1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * BlueZ - Bluetooth protocol stack for Linux 4 * 5 * Copyright (C) 2021 Intel Corporation 6 * Copyright 2023 NXP 7 */ 8 9 #include <linux/property.h> 10 11 #include <net/bluetooth/bluetooth.h> 12 #include <net/bluetooth/hci_core.h> 13 #include <net/bluetooth/mgmt.h> 14 15 #include "hci_request.h" 16 #include "hci_codec.h" 17 #include "hci_debugfs.h" 18 #include "smp.h" 19 #include "eir.h" 20 #include "msft.h" 21 #include "aosp.h" 22 #include "leds.h" 23 24 static void hci_cmd_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode, 25 struct sk_buff *skb) 26 { 27 bt_dev_dbg(hdev, "result 0x%2.2x", result); 28 29 if (hdev->req_status != HCI_REQ_PEND) 30 return; 31 32 hdev->req_result = result; 33 hdev->req_status = HCI_REQ_DONE; 34 35 if (skb) { 36 struct sock *sk = hci_skb_sk(skb); 37 38 /* Drop sk reference if set */ 39 if (sk) 40 sock_put(sk); 41 42 hdev->req_skb = skb_get(skb); 43 } 44 45 wake_up_interruptible(&hdev->req_wait_q); 46 } 47 48 static struct sk_buff *hci_cmd_sync_alloc(struct hci_dev *hdev, u16 opcode, 49 u32 plen, const void *param, 50 struct sock *sk) 51 { 52 int len = HCI_COMMAND_HDR_SIZE + plen; 53 struct hci_command_hdr *hdr; 54 struct sk_buff *skb; 55 56 skb = bt_skb_alloc(len, GFP_ATOMIC); 57 if (!skb) 58 return NULL; 59 60 hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE); 61 hdr->opcode = cpu_to_le16(opcode); 62 hdr->plen = plen; 63 64 if (plen) 65 skb_put_data(skb, param, plen); 66 67 bt_dev_dbg(hdev, "skb len %d", skb->len); 68 69 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; 70 hci_skb_opcode(skb) = opcode; 71 72 /* Grab a reference if command needs to be associated with a sock (e.g. 73 * likely mgmt socket that initiated the command). 74 */ 75 if (sk) { 76 hci_skb_sk(skb) = sk; 77 sock_hold(sk); 78 } 79 80 return skb; 81 } 82 83 static void hci_cmd_sync_add(struct hci_request *req, u16 opcode, u32 plen, 84 const void *param, u8 event, struct sock *sk) 85 { 86 struct hci_dev *hdev = req->hdev; 87 struct sk_buff *skb; 88 89 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); 90 91 /* If an error occurred during request building, there is no point in 92 * queueing the HCI command. We can simply return. 93 */ 94 if (req->err) 95 return; 96 97 skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, sk); 98 if (!skb) { 99 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)", 100 opcode); 101 req->err = -ENOMEM; 102 return; 103 } 104 105 if (skb_queue_empty(&req->cmd_q)) 106 bt_cb(skb)->hci.req_flags |= HCI_REQ_START; 107 108 hci_skb_event(skb) = event; 109 110 skb_queue_tail(&req->cmd_q, skb); 111 } 112 113 static int hci_cmd_sync_run(struct hci_request *req) 114 { 115 struct hci_dev *hdev = req->hdev; 116 struct sk_buff *skb; 117 unsigned long flags; 118 119 bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q)); 120 121 /* If an error occurred during request building, remove all HCI 122 * commands queued on the HCI request queue. 123 */ 124 if (req->err) { 125 skb_queue_purge(&req->cmd_q); 126 return req->err; 127 } 128 129 /* Do not allow empty requests */ 130 if (skb_queue_empty(&req->cmd_q)) 131 return -ENODATA; 132 133 skb = skb_peek_tail(&req->cmd_q); 134 bt_cb(skb)->hci.req_complete_skb = hci_cmd_sync_complete; 135 bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB; 136 137 spin_lock_irqsave(&hdev->cmd_q.lock, flags); 138 skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q); 139 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); 140 141 queue_work(hdev->workqueue, &hdev->cmd_work); 142 143 return 0; 144 } 145 146 /* This function requires the caller holds hdev->req_lock. */ 147 struct sk_buff *__hci_cmd_sync_sk(struct hci_dev *hdev, u16 opcode, u32 plen, 148 const void *param, u8 event, u32 timeout, 149 struct sock *sk) 150 { 151 struct hci_request req; 152 struct sk_buff *skb; 153 int err = 0; 154 155 bt_dev_dbg(hdev, "Opcode 0x%4.4x", opcode); 156 157 hci_req_init(&req, hdev); 158 159 hci_cmd_sync_add(&req, opcode, plen, param, event, sk); 160 161 hdev->req_status = HCI_REQ_PEND; 162 163 err = hci_cmd_sync_run(&req); 164 if (err < 0) 165 return ERR_PTR(err); 166 167 err = wait_event_interruptible_timeout(hdev->req_wait_q, 168 hdev->req_status != HCI_REQ_PEND, 169 timeout); 170 171 if (err == -ERESTARTSYS) 172 return ERR_PTR(-EINTR); 173 174 switch (hdev->req_status) { 175 case HCI_REQ_DONE: 176 err = -bt_to_errno(hdev->req_result); 177 break; 178 179 case HCI_REQ_CANCELED: 180 err = -hdev->req_result; 181 break; 182 183 default: 184 err = -ETIMEDOUT; 185 break; 186 } 187 188 hdev->req_status = 0; 189 hdev->req_result = 0; 190 skb = hdev->req_skb; 191 hdev->req_skb = NULL; 192 193 bt_dev_dbg(hdev, "end: err %d", err); 194 195 if (err < 0) { 196 kfree_skb(skb); 197 return ERR_PTR(err); 198 } 199 200 return skb; 201 } 202 EXPORT_SYMBOL(__hci_cmd_sync_sk); 203 204 /* This function requires the caller holds hdev->req_lock. */ 205 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 206 const void *param, u32 timeout) 207 { 208 return __hci_cmd_sync_sk(hdev, opcode, plen, param, 0, timeout, NULL); 209 } 210 EXPORT_SYMBOL(__hci_cmd_sync); 211 212 /* Send HCI command and wait for command complete event */ 213 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 214 const void *param, u32 timeout) 215 { 216 struct sk_buff *skb; 217 218 if (!test_bit(HCI_UP, &hdev->flags)) 219 return ERR_PTR(-ENETDOWN); 220 221 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); 222 223 hci_req_sync_lock(hdev); 224 skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout); 225 hci_req_sync_unlock(hdev); 226 227 return skb; 228 } 229 EXPORT_SYMBOL(hci_cmd_sync); 230 231 /* This function requires the caller holds hdev->req_lock. */ 232 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen, 233 const void *param, u8 event, u32 timeout) 234 { 235 return __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, 236 NULL); 237 } 238 EXPORT_SYMBOL(__hci_cmd_sync_ev); 239 240 /* This function requires the caller holds hdev->req_lock. */ 241 int __hci_cmd_sync_status_sk(struct hci_dev *hdev, u16 opcode, u32 plen, 242 const void *param, u8 event, u32 timeout, 243 struct sock *sk) 244 { 245 struct sk_buff *skb; 246 u8 status; 247 248 skb = __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, sk); 249 if (IS_ERR(skb)) { 250 if (!event) 251 bt_dev_err(hdev, "Opcode 0x%4.4x failed: %ld", opcode, 252 PTR_ERR(skb)); 253 return PTR_ERR(skb); 254 } 255 256 /* If command return a status event skb will be set to NULL as there are 257 * no parameters, in case of failure IS_ERR(skb) would have be set to 258 * the actual error would be found with PTR_ERR(skb). 259 */ 260 if (!skb) 261 return 0; 262 263 status = skb->data[0]; 264 265 kfree_skb(skb); 266 267 return status; 268 } 269 EXPORT_SYMBOL(__hci_cmd_sync_status_sk); 270 271 int __hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen, 272 const void *param, u32 timeout) 273 { 274 return __hci_cmd_sync_status_sk(hdev, opcode, plen, param, 0, timeout, 275 NULL); 276 } 277 EXPORT_SYMBOL(__hci_cmd_sync_status); 278 279 static void hci_cmd_sync_work(struct work_struct *work) 280 { 281 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_work); 282 283 bt_dev_dbg(hdev, ""); 284 285 /* Dequeue all entries and run them */ 286 while (1) { 287 struct hci_cmd_sync_work_entry *entry; 288 289 mutex_lock(&hdev->cmd_sync_work_lock); 290 entry = list_first_entry_or_null(&hdev->cmd_sync_work_list, 291 struct hci_cmd_sync_work_entry, 292 list); 293 if (entry) 294 list_del(&entry->list); 295 mutex_unlock(&hdev->cmd_sync_work_lock); 296 297 if (!entry) 298 break; 299 300 bt_dev_dbg(hdev, "entry %p", entry); 301 302 if (entry->func) { 303 int err; 304 305 hci_req_sync_lock(hdev); 306 err = entry->func(hdev, entry->data); 307 if (entry->destroy) 308 entry->destroy(hdev, entry->data, err); 309 hci_req_sync_unlock(hdev); 310 } 311 312 kfree(entry); 313 } 314 } 315 316 static void hci_cmd_sync_cancel_work(struct work_struct *work) 317 { 318 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_cancel_work); 319 320 cancel_delayed_work_sync(&hdev->cmd_timer); 321 cancel_delayed_work_sync(&hdev->ncmd_timer); 322 atomic_set(&hdev->cmd_cnt, 1); 323 324 wake_up_interruptible(&hdev->req_wait_q); 325 } 326 327 static int hci_scan_disable_sync(struct hci_dev *hdev); 328 static int scan_disable_sync(struct hci_dev *hdev, void *data) 329 { 330 return hci_scan_disable_sync(hdev); 331 } 332 333 static int hci_inquiry_sync(struct hci_dev *hdev, u8 length); 334 static int interleaved_inquiry_sync(struct hci_dev *hdev, void *data) 335 { 336 return hci_inquiry_sync(hdev, DISCOV_INTERLEAVED_INQUIRY_LEN); 337 } 338 339 static void le_scan_disable(struct work_struct *work) 340 { 341 struct hci_dev *hdev = container_of(work, struct hci_dev, 342 le_scan_disable.work); 343 int status; 344 345 bt_dev_dbg(hdev, ""); 346 hci_dev_lock(hdev); 347 348 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 349 goto _return; 350 351 status = hci_cmd_sync_queue(hdev, scan_disable_sync, NULL, NULL); 352 if (status) { 353 bt_dev_err(hdev, "failed to disable LE scan: %d", status); 354 goto _return; 355 } 356 357 hdev->discovery.scan_start = 0; 358 359 /* If we were running LE only scan, change discovery state. If 360 * we were running both LE and BR/EDR inquiry simultaneously, 361 * and BR/EDR inquiry is already finished, stop discovery, 362 * otherwise BR/EDR inquiry will stop discovery when finished. 363 * If we will resolve remote device name, do not change 364 * discovery state. 365 */ 366 367 if (hdev->discovery.type == DISCOV_TYPE_LE) 368 goto discov_stopped; 369 370 if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED) 371 goto _return; 372 373 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) { 374 if (!test_bit(HCI_INQUIRY, &hdev->flags) && 375 hdev->discovery.state != DISCOVERY_RESOLVING) 376 goto discov_stopped; 377 378 goto _return; 379 } 380 381 status = hci_cmd_sync_queue(hdev, interleaved_inquiry_sync, NULL, NULL); 382 if (status) { 383 bt_dev_err(hdev, "inquiry failed: status %d", status); 384 goto discov_stopped; 385 } 386 387 goto _return; 388 389 discov_stopped: 390 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 391 392 _return: 393 hci_dev_unlock(hdev); 394 } 395 396 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val, 397 u8 filter_dup); 398 399 static int reenable_adv_sync(struct hci_dev *hdev, void *data) 400 { 401 bt_dev_dbg(hdev, ""); 402 403 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) && 404 list_empty(&hdev->adv_instances)) 405 return 0; 406 407 if (hdev->cur_adv_instance) { 408 return hci_schedule_adv_instance_sync(hdev, 409 hdev->cur_adv_instance, 410 true); 411 } else { 412 if (ext_adv_capable(hdev)) { 413 hci_start_ext_adv_sync(hdev, 0x00); 414 } else { 415 hci_update_adv_data_sync(hdev, 0x00); 416 hci_update_scan_rsp_data_sync(hdev, 0x00); 417 hci_enable_advertising_sync(hdev); 418 } 419 } 420 421 return 0; 422 } 423 424 static void reenable_adv(struct work_struct *work) 425 { 426 struct hci_dev *hdev = container_of(work, struct hci_dev, 427 reenable_adv_work); 428 int status; 429 430 bt_dev_dbg(hdev, ""); 431 432 hci_dev_lock(hdev); 433 434 status = hci_cmd_sync_queue(hdev, reenable_adv_sync, NULL, NULL); 435 if (status) 436 bt_dev_err(hdev, "failed to reenable ADV: %d", status); 437 438 hci_dev_unlock(hdev); 439 } 440 441 static void cancel_adv_timeout(struct hci_dev *hdev) 442 { 443 if (hdev->adv_instance_timeout) { 444 hdev->adv_instance_timeout = 0; 445 cancel_delayed_work(&hdev->adv_instance_expire); 446 } 447 } 448 449 /* For a single instance: 450 * - force == true: The instance will be removed even when its remaining 451 * lifetime is not zero. 452 * - force == false: the instance will be deactivated but kept stored unless 453 * the remaining lifetime is zero. 454 * 455 * For instance == 0x00: 456 * - force == true: All instances will be removed regardless of their timeout 457 * setting. 458 * - force == false: Only instances that have a timeout will be removed. 459 */ 460 int hci_clear_adv_instance_sync(struct hci_dev *hdev, struct sock *sk, 461 u8 instance, bool force) 462 { 463 struct adv_info *adv_instance, *n, *next_instance = NULL; 464 int err; 465 u8 rem_inst; 466 467 /* Cancel any timeout concerning the removed instance(s). */ 468 if (!instance || hdev->cur_adv_instance == instance) 469 cancel_adv_timeout(hdev); 470 471 /* Get the next instance to advertise BEFORE we remove 472 * the current one. This can be the same instance again 473 * if there is only one instance. 474 */ 475 if (instance && hdev->cur_adv_instance == instance) 476 next_instance = hci_get_next_instance(hdev, instance); 477 478 if (instance == 0x00) { 479 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, 480 list) { 481 if (!(force || adv_instance->timeout)) 482 continue; 483 484 rem_inst = adv_instance->instance; 485 err = hci_remove_adv_instance(hdev, rem_inst); 486 if (!err) 487 mgmt_advertising_removed(sk, hdev, rem_inst); 488 } 489 } else { 490 adv_instance = hci_find_adv_instance(hdev, instance); 491 492 if (force || (adv_instance && adv_instance->timeout && 493 !adv_instance->remaining_time)) { 494 /* Don't advertise a removed instance. */ 495 if (next_instance && 496 next_instance->instance == instance) 497 next_instance = NULL; 498 499 err = hci_remove_adv_instance(hdev, instance); 500 if (!err) 501 mgmt_advertising_removed(sk, hdev, instance); 502 } 503 } 504 505 if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING)) 506 return 0; 507 508 if (next_instance && !ext_adv_capable(hdev)) 509 return hci_schedule_adv_instance_sync(hdev, 510 next_instance->instance, 511 false); 512 513 return 0; 514 } 515 516 static int adv_timeout_expire_sync(struct hci_dev *hdev, void *data) 517 { 518 u8 instance = *(u8 *)data; 519 520 kfree(data); 521 522 hci_clear_adv_instance_sync(hdev, NULL, instance, false); 523 524 if (list_empty(&hdev->adv_instances)) 525 return hci_disable_advertising_sync(hdev); 526 527 return 0; 528 } 529 530 static void adv_timeout_expire(struct work_struct *work) 531 { 532 u8 *inst_ptr; 533 struct hci_dev *hdev = container_of(work, struct hci_dev, 534 adv_instance_expire.work); 535 536 bt_dev_dbg(hdev, ""); 537 538 hci_dev_lock(hdev); 539 540 hdev->adv_instance_timeout = 0; 541 542 if (hdev->cur_adv_instance == 0x00) 543 goto unlock; 544 545 inst_ptr = kmalloc(1, GFP_KERNEL); 546 if (!inst_ptr) 547 goto unlock; 548 549 *inst_ptr = hdev->cur_adv_instance; 550 hci_cmd_sync_queue(hdev, adv_timeout_expire_sync, inst_ptr, NULL); 551 552 unlock: 553 hci_dev_unlock(hdev); 554 } 555 556 void hci_cmd_sync_init(struct hci_dev *hdev) 557 { 558 INIT_WORK(&hdev->cmd_sync_work, hci_cmd_sync_work); 559 INIT_LIST_HEAD(&hdev->cmd_sync_work_list); 560 mutex_init(&hdev->cmd_sync_work_lock); 561 mutex_init(&hdev->unregister_lock); 562 563 INIT_WORK(&hdev->cmd_sync_cancel_work, hci_cmd_sync_cancel_work); 564 INIT_WORK(&hdev->reenable_adv_work, reenable_adv); 565 INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable); 566 INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire); 567 } 568 569 void hci_cmd_sync_clear(struct hci_dev *hdev) 570 { 571 struct hci_cmd_sync_work_entry *entry, *tmp; 572 573 cancel_work_sync(&hdev->cmd_sync_work); 574 cancel_work_sync(&hdev->reenable_adv_work); 575 576 mutex_lock(&hdev->cmd_sync_work_lock); 577 list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) { 578 if (entry->destroy) 579 entry->destroy(hdev, entry->data, -ECANCELED); 580 581 list_del(&entry->list); 582 kfree(entry); 583 } 584 mutex_unlock(&hdev->cmd_sync_work_lock); 585 } 586 587 void __hci_cmd_sync_cancel(struct hci_dev *hdev, int err) 588 { 589 bt_dev_dbg(hdev, "err 0x%2.2x", err); 590 591 if (hdev->req_status == HCI_REQ_PEND) { 592 hdev->req_result = err; 593 hdev->req_status = HCI_REQ_CANCELED; 594 595 cancel_delayed_work_sync(&hdev->cmd_timer); 596 cancel_delayed_work_sync(&hdev->ncmd_timer); 597 atomic_set(&hdev->cmd_cnt, 1); 598 599 wake_up_interruptible(&hdev->req_wait_q); 600 } 601 } 602 603 void hci_cmd_sync_cancel(struct hci_dev *hdev, int err) 604 { 605 bt_dev_dbg(hdev, "err 0x%2.2x", err); 606 607 if (hdev->req_status == HCI_REQ_PEND) { 608 hdev->req_result = err; 609 hdev->req_status = HCI_REQ_CANCELED; 610 611 queue_work(hdev->workqueue, &hdev->cmd_sync_cancel_work); 612 } 613 } 614 EXPORT_SYMBOL(hci_cmd_sync_cancel); 615 616 /* Submit HCI command to be run in as cmd_sync_work: 617 * 618 * - hdev must _not_ be unregistered 619 */ 620 int hci_cmd_sync_submit(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 621 void *data, hci_cmd_sync_work_destroy_t destroy) 622 { 623 struct hci_cmd_sync_work_entry *entry; 624 int err = 0; 625 626 mutex_lock(&hdev->unregister_lock); 627 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 628 err = -ENODEV; 629 goto unlock; 630 } 631 632 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 633 if (!entry) { 634 err = -ENOMEM; 635 goto unlock; 636 } 637 entry->func = func; 638 entry->data = data; 639 entry->destroy = destroy; 640 641 mutex_lock(&hdev->cmd_sync_work_lock); 642 list_add_tail(&entry->list, &hdev->cmd_sync_work_list); 643 mutex_unlock(&hdev->cmd_sync_work_lock); 644 645 queue_work(hdev->req_workqueue, &hdev->cmd_sync_work); 646 647 unlock: 648 mutex_unlock(&hdev->unregister_lock); 649 return err; 650 } 651 EXPORT_SYMBOL(hci_cmd_sync_submit); 652 653 /* Queue HCI command: 654 * 655 * - hdev must be running 656 */ 657 int hci_cmd_sync_queue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 658 void *data, hci_cmd_sync_work_destroy_t destroy) 659 { 660 /* Only queue command if hdev is running which means it had been opened 661 * and is either on init phase or is already up. 662 */ 663 if (!test_bit(HCI_RUNNING, &hdev->flags)) 664 return -ENETDOWN; 665 666 return hci_cmd_sync_submit(hdev, func, data, destroy); 667 } 668 EXPORT_SYMBOL(hci_cmd_sync_queue); 669 670 int hci_update_eir_sync(struct hci_dev *hdev) 671 { 672 struct hci_cp_write_eir cp; 673 674 bt_dev_dbg(hdev, ""); 675 676 if (!hdev_is_powered(hdev)) 677 return 0; 678 679 if (!lmp_ext_inq_capable(hdev)) 680 return 0; 681 682 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 683 return 0; 684 685 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 686 return 0; 687 688 memset(&cp, 0, sizeof(cp)); 689 690 eir_create(hdev, cp.data); 691 692 if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0) 693 return 0; 694 695 memcpy(hdev->eir, cp.data, sizeof(cp.data)); 696 697 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp, 698 HCI_CMD_TIMEOUT); 699 } 700 701 static u8 get_service_classes(struct hci_dev *hdev) 702 { 703 struct bt_uuid *uuid; 704 u8 val = 0; 705 706 list_for_each_entry(uuid, &hdev->uuids, list) 707 val |= uuid->svc_hint; 708 709 return val; 710 } 711 712 int hci_update_class_sync(struct hci_dev *hdev) 713 { 714 u8 cod[3]; 715 716 bt_dev_dbg(hdev, ""); 717 718 if (!hdev_is_powered(hdev)) 719 return 0; 720 721 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 722 return 0; 723 724 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 725 return 0; 726 727 cod[0] = hdev->minor_class; 728 cod[1] = hdev->major_class; 729 cod[2] = get_service_classes(hdev); 730 731 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) 732 cod[1] |= 0x20; 733 734 if (memcmp(cod, hdev->dev_class, 3) == 0) 735 return 0; 736 737 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CLASS_OF_DEV, 738 sizeof(cod), cod, HCI_CMD_TIMEOUT); 739 } 740 741 static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable) 742 { 743 /* If there is no connection we are OK to advertise. */ 744 if (hci_conn_num(hdev, LE_LINK) == 0) 745 return true; 746 747 /* Check le_states if there is any connection in peripheral role. */ 748 if (hdev->conn_hash.le_num_peripheral > 0) { 749 /* Peripheral connection state and non connectable mode 750 * bit 20. 751 */ 752 if (!connectable && !(hdev->le_states[2] & 0x10)) 753 return false; 754 755 /* Peripheral connection state and connectable mode bit 38 756 * and scannable bit 21. 757 */ 758 if (connectable && (!(hdev->le_states[4] & 0x40) || 759 !(hdev->le_states[2] & 0x20))) 760 return false; 761 } 762 763 /* Check le_states if there is any connection in central role. */ 764 if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) { 765 /* Central connection state and non connectable mode bit 18. */ 766 if (!connectable && !(hdev->le_states[2] & 0x02)) 767 return false; 768 769 /* Central connection state and connectable mode bit 35 and 770 * scannable 19. 771 */ 772 if (connectable && (!(hdev->le_states[4] & 0x08) || 773 !(hdev->le_states[2] & 0x08))) 774 return false; 775 } 776 777 return true; 778 } 779 780 static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags) 781 { 782 /* If privacy is not enabled don't use RPA */ 783 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 784 return false; 785 786 /* If basic privacy mode is enabled use RPA */ 787 if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) 788 return true; 789 790 /* If limited privacy mode is enabled don't use RPA if we're 791 * both discoverable and bondable. 792 */ 793 if ((flags & MGMT_ADV_FLAG_DISCOV) && 794 hci_dev_test_flag(hdev, HCI_BONDABLE)) 795 return false; 796 797 /* We're neither bondable nor discoverable in the limited 798 * privacy mode, therefore use RPA. 799 */ 800 return true; 801 } 802 803 static int hci_set_random_addr_sync(struct hci_dev *hdev, bdaddr_t *rpa) 804 { 805 /* If we're advertising or initiating an LE connection we can't 806 * go ahead and change the random address at this time. This is 807 * because the eventual initiator address used for the 808 * subsequently created connection will be undefined (some 809 * controllers use the new address and others the one we had 810 * when the operation started). 811 * 812 * In this kind of scenario skip the update and let the random 813 * address be updated at the next cycle. 814 */ 815 if (hci_dev_test_flag(hdev, HCI_LE_ADV) || 816 hci_lookup_le_connect(hdev)) { 817 bt_dev_dbg(hdev, "Deferring random address update"); 818 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 819 return 0; 820 } 821 822 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RANDOM_ADDR, 823 6, rpa, HCI_CMD_TIMEOUT); 824 } 825 826 int hci_update_random_address_sync(struct hci_dev *hdev, bool require_privacy, 827 bool rpa, u8 *own_addr_type) 828 { 829 int err; 830 831 /* If privacy is enabled use a resolvable private address. If 832 * current RPA has expired or there is something else than 833 * the current RPA in use, then generate a new one. 834 */ 835 if (rpa) { 836 /* If Controller supports LL Privacy use own address type is 837 * 0x03 838 */ 839 if (use_ll_privacy(hdev)) 840 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED; 841 else 842 *own_addr_type = ADDR_LE_DEV_RANDOM; 843 844 /* Check if RPA is valid */ 845 if (rpa_valid(hdev)) 846 return 0; 847 848 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); 849 if (err < 0) { 850 bt_dev_err(hdev, "failed to generate new RPA"); 851 return err; 852 } 853 854 err = hci_set_random_addr_sync(hdev, &hdev->rpa); 855 if (err) 856 return err; 857 858 return 0; 859 } 860 861 /* In case of required privacy without resolvable private address, 862 * use an non-resolvable private address. This is useful for active 863 * scanning and non-connectable advertising. 864 */ 865 if (require_privacy) { 866 bdaddr_t nrpa; 867 868 while (true) { 869 /* The non-resolvable private address is generated 870 * from random six bytes with the two most significant 871 * bits cleared. 872 */ 873 get_random_bytes(&nrpa, 6); 874 nrpa.b[5] &= 0x3f; 875 876 /* The non-resolvable private address shall not be 877 * equal to the public address. 878 */ 879 if (bacmp(&hdev->bdaddr, &nrpa)) 880 break; 881 } 882 883 *own_addr_type = ADDR_LE_DEV_RANDOM; 884 885 return hci_set_random_addr_sync(hdev, &nrpa); 886 } 887 888 /* If forcing static address is in use or there is no public 889 * address use the static address as random address (but skip 890 * the HCI command if the current random address is already the 891 * static one. 892 * 893 * In case BR/EDR has been disabled on a dual-mode controller 894 * and a static address has been configured, then use that 895 * address instead of the public BR/EDR address. 