xref: /linux/net/bluetooth/hci_sync.c (revision c4101e55974cc7d835fbd2d8e01553a3f61e9e75)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * BlueZ - Bluetooth protocol stack for Linux
4  *
5  * Copyright (C) 2021 Intel Corporation
6  * Copyright 2023 NXP
7  */
8 
9 #include <linux/property.h>
10 
11 #include <net/bluetooth/bluetooth.h>
12 #include <net/bluetooth/hci_core.h>
13 #include <net/bluetooth/mgmt.h>
14 
15 #include "hci_request.h"
16 #include "hci_codec.h"
17 #include "hci_debugfs.h"
18 #include "smp.h"
19 #include "eir.h"
20 #include "msft.h"
21 #include "aosp.h"
22 #include "leds.h"
23 
24 static void hci_cmd_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
25 				  struct sk_buff *skb)
26 {
27 	bt_dev_dbg(hdev, "result 0x%2.2x", result);
28 
29 	if (hdev->req_status != HCI_REQ_PEND)
30 		return;
31 
32 	hdev->req_result = result;
33 	hdev->req_status = HCI_REQ_DONE;
34 
35 	if (skb) {
36 		struct sock *sk = hci_skb_sk(skb);
37 
38 		/* Drop sk reference if set */
39 		if (sk)
40 			sock_put(sk);
41 
42 		hdev->req_skb = skb_get(skb);
43 	}
44 
45 	wake_up_interruptible(&hdev->req_wait_q);
46 }
47 
48 static struct sk_buff *hci_cmd_sync_alloc(struct hci_dev *hdev, u16 opcode,
49 					  u32 plen, const void *param,
50 					  struct sock *sk)
51 {
52 	int len = HCI_COMMAND_HDR_SIZE + plen;
53 	struct hci_command_hdr *hdr;
54 	struct sk_buff *skb;
55 
56 	skb = bt_skb_alloc(len, GFP_ATOMIC);
57 	if (!skb)
58 		return NULL;
59 
60 	hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE);
61 	hdr->opcode = cpu_to_le16(opcode);
62 	hdr->plen   = plen;
63 
64 	if (plen)
65 		skb_put_data(skb, param, plen);
66 
67 	bt_dev_dbg(hdev, "skb len %d", skb->len);
68 
69 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
70 	hci_skb_opcode(skb) = opcode;
71 
72 	/* Grab a reference if command needs to be associated with a sock (e.g.
73 	 * likely mgmt socket that initiated the command).
74 	 */
75 	if (sk) {
76 		hci_skb_sk(skb) = sk;
77 		sock_hold(sk);
78 	}
79 
80 	return skb;
81 }
82 
83 static void hci_cmd_sync_add(struct hci_request *req, u16 opcode, u32 plen,
84 			     const void *param, u8 event, struct sock *sk)
85 {
86 	struct hci_dev *hdev = req->hdev;
87 	struct sk_buff *skb;
88 
89 	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
90 
91 	/* If an error occurred during request building, there is no point in
92 	 * queueing the HCI command. We can simply return.
93 	 */
94 	if (req->err)
95 		return;
96 
97 	skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, sk);
98 	if (!skb) {
99 		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
100 			   opcode);
101 		req->err = -ENOMEM;
102 		return;
103 	}
104 
105 	if (skb_queue_empty(&req->cmd_q))
106 		bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
107 
108 	hci_skb_event(skb) = event;
109 
110 	skb_queue_tail(&req->cmd_q, skb);
111 }
112 
113 static int hci_cmd_sync_run(struct hci_request *req)
114 {
115 	struct hci_dev *hdev = req->hdev;
116 	struct sk_buff *skb;
117 	unsigned long flags;
118 
119 	bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q));
120 
121 	/* If an error occurred during request building, remove all HCI
122 	 * commands queued on the HCI request queue.
123 	 */
124 	if (req->err) {
125 		skb_queue_purge(&req->cmd_q);
126 		return req->err;
127 	}
128 
129 	/* Do not allow empty requests */
130 	if (skb_queue_empty(&req->cmd_q))
131 		return -ENODATA;
132 
133 	skb = skb_peek_tail(&req->cmd_q);
134 	bt_cb(skb)->hci.req_complete_skb = hci_cmd_sync_complete;
135 	bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
136 
137 	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
138 	skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
139 	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
140 
141 	queue_work(hdev->workqueue, &hdev->cmd_work);
142 
143 	return 0;
144 }
145 
146 /* This function requires the caller holds hdev->req_lock. */
147 struct sk_buff *__hci_cmd_sync_sk(struct hci_dev *hdev, u16 opcode, u32 plen,
148 				  const void *param, u8 event, u32 timeout,
149 				  struct sock *sk)
150 {
151 	struct hci_request req;
152 	struct sk_buff *skb;
153 	int err = 0;
154 
155 	bt_dev_dbg(hdev, "Opcode 0x%4.4x", opcode);
156 
157 	hci_req_init(&req, hdev);
158 
159 	hci_cmd_sync_add(&req, opcode, plen, param, event, sk);
160 
161 	hdev->req_status = HCI_REQ_PEND;
162 
163 	err = hci_cmd_sync_run(&req);
164 	if (err < 0)
165 		return ERR_PTR(err);
166 
167 	err = wait_event_interruptible_timeout(hdev->req_wait_q,
168 					       hdev->req_status != HCI_REQ_PEND,
169 					       timeout);
170 
171 	if (err == -ERESTARTSYS)
172 		return ERR_PTR(-EINTR);
173 
174 	switch (hdev->req_status) {
175 	case HCI_REQ_DONE:
176 		err = -bt_to_errno(hdev->req_result);
177 		break;
178 
179 	case HCI_REQ_CANCELED:
180 		err = -hdev->req_result;
181 		break;
182 
183 	default:
184 		err = -ETIMEDOUT;
185 		break;
186 	}
187 
188 	hdev->req_status = 0;
189 	hdev->req_result = 0;
190 	skb = hdev->req_skb;
191 	hdev->req_skb = NULL;
192 
193 	bt_dev_dbg(hdev, "end: err %d", err);
194 
195 	if (err < 0) {
196 		kfree_skb(skb);
197 		return ERR_PTR(err);
198 	}
199 
200 	return skb;
201 }
202 EXPORT_SYMBOL(__hci_cmd_sync_sk);
203 
204 /* This function requires the caller holds hdev->req_lock. */
205 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
206 			       const void *param, u32 timeout)
207 {
208 	return __hci_cmd_sync_sk(hdev, opcode, plen, param, 0, timeout, NULL);
209 }
210 EXPORT_SYMBOL(__hci_cmd_sync);
211 
212 /* Send HCI command and wait for command complete event */
213 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
214 			     const void *param, u32 timeout)
215 {
216 	struct sk_buff *skb;
217 
218 	if (!test_bit(HCI_UP, &hdev->flags))
219 		return ERR_PTR(-ENETDOWN);
220 
221 	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
222 
223 	hci_req_sync_lock(hdev);
224 	skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
225 	hci_req_sync_unlock(hdev);
226 
227 	return skb;
228 }
229 EXPORT_SYMBOL(hci_cmd_sync);
230 
231 /* This function requires the caller holds hdev->req_lock. */
232 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
233 				  const void *param, u8 event, u32 timeout)
234 {
235 	return __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout,
236 				 NULL);
237 }
238 EXPORT_SYMBOL(__hci_cmd_sync_ev);
239 
240 /* This function requires the caller holds hdev->req_lock. */
241 int __hci_cmd_sync_status_sk(struct hci_dev *hdev, u16 opcode, u32 plen,
242 			     const void *param, u8 event, u32 timeout,
243 			     struct sock *sk)
244 {
245 	struct sk_buff *skb;
246 	u8 status;
247 
248 	skb = __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, sk);
249 	if (IS_ERR(skb)) {
250 		if (!event)
251 			bt_dev_err(hdev, "Opcode 0x%4.4x failed: %ld", opcode,
252 				   PTR_ERR(skb));
253 		return PTR_ERR(skb);
254 	}
255 
256 	/* If command return a status event skb will be set to NULL as there are
257 	 * no parameters, in case of failure IS_ERR(skb) would have be set to
258 	 * the actual error would be found with PTR_ERR(skb).
259 	 */
260 	if (!skb)
261 		return 0;
262 
263 	status = skb->data[0];
264 
265 	kfree_skb(skb);
266 
267 	return status;
268 }
269 EXPORT_SYMBOL(__hci_cmd_sync_status_sk);
270 
271 int __hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen,
272 			  const void *param, u32 timeout)
273 {
274 	return __hci_cmd_sync_status_sk(hdev, opcode, plen, param, 0, timeout,
275 					NULL);
276 }
277 EXPORT_SYMBOL(__hci_cmd_sync_status);
278 
279 static void hci_cmd_sync_work(struct work_struct *work)
280 {
281 	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_work);
282 
283 	bt_dev_dbg(hdev, "");
284 
285 	/* Dequeue all entries and run them */
286 	while (1) {
287 		struct hci_cmd_sync_work_entry *entry;
288 
289 		mutex_lock(&hdev->cmd_sync_work_lock);
290 		entry = list_first_entry_or_null(&hdev->cmd_sync_work_list,
291 						 struct hci_cmd_sync_work_entry,
292 						 list);
293 		if (entry)
294 			list_del(&entry->list);
295 		mutex_unlock(&hdev->cmd_sync_work_lock);
296 
297 		if (!entry)
298 			break;
299 
300 		bt_dev_dbg(hdev, "entry %p", entry);
301 
302 		if (entry->func) {
303 			int err;
304 
305 			hci_req_sync_lock(hdev);
306 			err = entry->func(hdev, entry->data);
307 			if (entry->destroy)
308 				entry->destroy(hdev, entry->data, err);
309 			hci_req_sync_unlock(hdev);
310 		}
311 
312 		kfree(entry);
313 	}
314 }
315 
316 static void hci_cmd_sync_cancel_work(struct work_struct *work)
317 {
318 	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_cancel_work);
319 
320 	cancel_delayed_work_sync(&hdev->cmd_timer);
321 	cancel_delayed_work_sync(&hdev->ncmd_timer);
322 	atomic_set(&hdev->cmd_cnt, 1);
323 
324 	wake_up_interruptible(&hdev->req_wait_q);
325 }
326 
327 static int hci_scan_disable_sync(struct hci_dev *hdev);
328 static int scan_disable_sync(struct hci_dev *hdev, void *data)
329 {
330 	return hci_scan_disable_sync(hdev);
331 }
332 
333 static int hci_inquiry_sync(struct hci_dev *hdev, u8 length);
334 static int interleaved_inquiry_sync(struct hci_dev *hdev, void *data)
335 {
336 	return hci_inquiry_sync(hdev, DISCOV_INTERLEAVED_INQUIRY_LEN);
337 }
338 
339 static void le_scan_disable(struct work_struct *work)
340 {
341 	struct hci_dev *hdev = container_of(work, struct hci_dev,
342 					    le_scan_disable.work);
343 	int status;
344 
345 	bt_dev_dbg(hdev, "");
346 	hci_dev_lock(hdev);
347 
348 	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
349 		goto _return;
350 
351 	status = hci_cmd_sync_queue(hdev, scan_disable_sync, NULL, NULL);
352 	if (status) {
353 		bt_dev_err(hdev, "failed to disable LE scan: %d", status);
354 		goto _return;
355 	}
356 
357 	hdev->discovery.scan_start = 0;
358 
359 	/* If we were running LE only scan, change discovery state. If
360 	 * we were running both LE and BR/EDR inquiry simultaneously,
361 	 * and BR/EDR inquiry is already finished, stop discovery,
362 	 * otherwise BR/EDR inquiry will stop discovery when finished.
363 	 * If we will resolve remote device name, do not change
364 	 * discovery state.
365 	 */
366 
367 	if (hdev->discovery.type == DISCOV_TYPE_LE)
368 		goto discov_stopped;
369 
370 	if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED)
371 		goto _return;
372 
373 	if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) {
374 		if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
375 		    hdev->discovery.state != DISCOVERY_RESOLVING)
376 			goto discov_stopped;
377 
378 		goto _return;
379 	}
380 
381 	status = hci_cmd_sync_queue(hdev, interleaved_inquiry_sync, NULL, NULL);
382 	if (status) {
383 		bt_dev_err(hdev, "inquiry failed: status %d", status);
384 		goto discov_stopped;
385 	}
386 
387 	goto _return;
388 
389 discov_stopped:
390 	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
391 
392 _return:
393 	hci_dev_unlock(hdev);
394 }
395 
396 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val,
397 				       u8 filter_dup);
398 
399 static int reenable_adv_sync(struct hci_dev *hdev, void *data)
400 {
401 	bt_dev_dbg(hdev, "");
402 
403 	if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
404 	    list_empty(&hdev->adv_instances))
405 		return 0;
406 
407 	if (hdev->cur_adv_instance) {
408 		return hci_schedule_adv_instance_sync(hdev,
409 						      hdev->cur_adv_instance,
410 						      true);
411 	} else {
412 		if (ext_adv_capable(hdev)) {
413 			hci_start_ext_adv_sync(hdev, 0x00);
414 		} else {
415 			hci_update_adv_data_sync(hdev, 0x00);
416 			hci_update_scan_rsp_data_sync(hdev, 0x00);
417 			hci_enable_advertising_sync(hdev);
418 		}
419 	}
420 
421 	return 0;
422 }
423 
424 static void reenable_adv(struct work_struct *work)
425 {
426 	struct hci_dev *hdev = container_of(work, struct hci_dev,
427 					    reenable_adv_work);
428 	int status;
429 
430 	bt_dev_dbg(hdev, "");
431 
432 	hci_dev_lock(hdev);
433 
434 	status = hci_cmd_sync_queue(hdev, reenable_adv_sync, NULL, NULL);
435 	if (status)
436 		bt_dev_err(hdev, "failed to reenable ADV: %d", status);
437 
438 	hci_dev_unlock(hdev);
439 }
440 
441 static void cancel_adv_timeout(struct hci_dev *hdev)
442 {
443 	if (hdev->adv_instance_timeout) {
444 		hdev->adv_instance_timeout = 0;
445 		cancel_delayed_work(&hdev->adv_instance_expire);
446 	}
447 }
448 
449 /* For a single instance:
450  * - force == true: The instance will be removed even when its remaining
451  *   lifetime is not zero.
452  * - force == false: the instance will be deactivated but kept stored unless
453  *   the remaining lifetime is zero.
454  *
455  * For instance == 0x00:
456  * - force == true: All instances will be removed regardless of their timeout
457  *   setting.
458  * - force == false: Only instances that have a timeout will be removed.
459  */
460 int hci_clear_adv_instance_sync(struct hci_dev *hdev, struct sock *sk,
461 				u8 instance, bool force)
462 {
463 	struct adv_info *adv_instance, *n, *next_instance = NULL;
464 	int err;
465 	u8 rem_inst;
466 
467 	/* Cancel any timeout concerning the removed instance(s). */
468 	if (!instance || hdev->cur_adv_instance == instance)
469 		cancel_adv_timeout(hdev);
470 
471 	/* Get the next instance to advertise BEFORE we remove
472 	 * the current one. This can be the same instance again
473 	 * if there is only one instance.
474 	 */
475 	if (instance && hdev->cur_adv_instance == instance)
476 		next_instance = hci_get_next_instance(hdev, instance);
477 
478 	if (instance == 0x00) {
479 		list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances,
480 					 list) {
481 			if (!(force || adv_instance->timeout))
482 				continue;
483 
484 			rem_inst = adv_instance->instance;
485 			err = hci_remove_adv_instance(hdev, rem_inst);
486 			if (!err)
487 				mgmt_advertising_removed(sk, hdev, rem_inst);
488 		}
489 	} else {
490 		adv_instance = hci_find_adv_instance(hdev, instance);
491 
492 		if (force || (adv_instance && adv_instance->timeout &&
493 			      !adv_instance->remaining_time)) {
494 			/* Don't advertise a removed instance. */
495 			if (next_instance &&
496 			    next_instance->instance == instance)
497 				next_instance = NULL;
498 
499 			err = hci_remove_adv_instance(hdev, instance);
500 			if (!err)
501 				mgmt_advertising_removed(sk, hdev, instance);
502 		}
503 	}
504 
505 	if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING))
506 		return 0;
507 
508 	if (next_instance && !ext_adv_capable(hdev))
509 		return hci_schedule_adv_instance_sync(hdev,
510 						      next_instance->instance,
511 						      false);
512 
513 	return 0;
514 }
515 
516 static int adv_timeout_expire_sync(struct hci_dev *hdev, void *data)
517 {
518 	u8 instance = *(u8 *)data;
519 
520 	kfree(data);
521 
522 	hci_clear_adv_instance_sync(hdev, NULL, instance, false);
523 
524 	if (list_empty(&hdev->adv_instances))
525 		return hci_disable_advertising_sync(hdev);
526 
527 	return 0;
528 }
529 
530 static void adv_timeout_expire(struct work_struct *work)
531 {
532 	u8 *inst_ptr;
533 	struct hci_dev *hdev = container_of(work, struct hci_dev,
534 					    adv_instance_expire.work);
535 
536 	bt_dev_dbg(hdev, "");
537 
538 	hci_dev_lock(hdev);
539 
540 	hdev->adv_instance_timeout = 0;
541 
542 	if (hdev->cur_adv_instance == 0x00)
543 		goto unlock;
544 
545 	inst_ptr = kmalloc(1, GFP_KERNEL);
546 	if (!inst_ptr)
547 		goto unlock;
548 
549 	*inst_ptr = hdev->cur_adv_instance;
550 	hci_cmd_sync_queue(hdev, adv_timeout_expire_sync, inst_ptr, NULL);
551 
552 unlock:
553 	hci_dev_unlock(hdev);
554 }
555 
556 void hci_cmd_sync_init(struct hci_dev *hdev)
557 {
558 	INIT_WORK(&hdev->cmd_sync_work, hci_cmd_sync_work);
559 	INIT_LIST_HEAD(&hdev->cmd_sync_work_list);
560 	mutex_init(&hdev->cmd_sync_work_lock);
561 	mutex_init(&hdev->unregister_lock);
562 
563 	INIT_WORK(&hdev->cmd_sync_cancel_work, hci_cmd_sync_cancel_work);
564 	INIT_WORK(&hdev->reenable_adv_work, reenable_adv);
565 	INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable);
566 	INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire);
567 }
568 
569 void hci_cmd_sync_clear(struct hci_dev *hdev)
570 {
571 	struct hci_cmd_sync_work_entry *entry, *tmp;
572 
573 	cancel_work_sync(&hdev->cmd_sync_work);
574 	cancel_work_sync(&hdev->reenable_adv_work);
575 
576 	mutex_lock(&hdev->cmd_sync_work_lock);
577 	list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) {
578 		if (entry->destroy)
579 			entry->destroy(hdev, entry->data, -ECANCELED);
580 
581 		list_del(&entry->list);
582 		kfree(entry);
583 	}
584 	mutex_unlock(&hdev->cmd_sync_work_lock);
585 }
586 
587 void __hci_cmd_sync_cancel(struct hci_dev *hdev, int err)
588 {
589 	bt_dev_dbg(hdev, "err 0x%2.2x", err);
590 
591 	if (hdev->req_status == HCI_REQ_PEND) {
592 		hdev->req_result = err;
593 		hdev->req_status = HCI_REQ_CANCELED;
594 
595 		cancel_delayed_work_sync(&hdev->cmd_timer);
596 		cancel_delayed_work_sync(&hdev->ncmd_timer);
597 		atomic_set(&hdev->cmd_cnt, 1);
598 
599 		wake_up_interruptible(&hdev->req_wait_q);
600 	}
601 }
602 
603 void hci_cmd_sync_cancel(struct hci_dev *hdev, int err)
604 {
605 	bt_dev_dbg(hdev, "err 0x%2.2x", err);
606 
607 	if (hdev->req_status == HCI_REQ_PEND) {
608 		hdev->req_result = err;
609 		hdev->req_status = HCI_REQ_CANCELED;
610 
611 		queue_work(hdev->workqueue, &hdev->cmd_sync_cancel_work);
612 	}
613 }
614 EXPORT_SYMBOL(hci_cmd_sync_cancel);
615 
616 /* Submit HCI command to be run in as cmd_sync_work:
617  *
618  * - hdev must _not_ be unregistered
619  */
620 int hci_cmd_sync_submit(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
621 			void *data, hci_cmd_sync_work_destroy_t destroy)
622 {
623 	struct hci_cmd_sync_work_entry *entry;
624 	int err = 0;
625 
626 	mutex_lock(&hdev->unregister_lock);
627 	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
628 		err = -ENODEV;
629 		goto unlock;
630 	}
631 
632 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
633 	if (!entry) {
634 		err = -ENOMEM;
635 		goto unlock;
636 	}
637 	entry->func = func;
638 	entry->data = data;
639 	entry->destroy = destroy;
640 
641 	mutex_lock(&hdev->cmd_sync_work_lock);
642 	list_add_tail(&entry->list, &hdev->cmd_sync_work_list);
643 	mutex_unlock(&hdev->cmd_sync_work_lock);
644 
645 	queue_work(hdev->req_workqueue, &hdev->cmd_sync_work);
646 
647 unlock:
648 	mutex_unlock(&hdev->unregister_lock);
649 	return err;
650 }
651 EXPORT_SYMBOL(hci_cmd_sync_submit);
652 
653 /* Queue HCI command:
654  *
655  * - hdev must be running
656  */
657 int hci_cmd_sync_queue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
658 		       void *data, hci_cmd_sync_work_destroy_t destroy)
659 {
660 	/* Only queue command if hdev is running which means it had been opened
661 	 * and is either on init phase or is already up.
662 	 */
663 	if (!test_bit(HCI_RUNNING, &hdev->flags))
664 		return -ENETDOWN;
665 
666 	return hci_cmd_sync_submit(hdev, func, data, destroy);
667 }
668 EXPORT_SYMBOL(hci_cmd_sync_queue);
669 
670 int hci_update_eir_sync(struct hci_dev *hdev)
671 {
672 	struct hci_cp_write_eir cp;
673 
674 	bt_dev_dbg(hdev, "");
675 
676 	if (!hdev_is_powered(hdev))
677 		return 0;
678 
679 	if (!lmp_ext_inq_capable(hdev))
680 		return 0;
681 
682 	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
683 		return 0;
684 
685 	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
686 		return 0;
687 
688 	memset(&cp, 0, sizeof(cp));
689 
690 	eir_create(hdev, cp.data);
691 
692 	if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
693 		return 0;
694 
695 	memcpy(hdev->eir, cp.data, sizeof(cp.data));
696 
697 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp,
698 				     HCI_CMD_TIMEOUT);
699 }
700 
701 static u8 get_service_classes(struct hci_dev *hdev)
702 {
703 	struct bt_uuid *uuid;
704 	u8 val = 0;
705 
706 	list_for_each_entry(uuid, &hdev->uuids, list)
707 		val |= uuid->svc_hint;
708 
709 	return val;
710 }
711 
712 int hci_update_class_sync(struct hci_dev *hdev)
713 {
714 	u8 cod[3];
715 
716 	bt_dev_dbg(hdev, "");
717 
718 	if (!hdev_is_powered(hdev))
719 		return 0;
720 
721 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
722 		return 0;
723 
724 	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
725 		return 0;
726 
727 	cod[0] = hdev->minor_class;
728 	cod[1] = hdev->major_class;
729 	cod[2] = get_service_classes(hdev);
730 
731 	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
732 		cod[1] |= 0x20;
733 
734 	if (memcmp(cod, hdev->dev_class, 3) == 0)
735 		return 0;
736 
737 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CLASS_OF_DEV,
738 				     sizeof(cod), cod, HCI_CMD_TIMEOUT);
739 }
740 
741 static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable)
742 {
743 	/* If there is no connection we are OK to advertise. */
744 	if (hci_conn_num(hdev, LE_LINK) == 0)
745 		return true;
746 
747 	/* Check le_states if there is any connection in peripheral role. */
748 	if (hdev->conn_hash.le_num_peripheral > 0) {
749 		/* Peripheral connection state and non connectable mode
750 		 * bit 20.
751 		 */
752 		if (!connectable && !(hdev->le_states[2] & 0x10))
753 			return false;
754 
755 		/* Peripheral connection state and connectable mode bit 38
756 		 * and scannable bit 21.
757 		 */
758 		if (connectable && (!(hdev->le_states[4] & 0x40) ||
759 				    !(hdev->le_states[2] & 0x20)))
760 			return false;
761 	}
762 
763 	/* Check le_states if there is any connection in central role. */
764 	if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) {
765 		/* Central connection state and non connectable mode bit 18. */
766 		if (!connectable && !(hdev->le_states[2] & 0x02))
767 			return false;
768 
769 		/* Central connection state and connectable mode bit 35 and
770 		 * scannable 19.
771 		 */
772 		if (connectable && (!(hdev->le_states[4] & 0x08) ||
773 				    !(hdev->le_states[2] & 0x08)))
774 			return false;
775 	}
776 
777 	return true;
778 }
779 
780 static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
781 {
782 	/* If privacy is not enabled don't use RPA */
783 	if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
784 		return false;
785 
786 	/* If basic privacy mode is enabled use RPA */
787 	if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
788 		return true;
789 
790 	/* If limited privacy mode is enabled don't use RPA if we're
791 	 * both discoverable and bondable.
792 	 */
793 	if ((flags & MGMT_ADV_FLAG_DISCOV) &&
794 	    hci_dev_test_flag(hdev, HCI_BONDABLE))
795 		return false;
796 
797 	/* We're neither bondable nor discoverable in the limited
798 	 * privacy mode, therefore use RPA.
799 	 */
800 	return true;
801 }
802 
803 static int hci_set_random_addr_sync(struct hci_dev *hdev, bdaddr_t *rpa)
804 {
805 	/* If we're advertising or initiating an LE connection we can't
806 	 * go ahead and change the random address at this time. This is
807 	 * because the eventual initiator address used for the
808 	 * subsequently created connection will be undefined (some
809 	 * controllers use the new address and others the one we had
810 	 * when the operation started).
811 	 *
812 	 * In this kind of scenario skip the update and let the random
813 	 * address be updated at the next cycle.
814 	 */
815 	if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
816 	    hci_lookup_le_connect(hdev)) {
817 		bt_dev_dbg(hdev, "Deferring random address update");
818 		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
819 		return 0;
820 	}
821 
822 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RANDOM_ADDR,
823 				     6, rpa, HCI_CMD_TIMEOUT);
824 }
825 
826 int hci_update_random_address_sync(struct hci_dev *hdev, bool require_privacy,
827 				   bool rpa, u8 *own_addr_type)
828 {
829 	int err;
830 
831 	/* If privacy is enabled use a resolvable private address. If
832 	 * current RPA has expired or there is something else than
833 	 * the current RPA in use, then generate a new one.
834 	 */
835 	if (rpa) {
836 		/* If Controller supports LL Privacy use own address type is
837 		 * 0x03
838 		 */
839 		if (use_ll_privacy(hdev))
840 			*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
841 		else
842 			*own_addr_type = ADDR_LE_DEV_RANDOM;
843 
844 		/* Check if RPA is valid */
845 		if (rpa_valid(hdev))
846 			return 0;
847 
848 		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
849 		if (err < 0) {
850 			bt_dev_err(hdev, "failed to generate new RPA");
851 			return err;
852 		}
853 
854 		err = hci_set_random_addr_sync(hdev, &hdev->rpa);
855 		if (err)
856 			return err;
857 
858 		return 0;
859 	}
860 
861 	/* In case of required privacy without resolvable private address,
862 	 * use an non-resolvable private address. This is useful for active
863 	 * scanning and non-connectable advertising.
864 	 */
865 	if (require_privacy) {
866 		bdaddr_t nrpa;
867 
868 		while (true) {
869 			/* The non-resolvable private address is generated
870 			 * from random six bytes with the two most significant
871 			 * bits cleared.
872 			 */
873 			get_random_bytes(&nrpa, 6);
874 			nrpa.b[5] &= 0x3f;
875 
876 			/* The non-resolvable private address shall not be
877 			 * equal to the public address.
878 			 */
879 			if (bacmp(&hdev->bdaddr, &nrpa))
880 				break;
881 		}
882 
883 		*own_addr_type = ADDR_LE_DEV_RANDOM;
884 
885 		return hci_set_random_addr_sync(hdev, &nrpa);
886 	}
887 
888 	/* If forcing static address is in use or there is no public
889 	 * address use the static address as random address (but skip
890 	 * the HCI command if the current random address is already the
891 	 * static one.
892 	 *
893 	 * In case BR/EDR has been disabled on a dual-mode controller
894 	 * and a static address has been configured, then use that
895 	 * address instead of the public BR/EDR address.
896 	 */
897 	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
898 	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
899 	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
900 	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
901 		*own_addr_type = ADDR_LE_DEV_RANDOM;
902 		if (bacmp(&hdev->static_addr, &hdev->random_addr))
903 			return hci_set_random_addr_sync(hdev,
904 							&hdev->static_addr);
905 		return 0;
906 	}
907 
908 	/* Neither privacy nor static address is being used so use a
909 	 * public address.
