1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * BlueZ - Bluetooth protocol stack for Linux 4 * 5 * Copyright (C) 2021 Intel Corporation 6 * Copyright 2023 NXP 7 */ 8 9 #include <linux/property.h> 10 11 #include <net/bluetooth/bluetooth.h> 12 #include <net/bluetooth/hci_core.h> 13 #include <net/bluetooth/mgmt.h> 14 15 #include "hci_codec.h" 16 #include "hci_debugfs.h" 17 #include "smp.h" 18 #include "eir.h" 19 #include "msft.h" 20 #include "aosp.h" 21 #include "leds.h" 22 23 static void hci_cmd_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode, 24 struct sk_buff *skb) 25 { 26 bt_dev_dbg(hdev, "result 0x%2.2x", result); 27 28 if (hdev->req_status != HCI_REQ_PEND) 29 return; 30 31 hdev->req_result = result; 32 hdev->req_status = HCI_REQ_DONE; 33 34 /* Free the request command so it is not used as response */ 35 kfree_skb(hdev->req_skb); 36 hdev->req_skb = NULL; 37 38 if (skb) { 39 struct sock *sk = hci_skb_sk(skb); 40 41 /* Drop sk reference if set */ 42 if (sk) 43 sock_put(sk); 44 45 hdev->req_rsp = skb_get(skb); 46 } 47 48 wake_up_interruptible(&hdev->req_wait_q); 49 } 50 51 struct sk_buff *hci_cmd_sync_alloc(struct hci_dev *hdev, u16 opcode, u32 plen, 52 const void *param, struct sock *sk) 53 { 54 int len = HCI_COMMAND_HDR_SIZE + plen; 55 struct hci_command_hdr *hdr; 56 struct sk_buff *skb; 57 58 skb = bt_skb_alloc(len, GFP_ATOMIC); 59 if (!skb) 60 return NULL; 61 62 hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE); 63 hdr->opcode = cpu_to_le16(opcode); 64 hdr->plen = plen; 65 66 if (plen) 67 skb_put_data(skb, param, plen); 68 69 bt_dev_dbg(hdev, "skb len %d", skb->len); 70 71 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; 72 hci_skb_opcode(skb) = opcode; 73 74 /* Grab a reference if command needs to be associated with a sock (e.g. 75 * likely mgmt socket that initiated the command). 76 */ 77 if (sk) { 78 hci_skb_sk(skb) = sk; 79 sock_hold(sk); 80 } 81 82 return skb; 83 } 84 85 static void hci_cmd_sync_add(struct hci_request *req, u16 opcode, u32 plen, 86 const void *param, u8 event, struct sock *sk) 87 { 88 struct hci_dev *hdev = req->hdev; 89 struct sk_buff *skb; 90 91 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); 92 93 /* If an error occurred during request building, there is no point in 94 * queueing the HCI command. We can simply return. 95 */ 96 if (req->err) 97 return; 98 99 skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, sk); 100 if (!skb) { 101 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)", 102 opcode); 103 req->err = -ENOMEM; 104 return; 105 } 106 107 if (skb_queue_empty(&req->cmd_q)) 108 bt_cb(skb)->hci.req_flags |= HCI_REQ_START; 109 110 hci_skb_event(skb) = event; 111 112 skb_queue_tail(&req->cmd_q, skb); 113 } 114 115 static int hci_req_sync_run(struct hci_request *req) 116 { 117 struct hci_dev *hdev = req->hdev; 118 struct sk_buff *skb; 119 unsigned long flags; 120 121 bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q)); 122 123 /* If an error occurred during request building, remove all HCI 124 * commands queued on the HCI request queue. 125 */ 126 if (req->err) { 127 skb_queue_purge(&req->cmd_q); 128 return req->err; 129 } 130 131 /* Do not allow empty requests */ 132 if (skb_queue_empty(&req->cmd_q)) 133 return -ENODATA; 134 135 skb = skb_peek_tail(&req->cmd_q); 136 bt_cb(skb)->hci.req_complete_skb = hci_cmd_sync_complete; 137 bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB; 138 139 spin_lock_irqsave(&hdev->cmd_q.lock, flags); 140 skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q); 141 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); 142 143 queue_work(hdev->workqueue, &hdev->cmd_work); 144 145 return 0; 146 } 147 148 static void hci_request_init(struct hci_request *req, struct hci_dev *hdev) 149 { 150 skb_queue_head_init(&req->cmd_q); 151 req->hdev = hdev; 152 req->err = 0; 153 } 154 155 /* This function requires the caller holds hdev->req_lock. */ 156 struct sk_buff *__hci_cmd_sync_sk(struct hci_dev *hdev, u16 opcode, u32 plen, 157 const void *param, u8 event, u32 timeout, 158 struct sock *sk) 159 { 160 struct hci_request req; 161 struct sk_buff *skb; 162 int err = 0; 163 164 bt_dev_dbg(hdev, "Opcode 0x%4.4x", opcode); 165 166 hci_request_init(&req, hdev); 167 168 hci_cmd_sync_add(&req, opcode, plen, param, event, sk); 169 170 hdev->req_status = HCI_REQ_PEND; 171 172 err = hci_req_sync_run(&req); 173 if (err < 0) 174 return ERR_PTR(err); 175 176 err = wait_event_interruptible_timeout(hdev->req_wait_q, 177 hdev->req_status != HCI_REQ_PEND, 178 timeout); 179 180 if (err == -ERESTARTSYS) 181 return ERR_PTR(-EINTR); 182 183 switch (hdev->req_status) { 184 case HCI_REQ_DONE: 185 err = -bt_to_errno(hdev->req_result); 186 break; 187 188 case HCI_REQ_CANCELED: 189 err = -hdev->req_result; 190 break; 191 192 default: 193 err = -ETIMEDOUT; 194 break; 195 } 196 197 hdev->req_status = 0; 198 hdev->req_result = 0; 199 skb = hdev->req_rsp; 200 hdev->req_rsp = NULL; 201 202 bt_dev_dbg(hdev, "end: err %d", err); 203 204 if (err < 0) { 205 kfree_skb(skb); 206 return ERR_PTR(err); 207 } 208 209 /* If command return a status event skb will be set to NULL as there are 210 * no parameters. 211 */ 212 if (!skb) 213 return ERR_PTR(-ENODATA); 214 215 return skb; 216 } 217 EXPORT_SYMBOL(__hci_cmd_sync_sk); 218 219 /* This function requires the caller holds hdev->req_lock. */ 220 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 221 const void *param, u32 timeout) 222 { 223 return __hci_cmd_sync_sk(hdev, opcode, plen, param, 0, timeout, NULL); 224 } 225 EXPORT_SYMBOL(__hci_cmd_sync); 226 227 /* Send HCI command and wait for command complete event */ 228 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 229 const void *param, u32 timeout) 230 { 231 struct sk_buff *skb; 232 233 if (!test_bit(HCI_UP, &hdev->flags)) 234 return ERR_PTR(-ENETDOWN); 235 236 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); 237 238 hci_req_sync_lock(hdev); 239 skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout); 240 hci_req_sync_unlock(hdev); 241 242 return skb; 243 } 244 EXPORT_SYMBOL(hci_cmd_sync); 245 246 /* This function requires the caller holds hdev->req_lock. */ 247 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen, 248 const void *param, u8 event, u32 timeout) 249 { 250 return __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, 251 NULL); 252 } 253 EXPORT_SYMBOL(__hci_cmd_sync_ev); 254 255 /* This function requires the caller holds hdev->req_lock. */ 256 int __hci_cmd_sync_status_sk(struct hci_dev *hdev, u16 opcode, u32 plen, 257 const void *param, u8 event, u32 timeout, 258 struct sock *sk) 259 { 260 struct sk_buff *skb; 261 u8 status; 262 263 skb = __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, sk); 264 265 /* If command return a status event, skb will be set to -ENODATA */ 266 if (skb == ERR_PTR(-ENODATA)) 267 return 0; 268 269 if (IS_ERR(skb)) { 270 if (!event) 271 bt_dev_err(hdev, "Opcode 0x%4.4x failed: %ld", opcode, 272 PTR_ERR(skb)); 273 return PTR_ERR(skb); 274 } 275 276 status = skb->data[0]; 277 278 kfree_skb(skb); 279 280 return status; 281 } 282 EXPORT_SYMBOL(__hci_cmd_sync_status_sk); 283 284 int __hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen, 285 const void *param, u32 timeout) 286 { 287 return __hci_cmd_sync_status_sk(hdev, opcode, plen, param, 0, timeout, 288 NULL); 289 } 290 EXPORT_SYMBOL(__hci_cmd_sync_status); 291 292 int hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen, 293 const void *param, u32 timeout) 294 { 295 int err; 296 297 hci_req_sync_lock(hdev); 298 err = __hci_cmd_sync_status(hdev, opcode, plen, param, timeout); 299 hci_req_sync_unlock(hdev); 300 301 return err; 302 } 303 EXPORT_SYMBOL(hci_cmd_sync_status); 304 305 static void hci_cmd_sync_work(struct work_struct *work) 306 { 307 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_work); 308 309 bt_dev_dbg(hdev, ""); 310 311 /* Dequeue all entries and run them */ 312 while (1) { 313 struct hci_cmd_sync_work_entry *entry; 314 315 mutex_lock(&hdev->cmd_sync_work_lock); 316 entry = list_first_entry_or_null(&hdev->cmd_sync_work_list, 317 struct hci_cmd_sync_work_entry, 318 list); 319 if (entry) 320 list_del(&entry->list); 321 mutex_unlock(&hdev->cmd_sync_work_lock); 322 323 if (!entry) 324 break; 325 326 bt_dev_dbg(hdev, "entry %p", entry); 327 328 if (entry->func) { 329 int err; 330 331 hci_req_sync_lock(hdev); 332 err = entry->func(hdev, entry->data); 333 if (entry->destroy) 334 entry->destroy(hdev, entry->data, err); 335 hci_req_sync_unlock(hdev); 336 } 337 338 kfree(entry); 339 } 340 } 341 342 static void hci_cmd_sync_cancel_work(struct work_struct *work) 343 { 344 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_cancel_work); 345 346 cancel_delayed_work_sync(&hdev->cmd_timer); 347 cancel_delayed_work_sync(&hdev->ncmd_timer); 348 atomic_set(&hdev->cmd_cnt, 1); 349 350 wake_up_interruptible(&hdev->req_wait_q); 351 } 352 353 static int hci_scan_disable_sync(struct hci_dev *hdev); 354 static int scan_disable_sync(struct hci_dev *hdev, void *data) 355 { 356 return hci_scan_disable_sync(hdev); 357 } 358 359 static int interleaved_inquiry_sync(struct hci_dev *hdev, void *data) 360 { 361 return hci_inquiry_sync(hdev, DISCOV_INTERLEAVED_INQUIRY_LEN, 0); 362 } 363 364 static void le_scan_disable(struct work_struct *work) 365 { 366 struct hci_dev *hdev = container_of(work, struct hci_dev, 367 le_scan_disable.work); 368 int status; 369 370 bt_dev_dbg(hdev, ""); 371 hci_dev_lock(hdev); 372 373 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 374 goto _return; 375 376 status = hci_cmd_sync_queue(hdev, scan_disable_sync, NULL, NULL); 377 if (status) { 378 bt_dev_err(hdev, "failed to disable LE scan: %d", status); 379 goto _return; 380 } 381 382 /* If we were running LE only scan, change discovery state. If 383 * we were running both LE and BR/EDR inquiry simultaneously, 384 * and BR/EDR inquiry is already finished, stop discovery, 385 * otherwise BR/EDR inquiry will stop discovery when finished. 386 * If we will resolve remote device name, do not change 387 * discovery state. 388 */ 389 390 if (hdev->discovery.type == DISCOV_TYPE_LE) 391 goto discov_stopped; 392 393 if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED) 394 goto _return; 395 396 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) { 397 if (!test_bit(HCI_INQUIRY, &hdev->flags) && 398 hdev->discovery.state != DISCOVERY_RESOLVING) 399 goto discov_stopped; 400 401 goto _return; 402 } 403 404 status = hci_cmd_sync_queue(hdev, interleaved_inquiry_sync, NULL, NULL); 405 if (status) { 406 bt_dev_err(hdev, "inquiry failed: status %d", status); 407 goto discov_stopped; 408 } 409 410 goto _return; 411 412 discov_stopped: 413 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 414 415 _return: 416 hci_dev_unlock(hdev); 417 } 418 419 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val, 420 u8 filter_dup); 421 422 static int reenable_adv_sync(struct hci_dev *hdev, void *data) 423 { 424 bt_dev_dbg(hdev, ""); 425 426 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) && 427 list_empty(&hdev->adv_instances)) 428 return 0; 429 430 if (hdev->cur_adv_instance) { 431 return hci_schedule_adv_instance_sync(hdev, 432 hdev->cur_adv_instance, 433 true); 434 } else { 435 if (ext_adv_capable(hdev)) { 436 hci_start_ext_adv_sync(hdev, 0x00); 437 } else { 438 hci_update_adv_data_sync(hdev, 0x00); 439 hci_update_scan_rsp_data_sync(hdev, 0x00); 440 hci_enable_advertising_sync(hdev); 441 } 442 } 443 444 return 0; 445 } 446 447 static void reenable_adv(struct work_struct *work) 448 { 449 struct hci_dev *hdev = container_of(work, struct hci_dev, 450 reenable_adv_work); 451 int status; 452 453 bt_dev_dbg(hdev, ""); 454 455 hci_dev_lock(hdev); 456 457 status = hci_cmd_sync_queue(hdev, reenable_adv_sync, NULL, NULL); 458 if (status) 459 bt_dev_err(hdev, "failed to reenable ADV: %d", status); 460 461 hci_dev_unlock(hdev); 462 } 463 464 static void cancel_adv_timeout(struct hci_dev *hdev) 465 { 466 if (hdev->adv_instance_timeout) { 467 hdev->adv_instance_timeout = 0; 468 cancel_delayed_work(&hdev->adv_instance_expire); 469 } 470 } 471 472 /* For a single instance: 473 * - force == true: The instance will be removed even when its remaining 474 * lifetime is not zero. 475 * - force == false: the instance will be deactivated but kept stored unless 476 * the remaining lifetime is zero. 477 * 478 * For instance == 0x00: 479 * - force == true: All instances will be removed regardless of their timeout 480 * setting. 481 * - force == false: Only instances that have a timeout will be removed. 482 */ 483 int hci_clear_adv_instance_sync(struct hci_dev *hdev, struct sock *sk, 484 u8 instance, bool force) 485 { 486 struct adv_info *adv_instance, *n, *next_instance = NULL; 487 int err; 488 u8 rem_inst; 489 490 /* Cancel any timeout concerning the removed instance(s). */ 491 if (!instance || hdev->cur_adv_instance == instance) 492 cancel_adv_timeout(hdev); 493 494 /* Get the next instance to advertise BEFORE we remove 495 * the current one. This can be the same instance again 496 * if there is only one instance. 497 */ 498 if (instance && hdev->cur_adv_instance == instance) 499 next_instance = hci_get_next_instance(hdev, instance); 500 501 if (instance == 0x00) { 502 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, 503 list) { 504 if (!(force || adv_instance->timeout)) 505 continue; 506 507 rem_inst = adv_instance->instance; 508 err = hci_remove_adv_instance(hdev, rem_inst); 509 if (!err) 510 mgmt_advertising_removed(sk, hdev, rem_inst); 511 } 512 } else { 513 adv_instance = hci_find_adv_instance(hdev, instance); 514 515 if (force || (adv_instance && adv_instance->timeout && 516 !adv_instance->remaining_time)) { 517 /* Don't advertise a removed instance. */ 518 if (next_instance && 519 next_instance->instance == instance) 520 next_instance = NULL; 521 522 err = hci_remove_adv_instance(hdev, instance); 523 if (!err) 524 mgmt_advertising_removed(sk, hdev, instance); 525 } 526 } 527 528 if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING)) 529 return 0; 530 531 if (next_instance && !ext_adv_capable(hdev)) 532 return hci_schedule_adv_instance_sync(hdev, 533 next_instance->instance, 534 false); 535 536 return 0; 537 } 538 539 static int adv_timeout_expire_sync(struct hci_dev *hdev, void *data) 540 { 541 u8 instance = *(u8 *)data; 542 543 kfree(data); 544 545 hci_clear_adv_instance_sync(hdev, NULL, instance, false); 546 547 if (list_empty(&hdev->adv_instances)) 548 return hci_disable_advertising_sync(hdev); 549 550 return 0; 551 } 552 553 static void adv_timeout_expire(struct work_struct *work) 554 { 555 u8 *inst_ptr; 556 struct hci_dev *hdev = container_of(work, struct hci_dev, 557 adv_instance_expire.work); 558 559 bt_dev_dbg(hdev, ""); 560 561 hci_dev_lock(hdev); 562 563 hdev->adv_instance_timeout = 0; 564 565 if (hdev->cur_adv_instance == 0x00) 566 goto unlock; 567 568 inst_ptr = kmalloc(1, GFP_KERNEL); 569 if (!inst_ptr) 570 goto unlock; 571 572 *inst_ptr = hdev->cur_adv_instance; 573 hci_cmd_sync_queue(hdev, adv_timeout_expire_sync, inst_ptr, NULL); 574 575 unlock: 576 hci_dev_unlock(hdev); 577 } 578 579 static bool is_interleave_scanning(struct hci_dev *hdev) 580 { 581 return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE; 582 } 583 584 static int hci_passive_scan_sync(struct hci_dev *hdev); 585 586 static void interleave_scan_work(struct work_struct *work) 587 { 588 struct hci_dev *hdev = container_of(work, struct hci_dev, 589 interleave_scan.work); 590 unsigned long timeout; 591 592 if (hdev->interleave_scan_state == INTERLEAVE_SCAN_ALLOWLIST) { 593 timeout = msecs_to_jiffies(hdev->advmon_allowlist_duration); 594 } else if (hdev->interleave_scan_state == INTERLEAVE_SCAN_NO_FILTER) { 595 timeout = msecs_to_jiffies(hdev->advmon_no_filter_duration); 596 } else { 597 bt_dev_err(hdev, "unexpected error"); 598 return; 599 } 600 601 hci_passive_scan_sync(hdev); 602 603 hci_dev_lock(hdev); 604 605 switch (hdev->interleave_scan_state) { 606 case INTERLEAVE_SCAN_ALLOWLIST: 607 bt_dev_dbg(hdev, "next state: allowlist"); 608 hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER; 609 break; 610 case INTERLEAVE_SCAN_NO_FILTER: 611 bt_dev_dbg(hdev, "next state: no filter"); 612 hdev->interleave_scan_state = INTERLEAVE_SCAN_ALLOWLIST; 613 break; 614 case INTERLEAVE_SCAN_NONE: 615 bt_dev_err(hdev, "unexpected error"); 616 } 617 618 hci_dev_unlock(hdev); 619 620 /* Don't continue interleaving if it was canceled */ 621 if (is_interleave_scanning(hdev)) 622 queue_delayed_work(hdev->req_workqueue, 623 &hdev->interleave_scan, timeout); 624 } 625 626 void hci_cmd_sync_init(struct hci_dev *hdev) 627 { 628 INIT_WORK(&hdev->cmd_sync_work, hci_cmd_sync_work); 629 INIT_LIST_HEAD(&hdev->cmd_sync_work_list); 630 mutex_init(&hdev->cmd_sync_work_lock); 631 mutex_init(&hdev->unregister_lock); 632 633 INIT_WORK(&hdev->cmd_sync_cancel_work, hci_cmd_sync_cancel_work); 634 INIT_WORK(&hdev->reenable_adv_work, reenable_adv); 635 INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable); 636 INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire); 637 INIT_DELAYED_WORK(&hdev->interleave_scan, interleave_scan_work); 638 } 639 640 static void _hci_cmd_sync_cancel_entry(struct hci_dev *hdev, 641 struct hci_cmd_sync_work_entry *entry, 642 int err) 643 { 644 if (entry->destroy) 645 entry->destroy(hdev, entry->data, err); 646 647 list_del(&entry->list); 648 kfree(entry); 649 } 650 651 void hci_cmd_sync_clear(struct hci_dev *hdev) 652 { 653 struct hci_cmd_sync_work_entry *entry, *tmp; 654 655 cancel_work_sync(&hdev->cmd_sync_work); 656 cancel_work_sync(&hdev->reenable_adv_work); 657 658 mutex_lock(&hdev->cmd_sync_work_lock); 659 list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) 660 _hci_cmd_sync_cancel_entry(hdev, entry, -ECANCELED); 661 mutex_unlock(&hdev->cmd_sync_work_lock); 662 } 663 664 void hci_cmd_sync_cancel(struct hci_dev *hdev, int err) 665 { 666 bt_dev_dbg(hdev, "err 0x%2.2x", err); 667 668 if (hdev->req_status == HCI_REQ_PEND) { 669 hdev->req_result = err; 670 hdev->req_status = HCI_REQ_CANCELED; 671 672 queue_work(hdev->workqueue, &hdev->cmd_sync_cancel_work); 673 } 674 } 675 EXPORT_SYMBOL(hci_cmd_sync_cancel); 676 677 /* Cancel ongoing command request synchronously: 678 * 679 * - Set result and mark status to HCI_REQ_CANCELED 680 * - Wakeup command sync thread 681 */ 682 void hci_cmd_sync_cancel_sync(struct hci_dev *hdev, int err) 683 { 684 bt_dev_dbg(hdev, "err 0x%2.2x", err); 685 686 if (hdev->req_status == HCI_REQ_PEND) { 687 /* req_result is __u32 so error must be positive to be properly 688 * propagated. 689 */ 690 hdev->req_result = err < 0 ? -err : err; 691 hdev->req_status = HCI_REQ_CANCELED; 692 693 wake_up_interruptible(&hdev->req_wait_q); 694 } 695 } 696 EXPORT_SYMBOL(hci_cmd_sync_cancel_sync); 697 698 /* Submit HCI command to be run in as cmd_sync_work: 699 * 700 * - hdev must _not_ be unregistered 701 */ 702 int hci_cmd_sync_submit(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 703 void *data, hci_cmd_sync_work_destroy_t destroy) 704 { 705 struct hci_cmd_sync_work_entry *entry; 706 int err = 0; 707 708 mutex_lock(&hdev->unregister_lock); 709 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 710 err = -ENODEV; 711 goto unlock; 712 } 713 714 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 715 if (!entry) { 716 err = -ENOMEM; 717 goto unlock; 718 } 719 entry->func = func; 720 entry->data = data; 721 entry->destroy = destroy; 722 723 mutex_lock(&hdev->cmd_sync_work_lock); 724 list_add_tail(&entry->list, &hdev->cmd_sync_work_list); 725 mutex_unlock(&hdev->cmd_sync_work_lock); 726 727 queue_work(hdev->req_workqueue, &hdev->cmd_sync_work); 728 729 unlock: 730 mutex_unlock(&hdev->unregister_lock); 731 return err; 732 } 733 EXPORT_SYMBOL(hci_cmd_sync_submit); 734 735 /* Queue HCI command: 736 * 737 * - hdev must be running 738 */ 739 int hci_cmd_sync_queue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 740 void *data, hci_cmd_sync_work_destroy_t destroy) 741 { 742 /* Only queue command if hdev is running which means it had been opened 743 * and is either on init phase or is already up. 744 */ 745 if (!test_bit(HCI_RUNNING, &hdev->flags)) 746 return -ENETDOWN; 747 748 return hci_cmd_sync_submit(hdev, func, data, destroy); 749 } 750 EXPORT_SYMBOL(hci_cmd_sync_queue); 751 752 static struct hci_cmd_sync_work_entry * 753 _hci_cmd_sync_lookup_entry(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 754 void *data, hci_cmd_sync_work_destroy_t destroy) 755 { 756 struct hci_cmd_sync_work_entry *entry, *tmp; 757 758 list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) { 759 if (func && entry->func != func) 760 continue; 761 762 if (data && entry->data != data) 763 continue; 764 765 if (destroy && entry->destroy != destroy) 766 continue; 767 768 return entry; 769 } 770 771 return NULL; 772 } 773 774 /* Queue HCI command entry once: 775 * 776 * - Lookup if an entry already exist and only if it doesn't creates a new entry 777 * and queue it. 778 */ 779 int hci_cmd_sync_queue_once(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 780 void *data, hci_cmd_sync_work_destroy_t destroy) 781 { 782 if (hci_cmd_sync_lookup_entry(hdev, func, data, destroy)) 783 return 0; 784 785 return hci_cmd_sync_queue(hdev, func, data, destroy); 786 } 787 EXPORT_SYMBOL(hci_cmd_sync_queue_once); 788 789 /* Run HCI command: 790 * 791 * - hdev must be running 792 * - if on cmd_sync_work then run immediately otherwise queue 793 */ 794 int hci_cmd_sync_run(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 795 void *data, hci_cmd_sync_work_destroy_t destroy) 796 { 797 /* Only queue command if hdev is running which means it had been opened 798 * and is either on init phase or is already up. 799 */ 800 if (!test_bit(HCI_RUNNING, &hdev->flags)) 801 return -ENETDOWN; 802 803 /* If on cmd_sync_work then run immediately otherwise queue */ 804 if (current_work() == &hdev->cmd_sync_work) 805 return func(hdev, data); 806 807 return hci_cmd_sync_submit(hdev, func, data, destroy); 808 } 809 EXPORT_SYMBOL(hci_cmd_sync_run); 810 811 /* Run HCI command entry once: 812 * 813 * - Lookup if an entry already exist and only if it doesn't creates a new entry 814 * and run it. 815 * - if on cmd_sync_work then run immediately otherwise queue 816 */ 817 int hci_cmd_sync_run_once(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 818 void *data, hci_cmd_sync_work_destroy_t destroy) 819 { 820 if (hci_cmd_sync_lookup_entry(hdev, func, data, destroy)) 821 return 0; 822 823 return hci_cmd_sync_run(hdev, func, data, destroy); 824 } 825 EXPORT_SYMBOL(hci_cmd_sync_run_once); 826 827 /* Lookup HCI command entry: 828 * 829 * - Return first entry that matches by function callback or data or 830 * destroy callback. 831 */ 832 struct hci_cmd_sync_work_entry * 833 hci_cmd_sync_lookup_entry(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 834 void *data, hci_cmd_sync_work_destroy_t destroy) 835 { 836 struct hci_cmd_sync_work_entry *entry; 837 838 mutex_lock(&hdev->cmd_sync_work_lock); 839 entry = _hci_cmd_sync_lookup_entry(hdev, func, data, destroy); 840 mutex_unlock(&hdev->cmd_sync_work_lock); 841 842 return entry; 843 } 844 EXPORT_SYMBOL(hci_cmd_sync_lookup_entry); 845 846 /* Cancel HCI command entry */ 847 void hci_cmd_sync_cancel_entry(struct hci_dev *hdev, 848 struct hci_cmd_sync_work_entry *entry) 849 { 850 mutex_lock(&hdev->cmd_sync_work_lock); 851 _hci_cmd_sync_cancel_entry(hdev, entry, -ECANCELED); 852 mutex_unlock(&hdev->cmd_sync_work_lock); 853 } 854 EXPORT_SYMBOL(hci_cmd_sync_cancel_entry); 855 856 /* Dequeue one HCI command entry: 857 * 858 * - Lookup and cancel first entry that matches. 859 */ 860 bool hci_cmd_sync_dequeue_once(struct hci_dev *hdev, 861 hci_cmd_sync_work_func_t func, 862 void *data, hci_cmd_sync_work_destroy_t destroy) 863 { 864 struct hci_cmd_sync_work_entry *entry; 865 866 entry = hci_cmd_sync_lookup_entry(hdev, func, data, destroy); 867 if (!entry) 868 return false; 869 870 hci_cmd_sync_cancel_entry(hdev, entry); 871 872 return true; 873 } 874 EXPORT_SYMBOL(hci_cmd_sync_dequeue_once); 875 876 /* Dequeue HCI command entry: 877 * 878 * - Lookup and cancel any entry that matches by function callback or data or 879 * destroy callback. 880 */ 881 bool hci_cmd_sync_dequeue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 882 void *data, hci_cmd_sync_work_destroy_t destroy) 883 { 884 struct hci_cmd_sync_work_entry *entry; 885 bool ret = false; 886 887 mutex_lock(&hdev->cmd_sync_work_lock); 888 while ((entry = _hci_cmd_sync_lookup_entry(hdev, func, data, 889 destroy))) { 890 _hci_cmd_sync_cancel_entry(hdev, entry, -ECANCELED); 891 ret = true; 892 } 893 mutex_unlock(&hdev->cmd_sync_work_lock); 894 895 return ret; 896 } 897 EXPORT_SYMBOL(hci_cmd_sync_dequeue); 898 899 int hci_update_eir_sync(struct hci_dev *hdev) 900 { 901 struct hci_cp_write_eir cp; 902 903 bt_dev_dbg(hdev, ""); 904 905 if (!hdev_is_powered(hdev)) 906 return 0; 907 908 if (!lmp_ext_inq_capable(hdev)) 909 return 0; 910 911 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 912 return 0; 913 914 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 915 return 0; 916 917 memset(&cp, 0, sizeof(cp)); 918 919 eir_create(hdev, cp.data); 920 921 if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0) 922 return 0; 923 924 memcpy(hdev->eir, cp.data, sizeof(cp.data)); 925 926 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp, 927 HCI_CMD_TIMEOUT); 928 } 929 930 static u8 get_service_classes(struct hci_dev *hdev) 931 { 932 struct bt_uuid *uuid; 933 u8 val = 0; 934 935 list_for_each_entry(uuid, &hdev->uuids, list) 936 val |= uuid->svc_hint; 937 938 return val; 939 } 940 941 int hci_update_class_sync(struct hci_dev *hdev) 942 { 943 u8 cod[3]; 944 945 bt_dev_dbg(hdev, ""); 946 947 if (!hdev_is_powered(hdev)) 948 return 0; 949 950 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 951 return 0; 952 953 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 954 return 0; 955 956 cod[0] = hdev->minor_class; 957 cod[1] = hdev->major_class; 958 cod[2] = get_service_classes(hdev); 959 960 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) 961 cod[1] |= 0x20; 962 963 if (memcmp(cod, hdev->dev_class, 3) == 0) 964 return 0; 965 966 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CLASS_OF_DEV, 967 sizeof(cod), cod, HCI_CMD_TIMEOUT); 968 } 969 970 static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable) 971 { 972 /* If there is no connection we are OK to advertise. */ 973 if (hci_conn_num(hdev, LE_LINK) == 0) 974 return true; 975 976 /* Check le_states if there is any connection in peripheral role. */ 977 if (hdev->conn_hash.le_num_peripheral > 0) { 978 /* Peripheral connection state and non connectable mode 979 * bit 20. 