896 */ 897 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 898 !bacmp(&hdev->bdaddr, BDADDR_ANY) || 899 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && 900 bacmp(&hdev->static_addr, BDADDR_ANY))) { 901 *own_addr_type = ADDR_LE_DEV_RANDOM; 902 if (bacmp(&hdev->static_addr, &hdev->random_addr)) 903 return hci_set_random_addr_sync(hdev, 904 &hdev->static_addr); 905 return 0; 906 } 907 908 /* Neither privacy nor static address is being used so use a 909 * public address. 910 */ 911 *own_addr_type = ADDR_LE_DEV_PUBLIC; 912 913 return 0; 914 } 915 916 static int hci_disable_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance) 917 { 918 struct hci_cp_le_set_ext_adv_enable *cp; 919 struct hci_cp_ext_adv_set *set; 920 u8 data[sizeof(*cp) + sizeof(*set) * 1]; 921 u8 size; 922 923 /* If request specifies an instance that doesn't exist, fail */ 924 if (instance > 0) { 925 struct adv_info *adv; 926 927 adv = hci_find_adv_instance(hdev, instance); 928 if (!adv) 929 return -EINVAL; 930 931 /* If not enabled there is nothing to do */ 932 if (!adv->enabled) 933 return 0; 934 } 935 936 memset(data, 0, sizeof(data)); 937 938 cp = (void *)data; 939 set = (void *)cp->data; 940 941 /* Instance 0x00 indicates all advertising instances will be disabled */ 942 cp->num_of_sets = !!instance; 943 cp->enable = 0x00; 944 945 set->handle = instance; 946 947 size = sizeof(*cp) + sizeof(*set) * cp->num_of_sets; 948 949 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, 950 size, data, HCI_CMD_TIMEOUT); 951 } 952 953 static int hci_set_adv_set_random_addr_sync(struct hci_dev *hdev, u8 instance, 954 bdaddr_t *random_addr) 955 { 956 struct hci_cp_le_set_adv_set_rand_addr cp; 957 int err; 958 959 if (!instance) { 960 /* Instance 0x00 doesn't have an adv_info, instead it uses 961 * hdev->random_addr to track its address so whenever it needs 962 * to be updated this also set the random address since 963 * hdev->random_addr is shared with scan state machine. 964 */ 965 err = hci_set_random_addr_sync(hdev, random_addr); 966 if (err) 967 return err; 968 } 969 970 memset(&cp, 0, sizeof(cp)); 971 972 cp.handle = instance; 973 bacpy(&cp.bdaddr, random_addr); 974 975 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_SET_RAND_ADDR, 976 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 977 } 978 979 int hci_setup_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance) 980 { 981 struct hci_cp_le_set_ext_adv_params cp; 982 bool connectable; 983 u32 flags; 984 bdaddr_t random_addr; 985 u8 own_addr_type; 986 int err; 987 struct adv_info *adv; 988 bool secondary_adv; 989 990 if (instance > 0) { 991 adv = hci_find_adv_instance(hdev, instance); 992 if (!adv) 993 return -EINVAL; 994 } else { 995 adv = NULL; 996 } 997 998 /* Updating parameters of an active instance will return a 999 * Command Disallowed error, so we must first disable the 1000 * instance if it is active. 1001 */ 1002 if (adv && !adv->pending) { 1003 err = hci_disable_ext_adv_instance_sync(hdev, instance); 1004 if (err) 1005 return err; 1006 } 1007 1008 flags = hci_adv_instance_flags(hdev, instance); 1009 1010 /* If the "connectable" instance flag was not set, then choose between 1011 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. 1012 */ 1013 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || 1014 mgmt_get_connectable(hdev); 1015 1016 if (!is_advertising_allowed(hdev, connectable)) 1017 return -EPERM; 1018 1019 /* Set require_privacy to true only when non-connectable 1020 * advertising is used. In that case it is fine to use a 1021 * non-resolvable private address. 1022 */ 1023 err = hci_get_random_address(hdev, !connectable, 1024 adv_use_rpa(hdev, flags), adv, 1025 &own_addr_type, &random_addr); 1026 if (err < 0) 1027 return err; 1028 1029 memset(&cp, 0, sizeof(cp)); 1030 1031 if (adv) { 1032 hci_cpu_to_le24(adv->min_interval, cp.min_interval); 1033 hci_cpu_to_le24(adv->max_interval, cp.max_interval); 1034 cp.tx_power = adv->tx_power; 1035 } else { 1036 hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval); 1037 hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval); 1038 cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE; 1039 } 1040 1041 secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK); 1042 1043 if (connectable) { 1044 if (secondary_adv) 1045 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND); 1046 else 1047 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND); 1048 } else if (hci_adv_instance_is_scannable(hdev, instance) || 1049 (flags & MGMT_ADV_PARAM_SCAN_RSP)) { 1050 if (secondary_adv) 1051 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND); 1052 else 1053 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND); 1054 } else { 1055 if (secondary_adv) 1056 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND); 1057 else 1058 cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND); 1059 } 1060 1061 /* If Own_Address_Type equals 0x02 or 0x03, the Peer_Address parameter 1062 * contains the peer’s Identity Address and the Peer_Address_Type 1063 * parameter contains the peer’s Identity Type (i.e., 0x00 or 0x01). 1064 * These parameters are used to locate the corresponding local IRK in 1065 * the resolving list; this IRK is used to generate their own address 1066 * used in the advertisement. 1067 */ 1068 if (own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) 1069 hci_copy_identity_address(hdev, &cp.peer_addr, 1070 &cp.peer_addr_type); 1071 1072 cp.own_addr_type = own_addr_type; 1073 cp.channel_map = hdev->le_adv_channel_map; 1074 cp.handle = instance; 1075 1076 if (flags & MGMT_ADV_FLAG_SEC_2M) { 1077 cp.primary_phy = HCI_ADV_PHY_1M; 1078 cp.secondary_phy = HCI_ADV_PHY_2M; 1079 } else if (flags & MGMT_ADV_FLAG_SEC_CODED) { 1080 cp.primary_phy = HCI_ADV_PHY_CODED; 1081 cp.secondary_phy = HCI_ADV_PHY_CODED; 1082 } else { 1083 /* In all other cases use 1M */ 1084 cp.primary_phy = HCI_ADV_PHY_1M; 1085 cp.secondary_phy = HCI_ADV_PHY_1M; 1086 } 1087 1088 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS, 1089 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1090 if (err) 1091 return err; 1092 1093 if ((own_addr_type == ADDR_LE_DEV_RANDOM || 1094 own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) && 1095 bacmp(&random_addr, BDADDR_ANY)) { 1096 /* Check if random address need to be updated */ 1097 if (adv) { 1098 if (!bacmp(&random_addr, &adv->random_addr)) 1099 return 0; 1100 } else { 1101 if (!bacmp(&random_addr, &hdev->random_addr)) 1102 return 0; 1103 } 1104 1105 return hci_set_adv_set_random_addr_sync(hdev, instance, 1106 &random_addr); 1107 } 1108 1109 return 0; 1110 } 1111 1112 static int hci_set_ext_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 1113 { 1114 struct { 1115 struct hci_cp_le_set_ext_scan_rsp_data cp; 1116 u8 data[HCI_MAX_EXT_AD_LENGTH]; 1117 } pdu; 1118 u8 len; 1119 struct adv_info *adv = NULL; 1120 int err; 1121 1122 memset(&pdu, 0, sizeof(pdu)); 1123 1124 if (instance) { 1125 adv = hci_find_adv_instance(hdev, instance); 1126 if (!adv || !adv->scan_rsp_changed) 1127 return 0; 1128 } 1129 1130 len = eir_create_scan_rsp(hdev, instance, pdu.data); 1131 1132 pdu.cp.handle = instance; 1133 pdu.cp.length = len; 1134 pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; 1135 pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG; 1136 1137 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA, 1138 sizeof(pdu.cp) + len, &pdu.cp, 1139 HCI_CMD_TIMEOUT); 1140 if (err) 1141 return err; 1142 1143 if (adv) { 1144 adv->scan_rsp_changed = false; 1145 } else { 1146 memcpy(hdev->scan_rsp_data, pdu.data, len); 1147 hdev->scan_rsp_data_len = len; 1148 } 1149 1150 return 0; 1151 } 1152 1153 static int __hci_set_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 1154 { 1155 struct hci_cp_le_set_scan_rsp_data cp; 1156 u8 len; 1157 1158 memset(&cp, 0, sizeof(cp)); 1159 1160 len = eir_create_scan_rsp(hdev, instance, cp.data); 1161 1162 if (hdev->scan_rsp_data_len == len && 1163 !memcmp(cp.data, hdev->scan_rsp_data, len)) 1164 return 0; 1165 1166 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data)); 1167 hdev->scan_rsp_data_len = len; 1168 1169 cp.length = len; 1170 1171 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_RSP_DATA, 1172 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1173 } 1174 1175 int hci_update_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 1176 { 1177 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1178 return 0; 1179 1180 if (ext_adv_capable(hdev)) 1181 return hci_set_ext_scan_rsp_data_sync(hdev, instance); 1182 1183 return __hci_set_scan_rsp_data_sync(hdev, instance); 1184 } 1185 1186 int hci_enable_ext_advertising_sync(struct hci_dev *hdev, u8 instance) 1187 { 1188 struct hci_cp_le_set_ext_adv_enable *cp; 1189 struct hci_cp_ext_adv_set *set; 1190 u8 data[sizeof(*cp) + sizeof(*set) * 1]; 1191 struct adv_info *adv; 1192 1193 if (instance > 0) { 1194 adv = hci_find_adv_instance(hdev, instance); 1195 if (!adv) 1196 return -EINVAL; 1197 /* If already enabled there is nothing to do */ 1198 if (adv->enabled) 1199 return 0; 1200 } else { 1201 adv = NULL; 1202 } 1203 1204 cp = (void *)data; 1205 set = (void *)cp->data; 1206 1207 memset(cp, 0, sizeof(*cp)); 1208 1209 cp->enable = 0x01; 1210 cp->num_of_sets = 0x01; 1211 1212 memset(set, 0, sizeof(*set)); 1213 1214 set->handle = instance; 1215 1216 /* Set duration per instance since controller is responsible for 1217 * scheduling it. 1218 */ 1219 if (adv && adv->timeout) { 1220 u16 duration = adv->timeout * MSEC_PER_SEC; 1221 1222 /* Time = N * 10 ms */ 1223 set->duration = cpu_to_le16(duration / 10); 1224 } 1225 1226 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, 1227 sizeof(*cp) + 1228 sizeof(*set) * cp->num_of_sets, 1229 data, HCI_CMD_TIMEOUT); 1230 } 1231 1232 int hci_start_ext_adv_sync(struct hci_dev *hdev, u8 instance) 1233 { 1234 int err; 1235 1236 err = hci_setup_ext_adv_instance_sync(hdev, instance); 1237 if (err) 1238 return err; 1239 1240 err = hci_set_ext_scan_rsp_data_sync(hdev, instance); 1241 if (err) 1242 return err; 1243 1244 return hci_enable_ext_advertising_sync(hdev, instance); 1245 } 1246 1247 int hci_disable_per_advertising_sync(struct hci_dev *hdev, u8 instance) 1248 { 1249 struct hci_cp_le_set_per_adv_enable cp; 1250 struct adv_info *adv = NULL; 1251 1252 /* If periodic advertising already disabled there is nothing to do. */ 1253 adv = hci_find_adv_instance(hdev, instance); 1254 if (!adv || !adv->periodic || !adv->enabled) 1255 return 0; 1256 1257 memset(&cp, 0, sizeof(cp)); 1258 1259 cp.enable = 0x00; 1260 cp.handle = instance; 1261 1262 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE, 1263 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1264 } 1265 1266 static int hci_set_per_adv_params_sync(struct hci_dev *hdev, u8 instance, 1267 u16 min_interval, u16 max_interval) 1268 { 1269 struct hci_cp_le_set_per_adv_params cp; 1270 1271 memset(&cp, 0, sizeof(cp)); 1272 1273 if (!min_interval) 1274 min_interval = DISCOV_LE_PER_ADV_INT_MIN; 1275 1276 if (!max_interval) 1277 max_interval = DISCOV_LE_PER_ADV_INT_MAX; 1278 1279 cp.handle = instance; 1280 cp.min_interval = cpu_to_le16(min_interval); 1281 cp.max_interval = cpu_to_le16(max_interval); 1282 cp.periodic_properties = 0x0000; 1283 1284 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_PARAMS, 1285 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1286 } 1287 1288 static int hci_set_per_adv_data_sync(struct hci_dev *hdev, u8 instance) 1289 { 1290 struct { 1291 struct hci_cp_le_set_per_adv_data cp; 1292 u8 data[HCI_MAX_PER_AD_LENGTH]; 1293 } pdu; 1294 u8 len; 1295 1296 memset(&pdu, 0, sizeof(pdu)); 1297 1298 if (instance) { 1299 struct adv_info *adv = hci_find_adv_instance(hdev, instance); 1300 1301 if (!adv || !adv->periodic) 1302 return 0; 1303 } 1304 1305 len = eir_create_per_adv_data(hdev, instance, pdu.data); 1306 1307 pdu.cp.length = len; 1308 pdu.cp.handle = instance; 1309 pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; 1310 1311 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_DATA, 1312 sizeof(pdu.cp) + len, &pdu, 1313 HCI_CMD_TIMEOUT); 1314 } 1315 1316 static int hci_enable_per_advertising_sync(struct hci_dev *hdev, u8 instance) 1317 { 1318 struct hci_cp_le_set_per_adv_enable cp; 1319 struct adv_info *adv = NULL; 1320 1321 /* If periodic advertising already enabled there is nothing to do. */ 1322 adv = hci_find_adv_instance(hdev, instance); 1323 if (adv && adv->periodic && adv->enabled) 1324 return 0; 1325 1326 memset(&cp, 0, sizeof(cp)); 1327 1328 cp.enable = 0x01; 1329 cp.handle = instance; 1330 1331 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE, 1332 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1333 } 1334 1335 /* Checks if periodic advertising data contains a Basic Announcement and if it 1336 * does generates a Broadcast ID and add Broadcast Announcement. 1337 */ 1338 static int hci_adv_bcast_annoucement(struct hci_dev *hdev, struct adv_info *adv) 1339 { 1340 u8 bid[3]; 1341 u8 ad[4 + 3]; 1342 1343 /* Skip if NULL adv as instance 0x00 is used for general purpose 1344 * advertising so it cannot used for the likes of Broadcast Announcement 1345 * as it can be overwritten at any point. 1346 */ 1347 if (!adv) 1348 return 0; 1349 1350 /* Check if PA data doesn't contains a Basic Audio Announcement then 1351 * there is nothing to do. 1352 */ 1353 if (!eir_get_service_data(adv->per_adv_data, adv->per_adv_data_len, 1354 0x1851, NULL)) 1355 return 0; 1356 1357 /* Check if advertising data already has a Broadcast Announcement since 1358 * the process may want to control the Broadcast ID directly and in that 1359 * case the kernel shall no interfere. 1360 */ 1361 if (eir_get_service_data(adv->adv_data, adv->adv_data_len, 0x1852, 1362 NULL)) 1363 return 0; 1364 1365 /* Generate Broadcast ID */ 1366 get_random_bytes(bid, sizeof(bid)); 1367 eir_append_service_data(ad, 0, 0x1852, bid, sizeof(bid)); 1368 hci_set_adv_instance_data(hdev, adv->instance, sizeof(ad), ad, 0, NULL); 1369 1370 return hci_update_adv_data_sync(hdev, adv->instance); 1371 } 1372 1373 int hci_start_per_adv_sync(struct hci_dev *hdev, u8 instance, u8 data_len, 1374 u8 *data, u32 flags, u16 min_interval, 1375 u16 max_interval, u16 sync_interval) 1376 { 1377 struct adv_info *adv = NULL; 1378 int err; 1379 bool added = false; 1380 1381 hci_disable_per_advertising_sync(hdev, instance); 1382 1383 if (instance) { 1384 adv = hci_find_adv_instance(hdev, instance); 1385 /* Create an instance if that could not be found */ 1386 if (!adv) { 1387 adv = hci_add_per_instance(hdev, instance, flags, 1388 data_len, data, 1389 sync_interval, 1390 sync_interval); 1391 if (IS_ERR(adv)) 1392 return PTR_ERR(adv); 1393 adv->pending = false; 1394 added = true; 1395 } 1396 } 1397 1398 /* Start advertising */ 1399 err = hci_start_ext_adv_sync(hdev, instance); 1400 if (err < 0) 1401 goto fail; 1402 1403 err = hci_adv_bcast_annoucement(hdev, adv); 1404 if (err < 0) 1405 goto fail; 1406 1407 err = hci_set_per_adv_params_sync(hdev, instance, min_interval, 1408 max_interval); 1409 if (err < 0) 1410 goto fail; 1411 1412 err = hci_set_per_adv_data_sync(hdev, instance); 1413 if (err < 0) 1414 goto fail; 1415 1416 err = hci_enable_per_advertising_sync(hdev, instance); 1417 if (err < 0) 1418 goto fail; 1419 1420 return 0; 1421 1422 fail: 1423 if (added) 1424 hci_remove_adv_instance(hdev, instance); 1425 1426 return err; 1427 } 1428 1429 static int hci_start_adv_sync(struct hci_dev *hdev, u8 instance) 1430 { 1431 int err; 1432 1433 if (ext_adv_capable(hdev)) 1434 return hci_start_ext_adv_sync(hdev, instance); 1435 1436 err = hci_update_adv_data_sync(hdev, instance); 1437 if (err) 1438 return err; 1439 1440 err = hci_update_scan_rsp_data_sync(hdev, instance); 1441 if (err) 1442 return err; 1443 1444 return hci_enable_advertising_sync(hdev); 1445 } 1446 1447 int hci_enable_advertising_sync(struct hci_dev *hdev) 1448 { 1449 struct adv_info *adv_instance; 1450 struct hci_cp_le_set_adv_param cp; 1451 u8 own_addr_type, enable = 0x01; 1452 bool connectable; 1453 u16 adv_min_interval, adv_max_interval; 1454 u32 flags; 1455 u8 status; 1456 1457 if (ext_adv_capable(hdev)) 1458 return hci_enable_ext_advertising_sync(hdev, 1459 hdev->cur_adv_instance); 1460 1461 flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance); 1462 adv_instance = hci_find_adv_instance(hdev, hdev->cur_adv_instance); 1463 1464 /* If the "connectable" instance flag was not set, then choose between 1465 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. 1466 */ 1467 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || 1468 mgmt_get_connectable(hdev); 1469 1470 if (!is_advertising_allowed(hdev, connectable)) 1471 return -EINVAL; 1472 1473 status = hci_disable_advertising_sync(hdev); 1474 if (status) 1475 return status; 1476 1477 /* Clear the HCI_LE_ADV bit temporarily so that the 1478 * hci_update_random_address knows that it's safe to go ahead 1479 * and write a new random address. The flag will be set back on 1480 * as soon as the SET_ADV_ENABLE HCI command completes. 1481 */ 1482 hci_dev_clear_flag(hdev, HCI_LE_ADV); 1483 1484 /* Set require_privacy to true only when non-connectable 1485 * advertising is used. In that case it is fine to use a 1486 * non-resolvable private address. 1487 */ 1488 status = hci_update_random_address_sync(hdev, !connectable, 1489 adv_use_rpa(hdev, flags), 1490 &own_addr_type); 1491 if (status) 1492 return status; 1493 1494 memset(&cp, 0, sizeof(cp)); 1495 1496 if (adv_instance) { 1497 adv_min_interval = adv_instance->min_interval; 1498 adv_max_interval = adv_instance->max_interval; 1499 } else { 1500 adv_min_interval = hdev->le_adv_min_interval; 1501 adv_max_interval = hdev->le_adv_max_interval; 1502 } 1503 1504 if (connectable) { 1505 cp.type = LE_ADV_IND; 1506 } else { 1507 if (hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance)) 1508 cp.type = LE_ADV_SCAN_IND; 1509 else 1510 cp.type = LE_ADV_NONCONN_IND; 1511 1512 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) || 1513 hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { 1514 adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN; 1515 adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX; 1516 } 1517 } 1518 1519 cp.min_interval = cpu_to_le16(adv_min_interval); 1520 cp.max_interval = cpu_to_le16(adv_max_interval); 1521 cp.own_address_type = own_addr_type; 1522 cp.channel_map = hdev->le_adv_channel_map; 1523 1524 status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM, 1525 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1526 if (status) 1527 return status; 1528 1529 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 1530 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 1531 } 1532 1533 static int enable_advertising_sync(struct hci_dev *hdev, void *data) 1534 { 1535 return hci_enable_advertising_sync(hdev); 1536 } 1537 1538 int hci_enable_advertising(struct hci_dev *hdev) 1539 { 1540 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) && 1541 list_empty(&hdev->adv_instances)) 1542 return 0; 1543 1544 return hci_cmd_sync_queue(hdev, enable_advertising_sync, NULL, NULL); 1545 } 1546 1547 int hci_remove_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance, 1548 struct sock *sk) 1549 { 1550 int err; 1551 1552 if (!ext_adv_capable(hdev)) 1553 return 0; 1554 1555 err = hci_disable_ext_adv_instance_sync(hdev, instance); 1556 if (err) 1557 return err; 1558 1559 /* If request specifies an instance that doesn't exist, fail */ 1560 if (instance > 0 && !hci_find_adv_instance(hdev, instance)) 1561 return -EINVAL; 1562 1563 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_REMOVE_ADV_SET, 1564 sizeof(instance), &instance, 0, 1565 HCI_CMD_TIMEOUT, sk); 1566 } 1567 1568 static int remove_ext_adv_sync(struct hci_dev *hdev, void *data) 1569 { 1570 struct adv_info *adv = data; 1571 u8 instance = 0; 1572 1573 if (adv) 1574 instance = adv->instance; 1575 1576 return hci_remove_ext_adv_instance_sync(hdev, instance, NULL); 1577 } 1578 1579 int hci_remove_ext_adv_instance(struct hci_dev *hdev, u8 instance) 1580 { 1581 struct adv_info *adv = NULL; 1582 1583 if (instance) { 1584 adv = hci_find_adv_instance(hdev, instance); 1585 if (!adv) 1586 return -EINVAL; 1587 } 1588 1589 return hci_cmd_sync_queue(hdev, remove_ext_adv_sync, adv, NULL); 1590 } 1591 1592 int hci_le_terminate_big_sync(struct hci_dev *hdev, u8 handle, u8 reason) 1593 { 1594 struct hci_cp_le_term_big cp; 1595 1596 memset(&cp, 0, sizeof(cp)); 1597 cp.handle = handle; 1598 cp.reason = reason; 1599 1600 return __hci_cmd_sync_status(hdev, HCI_OP_LE_TERM_BIG, 1601 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1602 } 1603 1604 static int hci_set_ext_adv_data_sync(struct hci_dev *hdev, u8 instance) 1605 { 1606 struct { 1607 struct hci_cp_le_set_ext_adv_data cp; 1608 u8 data[HCI_MAX_EXT_AD_LENGTH]; 1609 } pdu; 1610 u8 len; 1611 struct adv_info *adv = NULL; 1612 int err; 1613 1614 memset(&pdu, 0, sizeof(pdu)); 1615 1616 if (instance) { 1617 adv = hci_find_adv_instance(hdev, instance); 1618 if (!adv || !adv->adv_data_changed) 1619 return 0; 1620 } 1621 1622 len = eir_create_adv_data(hdev, instance, pdu.data); 1623 1624 pdu.cp.length = len; 1625 pdu.cp.handle = instance; 1626 pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; 1627 pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG; 1628 1629 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_DATA, 1630 sizeof(pdu.cp) + len, &pdu.cp, 1631 HCI_CMD_TIMEOUT); 1632 if (err) 1633 return err; 1634 1635 /* Update data if the command succeed */ 1636 if (adv) { 1637 adv->adv_data_changed = false; 1638 } else { 1639 memcpy(hdev->adv_data, pdu.data, len); 1640 hdev->adv_data_len = len; 1641 } 1642 1643 return 0; 1644 } 1645 1646 static int hci_set_adv_data_sync(struct hci_dev *hdev, u8 instance) 1647 { 1648 struct hci_cp_le_set_adv_data cp; 1649 u8 len; 1650 1651 memset(&cp, 0, sizeof(cp)); 1652 1653 len = eir_create_adv_data(hdev, instance, cp.data); 1654 1655 /* There's nothing to do if the data hasn't changed */ 1656 if (hdev->adv_data_len == len && 1657 memcmp(cp.data, hdev->adv_data, len) == 0) 1658 return 0; 1659 1660 memcpy(hdev->adv_data, cp.data, sizeof(cp.data)); 1661 hdev->adv_data_len = len; 1662 1663 cp.length = len; 1664 1665 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_DATA, 1666 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1667 } 1668 1669 int hci_update_adv_data_sync(struct hci_dev *hdev, u8 instance) 1670 { 1671 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1672 return 0; 1673 1674 if (ext_adv_capable(hdev)) 1675 return hci_set_ext_adv_data_sync(hdev, instance); 1676 1677 return hci_set_adv_data_sync(hdev, instance); 1678 } 1679 1680 int hci_schedule_adv_instance_sync(struct hci_dev *hdev, u8 instance, 1681 bool force) 1682 { 1683 struct adv_info *adv = NULL; 1684 u16 timeout; 1685 1686 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) && !ext_adv_capable(hdev)) 1687 return -EPERM; 1688 1689 if (hdev->adv_instance_timeout) 1690 return -EBUSY; 1691 1692 adv = hci_find_adv_instance(hdev, instance); 1693 if (!adv) 1694 return -ENOENT; 1695 1696 /* A zero timeout means unlimited advertising. As long as there is 1697 * only one instance, duration should be ignored. We still set a timeout 1698 * in case further instances are being added later on. 1699 * 1700 * If the remaining lifetime of the instance is more than the duration 1701 * then the timeout corresponds to the duration, otherwise it will be 1702 * reduced to the remaining instance lifetime. 1703 */ 1704 if (adv->timeout == 0 || adv->duration <= adv->remaining_time) 1705 timeout = adv->duration; 1706 else 1707 timeout = adv->remaining_time; 1708 1709 /* The remaining time is being reduced unless the instance is being 1710 * advertised without time limit. 1711 */ 1712 if (adv->timeout) 1713 adv->remaining_time = adv->remaining_time - timeout; 1714 1715 /* Only use work for scheduling instances with legacy advertising */ 1716 if (!ext_adv_capable(hdev)) { 1717 hdev->adv_instance_timeout = timeout; 1718 queue_delayed_work(hdev->req_workqueue, 1719 &hdev->adv_instance_expire, 1720 msecs_to_jiffies(timeout * 1000)); 1721 } 1722 1723 /* If we're just re-scheduling the same instance again then do not 1724 * execute any HCI commands. This happens when a single instance is 1725 * being advertised. 