xref: /linux/net/bluetooth/hci_sync.c (revision 4d5e3b06e1fc1428be14cd4ebe3b37c1bb34f95d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * BlueZ - Bluetooth protocol stack for Linux
4  *
5  * Copyright (C) 2021 Intel Corporation
6  */
7 
8 #include <linux/property.h>
9 
10 #include <net/bluetooth/bluetooth.h>
11 #include <net/bluetooth/hci_core.h>
12 #include <net/bluetooth/mgmt.h>
13 
14 #include "hci_request.h"
15 #include "hci_debugfs.h"
16 #include "smp.h"
17 #include "eir.h"
18 #include "msft.h"
19 #include "aosp.h"
20 #include "leds.h"
21 
22 static void hci_cmd_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
23 				  struct sk_buff *skb)
24 {
25 	bt_dev_dbg(hdev, "result 0x%2.2x", result);
26 
27 	if (hdev->req_status != HCI_REQ_PEND)
28 		return;
29 
30 	hdev->req_result = result;
31 	hdev->req_status = HCI_REQ_DONE;
32 
33 	if (skb) {
34 		struct sock *sk = hci_skb_sk(skb);
35 
36 		/* Drop sk reference if set */
37 		if (sk)
38 			sock_put(sk);
39 
40 		hdev->req_skb = skb_get(skb);
41 	}
42 
43 	wake_up_interruptible(&hdev->req_wait_q);
44 }
45 
46 static struct sk_buff *hci_cmd_sync_alloc(struct hci_dev *hdev, u16 opcode,
47 					  u32 plen, const void *param,
48 					  struct sock *sk)
49 {
50 	int len = HCI_COMMAND_HDR_SIZE + plen;
51 	struct hci_command_hdr *hdr;
52 	struct sk_buff *skb;
53 
54 	skb = bt_skb_alloc(len, GFP_ATOMIC);
55 	if (!skb)
56 		return NULL;
57 
58 	hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE);
59 	hdr->opcode = cpu_to_le16(opcode);
60 	hdr->plen   = plen;
61 
62 	if (plen)
63 		skb_put_data(skb, param, plen);
64 
65 	bt_dev_dbg(hdev, "skb len %d", skb->len);
66 
67 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
68 	hci_skb_opcode(skb) = opcode;
69 
70 	/* Grab a reference if command needs to be associated with a sock (e.g.
71 	 * likely mgmt socket that initiated the command).
72 	 */
73 	if (sk) {
74 		hci_skb_sk(skb) = sk;
75 		sock_hold(sk);
76 	}
77 
78 	return skb;
79 }
80 
81 static void hci_cmd_sync_add(struct hci_request *req, u16 opcode, u32 plen,
82 			     const void *param, u8 event, struct sock *sk)
83 {
84 	struct hci_dev *hdev = req->hdev;
85 	struct sk_buff *skb;
86 
87 	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
88 
89 	/* If an error occurred during request building, there is no point in
90 	 * queueing the HCI command. We can simply return.
91 	 */
92 	if (req->err)
93 		return;
94 
95 	skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, sk);
96 	if (!skb) {
97 		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
98 			   opcode);
99 		req->err = -ENOMEM;
100 		return;
101 	}
102 
103 	if (skb_queue_empty(&req->cmd_q))
104 		bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
105 
106 	hci_skb_event(skb) = event;
107 
108 	skb_queue_tail(&req->cmd_q, skb);
109 }
110 
111 static int hci_cmd_sync_run(struct hci_request *req)
112 {
113 	struct hci_dev *hdev = req->hdev;
114 	struct sk_buff *skb;
115 	unsigned long flags;
116 
117 	bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q));
118 
119 	/* If an error occurred during request building, remove all HCI
120 	 * commands queued on the HCI request queue.
121 	 */
122 	if (req->err) {
123 		skb_queue_purge(&req->cmd_q);
124 		return req->err;
125 	}
126 
127 	/* Do not allow empty requests */
128 	if (skb_queue_empty(&req->cmd_q))
129 		return -ENODATA;
130 
131 	skb = skb_peek_tail(&req->cmd_q);
132 	bt_cb(skb)->hci.req_complete_skb = hci_cmd_sync_complete;
133 	bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
134 
135 	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
136 	skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
137 	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
138 
139 	queue_work(hdev->workqueue, &hdev->cmd_work);
140 
141 	return 0;
142 }
143 
144 /* This function requires the caller holds hdev->req_lock. */
145 struct sk_buff *__hci_cmd_sync_sk(struct hci_dev *hdev, u16 opcode, u32 plen,
146 				  const void *param, u8 event, u32 timeout,
147 				  struct sock *sk)
148 {
149 	struct hci_request req;
150 	struct sk_buff *skb;
151 	int err = 0;
152 
153 	bt_dev_dbg(hdev, "Opcode 0x%4x", opcode);
154 
155 	hci_req_init(&req, hdev);
156 
157 	hci_cmd_sync_add(&req, opcode, plen, param, event, sk);
158 
159 	hdev->req_status = HCI_REQ_PEND;
160 
161 	err = hci_cmd_sync_run(&req);
162 	if (err < 0)
163 		return ERR_PTR(err);
164 
165 	err = wait_event_interruptible_timeout(hdev->req_wait_q,
166 					       hdev->req_status != HCI_REQ_PEND,
167 					       timeout);
168 
169 	if (err == -ERESTARTSYS)
170 		return ERR_PTR(-EINTR);
171 
172 	switch (hdev->req_status) {
173 	case HCI_REQ_DONE:
174 		err = -bt_to_errno(hdev->req_result);
175 		break;
176 
177 	case HCI_REQ_CANCELED:
178 		err = -hdev->req_result;
179 		break;
180 
181 	default:
182 		err = -ETIMEDOUT;
183 		break;
184 	}
185 
186 	hdev->req_status = 0;
187 	hdev->req_result = 0;
188 	skb = hdev->req_skb;
189 	hdev->req_skb = NULL;
190 
191 	bt_dev_dbg(hdev, "end: err %d", err);
192 
193 	if (err < 0) {
194 		kfree_skb(skb);
195 		return ERR_PTR(err);
196 	}
197 
198 	return skb;
199 }
200 EXPORT_SYMBOL(__hci_cmd_sync_sk);
201 
202 /* This function requires the caller holds hdev->req_lock. */
203 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
204 			       const void *param, u32 timeout)
205 {
206 	return __hci_cmd_sync_sk(hdev, opcode, plen, param, 0, timeout, NULL);
207 }
208 EXPORT_SYMBOL(__hci_cmd_sync);
209 
210 /* Send HCI command and wait for command complete event */
211 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
212 			     const void *param, u32 timeout)
213 {
214 	struct sk_buff *skb;
215 
216 	if (!test_bit(HCI_UP, &hdev->flags))
217 		return ERR_PTR(-ENETDOWN);
218 
219 	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
220 
221 	hci_req_sync_lock(hdev);
222 	skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
223 	hci_req_sync_unlock(hdev);
224 
225 	return skb;
226 }
227 EXPORT_SYMBOL(hci_cmd_sync);
228 
229 /* This function requires the caller holds hdev->req_lock. */
230 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
231 				  const void *param, u8 event, u32 timeout)
232 {
233 	return __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout,
234 				 NULL);
235 }
236 EXPORT_SYMBOL(__hci_cmd_sync_ev);
237 
238 /* This function requires the caller holds hdev->req_lock. */
239 int __hci_cmd_sync_status_sk(struct hci_dev *hdev, u16 opcode, u32 plen,
240 			     const void *param, u8 event, u32 timeout,
241 			     struct sock *sk)
242 {
243 	struct sk_buff *skb;
244 	u8 status;
245 
246 	skb = __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, sk);
247 	if (IS_ERR(skb)) {
248 		bt_dev_err(hdev, "Opcode 0x%4x failed: %ld", opcode,
249 			   PTR_ERR(skb));
250 		return PTR_ERR(skb);
251 	}
252 
253 	/* If command return a status event skb will be set to NULL as there are
254 	 * no parameters, in case of failure IS_ERR(skb) would have be set to
255 	 * the actual error would be found with PTR_ERR(skb).
256 	 */
257 	if (!skb)
258 		return 0;
259 
260 	status = skb->data[0];
261 
262 	kfree_skb(skb);
263 
264 	return status;
265 }
266 EXPORT_SYMBOL(__hci_cmd_sync_status_sk);
267 
268 int __hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen,
269 			  const void *param, u32 timeout)
270 {
271 	return __hci_cmd_sync_status_sk(hdev, opcode, plen, param, 0, timeout,
272 					NULL);
273 }
274 EXPORT_SYMBOL(__hci_cmd_sync_status);
275 
276 static void hci_cmd_sync_work(struct work_struct *work)
277 {
278 	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_work);
279 
280 	bt_dev_dbg(hdev, "");
281 
282 	/* Dequeue all entries and run them */
283 	while (1) {
284 		struct hci_cmd_sync_work_entry *entry;
285 
286 		mutex_lock(&hdev->cmd_sync_work_lock);
287 		entry = list_first_entry_or_null(&hdev->cmd_sync_work_list,
288 						 struct hci_cmd_sync_work_entry,
289 						 list);
290 		if (entry)
291 			list_del(&entry->list);
292 		mutex_unlock(&hdev->cmd_sync_work_lock);
293 
294 		if (!entry)
295 			break;
296 
297 		bt_dev_dbg(hdev, "entry %p", entry);
298 
299 		if (entry->func) {
300 			int err;
301 
302 			hci_req_sync_lock(hdev);
303 			err = entry->func(hdev, entry->data);
304 			if (entry->destroy)
305 				entry->destroy(hdev, entry->data, err);
306 			hci_req_sync_unlock(hdev);
307 		}
308 
309 		kfree(entry);
310 	}
311 }
312 
313 static void hci_cmd_sync_cancel_work(struct work_struct *work)
314 {
315 	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_cancel_work);
316 
317 	cancel_delayed_work_sync(&hdev->cmd_timer);
318 	cancel_delayed_work_sync(&hdev->ncmd_timer);
319 	atomic_set(&hdev->cmd_cnt, 1);
320 
321 	wake_up_interruptible(&hdev->req_wait_q);
322 }
323 
324 void hci_cmd_sync_init(struct hci_dev *hdev)
325 {
326 	INIT_WORK(&hdev->cmd_sync_work, hci_cmd_sync_work);
327 	INIT_LIST_HEAD(&hdev->cmd_sync_work_list);
328 	mutex_init(&hdev->cmd_sync_work_lock);
329 
330 	INIT_WORK(&hdev->cmd_sync_cancel_work, hci_cmd_sync_cancel_work);
331 }
332 
333 void hci_cmd_sync_clear(struct hci_dev *hdev)
334 {
335 	struct hci_cmd_sync_work_entry *entry, *tmp;
336 
337 	cancel_work_sync(&hdev->cmd_sync_work);
338 
339 	list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) {
340 		if (entry->destroy)
341 			entry->destroy(hdev, entry->data, -ECANCELED);
342 
343 		list_del(&entry->list);
344 		kfree(entry);
345 	}
346 }
347 
348 void __hci_cmd_sync_cancel(struct hci_dev *hdev, int err)
349 {
350 	bt_dev_dbg(hdev, "err 0x%2.2x", err);
351 
352 	if (hdev->req_status == HCI_REQ_PEND) {
353 		hdev->req_result = err;
354 		hdev->req_status = HCI_REQ_CANCELED;
355 
356 		cancel_delayed_work_sync(&hdev->cmd_timer);
357 		cancel_delayed_work_sync(&hdev->ncmd_timer);
358 		atomic_set(&hdev->cmd_cnt, 1);
359 
360 		wake_up_interruptible(&hdev->req_wait_q);
361 	}
362 }
363 
364 void hci_cmd_sync_cancel(struct hci_dev *hdev, int err)
365 {
366 	bt_dev_dbg(hdev, "err 0x%2.2x", err);
367 
368 	if (hdev->req_status == HCI_REQ_PEND) {
369 		hdev->req_result = err;
370 		hdev->req_status = HCI_REQ_CANCELED;
371 
372 		queue_work(hdev->workqueue, &hdev->cmd_sync_cancel_work);
373 	}
374 }
375 EXPORT_SYMBOL(hci_cmd_sync_cancel);
376 
377 int hci_cmd_sync_queue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
378 		       void *data, hci_cmd_sync_work_destroy_t destroy)
379 {
380 	struct hci_cmd_sync_work_entry *entry;
381 
382 	if (hci_dev_test_flag(hdev, HCI_UNREGISTER))
383 		return -ENODEV;
384 
385 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
386 	if (!entry)
387 		return -ENOMEM;
388 
389 	entry->func = func;
390 	entry->data = data;
391 	entry->destroy = destroy;
392 
393 	mutex_lock(&hdev->cmd_sync_work_lock);
394 	list_add_tail(&entry->list, &hdev->cmd_sync_work_list);
395 	mutex_unlock(&hdev->cmd_sync_work_lock);
396 
397 	queue_work(hdev->req_workqueue, &hdev->cmd_sync_work);
398 
399 	return 0;
400 }
401 EXPORT_SYMBOL(hci_cmd_sync_queue);
402 
403 int hci_update_eir_sync(struct hci_dev *hdev)
404 {
405 	struct hci_cp_write_eir cp;
406 
407 	bt_dev_dbg(hdev, "");
408 
409 	if (!hdev_is_powered(hdev))
410 		return 0;
411 
412 	if (!lmp_ext_inq_capable(hdev))
413 		return 0;
414 
415 	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
416 		return 0;
417 
418 	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
419 		return 0;
420 
421 	memset(&cp, 0, sizeof(cp));
422 
423 	eir_create(hdev, cp.data);
424 
425 	if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
426 		return 0;
427 
428 	memcpy(hdev->eir, cp.data, sizeof(cp.data));
429 
430 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp,
431 				     HCI_CMD_TIMEOUT);
432 }
433 
434 static u8 get_service_classes(struct hci_dev *hdev)
435 {
436 	struct bt_uuid *uuid;
437 	u8 val = 0;
438 
439 	list_for_each_entry(uuid, &hdev->uuids, list)
440 		val |= uuid->svc_hint;
441 
442 	return val;
443 }
444 
445 int hci_update_class_sync(struct hci_dev *hdev)
446 {
447 	u8 cod[3];
448 
449 	bt_dev_dbg(hdev, "");
450 
451 	if (!hdev_is_powered(hdev))
452 		return 0;
453 
454 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
455 		return 0;
456 
457 	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
458 		return 0;
459 
460 	cod[0] = hdev->minor_class;
461 	cod[1] = hdev->major_class;
462 	cod[2] = get_service_classes(hdev);
463 
464 	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
465 		cod[1] |= 0x20;
466 
467 	if (memcmp(cod, hdev->dev_class, 3) == 0)
468 		return 0;
469 
470 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CLASS_OF_DEV,
471 				     sizeof(cod), cod, HCI_CMD_TIMEOUT);
472 }
473 
474 static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable)
475 {
476 	/* If there is no connection we are OK to advertise. */
477 	if (hci_conn_num(hdev, LE_LINK) == 0)
478 		return true;
479 
480 	/* Check le_states if there is any connection in peripheral role. */
481 	if (hdev->conn_hash.le_num_peripheral > 0) {
482 		/* Peripheral connection state and non connectable mode
483 		 * bit 20.