980 */ 981 if (!connectable && !(hdev->le_states[2] & 0x10)) 982 return false; 983 984 /* Peripheral connection state and connectable mode bit 38 985 * and scannable bit 21. 986 */ 987 if (connectable && (!(hdev->le_states[4] & 0x40) || 988 !(hdev->le_states[2] & 0x20))) 989 return false; 990 } 991 992 /* Check le_states if there is any connection in central role. */ 993 if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) { 994 /* Central connection state and non connectable mode bit 18. */ 995 if (!connectable && !(hdev->le_states[2] & 0x02)) 996 return false; 997 998 /* Central connection state and connectable mode bit 35 and 999 * scannable 19. 1000 */ 1001 if (connectable && (!(hdev->le_states[4] & 0x08) || 1002 !(hdev->le_states[2] & 0x08))) 1003 return false; 1004 } 1005 1006 return true; 1007 } 1008 1009 static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags) 1010 { 1011 /* If privacy is not enabled don't use RPA */ 1012 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 1013 return false; 1014 1015 /* If basic privacy mode is enabled use RPA */ 1016 if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) 1017 return true; 1018 1019 /* If limited privacy mode is enabled don't use RPA if we're 1020 * both discoverable and bondable. 1021 */ 1022 if ((flags & MGMT_ADV_FLAG_DISCOV) && 1023 hci_dev_test_flag(hdev, HCI_BONDABLE)) 1024 return false; 1025 1026 /* We're neither bondable nor discoverable in the limited 1027 * privacy mode, therefore use RPA. 1028 */ 1029 return true; 1030 } 1031 1032 static int hci_set_random_addr_sync(struct hci_dev *hdev, bdaddr_t *rpa) 1033 { 1034 /* If we're advertising or initiating an LE connection we can't 1035 * go ahead and change the random address at this time. This is 1036 * because the eventual initiator address used for the 1037 * subsequently created connection will be undefined (some 1038 * controllers use the new address and others the one we had 1039 * when the operation started). 1040 * 1041 * In this kind of scenario skip the update and let the random 1042 * address be updated at the next cycle. 1043 */ 1044 if (hci_dev_test_flag(hdev, HCI_LE_ADV) || 1045 hci_lookup_le_connect(hdev)) { 1046 bt_dev_dbg(hdev, "Deferring random address update"); 1047 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 1048 return 0; 1049 } 1050 1051 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RANDOM_ADDR, 1052 6, rpa, HCI_CMD_TIMEOUT); 1053 } 1054 1055 int hci_update_random_address_sync(struct hci_dev *hdev, bool require_privacy, 1056 bool rpa, u8 *own_addr_type) 1057 { 1058 int err; 1059 1060 /* If privacy is enabled use a resolvable private address. If 1061 * current RPA has expired or there is something else than 1062 * the current RPA in use, then generate a new one. 1063 */ 1064 if (rpa) { 1065 /* If Controller supports LL Privacy use own address type is 1066 * 0x03 1067 */ 1068 if (use_ll_privacy(hdev)) 1069 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED; 1070 else 1071 *own_addr_type = ADDR_LE_DEV_RANDOM; 1072 1073 /* Check if RPA is valid */ 1074 if (rpa_valid(hdev)) 1075 return 0; 1076 1077 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); 1078 if (err < 0) { 1079 bt_dev_err(hdev, "failed to generate new RPA"); 1080 return err; 1081 } 1082 1083 err = hci_set_random_addr_sync(hdev, &hdev->rpa); 1084 if (err) 1085 return err; 1086 1087 return 0; 1088 } 1089 1090 /* In case of required privacy without resolvable private address, 1091 * use an non-resolvable private address. This is useful for active 1092 * scanning and non-connectable advertising. 1093 */ 1094 if (require_privacy) { 1095 bdaddr_t nrpa; 1096 1097 while (true) { 1098 /* The non-resolvable private address is generated 1099 * from random six bytes with the two most significant 1100 * bits cleared. 1101 */ 1102 get_random_bytes(&nrpa, 6); 1103 nrpa.b[5] &= 0x3f; 1104 1105 /* The non-resolvable private address shall not be 1106 * equal to the public address. 1107 */ 1108 if (bacmp(&hdev->bdaddr, &nrpa)) 1109 break; 1110 } 1111 1112 *own_addr_type = ADDR_LE_DEV_RANDOM; 1113 1114 return hci_set_random_addr_sync(hdev, &nrpa); 1115 } 1116 1117 /* If forcing static address is in use or there is no public 1118 * address use the static address as random address (but skip 1119 * the HCI command if the current random address is already the 1120 * static one. 1121 * 1122 * In case BR/EDR has been disabled on a dual-mode controller 1123 * and a static address has been configured, then use that 1124 * address instead of the public BR/EDR address. 1125 */ 1126 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 1127 !bacmp(&hdev->bdaddr, BDADDR_ANY) || 1128 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && 1129 bacmp(&hdev->static_addr, BDADDR_ANY))) { 1130 *own_addr_type = ADDR_LE_DEV_RANDOM; 1131 if (bacmp(&hdev->static_addr, &hdev->random_addr)) 1132 return hci_set_random_addr_sync(hdev, 1133 &hdev->static_addr); 1134 return 0; 1135 } 1136 1137 /* Neither privacy nor static address is being used so use a 1138 * public address. 1139 */ 1140 *own_addr_type = ADDR_LE_DEV_PUBLIC; 1141 1142 return 0; 1143 } 1144 1145 static int hci_disable_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance) 1146 { 1147 struct hci_cp_le_set_ext_adv_enable *cp; 1148 struct hci_cp_ext_adv_set *set; 1149 u8 data[sizeof(*cp) + sizeof(*set) * 1]; 1150 u8 size; 1151 struct adv_info *adv = NULL; 1152 1153 /* If request specifies an instance that doesn't exist, fail */ 1154 if (instance > 0) { 1155 adv = hci_find_adv_instance(hdev, instance); 1156 if (!adv) 1157 return -EINVAL; 1158 1159 /* If not enabled there is nothing to do */ 1160 if (!adv->enabled) 1161 return 0; 1162 } 1163 1164 memset(data, 0, sizeof(data)); 1165 1166 cp = (void *)data; 1167 set = (void *)cp->data; 1168 1169 /* Instance 0x00 indicates all advertising instances will be disabled */ 1170 cp->num_of_sets = !!instance; 1171 cp->enable = 0x00; 1172 1173 set->handle = adv ? adv->handle : instance; 1174 1175 size = sizeof(*cp) + sizeof(*set) * cp->num_of_sets; 1176 1177 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, 1178 size, data, HCI_CMD_TIMEOUT); 1179 } 1180 1181 static int hci_set_adv_set_random_addr_sync(struct hci_dev *hdev, u8 instance, 1182 bdaddr_t *random_addr) 1183 { 1184 struct hci_cp_le_set_adv_set_rand_addr cp; 1185 int err; 1186 1187 if (!instance) { 1188 /* Instance 0x00 doesn't have an adv_info, instead it uses 1189 * hdev->random_addr to track its address so whenever it needs 1190 * to be updated this also set the random address since 1191 * hdev->random_addr is shared with scan state machine. 1192 */ 1193 err = hci_set_random_addr_sync(hdev, random_addr); 1194 if (err) 1195 return err; 1196 } 1197 1198 memset(&cp, 0, sizeof(cp)); 1199 1200 cp.handle = instance; 1201 bacpy(&cp.bdaddr, random_addr); 1202 1203 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_SET_RAND_ADDR, 1204 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1205 } 1206 1207 int hci_setup_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance) 1208 { 1209 struct hci_cp_le_set_ext_adv_params cp; 1210 bool connectable; 1211 u32 flags; 1212 bdaddr_t random_addr; 1213 u8 own_addr_type; 1214 int err; 1215 struct adv_info *adv; 1216 bool secondary_adv; 1217 1218 if (instance > 0) { 1219 adv = hci_find_adv_instance(hdev, instance); 1220 if (!adv) 1221 return -EINVAL; 1222 } else { 1223 adv = NULL; 1224 } 1225 1226 /* Updating parameters of an active instance will return a 1227 * Command Disallowed error, so we must first disable the 1228 * instance if it is active. 1229 */ 1230 if (adv && !adv->pending) { 1231 err = hci_disable_ext_adv_instance_sync(hdev, instance); 1232 if (err) 1233 return err; 1234 } 1235 1236 flags = hci_adv_instance_flags(hdev, instance); 1237 1238 /* If the "connectable" instance flag was not set, then choose between 1239 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. 1240 */ 1241 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || 1242 mgmt_get_connectable(hdev); 1243 1244 if (!is_advertising_allowed(hdev, connectable)) 1245 return -EPERM; 1246 1247 /* Set require_privacy to true only when non-connectable 1248 * advertising is used. In that case it is fine to use a 1249 * non-resolvable private address. 1250 */ 1251 err = hci_get_random_address(hdev, !connectable, 1252 adv_use_rpa(hdev, flags), adv, 1253 &own_addr_type, &random_addr); 1254 if (err < 0) 1255 return err; 1256 1257 memset(&cp, 0, sizeof(cp)); 1258 1259 if (adv) { 1260 hci_cpu_to_le24(adv->min_interval, cp.min_interval); 1261 hci_cpu_to_le24(adv->max_interval, cp.max_interval); 1262 cp.tx_power = adv->tx_power; 1263 } else { 1264 hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval); 1265 hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval); 1266 cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE; 1267 } 1268 1269 secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK); 1270 1271 if (connectable) { 1272 if (secondary_adv) 1273 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND); 1274 else 1275 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND); 1276 } else if (hci_adv_instance_is_scannable(hdev, instance) || 1277 (flags & MGMT_ADV_PARAM_SCAN_RSP)) { 1278 if (secondary_adv) 1279 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND); 1280 else 1281 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND); 1282 } else { 1283 if (secondary_adv) 1284 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND); 1285 else 1286 cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND); 1287 } 1288 1289 /* If Own_Address_Type equals 0x02 or 0x03, the Peer_Address parameter 1290 * contains the peer’s Identity Address and the Peer_Address_Type 1291 * parameter contains the peer’s Identity Type (i.e., 0x00 or 0x01). 1292 * These parameters are used to locate the corresponding local IRK in 1293 * the resolving list; this IRK is used to generate their own address 1294 * used in the advertisement. 1295 */ 1296 if (own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) 1297 hci_copy_identity_address(hdev, &cp.peer_addr, 1298 &cp.peer_addr_type); 1299 1300 cp.own_addr_type = own_addr_type; 1301 cp.channel_map = hdev->le_adv_channel_map; 1302 cp.handle = adv ? adv->handle : instance; 1303 1304 if (flags & MGMT_ADV_FLAG_SEC_2M) { 1305 cp.primary_phy = HCI_ADV_PHY_1M; 1306 cp.secondary_phy = HCI_ADV_PHY_2M; 1307 } else if (flags & MGMT_ADV_FLAG_SEC_CODED) { 1308 cp.primary_phy = HCI_ADV_PHY_CODED; 1309 cp.secondary_phy = HCI_ADV_PHY_CODED; 1310 } else { 1311 /* In all other cases use 1M */ 1312 cp.primary_phy = HCI_ADV_PHY_1M; 1313 cp.secondary_phy = HCI_ADV_PHY_1M; 1314 } 1315 1316 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS, 1317 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1318 if (err) 1319 return err; 1320 1321 if ((own_addr_type == ADDR_LE_DEV_RANDOM || 1322 own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) && 1323 bacmp(&random_addr, BDADDR_ANY)) { 1324 /* Check if random address need to be updated */ 1325 if (adv) { 1326 if (!bacmp(&random_addr, &adv->random_addr)) 1327 return 0; 1328 } else { 1329 if (!bacmp(&random_addr, &hdev->random_addr)) 1330 return 0; 1331 } 1332 1333 return hci_set_adv_set_random_addr_sync(hdev, instance, 1334 &random_addr); 1335 } 1336 1337 return 0; 1338 } 1339 1340 static int hci_set_ext_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 1341 { 1342 DEFINE_FLEX(struct hci_cp_le_set_ext_scan_rsp_data, pdu, data, length, 1343 HCI_MAX_EXT_AD_LENGTH); 1344 u8 len; 1345 struct adv_info *adv = NULL; 1346 int err; 1347 1348 if (instance) { 1349 adv = hci_find_adv_instance(hdev, instance); 1350 if (!adv || !adv->scan_rsp_changed) 1351 return 0; 1352 } 1353 1354 len = eir_create_scan_rsp(hdev, instance, pdu->data); 1355 1356 pdu->handle = adv ? adv->handle : instance; 1357 pdu->length = len; 1358 pdu->operation = LE_SET_ADV_DATA_OP_COMPLETE; 1359 pdu->frag_pref = LE_SET_ADV_DATA_NO_FRAG; 1360 1361 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA, 1362 struct_size(pdu, data, len), pdu, 1363 HCI_CMD_TIMEOUT); 1364 if (err) 1365 return err; 1366 1367 if (adv) { 1368 adv->scan_rsp_changed = false; 1369 } else { 1370 memcpy(hdev->scan_rsp_data, pdu->data, len); 1371 hdev->scan_rsp_data_len = len; 1372 } 1373 1374 return 0; 1375 } 1376 1377 static int __hci_set_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 1378 { 1379 struct hci_cp_le_set_scan_rsp_data cp; 1380 u8 len; 1381 1382 memset(&cp, 0, sizeof(cp)); 1383 1384 len = eir_create_scan_rsp(hdev, instance, cp.data); 1385 1386 if (hdev->scan_rsp_data_len == len && 1387 !memcmp(cp.data, hdev->scan_rsp_data, len)) 1388 return 0; 1389 1390 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data)); 1391 hdev->scan_rsp_data_len = len; 1392 1393 cp.length = len; 1394 1395 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_RSP_DATA, 1396 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1397 } 1398 1399 int hci_update_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 1400 { 1401 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1402 return 0; 1403 1404 if (ext_adv_capable(hdev)) 1405 return hci_set_ext_scan_rsp_data_sync(hdev, instance); 1406 1407 return __hci_set_scan_rsp_data_sync(hdev, instance); 1408 } 1409 1410 int hci_enable_ext_advertising_sync(struct hci_dev *hdev, u8 instance) 1411 { 1412 struct hci_cp_le_set_ext_adv_enable *cp; 1413 struct hci_cp_ext_adv_set *set; 1414 u8 data[sizeof(*cp) + sizeof(*set) * 1]; 1415 struct adv_info *adv; 1416 1417 if (instance > 0) { 1418 adv = hci_find_adv_instance(hdev, instance); 1419 if (!adv) 1420 return -EINVAL; 1421 /* If already enabled there is nothing to do */ 1422 if (adv->enabled) 1423 return 0; 1424 } else { 1425 adv = NULL; 1426 } 1427 1428 cp = (void *)data; 1429 set = (void *)cp->data; 1430 1431 memset(cp, 0, sizeof(*cp)); 1432 1433 cp->enable = 0x01; 1434 cp->num_of_sets = 0x01; 1435 1436 memset(set, 0, sizeof(*set)); 1437 1438 set->handle = adv ? adv->handle : instance; 1439 1440 /* Set duration per instance since controller is responsible for 1441 * scheduling it. 1442 */ 1443 if (adv && adv->timeout) { 1444 u16 duration = adv->timeout * MSEC_PER_SEC; 1445 1446 /* Time = N * 10 ms */ 1447 set->duration = cpu_to_le16(duration / 10); 1448 } 1449 1450 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, 1451 sizeof(*cp) + 1452 sizeof(*set) * cp->num_of_sets, 1453 data, HCI_CMD_TIMEOUT); 1454 } 1455 1456 int hci_start_ext_adv_sync(struct hci_dev *hdev, u8 instance) 1457 { 1458 int err; 1459 1460 err = hci_setup_ext_adv_instance_sync(hdev, instance); 1461 if (err) 1462 return err; 1463 1464 err = hci_set_ext_scan_rsp_data_sync(hdev, instance); 1465 if (err) 1466 return err; 1467 1468 return hci_enable_ext_advertising_sync(hdev, instance); 1469 } 1470 1471 int hci_disable_per_advertising_sync(struct hci_dev *hdev, u8 instance) 1472 { 1473 struct hci_cp_le_set_per_adv_enable cp; 1474 struct adv_info *adv = NULL; 1475 1476 /* If periodic advertising already disabled there is nothing to do. */ 1477 adv = hci_find_adv_instance(hdev, instance); 1478 if (!adv || !adv->periodic || !adv->enabled) 1479 return 0; 1480 1481 memset(&cp, 0, sizeof(cp)); 1482 1483 cp.enable = 0x00; 1484 cp.handle = instance; 1485 1486 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE, 1487 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1488 } 1489 1490 static int hci_set_per_adv_params_sync(struct hci_dev *hdev, u8 instance, 1491 u16 min_interval, u16 max_interval) 1492 { 1493 struct hci_cp_le_set_per_adv_params cp; 1494 1495 memset(&cp, 0, sizeof(cp)); 1496 1497 if (!min_interval) 1498 min_interval = DISCOV_LE_PER_ADV_INT_MIN; 1499 1500 if (!max_interval) 1501 max_interval = DISCOV_LE_PER_ADV_INT_MAX; 1502 1503 cp.handle = instance; 1504 cp.min_interval = cpu_to_le16(min_interval); 1505 cp.max_interval = cpu_to_le16(max_interval); 1506 cp.periodic_properties = 0x0000; 1507 1508 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_PARAMS, 1509 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1510 } 1511 1512 static int hci_set_per_adv_data_sync(struct hci_dev *hdev, u8 instance) 1513 { 1514 DEFINE_FLEX(struct hci_cp_le_set_per_adv_data, pdu, data, length, 1515 HCI_MAX_PER_AD_LENGTH); 1516 u8 len; 1517 struct adv_info *adv = NULL; 1518 1519 if (instance) { 1520 adv = hci_find_adv_instance(hdev, instance); 1521 if (!adv || !adv->periodic) 1522 return 0; 1523 } 1524 1525 len = eir_create_per_adv_data(hdev, instance, pdu->data); 1526 1527 pdu->length = len; 1528 pdu->handle = adv ? adv->handle : instance; 1529 pdu->operation = LE_SET_ADV_DATA_OP_COMPLETE; 1530 1531 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_DATA, 1532 struct_size(pdu, data, len), pdu, 1533 HCI_CMD_TIMEOUT); 1534 } 1535 1536 static int hci_enable_per_advertising_sync(struct hci_dev *hdev, u8 instance) 1537 { 1538 struct hci_cp_le_set_per_adv_enable cp; 1539 struct adv_info *adv = NULL; 1540 1541 /* If periodic advertising already enabled there is nothing to do. */ 1542 adv = hci_find_adv_instance(hdev, instance); 1543 if (adv && adv->periodic && adv->enabled) 1544 return 0; 1545 1546 memset(&cp, 0, sizeof(cp)); 1547 1548 cp.enable = 0x01; 1549 cp.handle = instance; 1550 1551 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE, 1552 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1553 } 1554 1555 /* Checks if periodic advertising data contains a Basic Announcement and if it 1556 * does generates a Broadcast ID and add Broadcast Announcement. 1557 */ 1558 static int hci_adv_bcast_annoucement(struct hci_dev *hdev, struct adv_info *adv) 1559 { 1560 u8 bid[3]; 1561 u8 ad[4 + 3]; 1562 1563 /* Skip if NULL adv as instance 0x00 is used for general purpose 1564 * advertising so it cannot used for the likes of Broadcast Announcement 1565 * as it can be overwritten at any point. 1566 */ 1567 if (!adv) 1568 return 0; 1569 1570 /* Check if PA data doesn't contains a Basic Audio Announcement then 1571 * there is nothing to do. 1572 */ 1573 if (!eir_get_service_data(adv->per_adv_data, adv->per_adv_data_len, 1574 0x1851, NULL)) 1575 return 0; 1576 1577 /* Check if advertising data already has a Broadcast Announcement since 1578 * the process may want to control the Broadcast ID directly and in that 1579 * case the kernel shall no interfere. 1580 */ 1581 if (eir_get_service_data(adv->adv_data, adv->adv_data_len, 0x1852, 1582 NULL)) 1583 return 0; 1584 1585 /* Generate Broadcast ID */ 1586 get_random_bytes(bid, sizeof(bid)); 1587 eir_append_service_data(ad, 0, 0x1852, bid, sizeof(bid)); 1588 hci_set_adv_instance_data(hdev, adv->instance, sizeof(ad), ad, 0, NULL); 1589 1590 return hci_update_adv_data_sync(hdev, adv->instance); 1591 } 1592 1593 int hci_start_per_adv_sync(struct hci_dev *hdev, u8 instance, u8 data_len, 1594 u8 *data, u32 flags, u16 min_interval, 1595 u16 max_interval, u16 sync_interval) 1596 { 1597 struct adv_info *adv = NULL; 1598 int err; 1599 bool added = false; 1600 1601 hci_disable_per_advertising_sync(hdev, instance); 1602 1603 if (instance) { 1604 adv = hci_find_adv_instance(hdev, instance); 1605 /* Create an instance if that could not be found */ 1606 if (!adv) { 1607 adv = hci_add_per_instance(hdev, instance, flags, 1608 data_len, data, 1609 sync_interval, 1610 sync_interval); 1611 if (IS_ERR(adv)) 1612 return PTR_ERR(adv); 1613 adv->pending = false; 1614 added = true; 1615 } 1616 } 1617 1618 /* Start advertising */ 1619 err = hci_start_ext_adv_sync(hdev, instance); 1620 if (err < 0) 1621 goto fail; 1622 1623 err = hci_adv_bcast_annoucement(hdev, adv); 1624 if (err < 0) 1625 goto fail; 1626 1627 err = hci_set_per_adv_params_sync(hdev, instance, min_interval, 1628 max_interval); 1629 if (err < 0) 1630 goto fail; 1631 1632 err = hci_set_per_adv_data_sync(hdev, instance); 1633 if (err < 0) 1634 goto fail; 1635 1636 err = hci_enable_per_advertising_sync(hdev, instance); 1637 if (err < 0) 1638 goto fail; 1639 1640 return 0; 1641 1642 fail: 1643 if (added) 1644 hci_remove_adv_instance(hdev, instance); 1645 1646 return err; 1647 } 1648 1649 static int hci_start_adv_sync(struct hci_dev *hdev, u8 instance) 1650 { 1651 int err; 1652 1653 if (ext_adv_capable(hdev)) 1654 return hci_start_ext_adv_sync(hdev, instance); 1655 1656 err = hci_update_adv_data_sync(hdev, instance); 1657 if (err) 1658 return err; 1659 1660 err = hci_update_scan_rsp_data_sync(hdev, instance); 1661 if (err) 1662 return err; 1663 1664 return hci_enable_advertising_sync(hdev); 1665 } 1666 1667 int hci_enable_advertising_sync(struct hci_dev *hdev) 1668 { 1669 struct adv_info *adv_instance; 1670 struct hci_cp_le_set_adv_param cp; 1671 u8 own_addr_type, enable = 0x01; 1672 bool connectable; 1673 u16 adv_min_interval, adv_max_interval; 1674 u32 flags; 1675 u8 status; 1676 1677 if (ext_adv_capable(hdev)) 1678 return hci_enable_ext_advertising_sync(hdev, 1679 hdev->cur_adv_instance); 1680 1681 flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance); 1682 adv_instance = hci_find_adv_instance(hdev, hdev->cur_adv_instance); 1683 1684 /* If the "connectable" instance flag was not set, then choose between 1685 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. 1686 */ 1687 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || 1688 mgmt_get_connectable(hdev); 1689 1690 if (!is_advertising_allowed(hdev, connectable)) 1691 return -EINVAL; 1692 1693 status = hci_disable_advertising_sync(hdev); 1694 if (status) 1695 return status; 1696 1697 /* Clear the HCI_LE_ADV bit temporarily so that the 1698 * hci_update_random_address knows that it's safe to go ahead 1699 * and write a new random address. The flag will be set back on 1700 * as soon as the SET_ADV_ENABLE HCI command completes. 1701 */ 1702 hci_dev_clear_flag(hdev, HCI_LE_ADV); 1703 1704 /* Set require_privacy to true only when non-connectable 1705 * advertising is used. In that case it is fine to use a 1706 * non-resolvable private address. 