1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * BlueZ - Bluetooth protocol stack for Linux 4 * 5 * Copyright (C) 2021 Intel Corporation 6 */ 7 8 #include <linux/property.h> 9 10 #include <net/bluetooth/bluetooth.h> 11 #include <net/bluetooth/hci_core.h> 12 #include <net/bluetooth/mgmt.h> 13 14 #include "hci_request.h" 15 #include "hci_codec.h" 16 #include "hci_debugfs.h" 17 #include "smp.h" 18 #include "eir.h" 19 #include "msft.h" 20 #include "aosp.h" 21 #include "leds.h" 22 23 static void hci_cmd_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode, 24 struct sk_buff *skb) 25 { 26 bt_dev_dbg(hdev, "result 0x%2.2x", result); 27 28 if (hdev->req_status != HCI_REQ_PEND) 29 return; 30 31 hdev->req_result = result; 32 hdev->req_status = HCI_REQ_DONE; 33 34 if (skb) { 35 struct sock *sk = hci_skb_sk(skb); 36 37 /* Drop sk reference if set */ 38 if (sk) 39 sock_put(sk); 40 41 hdev->req_skb = skb_get(skb); 42 } 43 44 wake_up_interruptible(&hdev->req_wait_q); 45 } 46 47 static struct sk_buff *hci_cmd_sync_alloc(struct hci_dev *hdev, u16 opcode, 48 u32 plen, const void *param, 49 struct sock *sk) 50 { 51 int len = HCI_COMMAND_HDR_SIZE + plen; 52 struct hci_command_hdr *hdr; 53 struct sk_buff *skb; 54 55 skb = bt_skb_alloc(len, GFP_ATOMIC); 56 if (!skb) 57 return NULL; 58 59 hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE); 60 hdr->opcode = cpu_to_le16(opcode); 61 hdr->plen = plen; 62 63 if (plen) 64 skb_put_data(skb, param, plen); 65 66 bt_dev_dbg(hdev, "skb len %d", skb->len); 67 68 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; 69 hci_skb_opcode(skb) = opcode; 70 71 /* Grab a reference if command needs to be associated with a sock (e.g. 72 * likely mgmt socket that initiated the command). 73 */ 74 if (sk) { 75 hci_skb_sk(skb) = sk; 76 sock_hold(sk); 77 } 78 79 return skb; 80 } 81 82 static void hci_cmd_sync_add(struct hci_request *req, u16 opcode, u32 plen, 83 const void *param, u8 event, struct sock *sk) 84 { 85 struct hci_dev *hdev = req->hdev; 86 struct sk_buff *skb; 87 88 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); 89 90 /* If an error occurred during request building, there is no point in 91 * queueing the HCI command. We can simply return. 92 */ 93 if (req->err) 94 return; 95 96 skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, sk); 97 if (!skb) { 98 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)", 99 opcode); 100 req->err = -ENOMEM; 101 return; 102 } 103 104 if (skb_queue_empty(&req->cmd_q)) 105 bt_cb(skb)->hci.req_flags |= HCI_REQ_START; 106 107 hci_skb_event(skb) = event; 108 109 skb_queue_tail(&req->cmd_q, skb); 110 } 111 112 static int hci_cmd_sync_run(struct hci_request *req) 113 { 114 struct hci_dev *hdev = req->hdev; 115 struct sk_buff *skb; 116 unsigned long flags; 117 118 bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q)); 119 120 /* If an error occurred during request building, remove all HCI 121 * commands queued on the HCI request queue. 122 */ 123 if (req->err) { 124 skb_queue_purge(&req->cmd_q); 125 return req->err; 126 } 127 128 /* Do not allow empty requests */ 129 if (skb_queue_empty(&req->cmd_q)) 130 return -ENODATA; 131 132 skb = skb_peek_tail(&req->cmd_q); 133 bt_cb(skb)->hci.req_complete_skb = hci_cmd_sync_complete; 134 bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB; 135 136 spin_lock_irqsave(&hdev->cmd_q.lock, flags); 137 skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q); 138 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); 139 140 queue_work(hdev->workqueue, &hdev->cmd_work); 141 142 return 0; 143 } 144 145 /* This function requires the caller holds hdev->req_lock. */ 146 struct sk_buff *__hci_cmd_sync_sk(struct hci_dev *hdev, u16 opcode, u32 plen, 147 const void *param, u8 event, u32 timeout, 148 struct sock *sk) 149 { 150 struct hci_request req; 151 struct sk_buff *skb; 152 int err = 0; 153 154 bt_dev_dbg(hdev, "Opcode 0x%4x", opcode); 155 156 hci_req_init(&req, hdev); 157 158 hci_cmd_sync_add(&req, opcode, plen, param, event, sk); 159 160 hdev->req_status = HCI_REQ_PEND; 161 162 err = hci_cmd_sync_run(&req); 163 if (err < 0) 164 return ERR_PTR(err); 165 166 err = wait_event_interruptible_timeout(hdev->req_wait_q, 167 hdev->req_status != HCI_REQ_PEND, 168 timeout); 169 170 if (err == -ERESTARTSYS) 171 return ERR_PTR(-EINTR); 172 173 switch (hdev->req_status) { 174 case HCI_REQ_DONE: 175 err = -bt_to_errno(hdev->req_result); 176 break; 177 178 case HCI_REQ_CANCELED: 179 err = -hdev->req_result; 180 break; 181 182 default: 183 err = -ETIMEDOUT; 184 break; 185 } 186 187 hdev->req_status = 0; 188 hdev->req_result = 0; 189 skb = hdev->req_skb; 190 hdev->req_skb = NULL; 191 192 bt_dev_dbg(hdev, "end: err %d", err); 193 194 if (err < 0) { 195 kfree_skb(skb); 196 return ERR_PTR(err); 197 } 198 199 return skb; 200 } 201 EXPORT_SYMBOL(__hci_cmd_sync_sk); 202 203 /* This function requires the caller holds hdev->req_lock. */ 204 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 205 const void *param, u32 timeout) 206 { 207 return __hci_cmd_sync_sk(hdev, opcode, plen, param, 0, timeout, NULL); 208 } 209 EXPORT_SYMBOL(__hci_cmd_sync); 210 211 /* Send HCI command and wait for command complete event */ 212 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 213 const void *param, u32 timeout) 214 { 215 struct sk_buff *skb; 216 217 if (!test_bit(HCI_UP, &hdev->flags)) 218 return ERR_PTR(-ENETDOWN); 219 220 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); 221 222 hci_req_sync_lock(hdev); 223 skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout); 224 hci_req_sync_unlock(hdev); 225 226 return skb; 227 } 228 EXPORT_SYMBOL(hci_cmd_sync); 229 230 /* This function requires the caller holds hdev->req_lock. */ 231 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen, 232 const void *param, u8 event, u32 timeout) 233 { 234 return __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, 235 NULL); 236 } 237 EXPORT_SYMBOL(__hci_cmd_sync_ev); 238 239 /* This function requires the caller holds hdev->req_lock. */ 240 int __hci_cmd_sync_status_sk(struct hci_dev *hdev, u16 opcode, u32 plen, 241 const void *param, u8 event, u32 timeout, 242 struct sock *sk) 243 { 244 struct sk_buff *skb; 245 u8 status; 246 247 skb = __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, sk); 248 if (IS_ERR(skb)) { 249 if (!event) 250 bt_dev_err(hdev, "Opcode 0x%4x failed: %ld", opcode, 251 PTR_ERR(skb)); 252 return PTR_ERR(skb); 253 } 254 255 /* If command return a status event skb will be set to NULL as there are 256 * no parameters, in case of failure IS_ERR(skb) would have be set to 257 * the actual error would be found with PTR_ERR(skb). 258 */ 259 if (!skb) 260 return 0; 261 262 status = skb->data[0]; 263 264 kfree_skb(skb); 265 266 return status; 267 } 268 EXPORT_SYMBOL(__hci_cmd_sync_status_sk); 269 270 int __hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen, 271 const void *param, u32 timeout) 272 { 273 return __hci_cmd_sync_status_sk(hdev, opcode, plen, param, 0, timeout, 274 NULL); 275 } 276 EXPORT_SYMBOL(__hci_cmd_sync_status); 277 278 static void hci_cmd_sync_work(struct work_struct *work) 279 { 280 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_work); 281 282 bt_dev_dbg(hdev, ""); 283 284 /* Dequeue all entries and run them */ 285 while (1) { 286 struct hci_cmd_sync_work_entry *entry; 287 288 mutex_lock(&hdev->cmd_sync_work_lock); 289 entry = list_first_entry_or_null(&hdev->cmd_sync_work_list, 290 struct hci_cmd_sync_work_entry, 291 list); 292 if (entry) 293 list_del(&entry->list); 294 mutex_unlock(&hdev->cmd_sync_work_lock); 295 296 if (!entry) 297 break; 298 299 bt_dev_dbg(hdev, "entry %p", entry); 300 301 if (entry->func) { 302 int err; 303 304 hci_req_sync_lock(hdev); 305 err = entry->func(hdev, entry->data); 306 if (entry->destroy) 307 entry->destroy(hdev, entry->data, err); 308 hci_req_sync_unlock(hdev); 309 } 310 311 kfree(entry); 312 } 313 } 314 315 static void hci_cmd_sync_cancel_work(struct work_struct *work) 316 { 317 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_cancel_work); 318 319 cancel_delayed_work_sync(&hdev->cmd_timer); 320 cancel_delayed_work_sync(&hdev->ncmd_timer); 321 atomic_set(&hdev->cmd_cnt, 1); 322 323 wake_up_interruptible(&hdev->req_wait_q); 324 } 325 326 static int hci_scan_disable_sync(struct hci_dev *hdev); 327 static int scan_disable_sync(struct hci_dev *hdev, void *data) 328 { 329 return hci_scan_disable_sync(hdev); 330 } 331 332 static int hci_inquiry_sync(struct hci_dev *hdev, u8 length); 333 static int interleaved_inquiry_sync(struct hci_dev *hdev, void *data) 334 { 335 return hci_inquiry_sync(hdev, DISCOV_INTERLEAVED_INQUIRY_LEN); 336 } 337 338 static void le_scan_disable(struct work_struct *work) 339 { 340 struct hci_dev *hdev = container_of(work, struct hci_dev, 341 le_scan_disable.work); 342 int status; 343 344 bt_dev_dbg(hdev, ""); 345 hci_dev_lock(hdev); 346 347 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 348 goto _return; 349 350 cancel_delayed_work(&hdev->le_scan_restart); 351 352 status = hci_cmd_sync_queue(hdev, scan_disable_sync, NULL, NULL); 353 if (status) { 354 bt_dev_err(hdev, "failed to disable LE scan: %d", status); 355 goto _return; 356 } 357 358 hdev->discovery.scan_start = 0; 359 360 /* If we were running LE only scan, change discovery state. If 361 * we were running both LE and BR/EDR inquiry simultaneously, 362 * and BR/EDR inquiry is already finished, stop discovery, 363 * otherwise BR/EDR inquiry will stop discovery when finished. 364 * If we will resolve remote device name, do not change 365 * discovery state. 366 */ 367 368 if (hdev->discovery.type == DISCOV_TYPE_LE) 369 goto discov_stopped; 370 371 if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED) 372 goto _return; 373 374 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) { 375 if (!test_bit(HCI_INQUIRY, &hdev->flags) && 376 hdev->discovery.state != DISCOVERY_RESOLVING) 377 goto discov_stopped; 378 379 goto _return; 380 } 381 382 status = hci_cmd_sync_queue(hdev, interleaved_inquiry_sync, NULL, NULL); 383 if (status) { 384 bt_dev_err(hdev, "inquiry failed: status %d", status); 385 goto discov_stopped; 386 } 387 388 goto _return; 389 390 discov_stopped: 391 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 392 393 _return: 394 hci_dev_unlock(hdev); 395 } 396 397 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val, 398 u8 filter_dup); 399 static int hci_le_scan_restart_sync(struct hci_dev *hdev) 400 { 401 /* If controller is not scanning we are done. */ 402 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 403 return 0; 404 405 if (hdev->scanning_paused) { 406 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 407 return 0; 408 } 409 410 hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00); 411 return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, 412 LE_SCAN_FILTER_DUP_ENABLE); 413 } 414 415 static int le_scan_restart_sync(struct hci_dev *hdev, void *data) 416 { 417 return hci_le_scan_restart_sync(hdev); 418 } 419 420 static void le_scan_restart(struct work_struct *work) 421 { 422 struct hci_dev *hdev = container_of(work, struct hci_dev, 423 le_scan_restart.work); 424 unsigned long timeout, duration, scan_start, now; 425 int status; 426 427 bt_dev_dbg(hdev, ""); 428 429 hci_dev_lock(hdev); 430 431 status = hci_cmd_sync_queue(hdev, le_scan_restart_sync, NULL, NULL); 432 if (status) { 433 bt_dev_err(hdev, "failed to restart LE scan: status %d", 434 status); 435 goto unlock; 436 } 437 438 if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) || 439 !hdev->discovery.scan_start) 440 goto unlock; 441 442 /* When the scan was started, hdev->le_scan_disable has been queued 443 * after duration from scan_start. During scan restart this job 444 * has been canceled, and we need to queue it again after proper 445 * timeout, to make sure that scan does not run indefinitely. 446 */ 447 duration = hdev->discovery.scan_duration; 448 scan_start = hdev->discovery.scan_start; 449 now = jiffies; 450 if (now - scan_start <= duration) { 451 int elapsed; 452 453 if (now >= scan_start) 454 elapsed = now - scan_start; 455 else 456 elapsed = ULONG_MAX - scan_start + now; 457 458 timeout = duration - elapsed; 459 } else { 460 timeout = 0; 461 } 462 463 queue_delayed_work(hdev->req_workqueue, 464 &hdev->le_scan_disable, timeout); 465 466 unlock: 467 hci_dev_unlock(hdev); 468 } 469 470 static int reenable_adv_sync(struct hci_dev *hdev, void *data) 471 { 472 bt_dev_dbg(hdev, ""); 473 474 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) && 475 list_empty(&hdev->adv_instances)) 476 return 0; 477 478 if (hdev->cur_adv_instance) { 479 return hci_schedule_adv_instance_sync(hdev, 480 hdev->cur_adv_instance, 481 true); 482 } else { 483 if (ext_adv_capable(hdev)) { 484 hci_start_ext_adv_sync(hdev, 0x00); 485 } else { 486 hci_update_adv_data_sync(hdev, 0x00); 487 hci_update_scan_rsp_data_sync(hdev, 0x00); 488 hci_enable_advertising_sync(hdev); 489 } 490 } 491 492 return 0; 493 } 494 495 static void reenable_adv(struct work_struct *work) 496 { 497 struct hci_dev *hdev = container_of(work, struct hci_dev, 498 reenable_adv_work); 499 int status; 500 501 bt_dev_dbg(hdev, ""); 502 503 hci_dev_lock(hdev); 504 505 status = hci_cmd_sync_queue(hdev, reenable_adv_sync, NULL, NULL); 506 if (status) 507 bt_dev_err(hdev, "failed to reenable ADV: %d", status); 508 509 hci_dev_unlock(hdev); 510 } 511 512 static void cancel_adv_timeout(struct hci_dev *hdev) 513 { 514 if (hdev->adv_instance_timeout) { 515 hdev->adv_instance_timeout = 0; 516 cancel_delayed_work(&hdev->adv_instance_expire); 517 } 518 } 519 520 /* For a single instance: 521 * - force == true: The instance will be removed even when its remaining 522 * lifetime is not zero. 523 * - force == false: the instance will be deactivated but kept stored unless 524 * the remaining lifetime is zero. 525 * 526 * For instance == 0x00: 527 * - force == true: All instances will be removed regardless of their timeout 528 * setting. 529 * - force == false: Only instances that have a timeout will be removed. 530 */ 531 int hci_clear_adv_instance_sync(struct hci_dev *hdev, struct sock *sk, 532 u8 instance, bool force) 533 { 534 struct adv_info *adv_instance, *n, *next_instance = NULL; 535 int err; 536 u8 rem_inst; 537 538 /* Cancel any timeout concerning the removed instance(s). */ 539 if (!instance || hdev->cur_adv_instance == instance) 540 cancel_adv_timeout(hdev); 541 542 /* Get the next instance to advertise BEFORE we remove 543 * the current one. This can be the same instance again 544 * if there is only one instance. 545 */ 546 if (instance && hdev->cur_adv_instance == instance) 547 next_instance = hci_get_next_instance(hdev, instance); 548 549 if (instance == 0x00) { 550 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, 551 list) { 552 if (!(force || adv_instance->timeout)) 553 continue; 554 555 rem_inst = adv_instance->instance; 556 err = hci_remove_adv_instance(hdev, rem_inst); 557 if (!err) 558 mgmt_advertising_removed(sk, hdev, rem_inst); 559 } 560 } else { 561 adv_instance = hci_find_adv_instance(hdev, instance); 562 563 if (force || (adv_instance && adv_instance->timeout && 564 !adv_instance->remaining_time)) { 565 /* Don't advertise a removed instance. */ 566 if (next_instance && 567 next_instance->instance == instance) 568 next_instance = NULL; 569 570 err = hci_remove_adv_instance(hdev, instance); 571 if (!err) 572 mgmt_advertising_removed(sk, hdev, instance); 573 } 574 } 575 576 if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING)) 577 return 0; 578 579 if (next_instance && !ext_adv_capable(hdev)) 580 return hci_schedule_adv_instance_sync(hdev, 581 next_instance->instance, 582 false); 583 584 return 0; 585 } 586 587 static int adv_timeout_expire_sync(struct hci_dev *hdev, void *data) 588 { 589 u8 instance = *(u8 *)data; 590 591 kfree(data); 592 593 hci_clear_adv_instance_sync(hdev, NULL, instance, false); 594 595 if (list_empty(&hdev->adv_instances)) 596 return hci_disable_advertising_sync(hdev); 597 598 return 0; 599 } 600 601 static void adv_timeout_expire(struct work_struct *work) 602 { 603 u8 *inst_ptr; 604 struct hci_dev *hdev = container_of(work, struct hci_dev, 605 adv_instance_expire.work); 606 607 bt_dev_dbg(hdev, ""); 608 609 hci_dev_lock(hdev); 610 611 hdev->adv_instance_timeout = 0; 612 613 if (hdev->cur_adv_instance == 0x00) 614 goto unlock; 615 616 inst_ptr = kmalloc(1, GFP_KERNEL); 617 if (!inst_ptr) 618 goto unlock; 619 620 *inst_ptr = hdev->cur_adv_instance; 621 hci_cmd_sync_queue(hdev, adv_timeout_expire_sync, inst_ptr, NULL); 622 623 unlock: 624 hci_dev_unlock(hdev); 625 } 626 627 void hci_cmd_sync_init(struct hci_dev *hdev) 628 { 629 INIT_WORK(&hdev->cmd_sync_work, hci_cmd_sync_work); 630 INIT_LIST_HEAD(&hdev->cmd_sync_work_list); 631 mutex_init(&hdev->cmd_sync_work_lock); 632 mutex_init(&hdev->unregister_lock); 633 634 INIT_WORK(&hdev->cmd_sync_cancel_work, hci_cmd_sync_cancel_work); 635 INIT_WORK(&hdev->reenable_adv_work, reenable_adv); 636 INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable); 637 INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart); 638 INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire); 639 } 640 641 void hci_cmd_sync_clear(struct hci_dev *hdev) 642 { 643 struct hci_cmd_sync_work_entry *entry, *tmp; 644 645 cancel_work_sync(&hdev->cmd_sync_work); 646 cancel_work_sync(&hdev->reenable_adv_work); 647 648 mutex_lock(&hdev->cmd_sync_work_lock); 649 list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) { 650 if (entry->destroy) 651 entry->destroy(hdev, entry->data, -ECANCELED); 652 653 list_del(&entry->list); 654 kfree(entry); 655 } 656 mutex_unlock(&hdev->cmd_sync_work_lock); 657 } 658 659 void __hci_cmd_sync_cancel(struct hci_dev *hdev, int err) 660 { 661 bt_dev_dbg(hdev, "err 0x%2.2x", err); 662 663 if (hdev->req_status == HCI_REQ_PEND) { 664 hdev->req_result = err; 665 hdev->req_status = HCI_REQ_CANCELED; 666 667 cancel_delayed_work_sync(&hdev->cmd_timer); 668 cancel_delayed_work_sync(&hdev->ncmd_timer); 669 atomic_set(&hdev->cmd_cnt, 1); 670 671 wake_up_interruptible(&hdev->req_wait_q); 672 } 673 } 674 675 void hci_cmd_sync_cancel(struct hci_dev *hdev, int err) 676 { 677 bt_dev_dbg(hdev, "err 0x%2.2x", err); 678 679 if (hdev->req_status == HCI_REQ_PEND) { 680 hdev->req_result = err; 681 hdev->req_status = HCI_REQ_CANCELED; 682 683 queue_work(hdev->workqueue, &hdev->cmd_sync_cancel_work); 684 } 685 } 686 EXPORT_SYMBOL(hci_cmd_sync_cancel); 687 688 /* Submit HCI command to be run in as cmd_sync_work: 689 * 690 * - hdev must _not_ be unregistered 691 */ 692 int hci_cmd_sync_submit(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 693 void *data, hci_cmd_sync_work_destroy_t destroy) 694 { 695 struct hci_cmd_sync_work_entry *entry; 696 int err = 0; 697 698 mutex_lock(&hdev->unregister_lock); 699 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 700 err = -ENODEV; 701 goto unlock; 702 } 703 704 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 705 if (!entry) { 706 err = -ENOMEM; 707 goto unlock; 708 } 709 entry->func = func; 710 entry->data = data; 711 entry->destroy = destroy; 712 713 mutex_lock(&hdev->cmd_sync_work_lock); 714 list_add_tail(&entry->list, &hdev->cmd_sync_work_list); 715 mutex_unlock(&hdev->cmd_sync_work_lock); 716 717 queue_work(hdev->req_workqueue, &hdev->cmd_sync_work); 718 719 unlock: 720 mutex_unlock(&hdev->unregister_lock); 721 return err; 722 } 723 EXPORT_SYMBOL(hci_cmd_sync_submit); 724 725 /* Queue HCI command: 726 * 727 * - hdev must be running 728 */ 729 int hci_cmd_sync_queue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 730 void *data, hci_cmd_sync_work_destroy_t destroy) 731 { 732 /* Only queue command if hdev is running which means it had been opened 733 * and is either on init phase or is already up. 734 */ 735 if (!test_bit(HCI_RUNNING, &hdev->flags)) 736 return -ENETDOWN; 737 738 return hci_cmd_sync_submit(hdev, func, data, destroy); 739 } 740 EXPORT_SYMBOL(hci_cmd_sync_queue); 741 742 int hci_update_eir_sync(struct hci_dev *hdev) 743 { 744 struct hci_cp_write_eir cp; 745 746 bt_dev_dbg(hdev, ""); 747 748 if (!hdev_is_powered(hdev)) 749 return 0; 750 751 if (!lmp_ext_inq_capable(hdev)) 752 return 0; 753 754 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 755 return 0; 756 757 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 758 return 0; 759 760 memset(&cp, 0, sizeof(cp)); 761 762 eir_create(hdev, cp.data); 763 764 if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0) 765 return 0; 766 767 memcpy(hdev->eir, cp.data, sizeof(cp.data)); 768 769 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp, 770 HCI_CMD_TIMEOUT); 771 } 772 773 static u8 get_service_classes(struct hci_dev *hdev) 774 { 775 struct bt_uuid *uuid; 776 u8 val = 0; 777 778 list_for_each_entry(uuid, &hdev->uuids, list) 779 val |= uuid->svc_hint; 780 781 return val; 782 } 783 784 int hci_update_class_sync(struct hci_dev *hdev) 785 { 786 u8 cod[3]; 787 788 bt_dev_dbg(hdev, ""); 789 790 if (!hdev_is_powered(hdev)) 791 return 0; 792 793 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 794 return 0; 795 796 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 797 return 0; 798 799 cod[0] = hdev->minor_class; 800 cod[1] = hdev->major_class; 801 cod[2] = get_service_classes(hdev); 802 803 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) 804 cod[1] |= 0x20; 805 806 if (memcmp(cod, hdev->dev_class, 3) == 0) 807 return 0; 808 809 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CLASS_OF_DEV, 810 sizeof(cod), cod, HCI_CMD_TIMEOUT); 811 } 812 813 static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable) 814 { 815 /* If there is no connection we are OK to advertise. */ 816 if (hci_conn_num(hdev, LE_LINK) == 0) 817 return true; 818 819 /* Check le_states if there is any connection in peripheral role. */ 820 if (hdev->conn_hash.le_num_peripheral > 0) { 821 /* Peripheral connection state and non connectable mode 822 * bit 20. 823 */ 824 if (!connectable && !(hdev->le_states[2] & 0x10)) 825 return false; 826 827 /* Peripheral connection state and connectable mode bit 38 828 * and scannable bit 21. 829 */ 830 if (connectable && (!(hdev->le_states[4] & 0x40) || 831 !(hdev->le_states[2] & 0x20))) 832 return false; 833 } 834 835 /* Check le_states if there is any connection in central role. */ 836 if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) { 837 /* Central connection state and non connectable mode bit 18. */ 838 if (!connectable && !(hdev->le_states[2] & 0x02)) 839 return false; 840 841 /* Central connection state and connectable mode bit 35 and 842 * scannable 19. 843 */ 844 if (connectable && (!(hdev->le_states[4] & 0x08) || 845 !(hdev->le_states[2] & 0x08))) 846 return false; 847 } 848 849 return true; 850 } 851 852 static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags) 853 { 854 /* If privacy is not enabled don't use RPA */ 855 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 856 return false; 857 858 /* If basic privacy mode is enabled use RPA */ 859 if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) 860 return true; 861 862 /* If limited privacy mode is enabled don't use RPA if we're 863 * both discoverable and bondable. 864 */ 865 if ((flags & MGMT_ADV_FLAG_DISCOV) && 866 hci_dev_test_flag(hdev, HCI_BONDABLE)) 867 return false; 868 869 /* We're neither bondable nor discoverable in the limited 870 * privacy mode, therefore use RPA. 871 */ 872 return true; 873 } 874 875 static int hci_set_random_addr_sync(struct hci_dev *hdev, bdaddr_t *rpa) 876 { 877 /* If we're advertising or initiating an LE connection we can't 878 * go ahead and change the random address at this time. This is 879 * because the eventual initiator address used for the 880 * subsequently created connection will be undefined (some 881 * controllers use the new address and others the one we had 882 * when the operation started). 