can be overwritten at any point. 1414 */ 1415 if (!adv) 1416 return 0; 1417 1418 /* Check if PA data doesn't contains a Basic Audio Announcement then 1419 * there is nothing to do. 1420 */ 1421 if (!eir_get_service_data(adv->per_adv_data, adv->per_adv_data_len, 1422 0x1851, NULL)) 1423 return 0; 1424 1425 /* Check if advertising data already has a Broadcast Announcement since 1426 * the process may want to control the Broadcast ID directly and in that 1427 * case the kernel shall no interfere. 1428 */ 1429 if (eir_get_service_data(adv->adv_data, adv->adv_data_len, 0x1852, 1430 NULL)) 1431 return 0; 1432 1433 /* Generate Broadcast ID */ 1434 get_random_bytes(bid, sizeof(bid)); 1435 eir_append_service_data(ad, 0, 0x1852, bid, sizeof(bid)); 1436 hci_set_adv_instance_data(hdev, adv->instance, sizeof(ad), ad, 0, NULL); 1437 1438 return hci_update_adv_data_sync(hdev, adv->instance); 1439 } 1440 1441 int hci_start_per_adv_sync(struct hci_dev *hdev, u8 instance, u8 data_len, 1442 u8 *data, u32 flags, u16 min_interval, 1443 u16 max_interval, u16 sync_interval) 1444 { 1445 struct adv_info *adv = NULL; 1446 int err; 1447 bool added = false; 1448 1449 hci_disable_per_advertising_sync(hdev, instance); 1450 1451 if (instance) { 1452 adv = hci_find_adv_instance(hdev, instance); 1453 /* Create an instance if that could not be found */ 1454 if (!adv) { 1455 adv = hci_add_per_instance(hdev, instance, flags, 1456 data_len, data, 1457 sync_interval, 1458 sync_interval); 1459 if (IS_ERR(adv)) 1460 return PTR_ERR(adv); 1461 added = true; 1462 } 1463 } 1464 1465 /* Only start advertising if instance 0 or if a dedicated instance has 1466 * been added. 1467 */ 1468 if (!adv || added) { 1469 err = hci_start_ext_adv_sync(hdev, instance); 1470 if (err < 0) 1471 goto fail; 1472 1473 err = hci_adv_bcast_annoucement(hdev, adv); 1474 if (err < 0) 1475 goto fail; 1476 } 1477 1478 err = hci_set_per_adv_params_sync(hdev, instance, min_interval, 1479 max_interval); 1480 if (err < 0) 1481 goto fail; 1482 1483 err = hci_set_per_adv_data_sync(hdev, instance); 1484 if (err < 0) 1485 goto fail; 1486 1487 err = hci_enable_per_advertising_sync(hdev, instance); 1488 if (err < 0) 1489 goto fail; 1490 1491 return 0; 1492 1493 fail: 1494 if (added) 1495 hci_remove_adv_instance(hdev, instance); 1496 1497 return err; 1498 } 1499 1500 static int hci_start_adv_sync(struct hci_dev *hdev, u8 instance) 1501 { 1502 int err; 1503 1504 if (ext_adv_capable(hdev)) 1505 return hci_start_ext_adv_sync(hdev, instance); 1506 1507 err = hci_update_adv_data_sync(hdev, instance); 1508 if (err) 1509 return err; 1510 1511 err = hci_update_scan_rsp_data_sync(hdev, instance); 1512 if (err) 1513 return err; 1514 1515 return hci_enable_advertising_sync(hdev); 1516 } 1517 1518 int hci_enable_advertising_sync(struct hci_dev *hdev) 1519 { 1520 struct adv_info *adv_instance; 1521 struct hci_cp_le_set_adv_param cp; 1522 u8 own_addr_type, enable = 0x01; 1523 bool connectable; 1524 u16 adv_min_interval, adv_max_interval; 1525 u32 flags; 1526 u8 status; 1527 1528 if (ext_adv_capable(hdev)) 1529 return hci_enable_ext_advertising_sync(hdev, 1530 hdev->cur_adv_instance); 1531 1532 flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance); 1533 adv_instance = hci_find_adv_instance(hdev, hdev->cur_adv_instance); 1534 1535 /* If the "connectable" instance flag was not set, then choose between 1536 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. 1537 */ 1538 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || 1539 mgmt_get_connectable(hdev); 1540 1541 if (!is_advertising_allowed(hdev, connectable)) 1542 return -EINVAL; 1543 1544 status = hci_disable_advertising_sync(hdev); 1545 if (status) 1546 return status; 1547 1548 /* Clear the HCI_LE_ADV bit temporarily so that the 1549 * hci_update_random_address knows that it's safe to go ahead 1550 * and write a new random address. The flag will be set back on 1551 * as soon as the SET_ADV_ENABLE HCI command completes. 1552 */ 1553 hci_dev_clear_flag(hdev, HCI_LE_ADV); 1554 1555 /* Set require_privacy to true only when non-connectable 1556 * advertising is used. In that case it is fine to use a 1557 * non-resolvable private address. 1558 */ 1559 status = hci_update_random_address_sync(hdev, !connectable, 1560 adv_use_rpa(hdev, flags), 1561 &own_addr_type); 1562 if (status) 1563 return status; 1564 1565 memset(&cp, 0, sizeof(cp)); 1566 1567 if (adv_instance) { 1568 adv_min_interval = adv_instance->min_interval; 1569 adv_max_interval = adv_instance->max_interval; 1570 } else { 1571 adv_min_interval = hdev->le_adv_min_interval; 1572 adv_max_interval = hdev->le_adv_max_interval; 1573 } 1574 1575 if (connectable) { 1576 cp.type = LE_ADV_IND; 1577 } else { 1578 if (hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance)) 1579 cp.type = LE_ADV_SCAN_IND; 1580 else 1581 cp.type = LE_ADV_NONCONN_IND; 1582 1583 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) || 1584 hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { 1585 adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN; 1586 adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX; 1587 } 1588 } 1589 1590 cp.min_interval = cpu_to_le16(adv_min_interval); 1591 cp.max_interval = cpu_to_le16(adv_max_interval); 1592 cp.own_address_type = own_addr_type; 1593 cp.channel_map = hdev->le_adv_channel_map; 1594 1595 status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM, 1596 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1597 if (status) 1598 return status; 1599 1600 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 1601 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 1602 } 1603 1604 static int enable_advertising_sync(struct hci_dev *hdev, void *data) 1605 { 1606 return hci_enable_advertising_sync(hdev); 1607 } 1608 1609 int hci_enable_advertising(struct hci_dev *hdev) 1610 { 1611 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) && 1612 list_empty(&hdev->adv_instances)) 1613 return 0; 1614 1615 return hci_cmd_sync_queue(hdev, enable_advertising_sync, NULL, NULL); 1616 } 1617 1618 int hci_remove_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance, 1619 struct sock *sk) 1620 { 1621 int err; 1622 1623 if (!ext_adv_capable(hdev)) 1624 return 0; 1625 1626 err = hci_disable_ext_adv_instance_sync(hdev, instance); 1627 if (err) 1628 return err; 1629 1630 /* If request specifies an instance that doesn't exist, fail */ 1631 if (instance > 0 && !hci_find_adv_instance(hdev, instance)) 1632 return -EINVAL; 1633 1634 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_REMOVE_ADV_SET, 1635 sizeof(instance), &instance, 0, 1636 HCI_CMD_TIMEOUT, sk); 1637 } 1638 1639 static int remove_ext_adv_sync(struct hci_dev *hdev, void *data) 1640 { 1641 struct adv_info *adv = data; 1642 u8 instance = 0; 1643 1644 if (adv) 1645 instance = adv->instance; 1646 1647 return hci_remove_ext_adv_instance_sync(hdev, instance, NULL); 1648 } 1649 1650 int hci_remove_ext_adv_instance(struct hci_dev *hdev, u8 instance) 1651 { 1652 struct adv_info *adv = NULL; 1653 1654 if (instance) { 1655 adv = hci_find_adv_instance(hdev, instance); 1656 if (!adv) 1657 return -EINVAL; 1658 } 1659 1660 return hci_cmd_sync_queue(hdev, remove_ext_adv_sync, adv, NULL); 1661 } 1662 1663 int hci_le_terminate_big_sync(struct hci_dev *hdev, u8 handle, u8 reason) 1664 { 1665 struct hci_cp_le_term_big cp; 1666 1667 memset(&cp, 0, sizeof(cp)); 1668 cp.handle = handle; 1669 cp.reason = reason; 1670 1671 return __hci_cmd_sync_status(hdev, HCI_OP_LE_TERM_BIG, 1672 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1673 } 1674 1675 static int hci_set_ext_adv_data_sync(struct hci_dev *hdev, u8 instance) 1676 { 1677 struct { 1678 struct hci_cp_le_set_ext_adv_data cp; 1679 u8 data[HCI_MAX_EXT_AD_LENGTH]; 1680 } pdu; 1681 u8 len; 1682 struct adv_info *adv = NULL; 1683 int err; 1684 1685 memset(&pdu, 0, sizeof(pdu)); 1686 1687 if (instance) { 1688 adv = hci_find_adv_instance(hdev, instance); 1689 if (!adv || !adv->adv_data_changed) 1690 return 0; 1691 } 1692 1693 len = eir_create_adv_data(hdev, instance, pdu.data); 1694 1695 pdu.cp.length = len; 1696 pdu.cp.handle = instance; 1697 pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; 1698 pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG; 1699 1700 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_DATA, 1701 sizeof(pdu.cp) + len, &pdu.cp, 1702 HCI_CMD_TIMEOUT); 1703 if (err) 1704 return err; 1705 1706 /* Update data if the command succeed */ 1707 if (adv) { 1708 adv->adv_data_changed = false; 1709 } else { 1710 memcpy(hdev->adv_data, pdu.data, len); 1711 hdev->adv_data_len = len; 1712 } 1713 1714 return 0; 1715 } 1716 1717 static int hci_set_adv_data_sync(struct hci_dev *hdev, u8 instance) 1718 { 1719 struct hci_cp_le_set_adv_data cp; 1720 u8 len; 1721 1722 memset(&cp, 0, sizeof(cp)); 1723 1724 len = eir_create_adv_data(hdev, instance, cp.data); 1725 1726 /* There's nothing to do if the data hasn't changed */ 1727 if (hdev->adv_data_len == len && 1728 memcmp(cp.data, hdev->adv_data, len) == 0) 1729 return 0; 1730 1731 memcpy(hdev->adv_data, cp.data, sizeof(cp.data)); 1732 hdev->adv_data_len = len; 1733 1734 cp.length = len; 1735 1736 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_DATA, 1737 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1738 } 1739 1740 int hci_update_adv_data_sync(struct hci_dev *hdev, u8 instance) 1741 { 1742 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1743 return 0; 1744 1745 if (ext_adv_capable(hdev)) 1746 return hci_set_ext_adv_data_sync(hdev, instance); 1747 1748 return hci_set_adv_data_sync(hdev, instance); 1749 } 1750 1751 int hci_schedule_adv_instance_sync(struct hci_dev *hdev, u8 instance, 1752 bool force) 1753 { 1754 struct adv_info *adv = NULL; 1755 u16 timeout; 1756 1757 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) && !ext_adv_capable(hdev)) 1758 return -EPERM; 1759 1760 if (hdev->adv_instance_timeout) 1761 return -EBUSY; 1762 1763 adv = hci_find_adv_instance(hdev, instance); 1764 if (!adv) 1765 return -ENOENT; 1766 1767 /* A zero timeout means unlimited advertising. As long as there is 1768 * only one instance, duration should be ignored. We still set a timeout 1769 * in case further instances are being added later on. 1770 * 1771 * If the remaining lifetime of the instance is more than the duration 1772 * then the timeout corresponds to the duration, otherwise it will be 1773 * reduced to the remaining instance lifetime. 1774 */ 1775 if (adv->timeout == 0 || adv->duration <= adv->remaining_time) 1776 timeout = adv->duration; 1777 else 1778 timeout = adv->remaining_time; 1779 1780 /* The remaining time is being reduced unless the instance is being 1781 * advertised without time limit. 1782 */ 1783 if (adv->timeout) 1784 adv->remaining_time = adv->remaining_time - timeout; 1785 1786 /* Only use work for scheduling instances with legacy advertising */ 1787 if (!ext_adv_capable(hdev)) { 1788 hdev->adv_instance_timeout = timeout; 1789 queue_delayed_work(hdev->req_workqueue, 1790 &hdev->adv_instance_expire, 1791 msecs_to_jiffies(timeout * 1000)); 1792 } 1793 1794 /* If we're just re-scheduling the same instance again then do not 1795 * execute any HCI commands. This happens when a single instance is 1796 * being advertised. 1797 */ 1798 if (!force && hdev->cur_adv_instance == instance && 1799 hci_dev_test_flag(hdev, HCI_LE_ADV)) 1800 return 0; 1801 1802 hdev->cur_adv_instance = instance; 1803 1804 return hci_start_adv_sync(hdev, instance); 1805 } 1806 1807 static int hci_clear_adv_sets_sync(struct hci_dev *hdev, struct sock *sk) 1808 { 1809 int err; 1810 1811 if (!ext_adv_capable(hdev)) 1812 return 0; 1813 1814 /* Disable instance 0x00 to disable all instances */ 1815 err = hci_disable_ext_adv_instance_sync(hdev, 0x00); 1816 if (err) 1817 return err; 1818 1819 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CLEAR_ADV_SETS, 1820 0, NULL, 0, HCI_CMD_TIMEOUT, sk); 1821 } 1822 1823 static int hci_clear_adv_sync(struct hci_dev *hdev, struct sock *sk, bool force) 1824 { 1825 struct adv_info *adv, *n; 1826 int err = 0; 1827 1828 if (ext_adv_capable(hdev)) 1829 /* Remove all existing sets */ 1830 err = hci_clear_adv_sets_sync(hdev, sk); 1831 if (ext_adv_capable(hdev)) 1832 return err; 1833 1834 /* This is safe as long as there is no command send while the lock is 1835 * held. 1836 */ 1837 hci_dev_lock(hdev); 1838 1839 /* Cleanup non-ext instances */ 1840 list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) { 1841 u8 instance = adv->instance; 1842 int err; 1843 1844 if (!(force || adv->timeout)) 1845 continue; 1846 1847 err = hci_remove_adv_instance(hdev, instance); 1848 if (!err) 1849 mgmt_advertising_removed(sk, hdev, instance); 1850 } 1851 1852 hci_dev_unlock(hdev); 1853 1854 return 0; 1855 } 1856 1857 static int hci_remove_adv_sync(struct hci_dev *hdev, u8 instance, 1858 struct sock *sk) 1859 { 1860 int err = 0; 1861 1862 /* If we use extended advertising, instance has to be removed first. */ 1863 if (ext_adv_capable(hdev)) 1864 err = hci_remove_ext_adv_instance_sync(hdev, instance, sk); 1865 if (ext_adv_capable(hdev)) 1866 return err; 1867 1868 /* This is safe as long as there is no command send while the lock is 1869 * held. 1870 */ 1871 hci_dev_lock(hdev); 1872 1873 err = hci_remove_adv_instance(hdev, instance); 1874 if (!err) 1875 mgmt_advertising_removed(sk, hdev, instance); 1876 1877 hci_dev_unlock(hdev); 1878 1879 return err; 1880 } 1881 1882 /* For a single instance: 1883 * - force == true: The instance will be removed even when its remaining 1884 * lifetime is not zero. 1885 * - force == false: the instance will be deactivated but kept stored unless 1886 * the remaining lifetime is zero. 1887 * 1888 * For instance == 0x00: 1889 * - force == true: All instances will be removed regardless of their timeout 1890 * setting. 1891 * - force == false: Only instances that have a timeout will be removed. 1892 */ 1893 int hci_remove_advertising_sync(struct hci_dev *hdev, struct sock *sk, 1894 u8 instance, bool force) 1895 { 1896 struct adv_info *next = NULL; 1897 int err; 1898 1899 /* Cancel any timeout concerning the removed instance(s). */ 1900 if (!instance || hdev->cur_adv_instance == instance) 1901 cancel_adv_timeout(hdev); 1902 1903 /* Get the next instance to advertise BEFORE we remove 1904 * the current one. This can be the same instance again 1905 * if there is only one instance. 1906 */ 1907 if (hdev->cur_adv_instance == instance) 1908 next = hci_get_next_instance(hdev, instance); 1909 1910 if (!instance) { 1911 err = hci_clear_adv_sync(hdev, sk, force); 1912 if (err) 1913 return err; 1914 } else { 1915 struct adv_info *adv = hci_find_adv_instance(hdev, instance); 1916 1917 if (force || (adv && adv->timeout && !adv->remaining_time)) { 1918 /* Don't advertise a removed instance. */ 1919 if (next && next->instance == instance) 1920 next = NULL; 1921 1922 err = hci_remove_adv_sync(hdev, instance, sk); 1923 if (err) 1924 return err; 1925 } 1926 } 1927 1928 if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING)) 1929 return 0; 1930 1931 if (next && !ext_adv_capable(hdev)) 1932 hci_schedule_adv_instance_sync(hdev, next->instance, false); 1933 1934 return 0; 1935 } 1936 1937 int hci_read_rssi_sync(struct hci_dev *hdev, __le16 handle) 1938 { 1939 struct hci_cp_read_rssi cp; 1940 1941 cp.handle = handle; 1942 return __hci_cmd_sync_status(hdev, HCI_OP_READ_RSSI, 1943 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1944 } 1945 1946 int hci_read_clock_sync(struct hci_dev *hdev, struct hci_cp_read_clock *cp) 1947 { 1948 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLOCK, 1949 sizeof(*cp), cp, HCI_CMD_TIMEOUT); 1950 } 1951 1952 int hci_read_tx_power_sync(struct hci_dev *hdev, __le16 handle, u8 type) 1953 { 1954 struct hci_cp_read_tx_power cp; 1955 1956 cp.handle = handle; 1957 cp.type = type; 1958 return __hci_cmd_sync_status(hdev, HCI_OP_READ_TX_POWER, 1959 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1960 } 1961 1962 int hci_disable_advertising_sync(struct hci_dev *hdev) 1963 { 1964 u8 enable = 0x00; 1965 int err = 0; 1966 1967 /* If controller is not advertising we are done. */ 1968 if (!hci_dev_test_flag(hdev, HCI_LE_ADV)) 1969 return 0; 1970 1971 if (ext_adv_capable(hdev)) 1972 err = hci_disable_ext_adv_instance_sync(hdev, 0x00); 1973 if (ext_adv_capable(hdev)) 1974 return err; 1975 1976 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 1977 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 1978 } 1979 1980 static int hci_le_set_ext_scan_enable_sync(struct hci_dev *hdev, u8 val, 1981 u8 filter_dup) 1982 { 1983 struct hci_cp_le_set_ext_scan_enable cp; 1984 1985 memset(&cp, 0, sizeof(cp)); 1986 cp.enable = val; 1987 1988 if (hci_dev_test_flag(hdev, HCI_MESH)) 1989 cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 1990 else 1991 cp.filter_dup = filter_dup; 1992 1993 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_ENABLE, 1994 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1995 } 1996 1997 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val, 1998 u8 filter_dup) 1999 { 2000 struct hci_cp_le_set_scan_enable cp; 2001 2002 if (use_ext_scan(hdev)) 2003 return hci_le_set_ext_scan_enable_sync(hdev, val, filter_dup); 2004 2005 memset(&cp, 0, sizeof(cp)); 2006 cp.enable = val; 2007 2008 if (val && hci_dev_test_flag(hdev, HCI_MESH)) 2009 cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 2010 else 2011 cp.filter_dup = filter_dup; 2012 2013 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_ENABLE, 2014 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2015 } 2016 2017 static int hci_le_set_addr_resolution_enable_sync(struct hci_dev *hdev, u8 val) 2018 { 2019 if (!use_ll_privacy(hdev)) 2020 return 0; 2021 2022 /* If controller is not/already resolving we are done. */ 2023 if (val == hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) 2024 return 0; 2025 2026 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 2027 sizeof(val), &val, HCI_CMD_TIMEOUT); 2028 } 2029 2030 static int hci_scan_disable_sync(struct hci_dev *hdev) 2031 { 2032 int err; 2033 2034 /* If controller is not scanning we are done. */ 2035 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 2036 return 0; 2037 2038 if (hdev->scanning_paused) { 2039 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2040 return 0; 2041 } 2042 2043 err = hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00); 2044 if (err) { 2045 bt_dev_err(hdev, "Unable to disable scanning: %d", err); 2046 return err; 2047 } 2048 2049 return err; 2050 } 2051 2052 static bool scan_use_rpa(struct hci_dev *hdev) 2053 { 2054 return hci_dev_test_flag(hdev, HCI_PRIVACY); 2055 } 2056 2057 static void hci_start_interleave_scan(struct hci_dev *hdev) 2058 { 2059 hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER; 2060 queue_delayed_work(hdev->req_workqueue, 2061 &hdev->interleave_scan, 0); 2062 } 2063 2064 static bool is_interleave_scanning(struct hci_dev *hdev) 2065 { 2066 return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE; 2067 } 2068 2069 static void cancel_interleave_scan(struct hci_dev *hdev) 2070 { 2071 bt_dev_dbg(hdev, "cancelling interleave scan"); 2072 2073 cancel_delayed_work_sync(&hdev->interleave_scan); 2074 2075 hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE; 2076 } 2077 2078 /* Return true if interleave_scan wasn't started until exiting this function, 2079 * otherwise, return false 2080 */ 2081 static bool hci_update_interleaved_scan_sync(struct hci_dev *hdev) 2082 { 2083 /* Do interleaved scan only if all of the following are true: 2084 * - There is at least one ADV monitor 2085 * - At least one pending LE connection or one device to be scanned for 2086 * - Monitor offloading is not supported 2087 * If so, we should alternate between allowlist scan and one without 2088 * any filters to save power. 