1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * BlueZ - Bluetooth protocol stack for Linux 4 * 5 * Copyright (C) 2021 Intel Corporation 6 * Copyright 2023 NXP 7 */ 8 9 #include <linux/property.h> 10 11 #include <net/bluetooth/bluetooth.h> 12 #include <net/bluetooth/hci_core.h> 13 #include <net/bluetooth/mgmt.h> 14 15 #include "hci_codec.h" 16 #include "hci_debugfs.h" 17 #include "smp.h" 18 #include "eir.h" 19 #include "msft.h" 20 #include "aosp.h" 21 #include "leds.h" 22 23 static void hci_cmd_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode, 24 struct sk_buff *skb) 25 { 26 bt_dev_dbg(hdev, "result 0x%2.2x", result); 27 28 if (hdev->req_status != HCI_REQ_PEND) 29 return; 30 31 hdev->req_result = result; 32 hdev->req_status = HCI_REQ_DONE; 33 34 /* Free the request command so it is not used as response */ 35 kfree_skb(hdev->req_skb); 36 hdev->req_skb = NULL; 37 38 if (skb) { 39 struct sock *sk = hci_skb_sk(skb); 40 41 /* Drop sk reference if set */ 42 if (sk) 43 sock_put(sk); 44 45 hdev->req_rsp = skb_get(skb); 46 } 47 48 wake_up_interruptible(&hdev->req_wait_q); 49 } 50 51 struct sk_buff *hci_cmd_sync_alloc(struct hci_dev *hdev, u16 opcode, u32 plen, 52 const void *param, struct sock *sk) 53 { 54 int len = HCI_COMMAND_HDR_SIZE + plen; 55 struct hci_command_hdr *hdr; 56 struct sk_buff *skb; 57 58 skb = bt_skb_alloc(len, GFP_ATOMIC); 59 if (!skb) 60 return NULL; 61 62 hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE); 63 hdr->opcode = cpu_to_le16(opcode); 64 hdr->plen = plen; 65 66 if (plen) 67 skb_put_data(skb, param, plen); 68 69 bt_dev_dbg(hdev, "skb len %d", skb->len); 70 71 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; 72 hci_skb_opcode(skb) = opcode; 73 74 /* Grab a reference if command needs to be associated with a sock (e.g. 75 * likely mgmt socket that initiated the command). 76 */ 77 if (sk) { 78 hci_skb_sk(skb) = sk; 79 sock_hold(sk); 80 } 81 82 return skb; 83 } 84 85 static void hci_cmd_sync_add(struct hci_request *req, u16 opcode, u32 plen, 86 const void *param, u8 event, struct sock *sk) 87 { 88 struct hci_dev *hdev = req->hdev; 89 struct sk_buff *skb; 90 91 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); 92 93 /* If an error occurred during request building, there is no point in 94 * queueing the HCI command. We can simply return. 95 */ 96 if (req->err) 97 return; 98 99 skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, sk); 100 if (!skb) { 101 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)", 102 opcode); 103 req->err = -ENOMEM; 104 return; 105 } 106 107 if (skb_queue_empty(&req->cmd_q)) 108 bt_cb(skb)->hci.req_flags |= HCI_REQ_START; 109 110 hci_skb_event(skb) = event; 111 112 skb_queue_tail(&req->cmd_q, skb); 113 } 114 115 static int hci_cmd_sync_run(struct hci_request *req) 116 { 117 struct hci_dev *hdev = req->hdev; 118 struct sk_buff *skb; 119 unsigned long flags; 120 121 bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q)); 122 123 /* If an error occurred during request building, remove all HCI 124 * commands queued on the HCI request queue. 125 */ 126 if (req->err) { 127 skb_queue_purge(&req->cmd_q); 128 return req->err; 129 } 130 131 /* Do not allow empty requests */ 132 if (skb_queue_empty(&req->cmd_q)) 133 return -ENODATA; 134 135 skb = skb_peek_tail(&req->cmd_q); 136 bt_cb(skb)->hci.req_complete_skb = hci_cmd_sync_complete; 137 bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB; 138 139 spin_lock_irqsave(&hdev->cmd_q.lock, flags); 140 skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q); 141 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); 142 143 queue_work(hdev->workqueue, &hdev->cmd_work); 144 145 return 0; 146 } 147 148 static void hci_request_init(struct hci_request *req, struct hci_dev *hdev) 149 { 150 skb_queue_head_init(&req->cmd_q); 151 req->hdev = hdev; 152 req->err = 0; 153 } 154 155 /* This function requires the caller holds hdev->req_lock. */ 156 struct sk_buff *__hci_cmd_sync_sk(struct hci_dev *hdev, u16 opcode, u32 plen, 157 const void *param, u8 event, u32 timeout, 158 struct sock *sk) 159 { 160 struct hci_request req; 161 struct sk_buff *skb; 162 int err = 0; 163 164 bt_dev_dbg(hdev, "Opcode 0x%4.4x", opcode); 165 166 hci_request_init(&req, hdev); 167 168 hci_cmd_sync_add(&req, opcode, plen, param, event, sk); 169 170 hdev->req_status = HCI_REQ_PEND; 171 172 err = hci_cmd_sync_run(&req); 173 if (err < 0) 174 return ERR_PTR(err); 175 176 err = wait_event_interruptible_timeout(hdev->req_wait_q, 177 hdev->req_status != HCI_REQ_PEND, 178 timeout); 179 180 if (err == -ERESTARTSYS) 181 return ERR_PTR(-EINTR); 182 183 switch (hdev->req_status) { 184 case HCI_REQ_DONE: 185 err = -bt_to_errno(hdev->req_result); 186 break; 187 188 case HCI_REQ_CANCELED: 189 err = -hdev->req_result; 190 break; 191 192 default: 193 err = -ETIMEDOUT; 194 break; 195 } 196 197 hdev->req_status = 0; 198 hdev->req_result = 0; 199 skb = hdev->req_rsp; 200 hdev->req_rsp = NULL; 201 202 bt_dev_dbg(hdev, "end: err %d", err); 203 204 if (err < 0) { 205 kfree_skb(skb); 206 return ERR_PTR(err); 207 } 208 209 return skb; 210 } 211 EXPORT_SYMBOL(__hci_cmd_sync_sk); 212 213 /* This function requires the caller holds hdev->req_lock. */ 214 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 215 const void *param, u32 timeout) 216 { 217 return __hci_cmd_sync_sk(hdev, opcode, plen, param, 0, timeout, NULL); 218 } 219 EXPORT_SYMBOL(__hci_cmd_sync); 220 221 /* Send HCI command and wait for command complete event */ 222 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 223 const void *param, u32 timeout) 224 { 225 struct sk_buff *skb; 226 227 if (!test_bit(HCI_UP, &hdev->flags)) 228 return ERR_PTR(-ENETDOWN); 229 230 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); 231 232 hci_req_sync_lock(hdev); 233 skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout); 234 hci_req_sync_unlock(hdev); 235 236 return skb; 237 } 238 EXPORT_SYMBOL(hci_cmd_sync); 239 240 /* This function requires the caller holds hdev->req_lock. */ 241 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen, 242 const void *param, u8 event, u32 timeout) 243 { 244 return __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, 245 NULL); 246 } 247 EXPORT_SYMBOL(__hci_cmd_sync_ev); 248 249 /* This function requires the caller holds hdev->req_lock. */ 250 int __hci_cmd_sync_status_sk(struct hci_dev *hdev, u16 opcode, u32 plen, 251 const void *param, u8 event, u32 timeout, 252 struct sock *sk) 253 { 254 struct sk_buff *skb; 255 u8 status; 256 257 skb = __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, sk); 258 if (IS_ERR(skb)) { 259 if (!event) 260 bt_dev_err(hdev, "Opcode 0x%4.4x failed: %ld", opcode, 261 PTR_ERR(skb)); 262 return PTR_ERR(skb); 263 } 264 265 /* If command return a status event skb will be set to NULL as there are 266 * no parameters, in case of failure IS_ERR(skb) would have be set to 267 * the actual error would be found with PTR_ERR(skb). 268 */ 269 if (!skb) 270 return 0; 271 272 status = skb->data[0]; 273 274 kfree_skb(skb); 275 276 return status; 277 } 278 EXPORT_SYMBOL(__hci_cmd_sync_status_sk); 279 280 int __hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen, 281 const void *param, u32 timeout) 282 { 283 return __hci_cmd_sync_status_sk(hdev, opcode, plen, param, 0, timeout, 284 NULL); 285 } 286 EXPORT_SYMBOL(__hci_cmd_sync_status); 287 288 int hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen, 289 const void *param, u32 timeout) 290 { 291 int err; 292 293 hci_req_sync_lock(hdev); 294 err = __hci_cmd_sync_status(hdev, opcode, plen, param, timeout); 295 hci_req_sync_unlock(hdev); 296 297 return err; 298 } 299 EXPORT_SYMBOL(hci_cmd_sync_status); 300 301 static void hci_cmd_sync_work(struct work_struct *work) 302 { 303 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_work); 304 305 bt_dev_dbg(hdev, ""); 306 307 /* Dequeue all entries and run them */ 308 while (1) { 309 struct hci_cmd_sync_work_entry *entry; 310 311 mutex_lock(&hdev->cmd_sync_work_lock); 312 entry = list_first_entry_or_null(&hdev->cmd_sync_work_list, 313 struct hci_cmd_sync_work_entry, 314 list); 315 if (entry) 316 list_del(&entry->list); 317 mutex_unlock(&hdev->cmd_sync_work_lock); 318 319 if (!entry) 320 break; 321 322 bt_dev_dbg(hdev, "entry %p", entry); 323 324 if (entry->func) { 325 int err; 326 327 hci_req_sync_lock(hdev); 328 err = entry->func(hdev, entry->data); 329 if (entry->destroy) 330 entry->destroy(hdev, entry->data, err); 331 hci_req_sync_unlock(hdev); 332 } 333 334 kfree(entry); 335 } 336 } 337 338 static void hci_cmd_sync_cancel_work(struct work_struct *work) 339 { 340 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_cancel_work); 341 342 cancel_delayed_work_sync(&hdev->cmd_timer); 343 cancel_delayed_work_sync(&hdev->ncmd_timer); 344 atomic_set(&hdev->cmd_cnt, 1); 345 346 wake_up_interruptible(&hdev->req_wait_q); 347 } 348 349 static int hci_scan_disable_sync(struct hci_dev *hdev); 350 static int scan_disable_sync(struct hci_dev *hdev, void *data) 351 { 352 return hci_scan_disable_sync(hdev); 353 } 354 355 static int interleaved_inquiry_sync(struct hci_dev *hdev, void *data) 356 { 357 return hci_inquiry_sync(hdev, DISCOV_INTERLEAVED_INQUIRY_LEN, 0); 358 } 359 360 static void le_scan_disable(struct work_struct *work) 361 { 362 struct hci_dev *hdev = container_of(work, struct hci_dev, 363 le_scan_disable.work); 364 int status; 365 366 bt_dev_dbg(hdev, ""); 367 hci_dev_lock(hdev); 368 369 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 370 goto _return; 371 372 status = hci_cmd_sync_queue(hdev, scan_disable_sync, NULL, NULL); 373 if (status) { 374 bt_dev_err(hdev, "failed to disable LE scan: %d", status); 375 goto _return; 376 } 377 378 /* If we were running LE only scan, change discovery state. If 379 * we were running both LE and BR/EDR inquiry simultaneously, 380 * and BR/EDR inquiry is already finished, stop discovery, 381 * otherwise BR/EDR inquiry will stop discovery when finished. 382 * If we will resolve remote device name, do not change 383 * discovery state. 384 */ 385 386 if (hdev->discovery.type == DISCOV_TYPE_LE) 387 goto discov_stopped; 388 389 if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED) 390 goto _return; 391 392 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) { 393 if (!test_bit(HCI_INQUIRY, &hdev->flags) && 394 hdev->discovery.state != DISCOVERY_RESOLVING) 395 goto discov_stopped; 396 397 goto _return; 398 } 399 400 status = hci_cmd_sync_queue(hdev, interleaved_inquiry_sync, NULL, NULL); 401 if (status) { 402 bt_dev_err(hdev, "inquiry failed: status %d", status); 403 goto discov_stopped; 404 } 405 406 goto _return; 407 408 discov_stopped: 409 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 410 411 _return: 412 hci_dev_unlock(hdev); 413 } 414 415 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val, 416 u8 filter_dup); 417 418 static int reenable_adv_sync(struct hci_dev *hdev, void *data) 419 { 420 bt_dev_dbg(hdev, ""); 421 422 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) && 423 list_empty(&hdev->adv_instances)) 424 return 0; 425 426 if (hdev->cur_adv_instance) { 427 return hci_schedule_adv_instance_sync(hdev, 428 hdev->cur_adv_instance, 429 true); 430 } else { 431 if (ext_adv_capable(hdev)) { 432 hci_start_ext_adv_sync(hdev, 0x00); 433 } else { 434 hci_update_adv_data_sync(hdev, 0x00); 435 hci_update_scan_rsp_data_sync(hdev, 0x00); 436 hci_enable_advertising_sync(hdev); 437 } 438 } 439 440 return 0; 441 } 442 443 static void reenable_adv(struct work_struct *work) 444 { 445 struct hci_dev *hdev = container_of(work, struct hci_dev, 446 reenable_adv_work); 447 int status; 448 449 bt_dev_dbg(hdev, ""); 450 451 hci_dev_lock(hdev); 452 453 status = hci_cmd_sync_queue(hdev, reenable_adv_sync, NULL, NULL); 454 if (status) 455 bt_dev_err(hdev, "failed to reenable ADV: %d", status); 456 457 hci_dev_unlock(hdev); 458 } 459 460 static void cancel_adv_timeout(struct hci_dev *hdev) 461 { 462 if (hdev->adv_instance_timeout) { 463 hdev->adv_instance_timeout = 0; 464 cancel_delayed_work(&hdev->adv_instance_expire); 465 } 466 } 467 468 /* For a single instance: 469 * - force == true: The instance will be removed even when its remaining 470 * lifetime is not zero. 471 * - force == false: the instance will be deactivated but kept stored unless 472 * the remaining lifetime is zero. 473 * 474 * For instance == 0x00: 475 * - force == true: All instances will be removed regardless of their timeout 476 * setting. 477 * - force == false: Only instances that have a timeout will be removed. 478 */ 479 int hci_clear_adv_instance_sync(struct hci_dev *hdev, struct sock *sk, 480 u8 instance, bool force) 481 { 482 struct adv_info *adv_instance, *n, *next_instance = NULL; 483 int err; 484 u8 rem_inst; 485 486 /* Cancel any timeout concerning the removed instance(s). */ 487 if (!instance || hdev->cur_adv_instance == instance) 488 cancel_adv_timeout(hdev); 489 490 /* Get the next instance to advertise BEFORE we remove 491 * the current one. This can be the same instance again 492 * if there is only one instance. 493 */ 494 if (instance && hdev->cur_adv_instance == instance) 495 next_instance = hci_get_next_instance(hdev, instance); 496 497 if (instance == 0x00) { 498 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, 499 list) { 500 if (!(force || adv_instance->timeout)) 501 continue; 502 503 rem_inst = adv_instance->instance; 504 err = hci_remove_adv_instance(hdev, rem_inst); 505 if (!err) 506 mgmt_advertising_removed(sk, hdev, rem_inst); 507 } 508 } else { 509 adv_instance = hci_find_adv_instance(hdev, instance); 510 511 if (force || (adv_instance && adv_instance->timeout && 512 !adv_instance->remaining_time)) { 513 /* Don't advertise a removed instance. */ 514 if (next_instance && 515 next_instance->instance == instance) 516 next_instance = NULL; 517 518 err = hci_remove_adv_instance(hdev, instance); 519 if (!err) 520 mgmt_advertising_removed(sk, hdev, instance); 521 } 522 } 523 524 if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING)) 525 return 0; 526 527 if (next_instance && !ext_adv_capable(hdev)) 528 return hci_schedule_adv_instance_sync(hdev, 529 next_instance->instance, 530 false); 531 532 return 0; 533 } 534 535 static int adv_timeout_expire_sync(struct hci_dev *hdev, void *data) 536 { 537 u8 instance = *(u8 *)data; 538 539 kfree(data); 540 541 hci_clear_adv_instance_sync(hdev, NULL, instance, false); 542 543 if (list_empty(&hdev->adv_instances)) 544 return hci_disable_advertising_sync(hdev); 545 546 return 0; 547 } 548 549 static void adv_timeout_expire(struct work_struct *work) 550 { 551 u8 *inst_ptr; 552 struct hci_dev *hdev = container_of(work, struct hci_dev, 553 adv_instance_expire.work); 554 555 bt_dev_dbg(hdev, ""); 556 557 hci_dev_lock(hdev); 558 559 hdev->adv_instance_timeout = 0; 560 561 if (hdev->cur_adv_instance == 0x00) 562 goto unlock; 563 564 inst_ptr = kmalloc(1, GFP_KERNEL); 565 if (!inst_ptr) 566 goto unlock; 567 568 *inst_ptr = hdev->cur_adv_instance; 569 hci_cmd_sync_queue(hdev, adv_timeout_expire_sync, inst_ptr, NULL); 570 571 unlock: 572 hci_dev_unlock(hdev); 573 } 574 575 static bool is_interleave_scanning(struct hci_dev *hdev) 576 { 577 return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE; 578 } 579 580 static int hci_passive_scan_sync(struct hci_dev *hdev); 581 582 static void interleave_scan_work(struct work_struct *work) 583 { 584 struct hci_dev *hdev = container_of(work, struct hci_dev, 585 interleave_scan.work); 586 unsigned long timeout; 587 588 if (hdev->interleave_scan_state == INTERLEAVE_SCAN_ALLOWLIST) { 589 timeout = msecs_to_jiffies(hdev->advmon_allowlist_duration); 590 } else if (hdev->interleave_scan_state == INTERLEAVE_SCAN_NO_FILTER) { 591 timeout = msecs_to_jiffies(hdev->advmon_no_filter_duration); 592 } else { 593 bt_dev_err(hdev, "unexpected error"); 594 return; 595 } 596 597 hci_passive_scan_sync(hdev); 598 599 hci_dev_lock(hdev); 600 601 switch (hdev->interleave_scan_state) { 602 case INTERLEAVE_SCAN_ALLOWLIST: 603 bt_dev_dbg(hdev, "next state: allowlist"); 604 hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER; 605 break; 606 case INTERLEAVE_SCAN_NO_FILTER: 607 bt_dev_dbg(hdev, "next state: no filter"); 608 hdev->interleave_scan_state = INTERLEAVE_SCAN_ALLOWLIST; 609 break; 610 case INTERLEAVE_SCAN_NONE: 611 bt_dev_err(hdev, "unexpected error"); 612 } 613 614 hci_dev_unlock(hdev); 615 616 /* Don't continue interleaving if it was canceled */ 617 if (is_interleave_scanning(hdev)) 618 queue_delayed_work(hdev->req_workqueue, 619 &hdev->interleave_scan, timeout); 620 } 621 622 void hci_cmd_sync_init(struct hci_dev *hdev) 623 { 624 INIT_WORK(&hdev->cmd_sync_work, hci_cmd_sync_work); 625 INIT_LIST_HEAD(&hdev->cmd_sync_work_list); 626 mutex_init(&hdev->cmd_sync_work_lock); 627 mutex_init(&hdev->unregister_lock); 628 629 INIT_WORK(&hdev->cmd_sync_cancel_work, hci_cmd_sync_cancel_work); 630 INIT_WORK(&hdev->reenable_adv_work, reenable_adv); 631 INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable); 632 INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire); 633 INIT_DELAYED_WORK(&hdev->interleave_scan, interleave_scan_work); 634 } 635 636 static void _hci_cmd_sync_cancel_entry(struct hci_dev *hdev, 637 struct hci_cmd_sync_work_entry *entry, 638 int err) 639 { 640 if (entry->destroy) 641 entry->destroy(hdev, entry->data, err); 642 643 list_del(&entry->list); 644 kfree(entry); 645 } 646 647 void hci_cmd_sync_clear(struct hci_dev *hdev) 648 { 649 struct hci_cmd_sync_work_entry *entry, *tmp; 650 651 cancel_work_sync(&hdev->cmd_sync_work); 652 cancel_work_sync(&hdev->reenable_adv_work); 653 654 mutex_lock(&hdev->cmd_sync_work_lock); 655 list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) 656 _hci_cmd_sync_cancel_entry(hdev, entry, -ECANCELED); 657 mutex_unlock(&hdev->cmd_sync_work_lock); 658 } 659 660 void hci_cmd_sync_cancel(struct hci_dev *hdev, int err) 661 { 662 bt_dev_dbg(hdev, "err 0x%2.2x", err); 663 664 if (hdev->req_status == HCI_REQ_PEND) { 665 hdev->req_result = err; 666 hdev->req_status = HCI_REQ_CANCELED; 667 668 queue_work(hdev->workqueue, &hdev->cmd_sync_cancel_work); 669 } 670 } 671 EXPORT_SYMBOL(hci_cmd_sync_cancel); 672 673 /* Cancel ongoing command request synchronously: 674 * 675 * - Set result and mark status to HCI_REQ_CANCELED 676 * - Wakeup command sync thread 677 */ 678 void hci_cmd_sync_cancel_sync(struct hci_dev *hdev, int err) 679 { 680 bt_dev_dbg(hdev, "err 0x%2.2x", err); 681 682 if (hdev->req_status == HCI_REQ_PEND) { 683 /* req_result is __u32 so error must be positive to be properly 684 * propagated. 685 */ 686 hdev->req_result = err < 0 ? -err : err; 687 hdev->req_status = HCI_REQ_CANCELED; 688 689 wake_up_interruptible(&hdev->req_wait_q); 690 } 691 } 692 EXPORT_SYMBOL(hci_cmd_sync_cancel_sync); 693 694 /* Submit HCI command to be run in as cmd_sync_work: 695 * 696 * - hdev must _not_ be unregistered 697 */ 698 int hci_cmd_sync_submit(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 699 void *data, hci_cmd_sync_work_destroy_t destroy) 700 { 701 struct hci_cmd_sync_work_entry *entry; 702 int err = 0; 703 704 mutex_lock(&hdev->unregister_lock); 705 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 706 err = -ENODEV; 707 goto unlock; 708 } 709 710 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 711 if (!entry) { 712 err = -ENOMEM; 713 goto unlock; 714 } 715 entry->func = func; 716 entry->data = data; 717 entry->destroy = destroy; 718 719 mutex_lock(&hdev->cmd_sync_work_lock); 720 list_add_tail(&entry->list, &hdev->cmd_sync_work_list); 721 mutex_unlock(&hdev->cmd_sync_work_lock); 722 723 queue_work(hdev->req_workqueue, &hdev->cmd_sync_work); 724 725 unlock: 726 mutex_unlock(&hdev->unregister_lock); 727 return err; 728 } 729 EXPORT_SYMBOL(hci_cmd_sync_submit); 730 731 /* Queue HCI command: 732 * 733 * - hdev must be running 734 */ 735 int hci_cmd_sync_queue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 736 void *data, hci_cmd_sync_work_destroy_t destroy) 737 { 738 /* Only queue command if hdev is running which means it had been opened 739 * and is either on init phase or is already up. 740 */ 741 if (!test_bit(HCI_RUNNING, &hdev->flags)) 742 return -ENETDOWN; 743 744 return hci_cmd_sync_submit(hdev, func, data, destroy); 745 } 746 EXPORT_SYMBOL(hci_cmd_sync_queue); 747 748 static struct hci_cmd_sync_work_entry * 749 _hci_cmd_sync_lookup_entry(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 750 void *data, hci_cmd_sync_work_destroy_t destroy) 751 { 752 struct hci_cmd_sync_work_entry *entry, *tmp; 753 754 list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) { 755 if (func && entry->func != func) 756 continue; 757 758 if (data && entry->data != data) 759 continue; 760 761 if (destroy && entry->destroy != destroy) 762 continue; 763 764 return entry; 765 } 766 767 return NULL; 768 } 769 770 /* Queue HCI command entry once: 771 * 772 * - Lookup if an entry already exist and only if it doesn't creates a new entry 773 * and queue it. 774 */ 775 int hci_cmd_sync_queue_once(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 776 void *data, hci_cmd_sync_work_destroy_t destroy) 777 { 778 if (hci_cmd_sync_lookup_entry(hdev, func, data, destroy)) 779 return 0; 780 781 return hci_cmd_sync_queue(hdev, func, data, destroy); 782 } 783 EXPORT_SYMBOL(hci_cmd_sync_queue_once); 784 785 /* Lookup HCI command entry: 786 * 787 * - Return first entry that matches by function callback or data or 788 * destroy callback. 789 */ 790 struct hci_cmd_sync_work_entry * 791 hci_cmd_sync_lookup_entry(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 792 void *data, hci_cmd_sync_work_destroy_t destroy) 793 { 794 struct hci_cmd_sync_work_entry *entry; 795 796 mutex_lock(&hdev->cmd_sync_work_lock); 797 entry = _hci_cmd_sync_lookup_entry(hdev, func, data, destroy); 798 mutex_unlock(&hdev->cmd_sync_work_lock); 799 800 return entry; 801 } 802 EXPORT_SYMBOL(hci_cmd_sync_lookup_entry); 803 804 /* Cancel HCI command entry */ 805 void hci_cmd_sync_cancel_entry(struct hci_dev *hdev, 806 struct hci_cmd_sync_work_entry *entry) 807 { 808 mutex_lock(&hdev->cmd_sync_work_lock); 809 _hci_cmd_sync_cancel_entry(hdev, entry, -ECANCELED); 810 mutex_unlock(&hdev->cmd_sync_work_lock); 811 } 812 EXPORT_SYMBOL(hci_cmd_sync_cancel_entry); 813 814 /* Dequeue one HCI command entry: 815 * 816 * - Lookup and cancel first entry that matches. 817 */ 818 bool hci_cmd_sync_dequeue_once(struct hci_dev *hdev, 819 hci_cmd_sync_work_func_t func, 820 void *data, hci_cmd_sync_work_destroy_t destroy) 821 { 822 struct hci_cmd_sync_work_entry *entry; 823 824 entry = hci_cmd_sync_lookup_entry(hdev, func, data, destroy); 825 if (!entry) 826 return false; 827 828 hci_cmd_sync_cancel_entry(hdev, entry); 829 830 return true; 831 } 832 EXPORT_SYMBOL(hci_cmd_sync_dequeue_once); 833 834 /* Dequeue HCI command entry: 835 * 836 * - Lookup and cancel any entry that matches by function callback or data or 837 * destroy callback. 838 */ 839 bool hci_cmd_sync_dequeue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 840 void *data, hci_cmd_sync_work_destroy_t destroy) 841 { 842 struct hci_cmd_sync_work_entry *entry; 843 bool ret = false; 844 845 mutex_lock(&hdev->cmd_sync_work_lock); 846 while ((entry = _hci_cmd_sync_lookup_entry(hdev, func, data, 847 destroy))) { 848 _hci_cmd_sync_cancel_entry(hdev, entry, -ECANCELED); 849 ret = true; 850 } 851 mutex_unlock(&hdev->cmd_sync_work_lock); 852 853 return ret; 854 } 855 EXPORT_SYMBOL(hci_cmd_sync_dequeue); 856 857 int hci_update_eir_sync(struct hci_dev *hdev) 858 { 859 struct hci_cp_write_eir cp; 860 861 bt_dev_dbg(hdev, ""); 862 863 if (!hdev_is_powered(hdev)) 864 return 0; 865 866 if (!lmp_ext_inq_capable(hdev)) 867 return 0; 868 869 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 870 return 0; 871 872 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 873 return 0; 874 875 memset(&cp, 0, sizeof(cp)); 876 877 eir_create(hdev, cp.data); 878 879 if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0) 880 return 0; 881 882 memcpy(hdev->eir, cp.data, sizeof(cp.data)); 883 884 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp, 885 HCI_CMD_TIMEOUT); 886 } 887 888 static u8 get_service_classes(struct hci_dev *hdev) 889 { 890 struct bt_uuid *uuid; 891 u8 val = 0; 892 893 list_for_each_entry(uuid, &hdev->uuids, list) 894 val |= uuid->svc_hint; 895 896 return val; 897 } 898 899 int hci_update_class_sync(struct hci_dev *hdev) 900 { 901 u8 cod[3]; 902 903 bt_dev_dbg(hdev, ""); 904 905 if (!hdev_is_powered(hdev)) 906 return 0; 907 908 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 909 return 0; 910 911 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 912 return 0; 913 914 cod[0] = hdev->minor_class; 915 cod[1] = hdev->major_class; 916 cod[2] = get_service_classes(hdev); 917 918 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) 919 cod[1] |= 0x20; 920 921 if (memcmp(cod, hdev->dev_class, 3) == 0) 922 return 0; 923 924 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CLASS_OF_DEV, 925 sizeof(cod), cod, HCI_CMD_TIMEOUT); 926 } 927 928 static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable) 929 { 930 /* If there is no connection we are OK to advertise. */ 931 if (hci_conn_num(hdev, LE_LINK) == 0) 932 return true; 933 934 /* Check le_states if there is any connection in peripheral role. */ 935 if (hdev->conn_hash.le_num_peripheral > 0) { 936 /* Peripheral connection state and non connectable mode 937 * bit 20. 938 */ 939 if (!connectable && !