883 * 884 * In this kind of scenario skip the update and let the random 885 * address be updated at the next cycle. 886 */ 887 if (hci_dev_test_flag(hdev, HCI_LE_ADV) || 888 hci_lookup_le_connect(hdev)) { 889 bt_dev_dbg(hdev, "Deferring random address update"); 890 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 891 return 0; 892 } 893 894 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RANDOM_ADDR, 895 6, rpa, HCI_CMD_TIMEOUT); 896 } 897 898 int hci_update_random_address_sync(struct hci_dev *hdev, bool require_privacy, 899 bool rpa, u8 *own_addr_type) 900 { 901 int err; 902 903 /* If privacy is enabled use a resolvable private address. If 904 * current RPA has expired or there is something else than 905 * the current RPA in use, then generate a new one. 906 */ 907 if (rpa) { 908 /* If Controller supports LL Privacy use own address type is 909 * 0x03 910 */ 911 if (use_ll_privacy(hdev)) 912 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED; 913 else 914 *own_addr_type = ADDR_LE_DEV_RANDOM; 915 916 /* Check if RPA is valid */ 917 if (rpa_valid(hdev)) 918 return 0; 919 920 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); 921 if (err < 0) { 922 bt_dev_err(hdev, "failed to generate new RPA"); 923 return err; 924 } 925 926 err = hci_set_random_addr_sync(hdev, &hdev->rpa); 927 if (err) 928 return err; 929 930 return 0; 931 } 932 933 /* In case of required privacy without resolvable private address, 934 * use an non-resolvable private address. This is useful for active 935 * scanning and non-connectable advertising. 936 */ 937 if (require_privacy) { 938 bdaddr_t nrpa; 939 940 while (true) { 941 /* The non-resolvable private address is generated 942 * from random six bytes with the two most significant 943 * bits cleared. 944 */ 945 get_random_bytes(&nrpa, 6); 946 nrpa.b[5] &= 0x3f; 947 948 /* The non-resolvable private address shall not be 949 * equal to the public address. 950 */ 951 if (bacmp(&hdev->bdaddr, &nrpa)) 952 break; 953 } 954 955 *own_addr_type = ADDR_LE_DEV_RANDOM; 956 957 return hci_set_random_addr_sync(hdev, &nrpa); 958 } 959 960 /* If forcing static address is in use or there is no public 961 * address use the static address as random address (but skip 962 * the HCI command if the current random address is already the 963 * static one. 964 * 965 * In case BR/EDR has been disabled on a dual-mode controller 966 * and a static address has been configured, then use that 967 * address instead of the public BR/EDR address. 968 */ 969 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 970 !bacmp(&hdev->bdaddr, BDADDR_ANY) || 971 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && 972 bacmp(&hdev->static_addr, BDADDR_ANY))) { 973 *own_addr_type = ADDR_LE_DEV_RANDOM; 974 if (bacmp(&hdev->static_addr, &hdev->random_addr)) 975 return hci_set_random_addr_sync(hdev, 976 &hdev->static_addr); 977 return 0; 978 } 979 980 /* Neither privacy nor static address is being used so use a 981 * public address. 982 */ 983 *own_addr_type = ADDR_LE_DEV_PUBLIC; 984 985 return 0; 986 } 987 988 static int hci_disable_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance) 989 { 990 struct hci_cp_le_set_ext_adv_enable *cp; 991 struct hci_cp_ext_adv_set *set; 992 u8 data[sizeof(*cp) + sizeof(*set) * 1]; 993 u8 size; 994 995 /* If request specifies an instance that doesn't exist, fail */ 996 if (instance > 0) { 997 struct adv_info *adv; 998 999 adv = hci_find_adv_instance(hdev, instance); 1000 if (!adv) 1001 return -EINVAL; 1002 1003 /* If not enabled there is nothing to do */ 1004 if (!adv->enabled) 1005 return 0; 1006 } 1007 1008 memset(data, 0, sizeof(data)); 1009 1010 cp = (void *)data; 1011 set = (void *)cp->data; 1012 1013 /* Instance 0x00 indicates all advertising instances will be disabled */ 1014 cp->num_of_sets = !!instance; 1015 cp->enable = 0x00; 1016 1017 set->handle = instance; 1018 1019 size = sizeof(*cp) + sizeof(*set) * cp->num_of_sets; 1020 1021 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, 1022 size, data, HCI_CMD_TIMEOUT); 1023 } 1024 1025 static int hci_set_adv_set_random_addr_sync(struct hci_dev *hdev, u8 instance, 1026 bdaddr_t *random_addr) 1027 { 1028 struct hci_cp_le_set_adv_set_rand_addr cp; 1029 int err; 1030 1031 if (!instance) { 1032 /* Instance 0x00 doesn't have an adv_info, instead it uses 1033 * hdev->random_addr to track its address so whenever it needs 1034 * to be updated this also set the random address since 1035 * hdev->random_addr is shared with scan state machine. 1036 */ 1037 err = hci_set_random_addr_sync(hdev, random_addr); 1038 if (err) 1039 return err; 1040 } 1041 1042 memset(&cp, 0, sizeof(cp)); 1043 1044 cp.handle = instance; 1045 bacpy(&cp.bdaddr, random_addr); 1046 1047 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_SET_RAND_ADDR, 1048 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1049 } 1050 1051 int hci_setup_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance) 1052 { 1053 struct hci_cp_le_set_ext_adv_params cp; 1054 bool connectable; 1055 u32 flags; 1056 bdaddr_t random_addr; 1057 u8 own_addr_type; 1058 int err; 1059 struct adv_info *adv; 1060 bool secondary_adv; 1061 1062 if (instance > 0) { 1063 adv = hci_find_adv_instance(hdev, instance); 1064 if (!adv) 1065 return -EINVAL; 1066 } else { 1067 adv = NULL; 1068 } 1069 1070 /* Updating parameters of an active instance will return a 1071 * Command Disallowed error, so we must first disable the 1072 * instance if it is active. 1073 */ 1074 if (adv && !adv->pending) { 1075 err = hci_disable_ext_adv_instance_sync(hdev, instance); 1076 if (err) 1077 return err; 1078 } 1079 1080 flags = hci_adv_instance_flags(hdev, instance); 1081 1082 /* If the "connectable" instance flag was not set, then choose between 1083 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. 1084 */ 1085 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || 1086 mgmt_get_connectable(hdev); 1087 1088 if (!is_advertising_allowed(hdev, connectable)) 1089 return -EPERM; 1090 1091 /* Set require_privacy to true only when non-connectable 1092 * advertising is used. In that case it is fine to use a 1093 * non-resolvable private address. 1094 */ 1095 err = hci_get_random_address(hdev, !connectable, 1096 adv_use_rpa(hdev, flags), adv, 1097 &own_addr_type, &random_addr); 1098 if (err < 0) 1099 return err; 1100 1101 memset(&cp, 0, sizeof(cp)); 1102 1103 if (adv) { 1104 hci_cpu_to_le24(adv->min_interval, cp.min_interval); 1105 hci_cpu_to_le24(adv->max_interval, cp.max_interval); 1106 cp.tx_power = adv->tx_power; 1107 } else { 1108 hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval); 1109 hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval); 1110 cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE; 1111 } 1112 1113 secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK); 1114 1115 if (connectable) { 1116 if (secondary_adv) 1117 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND); 1118 else 1119 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND); 1120 } else if (hci_adv_instance_is_scannable(hdev, instance) || 1121 (flags & MGMT_ADV_PARAM_SCAN_RSP)) { 1122 if (secondary_adv) 1123 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND); 1124 else 1125 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND); 1126 } else { 1127 if (secondary_adv) 1128 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND); 1129 else 1130 cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND); 1131 } 1132 1133 /* If Own_Address_Type equals 0x02 or 0x03, the Peer_Address parameter 1134 * contains the peer’s Identity Address and the Peer_Address_Type 1135 * parameter contains the peer’s Identity Type (i.e., 0x00 or 0x01). 1136 * These parameters are used to locate the corresponding local IRK in 1137 * the resolving list; this IRK is used to generate their own address 1138 * used in the advertisement. 1139 */ 1140 if (own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) 1141 hci_copy_identity_address(hdev, &cp.peer_addr, 1142 &cp.peer_addr_type); 1143 1144 cp.own_addr_type = own_addr_type; 1145 cp.channel_map = hdev->le_adv_channel_map; 1146 cp.handle = instance; 1147 1148 if (flags & MGMT_ADV_FLAG_SEC_2M) { 1149 cp.primary_phy = HCI_ADV_PHY_1M; 1150 cp.secondary_phy = HCI_ADV_PHY_2M; 1151 } else if (flags & MGMT_ADV_FLAG_SEC_CODED) { 1152 cp.primary_phy = HCI_ADV_PHY_CODED; 1153 cp.secondary_phy = HCI_ADV_PHY_CODED; 1154 } else { 1155 /* In all other cases use 1M */ 1156 cp.primary_phy = HCI_ADV_PHY_1M; 1157 cp.secondary_phy = HCI_ADV_PHY_1M; 1158 } 1159 1160 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS, 1161 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1162 if (err) 1163 return err; 1164 1165 if ((own_addr_type == ADDR_LE_DEV_RANDOM || 1166 own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) && 1167 bacmp(&random_addr, BDADDR_ANY)) { 1168 /* Check if random address need to be updated */ 1169 if (adv) { 1170 if (!bacmp(&random_addr, &adv->random_addr)) 1171 return 0; 1172 } else { 1173 if (!bacmp(&random_addr, &hdev->random_addr)) 1174 return 0; 1175 } 1176 1177 return hci_set_adv_set_random_addr_sync(hdev, instance, 1178 &random_addr); 1179 } 1180 1181 return 0; 1182 } 1183 1184 static int hci_set_ext_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 1185 { 1186 struct { 1187 struct hci_cp_le_set_ext_scan_rsp_data cp; 1188 u8 data[HCI_MAX_EXT_AD_LENGTH]; 1189 } pdu; 1190 u8 len; 1191 struct adv_info *adv = NULL; 1192 int err; 1193 1194 memset(&pdu, 0, sizeof(pdu)); 1195 1196 if (instance) { 1197 adv = hci_find_adv_instance(hdev, instance); 1198 if (!adv || !adv->scan_rsp_changed) 1199 return 0; 1200 } 1201 1202 len = eir_create_scan_rsp(hdev, instance, pdu.data); 1203 1204 pdu.cp.handle = instance; 1205 pdu.cp.length = len; 1206 pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; 1207 pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG; 1208 1209 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA, 1210 sizeof(pdu.cp) + len, &pdu.cp, 1211 HCI_CMD_TIMEOUT); 1212 if (err) 1213 return err; 1214 1215 if (adv) { 1216 adv->scan_rsp_changed = false; 1217 } else { 1218 memcpy(hdev->scan_rsp_data, pdu.data, len); 1219 hdev->scan_rsp_data_len = len; 1220 } 1221 1222 return 0; 1223 } 1224 1225 static int __hci_set_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 1226 { 1227 struct hci_cp_le_set_scan_rsp_data cp; 1228 u8 len; 1229 1230 memset(&cp, 0, sizeof(cp)); 1231 1232 len = eir_create_scan_rsp(hdev, instance, cp.data); 1233 1234 if (hdev->scan_rsp_data_len == len && 1235 !memcmp(cp.data, hdev->scan_rsp_data, len)) 1236 return 0; 1237 1238 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data)); 1239 hdev->scan_rsp_data_len = len; 1240 1241 cp.length = len; 1242 1243 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_RSP_DATA, 1244 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1245 } 1246 1247 int hci_update_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 1248 { 1249 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1250 return 0; 1251 1252 if (ext_adv_capable(hdev)) 1253 return hci_set_ext_scan_rsp_data_sync(hdev, instance); 1254 1255 return __hci_set_scan_rsp_data_sync(hdev, instance); 1256 } 1257 1258 int hci_enable_ext_advertising_sync(struct hci_dev *hdev, u8 instance) 1259 { 1260 struct hci_cp_le_set_ext_adv_enable *cp; 1261 struct hci_cp_ext_adv_set *set; 1262 u8 data[sizeof(*cp) + sizeof(*set) * 1]; 1263 struct adv_info *adv; 1264 1265 if (instance > 0) { 1266 adv = hci_find_adv_instance(hdev, instance); 1267 if (!adv) 1268 return -EINVAL; 1269 /* If already enabled there is nothing to do */ 1270 if (adv->enabled) 1271 return 0; 1272 } else { 1273 adv = NULL; 1274 } 1275 1276 cp = (void *)data; 1277 set = (void *)cp->data; 1278 1279 memset(cp, 0, sizeof(*cp)); 1280 1281 cp->enable = 0x01; 1282 cp->num_of_sets = 0x01; 1283 1284 memset(set, 0, sizeof(*set)); 1285 1286 set->handle = instance; 1287 1288 /* Set duration per instance since controller is responsible for 1289 * scheduling it. 1290 */ 1291 if (adv && adv->timeout) { 1292 u16 duration = adv->timeout * MSEC_PER_SEC; 1293 1294 /* Time = N * 10 ms */ 1295 set->duration = cpu_to_le16(duration / 10); 1296 } 1297 1298 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, 1299 sizeof(*cp) + 1300 sizeof(*set) * cp->num_of_sets, 1301 data, HCI_CMD_TIMEOUT); 1302 } 1303 1304 int hci_start_ext_adv_sync(struct hci_dev *hdev, u8 instance) 1305 { 1306 int err; 1307 1308 err = hci_setup_ext_adv_instance_sync(hdev, instance); 1309 if (err) 1310 return err; 1311 1312 err = hci_set_ext_scan_rsp_data_sync(hdev, instance); 1313 if (err) 1314 return err; 1315 1316 return hci_enable_ext_advertising_sync(hdev, instance); 1317 } 1318 1319 static int hci_disable_per_advertising_sync(struct hci_dev *hdev, u8 instance) 1320 { 1321 struct hci_cp_le_set_per_adv_enable cp; 1322 1323 /* If periodic advertising already disabled there is nothing to do. */ 1324 if (!hci_dev_test_flag(hdev, HCI_LE_PER_ADV)) 1325 return 0; 1326 1327 memset(&cp, 0, sizeof(cp)); 1328 1329 cp.enable = 0x00; 1330 cp.handle = instance; 1331 1332 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE, 1333 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1334 } 1335 1336 static int hci_set_per_adv_params_sync(struct hci_dev *hdev, u8 instance, 1337 u16 min_interval, u16 max_interval) 1338 { 1339 struct hci_cp_le_set_per_adv_params cp; 1340 1341 memset(&cp, 0, sizeof(cp)); 1342 1343 if (!min_interval) 1344 min_interval = DISCOV_LE_PER_ADV_INT_MIN; 1345 1346 if (!max_interval) 1347 max_interval = DISCOV_LE_PER_ADV_INT_MAX; 1348 1349 cp.handle = instance; 1350 cp.min_interval = cpu_to_le16(min_interval); 1351 cp.max_interval = cpu_to_le16(max_interval); 1352 cp.periodic_properties = 0x0000; 1353 1354 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_PARAMS, 1355 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1356 } 1357 1358 static int hci_set_per_adv_data_sync(struct hci_dev *hdev, u8 instance) 1359 { 1360 struct { 1361 struct hci_cp_le_set_per_adv_data cp; 1362 u8 data[HCI_MAX_PER_AD_LENGTH]; 1363 } pdu; 1364 u8 len; 1365 1366 memset(&pdu, 0, sizeof(pdu)); 1367 1368 if (instance) { 1369 struct adv_info *adv = hci_find_adv_instance(hdev, instance); 1370 1371 if (!adv || !adv->periodic) 1372 return 0; 1373 } 1374 1375 len = eir_create_per_adv_data(hdev, instance, pdu.data); 1376 1377 pdu.cp.length = len; 1378 pdu.cp.handle = instance; 1379 pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; 1380 1381 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_DATA, 1382 sizeof(pdu.cp) + len, &pdu, 1383 HCI_CMD_TIMEOUT); 1384 } 1385 1386 static int hci_enable_per_advertising_sync(struct hci_dev *hdev, u8 instance) 1387 { 1388 struct hci_cp_le_set_per_adv_enable cp; 1389 1390 /* If periodic advertising already enabled there is nothing to do. */ 1391 if (hci_dev_test_flag(hdev, HCI_LE_PER_ADV)) 1392 return 0; 1393 1394 memset(&cp, 0, sizeof(cp)); 1395 1396 cp.enable = 0x01; 1397 cp.handle = instance; 1398 1399 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE, 1400 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1401 } 1402 1403 /* Checks if periodic advertising data contains a Basic Announcement and if it 1404 * does generates a Broadcast ID and add Broadcast Announcement. 1405 */ 1406 static int hci_adv_bcast_annoucement(struct hci_dev *hdev, struct adv_info *adv) 1407 { 1408 u8 bid[3]; 1409 u8 ad[4 + 3]; 1410 1411 /* Skip if NULL adv as instance 0x00 is used for general purpose 1412 * advertising so it cannot used for the likes of Broadcast Announcement 1413 * as it can be overwritten at any point. 1414 */ 1415 if (!adv) 1416 return 0; 1417 1418 /* Check if PA data doesn't contains a Basic Audio Announcement then 1419 * there is nothing to do. 1420 */ 1421 if (!eir_get_service_data(adv->per_adv_data, adv->per_adv_data_len, 1422 0x1851, NULL)) 1423 return 0; 1424 1425 /* Check if advertising data already has a Broadcast Announcement since 1426 * the process may want to control the Broadcast ID directly and in that 1427 * case the kernel shall no interfere. 1428 */ 1429 if (eir_get_service_data(adv->adv_data, adv->adv_data_len, 0x1852, 1430 NULL)) 1431 return 0; 1432 1433 /* Generate Broadcast ID */ 1434 get_random_bytes(bid, sizeof(bid)); 1435 eir_append_service_data(ad, 0, 0x1852, bid, sizeof(bid)); 1436 hci_set_adv_instance_data(hdev, adv->instance, sizeof(ad), ad, 0, NULL); 1437 1438 return hci_update_adv_data_sync(hdev, adv->instance); 1439 } 1440 1441 int hci_start_per_adv_sync(struct hci_dev *hdev, u8 instance, u8 data_len, 1442 u8 *data, u32 flags, u16 min_interval, 1443 u16 max_interval, u16 sync_interval) 1444 { 1445 struct adv_info *adv = NULL; 1446 int err; 1447 bool added = false; 1448 1449 hci_disable_per_advertising_sync(hdev, instance); 1450 1451 if (instance) { 1452 adv = hci_find_adv_instance(hdev, instance); 1453 /* Create an instance if that could not be found */ 1454 if (!adv) { 1455 adv = hci_add_per_instance(hdev, instance, flags, 1456 data_len, data, 1457 sync_interval, 1458 sync_interval); 1459 if (IS_ERR(adv)) 1460 return PTR_ERR(adv); 1461 added = true; 1462 } 1463 } 1464 1465 /* Only start advertising if instance 0 or if a dedicated instance has 1466 * been added. 1467 */ 1468 if (!adv || added) { 1469 err = hci_start_ext_adv_sync(hdev, instance); 1470 if (err < 0) 1471 goto fail; 1472 1473 err = hci_adv_bcast_annoucement(hdev, adv); 1474 if (err < 0) 1475 goto fail; 1476 } 1477 1478 err = hci_set_per_adv_params_sync(hdev, instance, min_interval, 1479 max_interval); 1480 if (err < 0) 1481 goto fail; 1482 1483 err = hci_set_per_adv_data_sync(hdev, instance); 1484 if (err < 0) 1485 goto fail; 1486 1487 err = hci_enable_per_advertising_sync(hdev, instance); 1488 if (err < 0) 1489 goto fail; 1490 1491 return 0; 1492 1493 fail: 1494 if (added) 1495 hci_remove_adv_instance(hdev, instance); 1496 1497 return err; 1498 } 1499 1500 static int hci_start_adv_sync(struct hci_dev *hdev, u8 instance) 1501 { 1502 int err; 1503 1504 if (ext_adv_capable(hdev)) 1505 return hci_start_ext_adv_sync(hdev, instance); 1506 1507 err = hci_update_adv_data_sync(hdev, instance); 1508 if (err) 1509 return err; 1510 1511 err = hci_update_scan_rsp_data_sync(hdev, instance); 1512 if (err) 1513 return err; 1514 1515 return hci_enable_advertising_sync(hdev); 1516 } 1517 1518 int hci_enable_advertising_sync(struct hci_dev *hdev) 1519 { 1520 struct adv_info *adv_instance; 1521 struct hci_cp_le_set_adv_param cp; 1522 u8 own_addr_type, enable = 0x01; 1523 bool connectable; 1524 u16 adv_min_interval, adv_max_interval; 1525 u32 flags; 1526 u8 status; 1527 1528 if (ext_adv_capable(hdev)) 1529 return hci_enable_ext_advertising_sync(hdev, 1530 hdev->cur_adv_instance); 1531 1532 flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance); 1533 adv_instance = hci_find_adv_instance(hdev, hdev->cur_adv_instance); 1534 1535 /* If the "connectable" instance flag was not set, then choose between 1536 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. 1537 */ 1538 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || 1539 mgmt_get_connectable(hdev); 1540 1541 if (!is_advertising_allowed(hdev, connectable)) 1542 return -EINVAL; 1543 1544 status = hci_disable_advertising_sync(hdev); 1545 if (status) 1546 return status; 1547 1548 /* Clear the HCI_LE_ADV bit temporarily so that the 1549 * hci_update_random_address knows that it's safe to go ahead 1550 * and write a new random address. The flag will be set back on 1551 * as soon as the SET_ADV_ENABLE HCI command completes. 1552 */ 1553 hci_dev_clear_flag(hdev, HCI_LE_ADV); 1554 1555 /* Set require_privacy to true only when non-connectable 1556 * advertising is used. In that case it is fine to use a 1557 * non-resolvable private address. 1558 */ 1559 status = hci_update_random_address_sync(hdev, !connectable, 1560 adv_use_rpa(hdev, flags), 1561 &own_addr_type); 1562 if (status) 1563 return status; 1564 1565 memset(&cp, 0, sizeof(cp)); 1566 1567 if (adv_instance) { 1568 adv_min_interval = adv_instance->min_interval; 1569 adv_max_interval = adv_instance->max_interval; 1570 } else { 1571 adv_min_interval = hdev->le_adv_min_interval; 1572 adv_max_interval = hdev->le_adv_max_interval; 1573 } 1574 1575 if (connectable) { 1576 cp.type = LE_ADV_IND; 1577 } else { 1578 if (hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance)) 1579 cp.type = LE_ADV_SCAN_IND; 1580 else 1581 cp.type = LE_ADV_NONCONN_IND; 1582 1583 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) || 1584 hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { 1585 adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN; 1586 adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX; 1587 } 1588 } 1589 1590 cp.min_interval = cpu_to_le16(adv_min_interval); 1591 cp.max_interval = cpu_to_le16(adv_max_interval); 1592 cp.own_address_type = own_addr_type; 1593 cp.channel_map = hdev->le_adv_channel_map; 1594 1595 status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM, 1596 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1597 if (status) 1598 return status; 1599 1600 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 1601 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 1602 } 1603 1604 static int enable_advertising_sync(struct hci_dev *hdev, void *data) 1605 { 1606 return hci_enable_advertising_sync(hdev); 1607 } 1608 1609 int hci_enable_advertising(struct hci_dev *hdev) 1610 { 1611 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) && 1612 list_empty(&hdev->adv_instances)) 1613 return 0; 1614 1615 return hci_cmd_sync_queue(hdev, enable_advertising_sync, NULL, NULL); 1616 } 1617 1618 int hci_remove_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance, 1619 struct sock *sk) 1620 { 1621 int err; 1622 1623 if (!ext_adv_capable(hdev)) 1624 return 0; 1625 1626 err = hci_disable_ext_adv_instance_sync(hdev, instance); 1627 if (err) 1628 return err; 1629 1630 /* If request specifies an instance that doesn't exist, fail */ 1631 if (instance > 0 && !hci_find_adv_instance(hdev, instance)) 1632 return -EINVAL; 1633 1634 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_REMOVE_ADV_SET, 1635 sizeof(instance), &instance, 0, 1636 HCI_CMD_TIMEOUT, sk); 1637 } 1638 1639 static int remove_ext_adv_sync(struct hci_dev *hdev, void *data) 1640 { 1641 struct adv_info *adv = data; 1642 u8 instance = 0; 1643 1644 if (adv) 1645 instance = adv->instance; 1646 1647 return hci_remove_ext_adv_instance_sync(hdev, instance, NULL); 1648 } 1649 1650 int hci_remove_ext_adv_instance(struct hci_dev *hdev, u8 instance) 1651 { 1652 struct adv_info *adv = NULL; 1653 1654 if (instance) { 1655 adv = hci_find_adv_instance(hdev, instance); 1656 if (!adv) 1657 return -EINVAL; 1658 } 1659 1660 return hci_cmd_sync_queue(hdev, remove_ext_adv_sync, adv, NULL); 1661 } 1662 1663 int hci_le_terminate_big_sync(struct hci_dev *hdev, u8 handle, u8 reason) 1664 { 1665 struct hci_cp_le_term_big cp; 1666 1667 memset(&cp, 0, sizeof(cp)); 1668 cp.handle = handle; 1669 cp.reason = reason; 1670 1671 return __hci_cmd_sync_status(hdev, HCI_OP_LE_TERM_BIG, 1672 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1673 } 1674 1675 static int hci_set_ext_adv_data_sync(struct hci_dev *hdev, u8 instance) 1676 { 1677 struct { 1678 struct hci_cp_le_set_ext_adv_data cp; 1679 u8 data[HCI_MAX_EXT_AD_LENGTH]; 1680 } pdu; 1681 u8 len; 1682 struct adv_info *adv = NULL; 1683 int err; 1684 1685 memset(&pdu, 0, sizeof(pdu)); 1686 1687 if (instance) { 1688 adv = hci_find_adv_instance(hdev, instance); 1689 if (!adv || !adv->adv_data_changed) 1690 return 0; 1691 } 1692 1693 len = eir_create_adv_data(hdev, instance, pdu.data); 1694 1695 pdu.cp.length = len; 1696 pdu.cp.handle = instance; 1697 pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; 1698 pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG; 1699 1700 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_DATA, 1701 sizeof(pdu.cp) + len, &pdu.cp, 1702 HCI_CMD_TIMEOUT); 1703 if (err) 1704 return err; 1705 1706 /* Update data if the command succeed */ 1707 if (adv) { 1708 adv->adv_data_changed = false; 1709 } else { 1710 memcpy(hdev->adv_data, pdu.data, len); 1711 hdev->adv_data_len = len; 1712 } 1713 1714 return 0; 1715 } 1716 1717 static int hci_set_adv_data_sync(struct hci_dev *hdev, u8 instance) 1718 { 1719 struct hci_cp_le_set_adv_data cp; 1720 u8 len; 1721 1722 memset(&cp, 0, sizeof(cp)); 1723 1724 len = eir_create_adv_data(hdev, instance, cp.data); 1725 1726 /* There's nothing to do if the data hasn't changed */ 1727 if (hdev->adv_data_len == len && 1728 memcmp(cp.data, hdev->adv_data, len) == 0) 1729 return 0; 1730 1731 memcpy(hdev->adv_data, cp.data, sizeof(cp.data)); 1732 hdev->adv_data_len = len; 1733 1734 cp.length = len; 1735 1736 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_DATA, 1737 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1738 } 1739 1740 int hci_update_adv_data_sync(struct hci_dev *hdev, u8 instance) 1741 { 1742 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1743 return 0; 1744 1745 if (ext_adv_capable(hdev)) 1746 return hci_set_ext_adv_data_sync(hdev, instance); 1747 1748 return hci_set_adv_data_sync(hdev, instance); 1749 } 1750 1751 int hci_schedule_adv_instance_sync(struct hci_dev *hdev, u8 instance, 1752 bool force) 1753 { 1754 struct adv_info *adv = NULL; 1755 u16 timeout; 1756 1757 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) && !ext_adv_capable(hdev)) 1758 return -EPERM; 1759 1760 if (hdev->adv_instance_timeout) 1761 return -EBUSY; 1762 1763 adv = hci_find_adv_instance(hdev, instance); 1764 if (!adv) 1765 return -ENOENT; 1766 1767 /* A zero timeout means unlimited advertising. As long as there is 1768 * only one instance, duration should be ignored. We still set a timeout 1769 * in case further instances are being added later on. 1770 * 1771 * If the remaining lifetime of the instance is more than the duration 1772 * then the timeout corresponds to the duration, otherwise it will be 1773 * reduced to the remaining instance lifetime. 