484 		 */
485 		if (!connectable && !(hdev->le_states[2] & 0x10))
486 			return false;
487 
488 		/* Peripheral connection state and connectable mode bit 38
489 		 * and scannable bit 21.
490 		 */
491 		if (connectable && (!(hdev->le_states[4] & 0x40) ||
492 				    !(hdev->le_states[2] & 0x20)))
493 			return false;
494 	}
495 
496 	/* Check le_states if there is any connection in central role. */
497 	if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) {
498 		/* Central connection state and non connectable mode bit 18. */
499 		if (!connectable && !(hdev->le_states[2] & 0x02))
500 			return false;
501 
502 		/* Central connection state and connectable mode bit 35 and
503 		 * scannable 19.
504 		 */
505 		if (connectable && (!(hdev->le_states[4] & 0x08) ||
506 				    !(hdev->le_states[2] & 0x08)))
507 			return false;
508 	}
509 
510 	return true;
511 }
512 
513 static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
514 {
515 	/* If privacy is not enabled don't use RPA */
516 	if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
517 		return false;
518 
519 	/* If basic privacy mode is enabled use RPA */
520 	if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
521 		return true;
522 
523 	/* If limited privacy mode is enabled don't use RPA if we're
524 	 * both discoverable and bondable.
525 	 */
526 	if ((flags & MGMT_ADV_FLAG_DISCOV) &&
527 	    hci_dev_test_flag(hdev, HCI_BONDABLE))
528 		return false;
529 
530 	/* We're neither bondable nor discoverable in the limited
531 	 * privacy mode, therefore use RPA.
532 	 */
533 	return true;
534 }
535 
536 static int hci_set_random_addr_sync(struct hci_dev *hdev, bdaddr_t *rpa)
537 {
538 	/* If we're advertising or initiating an LE connection we can't
539 	 * go ahead and change the random address at this time. This is
540 	 * because the eventual initiator address used for the
541 	 * subsequently created connection will be undefined (some
542 	 * controllers use the new address and others the one we had
543 	 * when the operation started).
544 	 *
545 	 * In this kind of scenario skip the update and let the random
546 	 * address be updated at the next cycle.
547 	 */
548 	if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
549 	    hci_lookup_le_connect(hdev)) {
550 		bt_dev_dbg(hdev, "Deferring random address update");
551 		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
552 		return 0;
553 	}
554 
555 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RANDOM_ADDR,
556 				     6, rpa, HCI_CMD_TIMEOUT);
557 }
558 
559 int hci_update_random_address_sync(struct hci_dev *hdev, bool require_privacy,
560 				   bool rpa, u8 *own_addr_type)
561 {
562 	int err;
563 
564 	/* If privacy is enabled use a resolvable private address. If
565 	 * current RPA has expired or there is something else than
566 	 * the current RPA in use, then generate a new one.
567 	 */
568 	if (rpa) {
569 		/* If Controller supports LL Privacy use own address type is
570 		 * 0x03
571 		 */
572 		if (use_ll_privacy(hdev))
573 			*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
574 		else
575 			*own_addr_type = ADDR_LE_DEV_RANDOM;
576 
577 		/* Check if RPA is valid */
578 		if (rpa_valid(hdev))
579 			return 0;
580 
581 		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
582 		if (err < 0) {
583 			bt_dev_err(hdev, "failed to generate new RPA");
584 			return err;
585 		}
586 
587 		err = hci_set_random_addr_sync(hdev, &hdev->rpa);
588 		if (err)
589 			return err;
590 
591 		return 0;
592 	}
593 
594 	/* In case of required privacy without resolvable private address,
595 	 * use an non-resolvable private address. This is useful for active
596 	 * scanning and non-connectable advertising.
597 	 */
598 	if (require_privacy) {
599 		bdaddr_t nrpa;
600 
601 		while (true) {
602 			/* The non-resolvable private address is generated
603 			 * from random six bytes with the two most significant
604 			 * bits cleared.
605 			 */
606 			get_random_bytes(&nrpa, 6);
607 			nrpa.b[5] &= 0x3f;
608 
609 			/* The non-resolvable private address shall not be
610 			 * equal to the public address.
611 			 */
612 			if (bacmp(&hdev->bdaddr, &nrpa))
613 				break;
614 		}
615 
616 		*own_addr_type = ADDR_LE_DEV_RANDOM;
617 
618 		return hci_set_random_addr_sync(hdev, &nrpa);
619 	}
620 
621 	/* If forcing static address is in use or there is no public
622 	 * address use the static address as random address (but skip
623 	 * the HCI command if the current random address is already the
624 	 * static one.
625 	 *
626 	 * In case BR/EDR has been disabled on a dual-mode controller
627 	 * and a static address has been configured, then use that
628 	 * address instead of the public BR/EDR address.
629 	 */
630 	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
631 	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
632 	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
633 	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
634 		*own_addr_type = ADDR_LE_DEV_RANDOM;
635 		if (bacmp(&hdev->static_addr, &hdev->random_addr))
636 			return hci_set_random_addr_sync(hdev,
637 							&hdev->static_addr);
638 		return 0;
639 	}
640 
641 	/* Neither privacy nor static address is being used so use a
642 	 * public address.
643 	 */
644 	*own_addr_type = ADDR_LE_DEV_PUBLIC;
645 
646 	return 0;
647 }
648 
649 static int hci_disable_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance)
650 {
651 	struct hci_cp_le_set_ext_adv_enable *cp;
652 	struct hci_cp_ext_adv_set *set;
653 	u8 data[sizeof(*cp) + sizeof(*set) * 1];
654 	u8 size;
655 
656 	/* If request specifies an instance that doesn't exist, fail */
657 	if (instance > 0) {
658 		struct adv_info *adv;
659 
660 		adv = hci_find_adv_instance(hdev, instance);
661 		if (!adv)
662 			return -EINVAL;
663 
664 		/* If not enabled there is nothing to do */
665 		if (!adv->enabled)
666 			return 0;
667 	}
668 
669 	memset(data, 0, sizeof(data));
670 
671 	cp = (void *)data;
672 	set = (void *)cp->data;
673 
674 	/* Instance 0x00 indicates all advertising instances will be disabled */
675 	cp->num_of_sets = !!instance;
676 	cp->enable = 0x00;
677 
678 	set->handle = instance;
679 
680 	size = sizeof(*cp) + sizeof(*set) * cp->num_of_sets;
681 
682 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE,
683 				     size, data, HCI_CMD_TIMEOUT);
684 }
685 
686 static int hci_set_adv_set_random_addr_sync(struct hci_dev *hdev, u8 instance,
687 					    bdaddr_t *random_addr)
688 {
689 	struct hci_cp_le_set_adv_set_rand_addr cp;
690 	int err;
691 
692 	if (!instance) {
693 		/* Instance 0x00 doesn't have an adv_info, instead it uses
694 		 * hdev->random_addr to track its address so whenever it needs
695 		 * to be updated this also set the random address since
696 		 * hdev->random_addr is shared with scan state machine.
697 		 */
698 		err = hci_set_random_addr_sync(hdev, random_addr);
699 		if (err)
700 			return err;
701 	}
702 
703 	memset(&cp, 0, sizeof(cp));
704 
705 	cp.handle = instance;
706 	bacpy(&cp.bdaddr, random_addr);
707 
708 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
709 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
710 }
711 
712 int hci_setup_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance)
713 {
714 	struct hci_cp_le_set_ext_adv_params cp;
715 	bool connectable;
716 	u32 flags;
717 	bdaddr_t random_addr;
718 	u8 own_addr_type;
719 	int err;
720 	struct adv_info *adv;
721 	bool secondary_adv;
722 
723 	if (instance > 0) {
724 		adv = hci_find_adv_instance(hdev, instance);
725 		if (!adv)
726 			return -EINVAL;
727 	} else {
728 		adv = NULL;
729 	}
730 
731 	/* Updating parameters of an active instance will return a
732 	 * Command Disallowed error, so we must first disable the
733 	 * instance if it is active.
734 	 */
735 	if (adv && !adv->pending) {
736 		err = hci_disable_ext_adv_instance_sync(hdev, instance);
737 		if (err)
738 			return err;
739 	}
740 
741 	flags = hci_adv_instance_flags(hdev, instance);
742 
743 	/* If the "connectable" instance flag was not set, then choose between
744 	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
745 	 */
746 	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
747 		      mgmt_get_connectable(hdev);
748 
749 	if (!is_advertising_allowed(hdev, connectable))
750 		return -EPERM;
751 
752 	/* Set require_privacy to true only when non-connectable
753 	 * advertising is used. In that case it is fine to use a
754 	 * non-resolvable private address.
755 	 */
756 	err = hci_get_random_address(hdev, !connectable,
757 				     adv_use_rpa(hdev, flags), adv,
758 				     &own_addr_type, &random_addr);
759 	if (err < 0)
760 		return err;
761 
762 	memset(&cp, 0, sizeof(cp));
763 
764 	if (adv) {
765 		hci_cpu_to_le24(adv->min_interval, cp.min_interval);
766 		hci_cpu_to_le24(adv->max_interval, cp.max_interval);
767 		cp.tx_power = adv->tx_power;
768 	} else {
769 		hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval);
770 		hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval);
771 		cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE;
772 	}
773 
774 	secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK);
775 
776 	if (connectable) {
777 		if (secondary_adv)
778 			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND);
779 		else
780 			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND);
781 	} else if (hci_adv_instance_is_scannable(hdev, instance) ||
782 		   (flags & MGMT_ADV_PARAM_SCAN_RSP)) {
783 		if (secondary_adv)
784 			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND);
785 		else
786 			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND);
787 	} else {
788 		if (secondary_adv)
789 			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND);
790 		else
791 			cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND);
792 	}
793 
794 	/* If Own_Address_Type equals 0x02 or 0x03, the Peer_Address parameter
795 	 * contains the peer’s Identity Address and the Peer_Address_Type
796 	 * parameter contains the peer’s Identity Type (i.e., 0x00 or 0x01).
797 	 * These parameters are used to locate the corresponding local IRK in
798 	 * the resolving list; this IRK is used to generate their own address
799 	 * used in the advertisement.