(hdev->le_states[2] & 0x10)) 940 return false; 941 942 /* Peripheral connection state and connectable mode bit 38 943 * and scannable bit 21. 944 */ 945 if (connectable && (!(hdev->le_states[4] & 0x40) || 946 !(hdev->le_states[2] & 0x20))) 947 return false; 948 } 949 950 /* Check le_states if there is any connection in central role. */ 951 if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) { 952 /* Central connection state and non connectable mode bit 18. */ 953 if (!connectable && !(hdev->le_states[2] & 0x02)) 954 return false; 955 956 /* Central connection state and connectable mode bit 35 and 957 * scannable 19. 958 */ 959 if (connectable && (!(hdev->le_states[4] & 0x08) || 960 !(hdev->le_states[2] & 0x08))) 961 return false; 962 } 963 964 return true; 965 } 966 967 static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags) 968 { 969 /* If privacy is not enabled don't use RPA */ 970 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 971 return false; 972 973 /* If basic privacy mode is enabled use RPA */ 974 if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) 975 return true; 976 977 /* If limited privacy mode is enabled don't use RPA if we're 978 * both discoverable and bondable. 979 */ 980 if ((flags & MGMT_ADV_FLAG_DISCOV) && 981 hci_dev_test_flag(hdev, HCI_BONDABLE)) 982 return false; 983 984 /* We're neither bondable nor discoverable in the limited 985 * privacy mode, therefore use RPA. 986 */ 987 return true; 988 } 989 990 static int hci_set_random_addr_sync(struct hci_dev *hdev, bdaddr_t *rpa) 991 { 992 /* If we're advertising or initiating an LE connection we can't 993 * go ahead and change the random address at this time. This is 994 * because the eventual initiator address used for the 995 * subsequently created connection will be undefined (some 996 * controllers use the new address and others the one we had 997 * when the operation started). 998 * 999 * In this kind of scenario skip the update and let the random 1000 * address be updated at the next cycle. 1001 */ 1002 if (hci_dev_test_flag(hdev, HCI_LE_ADV) || 1003 hci_lookup_le_connect(hdev)) { 1004 bt_dev_dbg(hdev, "Deferring random address update"); 1005 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 1006 return 0; 1007 } 1008 1009 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RANDOM_ADDR, 1010 6, rpa, HCI_CMD_TIMEOUT); 1011 } 1012 1013 int hci_update_random_address_sync(struct hci_dev *hdev, bool require_privacy, 1014 bool rpa, u8 *own_addr_type) 1015 { 1016 int err; 1017 1018 /* If privacy is enabled use a resolvable private address. If 1019 * current RPA has expired or there is something else than 1020 * the current RPA in use, then generate a new one. 1021 */ 1022 if (rpa) { 1023 /* If Controller supports LL Privacy use own address type is 1024 * 0x03 1025 */ 1026 if (use_ll_privacy(hdev)) 1027 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED; 1028 else 1029 *own_addr_type = ADDR_LE_DEV_RANDOM; 1030 1031 /* Check if RPA is valid */ 1032 if (rpa_valid(hdev)) 1033 return 0; 1034 1035 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); 1036 if (err < 0) { 1037 bt_dev_err(hdev, "failed to generate new RPA"); 1038 return err; 1039 } 1040 1041 err = hci_set_random_addr_sync(hdev, &hdev->rpa); 1042 if (err) 1043 return err; 1044 1045 return 0; 1046 } 1047 1048 /* In case of required privacy without resolvable private address, 1049 * use an non-resolvable private address. This is useful for active 1050 * scanning and non-connectable advertising. 1051 */ 1052 if (require_privacy) { 1053 bdaddr_t nrpa; 1054 1055 while (true) { 1056 /* The non-resolvable private address is generated 1057 * from random six bytes with the two most significant 1058 * bits cleared. 1059 */ 1060 get_random_bytes(&nrpa, 6); 1061 nrpa.b[5] &= 0x3f; 1062 1063 /* The non-resolvable private address shall not be 1064 * equal to the public address. 1065 */ 1066 if (bacmp(&hdev->bdaddr, &nrpa)) 1067 break; 1068 } 1069 1070 *own_addr_type = ADDR_LE_DEV_RANDOM; 1071 1072 return hci_set_random_addr_sync(hdev, &nrpa); 1073 } 1074 1075 /* If forcing static address is in use or there is no public 1076 * address use the static address as random address (but skip 1077 * the HCI command if the current random address is already the 1078 * static one. 1079 * 1080 * In case BR/EDR has been disabled on a dual-mode controller 1081 * and a static address has been configured, then use that 1082 * address instead of the public BR/EDR address. 1083 */ 1084 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 1085 !bacmp(&hdev->bdaddr, BDADDR_ANY) || 1086 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && 1087 bacmp(&hdev->static_addr, BDADDR_ANY))) { 1088 *own_addr_type = ADDR_LE_DEV_RANDOM; 1089 if (bacmp(&hdev->static_addr, &hdev->random_addr)) 1090 return hci_set_random_addr_sync(hdev, 1091 &hdev->static_addr); 1092 return 0; 1093 } 1094 1095 /* Neither privacy nor static address is being used so use a 1096 * public address. 1097 */ 1098 *own_addr_type = ADDR_LE_DEV_PUBLIC; 1099 1100 return 0; 1101 } 1102 1103 static int hci_disable_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance) 1104 { 1105 struct hci_cp_le_set_ext_adv_enable *cp; 1106 struct hci_cp_ext_adv_set *set; 1107 u8 data[sizeof(*cp) + sizeof(*set) * 1]; 1108 u8 size; 1109 struct adv_info *adv = NULL; 1110 1111 /* If request specifies an instance that doesn't exist, fail */ 1112 if (instance > 0) { 1113 adv = hci_find_adv_instance(hdev, instance); 1114 if (!adv) 1115 return -EINVAL; 1116 1117 /* If not enabled there is nothing to do */ 1118 if (!adv->enabled) 1119 return 0; 1120 } 1121 1122 memset(data, 0, sizeof(data)); 1123 1124 cp = (void *)data; 1125 set = (void *)cp->data; 1126 1127 /* Instance 0x00 indicates all advertising instances will be disabled */ 1128 cp->num_of_sets = !!instance; 1129 cp->enable = 0x00; 1130 1131 set->handle = adv ? adv->handle : instance; 1132 1133 size = sizeof(*cp) + sizeof(*set) * cp->num_of_sets; 1134 1135 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, 1136 size, data, HCI_CMD_TIMEOUT); 1137 } 1138 1139 static int hci_set_adv_set_random_addr_sync(struct hci_dev *hdev, u8 instance, 1140 bdaddr_t *random_addr) 1141 { 1142 struct hci_cp_le_set_adv_set_rand_addr cp; 1143 int err; 1144 1145 if (!instance) { 1146 /* Instance 0x00 doesn't have an adv_info, instead it uses 1147 * hdev->random_addr to track its address so whenever it needs 1148 * to be updated this also set the random address since 1149 * hdev->random_addr is shared with scan state machine. 1150 */ 1151 err = hci_set_random_addr_sync(hdev, random_addr); 1152 if (err) 1153 return err; 1154 } 1155 1156 memset(&cp, 0, sizeof(cp)); 1157 1158 cp.handle = instance; 1159 bacpy(&cp.bdaddr, random_addr); 1160 1161 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_SET_RAND_ADDR, 1162 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1163 } 1164 1165 int hci_setup_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance) 1166 { 1167 struct hci_cp_le_set_ext_adv_params cp; 1168 bool connectable; 1169 u32 flags; 1170 bdaddr_t random_addr; 1171 u8 own_addr_type; 1172 int err; 1173 struct adv_info *adv; 1174 bool secondary_adv; 1175 1176 if (instance > 0) { 1177 adv = hci_find_adv_instance(hdev, instance); 1178 if (!adv) 1179 return -EINVAL; 1180 } else { 1181 adv = NULL; 1182 } 1183 1184 /* Updating parameters of an active instance will return a 1185 * Command Disallowed error, so we must first disable the 1186 * instance if it is active. 1187 */ 1188 if (adv && !adv->pending) { 1189 err = hci_disable_ext_adv_instance_sync(hdev, instance); 1190 if (err) 1191 return err; 1192 } 1193 1194 flags = hci_adv_instance_flags(hdev, instance); 1195 1196 /* If the "connectable" instance flag was not set, then choose between 1197 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. 1198 */ 1199 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || 1200 mgmt_get_connectable(hdev); 1201 1202 if (!is_advertising_allowed(hdev, connectable)) 1203 return -EPERM; 1204 1205 /* Set require_privacy to true only when non-connectable 1206 * advertising is used. In that case it is fine to use a 1207 * non-resolvable private address. 1208 */ 1209 err = hci_get_random_address(hdev, !connectable, 1210 adv_use_rpa(hdev, flags), adv, 1211 &own_addr_type, &random_addr); 1212 if (err < 0) 1213 return err; 1214 1215 memset(&cp, 0, sizeof(cp)); 1216 1217 if (adv) { 1218 hci_cpu_to_le24(adv->min_interval, cp.min_interval); 1219 hci_cpu_to_le24(adv->max_interval, cp.max_interval); 1220 cp.tx_power = adv->tx_power; 1221 } else { 1222 hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval); 1223 hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval); 1224 cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE; 1225 } 1226 1227 secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK); 1228 1229 if (connectable) { 1230 if (secondary_adv) 1231 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND); 1232 else 1233 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND); 1234 } else if (hci_adv_instance_is_scannable(hdev, instance) || 1235 (flags & MGMT_ADV_PARAM_SCAN_RSP)) { 1236 if (secondary_adv) 1237 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND); 1238 else 1239 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND); 1240 } else { 1241 if (secondary_adv) 1242 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND); 1243 else 1244 cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND); 1245 } 1246 1247 /* If Own_Address_Type equals 0x02 or 0x03, the Peer_Address parameter 1248 * contains the peer’s Identity Address and the Peer_Address_Type 1249 * parameter contains the peer’s Identity Type (i.e., 0x00 or 0x01). 1250 * These parameters are used to locate the corresponding local IRK in 1251 * the resolving list; this IRK is used to generate their own address 1252 * used in the advertisement. 1253 */ 1254 if (own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) 1255 hci_copy_identity_address(hdev, &cp.peer_addr, 1256 &cp.peer_addr_type); 1257 1258 cp.own_addr_type = own_addr_type; 1259 cp.channel_map = hdev->le_adv_channel_map; 1260 cp.handle = adv ? adv->handle : instance; 1261 1262 if (flags & MGMT_ADV_FLAG_SEC_2M) { 1263 cp.primary_phy = HCI_ADV_PHY_1M; 1264 cp.secondary_phy = HCI_ADV_PHY_2M; 1265 } else if (flags & MGMT_ADV_FLAG_SEC_CODED) { 1266 cp.primary_phy = HCI_ADV_PHY_CODED; 1267 cp.secondary_phy = HCI_ADV_PHY_CODED; 1268 } else { 1269 /* In all other cases use 1M */ 1270 cp.primary_phy = HCI_ADV_PHY_1M; 1271 cp.secondary_phy = HCI_ADV_PHY_1M; 1272 } 1273 1274 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS, 1275 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1276 if (err) 1277 return err; 1278 1279 if ((own_addr_type == ADDR_LE_DEV_RANDOM || 1280 own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) && 1281 bacmp(&random_addr, BDADDR_ANY)) { 1282 /* Check if random address need to be updated */ 1283 if (adv) { 1284 if (!bacmp(&random_addr, &adv->random_addr)) 1285 return 0; 1286 } else { 1287 if (!bacmp(&random_addr, &hdev->random_addr)) 1288 return 0; 1289 } 1290 1291 return hci_set_adv_set_random_addr_sync(hdev, instance, 1292 &random_addr); 1293 } 1294 1295 return 0; 1296 } 1297 1298 static int hci_set_ext_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 1299 { 1300 DEFINE_FLEX(struct hci_cp_le_set_ext_scan_rsp_data, pdu, data, length, 1301 HCI_MAX_EXT_AD_LENGTH); 1302 u8 len; 1303 struct adv_info *adv = NULL; 1304 int err; 1305 1306 if (instance) { 1307 adv = hci_find_adv_instance(hdev, instance); 1308 if (!adv || !adv->scan_rsp_changed) 1309 return 0; 1310 } 1311 1312 len = eir_create_scan_rsp(hdev, instance, pdu->data); 1313 1314 pdu->handle = adv ? adv->handle : instance; 1315 pdu->length = len; 1316 pdu->operation = LE_SET_ADV_DATA_OP_COMPLETE; 1317 pdu->frag_pref = LE_SET_ADV_DATA_NO_FRAG; 1318 1319 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA, 1320 struct_size(pdu, data, len), pdu, 1321 HCI_CMD_TIMEOUT); 1322 if (err) 1323 return err; 1324 1325 if (adv) { 1326 adv->scan_rsp_changed = false; 1327 } else { 1328 memcpy(hdev->scan_rsp_data, pdu->data, len); 1329 hdev->scan_rsp_data_len = len; 1330 } 1331 1332 return 0; 1333 } 1334 1335 static int __hci_set_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 1336 { 1337 struct hci_cp_le_set_scan_rsp_data cp; 1338 u8 len; 1339 1340 memset(&cp, 0, sizeof(cp)); 1341 1342 len = eir_create_scan_rsp(hdev, instance, cp.data); 1343 1344 if (hdev->scan_rsp_data_len == len && 1345 !memcmp(cp.data, hdev->scan_rsp_data, len)) 1346 return 0; 1347 1348 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data)); 1349 hdev->scan_rsp_data_len = len; 1350 1351 cp.length = len; 1352 1353 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_RSP_DATA, 1354 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1355 } 1356 1357 int hci_update_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 1358 { 1359 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1360 return 0; 1361 1362 if (ext_adv_capable(hdev)) 1363 return hci_set_ext_scan_rsp_data_sync(hdev, instance); 1364 1365 return __hci_set_scan_rsp_data_sync(hdev, instance); 1366 } 1367 1368 int hci_enable_ext_advertising_sync(struct hci_dev *hdev, u8 instance) 1369 { 1370 struct hci_cp_le_set_ext_adv_enable *cp; 1371 struct hci_cp_ext_adv_set *set; 1372 u8 data[sizeof(*cp) + sizeof(*set) * 1]; 1373 struct adv_info *adv; 1374 1375 if (instance > 0) { 1376 adv = hci_find_adv_instance(hdev, instance); 1377 if (!adv) 1378 return -EINVAL; 1379 /* If already enabled there is nothing to do */ 1380 if (adv->enabled) 1381 return 0; 1382 } else { 1383 adv = NULL; 1384 } 1385 1386 cp = (void *)data; 1387 set = (void *)cp->data; 1388 1389 memset(cp, 0, sizeof(*cp)); 1390 1391 cp->enable = 0x01; 1392 cp->num_of_sets = 0x01; 1393 1394 memset(set, 0, sizeof(*set)); 1395 1396 set->handle = adv ? adv->handle : instance; 1397 1398 /* Set duration per instance since controller is responsible for 1399 * scheduling it. 1400 */ 1401 if (adv && adv->timeout) { 1402 u16 duration = adv->timeout * MSEC_PER_SEC; 1403 1404 /* Time = N * 10 ms */ 1405 set->duration = cpu_to_le16(duration / 10); 1406 } 1407 1408 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, 1409 sizeof(*cp) + 1410 sizeof(*set) * cp->num_of_sets, 1411 data, HCI_CMD_TIMEOUT); 1412 } 1413 1414 int hci_start_ext_adv_sync(struct hci_dev *hdev, u8 instance) 1415 { 1416 int err; 1417 1418 err = hci_setup_ext_adv_instance_sync(hdev, instance); 1419 if (err) 1420 return err; 1421 1422 err = hci_set_ext_scan_rsp_data_sync(hdev, instance); 1423 if (err) 1424 return err; 1425 1426 return hci_enable_ext_advertising_sync(hdev, instance); 1427 } 1428 1429 int hci_disable_per_advertising_sync(struct hci_dev *hdev, u8 instance) 1430 { 1431 struct hci_cp_le_set_per_adv_enable cp; 1432 struct adv_info *adv = NULL; 1433 1434 /* If periodic advertising already disabled there is nothing to do. */ 1435 adv = hci_find_adv_instance(hdev, instance); 1436 if (!adv || !adv->periodic || !adv->enabled) 1437 return 0; 1438 1439 memset(&cp, 0, sizeof(cp)); 1440 1441 cp.enable = 0x00; 1442 cp.handle = instance; 1443 1444 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE, 1445 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1446 } 1447 1448 static int hci_set_per_adv_params_sync(struct hci_dev *hdev, u8 instance, 1449 u16 min_interval, u16 max_interval) 1450 { 1451 struct hci_cp_le_set_per_adv_params cp; 1452 1453 memset(&cp, 0, sizeof(cp)); 1454 1455 if (!min_interval) 1456 min_interval = DISCOV_LE_PER_ADV_INT_MIN; 1457 1458 if (!max_interval) 1459 max_interval = DISCOV_LE_PER_ADV_INT_MAX; 1460 1461 cp.handle = instance; 1462 cp.min_interval = cpu_to_le16(min_interval); 1463 cp.max_interval = cpu_to_le16(max_interval); 1464 cp.periodic_properties = 0x0000; 1465 1466 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_PARAMS, 1467 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1468 } 1469 1470 static int hci_set_per_adv_data_sync(struct hci_dev *hdev, u8 instance) 1471 { 1472 DEFINE_FLEX(struct hci_cp_le_set_per_adv_data, pdu, data, length, 1473 HCI_MAX_PER_AD_LENGTH); 1474 u8 len; 1475 struct adv_info *adv = NULL; 1476 1477 if (instance) { 1478 adv = hci_find_adv_instance(hdev, instance); 1479 if (!adv || !adv->periodic) 1480 return 0; 1481 } 1482 1483 len = eir_create_per_adv_data(hdev, instance, pdu->data); 1484 1485 pdu->length = len; 1486 pdu->handle = adv ? adv->handle : instance; 1487 pdu->operation = LE_SET_ADV_DATA_OP_COMPLETE; 1488 1489 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_DATA, 1490 struct_size(pdu, data, len), pdu, 1491 HCI_CMD_TIMEOUT); 1492 } 1493 1494 static int hci_enable_per_advertising_sync(struct hci_dev *hdev, u8 instance) 1495 { 1496 struct hci_cp_le_set_per_adv_enable cp; 1497 struct adv_info *adv = NULL; 1498 1499 /* If periodic advertising already enabled there is nothing to do. */ 1500 adv = hci_find_adv_instance(hdev, instance); 1501 if (adv && adv->periodic && adv->enabled) 1502 return 0; 1503 1504 memset(&cp, 0, sizeof(cp)); 1505 1506 cp.enable = 0x01; 1507 cp.handle = instance; 1508 1509 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE, 1510 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1511 } 1512 1513 /* Checks if periodic advertising data contains a Basic Announcement and if it 1514 * does generates a Broadcast ID and add Broadcast Announcement. 1515 */ 1516 static int hci_adv_bcast_annoucement(struct hci_dev *hdev, struct adv_info *adv) 1517 { 1518 u8 bid[3]; 1519 u8 ad[4 + 3]; 1520 1521 /* Skip if NULL adv as instance 0x00 is used for general purpose 1522 * advertising so it cannot used for the likes of Broadcast Announcement 1523 * as it can be overwritten at any point. 1524 */ 1525 if (!adv) 1526 return 0; 1527 1528 /* Check if PA data doesn't contains a Basic Audio Announcement then 1529 * there is nothing to do. 1530 */ 1531 if (!eir_get_service_data(adv->per_adv_data, adv->per_adv_data_len, 1532 0x1851, NULL)) 1533 return 0; 1534 1535 /* Check if advertising data already has a Broadcast Announcement since 1536 * the process may want to control the Broadcast ID directly and in that 1537 * case the kernel shall no interfere. 1538 */ 1539 if (eir_get_service_data(adv->adv_data, adv->adv_data_len, 0x1852, 1540 NULL)) 1541 return 0; 1542 1543 /* Generate Broadcast ID */ 1544 get_random_bytes(bid, sizeof(bid)); 1545 eir_append_service_data(ad, 0, 0x1852, bid, sizeof(bid)); 1546 hci_set_adv_instance_data(hdev, adv->instance, sizeof(ad), ad, 0, NULL); 1547 1548 return hci_update_adv_data_sync(hdev, adv->instance); 1549 } 1550 1551 int hci_start_per_adv_sync(struct hci_dev *hdev, u8 instance, u8 data_len, 1552 u8 *data, u32 flags, u16 min_interval, 1553 u16 max_interval, u16 sync_interval) 1554 { 1555 struct adv_info *adv = NULL; 1556 int err; 1557 bool added = false; 1558 1559 hci_disable_per_advertising_sync(hdev, instance); 1560 1561 if (instance) { 1562 adv = hci_find_adv_instance(hdev, instance); 1563 /* Create an instance if that could not be found */ 1564 if (!adv) { 1565 adv = hci_add_per_instance(hdev, instance, flags, 1566 data_len, data, 1567 sync_interval, 1568 sync_interval); 1569 if (IS_ERR(adv)) 1570 return PTR_ERR(adv); 1571 adv->pending = false; 1572 added = true; 1573 } 1574 } 1575 1576 /* Start advertising */ 1577 err = hci_start_ext_adv_sync(hdev, instance); 1578 if (err < 0) 1579 goto fail; 1580 1581 err = hci_adv_bcast_annoucement(hdev, adv); 1582 if (err < 0) 1583 goto fail; 1584 1585 err = hci_set_per_adv_params_sync(hdev, instance, min_interval, 1586 max_interval); 1587 if (err < 0) 1588 goto fail; 1589 1590 err = hci_set_per_adv_data_sync(hdev, instance); 1591 if (err < 0) 1592 goto fail; 1593 1594 err = hci_enable_per_advertising_sync(hdev, instance); 1595 if (err < 0) 1596 goto fail; 1597 1598 return 0; 1599 1600 fail: 1601 if (added) 1602 hci_remove_adv_instance(hdev, instance); 1603 1604 return err; 1605 } 1606 1607 static int hci_start_adv_sync(struct hci_dev *hdev, u8 instance) 1608 { 1609 int err; 1610 1611 if (ext_adv_capable(hdev)) 1612 return hci_start_ext_adv_sync(hdev, instance); 1613 1614 err = hci_update_adv_data_sync(hdev, instance); 1615 if (err) 1616 return err; 1617 1618 err = hci_update_scan_rsp_data_sync(hdev, instance); 1619 if (err) 1620 return err; 1621 1622 return hci_enable_advertising_sync(hdev); 1623 } 1624 1625 int hci_enable_advertising_sync(struct hci_dev *hdev) 1626 { 1627 struct adv_info *adv_instance; 1628 struct hci_cp_le_set_adv_param cp; 1629 u8 own_addr_type, enable = 0x01; 1630 bool connectable; 1631 u16 adv_min_interval, adv_max_interval; 1632 u32 flags; 1633 u8 status; 1634 1635 if (ext_adv_capable(hdev)) 1636 return hci_enable_ext_advertising_sync(hdev, 1637 hdev->cur_adv_instance); 1638 1639 flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance); 1640 adv_instance = hci_find_adv_instance(hdev, hdev->cur_adv_instance); 1641 1642 /* If the "connectable" instance flag was not set, then choose between 1643 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. 1644 */ 1645 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || 1646 mgmt_get_connectable(hdev); 1647 1648 if (!is_advertising_allowed(hdev, connectable)) 1649 return -EINVAL; 1650 1651 status = hci_disable_advertising_sync(hdev); 1652 if (status) 1653 return status; 1654 1655 /* Clear the HCI_LE_ADV bit temporarily so that the 1656 * hci_update_random_address knows that it's safe to go ahead 1657 * and write a new random address. The flag will be set back on 1658 * as soon as the SET_ADV_ENABLE HCI command completes. 1659 */ 1660 hci_dev_clear_flag(hdev, HCI_LE_ADV); 1661 1662 /* Set require_privacy to true only when non-connectable 1663 * advertising is used. In that case it is fine to use a 1664 * non-resolvable private address. 1665 */ 1666 status = hci_update_random_address_sync(hdev, !connectable, 1667 adv_use_rpa(hdev, flags), 1668 &own_addr_type); 1669 if (status) 1670 return status; 1671 1672 memset(&cp, 0, sizeof(cp)); 1673 1674 if (adv_instance) { 1675 adv_min_interval = adv_instance->min_interval; 1676 adv_max_interval = adv_instance->max_interval; 1677 } else { 1678 adv_min_interval = hdev->le_adv_min_interval; 1679 adv_max_interval = hdev->le_adv_max_interval; 1680 } 1681 1682 if (connectable) { 1683 cp.type = LE_ADV_IND; 1684 } else { 1685 if (hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance)) 1686 cp.type = LE_ADV_SCAN_IND; 1687 else 1688 cp.type = LE_ADV_NONCONN_IND; 1689 1690 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) || 1691 hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { 1692 adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN; 1693 adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX; 1694 } 1695 } 1696 1697 cp.min_interval = cpu_to_le16(adv_min_interval); 1698 cp.max_interval = cpu_to_le16(adv_max_interval); 1699 cp.own_address_type = own_addr_type; 1700 cp.channel_map = hdev->le_adv_channel_map; 1701 1702 status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM, 1703 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1704 if (status) 1705 return status; 1706 1707 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 1708 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 1709 } 1710 1711 static int enable_advertising_sync(struct hci_dev *hdev, void *data) 1712 { 1713 return hci_enable_advertising_sync(hdev); 1714 } 1715 1716 int hci_enable_advertising(struct hci_dev *hdev) 1717 { 1718 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) && 1719 list_empty(&hdev->adv_instances)) 1720 return 0; 1721 1722 return hci_cmd_sync_queue(hdev, enable_advertising_sync, NULL, NULL); 1723 } 1724 1725 int hci_remove_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance, 1726 struct sock *sk) 1727 { 1728 int err; 1729 1730 if (!ext_adv_capable(hdev)) 1731 return 0; 1732 1733 err = hci_disable_ext_adv_instance_sync(hdev, instance); 1734 if (err) 1735 return err; 1736 1737 /* If request specifies an instance that doesn't exist, fail */ 1738 if (instance > 0 && !hci_find_adv_instance(hdev, instance)) 1739 return -EINVAL; 1740 1741 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_REMOVE_ADV_SET, 1742 sizeof(instance), &instance, 0, 1743 HCI_CMD_TIMEOUT, sk); 1744 } 1745 1746 static int remove_ext_adv_sync(struct hci_dev *hdev, void *data) 1747 { 1748 struct adv_info *adv = data; 1749 u8 instance = 0; 1750 1751 if (adv) 1752 instance = adv->instance; 1753 1754 return hci_remove_ext_adv_instance_sync(hdev, instance, NULL); 1755 } 1756 1757 int hci_remove_ext_adv_instance(struct hci_dev *hdev, u8 instance) 1758 { 1759 struct adv_info *adv = NULL; 1760 1761 if (instance) { 1762 adv = hci_find_adv_instance(hdev, instance); 1763 if (!adv) 1764 return -EINVAL; 1765 } 1766 1767 return hci_cmd_sync_queue(hdev, remove_ext_adv_sync, adv, NULL); 1768 } 1769 1770 int hci_le_terminate_big_sync(struct hci_dev *hdev, u8 handle, u8 reason) 1771 { 1772 struct hci_cp_le_term_big cp; 1773 1774 memset(&cp, 0, sizeof(cp)); 1775 cp.handle = handle; 1776 cp.reason = reason; 1777 1778 return __hci_cmd_sync_status(hdev, HCI_OP_LE_TERM_BIG, 1779 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1780 } 1781 1782 static int hci_set_ext_adv_data_sync(struct hci_dev *hdev, u8 instance) 1783 { 1784 DEFINE_FLEX(struct hci_cp_le_set_ext_adv_data, pdu, data, length, 1785 HCI_MAX_EXT_AD_LENGTH); 1786 u8 len; 1787 struct adv_info *adv = NULL; 1788 int err; 1789 1790 if (instance) { 1791 adv = hci_find_adv_instance(hdev, instance); 1792 if (!adv || !adv->adv_data_changed) 1793 return 0; 1794 } 1795 1796 len = eir_create_adv_data(hdev, instance, pdu->data); 1797 1798 pdu->length = len; 1799 pdu->handle = adv ? adv->handle : instance; 1800 pdu->operation = LE_SET_ADV_DATA_OP_COMPLETE; 1801 pdu->frag_pref = LE_SET_ADV_DATA_NO_FRAG; 1802 1803 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_DATA, 1804 struct_size(pdu, data, len), pdu, 1805 HCI_CMD_TIMEOUT); 1806 if (err) 1807 return err; 1808 1809 /* Update data if the command succeed */ 1810 if (adv) { 1811 adv->adv_data_changed = false; 1812 } else { 1813 memcpy(hdev->adv_data, pdu->data, len); 1814 hdev->adv_data_len = len; 1815 } 1816 1817 return 0; 1818 } 1819 1820 static int hci_set_adv_data_sync(struct hci_dev *hdev, u8 instance) 1821 { 1822 struct hci_cp_le_set_adv_data cp; 1823 u8 len; 1824 1825 memset(&cp, 0, sizeof(cp)); 1826 1827 len = eir_create_adv_data(hdev, instance, cp.data); 1828 1829 /* There's nothing to do if the data hasn't changed */ 1830 if (hdev->adv_data_len == len && 1831 memcmp(cp.data, hdev->adv_data, len) == 0) 1832 return 0; 1833 1834 memcpy(hdev->adv_data, cp.data, sizeof(cp.data)); 1835 hdev->adv_data_len = len; 1836 1837 cp.length = len; 1838 1839 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_DATA, 1840 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1841 } 1842 1843 int hci_update_adv_data_sync(struct hci_dev *hdev, u8 instance) 1844 { 1845 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1846 return 0; 1847 1848 if (ext_adv_capable(hdev)) 1849 return hci_set_ext_adv_data_sync(hdev, instance); 1850 1851 return hci_set_adv_data_sync(hdev, instance); 1852 } 1853 1854 int hci_schedule_adv_instance_sync(struct hci_dev *hdev, u8 instance, 1855 bool force) 1856 { 1857 struct adv_info *adv = NULL; 1858 u16 timeout; 1859 1860 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) && !ext_adv_capable(hdev)) 1861 return -EPERM; 1862 1863 if (hdev->adv_instance_timeout) 1864 return -EBUSY; 1865 1866 adv = hci_find_adv_instance(hdev, instance); 1867 if (!adv) 1868 return -ENOENT; 1869 1870 /* A zero timeout means unlimited advertising. As long as there is 1871 * only one instance, duration should be ignored. We still set a timeout 1872 * in case further instances are being added later on. 1873 * 1874 * If the remaining lifetime of the instance is more than the duration 1875 * then the timeout corresponds to the duration, otherwise it will be 1876 * reduced to the remaining instance lifetime. 