1726 */ 1727 if (!force && hdev->cur_adv_instance == instance && 1728 hci_dev_test_flag(hdev, HCI_LE_ADV)) 1729 return 0; 1730 1731 hdev->cur_adv_instance = instance; 1732 1733 return hci_start_adv_sync(hdev, instance); 1734 } 1735 1736 static int hci_clear_adv_sets_sync(struct hci_dev *hdev, struct sock *sk) 1737 { 1738 int err; 1739 1740 if (!ext_adv_capable(hdev)) 1741 return 0; 1742 1743 /* Disable instance 0x00 to disable all instances */ 1744 err = hci_disable_ext_adv_instance_sync(hdev, 0x00); 1745 if (err) 1746 return err; 1747 1748 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CLEAR_ADV_SETS, 1749 0, NULL, 0, HCI_CMD_TIMEOUT, sk); 1750 } 1751 1752 static int hci_clear_adv_sync(struct hci_dev *hdev, struct sock *sk, bool force) 1753 { 1754 struct adv_info *adv, *n; 1755 int err = 0; 1756 1757 if (ext_adv_capable(hdev)) 1758 /* Remove all existing sets */ 1759 err = hci_clear_adv_sets_sync(hdev, sk); 1760 if (ext_adv_capable(hdev)) 1761 return err; 1762 1763 /* This is safe as long as there is no command send while the lock is 1764 * held. 1765 */ 1766 hci_dev_lock(hdev); 1767 1768 /* Cleanup non-ext instances */ 1769 list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) { 1770 u8 instance = adv->instance; 1771 int err; 1772 1773 if (!(force || adv->timeout)) 1774 continue; 1775 1776 err = hci_remove_adv_instance(hdev, instance); 1777 if (!err) 1778 mgmt_advertising_removed(sk, hdev, instance); 1779 } 1780 1781 hci_dev_unlock(hdev); 1782 1783 return 0; 1784 } 1785 1786 static int hci_remove_adv_sync(struct hci_dev *hdev, u8 instance, 1787 struct sock *sk) 1788 { 1789 int err = 0; 1790 1791 /* If we use extended advertising, instance has to be removed first. */ 1792 if (ext_adv_capable(hdev)) 1793 err = hci_remove_ext_adv_instance_sync(hdev, instance, sk); 1794 if (ext_adv_capable(hdev)) 1795 return err; 1796 1797 /* This is safe as long as there is no command send while the lock is 1798 * held. 1799 */ 1800 hci_dev_lock(hdev); 1801 1802 err = hci_remove_adv_instance(hdev, instance); 1803 if (!err) 1804 mgmt_advertising_removed(sk, hdev, instance); 1805 1806 hci_dev_unlock(hdev); 1807 1808 return err; 1809 } 1810 1811 /* For a single instance: 1812 * - force == true: The instance will be removed even when its remaining 1813 * lifetime is not zero. 1814 * - force == false: the instance will be deactivated but kept stored unless 1815 * the remaining lifetime is zero. 1816 * 1817 * For instance == 0x00: 1818 * - force == true: All instances will be removed regardless of their timeout 1819 * setting. 1820 * - force == false: Only instances that have a timeout will be removed. 1821 */ 1822 int hci_remove_advertising_sync(struct hci_dev *hdev, struct sock *sk, 1823 u8 instance, bool force) 1824 { 1825 struct adv_info *next = NULL; 1826 int err; 1827 1828 /* Cancel any timeout concerning the removed instance(s). */ 1829 if (!instance || hdev->cur_adv_instance == instance) 1830 cancel_adv_timeout(hdev); 1831 1832 /* Get the next instance to advertise BEFORE we remove 1833 * the current one. This can be the same instance again 1834 * if there is only one instance. 1835 */ 1836 if (hdev->cur_adv_instance == instance) 1837 next = hci_get_next_instance(hdev, instance); 1838 1839 if (!instance) { 1840 err = hci_clear_adv_sync(hdev, sk, force); 1841 if (err) 1842 return err; 1843 } else { 1844 struct adv_info *adv = hci_find_adv_instance(hdev, instance); 1845 1846 if (force || (adv && adv->timeout && !adv->remaining_time)) { 1847 /* Don't advertise a removed instance. */ 1848 if (next && next->instance == instance) 1849 next = NULL; 1850 1851 err = hci_remove_adv_sync(hdev, instance, sk); 1852 if (err) 1853 return err; 1854 } 1855 } 1856 1857 if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING)) 1858 return 0; 1859 1860 if (next && !ext_adv_capable(hdev)) 1861 hci_schedule_adv_instance_sync(hdev, next->instance, false); 1862 1863 return 0; 1864 } 1865 1866 int hci_read_rssi_sync(struct hci_dev *hdev, __le16 handle) 1867 { 1868 struct hci_cp_read_rssi cp; 1869 1870 cp.handle = handle; 1871 return __hci_cmd_sync_status(hdev, HCI_OP_READ_RSSI, 1872 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1873 } 1874 1875 int hci_read_clock_sync(struct hci_dev *hdev, struct hci_cp_read_clock *cp) 1876 { 1877 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLOCK, 1878 sizeof(*cp), cp, HCI_CMD_TIMEOUT); 1879 } 1880 1881 int hci_read_tx_power_sync(struct hci_dev *hdev, __le16 handle, u8 type) 1882 { 1883 struct hci_cp_read_tx_power cp; 1884 1885 cp.handle = handle; 1886 cp.type = type; 1887 return __hci_cmd_sync_status(hdev, HCI_OP_READ_TX_POWER, 1888 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1889 } 1890 1891 int hci_disable_advertising_sync(struct hci_dev *hdev) 1892 { 1893 u8 enable = 0x00; 1894 int err = 0; 1895 1896 /* If controller is not advertising we are done. */ 1897 if (!hci_dev_test_flag(hdev, HCI_LE_ADV)) 1898 return 0; 1899 1900 if (ext_adv_capable(hdev)) 1901 err = hci_disable_ext_adv_instance_sync(hdev, 0x00); 1902 if (ext_adv_capable(hdev)) 1903 return err; 1904 1905 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 1906 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 1907 } 1908 1909 static int hci_le_set_ext_scan_enable_sync(struct hci_dev *hdev, u8 val, 1910 u8 filter_dup) 1911 { 1912 struct hci_cp_le_set_ext_scan_enable cp; 1913 1914 memset(&cp, 0, sizeof(cp)); 1915 cp.enable = val; 1916 1917 if (hci_dev_test_flag(hdev, HCI_MESH)) 1918 cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 1919 else 1920 cp.filter_dup = filter_dup; 1921 1922 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_ENABLE, 1923 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1924 } 1925 1926 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val, 1927 u8 filter_dup) 1928 { 1929 struct hci_cp_le_set_scan_enable cp; 1930 1931 if (use_ext_scan(hdev)) 1932 return hci_le_set_ext_scan_enable_sync(hdev, val, filter_dup); 1933 1934 memset(&cp, 0, sizeof(cp)); 1935 cp.enable = val; 1936 1937 if (val && hci_dev_test_flag(hdev, HCI_MESH)) 1938 cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 1939 else 1940 cp.filter_dup = filter_dup; 1941 1942 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_ENABLE, 1943 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1944 } 1945 1946 static int hci_le_set_addr_resolution_enable_sync(struct hci_dev *hdev, u8 val) 1947 { 1948 if (!use_ll_privacy(hdev)) 1949 return 0; 1950 1951 /* If controller is not/already resolving we are done. */ 1952 if (val == hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) 1953 return 0; 1954 1955 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1956 sizeof(val), &val, HCI_CMD_TIMEOUT); 1957 } 1958 1959 static int hci_scan_disable_sync(struct hci_dev *hdev) 1960 { 1961 int err; 1962 1963 /* If controller is not scanning we are done. */ 1964 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 1965 return 0; 1966 1967 if (hdev->scanning_paused) { 1968 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 1969 return 0; 1970 } 1971 1972 err = hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00); 1973 if (err) { 1974 bt_dev_err(hdev, "Unable to disable scanning: %d", err); 1975 return err; 1976 } 1977 1978 return err; 1979 } 1980 1981 static bool scan_use_rpa(struct hci_dev *hdev) 1982 { 1983 return hci_dev_test_flag(hdev, HCI_PRIVACY); 1984 } 1985 1986 static void hci_start_interleave_scan(struct hci_dev *hdev) 1987 { 1988 hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER; 1989 queue_delayed_work(hdev->req_workqueue, 1990 &hdev->interleave_scan, 0); 1991 } 1992 1993 static bool is_interleave_scanning(struct hci_dev *hdev) 1994 { 1995 return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE; 1996 } 1997 1998 static void cancel_interleave_scan(struct hci_dev *hdev) 1999 { 2000 bt_dev_dbg(hdev, "cancelling interleave scan"); 2001 2002 cancel_delayed_work_sync(&hdev->interleave_scan); 2003 2004 hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE; 2005 } 2006 2007 /* Return true if interleave_scan wasn't started until exiting this function, 2008 * otherwise, return false 2009 */ 2010 static bool hci_update_interleaved_scan_sync(struct hci_dev *hdev) 2011 { 2012 /* Do interleaved scan only if all of the following are true: 2013 * - There is at least one ADV monitor 2014 * - At least one pending LE connection or one device to be scanned for 2015 * - Monitor offloading is not supported 2016 * If so, we should alternate between allowlist scan and one without 2017 * any filters to save power. 2018 */ 2019 bool use_interleaving = hci_is_adv_monitoring(hdev) && 2020 !(list_empty(&hdev->pend_le_conns) && 2021 list_empty(&hdev->pend_le_reports)) && 2022 hci_get_adv_monitor_offload_ext(hdev) == 2023 HCI_ADV_MONITOR_EXT_NONE; 2024 bool is_interleaving = is_interleave_scanning(hdev); 2025 2026 if (use_interleaving && !is_interleaving) { 2027 hci_start_interleave_scan(hdev); 2028 bt_dev_dbg(hdev, "starting interleave scan"); 2029 return true; 2030 } 2031 2032 if (!use_interleaving && is_interleaving) 2033 cancel_interleave_scan(hdev); 2034 2035 return false; 2036 } 2037 2038 /* Removes connection to resolve list if needed.*/ 2039 static int hci_le_del_resolve_list_sync(struct hci_dev *hdev, 2040 bdaddr_t *bdaddr, u8 bdaddr_type) 2041 { 2042 struct hci_cp_le_del_from_resolv_list cp; 2043 struct bdaddr_list_with_irk *entry; 2044 2045 if (!use_ll_privacy(hdev)) 2046 return 0; 2047 2048 /* Check if the IRK has been programmed */ 2049 entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, bdaddr, 2050 bdaddr_type); 2051 if (!entry) 2052 return 0; 2053 2054 cp.bdaddr_type = bdaddr_type; 2055 bacpy(&cp.bdaddr, bdaddr); 2056 2057 return __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_RESOLV_LIST, 2058 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2059 } 2060 2061 static int hci_le_del_accept_list_sync(struct hci_dev *hdev, 2062 bdaddr_t *bdaddr, u8 bdaddr_type) 2063 { 2064 struct hci_cp_le_del_from_accept_list cp; 2065 int err; 2066 2067 /* Check if device is on accept list before removing it */ 2068 if (!hci_bdaddr_list_lookup(&hdev->le_accept_list, bdaddr, bdaddr_type)) 2069 return 0; 2070 2071 cp.bdaddr_type = bdaddr_type; 2072 bacpy(&cp.bdaddr, bdaddr); 2073 2074 /* Ignore errors when removing from resolving list as that is likely 2075 * that the device was never added. 2076 */ 2077 hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type); 2078 2079 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_ACCEPT_LIST, 2080 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2081 if (err) { 2082 bt_dev_err(hdev, "Unable to remove from allow list: %d", err); 2083 return err; 2084 } 2085 2086 bt_dev_dbg(hdev, "Remove %pMR (0x%x) from allow list", &cp.bdaddr, 2087 cp.bdaddr_type); 2088 2089 return 0; 2090 } 2091 2092 struct conn_params { 2093 bdaddr_t addr; 2094 u8 addr_type; 2095 hci_conn_flags_t flags; 2096 u8 privacy_mode; 2097 }; 2098 2099 /* Adds connection to resolve list if needed. 2100 * Setting params to NULL programs local hdev->irk 2101 */ 2102 static int hci_le_add_resolve_list_sync(struct hci_dev *hdev, 2103 struct conn_params *params) 2104 { 2105 struct hci_cp_le_add_to_resolv_list cp; 2106 struct smp_irk *irk; 2107 struct bdaddr_list_with_irk *entry; 2108 struct hci_conn_params *p; 2109 2110 if (!use_ll_privacy(hdev)) 2111 return 0; 2112 2113 /* Attempt to program local identity address, type and irk if params is 2114 * NULL. 2115 */ 2116 if (!params) { 2117 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 2118 return 0; 2119 2120 hci_copy_identity_address(hdev, &cp.bdaddr, &cp.bdaddr_type); 2121 memcpy(cp.peer_irk, hdev->irk, 16); 2122 goto done; 2123 } 2124 2125 irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type); 2126 if (!irk) 2127 return 0; 2128 2129 /* Check if the IK has _not_ been programmed yet. */ 2130 entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, 2131 ¶ms->addr, 2132 params->addr_type); 2133 if (entry) 2134 return 0; 2135 2136 cp.bdaddr_type = params->addr_type; 2137 bacpy(&cp.bdaddr, ¶ms->addr); 2138 memcpy(cp.peer_irk, irk->val, 16); 2139 2140 /* Default privacy mode is always Network */ 2141 params->privacy_mode = HCI_NETWORK_PRIVACY; 2142 2143 rcu_read_lock(); 2144 p = hci_pend_le_action_lookup(&hdev->pend_le_conns, 2145 ¶ms->addr, params->addr_type); 2146 if (!p) 2147 p = hci_pend_le_action_lookup(&hdev->pend_le_reports, 2148 ¶ms->addr, params->addr_type); 2149 if (p) 2150 WRITE_ONCE(p->privacy_mode, HCI_NETWORK_PRIVACY); 2151 rcu_read_unlock(); 2152 2153 done: 2154 if (hci_dev_test_flag(hdev, HCI_PRIVACY)) 2155 memcpy(cp.local_irk, hdev->irk, 16); 2156 else 2157 memset(cp.local_irk, 0, 16); 2158 2159 return __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_RESOLV_LIST, 2160 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2161 } 2162 2163 /* Set Device Privacy Mode. */ 2164 static int hci_le_set_privacy_mode_sync(struct hci_dev *hdev, 2165 struct conn_params *params) 2166 { 2167 struct hci_cp_le_set_privacy_mode cp; 2168 struct smp_irk *irk; 2169 2170 /* If device privacy mode has already been set there is nothing to do */ 2171 if (params->privacy_mode == HCI_DEVICE_PRIVACY) 2172 return 0; 2173 2174 /* Check if HCI_CONN_FLAG_DEVICE_PRIVACY has been set as it also 2175 * indicates that LL Privacy has been enabled and 2176 * HCI_OP_LE_SET_PRIVACY_MODE is supported. 2177 */ 2178 if (!(params->flags & HCI_CONN_FLAG_DEVICE_PRIVACY)) 2179 return 0; 2180 2181 irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type); 2182 if (!irk) 2183 return 0; 2184 2185 memset(&cp, 0, sizeof(cp)); 2186 cp.bdaddr_type = irk->addr_type; 2187 bacpy(&cp.bdaddr, &irk->bdaddr); 2188 cp.mode = HCI_DEVICE_PRIVACY; 2189 2190 /* Note: params->privacy_mode is not updated since it is a copy */ 2191 2192 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PRIVACY_MODE, 2193 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2194 } 2195 2196 /* Adds connection to allow list if needed, if the device uses RPA (has IRK) 2197 * this attempts to program the device in the resolving list as well and 2198 * properly set the privacy mode. 2199 */ 2200 static int hci_le_add_accept_list_sync(struct hci_dev *hdev, 2201 struct conn_params *params, 2202 u8 *num_entries) 2203 { 2204 struct hci_cp_le_add_to_accept_list cp; 2205 int err; 2206 2207 /* During suspend, only wakeable devices can be in acceptlist */ 2208 if (hdev->suspended && 2209 !(params->flags & HCI_CONN_FLAG_REMOTE_WAKEUP)) 2210 return 0; 2211 2212 /* Select filter policy to accept all advertising */ 2213 if (*num_entries >= hdev->le_accept_list_size) 2214 return -ENOSPC; 2215 2216 /* Accept list can not be used with RPAs */ 2217 if (!use_ll_privacy(hdev) && 2218 hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type)) 2219 return -EINVAL; 2220 2221 /* Attempt to program the device in the resolving list first to avoid 2222 * having to rollback in case it fails since the resolving list is 2223 * dynamic it can probably be smaller than the accept list. 2224 */ 2225 err = hci_le_add_resolve_list_sync(hdev, params); 2226 if (err) { 2227 bt_dev_err(hdev, "Unable to add to resolve list: %d", err); 2228 return err; 2229 } 2230 2231 /* Set Privacy Mode */ 2232 err = hci_le_set_privacy_mode_sync(hdev, params); 2233 if (err) { 2234 bt_dev_err(hdev, "Unable to set privacy mode: %d", err); 2235 return err; 2236 } 2237 2238 /* Check if already in accept list */ 2239 if (hci_bdaddr_list_lookup(&hdev->le_accept_list, ¶ms->addr, 2240 params->addr_type)) 2241 return 0; 2242 2243 *num_entries += 1; 2244 cp.bdaddr_type = params->addr_type; 2245 bacpy(&cp.bdaddr, ¶ms->addr); 2246 2247 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST, 2248 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2249 if (err) { 2250 bt_dev_err(hdev, "Unable to add to allow list: %d", err); 2251 /* Rollback the device from the resolving list */ 2252 hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type); 2253 return err; 2254 } 2255 2256 bt_dev_dbg(hdev, "Add %pMR (0x%x) to allow list", &cp.bdaddr, 2257 cp.bdaddr_type); 2258 2259 return 0; 2260 } 2261 2262 /* This function disables/pause all advertising instances */ 2263 static int hci_pause_advertising_sync(struct hci_dev *hdev) 2264 { 2265 int err; 2266 int old_state; 2267 2268 /* If already been paused there is nothing to do. */ 2269 if (hdev->advertising_paused) 2270 return 0; 2271 2272 bt_dev_dbg(hdev, "Pausing directed advertising"); 2273 2274 /* Stop directed advertising */ 2275 old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING); 2276 if (old_state) { 2277 /* When discoverable timeout triggers, then just make sure 2278 * the limited discoverable flag is cleared. Even in the case 2279 * of a timeout triggered from general discoverable, it is 2280 * safe to unconditionally clear the flag. 2281 */ 2282 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 2283 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 2284 hdev->discov_timeout = 0; 2285 } 2286 2287 bt_dev_dbg(hdev, "Pausing advertising instances"); 2288 2289 /* Call to disable any advertisements active on the controller. 2290 * This will succeed even if no advertisements are configured. 2291 */ 2292 err = hci_disable_advertising_sync(hdev); 2293 if (err) 2294 return err; 2295 2296 /* If we are using software rotation, pause the loop */ 2297 if (!ext_adv_capable(hdev)) 2298 cancel_adv_timeout(hdev); 2299 2300 hdev->advertising_paused = true; 2301 hdev->advertising_old_state = old_state; 2302 2303 return 0; 2304 } 2305 2306 /* This function enables all user advertising instances */ 2307 static int hci_resume_advertising_sync(struct hci_dev *hdev) 2308 { 2309 struct adv_info *adv, *tmp; 2310 int err; 2311 2312 /* If advertising has not been paused there is nothing to do. */ 2313 if (!hdev->advertising_paused) 2314 return 0; 2315 2316 /* Resume directed advertising */ 2317 hdev->advertising_paused = false; 2318 if (hdev->advertising_old_state) { 2319 hci_dev_set_flag(hdev, HCI_ADVERTISING); 2320 hdev->advertising_old_state = 0; 2321 } 2322 2323 bt_dev_dbg(hdev, "Resuming advertising instances"); 2324 2325 if (ext_adv_capable(hdev)) { 2326 /* Call for each tracked instance to be re-enabled */ 2327 list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) { 2328 err = hci_enable_ext_advertising_sync(hdev, 2329 adv->instance); 2330 if (!err) 2331 continue; 2332 2333 /* If the instance cannot be resumed remove it */ 2334 hci_remove_ext_adv_instance_sync(hdev, adv->instance, 2335 NULL); 2336 } 2337 } else { 2338 /* Schedule for most recent instance to be restarted and begin 2339 * the software rotation loop 2340 */ 2341 err = hci_schedule_adv_instance_sync(hdev, 2342 hdev->cur_adv_instance, 2343 true); 2344 } 2345 2346 hdev->advertising_paused = false; 2347 2348 return err; 2349 } 2350 2351 static int hci_pause_addr_resolution(struct hci_dev *hdev) 2352 { 2353 int err; 2354 2355 if (!use_ll_privacy(hdev)) 2356 return 0; 2357 2358 if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) 2359 return 0; 2360 2361 /* Cannot disable addr resolution if scanning is enabled or 2362 * when initiating an LE connection. 2363 */ 2364 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) || 2365 hci_lookup_le_connect(hdev)) { 2366 bt_dev_err(hdev, "Command not allowed when scan/LE connect"); 2367 return -EPERM; 2368 } 2369 2370 /* Cannot disable addr resolution if advertising is enabled. */ 2371 err = hci_pause_advertising_sync(hdev); 2372 if (err) { 2373 bt_dev_err(hdev, "Pause advertising failed: %d", err); 2374 return err; 2375 } 2376 2377 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00); 2378 if (err) 2379 bt_dev_err(hdev, "Unable to disable Address Resolution: %d", 2380 err); 2381 2382 /* Return if address resolution is disabled and RPA is not used. */ 2383 if (!err && scan_use_rpa(hdev)) 2384 return 0; 2385 2386 hci_resume_advertising_sync(hdev); 2387 return err; 2388 } 2389 2390 struct sk_buff *hci_read_local_oob_data_sync(struct hci_dev *hdev, 2391 bool extended, struct sock *sk) 2392 { 2393 u16 opcode = extended ? HCI_OP_READ_LOCAL_OOB_EXT_DATA : 2394 HCI_OP_READ_LOCAL_OOB_DATA; 2395 2396 return __hci_cmd_sync_sk(hdev, opcode, 0, NULL, 0, HCI_CMD_TIMEOUT, sk); 2397 } 2398 2399 static struct conn_params *conn_params_copy(struct list_head *list, size_t *n) 2400 { 2401 struct hci_conn_params *params; 2402 struct conn_params *p; 2403 size_t i; 2404 2405 rcu_read_lock(); 2406 2407 i = 0; 2408 list_for_each_entry_rcu(params, list, action) 2409 ++i; 2410 *n = i; 2411 2412 rcu_read_unlock(); 2413 2414 p = kvcalloc(*n, sizeof(struct conn_params), GFP_KERNEL); 2415 if (!p) 2416 return NULL; 2417 2418 rcu_read_lock(); 2419 2420 i = 0; 2421 list_for_each_entry_rcu(params, list, action) { 2422 /* Racing adds are handled in next scan update */ 2423 if (i >= *n) 2424 break; 2425 2426 /* No hdev->lock, but: addr, addr_type are immutable. 2427 * privacy_mode is only written by us or in 2428 * hci_cc_le_set_privacy_mode that we wait for. 2429 * We should be idempotent so MGMT updating flags 2430 * while we are processing is OK. 2431 */ 2432 bacpy(&p[i].addr, ¶ms->addr); 2433 p[i].addr_type = params->addr_type; 2434 p[i].flags = READ_ONCE(params->flags); 2435 p[i].privacy_mode = READ_ONCE(params->privacy_mode); 2436 ++i; 2437 } 2438 2439 rcu_read_unlock(); 2440 2441 *n = i; 2442 return p; 2443 } 2444 2445 /* Device must not be scanning when updating the accept list. 2446 * 2447 * Update is done using the following sequence: 2448 * 2449 * use_ll_privacy((Disable Advertising) -> Disable Resolving List) -> 2450 * Remove Devices From Accept List -> 2451 * (has IRK && use_ll_privacy(Remove Devices From Resolving List))-> 2452 * Add Devices to Accept List -> 2453 * (has IRK && use_ll_privacy(Remove Devices From Resolving List)) -> 2454 * use_ll_privacy(Enable Resolving List -> (Enable Advertising)) -> 2455 * Enable Scanning 2456 * 2457 * In case of failure advertising shall be restored to its original state and 2458 * return would disable accept list since either accept or resolving list could 2459 * not be programmed. 2460 * 2461 */ 2462 static u8 hci_update_accept_list_sync(struct hci_dev *hdev) 2463 { 2464 struct conn_params *params; 2465 struct bdaddr_list *b, *t; 2466 u8 num_entries = 0; 2467 bool pend_conn, pend_report; 2468 u8 filter_policy; 2469 size_t i, n; 2470 int err; 2471 2472 /* Pause advertising if resolving list can be used as controllers 2473 * cannot accept resolving list modifications while advertising. 2474 */ 2475 if (use_ll_privacy(hdev)) { 2476 err = hci_pause_advertising_sync(hdev); 2477 if (err) { 2478 bt_dev_err(hdev, "pause advertising failed: %d", err); 2479 return 0x00; 2480 } 2481 } 2482 2483 /* Disable address resolution while reprogramming accept list since 2484 * devices that do have an IRK will be programmed in the resolving list 2485 * when LL Privacy is enabled. 2486 */ 2487 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00); 2488 if (err) { 2489 bt_dev_err(hdev, "Unable to disable LL privacy: %d", err); 2490 goto done; 2491 } 2492 2493 /* Go through the current accept list programmed into the 2494 * controller one by one and check if that address is connected or is 2495 * still in the list of pending connections or list of devices to 2496 * report. If not present in either list, then remove it from 2497 * the controller. 2498 */ 2499 list_for_each_entry_safe(b, t, &hdev->le_accept_list, list) { 2500 if (hci_conn_hash_lookup_le(hdev, &b->bdaddr, b->bdaddr_type)) 2501 continue; 2502 2503 /* Pointers not dereferenced, no locks needed */ 2504 pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns, 2505 &b->bdaddr, 2506 b->bdaddr_type); 2507 pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports, 2508 &b->bdaddr, 2509 b->bdaddr_type); 2510 2511 /* If the device is not likely to connect or report, 2512 * remove it from the acceptlist. 2513 */ 2514 if (!pend_conn && !pend_report) { 2515 hci_le_del_accept_list_sync(hdev, &b->bdaddr, 2516 b->bdaddr_type); 2517 continue; 2518 } 2519 2520 num_entries++; 2521 } 2522 2523 /* Since all no longer valid accept list entries have been 2524 * removed, walk through the list of pending connections 2525 * and ensure that any new device gets programmed into 2526 * the controller. 