1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * BlueZ - Bluetooth protocol stack for Linux 4 * 5 * Copyright (C) 2021 Intel Corporation 6 * Copyright 2023 NXP 7 */ 8 9 #include <linux/property.h> 10 11 #include <net/bluetooth/bluetooth.h> 12 #include <net/bluetooth/hci_core.h> 13 #include <net/bluetooth/mgmt.h> 14 15 #include "hci_request.h" 16 #include "hci_codec.h" 17 #include "hci_debugfs.h" 18 #include "smp.h" 19 #include "eir.h" 20 #include "msft.h" 21 #include "aosp.h" 22 #include "leds.h" 23 24 static void hci_cmd_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode, 25 struct sk_buff *skb) 26 { 27 bt_dev_dbg(hdev, "result 0x%2.2x", result); 28 29 if (hdev->req_status != HCI_REQ_PEND) 30 return; 31 32 hdev->req_result = result; 33 hdev->req_status = HCI_REQ_DONE; 34 35 if (skb) { 36 struct sock *sk = hci_skb_sk(skb); 37 38 /* Drop sk reference if set */ 39 if (sk) 40 sock_put(sk); 41 42 hdev->req_skb = skb_get(skb); 43 } 44 45 wake_up_interruptible(&hdev->req_wait_q); 46 } 47 48 static struct sk_buff *hci_cmd_sync_alloc(struct hci_dev *hdev, u16 opcode, 49 u32 plen, const void *param, 50 struct sock *sk) 51 { 52 int len = HCI_COMMAND_HDR_SIZE + plen; 53 struct hci_command_hdr *hdr; 54 struct sk_buff *skb; 55 56 skb = bt_skb_alloc(len, GFP_ATOMIC); 57 if (!skb) 58 return NULL; 59 60 hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE); 61 hdr->opcode = cpu_to_le16(opcode); 62 hdr->plen = plen; 63 64 if (plen) 65 skb_put_data(skb, param, plen); 66 67 bt_dev_dbg(hdev, "skb len %d", skb->len); 68 69 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; 70 hci_skb_opcode(skb) = opcode; 71 72 /* Grab a reference if command needs to be associated with a sock (e.g. 73 * likely mgmt socket that initiated the command). 74 */ 75 if (sk) { 76 hci_skb_sk(skb) = sk; 77 sock_hold(sk); 78 } 79 80 return skb; 81 } 82 83 static void hci_cmd_sync_add(struct hci_request *req, u16 opcode, u32 plen, 84 const void *param, u8 event, struct sock *sk) 85 { 86 struct hci_dev *hdev = req->hdev; 87 struct sk_buff *skb; 88 89 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); 90 91 /* If an error occurred during request building, there is no point in 92 * queueing the HCI command. We can simply return. 93 */ 94 if (req->err) 95 return; 96 97 skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, sk); 98 if (!skb) { 99 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)", 100 opcode); 101 req->err = -ENOMEM; 102 return; 103 } 104 105 if (skb_queue_empty(&req->cmd_q)) 106 bt_cb(skb)->hci.req_flags |= HCI_REQ_START; 107 108 hci_skb_event(skb) = event; 109 110 skb_queue_tail(&req->cmd_q, skb); 111 } 112 113 static int hci_cmd_sync_run(struct hci_request *req) 114 { 115 struct hci_dev *hdev = req->hdev; 116 struct sk_buff *skb; 117 unsigned long flags; 118 119 bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q)); 120 121 /* If an error occurred during request building, remove all HCI 122 * commands queued on the HCI request queue. 123 */ 124 if (req->err) { 125 skb_queue_purge(&req->cmd_q); 126 return req->err; 127 } 128 129 /* Do not allow empty requests */ 130 if (skb_queue_empty(&req->cmd_q)) 131 return -ENODATA; 132 133 skb = skb_peek_tail(&req->cmd_q); 134 bt_cb(skb)->hci.req_complete_skb = hci_cmd_sync_complete; 135 bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB; 136 137 spin_lock_irqsave(&hdev->cmd_q.lock, flags); 138 skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q); 139 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); 140 141 queue_work(hdev->workqueue, &hdev->cmd_work); 142 143 return 0; 144 } 145 146 /* This function requires the caller holds hdev->req_lock. */ 147 struct sk_buff *__hci_cmd_sync_sk(struct hci_dev *hdev, u16 opcode, u32 plen, 148 const void *param, u8 event, u32 timeout, 149 struct sock *sk) 150 { 151 struct hci_request req; 152 struct sk_buff *skb; 153 int err = 0; 154 155 bt_dev_dbg(hdev, "Opcode 0x%4.4x", opcode); 156 157 hci_req_init(&req, hdev); 158 159 hci_cmd_sync_add(&req, opcode, plen, param, event, sk); 160 161 hdev->req_status = HCI_REQ_PEND; 162 163 err = hci_cmd_sync_run(&req); 164 if (err < 0) 165 return ERR_PTR(err); 166 167 err = wait_event_interruptible_timeout(hdev->req_wait_q, 168 hdev->req_status != HCI_REQ_PEND, 169 timeout); 170 171 if (err == -ERESTARTSYS) 172 return ERR_PTR(-EINTR); 173 174 switch (hdev->req_status) { 175 case HCI_REQ_DONE: 176 err = -bt_to_errno(hdev->req_result); 177 break; 178 179 case HCI_REQ_CANCELED: 180 err = -hdev->req_result; 181 break; 182 183 default: 184 err = -ETIMEDOUT; 185 break; 186 } 187 188 hdev->req_status = 0; 189 hdev->req_result = 0; 190 skb = hdev->req_skb; 191 hdev->req_skb = NULL; 192 193 bt_dev_dbg(hdev, "end: err %d", err); 194 195 if (err < 0) { 196 kfree_skb(skb); 197 return ERR_PTR(err); 198 } 199 200 return skb; 201 } 202 EXPORT_SYMBOL(__hci_cmd_sync_sk); 203 204 /* This function requires the caller holds hdev->req_lock. */ 205 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 206 const void *param, u32 timeout) 207 { 208 return __hci_cmd_sync_sk(hdev, opcode, plen, param, 0, timeout, NULL); 209 } 210 EXPORT_SYMBOL(__hci_cmd_sync); 211 212 /* Send HCI command and wait for command complete event */ 213 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 214 const void *param, u32 timeout) 215 { 216 struct sk_buff *skb; 217 218 if (!test_bit(HCI_UP, &hdev->flags)) 219 return ERR_PTR(-ENETDOWN); 220 221 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); 222 223 hci_req_sync_lock(hdev); 224 skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout); 225 hci_req_sync_unlock(hdev); 226 227 return skb; 228 } 229 EXPORT_SYMBOL(hci_cmd_sync); 230 231 /* This function requires the caller holds hdev->req_lock. */ 232 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen, 233 const void *param, u8 event, u32 timeout) 234 { 235 return __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, 236 NULL); 237 } 238 EXPORT_SYMBOL(__hci_cmd_sync_ev); 239 240 /* This function requires the caller holds hdev->req_lock. */ 241 int __hci_cmd_sync_status_sk(struct hci_dev *hdev, u16 opcode, u32 plen, 242 const void *param, u8 event, u32 timeout, 243 struct sock *sk) 244 { 245 struct sk_buff *skb; 246 u8 status; 247 248 skb = __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, sk); 249 if (IS_ERR(skb)) { 250 if (!event) 251 bt_dev_err(hdev, "Opcode 0x%4.4x failed: %ld", opcode, 252 PTR_ERR(skb)); 253 return PTR_ERR(skb); 254 } 255 256 /* If command return a status event skb will be set to NULL as there are 257 * no parameters, in case of failure IS_ERR(skb) would have be set to 258 * the actual error would be found with PTR_ERR(skb). 259 */ 260 if (!skb) 261 return 0; 262 263 status = skb->data[0]; 264 265 kfree_skb(skb); 266 267 return status; 268 } 269 EXPORT_SYMBOL(__hci_cmd_sync_status_sk); 270 271 int __hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen, 272 const void *param, u32 timeout) 273 { 274 return __hci_cmd_sync_status_sk(hdev, opcode, plen, param, 0, timeout, 275 NULL); 276 } 277 EXPORT_SYMBOL(__hci_cmd_sync_status); 278 279 static void hci_cmd_sync_work(struct work_struct *work) 280 { 281 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_work); 282 283 bt_dev_dbg(hdev, ""); 284 285 /* Dequeue all entries and run them */ 286 while (1) { 287 struct hci_cmd_sync_work_entry *entry; 288 289 mutex_lock(&hdev->cmd_sync_work_lock); 290 entry = list_first_entry_or_null(&hdev->cmd_sync_work_list, 291 struct hci_cmd_sync_work_entry, 292 list); 293 if (entry) 294 list_del(&entry->list); 295 mutex_unlock(&hdev->cmd_sync_work_lock); 296 297 if (!entry) 298 break; 299 300 bt_dev_dbg(hdev, "entry %p", entry); 301 302 if (entry->func) { 303 int err; 304 305 hci_req_sync_lock(hdev); 306 err = entry->func(hdev, entry->data); 307 if (entry->destroy) 308 entry->destroy(hdev, entry->data, err); 309 hci_req_sync_unlock(hdev); 310 } 311 312 kfree(entry); 313 } 314 } 315 316 static void hci_cmd_sync_cancel_work(struct work_struct *work) 317 { 318 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_cancel_work); 319 320 cancel_delayed_work_sync(&hdev->cmd_timer); 321 cancel_delayed_work_sync(&hdev->ncmd_timer); 322 atomic_set(&hdev->cmd_cnt, 1); 323 324 wake_up_interruptible(&hdev->req_wait_q); 325 } 326 327 static int hci_scan_disable_sync(struct hci_dev *hdev); 328 static int scan_disable_sync(struct hci_dev *hdev, void *data) 329 { 330 return hci_scan_disable_sync(hdev); 331 } 332 333 static int hci_inquiry_sync(struct hci_dev *hdev, u8 length); 334 static int interleaved_inquiry_sync(struct hci_dev *hdev, void *data) 335 { 336 return hci_inquiry_sync(hdev, DISCOV_INTERLEAVED_INQUIRY_LEN); 337 } 338 339 static void le_scan_disable(struct work_struct *work) 340 { 341 struct hci_dev *hdev = container_of(work, struct hci_dev, 342 le_scan_disable.work); 343 int status; 344 345 bt_dev_dbg(hdev, ""); 346 hci_dev_lock(hdev); 347 348 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 349 goto _return; 350 351 status = hci_cmd_sync_queue(hdev, scan_disable_sync, NULL, NULL); 352 if (status) { 353 bt_dev_err(hdev, "failed to disable LE scan: %d", status); 354 goto _return; 355 } 356 357 hdev->discovery.scan_start = 0; 358 359 /* If we were running LE only scan, change discovery state. If 360 * we were running both LE and BR/EDR inquiry simultaneously, 361 * and BR/EDR inquiry is already finished, stop discovery, 362 * otherwise BR/EDR inquiry will stop discovery when finished. 363 * If we will resolve remote device name, do not change 364 * discovery state. 365 */ 366 367 if (hdev->discovery.type == DISCOV_TYPE_LE) 368 goto discov_stopped; 369 370 if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED) 371 goto _return; 372 373 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) { 374 if (!test_bit(HCI_INQUIRY, &hdev->flags) && 375 hdev->discovery.state != DISCOVERY_RESOLVING) 376 goto discov_stopped; 377 378 goto _return; 379 } 380 381 status = hci_cmd_sync_queue(hdev, interleaved_inquiry_sync, NULL, NULL); 382 if (status) { 383 bt_dev_err(hdev, "inquiry failed: status %d", status); 384 goto discov_stopped; 385 } 386 387 goto _return; 388 389 discov_stopped: 390 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 391 392 _return: 393 hci_dev_unlock(hdev); 394 } 395 396 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val, 397 u8 filter_dup); 398 399 static int reenable_adv_sync(struct hci_dev *hdev, void *data) 400 { 401 bt_dev_dbg(hdev, ""); 402 403 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) && 404 list_empty(&hdev->adv_instances)) 405 return 0; 406 407 if (hdev->cur_adv_instance) { 408 return hci_schedule_adv_instance_sync(hdev, 409 hdev->cur_adv_instance, 410 true); 411 } else { 412 if (ext_adv_capable(hdev)) { 413 hci_start_ext_adv_sync(hdev, 0x00); 414 } else { 415 hci_update_adv_data_sync(hdev, 0x00); 416 hci_update_scan_rsp_data_sync(hdev, 0x00); 417 hci_enable_advertising_sync(hdev); 418 } 419 } 420 421 return 0; 422 } 423 424 static void reenable_adv(struct work_struct *work) 425 { 426 struct hci_dev *hdev = container_of(work, struct hci_dev, 427 reenable_adv_work); 428 int status; 429 430 bt_dev_dbg(hdev, ""); 431 432 hci_dev_lock(hdev); 433 434 status = hci_cmd_sync_queue(hdev, reenable_adv_sync, NULL, NULL); 435 if (status) 436 bt_dev_err(hdev, "failed to reenable ADV: %d", status); 437 438 hci_dev_unlock(hdev); 439 } 440 441 static void cancel_adv_timeout(struct hci_dev *hdev) 442 { 443 if (hdev->adv_instance_timeout) { 444 hdev->adv_instance_timeout = 0; 445 cancel_delayed_work(&hdev->adv_instance_expire); 446 } 447 } 448 449 /* For a single instance: 450 * - force == true: The instance will be removed even when its remaining 451 * lifetime is not zero. 452 * - force == false: the instance will be deactivated but kept stored unless 453 * the remaining lifetime is zero. 454 * 455 * For instance == 0x00: 456 * - force == true: All instances will be removed regardless of their timeout 457 * setting. 458 * - force == false: Only instances that have a timeout will be removed. 459 */ 460 int hci_clear_adv_instance_sync(struct hci_dev *hdev, struct sock *sk, 461 u8 instance, bool force) 462 { 463 struct adv_info *adv_instance, *n, *next_instance = NULL; 464 int err; 465 u8 rem_inst; 466 467 /* Cancel any timeout concerning the removed instance(s). */ 468 if (!instance || hdev->cur_adv_instance == instance) 469 cancel_adv_timeout(hdev); 470 471 /* Get the next instance to advertise BEFORE we remove 472 * the current one. This can be the same instance again 473 * if there is only one instance. 474 */ 475 if (instance && hdev->cur_adv_instance == instance) 476 next_instance = hci_get_next_instance(hdev, instance); 477 478 if (instance == 0x00) { 479 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, 480 list) { 481 if (!(force || adv_instance->timeout)) 482 continue; 483 484 rem_inst = adv_instance->instance; 485 err = hci_remove_adv_instance(hdev, rem_inst); 486 if (!err) 487 mgmt_advertising_removed(sk, hdev, rem_inst); 488 } 489 } else { 490 adv_instance = hci_find_adv_instance(hdev, instance); 491 492 if (force || (adv_instance && adv_instance->timeout && 493 !adv_instance->remaining_time)) { 494 /* Don't advertise a removed instance. */ 495 if (next_instance && 496 next_instance->instance == instance) 497 next_instance = NULL; 498 499 err = hci_remove_adv_instance(hdev, instance); 500 if (!err) 501 mgmt_advertising_removed(sk, hdev, instance); 502 } 503 } 504 505 if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING)) 506 return 0; 507 508 if (next_instance && !ext_adv_capable(hdev)) 509 return hci_schedule_adv_instance_sync(hdev, 510 next_instance->instance, 511 false); 512 513 return 0; 514 } 515 516 static int adv_timeout_expire_sync(struct hci_dev *hdev, void *data) 517 { 518 u8 instance = *(u8 *)data; 519 520 kfree(data); 521 522 hci_clear_adv_instance_sync(hdev, NULL, instance, false); 523 524 if (list_empty(&hdev->adv_instances)) 525 return hci_disable_advertising_sync(hdev); 526 527 return 0; 528 } 529 530 static void adv_timeout_expire(struct work_struct *work) 531 { 532 u8 *inst_ptr; 533 struct hci_dev *hdev = container_of(work, struct hci_dev, 534 adv_instance_expire.work); 535 536 bt_dev_dbg(hdev, ""); 537 538 hci_dev_lock(hdev); 539 540 hdev->adv_instance_timeout = 0; 541 542 if (hdev->cur_adv_instance == 0x00) 543 goto unlock; 544 545 inst_ptr = kmalloc(1, GFP_KERNEL); 546 if (!inst_ptr) 547 goto unlock; 548 549 *inst_ptr = hdev->cur_adv_instance; 550 hci_cmd_sync_queue(hdev, adv_timeout_expire_sync, inst_ptr, NULL); 551 552 unlock: 553 hci_dev_unlock(hdev); 554 } 555 556 void hci_cmd_sync_init(struct hci_dev *hdev) 557 { 558 INIT_WORK(&hdev->cmd_sync_work, hci_cmd_sync_work); 559 INIT_LIST_HEAD(&hdev->cmd_sync_work_list); 560 mutex_init(&hdev->cmd_sync_work_lock); 561 mutex_init(&hdev->unregister_lock); 562 563 INIT_WORK(&hdev->cmd_sync_cancel_work, hci_cmd_sync_cancel_work); 564 INIT_WORK(&hdev->reenable_adv_work, reenable_adv); 565 INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable); 566 INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire); 567 } 568 569 void hci_cmd_sync_clear(struct hci_dev *hdev) 570 { 571 struct hci_cmd_sync_work_entry *entry, *tmp; 572 573 cancel_work_sync(&hdev->cmd_sync_work); 574 cancel_work_sync(&hdev->reenable_adv_work); 575 576 mutex_lock(&hdev->cmd_sync_work_lock); 577 list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) { 578 if (entry->destroy) 579 entry->destroy(hdev, entry->data, -ECANCELED); 580 581 list_del(&entry->list); 582 kfree(entry); 583 } 584 mutex_unlock(&hdev->cmd_sync_work_lock); 585 } 586 587 void __hci_cmd_sync_cancel(struct hci_dev *hdev, int err) 588 { 589 bt_dev_dbg(hdev, "err 0x%2.2x", err); 590 591 if (hdev->req_status == HCI_REQ_PEND) { 592 hdev->req_result = err; 593 hdev->req_status = HCI_REQ_CANCELED; 594 595 cancel_delayed_work_sync(&hdev->cmd_timer); 596 cancel_delayed_work_sync(&hdev->ncmd_timer); 597 atomic_set(&hdev->cmd_cnt, 1); 598 599 wake_up_interruptible(&hdev->req_wait_q); 600 } 601 } 602 603 void hci_cmd_sync_cancel(struct hci_dev *hdev, int err) 604 { 605 bt_dev_dbg(hdev, "err 0x%2.2x", err); 606 607 if (hdev->req_status == HCI_REQ_PEND) { 608 hdev->req_result = err; 609 hdev->req_status = HCI_REQ_CANCELED; 610 611 queue_work(hdev->workqueue, &hdev->cmd_sync_cancel_work); 612 } 613 } 614 EXPORT_SYMBOL(hci_cmd_sync_cancel); 615 616 /* Submit HCI command to be run in as cmd_sync_work: 617 * 618 * - hdev must _not_ be unregistered 619 */ 620 int hci_cmd_sync_submit(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 621 void *data, hci_cmd_sync_work_destroy_t destroy) 622 { 623 struct hci_cmd_sync_work_entry *entry; 624 int err = 0; 625 626 mutex_lock(&hdev->unregister_lock); 627 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 628 err = -ENODEV; 629 goto unlock; 630 } 631 632 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 633 if (!entry) { 634 err = -ENOMEM; 635 goto unlock; 636 } 637 entry->func = func; 638 entry->data = data; 639 entry->destroy = destroy; 640 641 mutex_lock(&hdev->cmd_sync_work_lock); 642 list_add_tail(&entry->list, &hdev->cmd_sync_work_list); 643 mutex_unlock(&hdev->cmd_sync_work_lock); 644 645 queue_work(hdev->req_workqueue, &hdev->cmd_sync_work); 646 647 unlock: 648 mutex_unlock(&hdev->unregister_lock); 649 return err; 650 } 651 EXPORT_SYMBOL(hci_cmd_sync_submit); 652 653 /* Queue HCI command: 654 * 655 * - hdev must be running 656 */ 657 int hci_cmd_sync_queue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 658 void *data, hci_cmd_sync_work_destroy_t destroy) 659 { 660 /* Only queue command if hdev is running which means it had been opened 661 * and is either on init phase or is already up. 662 */ 663 if (!test_bit(HCI_RUNNING, &hdev->flags)) 664 return -ENETDOWN; 665 666 return hci_cmd_sync_submit(hdev, func, data, destroy); 667 } 668 EXPORT_SYMBOL(hci_cmd_sync_queue); 669 670 int hci_update_eir_sync(struct hci_dev *hdev) 671 { 672 struct hci_cp_write_eir cp; 673 674 bt_dev_dbg(hdev, ""); 675 676 if (!hdev_is_powered(hdev)) 677 return 0; 678 679 if (!lmp_ext_inq_capable(hdev)) 680 return 0; 681 682 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 683 return 0; 684 685 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 686 return 0; 687 688 memset(&cp, 0, sizeof(cp)); 689 690 eir_create(hdev, cp.data); 691 692 if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0) 693 return 0; 694 695 memcpy(hdev->eir, cp.data, sizeof(cp.data)); 696 697 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp, 698 HCI_CMD_TIMEOUT); 699 } 700 701 static u8 get_service_classes(struct hci_dev *hdev) 702 { 703 struct bt_uuid *uuid; 704 u8 val = 0; 705 706 list_for_each_entry(uuid, &hdev->uuids, list) 707 val |= uuid->svc_hint; 708 709 return val; 710 } 711 712 int hci_update_class_sync(struct hci_dev *hdev) 713 { 714 u8 cod[3]; 715 716 bt_dev_dbg(hdev, ""); 717 718 if (!hdev_is_powered(hdev)) 719 return 0; 720 721 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 722 return 0; 723 724 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 725 return 0; 726 727 cod[0] = hdev->minor_class; 728 cod[1] = hdev->major_class; 729 cod[2] = get_service_classes(hdev); 730 731 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) 732 cod[1] |= 0x20; 733 734 if (memcmp(cod, hdev->dev_class, 3) == 0) 735 return 0; 736 737 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CLASS_OF_DEV, 738 sizeof(cod), cod, HCI_CMD_TIMEOUT); 739 } 740 741 static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable) 742 { 743 /* If there is no connection we are OK to advertise. */ 744 if (hci_conn_num(hdev, LE_LINK) == 0) 745 return true; 746 747 /* Check le_states if there is any connection in peripheral role. */ 748 if (hdev->conn_hash.le_num_peripheral > 0) { 749 /* Peripheral connection state and non connectable mode 750 * bit 20. 751 */ 752 if (!connectable && !(hdev->le_states[2] & 0x10)) 753 return false; 754 755 /* Peripheral connection state and connectable mode bit 38 756 * and scannable bit 21. 757 */ 758 if (connectable && (!(hdev->le_states[4] & 0x40) || 759 !(hdev->le_states[2] & 0x20))) 760 return false; 761 } 762 763 /* Check le_states if there is any connection in central role. */ 764 if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) { 765 /* Central connection state and non connectable mode bit 18. */ 766 if (!connectable && !(hdev->le_states[2] & 0x02)) 767 return false; 768 769 /* Central connection state and connectable mode bit 35 and 770 * scannable 19. 771 */ 772 if (connectable && (!(hdev->le_states[4] & 0x08) || 773 !(hdev->le_states[2] & 0x08))) 774 return false; 775 } 776 777 return true; 778 } 779 780 static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags) 781 { 782 /* If privacy is not enabled don't use RPA */ 783 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 784 return false; 785 786 /* If basic privacy mode is enabled use RPA */ 787 if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) 788 return true; 789 790 /* If limited privacy mode is enabled don't use RPA if we're 791 * both discoverable and bondable. 792 */ 793 if ((flags & MGMT_ADV_FLAG_DISCOV) && 794 hci_dev_test_flag(hdev, HCI_BONDABLE)) 795 return false; 796 797 /* We're neither bondable nor discoverable in the limited 798 * privacy mode, therefore use RPA. 799 */ 800 return true; 801 } 802 803 static int hci_set_random_addr_sync(struct hci_dev *hdev, bdaddr_t *rpa) 804 { 805 /* If we're advertising or initiating an LE connection we can't 806 * go ahead and change the random address at this time. This is 807 * because the eventual initiator address used for the 808 * subsequently created connection will be undefined (some 809 * controllers use the new address and others the one we had 810 * when the operation started). 811 * 812 * In this kind of scenario skip the update and let the random 813 * address be updated at the next cycle. 814 */ 815 if (hci_dev_test_flag(hdev, HCI_LE_ADV) || 816 hci_lookup_le_connect(hdev)) { 817 bt_dev_dbg(hdev, "Deferring random address update"); 818 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 819 return 0; 820 } 821 822 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RANDOM_ADDR, 823 6, rpa, HCI_CMD_TIMEOUT); 824 } 825 826 int hci_update_random_address_sync(struct hci_dev *hdev, bool require_privacy, 827 bool rpa, u8 *own_addr_type) 828 { 829 int err; 830 831 /* If privacy is enabled use a resolvable private address. If 832 * current RPA has expired or there is something else than 833 * the current RPA in use, then generate a new one. 834 */ 835 if (rpa) { 836 /* If Controller supports LL Privacy use own address type is 837 * 0x03 838 */ 839 if (use_ll_privacy(hdev)) 840 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED; 841 else 842 *own_addr_type = ADDR_LE_DEV_RANDOM; 843 844 /* Check if RPA is valid */ 845 if (rpa_valid(hdev)) 846 return 0; 847 848 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); 849 if (err < 0) { 850 bt_dev_err(hdev, "failed to generate new RPA"); 851 return err; 852 } 853 854 err = hci_set_random_addr_sync(hdev, &hdev->rpa); 855 if (err) 856 return err; 857 858 return 0; 859 } 860 861 /* In case of required privacy without resolvable private address, 862 * use an non-resolvable private address. This is useful for active 863 * scanning and non-connectable advertising. 864 */ 865 if (require_privacy) { 866 bdaddr_t nrpa; 867 868 while (true) { 869 /* The non-resolvable private address is generated 870 * from random six bytes with the two most significant 871 * bits cleared. 872 */ 873 get_random_bytes(&nrpa, 6); 874 nrpa.b[5] &= 0x3f; 875 876 /* The non-resolvable private address shall not be 877 * equal to the public address. 878 */ 879 if (bacmp(&hdev->bdaddr, &nrpa)) 880 break; 881 } 882 883 *own_addr_type = ADDR_LE_DEV_RANDOM; 884 885 return hci_set_random_addr_sync(hdev, &nrpa); 886 } 887 888 /* If forcing static address is in use or there is no public 889 * address use the static address as random address (but skip 890 * the HCI command if the current random address is already the 891 * static one. 892 * 893 * In case BR/EDR has been disabled on a dual-mode controller 894 * and a static address has been configured, then use that 895 * address instead of the public BR/EDR address. 