800 	 */
801 	if (own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED)
802 		hci_copy_identity_address(hdev, &cp.peer_addr,
803 					  &cp.peer_addr_type);
804 
805 	cp.own_addr_type = own_addr_type;
806 	cp.channel_map = hdev->le_adv_channel_map;
807 	cp.handle = instance;
808 
809 	if (flags & MGMT_ADV_FLAG_SEC_2M) {
810 		cp.primary_phy = HCI_ADV_PHY_1M;
811 		cp.secondary_phy = HCI_ADV_PHY_2M;
812 	} else if (flags & MGMT_ADV_FLAG_SEC_CODED) {
813 		cp.primary_phy = HCI_ADV_PHY_CODED;
814 		cp.secondary_phy = HCI_ADV_PHY_CODED;
815 	} else {
816 		/* In all other cases use 1M */
817 		cp.primary_phy = HCI_ADV_PHY_1M;
818 		cp.secondary_phy = HCI_ADV_PHY_1M;
819 	}
820 
821 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS,
822 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
823 	if (err)
824 		return err;
825 
826 	if ((own_addr_type == ADDR_LE_DEV_RANDOM ||
827 	     own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) &&
828 	    bacmp(&random_addr, BDADDR_ANY)) {
829 		/* Check if random address need to be updated */
830 		if (adv) {
831 			if (!bacmp(&random_addr, &adv->random_addr))
832 				return 0;
833 		} else {
834 			if (!bacmp(&random_addr, &hdev->random_addr))
835 				return 0;
836 		}
837 
838 		return hci_set_adv_set_random_addr_sync(hdev, instance,
839 							&random_addr);
840 	}
841 
842 	return 0;
843 }
844 
845 static int hci_set_ext_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
846 {
847 	struct {
848 		struct hci_cp_le_set_ext_scan_rsp_data cp;
849 		u8 data[HCI_MAX_EXT_AD_LENGTH];
850 	} pdu;
851 	u8 len;
852 
853 	memset(&pdu, 0, sizeof(pdu));
854 
855 	len = eir_create_scan_rsp(hdev, instance, pdu.data);
856 
857 	if (hdev->scan_rsp_data_len == len &&
858 	    !memcmp(pdu.data, hdev->scan_rsp_data, len))
859 		return 0;
860 
861 	memcpy(hdev->scan_rsp_data, pdu.data, len);
862 	hdev->scan_rsp_data_len = len;
863 
864 	pdu.cp.handle = instance;
865 	pdu.cp.length = len;
866 	pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
867 	pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
868 
869 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA,
870 				     sizeof(pdu.cp) + len, &pdu.cp,
871 				     HCI_CMD_TIMEOUT);
872 }
873 
874 static int __hci_set_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
875 {
876 	struct hci_cp_le_set_scan_rsp_data cp;
877 	u8 len;
878 
879 	memset(&cp, 0, sizeof(cp));
880 
881 	len = eir_create_scan_rsp(hdev, instance, cp.data);
882 
883 	if (hdev->scan_rsp_data_len == len &&
884 	    !memcmp(cp.data, hdev->scan_rsp_data, len))
885 		return 0;
886 
887 	memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
888 	hdev->scan_rsp_data_len = len;
889 
890 	cp.length = len;
891 
892 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_RSP_DATA,
893 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
894 }
895 
896 int hci_update_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
897 {
898 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
899 		return 0;
900 
901 	if (ext_adv_capable(hdev))
902 		return hci_set_ext_scan_rsp_data_sync(hdev, instance);
903 
904 	return __hci_set_scan_rsp_data_sync(hdev, instance);
905 }
906 
907 int hci_enable_ext_advertising_sync(struct hci_dev *hdev, u8 instance)
908 {
909 	struct hci_cp_le_set_ext_adv_enable *cp;
910 	struct hci_cp_ext_adv_set *set;
911 	u8 data[sizeof(*cp) + sizeof(*set) * 1];
912 	struct adv_info *adv;
913 
914 	if (instance > 0) {
915 		adv = hci_find_adv_instance(hdev, instance);
916 		if (!adv)
917 			return -EINVAL;
918 		/* If already enabled there is nothing to do */
919 		if (adv->enabled)
920 			return 0;
921 	} else {
922 		adv = NULL;
923 	}
924 
925 	cp = (void *)data;
926 	set = (void *)cp->data;
927 
928 	memset(cp, 0, sizeof(*cp));
929 
930 	cp->enable = 0x01;
931 	cp->num_of_sets = 0x01;
932 
933 	memset(set, 0, sizeof(*set));
934 
935 	set->handle = instance;
936 
937 	/* Set duration per instance since controller is responsible for
938 	 * scheduling it.
939 	 */
940 	if (adv && adv->timeout) {
941 		u16 duration = adv->timeout * MSEC_PER_SEC;
942 
943 		/* Time = N * 10 ms */
944 		set->duration = cpu_to_le16(duration / 10);
945 	}
946 
947 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE,
948 				     sizeof(*cp) +
949 				     sizeof(*set) * cp->num_of_sets,
950 				     data, HCI_CMD_TIMEOUT);
951 }
952 
953 int hci_start_ext_adv_sync(struct hci_dev *hdev, u8 instance)
954 {
955 	int err;
956 
957 	err = hci_setup_ext_adv_instance_sync(hdev, instance);
958 	if (err)
959 		return err;
960 
961 	err = hci_set_ext_scan_rsp_data_sync(hdev, instance);
962 	if (err)
963 		return err;
964 
965 	return hci_enable_ext_advertising_sync(hdev, instance);
966 }
967 
968 static int hci_start_adv_sync(struct hci_dev *hdev, u8 instance)
969 {
970 	int err;
971 
972 	if (ext_adv_capable(hdev))
973 		return hci_start_ext_adv_sync(hdev, instance);
974 
975 	err = hci_update_adv_data_sync(hdev, instance);
976 	if (err)
977 		return err;
978 
979 	err = hci_update_scan_rsp_data_sync(hdev, instance);
980 	if (err)
981 		return err;
982 
983 	return hci_enable_advertising_sync(hdev);
984 }
985 
986 int hci_enable_advertising_sync(struct hci_dev *hdev)
987 {
988 	struct adv_info *adv_instance;
989 	struct hci_cp_le_set_adv_param cp;
990 	u8 own_addr_type, enable = 0x01;
991 	bool connectable;
992 	u16 adv_min_interval, adv_max_interval;
993 	u32 flags;
994 	u8 status;
995 
996 	if (ext_adv_capable(hdev))
997 		return hci_enable_ext_advertising_sync(hdev,
998 						       hdev->cur_adv_instance);
999 
1000 	flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance);
1001 	adv_instance = hci_find_adv_instance(hdev, hdev->cur_adv_instance);
1002 
1003 	/* If the "connectable" instance flag was not set, then choose between
1004 	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1005 	 */
1006 	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1007 		      mgmt_get_connectable(hdev);
1008 
1009 	if (!is_advertising_allowed(hdev, connectable))
1010 		return -EINVAL;
1011 
1012 	status = hci_disable_advertising_sync(hdev);
1013 	if (status)
1014 		return status;
1015 
1016 	/* Clear the HCI_LE_ADV bit temporarily so that the
1017 	 * hci_update_random_address knows that it's safe to go ahead
1018 	 * and write a new random address. The flag will be set back on
1019 	 * as soon as the SET_ADV_ENABLE HCI command completes.
1020 	 */
1021 	hci_dev_clear_flag(hdev, HCI_LE_ADV);
1022 
1023 	/* Set require_privacy to true only when non-connectable
1024 	 * advertising is used. In that case it is fine to use a
1025 	 * non-resolvable private address.
1026 	 */
1027 	status = hci_update_random_address_sync(hdev, !connectable,
1028 						adv_use_rpa(hdev, flags),
1029 						&own_addr_type);
1030 	if (status)
1031 		return status;
1032 
1033 	memset(&cp, 0, sizeof(cp));
1034 
1035 	if (adv_instance) {
1036 		adv_min_interval = adv_instance->min_interval;
1037 		adv_max_interval = adv_instance->max_interval;
1038 	} else {
1039 		adv_min_interval = hdev->le_adv_min_interval;
1040 		adv_max_interval = hdev->le_adv_max_interval;
1041 	}
1042 
1043 	if (connectable) {
1044 		cp.type = LE_ADV_IND;
1045 	} else {
1046 		if (hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance))
1047 			cp.type = LE_ADV_SCAN_IND;
1048 		else
1049 			cp.type = LE_ADV_NONCONN_IND;
1050 
1051 		if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) ||
1052 		    hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
1053 			adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN;
1054 			adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX;
1055 		}
1056 	}
1057 
1058 	cp.min_interval = cpu_to_le16(adv_min_interval);
1059 	cp.max_interval = cpu_to_le16(adv_max_interval);
1060 	cp.own_address_type = own_addr_type;
1061 	cp.channel_map = hdev->le_adv_channel_map;
1062 
1063 	status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM,
1064 				       sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1065 	if (status)
1066 		return status;
1067 
1068 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
1069 				     sizeof(enable), &enable, HCI_CMD_TIMEOUT);
1070 }
1071 
1072 static int enable_advertising_sync(struct hci_dev *hdev, void *data)
1073 {
1074 	return hci_enable_advertising_sync(hdev);
1075 }
1076 
1077 int hci_enable_advertising(struct hci_dev *hdev)
1078 {
1079 	if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
1080 	    list_empty(&hdev->adv_instances))
1081 		return 0;
1082 
1083 	return hci_cmd_sync_queue(hdev, enable_advertising_sync, NULL, NULL);
1084 }
1085 
1086 int hci_remove_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance,
1087 				     struct sock *sk)
1088 {
1089 	int err;
1090 
1091 	if (!ext_adv_capable(hdev))
1092 		return 0;
1093 
1094 	err = hci_disable_ext_adv_instance_sync(hdev, instance);
1095 	if (err)
1096 		return err;
1097 
1098 	/* If request specifies an instance that doesn't exist, fail */
1099 	if (instance > 0 && !hci_find_adv_instance(hdev, instance))
1100 		return -EINVAL;
1101 
1102 	return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_REMOVE_ADV_SET,
1103 					sizeof(instance), &instance, 0,
1104 					HCI_CMD_TIMEOUT, sk);
1105 }
1106 
1107 static void cancel_adv_timeout(struct hci_dev *hdev)
1108 {
1109 	if (hdev->adv_instance_timeout) {
1110 		hdev->adv_instance_timeout = 0;
1111 		cancel_delayed_work(&hdev->adv_instance_expire);
1112 	}
1113 }
1114 
1115 static int hci_set_ext_adv_data_sync(struct hci_dev *hdev, u8 instance)
1116 {
1117 	struct {
1118 		struct hci_cp_le_set_ext_adv_data cp;
1119 		u8 data[HCI_MAX_EXT_AD_LENGTH];
1120 	} pdu;
1121 	u8 len;
1122 
1123 	memset(&pdu, 0, sizeof(pdu));
1124 
1125 	len = eir_create_adv_data(hdev, instance, pdu.data);
1126 
1127 	/* There's nothing to do if the data hasn't changed */
1128 	if (hdev->adv_data_len == len &&
1129 	    memcmp(pdu.data, hdev->adv_data, len) == 0)
1130 		return 0;
1131 
1132 	memcpy(hdev->adv_data, pdu.data, len);
1133 	hdev->adv_data_len = len;
1134 
1135 	pdu.cp.length = len;
1136 	pdu.cp.handle = instance;
1137 	pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1138 	pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1139 
1140 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_DATA,
1141 				     sizeof(pdu.cp) + len, &pdu.cp,
1142 				     HCI_CMD_TIMEOUT);
1143 }
1144 
1145 static int hci_set_adv_data_sync(struct hci_dev *hdev, u8 instance)
1146 {
1147 	struct hci_cp_le_set_adv_data cp;
1148 	u8 len;
1149 
1150 	memset(&cp, 0, sizeof(cp));
1151 
1152 	len = eir_create_adv_data(hdev, instance, cp.data);
1153 
1154 	/* There's nothing to do if the data hasn't changed */
1155 	if (hdev->adv_data_len == len &&
1156 	    memcmp(cp.data, hdev->adv_data, len) == 0)
1157 		return 0;
1158 
1159 	memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1160 	hdev->adv_data_len = len;
1161 
1162 	cp.length = len;
1163 
1164 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_DATA,
1165 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1166 }
1167 
1168 int hci_update_adv_data_sync(struct hci_dev *hdev, u8 instance)
1169 {
1170 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1171 		return 0;
1172 
1173 	if (ext_adv_capable(hdev))
1174 		return hci_set_ext_adv_data_sync(hdev, instance);
1175 
1176 	return hci_set_adv_data_sync(hdev, instance);
1177 }
1178 
1179 int hci_schedule_adv_instance_sync(struct hci_dev *hdev, u8 instance,
1180 				   bool force)
1181 {
1182 	struct adv_info *adv = NULL;
1183 	u16 timeout;
1184 
1185 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) && !ext_adv_capable(hdev))
1186 		return -EPERM;
1187 
1188 	if (hdev->adv_instance_timeout)
1189 		return -EBUSY;
1190 
1191 	adv = hci_find_adv_instance(hdev, instance);
1192 	if (!adv)
1193 		return -ENOENT;
1194 
1195 	/* A zero timeout means unlimited advertising. As long as there is
1196 	 * only one instance, duration should be ignored. We still set a timeout
1197 	 * in case further instances are being added later on.