1707 */ 1708 status = hci_update_random_address_sync(hdev, !connectable, 1709 adv_use_rpa(hdev, flags), 1710 &own_addr_type); 1711 if (status) 1712 return status; 1713 1714 memset(&cp, 0, sizeof(cp)); 1715 1716 if (adv_instance) { 1717 adv_min_interval = adv_instance->min_interval; 1718 adv_max_interval = adv_instance->max_interval; 1719 } else { 1720 adv_min_interval = hdev->le_adv_min_interval; 1721 adv_max_interval = hdev->le_adv_max_interval; 1722 } 1723 1724 if (connectable) { 1725 cp.type = LE_ADV_IND; 1726 } else { 1727 if (hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance)) 1728 cp.type = LE_ADV_SCAN_IND; 1729 else 1730 cp.type = LE_ADV_NONCONN_IND; 1731 1732 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) || 1733 hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { 1734 adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN; 1735 adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX; 1736 } 1737 } 1738 1739 cp.min_interval = cpu_to_le16(adv_min_interval); 1740 cp.max_interval = cpu_to_le16(adv_max_interval); 1741 cp.own_address_type = own_addr_type; 1742 cp.channel_map = hdev->le_adv_channel_map; 1743 1744 status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM, 1745 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1746 if (status) 1747 return status; 1748 1749 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 1750 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 1751 } 1752 1753 static int enable_advertising_sync(struct hci_dev *hdev, void *data) 1754 { 1755 return hci_enable_advertising_sync(hdev); 1756 } 1757 1758 int hci_enable_advertising(struct hci_dev *hdev) 1759 { 1760 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) && 1761 list_empty(&hdev->adv_instances)) 1762 return 0; 1763 1764 return hci_cmd_sync_queue(hdev, enable_advertising_sync, NULL, NULL); 1765 } 1766 1767 int hci_remove_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance, 1768 struct sock *sk) 1769 { 1770 int err; 1771 1772 if (!ext_adv_capable(hdev)) 1773 return 0; 1774 1775 err = hci_disable_ext_adv_instance_sync(hdev, instance); 1776 if (err) 1777 return err; 1778 1779 /* If request specifies an instance that doesn't exist, fail */ 1780 if (instance > 0 && !hci_find_adv_instance(hdev, instance)) 1781 return -EINVAL; 1782 1783 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_REMOVE_ADV_SET, 1784 sizeof(instance), &instance, 0, 1785 HCI_CMD_TIMEOUT, sk); 1786 } 1787 1788 static int remove_ext_adv_sync(struct hci_dev *hdev, void *data) 1789 { 1790 struct adv_info *adv = data; 1791 u8 instance = 0; 1792 1793 if (adv) 1794 instance = adv->instance; 1795 1796 return hci_remove_ext_adv_instance_sync(hdev, instance, NULL); 1797 } 1798 1799 int hci_remove_ext_adv_instance(struct hci_dev *hdev, u8 instance) 1800 { 1801 struct adv_info *adv = NULL; 1802 1803 if (instance) { 1804 adv = hci_find_adv_instance(hdev, instance); 1805 if (!adv) 1806 return -EINVAL; 1807 } 1808 1809 return hci_cmd_sync_queue(hdev, remove_ext_adv_sync, adv, NULL); 1810 } 1811 1812 int hci_le_terminate_big_sync(struct hci_dev *hdev, u8 handle, u8 reason) 1813 { 1814 struct hci_cp_le_term_big cp; 1815 1816 memset(&cp, 0, sizeof(cp)); 1817 cp.handle = handle; 1818 cp.reason = reason; 1819 1820 return __hci_cmd_sync_status(hdev, HCI_OP_LE_TERM_BIG, 1821 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1822 } 1823 1824 static int hci_set_ext_adv_data_sync(struct hci_dev *hdev, u8 instance) 1825 { 1826 DEFINE_FLEX(struct hci_cp_le_set_ext_adv_data, pdu, data, length, 1827 HCI_MAX_EXT_AD_LENGTH); 1828 u8 len; 1829 struct adv_info *adv = NULL; 1830 int err; 1831 1832 if (instance) { 1833 adv = hci_find_adv_instance(hdev, instance); 1834 if (!adv || !adv->adv_data_changed) 1835 return 0; 1836 } 1837 1838 len = eir_create_adv_data(hdev, instance, pdu->data); 1839 1840 pdu->length = len; 1841 pdu->handle = adv ? adv->handle : instance; 1842 pdu->operation = LE_SET_ADV_DATA_OP_COMPLETE; 1843 pdu->frag_pref = LE_SET_ADV_DATA_NO_FRAG; 1844 1845 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_DATA, 1846 struct_size(pdu, data, len), pdu, 1847 HCI_CMD_TIMEOUT); 1848 if (err) 1849 return err; 1850 1851 /* Update data if the command succeed */ 1852 if (adv) { 1853 adv->adv_data_changed = false; 1854 } else { 1855 memcpy(hdev->adv_data, pdu->data, len); 1856 hdev->adv_data_len = len; 1857 } 1858 1859 return 0; 1860 } 1861 1862 static int hci_set_adv_data_sync(struct hci_dev *hdev, u8 instance) 1863 { 1864 struct hci_cp_le_set_adv_data cp; 1865 u8 len; 1866 1867 memset(&cp, 0, sizeof(cp)); 1868 1869 len = eir_create_adv_data(hdev, instance, cp.data); 1870 1871 /* There's nothing to do if the data hasn't changed */ 1872 if (hdev->adv_data_len == len && 1873 memcmp(cp.data, hdev->adv_data, len) == 0) 1874 return 0; 1875 1876 memcpy(hdev->adv_data, cp.data, sizeof(cp.data)); 1877 hdev->adv_data_len = len; 1878 1879 cp.length = len; 1880 1881 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_DATA, 1882 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1883 } 1884 1885 int hci_update_adv_data_sync(struct hci_dev *hdev, u8 instance) 1886 { 1887 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1888 return 0; 1889 1890 if (ext_adv_capable(hdev)) 1891 return hci_set_ext_adv_data_sync(hdev, instance); 1892 1893 return hci_set_adv_data_sync(hdev, instance); 1894 } 1895 1896 int hci_schedule_adv_instance_sync(struct hci_dev *hdev, u8 instance, 1897 bool force) 1898 { 1899 struct adv_info *adv = NULL; 1900 u16 timeout; 1901 1902 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) && !ext_adv_capable(hdev)) 1903 return -EPERM; 1904 1905 if (hdev->adv_instance_timeout) 1906 return -EBUSY; 1907 1908 adv = hci_find_adv_instance(hdev, instance); 1909 if (!adv) 1910 return -ENOENT; 1911 1912 /* A zero timeout means unlimited advertising. As long as there is 1913 * only one instance, duration should be ignored. We still set a timeout 1914 * in case further instances are being added later on. 1915 * 1916 * If the remaining lifetime of the instance is more than the duration 1917 * then the timeout corresponds to the duration, otherwise it will be 1918 * reduced to the remaining instance lifetime. 1919 */ 1920 if (adv->timeout == 0 || adv->duration <= adv->remaining_time) 1921 timeout = adv->duration; 1922 else 1923 timeout = adv->remaining_time; 1924 1925 /* The remaining time is being reduced unless the instance is being 1926 * advertised without time limit. 1927 */ 1928 if (adv->timeout) 1929 adv->remaining_time = adv->remaining_time - timeout; 1930 1931 /* Only use work for scheduling instances with legacy advertising */ 1932 if (!ext_adv_capable(hdev)) { 1933 hdev->adv_instance_timeout = timeout; 1934 queue_delayed_work(hdev->req_workqueue, 1935 &hdev->adv_instance_expire, 1936 msecs_to_jiffies(timeout * 1000)); 1937 } 1938 1939 /* If we're just re-scheduling the same instance again then do not 1940 * execute any HCI commands. This happens when a single instance is 1941 * being advertised. 1942 */ 1943 if (!force && hdev->cur_adv_instance == instance && 1944 hci_dev_test_flag(hdev, HCI_LE_ADV)) 1945 return 0; 1946 1947 hdev->cur_adv_instance = instance; 1948 1949 return hci_start_adv_sync(hdev, instance); 1950 } 1951 1952 static int hci_clear_adv_sets_sync(struct hci_dev *hdev, struct sock *sk) 1953 { 1954 int err; 1955 1956 if (!ext_adv_capable(hdev)) 1957 return 0; 1958 1959 /* Disable instance 0x00 to disable all instances */ 1960 err = hci_disable_ext_adv_instance_sync(hdev, 0x00); 1961 if (err) 1962 return err; 1963 1964 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CLEAR_ADV_SETS, 1965 0, NULL, 0, HCI_CMD_TIMEOUT, sk); 1966 } 1967 1968 static int hci_clear_adv_sync(struct hci_dev *hdev, struct sock *sk, bool force) 1969 { 1970 struct adv_info *adv, *n; 1971 int err = 0; 1972 1973 if (ext_adv_capable(hdev)) 1974 /* Remove all existing sets */ 1975 err = hci_clear_adv_sets_sync(hdev, sk); 1976 if (ext_adv_capable(hdev)) 1977 return err; 1978 1979 /* This is safe as long as there is no command send while the lock is 1980 * held. 1981 */ 1982 hci_dev_lock(hdev); 1983 1984 /* Cleanup non-ext instances */ 1985 list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) { 1986 u8 instance = adv->instance; 1987 int err; 1988 1989 if (!(force || adv->timeout)) 1990 continue; 1991 1992 err = hci_remove_adv_instance(hdev, instance); 1993 if (!err) 1994 mgmt_advertising_removed(sk, hdev, instance); 1995 } 1996 1997 hci_dev_unlock(hdev); 1998 1999 return 0; 2000 } 2001 2002 static int hci_remove_adv_sync(struct hci_dev *hdev, u8 instance, 2003 struct sock *sk) 2004 { 2005 int err = 0; 2006 2007 /* If we use extended advertising, instance has to be removed first. */ 2008 if (ext_adv_capable(hdev)) 2009 err = hci_remove_ext_adv_instance_sync(hdev, instance, sk); 2010 if (ext_adv_capable(hdev)) 2011 return err; 2012 2013 /* This is safe as long as there is no command send while the lock is 2014 * held. 2015 */ 2016 hci_dev_lock(hdev); 2017 2018 err = hci_remove_adv_instance(hdev, instance); 2019 if (!err) 2020 mgmt_advertising_removed(sk, hdev, instance); 2021 2022 hci_dev_unlock(hdev); 2023 2024 return err; 2025 } 2026 2027 /* For a single instance: 2028 * - force == true: The instance will be removed even when its remaining 2029 * lifetime is not zero. 2030 * - force == false: the instance will be deactivated but kept stored unless 2031 * the remaining lifetime is zero. 2032 * 2033 * For instance == 0x00: 2034 * - force == true: All instances will be removed regardless of their timeout 2035 * setting. 2036 * - force == false: Only instances that have a timeout will be removed. 2037 */ 2038 int hci_remove_advertising_sync(struct hci_dev *hdev, struct sock *sk, 2039 u8 instance, bool force) 2040 { 2041 struct adv_info *next = NULL; 2042 int err; 2043 2044 /* Cancel any timeout concerning the removed instance(s). */ 2045 if (!instance || hdev->cur_adv_instance == instance) 2046 cancel_adv_timeout(hdev); 2047 2048 /* Get the next instance to advertise BEFORE we remove 2049 * the current one. This can be the same instance again 2050 * if there is only one instance. 2051 */ 2052 if (hdev->cur_adv_instance == instance) 2053 next = hci_get_next_instance(hdev, instance); 2054 2055 if (!instance) { 2056 err = hci_clear_adv_sync(hdev, sk, force); 2057 if (err) 2058 return err; 2059 } else { 2060 struct adv_info *adv = hci_find_adv_instance(hdev, instance); 2061 2062 if (force || (adv && adv->timeout && !adv->remaining_time)) { 2063 /* Don't advertise a removed instance. */ 2064 if (next && next->instance == instance) 2065 next = NULL; 2066 2067 err = hci_remove_adv_sync(hdev, instance, sk); 2068 if (err) 2069 return err; 2070 } 2071 } 2072 2073 if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING)) 2074 return 0; 2075 2076 if (next && !ext_adv_capable(hdev)) 2077 hci_schedule_adv_instance_sync(hdev, next->instance, false); 2078 2079 return 0; 2080 } 2081 2082 int hci_read_rssi_sync(struct hci_dev *hdev, __le16 handle) 2083 { 2084 struct hci_cp_read_rssi cp; 2085 2086 cp.handle = handle; 2087 return __hci_cmd_sync_status(hdev, HCI_OP_READ_RSSI, 2088 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2089 } 2090 2091 int hci_read_clock_sync(struct hci_dev *hdev, struct hci_cp_read_clock *cp) 2092 { 2093 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLOCK, 2094 sizeof(*cp), cp, HCI_CMD_TIMEOUT); 2095 } 2096 2097 int hci_read_tx_power_sync(struct hci_dev *hdev, __le16 handle, u8 type) 2098 { 2099 struct hci_cp_read_tx_power cp; 2100 2101 cp.handle = handle; 2102 cp.type = type; 2103 return __hci_cmd_sync_status(hdev, HCI_OP_READ_TX_POWER, 2104 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2105 } 2106 2107 int hci_disable_advertising_sync(struct hci_dev *hdev) 2108 { 2109 u8 enable = 0x00; 2110 int err = 0; 2111 2112 /* If controller is not advertising we are done. */ 2113 if (!hci_dev_test_flag(hdev, HCI_LE_ADV)) 2114 return 0; 2115 2116 if (ext_adv_capable(hdev)) 2117 err = hci_disable_ext_adv_instance_sync(hdev, 0x00); 2118 if (ext_adv_capable(hdev)) 2119 return err; 2120 2121 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 2122 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 2123 } 2124 2125 static int hci_le_set_ext_scan_enable_sync(struct hci_dev *hdev, u8 val, 2126 u8 filter_dup) 2127 { 2128 struct hci_cp_le_set_ext_scan_enable cp; 2129 2130 memset(&cp, 0, sizeof(cp)); 2131 cp.enable = val; 2132 2133 if (hci_dev_test_flag(hdev, HCI_MESH)) 2134 cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 2135 else 2136 cp.filter_dup = filter_dup; 2137 2138 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_ENABLE, 2139 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2140 } 2141 2142 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val, 2143 u8 filter_dup) 2144 { 2145 struct hci_cp_le_set_scan_enable cp; 2146 2147 if (use_ext_scan(hdev)) 2148 return hci_le_set_ext_scan_enable_sync(hdev, val, filter_dup); 2149 2150 memset(&cp, 0, sizeof(cp)); 2151 cp.enable = val; 2152 2153 if (val && hci_dev_test_flag(hdev, HCI_MESH)) 2154 cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 2155 else 2156 cp.filter_dup = filter_dup; 2157 2158 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_ENABLE, 2159 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2160 } 2161 2162 static int hci_le_set_addr_resolution_enable_sync(struct hci_dev *hdev, u8 val) 2163 { 2164 if (!use_ll_privacy(hdev)) 2165 return 0; 2166 2167 /* If controller is not/already resolving we are done. */ 2168 if (val == hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) 2169 return 0; 2170 2171 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 2172 sizeof(val), &val, HCI_CMD_TIMEOUT); 2173 } 2174 2175 static int hci_scan_disable_sync(struct hci_dev *hdev) 2176 { 2177 int err; 2178 2179 /* If controller is not scanning we are done. */ 2180 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 2181 return 0; 2182 2183 if (hdev->scanning_paused) { 2184 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2185 return 0; 2186 } 2187 2188 err = hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00); 2189 if (err) { 2190 bt_dev_err(hdev, "Unable to disable scanning: %d", err); 2191 return err; 2192 } 2193 2194 return err; 2195 } 2196 2197 static bool scan_use_rpa(struct hci_dev *hdev) 2198 { 2199 return hci_dev_test_flag(hdev, HCI_PRIVACY); 2200 } 2201 2202 static void hci_start_interleave_scan(struct hci_dev *hdev) 2203 { 2204 hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER; 2205 queue_delayed_work(hdev->req_workqueue, 2206 &hdev->interleave_scan, 0); 2207 } 2208 2209 static void cancel_interleave_scan(struct hci_dev *hdev) 2210 { 2211 bt_dev_dbg(hdev, "cancelling interleave scan"); 2212 2213 cancel_delayed_work_sync(&hdev->interleave_scan); 2214 2215 hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE; 2216 } 2217 2218 /* Return true if interleave_scan wasn't started until exiting this function, 2219 * otherwise, return false 2220 */ 2221 static bool hci_update_interleaved_scan_sync(struct hci_dev *hdev) 2222 { 2223 /* Do interleaved scan only if all of the following are true: 2224 * - There is at least one ADV monitor 2225 * - At least one pending LE connection or one device to be scanned for 2226 * - Monitor offloading is not supported 2227 * If so, we should alternate between allowlist scan and one without 2228 * any filters to save power. 2229 */ 2230 bool use_interleaving = hci_is_adv_monitoring(hdev) && 2231 !(list_empty(&hdev->pend_le_conns) && 2232 list_empty(&hdev->pend_le_reports)) && 2233 hci_get_adv_monitor_offload_ext(hdev) == 2234 HCI_ADV_MONITOR_EXT_NONE; 2235 bool is_interleaving = is_interleave_scanning(hdev); 2236 2237 if (use_interleaving && !is_interleaving) { 2238 hci_start_interleave_scan(hdev); 2239 bt_dev_dbg(hdev, "starting interleave scan"); 2240 return true; 2241 } 2242 2243 if (!use_interleaving && is_interleaving) 2244 cancel_interleave_scan(hdev); 2245 2246 return false; 2247 } 2248 2249 /* Removes connection to resolve list if needed.*/ 2250 static int hci_le_del_resolve_list_sync(struct hci_dev *hdev, 2251 bdaddr_t *bdaddr, u8 bdaddr_type) 2252 { 2253 struct hci_cp_le_del_from_resolv_list cp; 2254 struct bdaddr_list_with_irk *entry; 2255 2256 if (!use_ll_privacy(hdev)) 2257 return 0; 2258 2259 /* Check if the IRK has been programmed */ 2260 entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, bdaddr, 2261 bdaddr_type); 2262 if (!entry) 2263 return 0; 2264 2265 cp.bdaddr_type = bdaddr_type; 2266 bacpy(&cp.bdaddr, bdaddr); 2267 2268 return __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_RESOLV_LIST, 2269 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2270 } 2271 2272 static int hci_le_del_accept_list_sync(struct hci_dev *hdev, 2273 bdaddr_t *bdaddr, u8 bdaddr_type) 2274 { 2275 struct hci_cp_le_del_from_accept_list cp; 2276 int err; 2277 2278 /* Check if device is on accept list before removing it */ 2279 if (!hci_bdaddr_list_lookup(&hdev->le_accept_list, bdaddr, bdaddr_type)) 2280 return 0; 2281 2282 cp.bdaddr_type = bdaddr_type; 2283 bacpy(&cp.bdaddr, bdaddr); 2284 2285 /* Ignore errors when removing from resolving list as that is likely 2286 * that the device was never added. 2287 */ 2288 hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type); 2289 2290 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_ACCEPT_LIST, 2291 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2292 if (err) { 2293 bt_dev_err(hdev, "Unable to remove from allow list: %d", err); 2294 return err; 2295 } 2296 2297 bt_dev_dbg(hdev, "Remove %pMR (0x%x) from allow list", &cp.bdaddr, 2298 cp.bdaddr_type); 2299 2300 return 0; 2301 } 2302 2303 struct conn_params { 2304 bdaddr_t addr; 2305 u8 addr_type; 2306 hci_conn_flags_t flags; 2307 u8 privacy_mode; 2308 }; 2309 2310 /* Adds connection to resolve list if needed. 2311 * Setting params to NULL programs local hdev->irk 2312 */ 2313 static int hci_le_add_resolve_list_sync(struct hci_dev *hdev, 2314 struct conn_params *params) 2315 { 2316 struct hci_cp_le_add_to_resolv_list cp; 2317 struct smp_irk *irk; 2318 struct bdaddr_list_with_irk *entry; 2319 struct hci_conn_params *p; 2320 2321 if (!use_ll_privacy(hdev)) 2322 return 0; 2323 2324 /* Attempt to program local identity address, type and irk if params is 2325 * NULL. 2326 */ 2327 if (!params) { 2328 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 2329 return 0; 2330 2331 hci_copy_identity_address(hdev, &cp.bdaddr, &cp.bdaddr_type); 2332 memcpy(cp.peer_irk, hdev->irk, 16); 2333 goto done; 2334 } 2335 2336 irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type); 2337 if (!irk) 2338 return 0; 2339 2340 /* Check if the IK has _not_ been programmed yet. */ 2341 entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, 2342 ¶ms->addr, 2343 params->addr_type); 2344 if (entry) 2345 return 0; 2346 2347 cp.bdaddr_type = params->addr_type; 2348 bacpy(&cp.bdaddr, ¶ms->addr); 2349 memcpy(cp.peer_irk, irk->val, 16); 2350 2351 /* Default privacy mode is always Network */ 2352 params->privacy_mode = HCI_NETWORK_PRIVACY; 2353 2354 rcu_read_lock(); 2355 p = hci_pend_le_action_lookup(&hdev->pend_le_conns, 2356 ¶ms->addr, params->addr_type); 2357 if (!p) 2358 p = hci_pend_le_action_lookup(&hdev->pend_le_reports, 2359 ¶ms->addr, params->addr_type); 2360 if (p) 2361 WRITE_ONCE(p->privacy_mode, HCI_NETWORK_PRIVACY); 2362 rcu_read_unlock(); 2363 2364 done: 2365 if (hci_dev_test_flag(hdev, HCI_PRIVACY)) 2366 memcpy(cp.local_irk, hdev->irk, 16); 2367 else 2368 memset(cp.local_irk, 0, 16); 2369 2370 return __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_RESOLV_LIST, 2371 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2372 } 2373 2374 /* Set Device Privacy Mode. */ 2375 static int hci_le_set_privacy_mode_sync(struct hci_dev *hdev, 2376 struct conn_params *params) 2377 { 2378 struct hci_cp_le_set_privacy_mode cp; 2379 struct smp_irk *irk; 2380 2381 /* If device privacy mode has already been set there is nothing to do */ 2382 if (params->privacy_mode == HCI_DEVICE_PRIVACY) 2383 return 0; 2384 2385 /* Check if HCI_CONN_FLAG_DEVICE_PRIVACY has been set as it also 2386 * indicates that LL Privacy has been enabled and 2387 * HCI_OP_LE_SET_PRIVACY_MODE is supported. 2388 */ 2389 if (!(params->flags & HCI_CONN_FLAG_DEVICE_PRIVACY)) 2390 return 0; 2391 2392 irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type); 2393 if (!irk) 2394 return 0; 2395 2396 memset(&cp, 0, sizeof(cp)); 2397 cp.bdaddr_type = irk->addr_type; 2398 bacpy(&cp.bdaddr, &irk->bdaddr); 2399 cp.mode = HCI_DEVICE_PRIVACY; 2400 2401 /* Note: params->privacy_mode is not updated since it is a copy */ 2402 2403 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PRIVACY_MODE, 2404 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2405 } 2406 2407 /* Adds connection to allow list if needed, if the device uses RPA (has IRK) 2408 * this attempts to program the device in the resolving list as well and 2409 * properly set the privacy mode. 2410 */ 2411 static int hci_le_add_accept_list_sync(struct hci_dev *hdev, 2412 struct conn_params *params, 2413 u8 *num_entries) 2414 { 2415 struct hci_cp_le_add_to_accept_list cp; 2416 int err; 2417 2418 /* During suspend, only wakeable devices can be in acceptlist */ 2419 if (hdev->suspended && 2420 !(params->flags & HCI_CONN_FLAG_REMOTE_WAKEUP)) { 2421 hci_le_del_accept_list_sync(hdev, ¶ms->addr, 2422 params->addr_type); 2423 return 0; 2424 } 2425 2426 /* Select filter policy to accept all advertising */ 2427 if (*num_entries >= hdev->le_accept_list_size) 2428 return -ENOSPC; 2429 2430 /* Accept list can not be used with RPAs */ 2431 if (!use_ll_privacy(hdev) && 2432 hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type)) 2433 return -EINVAL; 2434 2435 /* Attempt to program the device in the resolving list first to avoid 2436 * having to rollback in case it fails since the resolving list is 2437 * dynamic it can probably be smaller than the accept list. 2438 */ 2439 err = hci_le_add_resolve_list_sync(hdev, params); 2440 if (err) { 2441 bt_dev_err(hdev, "Unable to add to resolve list: %d", err); 2442 return err; 2443 } 2444 2445 /* Set Privacy Mode */ 2446 err = hci_le_set_privacy_mode_sync(hdev, params); 2447 if (err) { 2448 bt_dev_err(hdev, "Unable to set privacy mode: %d", err); 2449 return err; 2450 } 2451 2452 /* Check if already in accept list */ 2453 if (hci_bdaddr_list_lookup(&hdev->le_accept_list, ¶ms->addr, 2454 params->addr_type)) 2455 return 0; 2456 2457 *num_entries += 1; 2458 cp.bdaddr_type = params->addr_type; 2459 bacpy(&cp.bdaddr, ¶ms->addr); 2460 2461 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST, 2462 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2463 if (err) { 2464 bt_dev_err(hdev, "Unable to add to allow list: %d", err); 2465 /* Rollback the device from the resolving list */ 2466 hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type); 2467 return err; 2468 } 2469 2470 bt_dev_dbg(hdev, "Add %pMR (0x%x) to allow list", &cp.bdaddr, 2471 cp.bdaddr_type); 2472 2473 return 0; 2474 } 2475 2476 /* This function disables/pause all advertising instances */ 2477 static int hci_pause_advertising_sync(struct hci_dev *hdev) 2478 { 2479 int err; 2480 int old_state; 2481 2482 /* If already been paused there is nothing to do. */ 2483 if (hdev->advertising_paused) 2484 return 0; 2485 2486 bt_dev_dbg(hdev, "Pausing directed advertising"); 2487 2488 /* Stop directed advertising */ 2489 old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING); 2490 if (old_state) { 2491 /* When discoverable timeout triggers, then just make sure 2492 * the limited discoverable flag is cleared. Even in the case 2493 * of a timeout triggered from general discoverable, it is 2494 * safe to unconditionally clear the flag. 2495 */ 2496 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 2497 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 2498 hdev->discov_timeout = 0; 2499 } 2500 2501 bt_dev_dbg(hdev, "Pausing advertising instances"); 2502 2503 /* Call to disable any advertisements active on the controller. 2504 * This will succeed even if no advertisements are configured. 2505 */ 2506 err = hci_disable_advertising_sync(hdev); 2507 if (err) 2508 return err; 2509 2510 /* If we are using software rotation, pause the loop */ 2511 if (!ext_adv_capable(hdev)) 2512 cancel_adv_timeout(hdev); 2513 2514 hdev->advertising_paused = true; 2515 hdev->advertising_old_state = old_state; 2516 2517 return 0; 2518 } 2519 2520 /* This function enables all user advertising instances */ 2521 static int hci_resume_advertising_sync(struct hci_dev *hdev) 2522 { 2523 struct adv_info *adv, *tmp; 2524 int err; 2525 2526 /* If advertising has not been paused there is nothing to do. */ 2527 if (!hdev->advertising_paused) 2528 return 0; 2529 2530 /* Resume directed advertising */ 2531 hdev->advertising_paused = false; 2532 if (hdev->advertising_old_state) { 2533 hci_dev_set_flag(hdev, HCI_ADVERTISING); 2534 hdev->advertising_old_state = 0; 2535 } 2536 2537 bt_dev_dbg(hdev, "Resuming advertising instances"); 2538 2539 if (ext_adv_capable(hdev)) { 2540 /* Call for each tracked instance to be re-enabled */ 2541 list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) { 2542 err = hci_enable_ext_advertising_sync(hdev, 2543 adv->instance); 2544 if (!err) 2545 continue; 2546 2547 /* If the instance cannot be resumed remove it */ 2548 hci_remove_ext_adv_instance_sync(hdev, adv->instance, 2549 NULL); 2550 } 2551 } else { 2552 /* Schedule for most recent instance to be restarted and begin 2553 * the software rotation loop 2554 */ 2555 err = hci_schedule_adv_instance_sync(hdev, 2556 hdev->cur_adv_instance, 2557 true); 2558 } 2559 2560 hdev->advertising_paused = false; 2561 2562 return err; 2563 } 2564 2565 static int hci_pause_addr_resolution(struct hci_dev *hdev) 2566 { 2567 int err; 2568 2569 if (!use_ll_privacy(hdev)) 2570 return 0; 2571 2572 if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) 2573 return 0; 2574 2575 /* Cannot disable addr resolution if scanning is enabled or 2576 * when initiating an LE connection. 2577 */ 2578 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) || 2579 hci_lookup_le_connect(hdev)) { 2580 bt_dev_err(hdev, "Command not allowed when scan/LE connect"); 2581 return -EPERM; 2582 } 2583 2584 /* Cannot disable addr resolution if advertising is enabled. */ 2585 err = hci_pause_advertising_sync(hdev); 2586 if (err) { 2587 bt_dev_err(hdev, "Pause advertising failed: %d", err); 2588 return err; 2589 } 2590 2591 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00); 2592 if (err) 2593 bt_dev_err(hdev, "Unable to disable Address Resolution: %d", 2594 err); 2595 2596 /* Return if address resolution is disabled and RPA is not used. */ 2597 if (!err && scan_use_rpa(hdev)) 2598 return 0; 2599 2600 hci_resume_advertising_sync(hdev); 2601 return err; 2602 } 2603 2604 struct sk_buff *hci_read_local_oob_data_sync(struct hci_dev *hdev, 2605 bool extended, struct sock *sk) 2606 { 2607 u16 opcode = extended ? HCI_OP_READ_LOCAL_OOB_EXT_DATA : 2608 HCI_OP_READ_LOCAL_OOB_DATA; 2609 2610 return __hci_cmd_sync_sk(hdev, opcode, 0, NULL, 0, HCI_CMD_TIMEOUT, sk); 2611 } 2612 2613 static struct conn_params *conn_params_copy(struct list_head *list, size_t *n) 2614 { 2615 struct hci_conn_params *params; 2616 struct conn_params *p; 2617 size_t i; 2618 2619 rcu_read_lock(); 2620 2621 i = 0; 2622 list_for_each_entry_rcu(params, list, action) 2623 ++i; 2624 *n = i; 2625 2626 rcu_read_unlock(); 2627 2628 p = kvcalloc(*n, sizeof(struct conn_params), GFP_KERNEL); 2629 if (!p) 2630 return NULL; 2631 2632 rcu_read_lock(); 2633 2634 i = 0; 2635 list_for_each_entry_rcu(params, list, action) { 2636 /* Racing adds are handled in next scan update */ 2637 if (i >= *n) 2638 break; 2639 2640 /* No hdev->lock, but: addr, addr_type are immutable. 2641 * privacy_mode is only written by us or in 2642 * hci_cc_le_set_privacy_mode that we wait for. 2643 * We should be idempotent so MGMT updating flags 2644 * while we are processing is OK. 2645 */ 2646 bacpy(&p[i].addr, ¶ms->addr); 2647 p[i].addr_type = params->addr_type; 2648 p[i].flags = READ_ONCE(params->flags); 2649 p[i].privacy_mode = READ_ONCE(params->privacy_mode); 2650 ++i; 2651 } 2652 2653 rcu_read_unlock(); 2654 2655 *n = i; 2656 return p; 2657 } 2658 2659 /* Clear LE Accept List */ 2660 static int hci_le_clear_accept_list_sync(struct hci_dev *hdev) 2661 { 2662 if (!