910 	 */
911 	*own_addr_type = ADDR_LE_DEV_PUBLIC;
912 
913 	return 0;
914 }
915 
916 static int hci_disable_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance)
917 {
918 	struct hci_cp_le_set_ext_adv_enable *cp;
919 	struct hci_cp_ext_adv_set *set;
920 	u8 data[sizeof(*cp) + sizeof(*set) * 1];
921 	u8 size;
922 
923 	/* If request specifies an instance that doesn't exist, fail */
924 	if (instance > 0) {
925 		struct adv_info *adv;
926 
927 		adv = hci_find_adv_instance(hdev, instance);
928 		if (!adv)
929 			return -EINVAL;
930 
931 		/* If not enabled there is nothing to do */
932 		if (!adv->enabled)
933 			return 0;
934 	}
935 
936 	memset(data, 0, sizeof(data));
937 
938 	cp = (void *)data;
939 	set = (void *)cp->data;
940 
941 	/* Instance 0x00 indicates all advertising instances will be disabled */
942 	cp->num_of_sets = !!instance;
943 	cp->enable = 0x00;
944 
945 	set->handle = instance;
946 
947 	size = sizeof(*cp) + sizeof(*set) * cp->num_of_sets;
948 
949 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE,
950 				     size, data, HCI_CMD_TIMEOUT);
951 }
952 
953 static int hci_set_adv_set_random_addr_sync(struct hci_dev *hdev, u8 instance,
954 					    bdaddr_t *random_addr)
955 {
956 	struct hci_cp_le_set_adv_set_rand_addr cp;
957 	int err;
958 
959 	if (!instance) {
960 		/* Instance 0x00 doesn't have an adv_info, instead it uses
961 		 * hdev->random_addr to track its address so whenever it needs
962 		 * to be updated this also set the random address since
963 		 * hdev->random_addr is shared with scan state machine.
964 		 */
965 		err = hci_set_random_addr_sync(hdev, random_addr);
966 		if (err)
967 			return err;
968 	}
969 
970 	memset(&cp, 0, sizeof(cp));
971 
972 	cp.handle = instance;
973 	bacpy(&cp.bdaddr, random_addr);
974 
975 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
976 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
977 }
978 
979 int hci_setup_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance)
980 {
981 	struct hci_cp_le_set_ext_adv_params cp;
982 	bool connectable;
983 	u32 flags;
984 	bdaddr_t random_addr;
985 	u8 own_addr_type;
986 	int err;
987 	struct adv_info *adv;
988 	bool secondary_adv;
989 
990 	if (instance > 0) {
991 		adv = hci_find_adv_instance(hdev, instance);
992 		if (!adv)
993 			return -EINVAL;
994 	} else {
995 		adv = NULL;
996 	}
997 
998 	/* Updating parameters of an active instance will return a
999 	 * Command Disallowed error, so we must first disable the
1000 	 * instance if it is active.
1001 	 */
1002 	if (adv && !adv->pending) {
1003 		err = hci_disable_ext_adv_instance_sync(hdev, instance);
1004 		if (err)
1005 			return err;
1006 	}
1007 
1008 	flags = hci_adv_instance_flags(hdev, instance);
1009 
1010 	/* If the "connectable" instance flag was not set, then choose between
1011 	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1012 	 */
1013 	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1014 		      mgmt_get_connectable(hdev);
1015 
1016 	if (!is_advertising_allowed(hdev, connectable))
1017 		return -EPERM;
1018 
1019 	/* Set require_privacy to true only when non-connectable
1020 	 * advertising is used. In that case it is fine to use a
1021 	 * non-resolvable private address.
1022 	 */
1023 	err = hci_get_random_address(hdev, !connectable,
1024 				     adv_use_rpa(hdev, flags), adv,
1025 				     &own_addr_type, &random_addr);
1026 	if (err < 0)
1027 		return err;
1028 
1029 	memset(&cp, 0, sizeof(cp));
1030 
1031 	if (adv) {
1032 		hci_cpu_to_le24(adv->min_interval, cp.min_interval);
1033 		hci_cpu_to_le24(adv->max_interval, cp.max_interval);
1034 		cp.tx_power = adv->tx_power;
1035 	} else {
1036 		hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval);
1037 		hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval);
1038 		cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE;
1039 	}
1040 
1041 	secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK);
1042 
1043 	if (connectable) {
1044 		if (secondary_adv)
1045 			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND);
1046 		else
1047 			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND);
1048 	} else if (hci_adv_instance_is_scannable(hdev, instance) ||
1049 		   (flags & MGMT_ADV_PARAM_SCAN_RSP)) {
1050 		if (secondary_adv)
1051 			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND);
1052 		else
1053 			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND);
1054 	} else {
1055 		if (secondary_adv)
1056 			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND);
1057 		else
1058 			cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND);
1059 	}
1060 
1061 	/* If Own_Address_Type equals 0x02 or 0x03, the Peer_Address parameter
1062 	 * contains the peer’s Identity Address and the Peer_Address_Type
1063 	 * parameter contains the peer’s Identity Type (i.e., 0x00 or 0x01).
1064 	 * These parameters are used to locate the corresponding local IRK in
1065 	 * the resolving list; this IRK is used to generate their own address
1066 	 * used in the advertisement.
1067 	 */
1068 	if (own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED)
1069 		hci_copy_identity_address(hdev, &cp.peer_addr,
1070 					  &cp.peer_addr_type);
1071 
1072 	cp.own_addr_type = own_addr_type;
1073 	cp.channel_map = hdev->le_adv_channel_map;
1074 	cp.handle = instance;
1075 
1076 	if (flags & MGMT_ADV_FLAG_SEC_2M) {
1077 		cp.primary_phy = HCI_ADV_PHY_1M;
1078 		cp.secondary_phy = HCI_ADV_PHY_2M;
1079 	} else if (flags & MGMT_ADV_FLAG_SEC_CODED) {
1080 		cp.primary_phy = HCI_ADV_PHY_CODED;
1081 		cp.secondary_phy = HCI_ADV_PHY_CODED;
1082 	} else {
1083 		/* In all other cases use 1M */
1084 		cp.primary_phy = HCI_ADV_PHY_1M;
1085 		cp.secondary_phy = HCI_ADV_PHY_1M;
1086 	}
1087 
1088 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS,
1089 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1090 	if (err)
1091 		return err;
1092 
1093 	if ((own_addr_type == ADDR_LE_DEV_RANDOM ||
1094 	     own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) &&
1095 	    bacmp(&random_addr, BDADDR_ANY)) {
1096 		/* Check if random address need to be updated */
1097 		if (adv) {
1098 			if (!bacmp(&random_addr, &adv->random_addr))
1099 				return 0;
1100 		} else {
1101 			if (!bacmp(&random_addr, &hdev->random_addr))
1102 				return 0;
1103 		}
1104 
1105 		return hci_set_adv_set_random_addr_sync(hdev, instance,
1106 							&random_addr);
1107 	}
1108 
1109 	return 0;
1110 }
1111 
1112 static int hci_set_ext_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
1113 {
1114 	struct {
1115 		struct hci_cp_le_set_ext_scan_rsp_data cp;
1116 		u8 data[HCI_MAX_EXT_AD_LENGTH];
1117 	} pdu;
1118 	u8 len;
1119 	struct adv_info *adv = NULL;
1120 	int err;
1121 
1122 	memset(&pdu, 0, sizeof(pdu));
1123 
1124 	if (instance) {
1125 		adv = hci_find_adv_instance(hdev, instance);
1126 		if (!adv || !adv->scan_rsp_changed)
1127 			return 0;
1128 	}
1129 
1130 	len = eir_create_scan_rsp(hdev, instance, pdu.data);
1131 
1132 	pdu.cp.handle = instance;
1133 	pdu.cp.length = len;
1134 	pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1135 	pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1136 
1137 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA,
1138 				    sizeof(pdu.cp) + len, &pdu.cp,
1139 				    HCI_CMD_TIMEOUT);
1140 	if (err)
1141 		return err;
1142 
1143 	if (adv) {
1144 		adv->scan_rsp_changed = false;
1145 	} else {
1146 		memcpy(hdev->scan_rsp_data, pdu.data, len);
1147 		hdev->scan_rsp_data_len = len;
1148 	}
1149 
1150 	return 0;
1151 }
1152 
1153 static int __hci_set_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
1154 {
1155 	struct hci_cp_le_set_scan_rsp_data cp;
1156 	u8 len;
1157 
1158 	memset(&cp, 0, sizeof(cp));
1159 
1160 	len = eir_create_scan_rsp(hdev, instance, cp.data);
1161 
1162 	if (hdev->scan_rsp_data_len == len &&
1163 	    !memcmp(cp.data, hdev->scan_rsp_data, len))
1164 		return 0;
1165 
1166 	memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
1167 	hdev->scan_rsp_data_len = len;
1168 
1169 	cp.length = len;
1170 
1171 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_RSP_DATA,
1172 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1173 }
1174 
1175 int hci_update_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
1176 {
1177 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1178 		return 0;
1179 
1180 	if (ext_adv_capable(hdev))
1181 		return hci_set_ext_scan_rsp_data_sync(hdev, instance);
1182 
1183 	return __hci_set_scan_rsp_data_sync(hdev, instance);
1184 }
1185 
1186 int hci_enable_ext_advertising_sync(struct hci_dev *hdev, u8 instance)
1187 {
1188 	struct hci_cp_le_set_ext_adv_enable *cp;
1189 	struct hci_cp_ext_adv_set *set;
1190 	u8 data[sizeof(*cp) + sizeof(*set) * 1];
1191 	struct adv_info *adv;
1192 
1193 	if (instance > 0) {
1194 		adv = hci_find_adv_instance(hdev, instance);
1195 		if (!adv)
1196 			return -EINVAL;
1197 		/* If already enabled there is nothing to do */
1198 		if (adv->enabled)
1199 			return 0;
1200 	} else {
1201 		adv = NULL;
1202 	}
1203 
1204 	cp = (void *)data;
1205 	set = (void *)cp->data;
1206 
1207 	memset(cp, 0, sizeof(*cp));
1208 
1209 	cp->enable = 0x01;
1210 	cp->num_of_sets = 0x01;
1211 
1212 	memset(set, 0, sizeof(*set));
1213 
1214 	set->handle = instance;
1215 
1216 	/* Set duration per instance since controller is responsible for
1217 	 * scheduling it.
1218 	 */
1219 	if (adv && adv->timeout) {
1220 		u16 duration = adv->timeout * MSEC_PER_SEC;
1221 
1222 		/* Time = N * 10 ms */
1223 		set->duration = cpu_to_le16(duration / 10);
1224 	}
1225 
1226 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE,
1227 				     sizeof(*cp) +
1228 				     sizeof(*set) * cp->num_of_sets,
1229 				     data, HCI_CMD_TIMEOUT);
1230 }
1231 
1232 int hci_start_ext_adv_sync(struct hci_dev *hdev, u8 instance)
1233 {
1234 	int err;
1235 
1236 	err = hci_setup_ext_adv_instance_sync(hdev, instance);
1237 	if (err)
1238 		return err;
1239 
1240 	err = hci_set_ext_scan_rsp_data_sync(hdev, instance);
1241 	if (err)
1242 		return err;
1243 
1244 	return hci_enable_ext_advertising_sync(hdev, instance);
1245 }
1246 
1247 int hci_disable_per_advertising_sync(struct hci_dev *hdev, u8 instance)
1248 {
1249 	struct hci_cp_le_set_per_adv_enable cp;
1250 	struct adv_info *adv = NULL;
1251 
1252 	/* If periodic advertising already disabled there is nothing to do. */
1253 	adv = hci_find_adv_instance(hdev, instance);
1254 	if (!adv || !adv->periodic || !adv->enabled)
1255 		return 0;
1256 
1257 	memset(&cp, 0, sizeof(cp));
1258 
1259 	cp.enable = 0x00;
1260 	cp.handle = instance;
1261 
1262 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE,
1263 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1264 }
1265 
1266 static int hci_set_per_adv_params_sync(struct hci_dev *hdev, u8 instance,
1267 				       u16 min_interval, u16 max_interval)
1268 {
1269 	struct hci_cp_le_set_per_adv_params cp;
1270 
1271 	memset(&cp, 0, sizeof(cp));
1272 
1273 	if (!min_interval)
1274 		min_interval = DISCOV_LE_PER_ADV_INT_MIN;
1275 
1276 	if (!max_interval)
1277 		max_interval = DISCOV_LE_PER_ADV_INT_MAX;
1278 
1279 	cp.handle = instance;
1280 	cp.min_interval = cpu_to_le16(min_interval);
1281 	cp.max_interval = cpu_to_le16(max_interval);
1282 	cp.periodic_properties = 0x0000;
1283 
1284 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_PARAMS,
1285 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1286 }
1287 
1288 static int hci_set_per_adv_data_sync(struct hci_dev *hdev, u8 instance)
1289 {
1290 	struct {
1291 		struct hci_cp_le_set_per_adv_data cp;
1292 		u8 data[HCI_MAX_PER_AD_LENGTH];
1293 	} pdu;
1294 	u8 len;
1295 
1296 	memset(&pdu, 0, sizeof(pdu));
1297 
1298 	if (instance) {
1299 		struct adv_info *adv = hci_find_adv_instance(hdev, instance);
1300 
1301 		if (!adv || !adv->periodic)
1302 			return 0;
1303 	}
1304 
1305 	len = eir_create_per_adv_data(hdev, instance, pdu.data);
1306 
1307 	pdu.cp.length = len;
1308 	pdu.cp.handle = instance;
1309 	pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1310 
1311 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_DATA,
1312 				     sizeof(pdu.cp) + len, &pdu,
1313 				     HCI_CMD_TIMEOUT);
1314 }
1315 
1316 static int hci_enable_per_advertising_sync(struct hci_dev *hdev, u8 instance)
1317 {
1318 	struct hci_cp_le_set_per_adv_enable cp;
1319 	struct adv_info *adv = NULL;
1320 
1321 	/* If periodic advertising already enabled there is nothing to do. */
1322 	adv = hci_find_adv_instance(hdev, instance);
1323 	if (adv && adv->periodic && adv->enabled)
1324 		return 0;
1325 
1326 	memset(&cp, 0, sizeof(cp));
1327 
1328 	cp.enable = 0x01;
1329 	cp.handle = instance;
1330 
1331 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE,
1332 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1333 }
1334 
1335 /* Checks if periodic advertising data contains a Basic Announcement and if it
1336  * does generates a Broadcast ID and add Broadcast Announcement.
1337  */
1338 static int hci_adv_bcast_annoucement(struct hci_dev *hdev, struct adv_info *adv)
1339 {
1340 	u8 bid[3];
1341 	u8 ad[4 + 3];
1342 
1343 	/* Skip if NULL adv as instance 0x00 is used for general purpose
1344 	 * advertising so it cannot used for the likes of Broadcast Announcement
1345 	 * as it can be overwritten at any point.
1346 	 */
1347 	if (!adv)
1348 		return 0;
1349 
1350 	/* Check if PA data doesn't contains a Basic Audio Announcement then
1351 	 * there is nothing to do.
1352 	 */
1353 	if (!eir_get_service_data(adv->per_adv_data, adv->per_adv_data_len,
1354 				  0x1851, NULL))
1355 		return 0;
1356 
1357 	/* Check if advertising data already has a Broadcast Announcement since
1358 	 * the process may want to control the Broadcast ID directly and in that
1359 	 * case the kernel shall no interfere.
1360 	 */
1361 	if (eir_get_service_data(adv->adv_data, adv->adv_data_len, 0x1852,
1362 				 NULL))
1363 		return 0;
1364 
1365 	/* Generate Broadcast ID */
1366 	get_random_bytes(bid, sizeof(bid));
1367 	eir_append_service_data(ad, 0, 0x1852, bid, sizeof(bid));
1368 	hci_set_adv_instance_data(hdev, adv->instance, sizeof(ad), ad, 0, NULL);
1369 
1370 	return hci_update_adv_data_sync(hdev, adv->instance);
1371 }
1372 
1373 int hci_start_per_adv_sync(struct hci_dev *hdev, u8 instance, u8 data_len,
1374 			   u8 *data, u32 flags, u16 min_interval,
1375 			   u16 max_interval, u16 sync_interval)
1376 {
1377 	struct adv_info *adv = NULL;
1378 	int err;
1379 	bool added = false;
1380 
1381 	hci_disable_per_advertising_sync(hdev, instance);
1382 
1383 	if (instance) {
1384 		adv = hci_find_adv_instance(hdev, instance);
1385 		/* Create an instance if that could not be found */
1386 		if (!adv) {
1387 			adv = hci_add_per_instance(hdev, instance, flags,
1388 						   data_len, data,
1389 						   sync_interval,
1390 						   sync_interval);
1391 			if (IS_ERR(adv))
1392 				return PTR_ERR(adv);
1393 			adv->pending = false;
1394 			added = true;
1395 		}
1396 	}
1397 
1398 	/* Start advertising */
1399 	err = hci_start_ext_adv_sync(hdev, instance);
1400 	if (err < 0)
1401 		goto fail;
1402 
1403 	err = hci_adv_bcast_annoucement(hdev, adv);
1404 	if (err < 0)
1405 		goto fail;
1406 
1407 	err = hci_set_per_adv_params_sync(hdev, instance, min_interval,
1408 					  max_interval);
1409 	if (err < 0)
1410 		goto fail;
1411 
1412 	err = hci_set_per_adv_data_sync(hdev, instance);
1413 	if (err < 0)
1414 		goto fail;
1415 
1416 	err = hci_enable_per_advertising_sync(hdev, instance);
1417 	if (err < 0)
1418 		goto fail;
1419 
1420 	return 0;
1421 
1422 fail:
1423 	if (added)
1424 		hci_remove_adv_instance(hdev, instance);
1425 
1426 	return err;
1427 }
1428 
1429 static int hci_start_adv_sync(struct hci_dev *hdev, u8 instance)
1430 {
1431 	int err;
1432 
1433 	if (ext_adv_capable(hdev))
1434 		return hci_start_ext_adv_sync(hdev, instance);
1435 
1436 	err = hci_update_adv_data_sync(hdev, instance);
1437 	if (err)
1438 		return err;
1439 
1440 	err = hci_update_scan_rsp_data_sync(hdev, instance);
1441 	if (err)
1442 		return err;
1443 
1444 	return hci_enable_advertising_sync(hdev);
1445 }
1446 
1447 int hci_enable_advertising_sync(struct hci_dev *hdev)
1448 {
1449 	struct adv_info *adv_instance;
1450 	struct hci_cp_le_set_adv_param cp;
1451 	u8 own_addr_type, enable = 0x01;
1452 	bool connectable;
1453 	u16 adv_min_interval, adv_max_interval;
1454 	u32 flags;
1455 	u8 status;
1456 
1457 	if (ext_adv_capable(hdev))
1458 		return hci_enable_ext_advertising_sync(hdev,
1459 						       hdev->cur_adv_instance);
1460 
1461 	flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance);
1462 	adv_instance = hci_find_adv_instance(hdev, hdev->cur_adv_instance);
1463 
1464 	/* If the "connectable" instance flag was not set, then choose between
1465 	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1466 	 */
1467 	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1468 		      mgmt_get_connectable(hdev);
1469 
1470 	if (!is_advertising_allowed(hdev, connectable))
1471 		return -EINVAL;
1472 
1473 	status = hci_disable_advertising_sync(hdev);
1474 	if (status)
1475 		return status;
1476 
1477 	/* Clear the HCI_LE_ADV bit temporarily so that the
1478 	 * hci_update_random_address knows that it's safe to go ahead
1479 	 * and write a new random address. The flag will be set back on
1480 	 * as soon as the SET_ADV_ENABLE HCI command completes.
1481 	 */
1482 	hci_dev_clear_flag(hdev, HCI_LE_ADV);
1483 
1484 	/* Set require_privacy to true only when non-connectable
1485 	 * advertising is used. In that case it is fine to use a
1486 	 * non-resolvable private address.
1487 	 */
1488 	status = hci_update_random_address_sync(hdev, !connectable,
1489 						adv_use_rpa(hdev, flags),
1490 						&own_addr_type);
1491 	if (status)
1492 		return status;
1493 
1494 	memset(&cp, 0, sizeof(cp));
1495 
1496 	if (adv_instance) {
1497 		adv_min_interval = adv_instance->min_interval;
1498 		adv_max_interval = adv_instance->max_interval;
1499 	} else {
1500 		adv_min_interval = hdev->le_adv_min_interval;
1501 		adv_max_interval = hdev->le_adv_max_interval;
1502 	}
1503 
1504 	if (connectable) {
1505 		cp.type = LE_ADV_IND;
1506 	} else {
1507 		if (hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance))
1508 			cp.type = LE_ADV_SCAN_IND;
1509 		else
1510 			cp.type = LE_ADV_NONCONN_IND;
1511 
1512 		if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) ||
1513 		    hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
1514 			adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN;
1515 			adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX;
1516 		}
1517 	}
1518 
1519 	cp.min_interval = cpu_to_le16(adv_min_interval);
1520 	cp.max_interval = cpu_to_le16(adv_max_interval);
1521 	cp.own_address_type = own_addr_type;
1522 	cp.channel_map = hdev->le_adv_channel_map;
1523 
1524 	status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM,
1525 				       sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1526 	if (status)
1527 		return status;
1528 
1529 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
1530 				     sizeof(enable), &enable, HCI_CMD_TIMEOUT);
1531 }
1532 
1533 static int enable_advertising_sync(struct hci_dev *hdev, void *data)
1534 {
1535 	return hci_enable_advertising_sync(hdev);
1536 }
1537 
1538 int hci_enable_advertising(struct hci_dev *hdev)
1539 {
1540 	if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
1541 	    list_empty(&hdev->adv_instances))
1542 		return 0;
1543 
1544 	return hci_cmd_sync_queue(hdev, enable_advertising_sync, NULL, NULL);
1545 }
1546 
1547 int hci_remove_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance,
1548 				     struct sock *sk)
1549 {
1550 	int err;
1551 
1552 	if (!ext_adv_capable(hdev))
1553 		return 0;
1554 
1555 	err = hci_disable_ext_adv_instance_sync(hdev, instance);
1556 	if (err)
1557 		return err;
1558 
1559 	/* If request specifies an instance that doesn't exist, fail */
1560 	if (instance > 0 && !hci_find_adv_instance(hdev, instance))
1561 		return -EINVAL;
1562 
1563 	return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_REMOVE_ADV_SET,
1564 					sizeof(instance), &instance, 0,
1565 					HCI_CMD_TIMEOUT, sk);
1566 }
1567 
1568 static int remove_ext_adv_sync(struct hci_dev *hdev, void *data)
1569 {
1570 	struct adv_info *adv = data;
1571 	u8 instance = 0;
1572 
1573 	if (adv)
1574 		instance = adv->instance;
1575 
1576 	return hci_remove_ext_adv_instance_sync(hdev, instance, NULL);
1577 }
1578 
1579 int hci_remove_ext_adv_instance(struct hci_dev *hdev, u8 instance)
1580 {
1581 	struct adv_info *adv = NULL;
1582 
1583 	if (instance) {
1584 		adv = hci_find_adv_instance(hdev, instance);
1585 		if (!adv)
1586 			return -EINVAL;
1587 	}
1588 
1589 	return hci_cmd_sync_queue(hdev, remove_ext_adv_sync, adv, NULL);
1590 }
1591 
1592 int hci_le_terminate_big_sync(struct hci_dev *hdev, u8 handle, u8 reason)
1593 {
1594 	struct hci_cp_le_term_big cp;
1595 
1596 	memset(&cp, 0, sizeof(cp));
1597 	cp.handle = handle;
1598 	cp.reason = reason;
1599 
1600 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_TERM_BIG,
1601 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1602 }
1603 
1604 static int hci_set_ext_adv_data_sync(struct hci_dev *hdev, u8 instance)
1605 {
1606 	struct {
1607 		struct hci_cp_le_set_ext_adv_data cp;
1608 		u8 data[HCI_MAX_EXT_AD_LENGTH];
1609 	} pdu;
1610 	u8 len;
1611 	struct adv_info *adv = NULL;
1612 	int err;
1613 
1614 	memset(&pdu, 0, sizeof(pdu));
1615 
1616 	if (instance) {
1617 		adv = hci_find_adv_instance(hdev, instance);
1618 		if (!adv || !adv->adv_data_changed)
1619 			return 0;
1620 	}
1621 
1622 	len = eir_create_adv_data(hdev, instance, pdu.data);
1623 
1624 	pdu.cp.length = len;
1625 	pdu.cp.handle = instance;
1626 	pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1627 	pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1628 
1629 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_DATA,
1630 				    sizeof(pdu.cp) + len, &pdu.cp,
1631 				    HCI_CMD_TIMEOUT);
1632 	if (err)
1633 		return err;
1634 
1635 	/* Update data if the command succeed */
1636 	if (adv) {
1637 		adv->adv_data_changed = false;
1638 	} else {
1639 		memcpy(hdev->adv_data, pdu.data, len);
1640 		hdev->adv_data_len = len;
1641 	}
1642 
1643 	return 0;
1644 }
1645 
1646 static int hci_set_adv_data_sync(struct hci_dev *hdev, u8 instance)
1647 {
1648 	struct hci_cp_le_set_adv_data cp;
1649 	u8 len;
1650 
1651 	memset(&cp, 0, sizeof(cp));
1652 
1653 	len = eir_create_adv_data(hdev, instance, cp.data);
1654 
1655 	/* There's nothing to do if the data hasn't changed */
1656 	if (hdev->adv_data_len == len &&
1657 	    memcmp(cp.data, hdev->adv_data, len) == 0)
1658 		return 0;
1659 
1660 	memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1661 	hdev->adv_data_len = len;
1662 
1663 	cp.length = len;
1664 
1665 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_DATA,
1666 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1667 }
1668 
1669 int hci_update_adv_data_sync(struct hci_dev *hdev, u8 instance)
1670 {
1671 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1672 		return 0;
1673 
1674 	if (ext_adv_capable(hdev))
1675 		return hci_set_ext_adv_data_sync(hdev, instance);
1676 
1677 	return hci_set_adv_data_sync(hdev, instance);
1678 }
1679 
1680 int hci_schedule_adv_instance_sync(struct hci_dev *hdev, u8 instance,
1681 				   bool force)
1682 {
1683 	struct adv_info *adv = NULL;
1684 	u16 timeout;
1685 
1686 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) && !ext_adv_capable(hdev))
1687 		return -EPERM;
1688 
1689 	if (hdev->adv_instance_timeout)
1690 		return -EBUSY;
1691 
1692 	adv = hci_find_adv_instance(hdev, instance);
1693 	if (!adv)
1694 		return -ENOENT;
1695 
1696 	/* A zero timeout means unlimited advertising. As long as there is
1697 	 * only one instance, duration should be ignored. We still set a timeout
1698 	 * in case further instances are being added later on.
1699 	 *
1700 	 * If the remaining lifetime of the instance is more than the duration
1701 	 * then the timeout corresponds to the duration, otherwise it will be
1702 	 * reduced to the remaining instance lifetime.
1703 	 */
1704 	if (adv->timeout == 0 || adv->duration <= adv->remaining_time)
1705 		timeout = adv->duration;
1706 	else
1707 		timeout = adv->remaining_time;
1708 
1709 	/* The remaining time is being reduced unless the instance is being
1710 	 * advertised without time limit.
1711 	 */
1712 	if (adv->timeout)
1713 		adv->remaining_time = adv->remaining_time - timeout;
1714 
1715 	/* Only use work for scheduling instances with legacy advertising */
1716 	if (!ext_adv_capable(hdev)) {
1717 		hdev->adv_instance_timeout = timeout;
1718 		queue_delayed_work(hdev->req_workqueue,
1719 				   &hdev->adv_instance_expire,
1720 				   msecs_to_jiffies(timeout * 1000));
1721 	}
1722 
1723 	/* If we're just re-scheduling the same instance again then do not
1724 	 * execute any HCI commands. This happens when a single instance is
1725 	 * being advertised.
1726 	 */
1727 	if (!force && hdev->cur_adv_instance == instance &&
1728 	    hci_dev_test_flag(hdev, HCI_LE_ADV))
1729 		return 0;
1730 
1731 	hdev->cur_adv_instance = instance;
1732 
1733 	return hci_start_adv_sync(hdev, instance);
1734 }
1735 
1736 static int hci_clear_adv_sets_sync(struct hci_dev *hdev, struct sock *sk)
1737 {
1738 	int err;
1739 
1740 	if (!ext_adv_capable(hdev))
1741 		return 0;
1742 
1743 	/* Disable instance 0x00 to disable all instances */
1744 	err = hci_disable_ext_adv_instance_sync(hdev, 0x00);
1745 	if (err)
1746 		return err;
1747 
1748 	return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CLEAR_ADV_SETS,
1749 					0, NULL, 0, HCI_CMD_TIMEOUT, sk);
1750 }
1751 
1752 static int hci_clear_adv_sync(struct hci_dev *hdev, struct sock *sk, bool force)
1753 {
1754 	struct adv_info *adv, *n;
1755 	int err = 0;
1756 
1757 	if (ext_adv_capable(hdev))
1758 		/* Remove all existing sets */
1759 		err = hci_clear_adv_sets_sync(hdev, sk);
1760 	if (ext_adv_capable(hdev))
1761 		return err;
1762 
1763 	/* This is safe as long as there is no command send while the lock is
1764 	 * held.