896 */ 897 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 898 !bacmp(&hdev->bdaddr, BDADDR_ANY) || 899 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && 900 bacmp(&hdev->static_addr, BDADDR_ANY))) { 901 *own_addr_type = ADDR_LE_DEV_RANDOM; 902 if (bacmp(&hdev->static_addr, &hdev->random_addr)) 903 return hci_set_random_addr_sync(hdev, 904 &hdev->static_addr); 905 return 0; 906 } 907 908 /* Neither privacy nor static address is being used so use a 909 * public address. 910 */ 911 *own_addr_type = ADDR_LE_DEV_PUBLIC; 912 913 return 0; 914 } 915 916 static int hci_disable_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance) 917 { 918 struct hci_cp_le_set_ext_adv_enable *cp; 919 struct hci_cp_ext_adv_set *set; 920 u8 data[sizeof(*cp) + sizeof(*set) * 1]; 921 u8 size; 922 923 /* If request specifies an instance that doesn't exist, fail */ 924 if (instance > 0) { 925 struct adv_info *adv; 926 927 adv = hci_find_adv_instance(hdev, instance); 928 if (!adv) 929 return -EINVAL; 930 931 /* If not enabled there is nothing to do */ 932 if (!adv->enabled) 933 return 0; 934 } 935 936 memset(data, 0, sizeof(data)); 937 938 cp = (void *)data; 939 set = (void *)cp->data; 940 941 /* Instance 0x00 indicates all advertising instances will be disabled */ 942 cp->num_of_sets = !!instance; 943 cp->enable = 0x00; 944 945 set->handle = instance; 946 947 size = sizeof(*cp) + sizeof(*set) * cp->num_of_sets; 948 949 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, 950 size, data, HCI_CMD_TIMEOUT); 951 } 952 953 static int hci_set_adv_set_random_addr_sync(struct hci_dev *hdev, u8 instance, 954 bdaddr_t *random_addr) 955 { 956 struct hci_cp_le_set_adv_set_rand_addr cp; 957 int err; 958 959 if (!instance) { 960 /* Instance 0x00 doesn't have an adv_info, instead it uses 961 * hdev->random_addr to track its address so whenever it needs 962 * to be updated this also set the random address since 963 * hdev->random_addr is shared with scan state machine. 964 */ 965 err = hci_set_random_addr_sync(hdev, random_addr); 966 if (err) 967 return err; 968 } 969 970 memset(&cp, 0, sizeof(cp)); 971 972 cp.handle = instance; 973 bacpy(&cp.bdaddr, random_addr); 974 975 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_SET_RAND_ADDR, 976 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 977 } 978 979 int hci_setup_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance) 980 { 981 struct hci_cp_le_set_ext_adv_params cp; 982 bool connectable; 983 u32 flags; 984 bdaddr_t random_addr; 985 u8 own_addr_type; 986 int err; 987 struct adv_info *adv; 988 bool secondary_adv; 989 990 if (instance > 0) { 991 adv = hci_find_adv_instance(hdev, instance); 992 if (!adv) 993 return -EINVAL; 994 } else { 995 adv = NULL; 996 } 997 998 /* Updating parameters of an active instance will return a 999 * Command Disallowed error, so we must first disable the 1000 * instance if it is active. 1001 */ 1002 if (adv && !adv->pending) { 1003 err = hci_disable_ext_adv_instance_sync(hdev, instance); 1004 if (err) 1005 return err; 1006 } 1007 1008 flags = hci_adv_instance_flags(hdev, instance); 1009 1010 /* If the "connectable" instance flag was not set, then choose between 1011 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. 1012 */ 1013 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || 1014 mgmt_get_connectable(hdev); 1015 1016 if (!is_advertising_allowed(hdev, connectable)) 1017 return -EPERM; 1018 1019 /* Set require_privacy to true only when non-connectable 1020 * advertising is used. In that case it is fine to use a 1021 * non-resolvable private address. 1022 */ 1023 err = hci_get_random_address(hdev, !connectable, 1024 adv_use_rpa(hdev, flags), adv, 1025 &own_addr_type, &random_addr); 1026 if (err < 0) 1027 return err; 1028 1029 memset(&cp, 0, sizeof(cp)); 1030 1031 if (adv) { 1032 hci_cpu_to_le24(adv->min_interval, cp.min_interval); 1033 hci_cpu_to_le24(adv->max_interval, cp.max_interval); 1034 cp.tx_power = adv->tx_power; 1035 } else { 1036 hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval); 1037 hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval); 1038 cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE; 1039 } 1040 1041 secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK); 1042 1043 if (connectable) { 1044 if (secondary_adv) 1045 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND); 1046 else 1047 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND); 1048 } else if (hci_adv_instance_is_scannable(hdev, instance) || 1049 (flags & MGMT_ADV_PARAM_SCAN_RSP)) { 1050 if (secondary_adv) 1051 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND); 1052 else 1053 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND); 1054 } else { 1055 if (secondary_adv) 1056 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND); 1057 else 1058 cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND); 1059 } 1060 1061 /* If Own_Address_Type equals 0x02 or 0x03, the Peer_Address parameter 1062 * contains the peer’s Identity Address and the Peer_Address_Type 1063 * parameter contains the peer’s Identity Type (i.e., 0x00 or 0x01). 1064 * These parameters are used to locate the corresponding local IRK in 1065 * the resolving list; this IRK is used to generate their own address 1066 * used in the advertisement. 1067 */ 1068 if (own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) 1069 hci_copy_identity_address(hdev, &cp.peer_addr, 1070 &cp.peer_addr_type); 1071 1072 cp.own_addr_type = own_addr_type; 1073 cp.channel_map = hdev->le_adv_channel_map; 1074 cp.handle = instance; 1075 1076 if (flags & MGMT_ADV_FLAG_SEC_2M) { 1077 cp.primary_phy = HCI_ADV_PHY_1M; 1078 cp.secondary_phy = HCI_ADV_PHY_2M; 1079 } else if (flags & MGMT_ADV_FLAG_SEC_CODED) { 1080 cp.primary_phy = HCI_ADV_PHY_CODED; 1081 cp.secondary_phy = HCI_ADV_PHY_CODED; 1082 } else { 1083 /* In all other cases use 1M */ 1084 cp.primary_phy = HCI_ADV_PHY_1M; 1085 cp.secondary_phy = HCI_ADV_PHY_1M; 1086 } 1087 1088 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS, 1089 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1090 if (err) 1091 return err; 1092 1093 if ((own_addr_type == ADDR_LE_DEV_RANDOM || 1094 own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) && 1095 bacmp(&random_addr, BDADDR_ANY)) { 1096 /* Check if random address need to be updated */ 1097 if (adv) { 1098 if (!bacmp(&random_addr, &adv->random_addr)) 1099 return 0; 1100 } else { 1101 if (!bacmp(&random_addr, &hdev->random_addr)) 1102 return 0; 1103 } 1104 1105 return hci_set_adv_set_random_addr_sync(hdev, instance, 1106 &random_addr); 1107 } 1108 1109 return 0; 1110 } 1111 1112 static int hci_set_ext_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 1113 { 1114 struct { 1115 struct hci_cp_le_set_ext_scan_rsp_data cp; 1116 u8 data[HCI_MAX_EXT_AD_LENGTH]; 1117 } pdu; 1118 u8 len; 1119 struct adv_info *adv = NULL; 1120 int err; 1121 1122 memset(&pdu, 0, sizeof(pdu)); 1123 1124 if (instance) { 1125 adv = hci_find_adv_instance(hdev, instance); 1126 if (!adv || !adv->scan_rsp_changed) 1127 return 0; 1128 } 1129 1130 len = eir_create_scan_rsp(hdev, instance, pdu.data); 1131 1132 pdu.cp.handle = instance; 1133 pdu.cp.length = len; 1134 pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; 1135 pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG; 1136 1137 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA, 1138 sizeof(pdu.cp) + len, &pdu.cp, 1139 HCI_CMD_TIMEOUT); 1140 if (err) 1141 return err; 1142 1143 if (adv) { 1144 adv->scan_rsp_changed = false; 1145 } else { 1146 memcpy(hdev->scan_rsp_data, pdu.data, len); 1147 hdev->scan_rsp_data_len = len; 1148 } 1149 1150 return 0; 1151 } 1152 1153 static int __hci_set_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 1154 { 1155 struct hci_cp_le_set_scan_rsp_data cp; 1156 u8 len; 1157 1158 memset(&cp, 0, sizeof(cp)); 1159 1160 len = eir_create_scan_rsp(hdev, instance, cp.data); 1161 1162 if (hdev->scan_rsp_data_len == len && 1163 !memcmp(cp.data, hdev->scan_rsp_data, len)) 1164 return 0; 1165 1166 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data)); 1167 hdev->scan_rsp_data_len = len; 1168 1169 cp.length = len; 1170 1171 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_RSP_DATA, 1172 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1173 } 1174 1175 int hci_update_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 1176 { 1177 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1178 return 0; 1179 1180 if (ext_adv_capable(hdev)) 1181 return hci_set_ext_scan_rsp_data_sync(hdev, instance); 1182 1183 return __hci_set_scan_rsp_data_sync(hdev, instance); 1184 } 1185 1186 int hci_enable_ext_advertising_sync(struct hci_dev *hdev, u8 instance) 1187 { 1188 struct hci_cp_le_set_ext_adv_enable *cp; 1189 struct hci_cp_ext_adv_set *set; 1190 u8 data[sizeof(*cp) + sizeof(*set) * 1]; 1191 struct adv_info *adv; 1192 1193 if (instance > 0) { 1194 adv = hci_find_adv_instance(hdev, instance); 1195 if (!adv) 1196 return -EINVAL; 1197 /* If already enabled there is nothing to do */ 1198 if (adv->enabled) 1199 return 0; 1200 } else { 1201 adv = NULL; 1202 } 1203 1204 cp = (void *)data; 1205 set = (void *)cp->data; 1206 1207 memset(cp, 0, sizeof(*cp)); 1208 1209 cp->enable = 0x01; 1210 cp->num_of_sets = 0x01; 1211 1212 memset(set, 0, sizeof(*set)); 1213 1214 set->handle = instance; 1215 1216 /* Set duration per instance since controller is responsible for 1217 * scheduling it. 1218 */ 1219 if (adv && adv->timeout) { 1220 u16 duration = adv->timeout * MSEC_PER_SEC; 1221 1222 /* Time = N * 10 ms */ 1223 set->duration = cpu_to_le16(duration / 10); 1224 } 1225 1226 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, 1227 sizeof(*cp) + 1228 sizeof(*set) * cp->num_of_sets, 1229 data, HCI_CMD_TIMEOUT); 1230 } 1231 1232 int hci_start_ext_adv_sync(struct hci_dev *hdev, u8 instance) 1233 { 1234 int err; 1235 1236 err = hci_setup_ext_adv_instance_sync(hdev, instance); 1237 if (err) 1238 return err; 1239 1240 err = hci_set_ext_scan_rsp_data_sync(hdev, instance); 1241 if (err) 1242 return err; 1243 1244 return hci_enable_ext_advertising_sync(hdev, instance); 1245 } 1246 1247 int hci_disable_per_advertising_sync(struct hci_dev *hdev, u8 instance) 1248 { 1249 struct hci_cp_le_set_per_adv_enable cp; 1250 struct adv_info *adv = NULL; 1251 1252 /* If periodic advertising already disabled there is nothing to do. */ 1253 adv = hci_find_adv_instance(hdev, instance); 1254 if (!adv || !adv->periodic || !adv->enabled) 1255 return 0; 1256 1257 memset(&cp, 0, sizeof(cp)); 1258 1259 cp.enable = 0x00; 1260 cp.handle = instance; 1261 1262 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE, 1263 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1264 } 1265 1266 static int hci_set_per_adv_params_sync(struct hci_dev *hdev, u8 instance, 1267 u16 min_interval, u16 max_interval) 1268 { 1269 struct hci_cp_le_set_per_adv_params cp; 1270 1271 memset(&cp, 0, sizeof(cp)); 1272 1273 if (!min_interval) 1274 min_interval = DISCOV_LE_PER_ADV_INT_MIN; 1275 1276 if (!max_interval) 1277 max_interval = DISCOV_LE_PER_ADV_INT_MAX; 1278 1279 cp.handle = instance; 1280 cp.min_interval = cpu_to_le16(min_interval); 1281 cp.max_interval = cpu_to_le16(max_interval); 1282 cp.periodic_properties = 0x0000; 1283 1284 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_PARAMS, 1285 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1286 } 1287 1288 static int hci_set_per_adv_data_sync(struct hci_dev *hdev, u8 instance) 1289 { 1290 struct { 1291 struct hci_cp_le_set_per_adv_data cp; 1292 u8 data[HCI_MAX_PER_AD_LENGTH]; 1293 } pdu; 1294 u8 len; 1295 1296 memset(&pdu, 0, sizeof(pdu)); 1297 1298 if (instance) { 1299 struct adv_info *adv = hci_find_adv_instance(hdev, instance); 1300 1301 if (!adv || !adv->periodic) 1302 return 0; 1303 } 1304 1305 len = eir_create_per_adv_data(hdev, instance, pdu.data); 1306 1307 pdu.cp.length = len; 1308 pdu.cp.handle = instance; 1309 pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; 1310 1311 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_DATA, 1312 sizeof(pdu.cp) + len, &pdu, 1313 HCI_CMD_TIMEOUT); 1314 } 1315 1316 static int hci_enable_per_advertising_sync(struct hci_dev *hdev, u8 instance) 1317 { 1318 struct hci_cp_le_set_per_adv_enable cp; 1319 struct adv_info *adv = NULL; 1320 1321 /* If periodic advertising already enabled there is nothing to do. */ 1322 adv = hci_find_adv_instance(hdev, instance); 1323 if (adv && adv->periodic && adv->enabled) 1324 return 0; 1325 1326 memset(&cp, 0, sizeof(cp)); 1327 1328 cp.enable = 0x01; 1329 cp.handle = instance; 1330 1331 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE, 1332 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1333 } 1334 1335 /* Checks if periodic advertising data contains a Basic Announcement and if it 1336 * does generates a Broadcast ID and add Broadcast Announcement. 1337 */ 1338 static int hci_adv_bcast_annoucement(struct hci_dev *hdev, struct adv_info *adv) 1339 { 1340 u8 bid[3]; 1341 u8 ad[4 + 3]; 1342 1343 /* Skip if NULL adv as instance 0x00 is used for general purpose 1344 * advertising so it cannot used for the likes of Broadcast Announcement 1345 * as it can be overwritten at any point. 1346 */ 1347 if (!adv) 1348 return 0; 1349 1350 /* Check if PA data doesn't contains a Basic Audio Announcement then 1351 * there is nothing to do. 1352 */ 1353 if (!eir_get_service_data(adv->per_adv_data, adv->per_adv_data_len, 1354 0x1851, NULL)) 1355 return 0; 1356 1357 /* Check if advertising data already has a Broadcast Announcement since 1358 * the process may want to control the Broadcast ID directly and in that 1359 * case the kernel shall no interfere. 1360 */ 1361 if (eir_get_service_data(adv->adv_data, adv->adv_data_len, 0x1852, 1362 NULL)) 1363 return 0; 1364 1365 /* Generate Broadcast ID */ 1366 get_random_bytes(bid, sizeof(bid)); 1367 eir_append_service_data(ad, 0, 0x1852, bid, sizeof(bid)); 1368 hci_set_adv_instance_data(hdev, adv->instance, sizeof(ad), ad, 0, NULL); 1369 1370 return hci_update_adv_data_sync(hdev, adv->instance); 1371 } 1372 1373 int hci_start_per_adv_sync(struct hci_dev *hdev, u8 instance, u8 data_len, 1374 u8 *data, u32 flags, u16 min_interval, 1375 u16 max_interval, u16 sync_interval) 1376 { 1377 struct adv_info *adv = NULL; 1378 int err; 1379 bool added = false; 1380 1381 hci_disable_per_advertising_sync(hdev, instance); 1382 1383 if (instance) { 1384 adv = hci_find_adv_instance(hdev, instance); 1385 /* Create an instance if that could not be found */ 1386 if (!adv) { 1387 adv = hci_add_per_instance(hdev, instance, flags, 1388 data_len, data, 1389 sync_interval, 1390 sync_interval); 1391 if (IS_ERR(adv)) 1392 return PTR_ERR(adv); 1393 adv->pending = false; 1394 added = true; 1395 } 1396 } 1397 1398 /* Start advertising */ 1399 err = hci_start_ext_adv_sync(hdev, instance); 1400 if (err < 0) 1401 goto fail; 1402 1403 err = hci_adv_bcast_annoucement(hdev, adv); 1404 if (err < 0) 1405 goto fail; 1406 1407 err = hci_set_per_adv_params_sync(hdev, instance, min_interval, 1408 max_interval); 1409 if (err < 0) 1410 goto fail; 1411 1412 err = hci_set_per_adv_data_sync(hdev, instance); 1413 if (err < 0) 1414 goto fail; 1415 1416 err = hci_enable_per_advertising_sync(hdev, instance); 1417 if (err < 0) 1418 goto fail; 1419 1420 return 0; 1421 1422 fail: 1423 if (added) 1424 hci_remove_adv_instance(hdev, instance); 1425 1426 return err; 1427 } 1428 1429 static int hci_start_adv_sync(struct hci_dev *hdev, u8 instance) 1430 { 1431 int err; 1432 1433 if (ext_adv_capable(hdev)) 1434 return hci_start_ext_adv_sync(hdev, instance); 1435 1436 err = hci_update_adv_data_sync(hdev, instance); 1437 if (err) 1438 return err; 1439 1440 err = hci_update_scan_rsp_data_sync(hdev, instance); 1441 if (err) 1442 return err; 1443 1444 return hci_enable_advertising_sync(hdev); 1445 } 1446 1447 int hci_enable_advertising_sync(struct hci_dev *hdev) 1448 { 1449 struct adv_info *adv_instance; 1450 struct hci_cp_le_set_adv_param cp; 1451 u8 own_addr_type, enable = 0x01; 1452 bool connectable; 1453 u16 adv_min_interval, adv_max_interval; 1454 u32 flags; 1455 u8 status; 1456 1457 if (ext_adv_capable(hdev)) 1458 return hci_enable_ext_advertising_sync(hdev, 1459 hdev->cur_adv_instance); 1460 1461 flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance); 1462 adv_instance = hci_find_adv_instance(hdev, hdev->cur_adv_instance); 1463 1464 /* If the "connectable" instance flag was not set, then choose between 1465 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. 1466 */ 1467 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || 1468 mgmt_get_connectable(hdev); 1469 1470 if (!is_advertising_allowed(hdev, connectable)) 1471 return -EINVAL; 1472 1473 status = hci_disable_advertising_sync(hdev); 1474 if (status) 1475 return status; 1476 1477 /* Clear the HCI_LE_ADV bit temporarily so that the 1478 * hci_update_random_address knows that it's safe to go ahead 1479 * and write a new random address. The flag will be set back on 1480 * as soon as the SET_ADV_ENABLE HCI command completes. 1481 */ 1482 hci_dev_clear_flag(hdev, HCI_LE_ADV); 1483 1484 /* Set require_privacy to true only when non-connectable 1485 * advertising is used. In that case it is fine to use a 1486 * non-resolvable private address. 1487 */ 1488 status = hci_update_random_address_sync(hdev, !connectable, 1489 adv_use_rpa(hdev, flags), 1490 &own_addr_type); 1491 if (status) 1492 return status; 1493 1494 memset(&cp, 0, sizeof(cp)); 1495 1496 if (adv_instance) { 1497 adv_min_interval = adv_instance->min_interval; 1498 adv_max_interval = adv_instance->max_interval; 1499 } else { 1500 adv_min_interval = hdev->le_adv_min_interval; 1501 adv_max_interval = hdev->le_adv_max_interval; 1502 } 1503 1504 if (connectable) { 1505 cp.type = LE_ADV_IND; 1506 } else { 1507 if (hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance)) 1508 cp.type = LE_ADV_SCAN_IND; 1509 else 1510 cp.type = LE_ADV_NONCONN_IND; 1511 1512 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) || 1513 hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { 1514 adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN; 1515 adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX; 1516 } 1517 } 1518 1519 cp.min_interval = cpu_to_le16(adv_min_interval); 1520 cp.max_interval = cpu_to_le16(adv_max_interval); 1521 cp.own_address_type = own_addr_type; 1522 cp.channel_map = hdev->le_adv_channel_map; 1523 1524 status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM, 1525 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1526 if (status) 1527 return status; 1528 1529 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 1530 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 1531 } 1532 1533 static int enable_advertising_sync(struct hci_dev *hdev, void *data) 1534 { 1535 return hci_enable_advertising_sync(hdev); 1536 } 1537 1538 int hci_enable_advertising(struct hci_dev *hdev) 1539 { 1540 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) && 1541 list_empty(&hdev->adv_instances)) 1542 return 0; 1543 1544 return hci_cmd_sync_queue(hdev, enable_advertising_sync, NULL, NULL); 1545 } 1546 1547 int hci_remove_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance, 1548 struct sock *sk) 1549 { 1550 int err; 1551 1552 if (!ext_adv_capable(hdev)) 1553 return 0; 1554 1555 err = hci_disable_ext_adv_instance_sync(hdev, instance); 1556 if (err) 1557 return err; 1558 1559 /* If request specifies an instance that doesn't exist, fail */ 1560 if (instance > 0 && !hci_find_adv_instance(hdev, instance)) 1561 return -EINVAL; 1562 1563 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_REMOVE_ADV_SET, 1564 sizeof(instance), &instance, 0, 1565 HCI_CMD_TIMEOUT, sk); 1566 } 1567 1568 static int remove_ext_adv_sync(struct hci_dev *hdev, void *data) 1569 { 1570 struct adv_info *adv = data; 1571 u8 instance = 0; 1572 1573 if (adv) 1574 instance = adv->instance; 1575 1576 return hci_remove_ext_adv_instance_sync(hdev, instance, NULL); 1577 } 1578 1579 int hci_remove_ext_adv_instance(struct hci_dev *hdev, u8 instance) 1580 { 1581 struct adv_info *adv = NULL; 1582 1583 if (instance) { 1584 adv = hci_find_adv_instance(hdev, instance); 1585 if (!adv) 1586 return -EINVAL; 1587 } 1588 1589 return hci_cmd_sync_queue(hdev, remove_ext_adv_sync, adv, NULL); 1590 } 1591 1592 int hci_le_terminate_big_sync(struct hci_dev *hdev, u8 handle, u8 reason) 1593 { 1594 struct hci_cp_le_term_big cp; 1595 1596 memset(&cp, 0, sizeof(cp)); 1597 cp.handle = handle; 1598 cp.reason = reason; 1599 1600 return __hci_cmd_sync_status(hdev, HCI_OP_LE_TERM_BIG, 1601 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1602 } 1603 1604 static int hci_set_ext_adv_data_sync(struct hci_dev *hdev, u8 instance) 1605 { 1606 struct { 1607 struct hci_cp_le_set_ext_adv_data cp; 1608 u8 data[HCI_MAX_EXT_AD_LENGTH]; 1609 } pdu; 1610 u8 len; 1611 struct adv_info *adv = NULL; 1612 int err; 1613 1614 memset(&pdu, 0, sizeof(pdu)); 1615 1616 if (instance) { 1617 adv = hci_find_adv_instance(hdev, instance); 1618 if (!adv || !adv->adv_data_changed) 1619 return 0; 1620 } 1621 1622 len = eir_create_adv_data(hdev, instance, pdu.data); 1623 1624 pdu.cp.length = len; 1625 pdu.cp.handle = instance; 1626 pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; 1627 pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG; 1628 1629 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_DATA, 1630 sizeof(pdu.cp) + len, &pdu.cp, 1631 HCI_CMD_TIMEOUT); 1632 if (err) 1633 return err; 1634 1635 /* Update data if the command succeed */ 1636 if (adv) { 1637 adv->adv_data_changed = false; 1638 } else { 1639 memcpy(hdev->adv_data, pdu.data, len); 1640 hdev->adv_data_len = len; 1641 } 1642 1643 return 0; 1644 } 1645 1646 static int hci_set_adv_data_sync(struct hci_dev *hdev, u8 instance) 1647 { 1648 struct hci_cp_le_set_adv_data cp; 1649 u8 len; 1650 1651 memset(&cp, 0, sizeof(cp)); 1652 1653 len = eir_create_adv_data(hdev, instance, cp.data); 1654 1655 /* There's nothing to do if the data hasn't changed */ 1656 if (hdev->adv_data_len == len && 1657 memcmp(cp.data, hdev->adv_data, len) == 0) 1658 return 0; 1659 1660 memcpy(hdev->adv_data, cp.data, sizeof(cp.data)); 1661 hdev->adv_data_len = len; 1662 1663 cp.length = len; 1664 1665 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_DATA, 1666 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1667 } 1668 1669 int hci_update_adv_data_sync(struct hci_dev *hdev, u8 instance) 1670 { 1671 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1672 return 0; 1673 1674 if (ext_adv_capable(hdev)) 1675 return hci_set_ext_adv_data_sync(hdev, instance); 1676 1677 return hci_set_adv_data_sync(hdev, instance); 1678 } 1679 1680 int hci_schedule_adv_instance_sync(struct hci_dev *hdev, u8 instance, 1681 bool force) 1682 { 1683 struct adv_info *adv = NULL; 1684 u16 timeout; 1685 1686 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) && !ext_adv_capable(hdev)) 1687 return -EPERM; 1688 1689 if (hdev->adv_instance_timeout) 1690 return -EBUSY; 1691 1692 adv = hci_find_adv_instance(hdev, instance); 1693 if (!adv) 1694 return -ENOENT; 1695 1696 /* A zero timeout means unlimited advertising. As long as there is 1697 * only one instance, duration should be ignored. We still set a timeout 1698 * in case further instances are being added later on. 1699 * 1700 * If the remaining lifetime of the instance is more than the duration 1701 * then the timeout corresponds to the duration, otherwise it will be 1702 * reduced to the remaining instance lifetime. 1703 */ 1704 if (adv->timeout == 0 || adv->duration <= adv->remaining_time) 1705 timeout = adv->duration; 1706 else 1707 timeout = adv->remaining_time; 1708 1709 /* The remaining time is being reduced unless the instance is being 1710 * advertised without time limit. 1711 */ 1712 if (adv->timeout) 1713 adv->remaining_time = adv->remaining_time - timeout; 1714 1715 /* Only use work for scheduling instances with legacy advertising */ 1716 if (!ext_adv_capable(hdev)) { 1717 hdev->adv_instance_timeout = timeout; 1718 queue_delayed_work(hdev->req_workqueue, 1719 &hdev->adv_instance_expire, 1720 msecs_to_jiffies(timeout * 1000)); 1721 } 1722 1723 /* If we're just re-scheduling the same instance again then do not 1724 * execute any HCI commands. This happens when a single instance is 1725 * being advertised. 