(hdev->commands[26] & 0x80)) 2663 return 0; 2664 2665 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL, 2666 HCI_CMD_TIMEOUT); 2667 } 2668 2669 /* Device must not be scanning when updating the accept list. 2670 * 2671 * Update is done using the following sequence: 2672 * 2673 * use_ll_privacy((Disable Advertising) -> Disable Resolving List) -> 2674 * Remove Devices From Accept List -> 2675 * (has IRK && use_ll_privacy(Remove Devices From Resolving List))-> 2676 * Add Devices to Accept List -> 2677 * (has IRK && use_ll_privacy(Remove Devices From Resolving List)) -> 2678 * use_ll_privacy(Enable Resolving List -> (Enable Advertising)) -> 2679 * Enable Scanning 2680 * 2681 * In case of failure advertising shall be restored to its original state and 2682 * return would disable accept list since either accept or resolving list could 2683 * not be programmed. 2684 * 2685 */ 2686 static u8 hci_update_accept_list_sync(struct hci_dev *hdev) 2687 { 2688 struct conn_params *params; 2689 struct bdaddr_list *b, *t; 2690 u8 num_entries = 0; 2691 bool pend_conn, pend_report; 2692 u8 filter_policy; 2693 size_t i, n; 2694 int err; 2695 2696 /* Pause advertising if resolving list can be used as controllers 2697 * cannot accept resolving list modifications while advertising. 2698 */ 2699 if (use_ll_privacy(hdev)) { 2700 err = hci_pause_advertising_sync(hdev); 2701 if (err) { 2702 bt_dev_err(hdev, "pause advertising failed: %d", err); 2703 return 0x00; 2704 } 2705 } 2706 2707 /* Disable address resolution while reprogramming accept list since 2708 * devices that do have an IRK will be programmed in the resolving list 2709 * when LL Privacy is enabled. 2710 */ 2711 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00); 2712 if (err) { 2713 bt_dev_err(hdev, "Unable to disable LL privacy: %d", err); 2714 goto done; 2715 } 2716 2717 /* Force address filtering if PA Sync is in progress */ 2718 if (hci_dev_test_flag(hdev, HCI_PA_SYNC)) { 2719 struct hci_cp_le_pa_create_sync *sent; 2720 2721 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_PA_CREATE_SYNC); 2722 if (sent) { 2723 struct conn_params pa; 2724 2725 memset(&pa, 0, sizeof(pa)); 2726 2727 bacpy(&pa.addr, &sent->addr); 2728 pa.addr_type = sent->addr_type; 2729 2730 /* Clear first since there could be addresses left 2731 * behind. 2732 */ 2733 hci_le_clear_accept_list_sync(hdev); 2734 2735 num_entries = 1; 2736 err = hci_le_add_accept_list_sync(hdev, &pa, 2737 &num_entries); 2738 goto done; 2739 } 2740 } 2741 2742 /* Go through the current accept list programmed into the 2743 * controller one by one and check if that address is connected or is 2744 * still in the list of pending connections or list of devices to 2745 * report. If not present in either list, then remove it from 2746 * the controller. 2747 */ 2748 list_for_each_entry_safe(b, t, &hdev->le_accept_list, list) { 2749 if (hci_conn_hash_lookup_le(hdev, &b->bdaddr, b->bdaddr_type)) 2750 continue; 2751 2752 /* Pointers not dereferenced, no locks needed */ 2753 pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns, 2754 &b->bdaddr, 2755 b->bdaddr_type); 2756 pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports, 2757 &b->bdaddr, 2758 b->bdaddr_type); 2759 2760 /* If the device is not likely to connect or report, 2761 * remove it from the acceptlist. 2762 */ 2763 if (!pend_conn && !pend_report) { 2764 hci_le_del_accept_list_sync(hdev, &b->bdaddr, 2765 b->bdaddr_type); 2766 continue; 2767 } 2768 2769 num_entries++; 2770 } 2771 2772 /* Since all no longer valid accept list entries have been 2773 * removed, walk through the list of pending connections 2774 * and ensure that any new device gets programmed into 2775 * the controller. 2776 * 2777 * If the list of the devices is larger than the list of 2778 * available accept list entries in the controller, then 2779 * just abort and return filer policy value to not use the 2780 * accept list. 2781 * 2782 * The list and params may be mutated while we wait for events, 2783 * so make a copy and iterate it. 2784 */ 2785 2786 params = conn_params_copy(&hdev->pend_le_conns, &n); 2787 if (!params) { 2788 err = -ENOMEM; 2789 goto done; 2790 } 2791 2792 for (i = 0; i < n; ++i) { 2793 err = hci_le_add_accept_list_sync(hdev, ¶ms[i], 2794 &num_entries); 2795 if (err) { 2796 kvfree(params); 2797 goto done; 2798 } 2799 } 2800 2801 kvfree(params); 2802 2803 /* After adding all new pending connections, walk through 2804 * the list of pending reports and also add these to the 2805 * accept list if there is still space. Abort if space runs out. 2806 */ 2807 2808 params = conn_params_copy(&hdev->pend_le_reports, &n); 2809 if (!params) { 2810 err = -ENOMEM; 2811 goto done; 2812 } 2813 2814 for (i = 0; i < n; ++i) { 2815 err = hci_le_add_accept_list_sync(hdev, ¶ms[i], 2816 &num_entries); 2817 if (err) { 2818 kvfree(params); 2819 goto done; 2820 } 2821 } 2822 2823 kvfree(params); 2824 2825 /* Use the allowlist unless the following conditions are all true: 2826 * - We are not currently suspending 2827 * - There are 1 or more ADV monitors registered and it's not offloaded 2828 * - Interleaved scanning is not currently using the allowlist 2829 */ 2830 if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended && 2831 hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE && 2832 hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST) 2833 err = -EINVAL; 2834 2835 done: 2836 filter_policy = err ? 0x00 : 0x01; 2837 2838 /* Enable address resolution when LL Privacy is enabled. */ 2839 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x01); 2840 if (err) 2841 bt_dev_err(hdev, "Unable to enable LL privacy: %d", err); 2842 2843 /* Resume advertising if it was paused */ 2844 if (use_ll_privacy(hdev)) 2845 hci_resume_advertising_sync(hdev); 2846 2847 /* Select filter policy to use accept list */ 2848 return filter_policy; 2849 } 2850 2851 static void hci_le_scan_phy_params(struct hci_cp_le_scan_phy_params *cp, 2852 u8 type, u16 interval, u16 window) 2853 { 2854 cp->type = type; 2855 cp->interval = cpu_to_le16(interval); 2856 cp->window = cpu_to_le16(window); 2857 } 2858 2859 static int hci_le_set_ext_scan_param_sync(struct hci_dev *hdev, u8 type, 2860 u16 interval, u16 window, 2861 u8 own_addr_type, u8 filter_policy) 2862 { 2863 struct hci_cp_le_set_ext_scan_params *cp; 2864 struct hci_cp_le_scan_phy_params *phy; 2865 u8 data[sizeof(*cp) + sizeof(*phy) * 2]; 2866 u8 num_phy = 0x00; 2867 2868 cp = (void *)data; 2869 phy = (void *)cp->data; 2870 2871 memset(data, 0, sizeof(data)); 2872 2873 cp->own_addr_type = own_addr_type; 2874 cp->filter_policy = filter_policy; 2875 2876 /* Check if PA Sync is in progress then select the PHY based on the 2877 * hci_conn.iso_qos. 2878 */ 2879 if (hci_dev_test_flag(hdev, HCI_PA_SYNC)) { 2880 struct hci_cp_le_add_to_accept_list *sent; 2881 2882 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST); 2883 if (sent) { 2884 struct hci_conn *conn; 2885 2886 conn = hci_conn_hash_lookup_ba(hdev, ISO_LINK, 2887 &sent->bdaddr); 2888 if (conn) { 2889 struct bt_iso_qos *qos = &conn->iso_qos; 2890 2891 if (qos->bcast.in.phy & BT_ISO_PHY_1M || 2892 qos->bcast.in.phy & BT_ISO_PHY_2M) { 2893 cp->scanning_phys |= LE_SCAN_PHY_1M; 2894 hci_le_scan_phy_params(phy, type, 2895 interval, 2896 window); 2897 num_phy++; 2898 phy++; 2899 } 2900 2901 if (qos->bcast.in.phy & BT_ISO_PHY_CODED) { 2902 cp->scanning_phys |= LE_SCAN_PHY_CODED; 2903 hci_le_scan_phy_params(phy, type, 2904 interval * 3, 2905 window * 3); 2906 num_phy++; 2907 phy++; 2908 } 2909 2910 if (num_phy) 2911 goto done; 2912 } 2913 } 2914 } 2915 2916 if (scan_1m(hdev) || scan_2m(hdev)) { 2917 cp->scanning_phys |= LE_SCAN_PHY_1M; 2918 hci_le_scan_phy_params(phy, type, interval, window); 2919 num_phy++; 2920 phy++; 2921 } 2922 2923 if (scan_coded(hdev)) { 2924 cp->scanning_phys |= LE_SCAN_PHY_CODED; 2925 hci_le_scan_phy_params(phy, type, interval * 3, window * 3); 2926 num_phy++; 2927 phy++; 2928 } 2929 2930 done: 2931 if (!num_phy) 2932 return -EINVAL; 2933 2934 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_PARAMS, 2935 sizeof(*cp) + sizeof(*phy) * num_phy, 2936 data, HCI_CMD_TIMEOUT); 2937 } 2938 2939 static int hci_le_set_scan_param_sync(struct hci_dev *hdev, u8 type, 2940 u16 interval, u16 window, 2941 u8 own_addr_type, u8 filter_policy) 2942 { 2943 struct hci_cp_le_set_scan_param cp; 2944 2945 if (use_ext_scan(hdev)) 2946 return hci_le_set_ext_scan_param_sync(hdev, type, interval, 2947 window, own_addr_type, 2948 filter_policy); 2949 2950 memset(&cp, 0, sizeof(cp)); 2951 cp.type = type; 2952 cp.interval = cpu_to_le16(interval); 2953 cp.window = cpu_to_le16(window); 2954 cp.own_address_type = own_addr_type; 2955 cp.filter_policy = filter_policy; 2956 2957 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_PARAM, 2958 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2959 } 2960 2961 static int hci_start_scan_sync(struct hci_dev *hdev, u8 type, u16 interval, 2962 u16 window, u8 own_addr_type, u8 filter_policy, 2963 u8 filter_dup) 2964 { 2965 int err; 2966 2967 if (hdev->scanning_paused) { 2968 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2969 return 0; 2970 } 2971 2972 err = hci_le_set_scan_param_sync(hdev, type, interval, window, 2973 own_addr_type, filter_policy); 2974 if (err) 2975 return err; 2976 2977 return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, filter_dup); 2978 } 2979 2980 static int hci_passive_scan_sync(struct hci_dev *hdev) 2981 { 2982 u8 own_addr_type; 2983 u8 filter_policy; 2984 u16 window, interval; 2985 u8 filter_dups = LE_SCAN_FILTER_DUP_ENABLE; 2986 int err; 2987 2988 if (hdev->scanning_paused) { 2989 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2990 return 0; 2991 } 2992 2993 err = hci_scan_disable_sync(hdev); 2994 if (err) { 2995 bt_dev_err(hdev, "disable scanning failed: %d", err); 2996 return err; 2997 } 2998 2999 /* Set require_privacy to false since no SCAN_REQ are send 3000 * during passive scanning. Not using an non-resolvable address 3001 * here is important so that peer devices using direct 3002 * advertising with our address will be correctly reported 3003 * by the controller. 3004 */ 3005 if (hci_update_random_address_sync(hdev, false, scan_use_rpa(hdev), 3006 &own_addr_type)) 3007 return 0; 3008 3009 if (hdev->enable_advmon_interleave_scan && 3010 hci_update_interleaved_scan_sync(hdev)) 3011 return 0; 3012 3013 bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state); 3014 3015 /* Adding or removing entries from the accept list must 3016 * happen before enabling scanning. The controller does 3017 * not allow accept list modification while scanning. 3018 */ 3019 filter_policy = hci_update_accept_list_sync(hdev); 3020 3021 /* If suspended and filter_policy set to 0x00 (no acceptlist) then 3022 * passive scanning cannot be started since that would require the host 3023 * to be woken up to process the reports. 3024 */ 3025 if (hdev->suspended && !filter_policy) { 3026 /* Check if accept list is empty then there is no need to scan 3027 * while suspended. 3028 */ 3029 if (list_empty(&hdev->le_accept_list)) 3030 return 0; 3031 3032 /* If there are devices is the accept_list that means some 3033 * devices could not be programmed which in non-suspended case 3034 * means filter_policy needs to be set to 0x00 so the host needs 3035 * to filter, but since this is treating suspended case we 3036 * can ignore device needing host to filter to allow devices in 3037 * the acceptlist to be able to wakeup the system. 3038 */ 3039 filter_policy = 0x01; 3040 } 3041 3042 /* When the controller is using random resolvable addresses and 3043 * with that having LE privacy enabled, then controllers with 3044 * Extended Scanner Filter Policies support can now enable support 3045 * for handling directed advertising. 3046 * 3047 * So instead of using filter polices 0x00 (no acceptlist) 3048 * and 0x01 (acceptlist enabled) use the new filter policies 3049 * 0x02 (no acceptlist) and 0x03 (acceptlist enabled). 3050 */ 3051 if (hci_dev_test_flag(hdev, HCI_PRIVACY) && 3052 (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)) 3053 filter_policy |= 0x02; 3054 3055 if (hdev->suspended) { 3056 window = hdev->le_scan_window_suspend; 3057 interval = hdev->le_scan_int_suspend; 3058 } else if (hci_is_le_conn_scanning(hdev)) { 3059 window = hdev->le_scan_window_connect; 3060 interval = hdev->le_scan_int_connect; 3061 } else if (hci_is_adv_monitoring(hdev)) { 3062 window = hdev->le_scan_window_adv_monitor; 3063 interval = hdev->le_scan_int_adv_monitor; 3064 3065 /* Disable duplicates filter when scanning for advertisement 3066 * monitor for the following reasons. 3067 * 3068 * For HW pattern filtering (ex. MSFT), Realtek and Qualcomm 3069 * controllers ignore RSSI_Sampling_Period when the duplicates 3070 * filter is enabled. 3071 * 3072 * For SW pattern filtering, when we're not doing interleaved 3073 * scanning, it is necessary to disable duplicates filter, 3074 * otherwise hosts can only receive one advertisement and it's 3075 * impossible to know if a peer is still in range. 3076 */ 3077 filter_dups = LE_SCAN_FILTER_DUP_DISABLE; 3078 } else { 3079 window = hdev->le_scan_window; 3080 interval = hdev->le_scan_interval; 3081 } 3082 3083 /* Disable all filtering for Mesh */ 3084 if (hci_dev_test_flag(hdev, HCI_MESH)) { 3085 filter_policy = 0; 3086 filter_dups = LE_SCAN_FILTER_DUP_DISABLE; 3087 } 3088 3089 bt_dev_dbg(hdev, "LE passive scan with acceptlist = %d", filter_policy); 3090 3091 return hci_start_scan_sync(hdev, LE_SCAN_PASSIVE, interval, window, 3092 own_addr_type, filter_policy, filter_dups); 3093 } 3094 3095 /* This function controls the passive scanning based on hdev->pend_le_conns 3096 * list. If there are pending LE connection we start the background scanning, 3097 * otherwise we stop it in the following sequence: 3098 * 3099 * If there are devices to scan: 3100 * 3101 * Disable Scanning -> Update Accept List -> 3102 * use_ll_privacy((Disable Advertising) -> Disable Resolving List -> 3103 * Update Resolving List -> Enable Resolving List -> (Enable Advertising)) -> 3104 * Enable Scanning 3105 * 3106 * Otherwise: 3107 * 3108 * Disable Scanning 3109 */ 3110 int hci_update_passive_scan_sync(struct hci_dev *hdev) 3111 { 3112 int err; 3113 3114 if (!test_bit(HCI_UP, &hdev->flags) || 3115 test_bit(HCI_INIT, &hdev->flags) || 3116 hci_dev_test_flag(hdev, HCI_SETUP) || 3117 hci_dev_test_flag(hdev, HCI_CONFIG) || 3118 hci_dev_test_flag(hdev, HCI_AUTO_OFF) || 3119 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 3120 return 0; 3121 3122 /* No point in doing scanning if LE support hasn't been enabled */ 3123 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 3124 return 0; 3125 3126 /* If discovery is active don't interfere with it */ 3127 if (hdev->discovery.state != DISCOVERY_STOPPED) 3128 return 0; 3129 3130 /* Reset RSSI and UUID filters when starting background scanning 3131 * since these filters are meant for service discovery only. 3132 * 3133 * The Start Discovery and Start Service Discovery operations 3134 * ensure to set proper values for RSSI threshold and UUID 3135 * filter list. So it is safe to just reset them here. 3136 */ 3137 hci_discovery_filter_clear(hdev); 3138 3139 bt_dev_dbg(hdev, "ADV monitoring is %s", 3140 hci_is_adv_monitoring(hdev) ? "on" : "off"); 3141 3142 if (!hci_dev_test_flag(hdev, HCI_MESH) && 3143 list_empty(&hdev->pend_le_conns) && 3144 list_empty(&hdev->pend_le_reports) && 3145 !hci_is_adv_monitoring(hdev) && 3146 !hci_dev_test_flag(hdev, HCI_PA_SYNC)) { 3147 /* If there is no pending LE connections or devices 3148 * to be scanned for or no ADV monitors, we should stop the 3149 * background scanning. 3150 */ 3151 3152 bt_dev_dbg(hdev, "stopping background scanning"); 3153 3154 err = hci_scan_disable_sync(hdev); 3155 if (err) 3156 bt_dev_err(hdev, "stop background scanning failed: %d", 3157 err); 3158 } else { 3159 /* If there is at least one pending LE connection, we should 3160 * keep the background scan running. 3161 */ 3162 3163 /* If controller is connecting, we should not start scanning 3164 * since some controllers are not able to scan and connect at 3165 * the same time. 3166 */ 3167 if (hci_lookup_le_connect(hdev)) 3168 return 0; 3169 3170 bt_dev_dbg(hdev, "start background scanning"); 3171 3172 err = hci_passive_scan_sync(hdev); 3173 if (err) 3174 bt_dev_err(hdev, "start background scanning failed: %d", 3175 err); 3176 } 3177 3178 return err; 3179 } 3180 3181 static int update_scan_sync(struct hci_dev *hdev, void *data) 3182 { 3183 return hci_update_scan_sync(hdev); 3184 } 3185 3186 int hci_update_scan(struct hci_dev *hdev) 3187 { 3188 return hci_cmd_sync_queue(hdev, update_scan_sync, NULL, NULL); 3189 } 3190 3191 static int update_passive_scan_sync(struct hci_dev *hdev, void *data) 3192 { 3193 return hci_update_passive_scan_sync(hdev); 3194 } 3195 3196 int hci_update_passive_scan(struct hci_dev *hdev) 3197 { 3198 /* Only queue if it would have any effect */ 3199 if (!test_bit(HCI_UP, &hdev->flags) || 3200 test_bit(HCI_INIT, &hdev->flags) || 3201 hci_dev_test_flag(hdev, HCI_SETUP) || 3202 hci_dev_test_flag(hdev, HCI_CONFIG) || 3203 hci_dev_test_flag(hdev, HCI_AUTO_OFF) || 3204 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 3205 return 0; 3206 3207 return hci_cmd_sync_queue_once(hdev, update_passive_scan_sync, NULL, 3208 NULL); 3209 } 3210 3211 int hci_write_sc_support_sync(struct hci_dev *hdev, u8 val) 3212 { 3213 int err; 3214 3215 if (!bredr_sc_enabled(hdev) || lmp_host_sc_capable(hdev)) 3216 return 0; 3217 3218 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT, 3219 sizeof(val), &val, HCI_CMD_TIMEOUT); 3220 3221 if (!err) { 3222 if (val) { 3223 hdev->features[1][0] |= LMP_HOST_SC; 3224 hci_dev_set_flag(hdev, HCI_SC_ENABLED); 3225 } else { 3226 hdev->features[1][0] &= ~LMP_HOST_SC; 3227 hci_dev_clear_flag(hdev, HCI_SC_ENABLED); 3228 } 3229 } 3230 3231 return err; 3232 } 3233 3234 int hci_write_ssp_mode_sync(struct hci_dev *hdev, u8 mode) 3235 { 3236 int err; 3237 3238 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) || 3239 lmp_host_ssp_capable(hdev)) 3240 return 0; 3241 3242 if (!mode && hci_dev_test_flag(hdev, HCI_USE_DEBUG_KEYS)) { 3243 __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE, 3244 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3245 } 3246 3247 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE, 3248 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3249 if (err) 3250 return err; 3251 3252 return hci_write_sc_support_sync(hdev, 0x01); 3253 } 3254 3255 int hci_write_le_host_supported_sync(struct hci_dev *hdev, u8 le, u8 simul) 3256 { 3257 struct hci_cp_write_le_host_supported cp; 3258 3259 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED) || 3260 !lmp_bredr_capable(hdev)) 3261 return 0; 3262 3263 /* Check first if we already have the right host state 3264 * (host features set) 3265 */ 3266 if (le == lmp_host_le_capable(hdev) && 3267 simul == lmp_host_le_br_capable(hdev)) 3268 return 0; 3269 3270 memset(&cp, 0, sizeof(cp)); 3271 3272 cp.le = le; 3273 cp.simul = simul; 3274 3275 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED, 3276 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3277 } 3278 3279 static int hci_powered_update_adv_sync(struct hci_dev *hdev) 3280 { 3281 struct adv_info *adv, *tmp; 3282 int err; 3283 3284 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 3285 return 0; 3286 3287 /* If RPA Resolution has not been enable yet it means the 3288 * resolving list is empty and we should attempt to program the 3289 * local IRK in order to support using own_addr_type 3290 * ADDR_LE_DEV_RANDOM_RESOLVED (0x03). 3291 */ 3292 if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) { 3293 hci_le_add_resolve_list_sync(hdev, NULL); 3294 hci_le_set_addr_resolution_enable_sync(hdev, 0x01); 3295 } 3296 3297 /* Make sure the controller has a good default for 3298 * advertising data. This also applies to the case 3299 * where BR/EDR was toggled during the AUTO_OFF phase. 3300 */ 3301 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 3302 list_empty(&hdev->adv_instances)) { 3303 if (ext_adv_capable(hdev)) { 3304 err = hci_setup_ext_adv_instance_sync(hdev, 0x00); 3305 if (!err) 3306 hci_update_scan_rsp_data_sync(hdev, 0x00); 3307 } else { 3308 err = hci_update_adv_data_sync(hdev, 0x00); 3309 if (!err) 3310 hci_update_scan_rsp_data_sync(hdev, 0x00); 3311 } 3312 3313 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) 3314 hci_enable_advertising_sync(hdev); 3315 } 3316 3317 /* Call for each tracked instance to be scheduled */ 3318 list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) 3319 hci_schedule_adv_instance_sync(hdev, adv->instance, true); 3320 3321 return 0; 3322 } 3323 3324 static int hci_write_auth_enable_sync(struct hci_dev *hdev) 3325 { 3326 u8 link_sec; 3327 3328 link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY); 3329 if (link_sec == test_bit(HCI_AUTH, &hdev->flags)) 3330 return 0; 3331 3332 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE, 3333 sizeof(link_sec), &link_sec, 3334 HCI_CMD_TIMEOUT); 3335 } 3336 3337 int hci_write_fast_connectable_sync(struct hci_dev *hdev, bool enable) 3338 { 3339 struct hci_cp_write_page_scan_activity cp; 3340 u8 type; 3341 int err = 0; 3342 3343 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 3344 return 0; 3345 3346 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 3347 return 0; 3348 3349 memset(&cp, 0, sizeof(cp)); 3350 3351 if (enable) { 3352 type = PAGE_SCAN_TYPE_INTERLACED; 3353 3354 /* 160 msec page scan interval */ 3355 cp.interval = cpu_to_le16(0x0100); 3356 } else { 3357 type = hdev->def_page_scan_type; 3358 cp.interval = cpu_to_le16(hdev->def_page_scan_int); 3359 } 3360 3361 cp.window = cpu_to_le16(hdev->def_page_scan_window); 3362 3363 if (__cpu_to_le16(hdev->page_scan_interval) != cp.interval || 3364 __cpu_to_le16(hdev->page_scan_window) != cp.window) { 3365 err = __hci_cmd_sync_status(hdev, 3366 HCI_OP_WRITE_PAGE_SCAN_ACTIVITY, 3367 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3368 if (err) 3369 return err; 3370 } 3371 3372 if (hdev->page_scan_type != type) 3373 err = __hci_cmd_sync_status(hdev, 3374 HCI_OP_WRITE_PAGE_SCAN_TYPE, 3375 sizeof(type), &type, 3376 HCI_CMD_TIMEOUT); 3377 3378 return err; 3379 } 3380 3381 static bool disconnected_accept_list_entries(struct hci_dev *hdev) 3382 { 3383 struct bdaddr_list *b; 3384 3385 list_for_each_entry(b, &hdev->accept_list, list) { 3386 struct hci_conn *conn; 3387 3388 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr); 3389 if (!conn) 3390 return true; 3391 3392 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 3393 return true; 3394 } 3395 3396 return false; 3397 } 3398 3399 static int hci_write_scan_enable_sync(struct hci_dev *hdev, u8 val) 3400 { 3401 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE, 3402 sizeof(val), &val, 3403 HCI_CMD_TIMEOUT); 3404 } 3405 3406 int hci_update_scan_sync(struct hci_dev *hdev) 3407 { 3408 u8 scan; 3409 3410 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 3411 return 0; 3412 3413 if (!hdev_is_powered(hdev)) 3414 return 0; 3415 3416 if (mgmt_powering_down(hdev)) 3417 return 0; 3418 3419 if (hdev->scanning_paused) 3420 return 0; 3421 3422 if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) || 3423 disconnected_accept_list_entries(hdev)) 3424 scan = SCAN_PAGE; 3425 else 3426 scan = SCAN_DISABLED; 3427 3428 if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 3429 scan |= SCAN_INQUIRY; 3430 3431 if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) && 3432 test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY)) 3433 return 0; 3434 3435 return hci_write_scan_enable_sync(hdev, scan); 3436 } 3437 3438 int hci_update_name_sync(struct hci_dev *hdev) 3439 { 3440 struct hci_cp_write_local_name cp; 3441 3442 memset(&cp, 0, sizeof(cp)); 3443 3444 memcpy(cp.name, hdev->dev_name, sizeof(cp.name)); 3445 3446 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LOCAL_NAME, 3447 sizeof(cp), &cp, 3448 HCI_CMD_TIMEOUT); 3449 } 3450 3451 /* This function perform powered update HCI command sequence after the HCI init 3452 * sequence which end up resetting all states, the sequence is as follows: 3453 * 3454 * HCI_SSP_ENABLED(Enable SSP) 3455 * HCI_LE_ENABLED(Enable LE) 3456 * HCI_LE_ENABLED(use_ll_privacy(Add local IRK to Resolving List) -> 3457 * Update adv data) 3458 * Enable Authentication 3459 * lmp_bredr_capable(Set Fast Connectable -> Set Scan Type -> Set Class -> 3460 * Set Name -> Set EIR) 3461 * HCI_FORCE_STATIC_ADDR | BDADDR_ANY && !HCI_BREDR_ENABLED (Set Static Address) 3462 */ 3463 int hci_powered_update_sync(struct hci_dev *hdev) 3464 { 3465 int err; 3466 3467 /* Register the available SMP channels (BR/EDR and LE) only when 3468 * successfully powering on the controller. This late 3469 * registration is required so that LE SMP can clearly decide if 3470 * the public address or static address is used. 3471 */ 3472 smp_register(hdev); 3473 3474 err = hci_write_ssp_mode_sync(hdev, 0x01); 3475 if (err) 3476 return err; 3477 3478 err = hci_write_le_host_supported_sync(hdev, 0x01, 0x00); 3479 if (err) 3480 return err; 3481 3482 err = hci_powered_update_adv_sync(hdev); 3483 if (err) 3484 return err; 3485 3486 err = hci_write_auth_enable_sync(hdev); 3487 if (err) 3488 return err; 3489 3490 if (lmp_bredr_capable(hdev)) { 3491 if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE)) 3492 hci_write_fast_connectable_sync(hdev, true); 3493 else 3494 hci_write_fast_connectable_sync(hdev, false); 3495 hci_update_scan_sync(hdev); 3496 hci_update_class_sync(hdev); 3497 hci_update_name_sync(hdev); 3498 hci_update_eir_sync(hdev); 3499 } 3500 3501 /* If forcing static address is in use or there is no public 3502 * address use the static address as random address (but skip 3503 * the HCI command if the current random address is already the 3504 * static one. 3505 * 3506 * In case BR/EDR has been disabled on a dual-mode controller 3507 * and a static address has been configured, then use that 3508 * address instead of the public BR/EDR address. 