1774 */ 1775 if (adv->timeout == 0 || adv->duration <= adv->remaining_time) 1776 timeout = adv->duration; 1777 else 1778 timeout = adv->remaining_time; 1779 1780 /* The remaining time is being reduced unless the instance is being 1781 * advertised without time limit. 1782 */ 1783 if (adv->timeout) 1784 adv->remaining_time = adv->remaining_time - timeout; 1785 1786 /* Only use work for scheduling instances with legacy advertising */ 1787 if (!ext_adv_capable(hdev)) { 1788 hdev->adv_instance_timeout = timeout; 1789 queue_delayed_work(hdev->req_workqueue, 1790 &hdev->adv_instance_expire, 1791 msecs_to_jiffies(timeout * 1000)); 1792 } 1793 1794 /* If we're just re-scheduling the same instance again then do not 1795 * execute any HCI commands. This happens when a single instance is 1796 * being advertised. 1797 */ 1798 if (!force && hdev->cur_adv_instance == instance && 1799 hci_dev_test_flag(hdev, HCI_LE_ADV)) 1800 return 0; 1801 1802 hdev->cur_adv_instance = instance; 1803 1804 return hci_start_adv_sync(hdev, instance); 1805 } 1806 1807 static int hci_clear_adv_sets_sync(struct hci_dev *hdev, struct sock *sk) 1808 { 1809 int err; 1810 1811 if (!ext_adv_capable(hdev)) 1812 return 0; 1813 1814 /* Disable instance 0x00 to disable all instances */ 1815 err = hci_disable_ext_adv_instance_sync(hdev, 0x00); 1816 if (err) 1817 return err; 1818 1819 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CLEAR_ADV_SETS, 1820 0, NULL, 0, HCI_CMD_TIMEOUT, sk); 1821 } 1822 1823 static int hci_clear_adv_sync(struct hci_dev *hdev, struct sock *sk, bool force) 1824 { 1825 struct adv_info *adv, *n; 1826 int err = 0; 1827 1828 if (ext_adv_capable(hdev)) 1829 /* Remove all existing sets */ 1830 err = hci_clear_adv_sets_sync(hdev, sk); 1831 if (ext_adv_capable(hdev)) 1832 return err; 1833 1834 /* This is safe as long as there is no command send while the lock is 1835 * held. 1836 */ 1837 hci_dev_lock(hdev); 1838 1839 /* Cleanup non-ext instances */ 1840 list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) { 1841 u8 instance = adv->instance; 1842 int err; 1843 1844 if (!(force || adv->timeout)) 1845 continue; 1846 1847 err = hci_remove_adv_instance(hdev, instance); 1848 if (!err) 1849 mgmt_advertising_removed(sk, hdev, instance); 1850 } 1851 1852 hci_dev_unlock(hdev); 1853 1854 return 0; 1855 } 1856 1857 static int hci_remove_adv_sync(struct hci_dev *hdev, u8 instance, 1858 struct sock *sk) 1859 { 1860 int err = 0; 1861 1862 /* If we use extended advertising, instance has to be removed first. */ 1863 if (ext_adv_capable(hdev)) 1864 err = hci_remove_ext_adv_instance_sync(hdev, instance, sk); 1865 if (ext_adv_capable(hdev)) 1866 return err; 1867 1868 /* This is safe as long as there is no command send while the lock is 1869 * held. 1870 */ 1871 hci_dev_lock(hdev); 1872 1873 err = hci_remove_adv_instance(hdev, instance); 1874 if (!err) 1875 mgmt_advertising_removed(sk, hdev, instance); 1876 1877 hci_dev_unlock(hdev); 1878 1879 return err; 1880 } 1881 1882 /* For a single instance: 1883 * - force == true: The instance will be removed even when its remaining 1884 * lifetime is not zero. 1885 * - force == false: the instance will be deactivated but kept stored unless 1886 * the remaining lifetime is zero. 1887 * 1888 * For instance == 0x00: 1889 * - force == true: All instances will be removed regardless of their timeout 1890 * setting. 1891 * - force == false: Only instances that have a timeout will be removed. 1892 */ 1893 int hci_remove_advertising_sync(struct hci_dev *hdev, struct sock *sk, 1894 u8 instance, bool force) 1895 { 1896 struct adv_info *next = NULL; 1897 int err; 1898 1899 /* Cancel any timeout concerning the removed instance(s). */ 1900 if (!instance || hdev->cur_adv_instance == instance) 1901 cancel_adv_timeout(hdev); 1902 1903 /* Get the next instance to advertise BEFORE we remove 1904 * the current one. This can be the same instance again 1905 * if there is only one instance. 1906 */ 1907 if (hdev->cur_adv_instance == instance) 1908 next = hci_get_next_instance(hdev, instance); 1909 1910 if (!instance) { 1911 err = hci_clear_adv_sync(hdev, sk, force); 1912 if (err) 1913 return err; 1914 } else { 1915 struct adv_info *adv = hci_find_adv_instance(hdev, instance); 1916 1917 if (force || (adv && adv->timeout && !adv->remaining_time)) { 1918 /* Don't advertise a removed instance. */ 1919 if (next && next->instance == instance) 1920 next = NULL; 1921 1922 err = hci_remove_adv_sync(hdev, instance, sk); 1923 if (err) 1924 return err; 1925 } 1926 } 1927 1928 if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING)) 1929 return 0; 1930 1931 if (next && !ext_adv_capable(hdev)) 1932 hci_schedule_adv_instance_sync(hdev, next->instance, false); 1933 1934 return 0; 1935 } 1936 1937 int hci_read_rssi_sync(struct hci_dev *hdev, __le16 handle) 1938 { 1939 struct hci_cp_read_rssi cp; 1940 1941 cp.handle = handle; 1942 return __hci_cmd_sync_status(hdev, HCI_OP_READ_RSSI, 1943 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1944 } 1945 1946 int hci_read_clock_sync(struct hci_dev *hdev, struct hci_cp_read_clock *cp) 1947 { 1948 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLOCK, 1949 sizeof(*cp), cp, HCI_CMD_TIMEOUT); 1950 } 1951 1952 int hci_read_tx_power_sync(struct hci_dev *hdev, __le16 handle, u8 type) 1953 { 1954 struct hci_cp_read_tx_power cp; 1955 1956 cp.handle = handle; 1957 cp.type = type; 1958 return __hci_cmd_sync_status(hdev, HCI_OP_READ_TX_POWER, 1959 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1960 } 1961 1962 int hci_disable_advertising_sync(struct hci_dev *hdev) 1963 { 1964 u8 enable = 0x00; 1965 int err = 0; 1966 1967 /* If controller is not advertising we are done. */ 1968 if (!hci_dev_test_flag(hdev, HCI_LE_ADV)) 1969 return 0; 1970 1971 if (ext_adv_capable(hdev)) 1972 err = hci_disable_ext_adv_instance_sync(hdev, 0x00); 1973 if (ext_adv_capable(hdev)) 1974 return err; 1975 1976 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 1977 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 1978 } 1979 1980 static int hci_le_set_ext_scan_enable_sync(struct hci_dev *hdev, u8 val, 1981 u8 filter_dup) 1982 { 1983 struct hci_cp_le_set_ext_scan_enable cp; 1984 1985 memset(&cp, 0, sizeof(cp)); 1986 cp.enable = val; 1987 1988 if (hci_dev_test_flag(hdev, HCI_MESH)) 1989 cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 1990 else 1991 cp.filter_dup = filter_dup; 1992 1993 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_ENABLE, 1994 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1995 } 1996 1997 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val, 1998 u8 filter_dup) 1999 { 2000 struct hci_cp_le_set_scan_enable cp; 2001 2002 if (use_ext_scan(hdev)) 2003 return hci_le_set_ext_scan_enable_sync(hdev, val, filter_dup); 2004 2005 memset(&cp, 0, sizeof(cp)); 2006 cp.enable = val; 2007 2008 if (val && hci_dev_test_flag(hdev, HCI_MESH)) 2009 cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 2010 else 2011 cp.filter_dup = filter_dup; 2012 2013 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_ENABLE, 2014 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2015 } 2016 2017 static int hci_le_set_addr_resolution_enable_sync(struct hci_dev *hdev, u8 val) 2018 { 2019 if (!use_ll_privacy(hdev)) 2020 return 0; 2021 2022 /* If controller is not/already resolving we are done. */ 2023 if (val == hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) 2024 return 0; 2025 2026 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 2027 sizeof(val), &val, HCI_CMD_TIMEOUT); 2028 } 2029 2030 static int hci_scan_disable_sync(struct hci_dev *hdev) 2031 { 2032 int err; 2033 2034 /* If controller is not scanning we are done. */ 2035 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 2036 return 0; 2037 2038 if (hdev->scanning_paused) { 2039 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2040 return 0; 2041 } 2042 2043 err = hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00); 2044 if (err) { 2045 bt_dev_err(hdev, "Unable to disable scanning: %d", err); 2046 return err; 2047 } 2048 2049 return err; 2050 } 2051 2052 static bool scan_use_rpa(struct hci_dev *hdev) 2053 { 2054 return hci_dev_test_flag(hdev, HCI_PRIVACY); 2055 } 2056 2057 static void hci_start_interleave_scan(struct hci_dev *hdev) 2058 { 2059 hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER; 2060 queue_delayed_work(hdev->req_workqueue, 2061 &hdev->interleave_scan, 0); 2062 } 2063 2064 static bool is_interleave_scanning(struct hci_dev *hdev) 2065 { 2066 return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE; 2067 } 2068 2069 static void cancel_interleave_scan(struct hci_dev *hdev) 2070 { 2071 bt_dev_dbg(hdev, "cancelling interleave scan"); 2072 2073 cancel_delayed_work_sync(&hdev->interleave_scan); 2074 2075 hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE; 2076 } 2077 2078 /* Return true if interleave_scan wasn't started until exiting this function, 2079 * otherwise, return false 2080 */ 2081 static bool hci_update_interleaved_scan_sync(struct hci_dev *hdev) 2082 { 2083 /* Do interleaved scan only if all of the following are true: 2084 * - There is at least one ADV monitor 2085 * - At least one pending LE connection or one device to be scanned for 2086 * - Monitor offloading is not supported 2087 * If so, we should alternate between allowlist scan and one without 2088 * any filters to save power. 2089 */ 2090 bool use_interleaving = hci_is_adv_monitoring(hdev) && 2091 !(list_empty(&hdev->pend_le_conns) && 2092 list_empty(&hdev->pend_le_reports)) && 2093 hci_get_adv_monitor_offload_ext(hdev) == 2094 HCI_ADV_MONITOR_EXT_NONE; 2095 bool is_interleaving = is_interleave_scanning(hdev); 2096 2097 if (use_interleaving && !is_interleaving) { 2098 hci_start_interleave_scan(hdev); 2099 bt_dev_dbg(hdev, "starting interleave scan"); 2100 return true; 2101 } 2102 2103 if (!use_interleaving && is_interleaving) 2104 cancel_interleave_scan(hdev); 2105 2106 return false; 2107 } 2108 2109 /* Removes connection to resolve list if needed.*/ 2110 static int hci_le_del_resolve_list_sync(struct hci_dev *hdev, 2111 bdaddr_t *bdaddr, u8 bdaddr_type) 2112 { 2113 struct hci_cp_le_del_from_resolv_list cp; 2114 struct bdaddr_list_with_irk *entry; 2115 2116 if (!use_ll_privacy(hdev)) 2117 return 0; 2118 2119 /* Check if the IRK has been programmed */ 2120 entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, bdaddr, 2121 bdaddr_type); 2122 if (!entry) 2123 return 0; 2124 2125 cp.bdaddr_type = bdaddr_type; 2126 bacpy(&cp.bdaddr, bdaddr); 2127 2128 return __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_RESOLV_LIST, 2129 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2130 } 2131 2132 static int hci_le_del_accept_list_sync(struct hci_dev *hdev, 2133 bdaddr_t *bdaddr, u8 bdaddr_type) 2134 { 2135 struct hci_cp_le_del_from_accept_list cp; 2136 int err; 2137 2138 /* Check if device is on accept list before removing it */ 2139 if (!hci_bdaddr_list_lookup(&hdev->le_accept_list, bdaddr, bdaddr_type)) 2140 return 0; 2141 2142 cp.bdaddr_type = bdaddr_type; 2143 bacpy(&cp.bdaddr, bdaddr); 2144 2145 /* Ignore errors when removing from resolving list as that is likely 2146 * that the device was never added. 2147 */ 2148 hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type); 2149 2150 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_ACCEPT_LIST, 2151 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2152 if (err) { 2153 bt_dev_err(hdev, "Unable to remove from allow list: %d", err); 2154 return err; 2155 } 2156 2157 bt_dev_dbg(hdev, "Remove %pMR (0x%x) from allow list", &cp.bdaddr, 2158 cp.bdaddr_type); 2159 2160 return 0; 2161 } 2162 2163 /* Adds connection to resolve list if needed. 2164 * Setting params to NULL programs local hdev->irk 2165 */ 2166 static int hci_le_add_resolve_list_sync(struct hci_dev *hdev, 2167 struct hci_conn_params *params) 2168 { 2169 struct hci_cp_le_add_to_resolv_list cp; 2170 struct smp_irk *irk; 2171 struct bdaddr_list_with_irk *entry; 2172 2173 if (!use_ll_privacy(hdev)) 2174 return 0; 2175 2176 /* Attempt to program local identity address, type and irk if params is 2177 * NULL. 2178 */ 2179 if (!params) { 2180 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 2181 return 0; 2182 2183 hci_copy_identity_address(hdev, &cp.bdaddr, &cp.bdaddr_type); 2184 memcpy(cp.peer_irk, hdev->irk, 16); 2185 goto done; 2186 } 2187 2188 irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type); 2189 if (!irk) 2190 return 0; 2191 2192 /* Check if the IK has _not_ been programmed yet. */ 2193 entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, 2194 ¶ms->addr, 2195 params->addr_type); 2196 if (entry) 2197 return 0; 2198 2199 cp.bdaddr_type = params->addr_type; 2200 bacpy(&cp.bdaddr, ¶ms->addr); 2201 memcpy(cp.peer_irk, irk->val, 16); 2202 2203 /* Default privacy mode is always Network */ 2204 params->privacy_mode = HCI_NETWORK_PRIVACY; 2205 2206 done: 2207 if (hci_dev_test_flag(hdev, HCI_PRIVACY)) 2208 memcpy(cp.local_irk, hdev->irk, 16); 2209 else 2210 memset(cp.local_irk, 0, 16); 2211 2212 return __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_RESOLV_LIST, 2213 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2214 } 2215 2216 /* Set Device Privacy Mode. */ 2217 static int hci_le_set_privacy_mode_sync(struct hci_dev *hdev, 2218 struct hci_conn_params *params) 2219 { 2220 struct hci_cp_le_set_privacy_mode cp; 2221 struct smp_irk *irk; 2222 2223 /* If device privacy mode has already been set there is nothing to do */ 2224 if (params->privacy_mode == HCI_DEVICE_PRIVACY) 2225 return 0; 2226 2227 /* Check if HCI_CONN_FLAG_DEVICE_PRIVACY has been set as it also 2228 * indicates that LL Privacy has been enabled and 2229 * HCI_OP_LE_SET_PRIVACY_MODE is supported. 2230 */ 2231 if (!(params->flags & HCI_CONN_FLAG_DEVICE_PRIVACY)) 2232 return 0; 2233 2234 irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type); 2235 if (!irk) 2236 return 0; 2237 2238 memset(&cp, 0, sizeof(cp)); 2239 cp.bdaddr_type = irk->addr_type; 2240 bacpy(&cp.bdaddr, &irk->bdaddr); 2241 cp.mode = HCI_DEVICE_PRIVACY; 2242 2243 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PRIVACY_MODE, 2244 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2245 } 2246 2247 /* Adds connection to allow list if needed, if the device uses RPA (has IRK) 2248 * this attempts to program the device in the resolving list as well and 2249 * properly set the privacy mode. 2250 */ 2251 static int hci_le_add_accept_list_sync(struct hci_dev *hdev, 2252 struct hci_conn_params *params, 2253 u8 *num_entries) 2254 { 2255 struct hci_cp_le_add_to_accept_list cp; 2256 int err; 2257 2258 /* During suspend, only wakeable devices can be in acceptlist */ 2259 if (hdev->suspended && 2260 !(params->flags & HCI_CONN_FLAG_REMOTE_WAKEUP)) 2261 return 0; 2262 2263 /* Select filter policy to accept all advertising */ 2264 if (*num_entries >= hdev->le_accept_list_size) 2265 return -ENOSPC; 2266 2267 /* Accept list can not be used with RPAs */ 2268 if (!use_ll_privacy(hdev) && 2269 hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type)) 2270 return -EINVAL; 2271 2272 /* Attempt to program the device in the resolving list first to avoid 2273 * having to rollback in case it fails since the resolving list is 2274 * dynamic it can probably be smaller than the accept list. 2275 */ 2276 err = hci_le_add_resolve_list_sync(hdev, params); 2277 if (err) { 2278 bt_dev_err(hdev, "Unable to add to resolve list: %d", err); 2279 return err; 2280 } 2281 2282 /* Set Privacy Mode */ 2283 err = hci_le_set_privacy_mode_sync(hdev, params); 2284 if (err) { 2285 bt_dev_err(hdev, "Unable to set privacy mode: %d", err); 2286 return err; 2287 } 2288 2289 /* Check if already in accept list */ 2290 if (hci_bdaddr_list_lookup(&hdev->le_accept_list, ¶ms->addr, 2291 params->addr_type)) 2292 return 0; 2293 2294 *num_entries += 1; 2295 cp.bdaddr_type = params->addr_type; 2296 bacpy(&cp.bdaddr, ¶ms->addr); 2297 2298 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST, 2299 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2300 if (err) { 2301 bt_dev_err(hdev, "Unable to add to allow list: %d", err); 2302 /* Rollback the device from the resolving list */ 2303 hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type); 2304 return err; 2305 } 2306 2307 bt_dev_dbg(hdev, "Add %pMR (0x%x) to allow list", &cp.bdaddr, 2308 cp.bdaddr_type); 2309 2310 return 0; 2311 } 2312 2313 /* This function disables/pause all advertising instances */ 2314 static int hci_pause_advertising_sync(struct hci_dev *hdev) 2315 { 2316 int err; 2317 int old_state; 2318 2319 /* If already been paused there is nothing to do. */ 2320 if (hdev->advertising_paused) 2321 return 0; 2322 2323 bt_dev_dbg(hdev, "Pausing directed advertising"); 2324 2325 /* Stop directed advertising */ 2326 old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING); 2327 if (old_state) { 2328 /* When discoverable timeout triggers, then just make sure 2329 * the limited discoverable flag is cleared. Even in the case 2330 * of a timeout triggered from general discoverable, it is 2331 * safe to unconditionally clear the flag. 2332 */ 2333 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 2334 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 2335 hdev->discov_timeout = 0; 2336 } 2337 2338 bt_dev_dbg(hdev, "Pausing advertising instances"); 2339 2340 /* Call to disable any advertisements active on the controller. 2341 * This will succeed even if no advertisements are configured. 2342 */ 2343 err = hci_disable_advertising_sync(hdev); 2344 if (err) 2345 return err; 2346 2347 /* If we are using software rotation, pause the loop */ 2348 if (!ext_adv_capable(hdev)) 2349 cancel_adv_timeout(hdev); 2350 2351 hdev->advertising_paused = true; 2352 hdev->advertising_old_state = old_state; 2353 2354 return 0; 2355 } 2356 2357 /* This function enables all user advertising instances */ 2358 static int hci_resume_advertising_sync(struct hci_dev *hdev) 2359 { 2360 struct adv_info *adv, *tmp; 2361 int err; 2362 2363 /* If advertising has not been paused there is nothing to do. */ 2364 if (!hdev->advertising_paused) 2365 return 0; 2366 2367 /* Resume directed advertising */ 2368 hdev->advertising_paused = false; 2369 if (hdev->advertising_old_state) { 2370 hci_dev_set_flag(hdev, HCI_ADVERTISING); 2371 hdev->advertising_old_state = 0; 2372 } 2373 2374 bt_dev_dbg(hdev, "Resuming advertising instances"); 2375 2376 if (ext_adv_capable(hdev)) { 2377 /* Call for each tracked instance to be re-enabled */ 2378 list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) { 2379 err = hci_enable_ext_advertising_sync(hdev, 2380 adv->instance); 2381 if (!err) 2382 continue; 2383 2384 /* If the instance cannot be resumed remove it */ 2385 hci_remove_ext_adv_instance_sync(hdev, adv->instance, 2386 NULL); 2387 } 2388 } else { 2389 /* Schedule for most recent instance to be restarted and begin 2390 * the software rotation loop 2391 */ 2392 err = hci_schedule_adv_instance_sync(hdev, 2393 hdev->cur_adv_instance, 2394 true); 2395 } 2396 2397 hdev->advertising_paused = false; 2398 2399 return err; 2400 } 2401 2402 static int hci_pause_addr_resolution(struct hci_dev *hdev) 2403 { 2404 int err; 2405 2406 if (!use_ll_privacy(hdev)) 2407 return 0; 2408 2409 if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) 2410 return 0; 2411 2412 /* Cannot disable addr resolution if scanning is enabled or 2413 * when initiating an LE connection. 2414 */ 2415 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) || 2416 hci_lookup_le_connect(hdev)) { 2417 bt_dev_err(hdev, "Command not allowed when scan/LE connect"); 2418 return -EPERM; 2419 } 2420 2421 /* Cannot disable addr resolution if advertising is enabled. */ 2422 err = hci_pause_advertising_sync(hdev); 2423 if (err) { 2424 bt_dev_err(hdev, "Pause advertising failed: %d", err); 2425 return err; 2426 } 2427 2428 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00); 2429 if (err) 2430 bt_dev_err(hdev, "Unable to disable Address Resolution: %d", 2431 err); 2432 2433 /* Return if address resolution is disabled and RPA is not used. */ 2434 if (!err && scan_use_rpa(hdev)) 2435 return 0; 2436 2437 hci_resume_advertising_sync(hdev); 2438 return err; 2439 } 2440 2441 struct sk_buff *hci_read_local_oob_data_sync(struct hci_dev *hdev, 2442 bool extended, struct sock *sk) 2443 { 2444 u16 opcode = extended ? HCI_OP_READ_LOCAL_OOB_EXT_DATA : 2445 HCI_OP_READ_LOCAL_OOB_DATA; 2446 2447 return __hci_cmd_sync_sk(hdev, opcode, 0, NULL, 0, HCI_CMD_TIMEOUT, sk); 2448 } 2449 2450 /* Device must not be scanning when updating the accept list. 2451 * 2452 * Update is done using the following sequence: 2453 * 2454 * use_ll_privacy((Disable Advertising) -> Disable Resolving List) -> 2455 * Remove Devices From Accept List -> 2456 * (has IRK && use_ll_privacy(Remove Devices From Resolving List))-> 2457 * Add Devices to Accept List -> 2458 * (has IRK && use_ll_privacy(Remove Devices From Resolving List)) -> 2459 * use_ll_privacy(Enable Resolving List -> (Enable Advertising)) -> 2460 * Enable Scanning 2461 * 2462 * In case of failure advertising shall be restored to its original state and 2463 * return would disable accept list since either accept or resolving list could 2464 * not be programmed. 2465 * 2466 */ 2467 static u8 hci_update_accept_list_sync(struct hci_dev *hdev) 2468 { 2469 struct hci_conn_params *params; 2470 struct bdaddr_list *b, *t; 2471 u8 num_entries = 0; 2472 bool pend_conn, pend_report; 2473 u8 filter_policy; 2474 int err; 2475 2476 /* Pause advertising if resolving list can be used as controllers 2477 * cannot accept resolving list modifications while advertising. 