1765 	 */
1766 	hci_dev_lock(hdev);
1767 
1768 	/* Cleanup non-ext instances */
1769 	list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) {
1770 		u8 instance = adv->instance;
1771 		int err;
1772 
1773 		if (!(force || adv->timeout))
1774 			continue;
1775 
1776 		err = hci_remove_adv_instance(hdev, instance);
1777 		if (!err)
1778 			mgmt_advertising_removed(sk, hdev, instance);
1779 	}
1780 
1781 	hci_dev_unlock(hdev);
1782 
1783 	return 0;
1784 }
1785 
1786 static int hci_remove_adv_sync(struct hci_dev *hdev, u8 instance,
1787 			       struct sock *sk)
1788 {
1789 	int err = 0;
1790 
1791 	/* If we use extended advertising, instance has to be removed first. */
1792 	if (ext_adv_capable(hdev))
1793 		err = hci_remove_ext_adv_instance_sync(hdev, instance, sk);
1794 	if (ext_adv_capable(hdev))
1795 		return err;
1796 
1797 	/* This is safe as long as there is no command send while the lock is
1798 	 * held.
1799 	 */
1800 	hci_dev_lock(hdev);
1801 
1802 	err = hci_remove_adv_instance(hdev, instance);
1803 	if (!err)
1804 		mgmt_advertising_removed(sk, hdev, instance);
1805 
1806 	hci_dev_unlock(hdev);
1807 
1808 	return err;
1809 }
1810 
1811 /* For a single instance:
1812  * - force == true: The instance will be removed even when its remaining
1813  *   lifetime is not zero.
1814  * - force == false: the instance will be deactivated but kept stored unless
1815  *   the remaining lifetime is zero.
1816  *
1817  * For instance == 0x00:
1818  * - force == true: All instances will be removed regardless of their timeout
1819  *   setting.
1820  * - force == false: Only instances that have a timeout will be removed.
1821  */
1822 int hci_remove_advertising_sync(struct hci_dev *hdev, struct sock *sk,
1823 				u8 instance, bool force)
1824 {
1825 	struct adv_info *next = NULL;
1826 	int err;
1827 
1828 	/* Cancel any timeout concerning the removed instance(s). */
1829 	if (!instance || hdev->cur_adv_instance == instance)
1830 		cancel_adv_timeout(hdev);
1831 
1832 	/* Get the next instance to advertise BEFORE we remove
1833 	 * the current one. This can be the same instance again
1834 	 * if there is only one instance.
1835 	 */
1836 	if (hdev->cur_adv_instance == instance)
1837 		next = hci_get_next_instance(hdev, instance);
1838 
1839 	if (!instance) {
1840 		err = hci_clear_adv_sync(hdev, sk, force);
1841 		if (err)
1842 			return err;
1843 	} else {
1844 		struct adv_info *adv = hci_find_adv_instance(hdev, instance);
1845 
1846 		if (force || (adv && adv->timeout && !adv->remaining_time)) {
1847 			/* Don't advertise a removed instance. */
1848 			if (next && next->instance == instance)
1849 				next = NULL;
1850 
1851 			err = hci_remove_adv_sync(hdev, instance, sk);
1852 			if (err)
1853 				return err;
1854 		}
1855 	}
1856 
1857 	if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING))
1858 		return 0;
1859 
1860 	if (next && !ext_adv_capable(hdev))
1861 		hci_schedule_adv_instance_sync(hdev, next->instance, false);
1862 
1863 	return 0;
1864 }
1865 
1866 int hci_read_rssi_sync(struct hci_dev *hdev, __le16 handle)
1867 {
1868 	struct hci_cp_read_rssi cp;
1869 
1870 	cp.handle = handle;
1871 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_RSSI,
1872 					sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1873 }
1874 
1875 int hci_read_clock_sync(struct hci_dev *hdev, struct hci_cp_read_clock *cp)
1876 {
1877 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLOCK,
1878 					sizeof(*cp), cp, HCI_CMD_TIMEOUT);
1879 }
1880 
1881 int hci_read_tx_power_sync(struct hci_dev *hdev, __le16 handle, u8 type)
1882 {
1883 	struct hci_cp_read_tx_power cp;
1884 
1885 	cp.handle = handle;
1886 	cp.type = type;
1887 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_TX_POWER,
1888 					sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1889 }
1890 
1891 int hci_disable_advertising_sync(struct hci_dev *hdev)
1892 {
1893 	u8 enable = 0x00;
1894 	int err = 0;
1895 
1896 	/* If controller is not advertising we are done. */
1897 	if (!hci_dev_test_flag(hdev, HCI_LE_ADV))
1898 		return 0;
1899 
1900 	if (ext_adv_capable(hdev))
1901 		err = hci_disable_ext_adv_instance_sync(hdev, 0x00);
1902 	if (ext_adv_capable(hdev))
1903 		return err;
1904 
1905 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
1906 				     sizeof(enable), &enable, HCI_CMD_TIMEOUT);
1907 }
1908 
1909 static int hci_le_set_ext_scan_enable_sync(struct hci_dev *hdev, u8 val,
1910 					   u8 filter_dup)
1911 {
1912 	struct hci_cp_le_set_ext_scan_enable cp;
1913 
1914 	memset(&cp, 0, sizeof(cp));
1915 	cp.enable = val;
1916 
1917 	if (hci_dev_test_flag(hdev, HCI_MESH))
1918 		cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
1919 	else
1920 		cp.filter_dup = filter_dup;
1921 
1922 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
1923 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1924 }
1925 
1926 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val,
1927 				       u8 filter_dup)
1928 {
1929 	struct hci_cp_le_set_scan_enable cp;
1930 
1931 	if (use_ext_scan(hdev))
1932 		return hci_le_set_ext_scan_enable_sync(hdev, val, filter_dup);
1933 
1934 	memset(&cp, 0, sizeof(cp));
1935 	cp.enable = val;
1936 
1937 	if (val && hci_dev_test_flag(hdev, HCI_MESH))
1938 		cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
1939 	else
1940 		cp.filter_dup = filter_dup;
1941 
1942 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_ENABLE,
1943 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1944 }
1945 
1946 static int hci_le_set_addr_resolution_enable_sync(struct hci_dev *hdev, u8 val)
1947 {
1948 	if (!use_ll_privacy(hdev))
1949 		return 0;
1950 
1951 	/* If controller is not/already resolving we are done. */
1952 	if (val == hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION))
1953 		return 0;
1954 
1955 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE,
1956 				     sizeof(val), &val, HCI_CMD_TIMEOUT);
1957 }
1958 
1959 static int hci_scan_disable_sync(struct hci_dev *hdev)
1960 {
1961 	int err;
1962 
1963 	/* If controller is not scanning we are done. */
1964 	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
1965 		return 0;
1966 
1967 	if (hdev->scanning_paused) {
1968 		bt_dev_dbg(hdev, "Scanning is paused for suspend");
1969 		return 0;
1970 	}
1971 
1972 	err = hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00);
1973 	if (err) {
1974 		bt_dev_err(hdev, "Unable to disable scanning: %d", err);
1975 		return err;
1976 	}
1977 
1978 	return err;
1979 }
1980 
1981 static bool scan_use_rpa(struct hci_dev *hdev)
1982 {
1983 	return hci_dev_test_flag(hdev, HCI_PRIVACY);
1984 }
1985 
1986 static void hci_start_interleave_scan(struct hci_dev *hdev)
1987 {
1988 	hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER;
1989 	queue_delayed_work(hdev->req_workqueue,
1990 			   &hdev->interleave_scan, 0);
1991 }
1992 
1993 static bool is_interleave_scanning(struct hci_dev *hdev)
1994 {
1995 	return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE;
1996 }
1997 
1998 static void cancel_interleave_scan(struct hci_dev *hdev)
1999 {
2000 	bt_dev_dbg(hdev, "cancelling interleave scan");
2001 
2002 	cancel_delayed_work_sync(&hdev->interleave_scan);
2003 
2004 	hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE;
2005 }
2006 
2007 /* Return true if interleave_scan wasn't started until exiting this function,
2008  * otherwise, return false
2009  */
2010 static bool hci_update_interleaved_scan_sync(struct hci_dev *hdev)
2011 {
2012 	/* Do interleaved scan only if all of the following are true:
2013 	 * - There is at least one ADV monitor
2014 	 * - At least one pending LE connection or one device to be scanned for
2015 	 * - Monitor offloading is not supported
2016 	 * If so, we should alternate between allowlist scan and one without
2017 	 * any filters to save power.
2018 	 */
2019 	bool use_interleaving = hci_is_adv_monitoring(hdev) &&
2020 				!(list_empty(&hdev->pend_le_conns) &&
2021 				  list_empty(&hdev->pend_le_reports)) &&
2022 				hci_get_adv_monitor_offload_ext(hdev) ==
2023 				    HCI_ADV_MONITOR_EXT_NONE;
2024 	bool is_interleaving = is_interleave_scanning(hdev);
2025 
2026 	if (use_interleaving && !is_interleaving) {
2027 		hci_start_interleave_scan(hdev);
2028 		bt_dev_dbg(hdev, "starting interleave scan");
2029 		return true;
2030 	}
2031 
2032 	if (!use_interleaving && is_interleaving)
2033 		cancel_interleave_scan(hdev);
2034 
2035 	return false;
2036 }
2037 
2038 /* Removes connection to resolve list if needed.*/
2039 static int hci_le_del_resolve_list_sync(struct hci_dev *hdev,
2040 					bdaddr_t *bdaddr, u8 bdaddr_type)
2041 {
2042 	struct hci_cp_le_del_from_resolv_list cp;
2043 	struct bdaddr_list_with_irk *entry;
2044 
2045 	if (!use_ll_privacy(hdev))
2046 		return 0;
2047 
2048 	/* Check if the IRK has been programmed */
2049 	entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, bdaddr,
2050 						bdaddr_type);
2051 	if (!entry)
2052 		return 0;
2053 
2054 	cp.bdaddr_type = bdaddr_type;
2055 	bacpy(&cp.bdaddr, bdaddr);
2056 
2057 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_RESOLV_LIST,
2058 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2059 }
2060 
2061 static int hci_le_del_accept_list_sync(struct hci_dev *hdev,
2062 				       bdaddr_t *bdaddr, u8 bdaddr_type)
2063 {
2064 	struct hci_cp_le_del_from_accept_list cp;
2065 	int err;
2066 
2067 	/* Check if device is on accept list before removing it */
2068 	if (!hci_bdaddr_list_lookup(&hdev->le_accept_list, bdaddr, bdaddr_type))
2069 		return 0;
2070 
2071 	cp.bdaddr_type = bdaddr_type;
2072 	bacpy(&cp.bdaddr, bdaddr);
2073 
2074 	/* Ignore errors when removing from resolving list as that is likely
2075 	 * that the device was never added.
2076 	 */
2077 	hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type);
2078 
2079 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_ACCEPT_LIST,
2080 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2081 	if (err) {
2082 		bt_dev_err(hdev, "Unable to remove from allow list: %d", err);
2083 		return err;
2084 	}
2085 
2086 	bt_dev_dbg(hdev, "Remove %pMR (0x%x) from allow list", &cp.bdaddr,
2087 		   cp.bdaddr_type);
2088 
2089 	return 0;
2090 }
2091 
2092 struct conn_params {
2093 	bdaddr_t addr;
2094 	u8 addr_type;
2095 	hci_conn_flags_t flags;
2096 	u8 privacy_mode;
2097 };
2098 
2099 /* Adds connection to resolve list if needed.
2100  * Setting params to NULL programs local hdev->irk
2101  */
2102 static int hci_le_add_resolve_list_sync(struct hci_dev *hdev,
2103 					struct conn_params *params)
2104 {
2105 	struct hci_cp_le_add_to_resolv_list cp;
2106 	struct smp_irk *irk;
2107 	struct bdaddr_list_with_irk *entry;
2108 	struct hci_conn_params *p;
2109 
2110 	if (!use_ll_privacy(hdev))
2111 		return 0;
2112 
2113 	/* Attempt to program local identity address, type and irk if params is
2114 	 * NULL.
2115 	 */
2116 	if (!params) {
2117 		if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
2118 			return 0;
2119 
2120 		hci_copy_identity_address(hdev, &cp.bdaddr, &cp.bdaddr_type);
2121 		memcpy(cp.peer_irk, hdev->irk, 16);
2122 		goto done;
2123 	}
2124 
2125 	irk = hci_find_irk_by_addr(hdev, &params->addr, params->addr_type);
2126 	if (!irk)
2127 		return 0;
2128 
2129 	/* Check if the IK has _not_ been programmed yet. */
2130 	entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list,
2131 						&params->addr,
2132 						params->addr_type);
2133 	if (entry)
2134 		return 0;
2135 
2136 	cp.bdaddr_type = params->addr_type;
2137 	bacpy(&cp.bdaddr, &params->addr);
2138 	memcpy(cp.peer_irk, irk->val, 16);
2139 
2140 	/* Default privacy mode is always Network */
2141 	params->privacy_mode = HCI_NETWORK_PRIVACY;
2142 
2143 	rcu_read_lock();
2144 	p = hci_pend_le_action_lookup(&hdev->pend_le_conns,
2145 				      &params->addr, params->addr_type);
2146 	if (!p)
2147 		p = hci_pend_le_action_lookup(&hdev->pend_le_reports,
2148 					      &params->addr, params->addr_type);
2149 	if (p)
2150 		WRITE_ONCE(p->privacy_mode, HCI_NETWORK_PRIVACY);
2151 	rcu_read_unlock();
2152 
2153 done:
2154 	if (hci_dev_test_flag(hdev, HCI_PRIVACY))
2155 		memcpy(cp.local_irk, hdev->irk, 16);
2156 	else
2157 		memset(cp.local_irk, 0, 16);
2158 
2159 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_RESOLV_LIST,
2160 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2161 }
2162 
2163 /* Set Device Privacy Mode. */
2164 static int hci_le_set_privacy_mode_sync(struct hci_dev *hdev,
2165 					struct conn_params *params)
2166 {
2167 	struct hci_cp_le_set_privacy_mode cp;
2168 	struct smp_irk *irk;
2169 
2170 	/* If device privacy mode has already been set there is nothing to do */
2171 	if (params->privacy_mode == HCI_DEVICE_PRIVACY)
2172 		return 0;
2173 
2174 	/* Check if HCI_CONN_FLAG_DEVICE_PRIVACY has been set as it also
2175 	 * indicates that LL Privacy has been enabled and
2176 	 * HCI_OP_LE_SET_PRIVACY_MODE is supported.
2177 	 */
2178 	if (!(params->flags & HCI_CONN_FLAG_DEVICE_PRIVACY))
2179 		return 0;
2180 
2181 	irk = hci_find_irk_by_addr(hdev, &params->addr, params->addr_type);
2182 	if (!irk)
2183 		return 0;
2184 
2185 	memset(&cp, 0, sizeof(cp));
2186 	cp.bdaddr_type = irk->addr_type;
2187 	bacpy(&cp.bdaddr, &irk->bdaddr);
2188 	cp.mode = HCI_DEVICE_PRIVACY;
2189 
2190 	/* Note: params->privacy_mode is not updated since it is a copy */
2191 
2192 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PRIVACY_MODE,
2193 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2194 }
2195 
2196 /* Adds connection to allow list if needed, if the device uses RPA (has IRK)
2197  * this attempts to program the device in the resolving list as well and
2198  * properly set the privacy mode.
2199  */
2200 static int hci_le_add_accept_list_sync(struct hci_dev *hdev,
2201 				       struct conn_params *params,
2202 				       u8 *num_entries)
2203 {
2204 	struct hci_cp_le_add_to_accept_list cp;
2205 	int err;
2206 
2207 	/* During suspend, only wakeable devices can be in acceptlist */
2208 	if (hdev->suspended &&
2209 	    !(params->flags & HCI_CONN_FLAG_REMOTE_WAKEUP))
2210 		return 0;
2211 
2212 	/* Select filter policy to accept all advertising */
2213 	if (*num_entries >= hdev->le_accept_list_size)
2214 		return -ENOSPC;
2215 
2216 	/* Accept list can not be used with RPAs */
2217 	if (!use_ll_privacy(hdev) &&
2218 	    hci_find_irk_by_addr(hdev, &params->addr, params->addr_type))
2219 		return -EINVAL;
2220 
2221 	/* Attempt to program the device in the resolving list first to avoid
2222 	 * having to rollback in case it fails since the resolving list is
2223 	 * dynamic it can probably be smaller than the accept list.
2224 	 */
2225 	err = hci_le_add_resolve_list_sync(hdev, params);
2226 	if (err) {
2227 		bt_dev_err(hdev, "Unable to add to resolve list: %d", err);
2228 		return err;
2229 	}
2230 
2231 	/* Set Privacy Mode */
2232 	err = hci_le_set_privacy_mode_sync(hdev, params);
2233 	if (err) {
2234 		bt_dev_err(hdev, "Unable to set privacy mode: %d", err);
2235 		return err;
2236 	}
2237 
2238 	/* Check if already in accept list */
2239 	if (hci_bdaddr_list_lookup(&hdev->le_accept_list, &params->addr,
2240 				   params->addr_type))
2241 		return 0;
2242 
2243 	*num_entries += 1;
2244 	cp.bdaddr_type = params->addr_type;
2245 	bacpy(&cp.bdaddr, &params->addr);
2246 
2247 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST,
2248 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2249 	if (err) {
2250 		bt_dev_err(hdev, "Unable to add to allow list: %d", err);
2251 		/* Rollback the device from the resolving list */
2252 		hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type);
2253 		return err;
2254 	}
2255 
2256 	bt_dev_dbg(hdev, "Add %pMR (0x%x) to allow list", &cp.bdaddr,
2257 		   cp.bdaddr_type);
2258 
2259 	return 0;
2260 }
2261 
2262 /* This function disables/pause all advertising instances */
2263 static int hci_pause_advertising_sync(struct hci_dev *hdev)
2264 {
2265 	int err;
2266 	int old_state;
2267 
2268 	/* If already been paused there is nothing to do. */
2269 	if (hdev->advertising_paused)
2270 		return 0;
2271 
2272 	bt_dev_dbg(hdev, "Pausing directed advertising");
2273 
2274 	/* Stop directed advertising */
2275 	old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING);
2276 	if (old_state) {
2277 		/* When discoverable timeout triggers, then just make sure
2278 		 * the limited discoverable flag is cleared. Even in the case
2279 		 * of a timeout triggered from general discoverable, it is
2280 		 * safe to unconditionally clear the flag.
2281 		 */
2282 		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
2283 		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
2284 		hdev->discov_timeout = 0;
2285 	}
2286 
2287 	bt_dev_dbg(hdev, "Pausing advertising instances");
2288 
2289 	/* Call to disable any advertisements active on the controller.
2290 	 * This will succeed even if no advertisements are configured.
2291 	 */
2292 	err = hci_disable_advertising_sync(hdev);
2293 	if (err)
2294 		return err;
2295 
2296 	/* If we are using software rotation, pause the loop */
2297 	if (!ext_adv_capable(hdev))
2298 		cancel_adv_timeout(hdev);
2299 
2300 	hdev->advertising_paused = true;
2301 	hdev->advertising_old_state = old_state;
2302 
2303 	return 0;
2304 }
2305 
2306 /* This function enables all user advertising instances */
2307 static int hci_resume_advertising_sync(struct hci_dev *hdev)
2308 {
2309 	struct adv_info *adv, *tmp;
2310 	int err;
2311 
2312 	/* If advertising has not been paused there is nothing  to do. */
2313 	if (!hdev->advertising_paused)
2314 		return 0;
2315 
2316 	/* Resume directed advertising */
2317 	hdev->advertising_paused = false;
2318 	if (hdev->advertising_old_state) {
2319 		hci_dev_set_flag(hdev, HCI_ADVERTISING);
2320 		hdev->advertising_old_state = 0;
2321 	}
2322 
2323 	bt_dev_dbg(hdev, "Resuming advertising instances");
2324 
2325 	if (ext_adv_capable(hdev)) {
2326 		/* Call for each tracked instance to be re-enabled */
2327 		list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) {
2328 			err = hci_enable_ext_advertising_sync(hdev,
2329 							      adv->instance);
2330 			if (!err)
2331 				continue;
2332 
2333 			/* If the instance cannot be resumed remove it */
2334 			hci_remove_ext_adv_instance_sync(hdev, adv->instance,
2335 							 NULL);
2336 		}
2337 	} else {
2338 		/* Schedule for most recent instance to be restarted and begin
2339 		 * the software rotation loop
2340 		 */
2341 		err = hci_schedule_adv_instance_sync(hdev,
2342 						     hdev->cur_adv_instance,
2343 						     true);
2344 	}
2345 
2346 	hdev->advertising_paused = false;
2347 
2348 	return err;
2349 }
2350 
2351 static int hci_pause_addr_resolution(struct hci_dev *hdev)
2352 {
2353 	int err;
2354 
2355 	if (!use_ll_privacy(hdev))
2356 		return 0;
2357 
2358 	if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION))
2359 		return 0;
2360 
2361 	/* Cannot disable addr resolution if scanning is enabled or
2362 	 * when initiating an LE connection.
2363 	 */
2364 	if (hci_dev_test_flag(hdev, HCI_LE_SCAN) ||
2365 	    hci_lookup_le_connect(hdev)) {
2366 		bt_dev_err(hdev, "Command not allowed when scan/LE connect");
2367 		return -EPERM;
2368 	}
2369 
2370 	/* Cannot disable addr resolution if advertising is enabled. */
2371 	err = hci_pause_advertising_sync(hdev);
2372 	if (err) {
2373 		bt_dev_err(hdev, "Pause advertising failed: %d", err);
2374 		return err;
2375 	}
2376 
2377 	err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00);
2378 	if (err)
2379 		bt_dev_err(hdev, "Unable to disable Address Resolution: %d",
2380 			   err);
2381 
2382 	/* Return if address resolution is disabled and RPA is not used. */
2383 	if (!err && scan_use_rpa(hdev))
2384 		return 0;
2385 
2386 	hci_resume_advertising_sync(hdev);
2387 	return err;
2388 }
2389 
2390 struct sk_buff *hci_read_local_oob_data_sync(struct hci_dev *hdev,
2391 					     bool extended, struct sock *sk)
2392 {
2393 	u16 opcode = extended ? HCI_OP_READ_LOCAL_OOB_EXT_DATA :
2394 					HCI_OP_READ_LOCAL_OOB_DATA;
2395 
2396 	return __hci_cmd_sync_sk(hdev, opcode, 0, NULL, 0, HCI_CMD_TIMEOUT, sk);
2397 }
2398 
2399 static struct conn_params *conn_params_copy(struct list_head *list, size_t *n)
2400 {
2401 	struct hci_conn_params *params;
2402 	struct conn_params *p;
2403 	size_t i;
2404 
2405 	rcu_read_lock();
2406 
2407 	i = 0;
2408 	list_for_each_entry_rcu(params, list, action)
2409 		++i;
2410 	*n = i;
2411 
2412 	rcu_read_unlock();
2413 
2414 	p = kvcalloc(*n, sizeof(struct conn_params), GFP_KERNEL);
2415 	if (!p)
2416 		return NULL;
2417 
2418 	rcu_read_lock();
2419 
2420 	i = 0;
2421 	list_for_each_entry_rcu(params, list, action) {
2422 		/* Racing adds are handled in next scan update */
2423 		if (i >= *n)
2424 			break;
2425 
2426 		/* No hdev->lock, but: addr, addr_type are immutable.
2427 		 * privacy_mode is only written by us or in
2428 		 * hci_cc_le_set_privacy_mode that we wait for.
2429 		 * We should be idempotent so MGMT updating flags
2430 		 * while we are processing is OK.
2431 		 */
2432 		bacpy(&p[i].addr, &params->addr);
2433 		p[i].addr_type = params->addr_type;
2434 		p[i].flags = READ_ONCE(params->flags);
2435 		p[i].privacy_mode = READ_ONCE(params->privacy_mode);
2436 		++i;
2437 	}
2438 
2439 	rcu_read_unlock();
2440 
2441 	*n = i;
2442 	return p;
2443 }
2444 
2445 /* Device must not be scanning when updating the accept list.
2446  *
2447  * Update is done using the following sequence:
2448  *
2449  * use_ll_privacy((Disable Advertising) -> Disable Resolving List) ->
2450  * Remove Devices From Accept List ->
2451  * (has IRK && use_ll_privacy(Remove Devices From Resolving List))->
2452  * Add Devices to Accept List ->
2453  * (has IRK && use_ll_privacy(Remove Devices From Resolving List)) ->
2454  * use_ll_privacy(Enable Resolving List -> (Enable Advertising)) ->
2455  * Enable Scanning
2456  *
2457  * In case of failure advertising shall be restored to its original state and
2458  * return would disable accept list since either accept or resolving list could
2459  * not be programmed.
2460  *
2461  */
2462 static u8 hci_update_accept_list_sync(struct hci_dev *hdev)
2463 {
2464 	struct conn_params *params;
2465 	struct bdaddr_list *b, *t;
2466 	u8 num_entries = 0;
2467 	bool pend_conn, pend_report;
2468 	u8 filter_policy;
2469 	size_t i, n;
2470 	int err;
2471 
2472 	/* Pause advertising if resolving list can be used as controllers
2473 	 * cannot accept resolving list modifications while advertising.
2474 	 */
2475 	if (use_ll_privacy(hdev)) {
2476 		err = hci_pause_advertising_sync(hdev);
2477 		if (err) {
2478 			bt_dev_err(hdev, "pause advertising failed: %d", err);
2479 			return 0x00;
2480 		}
2481 	}
2482 
2483 	/* Disable address resolution while reprogramming accept list since
2484 	 * devices that do have an IRK will be programmed in the resolving list
2485 	 * when LL Privacy is enabled.
2486 	 */
2487 	err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00);
2488 	if (err) {
2489 		bt_dev_err(hdev, "Unable to disable LL privacy: %d", err);
2490 		goto done;
2491 	}
2492 
2493 	/* Go through the current accept list programmed into the
2494 	 * controller one by one and check if that address is connected or is
2495 	 * still in the list of pending connections or list of devices to
2496 	 * report. If not present in either list, then remove it from
2497 	 * the controller.
2498 	 */
2499 	list_for_each_entry_safe(b, t, &hdev->le_accept_list, list) {
2500 		if (hci_conn_hash_lookup_le(hdev, &b->bdaddr, b->bdaddr_type))
2501 			continue;
2502 
2503 		/* Pointers not dereferenced, no locks needed */
2504 		pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns,
2505 						      &b->bdaddr,
2506 						      b->bdaddr_type);
2507 		pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports,
2508 							&b->bdaddr,
2509 							b->bdaddr_type);
2510 
2511 		/* If the device is not likely to connect or report,
2512 		 * remove it from the acceptlist.
2513 		 */
2514 		if (!pend_conn && !pend_report) {
2515 			hci_le_del_accept_list_sync(hdev, &b->bdaddr,
2516 						    b->bdaddr_type);
2517 			continue;
2518 		}
2519 
2520 		num_entries++;
2521 	}
2522 
2523 	/* Since all no longer valid accept list entries have been
2524 	 * removed, walk through the list of pending connections
2525 	 * and ensure that any new device gets programmed into
2526 	 * the controller.
2527 	 *
2528 	 * If the list of the devices is larger than the list of
2529 	 * available accept list entries in the controller, then
2530 	 * just abort and return filer policy value to not use the
2531 	 * accept list.
2532 	 *
2533 	 * The list and params may be mutated while we wait for events,
2534 	 * so make a copy and iterate it.
2535 	 */
2536 
2537 	params = conn_params_copy(&hdev->pend_le_conns, &n);
2538 	if (!params) {
2539 		err = -ENOMEM;
2540 		goto done;
2541 	}
2542 
2543 	for (i = 0; i < n; ++i) {
2544 		err = hci_le_add_accept_list_sync(hdev, &params[i],
2545 						  &num_entries);
2546 		if (err) {
2547 			kvfree(params);
2548 			goto done;
2549 		}
2550 	}
2551 
2552 	kvfree(params);
2553 
2554 	/* After adding all new pending connections, walk through
2555 	 * the list of pending reports and also add these to the
2556 	 * accept list if there is still space. Abort if space runs out.