1726 */ 1727 if (!force && hdev->cur_adv_instance == instance && 1728 hci_dev_test_flag(hdev, HCI_LE_ADV)) 1729 return 0; 1730 1731 hdev->cur_adv_instance = instance; 1732 1733 return hci_start_adv_sync(hdev, instance); 1734 } 1735 1736 static int hci_clear_adv_sets_sync(struct hci_dev *hdev, struct sock *sk) 1737 { 1738 int err; 1739 1740 if (!ext_adv_capable(hdev)) 1741 return 0; 1742 1743 /* Disable instance 0x00 to disable all instances */ 1744 err = hci_disable_ext_adv_instance_sync(hdev, 0x00); 1745 if (err) 1746 return err; 1747 1748 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CLEAR_ADV_SETS, 1749 0, NULL, 0, HCI_CMD_TIMEOUT, sk); 1750 } 1751 1752 static int hci_clear_adv_sync(struct hci_dev *hdev, struct sock *sk, bool force) 1753 { 1754 struct adv_info *adv, *n; 1755 int err = 0; 1756 1757 if (ext_adv_capable(hdev)) 1758 /* Remove all existing sets */ 1759 err = hci_clear_adv_sets_sync(hdev, sk); 1760 if (ext_adv_capable(hdev)) 1761 return err; 1762 1763 /* This is safe as long as there is no command send while the lock is 1764 * held. 1765 */ 1766 hci_dev_lock(hdev); 1767 1768 /* Cleanup non-ext instances */ 1769 list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) { 1770 u8 instance = adv->instance; 1771 int err; 1772 1773 if (!(force || adv->timeout)) 1774 continue; 1775 1776 err = hci_remove_adv_instance(hdev, instance); 1777 if (!err) 1778 mgmt_advertising_removed(sk, hdev, instance); 1779 } 1780 1781 hci_dev_unlock(hdev); 1782 1783 return 0; 1784 } 1785 1786 static int hci_remove_adv_sync(struct hci_dev *hdev, u8 instance, 1787 struct sock *sk) 1788 { 1789 int err = 0; 1790 1791 /* If we use extended advertising, instance has to be removed first. */ 1792 if (ext_adv_capable(hdev)) 1793 err = hci_remove_ext_adv_instance_sync(hdev, instance, sk); 1794 if (ext_adv_capable(hdev)) 1795 return err; 1796 1797 /* This is safe as long as there is no command send while the lock is 1798 * held. 1799 */ 1800 hci_dev_lock(hdev); 1801 1802 err = hci_remove_adv_instance(hdev, instance); 1803 if (!err) 1804 mgmt_advertising_removed(sk, hdev, instance); 1805 1806 hci_dev_unlock(hdev); 1807 1808 return err; 1809 } 1810 1811 /* For a single instance: 1812 * - force == true: The instance will be removed even when its remaining 1813 * lifetime is not zero. 1814 * - force == false: the instance will be deactivated but kept stored unless 1815 * the remaining lifetime is zero. 1816 * 1817 * For instance == 0x00: 1818 * - force == true: All instances will be removed regardless of their timeout 1819 * setting. 1820 * - force == false: Only instances that have a timeout will be removed. 1821 */ 1822 int hci_remove_advertising_sync(struct hci_dev *hdev, struct sock *sk, 1823 u8 instance, bool force) 1824 { 1825 struct adv_info *next = NULL; 1826 int err; 1827 1828 /* Cancel any timeout concerning the removed instance(s). */ 1829 if (!instance || hdev->cur_adv_instance == instance) 1830 cancel_adv_timeout(hdev); 1831 1832 /* Get the next instance to advertise BEFORE we remove 1833 * the current one. This can be the same instance again 1834 * if there is only one instance. 1835 */ 1836 if (hdev->cur_adv_instance == instance) 1837 next = hci_get_next_instance(hdev, instance); 1838 1839 if (!instance) { 1840 err = hci_clear_adv_sync(hdev, sk, force); 1841 if (err) 1842 return err; 1843 } else { 1844 struct adv_info *adv = hci_find_adv_instance(hdev, instance); 1845 1846 if (force || (adv && adv->timeout && !adv->remaining_time)) { 1847 /* Don't advertise a removed instance. */ 1848 if (next && next->instance == instance) 1849 next = NULL; 1850 1851 err = hci_remove_adv_sync(hdev, instance, sk); 1852 if (err) 1853 return err; 1854 } 1855 } 1856 1857 if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING)) 1858 return 0; 1859 1860 if (next && !ext_adv_capable(hdev)) 1861 hci_schedule_adv_instance_sync(hdev, next->instance, false); 1862 1863 return 0; 1864 } 1865 1866 int hci_read_rssi_sync(struct hci_dev *hdev, __le16 handle) 1867 { 1868 struct hci_cp_read_rssi cp; 1869 1870 cp.handle = handle; 1871 return __hci_cmd_sync_status(hdev, HCI_OP_READ_RSSI, 1872 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1873 } 1874 1875 int hci_read_clock_sync(struct hci_dev *hdev, struct hci_cp_read_clock *cp) 1876 { 1877 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLOCK, 1878 sizeof(*cp), cp, HCI_CMD_TIMEOUT); 1879 } 1880 1881 int hci_read_tx_power_sync(struct hci_dev *hdev, __le16 handle, u8 type) 1882 { 1883 struct hci_cp_read_tx_power cp; 1884 1885 cp.handle = handle; 1886 cp.type = type; 1887 return __hci_cmd_sync_status(hdev, HCI_OP_READ_TX_POWER, 1888 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1889 } 1890 1891 int hci_disable_advertising_sync(struct hci_dev *hdev) 1892 { 1893 u8 enable = 0x00; 1894 int err = 0; 1895 1896 /* If controller is not advertising we are done. */ 1897 if (!hci_dev_test_flag(hdev, HCI_LE_ADV)) 1898 return 0; 1899 1900 if (ext_adv_capable(hdev)) 1901 err = hci_disable_ext_adv_instance_sync(hdev, 0x00); 1902 if (ext_adv_capable(hdev)) 1903 return err; 1904 1905 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 1906 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 1907 } 1908 1909 static int hci_le_set_ext_scan_enable_sync(struct hci_dev *hdev, u8 val, 1910 u8 filter_dup) 1911 { 1912 struct hci_cp_le_set_ext_scan_enable cp; 1913 1914 memset(&cp, 0, sizeof(cp)); 1915 cp.enable = val; 1916 1917 if (hci_dev_test_flag(hdev, HCI_MESH)) 1918 cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 1919 else 1920 cp.filter_dup = filter_dup; 1921 1922 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_ENABLE, 1923 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1924 } 1925 1926 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val, 1927 u8 filter_dup) 1928 { 1929 struct hci_cp_le_set_scan_enable cp; 1930 1931 if (use_ext_scan(hdev)) 1932 return hci_le_set_ext_scan_enable_sync(hdev, val, filter_dup); 1933 1934 memset(&cp, 0, sizeof(cp)); 1935 cp.enable = val; 1936 1937 if (val && hci_dev_test_flag(hdev, HCI_MESH)) 1938 cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 1939 else 1940 cp.filter_dup = filter_dup; 1941 1942 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_ENABLE, 1943 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1944 } 1945 1946 static int hci_le_set_addr_resolution_enable_sync(struct hci_dev *hdev, u8 val) 1947 { 1948 if (!use_ll_privacy(hdev)) 1949 return 0; 1950 1951 /* If controller is not/already resolving we are done. */ 1952 if (val == hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) 1953 return 0; 1954 1955 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1956 sizeof(val), &val, HCI_CMD_TIMEOUT); 1957 } 1958 1959 static int hci_scan_disable_sync(struct hci_dev *hdev) 1960 { 1961 int err; 1962 1963 /* If controller is not scanning we are done. */ 1964 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 1965 return 0; 1966 1967 if (hdev->scanning_paused) { 1968 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 1969 return 0; 1970 } 1971 1972 err = hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00); 1973 if (err) { 1974 bt_dev_err(hdev, "Unable to disable scanning: %d", err); 1975 return err; 1976 } 1977 1978 return err; 1979 } 1980 1981 static bool scan_use_rpa(struct hci_dev *hdev) 1982 { 1983 return hci_dev_test_flag(hdev, HCI_PRIVACY); 1984 } 1985 1986 static void hci_start_interleave_scan(struct hci_dev *hdev) 1987 { 1988 hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER; 1989 queue_delayed_work(hdev->req_workqueue, 1990 &hdev->interleave_scan, 0); 1991 } 1992 1993 static bool is_interleave_scanning(struct hci_dev *hdev) 1994 { 1995 return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE; 1996 } 1997 1998 static void cancel_interleave_scan(struct hci_dev *hdev) 1999 { 2000 bt_dev_dbg(hdev, "cancelling interleave scan"); 2001 2002 cancel_delayed_work_sync(&hdev->interleave_scan); 2003 2004 hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE; 2005 } 2006 2007 /* Return true if interleave_scan wasn't started until exiting this function, 2008 * otherwise, return false 2009 */ 2010 static bool hci_update_interleaved_scan_sync(struct hci_dev *hdev) 2011 { 2012 /* Do interleaved scan only if all of the following are true: 2013 * - There is at least one ADV monitor 2014 * - At least one pending LE connection or one device to be scanned for 2015 * - Monitor offloading is not supported 2016 * If so, we should alternate between allowlist scan and one without 2017 * any filters to save power. 2018 */ 2019 bool use_interleaving = hci_is_adv_monitoring(hdev) && 2020 !(list_empty(&hdev->pend_le_conns) && 2021 list_empty(&hdev->pend_le_reports)) && 2022 hci_get_adv_monitor_offload_ext(hdev) == 2023 HCI_ADV_MONITOR_EXT_NONE; 2024 bool is_interleaving = is_interleave_scanning(hdev); 2025 2026 if (use_interleaving && !is_interleaving) { 2027 hci_start_interleave_scan(hdev); 2028 bt_dev_dbg(hdev, "starting interleave scan"); 2029 return true; 2030 } 2031 2032 if (!use_interleaving && is_interleaving) 2033 cancel_interleave_scan(hdev); 2034 2035 return false; 2036 } 2037 2038 /* Removes connection to resolve list if needed.*/ 2039 static int hci_le_del_resolve_list_sync(struct hci_dev *hdev, 2040 bdaddr_t *bdaddr, u8 bdaddr_type) 2041 { 2042 struct hci_cp_le_del_from_resolv_list cp; 2043 struct bdaddr_list_with_irk *entry; 2044 2045 if (!use_ll_privacy(hdev)) 2046 return 0; 2047 2048 /* Check if the IRK has been programmed */ 2049 entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, bdaddr, 2050 bdaddr_type); 2051 if (!entry) 2052 return 0; 2053 2054 cp.bdaddr_type = bdaddr_type; 2055 bacpy(&cp.bdaddr, bdaddr); 2056 2057 return __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_RESOLV_LIST, 2058 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2059 } 2060 2061 static int hci_le_del_accept_list_sync(struct hci_dev *hdev, 2062 bdaddr_t *bdaddr, u8 bdaddr_type) 2063 { 2064 struct hci_cp_le_del_from_accept_list cp; 2065 int err; 2066 2067 /* Check if device is on accept list before removing it */ 2068 if (!hci_bdaddr_list_lookup(&hdev->le_accept_list, bdaddr, bdaddr_type)) 2069 return 0; 2070 2071 cp.bdaddr_type = bdaddr_type; 2072 bacpy(&cp.bdaddr, bdaddr); 2073 2074 /* Ignore errors when removing from resolving list as that is likely 2075 * that the device was never added. 2076 */ 2077 hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type); 2078 2079 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_ACCEPT_LIST, 2080 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2081 if (err) { 2082 bt_dev_err(hdev, "Unable to remove from allow list: %d", err); 2083 return err; 2084 } 2085 2086 bt_dev_dbg(hdev, "Remove %pMR (0x%x) from allow list", &cp.bdaddr, 2087 cp.bdaddr_type); 2088 2089 return 0; 2090 } 2091 2092 struct conn_params { 2093 bdaddr_t addr; 2094 u8 addr_type; 2095 hci_conn_flags_t flags; 2096 u8 privacy_mode; 2097 }; 2098 2099 /* Adds connection to resolve list if needed. 2100 * Setting params to NULL programs local hdev->irk 2101 */ 2102 static int hci_le_add_resolve_list_sync(struct hci_dev *hdev, 2103 struct conn_params *params) 2104 { 2105 struct hci_cp_le_add_to_resolv_list cp; 2106 struct smp_irk *irk; 2107 struct bdaddr_list_with_irk *entry; 2108 struct hci_conn_params *p; 2109 2110 if (!use_ll_privacy(hdev)) 2111 return 0; 2112 2113 /* Attempt to program local identity address, type and irk if params is 2114 * NULL. 2115 */ 2116 if (!params) { 2117 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 2118 return 0; 2119 2120 hci_copy_identity_address(hdev, &cp.bdaddr, &cp.bdaddr_type); 2121 memcpy(cp.peer_irk, hdev->irk, 16); 2122 goto done; 2123 } 2124 2125 irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type); 2126 if (!irk) 2127 return 0; 2128 2129 /* Check if the IK has _not_ been programmed yet. */ 2130 entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, 2131 ¶ms->addr, 2132 params->addr_type); 2133 if (entry) 2134 return 0; 2135 2136 cp.bdaddr_type = params->addr_type; 2137 bacpy(&cp.bdaddr, ¶ms->addr); 2138 memcpy(cp.peer_irk, irk->val, 16); 2139 2140 /* Default privacy mode is always Network */ 2141 params->privacy_mode = HCI_NETWORK_PRIVACY; 2142 2143 rcu_read_lock(); 2144 p = hci_pend_le_action_lookup(&hdev->pend_le_conns, 2145 ¶ms->addr, params->addr_type); 2146 if (!p) 2147 p = hci_pend_le_action_lookup(&hdev->pend_le_reports, 2148 ¶ms->addr, params->addr_type); 2149 if (p) 2150 WRITE_ONCE(p->privacy_mode, HCI_NETWORK_PRIVACY); 2151 rcu_read_unlock(); 2152 2153 done: 2154 if (hci_dev_test_flag(hdev, HCI_PRIVACY)) 2155 memcpy(cp.local_irk, hdev->irk, 16); 2156 else 2157 memset(cp.local_irk, 0, 16); 2158 2159 return __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_RESOLV_LIST, 2160 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2161 } 2162 2163 /* Set Device Privacy Mode. */ 2164 static int hci_le_set_privacy_mode_sync(struct hci_dev *hdev, 2165 struct conn_params *params) 2166 { 2167 struct hci_cp_le_set_privacy_mode cp; 2168 struct smp_irk *irk; 2169 2170 /* If device privacy mode has already been set there is nothing to do */ 2171 if (params->privacy_mode == HCI_DEVICE_PRIVACY) 2172 return 0; 2173 2174 /* Check if HCI_CONN_FLAG_DEVICE_PRIVACY has been set as it also 2175 * indicates that LL Privacy has been enabled and 2176 * HCI_OP_LE_SET_PRIVACY_MODE is supported. 2177 */ 2178 if (!(params->flags & HCI_CONN_FLAG_DEVICE_PRIVACY)) 2179 return 0; 2180 2181 irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type); 2182 if (!irk) 2183 return 0; 2184 2185 memset(&cp, 0, sizeof(cp)); 2186 cp.bdaddr_type = irk->addr_type; 2187 bacpy(&cp.bdaddr, &irk->bdaddr); 2188 cp.mode = HCI_DEVICE_PRIVACY; 2189 2190 /* Note: params->privacy_mode is not updated since it is a copy */ 2191 2192 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PRIVACY_MODE, 2193 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2194 } 2195 2196 /* Adds connection to allow list if needed, if the device uses RPA (has IRK) 2197 * this attempts to program the device in the resolving list as well and 2198 * properly set the privacy mode. 2199 */ 2200 static int hci_le_add_accept_list_sync(struct hci_dev *hdev, 2201 struct conn_params *params, 2202 u8 *num_entries) 2203 { 2204 struct hci_cp_le_add_to_accept_list cp; 2205 int err; 2206 2207 /* During suspend, only wakeable devices can be in acceptlist */ 2208 if (hdev->suspended && 2209 !(params->flags & HCI_CONN_FLAG_REMOTE_WAKEUP)) { 2210 hci_le_del_accept_list_sync(hdev, ¶ms->addr, 2211 params->addr_type); 2212 return 0; 2213 } 2214 2215 /* Select filter policy to accept all advertising */ 2216 if (*num_entries >= hdev->le_accept_list_size) 2217 return -ENOSPC; 2218 2219 /* Accept list can not be used with RPAs */ 2220 if (!use_ll_privacy(hdev) && 2221 hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type)) 2222 return -EINVAL; 2223 2224 /* Attempt to program the device in the resolving list first to avoid 2225 * having to rollback in case it fails since the resolving list is 2226 * dynamic it can probably be smaller than the accept list. 2227 */ 2228 err = hci_le_add_resolve_list_sync(hdev, params); 2229 if (err) { 2230 bt_dev_err(hdev, "Unable to add to resolve list: %d", err); 2231 return err; 2232 } 2233 2234 /* Set Privacy Mode */ 2235 err = hci_le_set_privacy_mode_sync(hdev, params); 2236 if (err) { 2237 bt_dev_err(hdev, "Unable to set privacy mode: %d", err); 2238 return err; 2239 } 2240 2241 /* Check if already in accept list */ 2242 if (hci_bdaddr_list_lookup(&hdev->le_accept_list, ¶ms->addr, 2243 params->addr_type)) 2244 return 0; 2245 2246 *num_entries += 1; 2247 cp.bdaddr_type = params->addr_type; 2248 bacpy(&cp.bdaddr, ¶ms->addr); 2249 2250 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST, 2251 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2252 if (err) { 2253 bt_dev_err(hdev, "Unable to add to allow list: %d", err); 2254 /* Rollback the device from the resolving list */ 2255 hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type); 2256 return err; 2257 } 2258 2259 bt_dev_dbg(hdev, "Add %pMR (0x%x) to allow list", &cp.bdaddr, 2260 cp.bdaddr_type); 2261 2262 return 0; 2263 } 2264 2265 /* This function disables/pause all advertising instances */ 2266 static int hci_pause_advertising_sync(struct hci_dev *hdev) 2267 { 2268 int err; 2269 int old_state; 2270 2271 /* If already been paused there is nothing to do. */ 2272 if (hdev->advertising_paused) 2273 return 0; 2274 2275 bt_dev_dbg(hdev, "Pausing directed advertising"); 2276 2277 /* Stop directed advertising */ 2278 old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING); 2279 if (old_state) { 2280 /* When discoverable timeout triggers, then just make sure 2281 * the limited discoverable flag is cleared. Even in the case 2282 * of a timeout triggered from general discoverable, it is 2283 * safe to unconditionally clear the flag. 2284 */ 2285 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 2286 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 2287 hdev->discov_timeout = 0; 2288 } 2289 2290 bt_dev_dbg(hdev, "Pausing advertising instances"); 2291 2292 /* Call to disable any advertisements active on the controller. 2293 * This will succeed even if no advertisements are configured. 2294 */ 2295 err = hci_disable_advertising_sync(hdev); 2296 if (err) 2297 return err; 2298 2299 /* If we are using software rotation, pause the loop */ 2300 if (!ext_adv_capable(hdev)) 2301 cancel_adv_timeout(hdev); 2302 2303 hdev->advertising_paused = true; 2304 hdev->advertising_old_state = old_state; 2305 2306 return 0; 2307 } 2308 2309 /* This function enables all user advertising instances */ 2310 static int hci_resume_advertising_sync(struct hci_dev *hdev) 2311 { 2312 struct adv_info *adv, *tmp; 2313 int err; 2314 2315 /* If advertising has not been paused there is nothing to do. */ 2316 if (!hdev->advertising_paused) 2317 return 0; 2318 2319 /* Resume directed advertising */ 2320 hdev->advertising_paused = false; 2321 if (hdev->advertising_old_state) { 2322 hci_dev_set_flag(hdev, HCI_ADVERTISING); 2323 hdev->advertising_old_state = 0; 2324 } 2325 2326 bt_dev_dbg(hdev, "Resuming advertising instances"); 2327 2328 if (ext_adv_capable(hdev)) { 2329 /* Call for each tracked instance to be re-enabled */ 2330 list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) { 2331 err = hci_enable_ext_advertising_sync(hdev, 2332 adv->instance); 2333 if (!err) 2334 continue; 2335 2336 /* If the instance cannot be resumed remove it */ 2337 hci_remove_ext_adv_instance_sync(hdev, adv->instance, 2338 NULL); 2339 } 2340 } else { 2341 /* Schedule for most recent instance to be restarted and begin 2342 * the software rotation loop 2343 */ 2344 err = hci_schedule_adv_instance_sync(hdev, 2345 hdev->cur_adv_instance, 2346 true); 2347 } 2348 2349 hdev->advertising_paused = false; 2350 2351 return err; 2352 } 2353 2354 static int hci_pause_addr_resolution(struct hci_dev *hdev) 2355 { 2356 int err; 2357 2358 if (!use_ll_privacy(hdev)) 2359 return 0; 2360 2361 if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) 2362 return 0; 2363 2364 /* Cannot disable addr resolution if scanning is enabled or 2365 * when initiating an LE connection. 2366 */ 2367 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) || 2368 hci_lookup_le_connect(hdev)) { 2369 bt_dev_err(hdev, "Command not allowed when scan/LE connect"); 2370 return -EPERM; 2371 } 2372 2373 /* Cannot disable addr resolution if advertising is enabled. */ 2374 err = hci_pause_advertising_sync(hdev); 2375 if (err) { 2376 bt_dev_err(hdev, "Pause advertising failed: %d", err); 2377 return err; 2378 } 2379 2380 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00); 2381 if (err) 2382 bt_dev_err(hdev, "Unable to disable Address Resolution: %d", 2383 err); 2384 2385 /* Return if address resolution is disabled and RPA is not used. */ 2386 if (!err && scan_use_rpa(hdev)) 2387 return 0; 2388 2389 hci_resume_advertising_sync(hdev); 2390 return err; 2391 } 2392 2393 struct sk_buff *hci_read_local_oob_data_sync(struct hci_dev *hdev, 2394 bool extended, struct sock *sk) 2395 { 2396 u16 opcode = extended ? HCI_OP_READ_LOCAL_OOB_EXT_DATA : 2397 HCI_OP_READ_LOCAL_OOB_DATA; 2398 2399 return __hci_cmd_sync_sk(hdev, opcode, 0, NULL, 0, HCI_CMD_TIMEOUT, sk); 2400 } 2401 2402 static struct conn_params *conn_params_copy(struct list_head *list, size_t *n) 2403 { 2404 struct hci_conn_params *params; 2405 struct conn_params *p; 2406 size_t i; 2407 2408 rcu_read_lock(); 2409 2410 i = 0; 2411 list_for_each_entry_rcu(params, list, action) 2412 ++i; 2413 *n = i; 2414 2415 rcu_read_unlock(); 2416 2417 p = kvcalloc(*n, sizeof(struct conn_params), GFP_KERNEL); 2418 if (!p) 2419 return NULL; 2420 2421 rcu_read_lock(); 2422 2423 i = 0; 2424 list_for_each_entry_rcu(params, list, action) { 2425 /* Racing adds are handled in next scan update */ 2426 if (i >= *n) 2427 break; 2428 2429 /* No hdev->lock, but: addr, addr_type are immutable. 2430 * privacy_mode is only written by us or in 2431 * hci_cc_le_set_privacy_mode that we wait for. 2432 * We should be idempotent so MGMT updating flags 2433 * while we are processing is OK. 2434 */ 2435 bacpy(&p[i].addr, ¶ms->addr); 2436 p[i].addr_type = params->addr_type; 2437 p[i].flags = READ_ONCE(params->flags); 2438 p[i].privacy_mode = READ_ONCE(params->privacy_mode); 2439 ++i; 2440 } 2441 2442 rcu_read_unlock(); 2443 2444 *n = i; 2445 return p; 2446 } 2447 2448 /* Device must not be scanning when updating the accept list. 2449 * 2450 * Update is done using the following sequence: 2451 * 2452 * use_ll_privacy((Disable Advertising) -> Disable Resolving List) -> 2453 * Remove Devices From Accept List -> 2454 * (has IRK && use_ll_privacy(Remove Devices From Resolving List))-> 2455 * Add Devices to Accept List -> 2456 * (has IRK && use_ll_privacy(Remove Devices From Resolving List)) -> 2457 * use_ll_privacy(Enable Resolving List -> (Enable Advertising)) -> 2458 * Enable Scanning 2459 * 2460 * In case of failure advertising shall be restored to its original state and 2461 * return would disable accept list since either accept or resolving list could 2462 * not be programmed. 2463 * 2464 */ 2465 static u8 hci_update_accept_list_sync(struct hci_dev *hdev) 2466 { 2467 struct conn_params *params; 2468 struct bdaddr_list *b, *t; 2469 u8 num_entries = 0; 2470 bool pend_conn, pend_report; 2471 u8 filter_policy; 2472 size_t i, n; 2473 int err; 2474 2475 /* Pause advertising if resolving list can be used as controllers 2476 * cannot accept resolving list modifications while advertising. 2477 */ 2478 if (use_ll_privacy(hdev)) { 2479 err = hci_pause_advertising_sync(hdev); 2480 if (err) { 2481 bt_dev_err(hdev, "pause advertising failed: %d", err); 2482 return 0x00; 2483 } 2484 } 2485 2486 /* Disable address resolution while reprogramming accept list since 2487 * devices that do have an IRK will be programmed in the resolving list 2488 * when LL Privacy is enabled. 2489 */ 2490 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00); 2491 if (err) { 2492 bt_dev_err(hdev, "Unable to disable LL privacy: %d", err); 2493 goto done; 2494 } 2495 2496 /* Go through the current accept list programmed into the 2497 * controller one by one and check if that address is connected or is 2498 * still in the list of pending connections or list of devices to 2499 * report. If not present in either list, then remove it from 2500 * the controller. 2501 */ 2502 list_for_each_entry_safe(b, t, &hdev->le_accept_list, list) { 2503 if (hci_conn_hash_lookup_le(hdev, &b->bdaddr, b->bdaddr_type)) 2504 continue; 2505 2506 /* Pointers not dereferenced, no locks needed */ 2507 pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns, 2508 &b->bdaddr, 2509 b->bdaddr_type); 2510 pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports, 2511 &b->bdaddr, 2512 b->bdaddr_type); 2513 2514 /* If the device is not likely to connect or report, 2515 * remove it from the acceptlist. 2516 */ 2517 if (!pend_conn && !pend_report) { 2518 hci_le_del_accept_list_sync(hdev, &b->bdaddr, 2519 b->bdaddr_type); 2520 continue; 2521 } 2522 2523 num_entries++; 2524 } 2525 2526 /* Since all no longer valid accept list entries have been 2527 * removed, walk through the list of pending connections 2528 * and ensure that any new device gets programmed into 2529 * the controller. 