2527 * 2528 * If the list of the devices is larger than the list of 2529 * available accept list entries in the controller, then 2530 * just abort and return filer policy value to not use the 2531 * accept list. 2532 * 2533 * The list and params may be mutated while we wait for events, 2534 * so make a copy and iterate it. 2535 */ 2536 2537 params = conn_params_copy(&hdev->pend_le_conns, &n); 2538 if (!params) { 2539 err = -ENOMEM; 2540 goto done; 2541 } 2542 2543 for (i = 0; i < n; ++i) { 2544 err = hci_le_add_accept_list_sync(hdev, ¶ms[i], 2545 &num_entries); 2546 if (err) { 2547 kvfree(params); 2548 goto done; 2549 } 2550 } 2551 2552 kvfree(params); 2553 2554 /* After adding all new pending connections, walk through 2555 * the list of pending reports and also add these to the 2556 * accept list if there is still space. Abort if space runs out. 2557 */ 2558 2559 params = conn_params_copy(&hdev->pend_le_reports, &n); 2560 if (!params) { 2561 err = -ENOMEM; 2562 goto done; 2563 } 2564 2565 for (i = 0; i < n; ++i) { 2566 err = hci_le_add_accept_list_sync(hdev, ¶ms[i], 2567 &num_entries); 2568 if (err) { 2569 kvfree(params); 2570 goto done; 2571 } 2572 } 2573 2574 kvfree(params); 2575 2576 /* Use the allowlist unless the following conditions are all true: 2577 * - We are not currently suspending 2578 * - There are 1 or more ADV monitors registered and it's not offloaded 2579 * - Interleaved scanning is not currently using the allowlist 2580 */ 2581 if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended && 2582 hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE && 2583 hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST) 2584 err = -EINVAL; 2585 2586 done: 2587 filter_policy = err ? 0x00 : 0x01; 2588 2589 /* Enable address resolution when LL Privacy is enabled. */ 2590 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x01); 2591 if (err) 2592 bt_dev_err(hdev, "Unable to enable LL privacy: %d", err); 2593 2594 /* Resume advertising if it was paused */ 2595 if (use_ll_privacy(hdev)) 2596 hci_resume_advertising_sync(hdev); 2597 2598 /* Select filter policy to use accept list */ 2599 return filter_policy; 2600 } 2601 2602 static int hci_le_set_ext_scan_param_sync(struct hci_dev *hdev, u8 type, 2603 u16 interval, u16 window, 2604 u8 own_addr_type, u8 filter_policy) 2605 { 2606 struct hci_cp_le_set_ext_scan_params *cp; 2607 struct hci_cp_le_scan_phy_params *phy; 2608 u8 data[sizeof(*cp) + sizeof(*phy) * 2]; 2609 u8 num_phy = 0; 2610 2611 cp = (void *)data; 2612 phy = (void *)cp->data; 2613 2614 memset(data, 0, sizeof(data)); 2615 2616 cp->own_addr_type = own_addr_type; 2617 cp->filter_policy = filter_policy; 2618 2619 if (scan_1m(hdev) || scan_2m(hdev)) { 2620 cp->scanning_phys |= LE_SCAN_PHY_1M; 2621 2622 phy->type = type; 2623 phy->interval = cpu_to_le16(interval); 2624 phy->window = cpu_to_le16(window); 2625 2626 num_phy++; 2627 phy++; 2628 } 2629 2630 if (scan_coded(hdev)) { 2631 cp->scanning_phys |= LE_SCAN_PHY_CODED; 2632 2633 phy->type = type; 2634 phy->interval = cpu_to_le16(interval); 2635 phy->window = cpu_to_le16(window); 2636 2637 num_phy++; 2638 phy++; 2639 } 2640 2641 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_PARAMS, 2642 sizeof(*cp) + sizeof(*phy) * num_phy, 2643 data, HCI_CMD_TIMEOUT); 2644 } 2645 2646 static int hci_le_set_scan_param_sync(struct hci_dev *hdev, u8 type, 2647 u16 interval, u16 window, 2648 u8 own_addr_type, u8 filter_policy) 2649 { 2650 struct hci_cp_le_set_scan_param cp; 2651 2652 if (use_ext_scan(hdev)) 2653 return hci_le_set_ext_scan_param_sync(hdev, type, interval, 2654 window, own_addr_type, 2655 filter_policy); 2656 2657 memset(&cp, 0, sizeof(cp)); 2658 cp.type = type; 2659 cp.interval = cpu_to_le16(interval); 2660 cp.window = cpu_to_le16(window); 2661 cp.own_address_type = own_addr_type; 2662 cp.filter_policy = filter_policy; 2663 2664 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_PARAM, 2665 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2666 } 2667 2668 static int hci_start_scan_sync(struct hci_dev *hdev, u8 type, u16 interval, 2669 u16 window, u8 own_addr_type, u8 filter_policy, 2670 u8 filter_dup) 2671 { 2672 int err; 2673 2674 if (hdev->scanning_paused) { 2675 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2676 return 0; 2677 } 2678 2679 err = hci_le_set_scan_param_sync(hdev, type, interval, window, 2680 own_addr_type, filter_policy); 2681 if (err) 2682 return err; 2683 2684 return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, filter_dup); 2685 } 2686 2687 static int hci_passive_scan_sync(struct hci_dev *hdev) 2688 { 2689 u8 own_addr_type; 2690 u8 filter_policy; 2691 u16 window, interval; 2692 u8 filter_dups = LE_SCAN_FILTER_DUP_ENABLE; 2693 int err; 2694 2695 if (hdev->scanning_paused) { 2696 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2697 return 0; 2698 } 2699 2700 err = hci_scan_disable_sync(hdev); 2701 if (err) { 2702 bt_dev_err(hdev, "disable scanning failed: %d", err); 2703 return err; 2704 } 2705 2706 /* Set require_privacy to false since no SCAN_REQ are send 2707 * during passive scanning. Not using an non-resolvable address 2708 * here is important so that peer devices using direct 2709 * advertising with our address will be correctly reported 2710 * by the controller. 2711 */ 2712 if (hci_update_random_address_sync(hdev, false, scan_use_rpa(hdev), 2713 &own_addr_type)) 2714 return 0; 2715 2716 if (hdev->enable_advmon_interleave_scan && 2717 hci_update_interleaved_scan_sync(hdev)) 2718 return 0; 2719 2720 bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state); 2721 2722 /* Adding or removing entries from the accept list must 2723 * happen before enabling scanning. The controller does 2724 * not allow accept list modification while scanning. 2725 */ 2726 filter_policy = hci_update_accept_list_sync(hdev); 2727 2728 /* When the controller is using random resolvable addresses and 2729 * with that having LE privacy enabled, then controllers with 2730 * Extended Scanner Filter Policies support can now enable support 2731 * for handling directed advertising. 2732 * 2733 * So instead of using filter polices 0x00 (no acceptlist) 2734 * and 0x01 (acceptlist enabled) use the new filter policies 2735 * 0x02 (no acceptlist) and 0x03 (acceptlist enabled). 2736 */ 2737 if (hci_dev_test_flag(hdev, HCI_PRIVACY) && 2738 (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)) 2739 filter_policy |= 0x02; 2740 2741 if (hdev->suspended) { 2742 window = hdev->le_scan_window_suspend; 2743 interval = hdev->le_scan_int_suspend; 2744 } else if (hci_is_le_conn_scanning(hdev)) { 2745 window = hdev->le_scan_window_connect; 2746 interval = hdev->le_scan_int_connect; 2747 } else if (hci_is_adv_monitoring(hdev)) { 2748 window = hdev->le_scan_window_adv_monitor; 2749 interval = hdev->le_scan_int_adv_monitor; 2750 } else { 2751 window = hdev->le_scan_window; 2752 interval = hdev->le_scan_interval; 2753 } 2754 2755 /* Disable all filtering for Mesh */ 2756 if (hci_dev_test_flag(hdev, HCI_MESH)) { 2757 filter_policy = 0; 2758 filter_dups = LE_SCAN_FILTER_DUP_DISABLE; 2759 } 2760 2761 bt_dev_dbg(hdev, "LE passive scan with acceptlist = %d", filter_policy); 2762 2763 return hci_start_scan_sync(hdev, LE_SCAN_PASSIVE, interval, window, 2764 own_addr_type, filter_policy, filter_dups); 2765 } 2766 2767 /* This function controls the passive scanning based on hdev->pend_le_conns 2768 * list. If there are pending LE connection we start the background scanning, 2769 * otherwise we stop it in the following sequence: 2770 * 2771 * If there are devices to scan: 2772 * 2773 * Disable Scanning -> Update Accept List -> 2774 * use_ll_privacy((Disable Advertising) -> Disable Resolving List -> 2775 * Update Resolving List -> Enable Resolving List -> (Enable Advertising)) -> 2776 * Enable Scanning 2777 * 2778 * Otherwise: 2779 * 2780 * Disable Scanning 2781 */ 2782 int hci_update_passive_scan_sync(struct hci_dev *hdev) 2783 { 2784 int err; 2785 2786 if (!test_bit(HCI_UP, &hdev->flags) || 2787 test_bit(HCI_INIT, &hdev->flags) || 2788 hci_dev_test_flag(hdev, HCI_SETUP) || 2789 hci_dev_test_flag(hdev, HCI_CONFIG) || 2790 hci_dev_test_flag(hdev, HCI_AUTO_OFF) || 2791 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 2792 return 0; 2793 2794 /* No point in doing scanning if LE support hasn't been enabled */ 2795 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 2796 return 0; 2797 2798 /* If discovery is active don't interfere with it */ 2799 if (hdev->discovery.state != DISCOVERY_STOPPED) 2800 return 0; 2801 2802 /* Reset RSSI and UUID filters when starting background scanning 2803 * since these filters are meant for service discovery only. 2804 * 2805 * The Start Discovery and Start Service Discovery operations 2806 * ensure to set proper values for RSSI threshold and UUID 2807 * filter list. So it is safe to just reset them here. 2808 */ 2809 hci_discovery_filter_clear(hdev); 2810 2811 bt_dev_dbg(hdev, "ADV monitoring is %s", 2812 hci_is_adv_monitoring(hdev) ? "on" : "off"); 2813 2814 if (!hci_dev_test_flag(hdev, HCI_MESH) && 2815 list_empty(&hdev->pend_le_conns) && 2816 list_empty(&hdev->pend_le_reports) && 2817 !hci_is_adv_monitoring(hdev) && 2818 !hci_dev_test_flag(hdev, HCI_PA_SYNC)) { 2819 /* If there is no pending LE connections or devices 2820 * to be scanned for or no ADV monitors, we should stop the 2821 * background scanning. 2822 */ 2823 2824 bt_dev_dbg(hdev, "stopping background scanning"); 2825 2826 err = hci_scan_disable_sync(hdev); 2827 if (err) 2828 bt_dev_err(hdev, "stop background scanning failed: %d", 2829 err); 2830 } else { 2831 /* If there is at least one pending LE connection, we should 2832 * keep the background scan running. 2833 */ 2834 2835 /* If controller is connecting, we should not start scanning 2836 * since some controllers are not able to scan and connect at 2837 * the same time. 2838 */ 2839 if (hci_lookup_le_connect(hdev)) 2840 return 0; 2841 2842 bt_dev_dbg(hdev, "start background scanning"); 2843 2844 err = hci_passive_scan_sync(hdev); 2845 if (err) 2846 bt_dev_err(hdev, "start background scanning failed: %d", 2847 err); 2848 } 2849 2850 return err; 2851 } 2852 2853 static int update_scan_sync(struct hci_dev *hdev, void *data) 2854 { 2855 return hci_update_scan_sync(hdev); 2856 } 2857 2858 int hci_update_scan(struct hci_dev *hdev) 2859 { 2860 return hci_cmd_sync_queue(hdev, update_scan_sync, NULL, NULL); 2861 } 2862 2863 static int update_passive_scan_sync(struct hci_dev *hdev, void *data) 2864 { 2865 return hci_update_passive_scan_sync(hdev); 2866 } 2867 2868 int hci_update_passive_scan(struct hci_dev *hdev) 2869 { 2870 /* Only queue if it would have any effect */ 2871 if (!test_bit(HCI_UP, &hdev->flags) || 2872 test_bit(HCI_INIT, &hdev->flags) || 2873 hci_dev_test_flag(hdev, HCI_SETUP) || 2874 hci_dev_test_flag(hdev, HCI_CONFIG) || 2875 hci_dev_test_flag(hdev, HCI_AUTO_OFF) || 2876 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 2877 return 0; 2878 2879 return hci_cmd_sync_queue(hdev, update_passive_scan_sync, NULL, NULL); 2880 } 2881 2882 int hci_write_sc_support_sync(struct hci_dev *hdev, u8 val) 2883 { 2884 int err; 2885 2886 if (!bredr_sc_enabled(hdev) || lmp_host_sc_capable(hdev)) 2887 return 0; 2888 2889 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT, 2890 sizeof(val), &val, HCI_CMD_TIMEOUT); 2891 2892 if (!err) { 2893 if (val) { 2894 hdev->features[1][0] |= LMP_HOST_SC; 2895 hci_dev_set_flag(hdev, HCI_SC_ENABLED); 2896 } else { 2897 hdev->features[1][0] &= ~LMP_HOST_SC; 2898 hci_dev_clear_flag(hdev, HCI_SC_ENABLED); 2899 } 2900 } 2901 2902 return err; 2903 } 2904 2905 int hci_write_ssp_mode_sync(struct hci_dev *hdev, u8 mode) 2906 { 2907 int err; 2908 2909 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) || 2910 lmp_host_ssp_capable(hdev)) 2911 return 0; 2912 2913 if (!mode && hci_dev_test_flag(hdev, HCI_USE_DEBUG_KEYS)) { 2914 __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE, 2915 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 2916 } 2917 2918 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE, 2919 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 2920 if (err) 2921 return err; 2922 2923 return hci_write_sc_support_sync(hdev, 0x01); 2924 } 2925 2926 int hci_write_le_host_supported_sync(struct hci_dev *hdev, u8 le, u8 simul) 2927 { 2928 struct hci_cp_write_le_host_supported cp; 2929 2930 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED) || 2931 !lmp_bredr_capable(hdev)) 2932 return 0; 2933 2934 /* Check first if we already have the right host state 2935 * (host features set) 2936 */ 2937 if (le == lmp_host_le_capable(hdev) && 2938 simul == lmp_host_le_br_capable(hdev)) 2939 return 0; 2940 2941 memset(&cp, 0, sizeof(cp)); 2942 2943 cp.le = le; 2944 cp.simul = simul; 2945 2946 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED, 2947 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2948 } 2949 2950 static int hci_powered_update_adv_sync(struct hci_dev *hdev) 2951 { 2952 struct adv_info *adv, *tmp; 2953 int err; 2954 2955 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 2956 return 0; 2957 2958 /* If RPA Resolution has not been enable yet it means the 2959 * resolving list is empty and we should attempt to program the 2960 * local IRK in order to support using own_addr_type 2961 * ADDR_LE_DEV_RANDOM_RESOLVED (0x03). 2962 */ 2963 if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) { 2964 hci_le_add_resolve_list_sync(hdev, NULL); 2965 hci_le_set_addr_resolution_enable_sync(hdev, 0x01); 2966 } 2967 2968 /* Make sure the controller has a good default for 2969 * advertising data. This also applies to the case 2970 * where BR/EDR was toggled during the AUTO_OFF phase. 2971 */ 2972 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 2973 list_empty(&hdev->adv_instances)) { 2974 if (ext_adv_capable(hdev)) { 2975 err = hci_setup_ext_adv_instance_sync(hdev, 0x00); 2976 if (!err) 2977 hci_update_scan_rsp_data_sync(hdev, 0x00); 2978 } else { 2979 err = hci_update_adv_data_sync(hdev, 0x00); 2980 if (!err) 2981 hci_update_scan_rsp_data_sync(hdev, 0x00); 2982 } 2983 2984 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) 2985 hci_enable_advertising_sync(hdev); 2986 } 2987 2988 /* Call for each tracked instance to be scheduled */ 2989 list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) 2990 hci_schedule_adv_instance_sync(hdev, adv->instance, true); 2991 2992 return 0; 2993 } 2994 2995 static int hci_write_auth_enable_sync(struct hci_dev *hdev) 2996 { 2997 u8 link_sec; 2998 2999 link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY); 3000 if (link_sec == test_bit(HCI_AUTH, &hdev->flags)) 3001 return 0; 3002 3003 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE, 3004 sizeof(link_sec), &link_sec, 3005 HCI_CMD_TIMEOUT); 3006 } 3007 3008 int hci_write_fast_connectable_sync(struct hci_dev *hdev, bool enable) 3009 { 3010 struct hci_cp_write_page_scan_activity cp; 3011 u8 type; 3012 int err = 0; 3013 3014 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 3015 return 0; 3016 3017 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 3018 return 0; 3019 3020 memset(&cp, 0, sizeof(cp)); 3021 3022 if (enable) { 3023 type = PAGE_SCAN_TYPE_INTERLACED; 3024 3025 /* 160 msec page scan interval */ 3026 cp.interval = cpu_to_le16(0x0100); 3027 } else { 3028 type = hdev->def_page_scan_type; 3029 cp.interval = cpu_to_le16(hdev->def_page_scan_int); 3030 } 3031 3032 cp.window = cpu_to_le16(hdev->def_page_scan_window); 3033 3034 if (__cpu_to_le16(hdev->page_scan_interval) != cp.interval || 3035 __cpu_to_le16(hdev->page_scan_window) != cp.window) { 3036 err = __hci_cmd_sync_status(hdev, 3037 HCI_OP_WRITE_PAGE_SCAN_ACTIVITY, 3038 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3039 if (err) 3040 return err; 3041 } 3042 3043 if (hdev->page_scan_type != type) 3044 err = __hci_cmd_sync_status(hdev, 3045 HCI_OP_WRITE_PAGE_SCAN_TYPE, 3046 sizeof(type), &type, 3047 HCI_CMD_TIMEOUT); 3048 3049 return err; 3050 } 3051 3052 static bool disconnected_accept_list_entries(struct hci_dev *hdev) 3053 { 3054 struct bdaddr_list *b; 3055 3056 list_for_each_entry(b, &hdev->accept_list, list) { 3057 struct hci_conn *conn; 3058 3059 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr); 3060 if (!conn) 3061 return true; 3062 3063 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 3064 return true; 3065 } 3066 3067 return false; 3068 } 3069 3070 static int hci_write_scan_enable_sync(struct hci_dev *hdev, u8 val) 3071 { 3072 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE, 3073 sizeof(val), &val, 3074 HCI_CMD_TIMEOUT); 3075 } 3076 3077 int hci_update_scan_sync(struct hci_dev *hdev) 3078 { 3079 u8 scan; 3080 3081 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 3082 return 0; 3083 3084 if (!hdev_is_powered(hdev)) 3085 return 0; 3086 3087 if (mgmt_powering_down(hdev)) 3088 return 0; 3089 3090 if (hdev->scanning_paused) 3091 return 0; 3092 3093 if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) || 3094 disconnected_accept_list_entries(hdev)) 3095 scan = SCAN_PAGE; 3096 else 3097 scan = SCAN_DISABLED; 3098 3099 if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 3100 scan |= SCAN_INQUIRY; 3101 3102 if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) && 3103 test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY)) 3104 return 0; 3105 3106 return hci_write_scan_enable_sync(hdev, scan); 3107 } 3108 3109 int hci_update_name_sync(struct hci_dev *hdev) 3110 { 3111 struct hci_cp_write_local_name cp; 3112 3113 memset(&cp, 0, sizeof(cp)); 3114 3115 memcpy(cp.name, hdev->dev_name, sizeof(cp.name)); 3116 3117 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LOCAL_NAME, 3118 sizeof(cp), &cp, 3119 HCI_CMD_TIMEOUT); 3120 } 3121 3122 /* This function perform powered update HCI command sequence after the HCI init 3123 * sequence which end up resetting all states, the sequence is as follows: 3124 * 3125 * HCI_SSP_ENABLED(Enable SSP) 3126 * HCI_LE_ENABLED(Enable LE) 3127 * HCI_LE_ENABLED(use_ll_privacy(Add local IRK to Resolving List) -> 3128 * Update adv data) 3129 * Enable Authentication 3130 * lmp_bredr_capable(Set Fast Connectable -> Set Scan Type -> Set Class -> 3131 * Set Name -> Set EIR) 3132 * HCI_FORCE_STATIC_ADDR | BDADDR_ANY && !HCI_BREDR_ENABLED (Set Static Address) 3133 */ 3134 int hci_powered_update_sync(struct hci_dev *hdev) 3135 { 3136 int err; 3137 3138 /* Register the available SMP channels (BR/EDR and LE) only when 3139 * successfully powering on the controller. This late 3140 * registration is required so that LE SMP can clearly decide if 3141 * the public address or static address is used. 3142 */ 3143 smp_register(hdev); 3144 3145 err = hci_write_ssp_mode_sync(hdev, 0x01); 3146 if (err) 3147 return err; 3148 3149 err = hci_write_le_host_supported_sync(hdev, 0x01, 0x00); 3150 if (err) 3151 return err; 3152 3153 err = hci_powered_update_adv_sync(hdev); 3154 if (err) 3155 return err; 3156 3157 err = hci_write_auth_enable_sync(hdev); 3158 if (err) 3159 return err; 3160 3161 if (lmp_bredr_capable(hdev)) { 3162 if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE)) 3163 hci_write_fast_connectable_sync(hdev, true); 3164 else 3165 hci_write_fast_connectable_sync(hdev, false); 3166 hci_update_scan_sync(hdev); 3167 hci_update_class_sync(hdev); 3168 hci_update_name_sync(hdev); 3169 hci_update_eir_sync(hdev); 3170 } 3171 3172 /* If forcing static address is in use or there is no public 3173 * address use the static address as random address (but skip 3174 * the HCI command if the current random address is already the 3175 * static one. 3176 * 3177 * In case BR/EDR has been disabled on a dual-mode controller 3178 * and a static address has been configured, then use that 3179 * address instead of the public BR/EDR address. 3180 */ 3181 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 3182 (!bacmp(&hdev->bdaddr, BDADDR_ANY) && 3183 !hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))) { 3184 if (bacmp(&hdev->static_addr, BDADDR_ANY)) 3185 return hci_set_random_addr_sync(hdev, 3186 &hdev->static_addr); 3187 } 3188 3189 return 0; 3190 } 3191 3192 /** 3193 * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address 3194 * (BD_ADDR) for a HCI device from 3195 * a firmware node property. 3196 * @hdev: The HCI device 3197 * 3198 * Search the firmware node for 'local-bd-address'. 3199 * 3200 * All-zero BD addresses are rejected, because those could be properties 3201 * that exist in the firmware tables, but were not updated by the firmware. For 3202 * example, the DTS could define 'local-bd-address', with zero BD addresses. 3203 */ 3204 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev) 3205 { 3206 struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent); 3207 bdaddr_t ba; 3208 int ret; 3209 3210 ret = fwnode_property_read_u8_array(fwnode, "local-bd-address", 3211 (u8 *)&ba, sizeof(ba)); 3212 if (ret < 0 || !bacmp(&ba, BDADDR_ANY)) 3213 return; 3214 3215 bacpy(&hdev->public_addr, &ba); 3216 } 3217 3218 struct hci_init_stage { 3219 int (*func)(struct hci_dev *hdev); 3220 }; 3221 3222 /* Run init stage NULL terminated function table */ 3223 static int hci_init_stage_sync(struct hci_dev *hdev, 3224 const struct hci_init_stage *stage) 3225 { 3226 size_t i; 3227 3228 for (i = 0; stage[i].func; i++) { 3229 int err; 3230 3231 err = stage[i].func(hdev); 3232 if (err) 3233 return err; 3234 } 3235 3236 return 0; 3237 } 3238 3239 /* Read Local Version */ 3240 static int hci_read_local_version_sync(struct hci_dev *hdev) 3241 { 3242 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_VERSION, 3243 0, NULL, HCI_CMD_TIMEOUT); 3244 } 3245 3246 /* Read BD Address */ 3247 static int hci_read_bd_addr_sync(struct hci_dev *hdev) 3248 { 3249 return __hci_cmd_sync_status(hdev, HCI_OP_READ_BD_ADDR, 3250 0, NULL, HCI_CMD_TIMEOUT); 3251 } 3252 3253 #define HCI_INIT(_func) \ 3254 { \ 3255 .func = _func, \ 3256 } 3257 3258 static const struct hci_init_stage hci_init0[] = { 3259 /* HCI_OP_READ_LOCAL_VERSION */ 3260 HCI_INIT(hci_read_local_version_sync), 3261 /* HCI_OP_READ_BD_ADDR */ 3262 HCI_INIT(hci_read_bd_addr_sync), 3263 {} 3264 }; 3265 3266 int hci_reset_sync(struct hci_dev *hdev) 3267 { 3268 int err; 3269 3270 set_bit(HCI_RESET, &hdev->flags); 3271 3272 err = __hci_cmd_sync_status(hdev, HCI_OP_RESET, 0, NULL, 3273 HCI_CMD_TIMEOUT); 3274 if (err) 3275 return err; 3276 3277 return 0; 3278 } 3279 3280 static int hci_init0_sync(struct hci_dev *hdev) 3281 { 3282 int err; 3283 3284 bt_dev_dbg(hdev, ""); 3285 3286 /* Reset */ 3287 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) { 3288 err = hci_reset_sync(hdev); 3289 if (err) 3290 return err; 3291 } 3292 3293 return hci_init_stage_sync(hdev, hci_init0); 3294 } 3295 3296 static int hci_unconf_init_sync(struct hci_dev *hdev) 3297 { 3298 int err; 3299 3300 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) 3301 return 0; 3302 3303 err = hci_init0_sync(hdev); 3304 if (err < 0) 3305 return err; 3306 3307 if (hci_dev_test_flag(hdev, HCI_SETUP)) 3308 hci_debugfs_create_basic(hdev); 3309 3310 return 0; 3311 } 3312 3313 /* Read Local Supported Features. */ 3314 static int hci_read_local_features_sync(struct hci_dev *hdev) 3315 { 3316 /* Not all AMP controllers support this command */ 3317 if (hdev->dev_type == HCI_AMP && !(hdev->commands[14] & 0x20)) 3318 return 0; 3319 3320 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_FEATURES, 3321 0, NULL, HCI_CMD_TIMEOUT); 3322 } 3323 3324 /* BR Controller init stage 1 command sequence */ 3325 static const struct hci_init_stage br_init1[] = { 3326 /* HCI_OP_READ_LOCAL_FEATURES */ 3327 HCI_INIT(hci_read_local_features_sync), 3328 /* HCI_OP_READ_LOCAL_VERSION */ 3329 HCI_INIT(hci_read_local_version_sync), 3330 /* HCI_OP_READ_BD_ADDR */ 3331 HCI_INIT(hci_read_bd_addr_sync), 3332 {} 3333 }; 3334 3335 /* Read Local Commands */ 3336 static int hci_read_local_cmds_sync(struct hci_dev *hdev) 3337 { 3338 /* All Bluetooth 1.2 and later controllers should support the 3339 * HCI command for reading the local supported commands. 