3509 */ 3510 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 3511 (!bacmp(&hdev->bdaddr, BDADDR_ANY) && 3512 !hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))) { 3513 if (bacmp(&hdev->static_addr, BDADDR_ANY)) 3514 return hci_set_random_addr_sync(hdev, 3515 &hdev->static_addr); 3516 } 3517 3518 return 0; 3519 } 3520 3521 /** 3522 * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address 3523 * (BD_ADDR) for a HCI device from 3524 * a firmware node property. 3525 * @hdev: The HCI device 3526 * 3527 * Search the firmware node for 'local-bd-address'. 3528 * 3529 * All-zero BD addresses are rejected, because those could be properties 3530 * that exist in the firmware tables, but were not updated by the firmware. For 3531 * example, the DTS could define 'local-bd-address', with zero BD addresses. 3532 */ 3533 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev) 3534 { 3535 struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent); 3536 bdaddr_t ba; 3537 int ret; 3538 3539 ret = fwnode_property_read_u8_array(fwnode, "local-bd-address", 3540 (u8 *)&ba, sizeof(ba)); 3541 if (ret < 0 || !bacmp(&ba, BDADDR_ANY)) 3542 return; 3543 3544 if (test_bit(HCI_QUIRK_BDADDR_PROPERTY_BROKEN, &hdev->quirks)) 3545 baswap(&hdev->public_addr, &ba); 3546 else 3547 bacpy(&hdev->public_addr, &ba); 3548 } 3549 3550 struct hci_init_stage { 3551 int (*func)(struct hci_dev *hdev); 3552 }; 3553 3554 /* Run init stage NULL terminated function table */ 3555 static int hci_init_stage_sync(struct hci_dev *hdev, 3556 const struct hci_init_stage *stage) 3557 { 3558 size_t i; 3559 3560 for (i = 0; stage[i].func; i++) { 3561 int err; 3562 3563 err = stage[i].func(hdev); 3564 if (err) 3565 return err; 3566 } 3567 3568 return 0; 3569 } 3570 3571 /* Read Local Version */ 3572 static int hci_read_local_version_sync(struct hci_dev *hdev) 3573 { 3574 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_VERSION, 3575 0, NULL, HCI_CMD_TIMEOUT); 3576 } 3577 3578 /* Read BD Address */ 3579 static int hci_read_bd_addr_sync(struct hci_dev *hdev) 3580 { 3581 return __hci_cmd_sync_status(hdev, HCI_OP_READ_BD_ADDR, 3582 0, NULL, HCI_CMD_TIMEOUT); 3583 } 3584 3585 #define HCI_INIT(_func) \ 3586 { \ 3587 .func = _func, \ 3588 } 3589 3590 static const struct hci_init_stage hci_init0[] = { 3591 /* HCI_OP_READ_LOCAL_VERSION */ 3592 HCI_INIT(hci_read_local_version_sync), 3593 /* HCI_OP_READ_BD_ADDR */ 3594 HCI_INIT(hci_read_bd_addr_sync), 3595 {} 3596 }; 3597 3598 int hci_reset_sync(struct hci_dev *hdev) 3599 { 3600 int err; 3601 3602 set_bit(HCI_RESET, &hdev->flags); 3603 3604 err = __hci_cmd_sync_status(hdev, HCI_OP_RESET, 0, NULL, 3605 HCI_CMD_TIMEOUT); 3606 if (err) 3607 return err; 3608 3609 return 0; 3610 } 3611 3612 static int hci_init0_sync(struct hci_dev *hdev) 3613 { 3614 int err; 3615 3616 bt_dev_dbg(hdev, ""); 3617 3618 /* Reset */ 3619 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) { 3620 err = hci_reset_sync(hdev); 3621 if (err) 3622 return err; 3623 } 3624 3625 return hci_init_stage_sync(hdev, hci_init0); 3626 } 3627 3628 static int hci_unconf_init_sync(struct hci_dev *hdev) 3629 { 3630 int err; 3631 3632 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) 3633 return 0; 3634 3635 err = hci_init0_sync(hdev); 3636 if (err < 0) 3637 return err; 3638 3639 if (hci_dev_test_flag(hdev, HCI_SETUP)) 3640 hci_debugfs_create_basic(hdev); 3641 3642 return 0; 3643 } 3644 3645 /* Read Local Supported Features. */ 3646 static int hci_read_local_features_sync(struct hci_dev *hdev) 3647 { 3648 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_FEATURES, 3649 0, NULL, HCI_CMD_TIMEOUT); 3650 } 3651 3652 /* BR Controller init stage 1 command sequence */ 3653 static const struct hci_init_stage br_init1[] = { 3654 /* HCI_OP_READ_LOCAL_FEATURES */ 3655 HCI_INIT(hci_read_local_features_sync), 3656 /* HCI_OP_READ_LOCAL_VERSION */ 3657 HCI_INIT(hci_read_local_version_sync), 3658 /* HCI_OP_READ_BD_ADDR */ 3659 HCI_INIT(hci_read_bd_addr_sync), 3660 {} 3661 }; 3662 3663 /* Read Local Commands */ 3664 static int hci_read_local_cmds_sync(struct hci_dev *hdev) 3665 { 3666 /* All Bluetooth 1.2 and later controllers should support the 3667 * HCI command for reading the local supported commands. 3668 * 3669 * Unfortunately some controllers indicate Bluetooth 1.2 support, 3670 * but do not have support for this command. If that is the case, 3671 * the driver can quirk the behavior and skip reading the local 3672 * supported commands. 3673 */ 3674 if (hdev->hci_ver > BLUETOOTH_VER_1_1 && 3675 !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks)) 3676 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_COMMANDS, 3677 0, NULL, HCI_CMD_TIMEOUT); 3678 3679 return 0; 3680 } 3681 3682 static int hci_init1_sync(struct hci_dev *hdev) 3683 { 3684 int err; 3685 3686 bt_dev_dbg(hdev, ""); 3687 3688 /* Reset */ 3689 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) { 3690 err = hci_reset_sync(hdev); 3691 if (err) 3692 return err; 3693 } 3694 3695 return hci_init_stage_sync(hdev, br_init1); 3696 } 3697 3698 /* Read Buffer Size (ACL mtu, max pkt, etc.) */ 3699 static int hci_read_buffer_size_sync(struct hci_dev *hdev) 3700 { 3701 return __hci_cmd_sync_status(hdev, HCI_OP_READ_BUFFER_SIZE, 3702 0, NULL, HCI_CMD_TIMEOUT); 3703 } 3704 3705 /* Read Class of Device */ 3706 static int hci_read_dev_class_sync(struct hci_dev *hdev) 3707 { 3708 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLASS_OF_DEV, 3709 0, NULL, HCI_CMD_TIMEOUT); 3710 } 3711 3712 /* Read Local Name */ 3713 static int hci_read_local_name_sync(struct hci_dev *hdev) 3714 { 3715 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_NAME, 3716 0, NULL, HCI_CMD_TIMEOUT); 3717 } 3718 3719 /* Read Voice Setting */ 3720 static int hci_read_voice_setting_sync(struct hci_dev *hdev) 3721 { 3722 return __hci_cmd_sync_status(hdev, HCI_OP_READ_VOICE_SETTING, 3723 0, NULL, HCI_CMD_TIMEOUT); 3724 } 3725 3726 /* Read Number of Supported IAC */ 3727 static int hci_read_num_supported_iac_sync(struct hci_dev *hdev) 3728 { 3729 return __hci_cmd_sync_status(hdev, HCI_OP_READ_NUM_SUPPORTED_IAC, 3730 0, NULL, HCI_CMD_TIMEOUT); 3731 } 3732 3733 /* Read Current IAC LAP */ 3734 static int hci_read_current_iac_lap_sync(struct hci_dev *hdev) 3735 { 3736 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CURRENT_IAC_LAP, 3737 0, NULL, HCI_CMD_TIMEOUT); 3738 } 3739 3740 static int hci_set_event_filter_sync(struct hci_dev *hdev, u8 flt_type, 3741 u8 cond_type, bdaddr_t *bdaddr, 3742 u8 auto_accept) 3743 { 3744 struct hci_cp_set_event_filter cp; 3745 3746 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 3747 return 0; 3748 3749 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 3750 return 0; 3751 3752 memset(&cp, 0, sizeof(cp)); 3753 cp.flt_type = flt_type; 3754 3755 if (flt_type != HCI_FLT_CLEAR_ALL) { 3756 cp.cond_type = cond_type; 3757 bacpy(&cp.addr_conn_flt.bdaddr, bdaddr); 3758 cp.addr_conn_flt.auto_accept = auto_accept; 3759 } 3760 3761 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_FLT, 3762 flt_type == HCI_FLT_CLEAR_ALL ? 3763 sizeof(cp.flt_type) : sizeof(cp), &cp, 3764 HCI_CMD_TIMEOUT); 3765 } 3766 3767 static int hci_clear_event_filter_sync(struct hci_dev *hdev) 3768 { 3769 if (!hci_dev_test_flag(hdev, HCI_EVENT_FILTER_CONFIGURED)) 3770 return 0; 3771 3772 /* In theory the state machine should not reach here unless 3773 * a hci_set_event_filter_sync() call succeeds, but we do 3774 * the check both for parity and as a future reminder. 3775 */ 3776 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 3777 return 0; 3778 3779 return hci_set_event_filter_sync(hdev, HCI_FLT_CLEAR_ALL, 0x00, 3780 BDADDR_ANY, 0x00); 3781 } 3782 3783 /* Connection accept timeout ~20 secs */ 3784 static int hci_write_ca_timeout_sync(struct hci_dev *hdev) 3785 { 3786 __le16 param = cpu_to_le16(0x7d00); 3787 3788 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CA_TIMEOUT, 3789 sizeof(param), ¶m, HCI_CMD_TIMEOUT); 3790 } 3791 3792 /* BR Controller init stage 2 command sequence */ 3793 static const struct hci_init_stage br_init2[] = { 3794 /* HCI_OP_READ_BUFFER_SIZE */ 3795 HCI_INIT(hci_read_buffer_size_sync), 3796 /* HCI_OP_READ_CLASS_OF_DEV */ 3797 HCI_INIT(hci_read_dev_class_sync), 3798 /* HCI_OP_READ_LOCAL_NAME */ 3799 HCI_INIT(hci_read_local_name_sync), 3800 /* HCI_OP_READ_VOICE_SETTING */ 3801 HCI_INIT(hci_read_voice_setting_sync), 3802 /* HCI_OP_READ_NUM_SUPPORTED_IAC */ 3803 HCI_INIT(hci_read_num_supported_iac_sync), 3804 /* HCI_OP_READ_CURRENT_IAC_LAP */ 3805 HCI_INIT(hci_read_current_iac_lap_sync), 3806 /* HCI_OP_SET_EVENT_FLT */ 3807 HCI_INIT(hci_clear_event_filter_sync), 3808 /* HCI_OP_WRITE_CA_TIMEOUT */ 3809 HCI_INIT(hci_write_ca_timeout_sync), 3810 {} 3811 }; 3812 3813 static int hci_write_ssp_mode_1_sync(struct hci_dev *hdev) 3814 { 3815 u8 mode = 0x01; 3816 3817 if (!lmp_ssp_capable(hdev) || !hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 3818 return 0; 3819 3820 /* When SSP is available, then the host features page 3821 * should also be available as well. However some 3822 * controllers list the max_page as 0 as long as SSP 3823 * has not been enabled. To achieve proper debugging 3824 * output, force the minimum max_page to 1 at least. 3825 */ 3826 hdev->max_page = 0x01; 3827 3828 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE, 3829 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3830 } 3831 3832 static int hci_write_eir_sync(struct hci_dev *hdev) 3833 { 3834 struct hci_cp_write_eir cp; 3835 3836 if (!lmp_ssp_capable(hdev) || hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 3837 return 0; 3838 3839 memset(hdev->eir, 0, sizeof(hdev->eir)); 3840 memset(&cp, 0, sizeof(cp)); 3841 3842 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp, 3843 HCI_CMD_TIMEOUT); 3844 } 3845 3846 static int hci_write_inquiry_mode_sync(struct hci_dev *hdev) 3847 { 3848 u8 mode; 3849 3850 if (!lmp_inq_rssi_capable(hdev) && 3851 !test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) 3852 return 0; 3853 3854 /* If Extended Inquiry Result events are supported, then 3855 * they are clearly preferred over Inquiry Result with RSSI 3856 * events. 3857 */ 3858 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01; 3859 3860 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_INQUIRY_MODE, 3861 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3862 } 3863 3864 static int hci_read_inq_rsp_tx_power_sync(struct hci_dev *hdev) 3865 { 3866 if (!lmp_inq_tx_pwr_capable(hdev)) 3867 return 0; 3868 3869 return __hci_cmd_sync_status(hdev, HCI_OP_READ_INQ_RSP_TX_POWER, 3870 0, NULL, HCI_CMD_TIMEOUT); 3871 } 3872 3873 static int hci_read_local_ext_features_sync(struct hci_dev *hdev, u8 page) 3874 { 3875 struct hci_cp_read_local_ext_features cp; 3876 3877 if (!lmp_ext_feat_capable(hdev)) 3878 return 0; 3879 3880 memset(&cp, 0, sizeof(cp)); 3881 cp.page = page; 3882 3883 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_EXT_FEATURES, 3884 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3885 } 3886 3887 static int hci_read_local_ext_features_1_sync(struct hci_dev *hdev) 3888 { 3889 return hci_read_local_ext_features_sync(hdev, 0x01); 3890 } 3891 3892 /* HCI Controller init stage 2 command sequence */ 3893 static const struct hci_init_stage hci_init2[] = { 3894 /* HCI_OP_READ_LOCAL_COMMANDS */ 3895 HCI_INIT(hci_read_local_cmds_sync), 3896 /* HCI_OP_WRITE_SSP_MODE */ 3897 HCI_INIT(hci_write_ssp_mode_1_sync), 3898 /* HCI_OP_WRITE_EIR */ 3899 HCI_INIT(hci_write_eir_sync), 3900 /* HCI_OP_WRITE_INQUIRY_MODE */ 3901 HCI_INIT(hci_write_inquiry_mode_sync), 3902 /* HCI_OP_READ_INQ_RSP_TX_POWER */ 3903 HCI_INIT(hci_read_inq_rsp_tx_power_sync), 3904 /* HCI_OP_READ_LOCAL_EXT_FEATURES */ 3905 HCI_INIT(hci_read_local_ext_features_1_sync), 3906 /* HCI_OP_WRITE_AUTH_ENABLE */ 3907 HCI_INIT(hci_write_auth_enable_sync), 3908 {} 3909 }; 3910 3911 /* Read LE Buffer Size */ 3912 static int hci_le_read_buffer_size_sync(struct hci_dev *hdev) 3913 { 3914 /* Use Read LE Buffer Size V2 if supported */ 3915 if (iso_capable(hdev) && hdev->commands[41] & 0x20) 3916 return __hci_cmd_sync_status(hdev, 3917 HCI_OP_LE_READ_BUFFER_SIZE_V2, 3918 0, NULL, HCI_CMD_TIMEOUT); 3919 3920 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_BUFFER_SIZE, 3921 0, NULL, HCI_CMD_TIMEOUT); 3922 } 3923 3924 /* Read LE Local Supported Features */ 3925 static int hci_le_read_local_features_sync(struct hci_dev *hdev) 3926 { 3927 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_LOCAL_FEATURES, 3928 0, NULL, HCI_CMD_TIMEOUT); 3929 } 3930 3931 /* Read LE Supported States */ 3932 static int hci_le_read_supported_states_sync(struct hci_dev *hdev) 3933 { 3934 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_SUPPORTED_STATES, 3935 0, NULL, HCI_CMD_TIMEOUT); 3936 } 3937 3938 /* LE Controller init stage 2 command sequence */ 3939 static const struct hci_init_stage le_init2[] = { 3940 /* HCI_OP_LE_READ_LOCAL_FEATURES */ 3941 HCI_INIT(hci_le_read_local_features_sync), 3942 /* HCI_OP_LE_READ_BUFFER_SIZE */ 3943 HCI_INIT(hci_le_read_buffer_size_sync), 3944 /* HCI_OP_LE_READ_SUPPORTED_STATES */ 3945 HCI_INIT(hci_le_read_supported_states_sync), 3946 {} 3947 }; 3948 3949 static int hci_init2_sync(struct hci_dev *hdev) 3950 { 3951 int err; 3952 3953 bt_dev_dbg(hdev, ""); 3954 3955 err = hci_init_stage_sync(hdev, hci_init2); 3956 if (err) 3957 return err; 3958 3959 if (lmp_bredr_capable(hdev)) { 3960 err = hci_init_stage_sync(hdev, br_init2); 3961 if (err) 3962 return err; 3963 } else { 3964 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED); 3965 } 3966 3967 if (lmp_le_capable(hdev)) { 3968 err = hci_init_stage_sync(hdev, le_init2); 3969 if (err) 3970 return err; 3971 /* LE-only controllers have LE implicitly enabled */ 3972 if (!lmp_bredr_capable(hdev)) 3973 hci_dev_set_flag(hdev, HCI_LE_ENABLED); 3974 } 3975 3976 return 0; 3977 } 3978 3979 static int hci_set_event_mask_sync(struct hci_dev *hdev) 3980 { 3981 /* The second byte is 0xff instead of 0x9f (two reserved bits 3982 * disabled) since a Broadcom 1.2 dongle doesn't respond to the 3983 * command otherwise. 3984 */ 3985 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 }; 3986 3987 /* CSR 1.1 dongles does not accept any bitfield so don't try to set 3988 * any event mask for pre 1.2 devices. 3989 */ 3990 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 3991 return 0; 3992 3993 if (lmp_bredr_capable(hdev)) { 3994 events[4] |= 0x01; /* Flow Specification Complete */ 3995 3996 /* Don't set Disconnect Complete and mode change when 3997 * suspended as that would wakeup the host when disconnecting 3998 * due to suspend. 3999 */ 4000 if (hdev->suspended) { 4001 events[0] &= 0xef; 4002 events[2] &= 0xf7; 4003 } 4004 } else { 4005 /* Use a different default for LE-only devices */ 4006 memset(events, 0, sizeof(events)); 4007 events[1] |= 0x20; /* Command Complete */ 4008 events[1] |= 0x40; /* Command Status */ 4009 events[1] |= 0x80; /* Hardware Error */ 4010 4011 /* If the controller supports the Disconnect command, enable 4012 * the corresponding event. In addition enable packet flow 4013 * control related events. 4014 */ 4015 if (hdev->commands[0] & 0x20) { 4016 /* Don't set Disconnect Complete when suspended as that 4017 * would wakeup the host when disconnecting due to 4018 * suspend. 4019 */ 4020 if (!hdev->suspended) 4021 events[0] |= 0x10; /* Disconnection Complete */ 4022 events[2] |= 0x04; /* Number of Completed Packets */ 4023 events[3] |= 0x02; /* Data Buffer Overflow */ 4024 } 4025 4026 /* If the controller supports the Read Remote Version 4027 * Information command, enable the corresponding event. 4028 */ 4029 if (hdev->commands[2] & 0x80) 4030 events[1] |= 0x08; /* Read Remote Version Information 4031 * Complete 4032 */ 4033 4034 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) { 4035 events[0] |= 0x80; /* Encryption Change */ 4036 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 4037 } 4038 } 4039 4040 if (lmp_inq_rssi_capable(hdev) || 4041 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) 4042 events[4] |= 0x02; /* Inquiry Result with RSSI */ 4043 4044 if (lmp_ext_feat_capable(hdev)) 4045 events[4] |= 0x04; /* Read Remote Extended Features Complete */ 4046 4047 if (lmp_esco_capable(hdev)) { 4048 events[5] |= 0x08; /* Synchronous Connection Complete */ 4049 events[5] |= 0x10; /* Synchronous Connection Changed */ 4050 } 4051 4052 if (lmp_sniffsubr_capable(hdev)) 4053 events[5] |= 0x20; /* Sniff Subrating */ 4054 4055 if (lmp_pause_enc_capable(hdev)) 4056 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 4057 4058 if (lmp_ext_inq_capable(hdev)) 4059 events[5] |= 0x40; /* Extended Inquiry Result */ 4060 4061 if (lmp_no_flush_capable(hdev)) 4062 events[7] |= 0x01; /* Enhanced Flush Complete */ 4063 4064 if (lmp_lsto_capable(hdev)) 4065 events[6] |= 0x80; /* Link Supervision Timeout Changed */ 4066 4067 if (lmp_ssp_capable(hdev)) { 4068 events[6] |= 0x01; /* IO Capability Request */ 4069 events[6] |= 0x02; /* IO Capability Response */ 4070 events[6] |= 0x04; /* User Confirmation Request */ 4071 events[6] |= 0x08; /* User Passkey Request */ 4072 events[6] |= 0x10; /* Remote OOB Data Request */ 4073 events[6] |= 0x20; /* Simple Pairing Complete */ 4074 events[7] |= 0x04; /* User Passkey Notification */ 4075 events[7] |= 0x08; /* Keypress Notification */ 4076 events[7] |= 0x10; /* Remote Host Supported 4077 * Features Notification 4078 */ 4079 } 4080 4081 if (lmp_le_capable(hdev)) 4082 events[7] |= 0x20; /* LE Meta-Event */ 4083 4084 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK, 4085 sizeof(events), events, HCI_CMD_TIMEOUT); 4086 } 4087 4088 static int hci_read_stored_link_key_sync(struct hci_dev *hdev) 4089 { 4090 struct hci_cp_read_stored_link_key cp; 4091 4092 if (!(hdev->commands[6] & 0x20) || 4093 test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) 4094 return 0; 4095 4096 memset(&cp, 0, sizeof(cp)); 4097 bacpy(&cp.bdaddr, BDADDR_ANY); 4098 cp.read_all = 0x01; 4099 4100 return __hci_cmd_sync_status(hdev, HCI_OP_READ_STORED_LINK_KEY, 4101 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4102 } 4103 4104 static int hci_setup_link_policy_sync(struct hci_dev *hdev) 4105 { 4106 struct hci_cp_write_def_link_policy cp; 4107 u16 link_policy = 0; 4108 4109 if (!(hdev->commands[5] & 0x10)) 4110 return 0; 4111 4112 memset(&cp, 0, sizeof(cp)); 4113 4114 if (lmp_rswitch_capable(hdev)) 4115 link_policy |= HCI_LP_RSWITCH; 4116 if (lmp_hold_capable(hdev)) 4117 link_policy |= HCI_LP_HOLD; 4118 if (lmp_sniff_capable(hdev)) 4119 link_policy |= HCI_LP_SNIFF; 4120 if (lmp_park_capable(hdev)) 4121 link_policy |= HCI_LP_PARK; 4122 4123 cp.policy = cpu_to_le16(link_policy); 4124 4125 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY, 4126 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4127 } 4128 4129 static int hci_read_page_scan_activity_sync(struct hci_dev *hdev) 4130 { 4131 if (!(hdev->commands[8] & 0x01)) 4132 return 0; 4133 4134 return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 4135 0, NULL, HCI_CMD_TIMEOUT); 4136 } 4137 4138 static int hci_read_def_err_data_reporting_sync(struct hci_dev *hdev) 4139 { 4140 if (!(hdev->commands[18] & 0x04) || 4141 !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) || 4142 test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) 4143 return 0; 4144 4145 return __hci_cmd_sync_status(hdev, HCI_OP_READ_DEF_ERR_DATA_REPORTING, 4146 0, NULL, HCI_CMD_TIMEOUT); 4147 } 4148 4149 static int hci_read_page_scan_type_sync(struct hci_dev *hdev) 4150 { 4151 /* Some older Broadcom based Bluetooth 1.2 controllers do not 4152 * support the Read Page Scan Type command. Check support for 4153 * this command in the bit mask of supported commands. 4154 */ 4155 if (!(hdev->commands[13] & 0x01)) 4156 return 0; 4157 4158 return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_TYPE, 4159 0, NULL, HCI_CMD_TIMEOUT); 4160 } 4161 4162 /* Read features beyond page 1 if available */ 4163 static int hci_read_local_ext_features_all_sync(struct hci_dev *hdev) 4164 { 4165 u8 page; 4166 int err; 4167 4168 if (!lmp_ext_feat_capable(hdev)) 4169 return 0; 4170 4171 for (page = 2; page < HCI_MAX_PAGES && page <= hdev->max_page; 4172 page++) { 4173 err = hci_read_local_ext_features_sync(hdev, page); 4174 if (err) 4175 return err; 4176 } 4177 4178 return 0; 4179 } 4180 4181 /* HCI Controller init stage 3 command sequence */ 4182 static const struct hci_init_stage hci_init3[] = { 4183 /* HCI_OP_SET_EVENT_MASK */ 4184 HCI_INIT(hci_set_event_mask_sync), 4185 /* HCI_OP_READ_STORED_LINK_KEY */ 4186 HCI_INIT(hci_read_stored_link_key_sync), 4187 /* HCI_OP_WRITE_DEF_LINK_POLICY */ 4188 HCI_INIT(hci_setup_link_policy_sync), 4189 /* HCI_OP_READ_PAGE_SCAN_ACTIVITY */ 4190 HCI_INIT(hci_read_page_scan_activity_sync), 4191 /* HCI_OP_READ_DEF_ERR_DATA_REPORTING */ 4192 HCI_INIT(hci_read_def_err_data_reporting_sync), 4193 /* HCI_OP_READ_PAGE_SCAN_TYPE */ 4194 HCI_INIT(hci_read_page_scan_type_sync), 4195 /* HCI_OP_READ_LOCAL_EXT_FEATURES */ 4196 HCI_INIT(hci_read_local_ext_features_all_sync), 4197 {} 4198 }; 4199 4200 static int hci_le_set_event_mask_sync(struct hci_dev *hdev) 4201 { 4202 u8 events[8]; 4203 4204 if (!lmp_le_capable(hdev)) 4205 return 0; 4206 4207 memset(events, 0, sizeof(events)); 4208 4209 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) 4210 events[0] |= 0x10; /* LE Long Term Key Request */ 4211 4212 /* If controller supports the Connection Parameters Request 4213 * Link Layer Procedure, enable the corresponding event. 4214 */ 4215 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC) 4216 /* LE Remote Connection Parameter Request */ 4217 events[0] |= 0x20; 4218 4219 /* If the controller supports the Data Length Extension 4220 * feature, enable the corresponding event. 4221 */ 4222 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) 4223 events[0] |= 0x40; /* LE Data Length Change */ 4224 4225 /* If the controller supports LL Privacy feature or LE Extended Adv, 4226 * enable the corresponding event. 4227 */ 4228 if (use_enhanced_conn_complete(hdev)) 4229 events[1] |= 0x02; /* LE Enhanced Connection Complete */ 4230 4231 /* If the controller supports Extended Scanner Filter 4232 * Policies, enable the corresponding event. 4233 */ 4234 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY) 4235 events[1] |= 0x04; /* LE Direct Advertising Report */ 4236 4237 /* If the controller supports Channel Selection Algorithm #2 4238 * feature, enable the corresponding event. 4239 */ 4240 if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2) 4241 events[2] |= 0x08; /* LE Channel Selection Algorithm */ 4242 4243 /* If the controller supports the LE Set Scan Enable command, 4244 * enable the corresponding advertising report event. 4245 */ 4246 if (hdev->commands[26] & 0x08) 4247 events[0] |= 0x02; /* LE Advertising Report */ 4248 4249 /* If the controller supports the LE Create Connection 4250 * command, enable the corresponding event. 4251 */ 4252 if (hdev->commands[26] & 0x10) 4253 events[0] |= 0x01; /* LE Connection Complete */ 4254 4255 /* If the controller supports the LE Connection Update 4256 * command, enable the corresponding event. 4257 */ 4258 if (hdev->commands[27] & 0x04) 4259 events[0] |= 0x04; /* LE Connection Update Complete */ 4260 4261 /* If the controller supports the LE Read Remote Used Features 4262 * command, enable the corresponding event. 4263 */ 4264 if (hdev->commands[27] & 0x20) 4265 /* LE Read Remote Used Features Complete */ 4266 events[0] |= 0x08; 4267 4268 /* If the controller supports the LE Read Local P-256 4269 * Public Key command, enable the corresponding event. 4270 */ 4271 if (hdev->commands[34] & 0x02) 4272 /* LE Read Local P-256 Public Key Complete */ 4273 events[0] |= 0x80; 4274 4275 /* If the controller supports the LE Generate DHKey 4276 * command, enable the corresponding event. 4277 */ 4278 if (hdev->commands[34] & 0x04) 4279 events[1] |= 0x01; /* LE Generate DHKey Complete */ 4280 4281 /* If the controller supports the LE Set Default PHY or 4282 * LE Set PHY commands, enable the corresponding event. 4283 */ 4284 if (hdev->commands[35] & (0x20 | 0x40)) 4285 events[1] |= 0x08; /* LE PHY Update Complete */ 4286 4287 /* If the controller supports LE Set Extended Scan Parameters 4288 * and LE Set Extended Scan Enable commands, enable the 4289 * corresponding event. 4290 */ 4291 if (use_ext_scan(hdev)) 4292 events[1] |= 0x10; /* LE Extended Advertising Report */ 4293 4294 /* If the controller supports the LE Extended Advertising 4295 * command, enable the corresponding event. 4296 */ 4297 if (ext_adv_capable(hdev)) 4298 events[2] |= 0x02; /* LE Advertising Set Terminated */ 4299 4300 if (cis_capable(hdev)) { 4301 events[3] |= 0x01; /* LE CIS Established */ 4302 if (cis_peripheral_capable(hdev)) 4303 events[3] |= 0x02; /* LE CIS Request */ 4304 } 4305 4306 if (bis_capable(hdev)) { 4307 events[1] |= 0x20; /* LE PA Report */ 4308 events[1] |= 0x40; /* LE PA Sync Established */ 4309 events[3] |= 0x04; /* LE Create BIG Complete */ 4310 events[3] |= 0x08; /* LE Terminate BIG Complete */ 4311 events[3] |= 0x10; /* LE BIG Sync Established */ 4312 events[3] |= 0x20; /* LE BIG Sync Loss */ 4313 events[4] |= 0x02; /* LE BIG Info Advertising Report */ 4314 } 4315 4316 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EVENT_MASK, 4317 sizeof(events), events, HCI_CMD_TIMEOUT); 4318 } 4319 4320 /* Read LE Advertising Channel TX Power */ 4321 static int hci_le_read_adv_tx_power_sync(struct hci_dev *hdev) 4322 { 4323 if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) { 4324 /* HCI TS spec forbids mixing of legacy and extended 4325 * advertising commands wherein READ_ADV_TX_POWER is 4326 * also included. So do not call it if extended adv 4327 * is supported otherwise controller will return 4328 * COMMAND_DISALLOWED for extended commands. 