2530 * 2531 * If the list of the devices is larger than the list of 2532 * available accept list entries in the controller, then 2533 * just abort and return filer policy value to not use the 2534 * accept list. 2535 * 2536 * The list and params may be mutated while we wait for events, 2537 * so make a copy and iterate it. 2538 */ 2539 2540 params = conn_params_copy(&hdev->pend_le_conns, &n); 2541 if (!params) { 2542 err = -ENOMEM; 2543 goto done; 2544 } 2545 2546 for (i = 0; i < n; ++i) { 2547 err = hci_le_add_accept_list_sync(hdev, ¶ms[i], 2548 &num_entries); 2549 if (err) { 2550 kvfree(params); 2551 goto done; 2552 } 2553 } 2554 2555 kvfree(params); 2556 2557 /* After adding all new pending connections, walk through 2558 * the list of pending reports and also add these to the 2559 * accept list if there is still space. Abort if space runs out. 2560 */ 2561 2562 params = conn_params_copy(&hdev->pend_le_reports, &n); 2563 if (!params) { 2564 err = -ENOMEM; 2565 goto done; 2566 } 2567 2568 for (i = 0; i < n; ++i) { 2569 err = hci_le_add_accept_list_sync(hdev, ¶ms[i], 2570 &num_entries); 2571 if (err) { 2572 kvfree(params); 2573 goto done; 2574 } 2575 } 2576 2577 kvfree(params); 2578 2579 /* Use the allowlist unless the following conditions are all true: 2580 * - We are not currently suspending 2581 * - There are 1 or more ADV monitors registered and it's not offloaded 2582 * - Interleaved scanning is not currently using the allowlist 2583 */ 2584 if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended && 2585 hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE && 2586 hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST) 2587 err = -EINVAL; 2588 2589 done: 2590 filter_policy = err ? 0x00 : 0x01; 2591 2592 /* Enable address resolution when LL Privacy is enabled. */ 2593 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x01); 2594 if (err) 2595 bt_dev_err(hdev, "Unable to enable LL privacy: %d", err); 2596 2597 /* Resume advertising if it was paused */ 2598 if (use_ll_privacy(hdev)) 2599 hci_resume_advertising_sync(hdev); 2600 2601 /* Select filter policy to use accept list */ 2602 return filter_policy; 2603 } 2604 2605 static int hci_le_set_ext_scan_param_sync(struct hci_dev *hdev, u8 type, 2606 u16 interval, u16 window, 2607 u8 own_addr_type, u8 filter_policy) 2608 { 2609 struct hci_cp_le_set_ext_scan_params *cp; 2610 struct hci_cp_le_scan_phy_params *phy; 2611 u8 data[sizeof(*cp) + sizeof(*phy) * 2]; 2612 u8 num_phy = 0; 2613 2614 cp = (void *)data; 2615 phy = (void *)cp->data; 2616 2617 memset(data, 0, sizeof(data)); 2618 2619 cp->own_addr_type = own_addr_type; 2620 cp->filter_policy = filter_policy; 2621 2622 if (scan_1m(hdev) || scan_2m(hdev)) { 2623 cp->scanning_phys |= LE_SCAN_PHY_1M; 2624 2625 phy->type = type; 2626 phy->interval = cpu_to_le16(interval); 2627 phy->window = cpu_to_le16(window); 2628 2629 num_phy++; 2630 phy++; 2631 } 2632 2633 if (scan_coded(hdev)) { 2634 cp->scanning_phys |= LE_SCAN_PHY_CODED; 2635 2636 phy->type = type; 2637 phy->interval = cpu_to_le16(interval); 2638 phy->window = cpu_to_le16(window); 2639 2640 num_phy++; 2641 phy++; 2642 } 2643 2644 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_PARAMS, 2645 sizeof(*cp) + sizeof(*phy) * num_phy, 2646 data, HCI_CMD_TIMEOUT); 2647 } 2648 2649 static int hci_le_set_scan_param_sync(struct hci_dev *hdev, u8 type, 2650 u16 interval, u16 window, 2651 u8 own_addr_type, u8 filter_policy) 2652 { 2653 struct hci_cp_le_set_scan_param cp; 2654 2655 if (use_ext_scan(hdev)) 2656 return hci_le_set_ext_scan_param_sync(hdev, type, interval, 2657 window, own_addr_type, 2658 filter_policy); 2659 2660 memset(&cp, 0, sizeof(cp)); 2661 cp.type = type; 2662 cp.interval = cpu_to_le16(interval); 2663 cp.window = cpu_to_le16(window); 2664 cp.own_address_type = own_addr_type; 2665 cp.filter_policy = filter_policy; 2666 2667 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_PARAM, 2668 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2669 } 2670 2671 static int hci_start_scan_sync(struct hci_dev *hdev, u8 type, u16 interval, 2672 u16 window, u8 own_addr_type, u8 filter_policy, 2673 u8 filter_dup) 2674 { 2675 int err; 2676 2677 if (hdev->scanning_paused) { 2678 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2679 return 0; 2680 } 2681 2682 err = hci_le_set_scan_param_sync(hdev, type, interval, window, 2683 own_addr_type, filter_policy); 2684 if (err) 2685 return err; 2686 2687 return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, filter_dup); 2688 } 2689 2690 static int hci_passive_scan_sync(struct hci_dev *hdev) 2691 { 2692 u8 own_addr_type; 2693 u8 filter_policy; 2694 u16 window, interval; 2695 u8 filter_dups = LE_SCAN_FILTER_DUP_ENABLE; 2696 int err; 2697 2698 if (hdev->scanning_paused) { 2699 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2700 return 0; 2701 } 2702 2703 err = hci_scan_disable_sync(hdev); 2704 if (err) { 2705 bt_dev_err(hdev, "disable scanning failed: %d", err); 2706 return err; 2707 } 2708 2709 /* Set require_privacy to false since no SCAN_REQ are send 2710 * during passive scanning. Not using an non-resolvable address 2711 * here is important so that peer devices using direct 2712 * advertising with our address will be correctly reported 2713 * by the controller. 2714 */ 2715 if (hci_update_random_address_sync(hdev, false, scan_use_rpa(hdev), 2716 &own_addr_type)) 2717 return 0; 2718 2719 if (hdev->enable_advmon_interleave_scan && 2720 hci_update_interleaved_scan_sync(hdev)) 2721 return 0; 2722 2723 bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state); 2724 2725 /* Adding or removing entries from the accept list must 2726 * happen before enabling scanning. The controller does 2727 * not allow accept list modification while scanning. 2728 */ 2729 filter_policy = hci_update_accept_list_sync(hdev); 2730 2731 /* When the controller is using random resolvable addresses and 2732 * with that having LE privacy enabled, then controllers with 2733 * Extended Scanner Filter Policies support can now enable support 2734 * for handling directed advertising. 2735 * 2736 * So instead of using filter polices 0x00 (no acceptlist) 2737 * and 0x01 (acceptlist enabled) use the new filter policies 2738 * 0x02 (no acceptlist) and 0x03 (acceptlist enabled). 2739 */ 2740 if (hci_dev_test_flag(hdev, HCI_PRIVACY) && 2741 (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)) 2742 filter_policy |= 0x02; 2743 2744 if (hdev->suspended) { 2745 window = hdev->le_scan_window_suspend; 2746 interval = hdev->le_scan_int_suspend; 2747 } else if (hci_is_le_conn_scanning(hdev)) { 2748 window = hdev->le_scan_window_connect; 2749 interval = hdev->le_scan_int_connect; 2750 } else if (hci_is_adv_monitoring(hdev)) { 2751 window = hdev->le_scan_window_adv_monitor; 2752 interval = hdev->le_scan_int_adv_monitor; 2753 } else { 2754 window = hdev->le_scan_window; 2755 interval = hdev->le_scan_interval; 2756 } 2757 2758 /* Disable all filtering for Mesh */ 2759 if (hci_dev_test_flag(hdev, HCI_MESH)) { 2760 filter_policy = 0; 2761 filter_dups = LE_SCAN_FILTER_DUP_DISABLE; 2762 } 2763 2764 bt_dev_dbg(hdev, "LE passive scan with acceptlist = %d", filter_policy); 2765 2766 return hci_start_scan_sync(hdev, LE_SCAN_PASSIVE, interval, window, 2767 own_addr_type, filter_policy, filter_dups); 2768 } 2769 2770 /* This function controls the passive scanning based on hdev->pend_le_conns 2771 * list. If there are pending LE connection we start the background scanning, 2772 * otherwise we stop it in the following sequence: 2773 * 2774 * If there are devices to scan: 2775 * 2776 * Disable Scanning -> Update Accept List -> 2777 * use_ll_privacy((Disable Advertising) -> Disable Resolving List -> 2778 * Update Resolving List -> Enable Resolving List -> (Enable Advertising)) -> 2779 * Enable Scanning 2780 * 2781 * Otherwise: 2782 * 2783 * Disable Scanning 2784 */ 2785 int hci_update_passive_scan_sync(struct hci_dev *hdev) 2786 { 2787 int err; 2788 2789 if (!test_bit(HCI_UP, &hdev->flags) || 2790 test_bit(HCI_INIT, &hdev->flags) || 2791 hci_dev_test_flag(hdev, HCI_SETUP) || 2792 hci_dev_test_flag(hdev, HCI_CONFIG) || 2793 hci_dev_test_flag(hdev, HCI_AUTO_OFF) || 2794 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 2795 return 0; 2796 2797 /* No point in doing scanning if LE support hasn't been enabled */ 2798 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 2799 return 0; 2800 2801 /* If discovery is active don't interfere with it */ 2802 if (hdev->discovery.state != DISCOVERY_STOPPED) 2803 return 0; 2804 2805 /* Reset RSSI and UUID filters when starting background scanning 2806 * since these filters are meant for service discovery only. 2807 * 2808 * The Start Discovery and Start Service Discovery operations 2809 * ensure to set proper values for RSSI threshold and UUID 2810 * filter list. So it is safe to just reset them here. 2811 */ 2812 hci_discovery_filter_clear(hdev); 2813 2814 bt_dev_dbg(hdev, "ADV monitoring is %s", 2815 hci_is_adv_monitoring(hdev) ? "on" : "off"); 2816 2817 if (!hci_dev_test_flag(hdev, HCI_MESH) && 2818 list_empty(&hdev->pend_le_conns) && 2819 list_empty(&hdev->pend_le_reports) && 2820 !hci_is_adv_monitoring(hdev) && 2821 !hci_dev_test_flag(hdev, HCI_PA_SYNC)) { 2822 /* If there is no pending LE connections or devices 2823 * to be scanned for or no ADV monitors, we should stop the 2824 * background scanning. 2825 */ 2826 2827 bt_dev_dbg(hdev, "stopping background scanning"); 2828 2829 err = hci_scan_disable_sync(hdev); 2830 if (err) 2831 bt_dev_err(hdev, "stop background scanning failed: %d", 2832 err); 2833 } else { 2834 /* If there is at least one pending LE connection, we should 2835 * keep the background scan running. 2836 */ 2837 2838 /* If controller is connecting, we should not start scanning 2839 * since some controllers are not able to scan and connect at 2840 * the same time. 2841 */ 2842 if (hci_lookup_le_connect(hdev)) 2843 return 0; 2844 2845 bt_dev_dbg(hdev, "start background scanning"); 2846 2847 err = hci_passive_scan_sync(hdev); 2848 if (err) 2849 bt_dev_err(hdev, "start background scanning failed: %d", 2850 err); 2851 } 2852 2853 return err; 2854 } 2855 2856 static int update_scan_sync(struct hci_dev *hdev, void *data) 2857 { 2858 return hci_update_scan_sync(hdev); 2859 } 2860 2861 int hci_update_scan(struct hci_dev *hdev) 2862 { 2863 return hci_cmd_sync_queue(hdev, update_scan_sync, NULL, NULL); 2864 } 2865 2866 static int update_passive_scan_sync(struct hci_dev *hdev, void *data) 2867 { 2868 return hci_update_passive_scan_sync(hdev); 2869 } 2870 2871 int hci_update_passive_scan(struct hci_dev *hdev) 2872 { 2873 /* Only queue if it would have any effect */ 2874 if (!test_bit(HCI_UP, &hdev->flags) || 2875 test_bit(HCI_INIT, &hdev->flags) || 2876 hci_dev_test_flag(hdev, HCI_SETUP) || 2877 hci_dev_test_flag(hdev, HCI_CONFIG) || 2878 hci_dev_test_flag(hdev, HCI_AUTO_OFF) || 2879 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 2880 return 0; 2881 2882 return hci_cmd_sync_queue(hdev, update_passive_scan_sync, NULL, NULL); 2883 } 2884 2885 int hci_write_sc_support_sync(struct hci_dev *hdev, u8 val) 2886 { 2887 int err; 2888 2889 if (!bredr_sc_enabled(hdev) || lmp_host_sc_capable(hdev)) 2890 return 0; 2891 2892 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT, 2893 sizeof(val), &val, HCI_CMD_TIMEOUT); 2894 2895 if (!err) { 2896 if (val) { 2897 hdev->features[1][0] |= LMP_HOST_SC; 2898 hci_dev_set_flag(hdev, HCI_SC_ENABLED); 2899 } else { 2900 hdev->features[1][0] &= ~LMP_HOST_SC; 2901 hci_dev_clear_flag(hdev, HCI_SC_ENABLED); 2902 } 2903 } 2904 2905 return err; 2906 } 2907 2908 int hci_write_ssp_mode_sync(struct hci_dev *hdev, u8 mode) 2909 { 2910 int err; 2911 2912 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) || 2913 lmp_host_ssp_capable(hdev)) 2914 return 0; 2915 2916 if (!mode && hci_dev_test_flag(hdev, HCI_USE_DEBUG_KEYS)) { 2917 __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE, 2918 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 2919 } 2920 2921 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE, 2922 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 2923 if (err) 2924 return err; 2925 2926 return hci_write_sc_support_sync(hdev, 0x01); 2927 } 2928 2929 int hci_write_le_host_supported_sync(struct hci_dev *hdev, u8 le, u8 simul) 2930 { 2931 struct hci_cp_write_le_host_supported cp; 2932 2933 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED) || 2934 !lmp_bredr_capable(hdev)) 2935 return 0; 2936 2937 /* Check first if we already have the right host state 2938 * (host features set) 2939 */ 2940 if (le == lmp_host_le_capable(hdev) && 2941 simul == lmp_host_le_br_capable(hdev)) 2942 return 0; 2943 2944 memset(&cp, 0, sizeof(cp)); 2945 2946 cp.le = le; 2947 cp.simul = simul; 2948 2949 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED, 2950 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2951 } 2952 2953 static int hci_powered_update_adv_sync(struct hci_dev *hdev) 2954 { 2955 struct adv_info *adv, *tmp; 2956 int err; 2957 2958 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 2959 return 0; 2960 2961 /* If RPA Resolution has not been enable yet it means the 2962 * resolving list is empty and we should attempt to program the 2963 * local IRK in order to support using own_addr_type 2964 * ADDR_LE_DEV_RANDOM_RESOLVED (0x03). 2965 */ 2966 if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) { 2967 hci_le_add_resolve_list_sync(hdev, NULL); 2968 hci_le_set_addr_resolution_enable_sync(hdev, 0x01); 2969 } 2970 2971 /* Make sure the controller has a good default for 2972 * advertising data. This also applies to the case 2973 * where BR/EDR was toggled during the AUTO_OFF phase. 2974 */ 2975 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 2976 list_empty(&hdev->adv_instances)) { 2977 if (ext_adv_capable(hdev)) { 2978 err = hci_setup_ext_adv_instance_sync(hdev, 0x00); 2979 if (!err) 2980 hci_update_scan_rsp_data_sync(hdev, 0x00); 2981 } else { 2982 err = hci_update_adv_data_sync(hdev, 0x00); 2983 if (!err) 2984 hci_update_scan_rsp_data_sync(hdev, 0x00); 2985 } 2986 2987 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) 2988 hci_enable_advertising_sync(hdev); 2989 } 2990 2991 /* Call for each tracked instance to be scheduled */ 2992 list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) 2993 hci_schedule_adv_instance_sync(hdev, adv->instance, true); 2994 2995 return 0; 2996 } 2997 2998 static int hci_write_auth_enable_sync(struct hci_dev *hdev) 2999 { 3000 u8 link_sec; 3001 3002 link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY); 3003 if (link_sec == test_bit(HCI_AUTH, &hdev->flags)) 3004 return 0; 3005 3006 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE, 3007 sizeof(link_sec), &link_sec, 3008 HCI_CMD_TIMEOUT); 3009 } 3010 3011 int hci_write_fast_connectable_sync(struct hci_dev *hdev, bool enable) 3012 { 3013 struct hci_cp_write_page_scan_activity cp; 3014 u8 type; 3015 int err = 0; 3016 3017 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 3018 return 0; 3019 3020 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 3021 return 0; 3022 3023 memset(&cp, 0, sizeof(cp)); 3024 3025 if (enable) { 3026 type = PAGE_SCAN_TYPE_INTERLACED; 3027 3028 /* 160 msec page scan interval */ 3029 cp.interval = cpu_to_le16(0x0100); 3030 } else { 3031 type = hdev->def_page_scan_type; 3032 cp.interval = cpu_to_le16(hdev->def_page_scan_int); 3033 } 3034 3035 cp.window = cpu_to_le16(hdev->def_page_scan_window); 3036 3037 if (__cpu_to_le16(hdev->page_scan_interval) != cp.interval || 3038 __cpu_to_le16(hdev->page_scan_window) != cp.window) { 3039 err = __hci_cmd_sync_status(hdev, 3040 HCI_OP_WRITE_PAGE_SCAN_ACTIVITY, 3041 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3042 if (err) 3043 return err; 3044 } 3045 3046 if (hdev->page_scan_type != type) 3047 err = __hci_cmd_sync_status(hdev, 3048 HCI_OP_WRITE_PAGE_SCAN_TYPE, 3049 sizeof(type), &type, 3050 HCI_CMD_TIMEOUT); 3051 3052 return err; 3053 } 3054 3055 static bool disconnected_accept_list_entries(struct hci_dev *hdev) 3056 { 3057 struct bdaddr_list *b; 3058 3059 list_for_each_entry(b, &hdev->accept_list, list) { 3060 struct hci_conn *conn; 3061 3062 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr); 3063 if (!conn) 3064 return true; 3065 3066 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 3067 return true; 3068 } 3069 3070 return false; 3071 } 3072 3073 static int hci_write_scan_enable_sync(struct hci_dev *hdev, u8 val) 3074 { 3075 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE, 3076 sizeof(val), &val, 3077 HCI_CMD_TIMEOUT); 3078 } 3079 3080 int hci_update_scan_sync(struct hci_dev *hdev) 3081 { 3082 u8 scan; 3083 3084 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 3085 return 0; 3086 3087 if (!hdev_is_powered(hdev)) 3088 return 0; 3089 3090 if (mgmt_powering_down(hdev)) 3091 return 0; 3092 3093 if (hdev->scanning_paused) 3094 return 0; 3095 3096 if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) || 3097 disconnected_accept_list_entries(hdev)) 3098 scan = SCAN_PAGE; 3099 else 3100 scan = SCAN_DISABLED; 3101 3102 if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 3103 scan |= SCAN_INQUIRY; 3104 3105 if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) && 3106 test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY)) 3107 return 0; 3108 3109 return hci_write_scan_enable_sync(hdev, scan); 3110 } 3111 3112 int hci_update_name_sync(struct hci_dev *hdev) 3113 { 3114 struct hci_cp_write_local_name cp; 3115 3116 memset(&cp, 0, sizeof(cp)); 3117 3118 memcpy(cp.name, hdev->dev_name, sizeof(cp.name)); 3119 3120 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LOCAL_NAME, 3121 sizeof(cp), &cp, 3122 HCI_CMD_TIMEOUT); 3123 } 3124 3125 /* This function perform powered update HCI command sequence after the HCI init 3126 * sequence which end up resetting all states, the sequence is as follows: 3127 * 3128 * HCI_SSP_ENABLED(Enable SSP) 3129 * HCI_LE_ENABLED(Enable LE) 3130 * HCI_LE_ENABLED(use_ll_privacy(Add local IRK to Resolving List) -> 3131 * Update adv data) 3132 * Enable Authentication 3133 * lmp_bredr_capable(Set Fast Connectable -> Set Scan Type -> Set Class -> 3134 * Set Name -> Set EIR) 3135 * HCI_FORCE_STATIC_ADDR | BDADDR_ANY && !HCI_BREDR_ENABLED (Set Static Address) 3136 */ 3137 int hci_powered_update_sync(struct hci_dev *hdev) 3138 { 3139 int err; 3140 3141 /* Register the available SMP channels (BR/EDR and LE) only when 3142 * successfully powering on the controller. This late 3143 * registration is required so that LE SMP can clearly decide if 3144 * the public address or static address is used. 3145 */ 3146 smp_register(hdev); 3147 3148 err = hci_write_ssp_mode_sync(hdev, 0x01); 3149 if (err) 3150 return err; 3151 3152 err = hci_write_le_host_supported_sync(hdev, 0x01, 0x00); 3153 if (err) 3154 return err; 3155 3156 err = hci_powered_update_adv_sync(hdev); 3157 if (err) 3158 return err; 3159 3160 err = hci_write_auth_enable_sync(hdev); 3161 if (err) 3162 return err; 3163 3164 if (lmp_bredr_capable(hdev)) { 3165 if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE)) 3166 hci_write_fast_connectable_sync(hdev, true); 3167 else 3168 hci_write_fast_connectable_sync(hdev, false); 3169 hci_update_scan_sync(hdev); 3170 hci_update_class_sync(hdev); 3171 hci_update_name_sync(hdev); 3172 hci_update_eir_sync(hdev); 3173 } 3174 3175 /* If forcing static address is in use or there is no public 3176 * address use the static address as random address (but skip 3177 * the HCI command if the current random address is already the 3178 * static one. 3179 * 3180 * In case BR/EDR has been disabled on a dual-mode controller 3181 * and a static address has been configured, then use that 3182 * address instead of the public BR/EDR address. 3183 */ 3184 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 3185 (!bacmp(&hdev->bdaddr, BDADDR_ANY) && 3186 !hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))) { 3187 if (bacmp(&hdev->static_addr, BDADDR_ANY)) 3188 return hci_set_random_addr_sync(hdev, 3189 &hdev->static_addr); 3190 } 3191 3192 return 0; 3193 } 3194 3195 /** 3196 * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address 3197 * (BD_ADDR) for a HCI device from 3198 * a firmware node property. 3199 * @hdev: The HCI device 3200 * 3201 * Search the firmware node for 'local-bd-address'. 3202 * 3203 * All-zero BD addresses are rejected, because those could be properties 3204 * that exist in the firmware tables, but were not updated by the firmware. For 3205 * example, the DTS could define 'local-bd-address', with zero BD addresses. 3206 */ 3207 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev) 3208 { 3209 struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent); 3210 bdaddr_t ba; 3211 int ret; 3212 3213 ret = fwnode_property_read_u8_array(fwnode, "local-bd-address", 3214 (u8 *)&ba, sizeof(ba)); 3215 if (ret < 0 || !bacmp(&ba, BDADDR_ANY)) 3216 return; 3217 3218 bacpy(&hdev->public_addr, &ba); 3219 } 3220 3221 struct hci_init_stage { 3222 int (*func)(struct hci_dev *hdev); 3223 }; 3224 3225 /* Run init stage NULL terminated function table */ 3226 static int hci_init_stage_sync(struct hci_dev *hdev, 3227 const struct hci_init_stage *stage) 3228 { 3229 size_t i; 3230 3231 for (i = 0; stage[i].func; i++) { 3232 int err; 3233 3234 err = stage[i].func(hdev); 3235 if (err) 3236 return err; 3237 } 3238 3239 return 0; 3240 } 3241 3242 /* Read Local Version */ 3243 static int hci_read_local_version_sync(struct hci_dev *hdev) 3244 { 3245 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_VERSION, 3246 0, NULL, HCI_CMD_TIMEOUT); 3247 } 3248 3249 /* Read BD Address */ 3250 static int hci_read_bd_addr_sync(struct hci_dev *hdev) 3251 { 3252 return __hci_cmd_sync_status(hdev, HCI_OP_READ_BD_ADDR, 3253 0, NULL, HCI_CMD_TIMEOUT); 3254 } 3255 3256 #define HCI_INIT(_func) \ 3257 { \ 3258 .func = _func, \ 3259 } 3260 3261 static const struct hci_init_stage hci_init0[] = { 3262 /* HCI_OP_READ_LOCAL_VERSION */ 3263 HCI_INIT(hci_read_local_version_sync), 3264 /* HCI_OP_READ_BD_ADDR */ 3265 HCI_INIT(hci_read_bd_addr_sync), 3266 {} 3267 }; 3268 3269 int hci_reset_sync(struct hci_dev *hdev) 3270 { 3271 int err; 3272 3273 set_bit(HCI_RESET, &hdev->flags); 3274 3275 err = __hci_cmd_sync_status(hdev, HCI_OP_RESET, 0, NULL, 3276 HCI_CMD_TIMEOUT); 3277 if (err) 3278 return err; 3279 3280 return 0; 3281 } 3282 3283 static int hci_init0_sync(struct hci_dev *hdev) 3284 { 3285 int err; 3286 3287 bt_dev_dbg(hdev, ""); 3288 3289 /* Reset */ 3290 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) { 3291 err = hci_reset_sync(hdev); 3292 if (err) 3293 return err; 3294 } 3295 3296 return hci_init_stage_sync(hdev, hci_init0); 3297 } 3298 3299 static int hci_unconf_init_sync(struct hci_dev *hdev) 3300 { 3301 int err; 3302 3303 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) 3304 return 0; 3305 3306 err = hci_init0_sync(hdev); 3307 if (err < 0) 3308 return err; 3309 3310 if (hci_dev_test_flag(hdev, HCI_SETUP)) 3311 hci_debugfs_create_basic(hdev); 3312 3313 return 0; 3314 } 3315 3316 /* Read Local Supported Features. */ 3317 static int hci_read_local_features_sync(struct hci_dev *hdev) 3318 { 3319 /* Not all AMP controllers support this command */ 3320 if (hdev->dev_type == HCI_AMP && !(hdev->commands[14] & 0x20)) 3321 return 0; 3322 3323 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_FEATURES, 3324 0, NULL, HCI_CMD_TIMEOUT); 3325 } 3326 3327 /* BR Controller init stage 1 command sequence */ 3328 static const struct hci_init_stage br_init1[] = { 3329 /* HCI_OP_READ_LOCAL_FEATURES */ 3330 HCI_INIT(hci_read_local_features_sync), 3331 /* HCI_OP_READ_LOCAL_VERSION */ 3332 HCI_INIT(hci_read_local_version_sync), 3333 /* HCI_OP_READ_BD_ADDR */ 3334 HCI_INIT(hci_read_bd_addr_sync), 3335 {} 3336 }; 3337 3338 /* Read Local Commands */ 3339 static int hci_read_local_cmds_sync(struct hci_dev *hdev) 3340 { 3341 /* All Bluetooth 1.2 and later controllers should support the 3342 * HCI command for reading the local supported commands. 