1877 */ 1878 if (adv->timeout == 0 || adv->duration <= adv->remaining_time) 1879 timeout = adv->duration; 1880 else 1881 timeout = adv->remaining_time; 1882 1883 /* The remaining time is being reduced unless the instance is being 1884 * advertised without time limit. 1885 */ 1886 if (adv->timeout) 1887 adv->remaining_time = adv->remaining_time - timeout; 1888 1889 /* Only use work for scheduling instances with legacy advertising */ 1890 if (!ext_adv_capable(hdev)) { 1891 hdev->adv_instance_timeout = timeout; 1892 queue_delayed_work(hdev->req_workqueue, 1893 &hdev->adv_instance_expire, 1894 msecs_to_jiffies(timeout * 1000)); 1895 } 1896 1897 /* If we're just re-scheduling the same instance again then do not 1898 * execute any HCI commands. This happens when a single instance is 1899 * being advertised. 1900 */ 1901 if (!force && hdev->cur_adv_instance == instance && 1902 hci_dev_test_flag(hdev, HCI_LE_ADV)) 1903 return 0; 1904 1905 hdev->cur_adv_instance = instance; 1906 1907 return hci_start_adv_sync(hdev, instance); 1908 } 1909 1910 static int hci_clear_adv_sets_sync(struct hci_dev *hdev, struct sock *sk) 1911 { 1912 int err; 1913 1914 if (!ext_adv_capable(hdev)) 1915 return 0; 1916 1917 /* Disable instance 0x00 to disable all instances */ 1918 err = hci_disable_ext_adv_instance_sync(hdev, 0x00); 1919 if (err) 1920 return err; 1921 1922 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CLEAR_ADV_SETS, 1923 0, NULL, 0, HCI_CMD_TIMEOUT, sk); 1924 } 1925 1926 static int hci_clear_adv_sync(struct hci_dev *hdev, struct sock *sk, bool force) 1927 { 1928 struct adv_info *adv, *n; 1929 int err = 0; 1930 1931 if (ext_adv_capable(hdev)) 1932 /* Remove all existing sets */ 1933 err = hci_clear_adv_sets_sync(hdev, sk); 1934 if (ext_adv_capable(hdev)) 1935 return err; 1936 1937 /* This is safe as long as there is no command send while the lock is 1938 * held. 1939 */ 1940 hci_dev_lock(hdev); 1941 1942 /* Cleanup non-ext instances */ 1943 list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) { 1944 u8 instance = adv->instance; 1945 int err; 1946 1947 if (!(force || adv->timeout)) 1948 continue; 1949 1950 err = hci_remove_adv_instance(hdev, instance); 1951 if (!err) 1952 mgmt_advertising_removed(sk, hdev, instance); 1953 } 1954 1955 hci_dev_unlock(hdev); 1956 1957 return 0; 1958 } 1959 1960 static int hci_remove_adv_sync(struct hci_dev *hdev, u8 instance, 1961 struct sock *sk) 1962 { 1963 int err = 0; 1964 1965 /* If we use extended advertising, instance has to be removed first. */ 1966 if (ext_adv_capable(hdev)) 1967 err = hci_remove_ext_adv_instance_sync(hdev, instance, sk); 1968 if (ext_adv_capable(hdev)) 1969 return err; 1970 1971 /* This is safe as long as there is no command send while the lock is 1972 * held. 1973 */ 1974 hci_dev_lock(hdev); 1975 1976 err = hci_remove_adv_instance(hdev, instance); 1977 if (!err) 1978 mgmt_advertising_removed(sk, hdev, instance); 1979 1980 hci_dev_unlock(hdev); 1981 1982 return err; 1983 } 1984 1985 /* For a single instance: 1986 * - force == true: The instance will be removed even when its remaining 1987 * lifetime is not zero. 1988 * - force == false: the instance will be deactivated but kept stored unless 1989 * the remaining lifetime is zero. 1990 * 1991 * For instance == 0x00: 1992 * - force == true: All instances will be removed regardless of their timeout 1993 * setting. 1994 * - force == false: Only instances that have a timeout will be removed. 1995 */ 1996 int hci_remove_advertising_sync(struct hci_dev *hdev, struct sock *sk, 1997 u8 instance, bool force) 1998 { 1999 struct adv_info *next = NULL; 2000 int err; 2001 2002 /* Cancel any timeout concerning the removed instance(s). */ 2003 if (!instance || hdev->cur_adv_instance == instance) 2004 cancel_adv_timeout(hdev); 2005 2006 /* Get the next instance to advertise BEFORE we remove 2007 * the current one. This can be the same instance again 2008 * if there is only one instance. 2009 */ 2010 if (hdev->cur_adv_instance == instance) 2011 next = hci_get_next_instance(hdev, instance); 2012 2013 if (!instance) { 2014 err = hci_clear_adv_sync(hdev, sk, force); 2015 if (err) 2016 return err; 2017 } else { 2018 struct adv_info *adv = hci_find_adv_instance(hdev, instance); 2019 2020 if (force || (adv && adv->timeout && !adv->remaining_time)) { 2021 /* Don't advertise a removed instance. */ 2022 if (next && next->instance == instance) 2023 next = NULL; 2024 2025 err = hci_remove_adv_sync(hdev, instance, sk); 2026 if (err) 2027 return err; 2028 } 2029 } 2030 2031 if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING)) 2032 return 0; 2033 2034 if (next && !ext_adv_capable(hdev)) 2035 hci_schedule_adv_instance_sync(hdev, next->instance, false); 2036 2037 return 0; 2038 } 2039 2040 int hci_read_rssi_sync(struct hci_dev *hdev, __le16 handle) 2041 { 2042 struct hci_cp_read_rssi cp; 2043 2044 cp.handle = handle; 2045 return __hci_cmd_sync_status(hdev, HCI_OP_READ_RSSI, 2046 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2047 } 2048 2049 int hci_read_clock_sync(struct hci_dev *hdev, struct hci_cp_read_clock *cp) 2050 { 2051 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLOCK, 2052 sizeof(*cp), cp, HCI_CMD_TIMEOUT); 2053 } 2054 2055 int hci_read_tx_power_sync(struct hci_dev *hdev, __le16 handle, u8 type) 2056 { 2057 struct hci_cp_read_tx_power cp; 2058 2059 cp.handle = handle; 2060 cp.type = type; 2061 return __hci_cmd_sync_status(hdev, HCI_OP_READ_TX_POWER, 2062 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2063 } 2064 2065 int hci_disable_advertising_sync(struct hci_dev *hdev) 2066 { 2067 u8 enable = 0x00; 2068 int err = 0; 2069 2070 /* If controller is not advertising we are done. */ 2071 if (!hci_dev_test_flag(hdev, HCI_LE_ADV)) 2072 return 0; 2073 2074 if (ext_adv_capable(hdev)) 2075 err = hci_disable_ext_adv_instance_sync(hdev, 0x00); 2076 if (ext_adv_capable(hdev)) 2077 return err; 2078 2079 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 2080 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 2081 } 2082 2083 static int hci_le_set_ext_scan_enable_sync(struct hci_dev *hdev, u8 val, 2084 u8 filter_dup) 2085 { 2086 struct hci_cp_le_set_ext_scan_enable cp; 2087 2088 memset(&cp, 0, sizeof(cp)); 2089 cp.enable = val; 2090 2091 if (hci_dev_test_flag(hdev, HCI_MESH)) 2092 cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 2093 else 2094 cp.filter_dup = filter_dup; 2095 2096 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_ENABLE, 2097 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2098 } 2099 2100 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val, 2101 u8 filter_dup) 2102 { 2103 struct hci_cp_le_set_scan_enable cp; 2104 2105 if (use_ext_scan(hdev)) 2106 return hci_le_set_ext_scan_enable_sync(hdev, val, filter_dup); 2107 2108 memset(&cp, 0, sizeof(cp)); 2109 cp.enable = val; 2110 2111 if (val && hci_dev_test_flag(hdev, HCI_MESH)) 2112 cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 2113 else 2114 cp.filter_dup = filter_dup; 2115 2116 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_ENABLE, 2117 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2118 } 2119 2120 static int hci_le_set_addr_resolution_enable_sync(struct hci_dev *hdev, u8 val) 2121 { 2122 if (!use_ll_privacy(hdev)) 2123 return 0; 2124 2125 /* If controller is not/already resolving we are done. */ 2126 if (val == hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) 2127 return 0; 2128 2129 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 2130 sizeof(val), &val, HCI_CMD_TIMEOUT); 2131 } 2132 2133 static int hci_scan_disable_sync(struct hci_dev *hdev) 2134 { 2135 int err; 2136 2137 /* If controller is not scanning we are done. */ 2138 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 2139 return 0; 2140 2141 if (hdev->scanning_paused) { 2142 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2143 return 0; 2144 } 2145 2146 err = hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00); 2147 if (err) { 2148 bt_dev_err(hdev, "Unable to disable scanning: %d", err); 2149 return err; 2150 } 2151 2152 return err; 2153 } 2154 2155 static bool scan_use_rpa(struct hci_dev *hdev) 2156 { 2157 return hci_dev_test_flag(hdev, HCI_PRIVACY); 2158 } 2159 2160 static void hci_start_interleave_scan(struct hci_dev *hdev) 2161 { 2162 hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER; 2163 queue_delayed_work(hdev->req_workqueue, 2164 &hdev->interleave_scan, 0); 2165 } 2166 2167 static void cancel_interleave_scan(struct hci_dev *hdev) 2168 { 2169 bt_dev_dbg(hdev, "cancelling interleave scan"); 2170 2171 cancel_delayed_work_sync(&hdev->interleave_scan); 2172 2173 hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE; 2174 } 2175 2176 /* Return true if interleave_scan wasn't started until exiting this function, 2177 * otherwise, return false 2178 */ 2179 static bool hci_update_interleaved_scan_sync(struct hci_dev *hdev) 2180 { 2181 /* Do interleaved scan only if all of the following are true: 2182 * - There is at least one ADV monitor 2183 * - At least one pending LE connection or one device to be scanned for 2184 * - Monitor offloading is not supported 2185 * If so, we should alternate between allowlist scan and one without 2186 * any filters to save power. 2187 */ 2188 bool use_interleaving = hci_is_adv_monitoring(hdev) && 2189 !(list_empty(&hdev->pend_le_conns) && 2190 list_empty(&hdev->pend_le_reports)) && 2191 hci_get_adv_monitor_offload_ext(hdev) == 2192 HCI_ADV_MONITOR_EXT_NONE; 2193 bool is_interleaving = is_interleave_scanning(hdev); 2194 2195 if (use_interleaving && !is_interleaving) { 2196 hci_start_interleave_scan(hdev); 2197 bt_dev_dbg(hdev, "starting interleave scan"); 2198 return true; 2199 } 2200 2201 if (!use_interleaving && is_interleaving) 2202 cancel_interleave_scan(hdev); 2203 2204 return false; 2205 } 2206 2207 /* Removes connection to resolve list if needed.*/ 2208 static int hci_le_del_resolve_list_sync(struct hci_dev *hdev, 2209 bdaddr_t *bdaddr, u8 bdaddr_type) 2210 { 2211 struct hci_cp_le_del_from_resolv_list cp; 2212 struct bdaddr_list_with_irk *entry; 2213 2214 if (!use_ll_privacy(hdev)) 2215 return 0; 2216 2217 /* Check if the IRK has been programmed */ 2218 entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, bdaddr, 2219 bdaddr_type); 2220 if (!entry) 2221 return 0; 2222 2223 cp.bdaddr_type = bdaddr_type; 2224 bacpy(&cp.bdaddr, bdaddr); 2225 2226 return __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_RESOLV_LIST, 2227 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2228 } 2229 2230 static int hci_le_del_accept_list_sync(struct hci_dev *hdev, 2231 bdaddr_t *bdaddr, u8 bdaddr_type) 2232 { 2233 struct hci_cp_le_del_from_accept_list cp; 2234 int err; 2235 2236 /* Check if device is on accept list before removing it */ 2237 if (!hci_bdaddr_list_lookup(&hdev->le_accept_list, bdaddr, bdaddr_type)) 2238 return 0; 2239 2240 cp.bdaddr_type = bdaddr_type; 2241 bacpy(&cp.bdaddr, bdaddr); 2242 2243 /* Ignore errors when removing from resolving list as that is likely 2244 * that the device was never added. 2245 */ 2246 hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type); 2247 2248 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_ACCEPT_LIST, 2249 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2250 if (err) { 2251 bt_dev_err(hdev, "Unable to remove from allow list: %d", err); 2252 return err; 2253 } 2254 2255 bt_dev_dbg(hdev, "Remove %pMR (0x%x) from allow list", &cp.bdaddr, 2256 cp.bdaddr_type); 2257 2258 return 0; 2259 } 2260 2261 struct conn_params { 2262 bdaddr_t addr; 2263 u8 addr_type; 2264 hci_conn_flags_t flags; 2265 u8 privacy_mode; 2266 }; 2267 2268 /* Adds connection to resolve list if needed. 2269 * Setting params to NULL programs local hdev->irk 2270 */ 2271 static int hci_le_add_resolve_list_sync(struct hci_dev *hdev, 2272 struct conn_params *params) 2273 { 2274 struct hci_cp_le_add_to_resolv_list cp; 2275 struct smp_irk *irk; 2276 struct bdaddr_list_with_irk *entry; 2277 struct hci_conn_params *p; 2278 2279 if (!use_ll_privacy(hdev)) 2280 return 0; 2281 2282 /* Attempt to program local identity address, type and irk if params is 2283 * NULL. 2284 */ 2285 if (!params) { 2286 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 2287 return 0; 2288 2289 hci_copy_identity_address(hdev, &cp.bdaddr, &cp.bdaddr_type); 2290 memcpy(cp.peer_irk, hdev->irk, 16); 2291 goto done; 2292 } 2293 2294 irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type); 2295 if (!irk) 2296 return 0; 2297 2298 /* Check if the IK has _not_ been programmed yet. */ 2299 entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, 2300 ¶ms->addr, 2301 params->addr_type); 2302 if (entry) 2303 return 0; 2304 2305 cp.bdaddr_type = params->addr_type; 2306 bacpy(&cp.bdaddr, ¶ms->addr); 2307 memcpy(cp.peer_irk, irk->val, 16); 2308 2309 /* Default privacy mode is always Network */ 2310 params->privacy_mode = HCI_NETWORK_PRIVACY; 2311 2312 rcu_read_lock(); 2313 p = hci_pend_le_action_lookup(&hdev->pend_le_conns, 2314 ¶ms->addr, params->addr_type); 2315 if (!p) 2316 p = hci_pend_le_action_lookup(&hdev->pend_le_reports, 2317 ¶ms->addr, params->addr_type); 2318 if (p) 2319 WRITE_ONCE(p->privacy_mode, HCI_NETWORK_PRIVACY); 2320 rcu_read_unlock(); 2321 2322 done: 2323 if (hci_dev_test_flag(hdev, HCI_PRIVACY)) 2324 memcpy(cp.local_irk, hdev->irk, 16); 2325 else 2326 memset(cp.local_irk, 0, 16); 2327 2328 return __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_RESOLV_LIST, 2329 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2330 } 2331 2332 /* Set Device Privacy Mode. */ 2333 static int hci_le_set_privacy_mode_sync(struct hci_dev *hdev, 2334 struct conn_params *params) 2335 { 2336 struct hci_cp_le_set_privacy_mode cp; 2337 struct smp_irk *irk; 2338 2339 /* If device privacy mode has already been set there is nothing to do */ 2340 if (params->privacy_mode == HCI_DEVICE_PRIVACY) 2341 return 0; 2342 2343 /* Check if HCI_CONN_FLAG_DEVICE_PRIVACY has been set as it also 2344 * indicates that LL Privacy has been enabled and 2345 * HCI_OP_LE_SET_PRIVACY_MODE is supported. 2346 */ 2347 if (!(params->flags & HCI_CONN_FLAG_DEVICE_PRIVACY)) 2348 return 0; 2349 2350 irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type); 2351 if (!irk) 2352 return 0; 2353 2354 memset(&cp, 0, sizeof(cp)); 2355 cp.bdaddr_type = irk->addr_type; 2356 bacpy(&cp.bdaddr, &irk->bdaddr); 2357 cp.mode = HCI_DEVICE_PRIVACY; 2358 2359 /* Note: params->privacy_mode is not updated since it is a copy */ 2360 2361 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PRIVACY_MODE, 2362 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2363 } 2364 2365 /* Adds connection to allow list if needed, if the device uses RPA (has IRK) 2366 * this attempts to program the device in the resolving list as well and 2367 * properly set the privacy mode. 2368 */ 2369 static int hci_le_add_accept_list_sync(struct hci_dev *hdev, 2370 struct conn_params *params, 2371 u8 *num_entries) 2372 { 2373 struct hci_cp_le_add_to_accept_list cp; 2374 int err; 2375 2376 /* During suspend, only wakeable devices can be in acceptlist */ 2377 if (hdev->suspended && 2378 !(params->flags & HCI_CONN_FLAG_REMOTE_WAKEUP)) { 2379 hci_le_del_accept_list_sync(hdev, ¶ms->addr, 2380 params->addr_type); 2381 return 0; 2382 } 2383 2384 /* Select filter policy to accept all advertising */ 2385 if (*num_entries >= hdev->le_accept_list_size) 2386 return -ENOSPC; 2387 2388 /* Accept list can not be used with RPAs */ 2389 if (!use_ll_privacy(hdev) && 2390 hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type)) 2391 return -EINVAL; 2392 2393 /* Attempt to program the device in the resolving list first to avoid 2394 * having to rollback in case it fails since the resolving list is 2395 * dynamic it can probably be smaller than the accept list. 2396 */ 2397 err = hci_le_add_resolve_list_sync(hdev, params); 2398 if (err) { 2399 bt_dev_err(hdev, "Unable to add to resolve list: %d", err); 2400 return err; 2401 } 2402 2403 /* Set Privacy Mode */ 2404 err = hci_le_set_privacy_mode_sync(hdev, params); 2405 if (err) { 2406 bt_dev_err(hdev, "Unable to set privacy mode: %d", err); 2407 return err; 2408 } 2409 2410 /* Check if already in accept list */ 2411 if (hci_bdaddr_list_lookup(&hdev->le_accept_list, ¶ms->addr, 2412 params->addr_type)) 2413 return 0; 2414 2415 *num_entries += 1; 2416 cp.bdaddr_type = params->addr_type; 2417 bacpy(&cp.bdaddr, ¶ms->addr); 2418 2419 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST, 2420 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2421 if (err) { 2422 bt_dev_err(hdev, "Unable to add to allow list: %d", err); 2423 /* Rollback the device from the resolving list */ 2424 hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type); 2425 return err; 2426 } 2427 2428 bt_dev_dbg(hdev, "Add %pMR (0x%x) to allow list", &cp.bdaddr, 2429 cp.bdaddr_type); 2430 2431 return 0; 2432 } 2433 2434 /* This function disables/pause all advertising instances */ 2435 static int hci_pause_advertising_sync(struct hci_dev *hdev) 2436 { 2437 int err; 2438 int old_state; 2439 2440 /* If already been paused there is nothing to do. */ 2441 if (hdev->advertising_paused) 2442 return 0; 2443 2444 bt_dev_dbg(hdev, "Pausing directed advertising"); 2445 2446 /* Stop directed advertising */ 2447 old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING); 2448 if (old_state) { 2449 /* When discoverable timeout triggers, then just make sure 2450 * the limited discoverable flag is cleared. Even in the case 2451 * of a timeout triggered from general discoverable, it is 2452 * safe to unconditionally clear the flag. 2453 */ 2454 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 2455 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 2456 hdev->discov_timeout = 0; 2457 } 2458 2459 bt_dev_dbg(hdev, "Pausing advertising instances"); 2460 2461 /* Call to disable any advertisements active on the controller. 2462 * This will succeed even if no advertisements are configured. 2463 */ 2464 err = hci_disable_advertising_sync(hdev); 2465 if (err) 2466 return err; 2467 2468 /* If we are using software rotation, pause the loop */ 2469 if (!ext_adv_capable(hdev)) 2470 cancel_adv_timeout(hdev); 2471 2472 hdev->advertising_paused = true; 2473 hdev->advertising_old_state = old_state; 2474 2475 return 0; 2476 } 2477 2478 /* This function enables all user advertising instances */ 2479 static int hci_resume_advertising_sync(struct hci_dev *hdev) 2480 { 2481 struct adv_info *adv, *tmp; 2482 int err; 2483 2484 /* If advertising has not been paused there is nothing to do. */ 2485 if (!hdev->advertising_paused) 2486 return 0; 2487 2488 /* Resume directed advertising */ 2489 hdev->advertising_paused = false; 2490 if (hdev->advertising_old_state) { 2491 hci_dev_set_flag(hdev, HCI_ADVERTISING); 2492 hdev->advertising_old_state = 0; 2493 } 2494 2495 bt_dev_dbg(hdev, "Resuming advertising instances"); 2496 2497 if (ext_adv_capable(hdev)) { 2498 /* Call for each tracked instance to be re-enabled */ 2499 list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) { 2500 err = hci_enable_ext_advertising_sync(hdev, 2501 adv->instance); 2502 if (!err) 2503 continue; 2504 2505 /* If the instance cannot be resumed remove it */ 2506 hci_remove_ext_adv_instance_sync(hdev, adv->instance, 2507 NULL); 2508 } 2509 } else { 2510 /* Schedule for most recent instance to be restarted and begin 2511 * the software rotation loop 2512 */ 2513 err = hci_schedule_adv_instance_sync(hdev, 2514 hdev->cur_adv_instance, 2515 true); 2516 } 2517 2518 hdev->advertising_paused = false; 2519 2520 return err; 2521 } 2522 2523 static int hci_pause_addr_resolution(struct hci_dev *hdev) 2524 { 2525 int err; 2526 2527 if (!use_ll_privacy(hdev)) 2528 return 0; 2529 2530 if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) 2531 return 0; 2532 2533 /* Cannot disable addr resolution if scanning is enabled or 2534 * when initiating an LE connection. 2535 */ 2536 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) || 2537 hci_lookup_le_connect(hdev)) { 2538 bt_dev_err(hdev, "Command not allowed when scan/LE connect"); 2539 return -EPERM; 2540 } 2541 2542 /* Cannot disable addr resolution if advertising is enabled. */ 2543 err = hci_pause_advertising_sync(hdev); 2544 if (err) { 2545 bt_dev_err(hdev, "Pause advertising failed: %d", err); 2546 return err; 2547 } 2548 2549 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00); 2550 if (err) 2551 bt_dev_err(hdev, "Unable to disable Address Resolution: %d", 2552 err); 2553 2554 /* Return if address resolution is disabled and RPA is not used. */ 2555 if (!err && scan_use_rpa(hdev)) 2556 return 0; 2557 2558 hci_resume_advertising_sync(hdev); 2559 return err; 2560 } 2561 2562 struct sk_buff *hci_read_local_oob_data_sync(struct hci_dev *hdev, 2563 bool extended, struct sock *sk) 2564 { 2565 u16 opcode = extended ? HCI_OP_READ_LOCAL_OOB_EXT_DATA : 2566 HCI_OP_READ_LOCAL_OOB_DATA; 2567 2568 return __hci_cmd_sync_sk(hdev, opcode, 0, NULL, 0, HCI_CMD_TIMEOUT, sk); 2569 } 2570 2571 static struct conn_params *conn_params_copy(struct list_head *list, size_t *n) 2572 { 2573 struct hci_conn_params *params; 2574 struct conn_params *p; 2575 size_t i; 2576 2577 rcu_read_lock(); 2578 2579 i = 0; 2580 list_for_each_entry_rcu(params, list, action) 2581 ++i; 2582 *n = i; 2583 2584 rcu_read_unlock(); 2585 2586 p = kvcalloc(*n, sizeof(struct conn_params), GFP_KERNEL); 2587 if (!p) 2588 return NULL; 2589 2590 rcu_read_lock(); 2591 2592 i = 0; 2593 list_for_each_entry_rcu(params, list, action) { 2594 /* Racing adds are handled in next scan update */ 2595 if (i >= *n) 2596 break; 2597 2598 /* No hdev->lock, but: addr, addr_type are immutable. 2599 * privacy_mode is only written by us or in 2600 * hci_cc_le_set_privacy_mode that we wait for. 2601 * We should be idempotent so MGMT updating flags 2602 * while we are processing is OK. 2603 */ 2604 bacpy(&p[i].addr, ¶ms->addr); 2605 p[i].addr_type = params->addr_type; 2606 p[i].flags = READ_ONCE(params->flags); 2607 p[i].privacy_mode = READ_ONCE(params->privacy_mode); 2608 ++i; 2609 } 2610 2611 rcu_read_unlock(); 2612 2613 *n = i; 2614 return p; 2615 } 2616 2617 /* Clear LE Accept List */ 2618 static int hci_le_clear_accept_list_sync(struct hci_dev *hdev) 2619 { 2620 if (!(hdev->commands[26] & 0x80)) 2621 return 0; 2622 2623 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL, 2624 HCI_CMD_TIMEOUT); 2625 } 2626 2627 /* Device must not be scanning when updating the accept list. 2628 * 2629 * Update is done using the following sequence: 2630 * 2631 * use_ll_privacy((Disable Advertising) -> Disable Resolving List) -> 2632 * Remove Devices From Accept List -> 2633 * (has IRK && use_ll_privacy(Remove Devices From Resolving List))-> 2634 * Add Devices to Accept List -> 2635 * (has IRK && use_ll_privacy(Remove Devices From Resolving List)) -> 2636 * use_ll_privacy(Enable Resolving List -> (Enable Advertising)) -> 2637 * Enable Scanning 2638 * 2639 * In case of failure advertising shall be restored to its original state and 2640 * return would disable accept list since either accept or resolving list could 2641 * not be programmed. 