2089 */ 2090 bool use_interleaving = hci_is_adv_monitoring(hdev) && 2091 !(list_empty(&hdev->pend_le_conns) && 2092 list_empty(&hdev->pend_le_reports)) && 2093 hci_get_adv_monitor_offload_ext(hdev) == 2094 HCI_ADV_MONITOR_EXT_NONE; 2095 bool is_interleaving = is_interleave_scanning(hdev); 2096 2097 if (use_interleaving && !is_interleaving) { 2098 hci_start_interleave_scan(hdev); 2099 bt_dev_dbg(hdev, "starting interleave scan"); 2100 return true; 2101 } 2102 2103 if (!use_interleaving && is_interleaving) 2104 cancel_interleave_scan(hdev); 2105 2106 return false; 2107 } 2108 2109 /* Removes connection to resolve list if needed.*/ 2110 static int hci_le_del_resolve_list_sync(struct hci_dev *hdev, 2111 bdaddr_t *bdaddr, u8 bdaddr_type) 2112 { 2113 struct hci_cp_le_del_from_resolv_list cp; 2114 struct bdaddr_list_with_irk *entry; 2115 2116 if (!use_ll_privacy(hdev)) 2117 return 0; 2118 2119 /* Check if the IRK has been programmed */ 2120 entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, bdaddr, 2121 bdaddr_type); 2122 if (!entry) 2123 return 0; 2124 2125 cp.bdaddr_type = bdaddr_type; 2126 bacpy(&cp.bdaddr, bdaddr); 2127 2128 return __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_RESOLV_LIST, 2129 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2130 } 2131 2132 static int hci_le_del_accept_list_sync(struct hci_dev *hdev, 2133 bdaddr_t *bdaddr, u8 bdaddr_type) 2134 { 2135 struct hci_cp_le_del_from_accept_list cp; 2136 int err; 2137 2138 /* Check if device is on accept list before removing it */ 2139 if (!hci_bdaddr_list_lookup(&hdev->le_accept_list, bdaddr, bdaddr_type)) 2140 return 0; 2141 2142 cp.bdaddr_type = bdaddr_type; 2143 bacpy(&cp.bdaddr, bdaddr); 2144 2145 /* Ignore errors when removing from resolving list as that is likely 2146 * that the device was never added. 2147 */ 2148 hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type); 2149 2150 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_ACCEPT_LIST, 2151 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2152 if (err) { 2153 bt_dev_err(hdev, "Unable to remove from allow list: %d", err); 2154 return err; 2155 } 2156 2157 bt_dev_dbg(hdev, "Remove %pMR (0x%x) from allow list", &cp.bdaddr, 2158 cp.bdaddr_type); 2159 2160 return 0; 2161 } 2162 2163 struct conn_params { 2164 bdaddr_t addr; 2165 u8 addr_type; 2166 hci_conn_flags_t flags; 2167 u8 privacy_mode; 2168 }; 2169 2170 /* Adds connection to resolve list if needed. 2171 * Setting params to NULL programs local hdev->irk 2172 */ 2173 static int hci_le_add_resolve_list_sync(struct hci_dev *hdev, 2174 struct conn_params *params) 2175 { 2176 struct hci_cp_le_add_to_resolv_list cp; 2177 struct smp_irk *irk; 2178 struct bdaddr_list_with_irk *entry; 2179 struct hci_conn_params *p; 2180 2181 if (!use_ll_privacy(hdev)) 2182 return 0; 2183 2184 /* Attempt to program local identity address, type and irk if params is 2185 * NULL. 2186 */ 2187 if (!params) { 2188 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 2189 return 0; 2190 2191 hci_copy_identity_address(hdev, &cp.bdaddr, &cp.bdaddr_type); 2192 memcpy(cp.peer_irk, hdev->irk, 16); 2193 goto done; 2194 } 2195 2196 irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type); 2197 if (!irk) 2198 return 0; 2199 2200 /* Check if the IK has _not_ been programmed yet. */ 2201 entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, 2202 ¶ms->addr, 2203 params->addr_type); 2204 if (entry) 2205 return 0; 2206 2207 cp.bdaddr_type = params->addr_type; 2208 bacpy(&cp.bdaddr, ¶ms->addr); 2209 memcpy(cp.peer_irk, irk->val, 16); 2210 2211 /* Default privacy mode is always Network */ 2212 params->privacy_mode = HCI_NETWORK_PRIVACY; 2213 2214 rcu_read_lock(); 2215 p = hci_pend_le_action_lookup(&hdev->pend_le_conns, 2216 ¶ms->addr, params->addr_type); 2217 if (!p) 2218 p = hci_pend_le_action_lookup(&hdev->pend_le_reports, 2219 ¶ms->addr, params->addr_type); 2220 if (p) 2221 WRITE_ONCE(p->privacy_mode, HCI_NETWORK_PRIVACY); 2222 rcu_read_unlock(); 2223 2224 done: 2225 if (hci_dev_test_flag(hdev, HCI_PRIVACY)) 2226 memcpy(cp.local_irk, hdev->irk, 16); 2227 else 2228 memset(cp.local_irk, 0, 16); 2229 2230 return __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_RESOLV_LIST, 2231 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2232 } 2233 2234 /* Set Device Privacy Mode. */ 2235 static int hci_le_set_privacy_mode_sync(struct hci_dev *hdev, 2236 struct conn_params *params) 2237 { 2238 struct hci_cp_le_set_privacy_mode cp; 2239 struct smp_irk *irk; 2240 2241 /* If device privacy mode has already been set there is nothing to do */ 2242 if (params->privacy_mode == HCI_DEVICE_PRIVACY) 2243 return 0; 2244 2245 /* Check if HCI_CONN_FLAG_DEVICE_PRIVACY has been set as it also 2246 * indicates that LL Privacy has been enabled and 2247 * HCI_OP_LE_SET_PRIVACY_MODE is supported. 2248 */ 2249 if (!(params->flags & HCI_CONN_FLAG_DEVICE_PRIVACY)) 2250 return 0; 2251 2252 irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type); 2253 if (!irk) 2254 return 0; 2255 2256 memset(&cp, 0, sizeof(cp)); 2257 cp.bdaddr_type = irk->addr_type; 2258 bacpy(&cp.bdaddr, &irk->bdaddr); 2259 cp.mode = HCI_DEVICE_PRIVACY; 2260 2261 /* Note: params->privacy_mode is not updated since it is a copy */ 2262 2263 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PRIVACY_MODE, 2264 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2265 } 2266 2267 /* Adds connection to allow list if needed, if the device uses RPA (has IRK) 2268 * this attempts to program the device in the resolving list as well and 2269 * properly set the privacy mode. 2270 */ 2271 static int hci_le_add_accept_list_sync(struct hci_dev *hdev, 2272 struct conn_params *params, 2273 u8 *num_entries) 2274 { 2275 struct hci_cp_le_add_to_accept_list cp; 2276 int err; 2277 2278 /* During suspend, only wakeable devices can be in acceptlist */ 2279 if (hdev->suspended && 2280 !(params->flags & HCI_CONN_FLAG_REMOTE_WAKEUP)) 2281 return 0; 2282 2283 /* Select filter policy to accept all advertising */ 2284 if (*num_entries >= hdev->le_accept_list_size) 2285 return -ENOSPC; 2286 2287 /* Accept list can not be used with RPAs */ 2288 if (!use_ll_privacy(hdev) && 2289 hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type)) 2290 return -EINVAL; 2291 2292 /* Attempt to program the device in the resolving list first to avoid 2293 * having to rollback in case it fails since the resolving list is 2294 * dynamic it can probably be smaller than the accept list. 2295 */ 2296 err = hci_le_add_resolve_list_sync(hdev, params); 2297 if (err) { 2298 bt_dev_err(hdev, "Unable to add to resolve list: %d", err); 2299 return err; 2300 } 2301 2302 /* Set Privacy Mode */ 2303 err = hci_le_set_privacy_mode_sync(hdev, params); 2304 if (err) { 2305 bt_dev_err(hdev, "Unable to set privacy mode: %d", err); 2306 return err; 2307 } 2308 2309 /* Check if already in accept list */ 2310 if (hci_bdaddr_list_lookup(&hdev->le_accept_list, ¶ms->addr, 2311 params->addr_type)) 2312 return 0; 2313 2314 *num_entries += 1; 2315 cp.bdaddr_type = params->addr_type; 2316 bacpy(&cp.bdaddr, ¶ms->addr); 2317 2318 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST, 2319 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2320 if (err) { 2321 bt_dev_err(hdev, "Unable to add to allow list: %d", err); 2322 /* Rollback the device from the resolving list */ 2323 hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type); 2324 return err; 2325 } 2326 2327 bt_dev_dbg(hdev, "Add %pMR (0x%x) to allow list", &cp.bdaddr, 2328 cp.bdaddr_type); 2329 2330 return 0; 2331 } 2332 2333 /* This function disables/pause all advertising instances */ 2334 static int hci_pause_advertising_sync(struct hci_dev *hdev) 2335 { 2336 int err; 2337 int old_state; 2338 2339 /* If already been paused there is nothing to do. */ 2340 if (hdev->advertising_paused) 2341 return 0; 2342 2343 bt_dev_dbg(hdev, "Pausing directed advertising"); 2344 2345 /* Stop directed advertising */ 2346 old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING); 2347 if (old_state) { 2348 /* When discoverable timeout triggers, then just make sure 2349 * the limited discoverable flag is cleared. Even in the case 2350 * of a timeout triggered from general discoverable, it is 2351 * safe to unconditionally clear the flag. 2352 */ 2353 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 2354 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 2355 hdev->discov_timeout = 0; 2356 } 2357 2358 bt_dev_dbg(hdev, "Pausing advertising instances"); 2359 2360 /* Call to disable any advertisements active on the controller. 2361 * This will succeed even if no advertisements are configured. 2362 */ 2363 err = hci_disable_advertising_sync(hdev); 2364 if (err) 2365 return err; 2366 2367 /* If we are using software rotation, pause the loop */ 2368 if (!ext_adv_capable(hdev)) 2369 cancel_adv_timeout(hdev); 2370 2371 hdev->advertising_paused = true; 2372 hdev->advertising_old_state = old_state; 2373 2374 return 0; 2375 } 2376 2377 /* This function enables all user advertising instances */ 2378 static int hci_resume_advertising_sync(struct hci_dev *hdev) 2379 { 2380 struct adv_info *adv, *tmp; 2381 int err; 2382 2383 /* If advertising has not been paused there is nothing to do. */ 2384 if (!hdev->advertising_paused) 2385 return 0; 2386 2387 /* Resume directed advertising */ 2388 hdev->advertising_paused = false; 2389 if (hdev->advertising_old_state) { 2390 hci_dev_set_flag(hdev, HCI_ADVERTISING); 2391 hdev->advertising_old_state = 0; 2392 } 2393 2394 bt_dev_dbg(hdev, "Resuming advertising instances"); 2395 2396 if (ext_adv_capable(hdev)) { 2397 /* Call for each tracked instance to be re-enabled */ 2398 list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) { 2399 err = hci_enable_ext_advertising_sync(hdev, 2400 adv->instance); 2401 if (!err) 2402 continue; 2403 2404 /* If the instance cannot be resumed remove it */ 2405 hci_remove_ext_adv_instance_sync(hdev, adv->instance, 2406 NULL); 2407 } 2408 } else { 2409 /* Schedule for most recent instance to be restarted and begin 2410 * the software rotation loop 2411 */ 2412 err = hci_schedule_adv_instance_sync(hdev, 2413 hdev->cur_adv_instance, 2414 true); 2415 } 2416 2417 hdev->advertising_paused = false; 2418 2419 return err; 2420 } 2421 2422 static int hci_pause_addr_resolution(struct hci_dev *hdev) 2423 { 2424 int err; 2425 2426 if (!use_ll_privacy(hdev)) 2427 return 0; 2428 2429 if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) 2430 return 0; 2431 2432 /* Cannot disable addr resolution if scanning is enabled or 2433 * when initiating an LE connection. 2434 */ 2435 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) || 2436 hci_lookup_le_connect(hdev)) { 2437 bt_dev_err(hdev, "Command not allowed when scan/LE connect"); 2438 return -EPERM; 2439 } 2440 2441 /* Cannot disable addr resolution if advertising is enabled. */ 2442 err = hci_pause_advertising_sync(hdev); 2443 if (err) { 2444 bt_dev_err(hdev, "Pause advertising failed: %d", err); 2445 return err; 2446 } 2447 2448 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00); 2449 if (err) 2450 bt_dev_err(hdev, "Unable to disable Address Resolution: %d", 2451 err); 2452 2453 /* Return if address resolution is disabled and RPA is not used. */ 2454 if (!err && scan_use_rpa(hdev)) 2455 return 0; 2456 2457 hci_resume_advertising_sync(hdev); 2458 return err; 2459 } 2460 2461 struct sk_buff *hci_read_local_oob_data_sync(struct hci_dev *hdev, 2462 bool extended, struct sock *sk) 2463 { 2464 u16 opcode = extended ? HCI_OP_READ_LOCAL_OOB_EXT_DATA : 2465 HCI_OP_READ_LOCAL_OOB_DATA; 2466 2467 return __hci_cmd_sync_sk(hdev, opcode, 0, NULL, 0, HCI_CMD_TIMEOUT, sk); 2468 } 2469 2470 static struct conn_params *conn_params_copy(struct list_head *list, size_t *n) 2471 { 2472 struct hci_conn_params *params; 2473 struct conn_params *p; 2474 size_t i; 2475 2476 rcu_read_lock(); 2477 2478 i = 0; 2479 list_for_each_entry_rcu(params, list, action) 2480 ++i; 2481 *n = i; 2482 2483 rcu_read_unlock(); 2484 2485 p = kvcalloc(*n, sizeof(struct conn_params), GFP_KERNEL); 2486 if (!p) 2487 return NULL; 2488 2489 rcu_read_lock(); 2490 2491 i = 0; 2492 list_for_each_entry_rcu(params, list, action) { 2493 /* Racing adds are handled in next scan update */ 2494 if (i >= *n) 2495 break; 2496 2497 /* No hdev->lock, but: addr, addr_type are immutable. 2498 * privacy_mode is only written by us or in 2499 * hci_cc_le_set_privacy_mode that we wait for. 2500 * We should be idempotent so MGMT updating flags 2501 * while we are processing is OK. 2502 */ 2503 bacpy(&p[i].addr, ¶ms->addr); 2504 p[i].addr_type = params->addr_type; 2505 p[i].flags = READ_ONCE(params->flags); 2506 p[i].privacy_mode = READ_ONCE(params->privacy_mode); 2507 ++i; 2508 } 2509 2510 rcu_read_unlock(); 2511 2512 *n = i; 2513 return p; 2514 } 2515 2516 /* Device must not be scanning when updating the accept list. 2517 * 2518 * Update is done using the following sequence: 2519 * 2520 * use_ll_privacy((Disable Advertising) -> Disable Resolving List) -> 2521 * Remove Devices From Accept List -> 2522 * (has IRK && use_ll_privacy(Remove Devices From Resolving List))-> 2523 * Add Devices to Accept List -> 2524 * (has IRK && use_ll_privacy(Remove Devices From Resolving List)) -> 2525 * use_ll_privacy(Enable Resolving List -> (Enable Advertising)) -> 2526 * Enable Scanning 2527 * 2528 * In case of failure advertising shall be restored to its original state and 2529 * return would disable accept list since either accept or resolving list could 2530 * not be programmed. 2531 * 2532 */ 2533 static u8 hci_update_accept_list_sync(struct hci_dev *hdev) 2534 { 2535 struct conn_params *params; 2536 struct bdaddr_list *b, *t; 2537 u8 num_entries = 0; 2538 bool pend_conn, pend_report; 2539 u8 filter_policy; 2540 size_t i, n; 2541 int err; 2542 2543 /* Pause advertising if resolving list can be used as controllers 2544 * cannot accept resolving list modifications while advertising. 2545 */ 2546 if (use_ll_privacy(hdev)) { 2547 err = hci_pause_advertising_sync(hdev); 2548 if (err) { 2549 bt_dev_err(hdev, "pause advertising failed: %d", err); 2550 return 0x00; 2551 } 2552 } 2553 2554 /* Disable address resolution while reprogramming accept list since 2555 * devices that do have an IRK will be programmed in the resolving list 2556 * when LL Privacy is enabled. 2557 */ 2558 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00); 2559 if (err) { 2560 bt_dev_err(hdev, "Unable to disable LL privacy: %d", err); 2561 goto done; 2562 } 2563 2564 /* Go through the current accept list programmed into the 2565 * controller one by one and check if that address is connected or is 2566 * still in the list of pending connections or list of devices to 2567 * report. If not present in either list, then remove it from 2568 * the controller. 2569 */ 2570 list_for_each_entry_safe(b, t, &hdev->le_accept_list, list) { 2571 if (hci_conn_hash_lookup_le(hdev, &b->bdaddr, b->bdaddr_type)) 2572 continue; 2573 2574 /* Pointers not dereferenced, no locks needed */ 2575 pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns, 2576 &b->bdaddr, 2577 b->bdaddr_type); 2578 pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports, 2579 &b->bdaddr, 2580 b->bdaddr_type); 2581 2582 /* If the device is not likely to connect or report, 2583 * remove it from the acceptlist. 2584 */ 2585 if (!pend_conn && !pend_report) { 2586 hci_le_del_accept_list_sync(hdev, &b->bdaddr, 2587 b->bdaddr_type); 2588 continue; 2589 } 2590 2591 num_entries++; 2592 } 2593 2594 /* Since all no longer valid accept list entries have been 2595 * removed, walk through the list of pending connections 2596 * and ensure that any new device gets programmed into 2597 * the controller. 2598 * 2599 * If the list of the devices is larger than the list of 2600 * available accept list entries in the controller, then 2601 * just abort and return filer policy value to not use the 2602 * accept list. 2603 * 2604 * The list and params may be mutated while we wait for events, 2605 * so make a copy and iterate it. 2606 */ 2607 2608 params = conn_params_copy(&hdev->pend_le_conns, &n); 2609 if (!params) { 2610 err = -ENOMEM; 2611 goto done; 2612 } 2613 2614 for (i = 0; i < n; ++i) { 2615 err = hci_le_add_accept_list_sync(hdev, ¶ms[i], 2616 &num_entries); 2617 if (err) { 2618 kvfree(params); 2619 goto done; 2620 } 2621 } 2622 2623 kvfree(params); 2624 2625 /* After adding all new pending connections, walk through 2626 * the list of pending reports and also add these to the 2627 * accept list if there is still space. Abort if space runs out. 2628 */ 2629 2630 params = conn_params_copy(&hdev->pend_le_reports, &n); 2631 if (!params) { 2632 err = -ENOMEM; 2633 goto done; 2634 } 2635 2636 for (i = 0; i < n; ++i) { 2637 err = hci_le_add_accept_list_sync(hdev, ¶ms[i], 2638 &num_entries); 2639 if (err) { 2640 kvfree(params); 2641 goto done; 2642 } 2643 } 2644 2645 kvfree(params); 2646 2647 /* Use the allowlist unless the following conditions are all true: 2648 * - We are not currently suspending 2649 * - There are 1 or more ADV monitors registered and it's not offloaded 2650 * - Interleaved scanning is not currently using the allowlist 2651 */ 2652 if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended && 2653 hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE && 2654 hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST) 2655 err = -EINVAL; 2656 2657 done: 2658 filter_policy = err ? 