4329 */ 4330 return __hci_cmd_sync_status(hdev, 4331 HCI_OP_LE_READ_ADV_TX_POWER, 4332 0, NULL, HCI_CMD_TIMEOUT); 4333 } 4334 4335 return 0; 4336 } 4337 4338 /* Read LE Min/Max Tx Power*/ 4339 static int hci_le_read_tx_power_sync(struct hci_dev *hdev) 4340 { 4341 if (!(hdev->commands[38] & 0x80) || 4342 test_bit(HCI_QUIRK_BROKEN_READ_TRANSMIT_POWER, &hdev->quirks)) 4343 return 0; 4344 4345 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_TRANSMIT_POWER, 4346 0, NULL, HCI_CMD_TIMEOUT); 4347 } 4348 4349 /* Read LE Accept List Size */ 4350 static int hci_le_read_accept_list_size_sync(struct hci_dev *hdev) 4351 { 4352 if (!(hdev->commands[26] & 0x40)) 4353 return 0; 4354 4355 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_ACCEPT_LIST_SIZE, 4356 0, NULL, HCI_CMD_TIMEOUT); 4357 } 4358 4359 /* Read LE Resolving List Size */ 4360 static int hci_le_read_resolv_list_size_sync(struct hci_dev *hdev) 4361 { 4362 if (!(hdev->commands[34] & 0x40)) 4363 return 0; 4364 4365 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_RESOLV_LIST_SIZE, 4366 0, NULL, HCI_CMD_TIMEOUT); 4367 } 4368 4369 /* Clear LE Resolving List */ 4370 static int hci_le_clear_resolv_list_sync(struct hci_dev *hdev) 4371 { 4372 if (!(hdev->commands[34] & 0x20)) 4373 return 0; 4374 4375 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL, 4376 HCI_CMD_TIMEOUT); 4377 } 4378 4379 /* Set RPA timeout */ 4380 static int hci_le_set_rpa_timeout_sync(struct hci_dev *hdev) 4381 { 4382 __le16 timeout = cpu_to_le16(hdev->rpa_timeout); 4383 4384 if (!(hdev->commands[35] & 0x04) || 4385 test_bit(HCI_QUIRK_BROKEN_SET_RPA_TIMEOUT, &hdev->quirks)) 4386 return 0; 4387 4388 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RPA_TIMEOUT, 4389 sizeof(timeout), &timeout, 4390 HCI_CMD_TIMEOUT); 4391 } 4392 4393 /* Read LE Maximum Data Length */ 4394 static int hci_le_read_max_data_len_sync(struct hci_dev *hdev) 4395 { 4396 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 4397 return 0; 4398 4399 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL, 4400 HCI_CMD_TIMEOUT); 4401 } 4402 4403 /* Read LE Suggested Default Data Length */ 4404 static int hci_le_read_def_data_len_sync(struct hci_dev *hdev) 4405 { 4406 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 4407 return 0; 4408 4409 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL, 4410 HCI_CMD_TIMEOUT); 4411 } 4412 4413 /* Read LE Number of Supported Advertising Sets */ 4414 static int hci_le_read_num_support_adv_sets_sync(struct hci_dev *hdev) 4415 { 4416 if (!ext_adv_capable(hdev)) 4417 return 0; 4418 4419 return __hci_cmd_sync_status(hdev, 4420 HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS, 4421 0, NULL, HCI_CMD_TIMEOUT); 4422 } 4423 4424 /* Write LE Host Supported */ 4425 static int hci_set_le_support_sync(struct hci_dev *hdev) 4426 { 4427 struct hci_cp_write_le_host_supported cp; 4428 4429 /* LE-only devices do not support explicit enablement */ 4430 if (!lmp_bredr_capable(hdev)) 4431 return 0; 4432 4433 memset(&cp, 0, sizeof(cp)); 4434 4435 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 4436 cp.le = 0x01; 4437 cp.simul = 0x00; 4438 } 4439 4440 if (cp.le == lmp_host_le_capable(hdev)) 4441 return 0; 4442 4443 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED, 4444 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4445 } 4446 4447 /* LE Set Host Feature */ 4448 static int hci_le_set_host_feature_sync(struct hci_dev *hdev) 4449 { 4450 struct hci_cp_le_set_host_feature cp; 4451 4452 if (!cis_capable(hdev)) 4453 return 0; 4454 4455 memset(&cp, 0, sizeof(cp)); 4456 4457 /* Connected Isochronous Channels (Host Support) */ 4458 cp.bit_number = 32; 4459 cp.bit_value = 1; 4460 4461 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_HOST_FEATURE, 4462 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4463 } 4464 4465 /* LE Controller init stage 3 command sequence */ 4466 static const struct hci_init_stage le_init3[] = { 4467 /* HCI_OP_LE_SET_EVENT_MASK */ 4468 HCI_INIT(hci_le_set_event_mask_sync), 4469 /* HCI_OP_LE_READ_ADV_TX_POWER */ 4470 HCI_INIT(hci_le_read_adv_tx_power_sync), 4471 /* HCI_OP_LE_READ_TRANSMIT_POWER */ 4472 HCI_INIT(hci_le_read_tx_power_sync), 4473 /* HCI_OP_LE_READ_ACCEPT_LIST_SIZE */ 4474 HCI_INIT(hci_le_read_accept_list_size_sync), 4475 /* HCI_OP_LE_CLEAR_ACCEPT_LIST */ 4476 HCI_INIT(hci_le_clear_accept_list_sync), 4477 /* HCI_OP_LE_READ_RESOLV_LIST_SIZE */ 4478 HCI_INIT(hci_le_read_resolv_list_size_sync), 4479 /* HCI_OP_LE_CLEAR_RESOLV_LIST */ 4480 HCI_INIT(hci_le_clear_resolv_list_sync), 4481 /* HCI_OP_LE_SET_RPA_TIMEOUT */ 4482 HCI_INIT(hci_le_set_rpa_timeout_sync), 4483 /* HCI_OP_LE_READ_MAX_DATA_LEN */ 4484 HCI_INIT(hci_le_read_max_data_len_sync), 4485 /* HCI_OP_LE_READ_DEF_DATA_LEN */ 4486 HCI_INIT(hci_le_read_def_data_len_sync), 4487 /* HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS */ 4488 HCI_INIT(hci_le_read_num_support_adv_sets_sync), 4489 /* HCI_OP_WRITE_LE_HOST_SUPPORTED */ 4490 HCI_INIT(hci_set_le_support_sync), 4491 /* HCI_OP_LE_SET_HOST_FEATURE */ 4492 HCI_INIT(hci_le_set_host_feature_sync), 4493 {} 4494 }; 4495 4496 static int hci_init3_sync(struct hci_dev *hdev) 4497 { 4498 int err; 4499 4500 bt_dev_dbg(hdev, ""); 4501 4502 err = hci_init_stage_sync(hdev, hci_init3); 4503 if (err) 4504 return err; 4505 4506 if (lmp_le_capable(hdev)) 4507 return hci_init_stage_sync(hdev, le_init3); 4508 4509 return 0; 4510 } 4511 4512 static int hci_delete_stored_link_key_sync(struct hci_dev *hdev) 4513 { 4514 struct hci_cp_delete_stored_link_key cp; 4515 4516 /* Some Broadcom based Bluetooth controllers do not support the 4517 * Delete Stored Link Key command. They are clearly indicating its 4518 * absence in the bit mask of supported commands. 4519 * 4520 * Check the supported commands and only if the command is marked 4521 * as supported send it. If not supported assume that the controller 4522 * does not have actual support for stored link keys which makes this 4523 * command redundant anyway. 4524 * 4525 * Some controllers indicate that they support handling deleting 4526 * stored link keys, but they don't. The quirk lets a driver 4527 * just disable this command. 4528 */ 4529 if (!(hdev->commands[6] & 0x80) || 4530 test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) 4531 return 0; 4532 4533 memset(&cp, 0, sizeof(cp)); 4534 bacpy(&cp.bdaddr, BDADDR_ANY); 4535 cp.delete_all = 0x01; 4536 4537 return __hci_cmd_sync_status(hdev, HCI_OP_DELETE_STORED_LINK_KEY, 4538 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4539 } 4540 4541 static int hci_set_event_mask_page_2_sync(struct hci_dev *hdev) 4542 { 4543 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 4544 bool changed = false; 4545 4546 /* Set event mask page 2 if the HCI command for it is supported */ 4547 if (!(hdev->commands[22] & 0x04)) 4548 return 0; 4549 4550 /* If Connectionless Peripheral Broadcast central role is supported 4551 * enable all necessary events for it. 4552 */ 4553 if (lmp_cpb_central_capable(hdev)) { 4554 events[1] |= 0x40; /* Triggered Clock Capture */ 4555 events[1] |= 0x80; /* Synchronization Train Complete */ 4556 events[2] |= 0x08; /* Truncated Page Complete */ 4557 events[2] |= 0x20; /* CPB Channel Map Change */ 4558 changed = true; 4559 } 4560 4561 /* If Connectionless Peripheral Broadcast peripheral role is supported 4562 * enable all necessary events for it. 4563 */ 4564 if (lmp_cpb_peripheral_capable(hdev)) { 4565 events[2] |= 0x01; /* Synchronization Train Received */ 4566 events[2] |= 0x02; /* CPB Receive */ 4567 events[2] |= 0x04; /* CPB Timeout */ 4568 events[2] |= 0x10; /* Peripheral Page Response Timeout */ 4569 changed = true; 4570 } 4571 4572 /* Enable Authenticated Payload Timeout Expired event if supported */ 4573 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) { 4574 events[2] |= 0x80; 4575 changed = true; 4576 } 4577 4578 /* Some Broadcom based controllers indicate support for Set Event 4579 * Mask Page 2 command, but then actually do not support it. Since 4580 * the default value is all bits set to zero, the command is only 4581 * required if the event mask has to be changed. In case no change 4582 * to the event mask is needed, skip this command. 4583 */ 4584 if (!changed) 4585 return 0; 4586 4587 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK_PAGE_2, 4588 sizeof(events), events, HCI_CMD_TIMEOUT); 4589 } 4590 4591 /* Read local codec list if the HCI command is supported */ 4592 static int hci_read_local_codecs_sync(struct hci_dev *hdev) 4593 { 4594 if (hdev->commands[45] & 0x04) 4595 hci_read_supported_codecs_v2(hdev); 4596 else if (hdev->commands[29] & 0x20) 4597 hci_read_supported_codecs(hdev); 4598 4599 return 0; 4600 } 4601 4602 /* Read local pairing options if the HCI command is supported */ 4603 static int hci_read_local_pairing_opts_sync(struct hci_dev *hdev) 4604 { 4605 if (!(hdev->commands[41] & 0x08)) 4606 return 0; 4607 4608 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_PAIRING_OPTS, 4609 0, NULL, HCI_CMD_TIMEOUT); 4610 } 4611 4612 /* Get MWS transport configuration if the HCI command is supported */ 4613 static int hci_get_mws_transport_config_sync(struct hci_dev *hdev) 4614 { 4615 if (!mws_transport_config_capable(hdev)) 4616 return 0; 4617 4618 return __hci_cmd_sync_status(hdev, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 4619 0, NULL, HCI_CMD_TIMEOUT); 4620 } 4621 4622 /* Check for Synchronization Train support */ 4623 static int hci_read_sync_train_params_sync(struct hci_dev *hdev) 4624 { 4625 if (!lmp_sync_train_capable(hdev)) 4626 return 0; 4627 4628 return __hci_cmd_sync_status(hdev, HCI_OP_READ_SYNC_TRAIN_PARAMS, 4629 0, NULL, HCI_CMD_TIMEOUT); 4630 } 4631 4632 /* Enable Secure Connections if supported and configured */ 4633 static int hci_write_sc_support_1_sync(struct hci_dev *hdev) 4634 { 4635 u8 support = 0x01; 4636 4637 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) || 4638 !bredr_sc_enabled(hdev)) 4639 return 0; 4640 4641 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT, 4642 sizeof(support), &support, 4643 HCI_CMD_TIMEOUT); 4644 } 4645 4646 /* Set erroneous data reporting if supported to the wideband speech 4647 * setting value 4648 */ 4649 static int hci_set_err_data_report_sync(struct hci_dev *hdev) 4650 { 4651 struct hci_cp_write_def_err_data_reporting cp; 4652 bool enabled = hci_dev_test_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED); 4653 4654 if (!(hdev->commands[18] & 0x08) || 4655 !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) || 4656 test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) 4657 return 0; 4658 4659 if (enabled == hdev->err_data_reporting) 4660 return 0; 4661 4662 memset(&cp, 0, sizeof(cp)); 4663 cp.err_data_reporting = enabled ? ERR_DATA_REPORTING_ENABLED : 4664 ERR_DATA_REPORTING_DISABLED; 4665 4666 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING, 4667 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4668 } 4669 4670 static const struct hci_init_stage hci_init4[] = { 4671 /* HCI_OP_DELETE_STORED_LINK_KEY */ 4672 HCI_INIT(hci_delete_stored_link_key_sync), 4673 /* HCI_OP_SET_EVENT_MASK_PAGE_2 */ 4674 HCI_INIT(hci_set_event_mask_page_2_sync), 4675 /* HCI_OP_READ_LOCAL_CODECS */ 4676 HCI_INIT(hci_read_local_codecs_sync), 4677 /* HCI_OP_READ_LOCAL_PAIRING_OPTS */ 4678 HCI_INIT(hci_read_local_pairing_opts_sync), 4679 /* HCI_OP_GET_MWS_TRANSPORT_CONFIG */ 4680 HCI_INIT(hci_get_mws_transport_config_sync), 4681 /* HCI_OP_READ_SYNC_TRAIN_PARAMS */ 4682 HCI_INIT(hci_read_sync_train_params_sync), 4683 /* HCI_OP_WRITE_SC_SUPPORT */ 4684 HCI_INIT(hci_write_sc_support_1_sync), 4685 /* HCI_OP_WRITE_DEF_ERR_DATA_REPORTING */ 4686 HCI_INIT(hci_set_err_data_report_sync), 4687 {} 4688 }; 4689 4690 /* Set Suggested Default Data Length to maximum if supported */ 4691 static int hci_le_set_write_def_data_len_sync(struct hci_dev *hdev) 4692 { 4693 struct hci_cp_le_write_def_data_len cp; 4694 4695 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 4696 return 0; 4697 4698 memset(&cp, 0, sizeof(cp)); 4699 cp.tx_len = cpu_to_le16(hdev->le_max_tx_len); 4700 cp.tx_time = cpu_to_le16(hdev->le_max_tx_time); 4701 4702 return __hci_cmd_sync_status(hdev, HCI_OP_LE_WRITE_DEF_DATA_LEN, 4703 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4704 } 4705 4706 /* Set Default PHY parameters if command is supported, enables all supported 4707 * PHYs according to the LE Features bits. 4708 */ 4709 static int hci_le_set_default_phy_sync(struct hci_dev *hdev) 4710 { 4711 struct hci_cp_le_set_default_phy cp; 4712 4713 if (!(hdev->commands[35] & 0x20)) { 4714 /* If the command is not supported it means only 1M PHY is 4715 * supported. 4716 */ 4717 hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M; 4718 hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M; 4719 return 0; 4720 } 4721 4722 memset(&cp, 0, sizeof(cp)); 4723 cp.all_phys = 0x00; 4724 cp.tx_phys = HCI_LE_SET_PHY_1M; 4725 cp.rx_phys = HCI_LE_SET_PHY_1M; 4726 4727 /* Enables 2M PHY if supported */ 4728 if (le_2m_capable(hdev)) { 4729 cp.tx_phys |= HCI_LE_SET_PHY_2M; 4730 cp.rx_phys |= HCI_LE_SET_PHY_2M; 4731 } 4732 4733 /* Enables Coded PHY if supported */ 4734 if (le_coded_capable(hdev)) { 4735 cp.tx_phys |= HCI_LE_SET_PHY_CODED; 4736 cp.rx_phys |= HCI_LE_SET_PHY_CODED; 4737 } 4738 4739 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_DEFAULT_PHY, 4740 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4741 } 4742 4743 static const struct hci_init_stage le_init4[] = { 4744 /* HCI_OP_LE_WRITE_DEF_DATA_LEN */ 4745 HCI_INIT(hci_le_set_write_def_data_len_sync), 4746 /* HCI_OP_LE_SET_DEFAULT_PHY */ 4747 HCI_INIT(hci_le_set_default_phy_sync), 4748 {} 4749 }; 4750 4751 static int hci_init4_sync(struct hci_dev *hdev) 4752 { 4753 int err; 4754 4755 bt_dev_dbg(hdev, ""); 4756 4757 err = hci_init_stage_sync(hdev, hci_init4); 4758 if (err) 4759 return err; 4760 4761 if (lmp_le_capable(hdev)) 4762 return hci_init_stage_sync(hdev, le_init4); 4763 4764 return 0; 4765 } 4766 4767 static int hci_init_sync(struct hci_dev *hdev) 4768 { 4769 int err; 4770 4771 err = hci_init1_sync(hdev); 4772 if (err < 0) 4773 return err; 4774 4775 if (hci_dev_test_flag(hdev, HCI_SETUP)) 4776 hci_debugfs_create_basic(hdev); 4777 4778 err = hci_init2_sync(hdev); 4779 if (err < 0) 4780 return err; 4781 4782 err = hci_init3_sync(hdev); 4783 if (err < 0) 4784 return err; 4785 4786 err = hci_init4_sync(hdev); 4787 if (err < 0) 4788 return err; 4789 4790 /* This function is only called when the controller is actually in 4791 * configured state. When the controller is marked as unconfigured, 4792 * this initialization procedure is not run. 4793 * 4794 * It means that it is possible that a controller runs through its 4795 * setup phase and then discovers missing settings. If that is the 4796 * case, then this function will not be called. It then will only 4797 * be called during the config phase. 4798 * 4799 * So only when in setup phase or config phase, create the debugfs 4800 * entries and register the SMP channels. 4801 */ 4802 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4803 !hci_dev_test_flag(hdev, HCI_CONFIG)) 4804 return 0; 4805 4806 if (hci_dev_test_and_set_flag(hdev, HCI_DEBUGFS_CREATED)) 4807 return 0; 4808 4809 hci_debugfs_create_common(hdev); 4810 4811 if (lmp_bredr_capable(hdev)) 4812 hci_debugfs_create_bredr(hdev); 4813 4814 if (lmp_le_capable(hdev)) 4815 hci_debugfs_create_le(hdev); 4816 4817 return 0; 4818 } 4819 4820 #define HCI_QUIRK_BROKEN(_quirk, _desc) { HCI_QUIRK_BROKEN_##_quirk, _desc } 4821 4822 static const struct { 4823 unsigned long quirk; 4824 const char *desc; 4825 } hci_broken_table[] = { 4826 HCI_QUIRK_BROKEN(LOCAL_COMMANDS, 4827 "HCI Read Local Supported Commands not supported"), 4828 HCI_QUIRK_BROKEN(STORED_LINK_KEY, 4829 "HCI Delete Stored Link Key command is advertised, " 4830 "but not supported."), 4831 HCI_QUIRK_BROKEN(ERR_DATA_REPORTING, 4832 "HCI Read Default Erroneous Data Reporting command is " 4833 "advertised, but not supported."), 4834 HCI_QUIRK_BROKEN(READ_TRANSMIT_POWER, 4835 "HCI Read Transmit Power Level command is advertised, " 4836 "but not supported."), 4837 HCI_QUIRK_BROKEN(FILTER_CLEAR_ALL, 4838 "HCI Set Event Filter command not supported."), 4839 HCI_QUIRK_BROKEN(ENHANCED_SETUP_SYNC_CONN, 4840 "HCI Enhanced Setup Synchronous Connection command is " 4841 "advertised, but not supported."), 4842 HCI_QUIRK_BROKEN(SET_RPA_TIMEOUT, 4843 "HCI LE Set Random Private Address Timeout command is " 4844 "advertised, but not supported."), 4845 HCI_QUIRK_BROKEN(LE_CODED, 4846 "HCI LE Coded PHY feature bit is set, " 4847 "but its usage is not supported.") 4848 }; 4849 4850 /* This function handles hdev setup stage: 4851 * 4852 * Calls hdev->setup 4853 * Setup address if HCI_QUIRK_USE_BDADDR_PROPERTY is set. 4854 */ 4855 static int hci_dev_setup_sync(struct hci_dev *hdev) 4856 { 4857 int ret = 0; 4858 bool invalid_bdaddr; 4859 size_t i; 4860 4861 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4862 !test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) 4863 return 0; 4864 4865 bt_dev_dbg(hdev, ""); 4866 4867 hci_sock_dev_event(hdev, HCI_DEV_SETUP); 4868 4869 if (hdev->setup) 4870 ret = hdev->setup(hdev); 4871 4872 for (i = 0; i < ARRAY_SIZE(hci_broken_table); i++) { 4873 if (test_bit(hci_broken_table[i].quirk, &hdev->quirks)) 4874 bt_dev_warn(hdev, "%s", hci_broken_table[i].desc); 4875 } 4876 4877 /* The transport driver can set the quirk to mark the 4878 * BD_ADDR invalid before creating the HCI device or in 4879 * its setup callback. 4880 */ 4881 invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks) || 4882 test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks); 4883 if (!ret) { 4884 if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks) && 4885 !bacmp(&hdev->public_addr, BDADDR_ANY)) 4886 hci_dev_get_bd_addr_from_property(hdev); 4887 4888 if (invalid_bdaddr && bacmp(&hdev->public_addr, BDADDR_ANY) && 4889 hdev->set_bdaddr) { 4890 ret = hdev->set_bdaddr(hdev, &hdev->public_addr); 4891 if (!ret) 4892 invalid_bdaddr = false; 4893 } 4894 } 4895 4896 /* The transport driver can set these quirks before 4897 * creating the HCI device or in its setup callback. 4898 * 4899 * For the invalid BD_ADDR quirk it is possible that 4900 * it becomes a valid address if the bootloader does 4901 * provide it (see above). 4902 * 4903 * In case any of them is set, the controller has to 4904 * start up as unconfigured. 4905 */ 4906 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) || 4907 invalid_bdaddr) 4908 hci_dev_set_flag(hdev, HCI_UNCONFIGURED); 4909 4910 /* For an unconfigured controller it is required to 4911 * read at least the version information provided by 4912 * the Read Local Version Information command. 4913 * 4914 * If the set_bdaddr driver callback is provided, then 4915 * also the original Bluetooth public device address 4916 * will be read using the Read BD Address command. 4917 */ 4918 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 4919 return hci_unconf_init_sync(hdev); 4920 4921 return ret; 4922 } 4923 4924 /* This function handles hdev init stage: 4925 * 4926 * Calls hci_dev_setup_sync to perform setup stage 4927 * Calls hci_init_sync to perform HCI command init sequence 4928 */ 4929 static int hci_dev_init_sync(struct hci_dev *hdev) 4930 { 4931 int ret; 4932 4933 bt_dev_dbg(hdev, ""); 4934 4935 atomic_set(&hdev->cmd_cnt, 1); 4936 set_bit(HCI_INIT, &hdev->flags); 4937 4938 ret = hci_dev_setup_sync(hdev); 4939 4940 if (hci_dev_test_flag(hdev, HCI_CONFIG)) { 4941 /* If public address change is configured, ensure that 4942 * the address gets programmed. If the driver does not 4943 * support changing the public address, fail the power 4944 * on procedure. 4945 */ 4946 if (bacmp(&hdev->public_addr, BDADDR_ANY) && 4947 hdev->set_bdaddr) 4948 ret = hdev->set_bdaddr(hdev, &hdev->public_addr); 4949 else 4950 ret = -EADDRNOTAVAIL; 4951 } 4952 4953 if (!ret) { 4954 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 4955 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4956 ret = hci_init_sync(hdev); 4957 if (!ret && hdev->post_init) 4958 ret = hdev->post_init(hdev); 4959 } 4960 } 4961 4962 /* If the HCI Reset command is clearing all diagnostic settings, 4963 * then they need to be reprogrammed after the init procedure 4964 * completed. 4965 */ 4966 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) && 4967 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4968 hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag) 4969 ret = hdev->set_diag(hdev, true); 4970 4971 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4972 msft_do_open(hdev); 4973 aosp_do_open(hdev); 4974 } 4975 4976 clear_bit(HCI_INIT, &hdev->flags); 4977 4978 return ret; 4979 } 4980 4981 int hci_dev_open_sync(struct hci_dev *hdev) 4982 { 4983 int ret; 4984 4985 bt_dev_dbg(hdev, ""); 4986 4987 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 4988 ret = -ENODEV; 4989 goto done; 4990 } 4991 4992 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4993 !hci_dev_test_flag(hdev, HCI_CONFIG)) { 4994 /* Check for rfkill but allow the HCI setup stage to 4995 * proceed (which in itself doesn't cause any RF activity). 4996 */ 4997 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) { 4998 ret = -ERFKILL; 4999 goto done; 5000 } 5001 5002 /* Check for valid public address or a configured static 5003 * random address, but let the HCI setup proceed to 5004 * be able to determine if there is a public address 5005 * or not. 5006 * 5007 * In case of user channel usage, it is not important 5008 * if a public address or static random address is 5009 * available. 5010 */ 5011 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 5012 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 5013 !bacmp(&hdev->static_addr, BDADDR_ANY)) { 5014 ret = -EADDRNOTAVAIL; 5015 goto done; 5016 } 5017 } 5018 5019 if (test_bit(HCI_UP, &hdev->flags)) { 5020 ret = -EALREADY; 5021 goto done; 5022 } 5023 5024 if (hdev->open(hdev)) { 5025 ret = -EIO; 5026 goto done; 5027 } 5028 5029 hci_devcd_reset(hdev); 5030 5031 set_bit(HCI_RUNNING, &hdev->flags); 5032 hci_sock_dev_event(hdev, HCI_DEV_OPEN); 5033 5034 ret = hci_dev_init_sync(hdev); 5035 if (!ret) { 5036 hci_dev_hold(hdev); 5037 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 5038 hci_adv_instances_set_rpa_expired(hdev, true); 5039 set_bit(HCI_UP, &hdev->flags); 5040 hci_sock_dev_event(hdev, HCI_DEV_UP); 5041 hci_leds_update_powered(hdev, true); 5042 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 5043 !hci_dev_test_flag(hdev, HCI_CONFIG) && 5044 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 5045 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 5046 hci_dev_test_flag(hdev, HCI_MGMT)) { 5047 ret = hci_powered_update_sync(hdev); 5048 mgmt_power_on(hdev, ret); 5049 } 5050 } else { 5051 /* Init failed, cleanup */ 5052 flush_work(&hdev->tx_work); 5053 5054 /* Since hci_rx_work() is possible to awake new cmd_work 5055 * it should be flushed first to avoid unexpected call of 5056 * hci_cmd_work() 5057 */ 5058 flush_work(&hdev->rx_work); 5059 flush_work(&hdev->cmd_work); 5060 5061 skb_queue_purge(&hdev->cmd_q); 5062 skb_queue_purge(&hdev->rx_q); 5063 5064 if (hdev->flush) 5065 hdev->flush(hdev); 5066 5067 if (hdev->sent_cmd) { 5068 cancel_delayed_work_sync(&hdev->cmd_timer); 5069 kfree_skb(hdev->sent_cmd); 5070 hdev->sent_cmd = NULL; 5071 } 5072 5073 if (hdev->req_skb) { 5074 kfree_skb(hdev->req_skb); 5075 hdev->req_skb = NULL; 5076 } 5077 5078 clear_bit(HCI_RUNNING, &hdev->flags); 5079 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 5080 5081 hdev->close(hdev); 5082 hdev->flags &= BIT(HCI_RAW); 5083 } 5084 5085 done: 5086 return ret; 5087 } 5088 5089 /* This function requires the caller holds hdev->lock */ 5090 static void hci_pend_le_actions_clear(struct hci_dev *hdev) 5091 { 5092 struct hci_conn_params *p; 5093 5094 list_for_each_entry(p, &hdev->le_conn_params, list) { 5095 hci_pend_le_list_del_init(p); 5096 if (p->conn) { 5097 hci_conn_drop(p->conn); 5098 hci_conn_put(p->conn); 5099 p->conn = NULL; 5100 } 5101 } 5102 5103 BT_DBG("All LE pending actions cleared"); 5104 } 5105 5106 static int hci_dev_shutdown(struct hci_dev *hdev) 5107 { 5108 int err = 0; 5109 /* Similar to how we first do setup and then set the exclusive access 5110 * bit for userspace, we must first unset userchannel and then clean up. 5111 * Otherwise, the kernel can't properly use the hci channel to clean up 5112 * the controller (some shutdown routines require sending additional 5113 * commands to the controller for example). 5114 */ 5115 bool was_userchannel = 5116 hci_dev_test_and_clear_flag(hdev, HCI_USER_CHANNEL); 5117 5118 if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) && 5119 test_bit(HCI_UP, &hdev->flags)) { 5120 /* Execute vendor specific shutdown routine */ 5121 if (hdev->shutdown) 5122 err = hdev->shutdown(hdev); 5123 } 5124 5125 if (was_userchannel) 5126 hci_dev_set_flag(hdev, HCI_USER_CHANNEL); 5127 5128 return err; 5129 } 5130 5131 int hci_dev_close_sync(struct hci_dev *hdev) 5132 { 5133 bool auto_off; 5134 int err = 0; 5135 5136 bt_dev_dbg(hdev, ""); 5137 5138 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 5139 disable_delayed_work(&hdev->power_off); 5140 disable_delayed_work(&hdev->ncmd_timer); 5141 disable_delayed_work(&hdev->le_scan_disable); 5142 } else { 5143 cancel_delayed_work(&hdev->power_off); 5144 cancel_delayed_work(&hdev->ncmd_timer); 5145 cancel_delayed_work(&hdev->le_scan_disable); 5146 } 5147 5148 hci_cmd_sync_cancel_sync(hdev, ENODEV); 5149 5150 cancel_interleave_scan(hdev); 5151 5152 if (hdev->adv_instance_timeout) { 5153 cancel_delayed_work_sync(&hdev->adv_instance_expire); 5154 hdev->adv_instance_timeout = 0; 5155 } 5156 5157 err = hci_dev_shutdown(hdev); 5158 5159 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) { 5160 cancel_delayed_work_sync(&hdev->cmd_timer); 5161 return err; 5162 } 5163 5164 hci_leds_update_powered(hdev, false); 5165 5166 /* Flush RX and TX works */ 5167 flush_work(&hdev->tx_work); 5168 flush_work(&hdev->rx_work); 5169 5170 if (hdev->discov_timeout > 0) { 5171 hdev->discov_timeout = 0; 5172 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 5173 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 5174 } 5175 5176 if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE)) 5177 cancel_delayed_work(&hdev->service_cache); 5178 5179 if (hci_dev_test_flag(hdev, HCI_MGMT)) { 5180 struct adv_info *adv_instance; 5181 5182 cancel_delayed_work_sync(&hdev->rpa_expired); 5183 5184 list_for_each_entry(adv_instance, &hdev->adv_instances, list) 5185 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb); 5186 } 5187 5188 /* Avoid potential lockdep warnings from the *_flush() calls by 5189 * ensuring the workqueue is empty up front. 