1198 	 *
1199 	 * If the remaining lifetime of the instance is more than the duration
1200 	 * then the timeout corresponds to the duration, otherwise it will be
1201 	 * reduced to the remaining instance lifetime.
1202 	 */
1203 	if (adv->timeout == 0 || adv->duration <= adv->remaining_time)
1204 		timeout = adv->duration;
1205 	else
1206 		timeout = adv->remaining_time;
1207 
1208 	/* The remaining time is being reduced unless the instance is being
1209 	 * advertised without time limit.
1210 	 */
1211 	if (adv->timeout)
1212 		adv->remaining_time = adv->remaining_time - timeout;
1213 
1214 	/* Only use work for scheduling instances with legacy advertising */
1215 	if (!ext_adv_capable(hdev)) {
1216 		hdev->adv_instance_timeout = timeout;
1217 		queue_delayed_work(hdev->req_workqueue,
1218 				   &hdev->adv_instance_expire,
1219 				   msecs_to_jiffies(timeout * 1000));
1220 	}
1221 
1222 	/* If we're just re-scheduling the same instance again then do not
1223 	 * execute any HCI commands. This happens when a single instance is
1224 	 * being advertised.
1225 	 */
1226 	if (!force && hdev->cur_adv_instance == instance &&
1227 	    hci_dev_test_flag(hdev, HCI_LE_ADV))
1228 		return 0;
1229 
1230 	hdev->cur_adv_instance = instance;
1231 
1232 	return hci_start_adv_sync(hdev, instance);
1233 }
1234 
1235 static int hci_clear_adv_sets_sync(struct hci_dev *hdev, struct sock *sk)
1236 {
1237 	int err;
1238 
1239 	if (!ext_adv_capable(hdev))
1240 		return 0;
1241 
1242 	/* Disable instance 0x00 to disable all instances */
1243 	err = hci_disable_ext_adv_instance_sync(hdev, 0x00);
1244 	if (err)
1245 		return err;
1246 
1247 	return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CLEAR_ADV_SETS,
1248 					0, NULL, 0, HCI_CMD_TIMEOUT, sk);
1249 }
1250 
1251 static int hci_clear_adv_sync(struct hci_dev *hdev, struct sock *sk, bool force)
1252 {
1253 	struct adv_info *adv, *n;
1254 
1255 	if (ext_adv_capable(hdev))
1256 		/* Remove all existing sets */
1257 		return hci_clear_adv_sets_sync(hdev, sk);
1258 
1259 	/* This is safe as long as there is no command send while the lock is
1260 	 * held.
1261 	 */
1262 	hci_dev_lock(hdev);
1263 
1264 	/* Cleanup non-ext instances */
1265 	list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) {
1266 		u8 instance = adv->instance;
1267 		int err;
1268 
1269 		if (!(force || adv->timeout))
1270 			continue;
1271 
1272 		err = hci_remove_adv_instance(hdev, instance);
1273 		if (!err)
1274 			mgmt_advertising_removed(sk, hdev, instance);
1275 	}
1276 
1277 	hci_dev_unlock(hdev);
1278 
1279 	return 0;
1280 }
1281 
1282 static int hci_remove_adv_sync(struct hci_dev *hdev, u8 instance,
1283 			       struct sock *sk)
1284 {
1285 	int err;
1286 
1287 	/* If we use extended advertising, instance has to be removed first. */
1288 	if (ext_adv_capable(hdev))
1289 		return hci_remove_ext_adv_instance_sync(hdev, instance, sk);
1290 
1291 	/* This is safe as long as there is no command send while the lock is
1292 	 * held.
1293 	 */
1294 	hci_dev_lock(hdev);
1295 
1296 	err = hci_remove_adv_instance(hdev, instance);
1297 	if (!err)
1298 		mgmt_advertising_removed(sk, hdev, instance);
1299 
1300 	hci_dev_unlock(hdev);
1301 
1302 	return err;
1303 }
1304 
1305 /* For a single instance:
1306  * - force == true: The instance will be removed even when its remaining
1307  *   lifetime is not zero.
1308  * - force == false: the instance will be deactivated but kept stored unless
1309  *   the remaining lifetime is zero.
1310  *
1311  * For instance == 0x00:
1312  * - force == true: All instances will be removed regardless of their timeout
1313  *   setting.
1314  * - force == false: Only instances that have a timeout will be removed.
1315  */
1316 int hci_remove_advertising_sync(struct hci_dev *hdev, struct sock *sk,
1317 				u8 instance, bool force)
1318 {
1319 	struct adv_info *next = NULL;
1320 	int err;
1321 
1322 	/* Cancel any timeout concerning the removed instance(s). */
1323 	if (!instance || hdev->cur_adv_instance == instance)
1324 		cancel_adv_timeout(hdev);
1325 
1326 	/* Get the next instance to advertise BEFORE we remove
1327 	 * the current one. This can be the same instance again
1328 	 * if there is only one instance.
1329 	 */
1330 	if (hdev->cur_adv_instance == instance)
1331 		next = hci_get_next_instance(hdev, instance);
1332 
1333 	if (!instance) {
1334 		err = hci_clear_adv_sync(hdev, sk, force);
1335 		if (err)
1336 			return err;
1337 	} else {
1338 		struct adv_info *adv = hci_find_adv_instance(hdev, instance);
1339 
1340 		if (force || (adv && adv->timeout && !adv->remaining_time)) {
1341 			/* Don't advertise a removed instance. */
1342 			if (next && next->instance == instance)
1343 				next = NULL;
1344 
1345 			err = hci_remove_adv_sync(hdev, instance, sk);
1346 			if (err)
1347 				return err;
1348 		}
1349 	}
1350 
1351 	if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING))
1352 		return 0;
1353 
1354 	if (next && !ext_adv_capable(hdev))
1355 		hci_schedule_adv_instance_sync(hdev, next->instance, false);
1356 
1357 	return 0;
1358 }
1359 
1360 int hci_read_rssi_sync(struct hci_dev *hdev, __le16 handle)
1361 {
1362 	struct hci_cp_read_rssi cp;
1363 
1364 	cp.handle = handle;
1365 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_RSSI,
1366 					sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1367 }
1368 
1369 int hci_read_clock_sync(struct hci_dev *hdev, struct hci_cp_read_clock *cp)
1370 {
1371 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLOCK,
1372 					sizeof(*cp), cp, HCI_CMD_TIMEOUT);
1373 }
1374 
1375 int hci_read_tx_power_sync(struct hci_dev *hdev, __le16 handle, u8 type)
1376 {
1377 	struct hci_cp_read_tx_power cp;
1378 
1379 	cp.handle = handle;
1380 	cp.type = type;
1381 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_TX_POWER,
1382 					sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1383 }
1384 
1385 int hci_disable_advertising_sync(struct hci_dev *hdev)
1386 {
1387 	u8 enable = 0x00;
1388 
1389 	/* If controller is not advertising we are done. */
1390 	if (!hci_dev_test_flag(hdev, HCI_LE_ADV))
1391 		return 0;
1392 
1393 	if (ext_adv_capable(hdev))
1394 		return hci_disable_ext_adv_instance_sync(hdev, 0x00);
1395 
1396 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
1397 				     sizeof(enable), &enable, HCI_CMD_TIMEOUT);
1398 }
1399 
1400 static int hci_le_set_ext_scan_enable_sync(struct hci_dev *hdev, u8 val,
1401 					   u8 filter_dup)
1402 {
1403 	struct hci_cp_le_set_ext_scan_enable cp;
1404 
1405 	memset(&cp, 0, sizeof(cp));
1406 	cp.enable = val;
1407 	cp.filter_dup = filter_dup;
1408 
1409 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
1410 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1411 }
1412 
1413 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val,
1414 				       u8 filter_dup)
1415 {
1416 	struct hci_cp_le_set_scan_enable cp;
1417 
1418 	if (use_ext_scan(hdev))
1419 		return hci_le_set_ext_scan_enable_sync(hdev, val, filter_dup);
1420 
1421 	memset(&cp, 0, sizeof(cp));
1422 	cp.enable = val;
1423 	cp.filter_dup = filter_dup;
1424 
1425 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_ENABLE,
1426 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1427 }
1428 
1429 static int hci_le_set_addr_resolution_enable_sync(struct hci_dev *hdev, u8 val)
1430 {
1431 	if (!use_ll_privacy(hdev))
1432 		return 0;
1433 
1434 	/* If controller is not/already resolving we are done. */
1435 	if (val == hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION))
1436 		return 0;
1437 
1438 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE,
1439 				     sizeof(val), &val, HCI_CMD_TIMEOUT);
1440 }
1441 
1442 static int hci_scan_disable_sync(struct hci_dev *hdev)
1443 {
1444 	int err;
1445 
1446 	/* If controller is not scanning we are done. */
1447 	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
1448 		return 0;
1449 
1450 	if (hdev->scanning_paused) {
1451 		bt_dev_dbg(hdev, "Scanning is paused for suspend");
1452 		return 0;
1453 	}
1454 
1455 	err = hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00);
1456 	if (err) {
1457 		bt_dev_err(hdev, "Unable to disable scanning: %d", err);
1458 		return err;
1459 	}
1460 
1461 	return err;
1462 }
1463 
1464 static bool scan_use_rpa(struct hci_dev *hdev)
1465 {
1466 	return hci_dev_test_flag(hdev, HCI_PRIVACY);
1467 }
1468 
1469 static void hci_start_interleave_scan(struct hci_dev *hdev)
1470 {
1471 	hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER;
1472 	queue_delayed_work(hdev->req_workqueue,
1473 			   &hdev->interleave_scan, 0);
1474 }
1475 
1476 static bool is_interleave_scanning(struct hci_dev *hdev)
1477 {
1478 	return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE;
1479 }
1480 
1481 static void cancel_interleave_scan(struct hci_dev *hdev)
1482 {
1483 	bt_dev_dbg(hdev, "cancelling interleave scan");
1484 
1485 	cancel_delayed_work_sync(&hdev->interleave_scan);
1486 
1487 	hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE;
1488 }
1489 
1490 /* Return true if interleave_scan wasn't started until exiting this function,
1491  * otherwise, return false
1492  */
1493 static bool hci_update_interleaved_scan_sync(struct hci_dev *hdev)
1494 {
1495 	/* Do interleaved scan only if all of the following are true:
1496 	 * - There is at least one ADV monitor
1497 	 * - At least one pending LE connection or one device to be scanned for
1498 	 * - Monitor offloading is not supported
1499 	 * If so, we should alternate between allowlist scan and one without
1500 	 * any filters to save power.
1501 	 */
1502 	bool use_interleaving = hci_is_adv_monitoring(hdev) &&
1503 				!(list_empty(&hdev->pend_le_conns) &&
1504 				  list_empty(&hdev->pend_le_reports)) &&
1505 				hci_get_adv_monitor_offload_ext(hdev) ==
1506 				    HCI_ADV_MONITOR_EXT_NONE;
1507 	bool is_interleaving = is_interleave_scanning(hdev);
1508 
1509 	if (use_interleaving && !is_interleaving) {
1510 		hci_start_interleave_scan(hdev);
1511 		bt_dev_dbg(hdev, "starting interleave scan");
1512 		return true;
1513 	}
1514 
1515 	if (!use_interleaving && is_interleaving)
1516 		cancel_interleave_scan(hdev);
1517 
1518 	return false;
1519 }
1520 
1521 /* Removes connection to resolve list if needed.*/
1522 static int hci_le_del_resolve_list_sync(struct hci_dev *hdev,
1523 					bdaddr_t *bdaddr, u8 bdaddr_type)
1524 {
1525 	struct hci_cp_le_del_from_resolv_list cp;
1526 	struct bdaddr_list_with_irk *entry;
1527 
1528 	if (!use_ll_privacy(hdev))
1529 		return 0;
1530 
1531 	/* Check if the IRK has been programmed */
1532 	entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, bdaddr,
1533 						bdaddr_type);
1534 	if (!entry)
1535 		return 0;
1536 
1537 	cp.bdaddr_type = bdaddr_type;
1538 	bacpy(&cp.bdaddr, bdaddr);
1539 
1540 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_RESOLV_LIST,
1541 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1542 }
1543 
1544 static int hci_le_del_accept_list_sync(struct hci_dev *hdev,
1545 				       bdaddr_t *bdaddr, u8 bdaddr_type)
1546 {
1547 	struct hci_cp_le_del_from_accept_list cp;
1548 	int err;
1549 
1550 	/* Check if device is on accept list before removing it */
1551 	if (!hci_bdaddr_list_lookup(&hdev->le_accept_list, bdaddr, bdaddr_type))
1552 		return 0;
1553 
1554 	cp.bdaddr_type = bdaddr_type;
1555 	bacpy(&cp.bdaddr, bdaddr);
1556 
1557 	/* Ignore errors when removing from resolving list as that is likely
1558 	 * that the device was never added.