0x00 : 0x01; 2659 2660 /* Enable address resolution when LL Privacy is enabled. */ 2661 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x01); 2662 if (err) 2663 bt_dev_err(hdev, "Unable to enable LL privacy: %d", err); 2664 2665 /* Resume advertising if it was paused */ 2666 if (use_ll_privacy(hdev)) 2667 hci_resume_advertising_sync(hdev); 2668 2669 /* Select filter policy to use accept list */ 2670 return filter_policy; 2671 } 2672 2673 /* Returns true if an le connection is in the scanning state */ 2674 static inline bool hci_is_le_conn_scanning(struct hci_dev *hdev) 2675 { 2676 struct hci_conn_hash *h = &hdev->conn_hash; 2677 struct hci_conn *c; 2678 2679 rcu_read_lock(); 2680 2681 list_for_each_entry_rcu(c, &h->list, list) { 2682 if (c->type == LE_LINK && c->state == BT_CONNECT && 2683 test_bit(HCI_CONN_SCANNING, &c->flags)) { 2684 rcu_read_unlock(); 2685 return true; 2686 } 2687 } 2688 2689 rcu_read_unlock(); 2690 2691 return false; 2692 } 2693 2694 static int hci_le_set_ext_scan_param_sync(struct hci_dev *hdev, u8 type, 2695 u16 interval, u16 window, 2696 u8 own_addr_type, u8 filter_policy) 2697 { 2698 struct hci_cp_le_set_ext_scan_params *cp; 2699 struct hci_cp_le_scan_phy_params *phy; 2700 u8 data[sizeof(*cp) + sizeof(*phy) * 2]; 2701 u8 num_phy = 0; 2702 2703 cp = (void *)data; 2704 phy = (void *)cp->data; 2705 2706 memset(data, 0, sizeof(data)); 2707 2708 cp->own_addr_type = own_addr_type; 2709 cp->filter_policy = filter_policy; 2710 2711 if (scan_1m(hdev) || scan_2m(hdev)) { 2712 cp->scanning_phys |= LE_SCAN_PHY_1M; 2713 2714 phy->type = type; 2715 phy->interval = cpu_to_le16(interval); 2716 phy->window = cpu_to_le16(window); 2717 2718 num_phy++; 2719 phy++; 2720 } 2721 2722 if (scan_coded(hdev)) { 2723 cp->scanning_phys |= LE_SCAN_PHY_CODED; 2724 2725 phy->type = type; 2726 phy->interval = cpu_to_le16(interval); 2727 phy->window = cpu_to_le16(window); 2728 2729 num_phy++; 2730 phy++; 2731 } 2732 2733 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_PARAMS, 2734 sizeof(*cp) + sizeof(*phy) * num_phy, 2735 data, HCI_CMD_TIMEOUT); 2736 } 2737 2738 static int hci_le_set_scan_param_sync(struct hci_dev *hdev, u8 type, 2739 u16 interval, u16 window, 2740 u8 own_addr_type, u8 filter_policy) 2741 { 2742 struct hci_cp_le_set_scan_param cp; 2743 2744 if (use_ext_scan(hdev)) 2745 return hci_le_set_ext_scan_param_sync(hdev, type, interval, 2746 window, own_addr_type, 2747 filter_policy); 2748 2749 memset(&cp, 0, sizeof(cp)); 2750 cp.type = type; 2751 cp.interval = cpu_to_le16(interval); 2752 cp.window = cpu_to_le16(window); 2753 cp.own_address_type = own_addr_type; 2754 cp.filter_policy = filter_policy; 2755 2756 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_PARAM, 2757 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2758 } 2759 2760 static int hci_start_scan_sync(struct hci_dev *hdev, u8 type, u16 interval, 2761 u16 window, u8 own_addr_type, u8 filter_policy, 2762 u8 filter_dup) 2763 { 2764 int err; 2765 2766 if (hdev->scanning_paused) { 2767 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2768 return 0; 2769 } 2770 2771 err = hci_le_set_scan_param_sync(hdev, type, interval, window, 2772 own_addr_type, filter_policy); 2773 if (err) 2774 return err; 2775 2776 return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, filter_dup); 2777 } 2778 2779 static int hci_passive_scan_sync(struct hci_dev *hdev) 2780 { 2781 u8 own_addr_type; 2782 u8 filter_policy; 2783 u16 window, interval; 2784 u8 filter_dups = LE_SCAN_FILTER_DUP_ENABLE; 2785 int err; 2786 2787 if (hdev->scanning_paused) { 2788 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2789 return 0; 2790 } 2791 2792 err = hci_scan_disable_sync(hdev); 2793 if (err) { 2794 bt_dev_err(hdev, "disable scanning failed: %d", err); 2795 return err; 2796 } 2797 2798 /* Set require_privacy to false since no SCAN_REQ are send 2799 * during passive scanning. Not using an non-resolvable address 2800 * here is important so that peer devices using direct 2801 * advertising with our address will be correctly reported 2802 * by the controller. 2803 */ 2804 if (hci_update_random_address_sync(hdev, false, scan_use_rpa(hdev), 2805 &own_addr_type)) 2806 return 0; 2807 2808 if (hdev->enable_advmon_interleave_scan && 2809 hci_update_interleaved_scan_sync(hdev)) 2810 return 0; 2811 2812 bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state); 2813 2814 /* Adding or removing entries from the accept list must 2815 * happen before enabling scanning. The controller does 2816 * not allow accept list modification while scanning. 2817 */ 2818 filter_policy = hci_update_accept_list_sync(hdev); 2819 2820 /* When the controller is using random resolvable addresses and 2821 * with that having LE privacy enabled, then controllers with 2822 * Extended Scanner Filter Policies support can now enable support 2823 * for handling directed advertising. 2824 * 2825 * So instead of using filter polices 0x00 (no acceptlist) 2826 * and 0x01 (acceptlist enabled) use the new filter policies 2827 * 0x02 (no acceptlist) and 0x03 (acceptlist enabled). 2828 */ 2829 if (hci_dev_test_flag(hdev, HCI_PRIVACY) && 2830 (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)) 2831 filter_policy |= 0x02; 2832 2833 if (hdev->suspended) { 2834 window = hdev->le_scan_window_suspend; 2835 interval = hdev->le_scan_int_suspend; 2836 } else if (hci_is_le_conn_scanning(hdev)) { 2837 window = hdev->le_scan_window_connect; 2838 interval = hdev->le_scan_int_connect; 2839 } else if (hci_is_adv_monitoring(hdev)) { 2840 window = hdev->le_scan_window_adv_monitor; 2841 interval = hdev->le_scan_int_adv_monitor; 2842 } else { 2843 window = hdev->le_scan_window; 2844 interval = hdev->le_scan_interval; 2845 } 2846 2847 /* Disable all filtering for Mesh */ 2848 if (hci_dev_test_flag(hdev, HCI_MESH)) { 2849 filter_policy = 0; 2850 filter_dups = LE_SCAN_FILTER_DUP_DISABLE; 2851 } 2852 2853 bt_dev_dbg(hdev, "LE passive scan with acceptlist = %d", filter_policy); 2854 2855 return hci_start_scan_sync(hdev, LE_SCAN_PASSIVE, interval, window, 2856 own_addr_type, filter_policy, filter_dups); 2857 } 2858 2859 /* This function controls the passive scanning based on hdev->pend_le_conns 2860 * list. If there are pending LE connection we start the background scanning, 2861 * otherwise we stop it in the following sequence: 2862 * 2863 * If there are devices to scan: 2864 * 2865 * Disable Scanning -> Update Accept List -> 2866 * use_ll_privacy((Disable Advertising) -> Disable Resolving List -> 2867 * Update Resolving List -> Enable Resolving List -> (Enable Advertising)) -> 2868 * Enable Scanning 2869 * 2870 * Otherwise: 2871 * 2872 * Disable Scanning 2873 */ 2874 int hci_update_passive_scan_sync(struct hci_dev *hdev) 2875 { 2876 int err; 2877 2878 if (!test_bit(HCI_UP, &hdev->flags) || 2879 test_bit(HCI_INIT, &hdev->flags) || 2880 hci_dev_test_flag(hdev, HCI_SETUP) || 2881 hci_dev_test_flag(hdev, HCI_CONFIG) || 2882 hci_dev_test_flag(hdev, HCI_AUTO_OFF) || 2883 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 2884 return 0; 2885 2886 /* No point in doing scanning if LE support hasn't been enabled */ 2887 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 2888 return 0; 2889 2890 /* If discovery is active don't interfere with it */ 2891 if (hdev->discovery.state != DISCOVERY_STOPPED) 2892 return 0; 2893 2894 /* Reset RSSI and UUID filters when starting background scanning 2895 * since these filters are meant for service discovery only. 2896 * 2897 * The Start Discovery and Start Service Discovery operations 2898 * ensure to set proper values for RSSI threshold and UUID 2899 * filter list. So it is safe to just reset them here. 2900 */ 2901 hci_discovery_filter_clear(hdev); 2902 2903 bt_dev_dbg(hdev, "ADV monitoring is %s", 2904 hci_is_adv_monitoring(hdev) ? "on" : "off"); 2905 2906 if (!hci_dev_test_flag(hdev, HCI_MESH) && 2907 list_empty(&hdev->pend_le_conns) && 2908 list_empty(&hdev->pend_le_reports) && 2909 !hci_is_adv_monitoring(hdev) && 2910 !hci_dev_test_flag(hdev, HCI_PA_SYNC)) { 2911 /* If there is no pending LE connections or devices 2912 * to be scanned for or no ADV monitors, we should stop the 2913 * background scanning. 2914 */ 2915 2916 bt_dev_dbg(hdev, "stopping background scanning"); 2917 2918 err = hci_scan_disable_sync(hdev); 2919 if (err) 2920 bt_dev_err(hdev, "stop background scanning failed: %d", 2921 err); 2922 } else { 2923 /* If there is at least one pending LE connection, we should 2924 * keep the background scan running. 2925 */ 2926 2927 /* If controller is connecting, we should not start scanning 2928 * since some controllers are not able to scan and connect at 2929 * the same time. 2930 */ 2931 if (hci_lookup_le_connect(hdev)) 2932 return 0; 2933 2934 bt_dev_dbg(hdev, "start background scanning"); 2935 2936 err = hci_passive_scan_sync(hdev); 2937 if (err) 2938 bt_dev_err(hdev, "start background scanning failed: %d", 2939 err); 2940 } 2941 2942 return err; 2943 } 2944 2945 static int update_scan_sync(struct hci_dev *hdev, void *data) 2946 { 2947 return hci_update_scan_sync(hdev); 2948 } 2949 2950 int hci_update_scan(struct hci_dev *hdev) 2951 { 2952 return hci_cmd_sync_queue(hdev, update_scan_sync, NULL, NULL); 2953 } 2954 2955 static int update_passive_scan_sync(struct hci_dev *hdev, void *data) 2956 { 2957 return hci_update_passive_scan_sync(hdev); 2958 } 2959 2960 int hci_update_passive_scan(struct hci_dev *hdev) 2961 { 2962 /* Only queue if it would have any effect */ 2963 if (!test_bit(HCI_UP, &hdev->flags) || 2964 test_bit(HCI_INIT, &hdev->flags) || 2965 hci_dev_test_flag(hdev, HCI_SETUP) || 2966 hci_dev_test_flag(hdev, HCI_CONFIG) || 2967 hci_dev_test_flag(hdev, HCI_AUTO_OFF) || 2968 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 2969 return 0; 2970 2971 return hci_cmd_sync_queue(hdev, update_passive_scan_sync, NULL, NULL); 2972 } 2973 2974 int hci_write_sc_support_sync(struct hci_dev *hdev, u8 val) 2975 { 2976 int err; 2977 2978 if (!bredr_sc_enabled(hdev) || lmp_host_sc_capable(hdev)) 2979 return 0; 2980 2981 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT, 2982 sizeof(val), &val, HCI_CMD_TIMEOUT); 2983 2984 if (!err) { 2985 if (val) { 2986 hdev->features[1][0] |= LMP_HOST_SC; 2987 hci_dev_set_flag(hdev, HCI_SC_ENABLED); 2988 } else { 2989 hdev->features[1][0] &= ~LMP_HOST_SC; 2990 hci_dev_clear_flag(hdev, HCI_SC_ENABLED); 2991 } 2992 } 2993 2994 return err; 2995 } 2996 2997 int hci_write_ssp_mode_sync(struct hci_dev *hdev, u8 mode) 2998 { 2999 int err; 3000 3001 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) || 3002 lmp_host_ssp_capable(hdev)) 3003 return 0; 3004 3005 if (!mode && hci_dev_test_flag(hdev, HCI_USE_DEBUG_KEYS)) { 3006 __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE, 3007 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3008 } 3009 3010 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE, 3011 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3012 if (err) 3013 return err; 3014 3015 return hci_write_sc_support_sync(hdev, 0x01); 3016 } 3017 3018 int hci_write_le_host_supported_sync(struct hci_dev *hdev, u8 le, u8 simul) 3019 { 3020 struct hci_cp_write_le_host_supported cp; 3021 3022 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED) || 3023 !lmp_bredr_capable(hdev)) 3024 return 0; 3025 3026 /* Check first if we already have the right host state 3027 * (host features set) 3028 */ 3029 if (le == lmp_host_le_capable(hdev) && 3030 simul == lmp_host_le_br_capable(hdev)) 3031 return 0; 3032 3033 memset(&cp, 0, sizeof(cp)); 3034 3035 cp.le = le; 3036 cp.simul = simul; 3037 3038 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED, 3039 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3040 } 3041 3042 static int hci_powered_update_adv_sync(struct hci_dev *hdev) 3043 { 3044 struct adv_info *adv, *tmp; 3045 int err; 3046 3047 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 3048 return 0; 3049 3050 /* If RPA Resolution has not been enable yet it means the 3051 * resolving list is empty and we should attempt to program the 3052 * local IRK in order to support using own_addr_type 3053 * ADDR_LE_DEV_RANDOM_RESOLVED (0x03). 3054 */ 3055 if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) { 3056 hci_le_add_resolve_list_sync(hdev, NULL); 3057 hci_le_set_addr_resolution_enable_sync(hdev, 0x01); 3058 } 3059 3060 /* Make sure the controller has a good default for 3061 * advertising data. This also applies to the case 3062 * where BR/EDR was toggled during the AUTO_OFF phase. 3063 */ 3064 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 3065 list_empty(&hdev->adv_instances)) { 3066 if (ext_adv_capable(hdev)) { 3067 err = hci_setup_ext_adv_instance_sync(hdev, 0x00); 3068 if (!err) 3069 hci_update_scan_rsp_data_sync(hdev, 0x00); 3070 } else { 3071 err = hci_update_adv_data_sync(hdev, 0x00); 3072 if (!err) 3073 hci_update_scan_rsp_data_sync(hdev, 0x00); 3074 } 3075 3076 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) 3077 hci_enable_advertising_sync(hdev); 3078 } 3079 3080 /* Call for each tracked instance to be scheduled */ 3081 list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) 3082 hci_schedule_adv_instance_sync(hdev, adv->instance, true); 3083 3084 return 0; 3085 } 3086 3087 static int hci_write_auth_enable_sync(struct hci_dev *hdev) 3088 { 3089 u8 link_sec; 3090 3091 link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY); 3092 if (link_sec == test_bit(HCI_AUTH, &hdev->flags)) 3093 return 0; 3094 3095 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE, 3096 sizeof(link_sec), &link_sec, 3097 HCI_CMD_TIMEOUT); 3098 } 3099 3100 int hci_write_fast_connectable_sync(struct hci_dev *hdev, bool enable) 3101 { 3102 struct hci_cp_write_page_scan_activity cp; 3103 u8 type; 3104 int err = 0; 3105 3106 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 3107 return 0; 3108 3109 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 3110 return 0; 3111 3112 memset(&cp, 0, sizeof(cp)); 3113 3114 if (enable) { 3115 type = PAGE_SCAN_TYPE_INTERLACED; 3116 3117 /* 160 msec page scan interval */ 3118 cp.interval = cpu_to_le16(0x0100); 3119 } else { 3120 type = hdev->def_page_scan_type; 3121 cp.interval = cpu_to_le16(hdev->def_page_scan_int); 3122 } 3123 3124 cp.window = cpu_to_le16(hdev->def_page_scan_window); 3125 3126 if (__cpu_to_le16(hdev->page_scan_interval) != cp.interval || 3127 __cpu_to_le16(hdev->page_scan_window) != cp.window) { 3128 err = __hci_cmd_sync_status(hdev, 3129 HCI_OP_WRITE_PAGE_SCAN_ACTIVITY, 3130 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3131 if (err) 3132 return err; 3133 } 3134 3135 if (hdev->page_scan_type != type) 3136 err = __hci_cmd_sync_status(hdev, 3137 HCI_OP_WRITE_PAGE_SCAN_TYPE, 3138 sizeof(type), &type, 3139 HCI_CMD_TIMEOUT); 3140 3141 return err; 3142 } 3143 3144 static bool disconnected_accept_list_entries(struct hci_dev *hdev) 3145 { 3146 struct bdaddr_list *b; 3147 3148 list_for_each_entry(b, &hdev->accept_list, list) { 3149 struct hci_conn *conn; 3150 3151 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr); 3152 if (!conn) 3153 return true; 3154 3155 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 3156 return true; 3157 } 3158 3159 return false; 3160 } 3161 3162 static int hci_write_scan_enable_sync(struct hci_dev *hdev, u8 val) 3163 { 3164 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE, 3165 sizeof(val), &val, 3166 HCI_CMD_TIMEOUT); 3167 } 3168 3169 int hci_update_scan_sync(struct hci_dev *hdev) 3170 { 3171 u8 scan; 3172 3173 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 3174 return 0; 3175 3176 if (!hdev_is_powered(hdev)) 3177 return 0; 3178 3179 if (mgmt_powering_down(hdev)) 3180 return 0; 3181 3182 if (hdev->scanning_paused) 3183 return 0; 3184 3185 if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) || 3186 disconnected_accept_list_entries(hdev)) 3187 scan = SCAN_PAGE; 3188 else 3189 scan = SCAN_DISABLED; 3190 3191 if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 3192 scan |= SCAN_INQUIRY; 3193 3194 if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) && 3195 test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY)) 3196 return 0; 3197 3198 return hci_write_scan_enable_sync(hdev, scan); 3199 } 3200 3201 int hci_update_name_sync(struct hci_dev *hdev) 3202 { 3203 struct hci_cp_write_local_name cp; 3204 3205 memset(&cp, 0, sizeof(cp)); 3206 3207 memcpy(cp.name, hdev->dev_name, sizeof(cp.name)); 3208 3209 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LOCAL_NAME, 3210 sizeof(cp), &cp, 3211 HCI_CMD_TIMEOUT); 3212 } 3213 3214 /* This function perform powered update HCI command sequence after the HCI init 3215 * sequence which end up resetting all states, the sequence is as follows: 3216 * 3217 * HCI_SSP_ENABLED(Enable SSP) 3218 * HCI_LE_ENABLED(Enable LE) 3219 * HCI_LE_ENABLED(use_ll_privacy(Add local IRK to Resolving List) -> 3220 * Update adv data) 3221 * Enable Authentication 3222 * lmp_bredr_capable(Set Fast Connectable -> Set Scan Type -> Set Class -> 3223 * Set Name -> Set EIR) 3224 * HCI_FORCE_STATIC_ADDR | BDADDR_ANY && !HCI_BREDR_ENABLED (Set Static Address) 3225 */ 3226 int hci_powered_update_sync(struct hci_dev *hdev) 3227 { 3228 int err; 3229 3230 /* Register the available SMP channels (BR/EDR and LE) only when 3231 * successfully powering on the controller. This late 3232 * registration is required so that LE SMP can clearly decide if 3233 * the public address or static address is used. 3234 */ 3235 smp_register(hdev); 3236 3237 err = hci_write_ssp_mode_sync(hdev, 0x01); 3238 if (err) 3239 return err; 3240 3241 err = hci_write_le_host_supported_sync(hdev, 0x01, 0x00); 3242 if (err) 3243 return err; 3244 3245 err = hci_powered_update_adv_sync(hdev); 3246 if (err) 3247 return err; 3248 3249 err = hci_write_auth_enable_sync(hdev); 3250 if (err) 3251 return err; 3252 3253 if (lmp_bredr_capable(hdev)) { 3254 if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE)) 3255 hci_write_fast_connectable_sync(hdev, true); 3256 else 3257 hci_write_fast_connectable_sync(hdev, false); 3258 hci_update_scan_sync(hdev); 3259 hci_update_class_sync(hdev); 3260 hci_update_name_sync(hdev); 3261 hci_update_eir_sync(hdev); 3262 } 3263 3264 /* If forcing static address is in use or there is no public 3265 * address use the static address as random address (but skip 3266 * the HCI command if the current random address is already the 3267 * static one. 3268 * 3269 * In case BR/EDR has been disabled on a dual-mode controller 3270 * and a static address has been configured, then use that 3271 * address instead of the public BR/EDR address. 3272 */ 3273 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 3274 (!bacmp(&hdev->bdaddr, BDADDR_ANY) && 3275 !hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))) { 3276 if (bacmp(&hdev->static_addr, BDADDR_ANY)) 3277 return hci_set_random_addr_sync(hdev, 3278 &hdev->static_addr); 3279 } 3280 3281 return 0; 3282 } 3283 3284 /** 3285 * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address 3286 * (BD_ADDR) for a HCI device from 3287 * a firmware node property. 3288 * @hdev: The HCI device 3289 * 3290 * Search the firmware node for 'local-bd-address'. 3291 * 3292 * All-zero BD addresses are rejected, because those could be properties 3293 * that exist in the firmware tables, but were not updated by the firmware. For 3294 * example, the DTS could define 'local-bd-address', with zero BD addresses. 