2557 	 */
2558 
2559 	params = conn_params_copy(&hdev->pend_le_reports, &n);
2560 	if (!params) {
2561 		err = -ENOMEM;
2562 		goto done;
2563 	}
2564 
2565 	for (i = 0; i < n; ++i) {
2566 		err = hci_le_add_accept_list_sync(hdev, &params[i],
2567 						  &num_entries);
2568 		if (err) {
2569 			kvfree(params);
2570 			goto done;
2571 		}
2572 	}
2573 
2574 	kvfree(params);
2575 
2576 	/* Use the allowlist unless the following conditions are all true:
2577 	 * - We are not currently suspending
2578 	 * - There are 1 or more ADV monitors registered and it's not offloaded
2579 	 * - Interleaved scanning is not currently using the allowlist
2580 	 */
2581 	if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended &&
2582 	    hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE &&
2583 	    hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST)
2584 		err = -EINVAL;
2585 
2586 done:
2587 	filter_policy = err ? 0x00 : 0x01;
2588 
2589 	/* Enable address resolution when LL Privacy is enabled. */
2590 	err = hci_le_set_addr_resolution_enable_sync(hdev, 0x01);
2591 	if (err)
2592 		bt_dev_err(hdev, "Unable to enable LL privacy: %d", err);
2593 
2594 	/* Resume advertising if it was paused */
2595 	if (use_ll_privacy(hdev))
2596 		hci_resume_advertising_sync(hdev);
2597 
2598 	/* Select filter policy to use accept list */
2599 	return filter_policy;
2600 }
2601 
2602 static int hci_le_set_ext_scan_param_sync(struct hci_dev *hdev, u8 type,
2603 					  u16 interval, u16 window,
2604 					  u8 own_addr_type, u8 filter_policy)
2605 {
2606 	struct hci_cp_le_set_ext_scan_params *cp;
2607 	struct hci_cp_le_scan_phy_params *phy;
2608 	u8 data[sizeof(*cp) + sizeof(*phy) * 2];
2609 	u8 num_phy = 0;
2610 
2611 	cp = (void *)data;
2612 	phy = (void *)cp->data;
2613 
2614 	memset(data, 0, sizeof(data));
2615 
2616 	cp->own_addr_type = own_addr_type;
2617 	cp->filter_policy = filter_policy;
2618 
2619 	if (scan_1m(hdev) || scan_2m(hdev)) {
2620 		cp->scanning_phys |= LE_SCAN_PHY_1M;
2621 
2622 		phy->type = type;
2623 		phy->interval = cpu_to_le16(interval);
2624 		phy->window = cpu_to_le16(window);
2625 
2626 		num_phy++;
2627 		phy++;
2628 	}
2629 
2630 	if (scan_coded(hdev)) {
2631 		cp->scanning_phys |= LE_SCAN_PHY_CODED;
2632 
2633 		phy->type = type;
2634 		phy->interval = cpu_to_le16(interval);
2635 		phy->window = cpu_to_le16(window);
2636 
2637 		num_phy++;
2638 		phy++;
2639 	}
2640 
2641 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_PARAMS,
2642 				     sizeof(*cp) + sizeof(*phy) * num_phy,
2643 				     data, HCI_CMD_TIMEOUT);
2644 }
2645 
2646 static int hci_le_set_scan_param_sync(struct hci_dev *hdev, u8 type,
2647 				      u16 interval, u16 window,
2648 				      u8 own_addr_type, u8 filter_policy)
2649 {
2650 	struct hci_cp_le_set_scan_param cp;
2651 
2652 	if (use_ext_scan(hdev))
2653 		return hci_le_set_ext_scan_param_sync(hdev, type, interval,
2654 						      window, own_addr_type,
2655 						      filter_policy);
2656 
2657 	memset(&cp, 0, sizeof(cp));
2658 	cp.type = type;
2659 	cp.interval = cpu_to_le16(interval);
2660 	cp.window = cpu_to_le16(window);
2661 	cp.own_address_type = own_addr_type;
2662 	cp.filter_policy = filter_policy;
2663 
2664 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_PARAM,
2665 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2666 }
2667 
2668 static int hci_start_scan_sync(struct hci_dev *hdev, u8 type, u16 interval,
2669 			       u16 window, u8 own_addr_type, u8 filter_policy,
2670 			       u8 filter_dup)
2671 {
2672 	int err;
2673 
2674 	if (hdev->scanning_paused) {
2675 		bt_dev_dbg(hdev, "Scanning is paused for suspend");
2676 		return 0;
2677 	}
2678 
2679 	err = hci_le_set_scan_param_sync(hdev, type, interval, window,
2680 					 own_addr_type, filter_policy);
2681 	if (err)
2682 		return err;
2683 
2684 	return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, filter_dup);
2685 }
2686 
2687 static int hci_passive_scan_sync(struct hci_dev *hdev)
2688 {
2689 	u8 own_addr_type;
2690 	u8 filter_policy;
2691 	u16 window, interval;
2692 	u8 filter_dups = LE_SCAN_FILTER_DUP_ENABLE;
2693 	int err;
2694 
2695 	if (hdev->scanning_paused) {
2696 		bt_dev_dbg(hdev, "Scanning is paused for suspend");
2697 		return 0;
2698 	}
2699 
2700 	err = hci_scan_disable_sync(hdev);
2701 	if (err) {
2702 		bt_dev_err(hdev, "disable scanning failed: %d", err);
2703 		return err;
2704 	}
2705 
2706 	/* Set require_privacy to false since no SCAN_REQ are send
2707 	 * during passive scanning. Not using an non-resolvable address
2708 	 * here is important so that peer devices using direct
2709 	 * advertising with our address will be correctly reported
2710 	 * by the controller.
2711 	 */
2712 	if (hci_update_random_address_sync(hdev, false, scan_use_rpa(hdev),
2713 					   &own_addr_type))
2714 		return 0;
2715 
2716 	if (hdev->enable_advmon_interleave_scan &&
2717 	    hci_update_interleaved_scan_sync(hdev))
2718 		return 0;
2719 
2720 	bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state);
2721 
2722 	/* Adding or removing entries from the accept list must
2723 	 * happen before enabling scanning. The controller does
2724 	 * not allow accept list modification while scanning.
2725 	 */
2726 	filter_policy = hci_update_accept_list_sync(hdev);
2727 
2728 	/* When the controller is using random resolvable addresses and
2729 	 * with that having LE privacy enabled, then controllers with
2730 	 * Extended Scanner Filter Policies support can now enable support
2731 	 * for handling directed advertising.
2732 	 *
2733 	 * So instead of using filter polices 0x00 (no acceptlist)
2734 	 * and 0x01 (acceptlist enabled) use the new filter policies
2735 	 * 0x02 (no acceptlist) and 0x03 (acceptlist enabled).
2736 	 */
2737 	if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
2738 	    (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
2739 		filter_policy |= 0x02;
2740 
2741 	if (hdev->suspended) {
2742 		window = hdev->le_scan_window_suspend;
2743 		interval = hdev->le_scan_int_suspend;
2744 	} else if (hci_is_le_conn_scanning(hdev)) {
2745 		window = hdev->le_scan_window_connect;
2746 		interval = hdev->le_scan_int_connect;
2747 	} else if (hci_is_adv_monitoring(hdev)) {
2748 		window = hdev->le_scan_window_adv_monitor;
2749 		interval = hdev->le_scan_int_adv_monitor;
2750 	} else {
2751 		window = hdev->le_scan_window;
2752 		interval = hdev->le_scan_interval;
2753 	}
2754 
2755 	/* Disable all filtering for Mesh */
2756 	if (hci_dev_test_flag(hdev, HCI_MESH)) {
2757 		filter_policy = 0;
2758 		filter_dups = LE_SCAN_FILTER_DUP_DISABLE;
2759 	}
2760 
2761 	bt_dev_dbg(hdev, "LE passive scan with acceptlist = %d", filter_policy);
2762 
2763 	return hci_start_scan_sync(hdev, LE_SCAN_PASSIVE, interval, window,
2764 				   own_addr_type, filter_policy, filter_dups);
2765 }
2766 
2767 /* This function controls the passive scanning based on hdev->pend_le_conns
2768  * list. If there are pending LE connection we start the background scanning,
2769  * otherwise we stop it in the following sequence:
2770  *
2771  * If there are devices to scan:
2772  *
2773  * Disable Scanning -> Update Accept List ->
2774  * use_ll_privacy((Disable Advertising) -> Disable Resolving List ->
2775  * Update Resolving List -> Enable Resolving List -> (Enable Advertising)) ->
2776  * Enable Scanning
2777  *
2778  * Otherwise:
2779  *
2780  * Disable Scanning
2781  */
2782 int hci_update_passive_scan_sync(struct hci_dev *hdev)
2783 {
2784 	int err;
2785 
2786 	if (!test_bit(HCI_UP, &hdev->flags) ||
2787 	    test_bit(HCI_INIT, &hdev->flags) ||
2788 	    hci_dev_test_flag(hdev, HCI_SETUP) ||
2789 	    hci_dev_test_flag(hdev, HCI_CONFIG) ||
2790 	    hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
2791 	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2792 		return 0;
2793 
2794 	/* No point in doing scanning if LE support hasn't been enabled */
2795 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
2796 		return 0;
2797 
2798 	/* If discovery is active don't interfere with it */
2799 	if (hdev->discovery.state != DISCOVERY_STOPPED)
2800 		return 0;
2801 
2802 	/* Reset RSSI and UUID filters when starting background scanning
2803 	 * since these filters are meant for service discovery only.
2804 	 *
2805 	 * The Start Discovery and Start Service Discovery operations
2806 	 * ensure to set proper values for RSSI threshold and UUID
2807 	 * filter list. So it is safe to just reset them here.
2808 	 */
2809 	hci_discovery_filter_clear(hdev);
2810 
2811 	bt_dev_dbg(hdev, "ADV monitoring is %s",
2812 		   hci_is_adv_monitoring(hdev) ? "on" : "off");
2813 
2814 	if (!hci_dev_test_flag(hdev, HCI_MESH) &&
2815 	    list_empty(&hdev->pend_le_conns) &&
2816 	    list_empty(&hdev->pend_le_reports) &&
2817 	    !hci_is_adv_monitoring(hdev) &&
2818 	    !hci_dev_test_flag(hdev, HCI_PA_SYNC)) {
2819 		/* If there is no pending LE connections or devices
2820 		 * to be scanned for or no ADV monitors, we should stop the
2821 		 * background scanning.
2822 		 */
2823 
2824 		bt_dev_dbg(hdev, "stopping background scanning");
2825 
2826 		err = hci_scan_disable_sync(hdev);
2827 		if (err)
2828 			bt_dev_err(hdev, "stop background scanning failed: %d",
2829 				   err);
2830 	} else {
2831 		/* If there is at least one pending LE connection, we should
2832 		 * keep the background scan running.
2833 		 */
2834 
2835 		/* If controller is connecting, we should not start scanning
2836 		 * since some controllers are not able to scan and connect at
2837 		 * the same time.
2838 		 */
2839 		if (hci_lookup_le_connect(hdev))
2840 			return 0;
2841 
2842 		bt_dev_dbg(hdev, "start background scanning");
2843 
2844 		err = hci_passive_scan_sync(hdev);
2845 		if (err)
2846 			bt_dev_err(hdev, "start background scanning failed: %d",
2847 				   err);
2848 	}
2849 
2850 	return err;
2851 }
2852 
2853 static int update_scan_sync(struct hci_dev *hdev, void *data)
2854 {
2855 	return hci_update_scan_sync(hdev);
2856 }
2857 
2858 int hci_update_scan(struct hci_dev *hdev)
2859 {
2860 	return hci_cmd_sync_queue(hdev, update_scan_sync, NULL, NULL);
2861 }
2862 
2863 static int update_passive_scan_sync(struct hci_dev *hdev, void *data)
2864 {
2865 	return hci_update_passive_scan_sync(hdev);
2866 }
2867 
2868 int hci_update_passive_scan(struct hci_dev *hdev)
2869 {
2870 	/* Only queue if it would have any effect */
2871 	if (!test_bit(HCI_UP, &hdev->flags) ||
2872 	    test_bit(HCI_INIT, &hdev->flags) ||
2873 	    hci_dev_test_flag(hdev, HCI_SETUP) ||
2874 	    hci_dev_test_flag(hdev, HCI_CONFIG) ||
2875 	    hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
2876 	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2877 		return 0;
2878 
2879 	return hci_cmd_sync_queue(hdev, update_passive_scan_sync, NULL, NULL);
2880 }
2881 
2882 int hci_write_sc_support_sync(struct hci_dev *hdev, u8 val)
2883 {
2884 	int err;
2885 
2886 	if (!bredr_sc_enabled(hdev) || lmp_host_sc_capable(hdev))
2887 		return 0;
2888 
2889 	err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT,
2890 				    sizeof(val), &val, HCI_CMD_TIMEOUT);
2891 
2892 	if (!err) {
2893 		if (val) {
2894 			hdev->features[1][0] |= LMP_HOST_SC;
2895 			hci_dev_set_flag(hdev, HCI_SC_ENABLED);
2896 		} else {
2897 			hdev->features[1][0] &= ~LMP_HOST_SC;
2898 			hci_dev_clear_flag(hdev, HCI_SC_ENABLED);
2899 		}
2900 	}
2901 
2902 	return err;
2903 }
2904 
2905 int hci_write_ssp_mode_sync(struct hci_dev *hdev, u8 mode)
2906 {
2907 	int err;
2908 
2909 	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) ||
2910 	    lmp_host_ssp_capable(hdev))
2911 		return 0;
2912 
2913 	if (!mode && hci_dev_test_flag(hdev, HCI_USE_DEBUG_KEYS)) {
2914 		__hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE,
2915 				      sizeof(mode), &mode, HCI_CMD_TIMEOUT);
2916 	}
2917 
2918 	err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE,
2919 				    sizeof(mode), &mode, HCI_CMD_TIMEOUT);
2920 	if (err)
2921 		return err;
2922 
2923 	return hci_write_sc_support_sync(hdev, 0x01);
2924 }
2925 
2926 int hci_write_le_host_supported_sync(struct hci_dev *hdev, u8 le, u8 simul)
2927 {
2928 	struct hci_cp_write_le_host_supported cp;
2929 
2930 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED) ||
2931 	    !lmp_bredr_capable(hdev))
2932 		return 0;
2933 
2934 	/* Check first if we already have the right host state
2935 	 * (host features set)
2936 	 */
2937 	if (le == lmp_host_le_capable(hdev) &&
2938 	    simul == lmp_host_le_br_capable(hdev))
2939 		return 0;
2940 
2941 	memset(&cp, 0, sizeof(cp));
2942 
2943 	cp.le = le;
2944 	cp.simul = simul;
2945 
2946 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED,
2947 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2948 }
2949 
2950 static int hci_powered_update_adv_sync(struct hci_dev *hdev)
2951 {
2952 	struct adv_info *adv, *tmp;
2953 	int err;
2954 
2955 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
2956 		return 0;
2957 
2958 	/* If RPA Resolution has not been enable yet it means the
2959 	 * resolving list is empty and we should attempt to program the
2960 	 * local IRK in order to support using own_addr_type
2961 	 * ADDR_LE_DEV_RANDOM_RESOLVED (0x03).
2962 	 */
2963 	if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) {
2964 		hci_le_add_resolve_list_sync(hdev, NULL);
2965 		hci_le_set_addr_resolution_enable_sync(hdev, 0x01);
2966 	}
2967 
2968 	/* Make sure the controller has a good default for
2969 	 * advertising data. This also applies to the case
2970 	 * where BR/EDR was toggled during the AUTO_OFF phase.
2971 	 */
2972 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2973 	    list_empty(&hdev->adv_instances)) {
2974 		if (ext_adv_capable(hdev)) {
2975 			err = hci_setup_ext_adv_instance_sync(hdev, 0x00);
2976 			if (!err)
2977 				hci_update_scan_rsp_data_sync(hdev, 0x00);
2978 		} else {
2979 			err = hci_update_adv_data_sync(hdev, 0x00);
2980 			if (!err)
2981 				hci_update_scan_rsp_data_sync(hdev, 0x00);
2982 		}
2983 
2984 		if (hci_dev_test_flag(hdev, HCI_ADVERTISING))
2985 			hci_enable_advertising_sync(hdev);
2986 	}
2987 
2988 	/* Call for each tracked instance to be scheduled */
2989 	list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list)
2990 		hci_schedule_adv_instance_sync(hdev, adv->instance, true);
2991 
2992 	return 0;
2993 }
2994 
2995 static int hci_write_auth_enable_sync(struct hci_dev *hdev)
2996 {
2997 	u8 link_sec;
2998 
2999 	link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
3000 	if (link_sec == test_bit(HCI_AUTH, &hdev->flags))
3001 		return 0;
3002 
3003 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE,
3004 				     sizeof(link_sec), &link_sec,
3005 				     HCI_CMD_TIMEOUT);
3006 }
3007 
3008 int hci_write_fast_connectable_sync(struct hci_dev *hdev, bool enable)
3009 {
3010 	struct hci_cp_write_page_scan_activity cp;
3011 	u8 type;
3012 	int err = 0;
3013 
3014 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
3015 		return 0;
3016 
3017 	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
3018 		return 0;
3019 
3020 	memset(&cp, 0, sizeof(cp));
3021 
3022 	if (enable) {
3023 		type = PAGE_SCAN_TYPE_INTERLACED;
3024 
3025 		/* 160 msec page scan interval */
3026 		cp.interval = cpu_to_le16(0x0100);
3027 	} else {
3028 		type = hdev->def_page_scan_type;
3029 		cp.interval = cpu_to_le16(hdev->def_page_scan_int);
3030 	}
3031 
3032 	cp.window = cpu_to_le16(hdev->def_page_scan_window);
3033 
3034 	if (__cpu_to_le16(hdev->page_scan_interval) != cp.interval ||
3035 	    __cpu_to_le16(hdev->page_scan_window) != cp.window) {
3036 		err = __hci_cmd_sync_status(hdev,
3037 					    HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
3038 					    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3039 		if (err)
3040 			return err;
3041 	}
3042 
3043 	if (hdev->page_scan_type != type)
3044 		err = __hci_cmd_sync_status(hdev,
3045 					    HCI_OP_WRITE_PAGE_SCAN_TYPE,
3046 					    sizeof(type), &type,
3047 					    HCI_CMD_TIMEOUT);
3048 
3049 	return err;
3050 }
3051 
3052 static bool disconnected_accept_list_entries(struct hci_dev *hdev)
3053 {
3054 	struct bdaddr_list *b;
3055 
3056 	list_for_each_entry(b, &hdev->accept_list, list) {
3057 		struct hci_conn *conn;
3058 
3059 		conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
3060 		if (!conn)
3061 			return true;
3062 
3063 		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3064 			return true;
3065 	}
3066 
3067 	return false;
3068 }
3069 
3070 static int hci_write_scan_enable_sync(struct hci_dev *hdev, u8 val)
3071 {
3072 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE,
3073 					    sizeof(val), &val,
3074 					    HCI_CMD_TIMEOUT);
3075 }
3076 
3077 int hci_update_scan_sync(struct hci_dev *hdev)
3078 {
3079 	u8 scan;
3080 
3081 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
3082 		return 0;
3083 
3084 	if (!hdev_is_powered(hdev))
3085 		return 0;
3086 
3087 	if (mgmt_powering_down(hdev))
3088 		return 0;
3089 
3090 	if (hdev->scanning_paused)
3091 		return 0;
3092 
3093 	if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
3094 	    disconnected_accept_list_entries(hdev))
3095 		scan = SCAN_PAGE;
3096 	else
3097 		scan = SCAN_DISABLED;
3098 
3099 	if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
3100 		scan |= SCAN_INQUIRY;
3101 
3102 	if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
3103 	    test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
3104 		return 0;
3105 
3106 	return hci_write_scan_enable_sync(hdev, scan);
3107 }
3108 
3109 int hci_update_name_sync(struct hci_dev *hdev)
3110 {
3111 	struct hci_cp_write_local_name cp;
3112 
3113 	memset(&cp, 0, sizeof(cp));
3114 
3115 	memcpy(cp.name, hdev->dev_name, sizeof(cp.name));
3116 
3117 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LOCAL_NAME,
3118 					    sizeof(cp), &cp,
3119 					    HCI_CMD_TIMEOUT);
3120 }
3121 
3122 /* This function perform powered update HCI command sequence after the HCI init
3123  * sequence which end up resetting all states, the sequence is as follows:
3124  *
3125  * HCI_SSP_ENABLED(Enable SSP)
3126  * HCI_LE_ENABLED(Enable LE)
3127  * HCI_LE_ENABLED(use_ll_privacy(Add local IRK to Resolving List) ->
3128  * Update adv data)
3129  * Enable Authentication
3130  * lmp_bredr_capable(Set Fast Connectable -> Set Scan Type -> Set Class ->
3131  * Set Name -> Set EIR)
3132  * HCI_FORCE_STATIC_ADDR | BDADDR_ANY && !HCI_BREDR_ENABLED (Set Static Address)
3133  */
3134 int hci_powered_update_sync(struct hci_dev *hdev)
3135 {
3136 	int err;
3137 
3138 	/* Register the available SMP channels (BR/EDR and LE) only when
3139 	 * successfully powering on the controller. This late
3140 	 * registration is required so that LE SMP can clearly decide if
3141 	 * the public address or static address is used.
3142 	 */
3143 	smp_register(hdev);
3144 
3145 	err = hci_write_ssp_mode_sync(hdev, 0x01);
3146 	if (err)
3147 		return err;
3148 
3149 	err = hci_write_le_host_supported_sync(hdev, 0x01, 0x00);
3150 	if (err)
3151 		return err;
3152 
3153 	err = hci_powered_update_adv_sync(hdev);
3154 	if (err)
3155 		return err;
3156 
3157 	err = hci_write_auth_enable_sync(hdev);
3158 	if (err)
3159 		return err;
3160 
3161 	if (lmp_bredr_capable(hdev)) {
3162 		if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
3163 			hci_write_fast_connectable_sync(hdev, true);
3164 		else
3165 			hci_write_fast_connectable_sync(hdev, false);
3166 		hci_update_scan_sync(hdev);
3167 		hci_update_class_sync(hdev);
3168 		hci_update_name_sync(hdev);
3169 		hci_update_eir_sync(hdev);
3170 	}
3171 
3172 	/* If forcing static address is in use or there is no public
3173 	 * address use the static address as random address (but skip
3174 	 * the HCI command if the current random address is already the
3175 	 * static one.
3176 	 *
3177 	 * In case BR/EDR has been disabled on a dual-mode controller
3178 	 * and a static address has been configured, then use that
3179 	 * address instead of the public BR/EDR address.
3180 	 */
3181 	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
3182 	    (!bacmp(&hdev->bdaddr, BDADDR_ANY) &&
3183 	    !hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))) {
3184 		if (bacmp(&hdev->static_addr, BDADDR_ANY))
3185 			return hci_set_random_addr_sync(hdev,
3186 							&hdev->static_addr);
3187 	}
3188 
3189 	return 0;
3190 }
3191 
3192 /**
3193  * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address
3194  *				       (BD_ADDR) for a HCI device from
3195  *				       a firmware node property.
3196  * @hdev:	The HCI device
3197  *
3198  * Search the firmware node for 'local-bd-address'.
3199  *
3200  * All-zero BD addresses are rejected, because those could be properties
3201  * that exist in the firmware tables, but were not updated by the firmware. For
3202  * example, the DTS could define 'local-bd-address', with zero BD addresses.
3203  */
3204 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev)
3205 {
3206 	struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent);
3207 	bdaddr_t ba;
3208 	int ret;
3209 
3210 	ret = fwnode_property_read_u8_array(fwnode, "local-bd-address",
3211 					    (u8 *)&ba, sizeof(ba));
3212 	if (ret < 0 || !bacmp(&ba, BDADDR_ANY))
3213 		return;
3214 
3215 	bacpy(&hdev->public_addr, &ba);
3216 }
3217 
3218 struct hci_init_stage {
3219 	int (*func)(struct hci_dev *hdev);
3220 };
3221 
3222 /* Run init stage NULL terminated function table */
3223 static int hci_init_stage_sync(struct hci_dev *hdev,
3224 			       const struct hci_init_stage *stage)
3225 {
3226 	size_t i;
3227 
3228 	for (i = 0; stage[i].func; i++) {
3229 		int err;
3230 
3231 		err = stage[i].func(hdev);
3232 		if (err)
3233 			return err;
3234 	}
3235 
3236 	return 0;
3237 }
3238 
3239 /* Read Local Version */
3240 static int hci_read_local_version_sync(struct hci_dev *hdev)
3241 {
3242 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_VERSION,
3243 				     0, NULL, HCI_CMD_TIMEOUT);
3244 }
3245 
3246 /* Read BD Address */
3247 static int hci_read_bd_addr_sync(struct hci_dev *hdev)
3248 {
3249 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_BD_ADDR,
3250 				     0, NULL, HCI_CMD_TIMEOUT);
3251 }
3252 
3253 #define HCI_INIT(_func) \
3254 { \
3255 	.func = _func, \
3256 }
3257 
3258 static const struct hci_init_stage hci_init0[] = {
3259 	/* HCI_OP_READ_LOCAL_VERSION */
3260 	HCI_INIT(hci_read_local_version_sync),
3261 	/* HCI_OP_READ_BD_ADDR */
3262 	HCI_INIT(hci_read_bd_addr_sync),
3263 	{}
3264 };
3265 
3266 int hci_reset_sync(struct hci_dev *hdev)
3267 {
3268 	int err;
3269 
3270 	set_bit(HCI_RESET, &hdev->flags);
3271 
3272 	err = __hci_cmd_sync_status(hdev, HCI_OP_RESET, 0, NULL,
3273 				    HCI_CMD_TIMEOUT);
3274 	if (err)
3275 		return err;
3276 
3277 	return 0;
3278 }
3279 
3280 static int hci_init0_sync(struct hci_dev *hdev)
3281 {
3282 	int err;
3283 
3284 	bt_dev_dbg(hdev, "");
3285 
3286 	/* Reset */
3287 	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
3288 		err = hci_reset_sync(hdev);
3289 		if (err)
3290 			return err;
3291 	}
3292 
3293 	return hci_init_stage_sync(hdev, hci_init0);
3294 }
3295 
3296 static int hci_unconf_init_sync(struct hci_dev *hdev)
3297 {
3298 	int err;
3299 
3300 	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3301 		return 0;
3302 
3303 	err = hci_init0_sync(hdev);
3304 	if (err < 0)
3305 		return err;
3306 
3307 	if (hci_dev_test_flag(hdev, HCI_SETUP))
3308 		hci_debugfs_create_basic(hdev);
3309 
3310 	return 0;
3311 }
3312 
3313 /* Read Local Supported Features. */
3314 static int hci_read_local_features_sync(struct hci_dev *hdev)
3315 {
3316 	 /* Not all AMP controllers support this command */
3317 	if (hdev->dev_type == HCI_AMP && !(hdev->commands[14] & 0x20))
3318 		return 0;
3319 
3320 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_FEATURES,
3321 				     0, NULL, HCI_CMD_TIMEOUT);
3322 }
3323 
3324 /* BR Controller init stage 1 command sequence */
3325 static const struct hci_init_stage br_init1[] = {
3326 	/* HCI_OP_READ_LOCAL_FEATURES */
3327 	HCI_INIT(hci_read_local_features_sync),
3328 	/* HCI_OP_READ_LOCAL_VERSION */
3329 	HCI_INIT(hci_read_local_version_sync),
3330 	/* HCI_OP_READ_BD_ADDR */
3331 	HCI_INIT(hci_read_bd_addr_sync),
3332 	{}
3333 };
3334 
3335 /* Read Local Commands */
3336 static int hci_read_local_cmds_sync(struct hci_dev *hdev)
3337 {
3338 	/* All Bluetooth 1.2 and later controllers should support the
3339 	 * HCI command for reading the local supported commands.
3340 	 *
3341 	 * Unfortunately some controllers indicate Bluetooth 1.2 support,
3342 	 * but do not have support for this command. If that is the case,
3343 	 * the driver can quirk the behavior and skip reading the local
3344 	 * supported commands.