3340 * 3341 * Unfortunately some controllers indicate Bluetooth 1.2 support, 3342 * but do not have support for this command. If that is the case, 3343 * the driver can quirk the behavior and skip reading the local 3344 * supported commands. 3345 */ 3346 if (hdev->hci_ver > BLUETOOTH_VER_1_1 && 3347 !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks)) 3348 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_COMMANDS, 3349 0, NULL, HCI_CMD_TIMEOUT); 3350 3351 return 0; 3352 } 3353 3354 /* Read Local AMP Info */ 3355 static int hci_read_local_amp_info_sync(struct hci_dev *hdev) 3356 { 3357 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_AMP_INFO, 3358 0, NULL, HCI_CMD_TIMEOUT); 3359 } 3360 3361 /* Read Data Blk size */ 3362 static int hci_read_data_block_size_sync(struct hci_dev *hdev) 3363 { 3364 return __hci_cmd_sync_status(hdev, HCI_OP_READ_DATA_BLOCK_SIZE, 3365 0, NULL, HCI_CMD_TIMEOUT); 3366 } 3367 3368 /* Read Flow Control Mode */ 3369 static int hci_read_flow_control_mode_sync(struct hci_dev *hdev) 3370 { 3371 return __hci_cmd_sync_status(hdev, HCI_OP_READ_FLOW_CONTROL_MODE, 3372 0, NULL, HCI_CMD_TIMEOUT); 3373 } 3374 3375 /* Read Location Data */ 3376 static int hci_read_location_data_sync(struct hci_dev *hdev) 3377 { 3378 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCATION_DATA, 3379 0, NULL, HCI_CMD_TIMEOUT); 3380 } 3381 3382 /* AMP Controller init stage 1 command sequence */ 3383 static const struct hci_init_stage amp_init1[] = { 3384 /* HCI_OP_READ_LOCAL_VERSION */ 3385 HCI_INIT(hci_read_local_version_sync), 3386 /* HCI_OP_READ_LOCAL_COMMANDS */ 3387 HCI_INIT(hci_read_local_cmds_sync), 3388 /* HCI_OP_READ_LOCAL_AMP_INFO */ 3389 HCI_INIT(hci_read_local_amp_info_sync), 3390 /* HCI_OP_READ_DATA_BLOCK_SIZE */ 3391 HCI_INIT(hci_read_data_block_size_sync), 3392 /* HCI_OP_READ_FLOW_CONTROL_MODE */ 3393 HCI_INIT(hci_read_flow_control_mode_sync), 3394 /* HCI_OP_READ_LOCATION_DATA */ 3395 HCI_INIT(hci_read_location_data_sync), 3396 {} 3397 }; 3398 3399 static int hci_init1_sync(struct hci_dev *hdev) 3400 { 3401 int err; 3402 3403 bt_dev_dbg(hdev, ""); 3404 3405 /* Reset */ 3406 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) { 3407 err = hci_reset_sync(hdev); 3408 if (err) 3409 return err; 3410 } 3411 3412 switch (hdev->dev_type) { 3413 case HCI_PRIMARY: 3414 hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED; 3415 return hci_init_stage_sync(hdev, br_init1); 3416 case HCI_AMP: 3417 hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED; 3418 return hci_init_stage_sync(hdev, amp_init1); 3419 default: 3420 bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type); 3421 break; 3422 } 3423 3424 return 0; 3425 } 3426 3427 /* AMP Controller init stage 2 command sequence */ 3428 static const struct hci_init_stage amp_init2[] = { 3429 /* HCI_OP_READ_LOCAL_FEATURES */ 3430 HCI_INIT(hci_read_local_features_sync), 3431 {} 3432 }; 3433 3434 /* Read Buffer Size (ACL mtu, max pkt, etc.) */ 3435 static int hci_read_buffer_size_sync(struct hci_dev *hdev) 3436 { 3437 return __hci_cmd_sync_status(hdev, HCI_OP_READ_BUFFER_SIZE, 3438 0, NULL, HCI_CMD_TIMEOUT); 3439 } 3440 3441 /* Read Class of Device */ 3442 static int hci_read_dev_class_sync(struct hci_dev *hdev) 3443 { 3444 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLASS_OF_DEV, 3445 0, NULL, HCI_CMD_TIMEOUT); 3446 } 3447 3448 /* Read Local Name */ 3449 static int hci_read_local_name_sync(struct hci_dev *hdev) 3450 { 3451 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_NAME, 3452 0, NULL, HCI_CMD_TIMEOUT); 3453 } 3454 3455 /* Read Voice Setting */ 3456 static int hci_read_voice_setting_sync(struct hci_dev *hdev) 3457 { 3458 return __hci_cmd_sync_status(hdev, HCI_OP_READ_VOICE_SETTING, 3459 0, NULL, HCI_CMD_TIMEOUT); 3460 } 3461 3462 /* Read Number of Supported IAC */ 3463 static int hci_read_num_supported_iac_sync(struct hci_dev *hdev) 3464 { 3465 return __hci_cmd_sync_status(hdev, HCI_OP_READ_NUM_SUPPORTED_IAC, 3466 0, NULL, HCI_CMD_TIMEOUT); 3467 } 3468 3469 /* Read Current IAC LAP */ 3470 static int hci_read_current_iac_lap_sync(struct hci_dev *hdev) 3471 { 3472 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CURRENT_IAC_LAP, 3473 0, NULL, HCI_CMD_TIMEOUT); 3474 } 3475 3476 static int hci_set_event_filter_sync(struct hci_dev *hdev, u8 flt_type, 3477 u8 cond_type, bdaddr_t *bdaddr, 3478 u8 auto_accept) 3479 { 3480 struct hci_cp_set_event_filter cp; 3481 3482 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 3483 return 0; 3484 3485 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 3486 return 0; 3487 3488 memset(&cp, 0, sizeof(cp)); 3489 cp.flt_type = flt_type; 3490 3491 if (flt_type != HCI_FLT_CLEAR_ALL) { 3492 cp.cond_type = cond_type; 3493 bacpy(&cp.addr_conn_flt.bdaddr, bdaddr); 3494 cp.addr_conn_flt.auto_accept = auto_accept; 3495 } 3496 3497 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_FLT, 3498 flt_type == HCI_FLT_CLEAR_ALL ? 3499 sizeof(cp.flt_type) : sizeof(cp), &cp, 3500 HCI_CMD_TIMEOUT); 3501 } 3502 3503 static int hci_clear_event_filter_sync(struct hci_dev *hdev) 3504 { 3505 if (!hci_dev_test_flag(hdev, HCI_EVENT_FILTER_CONFIGURED)) 3506 return 0; 3507 3508 /* In theory the state machine should not reach here unless 3509 * a hci_set_event_filter_sync() call succeeds, but we do 3510 * the check both for parity and as a future reminder. 3511 */ 3512 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 3513 return 0; 3514 3515 return hci_set_event_filter_sync(hdev, HCI_FLT_CLEAR_ALL, 0x00, 3516 BDADDR_ANY, 0x00); 3517 } 3518 3519 /* Connection accept timeout ~20 secs */ 3520 static int hci_write_ca_timeout_sync(struct hci_dev *hdev) 3521 { 3522 __le16 param = cpu_to_le16(0x7d00); 3523 3524 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CA_TIMEOUT, 3525 sizeof(param), ¶m, HCI_CMD_TIMEOUT); 3526 } 3527 3528 /* BR Controller init stage 2 command sequence */ 3529 static const struct hci_init_stage br_init2[] = { 3530 /* HCI_OP_READ_BUFFER_SIZE */ 3531 HCI_INIT(hci_read_buffer_size_sync), 3532 /* HCI_OP_READ_CLASS_OF_DEV */ 3533 HCI_INIT(hci_read_dev_class_sync), 3534 /* HCI_OP_READ_LOCAL_NAME */ 3535 HCI_INIT(hci_read_local_name_sync), 3536 /* HCI_OP_READ_VOICE_SETTING */ 3537 HCI_INIT(hci_read_voice_setting_sync), 3538 /* HCI_OP_READ_NUM_SUPPORTED_IAC */ 3539 HCI_INIT(hci_read_num_supported_iac_sync), 3540 /* HCI_OP_READ_CURRENT_IAC_LAP */ 3541 HCI_INIT(hci_read_current_iac_lap_sync), 3542 /* HCI_OP_SET_EVENT_FLT */ 3543 HCI_INIT(hci_clear_event_filter_sync), 3544 /* HCI_OP_WRITE_CA_TIMEOUT */ 3545 HCI_INIT(hci_write_ca_timeout_sync), 3546 {} 3547 }; 3548 3549 static int hci_write_ssp_mode_1_sync(struct hci_dev *hdev) 3550 { 3551 u8 mode = 0x01; 3552 3553 if (!lmp_ssp_capable(hdev) || !hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 3554 return 0; 3555 3556 /* When SSP is available, then the host features page 3557 * should also be available as well. However some 3558 * controllers list the max_page as 0 as long as SSP 3559 * has not been enabled. To achieve proper debugging 3560 * output, force the minimum max_page to 1 at least. 3561 */ 3562 hdev->max_page = 0x01; 3563 3564 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE, 3565 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3566 } 3567 3568 static int hci_write_eir_sync(struct hci_dev *hdev) 3569 { 3570 struct hci_cp_write_eir cp; 3571 3572 if (!lmp_ssp_capable(hdev) || hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 3573 return 0; 3574 3575 memset(hdev->eir, 0, sizeof(hdev->eir)); 3576 memset(&cp, 0, sizeof(cp)); 3577 3578 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp, 3579 HCI_CMD_TIMEOUT); 3580 } 3581 3582 static int hci_write_inquiry_mode_sync(struct hci_dev *hdev) 3583 { 3584 u8 mode; 3585 3586 if (!lmp_inq_rssi_capable(hdev) && 3587 !test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) 3588 return 0; 3589 3590 /* If Extended Inquiry Result events are supported, then 3591 * they are clearly preferred over Inquiry Result with RSSI 3592 * events. 3593 */ 3594 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01; 3595 3596 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_INQUIRY_MODE, 3597 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3598 } 3599 3600 static int hci_read_inq_rsp_tx_power_sync(struct hci_dev *hdev) 3601 { 3602 if (!lmp_inq_tx_pwr_capable(hdev)) 3603 return 0; 3604 3605 return __hci_cmd_sync_status(hdev, HCI_OP_READ_INQ_RSP_TX_POWER, 3606 0, NULL, HCI_CMD_TIMEOUT); 3607 } 3608 3609 static int hci_read_local_ext_features_sync(struct hci_dev *hdev, u8 page) 3610 { 3611 struct hci_cp_read_local_ext_features cp; 3612 3613 if (!lmp_ext_feat_capable(hdev)) 3614 return 0; 3615 3616 memset(&cp, 0, sizeof(cp)); 3617 cp.page = page; 3618 3619 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_EXT_FEATURES, 3620 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3621 } 3622 3623 static int hci_read_local_ext_features_1_sync(struct hci_dev *hdev) 3624 { 3625 return hci_read_local_ext_features_sync(hdev, 0x01); 3626 } 3627 3628 /* HCI Controller init stage 2 command sequence */ 3629 static const struct hci_init_stage hci_init2[] = { 3630 /* HCI_OP_READ_LOCAL_COMMANDS */ 3631 HCI_INIT(hci_read_local_cmds_sync), 3632 /* HCI_OP_WRITE_SSP_MODE */ 3633 HCI_INIT(hci_write_ssp_mode_1_sync), 3634 /* HCI_OP_WRITE_EIR */ 3635 HCI_INIT(hci_write_eir_sync), 3636 /* HCI_OP_WRITE_INQUIRY_MODE */ 3637 HCI_INIT(hci_write_inquiry_mode_sync), 3638 /* HCI_OP_READ_INQ_RSP_TX_POWER */ 3639 HCI_INIT(hci_read_inq_rsp_tx_power_sync), 3640 /* HCI_OP_READ_LOCAL_EXT_FEATURES */ 3641 HCI_INIT(hci_read_local_ext_features_1_sync), 3642 /* HCI_OP_WRITE_AUTH_ENABLE */ 3643 HCI_INIT(hci_write_auth_enable_sync), 3644 {} 3645 }; 3646 3647 /* Read LE Buffer Size */ 3648 static int hci_le_read_buffer_size_sync(struct hci_dev *hdev) 3649 { 3650 /* Use Read LE Buffer Size V2 if supported */ 3651 if (iso_capable(hdev) && hdev->commands[41] & 0x20) 3652 return __hci_cmd_sync_status(hdev, 3653 HCI_OP_LE_READ_BUFFER_SIZE_V2, 3654 0, NULL, HCI_CMD_TIMEOUT); 3655 3656 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_BUFFER_SIZE, 3657 0, NULL, HCI_CMD_TIMEOUT); 3658 } 3659 3660 /* Read LE Local Supported Features */ 3661 static int hci_le_read_local_features_sync(struct hci_dev *hdev) 3662 { 3663 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_LOCAL_FEATURES, 3664 0, NULL, HCI_CMD_TIMEOUT); 3665 } 3666 3667 /* Read LE Supported States */ 3668 static int hci_le_read_supported_states_sync(struct hci_dev *hdev) 3669 { 3670 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_SUPPORTED_STATES, 3671 0, NULL, HCI_CMD_TIMEOUT); 3672 } 3673 3674 /* LE Controller init stage 2 command sequence */ 3675 static const struct hci_init_stage le_init2[] = { 3676 /* HCI_OP_LE_READ_LOCAL_FEATURES */ 3677 HCI_INIT(hci_le_read_local_features_sync), 3678 /* HCI_OP_LE_READ_BUFFER_SIZE */ 3679 HCI_INIT(hci_le_read_buffer_size_sync), 3680 /* HCI_OP_LE_READ_SUPPORTED_STATES */ 3681 HCI_INIT(hci_le_read_supported_states_sync), 3682 {} 3683 }; 3684 3685 static int hci_init2_sync(struct hci_dev *hdev) 3686 { 3687 int err; 3688 3689 bt_dev_dbg(hdev, ""); 3690 3691 if (hdev->dev_type == HCI_AMP) 3692 return hci_init_stage_sync(hdev, amp_init2); 3693 3694 err = hci_init_stage_sync(hdev, hci_init2); 3695 if (err) 3696 return err; 3697 3698 if (lmp_bredr_capable(hdev)) { 3699 err = hci_init_stage_sync(hdev, br_init2); 3700 if (err) 3701 return err; 3702 } else { 3703 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED); 3704 } 3705 3706 if (lmp_le_capable(hdev)) { 3707 err = hci_init_stage_sync(hdev, le_init2); 3708 if (err) 3709 return err; 3710 /* LE-only controllers have LE implicitly enabled */ 3711 if (!lmp_bredr_capable(hdev)) 3712 hci_dev_set_flag(hdev, HCI_LE_ENABLED); 3713 } 3714 3715 return 0; 3716 } 3717 3718 static int hci_set_event_mask_sync(struct hci_dev *hdev) 3719 { 3720 /* The second byte is 0xff instead of 0x9f (two reserved bits 3721 * disabled) since a Broadcom 1.2 dongle doesn't respond to the 3722 * command otherwise. 3723 */ 3724 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 }; 3725 3726 /* CSR 1.1 dongles does not accept any bitfield so don't try to set 3727 * any event mask for pre 1.2 devices. 3728 */ 3729 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 3730 return 0; 3731 3732 if (lmp_bredr_capable(hdev)) { 3733 events[4] |= 0x01; /* Flow Specification Complete */ 3734 3735 /* Don't set Disconnect Complete and mode change when 3736 * suspended as that would wakeup the host when disconnecting 3737 * due to suspend. 3738 */ 3739 if (hdev->suspended) { 3740 events[0] &= 0xef; 3741 events[2] &= 0xf7; 3742 } 3743 } else { 3744 /* Use a different default for LE-only devices */ 3745 memset(events, 0, sizeof(events)); 3746 events[1] |= 0x20; /* Command Complete */ 3747 events[1] |= 0x40; /* Command Status */ 3748 events[1] |= 0x80; /* Hardware Error */ 3749 3750 /* If the controller supports the Disconnect command, enable 3751 * the corresponding event. In addition enable packet flow 3752 * control related events. 3753 */ 3754 if (hdev->commands[0] & 0x20) { 3755 /* Don't set Disconnect Complete when suspended as that 3756 * would wakeup the host when disconnecting due to 3757 * suspend. 3758 */ 3759 if (!hdev->suspended) 3760 events[0] |= 0x10; /* Disconnection Complete */ 3761 events[2] |= 0x04; /* Number of Completed Packets */ 3762 events[3] |= 0x02; /* Data Buffer Overflow */ 3763 } 3764 3765 /* If the controller supports the Read Remote Version 3766 * Information command, enable the corresponding event. 3767 */ 3768 if (hdev->commands[2] & 0x80) 3769 events[1] |= 0x08; /* Read Remote Version Information 3770 * Complete 3771 */ 3772 3773 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) { 3774 events[0] |= 0x80; /* Encryption Change */ 3775 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 3776 } 3777 } 3778 3779 if (lmp_inq_rssi_capable(hdev) || 3780 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) 3781 events[4] |= 0x02; /* Inquiry Result with RSSI */ 3782 3783 if (lmp_ext_feat_capable(hdev)) 3784 events[4] |= 0x04; /* Read Remote Extended Features Complete */ 3785 3786 if (lmp_esco_capable(hdev)) { 3787 events[5] |= 0x08; /* Synchronous Connection Complete */ 3788 events[5] |= 0x10; /* Synchronous Connection Changed */ 3789 } 3790 3791 if (lmp_sniffsubr_capable(hdev)) 3792 events[5] |= 0x20; /* Sniff Subrating */ 3793 3794 if (lmp_pause_enc_capable(hdev)) 3795 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 3796 3797 if (lmp_ext_inq_capable(hdev)) 3798 events[5] |= 0x40; /* Extended Inquiry Result */ 3799 3800 if (lmp_no_flush_capable(hdev)) 3801 events[7] |= 0x01; /* Enhanced Flush Complete */ 3802 3803 if (lmp_lsto_capable(hdev)) 3804 events[6] |= 0x80; /* Link Supervision Timeout Changed */ 3805 3806 if (lmp_ssp_capable(hdev)) { 3807 events[6] |= 0x01; /* IO Capability Request */ 3808 events[6] |= 0x02; /* IO Capability Response */ 3809 events[6] |= 0x04; /* User Confirmation Request */ 3810 events[6] |= 0x08; /* User Passkey Request */ 3811 events[6] |= 0x10; /* Remote OOB Data Request */ 3812 events[6] |= 0x20; /* Simple Pairing Complete */ 3813 events[7] |= 0x04; /* User Passkey Notification */ 3814 events[7] |= 0x08; /* Keypress Notification */ 3815 events[7] |= 0x10; /* Remote Host Supported 3816 * Features Notification 3817 */ 3818 } 3819 3820 if (lmp_le_capable(hdev)) 3821 events[7] |= 0x20; /* LE Meta-Event */ 3822 3823 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK, 3824 sizeof(events), events, HCI_CMD_TIMEOUT); 3825 } 3826 3827 static int hci_read_stored_link_key_sync(struct hci_dev *hdev) 3828 { 3829 struct hci_cp_read_stored_link_key cp; 3830 3831 if (!(hdev->commands[6] & 0x20) || 3832 test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) 3833 return 0; 3834 3835 memset(&cp, 0, sizeof(cp)); 3836 bacpy(&cp.bdaddr, BDADDR_ANY); 3837 cp.read_all = 0x01; 3838 3839 return __hci_cmd_sync_status(hdev, HCI_OP_READ_STORED_LINK_KEY, 3840 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3841 } 3842 3843 static int hci_setup_link_policy_sync(struct hci_dev *hdev) 3844 { 3845 struct hci_cp_write_def_link_policy cp; 3846 u16 link_policy = 0; 3847 3848 if (!(hdev->commands[5] & 0x10)) 3849 return 0; 3850 3851 memset(&cp, 0, sizeof(cp)); 3852 3853 if (lmp_rswitch_capable(hdev)) 3854 link_policy |= HCI_LP_RSWITCH; 3855 if (lmp_hold_capable(hdev)) 3856 link_policy |= HCI_LP_HOLD; 3857 if (lmp_sniff_capable(hdev)) 3858 link_policy |= HCI_LP_SNIFF; 3859 if (lmp_park_capable(hdev)) 3860 link_policy |= HCI_LP_PARK; 3861 3862 cp.policy = cpu_to_le16(link_policy); 3863 3864 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY, 3865 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3866 } 3867 3868 static int hci_read_page_scan_activity_sync(struct hci_dev *hdev) 3869 { 3870 if (!(hdev->commands[8] & 0x01)) 3871 return 0; 3872 3873 return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 3874 0, NULL, HCI_CMD_TIMEOUT); 3875 } 3876 3877 static int hci_read_def_err_data_reporting_sync(struct hci_dev *hdev) 3878 { 3879 if (!(hdev->commands[18] & 0x04) || 3880 !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) || 3881 test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) 3882 return 0; 3883 3884 return __hci_cmd_sync_status(hdev, HCI_OP_READ_DEF_ERR_DATA_REPORTING, 3885 0, NULL, HCI_CMD_TIMEOUT); 3886 } 3887 3888 static int hci_read_page_scan_type_sync(struct hci_dev *hdev) 3889 { 3890 /* Some older Broadcom based Bluetooth 1.2 controllers do not 3891 * support the Read Page Scan Type command. Check support for 3892 * this command in the bit mask of supported commands. 3893 */ 3894 if (!(hdev->commands[13] & 0x01)) 3895 return 0; 3896 3897 return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_TYPE, 3898 0, NULL, HCI_CMD_TIMEOUT); 3899 } 3900 3901 /* Read features beyond page 1 if available */ 3902 static int hci_read_local_ext_features_all_sync(struct hci_dev *hdev) 3903 { 3904 u8 page; 3905 int err; 3906 3907 if (!lmp_ext_feat_capable(hdev)) 3908 return 0; 3909 3910 for (page = 2; page < HCI_MAX_PAGES && page <= hdev->max_page; 3911 page++) { 3912 err = hci_read_local_ext_features_sync(hdev, page); 3913 if (err) 3914 return err; 3915 } 3916 3917 return 0; 3918 } 3919 3920 /* HCI Controller init stage 3 command sequence */ 3921 static const struct hci_init_stage hci_init3[] = { 3922 /* HCI_OP_SET_EVENT_MASK */ 3923 HCI_INIT(hci_set_event_mask_sync), 3924 /* HCI_OP_READ_STORED_LINK_KEY */ 3925 HCI_INIT(hci_read_stored_link_key_sync), 3926 /* HCI_OP_WRITE_DEF_LINK_POLICY */ 3927 HCI_INIT(hci_setup_link_policy_sync), 3928 /* HCI_OP_READ_PAGE_SCAN_ACTIVITY */ 3929 HCI_INIT(hci_read_page_scan_activity_sync), 3930 /* HCI_OP_READ_DEF_ERR_DATA_REPORTING */ 3931 HCI_INIT(hci_read_def_err_data_reporting_sync), 3932 /* HCI_OP_READ_PAGE_SCAN_TYPE */ 3933 HCI_INIT(hci_read_page_scan_type_sync), 3934 /* HCI_OP_READ_LOCAL_EXT_FEATURES */ 3935 HCI_INIT(hci_read_local_ext_features_all_sync), 3936 {} 3937 }; 3938 3939 static int hci_le_set_event_mask_sync(struct hci_dev *hdev) 3940 { 3941 u8 events[8]; 3942 3943 if (!lmp_le_capable(hdev)) 3944 return 0; 3945 3946 memset(events, 0, sizeof(events)); 3947 3948 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) 3949 events[0] |= 0x10; /* LE Long Term Key Request */ 3950 3951 /* If controller supports the Connection Parameters Request 3952 * Link Layer Procedure, enable the corresponding event. 3953 */ 3954 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC) 3955 /* LE Remote Connection Parameter Request */ 3956 events[0] |= 0x20; 3957 3958 /* If the controller supports the Data Length Extension 3959 * feature, enable the corresponding event. 3960 */ 3961 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) 3962 events[0] |= 0x40; /* LE Data Length Change */ 3963 3964 /* If the controller supports LL Privacy feature or LE Extended Adv, 3965 * enable the corresponding event. 3966 */ 3967 if (use_enhanced_conn_complete(hdev)) 3968 events[1] |= 0x02; /* LE Enhanced Connection Complete */ 3969 3970 /* If the controller supports Extended Scanner Filter 3971 * Policies, enable the corresponding event. 3972 */ 3973 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY) 3974 events[1] |= 0x04; /* LE Direct Advertising Report */ 3975 3976 /* If the controller supports Channel Selection Algorithm #2 3977 * feature, enable the corresponding event. 3978 */ 3979 if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2) 3980 events[2] |= 0x08; /* LE Channel Selection Algorithm */ 3981 3982 /* If the controller supports the LE Set Scan Enable command, 3983 * enable the corresponding advertising report event. 3984 */ 3985 if (hdev->commands[26] & 0x08) 3986 events[0] |= 0x02; /* LE Advertising Report */ 3987 3988 /* If the controller supports the LE Create Connection 3989 * command, enable the corresponding event. 3990 */ 3991 if (hdev->commands[26] & 0x10) 3992 events[0] |= 0x01; /* LE Connection Complete */ 3993 3994 /* If the controller supports the LE Connection Update 3995 * command, enable the corresponding event. 3996 */ 3997 if (hdev->commands[27] & 0x04) 3998 events[0] |= 0x04; /* LE Connection Update Complete */ 3999 4000 /* If the controller supports the LE Read Remote Used Features 4001 * command, enable the corresponding event. 4002 */ 4003 if (hdev->commands[27] & 0x20) 4004 /* LE Read Remote Used Features Complete */ 4005 events[0] |= 0x08; 4006 4007 /* If the controller supports the LE Read Local P-256 4008 * Public Key command, enable the corresponding event. 4009 */ 4010 if (hdev->commands[34] & 0x02) 4011 /* LE Read Local P-256 Public Key Complete */ 4012 events[0] |= 0x80; 4013 4014 /* If the controller supports the LE Generate DHKey 4015 * command, enable the corresponding event. 4016 */ 4017 if (hdev->commands[34] & 0x04) 4018 events[1] |= 0x01; /* LE Generate DHKey Complete */ 4019 4020 /* If the controller supports the LE Set Default PHY or 4021 * LE Set PHY commands, enable the corresponding event. 4022 */ 4023 if (hdev->commands[35] & (0x20 | 0x40)) 4024 events[1] |= 0x08; /* LE PHY Update Complete */ 4025 4026 /* If the controller supports LE Set Extended Scan Parameters 4027 * and LE Set Extended Scan Enable commands, enable the 4028 * corresponding event. 4029 */ 4030 if (use_ext_scan(hdev)) 4031 events[1] |= 0x10; /* LE Extended Advertising Report */ 4032 4033 /* If the controller supports the LE Extended Advertising 4034 * command, enable the corresponding event. 4035 */ 4036 if (ext_adv_capable(hdev)) 4037 events[2] |= 0x02; /* LE Advertising Set Terminated */ 4038 4039 if (cis_capable(hdev)) { 4040 events[3] |= 0x01; /* LE CIS Established */ 4041 if (cis_peripheral_capable(hdev)) 4042 events[3] |= 0x02; /* LE CIS Request */ 4043 } 4044 4045 if (bis_capable(hdev)) { 4046 events[1] |= 0x20; /* LE PA Report */ 4047 events[1] |= 0x40; /* LE PA Sync Established */ 4048 events[3] |= 0x04; /* LE Create BIG Complete */ 4049 events[3] |= 0x08; /* LE Terminate BIG Complete */ 4050 events[3] |= 0x10; /* LE BIG Sync Established */ 4051 events[3] |= 0x20; /* LE BIG Sync Loss */ 4052 events[4] |= 0x02; /* LE BIG Info Advertising Report */ 4053 } 4054 4055 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EVENT_MASK, 4056 sizeof(events), events, HCI_CMD_TIMEOUT); 4057 } 4058 4059 /* Read LE Advertising Channel TX Power */ 4060 static int hci_le_read_adv_tx_power_sync(struct hci_dev *hdev) 4061 { 4062 if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) { 4063 /* HCI TS spec forbids mixing of legacy and extended 4064 * advertising commands wherein READ_ADV_TX_POWER is 4065 * also included. So do not call it if extended adv 4066 * is supported otherwise controller will return 4067 * COMMAND_DISALLOWED for extended commands. 4068 */ 4069 return __hci_cmd_sync_status(hdev, 4070 HCI_OP_LE_READ_ADV_TX_POWER, 4071 0, NULL, HCI_CMD_TIMEOUT); 4072 } 4073 4074 return 0; 4075 } 4076 4077 /* Read LE Min/Max Tx Power*/ 4078 static int hci_le_read_tx_power_sync(struct hci_dev *hdev) 4079 { 4080 if (!(hdev->commands[38] & 0x80) || 4081 test_bit(HCI_QUIRK_BROKEN_READ_TRANSMIT_POWER, &hdev->quirks)) 4082 return 0; 4083 4084 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_TRANSMIT_POWER, 4085 0, NULL, HCI_CMD_TIMEOUT); 4086 } 4087 4088 /* Read LE Accept List Size */ 4089 static int hci_le_read_accept_list_size_sync(struct hci_dev *hdev) 4090 { 4091 if (!