5190 */ 5191 drain_workqueue(hdev->workqueue); 5192 5193 hci_dev_lock(hdev); 5194 5195 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 5196 5197 auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF); 5198 5199 if (!auto_off && !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 5200 hci_dev_test_flag(hdev, HCI_MGMT)) 5201 __mgmt_power_off(hdev); 5202 5203 hci_inquiry_cache_flush(hdev); 5204 hci_pend_le_actions_clear(hdev); 5205 hci_conn_hash_flush(hdev); 5206 /* Prevent data races on hdev->smp_data or hdev->smp_bredr_data */ 5207 smp_unregister(hdev); 5208 hci_dev_unlock(hdev); 5209 5210 hci_sock_dev_event(hdev, HCI_DEV_DOWN); 5211 5212 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 5213 aosp_do_close(hdev); 5214 msft_do_close(hdev); 5215 } 5216 5217 if (hdev->flush) 5218 hdev->flush(hdev); 5219 5220 /* Reset device */ 5221 skb_queue_purge(&hdev->cmd_q); 5222 atomic_set(&hdev->cmd_cnt, 1); 5223 if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) && 5224 !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 5225 set_bit(HCI_INIT, &hdev->flags); 5226 hci_reset_sync(hdev); 5227 clear_bit(HCI_INIT, &hdev->flags); 5228 } 5229 5230 /* flush cmd work */ 5231 flush_work(&hdev->cmd_work); 5232 5233 /* Drop queues */ 5234 skb_queue_purge(&hdev->rx_q); 5235 skb_queue_purge(&hdev->cmd_q); 5236 skb_queue_purge(&hdev->raw_q); 5237 5238 /* Drop last sent command */ 5239 if (hdev->sent_cmd) { 5240 cancel_delayed_work_sync(&hdev->cmd_timer); 5241 kfree_skb(hdev->sent_cmd); 5242 hdev->sent_cmd = NULL; 5243 } 5244 5245 /* Drop last request */ 5246 if (hdev->req_skb) { 5247 kfree_skb(hdev->req_skb); 5248 hdev->req_skb = NULL; 5249 } 5250 5251 clear_bit(HCI_RUNNING, &hdev->flags); 5252 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 5253 5254 /* After this point our queues are empty and no tasks are scheduled. */ 5255 hdev->close(hdev); 5256 5257 /* Clear flags */ 5258 hdev->flags &= BIT(HCI_RAW); 5259 hci_dev_clear_volatile_flags(hdev); 5260 5261 memset(hdev->eir, 0, sizeof(hdev->eir)); 5262 memset(hdev->dev_class, 0, sizeof(hdev->dev_class)); 5263 bacpy(&hdev->random_addr, BDADDR_ANY); 5264 hci_codec_list_clear(&hdev->local_codecs); 5265 5266 hci_dev_put(hdev); 5267 return err; 5268 } 5269 5270 /* This function perform power on HCI command sequence as follows: 5271 * 5272 * If controller is already up (HCI_UP) performs hci_powered_update_sync 5273 * sequence otherwise run hci_dev_open_sync which will follow with 5274 * hci_powered_update_sync after the init sequence is completed. 5275 */ 5276 static int hci_power_on_sync(struct hci_dev *hdev) 5277 { 5278 int err; 5279 5280 if (test_bit(HCI_UP, &hdev->flags) && 5281 hci_dev_test_flag(hdev, HCI_MGMT) && 5282 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) { 5283 cancel_delayed_work(&hdev->power_off); 5284 return hci_powered_update_sync(hdev); 5285 } 5286 5287 err = hci_dev_open_sync(hdev); 5288 if (err < 0) 5289 return err; 5290 5291 /* During the HCI setup phase, a few error conditions are 5292 * ignored and they need to be checked now. If they are still 5293 * valid, it is important to return the device back off. 5294 */ 5295 if (hci_dev_test_flag(hdev, HCI_RFKILLED) || 5296 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) || 5297 (!bacmp(&hdev->bdaddr, BDADDR_ANY) && 5298 !bacmp(&hdev->static_addr, BDADDR_ANY))) { 5299 hci_dev_clear_flag(hdev, HCI_AUTO_OFF); 5300 hci_dev_close_sync(hdev); 5301 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) { 5302 queue_delayed_work(hdev->req_workqueue, &hdev->power_off, 5303 HCI_AUTO_OFF_TIMEOUT); 5304 } 5305 5306 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) { 5307 /* For unconfigured devices, set the HCI_RAW flag 5308 * so that userspace can easily identify them. 5309 */ 5310 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 5311 set_bit(HCI_RAW, &hdev->flags); 5312 5313 /* For fully configured devices, this will send 5314 * the Index Added event. For unconfigured devices, 5315 * it will send Unconfigued Index Added event. 5316 * 5317 * Devices with HCI_QUIRK_RAW_DEVICE are ignored 5318 * and no event will be send. 5319 */ 5320 mgmt_index_added(hdev); 5321 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) { 5322 /* When the controller is now configured, then it 5323 * is important to clear the HCI_RAW flag. 5324 */ 5325 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 5326 clear_bit(HCI_RAW, &hdev->flags); 5327 5328 /* Powering on the controller with HCI_CONFIG set only 5329 * happens with the transition from unconfigured to 5330 * configured. This will send the Index Added event. 5331 */ 5332 mgmt_index_added(hdev); 5333 } 5334 5335 return 0; 5336 } 5337 5338 static int hci_remote_name_cancel_sync(struct hci_dev *hdev, bdaddr_t *addr) 5339 { 5340 struct hci_cp_remote_name_req_cancel cp; 5341 5342 memset(&cp, 0, sizeof(cp)); 5343 bacpy(&cp.bdaddr, addr); 5344 5345 return __hci_cmd_sync_status(hdev, HCI_OP_REMOTE_NAME_REQ_CANCEL, 5346 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5347 } 5348 5349 int hci_stop_discovery_sync(struct hci_dev *hdev) 5350 { 5351 struct discovery_state *d = &hdev->discovery; 5352 struct inquiry_entry *e; 5353 int err; 5354 5355 bt_dev_dbg(hdev, "state %u", hdev->discovery.state); 5356 5357 if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) { 5358 if (test_bit(HCI_INQUIRY, &hdev->flags)) { 5359 err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL, 5360 0, NULL, HCI_CMD_TIMEOUT); 5361 if (err) 5362 return err; 5363 } 5364 5365 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 5366 cancel_delayed_work(&hdev->le_scan_disable); 5367 5368 err = hci_scan_disable_sync(hdev); 5369 if (err) 5370 return err; 5371 } 5372 5373 } else { 5374 err = hci_scan_disable_sync(hdev); 5375 if (err) 5376 return err; 5377 } 5378 5379 /* Resume advertising if it was paused */ 5380 if (use_ll_privacy(hdev)) 5381 hci_resume_advertising_sync(hdev); 5382 5383 /* No further actions needed for LE-only discovery */ 5384 if (d->type == DISCOV_TYPE_LE) 5385 return 0; 5386 5387 if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) { 5388 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY, 5389 NAME_PENDING); 5390 if (!e) 5391 return 0; 5392 5393 /* Ignore cancel errors since it should interfere with stopping 5394 * of the discovery. 5395 */ 5396 hci_remote_name_cancel_sync(hdev, &e->data.bdaddr); 5397 } 5398 5399 return 0; 5400 } 5401 5402 static int hci_disconnect_sync(struct hci_dev *hdev, struct hci_conn *conn, 5403 u8 reason) 5404 { 5405 struct hci_cp_disconnect cp; 5406 5407 if (test_bit(HCI_CONN_BIG_CREATED, &conn->flags)) { 5408 /* This is a BIS connection, hci_conn_del will 5409 * do the necessary cleanup. 5410 */ 5411 hci_dev_lock(hdev); 5412 hci_conn_failed(conn, reason); 5413 hci_dev_unlock(hdev); 5414 5415 return 0; 5416 } 5417 5418 memset(&cp, 0, sizeof(cp)); 5419 cp.handle = cpu_to_le16(conn->handle); 5420 cp.reason = reason; 5421 5422 /* Wait for HCI_EV_DISCONN_COMPLETE, not HCI_EV_CMD_STATUS, when the 5423 * reason is anything but HCI_ERROR_REMOTE_POWER_OFF. This reason is 5424 * used when suspending or powering off, where we don't want to wait 5425 * for the peer's response. 5426 */ 5427 if (reason != HCI_ERROR_REMOTE_POWER_OFF) 5428 return __hci_cmd_sync_status_sk(hdev, HCI_OP_DISCONNECT, 5429 sizeof(cp), &cp, 5430 HCI_EV_DISCONN_COMPLETE, 5431 HCI_CMD_TIMEOUT, NULL); 5432 5433 return __hci_cmd_sync_status(hdev, HCI_OP_DISCONNECT, sizeof(cp), &cp, 5434 HCI_CMD_TIMEOUT); 5435 } 5436 5437 static int hci_le_connect_cancel_sync(struct hci_dev *hdev, 5438 struct hci_conn *conn, u8 reason) 5439 { 5440 /* Return reason if scanning since the connection shall probably be 5441 * cleanup directly. 5442 */ 5443 if (test_bit(HCI_CONN_SCANNING, &conn->flags)) 5444 return reason; 5445 5446 if (conn->role == HCI_ROLE_SLAVE || 5447 test_and_set_bit(HCI_CONN_CANCEL, &conn->flags)) 5448 return 0; 5449 5450 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CREATE_CONN_CANCEL, 5451 0, NULL, HCI_CMD_TIMEOUT); 5452 } 5453 5454 static int hci_connect_cancel_sync(struct hci_dev *hdev, struct hci_conn *conn, 5455 u8 reason) 5456 { 5457 if (conn->type == LE_LINK) 5458 return hci_le_connect_cancel_sync(hdev, conn, reason); 5459 5460 if (conn->type == ISO_LINK) { 5461 /* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E 5462 * page 1857: 5463 * 5464 * If this command is issued for a CIS on the Central and the 5465 * CIS is successfully terminated before being established, 5466 * then an HCI_LE_CIS_Established event shall also be sent for 5467 * this CIS with the Status Operation Cancelled by Host (0x44). 5468 */ 5469 if (test_bit(HCI_CONN_CREATE_CIS, &conn->flags)) 5470 return hci_disconnect_sync(hdev, conn, reason); 5471 5472 /* CIS with no Create CIS sent have nothing to cancel */ 5473 if (bacmp(&conn->dst, BDADDR_ANY)) 5474 return HCI_ERROR_LOCAL_HOST_TERM; 5475 5476 /* There is no way to cancel a BIS without terminating the BIG 5477 * which is done later on connection cleanup. 5478 */ 5479 return 0; 5480 } 5481 5482 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 5483 return 0; 5484 5485 /* Wait for HCI_EV_CONN_COMPLETE, not HCI_EV_CMD_STATUS, when the 5486 * reason is anything but HCI_ERROR_REMOTE_POWER_OFF. This reason is 5487 * used when suspending or powering off, where we don't want to wait 5488 * for the peer's response. 5489 */ 5490 if (reason != HCI_ERROR_REMOTE_POWER_OFF) 5491 return __hci_cmd_sync_status_sk(hdev, HCI_OP_CREATE_CONN_CANCEL, 5492 6, &conn->dst, 5493 HCI_EV_CONN_COMPLETE, 5494 HCI_CMD_TIMEOUT, NULL); 5495 5496 return __hci_cmd_sync_status(hdev, HCI_OP_CREATE_CONN_CANCEL, 5497 6, &conn->dst, HCI_CMD_TIMEOUT); 5498 } 5499 5500 static int hci_reject_sco_sync(struct hci_dev *hdev, struct hci_conn *conn, 5501 u8 reason) 5502 { 5503 struct hci_cp_reject_sync_conn_req cp; 5504 5505 memset(&cp, 0, sizeof(cp)); 5506 bacpy(&cp.bdaddr, &conn->dst); 5507 cp.reason = reason; 5508 5509 /* SCO rejection has its own limited set of 5510 * allowed error values (0x0D-0x0F). 5511 */ 5512 if (reason < 0x0d || reason > 0x0f) 5513 cp.reason = HCI_ERROR_REJ_LIMITED_RESOURCES; 5514 5515 return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_SYNC_CONN_REQ, 5516 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5517 } 5518 5519 static int hci_le_reject_cis_sync(struct hci_dev *hdev, struct hci_conn *conn, 5520 u8 reason) 5521 { 5522 struct hci_cp_le_reject_cis cp; 5523 5524 memset(&cp, 0, sizeof(cp)); 5525 cp.handle = cpu_to_le16(conn->handle); 5526 cp.reason = reason; 5527 5528 return __hci_cmd_sync_status(hdev, HCI_OP_LE_REJECT_CIS, 5529 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5530 } 5531 5532 static int hci_reject_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, 5533 u8 reason) 5534 { 5535 struct hci_cp_reject_conn_req cp; 5536 5537 if (conn->type == ISO_LINK) 5538 return hci_le_reject_cis_sync(hdev, conn, reason); 5539 5540 if (conn->type == SCO_LINK || conn->type == ESCO_LINK) 5541 return hci_reject_sco_sync(hdev, conn, reason); 5542 5543 memset(&cp, 0, sizeof(cp)); 5544 bacpy(&cp.bdaddr, &conn->dst); 5545 cp.reason = reason; 5546 5547 return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_CONN_REQ, 5548 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5549 } 5550 5551 int hci_abort_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, u8 reason) 5552 { 5553 int err = 0; 5554 u16 handle = conn->handle; 5555 bool disconnect = false; 5556 struct hci_conn *c; 5557 5558 switch (conn->state) { 5559 case BT_CONNECTED: 5560 case BT_CONFIG: 5561 err = hci_disconnect_sync(hdev, conn, reason); 5562 break; 5563 case BT_CONNECT: 5564 err = hci_connect_cancel_sync(hdev, conn, reason); 5565 break; 5566 case BT_CONNECT2: 5567 err = hci_reject_conn_sync(hdev, conn, reason); 5568 break; 5569 case BT_OPEN: 5570 case BT_BOUND: 5571 break; 5572 default: 5573 disconnect = true; 5574 break; 5575 } 5576 5577 hci_dev_lock(hdev); 5578 5579 /* Check if the connection has been cleaned up concurrently */ 5580 c = hci_conn_hash_lookup_handle(hdev, handle); 5581 if (!c || c != conn) { 5582 err = 0; 5583 goto unlock; 5584 } 5585 5586 /* Cleanup hci_conn object if it cannot be cancelled as it 5587 * likelly means the controller and host stack are out of sync 5588 * or in case of LE it was still scanning so it can be cleanup 5589 * safely. 5590 */ 5591 if (disconnect) { 5592 conn->state = BT_CLOSED; 5593 hci_disconn_cfm(conn, reason); 5594 hci_conn_del(conn); 5595 } else { 5596 hci_conn_failed(conn, reason); 5597 } 5598 5599 unlock: 5600 hci_dev_unlock(hdev); 5601 return err; 5602 } 5603 5604 static int hci_disconnect_all_sync(struct hci_dev *hdev, u8 reason) 5605 { 5606 struct list_head *head = &hdev->conn_hash.list; 5607 struct hci_conn *conn; 5608 5609 rcu_read_lock(); 5610 while ((conn = list_first_or_null_rcu(head, struct hci_conn, list))) { 5611 /* Make sure the connection is not freed while unlocking */ 5612 conn = hci_conn_get(conn); 5613 rcu_read_unlock(); 5614 /* Disregard possible errors since hci_conn_del shall have been 5615 * called even in case of errors had occurred since it would 5616 * then cause hci_conn_failed to be called which calls 5617 * hci_conn_del internally. 5618 */ 5619 hci_abort_conn_sync(hdev, conn, reason); 5620 hci_conn_put(conn); 5621 rcu_read_lock(); 5622 } 5623 rcu_read_unlock(); 5624 5625 return 0; 5626 } 5627 5628 /* This function perform power off HCI command sequence as follows: 5629 * 5630 * Clear Advertising 5631 * Stop Discovery 5632 * Disconnect all connections 5633 * hci_dev_close_sync 5634 */ 5635 static int hci_power_off_sync(struct hci_dev *hdev) 5636 { 5637 int err; 5638 5639 /* If controller is already down there is nothing to do */ 5640 if (!test_bit(HCI_UP, &hdev->flags)) 5641 return 0; 5642 5643 hci_dev_set_flag(hdev, HCI_POWERING_DOWN); 5644 5645 if (test_bit(HCI_ISCAN, &hdev->flags) || 5646 test_bit(HCI_PSCAN, &hdev->flags)) { 5647 err = hci_write_scan_enable_sync(hdev, 0x00); 5648 if (err) 5649 goto out; 5650 } 5651 5652 err = hci_clear_adv_sync(hdev, NULL, false); 5653 if (err) 5654 goto out; 5655 5656 err = hci_stop_discovery_sync(hdev); 5657 if (err) 5658 goto out; 5659 5660 /* Terminated due to Power Off */ 5661 err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF); 5662 if (err) 5663 goto out; 5664 5665 err = hci_dev_close_sync(hdev); 5666 5667 out: 5668 hci_dev_clear_flag(hdev, HCI_POWERING_DOWN); 5669 return err; 5670 } 5671 5672 int hci_set_powered_sync(struct hci_dev *hdev, u8 val) 5673 { 5674 if (val) 5675 return hci_power_on_sync(hdev); 5676 5677 return hci_power_off_sync(hdev); 5678 } 5679 5680 static int hci_write_iac_sync(struct hci_dev *hdev) 5681 { 5682 struct hci_cp_write_current_iac_lap cp; 5683 5684 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 5685 return 0; 5686 5687 memset(&cp, 0, sizeof(cp)); 5688 5689 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { 5690 /* Limited discoverable mode */ 5691 cp.num_iac = min_t(u8, hdev->num_iac, 2); 5692 cp.iac_lap[0] = 0x00; /* LIAC */ 5693 cp.iac_lap[1] = 0x8b; 5694 cp.iac_lap[2] = 0x9e; 5695 cp.iac_lap[3] = 0x33; /* GIAC */ 5696 cp.iac_lap[4] = 0x8b; 5697 cp.iac_lap[5] = 0x9e; 5698 } else { 5699 /* General discoverable mode */ 5700 cp.num_iac = 1; 5701 cp.iac_lap[0] = 0x33; /* GIAC */ 5702 cp.iac_lap[1] = 0x8b; 5703 cp.iac_lap[2] = 0x9e; 5704 } 5705 5706 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CURRENT_IAC_LAP, 5707 (cp.num_iac * 3) + 1, &cp, 5708 HCI_CMD_TIMEOUT); 5709 } 5710 5711 int hci_update_discoverable_sync(struct hci_dev *hdev) 5712 { 5713 int err = 0; 5714 5715 if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 5716 err = hci_write_iac_sync(hdev); 5717 if (err) 5718 return err; 5719 5720 err = hci_update_scan_sync(hdev); 5721 if (err) 5722 return err; 5723 5724 err = hci_update_class_sync(hdev); 5725 if (err) 5726 return err; 5727 } 5728 5729 /* Advertising instances don't use the global discoverable setting, so 5730 * only update AD if advertising was enabled using Set Advertising. 5731 */ 5732 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) { 5733 err = hci_update_adv_data_sync(hdev, 0x00); 5734 if (err) 5735 return err; 5736 5737 /* Discoverable mode affects the local advertising 5738 * address in limited privacy mode. 5739 */ 5740 if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) { 5741 if (ext_adv_capable(hdev)) 5742 err = hci_start_ext_adv_sync(hdev, 0x00); 5743 else 5744 err = hci_enable_advertising_sync(hdev); 5745 } 5746 } 5747 5748 return err; 5749 } 5750 5751 static int update_discoverable_sync(struct hci_dev *hdev, void *data) 5752 { 5753 return hci_update_discoverable_sync(hdev); 5754 } 5755 5756 int hci_update_discoverable(struct hci_dev *hdev) 5757 { 5758 /* Only queue if it would have any effect */ 5759 if (hdev_is_powered(hdev) && 5760 hci_dev_test_flag(hdev, HCI_ADVERTISING) && 5761 hci_dev_test_flag(hdev, HCI_DISCOVERABLE) && 5762 hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) 5763 return hci_cmd_sync_queue(hdev, update_discoverable_sync, NULL, 5764 NULL); 5765 5766 return 0; 5767 } 5768 5769 int hci_update_connectable_sync(struct hci_dev *hdev) 5770 { 5771 int err; 5772 5773 err = hci_update_scan_sync(hdev); 5774 if (err) 5775 return err; 5776 5777 /* If BR/EDR is not enabled and we disable advertising as a 5778 * by-product of disabling connectable, we need to update the 5779 * advertising flags. 5780 */ 5781 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 5782 err = hci_update_adv_data_sync(hdev, hdev->cur_adv_instance); 5783 5784 /* Update the advertising parameters if necessary */ 5785 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 5786 !list_empty(&hdev->adv_instances)) { 5787 if (ext_adv_capable(hdev)) 5788 err = hci_start_ext_adv_sync(hdev, 5789 hdev->cur_adv_instance); 5790 else 5791 err = hci_enable_advertising_sync(hdev); 5792 5793 if (err) 5794 return err; 5795 } 5796 5797 return hci_update_passive_scan_sync(hdev); 5798 } 5799 5800 int hci_inquiry_sync(struct hci_dev *hdev, u8 length, u8 num_rsp) 5801 { 5802 const u8 giac[3] = { 0x33, 0x8b, 0x9e }; 5803 const u8 liac[3] = { 0x00, 0x8b, 0x9e }; 5804 struct hci_cp_inquiry cp; 5805 5806 bt_dev_dbg(hdev, ""); 5807 5808 if (test_bit(HCI_INQUIRY, &hdev->flags)) 5809 return 0; 5810 5811 hci_dev_lock(hdev); 5812 hci_inquiry_cache_flush(hdev); 5813 hci_dev_unlock(hdev); 5814 5815 memset(&cp, 0, sizeof(cp)); 5816 5817 if (hdev->discovery.limited) 5818 memcpy(&cp.lap, liac, sizeof(cp.lap)); 5819 else 5820 memcpy(&cp.lap, giac, sizeof(cp.lap)); 5821 5822 cp.length = length; 5823 cp.num_rsp = num_rsp; 5824 5825 return __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY, 5826 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5827 } 5828 5829 static int hci_active_scan_sync(struct hci_dev *hdev, uint16_t interval) 5830 { 5831 u8 own_addr_type; 5832 /* Accept list is not used for discovery */ 5833 u8 filter_policy = 0x00; 5834 /* Default is to enable duplicates filter */ 5835 u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE; 5836 int err; 5837 5838 bt_dev_dbg(hdev, ""); 5839 5840 /* If controller is scanning, it means the passive scanning is 5841 * running. Thus, we should temporarily stop it in order to set the 5842 * discovery scanning parameters. 5843 */ 5844 err = hci_scan_disable_sync(hdev); 5845 if (err) { 5846 bt_dev_err(hdev, "Unable to disable scanning: %d", err); 5847 return err; 5848 } 5849 5850 cancel_interleave_scan(hdev); 5851 5852 /* Pause address resolution for active scan and stop advertising if 5853 * privacy is enabled. 5854 */ 5855 err = hci_pause_addr_resolution(hdev); 5856 if (err) 5857 goto failed; 5858 5859 /* All active scans will be done with either a resolvable private 5860 * address (when privacy feature has been enabled) or non-resolvable 5861 * private address. 5862 */ 5863 err = hci_update_random_address_sync(hdev, true, scan_use_rpa(hdev), 5864 &own_addr_type); 5865 if (err < 0) 5866 own_addr_type = ADDR_LE_DEV_PUBLIC; 5867 5868 if (hci_is_adv_monitoring(hdev) || 5869 (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) && 5870 hdev->discovery.result_filtering)) { 5871 /* Duplicate filter should be disabled when some advertisement 5872 * monitor is activated, otherwise AdvMon can only receive one 5873 * advertisement for one peer(*) during active scanning, and 5874 * might report loss to these peers. 5875 * 5876 * If controller does strict duplicate filtering and the 5877 * discovery requires result filtering disables controller based 5878 * filtering since that can cause reports that would match the 5879 * host filter to not be reported. 5880 */ 5881 filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 5882 } 5883 5884 err = hci_start_scan_sync(hdev, LE_SCAN_ACTIVE, interval, 5885 hdev->le_scan_window_discovery, 5886 own_addr_type, filter_policy, filter_dup); 5887 if (!err) 5888 return err; 5889 5890 failed: 5891 /* Resume advertising if it was paused */ 5892 if (use_ll_privacy(hdev)) 5893 hci_resume_advertising_sync(hdev); 5894 5895 /* Resume passive scanning */ 5896 hci_update_passive_scan_sync(hdev); 5897 return err; 5898 } 5899 5900 static int hci_start_interleaved_discovery_sync(struct hci_dev *hdev) 5901 { 5902 int err; 5903 5904 bt_dev_dbg(hdev, ""); 5905 5906 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery * 2); 5907 if (err) 5908 return err; 5909 5910 return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN, 0); 5911 } 5912 5913 int hci_start_discovery_sync(struct hci_dev *hdev) 5914 { 5915 unsigned long timeout; 5916 int err; 5917 5918 bt_dev_dbg(hdev, "type %u", hdev->discovery.type); 5919 5920 switch (hdev->discovery.type) { 5921 case DISCOV_TYPE_BREDR: 5922 return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN, 0); 5923 case DISCOV_TYPE_INTERLEAVED: 5924 /* When running simultaneous discovery, the LE scanning time 5925 * should occupy the whole discovery time sine BR/EDR inquiry 5926 * and LE scanning are scheduled by the controller. 5927 * 5928 * For interleaving discovery in comparison, BR/EDR inquiry 5929 * and LE scanning are done sequentially with separate 5930 * timeouts. 5931 */ 5932 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, 5933 &hdev->quirks)) { 5934 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 5935 /* During simultaneous discovery, we double LE scan 5936 * interval. We must leave some time for the controller 5937 * to do BR/EDR inquiry. 5938 */ 5939 err = hci_start_interleaved_discovery_sync(hdev); 5940 break; 5941 } 5942 5943 timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout); 5944 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery); 5945 break; 5946 case DISCOV_TYPE_LE: 5947 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 5948 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery); 5949 break; 5950 default: 5951 return -EINVAL; 5952 } 5953 5954 if (err) 5955 return err; 5956 5957 bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout)); 5958 5959 queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable, 5960 timeout); 5961 return 0; 5962 } 5963 5964 static void hci_suspend_monitor_sync(struct hci_dev *hdev) 5965 { 5966 switch (hci_get_adv_monitor_offload_ext(hdev)) { 5967 case HCI_ADV_MONITOR_EXT_MSFT: 5968 msft_suspend_sync(hdev); 5969 break; 5970 default: 5971 return; 5972 } 5973 } 5974 5975 /* This function disables discovery and mark it as paused */ 5976 static int hci_pause_discovery_sync(struct hci_dev *hdev) 5977 { 5978 int old_state = hdev->discovery.state; 5979 int err; 5980 5981 /* If discovery already stopped/stopping/paused there nothing to do */ 5982 if (old_state == DISCOVERY_STOPPED || old_state == DISCOVERY_STOPPING || 5983 hdev->discovery_paused) 5984 return 0; 5985 5986 hci_discovery_set_state(hdev, DISCOVERY_STOPPING); 5987 err = hci_stop_discovery_sync(hdev); 5988 if (err) 5989 return err; 5990 5991 hdev->discovery_paused = true; 5992 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 5993 5994 return 0; 5995 } 5996 5997 static int hci_update_event_filter_sync(struct hci_dev *hdev) 5998 { 5999 struct bdaddr_list_with_flags *b; 6000 u8 scan = SCAN_DISABLED; 6001 bool scanning = test_bit(HCI_PSCAN, &hdev->flags); 6002 int err; 6003 6004 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 6005 return 0; 6006 6007 /* Some fake CSR controllers lock up after setting this type of 6008 * filter, so avoid sending the request altogether. 6009 */ 6010 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 6011 return 0; 6012 6013 /* Always clear event filter when starting */ 6014 hci_clear_event_filter_sync(hdev); 6015 6016 list_for_each_entry(b, &hdev->accept_list, list) { 6017 if (!