3343 * 3344 * Unfortunately some controllers indicate Bluetooth 1.2 support, 3345 * but do not have support for this command. If that is the case, 3346 * the driver can quirk the behavior and skip reading the local 3347 * supported commands. 3348 */ 3349 if (hdev->hci_ver > BLUETOOTH_VER_1_1 && 3350 !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks)) 3351 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_COMMANDS, 3352 0, NULL, HCI_CMD_TIMEOUT); 3353 3354 return 0; 3355 } 3356 3357 /* Read Local AMP Info */ 3358 static int hci_read_local_amp_info_sync(struct hci_dev *hdev) 3359 { 3360 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_AMP_INFO, 3361 0, NULL, HCI_CMD_TIMEOUT); 3362 } 3363 3364 /* Read Data Blk size */ 3365 static int hci_read_data_block_size_sync(struct hci_dev *hdev) 3366 { 3367 return __hci_cmd_sync_status(hdev, HCI_OP_READ_DATA_BLOCK_SIZE, 3368 0, NULL, HCI_CMD_TIMEOUT); 3369 } 3370 3371 /* Read Flow Control Mode */ 3372 static int hci_read_flow_control_mode_sync(struct hci_dev *hdev) 3373 { 3374 return __hci_cmd_sync_status(hdev, HCI_OP_READ_FLOW_CONTROL_MODE, 3375 0, NULL, HCI_CMD_TIMEOUT); 3376 } 3377 3378 /* Read Location Data */ 3379 static int hci_read_location_data_sync(struct hci_dev *hdev) 3380 { 3381 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCATION_DATA, 3382 0, NULL, HCI_CMD_TIMEOUT); 3383 } 3384 3385 /* AMP Controller init stage 1 command sequence */ 3386 static const struct hci_init_stage amp_init1[] = { 3387 /* HCI_OP_READ_LOCAL_VERSION */ 3388 HCI_INIT(hci_read_local_version_sync), 3389 /* HCI_OP_READ_LOCAL_COMMANDS */ 3390 HCI_INIT(hci_read_local_cmds_sync), 3391 /* HCI_OP_READ_LOCAL_AMP_INFO */ 3392 HCI_INIT(hci_read_local_amp_info_sync), 3393 /* HCI_OP_READ_DATA_BLOCK_SIZE */ 3394 HCI_INIT(hci_read_data_block_size_sync), 3395 /* HCI_OP_READ_FLOW_CONTROL_MODE */ 3396 HCI_INIT(hci_read_flow_control_mode_sync), 3397 /* HCI_OP_READ_LOCATION_DATA */ 3398 HCI_INIT(hci_read_location_data_sync), 3399 {} 3400 }; 3401 3402 static int hci_init1_sync(struct hci_dev *hdev) 3403 { 3404 int err; 3405 3406 bt_dev_dbg(hdev, ""); 3407 3408 /* Reset */ 3409 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) { 3410 err = hci_reset_sync(hdev); 3411 if (err) 3412 return err; 3413 } 3414 3415 switch (hdev->dev_type) { 3416 case HCI_PRIMARY: 3417 hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED; 3418 return hci_init_stage_sync(hdev, br_init1); 3419 case HCI_AMP: 3420 hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED; 3421 return hci_init_stage_sync(hdev, amp_init1); 3422 default: 3423 bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type); 3424 break; 3425 } 3426 3427 return 0; 3428 } 3429 3430 /* AMP Controller init stage 2 command sequence */ 3431 static const struct hci_init_stage amp_init2[] = { 3432 /* HCI_OP_READ_LOCAL_FEATURES */ 3433 HCI_INIT(hci_read_local_features_sync), 3434 {} 3435 }; 3436 3437 /* Read Buffer Size (ACL mtu, max pkt, etc.) */ 3438 static int hci_read_buffer_size_sync(struct hci_dev *hdev) 3439 { 3440 return __hci_cmd_sync_status(hdev, HCI_OP_READ_BUFFER_SIZE, 3441 0, NULL, HCI_CMD_TIMEOUT); 3442 } 3443 3444 /* Read Class of Device */ 3445 static int hci_read_dev_class_sync(struct hci_dev *hdev) 3446 { 3447 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLASS_OF_DEV, 3448 0, NULL, HCI_CMD_TIMEOUT); 3449 } 3450 3451 /* Read Local Name */ 3452 static int hci_read_local_name_sync(struct hci_dev *hdev) 3453 { 3454 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_NAME, 3455 0, NULL, HCI_CMD_TIMEOUT); 3456 } 3457 3458 /* Read Voice Setting */ 3459 static int hci_read_voice_setting_sync(struct hci_dev *hdev) 3460 { 3461 return __hci_cmd_sync_status(hdev, HCI_OP_READ_VOICE_SETTING, 3462 0, NULL, HCI_CMD_TIMEOUT); 3463 } 3464 3465 /* Read Number of Supported IAC */ 3466 static int hci_read_num_supported_iac_sync(struct hci_dev *hdev) 3467 { 3468 return __hci_cmd_sync_status(hdev, HCI_OP_READ_NUM_SUPPORTED_IAC, 3469 0, NULL, HCI_CMD_TIMEOUT); 3470 } 3471 3472 /* Read Current IAC LAP */ 3473 static int hci_read_current_iac_lap_sync(struct hci_dev *hdev) 3474 { 3475 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CURRENT_IAC_LAP, 3476 0, NULL, HCI_CMD_TIMEOUT); 3477 } 3478 3479 static int hci_set_event_filter_sync(struct hci_dev *hdev, u8 flt_type, 3480 u8 cond_type, bdaddr_t *bdaddr, 3481 u8 auto_accept) 3482 { 3483 struct hci_cp_set_event_filter cp; 3484 3485 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 3486 return 0; 3487 3488 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 3489 return 0; 3490 3491 memset(&cp, 0, sizeof(cp)); 3492 cp.flt_type = flt_type; 3493 3494 if (flt_type != HCI_FLT_CLEAR_ALL) { 3495 cp.cond_type = cond_type; 3496 bacpy(&cp.addr_conn_flt.bdaddr, bdaddr); 3497 cp.addr_conn_flt.auto_accept = auto_accept; 3498 } 3499 3500 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_FLT, 3501 flt_type == HCI_FLT_CLEAR_ALL ? 3502 sizeof(cp.flt_type) : sizeof(cp), &cp, 3503 HCI_CMD_TIMEOUT); 3504 } 3505 3506 static int hci_clear_event_filter_sync(struct hci_dev *hdev) 3507 { 3508 if (!hci_dev_test_flag(hdev, HCI_EVENT_FILTER_CONFIGURED)) 3509 return 0; 3510 3511 /* In theory the state machine should not reach here unless 3512 * a hci_set_event_filter_sync() call succeeds, but we do 3513 * the check both for parity and as a future reminder. 3514 */ 3515 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 3516 return 0; 3517 3518 return hci_set_event_filter_sync(hdev, HCI_FLT_CLEAR_ALL, 0x00, 3519 BDADDR_ANY, 0x00); 3520 } 3521 3522 /* Connection accept timeout ~20 secs */ 3523 static int hci_write_ca_timeout_sync(struct hci_dev *hdev) 3524 { 3525 __le16 param = cpu_to_le16(0x7d00); 3526 3527 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CA_TIMEOUT, 3528 sizeof(param), ¶m, HCI_CMD_TIMEOUT); 3529 } 3530 3531 /* BR Controller init stage 2 command sequence */ 3532 static const struct hci_init_stage br_init2[] = { 3533 /* HCI_OP_READ_BUFFER_SIZE */ 3534 HCI_INIT(hci_read_buffer_size_sync), 3535 /* HCI_OP_READ_CLASS_OF_DEV */ 3536 HCI_INIT(hci_read_dev_class_sync), 3537 /* HCI_OP_READ_LOCAL_NAME */ 3538 HCI_INIT(hci_read_local_name_sync), 3539 /* HCI_OP_READ_VOICE_SETTING */ 3540 HCI_INIT(hci_read_voice_setting_sync), 3541 /* HCI_OP_READ_NUM_SUPPORTED_IAC */ 3542 HCI_INIT(hci_read_num_supported_iac_sync), 3543 /* HCI_OP_READ_CURRENT_IAC_LAP */ 3544 HCI_INIT(hci_read_current_iac_lap_sync), 3545 /* HCI_OP_SET_EVENT_FLT */ 3546 HCI_INIT(hci_clear_event_filter_sync), 3547 /* HCI_OP_WRITE_CA_TIMEOUT */ 3548 HCI_INIT(hci_write_ca_timeout_sync), 3549 {} 3550 }; 3551 3552 static int hci_write_ssp_mode_1_sync(struct hci_dev *hdev) 3553 { 3554 u8 mode = 0x01; 3555 3556 if (!lmp_ssp_capable(hdev) || !hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 3557 return 0; 3558 3559 /* When SSP is available, then the host features page 3560 * should also be available as well. However some 3561 * controllers list the max_page as 0 as long as SSP 3562 * has not been enabled. To achieve proper debugging 3563 * output, force the minimum max_page to 1 at least. 3564 */ 3565 hdev->max_page = 0x01; 3566 3567 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE, 3568 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3569 } 3570 3571 static int hci_write_eir_sync(struct hci_dev *hdev) 3572 { 3573 struct hci_cp_write_eir cp; 3574 3575 if (!lmp_ssp_capable(hdev) || hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 3576 return 0; 3577 3578 memset(hdev->eir, 0, sizeof(hdev->eir)); 3579 memset(&cp, 0, sizeof(cp)); 3580 3581 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp, 3582 HCI_CMD_TIMEOUT); 3583 } 3584 3585 static int hci_write_inquiry_mode_sync(struct hci_dev *hdev) 3586 { 3587 u8 mode; 3588 3589 if (!lmp_inq_rssi_capable(hdev) && 3590 !test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) 3591 return 0; 3592 3593 /* If Extended Inquiry Result events are supported, then 3594 * they are clearly preferred over Inquiry Result with RSSI 3595 * events. 3596 */ 3597 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01; 3598 3599 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_INQUIRY_MODE, 3600 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3601 } 3602 3603 static int hci_read_inq_rsp_tx_power_sync(struct hci_dev *hdev) 3604 { 3605 if (!lmp_inq_tx_pwr_capable(hdev)) 3606 return 0; 3607 3608 return __hci_cmd_sync_status(hdev, HCI_OP_READ_INQ_RSP_TX_POWER, 3609 0, NULL, HCI_CMD_TIMEOUT); 3610 } 3611 3612 static int hci_read_local_ext_features_sync(struct hci_dev *hdev, u8 page) 3613 { 3614 struct hci_cp_read_local_ext_features cp; 3615 3616 if (!lmp_ext_feat_capable(hdev)) 3617 return 0; 3618 3619 memset(&cp, 0, sizeof(cp)); 3620 cp.page = page; 3621 3622 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_EXT_FEATURES, 3623 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3624 } 3625 3626 static int hci_read_local_ext_features_1_sync(struct hci_dev *hdev) 3627 { 3628 return hci_read_local_ext_features_sync(hdev, 0x01); 3629 } 3630 3631 /* HCI Controller init stage 2 command sequence */ 3632 static const struct hci_init_stage hci_init2[] = { 3633 /* HCI_OP_READ_LOCAL_COMMANDS */ 3634 HCI_INIT(hci_read_local_cmds_sync), 3635 /* HCI_OP_WRITE_SSP_MODE */ 3636 HCI_INIT(hci_write_ssp_mode_1_sync), 3637 /* HCI_OP_WRITE_EIR */ 3638 HCI_INIT(hci_write_eir_sync), 3639 /* HCI_OP_WRITE_INQUIRY_MODE */ 3640 HCI_INIT(hci_write_inquiry_mode_sync), 3641 /* HCI_OP_READ_INQ_RSP_TX_POWER */ 3642 HCI_INIT(hci_read_inq_rsp_tx_power_sync), 3643 /* HCI_OP_READ_LOCAL_EXT_FEATURES */ 3644 HCI_INIT(hci_read_local_ext_features_1_sync), 3645 /* HCI_OP_WRITE_AUTH_ENABLE */ 3646 HCI_INIT(hci_write_auth_enable_sync), 3647 {} 3648 }; 3649 3650 /* Read LE Buffer Size */ 3651 static int hci_le_read_buffer_size_sync(struct hci_dev *hdev) 3652 { 3653 /* Use Read LE Buffer Size V2 if supported */ 3654 if (iso_capable(hdev) && hdev->commands[41] & 0x20) 3655 return __hci_cmd_sync_status(hdev, 3656 HCI_OP_LE_READ_BUFFER_SIZE_V2, 3657 0, NULL, HCI_CMD_TIMEOUT); 3658 3659 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_BUFFER_SIZE, 3660 0, NULL, HCI_CMD_TIMEOUT); 3661 } 3662 3663 /* Read LE Local Supported Features */ 3664 static int hci_le_read_local_features_sync(struct hci_dev *hdev) 3665 { 3666 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_LOCAL_FEATURES, 3667 0, NULL, HCI_CMD_TIMEOUT); 3668 } 3669 3670 /* Read LE Supported States */ 3671 static int hci_le_read_supported_states_sync(struct hci_dev *hdev) 3672 { 3673 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_SUPPORTED_STATES, 3674 0, NULL, HCI_CMD_TIMEOUT); 3675 } 3676 3677 /* LE Controller init stage 2 command sequence */ 3678 static const struct hci_init_stage le_init2[] = { 3679 /* HCI_OP_LE_READ_LOCAL_FEATURES */ 3680 HCI_INIT(hci_le_read_local_features_sync), 3681 /* HCI_OP_LE_READ_BUFFER_SIZE */ 3682 HCI_INIT(hci_le_read_buffer_size_sync), 3683 /* HCI_OP_LE_READ_SUPPORTED_STATES */ 3684 HCI_INIT(hci_le_read_supported_states_sync), 3685 {} 3686 }; 3687 3688 static int hci_init2_sync(struct hci_dev *hdev) 3689 { 3690 int err; 3691 3692 bt_dev_dbg(hdev, ""); 3693 3694 if (hdev->dev_type == HCI_AMP) 3695 return hci_init_stage_sync(hdev, amp_init2); 3696 3697 err = hci_init_stage_sync(hdev, hci_init2); 3698 if (err) 3699 return err; 3700 3701 if (lmp_bredr_capable(hdev)) { 3702 err = hci_init_stage_sync(hdev, br_init2); 3703 if (err) 3704 return err; 3705 } else { 3706 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED); 3707 } 3708 3709 if (lmp_le_capable(hdev)) { 3710 err = hci_init_stage_sync(hdev, le_init2); 3711 if (err) 3712 return err; 3713 /* LE-only controllers have LE implicitly enabled */ 3714 if (!lmp_bredr_capable(hdev)) 3715 hci_dev_set_flag(hdev, HCI_LE_ENABLED); 3716 } 3717 3718 return 0; 3719 } 3720 3721 static int hci_set_event_mask_sync(struct hci_dev *hdev) 3722 { 3723 /* The second byte is 0xff instead of 0x9f (two reserved bits 3724 * disabled) since a Broadcom 1.2 dongle doesn't respond to the 3725 * command otherwise. 3726 */ 3727 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 }; 3728 3729 /* CSR 1.1 dongles does not accept any bitfield so don't try to set 3730 * any event mask for pre 1.2 devices. 3731 */ 3732 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 3733 return 0; 3734 3735 if (lmp_bredr_capable(hdev)) { 3736 events[4] |= 0x01; /* Flow Specification Complete */ 3737 3738 /* Don't set Disconnect Complete and mode change when 3739 * suspended as that would wakeup the host when disconnecting 3740 * due to suspend. 3741 */ 3742 if (hdev->suspended) { 3743 events[0] &= 0xef; 3744 events[2] &= 0xf7; 3745 } 3746 } else { 3747 /* Use a different default for LE-only devices */ 3748 memset(events, 0, sizeof(events)); 3749 events[1] |= 0x20; /* Command Complete */ 3750 events[1] |= 0x40; /* Command Status */ 3751 events[1] |= 0x80; /* Hardware Error */ 3752 3753 /* If the controller supports the Disconnect command, enable 3754 * the corresponding event. In addition enable packet flow 3755 * control related events. 3756 */ 3757 if (hdev->commands[0] & 0x20) { 3758 /* Don't set Disconnect Complete when suspended as that 3759 * would wakeup the host when disconnecting due to 3760 * suspend. 3761 */ 3762 if (!hdev->suspended) 3763 events[0] |= 0x10; /* Disconnection Complete */ 3764 events[2] |= 0x04; /* Number of Completed Packets */ 3765 events[3] |= 0x02; /* Data Buffer Overflow */ 3766 } 3767 3768 /* If the controller supports the Read Remote Version 3769 * Information command, enable the corresponding event. 3770 */ 3771 if (hdev->commands[2] & 0x80) 3772 events[1] |= 0x08; /* Read Remote Version Information 3773 * Complete 3774 */ 3775 3776 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) { 3777 events[0] |= 0x80; /* Encryption Change */ 3778 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 3779 } 3780 } 3781 3782 if (lmp_inq_rssi_capable(hdev) || 3783 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) 3784 events[4] |= 0x02; /* Inquiry Result with RSSI */ 3785 3786 if (lmp_ext_feat_capable(hdev)) 3787 events[4] |= 0x04; /* Read Remote Extended Features Complete */ 3788 3789 if (lmp_esco_capable(hdev)) { 3790 events[5] |= 0x08; /* Synchronous Connection Complete */ 3791 events[5] |= 0x10; /* Synchronous Connection Changed */ 3792 } 3793 3794 if (lmp_sniffsubr_capable(hdev)) 3795 events[5] |= 0x20; /* Sniff Subrating */ 3796 3797 if (lmp_pause_enc_capable(hdev)) 3798 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 3799 3800 if (lmp_ext_inq_capable(hdev)) 3801 events[5] |= 0x40; /* Extended Inquiry Result */ 3802 3803 if (lmp_no_flush_capable(hdev)) 3804 events[7] |= 0x01; /* Enhanced Flush Complete */ 3805 3806 if (lmp_lsto_capable(hdev)) 3807 events[6] |= 0x80; /* Link Supervision Timeout Changed */ 3808 3809 if (lmp_ssp_capable(hdev)) { 3810 events[6] |= 0x01; /* IO Capability Request */ 3811 events[6] |= 0x02; /* IO Capability Response */ 3812 events[6] |= 0x04; /* User Confirmation Request */ 3813 events[6] |= 0x08; /* User Passkey Request */ 3814 events[6] |= 0x10; /* Remote OOB Data Request */ 3815 events[6] |= 0x20; /* Simple Pairing Complete */ 3816 events[7] |= 0x04; /* User Passkey Notification */ 3817 events[7] |= 0x08; /* Keypress Notification */ 3818 events[7] |= 0x10; /* Remote Host Supported 3819 * Features Notification 3820 */ 3821 } 3822 3823 if (lmp_le_capable(hdev)) 3824 events[7] |= 0x20; /* LE Meta-Event */ 3825 3826 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK, 3827 sizeof(events), events, HCI_CMD_TIMEOUT); 3828 } 3829 3830 static int hci_read_stored_link_key_sync(struct hci_dev *hdev) 3831 { 3832 struct hci_cp_read_stored_link_key cp; 3833 3834 if (!(hdev->commands[6] & 0x20) || 3835 test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) 3836 return 0; 3837 3838 memset(&cp, 0, sizeof(cp)); 3839 bacpy(&cp.bdaddr, BDADDR_ANY); 3840 cp.read_all = 0x01; 3841 3842 return __hci_cmd_sync_status(hdev, HCI_OP_READ_STORED_LINK_KEY, 3843 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3844 } 3845 3846 static int hci_setup_link_policy_sync(struct hci_dev *hdev) 3847 { 3848 struct hci_cp_write_def_link_policy cp; 3849 u16 link_policy = 0; 3850 3851 if (!(hdev->commands[5] & 0x10)) 3852 return 0; 3853 3854 memset(&cp, 0, sizeof(cp)); 3855 3856 if (lmp_rswitch_capable(hdev)) 3857 link_policy |= HCI_LP_RSWITCH; 3858 if (lmp_hold_capable(hdev)) 3859 link_policy |= HCI_LP_HOLD; 3860 if (lmp_sniff_capable(hdev)) 3861 link_policy |= HCI_LP_SNIFF; 3862 if (lmp_park_capable(hdev)) 3863 link_policy |= HCI_LP_PARK; 3864 3865 cp.policy = cpu_to_le16(link_policy); 3866 3867 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY, 3868 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3869 } 3870 3871 static int hci_read_page_scan_activity_sync(struct hci_dev *hdev) 3872 { 3873 if (!(hdev->commands[8] & 0x01)) 3874 return 0; 3875 3876 return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 3877 0, NULL, HCI_CMD_TIMEOUT); 3878 } 3879 3880 static int hci_read_def_err_data_reporting_sync(struct hci_dev *hdev) 3881 { 3882 if (!(hdev->commands[18] & 0x04) || 3883 !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) || 3884 test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) 3885 return 0; 3886 3887 return __hci_cmd_sync_status(hdev, HCI_OP_READ_DEF_ERR_DATA_REPORTING, 3888 0, NULL, HCI_CMD_TIMEOUT); 3889 } 3890 3891 static int hci_read_page_scan_type_sync(struct hci_dev *hdev) 3892 { 3893 /* Some older Broadcom based Bluetooth 1.2 controllers do not 3894 * support the Read Page Scan Type command. Check support for 3895 * this command in the bit mask of supported commands. 3896 */ 3897 if (!(hdev->commands[13] & 0x01)) 3898 return 0; 3899 3900 return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_TYPE, 3901 0, NULL, HCI_CMD_TIMEOUT); 3902 } 3903 3904 /* Read features beyond page 1 if available */ 3905 static int hci_read_local_ext_features_all_sync(struct hci_dev *hdev) 3906 { 3907 u8 page; 3908 int err; 3909 3910 if (!lmp_ext_feat_capable(hdev)) 3911 return 0; 3912 3913 for (page = 2; page < HCI_MAX_PAGES && page <= hdev->max_page; 3914 page++) { 3915 err = hci_read_local_ext_features_sync(hdev, page); 3916 if (err) 3917 return err; 3918 } 3919 3920 return 0; 3921 } 3922 3923 /* HCI Controller init stage 3 command sequence */ 3924 static const struct hci_init_stage hci_init3[] = { 3925 /* HCI_OP_SET_EVENT_MASK */ 3926 HCI_INIT(hci_set_event_mask_sync), 3927 /* HCI_OP_READ_STORED_LINK_KEY */ 3928 HCI_INIT(hci_read_stored_link_key_sync), 3929 /* HCI_OP_WRITE_DEF_LINK_POLICY */ 3930 HCI_INIT(hci_setup_link_policy_sync), 3931 /* HCI_OP_READ_PAGE_SCAN_ACTIVITY */ 3932 HCI_INIT(hci_read_page_scan_activity_sync), 3933 /* HCI_OP_READ_DEF_ERR_DATA_REPORTING */ 3934 HCI_INIT(hci_read_def_err_data_reporting_sync), 3935 /* HCI_OP_READ_PAGE_SCAN_TYPE */ 3936 HCI_INIT(hci_read_page_scan_type_sync), 3937 /* HCI_OP_READ_LOCAL_EXT_FEATURES */ 3938 HCI_INIT(hci_read_local_ext_features_all_sync), 3939 {} 3940 }; 3941 3942 static int hci_le_set_event_mask_sync(struct hci_dev *hdev) 3943 { 3944 u8 events[8]; 3945 3946 if (!lmp_le_capable(hdev)) 3947 return 0; 3948 3949 memset(events, 0, sizeof(events)); 3950 3951 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) 3952 events[0] |= 0x10; /* LE Long Term Key Request */ 3953 3954 /* If controller supports the Connection Parameters Request 3955 * Link Layer Procedure, enable the corresponding event. 3956 */ 3957 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC) 3958 /* LE Remote Connection Parameter Request */ 3959 events[0] |= 0x20; 3960 3961 /* If the controller supports the Data Length Extension 3962 * feature, enable the corresponding event. 3963 */ 3964 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) 3965 events[0] |= 0x40; /* LE Data Length Change */ 3966 3967 /* If the controller supports LL Privacy feature or LE Extended Adv, 3968 * enable the corresponding event. 3969 */ 3970 if (use_enhanced_conn_complete(hdev)) 3971 events[1] |= 0x02; /* LE Enhanced Connection Complete */ 3972 3973 /* If the controller supports Extended Scanner Filter 3974 * Policies, enable the corresponding event. 3975 */ 3976 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY) 3977 events[1] |= 0x04; /* LE Direct Advertising Report */ 3978 3979 /* If the controller supports Channel Selection Algorithm #2 3980 * feature, enable the corresponding event. 3981 */ 3982 if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2) 3983 events[2] |= 0x08; /* LE Channel Selection Algorithm */ 3984 3985 /* If the controller supports the LE Set Scan Enable command, 3986 * enable the corresponding advertising report event. 3987 */ 3988 if (hdev->commands[26] & 0x08) 3989 events[0] |= 0x02; /* LE Advertising Report */ 3990 3991 /* If the controller supports the LE Create Connection 3992 * command, enable the corresponding event. 3993 */ 3994 if (hdev->commands[26] & 0x10) 3995 events[0] |= 0x01; /* LE Connection Complete */ 3996 3997 /* If the controller supports the LE Connection Update 3998 * command, enable the corresponding event. 3999 */ 4000 if (hdev->commands[27] & 0x04) 4001 events[0] |= 0x04; /* LE Connection Update Complete */ 4002 4003 /* If the controller supports the LE Read Remote Used Features 4004 * command, enable the corresponding event. 4005 */ 4006 if (hdev->commands[27] & 0x20) 4007 /* LE Read Remote Used Features Complete */ 4008 events[0] |= 0x08; 4009 4010 /* If the controller supports the LE Read Local P-256 4011 * Public Key command, enable the corresponding event. 4012 */ 4013 if (hdev->commands[34] & 0x02) 4014 /* LE Read Local P-256 Public Key Complete */ 4015 events[0] |= 0x80; 4016 4017 /* If the controller supports the LE Generate DHKey 4018 * command, enable the corresponding event. 4019 */ 4020 if (hdev->commands[34] & 0x04) 4021 events[1] |= 0x01; /* LE Generate DHKey Complete */ 4022 4023 /* If the controller supports the LE Set Default PHY or 4024 * LE Set PHY commands, enable the corresponding event. 4025 */ 4026 if (hdev->commands[35] & (0x20 | 0x40)) 4027 events[1] |= 0x08; /* LE PHY Update Complete */ 4028 4029 /* If the controller supports LE Set Extended Scan Parameters 4030 * and LE Set Extended Scan Enable commands, enable the 4031 * corresponding event. 4032 */ 4033 if (use_ext_scan(hdev)) 4034 events[1] |= 0x10; /* LE Extended Advertising Report */ 4035 4036 /* If the controller supports the LE Extended Advertising 4037 * command, enable the corresponding event. 4038 */ 4039 if (ext_adv_capable(hdev)) 4040 events[2] |= 0x02; /* LE Advertising Set Terminated */ 4041 4042 if (cis_capable(hdev)) { 4043 events[3] |= 0x01; /* LE CIS Established */ 4044 if (cis_peripheral_capable(hdev)) 4045 events[3] |= 0x02; /* LE CIS Request */ 4046 } 4047 4048 if (bis_capable(hdev)) { 4049 events[1] |= 0x20; /* LE PA Report */ 4050 events[1] |= 0x40; /* LE PA Sync Established */ 4051 events[3] |= 0x04; /* LE Create BIG Complete */ 4052 events[3] |= 0x08; /* LE Terminate BIG Complete */ 4053 events[3] |= 0x10; /* LE BIG Sync Established */ 4054 events[3] |= 0x20; /* LE BIG Sync Loss */ 4055 events[4] |= 0x02; /* LE BIG Info Advertising Report */ 4056 } 4057 4058 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EVENT_MASK, 4059 sizeof(events), events, HCI_CMD_TIMEOUT); 4060 } 4061 4062 /* Read LE Advertising Channel TX Power */ 4063 static int hci_le_read_adv_tx_power_sync(struct hci_dev *hdev) 4064 { 4065 if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) { 4066 /* HCI TS spec forbids mixing of legacy and extended 4067 * advertising commands wherein READ_ADV_TX_POWER is 4068 * also included. So do not call it if extended adv 4069 * is supported otherwise controller will return 4070 * COMMAND_DISALLOWED for extended commands. 4071 */ 4072 return __hci_cmd_sync_status(hdev, 4073 HCI_OP_LE_READ_ADV_TX_POWER, 4074 0, NULL, HCI_CMD_TIMEOUT); 4075 } 4076 4077 return 0; 4078 } 4079 4080 /* Read LE Min/Max Tx Power*/ 4081 static int hci_le_read_tx_power_sync(struct hci_dev *hdev) 4082 { 4083 if (!(hdev->commands[38] & 0x80) || 4084 test_bit(HCI_QUIRK_BROKEN_READ_TRANSMIT_POWER, &hdev->quirks)) 4085 return 0; 4086 4087 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_TRANSMIT_POWER, 4088 0, NULL, HCI_CMD_TIMEOUT); 4089 } 4090 4091 /* Read LE Accept List Size */ 4092 static int hci_le_read_accept_list_size_sync(struct hci_dev *hdev) 4093 { 4094 if (!