1559 	 */
1560 	hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type);
1561 
1562 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_ACCEPT_LIST,
1563 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1564 	if (err) {
1565 		bt_dev_err(hdev, "Unable to remove from allow list: %d", err);
1566 		return err;
1567 	}
1568 
1569 	bt_dev_dbg(hdev, "Remove %pMR (0x%x) from allow list", &cp.bdaddr,
1570 		   cp.bdaddr_type);
1571 
1572 	return 0;
1573 }
1574 
1575 /* Adds connection to resolve list if needed.
1576  * Setting params to NULL programs local hdev->irk
1577  */
1578 static int hci_le_add_resolve_list_sync(struct hci_dev *hdev,
1579 					struct hci_conn_params *params)
1580 {
1581 	struct hci_cp_le_add_to_resolv_list cp;
1582 	struct smp_irk *irk;
1583 	struct bdaddr_list_with_irk *entry;
1584 
1585 	if (!use_ll_privacy(hdev))
1586 		return 0;
1587 
1588 	/* Attempt to program local identity address, type and irk if params is
1589 	 * NULL.
1590 	 */
1591 	if (!params) {
1592 		if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
1593 			return 0;
1594 
1595 		hci_copy_identity_address(hdev, &cp.bdaddr, &cp.bdaddr_type);
1596 		memcpy(cp.peer_irk, hdev->irk, 16);
1597 		goto done;
1598 	}
1599 
1600 	irk = hci_find_irk_by_addr(hdev, &params->addr, params->addr_type);
1601 	if (!irk)
1602 		return 0;
1603 
1604 	/* Check if the IK has _not_ been programmed yet. */
1605 	entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list,
1606 						&params->addr,
1607 						params->addr_type);
1608 	if (entry)
1609 		return 0;
1610 
1611 	cp.bdaddr_type = params->addr_type;
1612 	bacpy(&cp.bdaddr, &params->addr);
1613 	memcpy(cp.peer_irk, irk->val, 16);
1614 
1615 done:
1616 	if (hci_dev_test_flag(hdev, HCI_PRIVACY))
1617 		memcpy(cp.local_irk, hdev->irk, 16);
1618 	else
1619 		memset(cp.local_irk, 0, 16);
1620 
1621 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_RESOLV_LIST,
1622 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1623 }
1624 
1625 /* Set Device Privacy Mode. */
1626 static int hci_le_set_privacy_mode_sync(struct hci_dev *hdev,
1627 					struct hci_conn_params *params)
1628 {
1629 	struct hci_cp_le_set_privacy_mode cp;
1630 	struct smp_irk *irk;
1631 
1632 	/* If device privacy mode has already been set there is nothing to do */
1633 	if (params->privacy_mode == HCI_DEVICE_PRIVACY)
1634 		return 0;
1635 
1636 	/* Check if HCI_CONN_FLAG_DEVICE_PRIVACY has been set as it also
1637 	 * indicates that LL Privacy has been enabled and
1638 	 * HCI_OP_LE_SET_PRIVACY_MODE is supported.
1639 	 */
1640 	if (!(params->flags & HCI_CONN_FLAG_DEVICE_PRIVACY))
1641 		return 0;
1642 
1643 	irk = hci_find_irk_by_addr(hdev, &params->addr, params->addr_type);
1644 	if (!irk)
1645 		return 0;
1646 
1647 	memset(&cp, 0, sizeof(cp));
1648 	cp.bdaddr_type = irk->addr_type;
1649 	bacpy(&cp.bdaddr, &irk->bdaddr);
1650 	cp.mode = HCI_DEVICE_PRIVACY;
1651 
1652 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PRIVACY_MODE,
1653 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1654 }
1655 
1656 /* Adds connection to allow list if needed, if the device uses RPA (has IRK)
1657  * this attempts to program the device in the resolving list as well and
1658  * properly set the privacy mode.
1659  */
1660 static int hci_le_add_accept_list_sync(struct hci_dev *hdev,
1661 				       struct hci_conn_params *params,
1662 				       u8 *num_entries)
1663 {
1664 	struct hci_cp_le_add_to_accept_list cp;
1665 	int err;
1666 
1667 	/* During suspend, only wakeable devices can be in acceptlist */
1668 	if (hdev->suspended &&
1669 	    !(params->flags & HCI_CONN_FLAG_REMOTE_WAKEUP))
1670 		return 0;
1671 
1672 	/* Select filter policy to accept all advertising */
1673 	if (*num_entries >= hdev->le_accept_list_size)
1674 		return -ENOSPC;
1675 
1676 	/* Accept list can not be used with RPAs */
1677 	if (!use_ll_privacy(hdev) &&
1678 	    hci_find_irk_by_addr(hdev, &params->addr, params->addr_type))
1679 		return -EINVAL;
1680 
1681 	/* Attempt to program the device in the resolving list first to avoid
1682 	 * having to rollback in case it fails since the resolving list is
1683 	 * dynamic it can probably be smaller than the accept list.
1684 	 */
1685 	err = hci_le_add_resolve_list_sync(hdev, params);
1686 	if (err) {
1687 		bt_dev_err(hdev, "Unable to add to resolve list: %d", err);
1688 		return err;
1689 	}
1690 
1691 	/* Set Privacy Mode */
1692 	err = hci_le_set_privacy_mode_sync(hdev, params);
1693 	if (err) {
1694 		bt_dev_err(hdev, "Unable to set privacy mode: %d", err);
1695 		return err;
1696 	}
1697 
1698 	/* Check if already in accept list */
1699 	if (hci_bdaddr_list_lookup(&hdev->le_accept_list, &params->addr,
1700 				   params->addr_type))
1701 		return 0;
1702 
1703 	*num_entries += 1;
1704 	cp.bdaddr_type = params->addr_type;
1705 	bacpy(&cp.bdaddr, &params->addr);
1706 
1707 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST,
1708 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1709 	if (err) {
1710 		bt_dev_err(hdev, "Unable to add to allow list: %d", err);
1711 		/* Rollback the device from the resolving list */
1712 		hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type);
1713 		return err;
1714 	}
1715 
1716 	bt_dev_dbg(hdev, "Add %pMR (0x%x) to allow list", &cp.bdaddr,
1717 		   cp.bdaddr_type);
1718 
1719 	return 0;
1720 }
1721 
1722 /* This function disables/pause all advertising instances */
1723 static int hci_pause_advertising_sync(struct hci_dev *hdev)
1724 {
1725 	int err;
1726 	int old_state;
1727 
1728 	/* If already been paused there is nothing to do. */
1729 	if (hdev->advertising_paused)
1730 		return 0;
1731 
1732 	bt_dev_dbg(hdev, "Pausing directed advertising");
1733 
1734 	/* Stop directed advertising */
1735 	old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING);
1736 	if (old_state) {
1737 		/* When discoverable timeout triggers, then just make sure
1738 		 * the limited discoverable flag is cleared. Even in the case
1739 		 * of a timeout triggered from general discoverable, it is
1740 		 * safe to unconditionally clear the flag.
1741 		 */
1742 		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1743 		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1744 		hdev->discov_timeout = 0;
1745 	}
1746 
1747 	bt_dev_dbg(hdev, "Pausing advertising instances");
1748 
1749 	/* Call to disable any advertisements active on the controller.
1750 	 * This will succeed even if no advertisements are configured.
1751 	 */
1752 	err = hci_disable_advertising_sync(hdev);
1753 	if (err)
1754 		return err;
1755 
1756 	/* If we are using software rotation, pause the loop */
1757 	if (!ext_adv_capable(hdev))
1758 		cancel_adv_timeout(hdev);
1759 
1760 	hdev->advertising_paused = true;
1761 	hdev->advertising_old_state = old_state;
1762 
1763 	return 0;
1764 }
1765 
1766 /* This function enables all user advertising instances */
1767 static int hci_resume_advertising_sync(struct hci_dev *hdev)
1768 {
1769 	struct adv_info *adv, *tmp;
1770 	int err;
1771 
1772 	/* If advertising has not been paused there is nothing  to do. */
1773 	if (!hdev->advertising_paused)
1774 		return 0;
1775 
1776 	/* Resume directed advertising */
1777 	hdev->advertising_paused = false;
1778 	if (hdev->advertising_old_state) {
1779 		hci_dev_set_flag(hdev, HCI_ADVERTISING);
1780 		hdev->advertising_old_state = 0;
1781 	}
1782 
1783 	bt_dev_dbg(hdev, "Resuming advertising instances");
1784 
1785 	if (ext_adv_capable(hdev)) {
1786 		/* Call for each tracked instance to be re-enabled */
1787 		list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) {
1788 			err = hci_enable_ext_advertising_sync(hdev,
1789 							      adv->instance);
1790 			if (!err)
1791 				continue;
1792 
1793 			/* If the instance cannot be resumed remove it */
1794 			hci_remove_ext_adv_instance_sync(hdev, adv->instance,
1795 							 NULL);
1796 		}
1797 	} else {
1798 		/* Schedule for most recent instance to be restarted and begin
1799 		 * the software rotation loop
1800 		 */
1801 		err = hci_schedule_adv_instance_sync(hdev,
1802 						     hdev->cur_adv_instance,
1803 						     true);
1804 	}
1805 
1806 	hdev->advertising_paused = false;
1807 
1808 	return err;
1809 }
1810 
1811 struct sk_buff *hci_read_local_oob_data_sync(struct hci_dev *hdev,
1812 					     bool extended, struct sock *sk)
1813 {
1814 	u16 opcode = extended ? HCI_OP_READ_LOCAL_OOB_EXT_DATA :
1815 					HCI_OP_READ_LOCAL_OOB_DATA;
1816 
1817 	return __hci_cmd_sync_sk(hdev, opcode, 0, NULL, 0, HCI_CMD_TIMEOUT, sk);
1818 }
1819 
1820 /* Device must not be scanning when updating the accept list.
1821  *
1822  * Update is done using the following sequence:
1823  *
1824  * use_ll_privacy((Disable Advertising) -> Disable Resolving List) ->
1825  * Remove Devices From Accept List ->
1826  * (has IRK && use_ll_privacy(Remove Devices From Resolving List))->
1827  * Add Devices to Accept List ->
1828  * (has IRK && use_ll_privacy(Remove Devices From Resolving List)) ->
1829  * use_ll_privacy(Enable Resolving List -> (Enable Advertising)) ->
1830  * Enable Scanning
1831  *
1832  * In case of failure advertising shall be restored to its original state and
1833  * return would disable accept list since either accept or resolving list could
1834  * not be programmed.
1835  *
1836  */
1837 static u8 hci_update_accept_list_sync(struct hci_dev *hdev)
1838 {
1839 	struct hci_conn_params *params;
1840 	struct bdaddr_list *b, *t;
1841 	u8 num_entries = 0;
1842 	bool pend_conn, pend_report;
1843 	u8 filter_policy;
1844 	int err;
1845 
1846 	/* Pause advertising if resolving list can be used as controllers are
1847 	 * cannot accept resolving list modifications while advertising.
1848 	 */
1849 	if (use_ll_privacy(hdev)) {
1850 		err = hci_pause_advertising_sync(hdev);
1851 		if (err) {
1852 			bt_dev_err(hdev, "pause advertising failed: %d", err);
1853 			return 0x00;
1854 		}
1855 	}
1856 
1857 	/* Disable address resolution while reprogramming accept list since
1858 	 * devices that do have an IRK will be programmed in the resolving list
1859 	 * when LL Privacy is enabled.
1860 	 */
1861 	err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00);
1862 	if (err) {
1863 		bt_dev_err(hdev, "Unable to disable LL privacy: %d", err);
1864 		goto done;
1865 	}
1866 
1867 	/* Go through the current accept list programmed into the
1868 	 * controller one by one and check if that address is still
1869 	 * in the list of pending connections or list of devices to
1870 	 * report. If not present in either list, then remove it from
1871 	 * the controller.
1872 	 */
1873 	list_for_each_entry_safe(b, t, &hdev->le_accept_list, list) {
1874 		pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns,
1875 						      &b->bdaddr,
1876 						      b->bdaddr_type);
1877 		pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports,
1878 							&b->bdaddr,
1879 							b->bdaddr_type);
1880 
1881 		/* If the device is not likely to connect or report,
1882 		 * remove it from the acceptlist.
1883 		 */
1884 		if (!pend_conn && !pend_report) {
1885 			hci_le_del_accept_list_sync(hdev, &b->bdaddr,
1886 						    b->bdaddr_type);
1887 			continue;
1888 		}
1889 
1890 		num_entries++;
1891 	}
1892 
1893 	/* Since all no longer valid accept list entries have been
1894 	 * removed, walk through the list of pending connections
1895 	 * and ensure that any new device gets programmed into
1896 	 * the controller.