3295 */ 3296 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev) 3297 { 3298 struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent); 3299 bdaddr_t ba; 3300 int ret; 3301 3302 ret = fwnode_property_read_u8_array(fwnode, "local-bd-address", 3303 (u8 *)&ba, sizeof(ba)); 3304 if (ret < 0 || !bacmp(&ba, BDADDR_ANY)) 3305 return; 3306 3307 bacpy(&hdev->public_addr, &ba); 3308 } 3309 3310 struct hci_init_stage { 3311 int (*func)(struct hci_dev *hdev); 3312 }; 3313 3314 /* Run init stage NULL terminated function table */ 3315 static int hci_init_stage_sync(struct hci_dev *hdev, 3316 const struct hci_init_stage *stage) 3317 { 3318 size_t i; 3319 3320 for (i = 0; stage[i].func; i++) { 3321 int err; 3322 3323 err = stage[i].func(hdev); 3324 if (err) 3325 return err; 3326 } 3327 3328 return 0; 3329 } 3330 3331 /* Read Local Version */ 3332 static int hci_read_local_version_sync(struct hci_dev *hdev) 3333 { 3334 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_VERSION, 3335 0, NULL, HCI_CMD_TIMEOUT); 3336 } 3337 3338 /* Read BD Address */ 3339 static int hci_read_bd_addr_sync(struct hci_dev *hdev) 3340 { 3341 return __hci_cmd_sync_status(hdev, HCI_OP_READ_BD_ADDR, 3342 0, NULL, HCI_CMD_TIMEOUT); 3343 } 3344 3345 #define HCI_INIT(_func) \ 3346 { \ 3347 .func = _func, \ 3348 } 3349 3350 static const struct hci_init_stage hci_init0[] = { 3351 /* HCI_OP_READ_LOCAL_VERSION */ 3352 HCI_INIT(hci_read_local_version_sync), 3353 /* HCI_OP_READ_BD_ADDR */ 3354 HCI_INIT(hci_read_bd_addr_sync), 3355 {} 3356 }; 3357 3358 int hci_reset_sync(struct hci_dev *hdev) 3359 { 3360 int err; 3361 3362 set_bit(HCI_RESET, &hdev->flags); 3363 3364 err = __hci_cmd_sync_status(hdev, HCI_OP_RESET, 0, NULL, 3365 HCI_CMD_TIMEOUT); 3366 if (err) 3367 return err; 3368 3369 return 0; 3370 } 3371 3372 static int hci_init0_sync(struct hci_dev *hdev) 3373 { 3374 int err; 3375 3376 bt_dev_dbg(hdev, ""); 3377 3378 /* Reset */ 3379 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) { 3380 err = hci_reset_sync(hdev); 3381 if (err) 3382 return err; 3383 } 3384 3385 return hci_init_stage_sync(hdev, hci_init0); 3386 } 3387 3388 static int hci_unconf_init_sync(struct hci_dev *hdev) 3389 { 3390 int err; 3391 3392 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) 3393 return 0; 3394 3395 err = hci_init0_sync(hdev); 3396 if (err < 0) 3397 return err; 3398 3399 if (hci_dev_test_flag(hdev, HCI_SETUP)) 3400 hci_debugfs_create_basic(hdev); 3401 3402 return 0; 3403 } 3404 3405 /* Read Local Supported Features. */ 3406 static int hci_read_local_features_sync(struct hci_dev *hdev) 3407 { 3408 /* Not all AMP controllers support this command */ 3409 if (hdev->dev_type == HCI_AMP && !(hdev->commands[14] & 0x20)) 3410 return 0; 3411 3412 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_FEATURES, 3413 0, NULL, HCI_CMD_TIMEOUT); 3414 } 3415 3416 /* BR Controller init stage 1 command sequence */ 3417 static const struct hci_init_stage br_init1[] = { 3418 /* HCI_OP_READ_LOCAL_FEATURES */ 3419 HCI_INIT(hci_read_local_features_sync), 3420 /* HCI_OP_READ_LOCAL_VERSION */ 3421 HCI_INIT(hci_read_local_version_sync), 3422 /* HCI_OP_READ_BD_ADDR */ 3423 HCI_INIT(hci_read_bd_addr_sync), 3424 {} 3425 }; 3426 3427 /* Read Local Commands */ 3428 static int hci_read_local_cmds_sync(struct hci_dev *hdev) 3429 { 3430 /* All Bluetooth 1.2 and later controllers should support the 3431 * HCI command for reading the local supported commands. 3432 * 3433 * Unfortunately some controllers indicate Bluetooth 1.2 support, 3434 * but do not have support for this command. If that is the case, 3435 * the driver can quirk the behavior and skip reading the local 3436 * supported commands. 3437 */ 3438 if (hdev->hci_ver > BLUETOOTH_VER_1_1 && 3439 !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks)) 3440 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_COMMANDS, 3441 0, NULL, HCI_CMD_TIMEOUT); 3442 3443 return 0; 3444 } 3445 3446 /* Read Local AMP Info */ 3447 static int hci_read_local_amp_info_sync(struct hci_dev *hdev) 3448 { 3449 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_AMP_INFO, 3450 0, NULL, HCI_CMD_TIMEOUT); 3451 } 3452 3453 /* Read Data Blk size */ 3454 static int hci_read_data_block_size_sync(struct hci_dev *hdev) 3455 { 3456 return __hci_cmd_sync_status(hdev, HCI_OP_READ_DATA_BLOCK_SIZE, 3457 0, NULL, HCI_CMD_TIMEOUT); 3458 } 3459 3460 /* Read Flow Control Mode */ 3461 static int hci_read_flow_control_mode_sync(struct hci_dev *hdev) 3462 { 3463 return __hci_cmd_sync_status(hdev, HCI_OP_READ_FLOW_CONTROL_MODE, 3464 0, NULL, HCI_CMD_TIMEOUT); 3465 } 3466 3467 /* Read Location Data */ 3468 static int hci_read_location_data_sync(struct hci_dev *hdev) 3469 { 3470 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCATION_DATA, 3471 0, NULL, HCI_CMD_TIMEOUT); 3472 } 3473 3474 /* AMP Controller init stage 1 command sequence */ 3475 static const struct hci_init_stage amp_init1[] = { 3476 /* HCI_OP_READ_LOCAL_VERSION */ 3477 HCI_INIT(hci_read_local_version_sync), 3478 /* HCI_OP_READ_LOCAL_COMMANDS */ 3479 HCI_INIT(hci_read_local_cmds_sync), 3480 /* HCI_OP_READ_LOCAL_AMP_INFO */ 3481 HCI_INIT(hci_read_local_amp_info_sync), 3482 /* HCI_OP_READ_DATA_BLOCK_SIZE */ 3483 HCI_INIT(hci_read_data_block_size_sync), 3484 /* HCI_OP_READ_FLOW_CONTROL_MODE */ 3485 HCI_INIT(hci_read_flow_control_mode_sync), 3486 /* HCI_OP_READ_LOCATION_DATA */ 3487 HCI_INIT(hci_read_location_data_sync), 3488 {} 3489 }; 3490 3491 static int hci_init1_sync(struct hci_dev *hdev) 3492 { 3493 int err; 3494 3495 bt_dev_dbg(hdev, ""); 3496 3497 /* Reset */ 3498 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) { 3499 err = hci_reset_sync(hdev); 3500 if (err) 3501 return err; 3502 } 3503 3504 switch (hdev->dev_type) { 3505 case HCI_PRIMARY: 3506 hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED; 3507 return hci_init_stage_sync(hdev, br_init1); 3508 case HCI_AMP: 3509 hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED; 3510 return hci_init_stage_sync(hdev, amp_init1); 3511 default: 3512 bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type); 3513 break; 3514 } 3515 3516 return 0; 3517 } 3518 3519 /* AMP Controller init stage 2 command sequence */ 3520 static const struct hci_init_stage amp_init2[] = { 3521 /* HCI_OP_READ_LOCAL_FEATURES */ 3522 HCI_INIT(hci_read_local_features_sync), 3523 {} 3524 }; 3525 3526 /* Read Buffer Size (ACL mtu, max pkt, etc.) */ 3527 static int hci_read_buffer_size_sync(struct hci_dev *hdev) 3528 { 3529 return __hci_cmd_sync_status(hdev, HCI_OP_READ_BUFFER_SIZE, 3530 0, NULL, HCI_CMD_TIMEOUT); 3531 } 3532 3533 /* Read Class of Device */ 3534 static int hci_read_dev_class_sync(struct hci_dev *hdev) 3535 { 3536 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLASS_OF_DEV, 3537 0, NULL, HCI_CMD_TIMEOUT); 3538 } 3539 3540 /* Read Local Name */ 3541 static int hci_read_local_name_sync(struct hci_dev *hdev) 3542 { 3543 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_NAME, 3544 0, NULL, HCI_CMD_TIMEOUT); 3545 } 3546 3547 /* Read Voice Setting */ 3548 static int hci_read_voice_setting_sync(struct hci_dev *hdev) 3549 { 3550 return __hci_cmd_sync_status(hdev, HCI_OP_READ_VOICE_SETTING, 3551 0, NULL, HCI_CMD_TIMEOUT); 3552 } 3553 3554 /* Read Number of Supported IAC */ 3555 static int hci_read_num_supported_iac_sync(struct hci_dev *hdev) 3556 { 3557 return __hci_cmd_sync_status(hdev, HCI_OP_READ_NUM_SUPPORTED_IAC, 3558 0, NULL, HCI_CMD_TIMEOUT); 3559 } 3560 3561 /* Read Current IAC LAP */ 3562 static int hci_read_current_iac_lap_sync(struct hci_dev *hdev) 3563 { 3564 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CURRENT_IAC_LAP, 3565 0, NULL, HCI_CMD_TIMEOUT); 3566 } 3567 3568 static int hci_set_event_filter_sync(struct hci_dev *hdev, u8 flt_type, 3569 u8 cond_type, bdaddr_t *bdaddr, 3570 u8 auto_accept) 3571 { 3572 struct hci_cp_set_event_filter cp; 3573 3574 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 3575 return 0; 3576 3577 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 3578 return 0; 3579 3580 memset(&cp, 0, sizeof(cp)); 3581 cp.flt_type = flt_type; 3582 3583 if (flt_type != HCI_FLT_CLEAR_ALL) { 3584 cp.cond_type = cond_type; 3585 bacpy(&cp.addr_conn_flt.bdaddr, bdaddr); 3586 cp.addr_conn_flt.auto_accept = auto_accept; 3587 } 3588 3589 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_FLT, 3590 flt_type == HCI_FLT_CLEAR_ALL ? 3591 sizeof(cp.flt_type) : sizeof(cp), &cp, 3592 HCI_CMD_TIMEOUT); 3593 } 3594 3595 static int hci_clear_event_filter_sync(struct hci_dev *hdev) 3596 { 3597 if (!hci_dev_test_flag(hdev, HCI_EVENT_FILTER_CONFIGURED)) 3598 return 0; 3599 3600 /* In theory the state machine should not reach here unless 3601 * a hci_set_event_filter_sync() call succeeds, but we do 3602 * the check both for parity and as a future reminder. 3603 */ 3604 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 3605 return 0; 3606 3607 return hci_set_event_filter_sync(hdev, HCI_FLT_CLEAR_ALL, 0x00, 3608 BDADDR_ANY, 0x00); 3609 } 3610 3611 /* Connection accept timeout ~20 secs */ 3612 static int hci_write_ca_timeout_sync(struct hci_dev *hdev) 3613 { 3614 __le16 param = cpu_to_le16(0x7d00); 3615 3616 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CA_TIMEOUT, 3617 sizeof(param), ¶m, HCI_CMD_TIMEOUT); 3618 } 3619 3620 /* BR Controller init stage 2 command sequence */ 3621 static const struct hci_init_stage br_init2[] = { 3622 /* HCI_OP_READ_BUFFER_SIZE */ 3623 HCI_INIT(hci_read_buffer_size_sync), 3624 /* HCI_OP_READ_CLASS_OF_DEV */ 3625 HCI_INIT(hci_read_dev_class_sync), 3626 /* HCI_OP_READ_LOCAL_NAME */ 3627 HCI_INIT(hci_read_local_name_sync), 3628 /* HCI_OP_READ_VOICE_SETTING */ 3629 HCI_INIT(hci_read_voice_setting_sync), 3630 /* HCI_OP_READ_NUM_SUPPORTED_IAC */ 3631 HCI_INIT(hci_read_num_supported_iac_sync), 3632 /* HCI_OP_READ_CURRENT_IAC_LAP */ 3633 HCI_INIT(hci_read_current_iac_lap_sync), 3634 /* HCI_OP_SET_EVENT_FLT */ 3635 HCI_INIT(hci_clear_event_filter_sync), 3636 /* HCI_OP_WRITE_CA_TIMEOUT */ 3637 HCI_INIT(hci_write_ca_timeout_sync), 3638 {} 3639 }; 3640 3641 static int hci_write_ssp_mode_1_sync(struct hci_dev *hdev) 3642 { 3643 u8 mode = 0x01; 3644 3645 if (!lmp_ssp_capable(hdev) || !hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 3646 return 0; 3647 3648 /* When SSP is available, then the host features page 3649 * should also be available as well. However some 3650 * controllers list the max_page as 0 as long as SSP 3651 * has not been enabled. To achieve proper debugging 3652 * output, force the minimum max_page to 1 at least. 3653 */ 3654 hdev->max_page = 0x01; 3655 3656 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE, 3657 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3658 } 3659 3660 static int hci_write_eir_sync(struct hci_dev *hdev) 3661 { 3662 struct hci_cp_write_eir cp; 3663 3664 if (!lmp_ssp_capable(hdev) || hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 3665 return 0; 3666 3667 memset(hdev->eir, 0, sizeof(hdev->eir)); 3668 memset(&cp, 0, sizeof(cp)); 3669 3670 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp, 3671 HCI_CMD_TIMEOUT); 3672 } 3673 3674 static int hci_write_inquiry_mode_sync(struct hci_dev *hdev) 3675 { 3676 u8 mode; 3677 3678 if (!lmp_inq_rssi_capable(hdev) && 3679 !test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) 3680 return 0; 3681 3682 /* If Extended Inquiry Result events are supported, then 3683 * they are clearly preferred over Inquiry Result with RSSI 3684 * events. 3685 */ 3686 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01; 3687 3688 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_INQUIRY_MODE, 3689 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3690 } 3691 3692 static int hci_read_inq_rsp_tx_power_sync(struct hci_dev *hdev) 3693 { 3694 if (!lmp_inq_tx_pwr_capable(hdev)) 3695 return 0; 3696 3697 return __hci_cmd_sync_status(hdev, HCI_OP_READ_INQ_RSP_TX_POWER, 3698 0, NULL, HCI_CMD_TIMEOUT); 3699 } 3700 3701 static int hci_read_local_ext_features_sync(struct hci_dev *hdev, u8 page) 3702 { 3703 struct hci_cp_read_local_ext_features cp; 3704 3705 if (!lmp_ext_feat_capable(hdev)) 3706 return 0; 3707 3708 memset(&cp, 0, sizeof(cp)); 3709 cp.page = page; 3710 3711 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_EXT_FEATURES, 3712 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3713 } 3714 3715 static int hci_read_local_ext_features_1_sync(struct hci_dev *hdev) 3716 { 3717 return hci_read_local_ext_features_sync(hdev, 0x01); 3718 } 3719 3720 /* HCI Controller init stage 2 command sequence */ 3721 static const struct hci_init_stage hci_init2[] = { 3722 /* HCI_OP_READ_LOCAL_COMMANDS */ 3723 HCI_INIT(hci_read_local_cmds_sync), 3724 /* HCI_OP_WRITE_SSP_MODE */ 3725 HCI_INIT(hci_write_ssp_mode_1_sync), 3726 /* HCI_OP_WRITE_EIR */ 3727 HCI_INIT(hci_write_eir_sync), 3728 /* HCI_OP_WRITE_INQUIRY_MODE */ 3729 HCI_INIT(hci_write_inquiry_mode_sync), 3730 /* HCI_OP_READ_INQ_RSP_TX_POWER */ 3731 HCI_INIT(hci_read_inq_rsp_tx_power_sync), 3732 /* HCI_OP_READ_LOCAL_EXT_FEATURES */ 3733 HCI_INIT(hci_read_local_ext_features_1_sync), 3734 /* HCI_OP_WRITE_AUTH_ENABLE */ 3735 HCI_INIT(hci_write_auth_enable_sync), 3736 {} 3737 }; 3738 3739 /* Read LE Buffer Size */ 3740 static int hci_le_read_buffer_size_sync(struct hci_dev *hdev) 3741 { 3742 /* Use Read LE Buffer Size V2 if supported */ 3743 if (iso_capable(hdev) && hdev->commands[41] & 0x20) 3744 return __hci_cmd_sync_status(hdev, 3745 HCI_OP_LE_READ_BUFFER_SIZE_V2, 3746 0, NULL, HCI_CMD_TIMEOUT); 3747 3748 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_BUFFER_SIZE, 3749 0, NULL, HCI_CMD_TIMEOUT); 3750 } 3751 3752 /* Read LE Local Supported Features */ 3753 static int hci_le_read_local_features_sync(struct hci_dev *hdev) 3754 { 3755 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_LOCAL_FEATURES, 3756 0, NULL, HCI_CMD_TIMEOUT); 3757 } 3758 3759 /* Read LE Supported States */ 3760 static int hci_le_read_supported_states_sync(struct hci_dev *hdev) 3761 { 3762 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_SUPPORTED_STATES, 3763 0, NULL, HCI_CMD_TIMEOUT); 3764 } 3765 3766 /* LE Controller init stage 2 command sequence */ 3767 static const struct hci_init_stage le_init2[] = { 3768 /* HCI_OP_LE_READ_LOCAL_FEATURES */ 3769 HCI_INIT(hci_le_read_local_features_sync), 3770 /* HCI_OP_LE_READ_BUFFER_SIZE */ 3771 HCI_INIT(hci_le_read_buffer_size_sync), 3772 /* HCI_OP_LE_READ_SUPPORTED_STATES */ 3773 HCI_INIT(hci_le_read_supported_states_sync), 3774 {} 3775 }; 3776 3777 static int hci_init2_sync(struct hci_dev *hdev) 3778 { 3779 int err; 3780 3781 bt_dev_dbg(hdev, ""); 3782 3783 if (hdev->dev_type == HCI_AMP) 3784 return hci_init_stage_sync(hdev, amp_init2); 3785 3786 err = hci_init_stage_sync(hdev, hci_init2); 3787 if (err) 3788 return err; 3789 3790 if (lmp_bredr_capable(hdev)) { 3791 err = hci_init_stage_sync(hdev, br_init2); 3792 if (err) 3793 return err; 3794 } else { 3795 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED); 3796 } 3797 3798 if (lmp_le_capable(hdev)) { 3799 err = hci_init_stage_sync(hdev, le_init2); 3800 if (err) 3801 return err; 3802 /* LE-only controllers have LE implicitly enabled */ 3803 if (!lmp_bredr_capable(hdev)) 3804 hci_dev_set_flag(hdev, HCI_LE_ENABLED); 3805 } 3806 3807 return 0; 3808 } 3809 3810 static int hci_set_event_mask_sync(struct hci_dev *hdev) 3811 { 3812 /* The second byte is 0xff instead of 0x9f (two reserved bits 3813 * disabled) since a Broadcom 1.2 dongle doesn't respond to the 3814 * command otherwise. 3815 */ 3816 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 }; 3817 3818 /* CSR 1.1 dongles does not accept any bitfield so don't try to set 3819 * any event mask for pre 1.2 devices. 3820 */ 3821 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 3822 return 0; 3823 3824 if (lmp_bredr_capable(hdev)) { 3825 events[4] |= 0x01; /* Flow Specification Complete */ 3826 3827 /* Don't set Disconnect Complete when suspended as that 3828 * would wakeup the host when disconnecting due to 3829 * suspend. 3830 */ 3831 if (hdev->suspended) 3832 events[0] &= 0xef; 3833 } else { 3834 /* Use a different default for LE-only devices */ 3835 memset(events, 0, sizeof(events)); 3836 events[1] |= 0x20; /* Command Complete */ 3837 events[1] |= 0x40; /* Command Status */ 3838 events[1] |= 0x80; /* Hardware Error */ 3839 3840 /* If the controller supports the Disconnect command, enable 3841 * the corresponding event. In addition enable packet flow 3842 * control related events. 3843 */ 3844 if (hdev->commands[0] & 0x20) { 3845 /* Don't set Disconnect Complete when suspended as that 3846 * would wakeup the host when disconnecting due to 3847 * suspend. 3848 */ 3849 if (!hdev->suspended) 3850 events[0] |= 0x10; /* Disconnection Complete */ 3851 events[2] |= 0x04; /* Number of Completed Packets */ 3852 events[3] |= 0x02; /* Data Buffer Overflow */ 3853 } 3854 3855 /* If the controller supports the Read Remote Version 3856 * Information command, enable the corresponding event. 3857 */ 3858 if (hdev->commands[2] & 0x80) 3859 events[1] |= 0x08; /* Read Remote Version Information 3860 * Complete 3861 */ 3862 3863 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) { 3864 events[0] |= 0x80; /* Encryption Change */ 3865 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 3866 } 3867 } 3868 3869 if (lmp_inq_rssi_capable(hdev) || 3870 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) 3871 events[4] |= 0x02; /* Inquiry Result with RSSI */ 3872 3873 if (lmp_ext_feat_capable(hdev)) 3874 events[4] |= 0x04; /* Read Remote Extended Features Complete */ 3875 3876 if (lmp_esco_capable(hdev)) { 3877 events[5] |= 0x08; /* Synchronous Connection Complete */ 3878 events[5] |= 0x10; /* Synchronous Connection Changed */ 3879 } 3880 3881 if (lmp_sniffsubr_capable(hdev)) 3882 events[5] |= 0x20; /* Sniff Subrating */ 3883 3884 if (lmp_pause_enc_capable(hdev)) 3885 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 3886 3887 if (lmp_ext_inq_capable(hdev)) 3888 events[5] |= 0x40; /* Extended Inquiry Result */ 3889 3890 if (lmp_no_flush_capable(hdev)) 3891 events[7] |= 0x01; /* Enhanced Flush Complete */ 3892 3893 if (lmp_lsto_capable(hdev)) 3894 events[6] |= 0x80; /* Link Supervision Timeout Changed */ 3895 3896 if (lmp_ssp_capable(hdev)) { 3897 events[6] |= 0x01; /* IO Capability Request */ 3898 events[6] |= 0x02; /* IO Capability Response */ 3899 events[6] |= 0x04; /* User Confirmation Request */ 3900 events[6] |= 0x08; /* User Passkey Request */ 3901 events[6] |= 0x10; /* Remote OOB Data Request */ 3902 events[6] |= 0x20; /* Simple Pairing Complete */ 3903 events[7] |= 0x04; /* User Passkey Notification */ 3904 events[7] |= 0x08; /* Keypress Notification */ 3905 events[7] |= 0x10; /* Remote Host Supported 3906 * Features Notification 3907 */ 3908 } 3909 3910 if (lmp_le_capable(hdev)) 3911 events[7] |= 0x20; /* LE Meta-Event */ 3912 3913 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK, 3914 sizeof(events), events, HCI_CMD_TIMEOUT); 3915 } 3916 3917 static int hci_read_stored_link_key_sync(struct hci_dev *hdev) 3918 { 3919 struct hci_cp_read_stored_link_key cp; 3920 3921 if (!(hdev->commands[6] & 0x20) || 3922 test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) 3923 return 0; 3924 3925 memset(&cp, 0, sizeof(cp)); 3926 bacpy(&cp.bdaddr, BDADDR_ANY); 3927 cp.read_all = 0x01; 3928 3929 return __hci_cmd_sync_status(hdev, HCI_OP_READ_STORED_LINK_KEY, 3930 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3931 } 3932 3933 static int hci_setup_link_policy_sync(struct hci_dev *hdev) 3934 { 3935 struct hci_cp_write_def_link_policy cp; 3936 u16 link_policy = 0; 3937 3938 if (!(hdev->commands[5] & 0x10)) 3939 return 0; 3940 3941 memset(&cp, 0, sizeof(cp)); 3942 3943 if (lmp_rswitch_capable(hdev)) 3944 link_policy |= HCI_LP_RSWITCH; 3945 if (lmp_hold_capable(hdev)) 3946 link_policy |= HCI_LP_HOLD; 3947 if (lmp_sniff_capable(hdev)) 3948 link_policy |= HCI_LP_SNIFF; 3949 if (lmp_park_capable(hdev)) 3950 link_policy |= HCI_LP_PARK; 3951 3952 cp.policy = cpu_to_le16(link_policy); 3953 3954 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY, 3955 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3956 } 3957 3958 static int hci_read_page_scan_activity_sync(struct hci_dev *hdev) 3959 { 3960 if (!