(hdev->commands[26] & 0x40)) 4092 return 0; 4093 4094 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_ACCEPT_LIST_SIZE, 4095 0, NULL, HCI_CMD_TIMEOUT); 4096 } 4097 4098 /* Clear LE Accept List */ 4099 static int hci_le_clear_accept_list_sync(struct hci_dev *hdev) 4100 { 4101 if (!(hdev->commands[26] & 0x80)) 4102 return 0; 4103 4104 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL, 4105 HCI_CMD_TIMEOUT); 4106 } 4107 4108 /* Read LE Resolving List Size */ 4109 static int hci_le_read_resolv_list_size_sync(struct hci_dev *hdev) 4110 { 4111 if (!(hdev->commands[34] & 0x40)) 4112 return 0; 4113 4114 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_RESOLV_LIST_SIZE, 4115 0, NULL, HCI_CMD_TIMEOUT); 4116 } 4117 4118 /* Clear LE Resolving List */ 4119 static int hci_le_clear_resolv_list_sync(struct hci_dev *hdev) 4120 { 4121 if (!(hdev->commands[34] & 0x20)) 4122 return 0; 4123 4124 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL, 4125 HCI_CMD_TIMEOUT); 4126 } 4127 4128 /* Set RPA timeout */ 4129 static int hci_le_set_rpa_timeout_sync(struct hci_dev *hdev) 4130 { 4131 __le16 timeout = cpu_to_le16(hdev->rpa_timeout); 4132 4133 if (!(hdev->commands[35] & 0x04) || 4134 test_bit(HCI_QUIRK_BROKEN_SET_RPA_TIMEOUT, &hdev->quirks)) 4135 return 0; 4136 4137 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RPA_TIMEOUT, 4138 sizeof(timeout), &timeout, 4139 HCI_CMD_TIMEOUT); 4140 } 4141 4142 /* Read LE Maximum Data Length */ 4143 static int hci_le_read_max_data_len_sync(struct hci_dev *hdev) 4144 { 4145 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 4146 return 0; 4147 4148 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL, 4149 HCI_CMD_TIMEOUT); 4150 } 4151 4152 /* Read LE Suggested Default Data Length */ 4153 static int hci_le_read_def_data_len_sync(struct hci_dev *hdev) 4154 { 4155 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 4156 return 0; 4157 4158 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL, 4159 HCI_CMD_TIMEOUT); 4160 } 4161 4162 /* Read LE Number of Supported Advertising Sets */ 4163 static int hci_le_read_num_support_adv_sets_sync(struct hci_dev *hdev) 4164 { 4165 if (!ext_adv_capable(hdev)) 4166 return 0; 4167 4168 return __hci_cmd_sync_status(hdev, 4169 HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS, 4170 0, NULL, HCI_CMD_TIMEOUT); 4171 } 4172 4173 /* Write LE Host Supported */ 4174 static int hci_set_le_support_sync(struct hci_dev *hdev) 4175 { 4176 struct hci_cp_write_le_host_supported cp; 4177 4178 /* LE-only devices do not support explicit enablement */ 4179 if (!lmp_bredr_capable(hdev)) 4180 return 0; 4181 4182 memset(&cp, 0, sizeof(cp)); 4183 4184 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 4185 cp.le = 0x01; 4186 cp.simul = 0x00; 4187 } 4188 4189 if (cp.le == lmp_host_le_capable(hdev)) 4190 return 0; 4191 4192 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED, 4193 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4194 } 4195 4196 /* LE Set Host Feature */ 4197 static int hci_le_set_host_feature_sync(struct hci_dev *hdev) 4198 { 4199 struct hci_cp_le_set_host_feature cp; 4200 4201 if (!cis_capable(hdev)) 4202 return 0; 4203 4204 memset(&cp, 0, sizeof(cp)); 4205 4206 /* Connected Isochronous Channels (Host Support) */ 4207 cp.bit_number = 32; 4208 cp.bit_value = 1; 4209 4210 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_HOST_FEATURE, 4211 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4212 } 4213 4214 /* LE Controller init stage 3 command sequence */ 4215 static const struct hci_init_stage le_init3[] = { 4216 /* HCI_OP_LE_SET_EVENT_MASK */ 4217 HCI_INIT(hci_le_set_event_mask_sync), 4218 /* HCI_OP_LE_READ_ADV_TX_POWER */ 4219 HCI_INIT(hci_le_read_adv_tx_power_sync), 4220 /* HCI_OP_LE_READ_TRANSMIT_POWER */ 4221 HCI_INIT(hci_le_read_tx_power_sync), 4222 /* HCI_OP_LE_READ_ACCEPT_LIST_SIZE */ 4223 HCI_INIT(hci_le_read_accept_list_size_sync), 4224 /* HCI_OP_LE_CLEAR_ACCEPT_LIST */ 4225 HCI_INIT(hci_le_clear_accept_list_sync), 4226 /* HCI_OP_LE_READ_RESOLV_LIST_SIZE */ 4227 HCI_INIT(hci_le_read_resolv_list_size_sync), 4228 /* HCI_OP_LE_CLEAR_RESOLV_LIST */ 4229 HCI_INIT(hci_le_clear_resolv_list_sync), 4230 /* HCI_OP_LE_SET_RPA_TIMEOUT */ 4231 HCI_INIT(hci_le_set_rpa_timeout_sync), 4232 /* HCI_OP_LE_READ_MAX_DATA_LEN */ 4233 HCI_INIT(hci_le_read_max_data_len_sync), 4234 /* HCI_OP_LE_READ_DEF_DATA_LEN */ 4235 HCI_INIT(hci_le_read_def_data_len_sync), 4236 /* HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS */ 4237 HCI_INIT(hci_le_read_num_support_adv_sets_sync), 4238 /* HCI_OP_WRITE_LE_HOST_SUPPORTED */ 4239 HCI_INIT(hci_set_le_support_sync), 4240 /* HCI_OP_LE_SET_HOST_FEATURE */ 4241 HCI_INIT(hci_le_set_host_feature_sync), 4242 {} 4243 }; 4244 4245 static int hci_init3_sync(struct hci_dev *hdev) 4246 { 4247 int err; 4248 4249 bt_dev_dbg(hdev, ""); 4250 4251 err = hci_init_stage_sync(hdev, hci_init3); 4252 if (err) 4253 return err; 4254 4255 if (lmp_le_capable(hdev)) 4256 return hci_init_stage_sync(hdev, le_init3); 4257 4258 return 0; 4259 } 4260 4261 static int hci_delete_stored_link_key_sync(struct hci_dev *hdev) 4262 { 4263 struct hci_cp_delete_stored_link_key cp; 4264 4265 /* Some Broadcom based Bluetooth controllers do not support the 4266 * Delete Stored Link Key command. They are clearly indicating its 4267 * absence in the bit mask of supported commands. 4268 * 4269 * Check the supported commands and only if the command is marked 4270 * as supported send it. If not supported assume that the controller 4271 * does not have actual support for stored link keys which makes this 4272 * command redundant anyway. 4273 * 4274 * Some controllers indicate that they support handling deleting 4275 * stored link keys, but they don't. The quirk lets a driver 4276 * just disable this command. 4277 */ 4278 if (!(hdev->commands[6] & 0x80) || 4279 test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) 4280 return 0; 4281 4282 memset(&cp, 0, sizeof(cp)); 4283 bacpy(&cp.bdaddr, BDADDR_ANY); 4284 cp.delete_all = 0x01; 4285 4286 return __hci_cmd_sync_status(hdev, HCI_OP_DELETE_STORED_LINK_KEY, 4287 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4288 } 4289 4290 static int hci_set_event_mask_page_2_sync(struct hci_dev *hdev) 4291 { 4292 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 4293 bool changed = false; 4294 4295 /* Set event mask page 2 if the HCI command for it is supported */ 4296 if (!(hdev->commands[22] & 0x04)) 4297 return 0; 4298 4299 /* If Connectionless Peripheral Broadcast central role is supported 4300 * enable all necessary events for it. 4301 */ 4302 if (lmp_cpb_central_capable(hdev)) { 4303 events[1] |= 0x40; /* Triggered Clock Capture */ 4304 events[1] |= 0x80; /* Synchronization Train Complete */ 4305 events[2] |= 0x08; /* Truncated Page Complete */ 4306 events[2] |= 0x20; /* CPB Channel Map Change */ 4307 changed = true; 4308 } 4309 4310 /* If Connectionless Peripheral Broadcast peripheral role is supported 4311 * enable all necessary events for it. 4312 */ 4313 if (lmp_cpb_peripheral_capable(hdev)) { 4314 events[2] |= 0x01; /* Synchronization Train Received */ 4315 events[2] |= 0x02; /* CPB Receive */ 4316 events[2] |= 0x04; /* CPB Timeout */ 4317 events[2] |= 0x10; /* Peripheral Page Response Timeout */ 4318 changed = true; 4319 } 4320 4321 /* Enable Authenticated Payload Timeout Expired event if supported */ 4322 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) { 4323 events[2] |= 0x80; 4324 changed = true; 4325 } 4326 4327 /* Some Broadcom based controllers indicate support for Set Event 4328 * Mask Page 2 command, but then actually do not support it. Since 4329 * the default value is all bits set to zero, the command is only 4330 * required if the event mask has to be changed. In case no change 4331 * to the event mask is needed, skip this command. 4332 */ 4333 if (!changed) 4334 return 0; 4335 4336 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK_PAGE_2, 4337 sizeof(events), events, HCI_CMD_TIMEOUT); 4338 } 4339 4340 /* Read local codec list if the HCI command is supported */ 4341 static int hci_read_local_codecs_sync(struct hci_dev *hdev) 4342 { 4343 if (hdev->commands[45] & 0x04) 4344 hci_read_supported_codecs_v2(hdev); 4345 else if (hdev->commands[29] & 0x20) 4346 hci_read_supported_codecs(hdev); 4347 4348 return 0; 4349 } 4350 4351 /* Read local pairing options if the HCI command is supported */ 4352 static int hci_read_local_pairing_opts_sync(struct hci_dev *hdev) 4353 { 4354 if (!(hdev->commands[41] & 0x08)) 4355 return 0; 4356 4357 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_PAIRING_OPTS, 4358 0, NULL, HCI_CMD_TIMEOUT); 4359 } 4360 4361 /* Get MWS transport configuration if the HCI command is supported */ 4362 static int hci_get_mws_transport_config_sync(struct hci_dev *hdev) 4363 { 4364 if (!mws_transport_config_capable(hdev)) 4365 return 0; 4366 4367 return __hci_cmd_sync_status(hdev, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 4368 0, NULL, HCI_CMD_TIMEOUT); 4369 } 4370 4371 /* Check for Synchronization Train support */ 4372 static int hci_read_sync_train_params_sync(struct hci_dev *hdev) 4373 { 4374 if (!lmp_sync_train_capable(hdev)) 4375 return 0; 4376 4377 return __hci_cmd_sync_status(hdev, HCI_OP_READ_SYNC_TRAIN_PARAMS, 4378 0, NULL, HCI_CMD_TIMEOUT); 4379 } 4380 4381 /* Enable Secure Connections if supported and configured */ 4382 static int hci_write_sc_support_1_sync(struct hci_dev *hdev) 4383 { 4384 u8 support = 0x01; 4385 4386 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) || 4387 !bredr_sc_enabled(hdev)) 4388 return 0; 4389 4390 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT, 4391 sizeof(support), &support, 4392 HCI_CMD_TIMEOUT); 4393 } 4394 4395 /* Set erroneous data reporting if supported to the wideband speech 4396 * setting value 4397 */ 4398 static int hci_set_err_data_report_sync(struct hci_dev *hdev) 4399 { 4400 struct hci_cp_write_def_err_data_reporting cp; 4401 bool enabled = hci_dev_test_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED); 4402 4403 if (!(hdev->commands[18] & 0x08) || 4404 !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) || 4405 test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) 4406 return 0; 4407 4408 if (enabled == hdev->err_data_reporting) 4409 return 0; 4410 4411 memset(&cp, 0, sizeof(cp)); 4412 cp.err_data_reporting = enabled ? ERR_DATA_REPORTING_ENABLED : 4413 ERR_DATA_REPORTING_DISABLED; 4414 4415 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING, 4416 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4417 } 4418 4419 static const struct hci_init_stage hci_init4[] = { 4420 /* HCI_OP_DELETE_STORED_LINK_KEY */ 4421 HCI_INIT(hci_delete_stored_link_key_sync), 4422 /* HCI_OP_SET_EVENT_MASK_PAGE_2 */ 4423 HCI_INIT(hci_set_event_mask_page_2_sync), 4424 /* HCI_OP_READ_LOCAL_CODECS */ 4425 HCI_INIT(hci_read_local_codecs_sync), 4426 /* HCI_OP_READ_LOCAL_PAIRING_OPTS */ 4427 HCI_INIT(hci_read_local_pairing_opts_sync), 4428 /* HCI_OP_GET_MWS_TRANSPORT_CONFIG */ 4429 HCI_INIT(hci_get_mws_transport_config_sync), 4430 /* HCI_OP_READ_SYNC_TRAIN_PARAMS */ 4431 HCI_INIT(hci_read_sync_train_params_sync), 4432 /* HCI_OP_WRITE_SC_SUPPORT */ 4433 HCI_INIT(hci_write_sc_support_1_sync), 4434 /* HCI_OP_WRITE_DEF_ERR_DATA_REPORTING */ 4435 HCI_INIT(hci_set_err_data_report_sync), 4436 {} 4437 }; 4438 4439 /* Set Suggested Default Data Length to maximum if supported */ 4440 static int hci_le_set_write_def_data_len_sync(struct hci_dev *hdev) 4441 { 4442 struct hci_cp_le_write_def_data_len cp; 4443 4444 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 4445 return 0; 4446 4447 memset(&cp, 0, sizeof(cp)); 4448 cp.tx_len = cpu_to_le16(hdev->le_max_tx_len); 4449 cp.tx_time = cpu_to_le16(hdev->le_max_tx_time); 4450 4451 return __hci_cmd_sync_status(hdev, HCI_OP_LE_WRITE_DEF_DATA_LEN, 4452 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4453 } 4454 4455 /* Set Default PHY parameters if command is supported, enables all supported 4456 * PHYs according to the LE Features bits. 4457 */ 4458 static int hci_le_set_default_phy_sync(struct hci_dev *hdev) 4459 { 4460 struct hci_cp_le_set_default_phy cp; 4461 4462 if (!(hdev->commands[35] & 0x20)) { 4463 /* If the command is not supported it means only 1M PHY is 4464 * supported. 4465 */ 4466 hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M; 4467 hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M; 4468 return 0; 4469 } 4470 4471 memset(&cp, 0, sizeof(cp)); 4472 cp.all_phys = 0x00; 4473 cp.tx_phys = HCI_LE_SET_PHY_1M; 4474 cp.rx_phys = HCI_LE_SET_PHY_1M; 4475 4476 /* Enables 2M PHY if supported */ 4477 if (le_2m_capable(hdev)) { 4478 cp.tx_phys |= HCI_LE_SET_PHY_2M; 4479 cp.rx_phys |= HCI_LE_SET_PHY_2M; 4480 } 4481 4482 /* Enables Coded PHY if supported */ 4483 if (le_coded_capable(hdev)) { 4484 cp.tx_phys |= HCI_LE_SET_PHY_CODED; 4485 cp.rx_phys |= HCI_LE_SET_PHY_CODED; 4486 } 4487 4488 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_DEFAULT_PHY, 4489 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4490 } 4491 4492 static const struct hci_init_stage le_init4[] = { 4493 /* HCI_OP_LE_WRITE_DEF_DATA_LEN */ 4494 HCI_INIT(hci_le_set_write_def_data_len_sync), 4495 /* HCI_OP_LE_SET_DEFAULT_PHY */ 4496 HCI_INIT(hci_le_set_default_phy_sync), 4497 {} 4498 }; 4499 4500 static int hci_init4_sync(struct hci_dev *hdev) 4501 { 4502 int err; 4503 4504 bt_dev_dbg(hdev, ""); 4505 4506 err = hci_init_stage_sync(hdev, hci_init4); 4507 if (err) 4508 return err; 4509 4510 if (lmp_le_capable(hdev)) 4511 return hci_init_stage_sync(hdev, le_init4); 4512 4513 return 0; 4514 } 4515 4516 static int hci_init_sync(struct hci_dev *hdev) 4517 { 4518 int err; 4519 4520 err = hci_init1_sync(hdev); 4521 if (err < 0) 4522 return err; 4523 4524 if (hci_dev_test_flag(hdev, HCI_SETUP)) 4525 hci_debugfs_create_basic(hdev); 4526 4527 err = hci_init2_sync(hdev); 4528 if (err < 0) 4529 return err; 4530 4531 /* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode 4532 * BR/EDR/LE type controllers. AMP controllers only need the 4533 * first two stages of init. 4534 */ 4535 if (hdev->dev_type != HCI_PRIMARY) 4536 return 0; 4537 4538 err = hci_init3_sync(hdev); 4539 if (err < 0) 4540 return err; 4541 4542 err = hci_init4_sync(hdev); 4543 if (err < 0) 4544 return err; 4545 4546 /* This function is only called when the controller is actually in 4547 * configured state. When the controller is marked as unconfigured, 4548 * this initialization procedure is not run. 4549 * 4550 * It means that it is possible that a controller runs through its 4551 * setup phase and then discovers missing settings. If that is the 4552 * case, then this function will not be called. It then will only 4553 * be called during the config phase. 4554 * 4555 * So only when in setup phase or config phase, create the debugfs 4556 * entries and register the SMP channels. 4557 */ 4558 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4559 !hci_dev_test_flag(hdev, HCI_CONFIG)) 4560 return 0; 4561 4562 if (hci_dev_test_and_set_flag(hdev, HCI_DEBUGFS_CREATED)) 4563 return 0; 4564 4565 hci_debugfs_create_common(hdev); 4566 4567 if (lmp_bredr_capable(hdev)) 4568 hci_debugfs_create_bredr(hdev); 4569 4570 if (lmp_le_capable(hdev)) 4571 hci_debugfs_create_le(hdev); 4572 4573 return 0; 4574 } 4575 4576 #define HCI_QUIRK_BROKEN(_quirk, _desc) { HCI_QUIRK_BROKEN_##_quirk, _desc } 4577 4578 static const struct { 4579 unsigned long quirk; 4580 const char *desc; 4581 } hci_broken_table[] = { 4582 HCI_QUIRK_BROKEN(LOCAL_COMMANDS, 4583 "HCI Read Local Supported Commands not supported"), 4584 HCI_QUIRK_BROKEN(STORED_LINK_KEY, 4585 "HCI Delete Stored Link Key command is advertised, " 4586 "but not supported."), 4587 HCI_QUIRK_BROKEN(ERR_DATA_REPORTING, 4588 "HCI Read Default Erroneous Data Reporting command is " 4589 "advertised, but not supported."), 4590 HCI_QUIRK_BROKEN(READ_TRANSMIT_POWER, 4591 "HCI Read Transmit Power Level command is advertised, " 4592 "but not supported."), 4593 HCI_QUIRK_BROKEN(FILTER_CLEAR_ALL, 4594 "HCI Set Event Filter command not supported."), 4595 HCI_QUIRK_BROKEN(ENHANCED_SETUP_SYNC_CONN, 4596 "HCI Enhanced Setup Synchronous Connection command is " 4597 "advertised, but not supported."), 4598 HCI_QUIRK_BROKEN(SET_RPA_TIMEOUT, 4599 "HCI LE Set Random Private Address Timeout command is " 4600 "advertised, but not supported."), 4601 HCI_QUIRK_BROKEN(LE_CODED, 4602 "HCI LE Coded PHY feature bit is set, " 4603 "but its usage is not supported.") 4604 }; 4605 4606 /* This function handles hdev setup stage: 4607 * 4608 * Calls hdev->setup 4609 * Setup address if HCI_QUIRK_USE_BDADDR_PROPERTY is set. 4610 */ 4611 static int hci_dev_setup_sync(struct hci_dev *hdev) 4612 { 4613 int ret = 0; 4614 bool invalid_bdaddr; 4615 size_t i; 4616 4617 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4618 !test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) 4619 return 0; 4620 4621 bt_dev_dbg(hdev, ""); 4622 4623 hci_sock_dev_event(hdev, HCI_DEV_SETUP); 4624 4625 if (hdev->setup) 4626 ret = hdev->setup(hdev); 4627 4628 for (i = 0; i < ARRAY_SIZE(hci_broken_table); i++) { 4629 if (test_bit(hci_broken_table[i].quirk, &hdev->quirks)) 4630 bt_dev_warn(hdev, "%s", hci_broken_table[i].desc); 4631 } 4632 4633 /* The transport driver can set the quirk to mark the 4634 * BD_ADDR invalid before creating the HCI device or in 4635 * its setup callback. 4636 */ 4637 invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks) || 4638 test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks); 4639 if (!ret) { 4640 if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks) && 4641 !bacmp(&hdev->public_addr, BDADDR_ANY)) 4642 hci_dev_get_bd_addr_from_property(hdev); 4643 4644 if (invalid_bdaddr && bacmp(&hdev->public_addr, BDADDR_ANY) && 4645 hdev->set_bdaddr) { 4646 ret = hdev->set_bdaddr(hdev, &hdev->public_addr); 4647 if (!ret) 4648 invalid_bdaddr = false; 4649 } 4650 } 4651 4652 /* The transport driver can set these quirks before 4653 * creating the HCI device or in its setup callback. 4654 * 4655 * For the invalid BD_ADDR quirk it is possible that 4656 * it becomes a valid address if the bootloader does 4657 * provide it (see above). 4658 * 4659 * In case any of them is set, the controller has to 4660 * start up as unconfigured. 4661 */ 4662 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) || 4663 invalid_bdaddr) 4664 hci_dev_set_flag(hdev, HCI_UNCONFIGURED); 4665 4666 /* For an unconfigured controller it is required to 4667 * read at least the version information provided by 4668 * the Read Local Version Information command. 4669 * 4670 * If the set_bdaddr driver callback is provided, then 4671 * also the original Bluetooth public device address 4672 * will be read using the Read BD Address command. 4673 */ 4674 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 4675 return hci_unconf_init_sync(hdev); 4676 4677 return ret; 4678 } 4679 4680 /* This function handles hdev init stage: 4681 * 4682 * Calls hci_dev_setup_sync to perform setup stage 4683 * Calls hci_init_sync to perform HCI command init sequence 4684 */ 4685 static int hci_dev_init_sync(struct hci_dev *hdev) 4686 { 4687 int ret; 4688 4689 bt_dev_dbg(hdev, ""); 4690 4691 atomic_set(&hdev->cmd_cnt, 1); 4692 set_bit(HCI_INIT, &hdev->flags); 4693 4694 ret = hci_dev_setup_sync(hdev); 4695 4696 if (hci_dev_test_flag(hdev, HCI_CONFIG)) { 4697 /* If public address change is configured, ensure that 4698 * the address gets programmed. If the driver does not 4699 * support changing the public address, fail the power 4700 * on procedure. 4701 */ 4702 if (bacmp(&hdev->public_addr, BDADDR_ANY) && 4703 hdev->set_bdaddr) 4704 ret = hdev->set_bdaddr(hdev, &hdev->public_addr); 4705 else 4706 ret = -EADDRNOTAVAIL; 4707 } 4708 4709 if (!ret) { 4710 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 4711 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4712 ret = hci_init_sync(hdev); 4713 if (!ret && hdev->post_init) 4714 ret = hdev->post_init(hdev); 4715 } 4716 } 4717 4718 /* If the HCI Reset command is clearing all diagnostic settings, 4719 * then they need to be reprogrammed after the init procedure 4720 * completed. 4721 */ 4722 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) && 4723 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4724 hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag) 4725 ret = hdev->set_diag(hdev, true); 4726 4727 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4728 msft_do_open(hdev); 4729 aosp_do_open(hdev); 4730 } 4731 4732 clear_bit(HCI_INIT, &hdev->flags); 4733 4734 return ret; 4735 } 4736 4737 int hci_dev_open_sync(struct hci_dev *hdev) 4738 { 4739 int ret; 4740 4741 bt_dev_dbg(hdev, ""); 4742 4743 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 4744 ret = -ENODEV; 4745 goto done; 4746 } 4747 4748 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4749 !hci_dev_test_flag(hdev, HCI_CONFIG)) { 4750 /* Check for rfkill but allow the HCI setup stage to 4751 * proceed (which in itself doesn't cause any RF activity). 4752 */ 4753 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) { 4754 ret = -ERFKILL; 4755 goto done; 4756 } 4757 4758 /* Check for valid public address or a configured static 4759 * random address, but let the HCI setup proceed to 4760 * be able to determine if there is a public address 4761 * or not. 4762 * 4763 * In case of user channel usage, it is not important 4764 * if a public address or static random address is 4765 * available. 4766 * 4767 * This check is only valid for BR/EDR controllers 4768 * since AMP controllers do not have an address. 4769 */ 4770 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4771 hdev->dev_type == HCI_PRIMARY && 4772 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 4773 !bacmp(&hdev->static_addr, BDADDR_ANY)) { 4774 ret = -EADDRNOTAVAIL; 4775 goto done; 4776 } 4777 } 4778 4779 if (test_bit(HCI_UP, &hdev->flags)) { 4780 ret = -EALREADY; 4781 goto done; 4782 } 4783 4784 if (hdev->open(hdev)) { 4785 ret = -EIO; 4786 goto done; 4787 } 4788 4789 hci_devcd_reset(hdev); 4790 4791 set_bit(HCI_RUNNING, &hdev->flags); 4792 hci_sock_dev_event(hdev, HCI_DEV_OPEN); 4793 4794 ret = hci_dev_init_sync(hdev); 4795 if (!ret) { 4796 hci_dev_hold(hdev); 4797 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 4798 hci_adv_instances_set_rpa_expired(hdev, true); 4799 set_bit(HCI_UP, &hdev->flags); 4800 hci_sock_dev_event(hdev, HCI_DEV_UP); 4801 hci_leds_update_powered(hdev, true); 4802 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4803 !hci_dev_test_flag(hdev, HCI_CONFIG) && 4804 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 4805 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4806 hci_dev_test_flag(hdev, HCI_MGMT) && 4807 hdev->dev_type == HCI_PRIMARY) { 4808 ret = hci_powered_update_sync(hdev); 4809 mgmt_power_on(hdev, ret); 4810 } 4811 } else { 4812 /* Init failed, cleanup */ 4813 flush_work(&hdev->tx_work); 4814 4815 /* Since hci_rx_work() is possible to awake new cmd_work 4816 * it should be flushed first to avoid unexpected call of 4817 * hci_cmd_work() 4818 */ 4819 flush_work(&hdev->rx_work); 4820 flush_work(&hdev->cmd_work); 4821 4822 skb_queue_purge(&hdev->cmd_q); 4823 skb_queue_purge(&hdev->rx_q); 4824 4825 if (hdev->flush) 4826 hdev->flush(hdev); 4827 4828 if (hdev->sent_cmd) { 4829 cancel_delayed_work_sync(&hdev->cmd_timer); 4830 kfree_skb(hdev->sent_cmd); 4831 hdev->sent_cmd = NULL; 4832 } 4833 4834 clear_bit(HCI_RUNNING, &hdev->flags); 4835 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 4836 4837 hdev->close(hdev); 4838 hdev->flags &= BIT(HCI_RAW); 4839 } 4840 4841 done: 4842 return ret; 4843 } 4844 4845 /* This function requires the caller holds hdev->lock */ 4846 static void hci_pend_le_actions_clear(struct hci_dev *hdev) 4847 { 4848 struct hci_conn_params *p; 4849 4850 list_for_each_entry(p, &hdev->le_conn_params, list) { 4851 hci_pend_le_list_del_init(p); 4852 if (p->conn) { 4853 hci_conn_drop(p->conn); 4854 hci_conn_put(p->conn); 4855 p->conn = NULL; 4856 } 4857 } 4858 4859 BT_DBG("All LE pending actions cleared"); 4860 } 4861 4862 static int hci_dev_shutdown(struct hci_dev *hdev) 4863 { 4864 int err = 0; 4865 /* Similar to how we first do setup and then set the exclusive access 4866 * bit for userspace, we must first unset userchannel and then clean up. 4867 * Otherwise, the kernel can't properly use the hci channel to clean up 4868 * the controller (some shutdown routines require sending additional 4869 * commands to the controller for example). 