2642 * 2643 */ 2644 static u8 hci_update_accept_list_sync(struct hci_dev *hdev) 2645 { 2646 struct conn_params *params; 2647 struct bdaddr_list *b, *t; 2648 u8 num_entries = 0; 2649 bool pend_conn, pend_report; 2650 u8 filter_policy; 2651 size_t i, n; 2652 int err; 2653 2654 /* Pause advertising if resolving list can be used as controllers 2655 * cannot accept resolving list modifications while advertising. 2656 */ 2657 if (use_ll_privacy(hdev)) { 2658 err = hci_pause_advertising_sync(hdev); 2659 if (err) { 2660 bt_dev_err(hdev, "pause advertising failed: %d", err); 2661 return 0x00; 2662 } 2663 } 2664 2665 /* Disable address resolution while reprogramming accept list since 2666 * devices that do have an IRK will be programmed in the resolving list 2667 * when LL Privacy is enabled. 2668 */ 2669 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00); 2670 if (err) { 2671 bt_dev_err(hdev, "Unable to disable LL privacy: %d", err); 2672 goto done; 2673 } 2674 2675 /* Force address filtering if PA Sync is in progress */ 2676 if (hci_dev_test_flag(hdev, HCI_PA_SYNC)) { 2677 struct hci_cp_le_pa_create_sync *sent; 2678 2679 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_PA_CREATE_SYNC); 2680 if (sent) { 2681 struct conn_params pa; 2682 2683 memset(&pa, 0, sizeof(pa)); 2684 2685 bacpy(&pa.addr, &sent->addr); 2686 pa.addr_type = sent->addr_type; 2687 2688 /* Clear first since there could be addresses left 2689 * behind. 2690 */ 2691 hci_le_clear_accept_list_sync(hdev); 2692 2693 num_entries = 1; 2694 err = hci_le_add_accept_list_sync(hdev, &pa, 2695 &num_entries); 2696 goto done; 2697 } 2698 } 2699 2700 /* Go through the current accept list programmed into the 2701 * controller one by one and check if that address is connected or is 2702 * still in the list of pending connections or list of devices to 2703 * report. If not present in either list, then remove it from 2704 * the controller. 2705 */ 2706 list_for_each_entry_safe(b, t, &hdev->le_accept_list, list) { 2707 if (hci_conn_hash_lookup_le(hdev, &b->bdaddr, b->bdaddr_type)) 2708 continue; 2709 2710 /* Pointers not dereferenced, no locks needed */ 2711 pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns, 2712 &b->bdaddr, 2713 b->bdaddr_type); 2714 pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports, 2715 &b->bdaddr, 2716 b->bdaddr_type); 2717 2718 /* If the device is not likely to connect or report, 2719 * remove it from the acceptlist. 2720 */ 2721 if (!pend_conn && !pend_report) { 2722 hci_le_del_accept_list_sync(hdev, &b->bdaddr, 2723 b->bdaddr_type); 2724 continue; 2725 } 2726 2727 num_entries++; 2728 } 2729 2730 /* Since all no longer valid accept list entries have been 2731 * removed, walk through the list of pending connections 2732 * and ensure that any new device gets programmed into 2733 * the controller. 2734 * 2735 * If the list of the devices is larger than the list of 2736 * available accept list entries in the controller, then 2737 * just abort and return filer policy value to not use the 2738 * accept list. 2739 * 2740 * The list and params may be mutated while we wait for events, 2741 * so make a copy and iterate it. 2742 */ 2743 2744 params = conn_params_copy(&hdev->pend_le_conns, &n); 2745 if (!params) { 2746 err = -ENOMEM; 2747 goto done; 2748 } 2749 2750 for (i = 0; i < n; ++i) { 2751 err = hci_le_add_accept_list_sync(hdev, ¶ms[i], 2752 &num_entries); 2753 if (err) { 2754 kvfree(params); 2755 goto done; 2756 } 2757 } 2758 2759 kvfree(params); 2760 2761 /* After adding all new pending connections, walk through 2762 * the list of pending reports and also add these to the 2763 * accept list if there is still space. Abort if space runs out. 2764 */ 2765 2766 params = conn_params_copy(&hdev->pend_le_reports, &n); 2767 if (!params) { 2768 err = -ENOMEM; 2769 goto done; 2770 } 2771 2772 for (i = 0; i < n; ++i) { 2773 err = hci_le_add_accept_list_sync(hdev, ¶ms[i], 2774 &num_entries); 2775 if (err) { 2776 kvfree(params); 2777 goto done; 2778 } 2779 } 2780 2781 kvfree(params); 2782 2783 /* Use the allowlist unless the following conditions are all true: 2784 * - We are not currently suspending 2785 * - There are 1 or more ADV monitors registered and it's not offloaded 2786 * - Interleaved scanning is not currently using the allowlist 2787 */ 2788 if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended && 2789 hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE && 2790 hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST) 2791 err = -EINVAL; 2792 2793 done: 2794 filter_policy = err ? 0x00 : 0x01; 2795 2796 /* Enable address resolution when LL Privacy is enabled. */ 2797 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x01); 2798 if (err) 2799 bt_dev_err(hdev, "Unable to enable LL privacy: %d", err); 2800 2801 /* Resume advertising if it was paused */ 2802 if (use_ll_privacy(hdev)) 2803 hci_resume_advertising_sync(hdev); 2804 2805 /* Select filter policy to use accept list */ 2806 return filter_policy; 2807 } 2808 2809 static void hci_le_scan_phy_params(struct hci_cp_le_scan_phy_params *cp, 2810 u8 type, u16 interval, u16 window) 2811 { 2812 cp->type = type; 2813 cp->interval = cpu_to_le16(interval); 2814 cp->window = cpu_to_le16(window); 2815 } 2816 2817 static int hci_le_set_ext_scan_param_sync(struct hci_dev *hdev, u8 type, 2818 u16 interval, u16 window, 2819 u8 own_addr_type, u8 filter_policy) 2820 { 2821 struct hci_cp_le_set_ext_scan_params *cp; 2822 struct hci_cp_le_scan_phy_params *phy; 2823 u8 data[sizeof(*cp) + sizeof(*phy) * 2]; 2824 u8 num_phy = 0x00; 2825 2826 cp = (void *)data; 2827 phy = (void *)cp->data; 2828 2829 memset(data, 0, sizeof(data)); 2830 2831 cp->own_addr_type = own_addr_type; 2832 cp->filter_policy = filter_policy; 2833 2834 /* Check if PA Sync is in progress then select the PHY based on the 2835 * hci_conn.iso_qos. 2836 */ 2837 if (hci_dev_test_flag(hdev, HCI_PA_SYNC)) { 2838 struct hci_cp_le_add_to_accept_list *sent; 2839 2840 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST); 2841 if (sent) { 2842 struct hci_conn *conn; 2843 2844 conn = hci_conn_hash_lookup_ba(hdev, ISO_LINK, 2845 &sent->bdaddr); 2846 if (conn) { 2847 struct bt_iso_qos *qos = &conn->iso_qos; 2848 2849 if (qos->bcast.in.phy & BT_ISO_PHY_1M || 2850 qos->bcast.in.phy & BT_ISO_PHY_2M) { 2851 cp->scanning_phys |= LE_SCAN_PHY_1M; 2852 hci_le_scan_phy_params(phy, type, 2853 interval, 2854 window); 2855 num_phy++; 2856 phy++; 2857 } 2858 2859 if (qos->bcast.in.phy & BT_ISO_PHY_CODED) { 2860 cp->scanning_phys |= LE_SCAN_PHY_CODED; 2861 hci_le_scan_phy_params(phy, type, 2862 interval * 3, 2863 window * 3); 2864 num_phy++; 2865 phy++; 2866 } 2867 2868 if (num_phy) 2869 goto done; 2870 } 2871 } 2872 } 2873 2874 if (scan_1m(hdev) || scan_2m(hdev)) { 2875 cp->scanning_phys |= LE_SCAN_PHY_1M; 2876 hci_le_scan_phy_params(phy, type, interval, window); 2877 num_phy++; 2878 phy++; 2879 } 2880 2881 if (scan_coded(hdev)) { 2882 cp->scanning_phys |= LE_SCAN_PHY_CODED; 2883 hci_le_scan_phy_params(phy, type, interval * 3, window * 3); 2884 num_phy++; 2885 phy++; 2886 } 2887 2888 done: 2889 if (!num_phy) 2890 return -EINVAL; 2891 2892 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_PARAMS, 2893 sizeof(*cp) + sizeof(*phy) * num_phy, 2894 data, HCI_CMD_TIMEOUT); 2895 } 2896 2897 static int hci_le_set_scan_param_sync(struct hci_dev *hdev, u8 type, 2898 u16 interval, u16 window, 2899 u8 own_addr_type, u8 filter_policy) 2900 { 2901 struct hci_cp_le_set_scan_param cp; 2902 2903 if (use_ext_scan(hdev)) 2904 return hci_le_set_ext_scan_param_sync(hdev, type, interval, 2905 window, own_addr_type, 2906 filter_policy); 2907 2908 memset(&cp, 0, sizeof(cp)); 2909 cp.type = type; 2910 cp.interval = cpu_to_le16(interval); 2911 cp.window = cpu_to_le16(window); 2912 cp.own_address_type = own_addr_type; 2913 cp.filter_policy = filter_policy; 2914 2915 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_PARAM, 2916 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2917 } 2918 2919 static int hci_start_scan_sync(struct hci_dev *hdev, u8 type, u16 interval, 2920 u16 window, u8 own_addr_type, u8 filter_policy, 2921 u8 filter_dup) 2922 { 2923 int err; 2924 2925 if (hdev->scanning_paused) { 2926 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2927 return 0; 2928 } 2929 2930 err = hci_le_set_scan_param_sync(hdev, type, interval, window, 2931 own_addr_type, filter_policy); 2932 if (err) 2933 return err; 2934 2935 return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, filter_dup); 2936 } 2937 2938 static int hci_passive_scan_sync(struct hci_dev *hdev) 2939 { 2940 u8 own_addr_type; 2941 u8 filter_policy; 2942 u16 window, interval; 2943 u8 filter_dups = LE_SCAN_FILTER_DUP_ENABLE; 2944 int err; 2945 2946 if (hdev->scanning_paused) { 2947 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2948 return 0; 2949 } 2950 2951 err = hci_scan_disable_sync(hdev); 2952 if (err) { 2953 bt_dev_err(hdev, "disable scanning failed: %d", err); 2954 return err; 2955 } 2956 2957 /* Set require_privacy to false since no SCAN_REQ are send 2958 * during passive scanning. Not using an non-resolvable address 2959 * here is important so that peer devices using direct 2960 * advertising with our address will be correctly reported 2961 * by the controller. 2962 */ 2963 if (hci_update_random_address_sync(hdev, false, scan_use_rpa(hdev), 2964 &own_addr_type)) 2965 return 0; 2966 2967 if (hdev->enable_advmon_interleave_scan && 2968 hci_update_interleaved_scan_sync(hdev)) 2969 return 0; 2970 2971 bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state); 2972 2973 /* Adding or removing entries from the accept list must 2974 * happen before enabling scanning. The controller does 2975 * not allow accept list modification while scanning. 2976 */ 2977 filter_policy = hci_update_accept_list_sync(hdev); 2978 2979 /* If suspended and filter_policy set to 0x00 (no acceptlist) then 2980 * passive scanning cannot be started since that would require the host 2981 * to be woken up to process the reports. 2982 */ 2983 if (hdev->suspended && !filter_policy) { 2984 /* Check if accept list is empty then there is no need to scan 2985 * while suspended. 2986 */ 2987 if (list_empty(&hdev->le_accept_list)) 2988 return 0; 2989 2990 /* If there are devices is the accept_list that means some 2991 * devices could not be programmed which in non-suspended case 2992 * means filter_policy needs to be set to 0x00 so the host needs 2993 * to filter, but since this is treating suspended case we 2994 * can ignore device needing host to filter to allow devices in 2995 * the acceptlist to be able to wakeup the system. 2996 */ 2997 filter_policy = 0x01; 2998 } 2999 3000 /* When the controller is using random resolvable addresses and 3001 * with that having LE privacy enabled, then controllers with 3002 * Extended Scanner Filter Policies support can now enable support 3003 * for handling directed advertising. 3004 * 3005 * So instead of using filter polices 0x00 (no acceptlist) 3006 * and 0x01 (acceptlist enabled) use the new filter policies 3007 * 0x02 (no acceptlist) and 0x03 (acceptlist enabled). 3008 */ 3009 if (hci_dev_test_flag(hdev, HCI_PRIVACY) && 3010 (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)) 3011 filter_policy |= 0x02; 3012 3013 if (hdev->suspended) { 3014 window = hdev->le_scan_window_suspend; 3015 interval = hdev->le_scan_int_suspend; 3016 } else if (hci_is_le_conn_scanning(hdev)) { 3017 window = hdev->le_scan_window_connect; 3018 interval = hdev->le_scan_int_connect; 3019 } else if (hci_is_adv_monitoring(hdev)) { 3020 window = hdev->le_scan_window_adv_monitor; 3021 interval = hdev->le_scan_int_adv_monitor; 3022 } else { 3023 window = hdev->le_scan_window; 3024 interval = hdev->le_scan_interval; 3025 } 3026 3027 /* Disable all filtering for Mesh */ 3028 if (hci_dev_test_flag(hdev, HCI_MESH)) { 3029 filter_policy = 0; 3030 filter_dups = LE_SCAN_FILTER_DUP_DISABLE; 3031 } 3032 3033 bt_dev_dbg(hdev, "LE passive scan with acceptlist = %d", filter_policy); 3034 3035 return hci_start_scan_sync(hdev, LE_SCAN_PASSIVE, interval, window, 3036 own_addr_type, filter_policy, filter_dups); 3037 } 3038 3039 /* This function controls the passive scanning based on hdev->pend_le_conns 3040 * list. If there are pending LE connection we start the background scanning, 3041 * otherwise we stop it in the following sequence: 3042 * 3043 * If there are devices to scan: 3044 * 3045 * Disable Scanning -> Update Accept List -> 3046 * use_ll_privacy((Disable Advertising) -> Disable Resolving List -> 3047 * Update Resolving List -> Enable Resolving List -> (Enable Advertising)) -> 3048 * Enable Scanning 3049 * 3050 * Otherwise: 3051 * 3052 * Disable Scanning 3053 */ 3054 int hci_update_passive_scan_sync(struct hci_dev *hdev) 3055 { 3056 int err; 3057 3058 if (!test_bit(HCI_UP, &hdev->flags) || 3059 test_bit(HCI_INIT, &hdev->flags) || 3060 hci_dev_test_flag(hdev, HCI_SETUP) || 3061 hci_dev_test_flag(hdev, HCI_CONFIG) || 3062 hci_dev_test_flag(hdev, HCI_AUTO_OFF) || 3063 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 3064 return 0; 3065 3066 /* No point in doing scanning if LE support hasn't been enabled */ 3067 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 3068 return 0; 3069 3070 /* If discovery is active don't interfere with it */ 3071 if (hdev->discovery.state != DISCOVERY_STOPPED) 3072 return 0; 3073 3074 /* Reset RSSI and UUID filters when starting background scanning 3075 * since these filters are meant for service discovery only. 3076 * 3077 * The Start Discovery and Start Service Discovery operations 3078 * ensure to set proper values for RSSI threshold and UUID 3079 * filter list. So it is safe to just reset them here. 3080 */ 3081 hci_discovery_filter_clear(hdev); 3082 3083 bt_dev_dbg(hdev, "ADV monitoring is %s", 3084 hci_is_adv_monitoring(hdev) ? "on" : "off"); 3085 3086 if (!hci_dev_test_flag(hdev, HCI_MESH) && 3087 list_empty(&hdev->pend_le_conns) && 3088 list_empty(&hdev->pend_le_reports) && 3089 !hci_is_adv_monitoring(hdev) && 3090 !hci_dev_test_flag(hdev, HCI_PA_SYNC)) { 3091 /* If there is no pending LE connections or devices 3092 * to be scanned for or no ADV monitors, we should stop the 3093 * background scanning. 3094 */ 3095 3096 bt_dev_dbg(hdev, "stopping background scanning"); 3097 3098 err = hci_scan_disable_sync(hdev); 3099 if (err) 3100 bt_dev_err(hdev, "stop background scanning failed: %d", 3101 err); 3102 } else { 3103 /* If there is at least one pending LE connection, we should 3104 * keep the background scan running. 3105 */ 3106 3107 /* If controller is connecting, we should not start scanning 3108 * since some controllers are not able to scan and connect at 3109 * the same time. 3110 */ 3111 if (hci_lookup_le_connect(hdev)) 3112 return 0; 3113 3114 bt_dev_dbg(hdev, "start background scanning"); 3115 3116 err = hci_passive_scan_sync(hdev); 3117 if (err) 3118 bt_dev_err(hdev, "start background scanning failed: %d", 3119 err); 3120 } 3121 3122 return err; 3123 } 3124 3125 static int update_scan_sync(struct hci_dev *hdev, void *data) 3126 { 3127 return hci_update_scan_sync(hdev); 3128 } 3129 3130 int hci_update_scan(struct hci_dev *hdev) 3131 { 3132 return hci_cmd_sync_queue(hdev, update_scan_sync, NULL, NULL); 3133 } 3134 3135 static int update_passive_scan_sync(struct hci_dev *hdev, void *data) 3136 { 3137 return hci_update_passive_scan_sync(hdev); 3138 } 3139 3140 int hci_update_passive_scan(struct hci_dev *hdev) 3141 { 3142 /* Only queue if it would have any effect */ 3143 if (!test_bit(HCI_UP, &hdev->flags) || 3144 test_bit(HCI_INIT, &hdev->flags) || 3145 hci_dev_test_flag(hdev, HCI_SETUP) || 3146 hci_dev_test_flag(hdev, HCI_CONFIG) || 3147 hci_dev_test_flag(hdev, HCI_AUTO_OFF) || 3148 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 3149 return 0; 3150 3151 return hci_cmd_sync_queue_once(hdev, update_passive_scan_sync, NULL, 3152 NULL); 3153 } 3154 3155 int hci_write_sc_support_sync(struct hci_dev *hdev, u8 val) 3156 { 3157 int err; 3158 3159 if (!bredr_sc_enabled(hdev) || lmp_host_sc_capable(hdev)) 3160 return 0; 3161 3162 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT, 3163 sizeof(val), &val, HCI_CMD_TIMEOUT); 3164 3165 if (!err) { 3166 if (val) { 3167 hdev->features[1][0] |= LMP_HOST_SC; 3168 hci_dev_set_flag(hdev, HCI_SC_ENABLED); 3169 } else { 3170 hdev->features[1][0] &= ~LMP_HOST_SC; 3171 hci_dev_clear_flag(hdev, HCI_SC_ENABLED); 3172 } 3173 } 3174 3175 return err; 3176 } 3177 3178 int hci_write_ssp_mode_sync(struct hci_dev *hdev, u8 mode) 3179 { 3180 int err; 3181 3182 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) || 3183 lmp_host_ssp_capable(hdev)) 3184 return 0; 3185 3186 if (!mode && hci_dev_test_flag(hdev, HCI_USE_DEBUG_KEYS)) { 3187 __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE, 3188 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3189 } 3190 3191 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE, 3192 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3193 if (err) 3194 return err; 3195 3196 return hci_write_sc_support_sync(hdev, 0x01); 3197 } 3198 3199 int hci_write_le_host_supported_sync(struct hci_dev *hdev, u8 le, u8 simul) 3200 { 3201 struct hci_cp_write_le_host_supported cp; 3202 3203 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED) || 3204 !lmp_bredr_capable(hdev)) 3205 return 0; 3206 3207 /* Check first if we already have the right host state 3208 * (host features set) 3209 */ 3210 if (le == lmp_host_le_capable(hdev) && 3211 simul == lmp_host_le_br_capable(hdev)) 3212 return 0; 3213 3214 memset(&cp, 0, sizeof(cp)); 3215 3216 cp.le = le; 3217 cp.simul = simul; 3218 3219 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED, 3220 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3221 } 3222 3223 static int hci_powered_update_adv_sync(struct hci_dev *hdev) 3224 { 3225 struct adv_info *adv, *tmp; 3226 int err; 3227 3228 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 3229 return 0; 3230 3231 /* If RPA Resolution has not been enable yet it means the 3232 * resolving list is empty and we should attempt to program the 3233 * local IRK in order to support using own_addr_type 3234 * ADDR_LE_DEV_RANDOM_RESOLVED (0x03). 3235 */ 3236 if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) { 3237 hci_le_add_resolve_list_sync(hdev, NULL); 3238 hci_le_set_addr_resolution_enable_sync(hdev, 0x01); 3239 } 3240 3241 /* Make sure the controller has a good default for 3242 * advertising data. This also applies to the case 3243 * where BR/EDR was toggled during the AUTO_OFF phase. 3244 */ 3245 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 3246 list_empty(&hdev->adv_instances)) { 3247 if (ext_adv_capable(hdev)) { 3248 err = hci_setup_ext_adv_instance_sync(hdev, 0x00); 3249 if (!err) 3250 hci_update_scan_rsp_data_sync(hdev, 0x00); 3251 } else { 3252 err = hci_update_adv_data_sync(hdev, 0x00); 3253 if (!err) 3254 hci_update_scan_rsp_data_sync(hdev, 0x00); 3255 } 3256 3257 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) 3258 hci_enable_advertising_sync(hdev); 3259 } 3260 3261 /* Call for each tracked instance to be scheduled */ 3262 list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) 3263 hci_schedule_adv_instance_sync(hdev, adv->instance, true); 3264 3265 return 0; 3266 } 3267 3268 static int hci_write_auth_enable_sync(struct hci_dev *hdev) 3269 { 3270 u8 link_sec; 3271 3272 link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY); 3273 if (link_sec == test_bit(HCI_AUTH, &hdev->flags)) 3274 return 0; 3275 3276 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE, 3277 sizeof(link_sec), &link_sec, 3278 HCI_CMD_TIMEOUT); 3279 } 3280 3281 int hci_write_fast_connectable_sync(struct hci_dev *hdev, bool enable) 3282 { 3283 struct hci_cp_write_page_scan_activity cp; 3284 u8 type; 3285 int err = 0; 3286 3287 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 3288 return 0; 3289 3290 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 3291 return 0; 3292 3293 memset(&cp, 0, sizeof(cp)); 3294 3295 if (enable) { 3296 type = PAGE_SCAN_TYPE_INTERLACED; 3297 3298 /* 160 msec page scan interval */ 3299 cp.interval = cpu_to_le16(0x0100); 3300 } else { 3301 type = hdev->def_page_scan_type; 3302 cp.interval = cpu_to_le16(hdev->def_page_scan_int); 3303 } 3304 3305 cp.window = cpu_to_le16(hdev->def_page_scan_window); 3306 3307 if (__cpu_to_le16(hdev->page_scan_interval) != cp.interval || 3308 __cpu_to_le16(hdev->page_scan_window) != cp.window) { 3309 err = __hci_cmd_sync_status(hdev, 3310 HCI_OP_WRITE_PAGE_SCAN_ACTIVITY, 3311 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3312 if (err) 3313 return err; 3314 } 3315 3316 if (hdev->page_scan_type != type) 3317 err = __hci_cmd_sync_status(hdev, 3318 HCI_OP_WRITE_PAGE_SCAN_TYPE, 3319 sizeof(type), &type, 3320 HCI_CMD_TIMEOUT); 3321 3322 return err; 3323 } 3324 3325 static bool disconnected_accept_list_entries(struct hci_dev *hdev) 3326 { 3327 struct bdaddr_list *b; 3328 3329 list_for_each_entry(b, &hdev->accept_list, list) { 3330 struct hci_conn *conn; 3331 3332 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr); 3333 if (!conn) 3334 return true; 3335 3336 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 3337 return true; 3338 } 3339 3340 return false; 3341 } 3342 3343 static int hci_write_scan_enable_sync(struct hci_dev *hdev, u8 val) 3344 { 3345 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE, 3346 sizeof(val), &val, 3347 HCI_CMD_TIMEOUT); 3348 } 3349 3350 int hci_update_scan_sync(struct hci_dev *hdev) 3351 { 3352 u8 scan; 3353 3354 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 3355 return 0; 3356 3357 if (!hdev_is_powered(hdev)) 3358 return 0; 3359 3360 if (mgmt_powering_down(hdev)) 3361 return 0; 3362 3363 if (hdev->scanning_paused) 3364 return 0; 3365 3366 if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) || 3367 disconnected_accept_list_entries(hdev)) 3368 scan = SCAN_PAGE; 3369 else 3370 scan = SCAN_DISABLED; 3371 3372 if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 3373 scan |= SCAN_INQUIRY; 3374 3375 if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) && 3376 test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY)) 3377 return 0; 3378 3379 return hci_write_scan_enable_sync(hdev, scan); 3380 } 3381 3382 int hci_update_name_sync(struct hci_dev *hdev) 3383 { 3384 struct hci_cp_write_local_name cp; 3385 3386 memset(&cp, 0, sizeof(cp)); 3387 3388 memcpy(cp.name, hdev->dev_name, sizeof(cp.name)); 3389 3390 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LOCAL_NAME, 3391 sizeof(cp), &cp, 3392 HCI_CMD_TIMEOUT); 3393 } 3394 3395 /* This function perform powered update HCI command sequence after the HCI init 3396 * sequence which end up resetting all states, the sequence is as follows: 3397 * 3398 * HCI_SSP_ENABLED(Enable SSP) 3399 * HCI_LE_ENABLED(Enable LE) 3400 * HCI_LE_ENABLED(use_ll_privacy(Add local IRK to Resolving List) -> 3401 * Update adv data) 3402 * Enable Authentication 3403 * lmp_bredr_capable(Set Fast Connectable -> Set Scan Type -> Set Class -> 3404 * Set Name -> Set EIR) 3405 * HCI_FORCE_STATIC_ADDR | BDADDR_ANY && !HCI_BREDR_ENABLED (Set Static Address) 3406 */ 3407 int hci_powered_update_sync(struct hci_dev *hdev) 3408 { 3409 int err; 3410 3411 /* Register the available SMP channels (BR/EDR and LE) only when 3412 * successfully powering on the controller. This late 3413 * registration is required so that LE SMP can clearly decide if 3414 * the public address or static address is used. 3415 */ 3416 smp_register(hdev); 3417 3418 err = hci_write_ssp_mode_sync(hdev, 0x01); 3419 if (err) 3420 return err; 3421 3422 err = hci_write_le_host_supported_sync(hdev, 0x01, 0x00); 3423 if (err) 3424 return err; 3425 3426 err = hci_powered_update_adv_sync(hdev); 3427 if (err) 3428 return err; 3429 3430 err = hci_write_auth_enable_sync(hdev); 3431 if (err) 3432 return err; 3433 3434 if (lmp_bredr_capable(hdev)) { 3435 if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE)) 3436 hci_write_fast_connectable_sync(hdev, true); 3437 else 3438 hci_write_fast_connectable_sync(hdev, false); 3439 hci_update_scan_sync(hdev); 3440 hci_update_class_sync(hdev); 3441 hci_update_name_sync(hdev); 3442 hci_update_eir_sync(hdev); 3443 } 3444 3445 /* If forcing static address is in use or there is no public 3446 * address use the static address as random address (but skip 3447 * the HCI command if the current random address is already the 3448 * static one. 3449 * 3450 * In case BR/EDR has been disabled on a dual-mode controller 3451 * and a static address has been configured, then use that 3452 * address instead of the public BR/EDR address. 3453 */ 3454 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 3455 (!bacmp(&hdev->bdaddr, BDADDR_ANY) && 3456 !hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))) { 3457 if (bacmp(&hdev->static_addr, BDADDR_ANY)) 3458 return hci_set_random_addr_sync(hdev, 3459 &hdev->static_addr); 3460 } 3461 3462 return 0; 3463 } 3464 3465 /** 3466 * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address 3467 * (BD_ADDR) for a HCI device from 3468 * a firmware node property. 3469 * @hdev: The HCI device 3470 * 3471 * Search the firmware node for 'local-bd-address'. 3472 * 3473 * All-zero BD addresses are rejected, because those could be properties 3474 * that exist in the firmware tables, but were not updated by the firmware. For 3475 * example, the DTS could define 'local-bd-address', with zero BD addresses. 