2478 */ 2479 if (use_ll_privacy(hdev)) { 2480 err = hci_pause_advertising_sync(hdev); 2481 if (err) { 2482 bt_dev_err(hdev, "pause advertising failed: %d", err); 2483 return 0x00; 2484 } 2485 } 2486 2487 /* Disable address resolution while reprogramming accept list since 2488 * devices that do have an IRK will be programmed in the resolving list 2489 * when LL Privacy is enabled. 2490 */ 2491 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00); 2492 if (err) { 2493 bt_dev_err(hdev, "Unable to disable LL privacy: %d", err); 2494 goto done; 2495 } 2496 2497 /* Go through the current accept list programmed into the 2498 * controller one by one and check if that address is connected or is 2499 * still in the list of pending connections or list of devices to 2500 * report. If not present in either list, then remove it from 2501 * the controller. 2502 */ 2503 list_for_each_entry_safe(b, t, &hdev->le_accept_list, list) { 2504 if (hci_conn_hash_lookup_le(hdev, &b->bdaddr, b->bdaddr_type)) 2505 continue; 2506 2507 pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns, 2508 &b->bdaddr, 2509 b->bdaddr_type); 2510 pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports, 2511 &b->bdaddr, 2512 b->bdaddr_type); 2513 2514 /* If the device is not likely to connect or report, 2515 * remove it from the acceptlist. 2516 */ 2517 if (!pend_conn && !pend_report) { 2518 hci_le_del_accept_list_sync(hdev, &b->bdaddr, 2519 b->bdaddr_type); 2520 continue; 2521 } 2522 2523 num_entries++; 2524 } 2525 2526 /* Since all no longer valid accept list entries have been 2527 * removed, walk through the list of pending connections 2528 * and ensure that any new device gets programmed into 2529 * the controller. 2530 * 2531 * If the list of the devices is larger than the list of 2532 * available accept list entries in the controller, then 2533 * just abort and return filer policy value to not use the 2534 * accept list. 2535 */ 2536 list_for_each_entry(params, &hdev->pend_le_conns, action) { 2537 err = hci_le_add_accept_list_sync(hdev, params, &num_entries); 2538 if (err) 2539 goto done; 2540 } 2541 2542 /* After adding all new pending connections, walk through 2543 * the list of pending reports and also add these to the 2544 * accept list if there is still space. Abort if space runs out. 2545 */ 2546 list_for_each_entry(params, &hdev->pend_le_reports, action) { 2547 err = hci_le_add_accept_list_sync(hdev, params, &num_entries); 2548 if (err) 2549 goto done; 2550 } 2551 2552 /* Use the allowlist unless the following conditions are all true: 2553 * - We are not currently suspending 2554 * - There are 1 or more ADV monitors registered and it's not offloaded 2555 * - Interleaved scanning is not currently using the allowlist 2556 */ 2557 if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended && 2558 hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE && 2559 hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST) 2560 err = -EINVAL; 2561 2562 done: 2563 filter_policy = err ? 0x00 : 0x01; 2564 2565 /* Enable address resolution when LL Privacy is enabled. */ 2566 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x01); 2567 if (err) 2568 bt_dev_err(hdev, "Unable to enable LL privacy: %d", err); 2569 2570 /* Resume advertising if it was paused */ 2571 if (use_ll_privacy(hdev)) 2572 hci_resume_advertising_sync(hdev); 2573 2574 /* Select filter policy to use accept list */ 2575 return filter_policy; 2576 } 2577 2578 /* Returns true if an le connection is in the scanning state */ 2579 static inline bool hci_is_le_conn_scanning(struct hci_dev *hdev) 2580 { 2581 struct hci_conn_hash *h = &hdev->conn_hash; 2582 struct hci_conn *c; 2583 2584 rcu_read_lock(); 2585 2586 list_for_each_entry_rcu(c, &h->list, list) { 2587 if (c->type == LE_LINK && c->state == BT_CONNECT && 2588 test_bit(HCI_CONN_SCANNING, &c->flags)) { 2589 rcu_read_unlock(); 2590 return true; 2591 } 2592 } 2593 2594 rcu_read_unlock(); 2595 2596 return false; 2597 } 2598 2599 static int hci_le_set_ext_scan_param_sync(struct hci_dev *hdev, u8 type, 2600 u16 interval, u16 window, 2601 u8 own_addr_type, u8 filter_policy) 2602 { 2603 struct hci_cp_le_set_ext_scan_params *cp; 2604 struct hci_cp_le_scan_phy_params *phy; 2605 u8 data[sizeof(*cp) + sizeof(*phy) * 2]; 2606 u8 num_phy = 0; 2607 2608 cp = (void *)data; 2609 phy = (void *)cp->data; 2610 2611 memset(data, 0, sizeof(data)); 2612 2613 cp->own_addr_type = own_addr_type; 2614 cp->filter_policy = filter_policy; 2615 2616 if (scan_1m(hdev) || scan_2m(hdev)) { 2617 cp->scanning_phys |= LE_SCAN_PHY_1M; 2618 2619 phy->type = type; 2620 phy->interval = cpu_to_le16(interval); 2621 phy->window = cpu_to_le16(window); 2622 2623 num_phy++; 2624 phy++; 2625 } 2626 2627 if (scan_coded(hdev)) { 2628 cp->scanning_phys |= LE_SCAN_PHY_CODED; 2629 2630 phy->type = type; 2631 phy->interval = cpu_to_le16(interval); 2632 phy->window = cpu_to_le16(window); 2633 2634 num_phy++; 2635 phy++; 2636 } 2637 2638 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_PARAMS, 2639 sizeof(*cp) + sizeof(*phy) * num_phy, 2640 data, HCI_CMD_TIMEOUT); 2641 } 2642 2643 static int hci_le_set_scan_param_sync(struct hci_dev *hdev, u8 type, 2644 u16 interval, u16 window, 2645 u8 own_addr_type, u8 filter_policy) 2646 { 2647 struct hci_cp_le_set_scan_param cp; 2648 2649 if (use_ext_scan(hdev)) 2650 return hci_le_set_ext_scan_param_sync(hdev, type, interval, 2651 window, own_addr_type, 2652 filter_policy); 2653 2654 memset(&cp, 0, sizeof(cp)); 2655 cp.type = type; 2656 cp.interval = cpu_to_le16(interval); 2657 cp.window = cpu_to_le16(window); 2658 cp.own_address_type = own_addr_type; 2659 cp.filter_policy = filter_policy; 2660 2661 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_PARAM, 2662 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2663 } 2664 2665 static int hci_start_scan_sync(struct hci_dev *hdev, u8 type, u16 interval, 2666 u16 window, u8 own_addr_type, u8 filter_policy, 2667 u8 filter_dup) 2668 { 2669 int err; 2670 2671 if (hdev->scanning_paused) { 2672 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2673 return 0; 2674 } 2675 2676 err = hci_le_set_scan_param_sync(hdev, type, interval, window, 2677 own_addr_type, filter_policy); 2678 if (err) 2679 return err; 2680 2681 return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, filter_dup); 2682 } 2683 2684 static int hci_passive_scan_sync(struct hci_dev *hdev) 2685 { 2686 u8 own_addr_type; 2687 u8 filter_policy; 2688 u16 window, interval; 2689 u8 filter_dups = LE_SCAN_FILTER_DUP_ENABLE; 2690 int err; 2691 2692 if (hdev->scanning_paused) { 2693 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2694 return 0; 2695 } 2696 2697 err = hci_scan_disable_sync(hdev); 2698 if (err) { 2699 bt_dev_err(hdev, "disable scanning failed: %d", err); 2700 return err; 2701 } 2702 2703 /* Set require_privacy to false since no SCAN_REQ are send 2704 * during passive scanning. Not using an non-resolvable address 2705 * here is important so that peer devices using direct 2706 * advertising with our address will be correctly reported 2707 * by the controller. 2708 */ 2709 if (hci_update_random_address_sync(hdev, false, scan_use_rpa(hdev), 2710 &own_addr_type)) 2711 return 0; 2712 2713 if (hdev->enable_advmon_interleave_scan && 2714 hci_update_interleaved_scan_sync(hdev)) 2715 return 0; 2716 2717 bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state); 2718 2719 /* Adding or removing entries from the accept list must 2720 * happen before enabling scanning. The controller does 2721 * not allow accept list modification while scanning. 2722 */ 2723 filter_policy = hci_update_accept_list_sync(hdev); 2724 2725 /* When the controller is using random resolvable addresses and 2726 * with that having LE privacy enabled, then controllers with 2727 * Extended Scanner Filter Policies support can now enable support 2728 * for handling directed advertising. 2729 * 2730 * So instead of using filter polices 0x00 (no acceptlist) 2731 * and 0x01 (acceptlist enabled) use the new filter policies 2732 * 0x02 (no acceptlist) and 0x03 (acceptlist enabled). 2733 */ 2734 if (hci_dev_test_flag(hdev, HCI_PRIVACY) && 2735 (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)) 2736 filter_policy |= 0x02; 2737 2738 if (hdev->suspended) { 2739 window = hdev->le_scan_window_suspend; 2740 interval = hdev->le_scan_int_suspend; 2741 } else if (hci_is_le_conn_scanning(hdev)) { 2742 window = hdev->le_scan_window_connect; 2743 interval = hdev->le_scan_int_connect; 2744 } else if (hci_is_adv_monitoring(hdev)) { 2745 window = hdev->le_scan_window_adv_monitor; 2746 interval = hdev->le_scan_int_adv_monitor; 2747 } else { 2748 window = hdev->le_scan_window; 2749 interval = hdev->le_scan_interval; 2750 } 2751 2752 /* Disable all filtering for Mesh */ 2753 if (hci_dev_test_flag(hdev, HCI_MESH)) { 2754 filter_policy = 0; 2755 filter_dups = LE_SCAN_FILTER_DUP_DISABLE; 2756 } 2757 2758 bt_dev_dbg(hdev, "LE passive scan with acceptlist = %d", filter_policy); 2759 2760 return hci_start_scan_sync(hdev, LE_SCAN_PASSIVE, interval, window, 2761 own_addr_type, filter_policy, filter_dups); 2762 } 2763 2764 /* This function controls the passive scanning based on hdev->pend_le_conns 2765 * list. If there are pending LE connection we start the background scanning, 2766 * otherwise we stop it in the following sequence: 2767 * 2768 * If there are devices to scan: 2769 * 2770 * Disable Scanning -> Update Accept List -> 2771 * use_ll_privacy((Disable Advertising) -> Disable Resolving List -> 2772 * Update Resolving List -> Enable Resolving List -> (Enable Advertising)) -> 2773 * Enable Scanning 2774 * 2775 * Otherwise: 2776 * 2777 * Disable Scanning 2778 */ 2779 int hci_update_passive_scan_sync(struct hci_dev *hdev) 2780 { 2781 int err; 2782 2783 if (!test_bit(HCI_UP, &hdev->flags) || 2784 test_bit(HCI_INIT, &hdev->flags) || 2785 hci_dev_test_flag(hdev, HCI_SETUP) || 2786 hci_dev_test_flag(hdev, HCI_CONFIG) || 2787 hci_dev_test_flag(hdev, HCI_AUTO_OFF) || 2788 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 2789 return 0; 2790 2791 /* No point in doing scanning if LE support hasn't been enabled */ 2792 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 2793 return 0; 2794 2795 /* If discovery is active don't interfere with it */ 2796 if (hdev->discovery.state != DISCOVERY_STOPPED) 2797 return 0; 2798 2799 /* Reset RSSI and UUID filters when starting background scanning 2800 * since these filters are meant for service discovery only. 2801 * 2802 * The Start Discovery and Start Service Discovery operations 2803 * ensure to set proper values for RSSI threshold and UUID 2804 * filter list. So it is safe to just reset them here. 2805 */ 2806 hci_discovery_filter_clear(hdev); 2807 2808 bt_dev_dbg(hdev, "ADV monitoring is %s", 2809 hci_is_adv_monitoring(hdev) ? "on" : "off"); 2810 2811 if (!hci_dev_test_flag(hdev, HCI_MESH) && 2812 list_empty(&hdev->pend_le_conns) && 2813 list_empty(&hdev->pend_le_reports) && 2814 !hci_is_adv_monitoring(hdev) && 2815 !hci_dev_test_flag(hdev, HCI_PA_SYNC)) { 2816 /* If there is no pending LE connections or devices 2817 * to be scanned for or no ADV monitors, we should stop the 2818 * background scanning. 2819 */ 2820 2821 bt_dev_dbg(hdev, "stopping background scanning"); 2822 2823 err = hci_scan_disable_sync(hdev); 2824 if (err) 2825 bt_dev_err(hdev, "stop background scanning failed: %d", 2826 err); 2827 } else { 2828 /* If there is at least one pending LE connection, we should 2829 * keep the background scan running. 2830 */ 2831 2832 /* If controller is connecting, we should not start scanning 2833 * since some controllers are not able to scan and connect at 2834 * the same time. 2835 */ 2836 if (hci_lookup_le_connect(hdev)) 2837 return 0; 2838 2839 bt_dev_dbg(hdev, "start background scanning"); 2840 2841 err = hci_passive_scan_sync(hdev); 2842 if (err) 2843 bt_dev_err(hdev, "start background scanning failed: %d", 2844 err); 2845 } 2846 2847 return err; 2848 } 2849 2850 static int update_scan_sync(struct hci_dev *hdev, void *data) 2851 { 2852 return hci_update_scan_sync(hdev); 2853 } 2854 2855 int hci_update_scan(struct hci_dev *hdev) 2856 { 2857 return hci_cmd_sync_queue(hdev, update_scan_sync, NULL, NULL); 2858 } 2859 2860 static int update_passive_scan_sync(struct hci_dev *hdev, void *data) 2861 { 2862 return hci_update_passive_scan_sync(hdev); 2863 } 2864 2865 int hci_update_passive_scan(struct hci_dev *hdev) 2866 { 2867 /* Only queue if it would have any effect */ 2868 if (!test_bit(HCI_UP, &hdev->flags) || 2869 test_bit(HCI_INIT, &hdev->flags) || 2870 hci_dev_test_flag(hdev, HCI_SETUP) || 2871 hci_dev_test_flag(hdev, HCI_CONFIG) || 2872 hci_dev_test_flag(hdev, HCI_AUTO_OFF) || 2873 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 2874 return 0; 2875 2876 return hci_cmd_sync_queue(hdev, update_passive_scan_sync, NULL, NULL); 2877 } 2878 2879 int hci_write_sc_support_sync(struct hci_dev *hdev, u8 val) 2880 { 2881 int err; 2882 2883 if (!bredr_sc_enabled(hdev) || lmp_host_sc_capable(hdev)) 2884 return 0; 2885 2886 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT, 2887 sizeof(val), &val, HCI_CMD_TIMEOUT); 2888 2889 if (!err) { 2890 if (val) { 2891 hdev->features[1][0] |= LMP_HOST_SC; 2892 hci_dev_set_flag(hdev, HCI_SC_ENABLED); 2893 } else { 2894 hdev->features[1][0] &= ~LMP_HOST_SC; 2895 hci_dev_clear_flag(hdev, HCI_SC_ENABLED); 2896 } 2897 } 2898 2899 return err; 2900 } 2901 2902 int hci_write_ssp_mode_sync(struct hci_dev *hdev, u8 mode) 2903 { 2904 int err; 2905 2906 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) || 2907 lmp_host_ssp_capable(hdev)) 2908 return 0; 2909 2910 if (!mode && hci_dev_test_flag(hdev, HCI_USE_DEBUG_KEYS)) { 2911 __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE, 2912 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 2913 } 2914 2915 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE, 2916 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 2917 if (err) 2918 return err; 2919 2920 return hci_write_sc_support_sync(hdev, 0x01); 2921 } 2922 2923 int hci_write_le_host_supported_sync(struct hci_dev *hdev, u8 le, u8 simul) 2924 { 2925 struct hci_cp_write_le_host_supported cp; 2926 2927 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED) || 2928 !lmp_bredr_capable(hdev)) 2929 return 0; 2930 2931 /* Check first if we already have the right host state 2932 * (host features set) 2933 */ 2934 if (le == lmp_host_le_capable(hdev) && 2935 simul == lmp_host_le_br_capable(hdev)) 2936 return 0; 2937 2938 memset(&cp, 0, sizeof(cp)); 2939 2940 cp.le = le; 2941 cp.simul = simul; 2942 2943 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED, 2944 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2945 } 2946 2947 static int hci_powered_update_adv_sync(struct hci_dev *hdev) 2948 { 2949 struct adv_info *adv, *tmp; 2950 int err; 2951 2952 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 2953 return 0; 2954 2955 /* If RPA Resolution has not been enable yet it means the 2956 * resolving list is empty and we should attempt to program the 2957 * local IRK in order to support using own_addr_type 2958 * ADDR_LE_DEV_RANDOM_RESOLVED (0x03). 2959 */ 2960 if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) { 2961 hci_le_add_resolve_list_sync(hdev, NULL); 2962 hci_le_set_addr_resolution_enable_sync(hdev, 0x01); 2963 } 2964 2965 /* Make sure the controller has a good default for 2966 * advertising data. This also applies to the case 2967 * where BR/EDR was toggled during the AUTO_OFF phase. 2968 */ 2969 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 2970 list_empty(&hdev->adv_instances)) { 2971 if (ext_adv_capable(hdev)) { 2972 err = hci_setup_ext_adv_instance_sync(hdev, 0x00); 2973 if (!err) 2974 hci_update_scan_rsp_data_sync(hdev, 0x00); 2975 } else { 2976 err = hci_update_adv_data_sync(hdev, 0x00); 2977 if (!err) 2978 hci_update_scan_rsp_data_sync(hdev, 0x00); 2979 } 2980 2981 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) 2982 hci_enable_advertising_sync(hdev); 2983 } 2984 2985 /* Call for each tracked instance to be scheduled */ 2986 list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) 2987 hci_schedule_adv_instance_sync(hdev, adv->instance, true); 2988 2989 return 0; 2990 } 2991 2992 static int hci_write_auth_enable_sync(struct hci_dev *hdev) 2993 { 2994 u8 link_sec; 2995 2996 link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY); 2997 if (link_sec == test_bit(HCI_AUTH, &hdev->flags)) 2998 return 0; 2999 3000 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE, 3001 sizeof(link_sec), &link_sec, 3002 HCI_CMD_TIMEOUT); 3003 } 3004 3005 int hci_write_fast_connectable_sync(struct hci_dev *hdev, bool enable) 3006 { 3007 struct hci_cp_write_page_scan_activity cp; 3008 u8 type; 3009 int err = 0; 3010 3011 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 3012 return 0; 3013 3014 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 3015 return 0; 3016 3017 memset(&cp, 0, sizeof(cp)); 3018 3019 if (enable) { 3020 type = PAGE_SCAN_TYPE_INTERLACED; 3021 3022 /* 160 msec page scan interval */ 3023 cp.interval = cpu_to_le16(0x0100); 3024 } else { 3025 type = hdev->def_page_scan_type; 3026 cp.interval = cpu_to_le16(hdev->def_page_scan_int); 3027 } 3028 3029 cp.window = cpu_to_le16(hdev->def_page_scan_window); 3030 3031 if (__cpu_to_le16(hdev->page_scan_interval) != cp.interval || 3032 __cpu_to_le16(hdev->page_scan_window) != cp.window) { 3033 err = __hci_cmd_sync_status(hdev, 3034 HCI_OP_WRITE_PAGE_SCAN_ACTIVITY, 3035 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3036 if (err) 3037 return err; 3038 } 3039 3040 if (hdev->page_scan_type != type) 3041 err = __hci_cmd_sync_status(hdev, 3042 HCI_OP_WRITE_PAGE_SCAN_TYPE, 3043 sizeof(type), &type, 3044 HCI_CMD_TIMEOUT); 3045 3046 return err; 3047 } 3048 3049 static bool disconnected_accept_list_entries(struct hci_dev *hdev) 3050 { 3051 struct bdaddr_list *b; 3052 3053 list_for_each_entry(b, &hdev->accept_list, list) { 3054 struct hci_conn *conn; 3055 3056 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr); 3057 if (!conn) 3058 return true; 3059 3060 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 3061 return true; 3062 } 3063 3064 return false; 3065 } 3066 3067 static int hci_write_scan_enable_sync(struct hci_dev *hdev, u8 val) 3068 { 3069 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE, 3070 sizeof(val), &val, 3071 HCI_CMD_TIMEOUT); 3072 } 3073 3074 int hci_update_scan_sync(struct hci_dev *hdev) 3075 { 3076 u8 scan; 3077 3078 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 3079 return 0; 3080 3081 if (!hdev_is_powered(hdev)) 3082 return 0; 3083 3084 if (mgmt_powering_down(hdev)) 3085 return 0; 3086 3087 if (hdev->scanning_paused) 3088 return 0; 3089 3090 if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) || 3091 disconnected_accept_list_entries(hdev)) 3092 scan = SCAN_PAGE; 3093 else 3094 scan = SCAN_DISABLED; 3095 3096 if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 3097 scan |= SCAN_INQUIRY; 3098 3099 if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) && 3100 test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY)) 3101 return 0; 3102 3103 return hci_write_scan_enable_sync(hdev, scan); 3104 } 3105 3106 int hci_update_name_sync(struct hci_dev *hdev) 3107 { 3108 struct hci_cp_write_local_name cp; 3109 3110 memset(&cp, 0, sizeof(cp)); 3111 3112 memcpy(cp.name, hdev->dev_name, sizeof(cp.name)); 3113 3114 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LOCAL_NAME, 3115 sizeof(cp), &cp, 3116 HCI_CMD_TIMEOUT); 3117 } 3118 3119 /* This function perform powered update HCI command sequence after the HCI init 3120 * sequence which end up resetting all states, the sequence is as follows: 3121 * 3122 * HCI_SSP_ENABLED(Enable SSP) 3123 * HCI_LE_ENABLED(Enable LE) 3124 * HCI_LE_ENABLED(use_ll_privacy(Add local IRK to Resolving List) -> 3125 * Update adv data) 3126 * Enable Authentication 3127 * lmp_bredr_capable(Set Fast Connectable -> Set Scan Type -> Set Class -> 3128 * Set Name -> Set EIR) 3129 * HCI_FORCE_STATIC_ADDR | BDADDR_ANY && !HCI_BREDR_ENABLED (Set Static Address) 3130 */ 3131 int hci_powered_update_sync(struct hci_dev *hdev) 3132 { 3133 int err; 3134 3135 /* Register the available SMP channels (BR/EDR and LE) only when 3136 * successfully powering on the controller. This late 3137 * registration is required so that LE SMP can clearly decide if 3138 * the public address or static address is used. 3139 */ 3140 smp_register(hdev); 3141 3142 err = hci_write_ssp_mode_sync(hdev, 0x01); 3143 if (err) 3144 return err; 3145 3146 err = hci_write_le_host_supported_sync(hdev, 0x01, 0x00); 3147 if (err) 3148 return err; 3149 3150 err = hci_powered_update_adv_sync(hdev); 3151 if (err) 3152 return err; 3153 3154 err = hci_write_auth_enable_sync(hdev); 3155 if (err) 3156 return err; 3157 3158 if (lmp_bredr_capable(hdev)) { 3159 if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE)) 3160 hci_write_fast_connectable_sync(hdev, true); 3161 else 3162 hci_write_fast_connectable_sync(hdev, false); 3163 hci_update_scan_sync(hdev); 3164 hci_update_class_sync(hdev); 3165 hci_update_name_sync(hdev); 3166 hci_update_eir_sync(hdev); 3167 } 3168 3169 /* If forcing static address is in use or there is no public 3170 * address use the static address as random address (but skip 3171 * the HCI command if the current random address is already the 3172 * static one. 3173 * 3174 * In case BR/EDR has been disabled on a dual-mode controller 3175 * and a static address has been configured, then use that 3176 * address instead of the public BR/EDR address. 3177 */ 3178 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 3179 (!bacmp(&hdev->bdaddr, BDADDR_ANY) && 3180 !hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))) { 3181 if (bacmp(&hdev->static_addr, BDADDR_ANY)) 3182 return hci_set_random_addr_sync(hdev, 3183 &hdev->static_addr); 3184 } 3185 3186 return 0; 3187 } 3188 3189 /** 3190 * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address 3191 * (BD_ADDR) for a HCI device from 3192 * a firmware node property. 3193 * @hdev: The HCI device 3194 * 3195 * Search the firmware node for 'local-bd-address'. 3196 * 3197 * All-zero BD addresses are rejected, because those could be properties 3198 * that exist in the firmware tables, but were not updated by the firmware. For 3199 * example, the DTS could define 'local-bd-address', with zero BD addresses. 3200 */ 3201 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev) 3202 { 3203 struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent); 3204 bdaddr_t ba; 3205 int ret; 3206 3207 ret = fwnode_property_read_u8_array(fwnode, "local-bd-address", 3208 (u8 *)&ba, sizeof(ba)); 3209 if (ret < 0 || !bacmp(&ba, BDADDR_ANY)) 3210 return; 3211 3212 bacpy(&hdev->public_addr, &ba); 3213 } 3214 3215 struct hci_init_stage { 3216 int (*func)(struct hci_dev *hdev); 3217 }; 3218 3219 /* Run init stage NULL terminated function table */ 3220 static int hci_init_stage_sync(struct hci_dev *hdev, 3221 const struct hci_init_stage *stage) 3222 { 3223 size_t i; 3224 3225 for (i = 0; stage[i].func; i++) { 3226 int err; 3227 3228 err = stage[i].func(hdev); 3229 if (err) 3230 return err; 3231 } 3232 3233 return 0; 3234 } 3235 3236 /* Read Local Version */ 3237 static int hci_read_local_version_sync(struct hci_dev *hdev) 3238 { 3239 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_VERSION, 3240 0, NULL, HCI_CMD_TIMEOUT); 3241 } 3242 3243 /* Read BD Address */ 3244 static int hci_read_bd_addr_sync(struct hci_dev *hdev) 3245 { 3246 return __hci_cmd_sync_status(hdev, HCI_OP_READ_BD_ADDR, 3247 0, NULL, HCI_CMD_TIMEOUT); 3248 } 3249 3250 #define HCI_INIT(_func) \ 3251 { \ 3252 .func = _func, \ 3253 } 3254 3255 static const struct hci_init_stage hci_init0[] = { 3256 /* HCI_OP_READ_LOCAL_VERSION */ 3257 HCI_INIT(hci_read_local_version_sync), 3258 /* HCI_OP_READ_BD_ADDR */ 3259 HCI_INIT(hci_read_bd_addr_sync), 3260 {} 3261 }; 3262 3263 int hci_reset_sync(struct hci_dev *hdev) 3264 { 3265 int err; 3266 3267 set_bit(HCI_RESET, &hdev->flags); 3268 3269 err = __hci_cmd_sync_status(hdev, HCI_OP_RESET, 0, NULL, 3270 HCI_CMD_TIMEOUT); 3271 if (err) 3272 return err; 3273 3274 return 0; 3275 } 3276 3277 static int hci_init0_sync(struct hci_dev *hdev) 3278 { 3279 int err; 3280 3281 bt_dev_dbg(hdev, ""); 3282 3283 /* Reset */ 3284 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) { 3285 err = hci_reset_sync(hdev); 3286 if (err) 3287 return err; 3288 } 3289 3290 return hci_init_stage_sync(hdev, hci_init0); 3291 } 3292 3293 static int hci_unconf_init_sync(struct hci_dev *hdev) 3294 { 3295 int err; 3296 3297 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) 3298 return 0; 3299 3300 err = hci_init0_sync(hdev); 3301 if (err < 0) 3302 return err; 3303 3304 if (hci_dev_test_flag(hdev, HCI_SETUP)) 3305 hci_debugfs_create_basic(hdev); 3306 3307 return 0; 3308 } 3309 3310 /* Read Local Supported Features. */ 3311 static int hci_read_local_features_sync(struct hci_dev *hdev) 3312 { 3313 /* Not all AMP controllers support this command */ 3314 if (hdev->dev_type == HCI_AMP && !