(b->flags & HCI_CONN_FLAG_REMOTE_WAKEUP)) 6018 continue; 6019 6020 bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr); 6021 6022 err = hci_set_event_filter_sync(hdev, HCI_FLT_CONN_SETUP, 6023 HCI_CONN_SETUP_ALLOW_BDADDR, 6024 &b->bdaddr, 6025 HCI_CONN_SETUP_AUTO_ON); 6026 if (err) 6027 bt_dev_dbg(hdev, "Failed to set event filter for %pMR", 6028 &b->bdaddr); 6029 else 6030 scan = SCAN_PAGE; 6031 } 6032 6033 if (scan && !scanning) 6034 hci_write_scan_enable_sync(hdev, scan); 6035 else if (!scan && scanning) 6036 hci_write_scan_enable_sync(hdev, scan); 6037 6038 return 0; 6039 } 6040 6041 /* This function disables scan (BR and LE) and mark it as paused */ 6042 static int hci_pause_scan_sync(struct hci_dev *hdev) 6043 { 6044 if (hdev->scanning_paused) 6045 return 0; 6046 6047 /* Disable page scan if enabled */ 6048 if (test_bit(HCI_PSCAN, &hdev->flags)) 6049 hci_write_scan_enable_sync(hdev, SCAN_DISABLED); 6050 6051 hci_scan_disable_sync(hdev); 6052 6053 hdev->scanning_paused = true; 6054 6055 return 0; 6056 } 6057 6058 /* This function performs the HCI suspend procedures in the follow order: 6059 * 6060 * Pause discovery (active scanning/inquiry) 6061 * Pause Directed Advertising/Advertising 6062 * Pause Scanning (passive scanning in case discovery was not active) 6063 * Disconnect all connections 6064 * Set suspend_status to BT_SUSPEND_DISCONNECT if hdev cannot wakeup 6065 * otherwise: 6066 * Update event mask (only set events that are allowed to wake up the host) 6067 * Update event filter (with devices marked with HCI_CONN_FLAG_REMOTE_WAKEUP) 6068 * Update passive scanning (lower duty cycle) 6069 * Set suspend_status to BT_SUSPEND_CONFIGURE_WAKE 6070 */ 6071 int hci_suspend_sync(struct hci_dev *hdev) 6072 { 6073 int err; 6074 6075 /* If marked as suspended there nothing to do */ 6076 if (hdev->suspended) 6077 return 0; 6078 6079 /* Mark device as suspended */ 6080 hdev->suspended = true; 6081 6082 /* Pause discovery if not already stopped */ 6083 hci_pause_discovery_sync(hdev); 6084 6085 /* Pause other advertisements */ 6086 hci_pause_advertising_sync(hdev); 6087 6088 /* Suspend monitor filters */ 6089 hci_suspend_monitor_sync(hdev); 6090 6091 /* Prevent disconnects from causing scanning to be re-enabled */ 6092 hci_pause_scan_sync(hdev); 6093 6094 if (hci_conn_count(hdev)) { 6095 /* Soft disconnect everything (power off) */ 6096 err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF); 6097 if (err) { 6098 /* Set state to BT_RUNNING so resume doesn't notify */ 6099 hdev->suspend_state = BT_RUNNING; 6100 hci_resume_sync(hdev); 6101 return err; 6102 } 6103 6104 /* Update event mask so only the allowed event can wakeup the 6105 * host. 6106 */ 6107 hci_set_event_mask_sync(hdev); 6108 } 6109 6110 /* Only configure accept list if disconnect succeeded and wake 6111 * isn't being prevented. 6112 */ 6113 if (!hdev->wakeup || !hdev->wakeup(hdev)) { 6114 hdev->suspend_state = BT_SUSPEND_DISCONNECT; 6115 return 0; 6116 } 6117 6118 /* Unpause to take care of updating scanning params */ 6119 hdev->scanning_paused = false; 6120 6121 /* Enable event filter for paired devices */ 6122 hci_update_event_filter_sync(hdev); 6123 6124 /* Update LE passive scan if enabled */ 6125 hci_update_passive_scan_sync(hdev); 6126 6127 /* Pause scan changes again. */ 6128 hdev->scanning_paused = true; 6129 6130 hdev->suspend_state = BT_SUSPEND_CONFIGURE_WAKE; 6131 6132 return 0; 6133 } 6134 6135 /* This function resumes discovery */ 6136 static int hci_resume_discovery_sync(struct hci_dev *hdev) 6137 { 6138 int err; 6139 6140 /* If discovery not paused there nothing to do */ 6141 if (!hdev->discovery_paused) 6142 return 0; 6143 6144 hdev->discovery_paused = false; 6145 6146 hci_discovery_set_state(hdev, DISCOVERY_STARTING); 6147 6148 err = hci_start_discovery_sync(hdev); 6149 6150 hci_discovery_set_state(hdev, err ? DISCOVERY_STOPPED : 6151 DISCOVERY_FINDING); 6152 6153 return err; 6154 } 6155 6156 static void hci_resume_monitor_sync(struct hci_dev *hdev) 6157 { 6158 switch (hci_get_adv_monitor_offload_ext(hdev)) { 6159 case HCI_ADV_MONITOR_EXT_MSFT: 6160 msft_resume_sync(hdev); 6161 break; 6162 default: 6163 return; 6164 } 6165 } 6166 6167 /* This function resume scan and reset paused flag */ 6168 static int hci_resume_scan_sync(struct hci_dev *hdev) 6169 { 6170 if (!hdev->scanning_paused) 6171 return 0; 6172 6173 hdev->scanning_paused = false; 6174 6175 hci_update_scan_sync(hdev); 6176 6177 /* Reset passive scanning to normal */ 6178 hci_update_passive_scan_sync(hdev); 6179 6180 return 0; 6181 } 6182 6183 /* This function performs the HCI suspend procedures in the follow order: 6184 * 6185 * Restore event mask 6186 * Clear event filter 6187 * Update passive scanning (normal duty cycle) 6188 * Resume Directed Advertising/Advertising 6189 * Resume discovery (active scanning/inquiry) 6190 */ 6191 int hci_resume_sync(struct hci_dev *hdev) 6192 { 6193 /* If not marked as suspended there nothing to do */ 6194 if (!hdev->suspended) 6195 return 0; 6196 6197 hdev->suspended = false; 6198 6199 /* Restore event mask */ 6200 hci_set_event_mask_sync(hdev); 6201 6202 /* Clear any event filters and restore scan state */ 6203 hci_clear_event_filter_sync(hdev); 6204 6205 /* Resume scanning */ 6206 hci_resume_scan_sync(hdev); 6207 6208 /* Resume monitor filters */ 6209 hci_resume_monitor_sync(hdev); 6210 6211 /* Resume other advertisements */ 6212 hci_resume_advertising_sync(hdev); 6213 6214 /* Resume discovery */ 6215 hci_resume_discovery_sync(hdev); 6216 6217 return 0; 6218 } 6219 6220 static bool conn_use_rpa(struct hci_conn *conn) 6221 { 6222 struct hci_dev *hdev = conn->hdev; 6223 6224 return hci_dev_test_flag(hdev, HCI_PRIVACY); 6225 } 6226 6227 static int hci_le_ext_directed_advertising_sync(struct hci_dev *hdev, 6228 struct hci_conn *conn) 6229 { 6230 struct hci_cp_le_set_ext_adv_params cp; 6231 int err; 6232 bdaddr_t random_addr; 6233 u8 own_addr_type; 6234 6235 err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 6236 &own_addr_type); 6237 if (err) 6238 return err; 6239 6240 /* Set require_privacy to false so that the remote device has a 6241 * chance of identifying us. 6242 */ 6243 err = hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL, 6244 &own_addr_type, &random_addr); 6245 if (err) 6246 return err; 6247 6248 memset(&cp, 0, sizeof(cp)); 6249 6250 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND); 6251 cp.channel_map = hdev->le_adv_channel_map; 6252 cp.tx_power = HCI_TX_POWER_INVALID; 6253 cp.primary_phy = HCI_ADV_PHY_1M; 6254 cp.secondary_phy = HCI_ADV_PHY_1M; 6255 cp.handle = 0x00; /* Use instance 0 for directed adv */ 6256 cp.own_addr_type = own_addr_type; 6257 cp.peer_addr_type = conn->dst_type; 6258 bacpy(&cp.peer_addr, &conn->dst); 6259 6260 /* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for 6261 * advertising_event_property LE_LEGACY_ADV_DIRECT_IND 6262 * does not supports advertising data when the advertising set already 6263 * contains some, the controller shall return erroc code 'Invalid 6264 * HCI Command Parameters(0x12). 6265 * So it is required to remove adv set for handle 0x00. since we use 6266 * instance 0 for directed adv. 6267 */ 6268 err = hci_remove_ext_adv_instance_sync(hdev, cp.handle, NULL); 6269 if (err) 6270 return err; 6271 6272 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS, 6273 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6274 if (err) 6275 return err; 6276 6277 /* Check if random address need to be updated */ 6278 if (own_addr_type == ADDR_LE_DEV_RANDOM && 6279 bacmp(&random_addr, BDADDR_ANY) && 6280 bacmp(&random_addr, &hdev->random_addr)) { 6281 err = hci_set_adv_set_random_addr_sync(hdev, 0x00, 6282 &random_addr); 6283 if (err) 6284 return err; 6285 } 6286 6287 return hci_enable_ext_advertising_sync(hdev, 0x00); 6288 } 6289 6290 static int hci_le_directed_advertising_sync(struct hci_dev *hdev, 6291 struct hci_conn *conn) 6292 { 6293 struct hci_cp_le_set_adv_param cp; 6294 u8 status; 6295 u8 own_addr_type; 6296 u8 enable; 6297 6298 if (ext_adv_capable(hdev)) 6299 return hci_le_ext_directed_advertising_sync(hdev, conn); 6300 6301 /* Clear the HCI_LE_ADV bit temporarily so that the 6302 * hci_update_random_address knows that it's safe to go ahead 6303 * and write a new random address. The flag will be set back on 6304 * as soon as the SET_ADV_ENABLE HCI command completes. 6305 */ 6306 hci_dev_clear_flag(hdev, HCI_LE_ADV); 6307 6308 /* Set require_privacy to false so that the remote device has a 6309 * chance of identifying us. 6310 */ 6311 status = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 6312 &own_addr_type); 6313 if (status) 6314 return status; 6315 6316 memset(&cp, 0, sizeof(cp)); 6317 6318 /* Some controllers might reject command if intervals are not 6319 * within range for undirected advertising. 6320 * BCM20702A0 is known to be affected by this. 6321 */ 6322 cp.min_interval = cpu_to_le16(0x0020); 6323 cp.max_interval = cpu_to_le16(0x0020); 6324 6325 cp.type = LE_ADV_DIRECT_IND; 6326 cp.own_address_type = own_addr_type; 6327 cp.direct_addr_type = conn->dst_type; 6328 bacpy(&cp.direct_addr, &conn->dst); 6329 cp.channel_map = hdev->le_adv_channel_map; 6330 6331 status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM, 6332 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6333 if (status) 6334 return status; 6335 6336 enable = 0x01; 6337 6338 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 6339 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 6340 } 6341 6342 static void set_ext_conn_params(struct hci_conn *conn, 6343 struct hci_cp_le_ext_conn_param *p) 6344 { 6345 struct hci_dev *hdev = conn->hdev; 6346 6347 memset(p, 0, sizeof(*p)); 6348 6349 p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect); 6350 p->scan_window = cpu_to_le16(hdev->le_scan_window_connect); 6351 p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 6352 p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 6353 p->conn_latency = cpu_to_le16(conn->le_conn_latency); 6354 p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 6355 p->min_ce_len = cpu_to_le16(0x0000); 6356 p->max_ce_len = cpu_to_le16(0x0000); 6357 } 6358 6359 static int hci_le_ext_create_conn_sync(struct hci_dev *hdev, 6360 struct hci_conn *conn, u8 own_addr_type) 6361 { 6362 struct hci_cp_le_ext_create_conn *cp; 6363 struct hci_cp_le_ext_conn_param *p; 6364 u8 data[sizeof(*cp) + sizeof(*p) * 3]; 6365 u32 plen; 6366 6367 cp = (void *)data; 6368 p = (void *)cp->data; 6369 6370 memset(cp, 0, sizeof(*cp)); 6371 6372 bacpy(&cp->peer_addr, &conn->dst); 6373 cp->peer_addr_type = conn->dst_type; 6374 cp->own_addr_type = own_addr_type; 6375 6376 plen = sizeof(*cp); 6377 6378 if (scan_1m(hdev) && (conn->le_adv_phy == HCI_ADV_PHY_1M || 6379 conn->le_adv_sec_phy == HCI_ADV_PHY_1M)) { 6380 cp->phys |= LE_SCAN_PHY_1M; 6381 set_ext_conn_params(conn, p); 6382 6383 p++; 6384 plen += sizeof(*p); 6385 } 6386 6387 if (scan_2m(hdev) && (conn->le_adv_phy == HCI_ADV_PHY_2M || 6388 conn->le_adv_sec_phy == HCI_ADV_PHY_2M)) { 6389 cp->phys |= LE_SCAN_PHY_2M; 6390 set_ext_conn_params(conn, p); 6391 6392 p++; 6393 plen += sizeof(*p); 6394 } 6395 6396 if (scan_coded(hdev) && (conn->le_adv_phy == HCI_ADV_PHY_CODED || 6397 conn->le_adv_sec_phy == HCI_ADV_PHY_CODED)) { 6398 cp->phys |= LE_SCAN_PHY_CODED; 6399 set_ext_conn_params(conn, p); 6400 6401 plen += sizeof(*p); 6402 } 6403 6404 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_EXT_CREATE_CONN, 6405 plen, data, 6406 HCI_EV_LE_ENHANCED_CONN_COMPLETE, 6407 conn->conn_timeout, NULL); 6408 } 6409 6410 static int hci_le_create_conn_sync(struct hci_dev *hdev, void *data) 6411 { 6412 struct hci_cp_le_create_conn cp; 6413 struct hci_conn_params *params; 6414 u8 own_addr_type; 6415 int err; 6416 struct hci_conn *conn = data; 6417 6418 if (!hci_conn_valid(hdev, conn)) 6419 return -ECANCELED; 6420 6421 bt_dev_dbg(hdev, "conn %p", conn); 6422 6423 clear_bit(HCI_CONN_SCANNING, &conn->flags); 6424 conn->state = BT_CONNECT; 6425 6426 /* If requested to connect as peripheral use directed advertising */ 6427 if (conn->role == HCI_ROLE_SLAVE) { 6428 /* If we're active scanning and simultaneous roles is not 6429 * enabled simply reject the attempt. 6430 */ 6431 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) && 6432 hdev->le_scan_type == LE_SCAN_ACTIVE && 6433 !hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) { 6434 hci_conn_del(conn); 6435 return -EBUSY; 6436 } 6437 6438 /* Pause advertising while doing directed advertising. */ 6439 hci_pause_advertising_sync(hdev); 6440 6441 err = hci_le_directed_advertising_sync(hdev, conn); 6442 goto done; 6443 } 6444 6445 /* Disable advertising if simultaneous roles is not in use. */ 6446 if (!hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) 6447 hci_pause_advertising_sync(hdev); 6448 6449 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); 6450 if (params) { 6451 conn->le_conn_min_interval = params->conn_min_interval; 6452 conn->le_conn_max_interval = params->conn_max_interval; 6453 conn->le_conn_latency = params->conn_latency; 6454 conn->le_supv_timeout = params->supervision_timeout; 6455 } else { 6456 conn->le_conn_min_interval = hdev->le_conn_min_interval; 6457 conn->le_conn_max_interval = hdev->le_conn_max_interval; 6458 conn->le_conn_latency = hdev->le_conn_latency; 6459 conn->le_supv_timeout = hdev->le_supv_timeout; 6460 } 6461 6462 /* If controller is scanning, we stop it since some controllers are 6463 * not able to scan and connect at the same time. Also set the 6464 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete 6465 * handler for scan disabling knows to set the correct discovery 6466 * state. 6467 */ 6468 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 6469 hci_scan_disable_sync(hdev); 6470 hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED); 6471 } 6472 6473 /* Update random address, but set require_privacy to false so 6474 * that we never connect with an non-resolvable address. 6475 */ 6476 err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 6477 &own_addr_type); 6478 if (err) 6479 goto done; 6480 6481 if (use_ext_conn(hdev)) { 6482 err = hci_le_ext_create_conn_sync(hdev, conn, own_addr_type); 6483 goto done; 6484 } 6485 6486 memset(&cp, 0, sizeof(cp)); 6487 6488 cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect); 6489 cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect); 6490 6491 bacpy(&cp.peer_addr, &conn->dst); 6492 cp.peer_addr_type = conn->dst_type; 6493 cp.own_address_type = own_addr_type; 6494 cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 6495 cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 6496 cp.conn_latency = cpu_to_le16(conn->le_conn_latency); 6497 cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 6498 cp.min_ce_len = cpu_to_le16(0x0000); 6499 cp.max_ce_len = cpu_to_le16(0x0000); 6500 6501 /* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E page 2261: 6502 * 6503 * If this event is unmasked and the HCI_LE_Connection_Complete event 6504 * is unmasked, only the HCI_LE_Enhanced_Connection_Complete event is 6505 * sent when a new connection has been created. 6506 */ 6507 err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CONN, 6508 sizeof(cp), &cp, 6509 use_enhanced_conn_complete(hdev) ? 6510 HCI_EV_LE_ENHANCED_CONN_COMPLETE : 6511 HCI_EV_LE_CONN_COMPLETE, 6512 conn->conn_timeout, NULL); 6513 6514 done: 6515 if (err == -ETIMEDOUT) 6516 hci_le_connect_cancel_sync(hdev, conn, 0x00); 6517 6518 /* Re-enable advertising after the connection attempt is finished. */ 6519 hci_resume_advertising_sync(hdev); 6520 return err; 6521 } 6522 6523 int hci_le_create_cis_sync(struct hci_dev *hdev) 6524 { 6525 DEFINE_FLEX(struct hci_cp_le_create_cis, cmd, cis, num_cis, 0x1f); 6526 size_t aux_num_cis = 0; 6527 struct hci_conn *conn; 6528 u8 cig = BT_ISO_QOS_CIG_UNSET; 6529 6530 /* The spec allows only one pending LE Create CIS command at a time. If 6531 * the command is pending now, don't do anything. We check for pending 6532 * connections after each CIS Established event. 6533 * 6534 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E 6535 * page 2566: 6536 * 6537 * If the Host issues this command before all the 6538 * HCI_LE_CIS_Established events from the previous use of the 6539 * command have been generated, the Controller shall return the 6540 * error code Command Disallowed (0x0C). 6541 * 6542 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E 6543 * page 2567: 6544 * 6545 * When the Controller receives the HCI_LE_Create_CIS command, the 6546 * Controller sends the HCI_Command_Status event to the Host. An 6547 * HCI_LE_CIS_Established event will be generated for each CIS when it 6548 * is established or if it is disconnected or considered lost before 6549 * being established; until all the events are generated, the command 6550 * remains pending. 6551 */ 6552 6553 hci_dev_lock(hdev); 6554 6555 rcu_read_lock(); 6556 6557 /* Wait until previous Create CIS has completed */ 6558 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) { 6559 if (test_bit(HCI_CONN_CREATE_CIS, &conn->flags)) 6560 goto done; 6561 } 6562 6563 /* Find CIG with all CIS ready */ 6564 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) { 6565 struct hci_conn *link; 6566 6567 if (hci_conn_check_create_cis(conn)) 6568 continue; 6569 6570 cig = conn->iso_qos.ucast.cig; 6571 6572 list_for_each_entry_rcu(link, &hdev->conn_hash.list, list) { 6573 if (hci_conn_check_create_cis(link) > 0 && 6574 link->iso_qos.ucast.cig == cig && 6575 link->state != BT_CONNECTED) { 6576 cig = BT_ISO_QOS_CIG_UNSET; 6577 break; 6578 } 6579 } 6580 6581 if (cig != BT_ISO_QOS_CIG_UNSET) 6582 break; 6583 } 6584 6585 if (cig == BT_ISO_QOS_CIG_UNSET) 6586 goto done; 6587 6588 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) { 6589 struct hci_cis *cis = &cmd->cis[aux_num_cis]; 6590 6591 if (hci_conn_check_create_cis(conn) || 6592 conn->iso_qos.ucast.cig != cig) 6593 continue; 6594 6595 set_bit(HCI_CONN_CREATE_CIS, &conn->flags); 6596 cis->acl_handle = cpu_to_le16(conn->parent->handle); 6597 cis->cis_handle = cpu_to_le16(conn->handle); 6598 aux_num_cis++; 6599 6600 if (aux_num_cis >= cmd->num_cis) 6601 break; 6602 } 6603 cmd->num_cis = aux_num_cis; 6604 6605 done: 6606 rcu_read_unlock(); 6607 6608 hci_dev_unlock(hdev); 6609 6610 if (!aux_num_cis) 6611 return 0; 6612 6613 /* Wait for HCI_LE_CIS_Established */ 6614 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CIS, 6615 struct_size(cmd, cis, cmd->num_cis), 6616 cmd, HCI_EVT_LE_CIS_ESTABLISHED, 6617 conn->conn_timeout, NULL); 6618 } 6619 6620 int hci_le_remove_cig_sync(struct hci_dev *hdev, u8 handle) 6621 { 6622 struct hci_cp_le_remove_cig cp; 6623 6624 memset(&cp, 0, sizeof(cp)); 6625 cp.cig_id = handle; 6626 6627 return __hci_cmd_sync_status(hdev, HCI_OP_LE_REMOVE_CIG, sizeof(cp), 6628 &cp, HCI_CMD_TIMEOUT); 6629 } 6630 6631 int hci_le_big_terminate_sync(struct hci_dev *hdev, u8 handle) 6632 { 6633 struct hci_cp_le_big_term_sync cp; 6634 6635 memset(&cp, 0, sizeof(cp)); 6636 cp.handle = handle; 6637 6638 return __hci_cmd_sync_status(hdev, HCI_OP_LE_BIG_TERM_SYNC, 6639 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6640 } 6641 6642 int hci_le_pa_terminate_sync(struct hci_dev *hdev, u16 handle) 6643 { 6644 struct hci_cp_le_pa_term_sync cp; 6645 6646 memset(&cp, 0, sizeof(cp)); 6647 cp.handle = cpu_to_le16(handle); 6648 6649 return __hci_cmd_sync_status(hdev, HCI_OP_LE_PA_TERM_SYNC, 6650 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6651 } 6652 6653 int hci_get_random_address(struct hci_dev *hdev, bool require_privacy, 6654 bool use_rpa, struct adv_info *adv_instance, 6655 u8 *own_addr_type, bdaddr_t *rand_addr) 6656 { 6657 int err; 6658 6659 bacpy(rand_addr, BDADDR_ANY); 6660 6661 /* If privacy is enabled use a resolvable private address. If 6662 * current RPA has expired then generate a new one. 6663 */ 6664 if (use_rpa) { 6665 /* If Controller supports LL Privacy use own address type is 6666 * 0x03 6667 */ 6668 if (use_ll_privacy(hdev)) 6669 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED; 6670 else 6671 *own_addr_type = ADDR_LE_DEV_RANDOM; 6672 6673 if (adv_instance) { 6674 if (adv_rpa_valid(adv_instance)) 6675 return 0; 6676 } else { 6677 if (rpa_valid(hdev)) 6678 return 0; 6679 } 6680 6681 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); 6682 if (err < 0) { 6683 bt_dev_err(hdev, "failed to generate new RPA"); 6684 return err; 6685 } 6686 6687 bacpy(rand_addr, &hdev->rpa); 6688 6689 return 0; 6690 } 6691 6692 /* In case of required privacy without resolvable private address, 6693 * use an non-resolvable private address. This is useful for 6694 * non-connectable advertising. 6695 */ 6696 if (require_privacy) { 6697 bdaddr_t nrpa; 6698 6699 while (true) { 6700 /* The non-resolvable private address is generated 6701 * from random six bytes with the two most significant 6702 * bits cleared. 6703 */ 6704 get_random_bytes(&nrpa, 6); 6705 nrpa.b[5] &= 0x3f; 6706 6707 /* The non-resolvable private address shall not be 6708 * equal to the public address. 6709 */ 6710 if (bacmp(&hdev->bdaddr, &nrpa)) 6711 break; 6712 } 6713 6714 *own_addr_type = ADDR_LE_DEV_RANDOM; 6715 bacpy(rand_addr, &nrpa); 6716 6717 return 0; 6718 } 6719 6720 /* No privacy so use a public address. */ 6721 *own_addr_type = ADDR_LE_DEV_PUBLIC; 6722 6723 return 0; 6724 } 6725 6726 static int _update_adv_data_sync(struct hci_dev *hdev, void *data) 6727 { 6728 u8 instance = PTR_UINT(data); 6729 6730 return hci_update_adv_data_sync(hdev, instance); 6731 } 6732 6733 int hci_update_adv_data(struct hci_dev *hdev, u8 instance) 6734 { 6735 return hci_cmd_sync_queue(hdev, _update_adv_data_sync, 6736 UINT_PTR(instance), NULL); 6737 } 6738 6739 static int hci_acl_create_conn_sync(struct hci_dev *hdev, void *data) 6740 { 6741 struct hci_conn *conn = data; 6742 struct inquiry_entry *ie; 6743 struct hci_cp_create_conn cp; 6744 int err; 6745 6746 if (!hci_conn_valid(hdev, conn)) 6747 return -ECANCELED; 6748 6749 /* Many controllers disallow HCI Create Connection while it is doing 6750 * HCI Inquiry. So we cancel the Inquiry first before issuing HCI Create 6751 * Connection. This may cause the MGMT discovering state to become false 6752 * without user space's request but it is okay since the MGMT Discovery 6753 * APIs do not promise that discovery should be done forever. Instead, 6754 * the user space monitors the status of MGMT discovering and it may 6755 * request for discovery again when this flag becomes false. 6756 */ 6757 if (test_bit(HCI_INQUIRY, &hdev->flags)) { 6758 err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL, 0, 6759 NULL, HCI_CMD_TIMEOUT); 6760 if (err) 6761 bt_dev_warn(hdev, "Failed to cancel inquiry %d", err); 6762 } 6763 6764 conn->state = BT_CONNECT; 6765 conn->out = true; 6766 conn->role = HCI_ROLE_MASTER; 6767 6768 conn->attempt++; 6769 6770 conn->link_policy = hdev->link_policy; 6771 6772 memset(&cp, 0, sizeof(cp)); 6773 bacpy(&cp.bdaddr, &conn->dst); 6774 cp.pscan_rep_mode = 0x02; 6775 6776 ie = hci_inquiry_cache_lookup(hdev, &conn->dst); 6777 if (ie) { 6778 if (inquiry_entry_age(ie) <= INQUIRY_ENTRY_AGE_MAX) { 6779 cp.pscan_rep_mode = ie->data.pscan_rep_mode; 6780 cp.pscan_mode = ie->data.pscan_mode; 6781 cp.clock_offset = ie->data.clock_offset | 6782 cpu_to_le16(0x8000); 6783 } 6784 6785 memcpy(conn->dev_class, ie->data.dev_class, 3); 6786 } 6787 6788 cp.pkt_type = cpu_to_le16(conn->pkt_type); 6789 if (lmp_rswitch_capable(hdev) && !(hdev->link_mode & HCI_LM_MASTER)) 6790 cp.role_switch = 0x01; 6791 else 6792 cp.role_switch = 0x00; 6793 6794 return __hci_cmd_sync_status_sk(hdev, HCI_OP_CREATE_CONN, 6795 sizeof(cp), &cp, 6796 HCI_EV_CONN_COMPLETE, 6797 conn->conn_timeout, NULL); 6798 } 6799 6800 int hci_connect_acl_sync(struct hci_dev *hdev, struct hci_conn *conn) 6801 { 6802 return hci_cmd_sync_queue_once(hdev, hci_acl_create_conn_sync, conn, 6803 NULL); 6804 } 6805 6806 static void create_le_conn_complete(struct hci_dev *hdev, void *data, int err) 6807 { 6808 struct hci_conn *conn = data; 6809 6810 bt_dev_dbg(hdev, "err %d", err); 6811 6812 if (err == -ECANCELED) 6813 return; 6814 6815 hci_dev_lock(hdev); 6816 6817 if (!hci_conn_valid(hdev, conn)) 6818 goto done; 6819 6820 if (!err) { 6821 hci_connect_le_scan_cleanup(conn, 0x00); 6822 goto done; 6823 } 6824 6825 /* Check if connection is still pending */ 6826 if (conn != hci_lookup_le_connect(hdev)) 6827 goto done; 6828 6829 /* Flush to make sure we send create conn cancel command if needed */ 6830 flush_delayed_work(&conn->le_conn_timeout); 6831 hci_conn_failed(conn, bt_status(err)); 6832 6833 done: 6834 hci_dev_unlock(hdev); 6835 } 6836 6837 int hci_connect_le_sync(struct hci_dev *hdev, struct hci_conn *conn) 6838 { 6839 return hci_cmd_sync_queue_once(hdev, hci_le_create_conn_sync, conn, 6840 create_le_conn_complete); 6841 } 6842 6843 int hci_cancel_connect_sync(struct hci_dev *hdev, struct hci_conn *conn) 6844 { 6845 if (conn->state != BT_OPEN) 6846 return -EINVAL; 6847 6848 switch (conn->type) { 6849 case ACL_LINK: 6850 return !hci_cmd_sync_dequeue_once(hdev, 6851 hci_acl_create_conn_sync, 6852 conn, NULL); 6853 case LE_LINK: 6854 return !hci_cmd_sync_dequeue_once(hdev, hci_le_create_conn_sync, 6855 conn, create_le_conn_complete); 6856 } 6857 6858 return -ENOENT; 6859 } 6860 6861 int hci_le_conn_update_sync(struct hci_dev *hdev, struct hci_conn *conn, 6862 struct hci_conn_params *params) 6863 { 6864 struct hci_cp_le_conn_update cp; 6865 6866 memset(&cp, 0, sizeof(cp)); 6867 cp.handle = cpu_to_le16(conn->handle); 6868 cp.conn_interval_min = cpu_to_le16(params->conn_min_interval); 6869 cp.conn_interval_max = cpu_to_le16(params->conn_max_interval); 6870 cp.conn_latency = cpu_to_le16(params->conn_latency); 6871 cp.supervision_timeout = cpu_to_le16(params->supervision_timeout); 6872 cp.min_ce_len = cpu_to_le16(0x0000); 6873 cp.max_ce_len = cpu_to_le16(0x0000); 6874 6875 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CONN_UPDATE, 6876 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6877 } 6878