3476 */ 3477 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev) 3478 { 3479 struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent); 3480 bdaddr_t ba; 3481 int ret; 3482 3483 ret = fwnode_property_read_u8_array(fwnode, "local-bd-address", 3484 (u8 *)&ba, sizeof(ba)); 3485 if (ret < 0 || !bacmp(&ba, BDADDR_ANY)) 3486 return; 3487 3488 if (test_bit(HCI_QUIRK_BDADDR_PROPERTY_BROKEN, &hdev->quirks)) 3489 baswap(&hdev->public_addr, &ba); 3490 else 3491 bacpy(&hdev->public_addr, &ba); 3492 } 3493 3494 struct hci_init_stage { 3495 int (*func)(struct hci_dev *hdev); 3496 }; 3497 3498 /* Run init stage NULL terminated function table */ 3499 static int hci_init_stage_sync(struct hci_dev *hdev, 3500 const struct hci_init_stage *stage) 3501 { 3502 size_t i; 3503 3504 for (i = 0; stage[i].func; i++) { 3505 int err; 3506 3507 err = stage[i].func(hdev); 3508 if (err) 3509 return err; 3510 } 3511 3512 return 0; 3513 } 3514 3515 /* Read Local Version */ 3516 static int hci_read_local_version_sync(struct hci_dev *hdev) 3517 { 3518 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_VERSION, 3519 0, NULL, HCI_CMD_TIMEOUT); 3520 } 3521 3522 /* Read BD Address */ 3523 static int hci_read_bd_addr_sync(struct hci_dev *hdev) 3524 { 3525 return __hci_cmd_sync_status(hdev, HCI_OP_READ_BD_ADDR, 3526 0, NULL, HCI_CMD_TIMEOUT); 3527 } 3528 3529 #define HCI_INIT(_func) \ 3530 { \ 3531 .func = _func, \ 3532 } 3533 3534 static const struct hci_init_stage hci_init0[] = { 3535 /* HCI_OP_READ_LOCAL_VERSION */ 3536 HCI_INIT(hci_read_local_version_sync), 3537 /* HCI_OP_READ_BD_ADDR */ 3538 HCI_INIT(hci_read_bd_addr_sync), 3539 {} 3540 }; 3541 3542 int hci_reset_sync(struct hci_dev *hdev) 3543 { 3544 int err; 3545 3546 set_bit(HCI_RESET, &hdev->flags); 3547 3548 err = __hci_cmd_sync_status(hdev, HCI_OP_RESET, 0, NULL, 3549 HCI_CMD_TIMEOUT); 3550 if (err) 3551 return err; 3552 3553 return 0; 3554 } 3555 3556 static int hci_init0_sync(struct hci_dev *hdev) 3557 { 3558 int err; 3559 3560 bt_dev_dbg(hdev, ""); 3561 3562 /* Reset */ 3563 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) { 3564 err = hci_reset_sync(hdev); 3565 if (err) 3566 return err; 3567 } 3568 3569 return hci_init_stage_sync(hdev, hci_init0); 3570 } 3571 3572 static int hci_unconf_init_sync(struct hci_dev *hdev) 3573 { 3574 int err; 3575 3576 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) 3577 return 0; 3578 3579 err = hci_init0_sync(hdev); 3580 if (err < 0) 3581 return err; 3582 3583 if (hci_dev_test_flag(hdev, HCI_SETUP)) 3584 hci_debugfs_create_basic(hdev); 3585 3586 return 0; 3587 } 3588 3589 /* Read Local Supported Features. */ 3590 static int hci_read_local_features_sync(struct hci_dev *hdev) 3591 { 3592 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_FEATURES, 3593 0, NULL, HCI_CMD_TIMEOUT); 3594 } 3595 3596 /* BR Controller init stage 1 command sequence */ 3597 static const struct hci_init_stage br_init1[] = { 3598 /* HCI_OP_READ_LOCAL_FEATURES */ 3599 HCI_INIT(hci_read_local_features_sync), 3600 /* HCI_OP_READ_LOCAL_VERSION */ 3601 HCI_INIT(hci_read_local_version_sync), 3602 /* HCI_OP_READ_BD_ADDR */ 3603 HCI_INIT(hci_read_bd_addr_sync), 3604 {} 3605 }; 3606 3607 /* Read Local Commands */ 3608 static int hci_read_local_cmds_sync(struct hci_dev *hdev) 3609 { 3610 /* All Bluetooth 1.2 and later controllers should support the 3611 * HCI command for reading the local supported commands. 3612 * 3613 * Unfortunately some controllers indicate Bluetooth 1.2 support, 3614 * but do not have support for this command. If that is the case, 3615 * the driver can quirk the behavior and skip reading the local 3616 * supported commands. 3617 */ 3618 if (hdev->hci_ver > BLUETOOTH_VER_1_1 && 3619 !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks)) 3620 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_COMMANDS, 3621 0, NULL, HCI_CMD_TIMEOUT); 3622 3623 return 0; 3624 } 3625 3626 static int hci_init1_sync(struct hci_dev *hdev) 3627 { 3628 int err; 3629 3630 bt_dev_dbg(hdev, ""); 3631 3632 /* Reset */ 3633 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) { 3634 err = hci_reset_sync(hdev); 3635 if (err) 3636 return err; 3637 } 3638 3639 return hci_init_stage_sync(hdev, br_init1); 3640 } 3641 3642 /* Read Buffer Size (ACL mtu, max pkt, etc.) */ 3643 static int hci_read_buffer_size_sync(struct hci_dev *hdev) 3644 { 3645 return __hci_cmd_sync_status(hdev, HCI_OP_READ_BUFFER_SIZE, 3646 0, NULL, HCI_CMD_TIMEOUT); 3647 } 3648 3649 /* Read Class of Device */ 3650 static int hci_read_dev_class_sync(struct hci_dev *hdev) 3651 { 3652 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLASS_OF_DEV, 3653 0, NULL, HCI_CMD_TIMEOUT); 3654 } 3655 3656 /* Read Local Name */ 3657 static int hci_read_local_name_sync(struct hci_dev *hdev) 3658 { 3659 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_NAME, 3660 0, NULL, HCI_CMD_TIMEOUT); 3661 } 3662 3663 /* Read Voice Setting */ 3664 static int hci_read_voice_setting_sync(struct hci_dev *hdev) 3665 { 3666 return __hci_cmd_sync_status(hdev, HCI_OP_READ_VOICE_SETTING, 3667 0, NULL, HCI_CMD_TIMEOUT); 3668 } 3669 3670 /* Read Number of Supported IAC */ 3671 static int hci_read_num_supported_iac_sync(struct hci_dev *hdev) 3672 { 3673 return __hci_cmd_sync_status(hdev, HCI_OP_READ_NUM_SUPPORTED_IAC, 3674 0, NULL, HCI_CMD_TIMEOUT); 3675 } 3676 3677 /* Read Current IAC LAP */ 3678 static int hci_read_current_iac_lap_sync(struct hci_dev *hdev) 3679 { 3680 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CURRENT_IAC_LAP, 3681 0, NULL, HCI_CMD_TIMEOUT); 3682 } 3683 3684 static int hci_set_event_filter_sync(struct hci_dev *hdev, u8 flt_type, 3685 u8 cond_type, bdaddr_t *bdaddr, 3686 u8 auto_accept) 3687 { 3688 struct hci_cp_set_event_filter cp; 3689 3690 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 3691 return 0; 3692 3693 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 3694 return 0; 3695 3696 memset(&cp, 0, sizeof(cp)); 3697 cp.flt_type = flt_type; 3698 3699 if (flt_type != HCI_FLT_CLEAR_ALL) { 3700 cp.cond_type = cond_type; 3701 bacpy(&cp.addr_conn_flt.bdaddr, bdaddr); 3702 cp.addr_conn_flt.auto_accept = auto_accept; 3703 } 3704 3705 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_FLT, 3706 flt_type == HCI_FLT_CLEAR_ALL ? 3707 sizeof(cp.flt_type) : sizeof(cp), &cp, 3708 HCI_CMD_TIMEOUT); 3709 } 3710 3711 static int hci_clear_event_filter_sync(struct hci_dev *hdev) 3712 { 3713 if (!hci_dev_test_flag(hdev, HCI_EVENT_FILTER_CONFIGURED)) 3714 return 0; 3715 3716 /* In theory the state machine should not reach here unless 3717 * a hci_set_event_filter_sync() call succeeds, but we do 3718 * the check both for parity and as a future reminder. 3719 */ 3720 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 3721 return 0; 3722 3723 return hci_set_event_filter_sync(hdev, HCI_FLT_CLEAR_ALL, 0x00, 3724 BDADDR_ANY, 0x00); 3725 } 3726 3727 /* Connection accept timeout ~20 secs */ 3728 static int hci_write_ca_timeout_sync(struct hci_dev *hdev) 3729 { 3730 __le16 param = cpu_to_le16(0x7d00); 3731 3732 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CA_TIMEOUT, 3733 sizeof(param), ¶m, HCI_CMD_TIMEOUT); 3734 } 3735 3736 /* BR Controller init stage 2 command sequence */ 3737 static const struct hci_init_stage br_init2[] = { 3738 /* HCI_OP_READ_BUFFER_SIZE */ 3739 HCI_INIT(hci_read_buffer_size_sync), 3740 /* HCI_OP_READ_CLASS_OF_DEV */ 3741 HCI_INIT(hci_read_dev_class_sync), 3742 /* HCI_OP_READ_LOCAL_NAME */ 3743 HCI_INIT(hci_read_local_name_sync), 3744 /* HCI_OP_READ_VOICE_SETTING */ 3745 HCI_INIT(hci_read_voice_setting_sync), 3746 /* HCI_OP_READ_NUM_SUPPORTED_IAC */ 3747 HCI_INIT(hci_read_num_supported_iac_sync), 3748 /* HCI_OP_READ_CURRENT_IAC_LAP */ 3749 HCI_INIT(hci_read_current_iac_lap_sync), 3750 /* HCI_OP_SET_EVENT_FLT */ 3751 HCI_INIT(hci_clear_event_filter_sync), 3752 /* HCI_OP_WRITE_CA_TIMEOUT */ 3753 HCI_INIT(hci_write_ca_timeout_sync), 3754 {} 3755 }; 3756 3757 static int hci_write_ssp_mode_1_sync(struct hci_dev *hdev) 3758 { 3759 u8 mode = 0x01; 3760 3761 if (!lmp_ssp_capable(hdev) || !hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 3762 return 0; 3763 3764 /* When SSP is available, then the host features page 3765 * should also be available as well. However some 3766 * controllers list the max_page as 0 as long as SSP 3767 * has not been enabled. To achieve proper debugging 3768 * output, force the minimum max_page to 1 at least. 3769 */ 3770 hdev->max_page = 0x01; 3771 3772 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE, 3773 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3774 } 3775 3776 static int hci_write_eir_sync(struct hci_dev *hdev) 3777 { 3778 struct hci_cp_write_eir cp; 3779 3780 if (!lmp_ssp_capable(hdev) || hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 3781 return 0; 3782 3783 memset(hdev->eir, 0, sizeof(hdev->eir)); 3784 memset(&cp, 0, sizeof(cp)); 3785 3786 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp, 3787 HCI_CMD_TIMEOUT); 3788 } 3789 3790 static int hci_write_inquiry_mode_sync(struct hci_dev *hdev) 3791 { 3792 u8 mode; 3793 3794 if (!lmp_inq_rssi_capable(hdev) && 3795 !test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) 3796 return 0; 3797 3798 /* If Extended Inquiry Result events are supported, then 3799 * they are clearly preferred over Inquiry Result with RSSI 3800 * events. 3801 */ 3802 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01; 3803 3804 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_INQUIRY_MODE, 3805 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3806 } 3807 3808 static int hci_read_inq_rsp_tx_power_sync(struct hci_dev *hdev) 3809 { 3810 if (!lmp_inq_tx_pwr_capable(hdev)) 3811 return 0; 3812 3813 return __hci_cmd_sync_status(hdev, HCI_OP_READ_INQ_RSP_TX_POWER, 3814 0, NULL, HCI_CMD_TIMEOUT); 3815 } 3816 3817 static int hci_read_local_ext_features_sync(struct hci_dev *hdev, u8 page) 3818 { 3819 struct hci_cp_read_local_ext_features cp; 3820 3821 if (!lmp_ext_feat_capable(hdev)) 3822 return 0; 3823 3824 memset(&cp, 0, sizeof(cp)); 3825 cp.page = page; 3826 3827 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_EXT_FEATURES, 3828 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3829 } 3830 3831 static int hci_read_local_ext_features_1_sync(struct hci_dev *hdev) 3832 { 3833 return hci_read_local_ext_features_sync(hdev, 0x01); 3834 } 3835 3836 /* HCI Controller init stage 2 command sequence */ 3837 static const struct hci_init_stage hci_init2[] = { 3838 /* HCI_OP_READ_LOCAL_COMMANDS */ 3839 HCI_INIT(hci_read_local_cmds_sync), 3840 /* HCI_OP_WRITE_SSP_MODE */ 3841 HCI_INIT(hci_write_ssp_mode_1_sync), 3842 /* HCI_OP_WRITE_EIR */ 3843 HCI_INIT(hci_write_eir_sync), 3844 /* HCI_OP_WRITE_INQUIRY_MODE */ 3845 HCI_INIT(hci_write_inquiry_mode_sync), 3846 /* HCI_OP_READ_INQ_RSP_TX_POWER */ 3847 HCI_INIT(hci_read_inq_rsp_tx_power_sync), 3848 /* HCI_OP_READ_LOCAL_EXT_FEATURES */ 3849 HCI_INIT(hci_read_local_ext_features_1_sync), 3850 /* HCI_OP_WRITE_AUTH_ENABLE */ 3851 HCI_INIT(hci_write_auth_enable_sync), 3852 {} 3853 }; 3854 3855 /* Read LE Buffer Size */ 3856 static int hci_le_read_buffer_size_sync(struct hci_dev *hdev) 3857 { 3858 /* Use Read LE Buffer Size V2 if supported */ 3859 if (iso_capable(hdev) && hdev->commands[41] & 0x20) 3860 return __hci_cmd_sync_status(hdev, 3861 HCI_OP_LE_READ_BUFFER_SIZE_V2, 3862 0, NULL, HCI_CMD_TIMEOUT); 3863 3864 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_BUFFER_SIZE, 3865 0, NULL, HCI_CMD_TIMEOUT); 3866 } 3867 3868 /* Read LE Local Supported Features */ 3869 static int hci_le_read_local_features_sync(struct hci_dev *hdev) 3870 { 3871 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_LOCAL_FEATURES, 3872 0, NULL, HCI_CMD_TIMEOUT); 3873 } 3874 3875 /* Read LE Supported States */ 3876 static int hci_le_read_supported_states_sync(struct hci_dev *hdev) 3877 { 3878 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_SUPPORTED_STATES, 3879 0, NULL, HCI_CMD_TIMEOUT); 3880 } 3881 3882 /* LE Controller init stage 2 command sequence */ 3883 static const struct hci_init_stage le_init2[] = { 3884 /* HCI_OP_LE_READ_LOCAL_FEATURES */ 3885 HCI_INIT(hci_le_read_local_features_sync), 3886 /* HCI_OP_LE_READ_BUFFER_SIZE */ 3887 HCI_INIT(hci_le_read_buffer_size_sync), 3888 /* HCI_OP_LE_READ_SUPPORTED_STATES */ 3889 HCI_INIT(hci_le_read_supported_states_sync), 3890 {} 3891 }; 3892 3893 static int hci_init2_sync(struct hci_dev *hdev) 3894 { 3895 int err; 3896 3897 bt_dev_dbg(hdev, ""); 3898 3899 err = hci_init_stage_sync(hdev, hci_init2); 3900 if (err) 3901 return err; 3902 3903 if (lmp_bredr_capable(hdev)) { 3904 err = hci_init_stage_sync(hdev, br_init2); 3905 if (err) 3906 return err; 3907 } else { 3908 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED); 3909 } 3910 3911 if (lmp_le_capable(hdev)) { 3912 err = hci_init_stage_sync(hdev, le_init2); 3913 if (err) 3914 return err; 3915 /* LE-only controllers have LE implicitly enabled */ 3916 if (!lmp_bredr_capable(hdev)) 3917 hci_dev_set_flag(hdev, HCI_LE_ENABLED); 3918 } 3919 3920 return 0; 3921 } 3922 3923 static int hci_set_event_mask_sync(struct hci_dev *hdev) 3924 { 3925 /* The second byte is 0xff instead of 0x9f (two reserved bits 3926 * disabled) since a Broadcom 1.2 dongle doesn't respond to the 3927 * command otherwise. 3928 */ 3929 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 }; 3930 3931 /* CSR 1.1 dongles does not accept any bitfield so don't try to set 3932 * any event mask for pre 1.2 devices. 3933 */ 3934 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 3935 return 0; 3936 3937 if (lmp_bredr_capable(hdev)) { 3938 events[4] |= 0x01; /* Flow Specification Complete */ 3939 3940 /* Don't set Disconnect Complete and mode change when 3941 * suspended as that would wakeup the host when disconnecting 3942 * due to suspend. 3943 */ 3944 if (hdev->suspended) { 3945 events[0] &= 0xef; 3946 events[2] &= 0xf7; 3947 } 3948 } else { 3949 /* Use a different default for LE-only devices */ 3950 memset(events, 0, sizeof(events)); 3951 events[1] |= 0x20; /* Command Complete */ 3952 events[1] |= 0x40; /* Command Status */ 3953 events[1] |= 0x80; /* Hardware Error */ 3954 3955 /* If the controller supports the Disconnect command, enable 3956 * the corresponding event. In addition enable packet flow 3957 * control related events. 3958 */ 3959 if (hdev->commands[0] & 0x20) { 3960 /* Don't set Disconnect Complete when suspended as that 3961 * would wakeup the host when disconnecting due to 3962 * suspend. 3963 */ 3964 if (!hdev->suspended) 3965 events[0] |= 0x10; /* Disconnection Complete */ 3966 events[2] |= 0x04; /* Number of Completed Packets */ 3967 events[3] |= 0x02; /* Data Buffer Overflow */ 3968 } 3969 3970 /* If the controller supports the Read Remote Version 3971 * Information command, enable the corresponding event. 3972 */ 3973 if (hdev->commands[2] & 0x80) 3974 events[1] |= 0x08; /* Read Remote Version Information 3975 * Complete 3976 */ 3977 3978 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) { 3979 events[0] |= 0x80; /* Encryption Change */ 3980 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 3981 } 3982 } 3983 3984 if (lmp_inq_rssi_capable(hdev) || 3985 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) 3986 events[4] |= 0x02; /* Inquiry Result with RSSI */ 3987 3988 if (lmp_ext_feat_capable(hdev)) 3989 events[4] |= 0x04; /* Read Remote Extended Features Complete */ 3990 3991 if (lmp_esco_capable(hdev)) { 3992 events[5] |= 0x08; /* Synchronous Connection Complete */ 3993 events[5] |= 0x10; /* Synchronous Connection Changed */ 3994 } 3995 3996 if (lmp_sniffsubr_capable(hdev)) 3997 events[5] |= 0x20; /* Sniff Subrating */ 3998 3999 if (lmp_pause_enc_capable(hdev)) 4000 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 4001 4002 if (lmp_ext_inq_capable(hdev)) 4003 events[5] |= 0x40; /* Extended Inquiry Result */ 4004 4005 if (lmp_no_flush_capable(hdev)) 4006 events[7] |= 0x01; /* Enhanced Flush Complete */ 4007 4008 if (lmp_lsto_capable(hdev)) 4009 events[6] |= 0x80; /* Link Supervision Timeout Changed */ 4010 4011 if (lmp_ssp_capable(hdev)) { 4012 events[6] |= 0x01; /* IO Capability Request */ 4013 events[6] |= 0x02; /* IO Capability Response */ 4014 events[6] |= 0x04; /* User Confirmation Request */ 4015 events[6] |= 0x08; /* User Passkey Request */ 4016 events[6] |= 0x10; /* Remote OOB Data Request */ 4017 events[6] |= 0x20; /* Simple Pairing Complete */ 4018 events[7] |= 0x04; /* User Passkey Notification */ 4019 events[7] |= 0x08; /* Keypress Notification */ 4020 events[7] |= 0x10; /* Remote Host Supported 4021 * Features Notification 4022 */ 4023 } 4024 4025 if (lmp_le_capable(hdev)) 4026 events[7] |= 0x20; /* LE Meta-Event */ 4027 4028 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK, 4029 sizeof(events), events, HCI_CMD_TIMEOUT); 4030 } 4031 4032 static int hci_read_stored_link_key_sync(struct hci_dev *hdev) 4033 { 4034 struct hci_cp_read_stored_link_key cp; 4035 4036 if (!(hdev->commands[6] & 0x20) || 4037 test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) 4038 return 0; 4039 4040 memset(&cp, 0, sizeof(cp)); 4041 bacpy(&cp.bdaddr, BDADDR_ANY); 4042 cp.read_all = 0x01; 4043 4044 return __hci_cmd_sync_status(hdev, HCI_OP_READ_STORED_LINK_KEY, 4045 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4046 } 4047 4048 static int hci_setup_link_policy_sync(struct hci_dev *hdev) 4049 { 4050 struct hci_cp_write_def_link_policy cp; 4051 u16 link_policy = 0; 4052 4053 if (!(hdev->commands[5] & 0x10)) 4054 return 0; 4055 4056 memset(&cp, 0, sizeof(cp)); 4057 4058 if (lmp_rswitch_capable(hdev)) 4059 link_policy |= HCI_LP_RSWITCH; 4060 if (lmp_hold_capable(hdev)) 4061 link_policy |= HCI_LP_HOLD; 4062 if (lmp_sniff_capable(hdev)) 4063 link_policy |= HCI_LP_SNIFF; 4064 if (lmp_park_capable(hdev)) 4065 link_policy |= HCI_LP_PARK; 4066 4067 cp.policy = cpu_to_le16(link_policy); 4068 4069 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY, 4070 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4071 } 4072 4073 static int hci_read_page_scan_activity_sync(struct hci_dev *hdev) 4074 { 4075 if (!(hdev->commands[8] & 0x01)) 4076 return 0; 4077 4078 return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 4079 0, NULL, HCI_CMD_TIMEOUT); 4080 } 4081 4082 static int hci_read_def_err_data_reporting_sync(struct hci_dev *hdev) 4083 { 4084 if (!(hdev->commands[18] & 0x04) || 4085 !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) || 4086 test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) 4087 return 0; 4088 4089 return __hci_cmd_sync_status(hdev, HCI_OP_READ_DEF_ERR_DATA_REPORTING, 4090 0, NULL, HCI_CMD_TIMEOUT); 4091 } 4092 4093 static int hci_read_page_scan_type_sync(struct hci_dev *hdev) 4094 { 4095 /* Some older Broadcom based Bluetooth 1.2 controllers do not 4096 * support the Read Page Scan Type command. Check support for 4097 * this command in the bit mask of supported commands. 4098 */ 4099 if (!(hdev->commands[13] & 0x01)) 4100 return 0; 4101 4102 return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_TYPE, 4103 0, NULL, HCI_CMD_TIMEOUT); 4104 } 4105 4106 /* Read features beyond page 1 if available */ 4107 static int hci_read_local_ext_features_all_sync(struct hci_dev *hdev) 4108 { 4109 u8 page; 4110 int err; 4111 4112 if (!lmp_ext_feat_capable(hdev)) 4113 return 0; 4114 4115 for (page = 2; page < HCI_MAX_PAGES && page <= hdev->max_page; 4116 page++) { 4117 err = hci_read_local_ext_features_sync(hdev, page); 4118 if (err) 4119 return err; 4120 } 4121 4122 return 0; 4123 } 4124 4125 /* HCI Controller init stage 3 command sequence */ 4126 static const struct hci_init_stage hci_init3[] = { 4127 /* HCI_OP_SET_EVENT_MASK */ 4128 HCI_INIT(hci_set_event_mask_sync), 4129 /* HCI_OP_READ_STORED_LINK_KEY */ 4130 HCI_INIT(hci_read_stored_link_key_sync), 4131 /* HCI_OP_WRITE_DEF_LINK_POLICY */ 4132 HCI_INIT(hci_setup_link_policy_sync), 4133 /* HCI_OP_READ_PAGE_SCAN_ACTIVITY */ 4134 HCI_INIT(hci_read_page_scan_activity_sync), 4135 /* HCI_OP_READ_DEF_ERR_DATA_REPORTING */ 4136 HCI_INIT(hci_read_def_err_data_reporting_sync), 4137 /* HCI_OP_READ_PAGE_SCAN_TYPE */ 4138 HCI_INIT(hci_read_page_scan_type_sync), 4139 /* HCI_OP_READ_LOCAL_EXT_FEATURES */ 4140 HCI_INIT(hci_read_local_ext_features_all_sync), 4141 {} 4142 }; 4143 4144 static int hci_le_set_event_mask_sync(struct hci_dev *hdev) 4145 { 4146 u8 events[8]; 4147 4148 if (!lmp_le_capable(hdev)) 4149 return 0; 4150 4151 memset(events, 0, sizeof(events)); 4152 4153 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) 4154 events[0] |= 0x10; /* LE Long Term Key Request */ 4155 4156 /* If controller supports the Connection Parameters Request 4157 * Link Layer Procedure, enable the corresponding event. 4158 */ 4159 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC) 4160 /* LE Remote Connection Parameter Request */ 4161 events[0] |= 0x20; 4162 4163 /* If the controller supports the Data Length Extension 4164 * feature, enable the corresponding event. 4165 */ 4166 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) 4167 events[0] |= 0x40; /* LE Data Length Change */ 4168 4169 /* If the controller supports LL Privacy feature or LE Extended Adv, 4170 * enable the corresponding event. 4171 */ 4172 if (use_enhanced_conn_complete(hdev)) 4173 events[1] |= 0x02; /* LE Enhanced Connection Complete */ 4174 4175 /* If the controller supports Extended Scanner Filter 4176 * Policies, enable the corresponding event. 4177 */ 4178 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY) 4179 events[1] |= 0x04; /* LE Direct Advertising Report */ 4180 4181 /* If the controller supports Channel Selection Algorithm #2 4182 * feature, enable the corresponding event. 4183 */ 4184 if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2) 4185 events[2] |= 0x08; /* LE Channel Selection Algorithm */ 4186 4187 /* If the controller supports the LE Set Scan Enable command, 4188 * enable the corresponding advertising report event. 4189 */ 4190 if (hdev->commands[26] & 0x08) 4191 events[0] |= 0x02; /* LE Advertising Report */ 4192 4193 /* If the controller supports the LE Create Connection 4194 * command, enable the corresponding event. 4195 */ 4196 if (hdev->commands[26] & 0x10) 4197 events[0] |= 0x01; /* LE Connection Complete */ 4198 4199 /* If the controller supports the LE Connection Update 4200 * command, enable the corresponding event. 4201 */ 4202 if (hdev->commands[27] & 0x04) 4203 events[0] |= 0x04; /* LE Connection Update Complete */ 4204 4205 /* If the controller supports the LE Read Remote Used Features 4206 * command, enable the corresponding event. 4207 */ 4208 if (hdev->commands[27] & 0x20) 4209 /* LE Read Remote Used Features Complete */ 4210 events[0] |= 0x08; 4211 4212 /* If the controller supports the LE Read Local P-256 4213 * Public Key command, enable the corresponding event. 4214 */ 4215 if (hdev->commands[34] & 0x02) 4216 /* LE Read Local P-256 Public Key Complete */ 4217 events[0] |= 0x80; 4218 4219 /* If the controller supports the LE Generate DHKey 4220 * command, enable the corresponding event. 4221 */ 4222 if (hdev->commands[34] & 0x04) 4223 events[1] |= 0x01; /* LE Generate DHKey Complete */ 4224 4225 /* If the controller supports the LE Set Default PHY or 4226 * LE Set PHY commands, enable the corresponding event. 4227 */ 4228 if (hdev->commands[35] & (0x20 | 0x40)) 4229 events[1] |= 0x08; /* LE PHY Update Complete */ 4230 4231 /* If the controller supports LE Set Extended Scan Parameters 4232 * and LE Set Extended Scan Enable commands, enable the 4233 * corresponding event. 4234 */ 4235 if (use_ext_scan(hdev)) 4236 events[1] |= 0x10; /* LE Extended Advertising Report */ 4237 4238 /* If the controller supports the LE Extended Advertising 4239 * command, enable the corresponding event. 4240 */ 4241 if (ext_adv_capable(hdev)) 4242 events[2] |= 0x02; /* LE Advertising Set Terminated */ 4243 4244 if (cis_capable(hdev)) { 4245 events[3] |= 0x01; /* LE CIS Established */ 4246 if (cis_peripheral_capable(hdev)) 4247 events[3] |= 0x02; /* LE CIS Request */ 4248 } 4249 4250 if (bis_capable(hdev)) { 4251 events[1] |= 0x20; /* LE PA Report */ 4252 events[1] |= 0x40; /* LE PA Sync Established */ 4253 events[3] |= 0x04; /* LE Create BIG Complete */ 4254 events[3] |= 0x08; /* LE Terminate BIG Complete */ 4255 events[3] |= 0x10; /* LE BIG Sync Established */ 4256 events[3] |= 0x20; /* LE BIG Sync Loss */ 4257 events[4] |= 0x02; /* LE BIG Info Advertising Report */ 4258 } 4259 4260 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EVENT_MASK, 4261 sizeof(events), events, HCI_CMD_TIMEOUT); 4262 } 4263 4264 /* Read LE Advertising Channel TX Power */ 4265 static int hci_le_read_adv_tx_power_sync(struct hci_dev *hdev) 4266 { 4267 if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) { 4268 /* HCI TS spec forbids mixing of legacy and extended 4269 * advertising commands wherein READ_ADV_TX_POWER is 4270 * also included. So do not call it if extended adv 4271 * is supported otherwise controller will return 4272 * COMMAND_DISALLOWED for extended commands. 4273 */ 4274 return __hci_cmd_sync_status(hdev, 4275 HCI_OP_LE_READ_ADV_TX_POWER, 4276 0, NULL, HCI_CMD_TIMEOUT); 4277 } 4278 4279 return 0; 4280 } 4281 4282 /* Read LE Min/Max Tx Power*/ 4283 static int hci_le_read_tx_power_sync(struct hci_dev *hdev) 4284 { 4285 if (!(hdev->commands[38] & 0x80) || 4286 test_bit(HCI_QUIRK_BROKEN_READ_TRANSMIT_POWER, &hdev->quirks)) 4287 return 0; 4288 4289 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_TRANSMIT_POWER, 4290 0, NULL, HCI_CMD_TIMEOUT); 4291 } 4292 4293 /* Read LE Accept List Size */ 4294 static int hci_le_read_accept_list_size_sync(struct hci_dev *hdev) 4295 { 4296 if (!