(hdev->commands[26] & 0x40)) 4095 return 0; 4096 4097 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_ACCEPT_LIST_SIZE, 4098 0, NULL, HCI_CMD_TIMEOUT); 4099 } 4100 4101 /* Clear LE Accept List */ 4102 static int hci_le_clear_accept_list_sync(struct hci_dev *hdev) 4103 { 4104 if (!(hdev->commands[26] & 0x80)) 4105 return 0; 4106 4107 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL, 4108 HCI_CMD_TIMEOUT); 4109 } 4110 4111 /* Read LE Resolving List Size */ 4112 static int hci_le_read_resolv_list_size_sync(struct hci_dev *hdev) 4113 { 4114 if (!(hdev->commands[34] & 0x40)) 4115 return 0; 4116 4117 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_RESOLV_LIST_SIZE, 4118 0, NULL, HCI_CMD_TIMEOUT); 4119 } 4120 4121 /* Clear LE Resolving List */ 4122 static int hci_le_clear_resolv_list_sync(struct hci_dev *hdev) 4123 { 4124 if (!(hdev->commands[34] & 0x20)) 4125 return 0; 4126 4127 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL, 4128 HCI_CMD_TIMEOUT); 4129 } 4130 4131 /* Set RPA timeout */ 4132 static int hci_le_set_rpa_timeout_sync(struct hci_dev *hdev) 4133 { 4134 __le16 timeout = cpu_to_le16(hdev->rpa_timeout); 4135 4136 if (!(hdev->commands[35] & 0x04) || 4137 test_bit(HCI_QUIRK_BROKEN_SET_RPA_TIMEOUT, &hdev->quirks)) 4138 return 0; 4139 4140 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RPA_TIMEOUT, 4141 sizeof(timeout), &timeout, 4142 HCI_CMD_TIMEOUT); 4143 } 4144 4145 /* Read LE Maximum Data Length */ 4146 static int hci_le_read_max_data_len_sync(struct hci_dev *hdev) 4147 { 4148 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 4149 return 0; 4150 4151 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL, 4152 HCI_CMD_TIMEOUT); 4153 } 4154 4155 /* Read LE Suggested Default Data Length */ 4156 static int hci_le_read_def_data_len_sync(struct hci_dev *hdev) 4157 { 4158 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 4159 return 0; 4160 4161 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL, 4162 HCI_CMD_TIMEOUT); 4163 } 4164 4165 /* Read LE Number of Supported Advertising Sets */ 4166 static int hci_le_read_num_support_adv_sets_sync(struct hci_dev *hdev) 4167 { 4168 if (!ext_adv_capable(hdev)) 4169 return 0; 4170 4171 return __hci_cmd_sync_status(hdev, 4172 HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS, 4173 0, NULL, HCI_CMD_TIMEOUT); 4174 } 4175 4176 /* Write LE Host Supported */ 4177 static int hci_set_le_support_sync(struct hci_dev *hdev) 4178 { 4179 struct hci_cp_write_le_host_supported cp; 4180 4181 /* LE-only devices do not support explicit enablement */ 4182 if (!lmp_bredr_capable(hdev)) 4183 return 0; 4184 4185 memset(&cp, 0, sizeof(cp)); 4186 4187 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 4188 cp.le = 0x01; 4189 cp.simul = 0x00; 4190 } 4191 4192 if (cp.le == lmp_host_le_capable(hdev)) 4193 return 0; 4194 4195 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED, 4196 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4197 } 4198 4199 /* LE Set Host Feature */ 4200 static int hci_le_set_host_feature_sync(struct hci_dev *hdev) 4201 { 4202 struct hci_cp_le_set_host_feature cp; 4203 4204 if (!cis_capable(hdev)) 4205 return 0; 4206 4207 memset(&cp, 0, sizeof(cp)); 4208 4209 /* Connected Isochronous Channels (Host Support) */ 4210 cp.bit_number = 32; 4211 cp.bit_value = 1; 4212 4213 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_HOST_FEATURE, 4214 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4215 } 4216 4217 /* LE Controller init stage 3 command sequence */ 4218 static const struct hci_init_stage le_init3[] = { 4219 /* HCI_OP_LE_SET_EVENT_MASK */ 4220 HCI_INIT(hci_le_set_event_mask_sync), 4221 /* HCI_OP_LE_READ_ADV_TX_POWER */ 4222 HCI_INIT(hci_le_read_adv_tx_power_sync), 4223 /* HCI_OP_LE_READ_TRANSMIT_POWER */ 4224 HCI_INIT(hci_le_read_tx_power_sync), 4225 /* HCI_OP_LE_READ_ACCEPT_LIST_SIZE */ 4226 HCI_INIT(hci_le_read_accept_list_size_sync), 4227 /* HCI_OP_LE_CLEAR_ACCEPT_LIST */ 4228 HCI_INIT(hci_le_clear_accept_list_sync), 4229 /* HCI_OP_LE_READ_RESOLV_LIST_SIZE */ 4230 HCI_INIT(hci_le_read_resolv_list_size_sync), 4231 /* HCI_OP_LE_CLEAR_RESOLV_LIST */ 4232 HCI_INIT(hci_le_clear_resolv_list_sync), 4233 /* HCI_OP_LE_SET_RPA_TIMEOUT */ 4234 HCI_INIT(hci_le_set_rpa_timeout_sync), 4235 /* HCI_OP_LE_READ_MAX_DATA_LEN */ 4236 HCI_INIT(hci_le_read_max_data_len_sync), 4237 /* HCI_OP_LE_READ_DEF_DATA_LEN */ 4238 HCI_INIT(hci_le_read_def_data_len_sync), 4239 /* HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS */ 4240 HCI_INIT(hci_le_read_num_support_adv_sets_sync), 4241 /* HCI_OP_WRITE_LE_HOST_SUPPORTED */ 4242 HCI_INIT(hci_set_le_support_sync), 4243 /* HCI_OP_LE_SET_HOST_FEATURE */ 4244 HCI_INIT(hci_le_set_host_feature_sync), 4245 {} 4246 }; 4247 4248 static int hci_init3_sync(struct hci_dev *hdev) 4249 { 4250 int err; 4251 4252 bt_dev_dbg(hdev, ""); 4253 4254 err = hci_init_stage_sync(hdev, hci_init3); 4255 if (err) 4256 return err; 4257 4258 if (lmp_le_capable(hdev)) 4259 return hci_init_stage_sync(hdev, le_init3); 4260 4261 return 0; 4262 } 4263 4264 static int hci_delete_stored_link_key_sync(struct hci_dev *hdev) 4265 { 4266 struct hci_cp_delete_stored_link_key cp; 4267 4268 /* Some Broadcom based Bluetooth controllers do not support the 4269 * Delete Stored Link Key command. They are clearly indicating its 4270 * absence in the bit mask of supported commands. 4271 * 4272 * Check the supported commands and only if the command is marked 4273 * as supported send it. If not supported assume that the controller 4274 * does not have actual support for stored link keys which makes this 4275 * command redundant anyway. 4276 * 4277 * Some controllers indicate that they support handling deleting 4278 * stored link keys, but they don't. The quirk lets a driver 4279 * just disable this command. 4280 */ 4281 if (!(hdev->commands[6] & 0x80) || 4282 test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) 4283 return 0; 4284 4285 memset(&cp, 0, sizeof(cp)); 4286 bacpy(&cp.bdaddr, BDADDR_ANY); 4287 cp.delete_all = 0x01; 4288 4289 return __hci_cmd_sync_status(hdev, HCI_OP_DELETE_STORED_LINK_KEY, 4290 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4291 } 4292 4293 static int hci_set_event_mask_page_2_sync(struct hci_dev *hdev) 4294 { 4295 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 4296 bool changed = false; 4297 4298 /* Set event mask page 2 if the HCI command for it is supported */ 4299 if (!(hdev->commands[22] & 0x04)) 4300 return 0; 4301 4302 /* If Connectionless Peripheral Broadcast central role is supported 4303 * enable all necessary events for it. 4304 */ 4305 if (lmp_cpb_central_capable(hdev)) { 4306 events[1] |= 0x40; /* Triggered Clock Capture */ 4307 events[1] |= 0x80; /* Synchronization Train Complete */ 4308 events[2] |= 0x08; /* Truncated Page Complete */ 4309 events[2] |= 0x20; /* CPB Channel Map Change */ 4310 changed = true; 4311 } 4312 4313 /* If Connectionless Peripheral Broadcast peripheral role is supported 4314 * enable all necessary events for it. 4315 */ 4316 if (lmp_cpb_peripheral_capable(hdev)) { 4317 events[2] |= 0x01; /* Synchronization Train Received */ 4318 events[2] |= 0x02; /* CPB Receive */ 4319 events[2] |= 0x04; /* CPB Timeout */ 4320 events[2] |= 0x10; /* Peripheral Page Response Timeout */ 4321 changed = true; 4322 } 4323 4324 /* Enable Authenticated Payload Timeout Expired event if supported */ 4325 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) { 4326 events[2] |= 0x80; 4327 changed = true; 4328 } 4329 4330 /* Some Broadcom based controllers indicate support for Set Event 4331 * Mask Page 2 command, but then actually do not support it. Since 4332 * the default value is all bits set to zero, the command is only 4333 * required if the event mask has to be changed. In case no change 4334 * to the event mask is needed, skip this command. 4335 */ 4336 if (!changed) 4337 return 0; 4338 4339 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK_PAGE_2, 4340 sizeof(events), events, HCI_CMD_TIMEOUT); 4341 } 4342 4343 /* Read local codec list if the HCI command is supported */ 4344 static int hci_read_local_codecs_sync(struct hci_dev *hdev) 4345 { 4346 if (hdev->commands[45] & 0x04) 4347 hci_read_supported_codecs_v2(hdev); 4348 else if (hdev->commands[29] & 0x20) 4349 hci_read_supported_codecs(hdev); 4350 4351 return 0; 4352 } 4353 4354 /* Read local pairing options if the HCI command is supported */ 4355 static int hci_read_local_pairing_opts_sync(struct hci_dev *hdev) 4356 { 4357 if (!(hdev->commands[41] & 0x08)) 4358 return 0; 4359 4360 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_PAIRING_OPTS, 4361 0, NULL, HCI_CMD_TIMEOUT); 4362 } 4363 4364 /* Get MWS transport configuration if the HCI command is supported */ 4365 static int hci_get_mws_transport_config_sync(struct hci_dev *hdev) 4366 { 4367 if (!mws_transport_config_capable(hdev)) 4368 return 0; 4369 4370 return __hci_cmd_sync_status(hdev, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 4371 0, NULL, HCI_CMD_TIMEOUT); 4372 } 4373 4374 /* Check for Synchronization Train support */ 4375 static int hci_read_sync_train_params_sync(struct hci_dev *hdev) 4376 { 4377 if (!lmp_sync_train_capable(hdev)) 4378 return 0; 4379 4380 return __hci_cmd_sync_status(hdev, HCI_OP_READ_SYNC_TRAIN_PARAMS, 4381 0, NULL, HCI_CMD_TIMEOUT); 4382 } 4383 4384 /* Enable Secure Connections if supported and configured */ 4385 static int hci_write_sc_support_1_sync(struct hci_dev *hdev) 4386 { 4387 u8 support = 0x01; 4388 4389 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) || 4390 !bredr_sc_enabled(hdev)) 4391 return 0; 4392 4393 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT, 4394 sizeof(support), &support, 4395 HCI_CMD_TIMEOUT); 4396 } 4397 4398 /* Set erroneous data reporting if supported to the wideband speech 4399 * setting value 4400 */ 4401 static int hci_set_err_data_report_sync(struct hci_dev *hdev) 4402 { 4403 struct hci_cp_write_def_err_data_reporting cp; 4404 bool enabled = hci_dev_test_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED); 4405 4406 if (!(hdev->commands[18] & 0x08) || 4407 !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) || 4408 test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) 4409 return 0; 4410 4411 if (enabled == hdev->err_data_reporting) 4412 return 0; 4413 4414 memset(&cp, 0, sizeof(cp)); 4415 cp.err_data_reporting = enabled ? ERR_DATA_REPORTING_ENABLED : 4416 ERR_DATA_REPORTING_DISABLED; 4417 4418 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING, 4419 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4420 } 4421 4422 static const struct hci_init_stage hci_init4[] = { 4423 /* HCI_OP_DELETE_STORED_LINK_KEY */ 4424 HCI_INIT(hci_delete_stored_link_key_sync), 4425 /* HCI_OP_SET_EVENT_MASK_PAGE_2 */ 4426 HCI_INIT(hci_set_event_mask_page_2_sync), 4427 /* HCI_OP_READ_LOCAL_CODECS */ 4428 HCI_INIT(hci_read_local_codecs_sync), 4429 /* HCI_OP_READ_LOCAL_PAIRING_OPTS */ 4430 HCI_INIT(hci_read_local_pairing_opts_sync), 4431 /* HCI_OP_GET_MWS_TRANSPORT_CONFIG */ 4432 HCI_INIT(hci_get_mws_transport_config_sync), 4433 /* HCI_OP_READ_SYNC_TRAIN_PARAMS */ 4434 HCI_INIT(hci_read_sync_train_params_sync), 4435 /* HCI_OP_WRITE_SC_SUPPORT */ 4436 HCI_INIT(hci_write_sc_support_1_sync), 4437 /* HCI_OP_WRITE_DEF_ERR_DATA_REPORTING */ 4438 HCI_INIT(hci_set_err_data_report_sync), 4439 {} 4440 }; 4441 4442 /* Set Suggested Default Data Length to maximum if supported */ 4443 static int hci_le_set_write_def_data_len_sync(struct hci_dev *hdev) 4444 { 4445 struct hci_cp_le_write_def_data_len cp; 4446 4447 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 4448 return 0; 4449 4450 memset(&cp, 0, sizeof(cp)); 4451 cp.tx_len = cpu_to_le16(hdev->le_max_tx_len); 4452 cp.tx_time = cpu_to_le16(hdev->le_max_tx_time); 4453 4454 return __hci_cmd_sync_status(hdev, HCI_OP_LE_WRITE_DEF_DATA_LEN, 4455 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4456 } 4457 4458 /* Set Default PHY parameters if command is supported, enables all supported 4459 * PHYs according to the LE Features bits. 4460 */ 4461 static int hci_le_set_default_phy_sync(struct hci_dev *hdev) 4462 { 4463 struct hci_cp_le_set_default_phy cp; 4464 4465 if (!(hdev->commands[35] & 0x20)) { 4466 /* If the command is not supported it means only 1M PHY is 4467 * supported. 4468 */ 4469 hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M; 4470 hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M; 4471 return 0; 4472 } 4473 4474 memset(&cp, 0, sizeof(cp)); 4475 cp.all_phys = 0x00; 4476 cp.tx_phys = HCI_LE_SET_PHY_1M; 4477 cp.rx_phys = HCI_LE_SET_PHY_1M; 4478 4479 /* Enables 2M PHY if supported */ 4480 if (le_2m_capable(hdev)) { 4481 cp.tx_phys |= HCI_LE_SET_PHY_2M; 4482 cp.rx_phys |= HCI_LE_SET_PHY_2M; 4483 } 4484 4485 /* Enables Coded PHY if supported */ 4486 if (le_coded_capable(hdev)) { 4487 cp.tx_phys |= HCI_LE_SET_PHY_CODED; 4488 cp.rx_phys |= HCI_LE_SET_PHY_CODED; 4489 } 4490 4491 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_DEFAULT_PHY, 4492 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4493 } 4494 4495 static const struct hci_init_stage le_init4[] = { 4496 /* HCI_OP_LE_WRITE_DEF_DATA_LEN */ 4497 HCI_INIT(hci_le_set_write_def_data_len_sync), 4498 /* HCI_OP_LE_SET_DEFAULT_PHY */ 4499 HCI_INIT(hci_le_set_default_phy_sync), 4500 {} 4501 }; 4502 4503 static int hci_init4_sync(struct hci_dev *hdev) 4504 { 4505 int err; 4506 4507 bt_dev_dbg(hdev, ""); 4508 4509 err = hci_init_stage_sync(hdev, hci_init4); 4510 if (err) 4511 return err; 4512 4513 if (lmp_le_capable(hdev)) 4514 return hci_init_stage_sync(hdev, le_init4); 4515 4516 return 0; 4517 } 4518 4519 static int hci_init_sync(struct hci_dev *hdev) 4520 { 4521 int err; 4522 4523 err = hci_init1_sync(hdev); 4524 if (err < 0) 4525 return err; 4526 4527 if (hci_dev_test_flag(hdev, HCI_SETUP)) 4528 hci_debugfs_create_basic(hdev); 4529 4530 err = hci_init2_sync(hdev); 4531 if (err < 0) 4532 return err; 4533 4534 /* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode 4535 * BR/EDR/LE type controllers. AMP controllers only need the 4536 * first two stages of init. 4537 */ 4538 if (hdev->dev_type != HCI_PRIMARY) 4539 return 0; 4540 4541 err = hci_init3_sync(hdev); 4542 if (err < 0) 4543 return err; 4544 4545 err = hci_init4_sync(hdev); 4546 if (err < 0) 4547 return err; 4548 4549 /* This function is only called when the controller is actually in 4550 * configured state. When the controller is marked as unconfigured, 4551 * this initialization procedure is not run. 4552 * 4553 * It means that it is possible that a controller runs through its 4554 * setup phase and then discovers missing settings. If that is the 4555 * case, then this function will not be called. It then will only 4556 * be called during the config phase. 4557 * 4558 * So only when in setup phase or config phase, create the debugfs 4559 * entries and register the SMP channels. 4560 */ 4561 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4562 !hci_dev_test_flag(hdev, HCI_CONFIG)) 4563 return 0; 4564 4565 if (hci_dev_test_and_set_flag(hdev, HCI_DEBUGFS_CREATED)) 4566 return 0; 4567 4568 hci_debugfs_create_common(hdev); 4569 4570 if (lmp_bredr_capable(hdev)) 4571 hci_debugfs_create_bredr(hdev); 4572 4573 if (lmp_le_capable(hdev)) 4574 hci_debugfs_create_le(hdev); 4575 4576 return 0; 4577 } 4578 4579 #define HCI_QUIRK_BROKEN(_quirk, _desc) { HCI_QUIRK_BROKEN_##_quirk, _desc } 4580 4581 static const struct { 4582 unsigned long quirk; 4583 const char *desc; 4584 } hci_broken_table[] = { 4585 HCI_QUIRK_BROKEN(LOCAL_COMMANDS, 4586 "HCI Read Local Supported Commands not supported"), 4587 HCI_QUIRK_BROKEN(STORED_LINK_KEY, 4588 "HCI Delete Stored Link Key command is advertised, " 4589 "but not supported."), 4590 HCI_QUIRK_BROKEN(ERR_DATA_REPORTING, 4591 "HCI Read Default Erroneous Data Reporting command is " 4592 "advertised, but not supported."), 4593 HCI_QUIRK_BROKEN(READ_TRANSMIT_POWER, 4594 "HCI Read Transmit Power Level command is advertised, " 4595 "but not supported."), 4596 HCI_QUIRK_BROKEN(FILTER_CLEAR_ALL, 4597 "HCI Set Event Filter command not supported."), 4598 HCI_QUIRK_BROKEN(ENHANCED_SETUP_SYNC_CONN, 4599 "HCI Enhanced Setup Synchronous Connection command is " 4600 "advertised, but not supported."), 4601 HCI_QUIRK_BROKEN(SET_RPA_TIMEOUT, 4602 "HCI LE Set Random Private Address Timeout command is " 4603 "advertised, but not supported."), 4604 HCI_QUIRK_BROKEN(LE_CODED, 4605 "HCI LE Coded PHY feature bit is set, " 4606 "but its usage is not supported.") 4607 }; 4608 4609 /* This function handles hdev setup stage: 4610 * 4611 * Calls hdev->setup 4612 * Setup address if HCI_QUIRK_USE_BDADDR_PROPERTY is set. 4613 */ 4614 static int hci_dev_setup_sync(struct hci_dev *hdev) 4615 { 4616 int ret = 0; 4617 bool invalid_bdaddr; 4618 size_t i; 4619 4620 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4621 !test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) 4622 return 0; 4623 4624 bt_dev_dbg(hdev, ""); 4625 4626 hci_sock_dev_event(hdev, HCI_DEV_SETUP); 4627 4628 if (hdev->setup) 4629 ret = hdev->setup(hdev); 4630 4631 for (i = 0; i < ARRAY_SIZE(hci_broken_table); i++) { 4632 if (test_bit(hci_broken_table[i].quirk, &hdev->quirks)) 4633 bt_dev_warn(hdev, "%s", hci_broken_table[i].desc); 4634 } 4635 4636 /* The transport driver can set the quirk to mark the 4637 * BD_ADDR invalid before creating the HCI device or in 4638 * its setup callback. 4639 */ 4640 invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks) || 4641 test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks); 4642 if (!ret) { 4643 if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks) && 4644 !bacmp(&hdev->public_addr, BDADDR_ANY)) 4645 hci_dev_get_bd_addr_from_property(hdev); 4646 4647 if (invalid_bdaddr && bacmp(&hdev->public_addr, BDADDR_ANY) && 4648 hdev->set_bdaddr) { 4649 ret = hdev->set_bdaddr(hdev, &hdev->public_addr); 4650 if (!ret) 4651 invalid_bdaddr = false; 4652 } 4653 } 4654 4655 /* The transport driver can set these quirks before 4656 * creating the HCI device or in its setup callback. 4657 * 4658 * For the invalid BD_ADDR quirk it is possible that 4659 * it becomes a valid address if the bootloader does 4660 * provide it (see above). 4661 * 4662 * In case any of them is set, the controller has to 4663 * start up as unconfigured. 4664 */ 4665 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) || 4666 invalid_bdaddr) 4667 hci_dev_set_flag(hdev, HCI_UNCONFIGURED); 4668 4669 /* For an unconfigured controller it is required to 4670 * read at least the version information provided by 4671 * the Read Local Version Information command. 4672 * 4673 * If the set_bdaddr driver callback is provided, then 4674 * also the original Bluetooth public device address 4675 * will be read using the Read BD Address command. 4676 */ 4677 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 4678 return hci_unconf_init_sync(hdev); 4679 4680 return ret; 4681 } 4682 4683 /* This function handles hdev init stage: 4684 * 4685 * Calls hci_dev_setup_sync to perform setup stage 4686 * Calls hci_init_sync to perform HCI command init sequence 4687 */ 4688 static int hci_dev_init_sync(struct hci_dev *hdev) 4689 { 4690 int ret; 4691 4692 bt_dev_dbg(hdev, ""); 4693 4694 atomic_set(&hdev->cmd_cnt, 1); 4695 set_bit(HCI_INIT, &hdev->flags); 4696 4697 ret = hci_dev_setup_sync(hdev); 4698 4699 if (hci_dev_test_flag(hdev, HCI_CONFIG)) { 4700 /* If public address change is configured, ensure that 4701 * the address gets programmed. If the driver does not 4702 * support changing the public address, fail the power 4703 * on procedure. 4704 */ 4705 if (bacmp(&hdev->public_addr, BDADDR_ANY) && 4706 hdev->set_bdaddr) 4707 ret = hdev->set_bdaddr(hdev, &hdev->public_addr); 4708 else 4709 ret = -EADDRNOTAVAIL; 4710 } 4711 4712 if (!ret) { 4713 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 4714 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4715 ret = hci_init_sync(hdev); 4716 if (!ret && hdev->post_init) 4717 ret = hdev->post_init(hdev); 4718 } 4719 } 4720 4721 /* If the HCI Reset command is clearing all diagnostic settings, 4722 * then they need to be reprogrammed after the init procedure 4723 * completed. 4724 */ 4725 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) && 4726 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4727 hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag) 4728 ret = hdev->set_diag(hdev, true); 4729 4730 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4731 msft_do_open(hdev); 4732 aosp_do_open(hdev); 4733 } 4734 4735 clear_bit(HCI_INIT, &hdev->flags); 4736 4737 return ret; 4738 } 4739 4740 int hci_dev_open_sync(struct hci_dev *hdev) 4741 { 4742 int ret; 4743 4744 bt_dev_dbg(hdev, ""); 4745 4746 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 4747 ret = -ENODEV; 4748 goto done; 4749 } 4750 4751 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4752 !hci_dev_test_flag(hdev, HCI_CONFIG)) { 4753 /* Check for rfkill but allow the HCI setup stage to 4754 * proceed (which in itself doesn't cause any RF activity). 4755 */ 4756 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) { 4757 ret = -ERFKILL; 4758 goto done; 4759 } 4760 4761 /* Check for valid public address or a configured static 4762 * random address, but let the HCI setup proceed to 4763 * be able to determine if there is a public address 4764 * or not. 4765 * 4766 * In case of user channel usage, it is not important 4767 * if a public address or static random address is 4768 * available. 4769 * 4770 * This check is only valid for BR/EDR controllers 4771 * since AMP controllers do not have an address. 4772 */ 4773 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4774 hdev->dev_type == HCI_PRIMARY && 4775 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 4776 !bacmp(&hdev->static_addr, BDADDR_ANY)) { 4777 ret = -EADDRNOTAVAIL; 4778 goto done; 4779 } 4780 } 4781 4782 if (test_bit(HCI_UP, &hdev->flags)) { 4783 ret = -EALREADY; 4784 goto done; 4785 } 4786 4787 if (hdev->open(hdev)) { 4788 ret = -EIO; 4789 goto done; 4790 } 4791 4792 hci_devcd_reset(hdev); 4793 4794 set_bit(HCI_RUNNING, &hdev->flags); 4795 hci_sock_dev_event(hdev, HCI_DEV_OPEN); 4796 4797 ret = hci_dev_init_sync(hdev); 4798 if (!ret) { 4799 hci_dev_hold(hdev); 4800 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 4801 hci_adv_instances_set_rpa_expired(hdev, true); 4802 set_bit(HCI_UP, &hdev->flags); 4803 hci_sock_dev_event(hdev, HCI_DEV_UP); 4804 hci_leds_update_powered(hdev, true); 4805 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4806 !hci_dev_test_flag(hdev, HCI_CONFIG) && 4807 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 4808 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4809 hci_dev_test_flag(hdev, HCI_MGMT) && 4810 hdev->dev_type == HCI_PRIMARY) { 4811 ret = hci_powered_update_sync(hdev); 4812 mgmt_power_on(hdev, ret); 4813 } 4814 } else { 4815 /* Init failed, cleanup */ 4816 flush_work(&hdev->tx_work); 4817 4818 /* Since hci_rx_work() is possible to awake new cmd_work 4819 * it should be flushed first to avoid unexpected call of 4820 * hci_cmd_work() 4821 */ 4822 flush_work(&hdev->rx_work); 4823 flush_work(&hdev->cmd_work); 4824 4825 skb_queue_purge(&hdev->cmd_q); 4826 skb_queue_purge(&hdev->rx_q); 4827 4828 if (hdev->flush) 4829 hdev->flush(hdev); 4830 4831 if (hdev->sent_cmd) { 4832 cancel_delayed_work_sync(&hdev->cmd_timer); 4833 kfree_skb(hdev->sent_cmd); 4834 hdev->sent_cmd = NULL; 4835 } 4836 4837 clear_bit(HCI_RUNNING, &hdev->flags); 4838 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 4839 4840 hdev->close(hdev); 4841 hdev->flags &= BIT(HCI_RAW); 4842 } 4843 4844 done: 4845 return ret; 4846 } 4847 4848 /* This function requires the caller holds hdev->lock */ 4849 static void hci_pend_le_actions_clear(struct hci_dev *hdev) 4850 { 4851 struct hci_conn_params *p; 4852 4853 list_for_each_entry(p, &hdev->le_conn_params, list) { 4854 hci_pend_le_list_del_init(p); 4855 if (p->conn) { 4856 hci_conn_drop(p->conn); 4857 hci_conn_put(p->conn); 4858 p->conn = NULL; 4859 } 4860 } 4861 4862 BT_DBG("All LE pending actions cleared"); 4863 } 4864 4865 static int hci_dev_shutdown(struct hci_dev *hdev) 4866 { 4867 int err = 0; 4868 /* Similar to how we first do setup and then set the exclusive access 4869 * bit for userspace, we must first unset userchannel and then clean up. 4870 * Otherwise, the kernel can't properly use the hci channel to clean up 4871 * the controller (some shutdown routines require sending additional 4872 * commands to the controller for example). 