3345 	 */
3346 	if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
3347 	    !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
3348 		return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_COMMANDS,
3349 					     0, NULL, HCI_CMD_TIMEOUT);
3350 
3351 	return 0;
3352 }
3353 
3354 /* Read Local AMP Info */
3355 static int hci_read_local_amp_info_sync(struct hci_dev *hdev)
3356 {
3357 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_AMP_INFO,
3358 				     0, NULL, HCI_CMD_TIMEOUT);
3359 }
3360 
3361 /* Read Data Blk size */
3362 static int hci_read_data_block_size_sync(struct hci_dev *hdev)
3363 {
3364 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_DATA_BLOCK_SIZE,
3365 				     0, NULL, HCI_CMD_TIMEOUT);
3366 }
3367 
3368 /* Read Flow Control Mode */
3369 static int hci_read_flow_control_mode_sync(struct hci_dev *hdev)
3370 {
3371 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_FLOW_CONTROL_MODE,
3372 				     0, NULL, HCI_CMD_TIMEOUT);
3373 }
3374 
3375 /* Read Location Data */
3376 static int hci_read_location_data_sync(struct hci_dev *hdev)
3377 {
3378 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCATION_DATA,
3379 				     0, NULL, HCI_CMD_TIMEOUT);
3380 }
3381 
3382 /* AMP Controller init stage 1 command sequence */
3383 static const struct hci_init_stage amp_init1[] = {
3384 	/* HCI_OP_READ_LOCAL_VERSION */
3385 	HCI_INIT(hci_read_local_version_sync),
3386 	/* HCI_OP_READ_LOCAL_COMMANDS */
3387 	HCI_INIT(hci_read_local_cmds_sync),
3388 	/* HCI_OP_READ_LOCAL_AMP_INFO */
3389 	HCI_INIT(hci_read_local_amp_info_sync),
3390 	/* HCI_OP_READ_DATA_BLOCK_SIZE */
3391 	HCI_INIT(hci_read_data_block_size_sync),
3392 	/* HCI_OP_READ_FLOW_CONTROL_MODE */
3393 	HCI_INIT(hci_read_flow_control_mode_sync),
3394 	/* HCI_OP_READ_LOCATION_DATA */
3395 	HCI_INIT(hci_read_location_data_sync),
3396 	{}
3397 };
3398 
3399 static int hci_init1_sync(struct hci_dev *hdev)
3400 {
3401 	int err;
3402 
3403 	bt_dev_dbg(hdev, "");
3404 
3405 	/* Reset */
3406 	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
3407 		err = hci_reset_sync(hdev);
3408 		if (err)
3409 			return err;
3410 	}
3411 
3412 	switch (hdev->dev_type) {
3413 	case HCI_PRIMARY:
3414 		hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
3415 		return hci_init_stage_sync(hdev, br_init1);
3416 	case HCI_AMP:
3417 		hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
3418 		return hci_init_stage_sync(hdev, amp_init1);
3419 	default:
3420 		bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type);
3421 		break;
3422 	}
3423 
3424 	return 0;
3425 }
3426 
3427 /* AMP Controller init stage 2 command sequence */
3428 static const struct hci_init_stage amp_init2[] = {
3429 	/* HCI_OP_READ_LOCAL_FEATURES */
3430 	HCI_INIT(hci_read_local_features_sync),
3431 	{}
3432 };
3433 
3434 /* Read Buffer Size (ACL mtu, max pkt, etc.) */
3435 static int hci_read_buffer_size_sync(struct hci_dev *hdev)
3436 {
3437 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_BUFFER_SIZE,
3438 				     0, NULL, HCI_CMD_TIMEOUT);
3439 }
3440 
3441 /* Read Class of Device */
3442 static int hci_read_dev_class_sync(struct hci_dev *hdev)
3443 {
3444 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLASS_OF_DEV,
3445 				     0, NULL, HCI_CMD_TIMEOUT);
3446 }
3447 
3448 /* Read Local Name */
3449 static int hci_read_local_name_sync(struct hci_dev *hdev)
3450 {
3451 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_NAME,
3452 				     0, NULL, HCI_CMD_TIMEOUT);
3453 }
3454 
3455 /* Read Voice Setting */
3456 static int hci_read_voice_setting_sync(struct hci_dev *hdev)
3457 {
3458 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_VOICE_SETTING,
3459 				     0, NULL, HCI_CMD_TIMEOUT);
3460 }
3461 
3462 /* Read Number of Supported IAC */
3463 static int hci_read_num_supported_iac_sync(struct hci_dev *hdev)
3464 {
3465 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_NUM_SUPPORTED_IAC,
3466 				     0, NULL, HCI_CMD_TIMEOUT);
3467 }
3468 
3469 /* Read Current IAC LAP */
3470 static int hci_read_current_iac_lap_sync(struct hci_dev *hdev)
3471 {
3472 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_CURRENT_IAC_LAP,
3473 				     0, NULL, HCI_CMD_TIMEOUT);
3474 }
3475 
3476 static int hci_set_event_filter_sync(struct hci_dev *hdev, u8 flt_type,
3477 				     u8 cond_type, bdaddr_t *bdaddr,
3478 				     u8 auto_accept)
3479 {
3480 	struct hci_cp_set_event_filter cp;
3481 
3482 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
3483 		return 0;
3484 
3485 	if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
3486 		return 0;
3487 
3488 	memset(&cp, 0, sizeof(cp));
3489 	cp.flt_type = flt_type;
3490 
3491 	if (flt_type != HCI_FLT_CLEAR_ALL) {
3492 		cp.cond_type = cond_type;
3493 		bacpy(&cp.addr_conn_flt.bdaddr, bdaddr);
3494 		cp.addr_conn_flt.auto_accept = auto_accept;
3495 	}
3496 
3497 	return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_FLT,
3498 				     flt_type == HCI_FLT_CLEAR_ALL ?
3499 				     sizeof(cp.flt_type) : sizeof(cp), &cp,
3500 				     HCI_CMD_TIMEOUT);
3501 }
3502 
3503 static int hci_clear_event_filter_sync(struct hci_dev *hdev)
3504 {
3505 	if (!hci_dev_test_flag(hdev, HCI_EVENT_FILTER_CONFIGURED))
3506 		return 0;
3507 
3508 	/* In theory the state machine should not reach here unless
3509 	 * a hci_set_event_filter_sync() call succeeds, but we do
3510 	 * the check both for parity and as a future reminder.
3511 	 */
3512 	if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
3513 		return 0;
3514 
3515 	return hci_set_event_filter_sync(hdev, HCI_FLT_CLEAR_ALL, 0x00,
3516 					 BDADDR_ANY, 0x00);
3517 }
3518 
3519 /* Connection accept timeout ~20 secs */
3520 static int hci_write_ca_timeout_sync(struct hci_dev *hdev)
3521 {
3522 	__le16 param = cpu_to_le16(0x7d00);
3523 
3524 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CA_TIMEOUT,
3525 				     sizeof(param), &param, HCI_CMD_TIMEOUT);
3526 }
3527 
3528 /* BR Controller init stage 2 command sequence */
3529 static const struct hci_init_stage br_init2[] = {
3530 	/* HCI_OP_READ_BUFFER_SIZE */
3531 	HCI_INIT(hci_read_buffer_size_sync),
3532 	/* HCI_OP_READ_CLASS_OF_DEV */
3533 	HCI_INIT(hci_read_dev_class_sync),
3534 	/* HCI_OP_READ_LOCAL_NAME */
3535 	HCI_INIT(hci_read_local_name_sync),
3536 	/* HCI_OP_READ_VOICE_SETTING */
3537 	HCI_INIT(hci_read_voice_setting_sync),
3538 	/* HCI_OP_READ_NUM_SUPPORTED_IAC */
3539 	HCI_INIT(hci_read_num_supported_iac_sync),
3540 	/* HCI_OP_READ_CURRENT_IAC_LAP */
3541 	HCI_INIT(hci_read_current_iac_lap_sync),
3542 	/* HCI_OP_SET_EVENT_FLT */
3543 	HCI_INIT(hci_clear_event_filter_sync),
3544 	/* HCI_OP_WRITE_CA_TIMEOUT */
3545 	HCI_INIT(hci_write_ca_timeout_sync),
3546 	{}
3547 };
3548 
3549 static int hci_write_ssp_mode_1_sync(struct hci_dev *hdev)
3550 {
3551 	u8 mode = 0x01;
3552 
3553 	if (!lmp_ssp_capable(hdev) || !hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
3554 		return 0;
3555 
3556 	/* When SSP is available, then the host features page
3557 	 * should also be available as well. However some
3558 	 * controllers list the max_page as 0 as long as SSP
3559 	 * has not been enabled. To achieve proper debugging
3560 	 * output, force the minimum max_page to 1 at least.
3561 	 */
3562 	hdev->max_page = 0x01;
3563 
3564 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE,
3565 				     sizeof(mode), &mode, HCI_CMD_TIMEOUT);
3566 }
3567 
3568 static int hci_write_eir_sync(struct hci_dev *hdev)
3569 {
3570 	struct hci_cp_write_eir cp;
3571 
3572 	if (!lmp_ssp_capable(hdev) || hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
3573 		return 0;
3574 
3575 	memset(hdev->eir, 0, sizeof(hdev->eir));
3576 	memset(&cp, 0, sizeof(cp));
3577 
3578 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp,
3579 				     HCI_CMD_TIMEOUT);
3580 }
3581 
3582 static int hci_write_inquiry_mode_sync(struct hci_dev *hdev)
3583 {
3584 	u8 mode;
3585 
3586 	if (!lmp_inq_rssi_capable(hdev) &&
3587 	    !test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
3588 		return 0;
3589 
3590 	/* If Extended Inquiry Result events are supported, then
3591 	 * they are clearly preferred over Inquiry Result with RSSI
3592 	 * events.
3593 	 */
3594 	mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
3595 
3596 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_INQUIRY_MODE,
3597 				     sizeof(mode), &mode, HCI_CMD_TIMEOUT);
3598 }
3599 
3600 static int hci_read_inq_rsp_tx_power_sync(struct hci_dev *hdev)
3601 {
3602 	if (!lmp_inq_tx_pwr_capable(hdev))
3603 		return 0;
3604 
3605 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_INQ_RSP_TX_POWER,
3606 				     0, NULL, HCI_CMD_TIMEOUT);
3607 }
3608 
3609 static int hci_read_local_ext_features_sync(struct hci_dev *hdev, u8 page)
3610 {
3611 	struct hci_cp_read_local_ext_features cp;
3612 
3613 	if (!lmp_ext_feat_capable(hdev))
3614 		return 0;
3615 
3616 	memset(&cp, 0, sizeof(cp));
3617 	cp.page = page;
3618 
3619 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_EXT_FEATURES,
3620 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3621 }
3622 
3623 static int hci_read_local_ext_features_1_sync(struct hci_dev *hdev)
3624 {
3625 	return hci_read_local_ext_features_sync(hdev, 0x01);
3626 }
3627 
3628 /* HCI Controller init stage 2 command sequence */
3629 static const struct hci_init_stage hci_init2[] = {
3630 	/* HCI_OP_READ_LOCAL_COMMANDS */
3631 	HCI_INIT(hci_read_local_cmds_sync),
3632 	/* HCI_OP_WRITE_SSP_MODE */
3633 	HCI_INIT(hci_write_ssp_mode_1_sync),
3634 	/* HCI_OP_WRITE_EIR */
3635 	HCI_INIT(hci_write_eir_sync),
3636 	/* HCI_OP_WRITE_INQUIRY_MODE */
3637 	HCI_INIT(hci_write_inquiry_mode_sync),
3638 	/* HCI_OP_READ_INQ_RSP_TX_POWER */
3639 	HCI_INIT(hci_read_inq_rsp_tx_power_sync),
3640 	/* HCI_OP_READ_LOCAL_EXT_FEATURES */
3641 	HCI_INIT(hci_read_local_ext_features_1_sync),
3642 	/* HCI_OP_WRITE_AUTH_ENABLE */
3643 	HCI_INIT(hci_write_auth_enable_sync),
3644 	{}
3645 };
3646 
3647 /* Read LE Buffer Size */
3648 static int hci_le_read_buffer_size_sync(struct hci_dev *hdev)
3649 {
3650 	/* Use Read LE Buffer Size V2 if supported */
3651 	if (iso_capable(hdev) && hdev->commands[41] & 0x20)
3652 		return __hci_cmd_sync_status(hdev,
3653 					     HCI_OP_LE_READ_BUFFER_SIZE_V2,
3654 					     0, NULL, HCI_CMD_TIMEOUT);
3655 
3656 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_BUFFER_SIZE,
3657 				     0, NULL, HCI_CMD_TIMEOUT);
3658 }
3659 
3660 /* Read LE Local Supported Features */
3661 static int hci_le_read_local_features_sync(struct hci_dev *hdev)
3662 {
3663 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_LOCAL_FEATURES,
3664 				     0, NULL, HCI_CMD_TIMEOUT);
3665 }
3666 
3667 /* Read LE Supported States */
3668 static int hci_le_read_supported_states_sync(struct hci_dev *hdev)
3669 {
3670 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_SUPPORTED_STATES,
3671 				     0, NULL, HCI_CMD_TIMEOUT);
3672 }
3673 
3674 /* LE Controller init stage 2 command sequence */
3675 static const struct hci_init_stage le_init2[] = {
3676 	/* HCI_OP_LE_READ_LOCAL_FEATURES */
3677 	HCI_INIT(hci_le_read_local_features_sync),
3678 	/* HCI_OP_LE_READ_BUFFER_SIZE */
3679 	HCI_INIT(hci_le_read_buffer_size_sync),
3680 	/* HCI_OP_LE_READ_SUPPORTED_STATES */
3681 	HCI_INIT(hci_le_read_supported_states_sync),
3682 	{}
3683 };
3684 
3685 static int hci_init2_sync(struct hci_dev *hdev)
3686 {
3687 	int err;
3688 
3689 	bt_dev_dbg(hdev, "");
3690 
3691 	if (hdev->dev_type == HCI_AMP)
3692 		return hci_init_stage_sync(hdev, amp_init2);
3693 
3694 	err = hci_init_stage_sync(hdev, hci_init2);
3695 	if (err)
3696 		return err;
3697 
3698 	if (lmp_bredr_capable(hdev)) {
3699 		err = hci_init_stage_sync(hdev, br_init2);
3700 		if (err)
3701 			return err;
3702 	} else {
3703 		hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
3704 	}
3705 
3706 	if (lmp_le_capable(hdev)) {
3707 		err = hci_init_stage_sync(hdev, le_init2);
3708 		if (err)
3709 			return err;
3710 		/* LE-only controllers have LE implicitly enabled */
3711 		if (!lmp_bredr_capable(hdev))
3712 			hci_dev_set_flag(hdev, HCI_LE_ENABLED);
3713 	}
3714 
3715 	return 0;
3716 }
3717 
3718 static int hci_set_event_mask_sync(struct hci_dev *hdev)
3719 {
3720 	/* The second byte is 0xff instead of 0x9f (two reserved bits
3721 	 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
3722 	 * command otherwise.
3723 	 */
3724 	u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
3725 
3726 	/* CSR 1.1 dongles does not accept any bitfield so don't try to set
3727 	 * any event mask for pre 1.2 devices.
3728 	 */
3729 	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
3730 		return 0;
3731 
3732 	if (lmp_bredr_capable(hdev)) {
3733 		events[4] |= 0x01; /* Flow Specification Complete */
3734 
3735 		/* Don't set Disconnect Complete and mode change when
3736 		 * suspended as that would wakeup the host when disconnecting
3737 		 * due to suspend.
3738 		 */
3739 		if (hdev->suspended) {
3740 			events[0] &= 0xef;
3741 			events[2] &= 0xf7;
3742 		}
3743 	} else {
3744 		/* Use a different default for LE-only devices */
3745 		memset(events, 0, sizeof(events));
3746 		events[1] |= 0x20; /* Command Complete */
3747 		events[1] |= 0x40; /* Command Status */
3748 		events[1] |= 0x80; /* Hardware Error */
3749 
3750 		/* If the controller supports the Disconnect command, enable
3751 		 * the corresponding event. In addition enable packet flow
3752 		 * control related events.
3753 		 */
3754 		if (hdev->commands[0] & 0x20) {
3755 			/* Don't set Disconnect Complete when suspended as that
3756 			 * would wakeup the host when disconnecting due to
3757 			 * suspend.
3758 			 */
3759 			if (!hdev->suspended)
3760 				events[0] |= 0x10; /* Disconnection Complete */
3761 			events[2] |= 0x04; /* Number of Completed Packets */
3762 			events[3] |= 0x02; /* Data Buffer Overflow */
3763 		}
3764 
3765 		/* If the controller supports the Read Remote Version
3766 		 * Information command, enable the corresponding event.
3767 		 */
3768 		if (hdev->commands[2] & 0x80)
3769 			events[1] |= 0x08; /* Read Remote Version Information
3770 					    * Complete
3771 					    */
3772 
3773 		if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
3774 			events[0] |= 0x80; /* Encryption Change */
3775 			events[5] |= 0x80; /* Encryption Key Refresh Complete */
3776 		}
3777 	}
3778 
3779 	if (lmp_inq_rssi_capable(hdev) ||
3780 	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
3781 		events[4] |= 0x02; /* Inquiry Result with RSSI */
3782 
3783 	if (lmp_ext_feat_capable(hdev))
3784 		events[4] |= 0x04; /* Read Remote Extended Features Complete */
3785 
3786 	if (lmp_esco_capable(hdev)) {
3787 		events[5] |= 0x08; /* Synchronous Connection Complete */
3788 		events[5] |= 0x10; /* Synchronous Connection Changed */
3789 	}
3790 
3791 	if (lmp_sniffsubr_capable(hdev))
3792 		events[5] |= 0x20; /* Sniff Subrating */
3793 
3794 	if (lmp_pause_enc_capable(hdev))
3795 		events[5] |= 0x80; /* Encryption Key Refresh Complete */
3796 
3797 	if (lmp_ext_inq_capable(hdev))
3798 		events[5] |= 0x40; /* Extended Inquiry Result */
3799 
3800 	if (lmp_no_flush_capable(hdev))
3801 		events[7] |= 0x01; /* Enhanced Flush Complete */
3802 
3803 	if (lmp_lsto_capable(hdev))
3804 		events[6] |= 0x80; /* Link Supervision Timeout Changed */
3805 
3806 	if (lmp_ssp_capable(hdev)) {
3807 		events[6] |= 0x01;	/* IO Capability Request */
3808 		events[6] |= 0x02;	/* IO Capability Response */
3809 		events[6] |= 0x04;	/* User Confirmation Request */
3810 		events[6] |= 0x08;	/* User Passkey Request */
3811 		events[6] |= 0x10;	/* Remote OOB Data Request */
3812 		events[6] |= 0x20;	/* Simple Pairing Complete */
3813 		events[7] |= 0x04;	/* User Passkey Notification */
3814 		events[7] |= 0x08;	/* Keypress Notification */
3815 		events[7] |= 0x10;	/* Remote Host Supported
3816 					 * Features Notification
3817 					 */
3818 	}
3819 
3820 	if (lmp_le_capable(hdev))
3821 		events[7] |= 0x20;	/* LE Meta-Event */
3822 
3823 	return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK,
3824 				     sizeof(events), events, HCI_CMD_TIMEOUT);
3825 }
3826 
3827 static int hci_read_stored_link_key_sync(struct hci_dev *hdev)
3828 {
3829 	struct hci_cp_read_stored_link_key cp;
3830 
3831 	if (!(hdev->commands[6] & 0x20) ||
3832 	    test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks))
3833 		return 0;
3834 
3835 	memset(&cp, 0, sizeof(cp));
3836 	bacpy(&cp.bdaddr, BDADDR_ANY);
3837 	cp.read_all = 0x01;
3838 
3839 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_STORED_LINK_KEY,
3840 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3841 }
3842 
3843 static int hci_setup_link_policy_sync(struct hci_dev *hdev)
3844 {
3845 	struct hci_cp_write_def_link_policy cp;
3846 	u16 link_policy = 0;
3847 
3848 	if (!(hdev->commands[5] & 0x10))
3849 		return 0;
3850 
3851 	memset(&cp, 0, sizeof(cp));
3852 
3853 	if (lmp_rswitch_capable(hdev))
3854 		link_policy |= HCI_LP_RSWITCH;
3855 	if (lmp_hold_capable(hdev))
3856 		link_policy |= HCI_LP_HOLD;
3857 	if (lmp_sniff_capable(hdev))
3858 		link_policy |= HCI_LP_SNIFF;
3859 	if (lmp_park_capable(hdev))
3860 		link_policy |= HCI_LP_PARK;
3861 
3862 	cp.policy = cpu_to_le16(link_policy);
3863 
3864 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY,
3865 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3866 }
3867 
3868 static int hci_read_page_scan_activity_sync(struct hci_dev *hdev)
3869 {
3870 	if (!(hdev->commands[8] & 0x01))
3871 		return 0;
3872 
3873 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_ACTIVITY,
3874 				     0, NULL, HCI_CMD_TIMEOUT);
3875 }
3876 
3877 static int hci_read_def_err_data_reporting_sync(struct hci_dev *hdev)
3878 {
3879 	if (!(hdev->commands[18] & 0x04) ||
3880 	    !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) ||
3881 	    test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks))
3882 		return 0;
3883 
3884 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_DEF_ERR_DATA_REPORTING,
3885 				     0, NULL, HCI_CMD_TIMEOUT);
3886 }
3887 
3888 static int hci_read_page_scan_type_sync(struct hci_dev *hdev)
3889 {
3890 	/* Some older Broadcom based Bluetooth 1.2 controllers do not
3891 	 * support the Read Page Scan Type command. Check support for
3892 	 * this command in the bit mask of supported commands.
3893 	 */
3894 	if (!(hdev->commands[13] & 0x01))
3895 		return 0;
3896 
3897 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_TYPE,
3898 				     0, NULL, HCI_CMD_TIMEOUT);
3899 }
3900 
3901 /* Read features beyond page 1 if available */
3902 static int hci_read_local_ext_features_all_sync(struct hci_dev *hdev)
3903 {
3904 	u8 page;
3905 	int err;
3906 
3907 	if (!lmp_ext_feat_capable(hdev))
3908 		return 0;
3909 
3910 	for (page = 2; page < HCI_MAX_PAGES && page <= hdev->max_page;
3911 	     page++) {
3912 		err = hci_read_local_ext_features_sync(hdev, page);
3913 		if (err)
3914 			return err;
3915 	}
3916 
3917 	return 0;
3918 }
3919 
3920 /* HCI Controller init stage 3 command sequence */
3921 static const struct hci_init_stage hci_init3[] = {
3922 	/* HCI_OP_SET_EVENT_MASK */
3923 	HCI_INIT(hci_set_event_mask_sync),
3924 	/* HCI_OP_READ_STORED_LINK_KEY */
3925 	HCI_INIT(hci_read_stored_link_key_sync),
3926 	/* HCI_OP_WRITE_DEF_LINK_POLICY */
3927 	HCI_INIT(hci_setup_link_policy_sync),
3928 	/* HCI_OP_READ_PAGE_SCAN_ACTIVITY */
3929 	HCI_INIT(hci_read_page_scan_activity_sync),
3930 	/* HCI_OP_READ_DEF_ERR_DATA_REPORTING */
3931 	HCI_INIT(hci_read_def_err_data_reporting_sync),
3932 	/* HCI_OP_READ_PAGE_SCAN_TYPE */
3933 	HCI_INIT(hci_read_page_scan_type_sync),
3934 	/* HCI_OP_READ_LOCAL_EXT_FEATURES */
3935 	HCI_INIT(hci_read_local_ext_features_all_sync),
3936 	{}
3937 };
3938 
3939 static int hci_le_set_event_mask_sync(struct hci_dev *hdev)
3940 {
3941 	u8 events[8];
3942 
3943 	if (!lmp_le_capable(hdev))
3944 		return 0;
3945 
3946 	memset(events, 0, sizeof(events));
3947 
3948 	if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
3949 		events[0] |= 0x10;	/* LE Long Term Key Request */
3950 
3951 	/* If controller supports the Connection Parameters Request
3952 	 * Link Layer Procedure, enable the corresponding event.
3953 	 */
3954 	if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
3955 		/* LE Remote Connection Parameter Request */
3956 		events[0] |= 0x20;
3957 
3958 	/* If the controller supports the Data Length Extension
3959 	 * feature, enable the corresponding event.
3960 	 */
3961 	if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
3962 		events[0] |= 0x40;	/* LE Data Length Change */
3963 
3964 	/* If the controller supports LL Privacy feature or LE Extended Adv,
3965 	 * enable the corresponding event.
3966 	 */
3967 	if (use_enhanced_conn_complete(hdev))
3968 		events[1] |= 0x02;	/* LE Enhanced Connection Complete */
3969 
3970 	/* If the controller supports Extended Scanner Filter
3971 	 * Policies, enable the corresponding event.
3972 	 */
3973 	if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
3974 		events[1] |= 0x04;	/* LE Direct Advertising Report */
3975 
3976 	/* If the controller supports Channel Selection Algorithm #2
3977 	 * feature, enable the corresponding event.
3978 	 */
3979 	if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
3980 		events[2] |= 0x08;	/* LE Channel Selection Algorithm */
3981 
3982 	/* If the controller supports the LE Set Scan Enable command,
3983 	 * enable the corresponding advertising report event.
3984 	 */
3985 	if (hdev->commands[26] & 0x08)
3986 		events[0] |= 0x02;	/* LE Advertising Report */
3987 
3988 	/* If the controller supports the LE Create Connection
3989 	 * command, enable the corresponding event.
3990 	 */
3991 	if (hdev->commands[26] & 0x10)
3992 		events[0] |= 0x01;	/* LE Connection Complete */
3993 
3994 	/* If the controller supports the LE Connection Update
3995 	 * command, enable the corresponding event.
3996 	 */
3997 	if (hdev->commands[27] & 0x04)
3998 		events[0] |= 0x04;	/* LE Connection Update Complete */
3999 
4000 	/* If the controller supports the LE Read Remote Used Features
4001 	 * command, enable the corresponding event.
4002 	 */
4003 	if (hdev->commands[27] & 0x20)
4004 		/* LE Read Remote Used Features Complete */
4005 		events[0] |= 0x08;
4006 
4007 	/* If the controller supports the LE Read Local P-256
4008 	 * Public Key command, enable the corresponding event.
4009 	 */
4010 	if (hdev->commands[34] & 0x02)
4011 		/* LE Read Local P-256 Public Key Complete */
4012 		events[0] |= 0x80;
4013 
4014 	/* If the controller supports the LE Generate DHKey
4015 	 * command, enable the corresponding event.
4016 	 */
4017 	if (hdev->commands[34] & 0x04)
4018 		events[1] |= 0x01;	/* LE Generate DHKey Complete */
4019 
4020 	/* If the controller supports the LE Set Default PHY or
4021 	 * LE Set PHY commands, enable the corresponding event.
4022 	 */
4023 	if (hdev->commands[35] & (0x20 | 0x40))
4024 		events[1] |= 0x08;        /* LE PHY Update Complete */
4025 
4026 	/* If the controller supports LE Set Extended Scan Parameters
4027 	 * and LE Set Extended Scan Enable commands, enable the
4028 	 * corresponding event.
4029 	 */
4030 	if (use_ext_scan(hdev))
4031 		events[1] |= 0x10;	/* LE Extended Advertising Report */
4032 
4033 	/* If the controller supports the LE Extended Advertising
4034 	 * command, enable the corresponding event.
4035 	 */
4036 	if (ext_adv_capable(hdev))
4037 		events[2] |= 0x02;	/* LE Advertising Set Terminated */
4038 
4039 	if (cis_capable(hdev)) {
4040 		events[3] |= 0x01;	/* LE CIS Established */
4041 		if (cis_peripheral_capable(hdev))
4042 			events[3] |= 0x02; /* LE CIS Request */
4043 	}
4044 
4045 	if (bis_capable(hdev)) {
4046 		events[1] |= 0x20;	/* LE PA Report */
4047 		events[1] |= 0x40;	/* LE PA Sync Established */
4048 		events[3] |= 0x04;	/* LE Create BIG Complete */
4049 		events[3] |= 0x08;	/* LE Terminate BIG Complete */
4050 		events[3] |= 0x10;	/* LE BIG Sync Established */
4051 		events[3] |= 0x20;	/* LE BIG Sync Loss */
4052 		events[4] |= 0x02;	/* LE BIG Info Advertising Report */
4053 	}
4054 
4055 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EVENT_MASK,
4056 				     sizeof(events), events, HCI_CMD_TIMEOUT);
4057 }
4058 
4059 /* Read LE Advertising Channel TX Power */
4060 static int hci_le_read_adv_tx_power_sync(struct hci_dev *hdev)
4061 {
4062 	if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) {
4063 		/* HCI TS spec forbids mixing of legacy and extended
4064 		 * advertising commands wherein READ_ADV_TX_POWER is
4065 		 * also included. So do not call it if extended adv
4066 		 * is supported otherwise controller will return
4067 		 * COMMAND_DISALLOWED for extended commands.