1897 	 *
1898 	 * If the list of the devices is larger than the list of
1899 	 * available accept list entries in the controller, then
1900 	 * just abort and return filer policy value to not use the
1901 	 * accept list.
1902 	 */
1903 	list_for_each_entry(params, &hdev->pend_le_conns, action) {
1904 		err = hci_le_add_accept_list_sync(hdev, params, &num_entries);
1905 		if (err)
1906 			goto done;
1907 	}
1908 
1909 	/* After adding all new pending connections, walk through
1910 	 * the list of pending reports and also add these to the
1911 	 * accept list if there is still space. Abort if space runs out.
1912 	 */
1913 	list_for_each_entry(params, &hdev->pend_le_reports, action) {
1914 		err = hci_le_add_accept_list_sync(hdev, params, &num_entries);
1915 		if (err)
1916 			goto done;
1917 	}
1918 
1919 	/* Use the allowlist unless the following conditions are all true:
1920 	 * - We are not currently suspending
1921 	 * - There are 1 or more ADV monitors registered and it's not offloaded
1922 	 * - Interleaved scanning is not currently using the allowlist
1923 	 */
1924 	if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended &&
1925 	    hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE &&
1926 	    hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST)
1927 		err = -EINVAL;
1928 
1929 done:
1930 	filter_policy = err ? 0x00 : 0x01;
1931 
1932 	/* Enable address resolution when LL Privacy is enabled. */
1933 	err = hci_le_set_addr_resolution_enable_sync(hdev, 0x01);
1934 	if (err)
1935 		bt_dev_err(hdev, "Unable to enable LL privacy: %d", err);
1936 
1937 	/* Resume advertising if it was paused */
1938 	if (use_ll_privacy(hdev))
1939 		hci_resume_advertising_sync(hdev);
1940 
1941 	/* Select filter policy to use accept list */
1942 	return filter_policy;
1943 }
1944 
1945 /* Returns true if an le connection is in the scanning state */
1946 static inline bool hci_is_le_conn_scanning(struct hci_dev *hdev)
1947 {
1948 	struct hci_conn_hash *h = &hdev->conn_hash;
1949 	struct hci_conn  *c;
1950 
1951 	rcu_read_lock();
1952 
1953 	list_for_each_entry_rcu(c, &h->list, list) {
1954 		if (c->type == LE_LINK && c->state == BT_CONNECT &&
1955 		    test_bit(HCI_CONN_SCANNING, &c->flags)) {
1956 			rcu_read_unlock();
1957 			return true;
1958 		}
1959 	}
1960 
1961 	rcu_read_unlock();
1962 
1963 	return false;
1964 }
1965 
1966 static int hci_le_set_ext_scan_param_sync(struct hci_dev *hdev, u8 type,
1967 					  u16 interval, u16 window,
1968 					  u8 own_addr_type, u8 filter_policy)
1969 {
1970 	struct hci_cp_le_set_ext_scan_params *cp;
1971 	struct hci_cp_le_scan_phy_params *phy;
1972 	u8 data[sizeof(*cp) + sizeof(*phy) * 2];
1973 	u8 num_phy = 0;
1974 
1975 	cp = (void *)data;
1976 	phy = (void *)cp->data;
1977 
1978 	memset(data, 0, sizeof(data));
1979 
1980 	cp->own_addr_type = own_addr_type;
1981 	cp->filter_policy = filter_policy;
1982 
1983 	if (scan_1m(hdev) || scan_2m(hdev)) {
1984 		cp->scanning_phys |= LE_SCAN_PHY_1M;
1985 
1986 		phy->type = type;
1987 		phy->interval = cpu_to_le16(interval);
1988 		phy->window = cpu_to_le16(window);
1989 
1990 		num_phy++;
1991 		phy++;
1992 	}
1993 
1994 	if (scan_coded(hdev)) {
1995 		cp->scanning_phys |= LE_SCAN_PHY_CODED;
1996 
1997 		phy->type = type;
1998 		phy->interval = cpu_to_le16(interval);
1999 		phy->window = cpu_to_le16(window);
2000 
2001 		num_phy++;
2002 		phy++;
2003 	}
2004 
2005 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_PARAMS,
2006 				     sizeof(*cp) + sizeof(*phy) * num_phy,
2007 				     data, HCI_CMD_TIMEOUT);
2008 }
2009 
2010 static int hci_le_set_scan_param_sync(struct hci_dev *hdev, u8 type,
2011 				      u16 interval, u16 window,
2012 				      u8 own_addr_type, u8 filter_policy)
2013 {
2014 	struct hci_cp_le_set_scan_param cp;
2015 
2016 	if (use_ext_scan(hdev))
2017 		return hci_le_set_ext_scan_param_sync(hdev, type, interval,
2018 						      window, own_addr_type,
2019 						      filter_policy);
2020 
2021 	memset(&cp, 0, sizeof(cp));
2022 	cp.type = type;
2023 	cp.interval = cpu_to_le16(interval);
2024 	cp.window = cpu_to_le16(window);
2025 	cp.own_address_type = own_addr_type;
2026 	cp.filter_policy = filter_policy;
2027 
2028 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_PARAM,
2029 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2030 }
2031 
2032 static int hci_start_scan_sync(struct hci_dev *hdev, u8 type, u16 interval,
2033 			       u16 window, u8 own_addr_type, u8 filter_policy,
2034 			       u8 filter_dup)
2035 {
2036 	int err;
2037 
2038 	if (hdev->scanning_paused) {
2039 		bt_dev_dbg(hdev, "Scanning is paused for suspend");
2040 		return 0;
2041 	}
2042 
2043 	err = hci_le_set_scan_param_sync(hdev, type, interval, window,
2044 					 own_addr_type, filter_policy);
2045 	if (err)
2046 		return err;
2047 
2048 	return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, filter_dup);
2049 }
2050 
2051 static int hci_passive_scan_sync(struct hci_dev *hdev)
2052 {
2053 	u8 own_addr_type;
2054 	u8 filter_policy;
2055 	u16 window, interval;
2056 	int err;
2057 
2058 	if (hdev->scanning_paused) {
2059 		bt_dev_dbg(hdev, "Scanning is paused for suspend");
2060 		return 0;
2061 	}
2062 
2063 	err = hci_scan_disable_sync(hdev);
2064 	if (err) {
2065 		bt_dev_err(hdev, "disable scanning failed: %d", err);
2066 		return err;
2067 	}
2068 
2069 	/* Set require_privacy to false since no SCAN_REQ are send
2070 	 * during passive scanning. Not using an non-resolvable address
2071 	 * here is important so that peer devices using direct
2072 	 * advertising with our address will be correctly reported
2073 	 * by the controller.
2074 	 */
2075 	if (hci_update_random_address_sync(hdev, false, scan_use_rpa(hdev),
2076 					   &own_addr_type))
2077 		return 0;
2078 
2079 	if (hdev->enable_advmon_interleave_scan &&
2080 	    hci_update_interleaved_scan_sync(hdev))
2081 		return 0;
2082 
2083 	bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state);
2084 
2085 	/* Adding or removing entries from the accept list must
2086 	 * happen before enabling scanning. The controller does
2087 	 * not allow accept list modification while scanning.
2088 	 */
2089 	filter_policy = hci_update_accept_list_sync(hdev);
2090 
2091 	/* When the controller is using random resolvable addresses and
2092 	 * with that having LE privacy enabled, then controllers with
2093 	 * Extended Scanner Filter Policies support can now enable support
2094 	 * for handling directed advertising.
2095 	 *
2096 	 * So instead of using filter polices 0x00 (no acceptlist)
2097 	 * and 0x01 (acceptlist enabled) use the new filter policies
2098 	 * 0x02 (no acceptlist) and 0x03 (acceptlist enabled).
2099 	 */
2100 	if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
2101 	    (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
2102 		filter_policy |= 0x02;
2103 
2104 	if (hdev->suspended) {
2105 		window = hdev->le_scan_window_suspend;
2106 		interval = hdev->le_scan_int_suspend;
2107 	} else if (hci_is_le_conn_scanning(hdev)) {
2108 		window = hdev->le_scan_window_connect;
2109 		interval = hdev->le_scan_int_connect;
2110 	} else if (hci_is_adv_monitoring(hdev)) {
2111 		window = hdev->le_scan_window_adv_monitor;
2112 		interval = hdev->le_scan_int_adv_monitor;
2113 	} else {
2114 		window = hdev->le_scan_window;
2115 		interval = hdev->le_scan_interval;
2116 	}
2117 
2118 	bt_dev_dbg(hdev, "LE passive scan with acceptlist = %d", filter_policy);
2119 
2120 	return hci_start_scan_sync(hdev, LE_SCAN_PASSIVE, interval, window,
2121 				   own_addr_type, filter_policy,
2122 				   LE_SCAN_FILTER_DUP_ENABLE);
2123 }
2124 
2125 /* This function controls the passive scanning based on hdev->pend_le_conns
2126  * list. If there are pending LE connection we start the background scanning,
2127  * otherwise we stop it in the following sequence:
2128  *
2129  * If there are devices to scan:
2130  *
2131  * Disable Scanning -> Update Accept List ->
2132  * use_ll_privacy((Disable Advertising) -> Disable Resolving List ->
2133  * Update Resolving List -> Enable Resolving List -> (Enable Advertising)) ->
2134  * Enable Scanning
2135  *
2136  * Otherwise:
2137  *
2138  * Disable Scanning
2139  */
2140 int hci_update_passive_scan_sync(struct hci_dev *hdev)
2141 {
2142 	int err;
2143 
2144 	if (!test_bit(HCI_UP, &hdev->flags) ||
2145 	    test_bit(HCI_INIT, &hdev->flags) ||
2146 	    hci_dev_test_flag(hdev, HCI_SETUP) ||
2147 	    hci_dev_test_flag(hdev, HCI_CONFIG) ||
2148 	    hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
2149 	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2150 		return 0;
2151 
2152 	/* No point in doing scanning if LE support hasn't been enabled */
2153 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
2154 		return 0;
2155 
2156 	/* If discovery is active don't interfere with it */
2157 	if (hdev->discovery.state != DISCOVERY_STOPPED)
2158 		return 0;
2159 
2160 	/* Reset RSSI and UUID filters when starting background scanning
2161 	 * since these filters are meant for service discovery only.
2162 	 *
2163 	 * The Start Discovery and Start Service Discovery operations
2164 	 * ensure to set proper values for RSSI threshold and UUID
2165 	 * filter list. So it is safe to just reset them here.
2166 	 */
2167 	hci_discovery_filter_clear(hdev);
2168 
2169 	bt_dev_dbg(hdev, "ADV monitoring is %s",
2170 		   hci_is_adv_monitoring(hdev) ? "on" : "off");
2171 
2172 	if (list_empty(&hdev->pend_le_conns) &&
2173 	    list_empty(&hdev->pend_le_reports) &&
2174 	    !hci_is_adv_monitoring(hdev)) {
2175 		/* If there is no pending LE connections or devices
2176 		 * to be scanned for or no ADV monitors, we should stop the
2177 		 * background scanning.
2178 		 */
2179 
2180 		bt_dev_dbg(hdev, "stopping background scanning");
2181 
2182 		err = hci_scan_disable_sync(hdev);
2183 		if (err)
2184 			bt_dev_err(hdev, "stop background scanning failed: %d",
2185 				   err);
2186 	} else {
2187 		/* If there is at least one pending LE connection, we should
2188 		 * keep the background scan running.
2189 		 */
2190 
2191 		/* If controller is connecting, we should not start scanning
2192 		 * since some controllers are not able to scan and connect at
2193 		 * the same time.