(hdev->commands[14] & 0x20)) 3315 return 0; 3316 3317 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_FEATURES, 3318 0, NULL, HCI_CMD_TIMEOUT); 3319 } 3320 3321 /* BR Controller init stage 1 command sequence */ 3322 static const struct hci_init_stage br_init1[] = { 3323 /* HCI_OP_READ_LOCAL_FEATURES */ 3324 HCI_INIT(hci_read_local_features_sync), 3325 /* HCI_OP_READ_LOCAL_VERSION */ 3326 HCI_INIT(hci_read_local_version_sync), 3327 /* HCI_OP_READ_BD_ADDR */ 3328 HCI_INIT(hci_read_bd_addr_sync), 3329 {} 3330 }; 3331 3332 /* Read Local Commands */ 3333 static int hci_read_local_cmds_sync(struct hci_dev *hdev) 3334 { 3335 /* All Bluetooth 1.2 and later controllers should support the 3336 * HCI command for reading the local supported commands. 3337 * 3338 * Unfortunately some controllers indicate Bluetooth 1.2 support, 3339 * but do not have support for this command. If that is the case, 3340 * the driver can quirk the behavior and skip reading the local 3341 * supported commands. 3342 */ 3343 if (hdev->hci_ver > BLUETOOTH_VER_1_1 && 3344 !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks)) 3345 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_COMMANDS, 3346 0, NULL, HCI_CMD_TIMEOUT); 3347 3348 return 0; 3349 } 3350 3351 /* Read Local AMP Info */ 3352 static int hci_read_local_amp_info_sync(struct hci_dev *hdev) 3353 { 3354 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_AMP_INFO, 3355 0, NULL, HCI_CMD_TIMEOUT); 3356 } 3357 3358 /* Read Data Blk size */ 3359 static int hci_read_data_block_size_sync(struct hci_dev *hdev) 3360 { 3361 return __hci_cmd_sync_status(hdev, HCI_OP_READ_DATA_BLOCK_SIZE, 3362 0, NULL, HCI_CMD_TIMEOUT); 3363 } 3364 3365 /* Read Flow Control Mode */ 3366 static int hci_read_flow_control_mode_sync(struct hci_dev *hdev) 3367 { 3368 return __hci_cmd_sync_status(hdev, HCI_OP_READ_FLOW_CONTROL_MODE, 3369 0, NULL, HCI_CMD_TIMEOUT); 3370 } 3371 3372 /* Read Location Data */ 3373 static int hci_read_location_data_sync(struct hci_dev *hdev) 3374 { 3375 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCATION_DATA, 3376 0, NULL, HCI_CMD_TIMEOUT); 3377 } 3378 3379 /* AMP Controller init stage 1 command sequence */ 3380 static const struct hci_init_stage amp_init1[] = { 3381 /* HCI_OP_READ_LOCAL_VERSION */ 3382 HCI_INIT(hci_read_local_version_sync), 3383 /* HCI_OP_READ_LOCAL_COMMANDS */ 3384 HCI_INIT(hci_read_local_cmds_sync), 3385 /* HCI_OP_READ_LOCAL_AMP_INFO */ 3386 HCI_INIT(hci_read_local_amp_info_sync), 3387 /* HCI_OP_READ_DATA_BLOCK_SIZE */ 3388 HCI_INIT(hci_read_data_block_size_sync), 3389 /* HCI_OP_READ_FLOW_CONTROL_MODE */ 3390 HCI_INIT(hci_read_flow_control_mode_sync), 3391 /* HCI_OP_READ_LOCATION_DATA */ 3392 HCI_INIT(hci_read_location_data_sync), 3393 {} 3394 }; 3395 3396 static int hci_init1_sync(struct hci_dev *hdev) 3397 { 3398 int err; 3399 3400 bt_dev_dbg(hdev, ""); 3401 3402 /* Reset */ 3403 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) { 3404 err = hci_reset_sync(hdev); 3405 if (err) 3406 return err; 3407 } 3408 3409 switch (hdev->dev_type) { 3410 case HCI_PRIMARY: 3411 hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED; 3412 return hci_init_stage_sync(hdev, br_init1); 3413 case HCI_AMP: 3414 hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED; 3415 return hci_init_stage_sync(hdev, amp_init1); 3416 default: 3417 bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type); 3418 break; 3419 } 3420 3421 return 0; 3422 } 3423 3424 /* AMP Controller init stage 2 command sequence */ 3425 static const struct hci_init_stage amp_init2[] = { 3426 /* HCI_OP_READ_LOCAL_FEATURES */ 3427 HCI_INIT(hci_read_local_features_sync), 3428 {} 3429 }; 3430 3431 /* Read Buffer Size (ACL mtu, max pkt, etc.) */ 3432 static int hci_read_buffer_size_sync(struct hci_dev *hdev) 3433 { 3434 return __hci_cmd_sync_status(hdev, HCI_OP_READ_BUFFER_SIZE, 3435 0, NULL, HCI_CMD_TIMEOUT); 3436 } 3437 3438 /* Read Class of Device */ 3439 static int hci_read_dev_class_sync(struct hci_dev *hdev) 3440 { 3441 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLASS_OF_DEV, 3442 0, NULL, HCI_CMD_TIMEOUT); 3443 } 3444 3445 /* Read Local Name */ 3446 static int hci_read_local_name_sync(struct hci_dev *hdev) 3447 { 3448 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_NAME, 3449 0, NULL, HCI_CMD_TIMEOUT); 3450 } 3451 3452 /* Read Voice Setting */ 3453 static int hci_read_voice_setting_sync(struct hci_dev *hdev) 3454 { 3455 return __hci_cmd_sync_status(hdev, HCI_OP_READ_VOICE_SETTING, 3456 0, NULL, HCI_CMD_TIMEOUT); 3457 } 3458 3459 /* Read Number of Supported IAC */ 3460 static int hci_read_num_supported_iac_sync(struct hci_dev *hdev) 3461 { 3462 return __hci_cmd_sync_status(hdev, HCI_OP_READ_NUM_SUPPORTED_IAC, 3463 0, NULL, HCI_CMD_TIMEOUT); 3464 } 3465 3466 /* Read Current IAC LAP */ 3467 static int hci_read_current_iac_lap_sync(struct hci_dev *hdev) 3468 { 3469 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CURRENT_IAC_LAP, 3470 0, NULL, HCI_CMD_TIMEOUT); 3471 } 3472 3473 static int hci_set_event_filter_sync(struct hci_dev *hdev, u8 flt_type, 3474 u8 cond_type, bdaddr_t *bdaddr, 3475 u8 auto_accept) 3476 { 3477 struct hci_cp_set_event_filter cp; 3478 3479 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 3480 return 0; 3481 3482 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 3483 return 0; 3484 3485 memset(&cp, 0, sizeof(cp)); 3486 cp.flt_type = flt_type; 3487 3488 if (flt_type != HCI_FLT_CLEAR_ALL) { 3489 cp.cond_type = cond_type; 3490 bacpy(&cp.addr_conn_flt.bdaddr, bdaddr); 3491 cp.addr_conn_flt.auto_accept = auto_accept; 3492 } 3493 3494 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_FLT, 3495 flt_type == HCI_FLT_CLEAR_ALL ? 3496 sizeof(cp.flt_type) : sizeof(cp), &cp, 3497 HCI_CMD_TIMEOUT); 3498 } 3499 3500 static int hci_clear_event_filter_sync(struct hci_dev *hdev) 3501 { 3502 if (!hci_dev_test_flag(hdev, HCI_EVENT_FILTER_CONFIGURED)) 3503 return 0; 3504 3505 /* In theory the state machine should not reach here unless 3506 * a hci_set_event_filter_sync() call succeeds, but we do 3507 * the check both for parity and as a future reminder. 3508 */ 3509 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 3510 return 0; 3511 3512 return hci_set_event_filter_sync(hdev, HCI_FLT_CLEAR_ALL, 0x00, 3513 BDADDR_ANY, 0x00); 3514 } 3515 3516 /* Connection accept timeout ~20 secs */ 3517 static int hci_write_ca_timeout_sync(struct hci_dev *hdev) 3518 { 3519 __le16 param = cpu_to_le16(0x7d00); 3520 3521 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CA_TIMEOUT, 3522 sizeof(param), ¶m, HCI_CMD_TIMEOUT); 3523 } 3524 3525 /* BR Controller init stage 2 command sequence */ 3526 static const struct hci_init_stage br_init2[] = { 3527 /* HCI_OP_READ_BUFFER_SIZE */ 3528 HCI_INIT(hci_read_buffer_size_sync), 3529 /* HCI_OP_READ_CLASS_OF_DEV */ 3530 HCI_INIT(hci_read_dev_class_sync), 3531 /* HCI_OP_READ_LOCAL_NAME */ 3532 HCI_INIT(hci_read_local_name_sync), 3533 /* HCI_OP_READ_VOICE_SETTING */ 3534 HCI_INIT(hci_read_voice_setting_sync), 3535 /* HCI_OP_READ_NUM_SUPPORTED_IAC */ 3536 HCI_INIT(hci_read_num_supported_iac_sync), 3537 /* HCI_OP_READ_CURRENT_IAC_LAP */ 3538 HCI_INIT(hci_read_current_iac_lap_sync), 3539 /* HCI_OP_SET_EVENT_FLT */ 3540 HCI_INIT(hci_clear_event_filter_sync), 3541 /* HCI_OP_WRITE_CA_TIMEOUT */ 3542 HCI_INIT(hci_write_ca_timeout_sync), 3543 {} 3544 }; 3545 3546 static int hci_write_ssp_mode_1_sync(struct hci_dev *hdev) 3547 { 3548 u8 mode = 0x01; 3549 3550 if (!lmp_ssp_capable(hdev) || !hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 3551 return 0; 3552 3553 /* When SSP is available, then the host features page 3554 * should also be available as well. However some 3555 * controllers list the max_page as 0 as long as SSP 3556 * has not been enabled. To achieve proper debugging 3557 * output, force the minimum max_page to 1 at least. 3558 */ 3559 hdev->max_page = 0x01; 3560 3561 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE, 3562 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3563 } 3564 3565 static int hci_write_eir_sync(struct hci_dev *hdev) 3566 { 3567 struct hci_cp_write_eir cp; 3568 3569 if (!lmp_ssp_capable(hdev) || hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 3570 return 0; 3571 3572 memset(hdev->eir, 0, sizeof(hdev->eir)); 3573 memset(&cp, 0, sizeof(cp)); 3574 3575 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp, 3576 HCI_CMD_TIMEOUT); 3577 } 3578 3579 static int hci_write_inquiry_mode_sync(struct hci_dev *hdev) 3580 { 3581 u8 mode; 3582 3583 if (!lmp_inq_rssi_capable(hdev) && 3584 !test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) 3585 return 0; 3586 3587 /* If Extended Inquiry Result events are supported, then 3588 * they are clearly preferred over Inquiry Result with RSSI 3589 * events. 3590 */ 3591 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01; 3592 3593 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_INQUIRY_MODE, 3594 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3595 } 3596 3597 static int hci_read_inq_rsp_tx_power_sync(struct hci_dev *hdev) 3598 { 3599 if (!lmp_inq_tx_pwr_capable(hdev)) 3600 return 0; 3601 3602 return __hci_cmd_sync_status(hdev, HCI_OP_READ_INQ_RSP_TX_POWER, 3603 0, NULL, HCI_CMD_TIMEOUT); 3604 } 3605 3606 static int hci_read_local_ext_features_sync(struct hci_dev *hdev, u8 page) 3607 { 3608 struct hci_cp_read_local_ext_features cp; 3609 3610 if (!lmp_ext_feat_capable(hdev)) 3611 return 0; 3612 3613 memset(&cp, 0, sizeof(cp)); 3614 cp.page = page; 3615 3616 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_EXT_FEATURES, 3617 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3618 } 3619 3620 static int hci_read_local_ext_features_1_sync(struct hci_dev *hdev) 3621 { 3622 return hci_read_local_ext_features_sync(hdev, 0x01); 3623 } 3624 3625 /* HCI Controller init stage 2 command sequence */ 3626 static const struct hci_init_stage hci_init2[] = { 3627 /* HCI_OP_READ_LOCAL_COMMANDS */ 3628 HCI_INIT(hci_read_local_cmds_sync), 3629 /* HCI_OP_WRITE_SSP_MODE */ 3630 HCI_INIT(hci_write_ssp_mode_1_sync), 3631 /* HCI_OP_WRITE_EIR */ 3632 HCI_INIT(hci_write_eir_sync), 3633 /* HCI_OP_WRITE_INQUIRY_MODE */ 3634 HCI_INIT(hci_write_inquiry_mode_sync), 3635 /* HCI_OP_READ_INQ_RSP_TX_POWER */ 3636 HCI_INIT(hci_read_inq_rsp_tx_power_sync), 3637 /* HCI_OP_READ_LOCAL_EXT_FEATURES */ 3638 HCI_INIT(hci_read_local_ext_features_1_sync), 3639 /* HCI_OP_WRITE_AUTH_ENABLE */ 3640 HCI_INIT(hci_write_auth_enable_sync), 3641 {} 3642 }; 3643 3644 /* Read LE Buffer Size */ 3645 static int hci_le_read_buffer_size_sync(struct hci_dev *hdev) 3646 { 3647 /* Use Read LE Buffer Size V2 if supported */ 3648 if (iso_capable(hdev) && hdev->commands[41] & 0x20) 3649 return __hci_cmd_sync_status(hdev, 3650 HCI_OP_LE_READ_BUFFER_SIZE_V2, 3651 0, NULL, HCI_CMD_TIMEOUT); 3652 3653 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_BUFFER_SIZE, 3654 0, NULL, HCI_CMD_TIMEOUT); 3655 } 3656 3657 /* Read LE Local Supported Features */ 3658 static int hci_le_read_local_features_sync(struct hci_dev *hdev) 3659 { 3660 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_LOCAL_FEATURES, 3661 0, NULL, HCI_CMD_TIMEOUT); 3662 } 3663 3664 /* Read LE Supported States */ 3665 static int hci_le_read_supported_states_sync(struct hci_dev *hdev) 3666 { 3667 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_SUPPORTED_STATES, 3668 0, NULL, HCI_CMD_TIMEOUT); 3669 } 3670 3671 /* LE Controller init stage 2 command sequence */ 3672 static const struct hci_init_stage le_init2[] = { 3673 /* HCI_OP_LE_READ_LOCAL_FEATURES */ 3674 HCI_INIT(hci_le_read_local_features_sync), 3675 /* HCI_OP_LE_READ_BUFFER_SIZE */ 3676 HCI_INIT(hci_le_read_buffer_size_sync), 3677 /* HCI_OP_LE_READ_SUPPORTED_STATES */ 3678 HCI_INIT(hci_le_read_supported_states_sync), 3679 {} 3680 }; 3681 3682 static int hci_init2_sync(struct hci_dev *hdev) 3683 { 3684 int err; 3685 3686 bt_dev_dbg(hdev, ""); 3687 3688 if (hdev->dev_type == HCI_AMP) 3689 return hci_init_stage_sync(hdev, amp_init2); 3690 3691 err = hci_init_stage_sync(hdev, hci_init2); 3692 if (err) 3693 return err; 3694 3695 if (lmp_bredr_capable(hdev)) { 3696 err = hci_init_stage_sync(hdev, br_init2); 3697 if (err) 3698 return err; 3699 } else { 3700 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED); 3701 } 3702 3703 if (lmp_le_capable(hdev)) { 3704 err = hci_init_stage_sync(hdev, le_init2); 3705 if (err) 3706 return err; 3707 /* LE-only controllers have LE implicitly enabled */ 3708 if (!lmp_bredr_capable(hdev)) 3709 hci_dev_set_flag(hdev, HCI_LE_ENABLED); 3710 } 3711 3712 return 0; 3713 } 3714 3715 static int hci_set_event_mask_sync(struct hci_dev *hdev) 3716 { 3717 /* The second byte is 0xff instead of 0x9f (two reserved bits 3718 * disabled) since a Broadcom 1.2 dongle doesn't respond to the 3719 * command otherwise. 3720 */ 3721 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 }; 3722 3723 /* CSR 1.1 dongles does not accept any bitfield so don't try to set 3724 * any event mask for pre 1.2 devices. 3725 */ 3726 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 3727 return 0; 3728 3729 if (lmp_bredr_capable(hdev)) { 3730 events[4] |= 0x01; /* Flow Specification Complete */ 3731 3732 /* Don't set Disconnect Complete when suspended as that 3733 * would wakeup the host when disconnecting due to 3734 * suspend. 3735 */ 3736 if (hdev->suspended) 3737 events[0] &= 0xef; 3738 } else { 3739 /* Use a different default for LE-only devices */ 3740 memset(events, 0, sizeof(events)); 3741 events[1] |= 0x20; /* Command Complete */ 3742 events[1] |= 0x40; /* Command Status */ 3743 events[1] |= 0x80; /* Hardware Error */ 3744 3745 /* If the controller supports the Disconnect command, enable 3746 * the corresponding event. In addition enable packet flow 3747 * control related events. 3748 */ 3749 if (hdev->commands[0] & 0x20) { 3750 /* Don't set Disconnect Complete when suspended as that 3751 * would wakeup the host when disconnecting due to 3752 * suspend. 3753 */ 3754 if (!hdev->suspended) 3755 events[0] |= 0x10; /* Disconnection Complete */ 3756 events[2] |= 0x04; /* Number of Completed Packets */ 3757 events[3] |= 0x02; /* Data Buffer Overflow */ 3758 } 3759 3760 /* If the controller supports the Read Remote Version 3761 * Information command, enable the corresponding event. 3762 */ 3763 if (hdev->commands[2] & 0x80) 3764 events[1] |= 0x08; /* Read Remote Version Information 3765 * Complete 3766 */ 3767 3768 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) { 3769 events[0] |= 0x80; /* Encryption Change */ 3770 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 3771 } 3772 } 3773 3774 if (lmp_inq_rssi_capable(hdev) || 3775 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) 3776 events[4] |= 0x02; /* Inquiry Result with RSSI */ 3777 3778 if (lmp_ext_feat_capable(hdev)) 3779 events[4] |= 0x04; /* Read Remote Extended Features Complete */ 3780 3781 if (lmp_esco_capable(hdev)) { 3782 events[5] |= 0x08; /* Synchronous Connection Complete */ 3783 events[5] |= 0x10; /* Synchronous Connection Changed */ 3784 } 3785 3786 if (lmp_sniffsubr_capable(hdev)) 3787 events[5] |= 0x20; /* Sniff Subrating */ 3788 3789 if (lmp_pause_enc_capable(hdev)) 3790 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 3791 3792 if (lmp_ext_inq_capable(hdev)) 3793 events[5] |= 0x40; /* Extended Inquiry Result */ 3794 3795 if (lmp_no_flush_capable(hdev)) 3796 events[7] |= 0x01; /* Enhanced Flush Complete */ 3797 3798 if (lmp_lsto_capable(hdev)) 3799 events[6] |= 0x80; /* Link Supervision Timeout Changed */ 3800 3801 if (lmp_ssp_capable(hdev)) { 3802 events[6] |= 0x01; /* IO Capability Request */ 3803 events[6] |= 0x02; /* IO Capability Response */ 3804 events[6] |= 0x04; /* User Confirmation Request */ 3805 events[6] |= 0x08; /* User Passkey Request */ 3806 events[6] |= 0x10; /* Remote OOB Data Request */ 3807 events[6] |= 0x20; /* Simple Pairing Complete */ 3808 events[7] |= 0x04; /* User Passkey Notification */ 3809 events[7] |= 0x08; /* Keypress Notification */ 3810 events[7] |= 0x10; /* Remote Host Supported 3811 * Features Notification 3812 */ 3813 } 3814 3815 if (lmp_le_capable(hdev)) 3816 events[7] |= 0x20; /* LE Meta-Event */ 3817 3818 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK, 3819 sizeof(events), events, HCI_CMD_TIMEOUT); 3820 } 3821 3822 static int hci_read_stored_link_key_sync(struct hci_dev *hdev) 3823 { 3824 struct hci_cp_read_stored_link_key cp; 3825 3826 if (!(hdev->commands[6] & 0x20) || 3827 test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) 3828 return 0; 3829 3830 memset(&cp, 0, sizeof(cp)); 3831 bacpy(&cp.bdaddr, BDADDR_ANY); 3832 cp.read_all = 0x01; 3833 3834 return __hci_cmd_sync_status(hdev, HCI_OP_READ_STORED_LINK_KEY, 3835 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3836 } 3837 3838 static int hci_setup_link_policy_sync(struct hci_dev *hdev) 3839 { 3840 struct hci_cp_write_def_link_policy cp; 3841 u16 link_policy = 0; 3842 3843 if (!(hdev->commands[5] & 0x10)) 3844 return 0; 3845 3846 memset(&cp, 0, sizeof(cp)); 3847 3848 if (lmp_rswitch_capable(hdev)) 3849 link_policy |= HCI_LP_RSWITCH; 3850 if (lmp_hold_capable(hdev)) 3851 link_policy |= HCI_LP_HOLD; 3852 if (lmp_sniff_capable(hdev)) 3853 link_policy |= HCI_LP_SNIFF; 3854 if (lmp_park_capable(hdev)) 3855 link_policy |= HCI_LP_PARK; 3856 3857 cp.policy = cpu_to_le16(link_policy); 3858 3859 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY, 3860 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3861 } 3862 3863 static int hci_read_page_scan_activity_sync(struct hci_dev *hdev) 3864 { 3865 if (!(hdev->commands[8] & 0x01)) 3866 return 0; 3867 3868 return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 3869 0, NULL, HCI_CMD_TIMEOUT); 3870 } 3871 3872 static int hci_read_def_err_data_reporting_sync(struct hci_dev *hdev) 3873 { 3874 if (!(hdev->commands[18] & 0x04) || 3875 !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) || 3876 test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) 3877 return 0; 3878 3879 return __hci_cmd_sync_status(hdev, HCI_OP_READ_DEF_ERR_DATA_REPORTING, 3880 0, NULL, HCI_CMD_TIMEOUT); 3881 } 3882 3883 static int hci_read_page_scan_type_sync(struct hci_dev *hdev) 3884 { 3885 /* Some older Broadcom based Bluetooth 1.2 controllers do not 3886 * support the Read Page Scan Type command. Check support for 3887 * this command in the bit mask of supported commands. 3888 */ 3889 if (!(hdev->commands[13] & 0x01)) 3890 return 0; 3891 3892 return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_TYPE, 3893 0, NULL, HCI_CMD_TIMEOUT); 3894 } 3895 3896 /* Read features beyond page 1 if available */ 3897 static int hci_read_local_ext_features_all_sync(struct hci_dev *hdev) 3898 { 3899 u8 page; 3900 int err; 3901 3902 if (!lmp_ext_feat_capable(hdev)) 3903 return 0; 3904 3905 for (page = 2; page < HCI_MAX_PAGES && page <= hdev->max_page; 3906 page++) { 3907 err = hci_read_local_ext_features_sync(hdev, page); 3908 if (err) 3909 return err; 3910 } 3911 3912 return 0; 3913 } 3914 3915 /* HCI Controller init stage 3 command sequence */ 3916 static const struct hci_init_stage hci_init3[] = { 3917 /* HCI_OP_SET_EVENT_MASK */ 3918 HCI_INIT(hci_set_event_mask_sync), 3919 /* HCI_OP_READ_STORED_LINK_KEY */ 3920 HCI_INIT(hci_read_stored_link_key_sync), 3921 /* HCI_OP_WRITE_DEF_LINK_POLICY */ 3922 HCI_INIT(hci_setup_link_policy_sync), 3923 /* HCI_OP_READ_PAGE_SCAN_ACTIVITY */ 3924 HCI_INIT(hci_read_page_scan_activity_sync), 3925 /* HCI_OP_READ_DEF_ERR_DATA_REPORTING */ 3926 HCI_INIT(hci_read_def_err_data_reporting_sync), 3927 /* HCI_OP_READ_PAGE_SCAN_TYPE */ 3928 HCI_INIT(hci_read_page_scan_type_sync), 3929 /* HCI_OP_READ_LOCAL_EXT_FEATURES */ 3930 HCI_INIT(hci_read_local_ext_features_all_sync), 3931 {} 3932 }; 3933 3934 static int hci_le_set_event_mask_sync(struct hci_dev *hdev) 3935 { 3936 u8 events[8]; 3937 3938 if (!lmp_le_capable(hdev)) 3939 return 0; 3940 3941 memset(events, 0, sizeof(events)); 3942 3943 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) 3944 events[0] |= 0x10; /* LE Long Term Key Request */ 3945 3946 /* If controller supports the Connection Parameters Request 3947 * Link Layer Procedure, enable the corresponding event. 3948 */ 3949 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC) 3950 /* LE Remote Connection Parameter Request */ 3951 events[0] |= 0x20; 3952 3953 /* If the controller supports the Data Length Extension 3954 * feature, enable the corresponding event. 3955 */ 3956 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) 3957 events[0] |= 0x40; /* LE Data Length Change */ 3958 3959 /* If the controller supports LL Privacy feature or LE Extended Adv, 3960 * enable the corresponding event. 3961 */ 3962 if (use_enhanced_conn_complete(hdev)) 3963 events[1] |= 0x02; /* LE Enhanced Connection Complete */ 3964 3965 /* If the controller supports Extended Scanner Filter 3966 * Policies, enable the corresponding event. 3967 */ 3968 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY) 3969 events[1] |= 0x04; /* LE Direct Advertising Report */ 3970 3971 /* If the controller supports Channel Selection Algorithm #2 3972 * feature, enable the corresponding event. 3973 */ 3974 if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2) 3975 events[2] |= 0x08; /* LE Channel Selection Algorithm */ 3976 3977 /* If the controller supports the LE Set Scan Enable command, 3978 * enable the corresponding advertising report event. 3979 */ 3980 if (hdev->commands[26] & 0x08) 3981 events[0] |= 0x02; /* LE Advertising Report */ 3982 3983 /* If the controller supports the LE Create Connection 3984 * command, enable the corresponding event. 3985 */ 3986 if (hdev->commands[26] & 0x10) 3987 events[0] |= 0x01; /* LE Connection Complete */ 3988 3989 /* If the controller supports the LE Connection Update 3990 * command, enable the corresponding event. 3991 */ 3992 if (hdev->commands[27] & 0x04) 3993 events[0] |= 0x04; /* LE Connection Update Complete */ 3994 3995 /* If the controller supports the LE Read Remote Used Features 3996 * command, enable the corresponding event. 3997 */ 3998 if (hdev->commands[27] & 0x20) 3999 /* LE Read Remote Used Features Complete */ 4000 events[0] |= 0x08; 4001 4002 /* If the controller supports the LE Read Local P-256 4003 * Public Key command, enable the corresponding event. 4004 */ 4005 if (hdev->commands[34] & 0x02) 4006 /* LE Read Local P-256 Public Key Complete */ 4007 events[0] |= 0x80; 4008 4009 /* If the controller supports the LE Generate DHKey 4010 * command, enable the corresponding event. 