4873 */ 4874 bool was_userchannel = 4875 hci_dev_test_and_clear_flag(hdev, HCI_USER_CHANNEL); 4876 4877 if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) && 4878 test_bit(HCI_UP, &hdev->flags)) { 4879 /* Execute vendor specific shutdown routine */ 4880 if (hdev->shutdown) 4881 err = hdev->shutdown(hdev); 4882 } 4883 4884 if (was_userchannel) 4885 hci_dev_set_flag(hdev, HCI_USER_CHANNEL); 4886 4887 return err; 4888 } 4889 4890 int hci_dev_close_sync(struct hci_dev *hdev) 4891 { 4892 bool auto_off; 4893 int err = 0; 4894 4895 bt_dev_dbg(hdev, ""); 4896 4897 cancel_delayed_work(&hdev->power_off); 4898 cancel_delayed_work(&hdev->ncmd_timer); 4899 cancel_delayed_work(&hdev->le_scan_disable); 4900 4901 hci_request_cancel_all(hdev); 4902 4903 if (hdev->adv_instance_timeout) { 4904 cancel_delayed_work_sync(&hdev->adv_instance_expire); 4905 hdev->adv_instance_timeout = 0; 4906 } 4907 4908 err = hci_dev_shutdown(hdev); 4909 4910 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) { 4911 cancel_delayed_work_sync(&hdev->cmd_timer); 4912 return err; 4913 } 4914 4915 hci_leds_update_powered(hdev, false); 4916 4917 /* Flush RX and TX works */ 4918 flush_work(&hdev->tx_work); 4919 flush_work(&hdev->rx_work); 4920 4921 if (hdev->discov_timeout > 0) { 4922 hdev->discov_timeout = 0; 4923 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 4924 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 4925 } 4926 4927 if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE)) 4928 cancel_delayed_work(&hdev->service_cache); 4929 4930 if (hci_dev_test_flag(hdev, HCI_MGMT)) { 4931 struct adv_info *adv_instance; 4932 4933 cancel_delayed_work_sync(&hdev->rpa_expired); 4934 4935 list_for_each_entry(adv_instance, &hdev->adv_instances, list) 4936 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb); 4937 } 4938 4939 /* Avoid potential lockdep warnings from the *_flush() calls by 4940 * ensuring the workqueue is empty up front. 4941 */ 4942 drain_workqueue(hdev->workqueue); 4943 4944 hci_dev_lock(hdev); 4945 4946 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 4947 4948 auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF); 4949 4950 if (!auto_off && hdev->dev_type == HCI_PRIMARY && 4951 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4952 hci_dev_test_flag(hdev, HCI_MGMT)) 4953 __mgmt_power_off(hdev); 4954 4955 hci_inquiry_cache_flush(hdev); 4956 hci_pend_le_actions_clear(hdev); 4957 hci_conn_hash_flush(hdev); 4958 /* Prevent data races on hdev->smp_data or hdev->smp_bredr_data */ 4959 smp_unregister(hdev); 4960 hci_dev_unlock(hdev); 4961 4962 hci_sock_dev_event(hdev, HCI_DEV_DOWN); 4963 4964 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4965 aosp_do_close(hdev); 4966 msft_do_close(hdev); 4967 } 4968 4969 if (hdev->flush) 4970 hdev->flush(hdev); 4971 4972 /* Reset device */ 4973 skb_queue_purge(&hdev->cmd_q); 4974 atomic_set(&hdev->cmd_cnt, 1); 4975 if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) && 4976 !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 4977 set_bit(HCI_INIT, &hdev->flags); 4978 hci_reset_sync(hdev); 4979 clear_bit(HCI_INIT, &hdev->flags); 4980 } 4981 4982 /* flush cmd work */ 4983 flush_work(&hdev->cmd_work); 4984 4985 /* Drop queues */ 4986 skb_queue_purge(&hdev->rx_q); 4987 skb_queue_purge(&hdev->cmd_q); 4988 skb_queue_purge(&hdev->raw_q); 4989 4990 /* Drop last sent command */ 4991 if (hdev->sent_cmd) { 4992 cancel_delayed_work_sync(&hdev->cmd_timer); 4993 kfree_skb(hdev->sent_cmd); 4994 hdev->sent_cmd = NULL; 4995 } 4996 4997 clear_bit(HCI_RUNNING, &hdev->flags); 4998 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 4999 5000 /* After this point our queues are empty and no tasks are scheduled. */ 5001 hdev->close(hdev); 5002 5003 /* Clear flags */ 5004 hdev->flags &= BIT(HCI_RAW); 5005 hci_dev_clear_volatile_flags(hdev); 5006 5007 /* Controller radio is available but is currently powered down */ 5008 hdev->amp_status = AMP_STATUS_POWERED_DOWN; 5009 5010 memset(hdev->eir, 0, sizeof(hdev->eir)); 5011 memset(hdev->dev_class, 0, sizeof(hdev->dev_class)); 5012 bacpy(&hdev->random_addr, BDADDR_ANY); 5013 hci_codec_list_clear(&hdev->local_codecs); 5014 5015 hci_dev_put(hdev); 5016 return err; 5017 } 5018 5019 /* This function perform power on HCI command sequence as follows: 5020 * 5021 * If controller is already up (HCI_UP) performs hci_powered_update_sync 5022 * sequence otherwise run hci_dev_open_sync which will follow with 5023 * hci_powered_update_sync after the init sequence is completed. 5024 */ 5025 static int hci_power_on_sync(struct hci_dev *hdev) 5026 { 5027 int err; 5028 5029 if (test_bit(HCI_UP, &hdev->flags) && 5030 hci_dev_test_flag(hdev, HCI_MGMT) && 5031 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) { 5032 cancel_delayed_work(&hdev->power_off); 5033 return hci_powered_update_sync(hdev); 5034 } 5035 5036 err = hci_dev_open_sync(hdev); 5037 if (err < 0) 5038 return err; 5039 5040 /* During the HCI setup phase, a few error conditions are 5041 * ignored and they need to be checked now. If they are still 5042 * valid, it is important to return the device back off. 5043 */ 5044 if (hci_dev_test_flag(hdev, HCI_RFKILLED) || 5045 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) || 5046 (hdev->dev_type == HCI_PRIMARY && 5047 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 5048 !bacmp(&hdev->static_addr, BDADDR_ANY))) { 5049 hci_dev_clear_flag(hdev, HCI_AUTO_OFF); 5050 hci_dev_close_sync(hdev); 5051 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) { 5052 queue_delayed_work(hdev->req_workqueue, &hdev->power_off, 5053 HCI_AUTO_OFF_TIMEOUT); 5054 } 5055 5056 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) { 5057 /* For unconfigured devices, set the HCI_RAW flag 5058 * so that userspace can easily identify them. 5059 */ 5060 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 5061 set_bit(HCI_RAW, &hdev->flags); 5062 5063 /* For fully configured devices, this will send 5064 * the Index Added event. For unconfigured devices, 5065 * it will send Unconfigued Index Added event. 5066 * 5067 * Devices with HCI_QUIRK_RAW_DEVICE are ignored 5068 * and no event will be send. 5069 */ 5070 mgmt_index_added(hdev); 5071 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) { 5072 /* When the controller is now configured, then it 5073 * is important to clear the HCI_RAW flag. 5074 */ 5075 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 5076 clear_bit(HCI_RAW, &hdev->flags); 5077 5078 /* Powering on the controller with HCI_CONFIG set only 5079 * happens with the transition from unconfigured to 5080 * configured. This will send the Index Added event. 5081 */ 5082 mgmt_index_added(hdev); 5083 } 5084 5085 return 0; 5086 } 5087 5088 static int hci_remote_name_cancel_sync(struct hci_dev *hdev, bdaddr_t *addr) 5089 { 5090 struct hci_cp_remote_name_req_cancel cp; 5091 5092 memset(&cp, 0, sizeof(cp)); 5093 bacpy(&cp.bdaddr, addr); 5094 5095 return __hci_cmd_sync_status(hdev, HCI_OP_REMOTE_NAME_REQ_CANCEL, 5096 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5097 } 5098 5099 int hci_stop_discovery_sync(struct hci_dev *hdev) 5100 { 5101 struct discovery_state *d = &hdev->discovery; 5102 struct inquiry_entry *e; 5103 int err; 5104 5105 bt_dev_dbg(hdev, "state %u", hdev->discovery.state); 5106 5107 if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) { 5108 if (test_bit(HCI_INQUIRY, &hdev->flags)) { 5109 err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL, 5110 0, NULL, HCI_CMD_TIMEOUT); 5111 if (err) 5112 return err; 5113 } 5114 5115 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 5116 cancel_delayed_work(&hdev->le_scan_disable); 5117 5118 err = hci_scan_disable_sync(hdev); 5119 if (err) 5120 return err; 5121 } 5122 5123 } else { 5124 err = hci_scan_disable_sync(hdev); 5125 if (err) 5126 return err; 5127 } 5128 5129 /* Resume advertising if it was paused */ 5130 if (use_ll_privacy(hdev)) 5131 hci_resume_advertising_sync(hdev); 5132 5133 /* No further actions needed for LE-only discovery */ 5134 if (d->type == DISCOV_TYPE_LE) 5135 return 0; 5136 5137 if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) { 5138 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY, 5139 NAME_PENDING); 5140 if (!e) 5141 return 0; 5142 5143 return hci_remote_name_cancel_sync(hdev, &e->data.bdaddr); 5144 } 5145 5146 return 0; 5147 } 5148 5149 static int hci_disconnect_phy_link_sync(struct hci_dev *hdev, u16 handle, 5150 u8 reason) 5151 { 5152 struct hci_cp_disconn_phy_link cp; 5153 5154 memset(&cp, 0, sizeof(cp)); 5155 cp.phy_handle = HCI_PHY_HANDLE(handle); 5156 cp.reason = reason; 5157 5158 return __hci_cmd_sync_status(hdev, HCI_OP_DISCONN_PHY_LINK, 5159 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5160 } 5161 5162 static int hci_disconnect_sync(struct hci_dev *hdev, struct hci_conn *conn, 5163 u8 reason) 5164 { 5165 struct hci_cp_disconnect cp; 5166 5167 if (conn->type == AMP_LINK) 5168 return hci_disconnect_phy_link_sync(hdev, conn->handle, reason); 5169 5170 if (test_bit(HCI_CONN_BIG_CREATED, &conn->flags)) { 5171 /* This is a BIS connection, hci_conn_del will 5172 * do the necessary cleanup. 5173 */ 5174 hci_dev_lock(hdev); 5175 hci_conn_failed(conn, reason); 5176 hci_dev_unlock(hdev); 5177 5178 return 0; 5179 } 5180 5181 memset(&cp, 0, sizeof(cp)); 5182 cp.handle = cpu_to_le16(conn->handle); 5183 cp.reason = reason; 5184 5185 /* Wait for HCI_EV_DISCONN_COMPLETE, not HCI_EV_CMD_STATUS, when the 5186 * reason is anything but HCI_ERROR_REMOTE_POWER_OFF. This reason is 5187 * used when suspending or powering off, where we don't want to wait 5188 * for the peer's response. 5189 */ 5190 if (reason != HCI_ERROR_REMOTE_POWER_OFF) 5191 return __hci_cmd_sync_status_sk(hdev, HCI_OP_DISCONNECT, 5192 sizeof(cp), &cp, 5193 HCI_EV_DISCONN_COMPLETE, 5194 HCI_CMD_TIMEOUT, NULL); 5195 5196 return __hci_cmd_sync_status(hdev, HCI_OP_DISCONNECT, sizeof(cp), &cp, 5197 HCI_CMD_TIMEOUT); 5198 } 5199 5200 static int hci_le_connect_cancel_sync(struct hci_dev *hdev, 5201 struct hci_conn *conn, u8 reason) 5202 { 5203 /* Return reason if scanning since the connection shall probably be 5204 * cleanup directly. 5205 */ 5206 if (test_bit(HCI_CONN_SCANNING, &conn->flags)) 5207 return reason; 5208 5209 if (conn->role == HCI_ROLE_SLAVE || 5210 test_and_set_bit(HCI_CONN_CANCEL, &conn->flags)) 5211 return 0; 5212 5213 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CREATE_CONN_CANCEL, 5214 0, NULL, HCI_CMD_TIMEOUT); 5215 } 5216 5217 static int hci_connect_cancel_sync(struct hci_dev *hdev, struct hci_conn *conn, 5218 u8 reason) 5219 { 5220 if (conn->type == LE_LINK) 5221 return hci_le_connect_cancel_sync(hdev, conn, reason); 5222 5223 if (conn->type == ISO_LINK) { 5224 /* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E 5225 * page 1857: 5226 * 5227 * If this command is issued for a CIS on the Central and the 5228 * CIS is successfully terminated before being established, 5229 * then an HCI_LE_CIS_Established event shall also be sent for 5230 * this CIS with the Status Operation Cancelled by Host (0x44). 5231 */ 5232 if (test_bit(HCI_CONN_CREATE_CIS, &conn->flags)) 5233 return hci_disconnect_sync(hdev, conn, reason); 5234 5235 /* CIS with no Create CIS sent have nothing to cancel */ 5236 if (bacmp(&conn->dst, BDADDR_ANY)) 5237 return HCI_ERROR_LOCAL_HOST_TERM; 5238 5239 /* There is no way to cancel a BIS without terminating the BIG 5240 * which is done later on connection cleanup. 5241 */ 5242 return 0; 5243 } 5244 5245 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 5246 return 0; 5247 5248 /* Wait for HCI_EV_CONN_COMPLETE, not HCI_EV_CMD_STATUS, when the 5249 * reason is anything but HCI_ERROR_REMOTE_POWER_OFF. This reason is 5250 * used when suspending or powering off, where we don't want to wait 5251 * for the peer's response. 5252 */ 5253 if (reason != HCI_ERROR_REMOTE_POWER_OFF) 5254 return __hci_cmd_sync_status_sk(hdev, HCI_OP_CREATE_CONN_CANCEL, 5255 6, &conn->dst, 5256 HCI_EV_CONN_COMPLETE, 5257 HCI_CMD_TIMEOUT, NULL); 5258 5259 return __hci_cmd_sync_status(hdev, HCI_OP_CREATE_CONN_CANCEL, 5260 6, &conn->dst, HCI_CMD_TIMEOUT); 5261 } 5262 5263 static int hci_reject_sco_sync(struct hci_dev *hdev, struct hci_conn *conn, 5264 u8 reason) 5265 { 5266 struct hci_cp_reject_sync_conn_req cp; 5267 5268 memset(&cp, 0, sizeof(cp)); 5269 bacpy(&cp.bdaddr, &conn->dst); 5270 cp.reason = reason; 5271 5272 /* SCO rejection has its own limited set of 5273 * allowed error values (0x0D-0x0F). 5274 */ 5275 if (reason < 0x0d || reason > 0x0f) 5276 cp.reason = HCI_ERROR_REJ_LIMITED_RESOURCES; 5277 5278 return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_SYNC_CONN_REQ, 5279 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5280 } 5281 5282 static int hci_le_reject_cis_sync(struct hci_dev *hdev, struct hci_conn *conn, 5283 u8 reason) 5284 { 5285 struct hci_cp_le_reject_cis cp; 5286 5287 memset(&cp, 0, sizeof(cp)); 5288 cp.handle = cpu_to_le16(conn->handle); 5289 cp.reason = reason; 5290 5291 return __hci_cmd_sync_status(hdev, HCI_OP_LE_REJECT_CIS, 5292 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5293 } 5294 5295 static int hci_reject_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, 5296 u8 reason) 5297 { 5298 struct hci_cp_reject_conn_req cp; 5299 5300 if (conn->type == ISO_LINK) 5301 return hci_le_reject_cis_sync(hdev, conn, reason); 5302 5303 if (conn->type == SCO_LINK || conn->type == ESCO_LINK) 5304 return hci_reject_sco_sync(hdev, conn, reason); 5305 5306 memset(&cp, 0, sizeof(cp)); 5307 bacpy(&cp.bdaddr, &conn->dst); 5308 cp.reason = reason; 5309 5310 return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_CONN_REQ, 5311 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5312 } 5313 5314 int hci_abort_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, u8 reason) 5315 { 5316 int err = 0; 5317 u16 handle = conn->handle; 5318 bool disconnect = false; 5319 struct hci_conn *c; 5320 5321 switch (conn->state) { 5322 case BT_CONNECTED: 5323 case BT_CONFIG: 5324 err = hci_disconnect_sync(hdev, conn, reason); 5325 break; 5326 case BT_CONNECT: 5327 err = hci_connect_cancel_sync(hdev, conn, reason); 5328 break; 5329 case BT_CONNECT2: 5330 err = hci_reject_conn_sync(hdev, conn, reason); 5331 break; 5332 case BT_OPEN: 5333 case BT_BOUND: 5334 break; 5335 default: 5336 disconnect = true; 5337 break; 5338 } 5339 5340 hci_dev_lock(hdev); 5341 5342 /* Check if the connection has been cleaned up concurrently */ 5343 c = hci_conn_hash_lookup_handle(hdev, handle); 5344 if (!c || c != conn) { 5345 err = 0; 5346 goto unlock; 5347 } 5348 5349 /* Cleanup hci_conn object if it cannot be cancelled as it 5350 * likelly means the controller and host stack are out of sync 5351 * or in case of LE it was still scanning so it can be cleanup 5352 * safely. 5353 */ 5354 if (disconnect) { 5355 conn->state = BT_CLOSED; 5356 hci_disconn_cfm(conn, reason); 5357 hci_conn_del(conn); 5358 } else { 5359 hci_conn_failed(conn, reason); 5360 } 5361 5362 unlock: 5363 hci_dev_unlock(hdev); 5364 return err; 5365 } 5366 5367 static int hci_disconnect_all_sync(struct hci_dev *hdev, u8 reason) 5368 { 5369 struct list_head *head = &hdev->conn_hash.list; 5370 struct hci_conn *conn; 5371 5372 rcu_read_lock(); 5373 while ((conn = list_first_or_null_rcu(head, struct hci_conn, list))) { 5374 /* Make sure the connection is not freed while unlocking */ 5375 conn = hci_conn_get(conn); 5376 rcu_read_unlock(); 5377 /* Disregard possible errors since hci_conn_del shall have been 5378 * called even in case of errors had occurred since it would 5379 * then cause hci_conn_failed to be called which calls 5380 * hci_conn_del internally. 5381 */ 5382 hci_abort_conn_sync(hdev, conn, reason); 5383 hci_conn_put(conn); 5384 rcu_read_lock(); 5385 } 5386 rcu_read_unlock(); 5387 5388 return 0; 5389 } 5390 5391 /* This function perform power off HCI command sequence as follows: 5392 * 5393 * Clear Advertising 5394 * Stop Discovery 5395 * Disconnect all connections 5396 * hci_dev_close_sync 5397 */ 5398 static int hci_power_off_sync(struct hci_dev *hdev) 5399 { 5400 int err; 5401 5402 /* If controller is already down there is nothing to do */ 5403 if (!test_bit(HCI_UP, &hdev->flags)) 5404 return 0; 5405 5406 if (test_bit(HCI_ISCAN, &hdev->flags) || 5407 test_bit(HCI_PSCAN, &hdev->flags)) { 5408 err = hci_write_scan_enable_sync(hdev, 0x00); 5409 if (err) 5410 return err; 5411 } 5412 5413 err = hci_clear_adv_sync(hdev, NULL, false); 5414 if (err) 5415 return err; 5416 5417 err = hci_stop_discovery_sync(hdev); 5418 if (err) 5419 return err; 5420 5421 /* Terminated due to Power Off */ 5422 err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF); 5423 if (err) 5424 return err; 5425 5426 return hci_dev_close_sync(hdev); 5427 } 5428 5429 int hci_set_powered_sync(struct hci_dev *hdev, u8 val) 5430 { 5431 if (val) 5432 return hci_power_on_sync(hdev); 5433 5434 return hci_power_off_sync(hdev); 5435 } 5436 5437 static int hci_write_iac_sync(struct hci_dev *hdev) 5438 { 5439 struct hci_cp_write_current_iac_lap cp; 5440 5441 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 5442 return 0; 5443 5444 memset(&cp, 0, sizeof(cp)); 5445 5446 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { 5447 /* Limited discoverable mode */ 5448 cp.num_iac = min_t(u8, hdev->num_iac, 2); 5449 cp.iac_lap[0] = 0x00; /* LIAC */ 5450 cp.iac_lap[1] = 0x8b; 5451 cp.iac_lap[2] = 0x9e; 5452 cp.iac_lap[3] = 0x33; /* GIAC */ 5453 cp.iac_lap[4] = 0x8b; 5454 cp.iac_lap[5] = 0x9e; 5455 } else { 5456 /* General discoverable mode */ 5457 cp.num_iac = 1; 5458 cp.iac_lap[0] = 0x33; /* GIAC */ 5459 cp.iac_lap[1] = 0x8b; 5460 cp.iac_lap[2] = 0x9e; 5461 } 5462 5463 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CURRENT_IAC_LAP, 5464 (cp.num_iac * 3) + 1, &cp, 5465 HCI_CMD_TIMEOUT); 5466 } 5467 5468 int hci_update_discoverable_sync(struct hci_dev *hdev) 5469 { 5470 int err = 0; 5471 5472 if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 5473 err = hci_write_iac_sync(hdev); 5474 if (err) 5475 return err; 5476 5477 err = hci_update_scan_sync(hdev); 5478 if (err) 5479 return err; 5480 5481 err = hci_update_class_sync(hdev); 5482 if (err) 5483 return err; 5484 } 5485 5486 /* Advertising instances don't use the global discoverable setting, so 5487 * only update AD if advertising was enabled using Set Advertising. 5488 */ 5489 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) { 5490 err = hci_update_adv_data_sync(hdev, 0x00); 5491 if (err) 5492 return err; 5493 5494 /* Discoverable mode affects the local advertising 5495 * address in limited privacy mode. 5496 */ 5497 if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) { 5498 if (ext_adv_capable(hdev)) 5499 err = hci_start_ext_adv_sync(hdev, 0x00); 5500 else 5501 err = hci_enable_advertising_sync(hdev); 5502 } 5503 } 5504 5505 return err; 5506 } 5507 5508 static int update_discoverable_sync(struct hci_dev *hdev, void *data) 5509 { 5510 return hci_update_discoverable_sync(hdev); 5511 } 5512 5513 int hci_update_discoverable(struct hci_dev *hdev) 5514 { 5515 /* Only queue if it would have any effect */ 5516 if (hdev_is_powered(hdev) && 5517 hci_dev_test_flag(hdev, HCI_ADVERTISING) && 5518 hci_dev_test_flag(hdev, HCI_DISCOVERABLE) && 5519 hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) 5520 return hci_cmd_sync_queue(hdev, update_discoverable_sync, NULL, 5521 NULL); 5522 5523 return 0; 5524 } 5525 5526 int hci_update_connectable_sync(struct hci_dev *hdev) 5527 { 5528 int err; 5529 5530 err = hci_update_scan_sync(hdev); 5531 if (err) 5532 return err; 5533 5534 /* If BR/EDR is not enabled and we disable advertising as a 5535 * by-product of disabling connectable, we need to update the 5536 * advertising flags. 5537 */ 5538 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 5539 err = hci_update_adv_data_sync(hdev, hdev->cur_adv_instance); 5540 5541 /* Update the advertising parameters if necessary */ 5542 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 5543 !list_empty(&hdev->adv_instances)) { 5544 if (ext_adv_capable(hdev)) 5545 err = hci_start_ext_adv_sync(hdev, 5546 hdev->cur_adv_instance); 5547 else 5548 err = hci_enable_advertising_sync(hdev); 5549 5550 if (err) 5551 return err; 5552 } 5553 5554 return hci_update_passive_scan_sync(hdev); 5555 } 5556 5557 static int hci_inquiry_sync(struct hci_dev *hdev, u8 length) 5558 { 5559 const u8 giac[3] = { 0x33, 0x8b, 0x9e }; 5560 const u8 liac[3] = { 0x00, 0x8b, 0x9e }; 5561 struct hci_cp_inquiry cp; 5562 5563 bt_dev_dbg(hdev, ""); 5564 5565 if (test_bit(HCI_INQUIRY, &hdev->flags)) 5566 return 0; 5567 5568 hci_dev_lock(hdev); 5569 hci_inquiry_cache_flush(hdev); 5570 hci_dev_unlock(hdev); 5571 5572 memset(&cp, 0, sizeof(cp)); 5573 5574 if (hdev->discovery.limited) 5575 memcpy(&cp.lap, liac, sizeof(cp.lap)); 5576 else 5577 memcpy(&cp.lap, giac, sizeof(cp.lap)); 5578 5579 cp.length = length; 5580 5581 return __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY, 5582 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5583 } 5584 5585 static int hci_active_scan_sync(struct hci_dev *hdev, uint16_t interval) 5586 { 5587 u8 own_addr_type; 5588 /* Accept list is not used for discovery */ 5589 u8 filter_policy = 0x00; 5590 /* Default is to enable duplicates filter */ 5591 u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE; 5592 int err; 5593 5594 bt_dev_dbg(hdev, ""); 5595 5596 /* If controller is scanning, it means the passive scanning is 5597 * running. Thus, we should temporarily stop it in order to set the 5598 * discovery scanning parameters. 5599 */ 5600 err = hci_scan_disable_sync(hdev); 5601 if (err) { 5602 bt_dev_err(hdev, "Unable to disable scanning: %d", err); 5603 return err; 5604 } 5605 5606 cancel_interleave_scan(hdev); 5607 5608 /* Pause address resolution for active scan and stop advertising if 5609 * privacy is enabled. 5610 */ 5611 err = hci_pause_addr_resolution(hdev); 5612 if (err) 5613 goto failed; 5614 5615 /* All active scans will be done with either a resolvable private 5616 * address (when privacy feature has been enabled) or non-resolvable 5617 * private address. 5618 */ 5619 err = hci_update_random_address_sync(hdev, true, scan_use_rpa(hdev), 5620 &own_addr_type); 5621 if (err < 0) 5622 own_addr_type = ADDR_LE_DEV_PUBLIC; 5623 5624 if (hci_is_adv_monitoring(hdev) || 5625 (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) && 5626 hdev->discovery.result_filtering)) { 5627 /* Duplicate filter should be disabled when some advertisement 5628 * monitor is activated, otherwise AdvMon can only receive one 5629 * advertisement for one peer(*) during active scanning, and 5630 * might report loss to these peers. 5631 * 5632 * If controller does strict duplicate filtering and the 5633 * discovery requires result filtering disables controller based 5634 * filtering since that can cause reports that would match the 5635 * host filter to not be reported. 5636 */ 5637 filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 5638 } 5639 5640 err = hci_start_scan_sync(hdev, LE_SCAN_ACTIVE, interval, 5641 hdev->le_scan_window_discovery, 5642 own_addr_type, filter_policy, filter_dup); 5643 if (!err) 5644 return err; 5645 5646 failed: 5647 /* Resume advertising if it was paused */ 5648 if (use_ll_privacy(hdev)) 5649 hci_resume_advertising_sync(hdev); 5650 5651 /* Resume passive scanning */ 5652 hci_update_passive_scan_sync(hdev); 5653 return err; 5654 } 5655 5656 static int hci_start_interleaved_discovery_sync(struct hci_dev *hdev) 5657 { 5658 int err; 5659 5660 bt_dev_dbg(hdev, ""); 5661 5662 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery * 2); 5663 if (err) 5664 return err; 5665 5666 return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN); 5667 } 5668 5669 int hci_start_discovery_sync(struct hci_dev *hdev) 5670 { 5671 unsigned long timeout; 5672 int err; 5673 5674 bt_dev_dbg(hdev, "type %u", hdev->discovery.type); 5675 5676 switch (hdev->discovery.type) { 5677 case DISCOV_TYPE_BREDR: 5678 return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN); 5679 case DISCOV_TYPE_INTERLEAVED: 5680 /* When running simultaneous discovery, the LE scanning time 5681 * should occupy the whole discovery time sine BR/EDR inquiry 5682 * and LE scanning are scheduled by the controller. 