4870 */ 4871 bool was_userchannel = 4872 hci_dev_test_and_clear_flag(hdev, HCI_USER_CHANNEL); 4873 4874 if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) && 4875 test_bit(HCI_UP, &hdev->flags)) { 4876 /* Execute vendor specific shutdown routine */ 4877 if (hdev->shutdown) 4878 err = hdev->shutdown(hdev); 4879 } 4880 4881 if (was_userchannel) 4882 hci_dev_set_flag(hdev, HCI_USER_CHANNEL); 4883 4884 return err; 4885 } 4886 4887 int hci_dev_close_sync(struct hci_dev *hdev) 4888 { 4889 bool auto_off; 4890 int err = 0; 4891 4892 bt_dev_dbg(hdev, ""); 4893 4894 cancel_delayed_work(&hdev->power_off); 4895 cancel_delayed_work(&hdev->ncmd_timer); 4896 cancel_delayed_work(&hdev->le_scan_disable); 4897 4898 hci_request_cancel_all(hdev); 4899 4900 if (hdev->adv_instance_timeout) { 4901 cancel_delayed_work_sync(&hdev->adv_instance_expire); 4902 hdev->adv_instance_timeout = 0; 4903 } 4904 4905 err = hci_dev_shutdown(hdev); 4906 4907 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) { 4908 cancel_delayed_work_sync(&hdev->cmd_timer); 4909 return err; 4910 } 4911 4912 hci_leds_update_powered(hdev, false); 4913 4914 /* Flush RX and TX works */ 4915 flush_work(&hdev->tx_work); 4916 flush_work(&hdev->rx_work); 4917 4918 if (hdev->discov_timeout > 0) { 4919 hdev->discov_timeout = 0; 4920 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 4921 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 4922 } 4923 4924 if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE)) 4925 cancel_delayed_work(&hdev->service_cache); 4926 4927 if (hci_dev_test_flag(hdev, HCI_MGMT)) { 4928 struct adv_info *adv_instance; 4929 4930 cancel_delayed_work_sync(&hdev->rpa_expired); 4931 4932 list_for_each_entry(adv_instance, &hdev->adv_instances, list) 4933 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb); 4934 } 4935 4936 /* Avoid potential lockdep warnings from the *_flush() calls by 4937 * ensuring the workqueue is empty up front. 4938 */ 4939 drain_workqueue(hdev->workqueue); 4940 4941 hci_dev_lock(hdev); 4942 4943 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 4944 4945 auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF); 4946 4947 if (!auto_off && hdev->dev_type == HCI_PRIMARY && 4948 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4949 hci_dev_test_flag(hdev, HCI_MGMT)) 4950 __mgmt_power_off(hdev); 4951 4952 hci_inquiry_cache_flush(hdev); 4953 hci_pend_le_actions_clear(hdev); 4954 hci_conn_hash_flush(hdev); 4955 /* Prevent data races on hdev->smp_data or hdev->smp_bredr_data */ 4956 smp_unregister(hdev); 4957 hci_dev_unlock(hdev); 4958 4959 hci_sock_dev_event(hdev, HCI_DEV_DOWN); 4960 4961 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4962 aosp_do_close(hdev); 4963 msft_do_close(hdev); 4964 } 4965 4966 if (hdev->flush) 4967 hdev->flush(hdev); 4968 4969 /* Reset device */ 4970 skb_queue_purge(&hdev->cmd_q); 4971 atomic_set(&hdev->cmd_cnt, 1); 4972 if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) && 4973 !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 4974 set_bit(HCI_INIT, &hdev->flags); 4975 hci_reset_sync(hdev); 4976 clear_bit(HCI_INIT, &hdev->flags); 4977 } 4978 4979 /* flush cmd work */ 4980 flush_work(&hdev->cmd_work); 4981 4982 /* Drop queues */ 4983 skb_queue_purge(&hdev->rx_q); 4984 skb_queue_purge(&hdev->cmd_q); 4985 skb_queue_purge(&hdev->raw_q); 4986 4987 /* Drop last sent command */ 4988 if (hdev->sent_cmd) { 4989 cancel_delayed_work_sync(&hdev->cmd_timer); 4990 kfree_skb(hdev->sent_cmd); 4991 hdev->sent_cmd = NULL; 4992 } 4993 4994 clear_bit(HCI_RUNNING, &hdev->flags); 4995 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 4996 4997 /* After this point our queues are empty and no tasks are scheduled. */ 4998 hdev->close(hdev); 4999 5000 /* Clear flags */ 5001 hdev->flags &= BIT(HCI_RAW); 5002 hci_dev_clear_volatile_flags(hdev); 5003 5004 /* Controller radio is available but is currently powered down */ 5005 hdev->amp_status = AMP_STATUS_POWERED_DOWN; 5006 5007 memset(hdev->eir, 0, sizeof(hdev->eir)); 5008 memset(hdev->dev_class, 0, sizeof(hdev->dev_class)); 5009 bacpy(&hdev->random_addr, BDADDR_ANY); 5010 hci_codec_list_clear(&hdev->local_codecs); 5011 5012 hci_dev_put(hdev); 5013 return err; 5014 } 5015 5016 /* This function perform power on HCI command sequence as follows: 5017 * 5018 * If controller is already up (HCI_UP) performs hci_powered_update_sync 5019 * sequence otherwise run hci_dev_open_sync which will follow with 5020 * hci_powered_update_sync after the init sequence is completed. 5021 */ 5022 static int hci_power_on_sync(struct hci_dev *hdev) 5023 { 5024 int err; 5025 5026 if (test_bit(HCI_UP, &hdev->flags) && 5027 hci_dev_test_flag(hdev, HCI_MGMT) && 5028 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) { 5029 cancel_delayed_work(&hdev->power_off); 5030 return hci_powered_update_sync(hdev); 5031 } 5032 5033 err = hci_dev_open_sync(hdev); 5034 if (err < 0) 5035 return err; 5036 5037 /* During the HCI setup phase, a few error conditions are 5038 * ignored and they need to be checked now. If they are still 5039 * valid, it is important to return the device back off. 5040 */ 5041 if (hci_dev_test_flag(hdev, HCI_RFKILLED) || 5042 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) || 5043 (hdev->dev_type == HCI_PRIMARY && 5044 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 5045 !bacmp(&hdev->static_addr, BDADDR_ANY))) { 5046 hci_dev_clear_flag(hdev, HCI_AUTO_OFF); 5047 hci_dev_close_sync(hdev); 5048 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) { 5049 queue_delayed_work(hdev->req_workqueue, &hdev->power_off, 5050 HCI_AUTO_OFF_TIMEOUT); 5051 } 5052 5053 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) { 5054 /* For unconfigured devices, set the HCI_RAW flag 5055 * so that userspace can easily identify them. 5056 */ 5057 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 5058 set_bit(HCI_RAW, &hdev->flags); 5059 5060 /* For fully configured devices, this will send 5061 * the Index Added event. For unconfigured devices, 5062 * it will send Unconfigued Index Added event. 5063 * 5064 * Devices with HCI_QUIRK_RAW_DEVICE are ignored 5065 * and no event will be send. 5066 */ 5067 mgmt_index_added(hdev); 5068 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) { 5069 /* When the controller is now configured, then it 5070 * is important to clear the HCI_RAW flag. 5071 */ 5072 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 5073 clear_bit(HCI_RAW, &hdev->flags); 5074 5075 /* Powering on the controller with HCI_CONFIG set only 5076 * happens with the transition from unconfigured to 5077 * configured. This will send the Index Added event. 5078 */ 5079 mgmt_index_added(hdev); 5080 } 5081 5082 return 0; 5083 } 5084 5085 static int hci_remote_name_cancel_sync(struct hci_dev *hdev, bdaddr_t *addr) 5086 { 5087 struct hci_cp_remote_name_req_cancel cp; 5088 5089 memset(&cp, 0, sizeof(cp)); 5090 bacpy(&cp.bdaddr, addr); 5091 5092 return __hci_cmd_sync_status(hdev, HCI_OP_REMOTE_NAME_REQ_CANCEL, 5093 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5094 } 5095 5096 int hci_stop_discovery_sync(struct hci_dev *hdev) 5097 { 5098 struct discovery_state *d = &hdev->discovery; 5099 struct inquiry_entry *e; 5100 int err; 5101 5102 bt_dev_dbg(hdev, "state %u", hdev->discovery.state); 5103 5104 if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) { 5105 if (test_bit(HCI_INQUIRY, &hdev->flags)) { 5106 err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL, 5107 0, NULL, HCI_CMD_TIMEOUT); 5108 if (err) 5109 return err; 5110 } 5111 5112 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 5113 cancel_delayed_work(&hdev->le_scan_disable); 5114 5115 err = hci_scan_disable_sync(hdev); 5116 if (err) 5117 return err; 5118 } 5119 5120 } else { 5121 err = hci_scan_disable_sync(hdev); 5122 if (err) 5123 return err; 5124 } 5125 5126 /* Resume advertising if it was paused */ 5127 if (use_ll_privacy(hdev)) 5128 hci_resume_advertising_sync(hdev); 5129 5130 /* No further actions needed for LE-only discovery */ 5131 if (d->type == DISCOV_TYPE_LE) 5132 return 0; 5133 5134 if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) { 5135 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY, 5136 NAME_PENDING); 5137 if (!e) 5138 return 0; 5139 5140 return hci_remote_name_cancel_sync(hdev, &e->data.bdaddr); 5141 } 5142 5143 return 0; 5144 } 5145 5146 static int hci_disconnect_phy_link_sync(struct hci_dev *hdev, u16 handle, 5147 u8 reason) 5148 { 5149 struct hci_cp_disconn_phy_link cp; 5150 5151 memset(&cp, 0, sizeof(cp)); 5152 cp.phy_handle = HCI_PHY_HANDLE(handle); 5153 cp.reason = reason; 5154 5155 return __hci_cmd_sync_status(hdev, HCI_OP_DISCONN_PHY_LINK, 5156 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5157 } 5158 5159 static int hci_disconnect_sync(struct hci_dev *hdev, struct hci_conn *conn, 5160 u8 reason) 5161 { 5162 struct hci_cp_disconnect cp; 5163 5164 if (conn->type == AMP_LINK) 5165 return hci_disconnect_phy_link_sync(hdev, conn->handle, reason); 5166 5167 if (test_bit(HCI_CONN_BIG_CREATED, &conn->flags)) { 5168 /* This is a BIS connection, hci_conn_del will 5169 * do the necessary cleanup. 5170 */ 5171 hci_dev_lock(hdev); 5172 hci_conn_failed(conn, reason); 5173 hci_dev_unlock(hdev); 5174 5175 return 0; 5176 } 5177 5178 memset(&cp, 0, sizeof(cp)); 5179 cp.handle = cpu_to_le16(conn->handle); 5180 cp.reason = reason; 5181 5182 /* Wait for HCI_EV_DISCONN_COMPLETE, not HCI_EV_CMD_STATUS, when the 5183 * reason is anything but HCI_ERROR_REMOTE_POWER_OFF. This reason is 5184 * used when suspending or powering off, where we don't want to wait 5185 * for the peer's response. 5186 */ 5187 if (reason != HCI_ERROR_REMOTE_POWER_OFF) 5188 return __hci_cmd_sync_status_sk(hdev, HCI_OP_DISCONNECT, 5189 sizeof(cp), &cp, 5190 HCI_EV_DISCONN_COMPLETE, 5191 HCI_CMD_TIMEOUT, NULL); 5192 5193 return __hci_cmd_sync_status(hdev, HCI_OP_DISCONNECT, sizeof(cp), &cp, 5194 HCI_CMD_TIMEOUT); 5195 } 5196 5197 static int hci_le_connect_cancel_sync(struct hci_dev *hdev, 5198 struct hci_conn *conn, u8 reason) 5199 { 5200 /* Return reason if scanning since the connection shall probably be 5201 * cleanup directly. 5202 */ 5203 if (test_bit(HCI_CONN_SCANNING, &conn->flags)) 5204 return reason; 5205 5206 if (conn->role == HCI_ROLE_SLAVE || 5207 test_and_set_bit(HCI_CONN_CANCEL, &conn->flags)) 5208 return 0; 5209 5210 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CREATE_CONN_CANCEL, 5211 0, NULL, HCI_CMD_TIMEOUT); 5212 } 5213 5214 static int hci_connect_cancel_sync(struct hci_dev *hdev, struct hci_conn *conn, 5215 u8 reason) 5216 { 5217 if (conn->type == LE_LINK) 5218 return hci_le_connect_cancel_sync(hdev, conn, reason); 5219 5220 if (conn->type == ISO_LINK) { 5221 /* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E 5222 * page 1857: 5223 * 5224 * If this command is issued for a CIS on the Central and the 5225 * CIS is successfully terminated before being established, 5226 * then an HCI_LE_CIS_Established event shall also be sent for 5227 * this CIS with the Status Operation Cancelled by Host (0x44). 5228 */ 5229 if (test_bit(HCI_CONN_CREATE_CIS, &conn->flags)) 5230 return hci_disconnect_sync(hdev, conn, reason); 5231 5232 /* CIS with no Create CIS sent have nothing to cancel */ 5233 if (bacmp(&conn->dst, BDADDR_ANY)) 5234 return HCI_ERROR_LOCAL_HOST_TERM; 5235 5236 /* There is no way to cancel a BIS without terminating the BIG 5237 * which is done later on connection cleanup. 5238 */ 5239 return 0; 5240 } 5241 5242 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 5243 return 0; 5244 5245 /* Wait for HCI_EV_CONN_COMPLETE, not HCI_EV_CMD_STATUS, when the 5246 * reason is anything but HCI_ERROR_REMOTE_POWER_OFF. This reason is 5247 * used when suspending or powering off, where we don't want to wait 5248 * for the peer's response. 5249 */ 5250 if (reason != HCI_ERROR_REMOTE_POWER_OFF) 5251 return __hci_cmd_sync_status_sk(hdev, HCI_OP_CREATE_CONN_CANCEL, 5252 6, &conn->dst, 5253 HCI_EV_CONN_COMPLETE, 5254 HCI_CMD_TIMEOUT, NULL); 5255 5256 return __hci_cmd_sync_status(hdev, HCI_OP_CREATE_CONN_CANCEL, 5257 6, &conn->dst, HCI_CMD_TIMEOUT); 5258 } 5259 5260 static int hci_reject_sco_sync(struct hci_dev *hdev, struct hci_conn *conn, 5261 u8 reason) 5262 { 5263 struct hci_cp_reject_sync_conn_req cp; 5264 5265 memset(&cp, 0, sizeof(cp)); 5266 bacpy(&cp.bdaddr, &conn->dst); 5267 cp.reason = reason; 5268 5269 /* SCO rejection has its own limited set of 5270 * allowed error values (0x0D-0x0F). 5271 */ 5272 if (reason < 0x0d || reason > 0x0f) 5273 cp.reason = HCI_ERROR_REJ_LIMITED_RESOURCES; 5274 5275 return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_SYNC_CONN_REQ, 5276 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5277 } 5278 5279 static int hci_le_reject_cis_sync(struct hci_dev *hdev, struct hci_conn *conn, 5280 u8 reason) 5281 { 5282 struct hci_cp_le_reject_cis cp; 5283 5284 memset(&cp, 0, sizeof(cp)); 5285 cp.handle = cpu_to_le16(conn->handle); 5286 cp.reason = reason; 5287 5288 return __hci_cmd_sync_status(hdev, HCI_OP_LE_REJECT_CIS, 5289 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5290 } 5291 5292 static int hci_reject_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, 5293 u8 reason) 5294 { 5295 struct hci_cp_reject_conn_req cp; 5296 5297 if (conn->type == ISO_LINK) 5298 return hci_le_reject_cis_sync(hdev, conn, reason); 5299 5300 if (conn->type == SCO_LINK || conn->type == ESCO_LINK) 5301 return hci_reject_sco_sync(hdev, conn, reason); 5302 5303 memset(&cp, 0, sizeof(cp)); 5304 bacpy(&cp.bdaddr, &conn->dst); 5305 cp.reason = reason; 5306 5307 return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_CONN_REQ, 5308 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5309 } 5310 5311 int hci_abort_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, u8 reason) 5312 { 5313 int err = 0; 5314 u16 handle = conn->handle; 5315 bool disconnect = false; 5316 struct hci_conn *c; 5317 5318 switch (conn->state) { 5319 case BT_CONNECTED: 5320 case BT_CONFIG: 5321 err = hci_disconnect_sync(hdev, conn, reason); 5322 break; 5323 case BT_CONNECT: 5324 err = hci_connect_cancel_sync(hdev, conn, reason); 5325 break; 5326 case BT_CONNECT2: 5327 err = hci_reject_conn_sync(hdev, conn, reason); 5328 break; 5329 case BT_OPEN: 5330 case BT_BOUND: 5331 break; 5332 default: 5333 disconnect = true; 5334 break; 5335 } 5336 5337 hci_dev_lock(hdev); 5338 5339 /* Check if the connection has been cleaned up concurrently */ 5340 c = hci_conn_hash_lookup_handle(hdev, handle); 5341 if (!c || c != conn) { 5342 err = 0; 5343 goto unlock; 5344 } 5345 5346 /* Cleanup hci_conn object if it cannot be cancelled as it 5347 * likelly means the controller and host stack are out of sync 5348 * or in case of LE it was still scanning so it can be cleanup 5349 * safely. 5350 */ 5351 if (disconnect) { 5352 conn->state = BT_CLOSED; 5353 hci_disconn_cfm(conn, reason); 5354 hci_conn_del(conn); 5355 } else { 5356 hci_conn_failed(conn, reason); 5357 } 5358 5359 unlock: 5360 hci_dev_unlock(hdev); 5361 return err; 5362 } 5363 5364 static int hci_disconnect_all_sync(struct hci_dev *hdev, u8 reason) 5365 { 5366 struct list_head *head = &hdev->conn_hash.list; 5367 struct hci_conn *conn; 5368 5369 rcu_read_lock(); 5370 while ((conn = list_first_or_null_rcu(head, struct hci_conn, list))) { 5371 /* Make sure the connection is not freed while unlocking */ 5372 conn = hci_conn_get(conn); 5373 rcu_read_unlock(); 5374 /* Disregard possible errors since hci_conn_del shall have been 5375 * called even in case of errors had occurred since it would 5376 * then cause hci_conn_failed to be called which calls 5377 * hci_conn_del internally. 5378 */ 5379 hci_abort_conn_sync(hdev, conn, reason); 5380 hci_conn_put(conn); 5381 rcu_read_lock(); 5382 } 5383 rcu_read_unlock(); 5384 5385 return 0; 5386 } 5387 5388 /* This function perform power off HCI command sequence as follows: 5389 * 5390 * Clear Advertising 5391 * Stop Discovery 5392 * Disconnect all connections 5393 * hci_dev_close_sync 5394 */ 5395 static int hci_power_off_sync(struct hci_dev *hdev) 5396 { 5397 int err; 5398 5399 /* If controller is already down there is nothing to do */ 5400 if (!test_bit(HCI_UP, &hdev->flags)) 5401 return 0; 5402 5403 if (test_bit(HCI_ISCAN, &hdev->flags) || 5404 test_bit(HCI_PSCAN, &hdev->flags)) { 5405 err = hci_write_scan_enable_sync(hdev, 0x00); 5406 if (err) 5407 return err; 5408 } 5409 5410 err = hci_clear_adv_sync(hdev, NULL, false); 5411 if (err) 5412 return err; 5413 5414 err = hci_stop_discovery_sync(hdev); 5415 if (err) 5416 return err; 5417 5418 /* Terminated due to Power Off */ 5419 err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF); 5420 if (err) 5421 return err; 5422 5423 return hci_dev_close_sync(hdev); 5424 } 5425 5426 int hci_set_powered_sync(struct hci_dev *hdev, u8 val) 5427 { 5428 if (val) 5429 return hci_power_on_sync(hdev); 5430 5431 return hci_power_off_sync(hdev); 5432 } 5433 5434 static int hci_write_iac_sync(struct hci_dev *hdev) 5435 { 5436 struct hci_cp_write_current_iac_lap cp; 5437 5438 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 5439 return 0; 5440 5441 memset(&cp, 0, sizeof(cp)); 5442 5443 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { 5444 /* Limited discoverable mode */ 5445 cp.num_iac = min_t(u8, hdev->num_iac, 2); 5446 cp.iac_lap[0] = 0x00; /* LIAC */ 5447 cp.iac_lap[1] = 0x8b; 5448 cp.iac_lap[2] = 0x9e; 5449 cp.iac_lap[3] = 0x33; /* GIAC */ 5450 cp.iac_lap[4] = 0x8b; 5451 cp.iac_lap[5] = 0x9e; 5452 } else { 5453 /* General discoverable mode */ 5454 cp.num_iac = 1; 5455 cp.iac_lap[0] = 0x33; /* GIAC */ 5456 cp.iac_lap[1] = 0x8b; 5457 cp.iac_lap[2] = 0x9e; 5458 } 5459 5460 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CURRENT_IAC_LAP, 5461 (cp.num_iac * 3) + 1, &cp, 5462 HCI_CMD_TIMEOUT); 5463 } 5464 5465 int hci_update_discoverable_sync(struct hci_dev *hdev) 5466 { 5467 int err = 0; 5468 5469 if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 5470 err = hci_write_iac_sync(hdev); 5471 if (err) 5472 return err; 5473 5474 err = hci_update_scan_sync(hdev); 5475 if (err) 5476 return err; 5477 5478 err = hci_update_class_sync(hdev); 5479 if (err) 5480 return err; 5481 } 5482 5483 /* Advertising instances don't use the global discoverable setting, so 5484 * only update AD if advertising was enabled using Set Advertising. 5485 */ 5486 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) { 5487 err = hci_update_adv_data_sync(hdev, 0x00); 5488 if (err) 5489 return err; 5490 5491 /* Discoverable mode affects the local advertising 5492 * address in limited privacy mode. 5493 */ 5494 if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) { 5495 if (ext_adv_capable(hdev)) 5496 err = hci_start_ext_adv_sync(hdev, 0x00); 5497 else 5498 err = hci_enable_advertising_sync(hdev); 5499 } 5500 } 5501 5502 return err; 5503 } 5504 5505 static int update_discoverable_sync(struct hci_dev *hdev, void *data) 5506 { 5507 return hci_update_discoverable_sync(hdev); 5508 } 5509 5510 int hci_update_discoverable(struct hci_dev *hdev) 5511 { 5512 /* Only queue if it would have any effect */ 5513 if (hdev_is_powered(hdev) && 5514 hci_dev_test_flag(hdev, HCI_ADVERTISING) && 5515 hci_dev_test_flag(hdev, HCI_DISCOVERABLE) && 5516 hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) 5517 return hci_cmd_sync_queue(hdev, update_discoverable_sync, NULL, 5518 NULL); 5519 5520 return 0; 5521 } 5522 5523 int hci_update_connectable_sync(struct hci_dev *hdev) 5524 { 5525 int err; 5526 5527 err = hci_update_scan_sync(hdev); 5528 if (err) 5529 return err; 5530 5531 /* If BR/EDR is not enabled and we disable advertising as a 5532 * by-product of disabling connectable, we need to update the 5533 * advertising flags. 5534 */ 5535 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 5536 err = hci_update_adv_data_sync(hdev, hdev->cur_adv_instance); 5537 5538 /* Update the advertising parameters if necessary */ 5539 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 5540 !list_empty(&hdev->adv_instances)) { 5541 if (ext_adv_capable(hdev)) 5542 err = hci_start_ext_adv_sync(hdev, 5543 hdev->cur_adv_instance); 5544 else 5545 err = hci_enable_advertising_sync(hdev); 5546 5547 if (err) 5548 return err; 5549 } 5550 5551 return hci_update_passive_scan_sync(hdev); 5552 } 5553 5554 static int hci_inquiry_sync(struct hci_dev *hdev, u8 length) 5555 { 5556 const u8 giac[3] = { 0x33, 0x8b, 0x9e }; 5557 const u8 liac[3] = { 0x00, 0x8b, 0x9e }; 5558 struct hci_cp_inquiry cp; 5559 5560 bt_dev_dbg(hdev, ""); 5561 5562 if (hci_dev_test_flag(hdev, HCI_INQUIRY)) 5563 return 0; 5564 5565 hci_dev_lock(hdev); 5566 hci_inquiry_cache_flush(hdev); 5567 hci_dev_unlock(hdev); 5568 5569 memset(&cp, 0, sizeof(cp)); 5570 5571 if (hdev->discovery.limited) 5572 memcpy(&cp.lap, liac, sizeof(cp.lap)); 5573 else 5574 memcpy(&cp.lap, giac, sizeof(cp.lap)); 5575 5576 cp.length = length; 5577 5578 return __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY, 5579 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5580 } 5581 5582 static int hci_active_scan_sync(struct hci_dev *hdev, uint16_t interval) 5583 { 5584 u8 own_addr_type; 5585 /* Accept list is not used for discovery */ 5586 u8 filter_policy = 0x00; 5587 /* Default is to enable duplicates filter */ 5588 u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE; 5589 int err; 5590 5591 bt_dev_dbg(hdev, ""); 5592 5593 /* If controller is scanning, it means the passive scanning is 5594 * running. Thus, we should temporarily stop it in order to set the 5595 * discovery scanning parameters. 5596 */ 5597 err = hci_scan_disable_sync(hdev); 5598 if (err) { 5599 bt_dev_err(hdev, "Unable to disable scanning: %d", err); 5600 return err; 5601 } 5602 5603 cancel_interleave_scan(hdev); 5604 5605 /* Pause address resolution for active scan and stop advertising if 5606 * privacy is enabled. 5607 */ 5608 err = hci_pause_addr_resolution(hdev); 5609 if (err) 5610 goto failed; 5611 5612 /* All active scans will be done with either a resolvable private 5613 * address (when privacy feature has been enabled) or non-resolvable 5614 * private address. 5615 */ 5616 err = hci_update_random_address_sync(hdev, true, scan_use_rpa(hdev), 5617 &own_addr_type); 5618 if (err < 0) 5619 own_addr_type = ADDR_LE_DEV_PUBLIC; 5620 5621 if (hci_is_adv_monitoring(hdev) || 5622 (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) && 5623 hdev->discovery.result_filtering)) { 5624 /* Duplicate filter should be disabled when some advertisement 5625 * monitor is activated, otherwise AdvMon can only receive one 5626 * advertisement for one peer(*) during active scanning, and 5627 * might report loss to these peers. 5628 * 5629 * If controller does strict duplicate filtering and the 5630 * discovery requires result filtering disables controller based 5631 * filtering since that can cause reports that would match the 5632 * host filter to not be reported. 5633 */ 5634 filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 5635 } 5636 5637 err = hci_start_scan_sync(hdev, LE_SCAN_ACTIVE, interval, 5638 hdev->le_scan_window_discovery, 5639 own_addr_type, filter_policy, filter_dup); 5640 if (!err) 5641 return err; 5642 5643 failed: 5644 /* Resume advertising if it was paused */ 5645 if (use_ll_privacy(hdev)) 5646 hci_resume_advertising_sync(hdev); 5647 5648 /* Resume passive scanning */ 5649 hci_update_passive_scan_sync(hdev); 5650 return err; 5651 } 5652 5653 static int hci_start_interleaved_discovery_sync(struct hci_dev *hdev) 5654 { 5655 int err; 5656 5657 bt_dev_dbg(hdev, ""); 5658 5659 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery * 2); 5660 if (err) 5661 return err; 5662 5663 return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN); 5664 } 5665 5666 int hci_start_discovery_sync(struct hci_dev *hdev) 5667 { 5668 unsigned long timeout; 5669 int err; 5670 5671 bt_dev_dbg(hdev, "type %u", hdev->discovery.type); 5672 5673 switch (hdev->discovery.type) { 5674 case DISCOV_TYPE_BREDR: 5675 return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN); 5676 case DISCOV_TYPE_INTERLEAVED: 5677 /* When running simultaneous discovery, the LE scanning time 5678 * should occupy the whole discovery time sine BR/EDR inquiry 5679 * and LE scanning are scheduled by the controller. 