4068 		 */
4069 		return __hci_cmd_sync_status(hdev,
4070 					       HCI_OP_LE_READ_ADV_TX_POWER,
4071 					       0, NULL, HCI_CMD_TIMEOUT);
4072 	}
4073 
4074 	return 0;
4075 }
4076 
4077 /* Read LE Min/Max Tx Power*/
4078 static int hci_le_read_tx_power_sync(struct hci_dev *hdev)
4079 {
4080 	if (!(hdev->commands[38] & 0x80) ||
4081 	    test_bit(HCI_QUIRK_BROKEN_READ_TRANSMIT_POWER, &hdev->quirks))
4082 		return 0;
4083 
4084 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_TRANSMIT_POWER,
4085 				     0, NULL, HCI_CMD_TIMEOUT);
4086 }
4087 
4088 /* Read LE Accept List Size */
4089 static int hci_le_read_accept_list_size_sync(struct hci_dev *hdev)
4090 {
4091 	if (!(hdev->commands[26] & 0x40))
4092 		return 0;
4093 
4094 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_ACCEPT_LIST_SIZE,
4095 				     0, NULL, HCI_CMD_TIMEOUT);
4096 }
4097 
4098 /* Clear LE Accept List */
4099 static int hci_le_clear_accept_list_sync(struct hci_dev *hdev)
4100 {
4101 	if (!(hdev->commands[26] & 0x80))
4102 		return 0;
4103 
4104 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL,
4105 				     HCI_CMD_TIMEOUT);
4106 }
4107 
4108 /* Read LE Resolving List Size */
4109 static int hci_le_read_resolv_list_size_sync(struct hci_dev *hdev)
4110 {
4111 	if (!(hdev->commands[34] & 0x40))
4112 		return 0;
4113 
4114 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_RESOLV_LIST_SIZE,
4115 				     0, NULL, HCI_CMD_TIMEOUT);
4116 }
4117 
4118 /* Clear LE Resolving List */
4119 static int hci_le_clear_resolv_list_sync(struct hci_dev *hdev)
4120 {
4121 	if (!(hdev->commands[34] & 0x20))
4122 		return 0;
4123 
4124 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL,
4125 				     HCI_CMD_TIMEOUT);
4126 }
4127 
4128 /* Set RPA timeout */
4129 static int hci_le_set_rpa_timeout_sync(struct hci_dev *hdev)
4130 {
4131 	__le16 timeout = cpu_to_le16(hdev->rpa_timeout);
4132 
4133 	if (!(hdev->commands[35] & 0x04) ||
4134 	    test_bit(HCI_QUIRK_BROKEN_SET_RPA_TIMEOUT, &hdev->quirks))
4135 		return 0;
4136 
4137 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RPA_TIMEOUT,
4138 				     sizeof(timeout), &timeout,
4139 				     HCI_CMD_TIMEOUT);
4140 }
4141 
4142 /* Read LE Maximum Data Length */
4143 static int hci_le_read_max_data_len_sync(struct hci_dev *hdev)
4144 {
4145 	if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
4146 		return 0;
4147 
4148 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL,
4149 				     HCI_CMD_TIMEOUT);
4150 }
4151 
4152 /* Read LE Suggested Default Data Length */
4153 static int hci_le_read_def_data_len_sync(struct hci_dev *hdev)
4154 {
4155 	if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
4156 		return 0;
4157 
4158 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL,
4159 				     HCI_CMD_TIMEOUT);
4160 }
4161 
4162 /* Read LE Number of Supported Advertising Sets */
4163 static int hci_le_read_num_support_adv_sets_sync(struct hci_dev *hdev)
4164 {
4165 	if (!ext_adv_capable(hdev))
4166 		return 0;
4167 
4168 	return __hci_cmd_sync_status(hdev,
4169 				     HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS,
4170 				     0, NULL, HCI_CMD_TIMEOUT);
4171 }
4172 
4173 /* Write LE Host Supported */
4174 static int hci_set_le_support_sync(struct hci_dev *hdev)
4175 {
4176 	struct hci_cp_write_le_host_supported cp;
4177 
4178 	/* LE-only devices do not support explicit enablement */
4179 	if (!lmp_bredr_capable(hdev))
4180 		return 0;
4181 
4182 	memset(&cp, 0, sizeof(cp));
4183 
4184 	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
4185 		cp.le = 0x01;
4186 		cp.simul = 0x00;
4187 	}
4188 
4189 	if (cp.le == lmp_host_le_capable(hdev))
4190 		return 0;
4191 
4192 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED,
4193 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4194 }
4195 
4196 /* LE Set Host Feature */
4197 static int hci_le_set_host_feature_sync(struct hci_dev *hdev)
4198 {
4199 	struct hci_cp_le_set_host_feature cp;
4200 
4201 	if (!cis_capable(hdev))
4202 		return 0;
4203 
4204 	memset(&cp, 0, sizeof(cp));
4205 
4206 	/* Connected Isochronous Channels (Host Support) */
4207 	cp.bit_number = 32;
4208 	cp.bit_value = 1;
4209 
4210 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_HOST_FEATURE,
4211 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4212 }
4213 
4214 /* LE Controller init stage 3 command sequence */
4215 static const struct hci_init_stage le_init3[] = {
4216 	/* HCI_OP_LE_SET_EVENT_MASK */
4217 	HCI_INIT(hci_le_set_event_mask_sync),
4218 	/* HCI_OP_LE_READ_ADV_TX_POWER */
4219 	HCI_INIT(hci_le_read_adv_tx_power_sync),
4220 	/* HCI_OP_LE_READ_TRANSMIT_POWER */
4221 	HCI_INIT(hci_le_read_tx_power_sync),
4222 	/* HCI_OP_LE_READ_ACCEPT_LIST_SIZE */
4223 	HCI_INIT(hci_le_read_accept_list_size_sync),
4224 	/* HCI_OP_LE_CLEAR_ACCEPT_LIST */
4225 	HCI_INIT(hci_le_clear_accept_list_sync),
4226 	/* HCI_OP_LE_READ_RESOLV_LIST_SIZE */
4227 	HCI_INIT(hci_le_read_resolv_list_size_sync),
4228 	/* HCI_OP_LE_CLEAR_RESOLV_LIST */
4229 	HCI_INIT(hci_le_clear_resolv_list_sync),
4230 	/* HCI_OP_LE_SET_RPA_TIMEOUT */
4231 	HCI_INIT(hci_le_set_rpa_timeout_sync),
4232 	/* HCI_OP_LE_READ_MAX_DATA_LEN */
4233 	HCI_INIT(hci_le_read_max_data_len_sync),
4234 	/* HCI_OP_LE_READ_DEF_DATA_LEN */
4235 	HCI_INIT(hci_le_read_def_data_len_sync),
4236 	/* HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS */
4237 	HCI_INIT(hci_le_read_num_support_adv_sets_sync),
4238 	/* HCI_OP_WRITE_LE_HOST_SUPPORTED */
4239 	HCI_INIT(hci_set_le_support_sync),
4240 	/* HCI_OP_LE_SET_HOST_FEATURE */
4241 	HCI_INIT(hci_le_set_host_feature_sync),
4242 	{}
4243 };
4244 
4245 static int hci_init3_sync(struct hci_dev *hdev)
4246 {
4247 	int err;
4248 
4249 	bt_dev_dbg(hdev, "");
4250 
4251 	err = hci_init_stage_sync(hdev, hci_init3);
4252 	if (err)
4253 		return err;
4254 
4255 	if (lmp_le_capable(hdev))
4256 		return hci_init_stage_sync(hdev, le_init3);
4257 
4258 	return 0;
4259 }
4260 
4261 static int hci_delete_stored_link_key_sync(struct hci_dev *hdev)
4262 {
4263 	struct hci_cp_delete_stored_link_key cp;
4264 
4265 	/* Some Broadcom based Bluetooth controllers do not support the
4266 	 * Delete Stored Link Key command. They are clearly indicating its
4267 	 * absence in the bit mask of supported commands.
4268 	 *
4269 	 * Check the supported commands and only if the command is marked
4270 	 * as supported send it. If not supported assume that the controller
4271 	 * does not have actual support for stored link keys which makes this
4272 	 * command redundant anyway.
4273 	 *
4274 	 * Some controllers indicate that they support handling deleting
4275 	 * stored link keys, but they don't. The quirk lets a driver
4276 	 * just disable this command.
4277 	 */
4278 	if (!(hdev->commands[6] & 0x80) ||
4279 	    test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks))
4280 		return 0;
4281 
4282 	memset(&cp, 0, sizeof(cp));
4283 	bacpy(&cp.bdaddr, BDADDR_ANY);
4284 	cp.delete_all = 0x01;
4285 
4286 	return __hci_cmd_sync_status(hdev, HCI_OP_DELETE_STORED_LINK_KEY,
4287 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4288 }
4289 
4290 static int hci_set_event_mask_page_2_sync(struct hci_dev *hdev)
4291 {
4292 	u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
4293 	bool changed = false;
4294 
4295 	/* Set event mask page 2 if the HCI command for it is supported */
4296 	if (!(hdev->commands[22] & 0x04))
4297 		return 0;
4298 
4299 	/* If Connectionless Peripheral Broadcast central role is supported
4300 	 * enable all necessary events for it.
4301 	 */
4302 	if (lmp_cpb_central_capable(hdev)) {
4303 		events[1] |= 0x40;	/* Triggered Clock Capture */
4304 		events[1] |= 0x80;	/* Synchronization Train Complete */
4305 		events[2] |= 0x08;	/* Truncated Page Complete */
4306 		events[2] |= 0x20;	/* CPB Channel Map Change */
4307 		changed = true;
4308 	}
4309 
4310 	/* If Connectionless Peripheral Broadcast peripheral role is supported
4311 	 * enable all necessary events for it.
4312 	 */
4313 	if (lmp_cpb_peripheral_capable(hdev)) {
4314 		events[2] |= 0x01;	/* Synchronization Train Received */
4315 		events[2] |= 0x02;	/* CPB Receive */
4316 		events[2] |= 0x04;	/* CPB Timeout */
4317 		events[2] |= 0x10;	/* Peripheral Page Response Timeout */
4318 		changed = true;
4319 	}
4320 
4321 	/* Enable Authenticated Payload Timeout Expired event if supported */
4322 	if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
4323 		events[2] |= 0x80;
4324 		changed = true;
4325 	}
4326 
4327 	/* Some Broadcom based controllers indicate support for Set Event
4328 	 * Mask Page 2 command, but then actually do not support it. Since
4329 	 * the default value is all bits set to zero, the command is only
4330 	 * required if the event mask has to be changed. In case no change
4331 	 * to the event mask is needed, skip this command.
4332 	 */
4333 	if (!changed)
4334 		return 0;
4335 
4336 	return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK_PAGE_2,
4337 				     sizeof(events), events, HCI_CMD_TIMEOUT);
4338 }
4339 
4340 /* Read local codec list if the HCI command is supported */
4341 static int hci_read_local_codecs_sync(struct hci_dev *hdev)
4342 {
4343 	if (hdev->commands[45] & 0x04)
4344 		hci_read_supported_codecs_v2(hdev);
4345 	else if (hdev->commands[29] & 0x20)
4346 		hci_read_supported_codecs(hdev);
4347 
4348 	return 0;
4349 }
4350 
4351 /* Read local pairing options if the HCI command is supported */
4352 static int hci_read_local_pairing_opts_sync(struct hci_dev *hdev)
4353 {
4354 	if (!(hdev->commands[41] & 0x08))
4355 		return 0;
4356 
4357 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_PAIRING_OPTS,
4358 				     0, NULL, HCI_CMD_TIMEOUT);
4359 }
4360 
4361 /* Get MWS transport configuration if the HCI command is supported */
4362 static int hci_get_mws_transport_config_sync(struct hci_dev *hdev)
4363 {
4364 	if (!mws_transport_config_capable(hdev))
4365 		return 0;
4366 
4367 	return __hci_cmd_sync_status(hdev, HCI_OP_GET_MWS_TRANSPORT_CONFIG,
4368 				     0, NULL, HCI_CMD_TIMEOUT);
4369 }
4370 
4371 /* Check for Synchronization Train support */
4372 static int hci_read_sync_train_params_sync(struct hci_dev *hdev)
4373 {
4374 	if (!lmp_sync_train_capable(hdev))
4375 		return 0;
4376 
4377 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_SYNC_TRAIN_PARAMS,
4378 				     0, NULL, HCI_CMD_TIMEOUT);
4379 }
4380 
4381 /* Enable Secure Connections if supported and configured */
4382 static int hci_write_sc_support_1_sync(struct hci_dev *hdev)
4383 {
4384 	u8 support = 0x01;
4385 
4386 	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) ||
4387 	    !bredr_sc_enabled(hdev))
4388 		return 0;
4389 
4390 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT,
4391 				     sizeof(support), &support,
4392 				     HCI_CMD_TIMEOUT);
4393 }
4394 
4395 /* Set erroneous data reporting if supported to the wideband speech
4396  * setting value
4397  */
4398 static int hci_set_err_data_report_sync(struct hci_dev *hdev)
4399 {
4400 	struct hci_cp_write_def_err_data_reporting cp;
4401 	bool enabled = hci_dev_test_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED);
4402 
4403 	if (!(hdev->commands[18] & 0x08) ||
4404 	    !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) ||
4405 	    test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks))
4406 		return 0;
4407 
4408 	if (enabled == hdev->err_data_reporting)
4409 		return 0;
4410 
4411 	memset(&cp, 0, sizeof(cp));
4412 	cp.err_data_reporting = enabled ? ERR_DATA_REPORTING_ENABLED :
4413 				ERR_DATA_REPORTING_DISABLED;
4414 
4415 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING,
4416 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4417 }
4418 
4419 static const struct hci_init_stage hci_init4[] = {
4420 	 /* HCI_OP_DELETE_STORED_LINK_KEY */
4421 	HCI_INIT(hci_delete_stored_link_key_sync),
4422 	/* HCI_OP_SET_EVENT_MASK_PAGE_2 */
4423 	HCI_INIT(hci_set_event_mask_page_2_sync),
4424 	/* HCI_OP_READ_LOCAL_CODECS */
4425 	HCI_INIT(hci_read_local_codecs_sync),
4426 	 /* HCI_OP_READ_LOCAL_PAIRING_OPTS */
4427 	HCI_INIT(hci_read_local_pairing_opts_sync),
4428 	 /* HCI_OP_GET_MWS_TRANSPORT_CONFIG */
4429 	HCI_INIT(hci_get_mws_transport_config_sync),
4430 	 /* HCI_OP_READ_SYNC_TRAIN_PARAMS */
4431 	HCI_INIT(hci_read_sync_train_params_sync),
4432 	/* HCI_OP_WRITE_SC_SUPPORT */
4433 	HCI_INIT(hci_write_sc_support_1_sync),
4434 	/* HCI_OP_WRITE_DEF_ERR_DATA_REPORTING */
4435 	HCI_INIT(hci_set_err_data_report_sync),
4436 	{}
4437 };
4438 
4439 /* Set Suggested Default Data Length to maximum if supported */
4440 static int hci_le_set_write_def_data_len_sync(struct hci_dev *hdev)
4441 {
4442 	struct hci_cp_le_write_def_data_len cp;
4443 
4444 	if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
4445 		return 0;
4446 
4447 	memset(&cp, 0, sizeof(cp));
4448 	cp.tx_len = cpu_to_le16(hdev->le_max_tx_len);
4449 	cp.tx_time = cpu_to_le16(hdev->le_max_tx_time);
4450 
4451 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_WRITE_DEF_DATA_LEN,
4452 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4453 }
4454 
4455 /* Set Default PHY parameters if command is supported, enables all supported
4456  * PHYs according to the LE Features bits.
4457  */
4458 static int hci_le_set_default_phy_sync(struct hci_dev *hdev)
4459 {
4460 	struct hci_cp_le_set_default_phy cp;
4461 
4462 	if (!(hdev->commands[35] & 0x20)) {
4463 		/* If the command is not supported it means only 1M PHY is
4464 		 * supported.
4465 		 */
4466 		hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
4467 		hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
4468 		return 0;
4469 	}
4470 
4471 	memset(&cp, 0, sizeof(cp));
4472 	cp.all_phys = 0x00;
4473 	cp.tx_phys = HCI_LE_SET_PHY_1M;
4474 	cp.rx_phys = HCI_LE_SET_PHY_1M;
4475 
4476 	/* Enables 2M PHY if supported */
4477 	if (le_2m_capable(hdev)) {
4478 		cp.tx_phys |= HCI_LE_SET_PHY_2M;
4479 		cp.rx_phys |= HCI_LE_SET_PHY_2M;
4480 	}
4481 
4482 	/* Enables Coded PHY if supported */
4483 	if (le_coded_capable(hdev)) {
4484 		cp.tx_phys |= HCI_LE_SET_PHY_CODED;
4485 		cp.rx_phys |= HCI_LE_SET_PHY_CODED;
4486 	}
4487 
4488 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_DEFAULT_PHY,
4489 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4490 }
4491 
4492 static const struct hci_init_stage le_init4[] = {
4493 	/* HCI_OP_LE_WRITE_DEF_DATA_LEN */
4494 	HCI_INIT(hci_le_set_write_def_data_len_sync),
4495 	/* HCI_OP_LE_SET_DEFAULT_PHY */
4496 	HCI_INIT(hci_le_set_default_phy_sync),
4497 	{}
4498 };
4499 
4500 static int hci_init4_sync(struct hci_dev *hdev)
4501 {
4502 	int err;
4503 
4504 	bt_dev_dbg(hdev, "");
4505 
4506 	err = hci_init_stage_sync(hdev, hci_init4);
4507 	if (err)
4508 		return err;
4509 
4510 	if (lmp_le_capable(hdev))
4511 		return hci_init_stage_sync(hdev, le_init4);
4512 
4513 	return 0;
4514 }
4515 
4516 static int hci_init_sync(struct hci_dev *hdev)
4517 {
4518 	int err;
4519 
4520 	err = hci_init1_sync(hdev);
4521 	if (err < 0)
4522 		return err;
4523 
4524 	if (hci_dev_test_flag(hdev, HCI_SETUP))
4525 		hci_debugfs_create_basic(hdev);
4526 
4527 	err = hci_init2_sync(hdev);
4528 	if (err < 0)
4529 		return err;
4530 
4531 	/* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
4532 	 * BR/EDR/LE type controllers. AMP controllers only need the
4533 	 * first two stages of init.
4534 	 */
4535 	if (hdev->dev_type != HCI_PRIMARY)
4536 		return 0;
4537 
4538 	err = hci_init3_sync(hdev);
4539 	if (err < 0)
4540 		return err;
4541 
4542 	err = hci_init4_sync(hdev);
4543 	if (err < 0)
4544 		return err;
4545 
4546 	/* This function is only called when the controller is actually in
4547 	 * configured state. When the controller is marked as unconfigured,
4548 	 * this initialization procedure is not run.
4549 	 *
4550 	 * It means that it is possible that a controller runs through its
4551 	 * setup phase and then discovers missing settings. If that is the
4552 	 * case, then this function will not be called. It then will only
4553 	 * be called during the config phase.
4554 	 *
4555 	 * So only when in setup phase or config phase, create the debugfs
4556 	 * entries and register the SMP channels.
4557 	 */
4558 	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
4559 	    !hci_dev_test_flag(hdev, HCI_CONFIG))
4560 		return 0;
4561 
4562 	if (hci_dev_test_and_set_flag(hdev, HCI_DEBUGFS_CREATED))
4563 		return 0;
4564 
4565 	hci_debugfs_create_common(hdev);
4566 
4567 	if (lmp_bredr_capable(hdev))
4568 		hci_debugfs_create_bredr(hdev);
4569 
4570 	if (lmp_le_capable(hdev))
4571 		hci_debugfs_create_le(hdev);
4572 
4573 	return 0;
4574 }
4575 
4576 #define HCI_QUIRK_BROKEN(_quirk, _desc) { HCI_QUIRK_BROKEN_##_quirk, _desc }
4577 
4578 static const struct {
4579 	unsigned long quirk;
4580 	const char *desc;
4581 } hci_broken_table[] = {
4582 	HCI_QUIRK_BROKEN(LOCAL_COMMANDS,
4583 			 "HCI Read Local Supported Commands not supported"),
4584 	HCI_QUIRK_BROKEN(STORED_LINK_KEY,
4585 			 "HCI Delete Stored Link Key command is advertised, "
4586 			 "but not supported."),
4587 	HCI_QUIRK_BROKEN(ERR_DATA_REPORTING,
4588 			 "HCI Read Default Erroneous Data Reporting command is "
4589 			 "advertised, but not supported."),
4590 	HCI_QUIRK_BROKEN(READ_TRANSMIT_POWER,
4591 			 "HCI Read Transmit Power Level command is advertised, "
4592 			 "but not supported."),
4593 	HCI_QUIRK_BROKEN(FILTER_CLEAR_ALL,
4594 			 "HCI Set Event Filter command not supported."),
4595 	HCI_QUIRK_BROKEN(ENHANCED_SETUP_SYNC_CONN,
4596 			 "HCI Enhanced Setup Synchronous Connection command is "
4597 			 "advertised, but not supported."),
4598 	HCI_QUIRK_BROKEN(SET_RPA_TIMEOUT,
4599 			 "HCI LE Set Random Private Address Timeout command is "
4600 			 "advertised, but not supported."),
4601 	HCI_QUIRK_BROKEN(LE_CODED,
4602 			 "HCI LE Coded PHY feature bit is set, "
4603 			 "but its usage is not supported.")
4604 };
4605 
4606 /* This function handles hdev setup stage:
4607  *
4608  * Calls hdev->setup
4609  * Setup address if HCI_QUIRK_USE_BDADDR_PROPERTY is set.
4610  */
4611 static int hci_dev_setup_sync(struct hci_dev *hdev)
4612 {
4613 	int ret = 0;
4614 	bool invalid_bdaddr;
4615 	size_t i;
4616 
4617 	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
4618 	    !test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks))
4619 		return 0;
4620 
4621 	bt_dev_dbg(hdev, "");
4622 
4623 	hci_sock_dev_event(hdev, HCI_DEV_SETUP);
4624 
4625 	if (hdev->setup)
4626 		ret = hdev->setup(hdev);
4627 
4628 	for (i = 0; i < ARRAY_SIZE(hci_broken_table); i++) {
4629 		if (test_bit(hci_broken_table[i].quirk, &hdev->quirks))
4630 			bt_dev_warn(hdev, "%s", hci_broken_table[i].desc);
4631 	}
4632 
4633 	/* The transport driver can set the quirk to mark the
4634 	 * BD_ADDR invalid before creating the HCI device or in
4635 	 * its setup callback.
4636 	 */
4637 	invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks) ||
4638 			 test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks);
4639 	if (!ret) {
4640 		if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks) &&
4641 		    !bacmp(&hdev->public_addr, BDADDR_ANY))
4642 			hci_dev_get_bd_addr_from_property(hdev);
4643 
4644 		if (invalid_bdaddr && bacmp(&hdev->public_addr, BDADDR_ANY) &&
4645 		    hdev->set_bdaddr) {
4646 			ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
4647 			if (!ret)
4648 				invalid_bdaddr = false;
4649 		}
4650 	}
4651 
4652 	/* The transport driver can set these quirks before
4653 	 * creating the HCI device or in its setup callback.
4654 	 *
4655 	 * For the invalid BD_ADDR quirk it is possible that
4656 	 * it becomes a valid address if the bootloader does
4657 	 * provide it (see above).
4658 	 *
4659 	 * In case any of them is set, the controller has to
4660 	 * start up as unconfigured.
4661 	 */
4662 	if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
4663 	    invalid_bdaddr)
4664 		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
4665 
4666 	/* For an unconfigured controller it is required to
4667 	 * read at least the version information provided by
4668 	 * the Read Local Version Information command.
4669 	 *
4670 	 * If the set_bdaddr driver callback is provided, then
4671 	 * also the original Bluetooth public device address
4672 	 * will be read using the Read BD Address command.
4673 	 */
4674 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
4675 		return hci_unconf_init_sync(hdev);
4676 
4677 	return ret;
4678 }
4679 
4680 /* This function handles hdev init stage:
4681  *
4682  * Calls hci_dev_setup_sync to perform setup stage
4683  * Calls hci_init_sync to perform HCI command init sequence
4684  */
4685 static int hci_dev_init_sync(struct hci_dev *hdev)
4686 {
4687 	int ret;
4688 
4689 	bt_dev_dbg(hdev, "");
4690 
4691 	atomic_set(&hdev->cmd_cnt, 1);
4692 	set_bit(HCI_INIT, &hdev->flags);
4693 
4694 	ret = hci_dev_setup_sync(hdev);
4695 
4696 	if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
4697 		/* If public address change is configured, ensure that
4698 		 * the address gets programmed. If the driver does not
4699 		 * support changing the public address, fail the power
4700 		 * on procedure.
4701 		 */
4702 		if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
4703 		    hdev->set_bdaddr)
4704 			ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
4705 		else
4706 			ret = -EADDRNOTAVAIL;
4707 	}
4708 
4709 	if (!ret) {
4710 		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
4711 		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4712 			ret = hci_init_sync(hdev);
4713 			if (!ret && hdev->post_init)
4714 				ret = hdev->post_init(hdev);
4715 		}
4716 	}
4717 
4718 	/* If the HCI Reset command is clearing all diagnostic settings,
4719 	 * then they need to be reprogrammed after the init procedure
4720 	 * completed.
4721 	 */
4722 	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
4723 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4724 	    hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
4725 		ret = hdev->set_diag(hdev, true);
4726 
4727 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4728 		msft_do_open(hdev);
4729 		aosp_do_open(hdev);
4730 	}
4731 
4732 	clear_bit(HCI_INIT, &hdev->flags);
4733 
4734 	return ret;
4735 }
4736 
4737 int hci_dev_open_sync(struct hci_dev *hdev)
4738 {
4739 	int ret;
4740 
4741 	bt_dev_dbg(hdev, "");
4742 
4743 	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
4744 		ret = -ENODEV;
4745 		goto done;
4746 	}
4747 
4748 	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
4749 	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
4750 		/* Check for rfkill but allow the HCI setup stage to
4751 		 * proceed (which in itself doesn't cause any RF activity).
4752 		 */
4753 		if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
4754 			ret = -ERFKILL;
4755 			goto done;
4756 		}
4757 
4758 		/* Check for valid public address or a configured static
4759 		 * random address, but let the HCI setup proceed to
4760 		 * be able to determine if there is a public address
4761 		 * or not.
4762 		 *
4763 		 * In case of user channel usage, it is not important
4764 		 * if a public address or static random address is
4765 		 * available.
4766 		 *
4767 		 * This check is only valid for BR/EDR controllers
4768 		 * since AMP controllers do not have an address.
4769 		 */
4770 		if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4771 		    hdev->dev_type == HCI_PRIMARY &&
4772 		    !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
4773 		    !bacmp(&hdev->static_addr, BDADDR_ANY)) {
4774 			ret = -EADDRNOTAVAIL;
4775 			goto done;
4776 		}
4777 	}
4778 
4779 	if (test_bit(HCI_UP, &hdev->flags)) {
4780 		ret = -EALREADY;
4781 		goto done;
4782 	}
4783 
4784 	if (hdev->open(hdev)) {
4785 		ret = -EIO;
4786 		goto done;
4787 	}
4788 
4789 	hci_devcd_reset(hdev);
4790 
4791 	set_bit(HCI_RUNNING, &hdev->flags);
4792 	hci_sock_dev_event(hdev, HCI_DEV_OPEN);
4793 
4794 	ret = hci_dev_init_sync(hdev);
4795 	if (!ret) {
4796 		hci_dev_hold(hdev);
4797 		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
4798 		hci_adv_instances_set_rpa_expired(hdev, true);
4799 		set_bit(HCI_UP, &hdev->flags);
4800 		hci_sock_dev_event(hdev, HCI_DEV_UP);
4801 		hci_leds_update_powered(hdev, true);
4802 		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
4803 		    !hci_dev_test_flag(hdev, HCI_CONFIG) &&
4804 		    !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
4805 		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4806 		    hci_dev_test_flag(hdev, HCI_MGMT) &&
4807 		    hdev->dev_type == HCI_PRIMARY) {
4808 			ret = hci_powered_update_sync(hdev);
4809 			mgmt_power_on(hdev, ret);
4810 		}
4811 	} else {
4812 		/* Init failed, cleanup */
4813 		flush_work(&hdev->tx_work);
4814 
4815 		/* Since hci_rx_work() is possible to awake new cmd_work
4816 		 * it should be flushed first to avoid unexpected call of
4817 		 * hci_cmd_work()
4818 		 */
4819 		flush_work(&hdev->rx_work);
4820 		flush_work(&hdev->cmd_work);
4821 
4822 		skb_queue_purge(&hdev->cmd_q);
4823 		skb_queue_purge(&hdev->rx_q);
4824 
4825 		if (hdev->flush)
4826 			hdev->flush(hdev);
4827 
4828 		if (hdev->sent_cmd) {
4829 			cancel_delayed_work_sync(&hdev->cmd_timer);
4830 			kfree_skb(hdev->sent_cmd);
4831 			hdev->sent_cmd = NULL;
4832 		}
4833 
4834 		clear_bit(HCI_RUNNING, &hdev->flags);
4835 		hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
4836 
4837 		hdev->close(hdev);
4838 		hdev->flags &= BIT(HCI_RAW);
4839 	}
4840 
4841 done:
4842 	return ret;
4843 }
4844 
4845 /* This function requires the caller holds hdev->lock */
4846 static void hci_pend_le_actions_clear(struct hci_dev *hdev)
4847 {
4848 	struct hci_conn_params *p;
4849 
4850 	list_for_each_entry(p, &hdev->le_conn_params, list) {
4851 		hci_pend_le_list_del_init(p);
4852 		if (p->conn) {
4853 			hci_conn_drop(p->conn);
4854 			hci_conn_put(p->conn);
4855 			p->conn = NULL;
4856 		}
4857 	}
4858 
4859 	BT_DBG("All LE pending actions cleared");
4860 }
4861 
4862 static int hci_dev_shutdown(struct hci_dev *hdev)
4863 {
4864 	int err = 0;
4865 	/* Similar to how we first do setup and then set the exclusive access
4866 	 * bit for userspace, we must first unset userchannel and then clean up.
4867 	 * Otherwise, the kernel can't properly use the hci channel to clean up
4868 	 * the controller (some shutdown routines require sending additional
4869 	 * commands to the controller for example).