4011 */ 4012 if (hdev->commands[34] & 0x04) 4013 events[1] |= 0x01; /* LE Generate DHKey Complete */ 4014 4015 /* If the controller supports the LE Set Default PHY or 4016 * LE Set PHY commands, enable the corresponding event. 4017 */ 4018 if (hdev->commands[35] & (0x20 | 0x40)) 4019 events[1] |= 0x08; /* LE PHY Update Complete */ 4020 4021 /* If the controller supports LE Set Extended Scan Parameters 4022 * and LE Set Extended Scan Enable commands, enable the 4023 * corresponding event. 4024 */ 4025 if (use_ext_scan(hdev)) 4026 events[1] |= 0x10; /* LE Extended Advertising Report */ 4027 4028 /* If the controller supports the LE Extended Advertising 4029 * command, enable the corresponding event. 4030 */ 4031 if (ext_adv_capable(hdev)) 4032 events[2] |= 0x02; /* LE Advertising Set Terminated */ 4033 4034 if (cis_capable(hdev)) { 4035 events[3] |= 0x01; /* LE CIS Established */ 4036 if (cis_peripheral_capable(hdev)) 4037 events[3] |= 0x02; /* LE CIS Request */ 4038 } 4039 4040 if (bis_capable(hdev)) { 4041 events[3] |= 0x04; /* LE Create BIG Complete */ 4042 events[3] |= 0x08; /* LE Terminate BIG Complete */ 4043 events[3] |= 0x10; /* LE BIG Sync Established */ 4044 events[3] |= 0x20; /* LE BIG Sync Loss */ 4045 } 4046 4047 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EVENT_MASK, 4048 sizeof(events), events, HCI_CMD_TIMEOUT); 4049 } 4050 4051 /* Read LE Advertising Channel TX Power */ 4052 static int hci_le_read_adv_tx_power_sync(struct hci_dev *hdev) 4053 { 4054 if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) { 4055 /* HCI TS spec forbids mixing of legacy and extended 4056 * advertising commands wherein READ_ADV_TX_POWER is 4057 * also included. So do not call it if extended adv 4058 * is supported otherwise controller will return 4059 * COMMAND_DISALLOWED for extended commands. 4060 */ 4061 return __hci_cmd_sync_status(hdev, 4062 HCI_OP_LE_READ_ADV_TX_POWER, 4063 0, NULL, HCI_CMD_TIMEOUT); 4064 } 4065 4066 return 0; 4067 } 4068 4069 /* Read LE Min/Max Tx Power*/ 4070 static int hci_le_read_tx_power_sync(struct hci_dev *hdev) 4071 { 4072 if (!(hdev->commands[38] & 0x80) || 4073 test_bit(HCI_QUIRK_BROKEN_READ_TRANSMIT_POWER, &hdev->quirks)) 4074 return 0; 4075 4076 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_TRANSMIT_POWER, 4077 0, NULL, HCI_CMD_TIMEOUT); 4078 } 4079 4080 /* Read LE Accept List Size */ 4081 static int hci_le_read_accept_list_size_sync(struct hci_dev *hdev) 4082 { 4083 if (!(hdev->commands[26] & 0x40)) 4084 return 0; 4085 4086 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_ACCEPT_LIST_SIZE, 4087 0, NULL, HCI_CMD_TIMEOUT); 4088 } 4089 4090 /* Clear LE Accept List */ 4091 static int hci_le_clear_accept_list_sync(struct hci_dev *hdev) 4092 { 4093 if (!(hdev->commands[26] & 0x80)) 4094 return 0; 4095 4096 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL, 4097 HCI_CMD_TIMEOUT); 4098 } 4099 4100 /* Read LE Resolving List Size */ 4101 static int hci_le_read_resolv_list_size_sync(struct hci_dev *hdev) 4102 { 4103 if (!(hdev->commands[34] & 0x40)) 4104 return 0; 4105 4106 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_RESOLV_LIST_SIZE, 4107 0, NULL, HCI_CMD_TIMEOUT); 4108 } 4109 4110 /* Clear LE Resolving List */ 4111 static int hci_le_clear_resolv_list_sync(struct hci_dev *hdev) 4112 { 4113 if (!(hdev->commands[34] & 0x20)) 4114 return 0; 4115 4116 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL, 4117 HCI_CMD_TIMEOUT); 4118 } 4119 4120 /* Set RPA timeout */ 4121 static int hci_le_set_rpa_timeout_sync(struct hci_dev *hdev) 4122 { 4123 __le16 timeout = cpu_to_le16(hdev->rpa_timeout); 4124 4125 if (!(hdev->commands[35] & 0x04) || 4126 test_bit(HCI_QUIRK_BROKEN_SET_RPA_TIMEOUT, &hdev->quirks)) 4127 return 0; 4128 4129 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RPA_TIMEOUT, 4130 sizeof(timeout), &timeout, 4131 HCI_CMD_TIMEOUT); 4132 } 4133 4134 /* Read LE Maximum Data Length */ 4135 static int hci_le_read_max_data_len_sync(struct hci_dev *hdev) 4136 { 4137 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 4138 return 0; 4139 4140 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL, 4141 HCI_CMD_TIMEOUT); 4142 } 4143 4144 /* Read LE Suggested Default Data Length */ 4145 static int hci_le_read_def_data_len_sync(struct hci_dev *hdev) 4146 { 4147 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 4148 return 0; 4149 4150 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL, 4151 HCI_CMD_TIMEOUT); 4152 } 4153 4154 /* Read LE Number of Supported Advertising Sets */ 4155 static int hci_le_read_num_support_adv_sets_sync(struct hci_dev *hdev) 4156 { 4157 if (!ext_adv_capable(hdev)) 4158 return 0; 4159 4160 return __hci_cmd_sync_status(hdev, 4161 HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS, 4162 0, NULL, HCI_CMD_TIMEOUT); 4163 } 4164 4165 /* Write LE Host Supported */ 4166 static int hci_set_le_support_sync(struct hci_dev *hdev) 4167 { 4168 struct hci_cp_write_le_host_supported cp; 4169 4170 /* LE-only devices do not support explicit enablement */ 4171 if (!lmp_bredr_capable(hdev)) 4172 return 0; 4173 4174 memset(&cp, 0, sizeof(cp)); 4175 4176 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 4177 cp.le = 0x01; 4178 cp.simul = 0x00; 4179 } 4180 4181 if (cp.le == lmp_host_le_capable(hdev)) 4182 return 0; 4183 4184 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED, 4185 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4186 } 4187 4188 /* LE Set Host Feature */ 4189 static int hci_le_set_host_feature_sync(struct hci_dev *hdev) 4190 { 4191 struct hci_cp_le_set_host_feature cp; 4192 4193 if (!iso_capable(hdev)) 4194 return 0; 4195 4196 memset(&cp, 0, sizeof(cp)); 4197 4198 /* Isochronous Channels (Host Support) */ 4199 cp.bit_number = 32; 4200 cp.bit_value = 1; 4201 4202 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_HOST_FEATURE, 4203 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4204 } 4205 4206 /* LE Controller init stage 3 command sequence */ 4207 static const struct hci_init_stage le_init3[] = { 4208 /* HCI_OP_LE_SET_EVENT_MASK */ 4209 HCI_INIT(hci_le_set_event_mask_sync), 4210 /* HCI_OP_LE_READ_ADV_TX_POWER */ 4211 HCI_INIT(hci_le_read_adv_tx_power_sync), 4212 /* HCI_OP_LE_READ_TRANSMIT_POWER */ 4213 HCI_INIT(hci_le_read_tx_power_sync), 4214 /* HCI_OP_LE_READ_ACCEPT_LIST_SIZE */ 4215 HCI_INIT(hci_le_read_accept_list_size_sync), 4216 /* HCI_OP_LE_CLEAR_ACCEPT_LIST */ 4217 HCI_INIT(hci_le_clear_accept_list_sync), 4218 /* HCI_OP_LE_READ_RESOLV_LIST_SIZE */ 4219 HCI_INIT(hci_le_read_resolv_list_size_sync), 4220 /* HCI_OP_LE_CLEAR_RESOLV_LIST */ 4221 HCI_INIT(hci_le_clear_resolv_list_sync), 4222 /* HCI_OP_LE_SET_RPA_TIMEOUT */ 4223 HCI_INIT(hci_le_set_rpa_timeout_sync), 4224 /* HCI_OP_LE_READ_MAX_DATA_LEN */ 4225 HCI_INIT(hci_le_read_max_data_len_sync), 4226 /* HCI_OP_LE_READ_DEF_DATA_LEN */ 4227 HCI_INIT(hci_le_read_def_data_len_sync), 4228 /* HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS */ 4229 HCI_INIT(hci_le_read_num_support_adv_sets_sync), 4230 /* HCI_OP_WRITE_LE_HOST_SUPPORTED */ 4231 HCI_INIT(hci_set_le_support_sync), 4232 /* HCI_OP_LE_SET_HOST_FEATURE */ 4233 HCI_INIT(hci_le_set_host_feature_sync), 4234 {} 4235 }; 4236 4237 static int hci_init3_sync(struct hci_dev *hdev) 4238 { 4239 int err; 4240 4241 bt_dev_dbg(hdev, ""); 4242 4243 err = hci_init_stage_sync(hdev, hci_init3); 4244 if (err) 4245 return err; 4246 4247 if (lmp_le_capable(hdev)) 4248 return hci_init_stage_sync(hdev, le_init3); 4249 4250 return 0; 4251 } 4252 4253 static int hci_delete_stored_link_key_sync(struct hci_dev *hdev) 4254 { 4255 struct hci_cp_delete_stored_link_key cp; 4256 4257 /* Some Broadcom based Bluetooth controllers do not support the 4258 * Delete Stored Link Key command. They are clearly indicating its 4259 * absence in the bit mask of supported commands. 4260 * 4261 * Check the supported commands and only if the command is marked 4262 * as supported send it. If not supported assume that the controller 4263 * does not have actual support for stored link keys which makes this 4264 * command redundant anyway. 4265 * 4266 * Some controllers indicate that they support handling deleting 4267 * stored link keys, but they don't. The quirk lets a driver 4268 * just disable this command. 4269 */ 4270 if (!(hdev->commands[6] & 0x80) || 4271 test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) 4272 return 0; 4273 4274 memset(&cp, 0, sizeof(cp)); 4275 bacpy(&cp.bdaddr, BDADDR_ANY); 4276 cp.delete_all = 0x01; 4277 4278 return __hci_cmd_sync_status(hdev, HCI_OP_DELETE_STORED_LINK_KEY, 4279 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4280 } 4281 4282 static int hci_set_event_mask_page_2_sync(struct hci_dev *hdev) 4283 { 4284 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 4285 bool changed = false; 4286 4287 /* Set event mask page 2 if the HCI command for it is supported */ 4288 if (!(hdev->commands[22] & 0x04)) 4289 return 0; 4290 4291 /* If Connectionless Peripheral Broadcast central role is supported 4292 * enable all necessary events for it. 4293 */ 4294 if (lmp_cpb_central_capable(hdev)) { 4295 events[1] |= 0x40; /* Triggered Clock Capture */ 4296 events[1] |= 0x80; /* Synchronization Train Complete */ 4297 events[2] |= 0x08; /* Truncated Page Complete */ 4298 events[2] |= 0x20; /* CPB Channel Map Change */ 4299 changed = true; 4300 } 4301 4302 /* If Connectionless Peripheral Broadcast peripheral role is supported 4303 * enable all necessary events for it. 4304 */ 4305 if (lmp_cpb_peripheral_capable(hdev)) { 4306 events[2] |= 0x01; /* Synchronization Train Received */ 4307 events[2] |= 0x02; /* CPB Receive */ 4308 events[2] |= 0x04; /* CPB Timeout */ 4309 events[2] |= 0x10; /* Peripheral Page Response Timeout */ 4310 changed = true; 4311 } 4312 4313 /* Enable Authenticated Payload Timeout Expired event if supported */ 4314 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) { 4315 events[2] |= 0x80; 4316 changed = true; 4317 } 4318 4319 /* Some Broadcom based controllers indicate support for Set Event 4320 * Mask Page 2 command, but then actually do not support it. Since 4321 * the default value is all bits set to zero, the command is only 4322 * required if the event mask has to be changed. In case no change 4323 * to the event mask is needed, skip this command. 4324 */ 4325 if (!changed) 4326 return 0; 4327 4328 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK_PAGE_2, 4329 sizeof(events), events, HCI_CMD_TIMEOUT); 4330 } 4331 4332 /* Read local codec list if the HCI command is supported */ 4333 static int hci_read_local_codecs_sync(struct hci_dev *hdev) 4334 { 4335 if (hdev->commands[45] & 0x04) 4336 hci_read_supported_codecs_v2(hdev); 4337 else if (hdev->commands[29] & 0x20) 4338 hci_read_supported_codecs(hdev); 4339 4340 return 0; 4341 } 4342 4343 /* Read local pairing options if the HCI command is supported */ 4344 static int hci_read_local_pairing_opts_sync(struct hci_dev *hdev) 4345 { 4346 if (!(hdev->commands[41] & 0x08)) 4347 return 0; 4348 4349 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_PAIRING_OPTS, 4350 0, NULL, HCI_CMD_TIMEOUT); 4351 } 4352 4353 /* Get MWS transport configuration if the HCI command is supported */ 4354 static int hci_get_mws_transport_config_sync(struct hci_dev *hdev) 4355 { 4356 if (!mws_transport_config_capable(hdev)) 4357 return 0; 4358 4359 return __hci_cmd_sync_status(hdev, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 4360 0, NULL, HCI_CMD_TIMEOUT); 4361 } 4362 4363 /* Check for Synchronization Train support */ 4364 static int hci_read_sync_train_params_sync(struct hci_dev *hdev) 4365 { 4366 if (!lmp_sync_train_capable(hdev)) 4367 return 0; 4368 4369 return __hci_cmd_sync_status(hdev, HCI_OP_READ_SYNC_TRAIN_PARAMS, 4370 0, NULL, HCI_CMD_TIMEOUT); 4371 } 4372 4373 /* Enable Secure Connections if supported and configured */ 4374 static int hci_write_sc_support_1_sync(struct hci_dev *hdev) 4375 { 4376 u8 support = 0x01; 4377 4378 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) || 4379 !bredr_sc_enabled(hdev)) 4380 return 0; 4381 4382 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT, 4383 sizeof(support), &support, 4384 HCI_CMD_TIMEOUT); 4385 } 4386 4387 /* Set erroneous data reporting if supported to the wideband speech 4388 * setting value 4389 */ 4390 static int hci_set_err_data_report_sync(struct hci_dev *hdev) 4391 { 4392 struct hci_cp_write_def_err_data_reporting cp; 4393 bool enabled = hci_dev_test_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED); 4394 4395 if (!(hdev->commands[18] & 0x08) || 4396 !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) || 4397 test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) 4398 return 0; 4399 4400 if (enabled == hdev->err_data_reporting) 4401 return 0; 4402 4403 memset(&cp, 0, sizeof(cp)); 4404 cp.err_data_reporting = enabled ? ERR_DATA_REPORTING_ENABLED : 4405 ERR_DATA_REPORTING_DISABLED; 4406 4407 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING, 4408 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4409 } 4410 4411 static const struct hci_init_stage hci_init4[] = { 4412 /* HCI_OP_DELETE_STORED_LINK_KEY */ 4413 HCI_INIT(hci_delete_stored_link_key_sync), 4414 /* HCI_OP_SET_EVENT_MASK_PAGE_2 */ 4415 HCI_INIT(hci_set_event_mask_page_2_sync), 4416 /* HCI_OP_READ_LOCAL_CODECS */ 4417 HCI_INIT(hci_read_local_codecs_sync), 4418 /* HCI_OP_READ_LOCAL_PAIRING_OPTS */ 4419 HCI_INIT(hci_read_local_pairing_opts_sync), 4420 /* HCI_OP_GET_MWS_TRANSPORT_CONFIG */ 4421 HCI_INIT(hci_get_mws_transport_config_sync), 4422 /* HCI_OP_READ_SYNC_TRAIN_PARAMS */ 4423 HCI_INIT(hci_read_sync_train_params_sync), 4424 /* HCI_OP_WRITE_SC_SUPPORT */ 4425 HCI_INIT(hci_write_sc_support_1_sync), 4426 /* HCI_OP_WRITE_DEF_ERR_DATA_REPORTING */ 4427 HCI_INIT(hci_set_err_data_report_sync), 4428 {} 4429 }; 4430 4431 /* Set Suggested Default Data Length to maximum if supported */ 4432 static int hci_le_set_write_def_data_len_sync(struct hci_dev *hdev) 4433 { 4434 struct hci_cp_le_write_def_data_len cp; 4435 4436 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 4437 return 0; 4438 4439 memset(&cp, 0, sizeof(cp)); 4440 cp.tx_len = cpu_to_le16(hdev->le_max_tx_len); 4441 cp.tx_time = cpu_to_le16(hdev->le_max_tx_time); 4442 4443 return __hci_cmd_sync_status(hdev, HCI_OP_LE_WRITE_DEF_DATA_LEN, 4444 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4445 } 4446 4447 /* Set Default PHY parameters if command is supported, enables all supported 4448 * PHYs according to the LE Features bits. 4449 */ 4450 static int hci_le_set_default_phy_sync(struct hci_dev *hdev) 4451 { 4452 struct hci_cp_le_set_default_phy cp; 4453 4454 if (!(hdev->commands[35] & 0x20)) { 4455 /* If the command is not supported it means only 1M PHY is 4456 * supported. 4457 */ 4458 hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M; 4459 hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M; 4460 return 0; 4461 } 4462 4463 memset(&cp, 0, sizeof(cp)); 4464 cp.all_phys = 0x00; 4465 cp.tx_phys = HCI_LE_SET_PHY_1M; 4466 cp.rx_phys = HCI_LE_SET_PHY_1M; 4467 4468 /* Enables 2M PHY if supported */ 4469 if (le_2m_capable(hdev)) { 4470 cp.tx_phys |= HCI_LE_SET_PHY_2M; 4471 cp.rx_phys |= HCI_LE_SET_PHY_2M; 4472 } 4473 4474 /* Enables Coded PHY if supported */ 4475 if (le_coded_capable(hdev)) { 4476 cp.tx_phys |= HCI_LE_SET_PHY_CODED; 4477 cp.rx_phys |= HCI_LE_SET_PHY_CODED; 4478 } 4479 4480 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_DEFAULT_PHY, 4481 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4482 } 4483 4484 static const struct hci_init_stage le_init4[] = { 4485 /* HCI_OP_LE_WRITE_DEF_DATA_LEN */ 4486 HCI_INIT(hci_le_set_write_def_data_len_sync), 4487 /* HCI_OP_LE_SET_DEFAULT_PHY */ 4488 HCI_INIT(hci_le_set_default_phy_sync), 4489 {} 4490 }; 4491 4492 static int hci_init4_sync(struct hci_dev *hdev) 4493 { 4494 int err; 4495 4496 bt_dev_dbg(hdev, ""); 4497 4498 err = hci_init_stage_sync(hdev, hci_init4); 4499 if (err) 4500 return err; 4501 4502 if (lmp_le_capable(hdev)) 4503 return hci_init_stage_sync(hdev, le_init4); 4504 4505 return 0; 4506 } 4507 4508 static int hci_init_sync(struct hci_dev *hdev) 4509 { 4510 int err; 4511 4512 err = hci_init1_sync(hdev); 4513 if (err < 0) 4514 return err; 4515 4516 if (hci_dev_test_flag(hdev, HCI_SETUP)) 4517 hci_debugfs_create_basic(hdev); 4518 4519 err = hci_init2_sync(hdev); 4520 if (err < 0) 4521 return err; 4522 4523 /* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode 4524 * BR/EDR/LE type controllers. AMP controllers only need the 4525 * first two stages of init. 4526 */ 4527 if (hdev->dev_type != HCI_PRIMARY) 4528 return 0; 4529 4530 err = hci_init3_sync(hdev); 4531 if (err < 0) 4532 return err; 4533 4534 err = hci_init4_sync(hdev); 4535 if (err < 0) 4536 return err; 4537 4538 /* This function is only called when the controller is actually in 4539 * configured state. When the controller is marked as unconfigured, 4540 * this initialization procedure is not run. 4541 * 4542 * It means that it is possible that a controller runs through its 4543 * setup phase and then discovers missing settings. If that is the 4544 * case, then this function will not be called. It then will only 4545 * be called during the config phase. 4546 * 4547 * So only when in setup phase or config phase, create the debugfs 4548 * entries and register the SMP channels. 4549 */ 4550 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4551 !hci_dev_test_flag(hdev, HCI_CONFIG)) 4552 return 0; 4553 4554 if (hci_dev_test_and_set_flag(hdev, HCI_DEBUGFS_CREATED)) 4555 return 0; 4556 4557 hci_debugfs_create_common(hdev); 4558 4559 if (lmp_bredr_capable(hdev)) 4560 hci_debugfs_create_bredr(hdev); 4561 4562 if (lmp_le_capable(hdev)) 4563 hci_debugfs_create_le(hdev); 4564 4565 return 0; 4566 } 4567 4568 #define HCI_QUIRK_BROKEN(_quirk, _desc) { HCI_QUIRK_BROKEN_##_quirk, _desc } 4569 4570 static const struct { 4571 unsigned long quirk; 4572 const char *desc; 4573 } hci_broken_table[] = { 4574 HCI_QUIRK_BROKEN(LOCAL_COMMANDS, 4575 "HCI Read Local Supported Commands not supported"), 4576 HCI_QUIRK_BROKEN(STORED_LINK_KEY, 4577 "HCI Delete Stored Link Key command is advertised, " 4578 "but not supported."), 4579 HCI_QUIRK_BROKEN(ERR_DATA_REPORTING, 4580 "HCI Read Default Erroneous Data Reporting command is " 4581 "advertised, but not supported."), 4582 HCI_QUIRK_BROKEN(READ_TRANSMIT_POWER, 4583 "HCI Read Transmit Power Level command is advertised, " 4584 "but not supported."), 4585 HCI_QUIRK_BROKEN(FILTER_CLEAR_ALL, 4586 "HCI Set Event Filter command not supported."), 4587 HCI_QUIRK_BROKEN(ENHANCED_SETUP_SYNC_CONN, 4588 "HCI Enhanced Setup Synchronous Connection command is " 4589 "advertised, but not supported."), 4590 HCI_QUIRK_BROKEN(SET_RPA_TIMEOUT, 4591 "HCI LE Set Random Private Address Timeout command is " 4592 "advertised, but not supported.") 4593 }; 4594 4595 /* This function handles hdev setup stage: 4596 * 4597 * Calls hdev->setup 4598 * Setup address if HCI_QUIRK_USE_BDADDR_PROPERTY is set. 4599 */ 4600 static int hci_dev_setup_sync(struct hci_dev *hdev) 4601 { 4602 int ret = 0; 4603 bool invalid_bdaddr; 4604 size_t i; 4605 4606 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4607 !test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) 4608 return 0; 4609 4610 bt_dev_dbg(hdev, ""); 4611 4612 hci_sock_dev_event(hdev, HCI_DEV_SETUP); 4613 4614 if (hdev->setup) 4615 ret = hdev->setup(hdev); 4616 4617 for (i = 0; i < ARRAY_SIZE(hci_broken_table); i++) { 4618 if (test_bit(hci_broken_table[i].quirk, &hdev->quirks)) 4619 bt_dev_warn(hdev, "%s", hci_broken_table[i].desc); 4620 } 4621 4622 /* The transport driver can set the quirk to mark the 4623 * BD_ADDR invalid before creating the HCI device or in 4624 * its setup callback. 4625 */ 4626 invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks); 4627 4628 if (!ret) { 4629 if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) { 4630 if (!bacmp(&hdev->public_addr, BDADDR_ANY)) 4631 hci_dev_get_bd_addr_from_property(hdev); 4632 4633 if (bacmp(&hdev->public_addr, BDADDR_ANY) && 4634 hdev->set_bdaddr) { 4635 ret = hdev->set_bdaddr(hdev, 4636 &hdev->public_addr); 4637 4638 /* If setting of the BD_ADDR from the device 4639 * property succeeds, then treat the address 4640 * as valid even if the invalid BD_ADDR 4641 * quirk indicates otherwise. 4642 */ 4643 if (!ret) 4644 invalid_bdaddr = false; 4645 } 4646 } 4647 } 4648 4649 /* The transport driver can set these quirks before 4650 * creating the HCI device or in its setup callback. 4651 * 4652 * For the invalid BD_ADDR quirk it is possible that 4653 * it becomes a valid address if the bootloader does 4654 * provide it (see above). 4655 * 4656 * In case any of them is set, the controller has to 4657 * start up as unconfigured. 4658 */ 4659 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) || 4660 invalid_bdaddr) 4661 hci_dev_set_flag(hdev, HCI_UNCONFIGURED); 4662 4663 /* For an unconfigured controller it is required to 4664 * read at least the version information provided by 4665 * the Read Local Version Information command. 4666 * 4667 * If the set_bdaddr driver callback is provided, then 4668 * also the original Bluetooth public device address 4669 * will be read using the Read BD Address command. 4670 */ 4671 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 4672 return hci_unconf_init_sync(hdev); 4673 4674 return ret; 4675 } 4676 4677 /* This function handles hdev init stage: 4678 * 4679 * Calls hci_dev_setup_sync to perform setup stage 4680 * Calls hci_init_sync to perform HCI command init sequence 4681 */ 4682 static int hci_dev_init_sync(struct hci_dev *hdev) 4683 { 4684 int ret; 4685 4686 bt_dev_dbg(hdev, ""); 4687 4688 atomic_set(&hdev->cmd_cnt, 1); 4689 set_bit(HCI_INIT, &hdev->flags); 4690 4691 ret = hci_dev_setup_sync(hdev); 4692 4693 if (hci_dev_test_flag(hdev, HCI_CONFIG)) { 4694 /* If public address change is configured, ensure that 4695 * the address gets programmed. If the driver does not 4696 * support changing the public address, fail the power 4697 * on procedure. 4698 */ 4699 if (bacmp(&hdev->public_addr, BDADDR_ANY) && 4700 hdev->set_bdaddr) 4701 ret = hdev->set_bdaddr(hdev, &hdev->public_addr); 4702 else 4703 ret = -EADDRNOTAVAIL; 4704 } 4705 4706 if (!ret) { 4707 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 4708 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4709 ret = hci_init_sync(hdev); 4710 if (!ret && hdev->post_init) 4711 ret = hdev->post_init(hdev); 4712 } 4713 } 4714 4715 /* If the HCI Reset command is clearing all diagnostic settings, 4716 * then they need to be reprogrammed after the init procedure 4717 * completed. 4718 */ 4719 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) && 4720 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4721 hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag) 4722 ret = hdev->set_diag(hdev, true); 4723 4724 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4725 msft_do_open(hdev); 4726 aosp_do_open(hdev); 4727 } 4728 4729 clear_bit(HCI_INIT, &hdev->flags); 4730 4731 return ret; 4732 } 4733 4734 int hci_dev_open_sync(struct hci_dev *hdev) 4735 { 4736 int ret; 4737 4738 bt_dev_dbg(hdev, ""); 4739 4740 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 4741 ret = -ENODEV; 4742 goto done; 4743 } 4744 4745 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4746 !hci_dev_test_flag(hdev, HCI_CONFIG)) { 4747 /* Check for rfkill but allow the HCI setup stage to 4748 * proceed (which in itself doesn't cause any RF activity). 4749 */ 4750 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) { 4751 ret = -ERFKILL; 4752 goto done; 4753 } 4754 4755 /* Check for valid public address or a configured static 4756 * random address, but let the HCI setup proceed to 4757 * be able to determine if there is a public address 4758 * or not. 4759 * 4760 * In case of user channel usage, it is not important 4761 * if a public address or static random address is 4762 * available. 