(hdev->commands[8] & 0x01)) 3961 return 0; 3962 3963 return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 3964 0, NULL, HCI_CMD_TIMEOUT); 3965 } 3966 3967 static int hci_read_def_err_data_reporting_sync(struct hci_dev *hdev) 3968 { 3969 if (!(hdev->commands[18] & 0x04) || 3970 !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) || 3971 test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) 3972 return 0; 3973 3974 return __hci_cmd_sync_status(hdev, HCI_OP_READ_DEF_ERR_DATA_REPORTING, 3975 0, NULL, HCI_CMD_TIMEOUT); 3976 } 3977 3978 static int hci_read_page_scan_type_sync(struct hci_dev *hdev) 3979 { 3980 /* Some older Broadcom based Bluetooth 1.2 controllers do not 3981 * support the Read Page Scan Type command. Check support for 3982 * this command in the bit mask of supported commands. 3983 */ 3984 if (!(hdev->commands[13] & 0x01)) 3985 return 0; 3986 3987 return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_TYPE, 3988 0, NULL, HCI_CMD_TIMEOUT); 3989 } 3990 3991 /* Read features beyond page 1 if available */ 3992 static int hci_read_local_ext_features_all_sync(struct hci_dev *hdev) 3993 { 3994 u8 page; 3995 int err; 3996 3997 if (!lmp_ext_feat_capable(hdev)) 3998 return 0; 3999 4000 for (page = 2; page < HCI_MAX_PAGES && page <= hdev->max_page; 4001 page++) { 4002 err = hci_read_local_ext_features_sync(hdev, page); 4003 if (err) 4004 return err; 4005 } 4006 4007 return 0; 4008 } 4009 4010 /* HCI Controller init stage 3 command sequence */ 4011 static const struct hci_init_stage hci_init3[] = { 4012 /* HCI_OP_SET_EVENT_MASK */ 4013 HCI_INIT(hci_set_event_mask_sync), 4014 /* HCI_OP_READ_STORED_LINK_KEY */ 4015 HCI_INIT(hci_read_stored_link_key_sync), 4016 /* HCI_OP_WRITE_DEF_LINK_POLICY */ 4017 HCI_INIT(hci_setup_link_policy_sync), 4018 /* HCI_OP_READ_PAGE_SCAN_ACTIVITY */ 4019 HCI_INIT(hci_read_page_scan_activity_sync), 4020 /* HCI_OP_READ_DEF_ERR_DATA_REPORTING */ 4021 HCI_INIT(hci_read_def_err_data_reporting_sync), 4022 /* HCI_OP_READ_PAGE_SCAN_TYPE */ 4023 HCI_INIT(hci_read_page_scan_type_sync), 4024 /* HCI_OP_READ_LOCAL_EXT_FEATURES */ 4025 HCI_INIT(hci_read_local_ext_features_all_sync), 4026 {} 4027 }; 4028 4029 static int hci_le_set_event_mask_sync(struct hci_dev *hdev) 4030 { 4031 u8 events[8]; 4032 4033 if (!lmp_le_capable(hdev)) 4034 return 0; 4035 4036 memset(events, 0, sizeof(events)); 4037 4038 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) 4039 events[0] |= 0x10; /* LE Long Term Key Request */ 4040 4041 /* If controller supports the Connection Parameters Request 4042 * Link Layer Procedure, enable the corresponding event. 4043 */ 4044 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC) 4045 /* LE Remote Connection Parameter Request */ 4046 events[0] |= 0x20; 4047 4048 /* If the controller supports the Data Length Extension 4049 * feature, enable the corresponding event. 4050 */ 4051 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) 4052 events[0] |= 0x40; /* LE Data Length Change */ 4053 4054 /* If the controller supports LL Privacy feature or LE Extended Adv, 4055 * enable the corresponding event. 4056 */ 4057 if (use_enhanced_conn_complete(hdev)) 4058 events[1] |= 0x02; /* LE Enhanced Connection Complete */ 4059 4060 /* If the controller supports Extended Scanner Filter 4061 * Policies, enable the corresponding event. 4062 */ 4063 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY) 4064 events[1] |= 0x04; /* LE Direct Advertising Report */ 4065 4066 /* If the controller supports Channel Selection Algorithm #2 4067 * feature, enable the corresponding event. 4068 */ 4069 if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2) 4070 events[2] |= 0x08; /* LE Channel Selection Algorithm */ 4071 4072 /* If the controller supports the LE Set Scan Enable command, 4073 * enable the corresponding advertising report event. 4074 */ 4075 if (hdev->commands[26] & 0x08) 4076 events[0] |= 0x02; /* LE Advertising Report */ 4077 4078 /* If the controller supports the LE Create Connection 4079 * command, enable the corresponding event. 4080 */ 4081 if (hdev->commands[26] & 0x10) 4082 events[0] |= 0x01; /* LE Connection Complete */ 4083 4084 /* If the controller supports the LE Connection Update 4085 * command, enable the corresponding event. 4086 */ 4087 if (hdev->commands[27] & 0x04) 4088 events[0] |= 0x04; /* LE Connection Update Complete */ 4089 4090 /* If the controller supports the LE Read Remote Used Features 4091 * command, enable the corresponding event. 4092 */ 4093 if (hdev->commands[27] & 0x20) 4094 /* LE Read Remote Used Features Complete */ 4095 events[0] |= 0x08; 4096 4097 /* If the controller supports the LE Read Local P-256 4098 * Public Key command, enable the corresponding event. 4099 */ 4100 if (hdev->commands[34] & 0x02) 4101 /* LE Read Local P-256 Public Key Complete */ 4102 events[0] |= 0x80; 4103 4104 /* If the controller supports the LE Generate DHKey 4105 * command, enable the corresponding event. 4106 */ 4107 if (hdev->commands[34] & 0x04) 4108 events[1] |= 0x01; /* LE Generate DHKey Complete */ 4109 4110 /* If the controller supports the LE Set Default PHY or 4111 * LE Set PHY commands, enable the corresponding event. 4112 */ 4113 if (hdev->commands[35] & (0x20 | 0x40)) 4114 events[1] |= 0x08; /* LE PHY Update Complete */ 4115 4116 /* If the controller supports LE Set Extended Scan Parameters 4117 * and LE Set Extended Scan Enable commands, enable the 4118 * corresponding event. 4119 */ 4120 if (use_ext_scan(hdev)) 4121 events[1] |= 0x10; /* LE Extended Advertising Report */ 4122 4123 /* If the controller supports the LE Extended Advertising 4124 * command, enable the corresponding event. 4125 */ 4126 if (ext_adv_capable(hdev)) 4127 events[2] |= 0x02; /* LE Advertising Set Terminated */ 4128 4129 if (cis_capable(hdev)) { 4130 events[3] |= 0x01; /* LE CIS Established */ 4131 if (cis_peripheral_capable(hdev)) 4132 events[3] |= 0x02; /* LE CIS Request */ 4133 } 4134 4135 if (bis_capable(hdev)) { 4136 events[3] |= 0x04; /* LE Create BIG Complete */ 4137 events[3] |= 0x08; /* LE Terminate BIG Complete */ 4138 events[3] |= 0x10; /* LE BIG Sync Established */ 4139 events[3] |= 0x20; /* LE BIG Sync Loss */ 4140 } 4141 4142 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EVENT_MASK, 4143 sizeof(events), events, HCI_CMD_TIMEOUT); 4144 } 4145 4146 /* Read LE Advertising Channel TX Power */ 4147 static int hci_le_read_adv_tx_power_sync(struct hci_dev *hdev) 4148 { 4149 if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) { 4150 /* HCI TS spec forbids mixing of legacy and extended 4151 * advertising commands wherein READ_ADV_TX_POWER is 4152 * also included. So do not call it if extended adv 4153 * is supported otherwise controller will return 4154 * COMMAND_DISALLOWED for extended commands. 4155 */ 4156 return __hci_cmd_sync_status(hdev, 4157 HCI_OP_LE_READ_ADV_TX_POWER, 4158 0, NULL, HCI_CMD_TIMEOUT); 4159 } 4160 4161 return 0; 4162 } 4163 4164 /* Read LE Min/Max Tx Power*/ 4165 static int hci_le_read_tx_power_sync(struct hci_dev *hdev) 4166 { 4167 if (!(hdev->commands[38] & 0x80) || 4168 test_bit(HCI_QUIRK_BROKEN_READ_TRANSMIT_POWER, &hdev->quirks)) 4169 return 0; 4170 4171 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_TRANSMIT_POWER, 4172 0, NULL, HCI_CMD_TIMEOUT); 4173 } 4174 4175 /* Read LE Accept List Size */ 4176 static int hci_le_read_accept_list_size_sync(struct hci_dev *hdev) 4177 { 4178 if (!(hdev->commands[26] & 0x40)) 4179 return 0; 4180 4181 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_ACCEPT_LIST_SIZE, 4182 0, NULL, HCI_CMD_TIMEOUT); 4183 } 4184 4185 /* Clear LE Accept List */ 4186 static int hci_le_clear_accept_list_sync(struct hci_dev *hdev) 4187 { 4188 if (!(hdev->commands[26] & 0x80)) 4189 return 0; 4190 4191 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL, 4192 HCI_CMD_TIMEOUT); 4193 } 4194 4195 /* Read LE Resolving List Size */ 4196 static int hci_le_read_resolv_list_size_sync(struct hci_dev *hdev) 4197 { 4198 if (!(hdev->commands[34] & 0x40)) 4199 return 0; 4200 4201 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_RESOLV_LIST_SIZE, 4202 0, NULL, HCI_CMD_TIMEOUT); 4203 } 4204 4205 /* Clear LE Resolving List */ 4206 static int hci_le_clear_resolv_list_sync(struct hci_dev *hdev) 4207 { 4208 if (!(hdev->commands[34] & 0x20)) 4209 return 0; 4210 4211 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL, 4212 HCI_CMD_TIMEOUT); 4213 } 4214 4215 /* Set RPA timeout */ 4216 static int hci_le_set_rpa_timeout_sync(struct hci_dev *hdev) 4217 { 4218 __le16 timeout = cpu_to_le16(hdev->rpa_timeout); 4219 4220 if (!(hdev->commands[35] & 0x04) || 4221 test_bit(HCI_QUIRK_BROKEN_SET_RPA_TIMEOUT, &hdev->quirks)) 4222 return 0; 4223 4224 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RPA_TIMEOUT, 4225 sizeof(timeout), &timeout, 4226 HCI_CMD_TIMEOUT); 4227 } 4228 4229 /* Read LE Maximum Data Length */ 4230 static int hci_le_read_max_data_len_sync(struct hci_dev *hdev) 4231 { 4232 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 4233 return 0; 4234 4235 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL, 4236 HCI_CMD_TIMEOUT); 4237 } 4238 4239 /* Read LE Suggested Default Data Length */ 4240 static int hci_le_read_def_data_len_sync(struct hci_dev *hdev) 4241 { 4242 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 4243 return 0; 4244 4245 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL, 4246 HCI_CMD_TIMEOUT); 4247 } 4248 4249 /* Read LE Number of Supported Advertising Sets */ 4250 static int hci_le_read_num_support_adv_sets_sync(struct hci_dev *hdev) 4251 { 4252 if (!ext_adv_capable(hdev)) 4253 return 0; 4254 4255 return __hci_cmd_sync_status(hdev, 4256 HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS, 4257 0, NULL, HCI_CMD_TIMEOUT); 4258 } 4259 4260 /* Write LE Host Supported */ 4261 static int hci_set_le_support_sync(struct hci_dev *hdev) 4262 { 4263 struct hci_cp_write_le_host_supported cp; 4264 4265 /* LE-only devices do not support explicit enablement */ 4266 if (!lmp_bredr_capable(hdev)) 4267 return 0; 4268 4269 memset(&cp, 0, sizeof(cp)); 4270 4271 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 4272 cp.le = 0x01; 4273 cp.simul = 0x00; 4274 } 4275 4276 if (cp.le == lmp_host_le_capable(hdev)) 4277 return 0; 4278 4279 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED, 4280 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4281 } 4282 4283 /* LE Set Host Feature */ 4284 static int hci_le_set_host_feature_sync(struct hci_dev *hdev) 4285 { 4286 struct hci_cp_le_set_host_feature cp; 4287 4288 if (!iso_capable(hdev)) 4289 return 0; 4290 4291 memset(&cp, 0, sizeof(cp)); 4292 4293 /* Isochronous Channels (Host Support) */ 4294 cp.bit_number = 32; 4295 cp.bit_value = 1; 4296 4297 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_HOST_FEATURE, 4298 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4299 } 4300 4301 /* LE Controller init stage 3 command sequence */ 4302 static const struct hci_init_stage le_init3[] = { 4303 /* HCI_OP_LE_SET_EVENT_MASK */ 4304 HCI_INIT(hci_le_set_event_mask_sync), 4305 /* HCI_OP_LE_READ_ADV_TX_POWER */ 4306 HCI_INIT(hci_le_read_adv_tx_power_sync), 4307 /* HCI_OP_LE_READ_TRANSMIT_POWER */ 4308 HCI_INIT(hci_le_read_tx_power_sync), 4309 /* HCI_OP_LE_READ_ACCEPT_LIST_SIZE */ 4310 HCI_INIT(hci_le_read_accept_list_size_sync), 4311 /* HCI_OP_LE_CLEAR_ACCEPT_LIST */ 4312 HCI_INIT(hci_le_clear_accept_list_sync), 4313 /* HCI_OP_LE_READ_RESOLV_LIST_SIZE */ 4314 HCI_INIT(hci_le_read_resolv_list_size_sync), 4315 /* HCI_OP_LE_CLEAR_RESOLV_LIST */ 4316 HCI_INIT(hci_le_clear_resolv_list_sync), 4317 /* HCI_OP_LE_SET_RPA_TIMEOUT */ 4318 HCI_INIT(hci_le_set_rpa_timeout_sync), 4319 /* HCI_OP_LE_READ_MAX_DATA_LEN */ 4320 HCI_INIT(hci_le_read_max_data_len_sync), 4321 /* HCI_OP_LE_READ_DEF_DATA_LEN */ 4322 HCI_INIT(hci_le_read_def_data_len_sync), 4323 /* HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS */ 4324 HCI_INIT(hci_le_read_num_support_adv_sets_sync), 4325 /* HCI_OP_WRITE_LE_HOST_SUPPORTED */ 4326 HCI_INIT(hci_set_le_support_sync), 4327 /* HCI_OP_LE_SET_HOST_FEATURE */ 4328 HCI_INIT(hci_le_set_host_feature_sync), 4329 {} 4330 }; 4331 4332 static int hci_init3_sync(struct hci_dev *hdev) 4333 { 4334 int err; 4335 4336 bt_dev_dbg(hdev, ""); 4337 4338 err = hci_init_stage_sync(hdev, hci_init3); 4339 if (err) 4340 return err; 4341 4342 if (lmp_le_capable(hdev)) 4343 return hci_init_stage_sync(hdev, le_init3); 4344 4345 return 0; 4346 } 4347 4348 static int hci_delete_stored_link_key_sync(struct hci_dev *hdev) 4349 { 4350 struct hci_cp_delete_stored_link_key cp; 4351 4352 /* Some Broadcom based Bluetooth controllers do not support the 4353 * Delete Stored Link Key command. They are clearly indicating its 4354 * absence in the bit mask of supported commands. 4355 * 4356 * Check the supported commands and only if the command is marked 4357 * as supported send it. If not supported assume that the controller 4358 * does not have actual support for stored link keys which makes this 4359 * command redundant anyway. 4360 * 4361 * Some controllers indicate that they support handling deleting 4362 * stored link keys, but they don't. The quirk lets a driver 4363 * just disable this command. 4364 */ 4365 if (!(hdev->commands[6] & 0x80) || 4366 test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) 4367 return 0; 4368 4369 memset(&cp, 0, sizeof(cp)); 4370 bacpy(&cp.bdaddr, BDADDR_ANY); 4371 cp.delete_all = 0x01; 4372 4373 return __hci_cmd_sync_status(hdev, HCI_OP_DELETE_STORED_LINK_KEY, 4374 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4375 } 4376 4377 static int hci_set_event_mask_page_2_sync(struct hci_dev *hdev) 4378 { 4379 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 4380 bool changed = false; 4381 4382 /* Set event mask page 2 if the HCI command for it is supported */ 4383 if (!(hdev->commands[22] & 0x04)) 4384 return 0; 4385 4386 /* If Connectionless Peripheral Broadcast central role is supported 4387 * enable all necessary events for it. 4388 */ 4389 if (lmp_cpb_central_capable(hdev)) { 4390 events[1] |= 0x40; /* Triggered Clock Capture */ 4391 events[1] |= 0x80; /* Synchronization Train Complete */ 4392 events[2] |= 0x08; /* Truncated Page Complete */ 4393 events[2] |= 0x20; /* CPB Channel Map Change */ 4394 changed = true; 4395 } 4396 4397 /* If Connectionless Peripheral Broadcast peripheral role is supported 4398 * enable all necessary events for it. 4399 */ 4400 if (lmp_cpb_peripheral_capable(hdev)) { 4401 events[2] |= 0x01; /* Synchronization Train Received */ 4402 events[2] |= 0x02; /* CPB Receive */ 4403 events[2] |= 0x04; /* CPB Timeout */ 4404 events[2] |= 0x10; /* Peripheral Page Response Timeout */ 4405 changed = true; 4406 } 4407 4408 /* Enable Authenticated Payload Timeout Expired event if supported */ 4409 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) { 4410 events[2] |= 0x80; 4411 changed = true; 4412 } 4413 4414 /* Some Broadcom based controllers indicate support for Set Event 4415 * Mask Page 2 command, but then actually do not support it. Since 4416 * the default value is all bits set to zero, the command is only 4417 * required if the event mask has to be changed. In case no change 4418 * to the event mask is needed, skip this command. 4419 */ 4420 if (!changed) 4421 return 0; 4422 4423 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK_PAGE_2, 4424 sizeof(events), events, HCI_CMD_TIMEOUT); 4425 } 4426 4427 /* Read local codec list if the HCI command is supported */ 4428 static int hci_read_local_codecs_sync(struct hci_dev *hdev) 4429 { 4430 if (hdev->commands[45] & 0x04) 4431 hci_read_supported_codecs_v2(hdev); 4432 else if (hdev->commands[29] & 0x20) 4433 hci_read_supported_codecs(hdev); 4434 4435 return 0; 4436 } 4437 4438 /* Read local pairing options if the HCI command is supported */ 4439 static int hci_read_local_pairing_opts_sync(struct hci_dev *hdev) 4440 { 4441 if (!(hdev->commands[41] & 0x08)) 4442 return 0; 4443 4444 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_PAIRING_OPTS, 4445 0, NULL, HCI_CMD_TIMEOUT); 4446 } 4447 4448 /* Get MWS transport configuration if the HCI command is supported */ 4449 static int hci_get_mws_transport_config_sync(struct hci_dev *hdev) 4450 { 4451 if (!mws_transport_config_capable(hdev)) 4452 return 0; 4453 4454 return __hci_cmd_sync_status(hdev, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 4455 0, NULL, HCI_CMD_TIMEOUT); 4456 } 4457 4458 /* Check for Synchronization Train support */ 4459 static int hci_read_sync_train_params_sync(struct hci_dev *hdev) 4460 { 4461 if (!lmp_sync_train_capable(hdev)) 4462 return 0; 4463 4464 return __hci_cmd_sync_status(hdev, HCI_OP_READ_SYNC_TRAIN_PARAMS, 4465 0, NULL, HCI_CMD_TIMEOUT); 4466 } 4467 4468 /* Enable Secure Connections if supported and configured */ 4469 static int hci_write_sc_support_1_sync(struct hci_dev *hdev) 4470 { 4471 u8 support = 0x01; 4472 4473 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) || 4474 !bredr_sc_enabled(hdev)) 4475 return 0; 4476 4477 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT, 4478 sizeof(support), &support, 4479 HCI_CMD_TIMEOUT); 4480 } 4481 4482 /* Set erroneous data reporting if supported to the wideband speech 4483 * setting value 4484 */ 4485 static int hci_set_err_data_report_sync(struct hci_dev *hdev) 4486 { 4487 struct hci_cp_write_def_err_data_reporting cp; 4488 bool enabled = hci_dev_test_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED); 4489 4490 if (!(hdev->commands[18] & 0x08) || 4491 !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) || 4492 test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) 4493 return 0; 4494 4495 if (enabled == hdev->err_data_reporting) 4496 return 0; 4497 4498 memset(&cp, 0, sizeof(cp)); 4499 cp.err_data_reporting = enabled ? ERR_DATA_REPORTING_ENABLED : 4500 ERR_DATA_REPORTING_DISABLED; 4501 4502 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING, 4503 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4504 } 4505 4506 static const struct hci_init_stage hci_init4[] = { 4507 /* HCI_OP_DELETE_STORED_LINK_KEY */ 4508 HCI_INIT(hci_delete_stored_link_key_sync), 4509 /* HCI_OP_SET_EVENT_MASK_PAGE_2 */ 4510 HCI_INIT(hci_set_event_mask_page_2_sync), 4511 /* HCI_OP_READ_LOCAL_CODECS */ 4512 HCI_INIT(hci_read_local_codecs_sync), 4513 /* HCI_OP_READ_LOCAL_PAIRING_OPTS */ 4514 HCI_INIT(hci_read_local_pairing_opts_sync), 4515 /* HCI_OP_GET_MWS_TRANSPORT_CONFIG */ 4516 HCI_INIT(hci_get_mws_transport_config_sync), 4517 /* HCI_OP_READ_SYNC_TRAIN_PARAMS */ 4518 HCI_INIT(hci_read_sync_train_params_sync), 4519 /* HCI_OP_WRITE_SC_SUPPORT */ 4520 HCI_INIT(hci_write_sc_support_1_sync), 4521 /* HCI_OP_WRITE_DEF_ERR_DATA_REPORTING */ 4522 HCI_INIT(hci_set_err_data_report_sync), 4523 {} 4524 }; 4525 4526 /* Set Suggested Default Data Length to maximum if supported */ 4527 static int hci_le_set_write_def_data_len_sync(struct hci_dev *hdev) 4528 { 4529 struct hci_cp_le_write_def_data_len cp; 4530 4531 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 4532 return 0; 4533 4534 memset(&cp, 0, sizeof(cp)); 4535 cp.tx_len = cpu_to_le16(hdev->le_max_tx_len); 4536 cp.tx_time = cpu_to_le16(hdev->le_max_tx_time); 4537 4538 return __hci_cmd_sync_status(hdev, HCI_OP_LE_WRITE_DEF_DATA_LEN, 4539 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4540 } 4541 4542 /* Set Default PHY parameters if command is supported, enables all supported 4543 * PHYs according to the LE Features bits. 4544 */ 4545 static int hci_le_set_default_phy_sync(struct hci_dev *hdev) 4546 { 4547 struct hci_cp_le_set_default_phy cp; 4548 4549 if (!