2194 		 */
2195 		if (hci_lookup_le_connect(hdev))
2196 			return 0;
2197 
2198 		bt_dev_dbg(hdev, "start background scanning");
2199 
2200 		err = hci_passive_scan_sync(hdev);
2201 		if (err)
2202 			bt_dev_err(hdev, "start background scanning failed: %d",
2203 				   err);
2204 	}
2205 
2206 	return err;
2207 }
2208 
2209 static int update_passive_scan_sync(struct hci_dev *hdev, void *data)
2210 {
2211 	return hci_update_passive_scan_sync(hdev);
2212 }
2213 
2214 int hci_update_passive_scan(struct hci_dev *hdev)
2215 {
2216 	/* Only queue if it would have any effect */
2217 	if (!test_bit(HCI_UP, &hdev->flags) ||
2218 	    test_bit(HCI_INIT, &hdev->flags) ||
2219 	    hci_dev_test_flag(hdev, HCI_SETUP) ||
2220 	    hci_dev_test_flag(hdev, HCI_CONFIG) ||
2221 	    hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
2222 	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2223 		return 0;
2224 
2225 	return hci_cmd_sync_queue(hdev, update_passive_scan_sync, NULL, NULL);
2226 }
2227 
2228 int hci_write_sc_support_sync(struct hci_dev *hdev, u8 val)
2229 {
2230 	int err;
2231 
2232 	if (!bredr_sc_enabled(hdev) || lmp_host_sc_capable(hdev))
2233 		return 0;
2234 
2235 	err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT,
2236 				    sizeof(val), &val, HCI_CMD_TIMEOUT);
2237 
2238 	if (!err) {
2239 		if (val) {
2240 			hdev->features[1][0] |= LMP_HOST_SC;
2241 			hci_dev_set_flag(hdev, HCI_SC_ENABLED);
2242 		} else {
2243 			hdev->features[1][0] &= ~LMP_HOST_SC;
2244 			hci_dev_clear_flag(hdev, HCI_SC_ENABLED);
2245 		}
2246 	}
2247 
2248 	return err;
2249 }
2250 
2251 int hci_write_ssp_mode_sync(struct hci_dev *hdev, u8 mode)
2252 {
2253 	int err;
2254 
2255 	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) ||
2256 	    lmp_host_ssp_capable(hdev))
2257 		return 0;
2258 
2259 	if (!mode && hci_dev_test_flag(hdev, HCI_USE_DEBUG_KEYS)) {
2260 		__hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE,
2261 				      sizeof(mode), &mode, HCI_CMD_TIMEOUT);
2262 	}
2263 
2264 	err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE,
2265 				    sizeof(mode), &mode, HCI_CMD_TIMEOUT);
2266 	if (err)
2267 		return err;
2268 
2269 	return hci_write_sc_support_sync(hdev, 0x01);
2270 }
2271 
2272 int hci_write_le_host_supported_sync(struct hci_dev *hdev, u8 le, u8 simul)
2273 {
2274 	struct hci_cp_write_le_host_supported cp;
2275 
2276 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED) ||
2277 	    !lmp_bredr_capable(hdev))
2278 		return 0;
2279 
2280 	/* Check first if we already have the right host state
2281 	 * (host features set)
2282 	 */
2283 	if (le == lmp_host_le_capable(hdev) &&
2284 	    simul == lmp_host_le_br_capable(hdev))
2285 		return 0;
2286 
2287 	memset(&cp, 0, sizeof(cp));
2288 
2289 	cp.le = le;
2290 	cp.simul = simul;
2291 
2292 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED,
2293 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2294 }
2295 
2296 static int hci_powered_update_adv_sync(struct hci_dev *hdev)
2297 {
2298 	struct adv_info *adv, *tmp;
2299 	int err;
2300 
2301 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
2302 		return 0;
2303 
2304 	/* If RPA Resolution has not been enable yet it means the
2305 	 * resolving list is empty and we should attempt to program the
2306 	 * local IRK in order to support using own_addr_type
2307 	 * ADDR_LE_DEV_RANDOM_RESOLVED (0x03).
2308 	 */
2309 	if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) {
2310 		hci_le_add_resolve_list_sync(hdev, NULL);
2311 		hci_le_set_addr_resolution_enable_sync(hdev, 0x01);
2312 	}
2313 
2314 	/* Make sure the controller has a good default for
2315 	 * advertising data. This also applies to the case
2316 	 * where BR/EDR was toggled during the AUTO_OFF phase.
2317 	 */
2318 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2319 	    list_empty(&hdev->adv_instances)) {
2320 		if (ext_adv_capable(hdev)) {
2321 			err = hci_setup_ext_adv_instance_sync(hdev, 0x00);
2322 			if (!err)
2323 				hci_update_scan_rsp_data_sync(hdev, 0x00);
2324 		} else {
2325 			err = hci_update_adv_data_sync(hdev, 0x00);
2326 			if (!err)
2327 				hci_update_scan_rsp_data_sync(hdev, 0x00);
2328 		}
2329 
2330 		if (hci_dev_test_flag(hdev, HCI_ADVERTISING))
2331 			hci_enable_advertising_sync(hdev);
2332 	}
2333 
2334 	/* Call for each tracked instance to be scheduled */
2335 	list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list)
2336 		hci_schedule_adv_instance_sync(hdev, adv->instance, true);
2337 
2338 	return 0;
2339 }
2340 
2341 static int hci_write_auth_enable_sync(struct hci_dev *hdev)
2342 {
2343 	u8 link_sec;
2344 
2345 	link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
2346 	if (link_sec == test_bit(HCI_AUTH, &hdev->flags))
2347 		return 0;
2348 
2349 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE,
2350 				     sizeof(link_sec), &link_sec,
2351 				     HCI_CMD_TIMEOUT);
2352 }
2353 
2354 int hci_write_fast_connectable_sync(struct hci_dev *hdev, bool enable)
2355 {
2356 	struct hci_cp_write_page_scan_activity cp;
2357 	u8 type;
2358 	int err = 0;
2359 
2360 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2361 		return 0;
2362 
2363 	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
2364 		return 0;
2365 
2366 	memset(&cp, 0, sizeof(cp));
2367 
2368 	if (enable) {
2369 		type = PAGE_SCAN_TYPE_INTERLACED;
2370 
2371 		/* 160 msec page scan interval */
2372 		cp.interval = cpu_to_le16(0x0100);
2373 	} else {
2374 		type = hdev->def_page_scan_type;
2375 		cp.interval = cpu_to_le16(hdev->def_page_scan_int);
2376 	}
2377 
2378 	cp.window = cpu_to_le16(hdev->def_page_scan_window);
2379 
2380 	if (__cpu_to_le16(hdev->page_scan_interval) != cp.interval ||
2381 	    __cpu_to_le16(hdev->page_scan_window) != cp.window) {
2382 		err = __hci_cmd_sync_status(hdev,
2383 					    HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
2384 					    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2385 		if (err)
2386 			return err;
2387 	}
2388 
2389 	if (hdev->page_scan_type != type)
2390 		err = __hci_cmd_sync_status(hdev,
2391 					    HCI_OP_WRITE_PAGE_SCAN_TYPE,
2392 					    sizeof(type), &type,
2393 					    HCI_CMD_TIMEOUT);
2394 
2395 	return err;
2396 }
2397 
2398 static bool disconnected_accept_list_entries(struct hci_dev *hdev)
2399 {
2400 	struct bdaddr_list *b;
2401 
2402 	list_for_each_entry(b, &hdev->accept_list, list) {
2403 		struct hci_conn *conn;
2404 
2405 		conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
2406 		if (!conn)
2407 			return true;
2408 
2409 		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
2410 			return true;
2411 	}
2412 
2413 	return false;
2414 }
2415 
2416 static int hci_write_scan_enable_sync(struct hci_dev *hdev, u8 val)
2417 {
2418 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE,
2419 					    sizeof(val), &val,
2420 					    HCI_CMD_TIMEOUT);
2421 }
2422 
2423 int hci_update_scan_sync(struct hci_dev *hdev)
2424 {
2425 	u8 scan;
2426 
2427 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2428 		return 0;
2429 
2430 	if (!hdev_is_powered(hdev))
2431 		return 0;
2432 
2433 	if (mgmt_powering_down(hdev))
2434 		return 0;
2435 
2436 	if (hdev->scanning_paused)
2437 		return 0;
2438 
2439 	if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
2440 	    disconnected_accept_list_entries(hdev))
2441 		scan = SCAN_PAGE;
2442 	else
2443 		scan = SCAN_DISABLED;
2444 
2445 	if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
2446 		scan |= SCAN_INQUIRY;
2447 
2448 	if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
2449 	    test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
2450 		return 0;
2451 
2452 	return hci_write_scan_enable_sync(hdev, scan);
2453 }
2454 
2455 int hci_update_name_sync(struct hci_dev *hdev)
2456 {
2457 	struct hci_cp_write_local_name cp;
2458 
2459 	memset(&cp, 0, sizeof(cp));
2460 
2461 	memcpy(cp.name, hdev->dev_name, sizeof(cp.name));
2462 
2463 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LOCAL_NAME,
2464 					    sizeof(cp), &cp,
2465 					    HCI_CMD_TIMEOUT);
2466 }
2467 
2468 /* This function perform powered update HCI command sequence after the HCI init
2469  * sequence which end up resetting all states, the sequence is as follows:
2470  *
2471  * HCI_SSP_ENABLED(Enable SSP)
2472  * HCI_LE_ENABLED(Enable LE)
2473  * HCI_LE_ENABLED(use_ll_privacy(Add local IRK to Resolving List) ->
2474  * Update adv data)
2475  * Enable Authentication
2476  * lmp_bredr_capable(Set Fast Connectable -> Set Scan Type -> Set Class ->
2477  * Set Name -> Set EIR)
2478  */
2479 int hci_powered_update_sync(struct hci_dev *hdev)
2480 {
2481 	int err;
2482 
2483 	/* Register the available SMP channels (BR/EDR and LE) only when
2484 	 * successfully powering on the controller. This late
2485 	 * registration is required so that LE SMP can clearly decide if
2486 	 * the public address or static address is used.
2487 	 */
2488 	smp_register(hdev);
2489 
2490 	err = hci_write_ssp_mode_sync(hdev, 0x01);
2491 	if (err)
2492 		return err;
2493 
2494 	err = hci_write_le_host_supported_sync(hdev, 0x01, 0x00);
2495 	if (err)
2496 		return err;
2497 
2498 	err = hci_powered_update_adv_sync(hdev);
2499 	if (err)
2500 		return err;
2501 
2502 	err = hci_write_auth_enable_sync(hdev);
2503 	if (err)
2504 		return err;
2505 
2506 	if (lmp_bredr_capable(hdev)) {
2507 		if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
2508 			hci_write_fast_connectable_sync(hdev, true);
2509 		else
2510 			hci_write_fast_connectable_sync(hdev, false);
2511 		hci_update_scan_sync(hdev);
2512 		hci_update_class_sync(hdev);
2513 		hci_update_name_sync(hdev);
2514 		hci_update_eir_sync(hdev);
2515 	}
2516 
2517 	return 0;
2518 }
2519 
2520 /**
2521  * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address
2522  *				       (BD_ADDR) for a HCI device from
2523  *				       a firmware node property.
2524  * @hdev:	The HCI device
2525  *
2526  * Search the firmware node for 'local-bd-address'.
2527  *
2528  * All-zero BD addresses are rejected, because those could be properties
2529  * that exist in the firmware tables, but were not updated by the firmware. For
2530  * example, the DTS could define 'local-bd-address', with zero BD addresses.
2531  */
2532 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev)
2533 {
2534 	struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent);
2535 	bdaddr_t ba;
2536 	int ret;
2537 
2538 	ret = fwnode_property_read_u8_array(fwnode, "local-bd-address",
2539 					    (u8 *)&ba, sizeof(ba));
2540 	if (ret < 0 || !bacmp(&ba, BDADDR_ANY))
2541 		return;
2542 
2543 	bacpy(&hdev->public_addr, &ba);
2544 }
2545 
2546 struct hci_init_stage {
2547 	int (*func)(struct hci_dev *hdev);
2548 };
2549 
2550 /* Run init stage NULL terminated function table */
2551 static int hci_init_stage_sync(struct hci_dev *hdev,
2552 			       const struct hci_init_stage *stage)
2553 {
2554 	size_t i;
2555 
2556 	for (i = 0; stage[i].func; i++) {
2557 		int err;
2558 
2559 		err = stage[i].func(hdev);
2560 		if (err)
2561 			return err;
2562 	}
2563 
2564 	return 0;
2565 }
2566 
2567 /* Read Local Version */
2568 static int hci_read_local_version_sync(struct hci_dev *hdev)
2569 {
2570 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_VERSION,
2571 				     0, NULL, HCI_CMD_TIMEOUT);
2572 }
2573 
2574 /* Read BD Address */
2575 static int hci_read_bd_addr_sync(struct hci_dev *hdev)
2576 {
2577 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_BD_ADDR,
2578 				     0, NULL, HCI_CMD_TIMEOUT);
2579 }
2580 
2581 #define HCI_INIT(_func) \
2582 { \
2583 	.func = _func, \
2584 }
2585 
2586 static const struct hci_init_stage hci_init0[] = {
2587 	/* HCI_OP_READ_LOCAL_VERSION */
2588 	HCI_INIT(hci_read_local_version_sync),
2589 	/* HCI_OP_READ_BD_ADDR */
2590 	HCI_INIT(hci_read_bd_addr_sync),
2591 	{}
2592 };
2593 
2594 int hci_reset_sync(struct hci_dev *hdev)
2595 {
2596 	int err;
2597 
2598 	set_bit(HCI_RESET, &hdev->flags);
2599 
2600 	err = __hci_cmd_sync_status(hdev, HCI_OP_RESET, 0, NULL,
2601 				    HCI_CMD_TIMEOUT);
2602 	if (err)
2603 		return err;
2604 
2605 	return 0;
2606 }
2607 
2608 static int hci_init0_sync(struct hci_dev *hdev)
2609 {
2610 	int err;
2611 
2612 	bt_dev_dbg(hdev, "");
2613 
2614 	/* Reset */
2615 	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
2616 		err = hci_reset_sync(hdev);
2617 		if (err)
2618 			return err;
2619 	}
2620 
2621 	return hci_init_stage_sync(hdev, hci_init0);
2622 }
2623 
2624 static int hci_unconf_init_sync(struct hci_dev *hdev)
2625 {
2626 	int err;
2627 
2628 	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
2629 		return 0;
2630 
2631 	err = hci_init0_sync(hdev);
2632 	if (err < 0)
2633 		return err;
2634 
2635 	if (hci_dev_test_flag(hdev, HCI_SETUP))
2636 		hci_debugfs_create_basic(hdev);
2637 
2638 	return 0;
2639 }
2640 
2641 /* Read Local Supported Features. */
2642 static int hci_read_local_features_sync(struct hci_dev *hdev)
2643 {
2644 	 /* Not all AMP controllers support this command */
2645 	if (hdev->dev_type == HCI_AMP && !(hdev->commands[14] & 0x20))
2646 		return 0;
2647 
2648 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_FEATURES,
2649 				     0, NULL, HCI_CMD_TIMEOUT);
2650 }
2651 
2652 /* BR Controller init stage 1 command sequence */
2653 static const struct hci_init_stage br_init1[] = {
2654 	/* HCI_OP_READ_LOCAL_FEATURES */
2655 	HCI_INIT(hci_read_local_features_sync),
2656 	/* HCI_OP_READ_LOCAL_VERSION */
2657 	HCI_INIT(hci_read_local_version_sync),
2658 	/* HCI_OP_READ_BD_ADDR */
2659 	HCI_INIT(hci_read_bd_addr_sync),
2660 	{}
2661 };
2662 
2663 /* Read Local Commands */
2664 static int hci_read_local_cmds_sync(struct hci_dev *hdev)
2665 {
2666 	/* All Bluetooth 1.2 and later controllers should support the
2667 	 * HCI command for reading the local supported commands.