(hdev->commands[26] & 0x40)) 4297 return 0; 4298 4299 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_ACCEPT_LIST_SIZE, 4300 0, NULL, HCI_CMD_TIMEOUT); 4301 } 4302 4303 /* Read LE Resolving List Size */ 4304 static int hci_le_read_resolv_list_size_sync(struct hci_dev *hdev) 4305 { 4306 if (!(hdev->commands[34] & 0x40)) 4307 return 0; 4308 4309 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_RESOLV_LIST_SIZE, 4310 0, NULL, HCI_CMD_TIMEOUT); 4311 } 4312 4313 /* Clear LE Resolving List */ 4314 static int hci_le_clear_resolv_list_sync(struct hci_dev *hdev) 4315 { 4316 if (!(hdev->commands[34] & 0x20)) 4317 return 0; 4318 4319 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL, 4320 HCI_CMD_TIMEOUT); 4321 } 4322 4323 /* Set RPA timeout */ 4324 static int hci_le_set_rpa_timeout_sync(struct hci_dev *hdev) 4325 { 4326 __le16 timeout = cpu_to_le16(hdev->rpa_timeout); 4327 4328 if (!(hdev->commands[35] & 0x04) || 4329 test_bit(HCI_QUIRK_BROKEN_SET_RPA_TIMEOUT, &hdev->quirks)) 4330 return 0; 4331 4332 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RPA_TIMEOUT, 4333 sizeof(timeout), &timeout, 4334 HCI_CMD_TIMEOUT); 4335 } 4336 4337 /* Read LE Maximum Data Length */ 4338 static int hci_le_read_max_data_len_sync(struct hci_dev *hdev) 4339 { 4340 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 4341 return 0; 4342 4343 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL, 4344 HCI_CMD_TIMEOUT); 4345 } 4346 4347 /* Read LE Suggested Default Data Length */ 4348 static int hci_le_read_def_data_len_sync(struct hci_dev *hdev) 4349 { 4350 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 4351 return 0; 4352 4353 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL, 4354 HCI_CMD_TIMEOUT); 4355 } 4356 4357 /* Read LE Number of Supported Advertising Sets */ 4358 static int hci_le_read_num_support_adv_sets_sync(struct hci_dev *hdev) 4359 { 4360 if (!ext_adv_capable(hdev)) 4361 return 0; 4362 4363 return __hci_cmd_sync_status(hdev, 4364 HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS, 4365 0, NULL, HCI_CMD_TIMEOUT); 4366 } 4367 4368 /* Write LE Host Supported */ 4369 static int hci_set_le_support_sync(struct hci_dev *hdev) 4370 { 4371 struct hci_cp_write_le_host_supported cp; 4372 4373 /* LE-only devices do not support explicit enablement */ 4374 if (!lmp_bredr_capable(hdev)) 4375 return 0; 4376 4377 memset(&cp, 0, sizeof(cp)); 4378 4379 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 4380 cp.le = 0x01; 4381 cp.simul = 0x00; 4382 } 4383 4384 if (cp.le == lmp_host_le_capable(hdev)) 4385 return 0; 4386 4387 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED, 4388 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4389 } 4390 4391 /* LE Set Host Feature */ 4392 static int hci_le_set_host_feature_sync(struct hci_dev *hdev) 4393 { 4394 struct hci_cp_le_set_host_feature cp; 4395 4396 if (!cis_capable(hdev)) 4397 return 0; 4398 4399 memset(&cp, 0, sizeof(cp)); 4400 4401 /* Connected Isochronous Channels (Host Support) */ 4402 cp.bit_number = 32; 4403 cp.bit_value = 1; 4404 4405 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_HOST_FEATURE, 4406 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4407 } 4408 4409 /* LE Controller init stage 3 command sequence */ 4410 static const struct hci_init_stage le_init3[] = { 4411 /* HCI_OP_LE_SET_EVENT_MASK */ 4412 HCI_INIT(hci_le_set_event_mask_sync), 4413 /* HCI_OP_LE_READ_ADV_TX_POWER */ 4414 HCI_INIT(hci_le_read_adv_tx_power_sync), 4415 /* HCI_OP_LE_READ_TRANSMIT_POWER */ 4416 HCI_INIT(hci_le_read_tx_power_sync), 4417 /* HCI_OP_LE_READ_ACCEPT_LIST_SIZE */ 4418 HCI_INIT(hci_le_read_accept_list_size_sync), 4419 /* HCI_OP_LE_CLEAR_ACCEPT_LIST */ 4420 HCI_INIT(hci_le_clear_accept_list_sync), 4421 /* HCI_OP_LE_READ_RESOLV_LIST_SIZE */ 4422 HCI_INIT(hci_le_read_resolv_list_size_sync), 4423 /* HCI_OP_LE_CLEAR_RESOLV_LIST */ 4424 HCI_INIT(hci_le_clear_resolv_list_sync), 4425 /* HCI_OP_LE_SET_RPA_TIMEOUT */ 4426 HCI_INIT(hci_le_set_rpa_timeout_sync), 4427 /* HCI_OP_LE_READ_MAX_DATA_LEN */ 4428 HCI_INIT(hci_le_read_max_data_len_sync), 4429 /* HCI_OP_LE_READ_DEF_DATA_LEN */ 4430 HCI_INIT(hci_le_read_def_data_len_sync), 4431 /* HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS */ 4432 HCI_INIT(hci_le_read_num_support_adv_sets_sync), 4433 /* HCI_OP_WRITE_LE_HOST_SUPPORTED */ 4434 HCI_INIT(hci_set_le_support_sync), 4435 /* HCI_OP_LE_SET_HOST_FEATURE */ 4436 HCI_INIT(hci_le_set_host_feature_sync), 4437 {} 4438 }; 4439 4440 static int hci_init3_sync(struct hci_dev *hdev) 4441 { 4442 int err; 4443 4444 bt_dev_dbg(hdev, ""); 4445 4446 err = hci_init_stage_sync(hdev, hci_init3); 4447 if (err) 4448 return err; 4449 4450 if (lmp_le_capable(hdev)) 4451 return hci_init_stage_sync(hdev, le_init3); 4452 4453 return 0; 4454 } 4455 4456 static int hci_delete_stored_link_key_sync(struct hci_dev *hdev) 4457 { 4458 struct hci_cp_delete_stored_link_key cp; 4459 4460 /* Some Broadcom based Bluetooth controllers do not support the 4461 * Delete Stored Link Key command. They are clearly indicating its 4462 * absence in the bit mask of supported commands. 4463 * 4464 * Check the supported commands and only if the command is marked 4465 * as supported send it. If not supported assume that the controller 4466 * does not have actual support for stored link keys which makes this 4467 * command redundant anyway. 4468 * 4469 * Some controllers indicate that they support handling deleting 4470 * stored link keys, but they don't. The quirk lets a driver 4471 * just disable this command. 4472 */ 4473 if (!(hdev->commands[6] & 0x80) || 4474 test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) 4475 return 0; 4476 4477 memset(&cp, 0, sizeof(cp)); 4478 bacpy(&cp.bdaddr, BDADDR_ANY); 4479 cp.delete_all = 0x01; 4480 4481 return __hci_cmd_sync_status(hdev, HCI_OP_DELETE_STORED_LINK_KEY, 4482 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4483 } 4484 4485 static int hci_set_event_mask_page_2_sync(struct hci_dev *hdev) 4486 { 4487 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 4488 bool changed = false; 4489 4490 /* Set event mask page 2 if the HCI command for it is supported */ 4491 if (!(hdev->commands[22] & 0x04)) 4492 return 0; 4493 4494 /* If Connectionless Peripheral Broadcast central role is supported 4495 * enable all necessary events for it. 4496 */ 4497 if (lmp_cpb_central_capable(hdev)) { 4498 events[1] |= 0x40; /* Triggered Clock Capture */ 4499 events[1] |= 0x80; /* Synchronization Train Complete */ 4500 events[2] |= 0x08; /* Truncated Page Complete */ 4501 events[2] |= 0x20; /* CPB Channel Map Change */ 4502 changed = true; 4503 } 4504 4505 /* If Connectionless Peripheral Broadcast peripheral role is supported 4506 * enable all necessary events for it. 4507 */ 4508 if (lmp_cpb_peripheral_capable(hdev)) { 4509 events[2] |= 0x01; /* Synchronization Train Received */ 4510 events[2] |= 0x02; /* CPB Receive */ 4511 events[2] |= 0x04; /* CPB Timeout */ 4512 events[2] |= 0x10; /* Peripheral Page Response Timeout */ 4513 changed = true; 4514 } 4515 4516 /* Enable Authenticated Payload Timeout Expired event if supported */ 4517 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) { 4518 events[2] |= 0x80; 4519 changed = true; 4520 } 4521 4522 /* Some Broadcom based controllers indicate support for Set Event 4523 * Mask Page 2 command, but then actually do not support it. Since 4524 * the default value is all bits set to zero, the command is only 4525 * required if the event mask has to be changed. In case no change 4526 * to the event mask is needed, skip this command. 4527 */ 4528 if (!changed) 4529 return 0; 4530 4531 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK_PAGE_2, 4532 sizeof(events), events, HCI_CMD_TIMEOUT); 4533 } 4534 4535 /* Read local codec list if the HCI command is supported */ 4536 static int hci_read_local_codecs_sync(struct hci_dev *hdev) 4537 { 4538 if (hdev->commands[45] & 0x04) 4539 hci_read_supported_codecs_v2(hdev); 4540 else if (hdev->commands[29] & 0x20) 4541 hci_read_supported_codecs(hdev); 4542 4543 return 0; 4544 } 4545 4546 /* Read local pairing options if the HCI command is supported */ 4547 static int hci_read_local_pairing_opts_sync(struct hci_dev *hdev) 4548 { 4549 if (!(hdev->commands[41] & 0x08)) 4550 return 0; 4551 4552 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_PAIRING_OPTS, 4553 0, NULL, HCI_CMD_TIMEOUT); 4554 } 4555 4556 /* Get MWS transport configuration if the HCI command is supported */ 4557 static int hci_get_mws_transport_config_sync(struct hci_dev *hdev) 4558 { 4559 if (!mws_transport_config_capable(hdev)) 4560 return 0; 4561 4562 return __hci_cmd_sync_status(hdev, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 4563 0, NULL, HCI_CMD_TIMEOUT); 4564 } 4565 4566 /* Check for Synchronization Train support */ 4567 static int hci_read_sync_train_params_sync(struct hci_dev *hdev) 4568 { 4569 if (!lmp_sync_train_capable(hdev)) 4570 return 0; 4571 4572 return __hci_cmd_sync_status(hdev, HCI_OP_READ_SYNC_TRAIN_PARAMS, 4573 0, NULL, HCI_CMD_TIMEOUT); 4574 } 4575 4576 /* Enable Secure Connections if supported and configured */ 4577 static int hci_write_sc_support_1_sync(struct hci_dev *hdev) 4578 { 4579 u8 support = 0x01; 4580 4581 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) || 4582 !bredr_sc_enabled(hdev)) 4583 return 0; 4584 4585 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT, 4586 sizeof(support), &support, 4587 HCI_CMD_TIMEOUT); 4588 } 4589 4590 /* Set erroneous data reporting if supported to the wideband speech 4591 * setting value 4592 */ 4593 static int hci_set_err_data_report_sync(struct hci_dev *hdev) 4594 { 4595 struct hci_cp_write_def_err_data_reporting cp; 4596 bool enabled = hci_dev_test_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED); 4597 4598 if (!(hdev->commands[18] & 0x08) || 4599 !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) || 4600 test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) 4601 return 0; 4602 4603 if (enabled == hdev->err_data_reporting) 4604 return 0; 4605 4606 memset(&cp, 0, sizeof(cp)); 4607 cp.err_data_reporting = enabled ? ERR_DATA_REPORTING_ENABLED : 4608 ERR_DATA_REPORTING_DISABLED; 4609 4610 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING, 4611 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4612 } 4613 4614 static const struct hci_init_stage hci_init4[] = { 4615 /* HCI_OP_DELETE_STORED_LINK_KEY */ 4616 HCI_INIT(hci_delete_stored_link_key_sync), 4617 /* HCI_OP_SET_EVENT_MASK_PAGE_2 */ 4618 HCI_INIT(hci_set_event_mask_page_2_sync), 4619 /* HCI_OP_READ_LOCAL_CODECS */ 4620 HCI_INIT(hci_read_local_codecs_sync), 4621 /* HCI_OP_READ_LOCAL_PAIRING_OPTS */ 4622 HCI_INIT(hci_read_local_pairing_opts_sync), 4623 /* HCI_OP_GET_MWS_TRANSPORT_CONFIG */ 4624 HCI_INIT(hci_get_mws_transport_config_sync), 4625 /* HCI_OP_READ_SYNC_TRAIN_PARAMS */ 4626 HCI_INIT(hci_read_sync_train_params_sync), 4627 /* HCI_OP_WRITE_SC_SUPPORT */ 4628 HCI_INIT(hci_write_sc_support_1_sync), 4629 /* HCI_OP_WRITE_DEF_ERR_DATA_REPORTING */ 4630 HCI_INIT(hci_set_err_data_report_sync), 4631 {} 4632 }; 4633 4634 /* Set Suggested Default Data Length to maximum if supported */ 4635 static int hci_le_set_write_def_data_len_sync(struct hci_dev *hdev) 4636 { 4637 struct hci_cp_le_write_def_data_len cp; 4638 4639 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 4640 return 0; 4641 4642 memset(&cp, 0, sizeof(cp)); 4643 cp.tx_len = cpu_to_le16(hdev->le_max_tx_len); 4644 cp.tx_time = cpu_to_le16(hdev->le_max_tx_time); 4645 4646 return __hci_cmd_sync_status(hdev, HCI_OP_LE_WRITE_DEF_DATA_LEN, 4647 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4648 } 4649 4650 /* Set Default PHY parameters if command is supported, enables all supported 4651 * PHYs according to the LE Features bits. 4652 */ 4653 static int hci_le_set_default_phy_sync(struct hci_dev *hdev) 4654 { 4655 struct hci_cp_le_set_default_phy cp; 4656 4657 if (!(hdev->commands[35] & 0x20)) { 4658 /* If the command is not supported it means only 1M PHY is 4659 * supported. 4660 */ 4661 hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M; 4662 hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M; 4663 return 0; 4664 } 4665 4666 memset(&cp, 0, sizeof(cp)); 4667 cp.all_phys = 0x00; 4668 cp.tx_phys = HCI_LE_SET_PHY_1M; 4669 cp.rx_phys = HCI_LE_SET_PHY_1M; 4670 4671 /* Enables 2M PHY if supported */ 4672 if (le_2m_capable(hdev)) { 4673 cp.tx_phys |= HCI_LE_SET_PHY_2M; 4674 cp.rx_phys |= HCI_LE_SET_PHY_2M; 4675 } 4676 4677 /* Enables Coded PHY if supported */ 4678 if (le_coded_capable(hdev)) { 4679 cp.tx_phys |= HCI_LE_SET_PHY_CODED; 4680 cp.rx_phys |= HCI_LE_SET_PHY_CODED; 4681 } 4682 4683 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_DEFAULT_PHY, 4684 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4685 } 4686 4687 static const struct hci_init_stage le_init4[] = { 4688 /* HCI_OP_LE_WRITE_DEF_DATA_LEN */ 4689 HCI_INIT(hci_le_set_write_def_data_len_sync), 4690 /* HCI_OP_LE_SET_DEFAULT_PHY */ 4691 HCI_INIT(hci_le_set_default_phy_sync), 4692 {} 4693 }; 4694 4695 static int hci_init4_sync(struct hci_dev *hdev) 4696 { 4697 int err; 4698 4699 bt_dev_dbg(hdev, ""); 4700 4701 err = hci_init_stage_sync(hdev, hci_init4); 4702 if (err) 4703 return err; 4704 4705 if (lmp_le_capable(hdev)) 4706 return hci_init_stage_sync(hdev, le_init4); 4707 4708 return 0; 4709 } 4710 4711 static int hci_init_sync(struct hci_dev *hdev) 4712 { 4713 int err; 4714 4715 err = hci_init1_sync(hdev); 4716 if (err < 0) 4717 return err; 4718 4719 if (hci_dev_test_flag(hdev, HCI_SETUP)) 4720 hci_debugfs_create_basic(hdev); 4721 4722 err = hci_init2_sync(hdev); 4723 if (err < 0) 4724 return err; 4725 4726 err = hci_init3_sync(hdev); 4727 if (err < 0) 4728 return err; 4729 4730 err = hci_init4_sync(hdev); 4731 if (err < 0) 4732 return err; 4733 4734 /* This function is only called when the controller is actually in 4735 * configured state. When the controller is marked as unconfigured, 4736 * this initialization procedure is not run. 4737 * 4738 * It means that it is possible that a controller runs through its 4739 * setup phase and then discovers missing settings. If that is the 4740 * case, then this function will not be called. It then will only 4741 * be called during the config phase. 4742 * 4743 * So only when in setup phase or config phase, create the debugfs 4744 * entries and register the SMP channels. 4745 */ 4746 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4747 !hci_dev_test_flag(hdev, HCI_CONFIG)) 4748 return 0; 4749 4750 if (hci_dev_test_and_set_flag(hdev, HCI_DEBUGFS_CREATED)) 4751 return 0; 4752 4753 hci_debugfs_create_common(hdev); 4754 4755 if (lmp_bredr_capable(hdev)) 4756 hci_debugfs_create_bredr(hdev); 4757 4758 if (lmp_le_capable(hdev)) 4759 hci_debugfs_create_le(hdev); 4760 4761 return 0; 4762 } 4763 4764 #define HCI_QUIRK_BROKEN(_quirk, _desc) { HCI_QUIRK_BROKEN_##_quirk, _desc } 4765 4766 static const struct { 4767 unsigned long quirk; 4768 const char *desc; 4769 } hci_broken_table[] = { 4770 HCI_QUIRK_BROKEN(LOCAL_COMMANDS, 4771 "HCI Read Local Supported Commands not supported"), 4772 HCI_QUIRK_BROKEN(STORED_LINK_KEY, 4773 "HCI Delete Stored Link Key command is advertised, " 4774 "but not supported."), 4775 HCI_QUIRK_BROKEN(ERR_DATA_REPORTING, 4776 "HCI Read Default Erroneous Data Reporting command is " 4777 "advertised, but not supported."), 4778 HCI_QUIRK_BROKEN(READ_TRANSMIT_POWER, 4779 "HCI Read Transmit Power Level command is advertised, " 4780 "but not supported."), 4781 HCI_QUIRK_BROKEN(FILTER_CLEAR_ALL, 4782 "HCI Set Event Filter command not supported."), 4783 HCI_QUIRK_BROKEN(ENHANCED_SETUP_SYNC_CONN, 4784 "HCI Enhanced Setup Synchronous Connection command is " 4785 "advertised, but not supported."), 4786 HCI_QUIRK_BROKEN(SET_RPA_TIMEOUT, 4787 "HCI LE Set Random Private Address Timeout command is " 4788 "advertised, but not supported."), 4789 HCI_QUIRK_BROKEN(LE_CODED, 4790 "HCI LE Coded PHY feature bit is set, " 4791 "but its usage is not supported.") 4792 }; 4793 4794 /* This function handles hdev setup stage: 4795 * 4796 * Calls hdev->setup 4797 * Setup address if HCI_QUIRK_USE_BDADDR_PROPERTY is set. 4798 */ 4799 static int hci_dev_setup_sync(struct hci_dev *hdev) 4800 { 4801 int ret = 0; 4802 bool invalid_bdaddr; 4803 size_t i; 4804 4805 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4806 !test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) 4807 return 0; 4808 4809 bt_dev_dbg(hdev, ""); 4810 4811 hci_sock_dev_event(hdev, HCI_DEV_SETUP); 4812 4813 if (hdev->setup) 4814 ret = hdev->setup(hdev); 4815 4816 for (i = 0; i < ARRAY_SIZE(hci_broken_table); i++) { 4817 if (test_bit(hci_broken_table[i].quirk, &hdev->quirks)) 4818 bt_dev_warn(hdev, "%s", hci_broken_table[i].desc); 4819 } 4820 4821 /* The transport driver can set the quirk to mark the 4822 * BD_ADDR invalid before creating the HCI device or in 4823 * its setup callback. 4824 */ 4825 invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks) || 4826 test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks); 4827 if (!ret) { 4828 if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks) && 4829 !bacmp(&hdev->public_addr, BDADDR_ANY)) 4830 hci_dev_get_bd_addr_from_property(hdev); 4831 4832 if (invalid_bdaddr && bacmp(&hdev->public_addr, BDADDR_ANY) && 4833 hdev->set_bdaddr) { 4834 ret = hdev->set_bdaddr(hdev, &hdev->public_addr); 4835 if (!ret) 4836 invalid_bdaddr = false; 4837 } 4838 } 4839 4840 /* The transport driver can set these quirks before 4841 * creating the HCI device or in its setup callback. 4842 * 4843 * For the invalid BD_ADDR quirk it is possible that 4844 * it becomes a valid address if the bootloader does 4845 * provide it (see above). 4846 * 4847 * In case any of them is set, the controller has to 4848 * start up as unconfigured. 4849 */ 4850 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) || 4851 invalid_bdaddr) 4852 hci_dev_set_flag(hdev, HCI_UNCONFIGURED); 4853 4854 /* For an unconfigured controller it is required to 4855 * read at least the version information provided by 4856 * the Read Local Version Information command. 4857 * 4858 * If the set_bdaddr driver callback is provided, then 4859 * also the original Bluetooth public device address 4860 * will be read using the Read BD Address command. 4861 */ 4862 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 4863 return hci_unconf_init_sync(hdev); 4864 4865 return ret; 4866 } 4867 4868 /* This function handles hdev init stage: 4869 * 4870 * Calls hci_dev_setup_sync to perform setup stage 4871 * Calls hci_init_sync to perform HCI command init sequence 4872 */ 4873 static int hci_dev_init_sync(struct hci_dev *hdev) 4874 { 4875 int ret; 4876 4877 bt_dev_dbg(hdev, ""); 4878 4879 atomic_set(&hdev->cmd_cnt, 1); 4880 set_bit(HCI_INIT, &hdev->flags); 4881 4882 ret = hci_dev_setup_sync(hdev); 4883 4884 if (hci_dev_test_flag(hdev, HCI_CONFIG)) { 4885 /* If public address change is configured, ensure that 4886 * the address gets programmed. If the driver does not 4887 * support changing the public address, fail the power 4888 * on procedure. 4889 */ 4890 if (bacmp(&hdev->public_addr, BDADDR_ANY) && 4891 hdev->set_bdaddr) 4892 ret = hdev->set_bdaddr(hdev, &hdev->public_addr); 4893 else 4894 ret = -EADDRNOTAVAIL; 4895 } 4896 4897 if (!ret) { 4898 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 4899 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4900 ret = hci_init_sync(hdev); 4901 if (!ret && hdev->post_init) 4902 ret = hdev->post_init(hdev); 4903 } 4904 } 4905 4906 /* If the HCI Reset command is clearing all diagnostic settings, 4907 * then they need to be reprogrammed after the init procedure 4908 * completed. 4909 */ 4910 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) && 4911 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4912 hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag) 4913 ret = hdev->set_diag(hdev, true); 4914 4915 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4916 msft_do_open(hdev); 4917 aosp_do_open(hdev); 4918 } 4919 4920 clear_bit(HCI_INIT, &hdev->flags); 4921 4922 return ret; 4923 } 4924 4925 int hci_dev_open_sync(struct hci_dev *hdev) 4926 { 4927 int ret; 4928 4929 bt_dev_dbg(hdev, ""); 4930 4931 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 4932 ret = -ENODEV; 4933 goto done; 4934 } 4935 4936 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4937 !hci_dev_test_flag(hdev, HCI_CONFIG)) { 4938 /* Check for rfkill but allow the HCI setup stage to 4939 * proceed (which in itself doesn't cause any RF activity). 4940 */ 4941 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) { 4942 ret = -ERFKILL; 4943 goto done; 4944 } 4945 4946 /* Check for valid public address or a configured static 4947 * random address, but let the HCI setup proceed to 4948 * be able to determine if there is a public address 4949 * or not. 4950 * 4951 * In case of user channel usage, it is not important 4952 * if a public address or static random address is 4953 * available. 4954 */ 4955 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4956 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 4957 !bacmp(&hdev->static_addr, BDADDR_ANY)) { 4958 ret = -EADDRNOTAVAIL; 4959 goto done; 4960 } 4961 } 4962 4963 if (test_bit(HCI_UP, &hdev->flags)) { 4964 ret = -EALREADY; 4965 goto done; 4966 } 4967 4968 if (hdev->open(hdev)) { 4969 ret = -EIO; 4970 goto done; 4971 } 4972 4973 hci_devcd_reset(hdev); 4974 4975 set_bit(HCI_RUNNING, &hdev->flags); 4976 hci_sock_dev_event(hdev, HCI_DEV_OPEN); 4977 4978 ret = hci_dev_init_sync(hdev); 4979 if (!ret) { 4980 hci_dev_hold(hdev); 4981 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 4982 hci_adv_instances_set_rpa_expired(hdev, true); 4983 set_bit(HCI_UP, &hdev->flags); 4984 hci_sock_dev_event(hdev, HCI_DEV_UP); 4985 hci_leds_update_powered(hdev, true); 4986 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4987 !hci_dev_test_flag(hdev, HCI_CONFIG) && 4988 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 4989 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4990 hci_dev_test_flag(hdev, HCI_MGMT)) { 4991 ret = hci_powered_update_sync(hdev); 4992 mgmt_power_on(hdev, ret); 4993 } 4994 } else { 4995 /* Init failed, cleanup */ 4996 flush_work(&hdev->tx_work); 4997 4998 /* Since hci_rx_work() is possible to awake new cmd_work 4999 * it should be flushed first to avoid unexpected call of 5000 * hci_cmd_work() 5001 */ 5002 flush_work(&hdev->rx_work); 5003 flush_work(&hdev->cmd_work); 5004 5005 skb_queue_purge(&hdev->cmd_q); 5006 skb_queue_purge(&hdev->rx_q); 5007 5008 if (hdev->flush) 5009 hdev->flush(hdev); 5010 5011 if (hdev->sent_cmd) { 5012 cancel_delayed_work_sync(&hdev->cmd_timer); 5013 kfree_skb(hdev->sent_cmd); 5014 hdev->sent_cmd = NULL; 5015 } 5016 5017 if (hdev->req_skb) { 5018 kfree_skb(hdev->req_skb); 5019 hdev->req_skb = NULL; 5020 } 5021 5022 clear_bit(HCI_RUNNING, &hdev->flags); 5023 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 5024 5025 hdev->close(hdev); 5026 hdev->flags &= BIT(HCI_RAW); 5027 } 5028 5029 done: 5030 return ret; 5031 } 5032 5033 /* This function requires the caller holds hdev->lock */ 5034 static void hci_pend_le_actions_clear(struct hci_dev *hdev) 5035 { 5036 struct hci_conn_params *p; 5037 5038 list_for_each_entry(p, &hdev->le_conn_params, list) { 5039 hci_pend_le_list_del_init(p); 5040 if (p->conn) { 5041 hci_conn_drop(p->conn); 5042 hci_conn_put(p->conn); 5043 p->conn = NULL; 5044 } 5045 } 5046 5047 BT_DBG("All LE pending actions cleared"); 5048 } 5049 5050 static int hci_dev_shutdown(struct hci_dev *hdev) 5051 { 5052 int err = 0; 5053 /* Similar to how we first do setup and then set the exclusive access 5054 * bit for userspace, we must first unset userchannel and then clean up. 5055 * Otherwise, the kernel can't properly use the hci channel to clean up 5056 * the controller (some shutdown routines require sending additional 5057 * commands to the controller for example). 5058 */ 5059 bool was_userchannel = 5060 hci_dev_test_and_clear_flag(hdev, HCI_USER_CHANNEL); 5061 5062 if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) && 5063 test_bit(HCI_UP, &hdev->flags)) { 5064 /* Execute vendor specific shutdown routine */ 5065 if (hdev->shutdown) 5066 err = hdev->shutdown(hdev); 5067 } 5068 5069 if (was_userchannel) 5070 hci_dev_set_flag(hdev, HCI_USER_CHANNEL); 5071 5072 return err; 5073 } 5074 5075 int hci_dev_close_sync(struct hci_dev *hdev) 5076 { 5077 bool auto_off; 5078 int err = 0; 5079 5080 bt_dev_dbg(hdev, ""); 5081 5082 cancel_delayed_work(&hdev->power_off); 5083 cancel_delayed_work(&hdev->ncmd_timer); 5084 cancel_delayed_work(&hdev->le_scan_disable); 5085 5086 hci_cmd_sync_cancel_sync(hdev, ENODEV); 5087 5088 cancel_interleave_scan(hdev); 5089 5090 if (hdev->adv_instance_timeout) { 5091 cancel_delayed_work_sync(&hdev->adv_instance_expire); 5092 hdev->adv_instance_timeout = 0; 5093 } 5094 5095 err = hci_dev_shutdown(hdev); 5096 5097 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) { 5098 cancel_delayed_work_sync(&hdev->cmd_timer); 5099 return err; 5100 } 5101 5102 hci_leds_update_powered(hdev, false); 5103 5104 /* Flush RX and TX works */ 5105 flush_work(&hdev->tx_work); 5106 flush_work(&hdev->rx_work); 5107 5108 if (hdev->discov_timeout > 0) { 5109 hdev->discov_timeout = 0; 5110 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 5111 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 5112 } 5113 5114 if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE)) 5115 cancel_delayed_work(&hdev->service_cache); 5116 5117 if (hci_dev_test_flag(hdev, HCI_MGMT)) { 5118 struct adv_info *adv_instance; 5119 5120 cancel_delayed_work_sync(&hdev->rpa_expired); 5121 5122 list_for_each_entry(adv_instance, &hdev->adv_instances, list) 5123 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb); 5124 } 5125 5126 /* Avoid potential lockdep warnings from the *_flush() calls by 5127 * ensuring the workqueue is empty up front. 