(hdev->commands[35] & 0x20)) { 4550 /* If the command is not supported it means only 1M PHY is 4551 * supported. 4552 */ 4553 hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M; 4554 hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M; 4555 return 0; 4556 } 4557 4558 memset(&cp, 0, sizeof(cp)); 4559 cp.all_phys = 0x00; 4560 cp.tx_phys = HCI_LE_SET_PHY_1M; 4561 cp.rx_phys = HCI_LE_SET_PHY_1M; 4562 4563 /* Enables 2M PHY if supported */ 4564 if (le_2m_capable(hdev)) { 4565 cp.tx_phys |= HCI_LE_SET_PHY_2M; 4566 cp.rx_phys |= HCI_LE_SET_PHY_2M; 4567 } 4568 4569 /* Enables Coded PHY if supported */ 4570 if (le_coded_capable(hdev)) { 4571 cp.tx_phys |= HCI_LE_SET_PHY_CODED; 4572 cp.rx_phys |= HCI_LE_SET_PHY_CODED; 4573 } 4574 4575 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_DEFAULT_PHY, 4576 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4577 } 4578 4579 static const struct hci_init_stage le_init4[] = { 4580 /* HCI_OP_LE_WRITE_DEF_DATA_LEN */ 4581 HCI_INIT(hci_le_set_write_def_data_len_sync), 4582 /* HCI_OP_LE_SET_DEFAULT_PHY */ 4583 HCI_INIT(hci_le_set_default_phy_sync), 4584 {} 4585 }; 4586 4587 static int hci_init4_sync(struct hci_dev *hdev) 4588 { 4589 int err; 4590 4591 bt_dev_dbg(hdev, ""); 4592 4593 err = hci_init_stage_sync(hdev, hci_init4); 4594 if (err) 4595 return err; 4596 4597 if (lmp_le_capable(hdev)) 4598 return hci_init_stage_sync(hdev, le_init4); 4599 4600 return 0; 4601 } 4602 4603 static int hci_init_sync(struct hci_dev *hdev) 4604 { 4605 int err; 4606 4607 err = hci_init1_sync(hdev); 4608 if (err < 0) 4609 return err; 4610 4611 if (hci_dev_test_flag(hdev, HCI_SETUP)) 4612 hci_debugfs_create_basic(hdev); 4613 4614 err = hci_init2_sync(hdev); 4615 if (err < 0) 4616 return err; 4617 4618 /* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode 4619 * BR/EDR/LE type controllers. AMP controllers only need the 4620 * first two stages of init. 4621 */ 4622 if (hdev->dev_type != HCI_PRIMARY) 4623 return 0; 4624 4625 err = hci_init3_sync(hdev); 4626 if (err < 0) 4627 return err; 4628 4629 err = hci_init4_sync(hdev); 4630 if (err < 0) 4631 return err; 4632 4633 /* This function is only called when the controller is actually in 4634 * configured state. When the controller is marked as unconfigured, 4635 * this initialization procedure is not run. 4636 * 4637 * It means that it is possible that a controller runs through its 4638 * setup phase and then discovers missing settings. If that is the 4639 * case, then this function will not be called. It then will only 4640 * be called during the config phase. 4641 * 4642 * So only when in setup phase or config phase, create the debugfs 4643 * entries and register the SMP channels. 4644 */ 4645 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4646 !hci_dev_test_flag(hdev, HCI_CONFIG)) 4647 return 0; 4648 4649 if (hci_dev_test_and_set_flag(hdev, HCI_DEBUGFS_CREATED)) 4650 return 0; 4651 4652 hci_debugfs_create_common(hdev); 4653 4654 if (lmp_bredr_capable(hdev)) 4655 hci_debugfs_create_bredr(hdev); 4656 4657 if (lmp_le_capable(hdev)) 4658 hci_debugfs_create_le(hdev); 4659 4660 return 0; 4661 } 4662 4663 #define HCI_QUIRK_BROKEN(_quirk, _desc) { HCI_QUIRK_BROKEN_##_quirk, _desc } 4664 4665 static const struct { 4666 unsigned long quirk; 4667 const char *desc; 4668 } hci_broken_table[] = { 4669 HCI_QUIRK_BROKEN(LOCAL_COMMANDS, 4670 "HCI Read Local Supported Commands not supported"), 4671 HCI_QUIRK_BROKEN(STORED_LINK_KEY, 4672 "HCI Delete Stored Link Key command is advertised, " 4673 "but not supported."), 4674 HCI_QUIRK_BROKEN(ERR_DATA_REPORTING, 4675 "HCI Read Default Erroneous Data Reporting command is " 4676 "advertised, but not supported."), 4677 HCI_QUIRK_BROKEN(READ_TRANSMIT_POWER, 4678 "HCI Read Transmit Power Level command is advertised, " 4679 "but not supported."), 4680 HCI_QUIRK_BROKEN(FILTER_CLEAR_ALL, 4681 "HCI Set Event Filter command not supported."), 4682 HCI_QUIRK_BROKEN(ENHANCED_SETUP_SYNC_CONN, 4683 "HCI Enhanced Setup Synchronous Connection command is " 4684 "advertised, but not supported."), 4685 HCI_QUIRK_BROKEN(SET_RPA_TIMEOUT, 4686 "HCI LE Set Random Private Address Timeout command is " 4687 "advertised, but not supported.") 4688 }; 4689 4690 /* This function handles hdev setup stage: 4691 * 4692 * Calls hdev->setup 4693 * Setup address if HCI_QUIRK_USE_BDADDR_PROPERTY is set. 4694 */ 4695 static int hci_dev_setup_sync(struct hci_dev *hdev) 4696 { 4697 int ret = 0; 4698 bool invalid_bdaddr; 4699 size_t i; 4700 4701 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4702 !test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) 4703 return 0; 4704 4705 bt_dev_dbg(hdev, ""); 4706 4707 hci_sock_dev_event(hdev, HCI_DEV_SETUP); 4708 4709 if (hdev->setup) 4710 ret = hdev->setup(hdev); 4711 4712 for (i = 0; i < ARRAY_SIZE(hci_broken_table); i++) { 4713 if (test_bit(hci_broken_table[i].quirk, &hdev->quirks)) 4714 bt_dev_warn(hdev, "%s", hci_broken_table[i].desc); 4715 } 4716 4717 /* The transport driver can set the quirk to mark the 4718 * BD_ADDR invalid before creating the HCI device or in 4719 * its setup callback. 4720 */ 4721 invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks) || 4722 test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks); 4723 if (!ret) { 4724 if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks) && 4725 !bacmp(&hdev->public_addr, BDADDR_ANY)) 4726 hci_dev_get_bd_addr_from_property(hdev); 4727 4728 if (invalid_bdaddr && bacmp(&hdev->public_addr, BDADDR_ANY) && 4729 hdev->set_bdaddr) { 4730 ret = hdev->set_bdaddr(hdev, &hdev->public_addr); 4731 if (!ret) 4732 invalid_bdaddr = false; 4733 } 4734 } 4735 4736 /* The transport driver can set these quirks before 4737 * creating the HCI device or in its setup callback. 4738 * 4739 * For the invalid BD_ADDR quirk it is possible that 4740 * it becomes a valid address if the bootloader does 4741 * provide it (see above). 4742 * 4743 * In case any of them is set, the controller has to 4744 * start up as unconfigured. 4745 */ 4746 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) || 4747 invalid_bdaddr) 4748 hci_dev_set_flag(hdev, HCI_UNCONFIGURED); 4749 4750 /* For an unconfigured controller it is required to 4751 * read at least the version information provided by 4752 * the Read Local Version Information command. 4753 * 4754 * If the set_bdaddr driver callback is provided, then 4755 * also the original Bluetooth public device address 4756 * will be read using the Read BD Address command. 4757 */ 4758 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 4759 return hci_unconf_init_sync(hdev); 4760 4761 return ret; 4762 } 4763 4764 /* This function handles hdev init stage: 4765 * 4766 * Calls hci_dev_setup_sync to perform setup stage 4767 * Calls hci_init_sync to perform HCI command init sequence 4768 */ 4769 static int hci_dev_init_sync(struct hci_dev *hdev) 4770 { 4771 int ret; 4772 4773 bt_dev_dbg(hdev, ""); 4774 4775 atomic_set(&hdev->cmd_cnt, 1); 4776 set_bit(HCI_INIT, &hdev->flags); 4777 4778 ret = hci_dev_setup_sync(hdev); 4779 4780 if (hci_dev_test_flag(hdev, HCI_CONFIG)) { 4781 /* If public address change is configured, ensure that 4782 * the address gets programmed. If the driver does not 4783 * support changing the public address, fail the power 4784 * on procedure. 4785 */ 4786 if (bacmp(&hdev->public_addr, BDADDR_ANY) && 4787 hdev->set_bdaddr) 4788 ret = hdev->set_bdaddr(hdev, &hdev->public_addr); 4789 else 4790 ret = -EADDRNOTAVAIL; 4791 } 4792 4793 if (!ret) { 4794 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 4795 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4796 ret = hci_init_sync(hdev); 4797 if (!ret && hdev->post_init) 4798 ret = hdev->post_init(hdev); 4799 } 4800 } 4801 4802 /* If the HCI Reset command is clearing all diagnostic settings, 4803 * then they need to be reprogrammed after the init procedure 4804 * completed. 4805 */ 4806 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) && 4807 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4808 hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag) 4809 ret = hdev->set_diag(hdev, true); 4810 4811 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4812 msft_do_open(hdev); 4813 aosp_do_open(hdev); 4814 } 4815 4816 clear_bit(HCI_INIT, &hdev->flags); 4817 4818 return ret; 4819 } 4820 4821 int hci_dev_open_sync(struct hci_dev *hdev) 4822 { 4823 int ret; 4824 4825 bt_dev_dbg(hdev, ""); 4826 4827 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 4828 ret = -ENODEV; 4829 goto done; 4830 } 4831 4832 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4833 !hci_dev_test_flag(hdev, HCI_CONFIG)) { 4834 /* Check for rfkill but allow the HCI setup stage to 4835 * proceed (which in itself doesn't cause any RF activity). 4836 */ 4837 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) { 4838 ret = -ERFKILL; 4839 goto done; 4840 } 4841 4842 /* Check for valid public address or a configured static 4843 * random address, but let the HCI setup proceed to 4844 * be able to determine if there is a public address 4845 * or not. 4846 * 4847 * In case of user channel usage, it is not important 4848 * if a public address or static random address is 4849 * available. 4850 * 4851 * This check is only valid for BR/EDR controllers 4852 * since AMP controllers do not have an address. 4853 */ 4854 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4855 hdev->dev_type == HCI_PRIMARY && 4856 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 4857 !bacmp(&hdev->static_addr, BDADDR_ANY)) { 4858 ret = -EADDRNOTAVAIL; 4859 goto done; 4860 } 4861 } 4862 4863 if (test_bit(HCI_UP, &hdev->flags)) { 4864 ret = -EALREADY; 4865 goto done; 4866 } 4867 4868 if (hdev->open(hdev)) { 4869 ret = -EIO; 4870 goto done; 4871 } 4872 4873 hci_devcd_reset(hdev); 4874 4875 set_bit(HCI_RUNNING, &hdev->flags); 4876 hci_sock_dev_event(hdev, HCI_DEV_OPEN); 4877 4878 ret = hci_dev_init_sync(hdev); 4879 if (!ret) { 4880 hci_dev_hold(hdev); 4881 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 4882 hci_adv_instances_set_rpa_expired(hdev, true); 4883 set_bit(HCI_UP, &hdev->flags); 4884 hci_sock_dev_event(hdev, HCI_DEV_UP); 4885 hci_leds_update_powered(hdev, true); 4886 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4887 !hci_dev_test_flag(hdev, HCI_CONFIG) && 4888 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 4889 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4890 hci_dev_test_flag(hdev, HCI_MGMT) && 4891 hdev->dev_type == HCI_PRIMARY) { 4892 ret = hci_powered_update_sync(hdev); 4893 mgmt_power_on(hdev, ret); 4894 } 4895 } else { 4896 /* Init failed, cleanup */ 4897 flush_work(&hdev->tx_work); 4898 4899 /* Since hci_rx_work() is possible to awake new cmd_work 4900 * it should be flushed first to avoid unexpected call of 4901 * hci_cmd_work() 4902 */ 4903 flush_work(&hdev->rx_work); 4904 flush_work(&hdev->cmd_work); 4905 4906 skb_queue_purge(&hdev->cmd_q); 4907 skb_queue_purge(&hdev->rx_q); 4908 4909 if (hdev->flush) 4910 hdev->flush(hdev); 4911 4912 if (hdev->sent_cmd) { 4913 cancel_delayed_work_sync(&hdev->cmd_timer); 4914 kfree_skb(hdev->sent_cmd); 4915 hdev->sent_cmd = NULL; 4916 } 4917 4918 clear_bit(HCI_RUNNING, &hdev->flags); 4919 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 4920 4921 hdev->close(hdev); 4922 hdev->flags &= BIT(HCI_RAW); 4923 } 4924 4925 done: 4926 return ret; 4927 } 4928 4929 /* This function requires the caller holds hdev->lock */ 4930 static void hci_pend_le_actions_clear(struct hci_dev *hdev) 4931 { 4932 struct hci_conn_params *p; 4933 4934 list_for_each_entry(p, &hdev->le_conn_params, list) { 4935 hci_pend_le_list_del_init(p); 4936 if (p->conn) { 4937 hci_conn_drop(p->conn); 4938 hci_conn_put(p->conn); 4939 p->conn = NULL; 4940 } 4941 } 4942 4943 BT_DBG("All LE pending actions cleared"); 4944 } 4945 4946 static int hci_dev_shutdown(struct hci_dev *hdev) 4947 { 4948 int err = 0; 4949 /* Similar to how we first do setup and then set the exclusive access 4950 * bit for userspace, we must first unset userchannel and then clean up. 4951 * Otherwise, the kernel can't properly use the hci channel to clean up 4952 * the controller (some shutdown routines require sending additional 4953 * commands to the controller for example). 4954 */ 4955 bool was_userchannel = 4956 hci_dev_test_and_clear_flag(hdev, HCI_USER_CHANNEL); 4957 4958 if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) && 4959 test_bit(HCI_UP, &hdev->flags)) { 4960 /* Execute vendor specific shutdown routine */ 4961 if (hdev->shutdown) 4962 err = hdev->shutdown(hdev); 4963 } 4964 4965 if (was_userchannel) 4966 hci_dev_set_flag(hdev, HCI_USER_CHANNEL); 4967 4968 return err; 4969 } 4970 4971 int hci_dev_close_sync(struct hci_dev *hdev) 4972 { 4973 bool auto_off; 4974 int err = 0; 4975 4976 bt_dev_dbg(hdev, ""); 4977 4978 cancel_delayed_work(&hdev->power_off); 4979 cancel_delayed_work(&hdev->ncmd_timer); 4980 cancel_delayed_work(&hdev->le_scan_disable); 4981 cancel_delayed_work(&hdev->le_scan_restart); 4982 4983 hci_request_cancel_all(hdev); 4984 4985 if (hdev->adv_instance_timeout) { 4986 cancel_delayed_work_sync(&hdev->adv_instance_expire); 4987 hdev->adv_instance_timeout = 0; 4988 } 4989 4990 err = hci_dev_shutdown(hdev); 4991 4992 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) { 4993 cancel_delayed_work_sync(&hdev->cmd_timer); 4994 return err; 4995 } 4996 4997 hci_leds_update_powered(hdev, false); 4998 4999 /* Flush RX and TX works */ 5000 flush_work(&hdev->tx_work); 5001 flush_work(&hdev->rx_work); 5002 5003 if (hdev->discov_timeout > 0) { 5004 hdev->discov_timeout = 0; 5005 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 5006 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 5007 } 5008 5009 if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE)) 5010 cancel_delayed_work(&hdev->service_cache); 5011 5012 if (hci_dev_test_flag(hdev, HCI_MGMT)) { 5013 struct adv_info *adv_instance; 5014 5015 cancel_delayed_work_sync(&hdev->rpa_expired); 5016 5017 list_for_each_entry(adv_instance, &hdev->adv_instances, list) 5018 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb); 5019 } 5020 5021 /* Avoid potential lockdep warnings from the *_flush() calls by 5022 * ensuring the workqueue is empty up front. 5023 */ 5024 drain_workqueue(hdev->workqueue); 5025 5026 hci_dev_lock(hdev); 5027 5028 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 5029 5030 auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF); 5031 5032 if (!auto_off && hdev->dev_type == HCI_PRIMARY && 5033 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 5034 hci_dev_test_flag(hdev, HCI_MGMT)) 5035 __mgmt_power_off(hdev); 5036 5037 hci_inquiry_cache_flush(hdev); 5038 hci_pend_le_actions_clear(hdev); 5039 hci_conn_hash_flush(hdev); 5040 /* Prevent data races on hdev->smp_data or hdev->smp_bredr_data */ 5041 smp_unregister(hdev); 5042 hci_dev_unlock(hdev); 5043 5044 hci_sock_dev_event(hdev, HCI_DEV_DOWN); 5045 5046 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 5047 aosp_do_close(hdev); 5048 msft_do_close(hdev); 5049 } 5050 5051 if (hdev->flush) 5052 hdev->flush(hdev); 5053 5054 /* Reset device */ 5055 skb_queue_purge(&hdev->cmd_q); 5056 atomic_set(&hdev->cmd_cnt, 1); 5057 if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) && 5058 !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 5059 set_bit(HCI_INIT, &hdev->flags); 5060 hci_reset_sync(hdev); 5061 clear_bit(HCI_INIT, &hdev->flags); 5062 } 5063 5064 /* flush cmd work */ 5065 flush_work(&hdev->cmd_work); 5066 5067 /* Drop queues */ 5068 skb_queue_purge(&hdev->rx_q); 5069 skb_queue_purge(&hdev->cmd_q); 5070 skb_queue_purge(&hdev->raw_q); 5071 5072 /* Drop last sent command */ 5073 if (hdev->sent_cmd) { 5074 cancel_delayed_work_sync(&hdev->cmd_timer); 5075 kfree_skb(hdev->sent_cmd); 5076 hdev->sent_cmd = NULL; 5077 } 5078 5079 clear_bit(HCI_RUNNING, &hdev->flags); 5080 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 5081 5082 /* After this point our queues are empty and no tasks are scheduled. */ 5083 hdev->close(hdev); 5084 5085 /* Clear flags */ 5086 hdev->flags &= BIT(HCI_RAW); 5087 hci_dev_clear_volatile_flags(hdev); 5088 5089 /* Controller radio is available but is currently powered down */ 5090 hdev->amp_status = AMP_STATUS_POWERED_DOWN; 5091 5092 memset(hdev->eir, 0, sizeof(hdev->eir)); 5093 memset(hdev->dev_class, 0, sizeof(hdev->dev_class)); 5094 bacpy(&hdev->random_addr, BDADDR_ANY); 5095 5096 hci_dev_put(hdev); 5097 return err; 5098 } 5099 5100 /* This function perform power on HCI command sequence as follows: 5101 * 5102 * If controller is already up (HCI_UP) performs hci_powered_update_sync 5103 * sequence otherwise run hci_dev_open_sync which will follow with 5104 * hci_powered_update_sync after the init sequence is completed. 5105 */ 5106 static int hci_power_on_sync(struct hci_dev *hdev) 5107 { 5108 int err; 5109 5110 if (test_bit(HCI_UP, &hdev->flags) && 5111 hci_dev_test_flag(hdev, HCI_MGMT) && 5112 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) { 5113 cancel_delayed_work(&hdev->power_off); 5114 return hci_powered_update_sync(hdev); 5115 } 5116 5117 err = hci_dev_open_sync(hdev); 5118 if (err < 0) 5119 return err; 5120 5121 /* During the HCI setup phase, a few error conditions are 5122 * ignored and they need to be checked now. If they are still 5123 * valid, it is important to return the device back off. 5124 */ 5125 if (hci_dev_test_flag(hdev, HCI_RFKILLED) || 5126 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) || 5127 (hdev->dev_type == HCI_PRIMARY && 5128 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 5129 !bacmp(&hdev->static_addr, BDADDR_ANY))) { 5130 hci_dev_clear_flag(hdev, HCI_AUTO_OFF); 5131 hci_dev_close_sync(hdev); 5132 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) { 5133 queue_delayed_work(hdev->req_workqueue, &hdev->power_off, 5134 HCI_AUTO_OFF_TIMEOUT); 5135 } 5136 5137 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) { 5138 /* For unconfigured devices, set the HCI_RAW flag 5139 * so that userspace can easily identify them. 5140 */ 5141 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 5142 set_bit(HCI_RAW, &hdev->flags); 5143 5144 /* For fully configured devices, this will send 5145 * the Index Added event. For unconfigured devices, 5146 * it will send Unconfigued Index Added event. 