5683 * 5684 * For interleaving discovery in comparison, BR/EDR inquiry 5685 * and LE scanning are done sequentially with separate 5686 * timeouts. 5687 */ 5688 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, 5689 &hdev->quirks)) { 5690 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 5691 /* During simultaneous discovery, we double LE scan 5692 * interval. We must leave some time for the controller 5693 * to do BR/EDR inquiry. 5694 */ 5695 err = hci_start_interleaved_discovery_sync(hdev); 5696 break; 5697 } 5698 5699 timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout); 5700 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery); 5701 break; 5702 case DISCOV_TYPE_LE: 5703 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 5704 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery); 5705 break; 5706 default: 5707 return -EINVAL; 5708 } 5709 5710 if (err) 5711 return err; 5712 5713 bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout)); 5714 5715 queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable, 5716 timeout); 5717 return 0; 5718 } 5719 5720 static void hci_suspend_monitor_sync(struct hci_dev *hdev) 5721 { 5722 switch (hci_get_adv_monitor_offload_ext(hdev)) { 5723 case HCI_ADV_MONITOR_EXT_MSFT: 5724 msft_suspend_sync(hdev); 5725 break; 5726 default: 5727 return; 5728 } 5729 } 5730 5731 /* This function disables discovery and mark it as paused */ 5732 static int hci_pause_discovery_sync(struct hci_dev *hdev) 5733 { 5734 int old_state = hdev->discovery.state; 5735 int err; 5736 5737 /* If discovery already stopped/stopping/paused there nothing to do */ 5738 if (old_state == DISCOVERY_STOPPED || old_state == DISCOVERY_STOPPING || 5739 hdev->discovery_paused) 5740 return 0; 5741 5742 hci_discovery_set_state(hdev, DISCOVERY_STOPPING); 5743 err = hci_stop_discovery_sync(hdev); 5744 if (err) 5745 return err; 5746 5747 hdev->discovery_paused = true; 5748 hdev->discovery_old_state = old_state; 5749 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 5750 5751 return 0; 5752 } 5753 5754 static int hci_update_event_filter_sync(struct hci_dev *hdev) 5755 { 5756 struct bdaddr_list_with_flags *b; 5757 u8 scan = SCAN_DISABLED; 5758 bool scanning = test_bit(HCI_PSCAN, &hdev->flags); 5759 int err; 5760 5761 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 5762 return 0; 5763 5764 /* Some fake CSR controllers lock up after setting this type of 5765 * filter, so avoid sending the request altogether. 5766 */ 5767 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 5768 return 0; 5769 5770 /* Always clear event filter when starting */ 5771 hci_clear_event_filter_sync(hdev); 5772 5773 list_for_each_entry(b, &hdev->accept_list, list) { 5774 if (!(b->flags & HCI_CONN_FLAG_REMOTE_WAKEUP)) 5775 continue; 5776 5777 bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr); 5778 5779 err = hci_set_event_filter_sync(hdev, HCI_FLT_CONN_SETUP, 5780 HCI_CONN_SETUP_ALLOW_BDADDR, 5781 &b->bdaddr, 5782 HCI_CONN_SETUP_AUTO_ON); 5783 if (err) 5784 bt_dev_dbg(hdev, "Failed to set event filter for %pMR", 5785 &b->bdaddr); 5786 else 5787 scan = SCAN_PAGE; 5788 } 5789 5790 if (scan && !scanning) 5791 hci_write_scan_enable_sync(hdev, scan); 5792 else if (!scan && scanning) 5793 hci_write_scan_enable_sync(hdev, scan); 5794 5795 return 0; 5796 } 5797 5798 /* This function disables scan (BR and LE) and mark it as paused */ 5799 static int hci_pause_scan_sync(struct hci_dev *hdev) 5800 { 5801 if (hdev->scanning_paused) 5802 return 0; 5803 5804 /* Disable page scan if enabled */ 5805 if (test_bit(HCI_PSCAN, &hdev->flags)) 5806 hci_write_scan_enable_sync(hdev, SCAN_DISABLED); 5807 5808 hci_scan_disable_sync(hdev); 5809 5810 hdev->scanning_paused = true; 5811 5812 return 0; 5813 } 5814 5815 /* This function performs the HCI suspend procedures in the follow order: 5816 * 5817 * Pause discovery (active scanning/inquiry) 5818 * Pause Directed Advertising/Advertising 5819 * Pause Scanning (passive scanning in case discovery was not active) 5820 * Disconnect all connections 5821 * Set suspend_status to BT_SUSPEND_DISCONNECT if hdev cannot wakeup 5822 * otherwise: 5823 * Update event mask (only set events that are allowed to wake up the host) 5824 * Update event filter (with devices marked with HCI_CONN_FLAG_REMOTE_WAKEUP) 5825 * Update passive scanning (lower duty cycle) 5826 * Set suspend_status to BT_SUSPEND_CONFIGURE_WAKE 5827 */ 5828 int hci_suspend_sync(struct hci_dev *hdev) 5829 { 5830 int err; 5831 5832 /* If marked as suspended there nothing to do */ 5833 if (hdev->suspended) 5834 return 0; 5835 5836 /* Mark device as suspended */ 5837 hdev->suspended = true; 5838 5839 /* Pause discovery if not already stopped */ 5840 hci_pause_discovery_sync(hdev); 5841 5842 /* Pause other advertisements */ 5843 hci_pause_advertising_sync(hdev); 5844 5845 /* Suspend monitor filters */ 5846 hci_suspend_monitor_sync(hdev); 5847 5848 /* Prevent disconnects from causing scanning to be re-enabled */ 5849 hci_pause_scan_sync(hdev); 5850 5851 if (hci_conn_count(hdev)) { 5852 /* Soft disconnect everything (power off) */ 5853 err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF); 5854 if (err) { 5855 /* Set state to BT_RUNNING so resume doesn't notify */ 5856 hdev->suspend_state = BT_RUNNING; 5857 hci_resume_sync(hdev); 5858 return err; 5859 } 5860 5861 /* Update event mask so only the allowed event can wakeup the 5862 * host. 5863 */ 5864 hci_set_event_mask_sync(hdev); 5865 } 5866 5867 /* Only configure accept list if disconnect succeeded and wake 5868 * isn't being prevented. 5869 */ 5870 if (!hdev->wakeup || !hdev->wakeup(hdev)) { 5871 hdev->suspend_state = BT_SUSPEND_DISCONNECT; 5872 return 0; 5873 } 5874 5875 /* Unpause to take care of updating scanning params */ 5876 hdev->scanning_paused = false; 5877 5878 /* Enable event filter for paired devices */ 5879 hci_update_event_filter_sync(hdev); 5880 5881 /* Update LE passive scan if enabled */ 5882 hci_update_passive_scan_sync(hdev); 5883 5884 /* Pause scan changes again. */ 5885 hdev->scanning_paused = true; 5886 5887 hdev->suspend_state = BT_SUSPEND_CONFIGURE_WAKE; 5888 5889 return 0; 5890 } 5891 5892 /* This function resumes discovery */ 5893 static int hci_resume_discovery_sync(struct hci_dev *hdev) 5894 { 5895 int err; 5896 5897 /* If discovery not paused there nothing to do */ 5898 if (!hdev->discovery_paused) 5899 return 0; 5900 5901 hdev->discovery_paused = false; 5902 5903 hci_discovery_set_state(hdev, DISCOVERY_STARTING); 5904 5905 err = hci_start_discovery_sync(hdev); 5906 5907 hci_discovery_set_state(hdev, err ? DISCOVERY_STOPPED : 5908 DISCOVERY_FINDING); 5909 5910 return err; 5911 } 5912 5913 static void hci_resume_monitor_sync(struct hci_dev *hdev) 5914 { 5915 switch (hci_get_adv_monitor_offload_ext(hdev)) { 5916 case HCI_ADV_MONITOR_EXT_MSFT: 5917 msft_resume_sync(hdev); 5918 break; 5919 default: 5920 return; 5921 } 5922 } 5923 5924 /* This function resume scan and reset paused flag */ 5925 static int hci_resume_scan_sync(struct hci_dev *hdev) 5926 { 5927 if (!hdev->scanning_paused) 5928 return 0; 5929 5930 hdev->scanning_paused = false; 5931 5932 hci_update_scan_sync(hdev); 5933 5934 /* Reset passive scanning to normal */ 5935 hci_update_passive_scan_sync(hdev); 5936 5937 return 0; 5938 } 5939 5940 /* This function performs the HCI suspend procedures in the follow order: 5941 * 5942 * Restore event mask 5943 * Clear event filter 5944 * Update passive scanning (normal duty cycle) 5945 * Resume Directed Advertising/Advertising 5946 * Resume discovery (active scanning/inquiry) 5947 */ 5948 int hci_resume_sync(struct hci_dev *hdev) 5949 { 5950 /* If not marked as suspended there nothing to do */ 5951 if (!hdev->suspended) 5952 return 0; 5953 5954 hdev->suspended = false; 5955 5956 /* Restore event mask */ 5957 hci_set_event_mask_sync(hdev); 5958 5959 /* Clear any event filters and restore scan state */ 5960 hci_clear_event_filter_sync(hdev); 5961 5962 /* Resume scanning */ 5963 hci_resume_scan_sync(hdev); 5964 5965 /* Resume monitor filters */ 5966 hci_resume_monitor_sync(hdev); 5967 5968 /* Resume other advertisements */ 5969 hci_resume_advertising_sync(hdev); 5970 5971 /* Resume discovery */ 5972 hci_resume_discovery_sync(hdev); 5973 5974 return 0; 5975 } 5976 5977 static bool conn_use_rpa(struct hci_conn *conn) 5978 { 5979 struct hci_dev *hdev = conn->hdev; 5980 5981 return hci_dev_test_flag(hdev, HCI_PRIVACY); 5982 } 5983 5984 static int hci_le_ext_directed_advertising_sync(struct hci_dev *hdev, 5985 struct hci_conn *conn) 5986 { 5987 struct hci_cp_le_set_ext_adv_params cp; 5988 int err; 5989 bdaddr_t random_addr; 5990 u8 own_addr_type; 5991 5992 err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 5993 &own_addr_type); 5994 if (err) 5995 return err; 5996 5997 /* Set require_privacy to false so that the remote device has a 5998 * chance of identifying us. 5999 */ 6000 err = hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL, 6001 &own_addr_type, &random_addr); 6002 if (err) 6003 return err; 6004 6005 memset(&cp, 0, sizeof(cp)); 6006 6007 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND); 6008 cp.channel_map = hdev->le_adv_channel_map; 6009 cp.tx_power = HCI_TX_POWER_INVALID; 6010 cp.primary_phy = HCI_ADV_PHY_1M; 6011 cp.secondary_phy = HCI_ADV_PHY_1M; 6012 cp.handle = 0x00; /* Use instance 0 for directed adv */ 6013 cp.own_addr_type = own_addr_type; 6014 cp.peer_addr_type = conn->dst_type; 6015 bacpy(&cp.peer_addr, &conn->dst); 6016 6017 /* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for 6018 * advertising_event_property LE_LEGACY_ADV_DIRECT_IND 6019 * does not supports advertising data when the advertising set already 6020 * contains some, the controller shall return erroc code 'Invalid 6021 * HCI Command Parameters(0x12). 6022 * So it is required to remove adv set for handle 0x00. since we use 6023 * instance 0 for directed adv. 6024 */ 6025 err = hci_remove_ext_adv_instance_sync(hdev, cp.handle, NULL); 6026 if (err) 6027 return err; 6028 6029 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS, 6030 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6031 if (err) 6032 return err; 6033 6034 /* Check if random address need to be updated */ 6035 if (own_addr_type == ADDR_LE_DEV_RANDOM && 6036 bacmp(&random_addr, BDADDR_ANY) && 6037 bacmp(&random_addr, &hdev->random_addr)) { 6038 err = hci_set_adv_set_random_addr_sync(hdev, 0x00, 6039 &random_addr); 6040 if (err) 6041 return err; 6042 } 6043 6044 return hci_enable_ext_advertising_sync(hdev, 0x00); 6045 } 6046 6047 static int hci_le_directed_advertising_sync(struct hci_dev *hdev, 6048 struct hci_conn *conn) 6049 { 6050 struct hci_cp_le_set_adv_param cp; 6051 u8 status; 6052 u8 own_addr_type; 6053 u8 enable; 6054 6055 if (ext_adv_capable(hdev)) 6056 return hci_le_ext_directed_advertising_sync(hdev, conn); 6057 6058 /* Clear the HCI_LE_ADV bit temporarily so that the 6059 * hci_update_random_address knows that it's safe to go ahead 6060 * and write a new random address. The flag will be set back on 6061 * as soon as the SET_ADV_ENABLE HCI command completes. 6062 */ 6063 hci_dev_clear_flag(hdev, HCI_LE_ADV); 6064 6065 /* Set require_privacy to false so that the remote device has a 6066 * chance of identifying us. 6067 */ 6068 status = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 6069 &own_addr_type); 6070 if (status) 6071 return status; 6072 6073 memset(&cp, 0, sizeof(cp)); 6074 6075 /* Some controllers might reject command if intervals are not 6076 * within range for undirected advertising. 6077 * BCM20702A0 is known to be affected by this. 6078 */ 6079 cp.min_interval = cpu_to_le16(0x0020); 6080 cp.max_interval = cpu_to_le16(0x0020); 6081 6082 cp.type = LE_ADV_DIRECT_IND; 6083 cp.own_address_type = own_addr_type; 6084 cp.direct_addr_type = conn->dst_type; 6085 bacpy(&cp.direct_addr, &conn->dst); 6086 cp.channel_map = hdev->le_adv_channel_map; 6087 6088 status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM, 6089 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6090 if (status) 6091 return status; 6092 6093 enable = 0x01; 6094 6095 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 6096 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 6097 } 6098 6099 static void set_ext_conn_params(struct hci_conn *conn, 6100 struct hci_cp_le_ext_conn_param *p) 6101 { 6102 struct hci_dev *hdev = conn->hdev; 6103 6104 memset(p, 0, sizeof(*p)); 6105 6106 p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect); 6107 p->scan_window = cpu_to_le16(hdev->le_scan_window_connect); 6108 p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 6109 p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 6110 p->conn_latency = cpu_to_le16(conn->le_conn_latency); 6111 p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 6112 p->min_ce_len = cpu_to_le16(0x0000); 6113 p->max_ce_len = cpu_to_le16(0x0000); 6114 } 6115 6116 static int hci_le_ext_create_conn_sync(struct hci_dev *hdev, 6117 struct hci_conn *conn, u8 own_addr_type) 6118 { 6119 struct hci_cp_le_ext_create_conn *cp; 6120 struct hci_cp_le_ext_conn_param *p; 6121 u8 data[sizeof(*cp) + sizeof(*p) * 3]; 6122 u32 plen; 6123 6124 cp = (void *)data; 6125 p = (void *)cp->data; 6126 6127 memset(cp, 0, sizeof(*cp)); 6128 6129 bacpy(&cp->peer_addr, &conn->dst); 6130 cp->peer_addr_type = conn->dst_type; 6131 cp->own_addr_type = own_addr_type; 6132 6133 plen = sizeof(*cp); 6134 6135 if (scan_1m(hdev)) { 6136 cp->phys |= LE_SCAN_PHY_1M; 6137 set_ext_conn_params(conn, p); 6138 6139 p++; 6140 plen += sizeof(*p); 6141 } 6142 6143 if (scan_2m(hdev)) { 6144 cp->phys |= LE_SCAN_PHY_2M; 6145 set_ext_conn_params(conn, p); 6146 6147 p++; 6148 plen += sizeof(*p); 6149 } 6150 6151 if (scan_coded(hdev)) { 6152 cp->phys |= LE_SCAN_PHY_CODED; 6153 set_ext_conn_params(conn, p); 6154 6155 plen += sizeof(*p); 6156 } 6157 6158 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_EXT_CREATE_CONN, 6159 plen, data, 6160 HCI_EV_LE_ENHANCED_CONN_COMPLETE, 6161 conn->conn_timeout, NULL); 6162 } 6163 6164 int hci_le_create_conn_sync(struct hci_dev *hdev, struct hci_conn *conn) 6165 { 6166 struct hci_cp_le_create_conn cp; 6167 struct hci_conn_params *params; 6168 u8 own_addr_type; 6169 int err; 6170 6171 /* If requested to connect as peripheral use directed advertising */ 6172 if (conn->role == HCI_ROLE_SLAVE) { 6173 /* If we're active scanning and simultaneous roles is not 6174 * enabled simply reject the attempt. 6175 */ 6176 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) && 6177 hdev->le_scan_type == LE_SCAN_ACTIVE && 6178 !hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) { 6179 hci_conn_del(conn); 6180 return -EBUSY; 6181 } 6182 6183 /* Pause advertising while doing directed advertising. */ 6184 hci_pause_advertising_sync(hdev); 6185 6186 err = hci_le_directed_advertising_sync(hdev, conn); 6187 goto done; 6188 } 6189 6190 /* Disable advertising if simultaneous roles is not in use. */ 6191 if (!hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) 6192 hci_pause_advertising_sync(hdev); 6193 6194 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); 6195 if (params) { 6196 conn->le_conn_min_interval = params->conn_min_interval; 6197 conn->le_conn_max_interval = params->conn_max_interval; 6198 conn->le_conn_latency = params->conn_latency; 6199 conn->le_supv_timeout = params->supervision_timeout; 6200 } else { 6201 conn->le_conn_min_interval = hdev->le_conn_min_interval; 6202 conn->le_conn_max_interval = hdev->le_conn_max_interval; 6203 conn->le_conn_latency = hdev->le_conn_latency; 6204 conn->le_supv_timeout = hdev->le_supv_timeout; 6205 } 6206 6207 /* If controller is scanning, we stop it since some controllers are 6208 * not able to scan and connect at the same time. Also set the 6209 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete 6210 * handler for scan disabling knows to set the correct discovery 6211 * state. 6212 */ 6213 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 6214 hci_scan_disable_sync(hdev); 6215 hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED); 6216 } 6217 6218 /* Update random address, but set require_privacy to false so 6219 * that we never connect with an non-resolvable address. 6220 */ 6221 err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 6222 &own_addr_type); 6223 if (err) 6224 goto done; 6225 6226 if (use_ext_conn(hdev)) { 6227 err = hci_le_ext_create_conn_sync(hdev, conn, own_addr_type); 6228 goto done; 6229 } 6230 6231 memset(&cp, 0, sizeof(cp)); 6232 6233 cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect); 6234 cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect); 6235 6236 bacpy(&cp.peer_addr, &conn->dst); 6237 cp.peer_addr_type = conn->dst_type; 6238 cp.own_address_type = own_addr_type; 6239 cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 6240 cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 6241 cp.conn_latency = cpu_to_le16(conn->le_conn_latency); 6242 cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 6243 cp.min_ce_len = cpu_to_le16(0x0000); 6244 cp.max_ce_len = cpu_to_le16(0x0000); 6245 6246 /* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E page 2261: 6247 * 6248 * If this event is unmasked and the HCI_LE_Connection_Complete event 6249 * is unmasked, only the HCI_LE_Enhanced_Connection_Complete event is 6250 * sent when a new connection has been created. 6251 */ 6252 err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CONN, 6253 sizeof(cp), &cp, 6254 use_enhanced_conn_complete(hdev) ? 6255 HCI_EV_LE_ENHANCED_CONN_COMPLETE : 6256 HCI_EV_LE_CONN_COMPLETE, 6257 conn->conn_timeout, NULL); 6258 6259 done: 6260 if (err == -ETIMEDOUT) 6261 hci_le_connect_cancel_sync(hdev, conn, 0x00); 6262 6263 /* Re-enable advertising after the connection attempt is finished. */ 6264 hci_resume_advertising_sync(hdev); 6265 return err; 6266 } 6267 6268 int hci_le_create_cis_sync(struct hci_dev *hdev) 6269 { 6270 struct { 6271 struct hci_cp_le_create_cis cp; 6272 struct hci_cis cis[0x1f]; 6273 } cmd; 6274 struct hci_conn *conn; 6275 u8 cig = BT_ISO_QOS_CIG_UNSET; 6276 6277 /* The spec allows only one pending LE Create CIS command at a time. If 6278 * the command is pending now, don't do anything. We check for pending 6279 * connections after each CIS Established event. 6280 * 6281 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E 6282 * page 2566: 6283 * 6284 * If the Host issues this command before all the 6285 * HCI_LE_CIS_Established events from the previous use of the 6286 * command have been generated, the Controller shall return the 6287 * error code Command Disallowed (0x0C). 6288 * 6289 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E 6290 * page 2567: 6291 * 6292 * When the Controller receives the HCI_LE_Create_CIS command, the 6293 * Controller sends the HCI_Command_Status event to the Host. An 6294 * HCI_LE_CIS_Established event will be generated for each CIS when it 6295 * is established or if it is disconnected or considered lost before 6296 * being established; until all the events are generated, the command 6297 * remains pending. 6298 */ 6299 6300 memset(&cmd, 0, sizeof(cmd)); 6301 6302 hci_dev_lock(hdev); 6303 6304 rcu_read_lock(); 6305 6306 /* Wait until previous Create CIS has completed */ 6307 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) { 6308 if (test_bit(HCI_CONN_CREATE_CIS, &conn->flags)) 6309 goto done; 6310 } 6311 6312 /* Find CIG with all CIS ready */ 6313 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) { 6314 struct hci_conn *link; 6315 6316 if (hci_conn_check_create_cis(conn)) 6317 continue; 6318 6319 cig = conn->iso_qos.ucast.cig; 6320 6321 list_for_each_entry_rcu(link, &hdev->conn_hash.list, list) { 6322 if (hci_conn_check_create_cis(link) > 0 && 6323 link->iso_qos.ucast.cig == cig && 6324 link->state != BT_CONNECTED) { 6325 cig = BT_ISO_QOS_CIG_UNSET; 6326 break; 6327 } 6328 } 6329 6330 if (cig != BT_ISO_QOS_CIG_UNSET) 6331 break; 6332 } 6333 6334 if (cig == BT_ISO_QOS_CIG_UNSET) 6335 goto done; 6336 6337 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) { 6338 struct hci_cis *cis = &cmd.cis[cmd.cp.num_cis]; 6339 6340 if (hci_conn_check_create_cis(conn) || 6341 conn->iso_qos.ucast.cig != cig) 6342 continue; 6343 6344 set_bit(HCI_CONN_CREATE_CIS, &conn->flags); 6345 cis->acl_handle = cpu_to_le16(conn->parent->handle); 6346 cis->cis_handle = cpu_to_le16(conn->handle); 6347 cmd.cp.num_cis++; 6348 6349 if (cmd.cp.num_cis >= ARRAY_SIZE(cmd.cis)) 6350 break; 6351 } 6352 6353 done: 6354 rcu_read_unlock(); 6355 6356 hci_dev_unlock(hdev); 6357 6358 if (!cmd.cp.num_cis) 6359 return 0; 6360 6361 /* Wait for HCI_LE_CIS_Established */ 6362 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CIS, 6363 sizeof(cmd.cp) + sizeof(cmd.cis[0]) * 6364 cmd.cp.num_cis, &cmd, 6365 HCI_EVT_LE_CIS_ESTABLISHED, 6366 conn->conn_timeout, NULL); 6367 } 6368 6369 int hci_le_remove_cig_sync(struct hci_dev *hdev, u8 handle) 6370 { 6371 struct hci_cp_le_remove_cig cp; 6372 6373 memset(&cp, 0, sizeof(cp)); 6374 cp.cig_id = handle; 6375 6376 return __hci_cmd_sync_status(hdev, HCI_OP_LE_REMOVE_CIG, sizeof(cp), 6377 &cp, HCI_CMD_TIMEOUT); 6378 } 6379 6380 int hci_le_big_terminate_sync(struct hci_dev *hdev, u8 handle) 6381 { 6382 struct hci_cp_le_big_term_sync cp; 6383 6384 memset(&cp, 0, sizeof(cp)); 6385 cp.handle = handle; 6386 6387 return __hci_cmd_sync_status(hdev, HCI_OP_LE_BIG_TERM_SYNC, 6388 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6389 } 6390 6391 int hci_le_pa_terminate_sync(struct hci_dev *hdev, u16 handle) 6392 { 6393 struct hci_cp_le_pa_term_sync cp; 6394 6395 memset(&cp, 0, sizeof(cp)); 6396 cp.handle = cpu_to_le16(handle); 6397 6398 return __hci_cmd_sync_status(hdev, HCI_OP_LE_PA_TERM_SYNC, 6399 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6400 } 6401 6402 int hci_get_random_address(struct hci_dev *hdev, bool require_privacy, 6403 bool use_rpa, struct adv_info *adv_instance, 6404 u8 *own_addr_type, bdaddr_t *rand_addr) 6405 { 6406 int err; 6407 6408 bacpy(rand_addr, BDADDR_ANY); 6409 6410 /* If privacy is enabled use a resolvable private address. If 6411 * current RPA has expired then generate a new one. 6412 */ 6413 if (use_rpa) { 6414 /* If Controller supports LL Privacy use own address type is 6415 * 0x03 6416 */ 6417 if (use_ll_privacy(hdev)) 6418 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED; 6419 else 6420 *own_addr_type = ADDR_LE_DEV_RANDOM; 6421 6422 if (adv_instance) { 6423 if (adv_rpa_valid(adv_instance)) 6424 return 0; 6425 } else { 6426 if (rpa_valid(hdev)) 6427 return 0; 6428 } 6429 6430 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); 6431 if (err < 0) { 6432 bt_dev_err(hdev, "failed to generate new RPA"); 6433 return err; 6434 } 6435 6436 bacpy(rand_addr, &hdev->rpa); 6437 6438 return 0; 6439 } 6440 6441 /* In case of required privacy without resolvable private address, 6442 * use an non-resolvable private address. This is useful for 6443 * non-connectable advertising. 6444 */ 6445 if (require_privacy) { 6446 bdaddr_t nrpa; 6447 6448 while (true) { 6449 /* The non-resolvable private address is generated 6450 * from random six bytes with the two most significant 6451 * bits cleared. 6452 */ 6453 get_random_bytes(&nrpa, 6); 6454 nrpa.b[5] &= 0x3f; 6455 6456 /* The non-resolvable private address shall not be 6457 * equal to the public address. 6458 */ 6459 if (bacmp(&hdev->bdaddr, &nrpa)) 6460 break; 6461 } 6462 6463 *own_addr_type = ADDR_LE_DEV_RANDOM; 6464 bacpy(rand_addr, &nrpa); 6465 6466 return 0; 6467 } 6468 6469 /* No privacy so use a public address. */ 6470 *own_addr_type = ADDR_LE_DEV_PUBLIC; 6471 6472 return 0; 6473 } 6474 6475 static int _update_adv_data_sync(struct hci_dev *hdev, void *data) 6476 { 6477 u8 instance = PTR_UINT(data); 6478 6479 return hci_update_adv_data_sync(hdev, instance); 6480 } 6481 6482 int hci_update_adv_data(struct hci_dev *hdev, u8 instance) 6483 { 6484 return hci_cmd_sync_queue(hdev, _update_adv_data_sync, 6485 UINT_PTR(instance), NULL); 6486 } 6487