4870 	 */
4871 	bool was_userchannel =
4872 		hci_dev_test_and_clear_flag(hdev, HCI_USER_CHANNEL);
4873 
4874 	if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
4875 	    test_bit(HCI_UP, &hdev->flags)) {
4876 		/* Execute vendor specific shutdown routine */
4877 		if (hdev->shutdown)
4878 			err = hdev->shutdown(hdev);
4879 	}
4880 
4881 	if (was_userchannel)
4882 		hci_dev_set_flag(hdev, HCI_USER_CHANNEL);
4883 
4884 	return err;
4885 }
4886 
4887 int hci_dev_close_sync(struct hci_dev *hdev)
4888 {
4889 	bool auto_off;
4890 	int err = 0;
4891 
4892 	bt_dev_dbg(hdev, "");
4893 
4894 	cancel_delayed_work(&hdev->power_off);
4895 	cancel_delayed_work(&hdev->ncmd_timer);
4896 	cancel_delayed_work(&hdev->le_scan_disable);
4897 
4898 	hci_request_cancel_all(hdev);
4899 
4900 	if (hdev->adv_instance_timeout) {
4901 		cancel_delayed_work_sync(&hdev->adv_instance_expire);
4902 		hdev->adv_instance_timeout = 0;
4903 	}
4904 
4905 	err = hci_dev_shutdown(hdev);
4906 
4907 	if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
4908 		cancel_delayed_work_sync(&hdev->cmd_timer);
4909 		return err;
4910 	}
4911 
4912 	hci_leds_update_powered(hdev, false);
4913 
4914 	/* Flush RX and TX works */
4915 	flush_work(&hdev->tx_work);
4916 	flush_work(&hdev->rx_work);
4917 
4918 	if (hdev->discov_timeout > 0) {
4919 		hdev->discov_timeout = 0;
4920 		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
4921 		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
4922 	}
4923 
4924 	if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
4925 		cancel_delayed_work(&hdev->service_cache);
4926 
4927 	if (hci_dev_test_flag(hdev, HCI_MGMT)) {
4928 		struct adv_info *adv_instance;
4929 
4930 		cancel_delayed_work_sync(&hdev->rpa_expired);
4931 
4932 		list_for_each_entry(adv_instance, &hdev->adv_instances, list)
4933 			cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
4934 	}
4935 
4936 	/* Avoid potential lockdep warnings from the *_flush() calls by
4937 	 * ensuring the workqueue is empty up front.
4938 	 */
4939 	drain_workqueue(hdev->workqueue);
4940 
4941 	hci_dev_lock(hdev);
4942 
4943 	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
4944 
4945 	auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
4946 
4947 	if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
4948 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4949 	    hci_dev_test_flag(hdev, HCI_MGMT))
4950 		__mgmt_power_off(hdev);
4951 
4952 	hci_inquiry_cache_flush(hdev);
4953 	hci_pend_le_actions_clear(hdev);
4954 	hci_conn_hash_flush(hdev);
4955 	/* Prevent data races on hdev->smp_data or hdev->smp_bredr_data */
4956 	smp_unregister(hdev);
4957 	hci_dev_unlock(hdev);
4958 
4959 	hci_sock_dev_event(hdev, HCI_DEV_DOWN);
4960 
4961 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4962 		aosp_do_close(hdev);
4963 		msft_do_close(hdev);
4964 	}
4965 
4966 	if (hdev->flush)
4967 		hdev->flush(hdev);
4968 
4969 	/* Reset device */
4970 	skb_queue_purge(&hdev->cmd_q);
4971 	atomic_set(&hdev->cmd_cnt, 1);
4972 	if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
4973 	    !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
4974 		set_bit(HCI_INIT, &hdev->flags);
4975 		hci_reset_sync(hdev);
4976 		clear_bit(HCI_INIT, &hdev->flags);
4977 	}
4978 
4979 	/* flush cmd  work */
4980 	flush_work(&hdev->cmd_work);
4981 
4982 	/* Drop queues */
4983 	skb_queue_purge(&hdev->rx_q);
4984 	skb_queue_purge(&hdev->cmd_q);
4985 	skb_queue_purge(&hdev->raw_q);
4986 
4987 	/* Drop last sent command */
4988 	if (hdev->sent_cmd) {
4989 		cancel_delayed_work_sync(&hdev->cmd_timer);
4990 		kfree_skb(hdev->sent_cmd);
4991 		hdev->sent_cmd = NULL;
4992 	}
4993 
4994 	clear_bit(HCI_RUNNING, &hdev->flags);
4995 	hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
4996 
4997 	/* After this point our queues are empty and no tasks are scheduled. */
4998 	hdev->close(hdev);
4999 
5000 	/* Clear flags */
5001 	hdev->flags &= BIT(HCI_RAW);
5002 	hci_dev_clear_volatile_flags(hdev);
5003 
5004 	/* Controller radio is available but is currently powered down */
5005 	hdev->amp_status = AMP_STATUS_POWERED_DOWN;
5006 
5007 	memset(hdev->eir, 0, sizeof(hdev->eir));
5008 	memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
5009 	bacpy(&hdev->random_addr, BDADDR_ANY);
5010 	hci_codec_list_clear(&hdev->local_codecs);
5011 
5012 	hci_dev_put(hdev);
5013 	return err;
5014 }
5015 
5016 /* This function perform power on HCI command sequence as follows:
5017  *
5018  * If controller is already up (HCI_UP) performs hci_powered_update_sync
5019  * sequence otherwise run hci_dev_open_sync which will follow with
5020  * hci_powered_update_sync after the init sequence is completed.
5021  */
5022 static int hci_power_on_sync(struct hci_dev *hdev)
5023 {
5024 	int err;
5025 
5026 	if (test_bit(HCI_UP, &hdev->flags) &&
5027 	    hci_dev_test_flag(hdev, HCI_MGMT) &&
5028 	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
5029 		cancel_delayed_work(&hdev->power_off);
5030 		return hci_powered_update_sync(hdev);
5031 	}
5032 
5033 	err = hci_dev_open_sync(hdev);
5034 	if (err < 0)
5035 		return err;
5036 
5037 	/* During the HCI setup phase, a few error conditions are
5038 	 * ignored and they need to be checked now. If they are still
5039 	 * valid, it is important to return the device back off.
5040 	 */
5041 	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
5042 	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
5043 	    (hdev->dev_type == HCI_PRIMARY &&
5044 	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
5045 	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
5046 		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
5047 		hci_dev_close_sync(hdev);
5048 	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
5049 		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
5050 				   HCI_AUTO_OFF_TIMEOUT);
5051 	}
5052 
5053 	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
5054 		/* For unconfigured devices, set the HCI_RAW flag
5055 		 * so that userspace can easily identify them.
5056 		 */
5057 		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
5058 			set_bit(HCI_RAW, &hdev->flags);
5059 
5060 		/* For fully configured devices, this will send
5061 		 * the Index Added event. For unconfigured devices,
5062 		 * it will send Unconfigued Index Added event.
5063 		 *
5064 		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
5065 		 * and no event will be send.
5066 		 */
5067 		mgmt_index_added(hdev);
5068 	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
5069 		/* When the controller is now configured, then it
5070 		 * is important to clear the HCI_RAW flag.
5071 		 */
5072 		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
5073 			clear_bit(HCI_RAW, &hdev->flags);
5074 
5075 		/* Powering on the controller with HCI_CONFIG set only
5076 		 * happens with the transition from unconfigured to
5077 		 * configured. This will send the Index Added event.
5078 		 */
5079 		mgmt_index_added(hdev);
5080 	}
5081 
5082 	return 0;
5083 }
5084 
5085 static int hci_remote_name_cancel_sync(struct hci_dev *hdev, bdaddr_t *addr)
5086 {
5087 	struct hci_cp_remote_name_req_cancel cp;
5088 
5089 	memset(&cp, 0, sizeof(cp));
5090 	bacpy(&cp.bdaddr, addr);
5091 
5092 	return __hci_cmd_sync_status(hdev, HCI_OP_REMOTE_NAME_REQ_CANCEL,
5093 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5094 }
5095 
5096 int hci_stop_discovery_sync(struct hci_dev *hdev)
5097 {
5098 	struct discovery_state *d = &hdev->discovery;
5099 	struct inquiry_entry *e;
5100 	int err;
5101 
5102 	bt_dev_dbg(hdev, "state %u", hdev->discovery.state);
5103 
5104 	if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
5105 		if (test_bit(HCI_INQUIRY, &hdev->flags)) {
5106 			err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL,
5107 						    0, NULL, HCI_CMD_TIMEOUT);
5108 			if (err)
5109 				return err;
5110 		}
5111 
5112 		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
5113 			cancel_delayed_work(&hdev->le_scan_disable);
5114 
5115 			err = hci_scan_disable_sync(hdev);
5116 			if (err)
5117 				return err;
5118 		}
5119 
5120 	} else {
5121 		err = hci_scan_disable_sync(hdev);
5122 		if (err)
5123 			return err;
5124 	}
5125 
5126 	/* Resume advertising if it was paused */
5127 	if (use_ll_privacy(hdev))
5128 		hci_resume_advertising_sync(hdev);
5129 
5130 	/* No further actions needed for LE-only discovery */
5131 	if (d->type == DISCOV_TYPE_LE)
5132 		return 0;
5133 
5134 	if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
5135 		e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
5136 						     NAME_PENDING);
5137 		if (!e)
5138 			return 0;
5139 
5140 		return hci_remote_name_cancel_sync(hdev, &e->data.bdaddr);
5141 	}
5142 
5143 	return 0;
5144 }
5145 
5146 static int hci_disconnect_phy_link_sync(struct hci_dev *hdev, u16 handle,
5147 					u8 reason)
5148 {
5149 	struct hci_cp_disconn_phy_link cp;
5150 
5151 	memset(&cp, 0, sizeof(cp));
5152 	cp.phy_handle = HCI_PHY_HANDLE(handle);
5153 	cp.reason = reason;
5154 
5155 	return __hci_cmd_sync_status(hdev, HCI_OP_DISCONN_PHY_LINK,
5156 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5157 }
5158 
5159 static int hci_disconnect_sync(struct hci_dev *hdev, struct hci_conn *conn,
5160 			       u8 reason)
5161 {
5162 	struct hci_cp_disconnect cp;
5163 
5164 	if (conn->type == AMP_LINK)
5165 		return hci_disconnect_phy_link_sync(hdev, conn->handle, reason);
5166 
5167 	if (test_bit(HCI_CONN_BIG_CREATED, &conn->flags)) {
5168 		/* This is a BIS connection, hci_conn_del will
5169 		 * do the necessary cleanup.
5170 		 */
5171 		hci_dev_lock(hdev);
5172 		hci_conn_failed(conn, reason);
5173 		hci_dev_unlock(hdev);
5174 
5175 		return 0;
5176 	}
5177 
5178 	memset(&cp, 0, sizeof(cp));
5179 	cp.handle = cpu_to_le16(conn->handle);
5180 	cp.reason = reason;
5181 
5182 	/* Wait for HCI_EV_DISCONN_COMPLETE, not HCI_EV_CMD_STATUS, when the
5183 	 * reason is anything but HCI_ERROR_REMOTE_POWER_OFF. This reason is
5184 	 * used when suspending or powering off, where we don't want to wait
5185 	 * for the peer's response.
5186 	 */
5187 	if (reason != HCI_ERROR_REMOTE_POWER_OFF)
5188 		return __hci_cmd_sync_status_sk(hdev, HCI_OP_DISCONNECT,
5189 						sizeof(cp), &cp,
5190 						HCI_EV_DISCONN_COMPLETE,
5191 						HCI_CMD_TIMEOUT, NULL);
5192 
5193 	return __hci_cmd_sync_status(hdev, HCI_OP_DISCONNECT, sizeof(cp), &cp,
5194 				     HCI_CMD_TIMEOUT);
5195 }
5196 
5197 static int hci_le_connect_cancel_sync(struct hci_dev *hdev,
5198 				      struct hci_conn *conn, u8 reason)
5199 {
5200 	/* Return reason if scanning since the connection shall probably be
5201 	 * cleanup directly.
5202 	 */
5203 	if (test_bit(HCI_CONN_SCANNING, &conn->flags))
5204 		return reason;
5205 
5206 	if (conn->role == HCI_ROLE_SLAVE ||
5207 	    test_and_set_bit(HCI_CONN_CANCEL, &conn->flags))
5208 		return 0;
5209 
5210 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_CREATE_CONN_CANCEL,
5211 				     0, NULL, HCI_CMD_TIMEOUT);
5212 }
5213 
5214 static int hci_connect_cancel_sync(struct hci_dev *hdev, struct hci_conn *conn,
5215 				   u8 reason)
5216 {
5217 	if (conn->type == LE_LINK)
5218 		return hci_le_connect_cancel_sync(hdev, conn, reason);
5219 
5220 	if (conn->type == ISO_LINK) {
5221 		/* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E
5222 		 * page 1857:
5223 		 *
5224 		 * If this command is issued for a CIS on the Central and the
5225 		 * CIS is successfully terminated before being established,
5226 		 * then an HCI_LE_CIS_Established event shall also be sent for
5227 		 * this CIS with the Status Operation Cancelled by Host (0x44).
5228 		 */
5229 		if (test_bit(HCI_CONN_CREATE_CIS, &conn->flags))
5230 			return hci_disconnect_sync(hdev, conn, reason);
5231 
5232 		/* CIS with no Create CIS sent have nothing to cancel */
5233 		if (bacmp(&conn->dst, BDADDR_ANY))
5234 			return HCI_ERROR_LOCAL_HOST_TERM;
5235 
5236 		/* There is no way to cancel a BIS without terminating the BIG
5237 		 * which is done later on connection cleanup.
5238 		 */
5239 		return 0;
5240 	}
5241 
5242 	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
5243 		return 0;
5244 
5245 	/* Wait for HCI_EV_CONN_COMPLETE, not HCI_EV_CMD_STATUS, when the
5246 	 * reason is anything but HCI_ERROR_REMOTE_POWER_OFF. This reason is
5247 	 * used when suspending or powering off, where we don't want to wait
5248 	 * for the peer's response.
5249 	 */
5250 	if (reason != HCI_ERROR_REMOTE_POWER_OFF)
5251 		return __hci_cmd_sync_status_sk(hdev, HCI_OP_CREATE_CONN_CANCEL,
5252 						6, &conn->dst,
5253 						HCI_EV_CONN_COMPLETE,
5254 						HCI_CMD_TIMEOUT, NULL);
5255 
5256 	return __hci_cmd_sync_status(hdev, HCI_OP_CREATE_CONN_CANCEL,
5257 				     6, &conn->dst, HCI_CMD_TIMEOUT);
5258 }
5259 
5260 static int hci_reject_sco_sync(struct hci_dev *hdev, struct hci_conn *conn,
5261 			       u8 reason)
5262 {
5263 	struct hci_cp_reject_sync_conn_req cp;
5264 
5265 	memset(&cp, 0, sizeof(cp));
5266 	bacpy(&cp.bdaddr, &conn->dst);
5267 	cp.reason = reason;
5268 
5269 	/* SCO rejection has its own limited set of
5270 	 * allowed error values (0x0D-0x0F).
5271 	 */
5272 	if (reason < 0x0d || reason > 0x0f)
5273 		cp.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
5274 
5275 	return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_SYNC_CONN_REQ,
5276 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5277 }
5278 
5279 static int hci_le_reject_cis_sync(struct hci_dev *hdev, struct hci_conn *conn,
5280 				  u8 reason)
5281 {
5282 	struct hci_cp_le_reject_cis cp;
5283 
5284 	memset(&cp, 0, sizeof(cp));
5285 	cp.handle = cpu_to_le16(conn->handle);
5286 	cp.reason = reason;
5287 
5288 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_REJECT_CIS,
5289 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5290 }
5291 
5292 static int hci_reject_conn_sync(struct hci_dev *hdev, struct hci_conn *conn,
5293 				u8 reason)
5294 {
5295 	struct hci_cp_reject_conn_req cp;
5296 
5297 	if (conn->type == ISO_LINK)
5298 		return hci_le_reject_cis_sync(hdev, conn, reason);
5299 
5300 	if (conn->type == SCO_LINK || conn->type == ESCO_LINK)
5301 		return hci_reject_sco_sync(hdev, conn, reason);
5302 
5303 	memset(&cp, 0, sizeof(cp));
5304 	bacpy(&cp.bdaddr, &conn->dst);
5305 	cp.reason = reason;
5306 
5307 	return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_CONN_REQ,
5308 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5309 }
5310 
5311 int hci_abort_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, u8 reason)
5312 {
5313 	int err = 0;
5314 	u16 handle = conn->handle;
5315 	bool disconnect = false;
5316 	struct hci_conn *c;
5317 
5318 	switch (conn->state) {
5319 	case BT_CONNECTED:
5320 	case BT_CONFIG:
5321 		err = hci_disconnect_sync(hdev, conn, reason);
5322 		break;
5323 	case BT_CONNECT:
5324 		err = hci_connect_cancel_sync(hdev, conn, reason);
5325 		break;
5326 	case BT_CONNECT2:
5327 		err = hci_reject_conn_sync(hdev, conn, reason);
5328 		break;
5329 	case BT_OPEN:
5330 	case BT_BOUND:
5331 		break;
5332 	default:
5333 		disconnect = true;
5334 		break;
5335 	}
5336 
5337 	hci_dev_lock(hdev);
5338 
5339 	/* Check if the connection has been cleaned up concurrently */
5340 	c = hci_conn_hash_lookup_handle(hdev, handle);
5341 	if (!c || c != conn) {
5342 		err = 0;
5343 		goto unlock;
5344 	}
5345 
5346 	/* Cleanup hci_conn object if it cannot be cancelled as it
5347 	 * likelly means the controller and host stack are out of sync
5348 	 * or in case of LE it was still scanning so it can be cleanup
5349 	 * safely.
5350 	 */
5351 	if (disconnect) {
5352 		conn->state = BT_CLOSED;
5353 		hci_disconn_cfm(conn, reason);
5354 		hci_conn_del(conn);
5355 	} else {
5356 		hci_conn_failed(conn, reason);
5357 	}
5358 
5359 unlock:
5360 	hci_dev_unlock(hdev);
5361 	return err;
5362 }
5363 
5364 static int hci_disconnect_all_sync(struct hci_dev *hdev, u8 reason)
5365 {
5366 	struct list_head *head = &hdev->conn_hash.list;
5367 	struct hci_conn *conn;
5368 
5369 	rcu_read_lock();
5370 	while ((conn = list_first_or_null_rcu(head, struct hci_conn, list))) {
5371 		/* Make sure the connection is not freed while unlocking */
5372 		conn = hci_conn_get(conn);
5373 		rcu_read_unlock();
5374 		/* Disregard possible errors since hci_conn_del shall have been
5375 		 * called even in case of errors had occurred since it would
5376 		 * then cause hci_conn_failed to be called which calls
5377 		 * hci_conn_del internally.
5378 		 */
5379 		hci_abort_conn_sync(hdev, conn, reason);
5380 		hci_conn_put(conn);
5381 		rcu_read_lock();
5382 	}
5383 	rcu_read_unlock();
5384 
5385 	return 0;
5386 }
5387 
5388 /* This function perform power off HCI command sequence as follows:
5389  *
5390  * Clear Advertising
5391  * Stop Discovery
5392  * Disconnect all connections
5393  * hci_dev_close_sync
5394  */
5395 static int hci_power_off_sync(struct hci_dev *hdev)
5396 {
5397 	int err;
5398 
5399 	/* If controller is already down there is nothing to do */
5400 	if (!test_bit(HCI_UP, &hdev->flags))
5401 		return 0;
5402 
5403 	if (test_bit(HCI_ISCAN, &hdev->flags) ||
5404 	    test_bit(HCI_PSCAN, &hdev->flags)) {
5405 		err = hci_write_scan_enable_sync(hdev, 0x00);
5406 		if (err)
5407 			return err;
5408 	}
5409 
5410 	err = hci_clear_adv_sync(hdev, NULL, false);
5411 	if (err)
5412 		return err;
5413 
5414 	err = hci_stop_discovery_sync(hdev);
5415 	if (err)
5416 		return err;
5417 
5418 	/* Terminated due to Power Off */
5419 	err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF);
5420 	if (err)
5421 		return err;
5422 
5423 	return hci_dev_close_sync(hdev);
5424 }
5425 
5426 int hci_set_powered_sync(struct hci_dev *hdev, u8 val)
5427 {
5428 	if (val)
5429 		return hci_power_on_sync(hdev);
5430 
5431 	return hci_power_off_sync(hdev);
5432 }
5433 
5434 static int hci_write_iac_sync(struct hci_dev *hdev)
5435 {
5436 	struct hci_cp_write_current_iac_lap cp;
5437 
5438 	if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
5439 		return 0;
5440 
5441 	memset(&cp, 0, sizeof(cp));
5442 
5443 	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
5444 		/* Limited discoverable mode */
5445 		cp.num_iac = min_t(u8, hdev->num_iac, 2);
5446 		cp.iac_lap[0] = 0x00;	/* LIAC */
5447 		cp.iac_lap[1] = 0x8b;
5448 		cp.iac_lap[2] = 0x9e;
5449 		cp.iac_lap[3] = 0x33;	/* GIAC */
5450 		cp.iac_lap[4] = 0x8b;
5451 		cp.iac_lap[5] = 0x9e;
5452 	} else {
5453 		/* General discoverable mode */
5454 		cp.num_iac = 1;
5455 		cp.iac_lap[0] = 0x33;	/* GIAC */
5456 		cp.iac_lap[1] = 0x8b;
5457 		cp.iac_lap[2] = 0x9e;
5458 	}
5459 
5460 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CURRENT_IAC_LAP,
5461 				     (cp.num_iac * 3) + 1, &cp,
5462 				     HCI_CMD_TIMEOUT);
5463 }
5464 
5465 int hci_update_discoverable_sync(struct hci_dev *hdev)
5466 {
5467 	int err = 0;
5468 
5469 	if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
5470 		err = hci_write_iac_sync(hdev);
5471 		if (err)
5472 			return err;
5473 
5474 		err = hci_update_scan_sync(hdev);
5475 		if (err)
5476 			return err;
5477 
5478 		err = hci_update_class_sync(hdev);
5479 		if (err)
5480 			return err;
5481 	}
5482 
5483 	/* Advertising instances don't use the global discoverable setting, so
5484 	 * only update AD if advertising was enabled using Set Advertising.
5485 	 */
5486 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
5487 		err = hci_update_adv_data_sync(hdev, 0x00);
5488 		if (err)
5489 			return err;
5490 
5491 		/* Discoverable mode affects the local advertising
5492 		 * address in limited privacy mode.
5493 		 */
5494 		if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) {
5495 			if (ext_adv_capable(hdev))
5496 				err = hci_start_ext_adv_sync(hdev, 0x00);
5497 			else
5498 				err = hci_enable_advertising_sync(hdev);
5499 		}
5500 	}
5501 
5502 	return err;
5503 }
5504 
5505 static int update_discoverable_sync(struct hci_dev *hdev, void *data)
5506 {
5507 	return hci_update_discoverable_sync(hdev);
5508 }
5509 
5510 int hci_update_discoverable(struct hci_dev *hdev)
5511 {
5512 	/* Only queue if it would have any effect */
5513 	if (hdev_is_powered(hdev) &&
5514 	    hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
5515 	    hci_dev_test_flag(hdev, HCI_DISCOVERABLE) &&
5516 	    hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
5517 		return hci_cmd_sync_queue(hdev, update_discoverable_sync, NULL,
5518 					  NULL);
5519 
5520 	return 0;
5521 }
5522 
5523 int hci_update_connectable_sync(struct hci_dev *hdev)
5524 {
5525 	int err;
5526 
5527 	err = hci_update_scan_sync(hdev);
5528 	if (err)
5529 		return err;
5530 
5531 	/* If BR/EDR is not enabled and we disable advertising as a
5532 	 * by-product of disabling connectable, we need to update the
5533 	 * advertising flags.
5534 	 */
5535 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
5536 		err = hci_update_adv_data_sync(hdev, hdev->cur_adv_instance);
5537 
5538 	/* Update the advertising parameters if necessary */
5539 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
5540 	    !list_empty(&hdev->adv_instances)) {
5541 		if (ext_adv_capable(hdev))
5542 			err = hci_start_ext_adv_sync(hdev,
5543 						     hdev->cur_adv_instance);
5544 		else
5545 			err = hci_enable_advertising_sync(hdev);
5546 
5547 		if (err)
5548 			return err;
5549 	}
5550 
5551 	return hci_update_passive_scan_sync(hdev);
5552 }
5553 
5554 static int hci_inquiry_sync(struct hci_dev *hdev, u8 length)
5555 {
5556 	const u8 giac[3] = { 0x33, 0x8b, 0x9e };
5557 	const u8 liac[3] = { 0x00, 0x8b, 0x9e };
5558 	struct hci_cp_inquiry cp;
5559 
5560 	bt_dev_dbg(hdev, "");
5561 
5562 	if (hci_dev_test_flag(hdev, HCI_INQUIRY))
5563 		return 0;
5564 
5565 	hci_dev_lock(hdev);
5566 	hci_inquiry_cache_flush(hdev);
5567 	hci_dev_unlock(hdev);
5568 
5569 	memset(&cp, 0, sizeof(cp));
5570 
5571 	if (hdev->discovery.limited)
5572 		memcpy(&cp.lap, liac, sizeof(cp.lap));
5573 	else
5574 		memcpy(&cp.lap, giac, sizeof(cp.lap));
5575 
5576 	cp.length = length;
5577 
5578 	return __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY,
5579 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5580 }
5581 
5582 static int hci_active_scan_sync(struct hci_dev *hdev, uint16_t interval)
5583 {
5584 	u8 own_addr_type;
5585 	/* Accept list is not used for discovery */
5586 	u8 filter_policy = 0x00;
5587 	/* Default is to enable duplicates filter */
5588 	u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
5589 	int err;
5590 
5591 	bt_dev_dbg(hdev, "");
5592 
5593 	/* If controller is scanning, it means the passive scanning is
5594 	 * running. Thus, we should temporarily stop it in order to set the
5595 	 * discovery scanning parameters.
5596 	 */
5597 	err = hci_scan_disable_sync(hdev);
5598 	if (err) {
5599 		bt_dev_err(hdev, "Unable to disable scanning: %d", err);
5600 		return err;
5601 	}
5602 
5603 	cancel_interleave_scan(hdev);
5604 
5605 	/* Pause address resolution for active scan and stop advertising if
5606 	 * privacy is enabled.
5607 	 */
5608 	err = hci_pause_addr_resolution(hdev);
5609 	if (err)
5610 		goto failed;
5611 
5612 	/* All active scans will be done with either a resolvable private
5613 	 * address (when privacy feature has been enabled) or non-resolvable
5614 	 * private address.
5615 	 */
5616 	err = hci_update_random_address_sync(hdev, true, scan_use_rpa(hdev),
5617 					     &own_addr_type);
5618 	if (err < 0)
5619 		own_addr_type = ADDR_LE_DEV_PUBLIC;
5620 
5621 	if (hci_is_adv_monitoring(hdev) ||
5622 	    (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
5623 	    hdev->discovery.result_filtering)) {
5624 		/* Duplicate filter should be disabled when some advertisement
5625 		 * monitor is activated, otherwise AdvMon can only receive one
5626 		 * advertisement for one peer(*) during active scanning, and
5627 		 * might report loss to these peers.
5628 		 *
5629 		 * If controller does strict duplicate filtering and the
5630 		 * discovery requires result filtering disables controller based
5631 		 * filtering since that can cause reports that would match the
5632 		 * host filter to not be reported.
5633 		 */
5634 		filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
5635 	}
5636 
5637 	err = hci_start_scan_sync(hdev, LE_SCAN_ACTIVE, interval,
5638 				  hdev->le_scan_window_discovery,
5639 				  own_addr_type, filter_policy, filter_dup);
5640 	if (!err)
5641 		return err;
5642 
5643 failed:
5644 	/* Resume advertising if it was paused */
5645 	if (use_ll_privacy(hdev))
5646 		hci_resume_advertising_sync(hdev);
5647 
5648 	/* Resume passive scanning */
5649 	hci_update_passive_scan_sync(hdev);
5650 	return err;
5651 }
5652 
5653 static int hci_start_interleaved_discovery_sync(struct hci_dev *hdev)
5654 {
5655 	int err;
5656 
5657 	bt_dev_dbg(hdev, "");
5658 
5659 	err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery * 2);
5660 	if (err)
5661 		return err;
5662 
5663 	return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN);
5664 }
5665 
5666 int hci_start_discovery_sync(struct hci_dev *hdev)
5667 {
5668 	unsigned long timeout;
5669 	int err;
5670 
5671 	bt_dev_dbg(hdev, "type %u", hdev->discovery.type);
5672 
5673 	switch (hdev->discovery.type) {
5674 	case DISCOV_TYPE_BREDR:
5675 		return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN);
5676 	case DISCOV_TYPE_INTERLEAVED:
5677 		/* When running simultaneous discovery, the LE scanning time
5678 		 * should occupy the whole discovery time sine BR/EDR inquiry
5679 		 * and LE scanning are scheduled by the controller.