5147 * 5148 * Devices with HCI_QUIRK_RAW_DEVICE are ignored 5149 * and no event will be send. 5150 */ 5151 mgmt_index_added(hdev); 5152 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) { 5153 /* When the controller is now configured, then it 5154 * is important to clear the HCI_RAW flag. 5155 */ 5156 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 5157 clear_bit(HCI_RAW, &hdev->flags); 5158 5159 /* Powering on the controller with HCI_CONFIG set only 5160 * happens with the transition from unconfigured to 5161 * configured. This will send the Index Added event. 5162 */ 5163 mgmt_index_added(hdev); 5164 } 5165 5166 return 0; 5167 } 5168 5169 static int hci_remote_name_cancel_sync(struct hci_dev *hdev, bdaddr_t *addr) 5170 { 5171 struct hci_cp_remote_name_req_cancel cp; 5172 5173 memset(&cp, 0, sizeof(cp)); 5174 bacpy(&cp.bdaddr, addr); 5175 5176 return __hci_cmd_sync_status(hdev, HCI_OP_REMOTE_NAME_REQ_CANCEL, 5177 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5178 } 5179 5180 int hci_stop_discovery_sync(struct hci_dev *hdev) 5181 { 5182 struct discovery_state *d = &hdev->discovery; 5183 struct inquiry_entry *e; 5184 int err; 5185 5186 bt_dev_dbg(hdev, "state %u", hdev->discovery.state); 5187 5188 if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) { 5189 if (test_bit(HCI_INQUIRY, &hdev->flags)) { 5190 err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL, 5191 0, NULL, HCI_CMD_TIMEOUT); 5192 if (err) 5193 return err; 5194 } 5195 5196 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 5197 cancel_delayed_work(&hdev->le_scan_disable); 5198 cancel_delayed_work(&hdev->le_scan_restart); 5199 5200 err = hci_scan_disable_sync(hdev); 5201 if (err) 5202 return err; 5203 } 5204 5205 } else { 5206 err = hci_scan_disable_sync(hdev); 5207 if (err) 5208 return err; 5209 } 5210 5211 /* Resume advertising if it was paused */ 5212 if (use_ll_privacy(hdev)) 5213 hci_resume_advertising_sync(hdev); 5214 5215 /* No further actions needed for LE-only discovery */ 5216 if (d->type == DISCOV_TYPE_LE) 5217 return 0; 5218 5219 if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) { 5220 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY, 5221 NAME_PENDING); 5222 if (!e) 5223 return 0; 5224 5225 return hci_remote_name_cancel_sync(hdev, &e->data.bdaddr); 5226 } 5227 5228 return 0; 5229 } 5230 5231 static int hci_disconnect_phy_link_sync(struct hci_dev *hdev, u16 handle, 5232 u8 reason) 5233 { 5234 struct hci_cp_disconn_phy_link cp; 5235 5236 memset(&cp, 0, sizeof(cp)); 5237 cp.phy_handle = HCI_PHY_HANDLE(handle); 5238 cp.reason = reason; 5239 5240 return __hci_cmd_sync_status(hdev, HCI_OP_DISCONN_PHY_LINK, 5241 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5242 } 5243 5244 static int hci_disconnect_sync(struct hci_dev *hdev, struct hci_conn *conn, 5245 u8 reason) 5246 { 5247 struct hci_cp_disconnect cp; 5248 5249 if (conn->type == AMP_LINK) 5250 return hci_disconnect_phy_link_sync(hdev, conn->handle, reason); 5251 5252 memset(&cp, 0, sizeof(cp)); 5253 cp.handle = cpu_to_le16(conn->handle); 5254 cp.reason = reason; 5255 5256 /* Wait for HCI_EV_DISCONN_COMPLETE, not HCI_EV_CMD_STATUS, when the 5257 * reason is anything but HCI_ERROR_REMOTE_POWER_OFF. This reason is 5258 * used when suspending or powering off, where we don't want to wait 5259 * for the peer's response. 5260 */ 5261 if (reason != HCI_ERROR_REMOTE_POWER_OFF) 5262 return __hci_cmd_sync_status_sk(hdev, HCI_OP_DISCONNECT, 5263 sizeof(cp), &cp, 5264 HCI_EV_DISCONN_COMPLETE, 5265 HCI_CMD_TIMEOUT, NULL); 5266 5267 return __hci_cmd_sync_status(hdev, HCI_OP_DISCONNECT, sizeof(cp), &cp, 5268 HCI_CMD_TIMEOUT); 5269 } 5270 5271 static int hci_le_connect_cancel_sync(struct hci_dev *hdev, 5272 struct hci_conn *conn) 5273 { 5274 if (test_bit(HCI_CONN_SCANNING, &conn->flags)) 5275 return 0; 5276 5277 if (test_and_set_bit(HCI_CONN_CANCEL, &conn->flags)) 5278 return 0; 5279 5280 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CREATE_CONN_CANCEL, 5281 0, NULL, HCI_CMD_TIMEOUT); 5282 } 5283 5284 static int hci_connect_cancel_sync(struct hci_dev *hdev, struct hci_conn *conn) 5285 { 5286 if (conn->type == LE_LINK) 5287 return hci_le_connect_cancel_sync(hdev, conn); 5288 5289 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 5290 return 0; 5291 5292 return __hci_cmd_sync_status(hdev, HCI_OP_CREATE_CONN_CANCEL, 5293 6, &conn->dst, HCI_CMD_TIMEOUT); 5294 } 5295 5296 static int hci_reject_sco_sync(struct hci_dev *hdev, struct hci_conn *conn, 5297 u8 reason) 5298 { 5299 struct hci_cp_reject_sync_conn_req cp; 5300 5301 memset(&cp, 0, sizeof(cp)); 5302 bacpy(&cp.bdaddr, &conn->dst); 5303 cp.reason = reason; 5304 5305 /* SCO rejection has its own limited set of 5306 * allowed error values (0x0D-0x0F). 5307 */ 5308 if (reason < 0x0d || reason > 0x0f) 5309 cp.reason = HCI_ERROR_REJ_LIMITED_RESOURCES; 5310 5311 return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_SYNC_CONN_REQ, 5312 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5313 } 5314 5315 static int hci_reject_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, 5316 u8 reason) 5317 { 5318 struct hci_cp_reject_conn_req cp; 5319 5320 if (conn->type == SCO_LINK || conn->type == ESCO_LINK) 5321 return hci_reject_sco_sync(hdev, conn, reason); 5322 5323 memset(&cp, 0, sizeof(cp)); 5324 bacpy(&cp.bdaddr, &conn->dst); 5325 cp.reason = reason; 5326 5327 return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_CONN_REQ, 5328 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5329 } 5330 5331 int hci_abort_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, u8 reason) 5332 { 5333 int err; 5334 5335 switch (conn->state) { 5336 case BT_CONNECTED: 5337 case BT_CONFIG: 5338 return hci_disconnect_sync(hdev, conn, reason); 5339 case BT_CONNECT: 5340 err = hci_connect_cancel_sync(hdev, conn); 5341 /* Cleanup hci_conn object if it cannot be cancelled as it 5342 * likelly means the controller and host stack are out of sync. 5343 */ 5344 if (err) { 5345 hci_dev_lock(hdev); 5346 hci_conn_failed(conn, err); 5347 hci_dev_unlock(hdev); 5348 } 5349 return err; 5350 case BT_CONNECT2: 5351 return hci_reject_conn_sync(hdev, conn, reason); 5352 default: 5353 conn->state = BT_CLOSED; 5354 break; 5355 } 5356 5357 return 0; 5358 } 5359 5360 static int hci_disconnect_all_sync(struct hci_dev *hdev, u8 reason) 5361 { 5362 struct hci_conn *conn, *tmp; 5363 int err; 5364 5365 list_for_each_entry_safe(conn, tmp, &hdev->conn_hash.list, list) { 5366 err = hci_abort_conn_sync(hdev, conn, reason); 5367 if (err) 5368 return err; 5369 } 5370 5371 return 0; 5372 } 5373 5374 /* This function perform power off HCI command sequence as follows: 5375 * 5376 * Clear Advertising 5377 * Stop Discovery 5378 * Disconnect all connections 5379 * hci_dev_close_sync 5380 */ 5381 static int hci_power_off_sync(struct hci_dev *hdev) 5382 { 5383 int err; 5384 5385 /* If controller is already down there is nothing to do */ 5386 if (!test_bit(HCI_UP, &hdev->flags)) 5387 return 0; 5388 5389 if (test_bit(HCI_ISCAN, &hdev->flags) || 5390 test_bit(HCI_PSCAN, &hdev->flags)) { 5391 err = hci_write_scan_enable_sync(hdev, 0x00); 5392 if (err) 5393 return err; 5394 } 5395 5396 err = hci_clear_adv_sync(hdev, NULL, false); 5397 if (err) 5398 return err; 5399 5400 err = hci_stop_discovery_sync(hdev); 5401 if (err) 5402 return err; 5403 5404 /* Terminated due to Power Off */ 5405 err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF); 5406 if (err) 5407 return err; 5408 5409 return hci_dev_close_sync(hdev); 5410 } 5411 5412 int hci_set_powered_sync(struct hci_dev *hdev, u8 val) 5413 { 5414 if (val) 5415 return hci_power_on_sync(hdev); 5416 5417 return hci_power_off_sync(hdev); 5418 } 5419 5420 static int hci_write_iac_sync(struct hci_dev *hdev) 5421 { 5422 struct hci_cp_write_current_iac_lap cp; 5423 5424 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 5425 return 0; 5426 5427 memset(&cp, 0, sizeof(cp)); 5428 5429 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { 5430 /* Limited discoverable mode */ 5431 cp.num_iac = min_t(u8, hdev->num_iac, 2); 5432 cp.iac_lap[0] = 0x00; /* LIAC */ 5433 cp.iac_lap[1] = 0x8b; 5434 cp.iac_lap[2] = 0x9e; 5435 cp.iac_lap[3] = 0x33; /* GIAC */ 5436 cp.iac_lap[4] = 0x8b; 5437 cp.iac_lap[5] = 0x9e; 5438 } else { 5439 /* General discoverable mode */ 5440 cp.num_iac = 1; 5441 cp.iac_lap[0] = 0x33; /* GIAC */ 5442 cp.iac_lap[1] = 0x8b; 5443 cp.iac_lap[2] = 0x9e; 5444 } 5445 5446 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CURRENT_IAC_LAP, 5447 (cp.num_iac * 3) + 1, &cp, 5448 HCI_CMD_TIMEOUT); 5449 } 5450 5451 int hci_update_discoverable_sync(struct hci_dev *hdev) 5452 { 5453 int err = 0; 5454 5455 if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 5456 err = hci_write_iac_sync(hdev); 5457 if (err) 5458 return err; 5459 5460 err = hci_update_scan_sync(hdev); 5461 if (err) 5462 return err; 5463 5464 err = hci_update_class_sync(hdev); 5465 if (err) 5466 return err; 5467 } 5468 5469 /* Advertising instances don't use the global discoverable setting, so 5470 * only update AD if advertising was enabled using Set Advertising. 5471 */ 5472 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) { 5473 err = hci_update_adv_data_sync(hdev, 0x00); 5474 if (err) 5475 return err; 5476 5477 /* Discoverable mode affects the local advertising 5478 * address in limited privacy mode. 5479 */ 5480 if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) { 5481 if (ext_adv_capable(hdev)) 5482 err = hci_start_ext_adv_sync(hdev, 0x00); 5483 else 5484 err = hci_enable_advertising_sync(hdev); 5485 } 5486 } 5487 5488 return err; 5489 } 5490 5491 static int update_discoverable_sync(struct hci_dev *hdev, void *data) 5492 { 5493 return hci_update_discoverable_sync(hdev); 5494 } 5495 5496 int hci_update_discoverable(struct hci_dev *hdev) 5497 { 5498 /* Only queue if it would have any effect */ 5499 if (hdev_is_powered(hdev) && 5500 hci_dev_test_flag(hdev, HCI_ADVERTISING) && 5501 hci_dev_test_flag(hdev, HCI_DISCOVERABLE) && 5502 hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) 5503 return hci_cmd_sync_queue(hdev, update_discoverable_sync, NULL, 5504 NULL); 5505 5506 return 0; 5507 } 5508 5509 int hci_update_connectable_sync(struct hci_dev *hdev) 5510 { 5511 int err; 5512 5513 err = hci_update_scan_sync(hdev); 5514 if (err) 5515 return err; 5516 5517 /* If BR/EDR is not enabled and we disable advertising as a 5518 * by-product of disabling connectable, we need to update the 5519 * advertising flags. 5520 */ 5521 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 5522 err = hci_update_adv_data_sync(hdev, hdev->cur_adv_instance); 5523 5524 /* Update the advertising parameters if necessary */ 5525 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 5526 !list_empty(&hdev->adv_instances)) { 5527 if (ext_adv_capable(hdev)) 5528 err = hci_start_ext_adv_sync(hdev, 5529 hdev->cur_adv_instance); 5530 else 5531 err = hci_enable_advertising_sync(hdev); 5532 5533 if (err) 5534 return err; 5535 } 5536 5537 return hci_update_passive_scan_sync(hdev); 5538 } 5539 5540 static int hci_inquiry_sync(struct hci_dev *hdev, u8 length) 5541 { 5542 const u8 giac[3] = { 0x33, 0x8b, 0x9e }; 5543 const u8 liac[3] = { 0x00, 0x8b, 0x9e }; 5544 struct hci_cp_inquiry cp; 5545 5546 bt_dev_dbg(hdev, ""); 5547 5548 if (hci_dev_test_flag(hdev, HCI_INQUIRY)) 5549 return 0; 5550 5551 hci_dev_lock(hdev); 5552 hci_inquiry_cache_flush(hdev); 5553 hci_dev_unlock(hdev); 5554 5555 memset(&cp, 0, sizeof(cp)); 5556 5557 if (hdev->discovery.limited) 5558 memcpy(&cp.lap, liac, sizeof(cp.lap)); 5559 else 5560 memcpy(&cp.lap, giac, sizeof(cp.lap)); 5561 5562 cp.length = length; 5563 5564 return __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY, 5565 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5566 } 5567 5568 static int hci_active_scan_sync(struct hci_dev *hdev, uint16_t interval) 5569 { 5570 u8 own_addr_type; 5571 /* Accept list is not used for discovery */ 5572 u8 filter_policy = 0x00; 5573 /* Default is to enable duplicates filter */ 5574 u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE; 5575 int err; 5576 5577 bt_dev_dbg(hdev, ""); 5578 5579 /* If controller is scanning, it means the passive scanning is 5580 * running. Thus, we should temporarily stop it in order to set the 5581 * discovery scanning parameters. 5582 */ 5583 err = hci_scan_disable_sync(hdev); 5584 if (err) { 5585 bt_dev_err(hdev, "Unable to disable scanning: %d", err); 5586 return err; 5587 } 5588 5589 cancel_interleave_scan(hdev); 5590 5591 /* Pause address resolution for active scan and stop advertising if 5592 * privacy is enabled. 5593 */ 5594 err = hci_pause_addr_resolution(hdev); 5595 if (err) 5596 goto failed; 5597 5598 /* All active scans will be done with either a resolvable private 5599 * address (when privacy feature has been enabled) or non-resolvable 5600 * private address. 5601 */ 5602 err = hci_update_random_address_sync(hdev, true, scan_use_rpa(hdev), 5603 &own_addr_type); 5604 if (err < 0) 5605 own_addr_type = ADDR_LE_DEV_PUBLIC; 5606 5607 if (hci_is_adv_monitoring(hdev)) { 5608 /* Duplicate filter should be disabled when some advertisement 5609 * monitor is activated, otherwise AdvMon can only receive one 5610 * advertisement for one peer(*) during active scanning, and 5611 * might report loss to these peers. 5612 * 5613 * Note that different controllers have different meanings of 5614 * |duplicate|. Some of them consider packets with the same 5615 * address as duplicate, and others consider packets with the 5616 * same address and the same RSSI as duplicate. Although in the 5617 * latter case we don't need to disable duplicate filter, but 5618 * it is common to have active scanning for a short period of 5619 * time, the power impact should be neglectable. 5620 */ 5621 filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 5622 } 5623 5624 err = hci_start_scan_sync(hdev, LE_SCAN_ACTIVE, interval, 5625 hdev->le_scan_window_discovery, 5626 own_addr_type, filter_policy, filter_dup); 5627 if (!err) 5628 return err; 5629 5630 failed: 5631 /* Resume advertising if it was paused */ 5632 if (use_ll_privacy(hdev)) 5633 hci_resume_advertising_sync(hdev); 5634 5635 /* Resume passive scanning */ 5636 hci_update_passive_scan_sync(hdev); 5637 return err; 5638 } 5639 5640 static int hci_start_interleaved_discovery_sync(struct hci_dev *hdev) 5641 { 5642 int err; 5643 5644 bt_dev_dbg(hdev, ""); 5645 5646 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery * 2); 5647 if (err) 5648 return err; 5649 5650 return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN); 5651 } 5652 5653 int hci_start_discovery_sync(struct hci_dev *hdev) 5654 { 5655 unsigned long timeout; 5656 int err; 5657 5658 bt_dev_dbg(hdev, "type %u", hdev->discovery.type); 5659 5660 switch (hdev->discovery.type) { 5661 case DISCOV_TYPE_BREDR: 5662 return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN); 5663 case DISCOV_TYPE_INTERLEAVED: 5664 /* When running simultaneous discovery, the LE scanning time 5665 * should occupy the whole discovery time sine BR/EDR inquiry 5666 * and LE scanning are scheduled by the controller. 5667 * 5668 * For interleaving discovery in comparison, BR/EDR inquiry 5669 * and LE scanning are done sequentially with separate 5670 * timeouts. 5671 */ 5672 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, 5673 &hdev->quirks)) { 5674 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 5675 /* During simultaneous discovery, we double LE scan 5676 * interval. We must leave some time for the controller 5677 * to do BR/EDR inquiry. 5678 */ 5679 err = hci_start_interleaved_discovery_sync(hdev); 5680 break; 5681 } 5682 5683 timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout); 5684 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery); 5685 break; 5686 case DISCOV_TYPE_LE: 5687 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 5688 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery); 5689 break; 5690 default: 5691 return -EINVAL; 5692 } 5693 5694 if (err) 5695 return err; 5696 5697 bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout)); 5698 5699 /* When service discovery is used and the controller has a 5700 * strict duplicate filter, it is important to remember the 5701 * start and duration of the scan. This is required for 5702 * restarting scanning during the discovery phase. 5703 */ 5704 if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) && 5705 hdev->discovery.result_filtering) { 5706 hdev->discovery.scan_start = jiffies; 5707 hdev->discovery.scan_duration = timeout; 5708 } 5709 5710 queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable, 5711 timeout); 5712 return 0; 5713 } 5714 5715 static void hci_suspend_monitor_sync(struct hci_dev *hdev) 5716 { 5717 switch (hci_get_adv_monitor_offload_ext(hdev)) { 5718 case HCI_ADV_MONITOR_EXT_MSFT: 5719 msft_suspend_sync(hdev); 5720 break; 5721 default: 5722 return; 5723 } 5724 } 5725 5726 /* This function disables discovery and mark it as paused */ 5727 static int hci_pause_discovery_sync(struct hci_dev *hdev) 5728 { 5729 int old_state = hdev->discovery.state; 5730 int err; 5731 5732 /* If discovery already stopped/stopping/paused there nothing to do */ 5733 if (old_state == DISCOVERY_STOPPED || old_state == DISCOVERY_STOPPING || 5734 hdev->discovery_paused) 5735 return 0; 5736 5737 hci_discovery_set_state(hdev, DISCOVERY_STOPPING); 5738 err = hci_stop_discovery_sync(hdev); 5739 if (err) 5740 return err; 5741 5742 hdev->discovery_paused = true; 5743 hdev->discovery_old_state = old_state; 5744 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 5745 5746 return 0; 5747 } 5748 5749 static int hci_update_event_filter_sync(struct hci_dev *hdev) 5750 { 5751 struct bdaddr_list_with_flags *b; 5752 u8 scan = SCAN_DISABLED; 5753 bool scanning = test_bit(HCI_PSCAN, &hdev->flags); 5754 int err; 5755 5756 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 5757 return 0; 5758 5759 /* Some fake CSR controllers lock up after setting this type of 5760 * filter, so avoid sending the request altogether. 5761 */ 5762 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 5763 return 0; 5764 5765 /* Always clear event filter when starting */ 5766 hci_clear_event_filter_sync(hdev); 5767 5768 list_for_each_entry(b, &hdev->accept_list, list) { 5769 if (!