5680 * 5681 * For interleaving discovery in comparison, BR/EDR inquiry 5682 * and LE scanning are done sequentially with separate 5683 * timeouts. 5684 */ 5685 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, 5686 &hdev->quirks)) { 5687 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 5688 /* During simultaneous discovery, we double LE scan 5689 * interval. We must leave some time for the controller 5690 * to do BR/EDR inquiry. 5691 */ 5692 err = hci_start_interleaved_discovery_sync(hdev); 5693 break; 5694 } 5695 5696 timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout); 5697 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery); 5698 break; 5699 case DISCOV_TYPE_LE: 5700 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 5701 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery); 5702 break; 5703 default: 5704 return -EINVAL; 5705 } 5706 5707 if (err) 5708 return err; 5709 5710 bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout)); 5711 5712 queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable, 5713 timeout); 5714 return 0; 5715 } 5716 5717 static void hci_suspend_monitor_sync(struct hci_dev *hdev) 5718 { 5719 switch (hci_get_adv_monitor_offload_ext(hdev)) { 5720 case HCI_ADV_MONITOR_EXT_MSFT: 5721 msft_suspend_sync(hdev); 5722 break; 5723 default: 5724 return; 5725 } 5726 } 5727 5728 /* This function disables discovery and mark it as paused */ 5729 static int hci_pause_discovery_sync(struct hci_dev *hdev) 5730 { 5731 int old_state = hdev->discovery.state; 5732 int err; 5733 5734 /* If discovery already stopped/stopping/paused there nothing to do */ 5735 if (old_state == DISCOVERY_STOPPED || old_state == DISCOVERY_STOPPING || 5736 hdev->discovery_paused) 5737 return 0; 5738 5739 hci_discovery_set_state(hdev, DISCOVERY_STOPPING); 5740 err = hci_stop_discovery_sync(hdev); 5741 if (err) 5742 return err; 5743 5744 hdev->discovery_paused = true; 5745 hdev->discovery_old_state = old_state; 5746 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 5747 5748 return 0; 5749 } 5750 5751 static int hci_update_event_filter_sync(struct hci_dev *hdev) 5752 { 5753 struct bdaddr_list_with_flags *b; 5754 u8 scan = SCAN_DISABLED; 5755 bool scanning = test_bit(HCI_PSCAN, &hdev->flags); 5756 int err; 5757 5758 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 5759 return 0; 5760 5761 /* Some fake CSR controllers lock up after setting this type of 5762 * filter, so avoid sending the request altogether. 5763 */ 5764 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 5765 return 0; 5766 5767 /* Always clear event filter when starting */ 5768 hci_clear_event_filter_sync(hdev); 5769 5770 list_for_each_entry(b, &hdev->accept_list, list) { 5771 if (!(b->flags & HCI_CONN_FLAG_REMOTE_WAKEUP)) 5772 continue; 5773 5774 bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr); 5775 5776 err = hci_set_event_filter_sync(hdev, HCI_FLT_CONN_SETUP, 5777 HCI_CONN_SETUP_ALLOW_BDADDR, 5778 &b->bdaddr, 5779 HCI_CONN_SETUP_AUTO_ON); 5780 if (err) 5781 bt_dev_dbg(hdev, "Failed to set event filter for %pMR", 5782 &b->bdaddr); 5783 else 5784 scan = SCAN_PAGE; 5785 } 5786 5787 if (scan && !scanning) 5788 hci_write_scan_enable_sync(hdev, scan); 5789 else if (!scan && scanning) 5790 hci_write_scan_enable_sync(hdev, scan); 5791 5792 return 0; 5793 } 5794 5795 /* This function disables scan (BR and LE) and mark it as paused */ 5796 static int hci_pause_scan_sync(struct hci_dev *hdev) 5797 { 5798 if (hdev->scanning_paused) 5799 return 0; 5800 5801 /* Disable page scan if enabled */ 5802 if (test_bit(HCI_PSCAN, &hdev->flags)) 5803 hci_write_scan_enable_sync(hdev, SCAN_DISABLED); 5804 5805 hci_scan_disable_sync(hdev); 5806 5807 hdev->scanning_paused = true; 5808 5809 return 0; 5810 } 5811 5812 /* This function performs the HCI suspend procedures in the follow order: 5813 * 5814 * Pause discovery (active scanning/inquiry) 5815 * Pause Directed Advertising/Advertising 5816 * Pause Scanning (passive scanning in case discovery was not active) 5817 * Disconnect all connections 5818 * Set suspend_status to BT_SUSPEND_DISCONNECT if hdev cannot wakeup 5819 * otherwise: 5820 * Update event mask (only set events that are allowed to wake up the host) 5821 * Update event filter (with devices marked with HCI_CONN_FLAG_REMOTE_WAKEUP) 5822 * Update passive scanning (lower duty cycle) 5823 * Set suspend_status to BT_SUSPEND_CONFIGURE_WAKE 5824 */ 5825 int hci_suspend_sync(struct hci_dev *hdev) 5826 { 5827 int err; 5828 5829 /* If marked as suspended there nothing to do */ 5830 if (hdev->suspended) 5831 return 0; 5832 5833 /* Mark device as suspended */ 5834 hdev->suspended = true; 5835 5836 /* Pause discovery if not already stopped */ 5837 hci_pause_discovery_sync(hdev); 5838 5839 /* Pause other advertisements */ 5840 hci_pause_advertising_sync(hdev); 5841 5842 /* Suspend monitor filters */ 5843 hci_suspend_monitor_sync(hdev); 5844 5845 /* Prevent disconnects from causing scanning to be re-enabled */ 5846 hci_pause_scan_sync(hdev); 5847 5848 if (hci_conn_count(hdev)) { 5849 /* Soft disconnect everything (power off) */ 5850 err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF); 5851 if (err) { 5852 /* Set state to BT_RUNNING so resume doesn't notify */ 5853 hdev->suspend_state = BT_RUNNING; 5854 hci_resume_sync(hdev); 5855 return err; 5856 } 5857 5858 /* Update event mask so only the allowed event can wakeup the 5859 * host. 5860 */ 5861 hci_set_event_mask_sync(hdev); 5862 } 5863 5864 /* Only configure accept list if disconnect succeeded and wake 5865 * isn't being prevented. 5866 */ 5867 if (!hdev->wakeup || !hdev->wakeup(hdev)) { 5868 hdev->suspend_state = BT_SUSPEND_DISCONNECT; 5869 return 0; 5870 } 5871 5872 /* Unpause to take care of updating scanning params */ 5873 hdev->scanning_paused = false; 5874 5875 /* Enable event filter for paired devices */ 5876 hci_update_event_filter_sync(hdev); 5877 5878 /* Update LE passive scan if enabled */ 5879 hci_update_passive_scan_sync(hdev); 5880 5881 /* Pause scan changes again. */ 5882 hdev->scanning_paused = true; 5883 5884 hdev->suspend_state = BT_SUSPEND_CONFIGURE_WAKE; 5885 5886 return 0; 5887 } 5888 5889 /* This function resumes discovery */ 5890 static int hci_resume_discovery_sync(struct hci_dev *hdev) 5891 { 5892 int err; 5893 5894 /* If discovery not paused there nothing to do */ 5895 if (!hdev->discovery_paused) 5896 return 0; 5897 5898 hdev->discovery_paused = false; 5899 5900 hci_discovery_set_state(hdev, DISCOVERY_STARTING); 5901 5902 err = hci_start_discovery_sync(hdev); 5903 5904 hci_discovery_set_state(hdev, err ? DISCOVERY_STOPPED : 5905 DISCOVERY_FINDING); 5906 5907 return err; 5908 } 5909 5910 static void hci_resume_monitor_sync(struct hci_dev *hdev) 5911 { 5912 switch (hci_get_adv_monitor_offload_ext(hdev)) { 5913 case HCI_ADV_MONITOR_EXT_MSFT: 5914 msft_resume_sync(hdev); 5915 break; 5916 default: 5917 return; 5918 } 5919 } 5920 5921 /* This function resume scan and reset paused flag */ 5922 static int hci_resume_scan_sync(struct hci_dev *hdev) 5923 { 5924 if (!hdev->scanning_paused) 5925 return 0; 5926 5927 hdev->scanning_paused = false; 5928 5929 hci_update_scan_sync(hdev); 5930 5931 /* Reset passive scanning to normal */ 5932 hci_update_passive_scan_sync(hdev); 5933 5934 return 0; 5935 } 5936 5937 /* This function performs the HCI suspend procedures in the follow order: 5938 * 5939 * Restore event mask 5940 * Clear event filter 5941 * Update passive scanning (normal duty cycle) 5942 * Resume Directed Advertising/Advertising 5943 * Resume discovery (active scanning/inquiry) 5944 */ 5945 int hci_resume_sync(struct hci_dev *hdev) 5946 { 5947 /* If not marked as suspended there nothing to do */ 5948 if (!hdev->suspended) 5949 return 0; 5950 5951 hdev->suspended = false; 5952 5953 /* Restore event mask */ 5954 hci_set_event_mask_sync(hdev); 5955 5956 /* Clear any event filters and restore scan state */ 5957 hci_clear_event_filter_sync(hdev); 5958 5959 /* Resume scanning */ 5960 hci_resume_scan_sync(hdev); 5961 5962 /* Resume monitor filters */ 5963 hci_resume_monitor_sync(hdev); 5964 5965 /* Resume other advertisements */ 5966 hci_resume_advertising_sync(hdev); 5967 5968 /* Resume discovery */ 5969 hci_resume_discovery_sync(hdev); 5970 5971 return 0; 5972 } 5973 5974 static bool conn_use_rpa(struct hci_conn *conn) 5975 { 5976 struct hci_dev *hdev = conn->hdev; 5977 5978 return hci_dev_test_flag(hdev, HCI_PRIVACY); 5979 } 5980 5981 static int hci_le_ext_directed_advertising_sync(struct hci_dev *hdev, 5982 struct hci_conn *conn) 5983 { 5984 struct hci_cp_le_set_ext_adv_params cp; 5985 int err; 5986 bdaddr_t random_addr; 5987 u8 own_addr_type; 5988 5989 err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 5990 &own_addr_type); 5991 if (err) 5992 return err; 5993 5994 /* Set require_privacy to false so that the remote device has a 5995 * chance of identifying us. 5996 */ 5997 err = hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL, 5998 &own_addr_type, &random_addr); 5999 if (err) 6000 return err; 6001 6002 memset(&cp, 0, sizeof(cp)); 6003 6004 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND); 6005 cp.channel_map = hdev->le_adv_channel_map; 6006 cp.tx_power = HCI_TX_POWER_INVALID; 6007 cp.primary_phy = HCI_ADV_PHY_1M; 6008 cp.secondary_phy = HCI_ADV_PHY_1M; 6009 cp.handle = 0x00; /* Use instance 0 for directed adv */ 6010 cp.own_addr_type = own_addr_type; 6011 cp.peer_addr_type = conn->dst_type; 6012 bacpy(&cp.peer_addr, &conn->dst); 6013 6014 /* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for 6015 * advertising_event_property LE_LEGACY_ADV_DIRECT_IND 6016 * does not supports advertising data when the advertising set already 6017 * contains some, the controller shall return erroc code 'Invalid 6018 * HCI Command Parameters(0x12). 6019 * So it is required to remove adv set for handle 0x00. since we use 6020 * instance 0 for directed adv. 6021 */ 6022 err = hci_remove_ext_adv_instance_sync(hdev, cp.handle, NULL); 6023 if (err) 6024 return err; 6025 6026 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS, 6027 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6028 if (err) 6029 return err; 6030 6031 /* Check if random address need to be updated */ 6032 if (own_addr_type == ADDR_LE_DEV_RANDOM && 6033 bacmp(&random_addr, BDADDR_ANY) && 6034 bacmp(&random_addr, &hdev->random_addr)) { 6035 err = hci_set_adv_set_random_addr_sync(hdev, 0x00, 6036 &random_addr); 6037 if (err) 6038 return err; 6039 } 6040 6041 return hci_enable_ext_advertising_sync(hdev, 0x00); 6042 } 6043 6044 static int hci_le_directed_advertising_sync(struct hci_dev *hdev, 6045 struct hci_conn *conn) 6046 { 6047 struct hci_cp_le_set_adv_param cp; 6048 u8 status; 6049 u8 own_addr_type; 6050 u8 enable; 6051 6052 if (ext_adv_capable(hdev)) 6053 return hci_le_ext_directed_advertising_sync(hdev, conn); 6054 6055 /* Clear the HCI_LE_ADV bit temporarily so that the 6056 * hci_update_random_address knows that it's safe to go ahead 6057 * and write a new random address. The flag will be set back on 6058 * as soon as the SET_ADV_ENABLE HCI command completes. 6059 */ 6060 hci_dev_clear_flag(hdev, HCI_LE_ADV); 6061 6062 /* Set require_privacy to false so that the remote device has a 6063 * chance of identifying us. 6064 */ 6065 status = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 6066 &own_addr_type); 6067 if (status) 6068 return status; 6069 6070 memset(&cp, 0, sizeof(cp)); 6071 6072 /* Some controllers might reject command if intervals are not 6073 * within range for undirected advertising. 6074 * BCM20702A0 is known to be affected by this. 6075 */ 6076 cp.min_interval = cpu_to_le16(0x0020); 6077 cp.max_interval = cpu_to_le16(0x0020); 6078 6079 cp.type = LE_ADV_DIRECT_IND; 6080 cp.own_address_type = own_addr_type; 6081 cp.direct_addr_type = conn->dst_type; 6082 bacpy(&cp.direct_addr, &conn->dst); 6083 cp.channel_map = hdev->le_adv_channel_map; 6084 6085 status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM, 6086 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6087 if (status) 6088 return status; 6089 6090 enable = 0x01; 6091 6092 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 6093 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 6094 } 6095 6096 static void set_ext_conn_params(struct hci_conn *conn, 6097 struct hci_cp_le_ext_conn_param *p) 6098 { 6099 struct hci_dev *hdev = conn->hdev; 6100 6101 memset(p, 0, sizeof(*p)); 6102 6103 p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect); 6104 p->scan_window = cpu_to_le16(hdev->le_scan_window_connect); 6105 p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 6106 p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 6107 p->conn_latency = cpu_to_le16(conn->le_conn_latency); 6108 p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 6109 p->min_ce_len = cpu_to_le16(0x0000); 6110 p->max_ce_len = cpu_to_le16(0x0000); 6111 } 6112 6113 static int hci_le_ext_create_conn_sync(struct hci_dev *hdev, 6114 struct hci_conn *conn, u8 own_addr_type) 6115 { 6116 struct hci_cp_le_ext_create_conn *cp; 6117 struct hci_cp_le_ext_conn_param *p; 6118 u8 data[sizeof(*cp) + sizeof(*p) * 3]; 6119 u32 plen; 6120 6121 cp = (void *)data; 6122 p = (void *)cp->data; 6123 6124 memset(cp, 0, sizeof(*cp)); 6125 6126 bacpy(&cp->peer_addr, &conn->dst); 6127 cp->peer_addr_type = conn->dst_type; 6128 cp->own_addr_type = own_addr_type; 6129 6130 plen = sizeof(*cp); 6131 6132 if (scan_1m(hdev)) { 6133 cp->phys |= LE_SCAN_PHY_1M; 6134 set_ext_conn_params(conn, p); 6135 6136 p++; 6137 plen += sizeof(*p); 6138 } 6139 6140 if (scan_2m(hdev)) { 6141 cp->phys |= LE_SCAN_PHY_2M; 6142 set_ext_conn_params(conn, p); 6143 6144 p++; 6145 plen += sizeof(*p); 6146 } 6147 6148 if (scan_coded(hdev)) { 6149 cp->phys |= LE_SCAN_PHY_CODED; 6150 set_ext_conn_params(conn, p); 6151 6152 plen += sizeof(*p); 6153 } 6154 6155 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_EXT_CREATE_CONN, 6156 plen, data, 6157 HCI_EV_LE_ENHANCED_CONN_COMPLETE, 6158 conn->conn_timeout, NULL); 6159 } 6160 6161 int hci_le_create_conn_sync(struct hci_dev *hdev, struct hci_conn *conn) 6162 { 6163 struct hci_cp_le_create_conn cp; 6164 struct hci_conn_params *params; 6165 u8 own_addr_type; 6166 int err; 6167 6168 /* If requested to connect as peripheral use directed advertising */ 6169 if (conn->role == HCI_ROLE_SLAVE) { 6170 /* If we're active scanning and simultaneous roles is not 6171 * enabled simply reject the attempt. 6172 */ 6173 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) && 6174 hdev->le_scan_type == LE_SCAN_ACTIVE && 6175 !hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) { 6176 hci_conn_del(conn); 6177 return -EBUSY; 6178 } 6179 6180 /* Pause advertising while doing directed advertising. */ 6181 hci_pause_advertising_sync(hdev); 6182 6183 err = hci_le_directed_advertising_sync(hdev, conn); 6184 goto done; 6185 } 6186 6187 /* Disable advertising if simultaneous roles is not in use. */ 6188 if (!hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) 6189 hci_pause_advertising_sync(hdev); 6190 6191 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); 6192 if (params) { 6193 conn->le_conn_min_interval = params->conn_min_interval; 6194 conn->le_conn_max_interval = params->conn_max_interval; 6195 conn->le_conn_latency = params->conn_latency; 6196 conn->le_supv_timeout = params->supervision_timeout; 6197 } else { 6198 conn->le_conn_min_interval = hdev->le_conn_min_interval; 6199 conn->le_conn_max_interval = hdev->le_conn_max_interval; 6200 conn->le_conn_latency = hdev->le_conn_latency; 6201 conn->le_supv_timeout = hdev->le_supv_timeout; 6202 } 6203 6204 /* If controller is scanning, we stop it since some controllers are 6205 * not able to scan and connect at the same time. Also set the 6206 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete 6207 * handler for scan disabling knows to set the correct discovery 6208 * state. 6209 */ 6210 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 6211 hci_scan_disable_sync(hdev); 6212 hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED); 6213 } 6214 6215 /* Update random address, but set require_privacy to false so 6216 * that we never connect with an non-resolvable address. 6217 */ 6218 err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 6219 &own_addr_type); 6220 if (err) 6221 goto done; 6222 6223 if (use_ext_conn(hdev)) { 6224 err = hci_le_ext_create_conn_sync(hdev, conn, own_addr_type); 6225 goto done; 6226 } 6227 6228 memset(&cp, 0, sizeof(cp)); 6229 6230 cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect); 6231 cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect); 6232 6233 bacpy(&cp.peer_addr, &conn->dst); 6234 cp.peer_addr_type = conn->dst_type; 6235 cp.own_address_type = own_addr_type; 6236 cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 6237 cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 6238 cp.conn_latency = cpu_to_le16(conn->le_conn_latency); 6239 cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 6240 cp.min_ce_len = cpu_to_le16(0x0000); 6241 cp.max_ce_len = cpu_to_le16(0x0000); 6242 6243 /* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E page 2261: 6244 * 6245 * If this event is unmasked and the HCI_LE_Connection_Complete event 6246 * is unmasked, only the HCI_LE_Enhanced_Connection_Complete event is 6247 * sent when a new connection has been created. 6248 */ 6249 err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CONN, 6250 sizeof(cp), &cp, 6251 use_enhanced_conn_complete(hdev) ? 6252 HCI_EV_LE_ENHANCED_CONN_COMPLETE : 6253 HCI_EV_LE_CONN_COMPLETE, 6254 conn->conn_timeout, NULL); 6255 6256 done: 6257 if (err == -ETIMEDOUT) 6258 hci_le_connect_cancel_sync(hdev, conn, 0x00); 6259 6260 /* Re-enable advertising after the connection attempt is finished. */ 6261 hci_resume_advertising_sync(hdev); 6262 return err; 6263 } 6264 6265 int hci_le_create_cis_sync(struct hci_dev *hdev) 6266 { 6267 struct { 6268 struct hci_cp_le_create_cis cp; 6269 struct hci_cis cis[0x1f]; 6270 } cmd; 6271 struct hci_conn *conn; 6272 u8 cig = BT_ISO_QOS_CIG_UNSET; 6273 6274 /* The spec allows only one pending LE Create CIS command at a time. If 6275 * the command is pending now, don't do anything. We check for pending 6276 * connections after each CIS Established event. 6277 * 6278 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E 6279 * page 2566: 6280 * 6281 * If the Host issues this command before all the 6282 * HCI_LE_CIS_Established events from the previous use of the 6283 * command have been generated, the Controller shall return the 6284 * error code Command Disallowed (0x0C). 6285 * 6286 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E 6287 * page 2567: 6288 * 6289 * When the Controller receives the HCI_LE_Create_CIS command, the 6290 * Controller sends the HCI_Command_Status event to the Host. An 6291 * HCI_LE_CIS_Established event will be generated for each CIS when it 6292 * is established or if it is disconnected or considered lost before 6293 * being established; until all the events are generated, the command 6294 * remains pending. 6295 */ 6296 6297 memset(&cmd, 0, sizeof(cmd)); 6298 6299 hci_dev_lock(hdev); 6300 6301 rcu_read_lock(); 6302 6303 /* Wait until previous Create CIS has completed */ 6304 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) { 6305 if (test_bit(HCI_CONN_CREATE_CIS, &conn->flags)) 6306 goto done; 6307 } 6308 6309 /* Find CIG with all CIS ready */ 6310 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) { 6311 struct hci_conn *link; 6312 6313 if (hci_conn_check_create_cis(conn)) 6314 continue; 6315 6316 cig = conn->iso_qos.ucast.cig; 6317 6318 list_for_each_entry_rcu(link, &hdev->conn_hash.list, list) { 6319 if (hci_conn_check_create_cis(link) > 0 && 6320 link->iso_qos.ucast.cig == cig && 6321 link->state != BT_CONNECTED) { 6322 cig = BT_ISO_QOS_CIG_UNSET; 6323 break; 6324 } 6325 } 6326 6327 if (cig != BT_ISO_QOS_CIG_UNSET) 6328 break; 6329 } 6330 6331 if (cig == BT_ISO_QOS_CIG_UNSET) 6332 goto done; 6333 6334 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) { 6335 struct hci_cis *cis = &cmd.cis[cmd.cp.num_cis]; 6336 6337 if (hci_conn_check_create_cis(conn) || 6338 conn->iso_qos.ucast.cig != cig) 6339 continue; 6340 6341 set_bit(HCI_CONN_CREATE_CIS, &conn->flags); 6342 cis->acl_handle = cpu_to_le16(conn->parent->handle); 6343 cis->cis_handle = cpu_to_le16(conn->handle); 6344 cmd.cp.num_cis++; 6345 6346 if (cmd.cp.num_cis >= ARRAY_SIZE(cmd.cis)) 6347 break; 6348 } 6349 6350 done: 6351 rcu_read_unlock(); 6352 6353 hci_dev_unlock(hdev); 6354 6355 if (!cmd.cp.num_cis) 6356 return 0; 6357 6358 /* Wait for HCI_LE_CIS_Established */ 6359 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CIS, 6360 sizeof(cmd.cp) + sizeof(cmd.cis[0]) * 6361 cmd.cp.num_cis, &cmd, 6362 HCI_EVT_LE_CIS_ESTABLISHED, 6363 conn->conn_timeout, NULL); 6364 } 6365 6366 int hci_le_remove_cig_sync(struct hci_dev *hdev, u8 handle) 6367 { 6368 struct hci_cp_le_remove_cig cp; 6369 6370 memset(&cp, 0, sizeof(cp)); 6371 cp.cig_id = handle; 6372 6373 return __hci_cmd_sync_status(hdev, HCI_OP_LE_REMOVE_CIG, sizeof(cp), 6374 &cp, HCI_CMD_TIMEOUT); 6375 } 6376 6377 int hci_le_big_terminate_sync(struct hci_dev *hdev, u8 handle) 6378 { 6379 struct hci_cp_le_big_term_sync cp; 6380 6381 memset(&cp, 0, sizeof(cp)); 6382 cp.handle = handle; 6383 6384 return __hci_cmd_sync_status(hdev, HCI_OP_LE_BIG_TERM_SYNC, 6385 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6386 } 6387 6388 int hci_le_pa_terminate_sync(struct hci_dev *hdev, u16 handle) 6389 { 6390 struct hci_cp_le_pa_term_sync cp; 6391 6392 memset(&cp, 0, sizeof(cp)); 6393 cp.handle = cpu_to_le16(handle); 6394 6395 return __hci_cmd_sync_status(hdev, HCI_OP_LE_PA_TERM_SYNC, 6396 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6397 } 6398 6399 int hci_get_random_address(struct hci_dev *hdev, bool require_privacy, 6400 bool use_rpa, struct adv_info *adv_instance, 6401 u8 *own_addr_type, bdaddr_t *rand_addr) 6402 { 6403 int err; 6404 6405 bacpy(rand_addr, BDADDR_ANY); 6406 6407 /* If privacy is enabled use a resolvable private address. If 6408 * current RPA has expired then generate a new one. 6409 */ 6410 if (use_rpa) { 6411 /* If Controller supports LL Privacy use own address type is 6412 * 0x03 6413 */ 6414 if (use_ll_privacy(hdev)) 6415 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED; 6416 else 6417 *own_addr_type = ADDR_LE_DEV_RANDOM; 6418 6419 if (adv_instance) { 6420 if (adv_rpa_valid(adv_instance)) 6421 return 0; 6422 } else { 6423 if (rpa_valid(hdev)) 6424 return 0; 6425 } 6426 6427 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); 6428 if (err < 0) { 6429 bt_dev_err(hdev, "failed to generate new RPA"); 6430 return err; 6431 } 6432 6433 bacpy(rand_addr, &hdev->rpa); 6434 6435 return 0; 6436 } 6437 6438 /* In case of required privacy without resolvable private address, 6439 * use an non-resolvable private address. This is useful for 6440 * non-connectable advertising. 6441 */ 6442 if (require_privacy) { 6443 bdaddr_t nrpa; 6444 6445 while (true) { 6446 /* The non-resolvable private address is generated 6447 * from random six bytes with the two most significant 6448 * bits cleared. 6449 */ 6450 get_random_bytes(&nrpa, 6); 6451 nrpa.b[5] &= 0x3f; 6452 6453 /* The non-resolvable private address shall not be 6454 * equal to the public address. 6455 */ 6456 if (bacmp(&hdev->bdaddr, &nrpa)) 6457 break; 6458 } 6459 6460 *own_addr_type = ADDR_LE_DEV_RANDOM; 6461 bacpy(rand_addr, &nrpa); 6462 6463 return 0; 6464 } 6465 6466 /* No privacy so use a public address. */ 6467 *own_addr_type = ADDR_LE_DEV_PUBLIC; 6468 6469 return 0; 6470 } 6471 6472 static int _update_adv_data_sync(struct hci_dev *hdev, void *data) 6473 { 6474 u8 instance = PTR_UINT(data); 6475 6476 return hci_update_adv_data_sync(hdev, instance); 6477 } 6478 6479 int hci_update_adv_data(struct hci_dev *hdev, u8 instance) 6480 { 6481 return hci_cmd_sync_queue(hdev, _update_adv_data_sync, 6482 UINT_PTR(instance), NULL); 6483 } 6484