5128 */ 5129 drain_workqueue(hdev->workqueue); 5130 5131 hci_dev_lock(hdev); 5132 5133 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 5134 5135 auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF); 5136 5137 if (!auto_off && !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 5138 hci_dev_test_flag(hdev, HCI_MGMT)) 5139 __mgmt_power_off(hdev); 5140 5141 hci_inquiry_cache_flush(hdev); 5142 hci_pend_le_actions_clear(hdev); 5143 hci_conn_hash_flush(hdev); 5144 /* Prevent data races on hdev->smp_data or hdev->smp_bredr_data */ 5145 smp_unregister(hdev); 5146 hci_dev_unlock(hdev); 5147 5148 hci_sock_dev_event(hdev, HCI_DEV_DOWN); 5149 5150 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 5151 aosp_do_close(hdev); 5152 msft_do_close(hdev); 5153 } 5154 5155 if (hdev->flush) 5156 hdev->flush(hdev); 5157 5158 /* Reset device */ 5159 skb_queue_purge(&hdev->cmd_q); 5160 atomic_set(&hdev->cmd_cnt, 1); 5161 if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) && 5162 !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 5163 set_bit(HCI_INIT, &hdev->flags); 5164 hci_reset_sync(hdev); 5165 clear_bit(HCI_INIT, &hdev->flags); 5166 } 5167 5168 /* flush cmd work */ 5169 flush_work(&hdev->cmd_work); 5170 5171 /* Drop queues */ 5172 skb_queue_purge(&hdev->rx_q); 5173 skb_queue_purge(&hdev->cmd_q); 5174 skb_queue_purge(&hdev->raw_q); 5175 5176 /* Drop last sent command */ 5177 if (hdev->sent_cmd) { 5178 cancel_delayed_work_sync(&hdev->cmd_timer); 5179 kfree_skb(hdev->sent_cmd); 5180 hdev->sent_cmd = NULL; 5181 } 5182 5183 /* Drop last request */ 5184 if (hdev->req_skb) { 5185 kfree_skb(hdev->req_skb); 5186 hdev->req_skb = NULL; 5187 } 5188 5189 clear_bit(HCI_RUNNING, &hdev->flags); 5190 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 5191 5192 /* After this point our queues are empty and no tasks are scheduled. */ 5193 hdev->close(hdev); 5194 5195 /* Clear flags */ 5196 hdev->flags &= BIT(HCI_RAW); 5197 hci_dev_clear_volatile_flags(hdev); 5198 5199 memset(hdev->eir, 0, sizeof(hdev->eir)); 5200 memset(hdev->dev_class, 0, sizeof(hdev->dev_class)); 5201 bacpy(&hdev->random_addr, BDADDR_ANY); 5202 hci_codec_list_clear(&hdev->local_codecs); 5203 5204 hci_dev_put(hdev); 5205 return err; 5206 } 5207 5208 /* This function perform power on HCI command sequence as follows: 5209 * 5210 * If controller is already up (HCI_UP) performs hci_powered_update_sync 5211 * sequence otherwise run hci_dev_open_sync which will follow with 5212 * hci_powered_update_sync after the init sequence is completed. 5213 */ 5214 static int hci_power_on_sync(struct hci_dev *hdev) 5215 { 5216 int err; 5217 5218 if (test_bit(HCI_UP, &hdev->flags) && 5219 hci_dev_test_flag(hdev, HCI_MGMT) && 5220 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) { 5221 cancel_delayed_work(&hdev->power_off); 5222 return hci_powered_update_sync(hdev); 5223 } 5224 5225 err = hci_dev_open_sync(hdev); 5226 if (err < 0) 5227 return err; 5228 5229 /* During the HCI setup phase, a few error conditions are 5230 * ignored and they need to be checked now. If they are still 5231 * valid, it is important to return the device back off. 5232 */ 5233 if (hci_dev_test_flag(hdev, HCI_RFKILLED) || 5234 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) || 5235 (!bacmp(&hdev->bdaddr, BDADDR_ANY) && 5236 !bacmp(&hdev->static_addr, BDADDR_ANY))) { 5237 hci_dev_clear_flag(hdev, HCI_AUTO_OFF); 5238 hci_dev_close_sync(hdev); 5239 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) { 5240 queue_delayed_work(hdev->req_workqueue, &hdev->power_off, 5241 HCI_AUTO_OFF_TIMEOUT); 5242 } 5243 5244 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) { 5245 /* For unconfigured devices, set the HCI_RAW flag 5246 * so that userspace can easily identify them. 5247 */ 5248 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 5249 set_bit(HCI_RAW, &hdev->flags); 5250 5251 /* For fully configured devices, this will send 5252 * the Index Added event. For unconfigured devices, 5253 * it will send Unconfigued Index Added event. 5254 * 5255 * Devices with HCI_QUIRK_RAW_DEVICE are ignored 5256 * and no event will be send. 5257 */ 5258 mgmt_index_added(hdev); 5259 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) { 5260 /* When the controller is now configured, then it 5261 * is important to clear the HCI_RAW flag. 5262 */ 5263 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 5264 clear_bit(HCI_RAW, &hdev->flags); 5265 5266 /* Powering on the controller with HCI_CONFIG set only 5267 * happens with the transition from unconfigured to 5268 * configured. This will send the Index Added event. 5269 */ 5270 mgmt_index_added(hdev); 5271 } 5272 5273 return 0; 5274 } 5275 5276 static int hci_remote_name_cancel_sync(struct hci_dev *hdev, bdaddr_t *addr) 5277 { 5278 struct hci_cp_remote_name_req_cancel cp; 5279 5280 memset(&cp, 0, sizeof(cp)); 5281 bacpy(&cp.bdaddr, addr); 5282 5283 return __hci_cmd_sync_status(hdev, HCI_OP_REMOTE_NAME_REQ_CANCEL, 5284 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5285 } 5286 5287 int hci_stop_discovery_sync(struct hci_dev *hdev) 5288 { 5289 struct discovery_state *d = &hdev->discovery; 5290 struct inquiry_entry *e; 5291 int err; 5292 5293 bt_dev_dbg(hdev, "state %u", hdev->discovery.state); 5294 5295 if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) { 5296 if (test_bit(HCI_INQUIRY, &hdev->flags)) { 5297 err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL, 5298 0, NULL, HCI_CMD_TIMEOUT); 5299 if (err) 5300 return err; 5301 } 5302 5303 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 5304 cancel_delayed_work(&hdev->le_scan_disable); 5305 5306 err = hci_scan_disable_sync(hdev); 5307 if (err) 5308 return err; 5309 } 5310 5311 } else { 5312 err = hci_scan_disable_sync(hdev); 5313 if (err) 5314 return err; 5315 } 5316 5317 /* Resume advertising if it was paused */ 5318 if (use_ll_privacy(hdev)) 5319 hci_resume_advertising_sync(hdev); 5320 5321 /* No further actions needed for LE-only discovery */ 5322 if (d->type == DISCOV_TYPE_LE) 5323 return 0; 5324 5325 if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) { 5326 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY, 5327 NAME_PENDING); 5328 if (!e) 5329 return 0; 5330 5331 return hci_remote_name_cancel_sync(hdev, &e->data.bdaddr); 5332 } 5333 5334 return 0; 5335 } 5336 5337 static int hci_disconnect_sync(struct hci_dev *hdev, struct hci_conn *conn, 5338 u8 reason) 5339 { 5340 struct hci_cp_disconnect cp; 5341 5342 if (test_bit(HCI_CONN_BIG_CREATED, &conn->flags)) { 5343 /* This is a BIS connection, hci_conn_del will 5344 * do the necessary cleanup. 5345 */ 5346 hci_dev_lock(hdev); 5347 hci_conn_failed(conn, reason); 5348 hci_dev_unlock(hdev); 5349 5350 return 0; 5351 } 5352 5353 memset(&cp, 0, sizeof(cp)); 5354 cp.handle = cpu_to_le16(conn->handle); 5355 cp.reason = reason; 5356 5357 /* Wait for HCI_EV_DISCONN_COMPLETE, not HCI_EV_CMD_STATUS, when the 5358 * reason is anything but HCI_ERROR_REMOTE_POWER_OFF. This reason is 5359 * used when suspending or powering off, where we don't want to wait 5360 * for the peer's response. 5361 */ 5362 if (reason != HCI_ERROR_REMOTE_POWER_OFF) 5363 return __hci_cmd_sync_status_sk(hdev, HCI_OP_DISCONNECT, 5364 sizeof(cp), &cp, 5365 HCI_EV_DISCONN_COMPLETE, 5366 HCI_CMD_TIMEOUT, NULL); 5367 5368 return __hci_cmd_sync_status(hdev, HCI_OP_DISCONNECT, sizeof(cp), &cp, 5369 HCI_CMD_TIMEOUT); 5370 } 5371 5372 static int hci_le_connect_cancel_sync(struct hci_dev *hdev, 5373 struct hci_conn *conn, u8 reason) 5374 { 5375 /* Return reason if scanning since the connection shall probably be 5376 * cleanup directly. 5377 */ 5378 if (test_bit(HCI_CONN_SCANNING, &conn->flags)) 5379 return reason; 5380 5381 if (conn->role == HCI_ROLE_SLAVE || 5382 test_and_set_bit(HCI_CONN_CANCEL, &conn->flags)) 5383 return 0; 5384 5385 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CREATE_CONN_CANCEL, 5386 0, NULL, HCI_CMD_TIMEOUT); 5387 } 5388 5389 static int hci_connect_cancel_sync(struct hci_dev *hdev, struct hci_conn *conn, 5390 u8 reason) 5391 { 5392 if (conn->type == LE_LINK) 5393 return hci_le_connect_cancel_sync(hdev, conn, reason); 5394 5395 if (conn->type == ISO_LINK) { 5396 /* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E 5397 * page 1857: 5398 * 5399 * If this command is issued for a CIS on the Central and the 5400 * CIS is successfully terminated before being established, 5401 * then an HCI_LE_CIS_Established event shall also be sent for 5402 * this CIS with the Status Operation Cancelled by Host (0x44). 5403 */ 5404 if (test_bit(HCI_CONN_CREATE_CIS, &conn->flags)) 5405 return hci_disconnect_sync(hdev, conn, reason); 5406 5407 /* CIS with no Create CIS sent have nothing to cancel */ 5408 if (bacmp(&conn->dst, BDADDR_ANY)) 5409 return HCI_ERROR_LOCAL_HOST_TERM; 5410 5411 /* There is no way to cancel a BIS without terminating the BIG 5412 * which is done later on connection cleanup. 5413 */ 5414 return 0; 5415 } 5416 5417 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 5418 return 0; 5419 5420 /* Wait for HCI_EV_CONN_COMPLETE, not HCI_EV_CMD_STATUS, when the 5421 * reason is anything but HCI_ERROR_REMOTE_POWER_OFF. This reason is 5422 * used when suspending or powering off, where we don't want to wait 5423 * for the peer's response. 5424 */ 5425 if (reason != HCI_ERROR_REMOTE_POWER_OFF) 5426 return __hci_cmd_sync_status_sk(hdev, HCI_OP_CREATE_CONN_CANCEL, 5427 6, &conn->dst, 5428 HCI_EV_CONN_COMPLETE, 5429 HCI_CMD_TIMEOUT, NULL); 5430 5431 return __hci_cmd_sync_status(hdev, HCI_OP_CREATE_CONN_CANCEL, 5432 6, &conn->dst, HCI_CMD_TIMEOUT); 5433 } 5434 5435 static int hci_reject_sco_sync(struct hci_dev *hdev, struct hci_conn *conn, 5436 u8 reason) 5437 { 5438 struct hci_cp_reject_sync_conn_req cp; 5439 5440 memset(&cp, 0, sizeof(cp)); 5441 bacpy(&cp.bdaddr, &conn->dst); 5442 cp.reason = reason; 5443 5444 /* SCO rejection has its own limited set of 5445 * allowed error values (0x0D-0x0F). 5446 */ 5447 if (reason < 0x0d || reason > 0x0f) 5448 cp.reason = HCI_ERROR_REJ_LIMITED_RESOURCES; 5449 5450 return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_SYNC_CONN_REQ, 5451 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5452 } 5453 5454 static int hci_le_reject_cis_sync(struct hci_dev *hdev, struct hci_conn *conn, 5455 u8 reason) 5456 { 5457 struct hci_cp_le_reject_cis cp; 5458 5459 memset(&cp, 0, sizeof(cp)); 5460 cp.handle = cpu_to_le16(conn->handle); 5461 cp.reason = reason; 5462 5463 return __hci_cmd_sync_status(hdev, HCI_OP_LE_REJECT_CIS, 5464 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5465 } 5466 5467 static int hci_reject_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, 5468 u8 reason) 5469 { 5470 struct hci_cp_reject_conn_req cp; 5471 5472 if (conn->type == ISO_LINK) 5473 return hci_le_reject_cis_sync(hdev, conn, reason); 5474 5475 if (conn->type == SCO_LINK || conn->type == ESCO_LINK) 5476 return hci_reject_sco_sync(hdev, conn, reason); 5477 5478 memset(&cp, 0, sizeof(cp)); 5479 bacpy(&cp.bdaddr, &conn->dst); 5480 cp.reason = reason; 5481 5482 return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_CONN_REQ, 5483 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5484 } 5485 5486 int hci_abort_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, u8 reason) 5487 { 5488 int err = 0; 5489 u16 handle = conn->handle; 5490 bool disconnect = false; 5491 struct hci_conn *c; 5492 5493 switch (conn->state) { 5494 case BT_CONNECTED: 5495 case BT_CONFIG: 5496 err = hci_disconnect_sync(hdev, conn, reason); 5497 break; 5498 case BT_CONNECT: 5499 err = hci_connect_cancel_sync(hdev, conn, reason); 5500 break; 5501 case BT_CONNECT2: 5502 err = hci_reject_conn_sync(hdev, conn, reason); 5503 break; 5504 case BT_OPEN: 5505 case BT_BOUND: 5506 break; 5507 default: 5508 disconnect = true; 5509 break; 5510 } 5511 5512 hci_dev_lock(hdev); 5513 5514 /* Check if the connection has been cleaned up concurrently */ 5515 c = hci_conn_hash_lookup_handle(hdev, handle); 5516 if (!c || c != conn) { 5517 err = 0; 5518 goto unlock; 5519 } 5520 5521 /* Cleanup hci_conn object if it cannot be cancelled as it 5522 * likelly means the controller and host stack are out of sync 5523 * or in case of LE it was still scanning so it can be cleanup 5524 * safely. 5525 */ 5526 if (disconnect) { 5527 conn->state = BT_CLOSED; 5528 hci_disconn_cfm(conn, reason); 5529 hci_conn_del(conn); 5530 } else { 5531 hci_conn_failed(conn, reason); 5532 } 5533 5534 unlock: 5535 hci_dev_unlock(hdev); 5536 return err; 5537 } 5538 5539 static int hci_disconnect_all_sync(struct hci_dev *hdev, u8 reason) 5540 { 5541 struct list_head *head = &hdev->conn_hash.list; 5542 struct hci_conn *conn; 5543 5544 rcu_read_lock(); 5545 while ((conn = list_first_or_null_rcu(head, struct hci_conn, list))) { 5546 /* Make sure the connection is not freed while unlocking */ 5547 conn = hci_conn_get(conn); 5548 rcu_read_unlock(); 5549 /* Disregard possible errors since hci_conn_del shall have been 5550 * called even in case of errors had occurred since it would 5551 * then cause hci_conn_failed to be called which calls 5552 * hci_conn_del internally. 5553 */ 5554 hci_abort_conn_sync(hdev, conn, reason); 5555 hci_conn_put(conn); 5556 rcu_read_lock(); 5557 } 5558 rcu_read_unlock(); 5559 5560 return 0; 5561 } 5562 5563 /* This function perform power off HCI command sequence as follows: 5564 * 5565 * Clear Advertising 5566 * Stop Discovery 5567 * Disconnect all connections 5568 * hci_dev_close_sync 5569 */ 5570 static int hci_power_off_sync(struct hci_dev *hdev) 5571 { 5572 int err; 5573 5574 /* If controller is already down there is nothing to do */ 5575 if (!test_bit(HCI_UP, &hdev->flags)) 5576 return 0; 5577 5578 hci_dev_set_flag(hdev, HCI_POWERING_DOWN); 5579 5580 if (test_bit(HCI_ISCAN, &hdev->flags) || 5581 test_bit(HCI_PSCAN, &hdev->flags)) { 5582 err = hci_write_scan_enable_sync(hdev, 0x00); 5583 if (err) 5584 goto out; 5585 } 5586 5587 err = hci_clear_adv_sync(hdev, NULL, false); 5588 if (err) 5589 goto out; 5590 5591 err = hci_stop_discovery_sync(hdev); 5592 if (err) 5593 goto out; 5594 5595 /* Terminated due to Power Off */ 5596 err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF); 5597 if (err) 5598 goto out; 5599 5600 err = hci_dev_close_sync(hdev); 5601 5602 out: 5603 hci_dev_clear_flag(hdev, HCI_POWERING_DOWN); 5604 return err; 5605 } 5606 5607 int hci_set_powered_sync(struct hci_dev *hdev, u8 val) 5608 { 5609 if (val) 5610 return hci_power_on_sync(hdev); 5611 5612 return hci_power_off_sync(hdev); 5613 } 5614 5615 static int hci_write_iac_sync(struct hci_dev *hdev) 5616 { 5617 struct hci_cp_write_current_iac_lap cp; 5618 5619 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 5620 return 0; 5621 5622 memset(&cp, 0, sizeof(cp)); 5623 5624 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { 5625 /* Limited discoverable mode */ 5626 cp.num_iac = min_t(u8, hdev->num_iac, 2); 5627 cp.iac_lap[0] = 0x00; /* LIAC */ 5628 cp.iac_lap[1] = 0x8b; 5629 cp.iac_lap[2] = 0x9e; 5630 cp.iac_lap[3] = 0x33; /* GIAC */ 5631 cp.iac_lap[4] = 0x8b; 5632 cp.iac_lap[5] = 0x9e; 5633 } else { 5634 /* General discoverable mode */ 5635 cp.num_iac = 1; 5636 cp.iac_lap[0] = 0x33; /* GIAC */ 5637 cp.iac_lap[1] = 0x8b; 5638 cp.iac_lap[2] = 0x9e; 5639 } 5640 5641 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CURRENT_IAC_LAP, 5642 (cp.num_iac * 3) + 1, &cp, 5643 HCI_CMD_TIMEOUT); 5644 } 5645 5646 int hci_update_discoverable_sync(struct hci_dev *hdev) 5647 { 5648 int err = 0; 5649 5650 if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 5651 err = hci_write_iac_sync(hdev); 5652 if (err) 5653 return err; 5654 5655 err = hci_update_scan_sync(hdev); 5656 if (err) 5657 return err; 5658 5659 err = hci_update_class_sync(hdev); 5660 if (err) 5661 return err; 5662 } 5663 5664 /* Advertising instances don't use the global discoverable setting, so 5665 * only update AD if advertising was enabled using Set Advertising. 5666 */ 5667 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) { 5668 err = hci_update_adv_data_sync(hdev, 0x00); 5669 if (err) 5670 return err; 5671 5672 /* Discoverable mode affects the local advertising 5673 * address in limited privacy mode. 5674 */ 5675 if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) { 5676 if (ext_adv_capable(hdev)) 5677 err = hci_start_ext_adv_sync(hdev, 0x00); 5678 else 5679 err = hci_enable_advertising_sync(hdev); 5680 } 5681 } 5682 5683 return err; 5684 } 5685 5686 static int update_discoverable_sync(struct hci_dev *hdev, void *data) 5687 { 5688 return hci_update_discoverable_sync(hdev); 5689 } 5690 5691 int hci_update_discoverable(struct hci_dev *hdev) 5692 { 5693 /* Only queue if it would have any effect */ 5694 if (hdev_is_powered(hdev) && 5695 hci_dev_test_flag(hdev, HCI_ADVERTISING) && 5696 hci_dev_test_flag(hdev, HCI_DISCOVERABLE) && 5697 hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) 5698 return hci_cmd_sync_queue(hdev, update_discoverable_sync, NULL, 5699 NULL); 5700 5701 return 0; 5702 } 5703 5704 int hci_update_connectable_sync(struct hci_dev *hdev) 5705 { 5706 int err; 5707 5708 err = hci_update_scan_sync(hdev); 5709 if (err) 5710 return err; 5711 5712 /* If BR/EDR is not enabled and we disable advertising as a 5713 * by-product of disabling connectable, we need to update the 5714 * advertising flags. 5715 */ 5716 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 5717 err = hci_update_adv_data_sync(hdev, hdev->cur_adv_instance); 5718 5719 /* Update the advertising parameters if necessary */ 5720 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 5721 !list_empty(&hdev->adv_instances)) { 5722 if (ext_adv_capable(hdev)) 5723 err = hci_start_ext_adv_sync(hdev, 5724 hdev->cur_adv_instance); 5725 else 5726 err = hci_enable_advertising_sync(hdev); 5727 5728 if (err) 5729 return err; 5730 } 5731 5732 return hci_update_passive_scan_sync(hdev); 5733 } 5734 5735 int hci_inquiry_sync(struct hci_dev *hdev, u8 length, u8 num_rsp) 5736 { 5737 const u8 giac[3] = { 0x33, 0x8b, 0x9e }; 5738 const u8 liac[3] = { 0x00, 0x8b, 0x9e }; 5739 struct hci_cp_inquiry cp; 5740 5741 bt_dev_dbg(hdev, ""); 5742 5743 if (test_bit(HCI_INQUIRY, &hdev->flags)) 5744 return 0; 5745 5746 hci_dev_lock(hdev); 5747 hci_inquiry_cache_flush(hdev); 5748 hci_dev_unlock(hdev); 5749 5750 memset(&cp, 0, sizeof(cp)); 5751 5752 if (hdev->discovery.limited) 5753 memcpy(&cp.lap, liac, sizeof(cp.lap)); 5754 else 5755 memcpy(&cp.lap, giac, sizeof(cp.lap)); 5756 5757 cp.length = length; 5758 cp.num_rsp = num_rsp; 5759 5760 return __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY, 5761 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5762 } 5763 5764 static int hci_active_scan_sync(struct hci_dev *hdev, uint16_t interval) 5765 { 5766 u8 own_addr_type; 5767 /* Accept list is not used for discovery */ 5768 u8 filter_policy = 0x00; 5769 /* Default is to enable duplicates filter */ 5770 u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE; 5771 int err; 5772 5773 bt_dev_dbg(hdev, ""); 5774 5775 /* If controller is scanning, it means the passive scanning is 5776 * running. Thus, we should temporarily stop it in order to set the 5777 * discovery scanning parameters. 5778 */ 5779 err = hci_scan_disable_sync(hdev); 5780 if (err) { 5781 bt_dev_err(hdev, "Unable to disable scanning: %d", err); 5782 return err; 5783 } 5784 5785 cancel_interleave_scan(hdev); 5786 5787 /* Pause address resolution for active scan and stop advertising if 5788 * privacy is enabled. 5789 */ 5790 err = hci_pause_addr_resolution(hdev); 5791 if (err) 5792 goto failed; 5793 5794 /* All active scans will be done with either a resolvable private 5795 * address (when privacy feature has been enabled) or non-resolvable 5796 * private address. 5797 */ 5798 err = hci_update_random_address_sync(hdev, true, scan_use_rpa(hdev), 5799 &own_addr_type); 5800 if (err < 0) 5801 own_addr_type = ADDR_LE_DEV_PUBLIC; 5802 5803 if (hci_is_adv_monitoring(hdev) || 5804 (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) && 5805 hdev->discovery.result_filtering)) { 5806 /* Duplicate filter should be disabled when some advertisement 5807 * monitor is activated, otherwise AdvMon can only receive one 5808 * advertisement for one peer(*) during active scanning, and 5809 * might report loss to these peers. 5810 * 5811 * If controller does strict duplicate filtering and the 5812 * discovery requires result filtering disables controller based 5813 * filtering since that can cause reports that would match the 5814 * host filter to not be reported. 5815 */ 5816 filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 5817 } 5818 5819 err = hci_start_scan_sync(hdev, LE_SCAN_ACTIVE, interval, 5820 hdev->le_scan_window_discovery, 5821 own_addr_type, filter_policy, filter_dup); 5822 if (!err) 5823 return err; 5824 5825 failed: 5826 /* Resume advertising if it was paused */ 5827 if (use_ll_privacy(hdev)) 5828 hci_resume_advertising_sync(hdev); 5829 5830 /* Resume passive scanning */ 5831 hci_update_passive_scan_sync(hdev); 5832 return err; 5833 } 5834 5835 static int hci_start_interleaved_discovery_sync(struct hci_dev *hdev) 5836 { 5837 int err; 5838 5839 bt_dev_dbg(hdev, ""); 5840 5841 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery * 2); 5842 if (err) 5843 return err; 5844 5845 return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN, 0); 5846 } 5847 5848 int hci_start_discovery_sync(struct hci_dev *hdev) 5849 { 5850 unsigned long timeout; 5851 int err; 5852 5853 bt_dev_dbg(hdev, "type %u", hdev->discovery.type); 5854 5855 switch (hdev->discovery.type) { 5856 case DISCOV_TYPE_BREDR: 5857 return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN, 0); 5858 case DISCOV_TYPE_INTERLEAVED: 5859 /* When running simultaneous discovery, the LE scanning time 5860 * should occupy the whole discovery time sine BR/EDR inquiry 5861 * and LE scanning are scheduled by the controller. 5862 * 5863 * For interleaving discovery in comparison, BR/EDR inquiry 5864 * and LE scanning are done sequentially with separate 5865 * timeouts. 5866 */ 5867 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, 5868 &hdev->quirks)) { 5869 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 5870 /* During simultaneous discovery, we double LE scan 5871 * interval. We must leave some time for the controller 5872 * to do BR/EDR inquiry. 5873 */ 5874 err = hci_start_interleaved_discovery_sync(hdev); 5875 break; 5876 } 5877 5878 timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout); 5879 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery); 5880 break; 5881 case DISCOV_TYPE_LE: 5882 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 5883 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery); 5884 break; 5885 default: 5886 return -EINVAL; 5887 } 5888 5889 if (err) 5890 return err; 5891 5892 bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout)); 5893 5894 queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable, 5895 timeout); 5896 return 0; 5897 } 5898 5899 static void hci_suspend_monitor_sync(struct hci_dev *hdev) 5900 { 5901 switch (hci_get_adv_monitor_offload_ext(hdev)) { 5902 case HCI_ADV_MONITOR_EXT_MSFT: 5903 msft_suspend_sync(hdev); 5904 break; 5905 default: 5906 return; 5907 } 5908 } 5909 5910 /* This function disables discovery and mark it as paused */ 5911 static int hci_pause_discovery_sync(struct hci_dev *hdev) 5912 { 5913 int old_state = hdev->discovery.state; 5914 int err; 5915 5916 /* If discovery already stopped/stopping/paused there nothing to do */ 5917 if (old_state == DISCOVERY_STOPPED || old_state == DISCOVERY_STOPPING || 5918 hdev->discovery_paused) 5919 return 0; 5920 5921 hci_discovery_set_state(hdev, DISCOVERY_STOPPING); 5922 err = hci_stop_discovery_sync(hdev); 5923 if (err) 5924 return err; 5925 5926 hdev->discovery_paused = true; 5927 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 5928 5929 return 0; 5930 } 5931 5932 static int hci_update_event_filter_sync(struct hci_dev *hdev) 5933 { 5934 struct bdaddr_list_with_flags *b; 5935 u8 scan = SCAN_DISABLED; 5936 bool scanning = test_bit(HCI_PSCAN, &hdev->flags); 5937 int err; 5938 5939 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 5940 return 0; 5941 5942 /* Some fake CSR controllers lock up after setting this type of 5943 * filter, so avoid sending the request altogether. 5944 */ 5945 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 5946 return 0; 5947 5948 /* Always clear event filter when starting */ 5949 hci_clear_event_filter_sync(hdev); 5950 5951 list_for_each_entry(b, &hdev->accept_list, list) { 5952 if (!