4763 * 4764 * This check is only valid for BR/EDR controllers 4765 * since AMP controllers do not have an address. 4766 */ 4767 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4768 hdev->dev_type == HCI_PRIMARY && 4769 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 4770 !bacmp(&hdev->static_addr, BDADDR_ANY)) { 4771 ret = -EADDRNOTAVAIL; 4772 goto done; 4773 } 4774 } 4775 4776 if (test_bit(HCI_UP, &hdev->flags)) { 4777 ret = -EALREADY; 4778 goto done; 4779 } 4780 4781 if (hdev->open(hdev)) { 4782 ret = -EIO; 4783 goto done; 4784 } 4785 4786 hci_devcd_reset(hdev); 4787 4788 set_bit(HCI_RUNNING, &hdev->flags); 4789 hci_sock_dev_event(hdev, HCI_DEV_OPEN); 4790 4791 ret = hci_dev_init_sync(hdev); 4792 if (!ret) { 4793 hci_dev_hold(hdev); 4794 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 4795 hci_adv_instances_set_rpa_expired(hdev, true); 4796 set_bit(HCI_UP, &hdev->flags); 4797 hci_sock_dev_event(hdev, HCI_DEV_UP); 4798 hci_leds_update_powered(hdev, true); 4799 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4800 !hci_dev_test_flag(hdev, HCI_CONFIG) && 4801 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 4802 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4803 hci_dev_test_flag(hdev, HCI_MGMT) && 4804 hdev->dev_type == HCI_PRIMARY) { 4805 ret = hci_powered_update_sync(hdev); 4806 mgmt_power_on(hdev, ret); 4807 } 4808 } else { 4809 /* Init failed, cleanup */ 4810 flush_work(&hdev->tx_work); 4811 4812 /* Since hci_rx_work() is possible to awake new cmd_work 4813 * it should be flushed first to avoid unexpected call of 4814 * hci_cmd_work() 4815 */ 4816 flush_work(&hdev->rx_work); 4817 flush_work(&hdev->cmd_work); 4818 4819 skb_queue_purge(&hdev->cmd_q); 4820 skb_queue_purge(&hdev->rx_q); 4821 4822 if (hdev->flush) 4823 hdev->flush(hdev); 4824 4825 if (hdev->sent_cmd) { 4826 cancel_delayed_work_sync(&hdev->cmd_timer); 4827 kfree_skb(hdev->sent_cmd); 4828 hdev->sent_cmd = NULL; 4829 } 4830 4831 clear_bit(HCI_RUNNING, &hdev->flags); 4832 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 4833 4834 hdev->close(hdev); 4835 hdev->flags &= BIT(HCI_RAW); 4836 } 4837 4838 done: 4839 return ret; 4840 } 4841 4842 /* This function requires the caller holds hdev->lock */ 4843 static void hci_pend_le_actions_clear(struct hci_dev *hdev) 4844 { 4845 struct hci_conn_params *p; 4846 4847 list_for_each_entry(p, &hdev->le_conn_params, list) { 4848 if (p->conn) { 4849 hci_conn_drop(p->conn); 4850 hci_conn_put(p->conn); 4851 p->conn = NULL; 4852 } 4853 list_del_init(&p->action); 4854 } 4855 4856 BT_DBG("All LE pending actions cleared"); 4857 } 4858 4859 static int hci_dev_shutdown(struct hci_dev *hdev) 4860 { 4861 int err = 0; 4862 /* Similar to how we first do setup and then set the exclusive access 4863 * bit for userspace, we must first unset userchannel and then clean up. 4864 * Otherwise, the kernel can't properly use the hci channel to clean up 4865 * the controller (some shutdown routines require sending additional 4866 * commands to the controller for example). 4867 */ 4868 bool was_userchannel = 4869 hci_dev_test_and_clear_flag(hdev, HCI_USER_CHANNEL); 4870 4871 if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) && 4872 test_bit(HCI_UP, &hdev->flags)) { 4873 /* Execute vendor specific shutdown routine */ 4874 if (hdev->shutdown) 4875 err = hdev->shutdown(hdev); 4876 } 4877 4878 if (was_userchannel) 4879 hci_dev_set_flag(hdev, HCI_USER_CHANNEL); 4880 4881 return err; 4882 } 4883 4884 int hci_dev_close_sync(struct hci_dev *hdev) 4885 { 4886 bool auto_off; 4887 int err = 0; 4888 4889 bt_dev_dbg(hdev, ""); 4890 4891 cancel_delayed_work(&hdev->power_off); 4892 cancel_delayed_work(&hdev->ncmd_timer); 4893 cancel_delayed_work(&hdev->le_scan_disable); 4894 cancel_delayed_work(&hdev->le_scan_restart); 4895 4896 hci_request_cancel_all(hdev); 4897 4898 if (hdev->adv_instance_timeout) { 4899 cancel_delayed_work_sync(&hdev->adv_instance_expire); 4900 hdev->adv_instance_timeout = 0; 4901 } 4902 4903 err = hci_dev_shutdown(hdev); 4904 4905 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) { 4906 cancel_delayed_work_sync(&hdev->cmd_timer); 4907 return err; 4908 } 4909 4910 hci_leds_update_powered(hdev, false); 4911 4912 /* Flush RX and TX works */ 4913 flush_work(&hdev->tx_work); 4914 flush_work(&hdev->rx_work); 4915 4916 if (hdev->discov_timeout > 0) { 4917 hdev->discov_timeout = 0; 4918 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 4919 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 4920 } 4921 4922 if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE)) 4923 cancel_delayed_work(&hdev->service_cache); 4924 4925 if (hci_dev_test_flag(hdev, HCI_MGMT)) { 4926 struct adv_info *adv_instance; 4927 4928 cancel_delayed_work_sync(&hdev->rpa_expired); 4929 4930 list_for_each_entry(adv_instance, &hdev->adv_instances, list) 4931 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb); 4932 } 4933 4934 /* Avoid potential lockdep warnings from the *_flush() calls by 4935 * ensuring the workqueue is empty up front. 4936 */ 4937 drain_workqueue(hdev->workqueue); 4938 4939 hci_dev_lock(hdev); 4940 4941 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 4942 4943 auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF); 4944 4945 if (!auto_off && hdev->dev_type == HCI_PRIMARY && 4946 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4947 hci_dev_test_flag(hdev, HCI_MGMT)) 4948 __mgmt_power_off(hdev); 4949 4950 hci_inquiry_cache_flush(hdev); 4951 hci_pend_le_actions_clear(hdev); 4952 hci_conn_hash_flush(hdev); 4953 /* Prevent data races on hdev->smp_data or hdev->smp_bredr_data */ 4954 smp_unregister(hdev); 4955 hci_dev_unlock(hdev); 4956 4957 hci_sock_dev_event(hdev, HCI_DEV_DOWN); 4958 4959 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4960 aosp_do_close(hdev); 4961 msft_do_close(hdev); 4962 } 4963 4964 if (hdev->flush) 4965 hdev->flush(hdev); 4966 4967 /* Reset device */ 4968 skb_queue_purge(&hdev->cmd_q); 4969 atomic_set(&hdev->cmd_cnt, 1); 4970 if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) && 4971 !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 4972 set_bit(HCI_INIT, &hdev->flags); 4973 hci_reset_sync(hdev); 4974 clear_bit(HCI_INIT, &hdev->flags); 4975 } 4976 4977 /* flush cmd work */ 4978 flush_work(&hdev->cmd_work); 4979 4980 /* Drop queues */ 4981 skb_queue_purge(&hdev->rx_q); 4982 skb_queue_purge(&hdev->cmd_q); 4983 skb_queue_purge(&hdev->raw_q); 4984 4985 /* Drop last sent command */ 4986 if (hdev->sent_cmd) { 4987 cancel_delayed_work_sync(&hdev->cmd_timer); 4988 kfree_skb(hdev->sent_cmd); 4989 hdev->sent_cmd = NULL; 4990 } 4991 4992 clear_bit(HCI_RUNNING, &hdev->flags); 4993 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 4994 4995 /* After this point our queues are empty and no tasks are scheduled. */ 4996 hdev->close(hdev); 4997 4998 /* Clear flags */ 4999 hdev->flags &= BIT(HCI_RAW); 5000 hci_dev_clear_volatile_flags(hdev); 5001 5002 /* Controller radio is available but is currently powered down */ 5003 hdev->amp_status = AMP_STATUS_POWERED_DOWN; 5004 5005 memset(hdev->eir, 0, sizeof(hdev->eir)); 5006 memset(hdev->dev_class, 0, sizeof(hdev->dev_class)); 5007 bacpy(&hdev->random_addr, BDADDR_ANY); 5008 5009 hci_dev_put(hdev); 5010 return err; 5011 } 5012 5013 /* This function perform power on HCI command sequence as follows: 5014 * 5015 * If controller is already up (HCI_UP) performs hci_powered_update_sync 5016 * sequence otherwise run hci_dev_open_sync which will follow with 5017 * hci_powered_update_sync after the init sequence is completed. 5018 */ 5019 static int hci_power_on_sync(struct hci_dev *hdev) 5020 { 5021 int err; 5022 5023 if (test_bit(HCI_UP, &hdev->flags) && 5024 hci_dev_test_flag(hdev, HCI_MGMT) && 5025 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) { 5026 cancel_delayed_work(&hdev->power_off); 5027 return hci_powered_update_sync(hdev); 5028 } 5029 5030 err = hci_dev_open_sync(hdev); 5031 if (err < 0) 5032 return err; 5033 5034 /* During the HCI setup phase, a few error conditions are 5035 * ignored and they need to be checked now. If they are still 5036 * valid, it is important to return the device back off. 5037 */ 5038 if (hci_dev_test_flag(hdev, HCI_RFKILLED) || 5039 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) || 5040 (hdev->dev_type == HCI_PRIMARY && 5041 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 5042 !bacmp(&hdev->static_addr, BDADDR_ANY))) { 5043 hci_dev_clear_flag(hdev, HCI_AUTO_OFF); 5044 hci_dev_close_sync(hdev); 5045 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) { 5046 queue_delayed_work(hdev->req_workqueue, &hdev->power_off, 5047 HCI_AUTO_OFF_TIMEOUT); 5048 } 5049 5050 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) { 5051 /* For unconfigured devices, set the HCI_RAW flag 5052 * so that userspace can easily identify them. 5053 */ 5054 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 5055 set_bit(HCI_RAW, &hdev->flags); 5056 5057 /* For fully configured devices, this will send 5058 * the Index Added event. For unconfigured devices, 5059 * it will send Unconfigued Index Added event. 5060 * 5061 * Devices with HCI_QUIRK_RAW_DEVICE are ignored 5062 * and no event will be send. 5063 */ 5064 mgmt_index_added(hdev); 5065 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) { 5066 /* When the controller is now configured, then it 5067 * is important to clear the HCI_RAW flag. 5068 */ 5069 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 5070 clear_bit(HCI_RAW, &hdev->flags); 5071 5072 /* Powering on the controller with HCI_CONFIG set only 5073 * happens with the transition from unconfigured to 5074 * configured. This will send the Index Added event. 5075 */ 5076 mgmt_index_added(hdev); 5077 } 5078 5079 return 0; 5080 } 5081 5082 static int hci_remote_name_cancel_sync(struct hci_dev *hdev, bdaddr_t *addr) 5083 { 5084 struct hci_cp_remote_name_req_cancel cp; 5085 5086 memset(&cp, 0, sizeof(cp)); 5087 bacpy(&cp.bdaddr, addr); 5088 5089 return __hci_cmd_sync_status(hdev, HCI_OP_REMOTE_NAME_REQ_CANCEL, 5090 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5091 } 5092 5093 int hci_stop_discovery_sync(struct hci_dev *hdev) 5094 { 5095 struct discovery_state *d = &hdev->discovery; 5096 struct inquiry_entry *e; 5097 int err; 5098 5099 bt_dev_dbg(hdev, "state %u", hdev->discovery.state); 5100 5101 if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) { 5102 if (test_bit(HCI_INQUIRY, &hdev->flags)) { 5103 err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL, 5104 0, NULL, HCI_CMD_TIMEOUT); 5105 if (err) 5106 return err; 5107 } 5108 5109 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 5110 cancel_delayed_work(&hdev->le_scan_disable); 5111 cancel_delayed_work(&hdev->le_scan_restart); 5112 5113 err = hci_scan_disable_sync(hdev); 5114 if (err) 5115 return err; 5116 } 5117 5118 } else { 5119 err = hci_scan_disable_sync(hdev); 5120 if (err) 5121 return err; 5122 } 5123 5124 /* Resume advertising if it was paused */ 5125 if (use_ll_privacy(hdev)) 5126 hci_resume_advertising_sync(hdev); 5127 5128 /* No further actions needed for LE-only discovery */ 5129 if (d->type == DISCOV_TYPE_LE) 5130 return 0; 5131 5132 if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) { 5133 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY, 5134 NAME_PENDING); 5135 if (!e) 5136 return 0; 5137 5138 return hci_remote_name_cancel_sync(hdev, &e->data.bdaddr); 5139 } 5140 5141 return 0; 5142 } 5143 5144 static int hci_disconnect_phy_link_sync(struct hci_dev *hdev, u16 handle, 5145 u8 reason) 5146 { 5147 struct hci_cp_disconn_phy_link cp; 5148 5149 memset(&cp, 0, sizeof(cp)); 5150 cp.phy_handle = HCI_PHY_HANDLE(handle); 5151 cp.reason = reason; 5152 5153 return __hci_cmd_sync_status(hdev, HCI_OP_DISCONN_PHY_LINK, 5154 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5155 } 5156 5157 static int hci_disconnect_sync(struct hci_dev *hdev, struct hci_conn *conn, 5158 u8 reason) 5159 { 5160 struct hci_cp_disconnect cp; 5161 5162 if (conn->type == AMP_LINK) 5163 return hci_disconnect_phy_link_sync(hdev, conn->handle, reason); 5164 5165 memset(&cp, 0, sizeof(cp)); 5166 cp.handle = cpu_to_le16(conn->handle); 5167 cp.reason = reason; 5168 5169 /* Wait for HCI_EV_DISCONN_COMPLETE, not HCI_EV_CMD_STATUS, when the 5170 * reason is anything but HCI_ERROR_REMOTE_POWER_OFF. This reason is 5171 * used when suspending or powering off, where we don't want to wait 5172 * for the peer's response. 5173 */ 5174 if (reason != HCI_ERROR_REMOTE_POWER_OFF) 5175 return __hci_cmd_sync_status_sk(hdev, HCI_OP_DISCONNECT, 5176 sizeof(cp), &cp, 5177 HCI_EV_DISCONN_COMPLETE, 5178 HCI_CMD_TIMEOUT, NULL); 5179 5180 return __hci_cmd_sync_status(hdev, HCI_OP_DISCONNECT, sizeof(cp), &cp, 5181 HCI_CMD_TIMEOUT); 5182 } 5183 5184 static int hci_le_connect_cancel_sync(struct hci_dev *hdev, 5185 struct hci_conn *conn) 5186 { 5187 if (test_bit(HCI_CONN_SCANNING, &conn->flags)) 5188 return 0; 5189 5190 if (test_and_set_bit(HCI_CONN_CANCEL, &conn->flags)) 5191 return 0; 5192 5193 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CREATE_CONN_CANCEL, 5194 0, NULL, HCI_CMD_TIMEOUT); 5195 } 5196 5197 static int hci_connect_cancel_sync(struct hci_dev *hdev, struct hci_conn *conn) 5198 { 5199 if (conn->type == LE_LINK) 5200 return hci_le_connect_cancel_sync(hdev, conn); 5201 5202 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 5203 return 0; 5204 5205 return __hci_cmd_sync_status(hdev, HCI_OP_CREATE_CONN_CANCEL, 5206 6, &conn->dst, HCI_CMD_TIMEOUT); 5207 } 5208 5209 static int hci_reject_sco_sync(struct hci_dev *hdev, struct hci_conn *conn, 5210 u8 reason) 5211 { 5212 struct hci_cp_reject_sync_conn_req cp; 5213 5214 memset(&cp, 0, sizeof(cp)); 5215 bacpy(&cp.bdaddr, &conn->dst); 5216 cp.reason = reason; 5217 5218 /* SCO rejection has its own limited set of 5219 * allowed error values (0x0D-0x0F). 5220 */ 5221 if (reason < 0x0d || reason > 0x0f) 5222 cp.reason = HCI_ERROR_REJ_LIMITED_RESOURCES; 5223 5224 return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_SYNC_CONN_REQ, 5225 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5226 } 5227 5228 static int hci_reject_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, 5229 u8 reason) 5230 { 5231 struct hci_cp_reject_conn_req cp; 5232 5233 if (conn->type == SCO_LINK || conn->type == ESCO_LINK) 5234 return hci_reject_sco_sync(hdev, conn, reason); 5235 5236 memset(&cp, 0, sizeof(cp)); 5237 bacpy(&cp.bdaddr, &conn->dst); 5238 cp.reason = reason; 5239 5240 return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_CONN_REQ, 5241 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5242 } 5243 5244 int hci_abort_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, u8 reason) 5245 { 5246 int err; 5247 5248 switch (conn->state) { 5249 case BT_CONNECTED: 5250 case BT_CONFIG: 5251 return hci_disconnect_sync(hdev, conn, reason); 5252 case BT_CONNECT: 5253 err = hci_connect_cancel_sync(hdev, conn); 5254 /* Cleanup hci_conn object if it cannot be cancelled as it 5255 * likelly means the controller and host stack are out of sync. 5256 */ 5257 if (err) { 5258 hci_dev_lock(hdev); 5259 hci_conn_failed(conn, err); 5260 hci_dev_unlock(hdev); 5261 } 5262 return err; 5263 case BT_CONNECT2: 5264 return hci_reject_conn_sync(hdev, conn, reason); 5265 default: 5266 conn->state = BT_CLOSED; 5267 break; 5268 } 5269 5270 return 0; 5271 } 5272 5273 static int hci_disconnect_all_sync(struct hci_dev *hdev, u8 reason) 5274 { 5275 struct hci_conn *conn, *tmp; 5276 int err; 5277 5278 list_for_each_entry_safe(conn, tmp, &hdev->conn_hash.list, list) { 5279 err = hci_abort_conn_sync(hdev, conn, reason); 5280 if (err) 5281 return err; 5282 } 5283 5284 return 0; 5285 } 5286 5287 /* This function perform power off HCI command sequence as follows: 5288 * 5289 * Clear Advertising 5290 * Stop Discovery 5291 * Disconnect all connections 5292 * hci_dev_close_sync 5293 */ 5294 static int hci_power_off_sync(struct hci_dev *hdev) 5295 { 5296 int err; 5297 5298 /* If controller is already down there is nothing to do */ 5299 if (!test_bit(HCI_UP, &hdev->flags)) 5300 return 0; 5301 5302 if (test_bit(HCI_ISCAN, &hdev->flags) || 5303 test_bit(HCI_PSCAN, &hdev->flags)) { 5304 err = hci_write_scan_enable_sync(hdev, 0x00); 5305 if (err) 5306 return err; 5307 } 5308 5309 err = hci_clear_adv_sync(hdev, NULL, false); 5310 if (err) 5311 return err; 5312 5313 err = hci_stop_discovery_sync(hdev); 5314 if (err) 5315 return err; 5316 5317 /* Terminated due to Power Off */ 5318 err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF); 5319 if (err) 5320 return err; 5321 5322 return hci_dev_close_sync(hdev); 5323 } 5324 5325 int hci_set_powered_sync(struct hci_dev *hdev, u8 val) 5326 { 5327 if (val) 5328 return hci_power_on_sync(hdev); 5329 5330 return hci_power_off_sync(hdev); 5331 } 5332 5333 static int hci_write_iac_sync(struct hci_dev *hdev) 5334 { 5335 struct hci_cp_write_current_iac_lap cp; 5336 5337 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 5338 return 0; 5339 5340 memset(&cp, 0, sizeof(cp)); 5341 5342 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { 5343 /* Limited discoverable mode */ 5344 cp.num_iac = min_t(u8, hdev->num_iac, 2); 5345 cp.iac_lap[0] = 0x00; /* LIAC */ 5346 cp.iac_lap[1] = 0x8b; 5347 cp.iac_lap[2] = 0x9e; 5348 cp.iac_lap[3] = 0x33; /* GIAC */ 5349 cp.iac_lap[4] = 0x8b; 5350 cp.iac_lap[5] = 0x9e; 5351 } else { 5352 /* General discoverable mode */ 5353 cp.num_iac = 1; 5354 cp.iac_lap[0] = 0x33; /* GIAC */ 5355 cp.iac_lap[1] = 0x8b; 5356 cp.iac_lap[2] = 0x9e; 5357 } 5358 5359 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CURRENT_IAC_LAP, 5360 (cp.num_iac * 3) + 1, &cp, 5361 HCI_CMD_TIMEOUT); 5362 } 5363 5364 int hci_update_discoverable_sync(struct hci_dev *hdev) 5365 { 5366 int err = 0; 5367 5368 if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 5369 err = hci_write_iac_sync(hdev); 5370 if (err) 5371 return err; 5372 5373 err = hci_update_scan_sync(hdev); 5374 if (err) 5375 return err; 5376 5377 err = hci_update_class_sync(hdev); 5378 if (err) 5379 return err; 5380 } 5381 5382 /* Advertising instances don't use the global discoverable setting, so 5383 * only update AD if advertising was enabled using Set Advertising. 5384 */ 5385 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) { 5386 err = hci_update_adv_data_sync(hdev, 0x00); 5387 if (err) 5388 return err; 5389 5390 /* Discoverable mode affects the local advertising 5391 * address in limited privacy mode. 5392 */ 5393 if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) { 5394 if (ext_adv_capable(hdev)) 5395 err = hci_start_ext_adv_sync(hdev, 0x00); 5396 else 5397 err = hci_enable_advertising_sync(hdev); 5398 } 5399 } 5400 5401 return err; 5402 } 5403 5404 static int update_discoverable_sync(struct hci_dev *hdev, void *data) 5405 { 5406 return hci_update_discoverable_sync(hdev); 5407 } 5408 5409 int hci_update_discoverable(struct hci_dev *hdev) 5410 { 5411 /* Only queue if it would have any effect */ 5412 if (hdev_is_powered(hdev) && 5413 hci_dev_test_flag(hdev, HCI_ADVERTISING) && 5414 hci_dev_test_flag(hdev, HCI_DISCOVERABLE) && 5415 hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) 5416 return hci_cmd_sync_queue(hdev, update_discoverable_sync, NULL, 5417 NULL); 5418 5419 return 0; 5420 } 5421 5422 int hci_update_connectable_sync(struct hci_dev *hdev) 5423 { 5424 int err; 5425 5426 err = hci_update_scan_sync(hdev); 5427 if (err) 5428 return err; 5429 5430 /* If BR/EDR is not enabled and we disable advertising as a 5431 * by-product of disabling connectable, we need to update the 5432 * advertising flags. 5433 */ 5434 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 5435 err = hci_update_adv_data_sync(hdev, hdev->cur_adv_instance); 5436 5437 /* Update the advertising parameters if necessary */ 5438 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 5439 !list_empty(&hdev->adv_instances)) { 5440 if (ext_adv_capable(hdev)) 5441 err = hci_start_ext_adv_sync(hdev, 5442 hdev->cur_adv_instance); 5443 else 5444 err = hci_enable_advertising_sync(hdev); 5445 5446 if (err) 5447 return err; 5448 } 5449 5450 return hci_update_passive_scan_sync(hdev); 5451 } 5452 5453 static int hci_inquiry_sync(struct hci_dev *hdev, u8 length) 5454 { 5455 const u8 giac[3] = { 0x33, 0x8b, 0x9e }; 5456 const u8 liac[3] = { 0x00, 0x8b, 0x9e }; 5457 struct hci_cp_inquiry cp; 5458 5459 bt_dev_dbg(hdev, ""); 5460 5461 if (hci_dev_test_flag(hdev, HCI_INQUIRY)) 5462 return 0; 5463 5464 hci_dev_lock(hdev); 5465 hci_inquiry_cache_flush(hdev); 5466 hci_dev_unlock(hdev); 5467 5468 memset(&cp, 0, sizeof(cp)); 5469 5470 if (hdev->discovery.limited) 5471 memcpy(&cp.lap, liac, sizeof(cp.lap)); 5472 else 5473 memcpy(&cp.lap, giac, sizeof(cp.lap)); 5474 5475 cp.length = length; 5476 5477 return __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY, 5478 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5479 } 5480 5481 static int hci_active_scan_sync(struct hci_dev *hdev, uint16_t interval) 5482 { 5483 u8 own_addr_type; 5484 /* Accept list is not used for discovery */ 5485 u8 filter_policy = 0x00; 5486 /* Default is to enable duplicates filter */ 5487 u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE; 5488 int err; 5489 5490 bt_dev_dbg(hdev, ""); 5491 5492 /* If controller is scanning, it means the passive scanning is 5493 * running. Thus, we should temporarily stop it in order to set the 5494 * discovery scanning parameters. 5495 */ 5496 err = hci_scan_disable_sync(hdev); 5497 if (err) { 5498 bt_dev_err(hdev, "Unable to disable scanning: %d", err); 5499 return err; 5500 } 5501 5502 cancel_interleave_scan(hdev); 5503 5504 /* Pause address resolution for active scan and stop advertising if 5505 * privacy is enabled. 5506 */ 5507 err = hci_pause_addr_resolution(hdev); 5508 if (err) 5509 goto failed; 5510 5511 /* All active scans will be done with either a resolvable private 5512 * address (when privacy feature has been enabled) or non-resolvable 5513 * private address. 5514 */ 5515 err = hci_update_random_address_sync(hdev, true, scan_use_rpa(hdev), 5516 &own_addr_type); 5517 if (err < 0) 5518 own_addr_type = ADDR_LE_DEV_PUBLIC; 5519 5520 if (hci_is_adv_monitoring(hdev)) { 5521 /* Duplicate filter should be disabled when some advertisement 5522 * monitor is activated, otherwise AdvMon can only receive one 5523 * advertisement for one peer(*) during active scanning, and 5524 * might report loss to these peers. 5525 * 5526 * Note that different controllers have different meanings of 5527 * |duplicate|. Some of them consider packets with the same 5528 * address as duplicate, and others consider packets with the 5529 * same address and the same RSSI as duplicate. Although in the 5530 * latter case we don't need to disable duplicate filter, but 5531 * it is common to have active scanning for a short period of 5532 * time, the power impact should be neglectable. 5533 */ 5534 filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 5535 } 5536 5537 err = hci_start_scan_sync(hdev, LE_SCAN_ACTIVE, interval, 5538 hdev->le_scan_window_discovery, 5539 own_addr_type, filter_policy, filter_dup); 5540 if (!err) 5541 return err; 5542 5543 failed: 5544 /* Resume advertising if it was paused */ 5545 if (use_ll_privacy(hdev)) 5546 hci_resume_advertising_sync(hdev); 5547 5548 /* Resume passive scanning */ 5549 hci_update_passive_scan_sync(hdev); 5550 return err; 5551 } 5552 5553 static int hci_start_interleaved_discovery_sync(struct hci_dev *hdev) 5554 { 5555 int err; 5556 5557 bt_dev_dbg(hdev, ""); 5558 5559 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery * 2); 5560 if (err) 5561 return err; 5562 5563 return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN); 5564 } 5565 5566 int hci_start_discovery_sync(struct hci_dev *hdev) 5567 { 5568 unsigned long timeout; 5569 int err; 5570 5571 bt_dev_dbg(hdev, "type %u", hdev->discovery.type); 5572 5573 switch (hdev->discovery.type) { 5574 case DISCOV_TYPE_BREDR: 5575 return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN); 5576 case DISCOV_TYPE_INTERLEAVED: 5577 /* When running simultaneous discovery, the LE scanning time 5578 * should occupy the whole discovery time sine BR/EDR inquiry 5579 * and LE scanning are scheduled by the controller. 