5680 		 *
5681 		 * For interleaving discovery in comparison, BR/EDR inquiry
5682 		 * and LE scanning are done sequentially with separate
5683 		 * timeouts.
5684 		 */
5685 		if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
5686 			     &hdev->quirks)) {
5687 			timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
5688 			/* During simultaneous discovery, we double LE scan
5689 			 * interval. We must leave some time for the controller
5690 			 * to do BR/EDR inquiry.
5691 			 */
5692 			err = hci_start_interleaved_discovery_sync(hdev);
5693 			break;
5694 		}
5695 
5696 		timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
5697 		err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery);
5698 		break;
5699 	case DISCOV_TYPE_LE:
5700 		timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
5701 		err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery);
5702 		break;
5703 	default:
5704 		return -EINVAL;
5705 	}
5706 
5707 	if (err)
5708 		return err;
5709 
5710 	bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout));
5711 
5712 	queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
5713 			   timeout);
5714 	return 0;
5715 }
5716 
5717 static void hci_suspend_monitor_sync(struct hci_dev *hdev)
5718 {
5719 	switch (hci_get_adv_monitor_offload_ext(hdev)) {
5720 	case HCI_ADV_MONITOR_EXT_MSFT:
5721 		msft_suspend_sync(hdev);
5722 		break;
5723 	default:
5724 		return;
5725 	}
5726 }
5727 
5728 /* This function disables discovery and mark it as paused */
5729 static int hci_pause_discovery_sync(struct hci_dev *hdev)
5730 {
5731 	int old_state = hdev->discovery.state;
5732 	int err;
5733 
5734 	/* If discovery already stopped/stopping/paused there nothing to do */
5735 	if (old_state == DISCOVERY_STOPPED || old_state == DISCOVERY_STOPPING ||
5736 	    hdev->discovery_paused)
5737 		return 0;
5738 
5739 	hci_discovery_set_state(hdev, DISCOVERY_STOPPING);
5740 	err = hci_stop_discovery_sync(hdev);
5741 	if (err)
5742 		return err;
5743 
5744 	hdev->discovery_paused = true;
5745 	hdev->discovery_old_state = old_state;
5746 	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
5747 
5748 	return 0;
5749 }
5750 
5751 static int hci_update_event_filter_sync(struct hci_dev *hdev)
5752 {
5753 	struct bdaddr_list_with_flags *b;
5754 	u8 scan = SCAN_DISABLED;
5755 	bool scanning = test_bit(HCI_PSCAN, &hdev->flags);
5756 	int err;
5757 
5758 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
5759 		return 0;
5760 
5761 	/* Some fake CSR controllers lock up after setting this type of
5762 	 * filter, so avoid sending the request altogether.
5763 	 */
5764 	if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
5765 		return 0;
5766 
5767 	/* Always clear event filter when starting */
5768 	hci_clear_event_filter_sync(hdev);
5769 
5770 	list_for_each_entry(b, &hdev->accept_list, list) {
5771 		if (!(b->flags & HCI_CONN_FLAG_REMOTE_WAKEUP))
5772 			continue;
5773 
5774 		bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr);
5775 
5776 		err =  hci_set_event_filter_sync(hdev, HCI_FLT_CONN_SETUP,
5777 						 HCI_CONN_SETUP_ALLOW_BDADDR,
5778 						 &b->bdaddr,
5779 						 HCI_CONN_SETUP_AUTO_ON);
5780 		if (err)
5781 			bt_dev_dbg(hdev, "Failed to set event filter for %pMR",
5782 				   &b->bdaddr);
5783 		else
5784 			scan = SCAN_PAGE;
5785 	}
5786 
5787 	if (scan && !scanning)
5788 		hci_write_scan_enable_sync(hdev, scan);
5789 	else if (!scan && scanning)
5790 		hci_write_scan_enable_sync(hdev, scan);
5791 
5792 	return 0;
5793 }
5794 
5795 /* This function disables scan (BR and LE) and mark it as paused */
5796 static int hci_pause_scan_sync(struct hci_dev *hdev)
5797 {
5798 	if (hdev->scanning_paused)
5799 		return 0;
5800 
5801 	/* Disable page scan if enabled */
5802 	if (test_bit(HCI_PSCAN, &hdev->flags))
5803 		hci_write_scan_enable_sync(hdev, SCAN_DISABLED);
5804 
5805 	hci_scan_disable_sync(hdev);
5806 
5807 	hdev->scanning_paused = true;
5808 
5809 	return 0;
5810 }
5811 
5812 /* This function performs the HCI suspend procedures in the follow order:
5813  *
5814  * Pause discovery (active scanning/inquiry)
5815  * Pause Directed Advertising/Advertising
5816  * Pause Scanning (passive scanning in case discovery was not active)
5817  * Disconnect all connections
5818  * Set suspend_status to BT_SUSPEND_DISCONNECT if hdev cannot wakeup
5819  * otherwise:
5820  * Update event mask (only set events that are allowed to wake up the host)
5821  * Update event filter (with devices marked with HCI_CONN_FLAG_REMOTE_WAKEUP)
5822  * Update passive scanning (lower duty cycle)
5823  * Set suspend_status to BT_SUSPEND_CONFIGURE_WAKE
5824  */
5825 int hci_suspend_sync(struct hci_dev *hdev)
5826 {
5827 	int err;
5828 
5829 	/* If marked as suspended there nothing to do */
5830 	if (hdev->suspended)
5831 		return 0;
5832 
5833 	/* Mark device as suspended */
5834 	hdev->suspended = true;
5835 
5836 	/* Pause discovery if not already stopped */
5837 	hci_pause_discovery_sync(hdev);
5838 
5839 	/* Pause other advertisements */
5840 	hci_pause_advertising_sync(hdev);
5841 
5842 	/* Suspend monitor filters */
5843 	hci_suspend_monitor_sync(hdev);
5844 
5845 	/* Prevent disconnects from causing scanning to be re-enabled */
5846 	hci_pause_scan_sync(hdev);
5847 
5848 	if (hci_conn_count(hdev)) {
5849 		/* Soft disconnect everything (power off) */
5850 		err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF);
5851 		if (err) {
5852 			/* Set state to BT_RUNNING so resume doesn't notify */
5853 			hdev->suspend_state = BT_RUNNING;
5854 			hci_resume_sync(hdev);
5855 			return err;
5856 		}
5857 
5858 		/* Update event mask so only the allowed event can wakeup the
5859 		 * host.
5860 		 */
5861 		hci_set_event_mask_sync(hdev);
5862 	}
5863 
5864 	/* Only configure accept list if disconnect succeeded and wake
5865 	 * isn't being prevented.
5866 	 */
5867 	if (!hdev->wakeup || !hdev->wakeup(hdev)) {
5868 		hdev->suspend_state = BT_SUSPEND_DISCONNECT;
5869 		return 0;
5870 	}
5871 
5872 	/* Unpause to take care of updating scanning params */
5873 	hdev->scanning_paused = false;
5874 
5875 	/* Enable event filter for paired devices */
5876 	hci_update_event_filter_sync(hdev);
5877 
5878 	/* Update LE passive scan if enabled */
5879 	hci_update_passive_scan_sync(hdev);
5880 
5881 	/* Pause scan changes again. */
5882 	hdev->scanning_paused = true;
5883 
5884 	hdev->suspend_state = BT_SUSPEND_CONFIGURE_WAKE;
5885 
5886 	return 0;
5887 }
5888 
5889 /* This function resumes discovery */
5890 static int hci_resume_discovery_sync(struct hci_dev *hdev)
5891 {
5892 	int err;
5893 
5894 	/* If discovery not paused there nothing to do */
5895 	if (!hdev->discovery_paused)
5896 		return 0;
5897 
5898 	hdev->discovery_paused = false;
5899 
5900 	hci_discovery_set_state(hdev, DISCOVERY_STARTING);
5901 
5902 	err = hci_start_discovery_sync(hdev);
5903 
5904 	hci_discovery_set_state(hdev, err ? DISCOVERY_STOPPED :
5905 				DISCOVERY_FINDING);
5906 
5907 	return err;
5908 }
5909 
5910 static void hci_resume_monitor_sync(struct hci_dev *hdev)
5911 {
5912 	switch (hci_get_adv_monitor_offload_ext(hdev)) {
5913 	case HCI_ADV_MONITOR_EXT_MSFT:
5914 		msft_resume_sync(hdev);
5915 		break;
5916 	default:
5917 		return;
5918 	}
5919 }
5920 
5921 /* This function resume scan and reset paused flag */
5922 static int hci_resume_scan_sync(struct hci_dev *hdev)
5923 {
5924 	if (!hdev->scanning_paused)
5925 		return 0;
5926 
5927 	hdev->scanning_paused = false;
5928 
5929 	hci_update_scan_sync(hdev);
5930 
5931 	/* Reset passive scanning to normal */
5932 	hci_update_passive_scan_sync(hdev);
5933 
5934 	return 0;
5935 }
5936 
5937 /* This function performs the HCI suspend procedures in the follow order:
5938  *
5939  * Restore event mask
5940  * Clear event filter
5941  * Update passive scanning (normal duty cycle)
5942  * Resume Directed Advertising/Advertising
5943  * Resume discovery (active scanning/inquiry)
5944  */
5945 int hci_resume_sync(struct hci_dev *hdev)
5946 {
5947 	/* If not marked as suspended there nothing to do */
5948 	if (!hdev->suspended)
5949 		return 0;
5950 
5951 	hdev->suspended = false;
5952 
5953 	/* Restore event mask */
5954 	hci_set_event_mask_sync(hdev);
5955 
5956 	/* Clear any event filters and restore scan state */
5957 	hci_clear_event_filter_sync(hdev);
5958 
5959 	/* Resume scanning */
5960 	hci_resume_scan_sync(hdev);
5961 
5962 	/* Resume monitor filters */
5963 	hci_resume_monitor_sync(hdev);
5964 
5965 	/* Resume other advertisements */
5966 	hci_resume_advertising_sync(hdev);
5967 
5968 	/* Resume discovery */
5969 	hci_resume_discovery_sync(hdev);
5970 
5971 	return 0;
5972 }
5973 
5974 static bool conn_use_rpa(struct hci_conn *conn)
5975 {
5976 	struct hci_dev *hdev = conn->hdev;
5977 
5978 	return hci_dev_test_flag(hdev, HCI_PRIVACY);
5979 }
5980 
5981 static int hci_le_ext_directed_advertising_sync(struct hci_dev *hdev,
5982 						struct hci_conn *conn)
5983 {
5984 	struct hci_cp_le_set_ext_adv_params cp;
5985 	int err;
5986 	bdaddr_t random_addr;
5987 	u8 own_addr_type;
5988 
5989 	err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
5990 					     &own_addr_type);
5991 	if (err)
5992 		return err;
5993 
5994 	/* Set require_privacy to false so that the remote device has a
5995 	 * chance of identifying us.
5996 	 */
5997 	err = hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL,
5998 				     &own_addr_type, &random_addr);
5999 	if (err)
6000 		return err;
6001 
6002 	memset(&cp, 0, sizeof(cp));
6003 
6004 	cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND);
6005 	cp.channel_map = hdev->le_adv_channel_map;
6006 	cp.tx_power = HCI_TX_POWER_INVALID;
6007 	cp.primary_phy = HCI_ADV_PHY_1M;
6008 	cp.secondary_phy = HCI_ADV_PHY_1M;
6009 	cp.handle = 0x00; /* Use instance 0 for directed adv */
6010 	cp.own_addr_type = own_addr_type;
6011 	cp.peer_addr_type = conn->dst_type;
6012 	bacpy(&cp.peer_addr, &conn->dst);
6013 
6014 	/* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for
6015 	 * advertising_event_property LE_LEGACY_ADV_DIRECT_IND
6016 	 * does not supports advertising data when the advertising set already
6017 	 * contains some, the controller shall return erroc code 'Invalid
6018 	 * HCI Command Parameters(0x12).
6019 	 * So it is required to remove adv set for handle 0x00. since we use
6020 	 * instance 0 for directed adv.
6021 	 */
6022 	err = hci_remove_ext_adv_instance_sync(hdev, cp.handle, NULL);
6023 	if (err)
6024 		return err;
6025 
6026 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS,
6027 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
6028 	if (err)
6029 		return err;
6030 
6031 	/* Check if random address need to be updated */
6032 	if (own_addr_type == ADDR_LE_DEV_RANDOM &&
6033 	    bacmp(&random_addr, BDADDR_ANY) &&
6034 	    bacmp(&random_addr, &hdev->random_addr)) {
6035 		err = hci_set_adv_set_random_addr_sync(hdev, 0x00,
6036 						       &random_addr);
6037 		if (err)
6038 			return err;
6039 	}
6040 
6041 	return hci_enable_ext_advertising_sync(hdev, 0x00);
6042 }
6043 
6044 static int hci_le_directed_advertising_sync(struct hci_dev *hdev,
6045 					    struct hci_conn *conn)
6046 {
6047 	struct hci_cp_le_set_adv_param cp;
6048 	u8 status;
6049 	u8 own_addr_type;
6050 	u8 enable;
6051 
6052 	if (ext_adv_capable(hdev))
6053 		return hci_le_ext_directed_advertising_sync(hdev, conn);
6054 
6055 	/* Clear the HCI_LE_ADV bit temporarily so that the
6056 	 * hci_update_random_address knows that it's safe to go ahead
6057 	 * and write a new random address. The flag will be set back on
6058 	 * as soon as the SET_ADV_ENABLE HCI command completes.
6059 	 */
6060 	hci_dev_clear_flag(hdev, HCI_LE_ADV);
6061 
6062 	/* Set require_privacy to false so that the remote device has a
6063 	 * chance of identifying us.
6064 	 */
6065 	status = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
6066 						&own_addr_type);
6067 	if (status)
6068 		return status;
6069 
6070 	memset(&cp, 0, sizeof(cp));
6071 
6072 	/* Some controllers might reject command if intervals are not
6073 	 * within range for undirected advertising.
6074 	 * BCM20702A0 is known to be affected by this.
6075 	 */
6076 	cp.min_interval = cpu_to_le16(0x0020);
6077 	cp.max_interval = cpu_to_le16(0x0020);
6078 
6079 	cp.type = LE_ADV_DIRECT_IND;
6080 	cp.own_address_type = own_addr_type;
6081 	cp.direct_addr_type = conn->dst_type;
6082 	bacpy(&cp.direct_addr, &conn->dst);
6083 	cp.channel_map = hdev->le_adv_channel_map;
6084 
6085 	status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM,
6086 				       sizeof(cp), &cp, HCI_CMD_TIMEOUT);
6087 	if (status)
6088 		return status;
6089 
6090 	enable = 0x01;
6091 
6092 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
6093 				     sizeof(enable), &enable, HCI_CMD_TIMEOUT);
6094 }
6095 
6096 static void set_ext_conn_params(struct hci_conn *conn,
6097 				struct hci_cp_le_ext_conn_param *p)
6098 {
6099 	struct hci_dev *hdev = conn->hdev;
6100 
6101 	memset(p, 0, sizeof(*p));
6102 
6103 	p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
6104 	p->scan_window = cpu_to_le16(hdev->le_scan_window_connect);
6105 	p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
6106 	p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
6107 	p->conn_latency = cpu_to_le16(conn->le_conn_latency);
6108 	p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
6109 	p->min_ce_len = cpu_to_le16(0x0000);
6110 	p->max_ce_len = cpu_to_le16(0x0000);
6111 }
6112 
6113 static int hci_le_ext_create_conn_sync(struct hci_dev *hdev,
6114 				       struct hci_conn *conn, u8 own_addr_type)
6115 {
6116 	struct hci_cp_le_ext_create_conn *cp;
6117 	struct hci_cp_le_ext_conn_param *p;
6118 	u8 data[sizeof(*cp) + sizeof(*p) * 3];
6119 	u32 plen;
6120 
6121 	cp = (void *)data;
6122 	p = (void *)cp->data;
6123 
6124 	memset(cp, 0, sizeof(*cp));
6125 
6126 	bacpy(&cp->peer_addr, &conn->dst);
6127 	cp->peer_addr_type = conn->dst_type;
6128 	cp->own_addr_type = own_addr_type;
6129 
6130 	plen = sizeof(*cp);
6131 
6132 	if (scan_1m(hdev)) {
6133 		cp->phys |= LE_SCAN_PHY_1M;
6134 		set_ext_conn_params(conn, p);
6135 
6136 		p++;
6137 		plen += sizeof(*p);
6138 	}
6139 
6140 	if (scan_2m(hdev)) {
6141 		cp->phys |= LE_SCAN_PHY_2M;
6142 		set_ext_conn_params(conn, p);
6143 
6144 		p++;
6145 		plen += sizeof(*p);
6146 	}
6147 
6148 	if (scan_coded(hdev)) {
6149 		cp->phys |= LE_SCAN_PHY_CODED;
6150 		set_ext_conn_params(conn, p);
6151 
6152 		plen += sizeof(*p);
6153 	}
6154 
6155 	return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_EXT_CREATE_CONN,
6156 					plen, data,
6157 					HCI_EV_LE_ENHANCED_CONN_COMPLETE,
6158 					conn->conn_timeout, NULL);
6159 }
6160 
6161 int hci_le_create_conn_sync(struct hci_dev *hdev, struct hci_conn *conn)
6162 {
6163 	struct hci_cp_le_create_conn cp;
6164 	struct hci_conn_params *params;
6165 	u8 own_addr_type;
6166 	int err;
6167 
6168 	/* If requested to connect as peripheral use directed advertising */
6169 	if (conn->role == HCI_ROLE_SLAVE) {
6170 		/* If we're active scanning and simultaneous roles is not
6171 		 * enabled simply reject the attempt.
6172 		 */
6173 		if (hci_dev_test_flag(hdev, HCI_LE_SCAN) &&
6174 		    hdev->le_scan_type == LE_SCAN_ACTIVE &&
6175 		    !hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) {
6176 			hci_conn_del(conn);
6177 			return -EBUSY;
6178 		}
6179 
6180 		/* Pause advertising while doing directed advertising. */
6181 		hci_pause_advertising_sync(hdev);
6182 
6183 		err = hci_le_directed_advertising_sync(hdev, conn);
6184 		goto done;
6185 	}
6186 
6187 	/* Disable advertising if simultaneous roles is not in use. */
6188 	if (!hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES))
6189 		hci_pause_advertising_sync(hdev);
6190 
6191 	params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
6192 	if (params) {
6193 		conn->le_conn_min_interval = params->conn_min_interval;
6194 		conn->le_conn_max_interval = params->conn_max_interval;
6195 		conn->le_conn_latency = params->conn_latency;
6196 		conn->le_supv_timeout = params->supervision_timeout;
6197 	} else {
6198 		conn->le_conn_min_interval = hdev->le_conn_min_interval;
6199 		conn->le_conn_max_interval = hdev->le_conn_max_interval;
6200 		conn->le_conn_latency = hdev->le_conn_latency;
6201 		conn->le_supv_timeout = hdev->le_supv_timeout;
6202 	}
6203 
6204 	/* If controller is scanning, we stop it since some controllers are
6205 	 * not able to scan and connect at the same time. Also set the
6206 	 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete
6207 	 * handler for scan disabling knows to set the correct discovery
6208 	 * state.
6209 	 */
6210 	if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
6211 		hci_scan_disable_sync(hdev);
6212 		hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED);
6213 	}
6214 
6215 	/* Update random address, but set require_privacy to false so
6216 	 * that we never connect with an non-resolvable address.
6217 	 */
6218 	err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
6219 					     &own_addr_type);
6220 	if (err)
6221 		goto done;
6222 
6223 	if (use_ext_conn(hdev)) {
6224 		err = hci_le_ext_create_conn_sync(hdev, conn, own_addr_type);
6225 		goto done;
6226 	}
6227 
6228 	memset(&cp, 0, sizeof(cp));
6229 
6230 	cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
6231 	cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect);
6232 
6233 	bacpy(&cp.peer_addr, &conn->dst);
6234 	cp.peer_addr_type = conn->dst_type;
6235 	cp.own_address_type = own_addr_type;
6236 	cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
6237 	cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
6238 	cp.conn_latency = cpu_to_le16(conn->le_conn_latency);
6239 	cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
6240 	cp.min_ce_len = cpu_to_le16(0x0000);
6241 	cp.max_ce_len = cpu_to_le16(0x0000);
6242 
6243 	/* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E page 2261:
6244 	 *
6245 	 * If this event is unmasked and the HCI_LE_Connection_Complete event
6246 	 * is unmasked, only the HCI_LE_Enhanced_Connection_Complete event is
6247 	 * sent when a new connection has been created.
6248 	 */
6249 	err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CONN,
6250 				       sizeof(cp), &cp,
6251 				       use_enhanced_conn_complete(hdev) ?
6252 				       HCI_EV_LE_ENHANCED_CONN_COMPLETE :
6253 				       HCI_EV_LE_CONN_COMPLETE,
6254 				       conn->conn_timeout, NULL);
6255 
6256 done:
6257 	if (err == -ETIMEDOUT)
6258 		hci_le_connect_cancel_sync(hdev, conn, 0x00);
6259 
6260 	/* Re-enable advertising after the connection attempt is finished. */
6261 	hci_resume_advertising_sync(hdev);
6262 	return err;
6263 }
6264 
6265 int hci_le_create_cis_sync(struct hci_dev *hdev)
6266 {
6267 	struct {
6268 		struct hci_cp_le_create_cis cp;
6269 		struct hci_cis cis[0x1f];
6270 	} cmd;
6271 	struct hci_conn *conn;
6272 	u8 cig = BT_ISO_QOS_CIG_UNSET;
6273 
6274 	/* The spec allows only one pending LE Create CIS command at a time. If
6275 	 * the command is pending now, don't do anything. We check for pending
6276 	 * connections after each CIS Established event.
6277 	 *
6278 	 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E
6279 	 * page 2566:
6280 	 *
6281 	 * If the Host issues this command before all the
6282 	 * HCI_LE_CIS_Established events from the previous use of the
6283 	 * command have been generated, the Controller shall return the
6284 	 * error code Command Disallowed (0x0C).
6285 	 *
6286 	 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E
6287 	 * page 2567:
6288 	 *
6289 	 * When the Controller receives the HCI_LE_Create_CIS command, the
6290 	 * Controller sends the HCI_Command_Status event to the Host. An
6291 	 * HCI_LE_CIS_Established event will be generated for each CIS when it
6292 	 * is established or if it is disconnected or considered lost before
6293 	 * being established; until all the events are generated, the command
6294 	 * remains pending.
6295 	 */
6296 
6297 	memset(&cmd, 0, sizeof(cmd));
6298 
6299 	hci_dev_lock(hdev);
6300 
6301 	rcu_read_lock();
6302 
6303 	/* Wait until previous Create CIS has completed */
6304 	list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) {
6305 		if (test_bit(HCI_CONN_CREATE_CIS, &conn->flags))
6306 			goto done;
6307 	}
6308 
6309 	/* Find CIG with all CIS ready */
6310 	list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) {
6311 		struct hci_conn *link;
6312 
6313 		if (hci_conn_check_create_cis(conn))
6314 			continue;
6315 
6316 		cig = conn->iso_qos.ucast.cig;
6317 
6318 		list_for_each_entry_rcu(link, &hdev->conn_hash.list, list) {
6319 			if (hci_conn_check_create_cis(link) > 0 &&
6320 			    link->iso_qos.ucast.cig == cig &&
6321 			    link->state != BT_CONNECTED) {
6322 				cig = BT_ISO_QOS_CIG_UNSET;
6323 				break;
6324 			}
6325 		}
6326 
6327 		if (cig != BT_ISO_QOS_CIG_UNSET)
6328 			break;
6329 	}
6330 
6331 	if (cig == BT_ISO_QOS_CIG_UNSET)
6332 		goto done;
6333 
6334 	list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) {
6335 		struct hci_cis *cis = &cmd.cis[cmd.cp.num_cis];
6336 
6337 		if (hci_conn_check_create_cis(conn) ||
6338 		    conn->iso_qos.ucast.cig != cig)
6339 			continue;
6340 
6341 		set_bit(HCI_CONN_CREATE_CIS, &conn->flags);
6342 		cis->acl_handle = cpu_to_le16(conn->parent->handle);
6343 		cis->cis_handle = cpu_to_le16(conn->handle);
6344 		cmd.cp.num_cis++;
6345 
6346 		if (cmd.cp.num_cis >= ARRAY_SIZE(cmd.cis))
6347 			break;
6348 	}
6349 
6350 done:
6351 	rcu_read_unlock();
6352 
6353 	hci_dev_unlock(hdev);
6354 
6355 	if (!cmd.cp.num_cis)
6356 		return 0;
6357 
6358 	/* Wait for HCI_LE_CIS_Established */
6359 	return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CIS,
6360 					sizeof(cmd.cp) + sizeof(cmd.cis[0]) *
6361 					cmd.cp.num_cis, &cmd,
6362 					HCI_EVT_LE_CIS_ESTABLISHED,
6363 					conn->conn_timeout, NULL);
6364 }
6365 
6366 int hci_le_remove_cig_sync(struct hci_dev *hdev, u8 handle)
6367 {
6368 	struct hci_cp_le_remove_cig cp;
6369 
6370 	memset(&cp, 0, sizeof(cp));
6371 	cp.cig_id = handle;
6372 
6373 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_REMOVE_CIG, sizeof(cp),
6374 				     &cp, HCI_CMD_TIMEOUT);
6375 }
6376 
6377 int hci_le_big_terminate_sync(struct hci_dev *hdev, u8 handle)
6378 {
6379 	struct hci_cp_le_big_term_sync cp;
6380 
6381 	memset(&cp, 0, sizeof(cp));
6382 	cp.handle = handle;
6383 
6384 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_BIG_TERM_SYNC,
6385 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
6386 }
6387 
6388 int hci_le_pa_terminate_sync(struct hci_dev *hdev, u16 handle)
6389 {
6390 	struct hci_cp_le_pa_term_sync cp;
6391 
6392 	memset(&cp, 0, sizeof(cp));
6393 	cp.handle = cpu_to_le16(handle);
6394 
6395 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_PA_TERM_SYNC,
6396 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
6397 }
6398 
6399 int hci_get_random_address(struct hci_dev *hdev, bool require_privacy,
6400 			   bool use_rpa, struct adv_info *adv_instance,
6401 			   u8 *own_addr_type, bdaddr_t *rand_addr)
6402 {
6403 	int err;
6404 
6405 	bacpy(rand_addr, BDADDR_ANY);
6406 
6407 	/* If privacy is enabled use a resolvable private address. If
6408 	 * current RPA has expired then generate a new one.
6409 	 */
6410 	if (use_rpa) {
6411 		/* If Controller supports LL Privacy use own address type is
6412 		 * 0x03
6413 		 */
6414 		if (use_ll_privacy(hdev))
6415 			*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
6416 		else
6417 			*own_addr_type = ADDR_LE_DEV_RANDOM;
6418 
6419 		if (adv_instance) {
6420 			if (adv_rpa_valid(adv_instance))
6421 				return 0;
6422 		} else {
6423 			if (rpa_valid(hdev))
6424 				return 0;
6425 		}
6426 
6427 		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
6428 		if (err < 0) {
6429 			bt_dev_err(hdev, "failed to generate new RPA");
6430 			return err;
6431 		}
6432 
6433 		bacpy(rand_addr, &hdev->rpa);
6434 
6435 		return 0;
6436 	}
6437 
6438 	/* In case of required privacy without resolvable private address,
6439 	 * use an non-resolvable private address. This is useful for
6440 	 * non-connectable advertising.
6441 	 */
6442 	if (require_privacy) {
6443 		bdaddr_t nrpa;
6444 
6445 		while (true) {
6446 			/* The non-resolvable private address is generated
6447 			 * from random six bytes with the two most significant
6448 			 * bits cleared.
6449 			 */
6450 			get_random_bytes(&nrpa, 6);
6451 			nrpa.b[5] &= 0x3f;
6452 
6453 			/* The non-resolvable private address shall not be
6454 			 * equal to the public address.
6455 			 */
6456 			if (bacmp(&hdev->bdaddr, &nrpa))
6457 				break;
6458 		}
6459 
6460 		*own_addr_type = ADDR_LE_DEV_RANDOM;
6461 		bacpy(rand_addr, &nrpa);
6462 
6463 		return 0;
6464 	}
6465 
6466 	/* No privacy so use a public address. */
6467 	*own_addr_type = ADDR_LE_DEV_PUBLIC;
6468 
6469 	return 0;
6470 }
6471 
6472 static int _update_adv_data_sync(struct hci_dev *hdev, void *data)
6473 {
6474 	u8 instance = PTR_UINT(data);
6475 
6476 	return hci_update_adv_data_sync(hdev, instance);
6477 }
6478 
6479 int hci_update_adv_data(struct hci_dev *hdev, u8 instance)
6480 {
6481 	return hci_cmd_sync_queue(hdev, _update_adv_data_sync,
6482 				  UINT_PTR(instance), NULL);
6483 }
6484