(b->flags & HCI_CONN_FLAG_REMOTE_WAKEUP)) 5953 continue; 5954 5955 bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr); 5956 5957 err = hci_set_event_filter_sync(hdev, HCI_FLT_CONN_SETUP, 5958 HCI_CONN_SETUP_ALLOW_BDADDR, 5959 &b->bdaddr, 5960 HCI_CONN_SETUP_AUTO_ON); 5961 if (err) 5962 bt_dev_dbg(hdev, "Failed to set event filter for %pMR", 5963 &b->bdaddr); 5964 else 5965 scan = SCAN_PAGE; 5966 } 5967 5968 if (scan && !scanning) 5969 hci_write_scan_enable_sync(hdev, scan); 5970 else if (!scan && scanning) 5971 hci_write_scan_enable_sync(hdev, scan); 5972 5973 return 0; 5974 } 5975 5976 /* This function disables scan (BR and LE) and mark it as paused */ 5977 static int hci_pause_scan_sync(struct hci_dev *hdev) 5978 { 5979 if (hdev->scanning_paused) 5980 return 0; 5981 5982 /* Disable page scan if enabled */ 5983 if (test_bit(HCI_PSCAN, &hdev->flags)) 5984 hci_write_scan_enable_sync(hdev, SCAN_DISABLED); 5985 5986 hci_scan_disable_sync(hdev); 5987 5988 hdev->scanning_paused = true; 5989 5990 return 0; 5991 } 5992 5993 /* This function performs the HCI suspend procedures in the follow order: 5994 * 5995 * Pause discovery (active scanning/inquiry) 5996 * Pause Directed Advertising/Advertising 5997 * Pause Scanning (passive scanning in case discovery was not active) 5998 * Disconnect all connections 5999 * Set suspend_status to BT_SUSPEND_DISCONNECT if hdev cannot wakeup 6000 * otherwise: 6001 * Update event mask (only set events that are allowed to wake up the host) 6002 * Update event filter (with devices marked with HCI_CONN_FLAG_REMOTE_WAKEUP) 6003 * Update passive scanning (lower duty cycle) 6004 * Set suspend_status to BT_SUSPEND_CONFIGURE_WAKE 6005 */ 6006 int hci_suspend_sync(struct hci_dev *hdev) 6007 { 6008 int err; 6009 6010 /* If marked as suspended there nothing to do */ 6011 if (hdev->suspended) 6012 return 0; 6013 6014 /* Mark device as suspended */ 6015 hdev->suspended = true; 6016 6017 /* Pause discovery if not already stopped */ 6018 hci_pause_discovery_sync(hdev); 6019 6020 /* Pause other advertisements */ 6021 hci_pause_advertising_sync(hdev); 6022 6023 /* Suspend monitor filters */ 6024 hci_suspend_monitor_sync(hdev); 6025 6026 /* Prevent disconnects from causing scanning to be re-enabled */ 6027 hci_pause_scan_sync(hdev); 6028 6029 if (hci_conn_count(hdev)) { 6030 /* Soft disconnect everything (power off) */ 6031 err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF); 6032 if (err) { 6033 /* Set state to BT_RUNNING so resume doesn't notify */ 6034 hdev->suspend_state = BT_RUNNING; 6035 hci_resume_sync(hdev); 6036 return err; 6037 } 6038 6039 /* Update event mask so only the allowed event can wakeup the 6040 * host. 6041 */ 6042 hci_set_event_mask_sync(hdev); 6043 } 6044 6045 /* Only configure accept list if disconnect succeeded and wake 6046 * isn't being prevented. 6047 */ 6048 if (!hdev->wakeup || !hdev->wakeup(hdev)) { 6049 hdev->suspend_state = BT_SUSPEND_DISCONNECT; 6050 return 0; 6051 } 6052 6053 /* Unpause to take care of updating scanning params */ 6054 hdev->scanning_paused = false; 6055 6056 /* Enable event filter for paired devices */ 6057 hci_update_event_filter_sync(hdev); 6058 6059 /* Update LE passive scan if enabled */ 6060 hci_update_passive_scan_sync(hdev); 6061 6062 /* Pause scan changes again. */ 6063 hdev->scanning_paused = true; 6064 6065 hdev->suspend_state = BT_SUSPEND_CONFIGURE_WAKE; 6066 6067 return 0; 6068 } 6069 6070 /* This function resumes discovery */ 6071 static int hci_resume_discovery_sync(struct hci_dev *hdev) 6072 { 6073 int err; 6074 6075 /* If discovery not paused there nothing to do */ 6076 if (!hdev->discovery_paused) 6077 return 0; 6078 6079 hdev->discovery_paused = false; 6080 6081 hci_discovery_set_state(hdev, DISCOVERY_STARTING); 6082 6083 err = hci_start_discovery_sync(hdev); 6084 6085 hci_discovery_set_state(hdev, err ? DISCOVERY_STOPPED : 6086 DISCOVERY_FINDING); 6087 6088 return err; 6089 } 6090 6091 static void hci_resume_monitor_sync(struct hci_dev *hdev) 6092 { 6093 switch (hci_get_adv_monitor_offload_ext(hdev)) { 6094 case HCI_ADV_MONITOR_EXT_MSFT: 6095 msft_resume_sync(hdev); 6096 break; 6097 default: 6098 return; 6099 } 6100 } 6101 6102 /* This function resume scan and reset paused flag */ 6103 static int hci_resume_scan_sync(struct hci_dev *hdev) 6104 { 6105 if (!hdev->scanning_paused) 6106 return 0; 6107 6108 hdev->scanning_paused = false; 6109 6110 hci_update_scan_sync(hdev); 6111 6112 /* Reset passive scanning to normal */ 6113 hci_update_passive_scan_sync(hdev); 6114 6115 return 0; 6116 } 6117 6118 /* This function performs the HCI suspend procedures in the follow order: 6119 * 6120 * Restore event mask 6121 * Clear event filter 6122 * Update passive scanning (normal duty cycle) 6123 * Resume Directed Advertising/Advertising 6124 * Resume discovery (active scanning/inquiry) 6125 */ 6126 int hci_resume_sync(struct hci_dev *hdev) 6127 { 6128 /* If not marked as suspended there nothing to do */ 6129 if (!hdev->suspended) 6130 return 0; 6131 6132 hdev->suspended = false; 6133 6134 /* Restore event mask */ 6135 hci_set_event_mask_sync(hdev); 6136 6137 /* Clear any event filters and restore scan state */ 6138 hci_clear_event_filter_sync(hdev); 6139 6140 /* Resume scanning */ 6141 hci_resume_scan_sync(hdev); 6142 6143 /* Resume monitor filters */ 6144 hci_resume_monitor_sync(hdev); 6145 6146 /* Resume other advertisements */ 6147 hci_resume_advertising_sync(hdev); 6148 6149 /* Resume discovery */ 6150 hci_resume_discovery_sync(hdev); 6151 6152 return 0; 6153 } 6154 6155 static bool conn_use_rpa(struct hci_conn *conn) 6156 { 6157 struct hci_dev *hdev = conn->hdev; 6158 6159 return hci_dev_test_flag(hdev, HCI_PRIVACY); 6160 } 6161 6162 static int hci_le_ext_directed_advertising_sync(struct hci_dev *hdev, 6163 struct hci_conn *conn) 6164 { 6165 struct hci_cp_le_set_ext_adv_params cp; 6166 int err; 6167 bdaddr_t random_addr; 6168 u8 own_addr_type; 6169 6170 err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 6171 &own_addr_type); 6172 if (err) 6173 return err; 6174 6175 /* Set require_privacy to false so that the remote device has a 6176 * chance of identifying us. 6177 */ 6178 err = hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL, 6179 &own_addr_type, &random_addr); 6180 if (err) 6181 return err; 6182 6183 memset(&cp, 0, sizeof(cp)); 6184 6185 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND); 6186 cp.channel_map = hdev->le_adv_channel_map; 6187 cp.tx_power = HCI_TX_POWER_INVALID; 6188 cp.primary_phy = HCI_ADV_PHY_1M; 6189 cp.secondary_phy = HCI_ADV_PHY_1M; 6190 cp.handle = 0x00; /* Use instance 0 for directed adv */ 6191 cp.own_addr_type = own_addr_type; 6192 cp.peer_addr_type = conn->dst_type; 6193 bacpy(&cp.peer_addr, &conn->dst); 6194 6195 /* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for 6196 * advertising_event_property LE_LEGACY_ADV_DIRECT_IND 6197 * does not supports advertising data when the advertising set already 6198 * contains some, the controller shall return erroc code 'Invalid 6199 * HCI Command Parameters(0x12). 6200 * So it is required to remove adv set for handle 0x00. since we use 6201 * instance 0 for directed adv. 6202 */ 6203 err = hci_remove_ext_adv_instance_sync(hdev, cp.handle, NULL); 6204 if (err) 6205 return err; 6206 6207 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS, 6208 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6209 if (err) 6210 return err; 6211 6212 /* Check if random address need to be updated */ 6213 if (own_addr_type == ADDR_LE_DEV_RANDOM && 6214 bacmp(&random_addr, BDADDR_ANY) && 6215 bacmp(&random_addr, &hdev->random_addr)) { 6216 err = hci_set_adv_set_random_addr_sync(hdev, 0x00, 6217 &random_addr); 6218 if (err) 6219 return err; 6220 } 6221 6222 return hci_enable_ext_advertising_sync(hdev, 0x00); 6223 } 6224 6225 static int hci_le_directed_advertising_sync(struct hci_dev *hdev, 6226 struct hci_conn *conn) 6227 { 6228 struct hci_cp_le_set_adv_param cp; 6229 u8 status; 6230 u8 own_addr_type; 6231 u8 enable; 6232 6233 if (ext_adv_capable(hdev)) 6234 return hci_le_ext_directed_advertising_sync(hdev, conn); 6235 6236 /* Clear the HCI_LE_ADV bit temporarily so that the 6237 * hci_update_random_address knows that it's safe to go ahead 6238 * and write a new random address. The flag will be set back on 6239 * as soon as the SET_ADV_ENABLE HCI command completes. 6240 */ 6241 hci_dev_clear_flag(hdev, HCI_LE_ADV); 6242 6243 /* Set require_privacy to false so that the remote device has a 6244 * chance of identifying us. 6245 */ 6246 status = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 6247 &own_addr_type); 6248 if (status) 6249 return status; 6250 6251 memset(&cp, 0, sizeof(cp)); 6252 6253 /* Some controllers might reject command if intervals are not 6254 * within range for undirected advertising. 6255 * BCM20702A0 is known to be affected by this. 6256 */ 6257 cp.min_interval = cpu_to_le16(0x0020); 6258 cp.max_interval = cpu_to_le16(0x0020); 6259 6260 cp.type = LE_ADV_DIRECT_IND; 6261 cp.own_address_type = own_addr_type; 6262 cp.direct_addr_type = conn->dst_type; 6263 bacpy(&cp.direct_addr, &conn->dst); 6264 cp.channel_map = hdev->le_adv_channel_map; 6265 6266 status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM, 6267 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6268 if (status) 6269 return status; 6270 6271 enable = 0x01; 6272 6273 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 6274 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 6275 } 6276 6277 static void set_ext_conn_params(struct hci_conn *conn, 6278 struct hci_cp_le_ext_conn_param *p) 6279 { 6280 struct hci_dev *hdev = conn->hdev; 6281 6282 memset(p, 0, sizeof(*p)); 6283 6284 p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect); 6285 p->scan_window = cpu_to_le16(hdev->le_scan_window_connect); 6286 p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 6287 p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 6288 p->conn_latency = cpu_to_le16(conn->le_conn_latency); 6289 p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 6290 p->min_ce_len = cpu_to_le16(0x0000); 6291 p->max_ce_len = cpu_to_le16(0x0000); 6292 } 6293 6294 static int hci_le_ext_create_conn_sync(struct hci_dev *hdev, 6295 struct hci_conn *conn, u8 own_addr_type) 6296 { 6297 struct hci_cp_le_ext_create_conn *cp; 6298 struct hci_cp_le_ext_conn_param *p; 6299 u8 data[sizeof(*cp) + sizeof(*p) * 3]; 6300 u32 plen; 6301 6302 cp = (void *)data; 6303 p = (void *)cp->data; 6304 6305 memset(cp, 0, sizeof(*cp)); 6306 6307 bacpy(&cp->peer_addr, &conn->dst); 6308 cp->peer_addr_type = conn->dst_type; 6309 cp->own_addr_type = own_addr_type; 6310 6311 plen = sizeof(*cp); 6312 6313 if (scan_1m(hdev) && (conn->le_adv_phy == HCI_ADV_PHY_1M || 6314 conn->le_adv_sec_phy == HCI_ADV_PHY_1M)) { 6315 cp->phys |= LE_SCAN_PHY_1M; 6316 set_ext_conn_params(conn, p); 6317 6318 p++; 6319 plen += sizeof(*p); 6320 } 6321 6322 if (scan_2m(hdev) && (conn->le_adv_phy == HCI_ADV_PHY_2M || 6323 conn->le_adv_sec_phy == HCI_ADV_PHY_2M)) { 6324 cp->phys |= LE_SCAN_PHY_2M; 6325 set_ext_conn_params(conn, p); 6326 6327 p++; 6328 plen += sizeof(*p); 6329 } 6330 6331 if (scan_coded(hdev) && (conn->le_adv_phy == HCI_ADV_PHY_CODED || 6332 conn->le_adv_sec_phy == HCI_ADV_PHY_CODED)) { 6333 cp->phys |= LE_SCAN_PHY_CODED; 6334 set_ext_conn_params(conn, p); 6335 6336 plen += sizeof(*p); 6337 } 6338 6339 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_EXT_CREATE_CONN, 6340 plen, data, 6341 HCI_EV_LE_ENHANCED_CONN_COMPLETE, 6342 conn->conn_timeout, NULL); 6343 } 6344 6345 static int hci_le_create_conn_sync(struct hci_dev *hdev, void *data) 6346 { 6347 struct hci_cp_le_create_conn cp; 6348 struct hci_conn_params *params; 6349 u8 own_addr_type; 6350 int err; 6351 struct hci_conn *conn = data; 6352 6353 if (!hci_conn_valid(hdev, conn)) 6354 return -ECANCELED; 6355 6356 bt_dev_dbg(hdev, "conn %p", conn); 6357 6358 clear_bit(HCI_CONN_SCANNING, &conn->flags); 6359 conn->state = BT_CONNECT; 6360 6361 /* If requested to connect as peripheral use directed advertising */ 6362 if (conn->role == HCI_ROLE_SLAVE) { 6363 /* If we're active scanning and simultaneous roles is not 6364 * enabled simply reject the attempt. 6365 */ 6366 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) && 6367 hdev->le_scan_type == LE_SCAN_ACTIVE && 6368 !hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) { 6369 hci_conn_del(conn); 6370 return -EBUSY; 6371 } 6372 6373 /* Pause advertising while doing directed advertising. */ 6374 hci_pause_advertising_sync(hdev); 6375 6376 err = hci_le_directed_advertising_sync(hdev, conn); 6377 goto done; 6378 } 6379 6380 /* Disable advertising if simultaneous roles is not in use. */ 6381 if (!hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) 6382 hci_pause_advertising_sync(hdev); 6383 6384 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); 6385 if (params) { 6386 conn->le_conn_min_interval = params->conn_min_interval; 6387 conn->le_conn_max_interval = params->conn_max_interval; 6388 conn->le_conn_latency = params->conn_latency; 6389 conn->le_supv_timeout = params->supervision_timeout; 6390 } else { 6391 conn->le_conn_min_interval = hdev->le_conn_min_interval; 6392 conn->le_conn_max_interval = hdev->le_conn_max_interval; 6393 conn->le_conn_latency = hdev->le_conn_latency; 6394 conn->le_supv_timeout = hdev->le_supv_timeout; 6395 } 6396 6397 /* If controller is scanning, we stop it since some controllers are 6398 * not able to scan and connect at the same time. Also set the 6399 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete 6400 * handler for scan disabling knows to set the correct discovery 6401 * state. 6402 */ 6403 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 6404 hci_scan_disable_sync(hdev); 6405 hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED); 6406 } 6407 6408 /* Update random address, but set require_privacy to false so 6409 * that we never connect with an non-resolvable address. 6410 */ 6411 err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 6412 &own_addr_type); 6413 if (err) 6414 goto done; 6415 6416 if (use_ext_conn(hdev)) { 6417 err = hci_le_ext_create_conn_sync(hdev, conn, own_addr_type); 6418 goto done; 6419 } 6420 6421 memset(&cp, 0, sizeof(cp)); 6422 6423 cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect); 6424 cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect); 6425 6426 bacpy(&cp.peer_addr, &conn->dst); 6427 cp.peer_addr_type = conn->dst_type; 6428 cp.own_address_type = own_addr_type; 6429 cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 6430 cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 6431 cp.conn_latency = cpu_to_le16(conn->le_conn_latency); 6432 cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 6433 cp.min_ce_len = cpu_to_le16(0x0000); 6434 cp.max_ce_len = cpu_to_le16(0x0000); 6435 6436 /* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E page 2261: 6437 * 6438 * If this event is unmasked and the HCI_LE_Connection_Complete event 6439 * is unmasked, only the HCI_LE_Enhanced_Connection_Complete event is 6440 * sent when a new connection has been created. 6441 */ 6442 err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CONN, 6443 sizeof(cp), &cp, 6444 use_enhanced_conn_complete(hdev) ? 6445 HCI_EV_LE_ENHANCED_CONN_COMPLETE : 6446 HCI_EV_LE_CONN_COMPLETE, 6447 conn->conn_timeout, NULL); 6448 6449 done: 6450 if (err == -ETIMEDOUT) 6451 hci_le_connect_cancel_sync(hdev, conn, 0x00); 6452 6453 /* Re-enable advertising after the connection attempt is finished. */ 6454 hci_resume_advertising_sync(hdev); 6455 return err; 6456 } 6457 6458 int hci_le_create_cis_sync(struct hci_dev *hdev) 6459 { 6460 DEFINE_FLEX(struct hci_cp_le_create_cis, cmd, cis, num_cis, 0x1f); 6461 size_t aux_num_cis = 0; 6462 struct hci_conn *conn; 6463 u8 cig = BT_ISO_QOS_CIG_UNSET; 6464 6465 /* The spec allows only one pending LE Create CIS command at a time. If 6466 * the command is pending now, don't do anything. We check for pending 6467 * connections after each CIS Established event. 6468 * 6469 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E 6470 * page 2566: 6471 * 6472 * If the Host issues this command before all the 6473 * HCI_LE_CIS_Established events from the previous use of the 6474 * command have been generated, the Controller shall return the 6475 * error code Command Disallowed (0x0C). 6476 * 6477 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E 6478 * page 2567: 6479 * 6480 * When the Controller receives the HCI_LE_Create_CIS command, the 6481 * Controller sends the HCI_Command_Status event to the Host. An 6482 * HCI_LE_CIS_Established event will be generated for each CIS when it 6483 * is established or if it is disconnected or considered lost before 6484 * being established; until all the events are generated, the command 6485 * remains pending. 6486 */ 6487 6488 hci_dev_lock(hdev); 6489 6490 rcu_read_lock(); 6491 6492 /* Wait until previous Create CIS has completed */ 6493 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) { 6494 if (test_bit(HCI_CONN_CREATE_CIS, &conn->flags)) 6495 goto done; 6496 } 6497 6498 /* Find CIG with all CIS ready */ 6499 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) { 6500 struct hci_conn *link; 6501 6502 if (hci_conn_check_create_cis(conn)) 6503 continue; 6504 6505 cig = conn->iso_qos.ucast.cig; 6506 6507 list_for_each_entry_rcu(link, &hdev->conn_hash.list, list) { 6508 if (hci_conn_check_create_cis(link) > 0 && 6509 link->iso_qos.ucast.cig == cig && 6510 link->state != BT_CONNECTED) { 6511 cig = BT_ISO_QOS_CIG_UNSET; 6512 break; 6513 } 6514 } 6515 6516 if (cig != BT_ISO_QOS_CIG_UNSET) 6517 break; 6518 } 6519 6520 if (cig == BT_ISO_QOS_CIG_UNSET) 6521 goto done; 6522 6523 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) { 6524 struct hci_cis *cis = &cmd->cis[aux_num_cis]; 6525 6526 if (hci_conn_check_create_cis(conn) || 6527 conn->iso_qos.ucast.cig != cig) 6528 continue; 6529 6530 set_bit(HCI_CONN_CREATE_CIS, &conn->flags); 6531 cis->acl_handle = cpu_to_le16(conn->parent->handle); 6532 cis->cis_handle = cpu_to_le16(conn->handle); 6533 aux_num_cis++; 6534 6535 if (aux_num_cis >= cmd->num_cis) 6536 break; 6537 } 6538 cmd->num_cis = aux_num_cis; 6539 6540 done: 6541 rcu_read_unlock(); 6542 6543 hci_dev_unlock(hdev); 6544 6545 if (!aux_num_cis) 6546 return 0; 6547 6548 /* Wait for HCI_LE_CIS_Established */ 6549 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CIS, 6550 struct_size(cmd, cis, cmd->num_cis), 6551 cmd, HCI_EVT_LE_CIS_ESTABLISHED, 6552 conn->conn_timeout, NULL); 6553 } 6554 6555 int hci_le_remove_cig_sync(struct hci_dev *hdev, u8 handle) 6556 { 6557 struct hci_cp_le_remove_cig cp; 6558 6559 memset(&cp, 0, sizeof(cp)); 6560 cp.cig_id = handle; 6561 6562 return __hci_cmd_sync_status(hdev, HCI_OP_LE_REMOVE_CIG, sizeof(cp), 6563 &cp, HCI_CMD_TIMEOUT); 6564 } 6565 6566 int hci_le_big_terminate_sync(struct hci_dev *hdev, u8 handle) 6567 { 6568 struct hci_cp_le_big_term_sync cp; 6569 6570 memset(&cp, 0, sizeof(cp)); 6571 cp.handle = handle; 6572 6573 return __hci_cmd_sync_status(hdev, HCI_OP_LE_BIG_TERM_SYNC, 6574 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6575 } 6576 6577 int hci_le_pa_terminate_sync(struct hci_dev *hdev, u16 handle) 6578 { 6579 struct hci_cp_le_pa_term_sync cp; 6580 6581 memset(&cp, 0, sizeof(cp)); 6582 cp.handle = cpu_to_le16(handle); 6583 6584 return __hci_cmd_sync_status(hdev, HCI_OP_LE_PA_TERM_SYNC, 6585 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6586 } 6587 6588 int hci_get_random_address(struct hci_dev *hdev, bool require_privacy, 6589 bool use_rpa, struct adv_info *adv_instance, 6590 u8 *own_addr_type, bdaddr_t *rand_addr) 6591 { 6592 int err; 6593 6594 bacpy(rand_addr, BDADDR_ANY); 6595 6596 /* If privacy is enabled use a resolvable private address. If 6597 * current RPA has expired then generate a new one. 6598 */ 6599 if (use_rpa) { 6600 /* If Controller supports LL Privacy use own address type is 6601 * 0x03 6602 */ 6603 if (use_ll_privacy(hdev)) 6604 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED; 6605 else 6606 *own_addr_type = ADDR_LE_DEV_RANDOM; 6607 6608 if (adv_instance) { 6609 if (adv_rpa_valid(adv_instance)) 6610 return 0; 6611 } else { 6612 if (rpa_valid(hdev)) 6613 return 0; 6614 } 6615 6616 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); 6617 if (err < 0) { 6618 bt_dev_err(hdev, "failed to generate new RPA"); 6619 return err; 6620 } 6621 6622 bacpy(rand_addr, &hdev->rpa); 6623 6624 return 0; 6625 } 6626 6627 /* In case of required privacy without resolvable private address, 6628 * use an non-resolvable private address. This is useful for 6629 * non-connectable advertising. 6630 */ 6631 if (require_privacy) { 6632 bdaddr_t nrpa; 6633 6634 while (true) { 6635 /* The non-resolvable private address is generated 6636 * from random six bytes with the two most significant 6637 * bits cleared. 6638 */ 6639 get_random_bytes(&nrpa, 6); 6640 nrpa.b[5] &= 0x3f; 6641 6642 /* The non-resolvable private address shall not be 6643 * equal to the public address. 6644 */ 6645 if (bacmp(&hdev->bdaddr, &nrpa)) 6646 break; 6647 } 6648 6649 *own_addr_type = ADDR_LE_DEV_RANDOM; 6650 bacpy(rand_addr, &nrpa); 6651 6652 return 0; 6653 } 6654 6655 /* No privacy so use a public address. */ 6656 *own_addr_type = ADDR_LE_DEV_PUBLIC; 6657 6658 return 0; 6659 } 6660 6661 static int _update_adv_data_sync(struct hci_dev *hdev, void *data) 6662 { 6663 u8 instance = PTR_UINT(data); 6664 6665 return hci_update_adv_data_sync(hdev, instance); 6666 } 6667 6668 int hci_update_adv_data(struct hci_dev *hdev, u8 instance) 6669 { 6670 return hci_cmd_sync_queue(hdev, _update_adv_data_sync, 6671 UINT_PTR(instance), NULL); 6672 } 6673 6674 static int hci_acl_create_conn_sync(struct hci_dev *hdev, void *data) 6675 { 6676 struct hci_conn *conn = data; 6677 struct inquiry_entry *ie; 6678 struct hci_cp_create_conn cp; 6679 int err; 6680 6681 if (!hci_conn_valid(hdev, conn)) 6682 return -ECANCELED; 6683 6684 /* Many controllers disallow HCI Create Connection while it is doing 6685 * HCI Inquiry. So we cancel the Inquiry first before issuing HCI Create 6686 * Connection. This may cause the MGMT discovering state to become false 6687 * without user space's request but it is okay since the MGMT Discovery 6688 * APIs do not promise that discovery should be done forever. Instead, 6689 * the user space monitors the status of MGMT discovering and it may 6690 * request for discovery again when this flag becomes false. 6691 */ 6692 if (test_bit(HCI_INQUIRY, &hdev->flags)) { 6693 err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL, 0, 6694 NULL, HCI_CMD_TIMEOUT); 6695 if (err) 6696 bt_dev_warn(hdev, "Failed to cancel inquiry %d", err); 6697 } 6698 6699 conn->state = BT_CONNECT; 6700 conn->out = true; 6701 conn->role = HCI_ROLE_MASTER; 6702 6703 conn->attempt++; 6704 6705 conn->link_policy = hdev->link_policy; 6706 6707 memset(&cp, 0, sizeof(cp)); 6708 bacpy(&cp.bdaddr, &conn->dst); 6709 cp.pscan_rep_mode = 0x02; 6710 6711 ie = hci_inquiry_cache_lookup(hdev, &conn->dst); 6712 if (ie) { 6713 if (inquiry_entry_age(ie) <= INQUIRY_ENTRY_AGE_MAX) { 6714 cp.pscan_rep_mode = ie->data.pscan_rep_mode; 6715 cp.pscan_mode = ie->data.pscan_mode; 6716 cp.clock_offset = ie->data.clock_offset | 6717 cpu_to_le16(0x8000); 6718 } 6719 6720 memcpy(conn->dev_class, ie->data.dev_class, 3); 6721 } 6722 6723 cp.pkt_type = cpu_to_le16(conn->pkt_type); 6724 if (lmp_rswitch_capable(hdev) && !(hdev->link_mode & HCI_LM_MASTER)) 6725 cp.role_switch = 0x01; 6726 else 6727 cp.role_switch = 0x00; 6728 6729 return __hci_cmd_sync_status_sk(hdev, HCI_OP_CREATE_CONN, 6730 sizeof(cp), &cp, 6731 HCI_EV_CONN_COMPLETE, 6732 conn->conn_timeout, NULL); 6733 } 6734 6735 int hci_connect_acl_sync(struct hci_dev *hdev, struct hci_conn *conn) 6736 { 6737 return hci_cmd_sync_queue_once(hdev, hci_acl_create_conn_sync, conn, 6738 NULL); 6739 } 6740 6741 static void create_le_conn_complete(struct hci_dev *hdev, void *data, int err) 6742 { 6743 struct hci_conn *conn = data; 6744 6745 bt_dev_dbg(hdev, "err %d", err); 6746 6747 if (err == -ECANCELED) 6748 return; 6749 6750 hci_dev_lock(hdev); 6751 6752 if (!hci_conn_valid(hdev, conn)) 6753 goto done; 6754 6755 if (!err) { 6756 hci_connect_le_scan_cleanup(conn, 0x00); 6757 goto done; 6758 } 6759 6760 /* Check if connection is still pending */ 6761 if (conn != hci_lookup_le_connect(hdev)) 6762 goto done; 6763 6764 /* Flush to make sure we send create conn cancel command if needed */ 6765 flush_delayed_work(&conn->le_conn_timeout); 6766 hci_conn_failed(conn, bt_status(err)); 6767 6768 done: 6769 hci_dev_unlock(hdev); 6770 } 6771 6772 int hci_connect_le_sync(struct hci_dev *hdev, struct hci_conn *conn) 6773 { 6774 return hci_cmd_sync_queue_once(hdev, hci_le_create_conn_sync, conn, 6775 create_le_conn_complete); 6776 } 6777 6778 int hci_cancel_connect_sync(struct hci_dev *hdev, struct hci_conn *conn) 6779 { 6780 if (conn->state != BT_OPEN) 6781 return -EINVAL; 6782 6783 switch (conn->type) { 6784 case ACL_LINK: 6785 return !hci_cmd_sync_dequeue_once(hdev, 6786 hci_acl_create_conn_sync, 6787 conn, NULL); 6788 case LE_LINK: 6789 return !hci_cmd_sync_dequeue_once(hdev, hci_le_create_conn_sync, 6790 conn, create_le_conn_complete); 6791 } 6792 6793 return -ENOENT; 6794 } 6795 6796 int hci_le_conn_update_sync(struct hci_dev *hdev, struct hci_conn *conn, 6797 struct hci_conn_params *params) 6798 { 6799 struct hci_cp_le_conn_update cp; 6800 6801 memset(&cp, 0, sizeof(cp)); 6802 cp.handle = cpu_to_le16(conn->handle); 6803 cp.conn_interval_min = cpu_to_le16(params->conn_min_interval); 6804 cp.conn_interval_max = cpu_to_le16(params->conn_max_interval); 6805 cp.conn_latency = cpu_to_le16(params->conn_latency); 6806 cp.supervision_timeout = cpu_to_le16(params->supervision_timeout); 6807 cp.min_ce_len = cpu_to_le16(0x0000); 6808 cp.max_ce_len = cpu_to_le16(0x0000); 6809 6810 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CONN_UPDATE, 6811 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6812 } 6813