5580 * 5581 * For interleaving discovery in comparison, BR/EDR inquiry 5582 * and LE scanning are done sequentially with separate 5583 * timeouts. 5584 */ 5585 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, 5586 &hdev->quirks)) { 5587 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 5588 /* During simultaneous discovery, we double LE scan 5589 * interval. We must leave some time for the controller 5590 * to do BR/EDR inquiry. 5591 */ 5592 err = hci_start_interleaved_discovery_sync(hdev); 5593 break; 5594 } 5595 5596 timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout); 5597 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery); 5598 break; 5599 case DISCOV_TYPE_LE: 5600 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 5601 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery); 5602 break; 5603 default: 5604 return -EINVAL; 5605 } 5606 5607 if (err) 5608 return err; 5609 5610 bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout)); 5611 5612 /* When service discovery is used and the controller has a 5613 * strict duplicate filter, it is important to remember the 5614 * start and duration of the scan. This is required for 5615 * restarting scanning during the discovery phase. 5616 */ 5617 if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) && 5618 hdev->discovery.result_filtering) { 5619 hdev->discovery.scan_start = jiffies; 5620 hdev->discovery.scan_duration = timeout; 5621 } 5622 5623 queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable, 5624 timeout); 5625 return 0; 5626 } 5627 5628 static void hci_suspend_monitor_sync(struct hci_dev *hdev) 5629 { 5630 switch (hci_get_adv_monitor_offload_ext(hdev)) { 5631 case HCI_ADV_MONITOR_EXT_MSFT: 5632 msft_suspend_sync(hdev); 5633 break; 5634 default: 5635 return; 5636 } 5637 } 5638 5639 /* This function disables discovery and mark it as paused */ 5640 static int hci_pause_discovery_sync(struct hci_dev *hdev) 5641 { 5642 int old_state = hdev->discovery.state; 5643 int err; 5644 5645 /* If discovery already stopped/stopping/paused there nothing to do */ 5646 if (old_state == DISCOVERY_STOPPED || old_state == DISCOVERY_STOPPING || 5647 hdev->discovery_paused) 5648 return 0; 5649 5650 hci_discovery_set_state(hdev, DISCOVERY_STOPPING); 5651 err = hci_stop_discovery_sync(hdev); 5652 if (err) 5653 return err; 5654 5655 hdev->discovery_paused = true; 5656 hdev->discovery_old_state = old_state; 5657 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 5658 5659 return 0; 5660 } 5661 5662 static int hci_update_event_filter_sync(struct hci_dev *hdev) 5663 { 5664 struct bdaddr_list_with_flags *b; 5665 u8 scan = SCAN_DISABLED; 5666 bool scanning = test_bit(HCI_PSCAN, &hdev->flags); 5667 int err; 5668 5669 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 5670 return 0; 5671 5672 /* Some fake CSR controllers lock up after setting this type of 5673 * filter, so avoid sending the request altogether. 5674 */ 5675 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 5676 return 0; 5677 5678 /* Always clear event filter when starting */ 5679 hci_clear_event_filter_sync(hdev); 5680 5681 list_for_each_entry(b, &hdev->accept_list, list) { 5682 if (!(b->flags & HCI_CONN_FLAG_REMOTE_WAKEUP)) 5683 continue; 5684 5685 bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr); 5686 5687 err = hci_set_event_filter_sync(hdev, HCI_FLT_CONN_SETUP, 5688 HCI_CONN_SETUP_ALLOW_BDADDR, 5689 &b->bdaddr, 5690 HCI_CONN_SETUP_AUTO_ON); 5691 if (err) 5692 bt_dev_dbg(hdev, "Failed to set event filter for %pMR", 5693 &b->bdaddr); 5694 else 5695 scan = SCAN_PAGE; 5696 } 5697 5698 if (scan && !scanning) 5699 hci_write_scan_enable_sync(hdev, scan); 5700 else if (!scan && scanning) 5701 hci_write_scan_enable_sync(hdev, scan); 5702 5703 return 0; 5704 } 5705 5706 /* This function disables scan (BR and LE) and mark it as paused */ 5707 static int hci_pause_scan_sync(struct hci_dev *hdev) 5708 { 5709 if (hdev->scanning_paused) 5710 return 0; 5711 5712 /* Disable page scan if enabled */ 5713 if (test_bit(HCI_PSCAN, &hdev->flags)) 5714 hci_write_scan_enable_sync(hdev, SCAN_DISABLED); 5715 5716 hci_scan_disable_sync(hdev); 5717 5718 hdev->scanning_paused = true; 5719 5720 return 0; 5721 } 5722 5723 /* This function performs the HCI suspend procedures in the follow order: 5724 * 5725 * Pause discovery (active scanning/inquiry) 5726 * Pause Directed Advertising/Advertising 5727 * Pause Scanning (passive scanning in case discovery was not active) 5728 * Disconnect all connections 5729 * Set suspend_status to BT_SUSPEND_DISCONNECT if hdev cannot wakeup 5730 * otherwise: 5731 * Update event mask (only set events that are allowed to wake up the host) 5732 * Update event filter (with devices marked with HCI_CONN_FLAG_REMOTE_WAKEUP) 5733 * Update passive scanning (lower duty cycle) 5734 * Set suspend_status to BT_SUSPEND_CONFIGURE_WAKE 5735 */ 5736 int hci_suspend_sync(struct hci_dev *hdev) 5737 { 5738 int err; 5739 5740 /* If marked as suspended there nothing to do */ 5741 if (hdev->suspended) 5742 return 0; 5743 5744 /* Mark device as suspended */ 5745 hdev->suspended = true; 5746 5747 /* Pause discovery if not already stopped */ 5748 hci_pause_discovery_sync(hdev); 5749 5750 /* Pause other advertisements */ 5751 hci_pause_advertising_sync(hdev); 5752 5753 /* Suspend monitor filters */ 5754 hci_suspend_monitor_sync(hdev); 5755 5756 /* Prevent disconnects from causing scanning to be re-enabled */ 5757 hci_pause_scan_sync(hdev); 5758 5759 if (hci_conn_count(hdev)) { 5760 /* Soft disconnect everything (power off) */ 5761 err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF); 5762 if (err) { 5763 /* Set state to BT_RUNNING so resume doesn't notify */ 5764 hdev->suspend_state = BT_RUNNING; 5765 hci_resume_sync(hdev); 5766 return err; 5767 } 5768 5769 /* Update event mask so only the allowed event can wakeup the 5770 * host. 5771 */ 5772 hci_set_event_mask_sync(hdev); 5773 } 5774 5775 /* Only configure accept list if disconnect succeeded and wake 5776 * isn't being prevented. 5777 */ 5778 if (!hdev->wakeup || !hdev->wakeup(hdev)) { 5779 hdev->suspend_state = BT_SUSPEND_DISCONNECT; 5780 return 0; 5781 } 5782 5783 /* Unpause to take care of updating scanning params */ 5784 hdev->scanning_paused = false; 5785 5786 /* Enable event filter for paired devices */ 5787 hci_update_event_filter_sync(hdev); 5788 5789 /* Update LE passive scan if enabled */ 5790 hci_update_passive_scan_sync(hdev); 5791 5792 /* Pause scan changes again. */ 5793 hdev->scanning_paused = true; 5794 5795 hdev->suspend_state = BT_SUSPEND_CONFIGURE_WAKE; 5796 5797 return 0; 5798 } 5799 5800 /* This function resumes discovery */ 5801 static int hci_resume_discovery_sync(struct hci_dev *hdev) 5802 { 5803 int err; 5804 5805 /* If discovery not paused there nothing to do */ 5806 if (!hdev->discovery_paused) 5807 return 0; 5808 5809 hdev->discovery_paused = false; 5810 5811 hci_discovery_set_state(hdev, DISCOVERY_STARTING); 5812 5813 err = hci_start_discovery_sync(hdev); 5814 5815 hci_discovery_set_state(hdev, err ? DISCOVERY_STOPPED : 5816 DISCOVERY_FINDING); 5817 5818 return err; 5819 } 5820 5821 static void hci_resume_monitor_sync(struct hci_dev *hdev) 5822 { 5823 switch (hci_get_adv_monitor_offload_ext(hdev)) { 5824 case HCI_ADV_MONITOR_EXT_MSFT: 5825 msft_resume_sync(hdev); 5826 break; 5827 default: 5828 return; 5829 } 5830 } 5831 5832 /* This function resume scan and reset paused flag */ 5833 static int hci_resume_scan_sync(struct hci_dev *hdev) 5834 { 5835 if (!hdev->scanning_paused) 5836 return 0; 5837 5838 hdev->scanning_paused = false; 5839 5840 hci_update_scan_sync(hdev); 5841 5842 /* Reset passive scanning to normal */ 5843 hci_update_passive_scan_sync(hdev); 5844 5845 return 0; 5846 } 5847 5848 /* This function performs the HCI suspend procedures in the follow order: 5849 * 5850 * Restore event mask 5851 * Clear event filter 5852 * Update passive scanning (normal duty cycle) 5853 * Resume Directed Advertising/Advertising 5854 * Resume discovery (active scanning/inquiry) 5855 */ 5856 int hci_resume_sync(struct hci_dev *hdev) 5857 { 5858 /* If not marked as suspended there nothing to do */ 5859 if (!hdev->suspended) 5860 return 0; 5861 5862 hdev->suspended = false; 5863 5864 /* Restore event mask */ 5865 hci_set_event_mask_sync(hdev); 5866 5867 /* Clear any event filters and restore scan state */ 5868 hci_clear_event_filter_sync(hdev); 5869 5870 /* Resume scanning */ 5871 hci_resume_scan_sync(hdev); 5872 5873 /* Resume monitor filters */ 5874 hci_resume_monitor_sync(hdev); 5875 5876 /* Resume other advertisements */ 5877 hci_resume_advertising_sync(hdev); 5878 5879 /* Resume discovery */ 5880 hci_resume_discovery_sync(hdev); 5881 5882 return 0; 5883 } 5884 5885 static bool conn_use_rpa(struct hci_conn *conn) 5886 { 5887 struct hci_dev *hdev = conn->hdev; 5888 5889 return hci_dev_test_flag(hdev, HCI_PRIVACY); 5890 } 5891 5892 static int hci_le_ext_directed_advertising_sync(struct hci_dev *hdev, 5893 struct hci_conn *conn) 5894 { 5895 struct hci_cp_le_set_ext_adv_params cp; 5896 int err; 5897 bdaddr_t random_addr; 5898 u8 own_addr_type; 5899 5900 err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 5901 &own_addr_type); 5902 if (err) 5903 return err; 5904 5905 /* Set require_privacy to false so that the remote device has a 5906 * chance of identifying us. 5907 */ 5908 err = hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL, 5909 &own_addr_type, &random_addr); 5910 if (err) 5911 return err; 5912 5913 memset(&cp, 0, sizeof(cp)); 5914 5915 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND); 5916 cp.channel_map = hdev->le_adv_channel_map; 5917 cp.tx_power = HCI_TX_POWER_INVALID; 5918 cp.primary_phy = HCI_ADV_PHY_1M; 5919 cp.secondary_phy = HCI_ADV_PHY_1M; 5920 cp.handle = 0x00; /* Use instance 0 for directed adv */ 5921 cp.own_addr_type = own_addr_type; 5922 cp.peer_addr_type = conn->dst_type; 5923 bacpy(&cp.peer_addr, &conn->dst); 5924 5925 /* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for 5926 * advertising_event_property LE_LEGACY_ADV_DIRECT_IND 5927 * does not supports advertising data when the advertising set already 5928 * contains some, the controller shall return erroc code 'Invalid 5929 * HCI Command Parameters(0x12). 5930 * So it is required to remove adv set for handle 0x00. since we use 5931 * instance 0 for directed adv. 5932 */ 5933 err = hci_remove_ext_adv_instance_sync(hdev, cp.handle, NULL); 5934 if (err) 5935 return err; 5936 5937 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS, 5938 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5939 if (err) 5940 return err; 5941 5942 /* Check if random address need to be updated */ 5943 if (own_addr_type == ADDR_LE_DEV_RANDOM && 5944 bacmp(&random_addr, BDADDR_ANY) && 5945 bacmp(&random_addr, &hdev->random_addr)) { 5946 err = hci_set_adv_set_random_addr_sync(hdev, 0x00, 5947 &random_addr); 5948 if (err) 5949 return err; 5950 } 5951 5952 return hci_enable_ext_advertising_sync(hdev, 0x00); 5953 } 5954 5955 static int hci_le_directed_advertising_sync(struct hci_dev *hdev, 5956 struct hci_conn *conn) 5957 { 5958 struct hci_cp_le_set_adv_param cp; 5959 u8 status; 5960 u8 own_addr_type; 5961 u8 enable; 5962 5963 if (ext_adv_capable(hdev)) 5964 return hci_le_ext_directed_advertising_sync(hdev, conn); 5965 5966 /* Clear the HCI_LE_ADV bit temporarily so that the 5967 * hci_update_random_address knows that it's safe to go ahead 5968 * and write a new random address. The flag will be set back on 5969 * as soon as the SET_ADV_ENABLE HCI command completes. 5970 */ 5971 hci_dev_clear_flag(hdev, HCI_LE_ADV); 5972 5973 /* Set require_privacy to false so that the remote device has a 5974 * chance of identifying us. 5975 */ 5976 status = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 5977 &own_addr_type); 5978 if (status) 5979 return status; 5980 5981 memset(&cp, 0, sizeof(cp)); 5982 5983 /* Some controllers might reject command if intervals are not 5984 * within range for undirected advertising. 5985 * BCM20702A0 is known to be affected by this. 5986 */ 5987 cp.min_interval = cpu_to_le16(0x0020); 5988 cp.max_interval = cpu_to_le16(0x0020); 5989 5990 cp.type = LE_ADV_DIRECT_IND; 5991 cp.own_address_type = own_addr_type; 5992 cp.direct_addr_type = conn->dst_type; 5993 bacpy(&cp.direct_addr, &conn->dst); 5994 cp.channel_map = hdev->le_adv_channel_map; 5995 5996 status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM, 5997 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5998 if (status) 5999 return status; 6000 6001 enable = 0x01; 6002 6003 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 6004 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 6005 } 6006 6007 static void set_ext_conn_params(struct hci_conn *conn, 6008 struct hci_cp_le_ext_conn_param *p) 6009 { 6010 struct hci_dev *hdev = conn->hdev; 6011 6012 memset(p, 0, sizeof(*p)); 6013 6014 p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect); 6015 p->scan_window = cpu_to_le16(hdev->le_scan_window_connect); 6016 p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 6017 p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 6018 p->conn_latency = cpu_to_le16(conn->le_conn_latency); 6019 p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 6020 p->min_ce_len = cpu_to_le16(0x0000); 6021 p->max_ce_len = cpu_to_le16(0x0000); 6022 } 6023 6024 static int hci_le_ext_create_conn_sync(struct hci_dev *hdev, 6025 struct hci_conn *conn, u8 own_addr_type) 6026 { 6027 struct hci_cp_le_ext_create_conn *cp; 6028 struct hci_cp_le_ext_conn_param *p; 6029 u8 data[sizeof(*cp) + sizeof(*p) * 3]; 6030 u32 plen; 6031 6032 cp = (void *)data; 6033 p = (void *)cp->data; 6034 6035 memset(cp, 0, sizeof(*cp)); 6036 6037 bacpy(&cp->peer_addr, &conn->dst); 6038 cp->peer_addr_type = conn->dst_type; 6039 cp->own_addr_type = own_addr_type; 6040 6041 plen = sizeof(*cp); 6042 6043 if (scan_1m(hdev)) { 6044 cp->phys |= LE_SCAN_PHY_1M; 6045 set_ext_conn_params(conn, p); 6046 6047 p++; 6048 plen += sizeof(*p); 6049 } 6050 6051 if (scan_2m(hdev)) { 6052 cp->phys |= LE_SCAN_PHY_2M; 6053 set_ext_conn_params(conn, p); 6054 6055 p++; 6056 plen += sizeof(*p); 6057 } 6058 6059 if (scan_coded(hdev)) { 6060 cp->phys |= LE_SCAN_PHY_CODED; 6061 set_ext_conn_params(conn, p); 6062 6063 plen += sizeof(*p); 6064 } 6065 6066 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_EXT_CREATE_CONN, 6067 plen, data, 6068 HCI_EV_LE_ENHANCED_CONN_COMPLETE, 6069 conn->conn_timeout, NULL); 6070 } 6071 6072 int hci_le_create_conn_sync(struct hci_dev *hdev, struct hci_conn *conn) 6073 { 6074 struct hci_cp_le_create_conn cp; 6075 struct hci_conn_params *params; 6076 u8 own_addr_type; 6077 int err; 6078 6079 /* If requested to connect as peripheral use directed advertising */ 6080 if (conn->role == HCI_ROLE_SLAVE) { 6081 /* If we're active scanning and simultaneous roles is not 6082 * enabled simply reject the attempt. 6083 */ 6084 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) && 6085 hdev->le_scan_type == LE_SCAN_ACTIVE && 6086 !hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) { 6087 hci_conn_del(conn); 6088 return -EBUSY; 6089 } 6090 6091 /* Pause advertising while doing directed advertising. */ 6092 hci_pause_advertising_sync(hdev); 6093 6094 err = hci_le_directed_advertising_sync(hdev, conn); 6095 goto done; 6096 } 6097 6098 /* Disable advertising if simultaneous roles is not in use. */ 6099 if (!hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) 6100 hci_pause_advertising_sync(hdev); 6101 6102 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); 6103 if (params) { 6104 conn->le_conn_min_interval = params->conn_min_interval; 6105 conn->le_conn_max_interval = params->conn_max_interval; 6106 conn->le_conn_latency = params->conn_latency; 6107 conn->le_supv_timeout = params->supervision_timeout; 6108 } else { 6109 conn->le_conn_min_interval = hdev->le_conn_min_interval; 6110 conn->le_conn_max_interval = hdev->le_conn_max_interval; 6111 conn->le_conn_latency = hdev->le_conn_latency; 6112 conn->le_supv_timeout = hdev->le_supv_timeout; 6113 } 6114 6115 /* If controller is scanning, we stop it since some controllers are 6116 * not able to scan and connect at the same time. Also set the 6117 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete 6118 * handler for scan disabling knows to set the correct discovery 6119 * state. 6120 */ 6121 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 6122 hci_scan_disable_sync(hdev); 6123 hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED); 6124 } 6125 6126 /* Update random address, but set require_privacy to false so 6127 * that we never connect with an non-resolvable address. 6128 */ 6129 err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 6130 &own_addr_type); 6131 if (err) 6132 goto done; 6133 6134 if (use_ext_conn(hdev)) { 6135 err = hci_le_ext_create_conn_sync(hdev, conn, own_addr_type); 6136 goto done; 6137 } 6138 6139 memset(&cp, 0, sizeof(cp)); 6140 6141 cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect); 6142 cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect); 6143 6144 bacpy(&cp.peer_addr, &conn->dst); 6145 cp.peer_addr_type = conn->dst_type; 6146 cp.own_address_type = own_addr_type; 6147 cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 6148 cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 6149 cp.conn_latency = cpu_to_le16(conn->le_conn_latency); 6150 cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 6151 cp.min_ce_len = cpu_to_le16(0x0000); 6152 cp.max_ce_len = cpu_to_le16(0x0000); 6153 6154 /* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E page 2261: 6155 * 6156 * If this event is unmasked and the HCI_LE_Connection_Complete event 6157 * is unmasked, only the HCI_LE_Enhanced_Connection_Complete event is 6158 * sent when a new connection has been created. 6159 */ 6160 err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CONN, 6161 sizeof(cp), &cp, 6162 use_enhanced_conn_complete(hdev) ? 6163 HCI_EV_LE_ENHANCED_CONN_COMPLETE : 6164 HCI_EV_LE_CONN_COMPLETE, 6165 conn->conn_timeout, NULL); 6166 6167 done: 6168 if (err == -ETIMEDOUT) 6169 hci_le_connect_cancel_sync(hdev, conn); 6170 6171 /* Re-enable advertising after the connection attempt is finished. */ 6172 hci_resume_advertising_sync(hdev); 6173 return err; 6174 } 6175 6176 int hci_le_create_cis_sync(struct hci_dev *hdev, struct hci_conn *conn) 6177 { 6178 struct { 6179 struct hci_cp_le_create_cis cp; 6180 struct hci_cis cis[0x1f]; 6181 } cmd; 6182 u8 cig; 6183 struct hci_conn *hcon = conn; 6184 6185 memset(&cmd, 0, sizeof(cmd)); 6186 cmd.cis[0].acl_handle = cpu_to_le16(conn->parent->handle); 6187 cmd.cis[0].cis_handle = cpu_to_le16(conn->handle); 6188 cmd.cp.num_cis++; 6189 cig = conn->iso_qos.ucast.cig; 6190 6191 hci_dev_lock(hdev); 6192 6193 rcu_read_lock(); 6194 6195 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) { 6196 struct hci_cis *cis = &cmd.cis[cmd.cp.num_cis]; 6197 6198 if (conn == hcon || conn->type != ISO_LINK || 6199 conn->state == BT_CONNECTED || 6200 conn->iso_qos.ucast.cig != cig) 6201 continue; 6202 6203 /* Check if all CIS(s) belonging to a CIG are ready */ 6204 if (!conn->parent || conn->parent->state != BT_CONNECTED || 6205 conn->state != BT_CONNECT) { 6206 cmd.cp.num_cis = 0; 6207 break; 6208 } 6209 6210 /* Group all CIS with state BT_CONNECT since the spec don't 6211 * allow to send them individually: 6212 * 6213 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E 6214 * page 2566: 6215 * 6216 * If the Host issues this command before all the 6217 * HCI_LE_CIS_Established events from the previous use of the 6218 * command have been generated, the Controller shall return the 6219 * error code Command Disallowed (0x0C). 6220 */ 6221 cis->acl_handle = cpu_to_le16(conn->parent->handle); 6222 cis->cis_handle = cpu_to_le16(conn->handle); 6223 cmd.cp.num_cis++; 6224 } 6225 6226 rcu_read_unlock(); 6227 6228 hci_dev_unlock(hdev); 6229 6230 if (!cmd.cp.num_cis) 6231 return 0; 6232 6233 /* Wait for HCI_LE_CIS_Established */ 6234 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CIS, 6235 sizeof(cmd.cp) + sizeof(cmd.cis[0]) * 6236 cmd.cp.num_cis, &cmd, 6237 HCI_EVT_LE_CIS_ESTABLISHED, 6238 conn->conn_timeout, NULL); 6239 } 6240 6241 int hci_le_remove_cig_sync(struct hci_dev *hdev, u8 handle) 6242 { 6243 struct hci_cp_le_remove_cig cp; 6244 6245 memset(&cp, 0, sizeof(cp)); 6246 cp.cig_id = handle; 6247 6248 return __hci_cmd_sync_status(hdev, HCI_OP_LE_REMOVE_CIG, sizeof(cp), 6249 &cp, HCI_CMD_TIMEOUT); 6250 } 6251 6252 int hci_le_big_terminate_sync(struct hci_dev *hdev, u8 handle) 6253 { 6254 struct hci_cp_le_big_term_sync cp; 6255 6256 memset(&cp, 0, sizeof(cp)); 6257 cp.handle = handle; 6258 6259 return __hci_cmd_sync_status(hdev, HCI_OP_LE_BIG_TERM_SYNC, 6260 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6261 } 6262 6263 int hci_le_pa_terminate_sync(struct hci_dev *hdev, u16 handle) 6264 { 6265 struct hci_cp_le_pa_term_sync cp; 6266 6267 memset(&cp, 0, sizeof(cp)); 6268 cp.handle = cpu_to_le16(handle); 6269 6270 return __hci_cmd_sync_status(hdev, HCI_OP_LE_PA_TERM_SYNC, 6271 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6272 } 6273 6274 int hci_get_random_address(struct hci_dev *hdev, bool require_privacy, 6275 bool use_rpa, struct adv_info *adv_instance, 6276 u8 *own_addr_type, bdaddr_t *rand_addr) 6277 { 6278 int err; 6279 6280 bacpy(rand_addr, BDADDR_ANY); 6281 6282 /* If privacy is enabled use a resolvable private address. If 6283 * current RPA has expired then generate a new one. 6284 */ 6285 if (use_rpa) { 6286 /* If Controller supports LL Privacy use own address type is 6287 * 0x03 6288 */ 6289 if (use_ll_privacy(hdev)) 6290 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED; 6291 else 6292 *own_addr_type = ADDR_LE_DEV_RANDOM; 6293 6294 if (adv_instance) { 6295 if (adv_rpa_valid(adv_instance)) 6296 return 0; 6297 } else { 6298 if (rpa_valid(hdev)) 6299 return 0; 6300 } 6301 6302 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); 6303 if (err < 0) { 6304 bt_dev_err(hdev, "failed to generate new RPA"); 6305 return err; 6306 } 6307 6308 bacpy(rand_addr, &hdev->rpa); 6309 6310 return 0; 6311 } 6312 6313 /* In case of required privacy without resolvable private address, 6314 * use an non-resolvable private address. This is useful for 6315 * non-connectable advertising. 6316 */ 6317 if (require_privacy) { 6318 bdaddr_t nrpa; 6319 6320 while (true) { 6321 /* The non-resolvable private address is generated 6322 * from random six bytes with the two most significant 6323 * bits cleared. 6324 */ 6325 get_random_bytes(&nrpa, 6); 6326 nrpa.b[5] &= 0x3f; 6327 6328 /* The non-resolvable private address shall not be 6329 * equal to the public address. 6330 */ 6331 if (bacmp(&hdev->bdaddr, &nrpa)) 6332 break; 6333 } 6334 6335 *own_addr_type = ADDR_LE_DEV_RANDOM; 6336 bacpy(rand_addr, &nrpa); 6337 6338 return 0; 6339 } 6340 6341 /* No privacy so use a public address. */ 6342 *own_addr_type = ADDR_LE_DEV_PUBLIC; 6343 6344 return 0; 6345 } 6346 6347 static int _update_adv_data_sync(struct hci_dev *hdev, void *data) 6348 { 6349 u8 instance = PTR_ERR(data); 6350 6351 return hci_update_adv_data_sync(hdev, instance); 6352 } 6353 6354 int hci_update_adv_data(struct hci_dev *hdev, u8 instance) 6355 { 6356 return hci_cmd_sync_queue(hdev, _update_adv_data_sync, 6357 ERR_PTR(instance), NULL); 6358 } 6359