(b->flags & HCI_CONN_FLAG_REMOTE_WAKEUP)) 5770 continue; 5771 5772 bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr); 5773 5774 err = hci_set_event_filter_sync(hdev, HCI_FLT_CONN_SETUP, 5775 HCI_CONN_SETUP_ALLOW_BDADDR, 5776 &b->bdaddr, 5777 HCI_CONN_SETUP_AUTO_ON); 5778 if (err) 5779 bt_dev_dbg(hdev, "Failed to set event filter for %pMR", 5780 &b->bdaddr); 5781 else 5782 scan = SCAN_PAGE; 5783 } 5784 5785 if (scan && !scanning) 5786 hci_write_scan_enable_sync(hdev, scan); 5787 else if (!scan && scanning) 5788 hci_write_scan_enable_sync(hdev, scan); 5789 5790 return 0; 5791 } 5792 5793 /* This function disables scan (BR and LE) and mark it as paused */ 5794 static int hci_pause_scan_sync(struct hci_dev *hdev) 5795 { 5796 if (hdev->scanning_paused) 5797 return 0; 5798 5799 /* Disable page scan if enabled */ 5800 if (test_bit(HCI_PSCAN, &hdev->flags)) 5801 hci_write_scan_enable_sync(hdev, SCAN_DISABLED); 5802 5803 hci_scan_disable_sync(hdev); 5804 5805 hdev->scanning_paused = true; 5806 5807 return 0; 5808 } 5809 5810 /* This function performs the HCI suspend procedures in the follow order: 5811 * 5812 * Pause discovery (active scanning/inquiry) 5813 * Pause Directed Advertising/Advertising 5814 * Pause Scanning (passive scanning in case discovery was not active) 5815 * Disconnect all connections 5816 * Set suspend_status to BT_SUSPEND_DISCONNECT if hdev cannot wakeup 5817 * otherwise: 5818 * Update event mask (only set events that are allowed to wake up the host) 5819 * Update event filter (with devices marked with HCI_CONN_FLAG_REMOTE_WAKEUP) 5820 * Update passive scanning (lower duty cycle) 5821 * Set suspend_status to BT_SUSPEND_CONFIGURE_WAKE 5822 */ 5823 int hci_suspend_sync(struct hci_dev *hdev) 5824 { 5825 int err; 5826 5827 /* If marked as suspended there nothing to do */ 5828 if (hdev->suspended) 5829 return 0; 5830 5831 /* Mark device as suspended */ 5832 hdev->suspended = true; 5833 5834 /* Pause discovery if not already stopped */ 5835 hci_pause_discovery_sync(hdev); 5836 5837 /* Pause other advertisements */ 5838 hci_pause_advertising_sync(hdev); 5839 5840 /* Suspend monitor filters */ 5841 hci_suspend_monitor_sync(hdev); 5842 5843 /* Prevent disconnects from causing scanning to be re-enabled */ 5844 hci_pause_scan_sync(hdev); 5845 5846 if (hci_conn_count(hdev)) { 5847 /* Soft disconnect everything (power off) */ 5848 err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF); 5849 if (err) { 5850 /* Set state to BT_RUNNING so resume doesn't notify */ 5851 hdev->suspend_state = BT_RUNNING; 5852 hci_resume_sync(hdev); 5853 return err; 5854 } 5855 5856 /* Update event mask so only the allowed event can wakeup the 5857 * host. 5858 */ 5859 hci_set_event_mask_sync(hdev); 5860 } 5861 5862 /* Only configure accept list if disconnect succeeded and wake 5863 * isn't being prevented. 5864 */ 5865 if (!hdev->wakeup || !hdev->wakeup(hdev)) { 5866 hdev->suspend_state = BT_SUSPEND_DISCONNECT; 5867 return 0; 5868 } 5869 5870 /* Unpause to take care of updating scanning params */ 5871 hdev->scanning_paused = false; 5872 5873 /* Enable event filter for paired devices */ 5874 hci_update_event_filter_sync(hdev); 5875 5876 /* Update LE passive scan if enabled */ 5877 hci_update_passive_scan_sync(hdev); 5878 5879 /* Pause scan changes again. */ 5880 hdev->scanning_paused = true; 5881 5882 hdev->suspend_state = BT_SUSPEND_CONFIGURE_WAKE; 5883 5884 return 0; 5885 } 5886 5887 /* This function resumes discovery */ 5888 static int hci_resume_discovery_sync(struct hci_dev *hdev) 5889 { 5890 int err; 5891 5892 /* If discovery not paused there nothing to do */ 5893 if (!hdev->discovery_paused) 5894 return 0; 5895 5896 hdev->discovery_paused = false; 5897 5898 hci_discovery_set_state(hdev, DISCOVERY_STARTING); 5899 5900 err = hci_start_discovery_sync(hdev); 5901 5902 hci_discovery_set_state(hdev, err ? DISCOVERY_STOPPED : 5903 DISCOVERY_FINDING); 5904 5905 return err; 5906 } 5907 5908 static void hci_resume_monitor_sync(struct hci_dev *hdev) 5909 { 5910 switch (hci_get_adv_monitor_offload_ext(hdev)) { 5911 case HCI_ADV_MONITOR_EXT_MSFT: 5912 msft_resume_sync(hdev); 5913 break; 5914 default: 5915 return; 5916 } 5917 } 5918 5919 /* This function resume scan and reset paused flag */ 5920 static int hci_resume_scan_sync(struct hci_dev *hdev) 5921 { 5922 if (!hdev->scanning_paused) 5923 return 0; 5924 5925 hdev->scanning_paused = false; 5926 5927 hci_update_scan_sync(hdev); 5928 5929 /* Reset passive scanning to normal */ 5930 hci_update_passive_scan_sync(hdev); 5931 5932 return 0; 5933 } 5934 5935 /* This function performs the HCI suspend procedures in the follow order: 5936 * 5937 * Restore event mask 5938 * Clear event filter 5939 * Update passive scanning (normal duty cycle) 5940 * Resume Directed Advertising/Advertising 5941 * Resume discovery (active scanning/inquiry) 5942 */ 5943 int hci_resume_sync(struct hci_dev *hdev) 5944 { 5945 /* If not marked as suspended there nothing to do */ 5946 if (!hdev->suspended) 5947 return 0; 5948 5949 hdev->suspended = false; 5950 5951 /* Restore event mask */ 5952 hci_set_event_mask_sync(hdev); 5953 5954 /* Clear any event filters and restore scan state */ 5955 hci_clear_event_filter_sync(hdev); 5956 5957 /* Resume scanning */ 5958 hci_resume_scan_sync(hdev); 5959 5960 /* Resume monitor filters */ 5961 hci_resume_monitor_sync(hdev); 5962 5963 /* Resume other advertisements */ 5964 hci_resume_advertising_sync(hdev); 5965 5966 /* Resume discovery */ 5967 hci_resume_discovery_sync(hdev); 5968 5969 return 0; 5970 } 5971 5972 static bool conn_use_rpa(struct hci_conn *conn) 5973 { 5974 struct hci_dev *hdev = conn->hdev; 5975 5976 return hci_dev_test_flag(hdev, HCI_PRIVACY); 5977 } 5978 5979 static int hci_le_ext_directed_advertising_sync(struct hci_dev *hdev, 5980 struct hci_conn *conn) 5981 { 5982 struct hci_cp_le_set_ext_adv_params cp; 5983 int err; 5984 bdaddr_t random_addr; 5985 u8 own_addr_type; 5986 5987 err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 5988 &own_addr_type); 5989 if (err) 5990 return err; 5991 5992 /* Set require_privacy to false so that the remote device has a 5993 * chance of identifying us. 5994 */ 5995 err = hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL, 5996 &own_addr_type, &random_addr); 5997 if (err) 5998 return err; 5999 6000 memset(&cp, 0, sizeof(cp)); 6001 6002 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND); 6003 cp.channel_map = hdev->le_adv_channel_map; 6004 cp.tx_power = HCI_TX_POWER_INVALID; 6005 cp.primary_phy = HCI_ADV_PHY_1M; 6006 cp.secondary_phy = HCI_ADV_PHY_1M; 6007 cp.handle = 0x00; /* Use instance 0 for directed adv */ 6008 cp.own_addr_type = own_addr_type; 6009 cp.peer_addr_type = conn->dst_type; 6010 bacpy(&cp.peer_addr, &conn->dst); 6011 6012 /* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for 6013 * advertising_event_property LE_LEGACY_ADV_DIRECT_IND 6014 * does not supports advertising data when the advertising set already 6015 * contains some, the controller shall return erroc code 'Invalid 6016 * HCI Command Parameters(0x12). 6017 * So it is required to remove adv set for handle 0x00. since we use 6018 * instance 0 for directed adv. 6019 */ 6020 err = hci_remove_ext_adv_instance_sync(hdev, cp.handle, NULL); 6021 if (err) 6022 return err; 6023 6024 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS, 6025 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6026 if (err) 6027 return err; 6028 6029 /* Check if random address need to be updated */ 6030 if (own_addr_type == ADDR_LE_DEV_RANDOM && 6031 bacmp(&random_addr, BDADDR_ANY) && 6032 bacmp(&random_addr, &hdev->random_addr)) { 6033 err = hci_set_adv_set_random_addr_sync(hdev, 0x00, 6034 &random_addr); 6035 if (err) 6036 return err; 6037 } 6038 6039 return hci_enable_ext_advertising_sync(hdev, 0x00); 6040 } 6041 6042 static int hci_le_directed_advertising_sync(struct hci_dev *hdev, 6043 struct hci_conn *conn) 6044 { 6045 struct hci_cp_le_set_adv_param cp; 6046 u8 status; 6047 u8 own_addr_type; 6048 u8 enable; 6049 6050 if (ext_adv_capable(hdev)) 6051 return hci_le_ext_directed_advertising_sync(hdev, conn); 6052 6053 /* Clear the HCI_LE_ADV bit temporarily so that the 6054 * hci_update_random_address knows that it's safe to go ahead 6055 * and write a new random address. The flag will be set back on 6056 * as soon as the SET_ADV_ENABLE HCI command completes. 6057 */ 6058 hci_dev_clear_flag(hdev, HCI_LE_ADV); 6059 6060 /* Set require_privacy to false so that the remote device has a 6061 * chance of identifying us. 6062 */ 6063 status = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 6064 &own_addr_type); 6065 if (status) 6066 return status; 6067 6068 memset(&cp, 0, sizeof(cp)); 6069 6070 /* Some controllers might reject command if intervals are not 6071 * within range for undirected advertising. 6072 * BCM20702A0 is known to be affected by this. 6073 */ 6074 cp.min_interval = cpu_to_le16(0x0020); 6075 cp.max_interval = cpu_to_le16(0x0020); 6076 6077 cp.type = LE_ADV_DIRECT_IND; 6078 cp.own_address_type = own_addr_type; 6079 cp.direct_addr_type = conn->dst_type; 6080 bacpy(&cp.direct_addr, &conn->dst); 6081 cp.channel_map = hdev->le_adv_channel_map; 6082 6083 status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM, 6084 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6085 if (status) 6086 return status; 6087 6088 enable = 0x01; 6089 6090 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 6091 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 6092 } 6093 6094 static void set_ext_conn_params(struct hci_conn *conn, 6095 struct hci_cp_le_ext_conn_param *p) 6096 { 6097 struct hci_dev *hdev = conn->hdev; 6098 6099 memset(p, 0, sizeof(*p)); 6100 6101 p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect); 6102 p->scan_window = cpu_to_le16(hdev->le_scan_window_connect); 6103 p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 6104 p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 6105 p->conn_latency = cpu_to_le16(conn->le_conn_latency); 6106 p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 6107 p->min_ce_len = cpu_to_le16(0x0000); 6108 p->max_ce_len = cpu_to_le16(0x0000); 6109 } 6110 6111 static int hci_le_ext_create_conn_sync(struct hci_dev *hdev, 6112 struct hci_conn *conn, u8 own_addr_type) 6113 { 6114 struct hci_cp_le_ext_create_conn *cp; 6115 struct hci_cp_le_ext_conn_param *p; 6116 u8 data[sizeof(*cp) + sizeof(*p) * 3]; 6117 u32 plen; 6118 6119 cp = (void *)data; 6120 p = (void *)cp->data; 6121 6122 memset(cp, 0, sizeof(*cp)); 6123 6124 bacpy(&cp->peer_addr, &conn->dst); 6125 cp->peer_addr_type = conn->dst_type; 6126 cp->own_addr_type = own_addr_type; 6127 6128 plen = sizeof(*cp); 6129 6130 if (scan_1m(hdev)) { 6131 cp->phys |= LE_SCAN_PHY_1M; 6132 set_ext_conn_params(conn, p); 6133 6134 p++; 6135 plen += sizeof(*p); 6136 } 6137 6138 if (scan_2m(hdev)) { 6139 cp->phys |= LE_SCAN_PHY_2M; 6140 set_ext_conn_params(conn, p); 6141 6142 p++; 6143 plen += sizeof(*p); 6144 } 6145 6146 if (scan_coded(hdev)) { 6147 cp->phys |= LE_SCAN_PHY_CODED; 6148 set_ext_conn_params(conn, p); 6149 6150 plen += sizeof(*p); 6151 } 6152 6153 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_EXT_CREATE_CONN, 6154 plen, data, 6155 HCI_EV_LE_ENHANCED_CONN_COMPLETE, 6156 conn->conn_timeout, NULL); 6157 } 6158 6159 int hci_le_create_conn_sync(struct hci_dev *hdev, struct hci_conn *conn) 6160 { 6161 struct hci_cp_le_create_conn cp; 6162 struct hci_conn_params *params; 6163 u8 own_addr_type; 6164 int err; 6165 6166 /* If requested to connect as peripheral use directed advertising */ 6167 if (conn->role == HCI_ROLE_SLAVE) { 6168 /* If we're active scanning and simultaneous roles is not 6169 * enabled simply reject the attempt. 6170 */ 6171 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) && 6172 hdev->le_scan_type == LE_SCAN_ACTIVE && 6173 !hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) { 6174 hci_conn_del(conn); 6175 return -EBUSY; 6176 } 6177 6178 /* Pause advertising while doing directed advertising. */ 6179 hci_pause_advertising_sync(hdev); 6180 6181 err = hci_le_directed_advertising_sync(hdev, conn); 6182 goto done; 6183 } 6184 6185 /* Disable advertising if simultaneous roles is not in use. */ 6186 if (!hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) 6187 hci_pause_advertising_sync(hdev); 6188 6189 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); 6190 if (params) { 6191 conn->le_conn_min_interval = params->conn_min_interval; 6192 conn->le_conn_max_interval = params->conn_max_interval; 6193 conn->le_conn_latency = params->conn_latency; 6194 conn->le_supv_timeout = params->supervision_timeout; 6195 } else { 6196 conn->le_conn_min_interval = hdev->le_conn_min_interval; 6197 conn->le_conn_max_interval = hdev->le_conn_max_interval; 6198 conn->le_conn_latency = hdev->le_conn_latency; 6199 conn->le_supv_timeout = hdev->le_supv_timeout; 6200 } 6201 6202 /* If controller is scanning, we stop it since some controllers are 6203 * not able to scan and connect at the same time. Also set the 6204 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete 6205 * handler for scan disabling knows to set the correct discovery 6206 * state. 6207 */ 6208 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 6209 hci_scan_disable_sync(hdev); 6210 hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED); 6211 } 6212 6213 /* Update random address, but set require_privacy to false so 6214 * that we never connect with an non-resolvable address. 6215 */ 6216 err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 6217 &own_addr_type); 6218 if (err) 6219 goto done; 6220 6221 if (use_ext_conn(hdev)) { 6222 err = hci_le_ext_create_conn_sync(hdev, conn, own_addr_type); 6223 goto done; 6224 } 6225 6226 memset(&cp, 0, sizeof(cp)); 6227 6228 cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect); 6229 cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect); 6230 6231 bacpy(&cp.peer_addr, &conn->dst); 6232 cp.peer_addr_type = conn->dst_type; 6233 cp.own_address_type = own_addr_type; 6234 cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 6235 cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 6236 cp.conn_latency = cpu_to_le16(conn->le_conn_latency); 6237 cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 6238 cp.min_ce_len = cpu_to_le16(0x0000); 6239 cp.max_ce_len = cpu_to_le16(0x0000); 6240 6241 /* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E page 2261: 6242 * 6243 * If this event is unmasked and the HCI_LE_Connection_Complete event 6244 * is unmasked, only the HCI_LE_Enhanced_Connection_Complete event is 6245 * sent when a new connection has been created. 6246 */ 6247 err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CONN, 6248 sizeof(cp), &cp, 6249 use_enhanced_conn_complete(hdev) ? 6250 HCI_EV_LE_ENHANCED_CONN_COMPLETE : 6251 HCI_EV_LE_CONN_COMPLETE, 6252 conn->conn_timeout, NULL); 6253 6254 done: 6255 if (err == -ETIMEDOUT) 6256 hci_le_connect_cancel_sync(hdev, conn); 6257 6258 /* Re-enable advertising after the connection attempt is finished. */ 6259 hci_resume_advertising_sync(hdev); 6260 return err; 6261 } 6262 6263 int hci_le_create_cis_sync(struct hci_dev *hdev, struct hci_conn *conn) 6264 { 6265 struct { 6266 struct hci_cp_le_create_cis cp; 6267 struct hci_cis cis[0x1f]; 6268 } cmd; 6269 u8 cig; 6270 struct hci_conn *hcon = conn; 6271 6272 memset(&cmd, 0, sizeof(cmd)); 6273 cmd.cis[0].acl_handle = cpu_to_le16(conn->parent->handle); 6274 cmd.cis[0].cis_handle = cpu_to_le16(conn->handle); 6275 cmd.cp.num_cis++; 6276 cig = conn->iso_qos.ucast.cig; 6277 6278 hci_dev_lock(hdev); 6279 6280 rcu_read_lock(); 6281 6282 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) { 6283 struct hci_cis *cis = &cmd.cis[cmd.cp.num_cis]; 6284 6285 if (conn == hcon || conn->type != ISO_LINK || 6286 conn->state == BT_CONNECTED || 6287 conn->iso_qos.ucast.cig != cig) 6288 continue; 6289 6290 /* Check if all CIS(s) belonging to a CIG are ready */ 6291 if (!conn->parent || conn->parent->state != BT_CONNECTED || 6292 conn->state != BT_CONNECT) { 6293 cmd.cp.num_cis = 0; 6294 break; 6295 } 6296 6297 /* Group all CIS with state BT_CONNECT since the spec don't 6298 * allow to send them individually: 6299 * 6300 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E 6301 * page 2566: 6302 * 6303 * If the Host issues this command before all the 6304 * HCI_LE_CIS_Established events from the previous use of the 6305 * command have been generated, the Controller shall return the 6306 * error code Command Disallowed (0x0C). 6307 */ 6308 cis->acl_handle = cpu_to_le16(conn->parent->handle); 6309 cis->cis_handle = cpu_to_le16(conn->handle); 6310 cmd.cp.num_cis++; 6311 } 6312 6313 rcu_read_unlock(); 6314 6315 hci_dev_unlock(hdev); 6316 6317 if (!cmd.cp.num_cis) 6318 return 0; 6319 6320 /* Wait for HCI_LE_CIS_Established */ 6321 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CIS, 6322 sizeof(cmd.cp) + sizeof(cmd.cis[0]) * 6323 cmd.cp.num_cis, &cmd, 6324 HCI_EVT_LE_CIS_ESTABLISHED, 6325 conn->conn_timeout, NULL); 6326 } 6327 6328 int hci_le_remove_cig_sync(struct hci_dev *hdev, u8 handle) 6329 { 6330 struct hci_cp_le_remove_cig cp; 6331 6332 memset(&cp, 0, sizeof(cp)); 6333 cp.cig_id = handle; 6334 6335 return __hci_cmd_sync_status(hdev, HCI_OP_LE_REMOVE_CIG, sizeof(cp), 6336 &cp, HCI_CMD_TIMEOUT); 6337 } 6338 6339 int hci_le_big_terminate_sync(struct hci_dev *hdev, u8 handle) 6340 { 6341 struct hci_cp_le_big_term_sync cp; 6342 6343 memset(&cp, 0, sizeof(cp)); 6344 cp.handle = handle; 6345 6346 return __hci_cmd_sync_status(hdev, HCI_OP_LE_BIG_TERM_SYNC, 6347 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6348 } 6349 6350 int hci_le_pa_terminate_sync(struct hci_dev *hdev, u16 handle) 6351 { 6352 struct hci_cp_le_pa_term_sync cp; 6353 6354 memset(&cp, 0, sizeof(cp)); 6355 cp.handle = cpu_to_le16(handle); 6356 6357 return __hci_cmd_sync_status(hdev, HCI_OP_LE_PA_TERM_SYNC, 6358 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6359 } 6360 6361 int hci_get_random_address(struct hci_dev *hdev, bool require_privacy, 6362 bool use_rpa, struct adv_info *adv_instance, 6363 u8 *own_addr_type, bdaddr_t *rand_addr) 6364 { 6365 int err; 6366 6367 bacpy(rand_addr, BDADDR_ANY); 6368 6369 /* If privacy is enabled use a resolvable private address. If 6370 * current RPA has expired then generate a new one. 6371 */ 6372 if (use_rpa) { 6373 /* If Controller supports LL Privacy use own address type is 6374 * 0x03 6375 */ 6376 if (use_ll_privacy(hdev)) 6377 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED; 6378 else 6379 *own_addr_type = ADDR_LE_DEV_RANDOM; 6380 6381 if (adv_instance) { 6382 if (adv_rpa_valid(adv_instance)) 6383 return 0; 6384 } else { 6385 if (rpa_valid(hdev)) 6386 return 0; 6387 } 6388 6389 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); 6390 if (err < 0) { 6391 bt_dev_err(hdev, "failed to generate new RPA"); 6392 return err; 6393 } 6394 6395 bacpy(rand_addr, &hdev->rpa); 6396 6397 return 0; 6398 } 6399 6400 /* In case of required privacy without resolvable private address, 6401 * use an non-resolvable private address. This is useful for 6402 * non-connectable advertising. 6403 */ 6404 if (require_privacy) { 6405 bdaddr_t nrpa; 6406 6407 while (true) { 6408 /* The non-resolvable private address is generated 6409 * from random six bytes with the two most significant 6410 * bits cleared. 6411 */ 6412 get_random_bytes(&nrpa, 6); 6413 nrpa.b[5] &= 0x3f; 6414 6415 /* The non-resolvable private address shall not be 6416 * equal to the public address. 6417 */ 6418 if (bacmp(&hdev->bdaddr, &nrpa)) 6419 break; 6420 } 6421 6422 *own_addr_type = ADDR_LE_DEV_RANDOM; 6423 bacpy(rand_addr, &nrpa); 6424 6425 return 0; 6426 } 6427 6428 /* No privacy so use a public address. */ 6429 *own_addr_type = ADDR_LE_DEV_PUBLIC; 6430 6431 return 0; 6432 } 6433 6434 static int _update_adv_data_sync(struct hci_dev *hdev, void *data) 6435 { 6436 u8 instance = PTR_ERR(data); 6437 6438 return hci_update_adv_data_sync(hdev, instance); 6439 } 6440 6441 int hci_update_adv_data(struct hci_dev *hdev, u8 instance) 6442 { 6443 return hci_cmd_sync_queue(hdev, _update_adv_data_sync, 6444 ERR_PTR(instance), NULL); 6445 } 6446