2668 	 *
2669 	 * Unfortunately some controllers indicate Bluetooth 1.2 support,
2670 	 * but do not have support for this command. If that is the case,
2671 	 * the driver can quirk the behavior and skip reading the local
2672 	 * supported commands.
2673 	 */
2674 	if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
2675 	    !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
2676 		return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_COMMANDS,
2677 					     0, NULL, HCI_CMD_TIMEOUT);
2678 
2679 	return 0;
2680 }
2681 
2682 /* Read Local AMP Info */
2683 static int hci_read_local_amp_info_sync(struct hci_dev *hdev)
2684 {
2685 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_AMP_INFO,
2686 				     0, NULL, HCI_CMD_TIMEOUT);
2687 }
2688 
2689 /* Read Data Blk size */
2690 static int hci_read_data_block_size_sync(struct hci_dev *hdev)
2691 {
2692 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_DATA_BLOCK_SIZE,
2693 				     0, NULL, HCI_CMD_TIMEOUT);
2694 }
2695 
2696 /* Read Flow Control Mode */
2697 static int hci_read_flow_control_mode_sync(struct hci_dev *hdev)
2698 {
2699 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_FLOW_CONTROL_MODE,
2700 				     0, NULL, HCI_CMD_TIMEOUT);
2701 }
2702 
2703 /* Read Location Data */
2704 static int hci_read_location_data_sync(struct hci_dev *hdev)
2705 {
2706 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCATION_DATA,
2707 				     0, NULL, HCI_CMD_TIMEOUT);
2708 }
2709 
2710 /* AMP Controller init stage 1 command sequence */
2711 static const struct hci_init_stage amp_init1[] = {
2712 	/* HCI_OP_READ_LOCAL_VERSION */
2713 	HCI_INIT(hci_read_local_version_sync),
2714 	/* HCI_OP_READ_LOCAL_COMMANDS */
2715 	HCI_INIT(hci_read_local_cmds_sync),
2716 	/* HCI_OP_READ_LOCAL_AMP_INFO */
2717 	HCI_INIT(hci_read_local_amp_info_sync),
2718 	/* HCI_OP_READ_DATA_BLOCK_SIZE */
2719 	HCI_INIT(hci_read_data_block_size_sync),
2720 	/* HCI_OP_READ_FLOW_CONTROL_MODE */
2721 	HCI_INIT(hci_read_flow_control_mode_sync),
2722 	/* HCI_OP_READ_LOCATION_DATA */
2723 	HCI_INIT(hci_read_location_data_sync),
2724 };
2725 
2726 static int hci_init1_sync(struct hci_dev *hdev)
2727 {
2728 	int err;
2729 
2730 	bt_dev_dbg(hdev, "");
2731 
2732 	/* Reset */
2733 	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
2734 		err = hci_reset_sync(hdev);
2735 		if (err)
2736 			return err;
2737 	}
2738 
2739 	switch (hdev->dev_type) {
2740 	case HCI_PRIMARY:
2741 		hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
2742 		return hci_init_stage_sync(hdev, br_init1);
2743 	case HCI_AMP:
2744 		hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
2745 		return hci_init_stage_sync(hdev, amp_init1);
2746 	default:
2747 		bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type);
2748 		break;
2749 	}
2750 
2751 	return 0;
2752 }
2753 
2754 /* AMP Controller init stage 2 command sequence */
2755 static const struct hci_init_stage amp_init2[] = {
2756 	/* HCI_OP_READ_LOCAL_FEATURES */
2757 	HCI_INIT(hci_read_local_features_sync),
2758 };
2759 
2760 /* Read Buffer Size (ACL mtu, max pkt, etc.) */
2761 static int hci_read_buffer_size_sync(struct hci_dev *hdev)
2762 {
2763 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_BUFFER_SIZE,
2764 				     0, NULL, HCI_CMD_TIMEOUT);
2765 }
2766 
2767 /* Read Class of Device */
2768 static int hci_read_dev_class_sync(struct hci_dev *hdev)
2769 {
2770 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLASS_OF_DEV,
2771 				     0, NULL, HCI_CMD_TIMEOUT);
2772 }
2773 
2774 /* Read Local Name */
2775 static int hci_read_local_name_sync(struct hci_dev *hdev)
2776 {
2777 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_NAME,
2778 				     0, NULL, HCI_CMD_TIMEOUT);
2779 }
2780 
2781 /* Read Voice Setting */
2782 static int hci_read_voice_setting_sync(struct hci_dev *hdev)
2783 {
2784 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_VOICE_SETTING,
2785 				     0, NULL, HCI_CMD_TIMEOUT);
2786 }
2787 
2788 /* Read Number of Supported IAC */
2789 static int hci_read_num_supported_iac_sync(struct hci_dev *hdev)
2790 {
2791 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_NUM_SUPPORTED_IAC,
2792 				     0, NULL, HCI_CMD_TIMEOUT);
2793 }
2794 
2795 /* Read Current IAC LAP */
2796 static int hci_read_current_iac_lap_sync(struct hci_dev *hdev)
2797 {
2798 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_CURRENT_IAC_LAP,
2799 				     0, NULL, HCI_CMD_TIMEOUT);
2800 }
2801 
2802 static int hci_set_event_filter_sync(struct hci_dev *hdev, u8 flt_type,
2803 				     u8 cond_type, bdaddr_t *bdaddr,
2804 				     u8 auto_accept)
2805 {
2806 	struct hci_cp_set_event_filter cp;
2807 
2808 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2809 		return 0;
2810 
2811 	if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
2812 		return 0;
2813 
2814 	memset(&cp, 0, sizeof(cp));
2815 	cp.flt_type = flt_type;
2816 
2817 	if (flt_type != HCI_FLT_CLEAR_ALL) {
2818 		cp.cond_type = cond_type;
2819 		bacpy(&cp.addr_conn_flt.bdaddr, bdaddr);
2820 		cp.addr_conn_flt.auto_accept = auto_accept;
2821 	}
2822 
2823 	return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_FLT,
2824 				     flt_type == HCI_FLT_CLEAR_ALL ?
2825 				     sizeof(cp.flt_type) : sizeof(cp), &cp,
2826 				     HCI_CMD_TIMEOUT);
2827 }
2828 
2829 static int hci_clear_event_filter_sync(struct hci_dev *hdev)
2830 {
2831 	if (!hci_dev_test_flag(hdev, HCI_EVENT_FILTER_CONFIGURED))
2832 		return 0;
2833 
2834 	/* In theory the state machine should not reach here unless
2835 	 * a hci_set_event_filter_sync() call succeeds, but we do
2836 	 * the check both for parity and as a future reminder.
2837 	 */
2838 	if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
2839 		return 0;
2840 
2841 	return hci_set_event_filter_sync(hdev, HCI_FLT_CLEAR_ALL, 0x00,
2842 					 BDADDR_ANY, 0x00);
2843 }
2844 
2845 /* Connection accept timeout ~20 secs */
2846 static int hci_write_ca_timeout_sync(struct hci_dev *hdev)
2847 {
2848 	__le16 param = cpu_to_le16(0x7d00);
2849 
2850 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CA_TIMEOUT,
2851 				     sizeof(param), &param, HCI_CMD_TIMEOUT);
2852 }
2853 
2854 /* BR Controller init stage 2 command sequence */
2855 static const struct hci_init_stage br_init2[] = {
2856 	/* HCI_OP_READ_BUFFER_SIZE */
2857 	HCI_INIT(hci_read_buffer_size_sync),
2858 	/* HCI_OP_READ_CLASS_OF_DEV */
2859 	HCI_INIT(hci_read_dev_class_sync),
2860 	/* HCI_OP_READ_LOCAL_NAME */
2861 	HCI_INIT(hci_read_local_name_sync),
2862 	/* HCI_OP_READ_VOICE_SETTING */
2863 	HCI_INIT(hci_read_voice_setting_sync),
2864 	/* HCI_OP_READ_NUM_SUPPORTED_IAC */
2865 	HCI_INIT(hci_read_num_supported_iac_sync),
2866 	/* HCI_OP_READ_CURRENT_IAC_LAP */
2867 	HCI_INIT(hci_read_current_iac_lap_sync),
2868 	/* HCI_OP_SET_EVENT_FLT */
2869 	HCI_INIT(hci_clear_event_filter_sync),
2870 	/* HCI_OP_WRITE_CA_TIMEOUT */
2871 	HCI_INIT(hci_write_ca_timeout_sync),
2872 	{}
2873 };
2874 
2875 static int hci_write_ssp_mode_1_sync(struct hci_dev *hdev)
2876 {
2877 	u8 mode = 0x01;
2878 
2879 	if (!lmp_ssp_capable(hdev) || !hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
2880 		return 0;
2881 
2882 	/* When SSP is available, then the host features page
2883 	 * should also be available as well. However some
2884 	 * controllers list the max_page as 0 as long as SSP
2885 	 * has not been enabled. To achieve proper debugging
2886 	 * output, force the minimum max_page to 1 at least.
2887 	 */
2888 	hdev->max_page = 0x01;
2889 
2890 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE,
2891 				     sizeof(mode), &mode, HCI_CMD_TIMEOUT);
2892 }
2893 
2894 static int hci_write_eir_sync(struct hci_dev *hdev)
2895 {
2896 	struct hci_cp_write_eir cp;
2897 
2898 	if (!lmp_ssp_capable(hdev) || hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
2899 		return 0;
2900 
2901 	memset(hdev->eir, 0, sizeof(hdev->eir));
2902 	memset(&cp, 0, sizeof(cp));
2903 
2904 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp,
2905 				     HCI_CMD_TIMEOUT);
2906 }
2907 
2908 static int hci_write_inquiry_mode_sync(struct hci_dev *hdev)
2909 {
2910 	u8 mode;
2911 
2912 	if (!lmp_inq_rssi_capable(hdev) &&
2913 	    !test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
2914 		return 0;
2915 
2916 	/* If Extended Inquiry Result events are supported, then
2917 	 * they are clearly preferred over Inquiry Result with RSSI
2918 	 * events.
2919 	 */
2920 	mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
2921 
2922 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_INQUIRY_MODE,
2923 				     sizeof(mode), &mode, HCI_CMD_TIMEOUT);
2924 }
2925 
2926 static int hci_read_inq_rsp_tx_power_sync(struct hci_dev *hdev)
2927 {
2928 	if (!lmp_inq_tx_pwr_capable(hdev))
2929 		return 0;
2930 
2931 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_INQ_RSP_TX_POWER,
2932 				     0, NULL, HCI_CMD_TIMEOUT);
2933 }
2934 
2935 static int hci_read_local_ext_features_sync(struct hci_dev *hdev, u8 page)
2936 {
2937 	struct hci_cp_read_local_ext_features cp;
2938 
2939 	if (!lmp_ext_feat_capable(hdev))
2940 		return 0;
2941 
2942 	memset(&cp, 0, sizeof(cp));
2943 	cp.page = page;
2944 
2945 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_EXT_FEATURES,
2946 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2947 }
2948 
2949 static int hci_read_local_ext_features_1_sync(struct hci_dev *hdev)
2950 {
2951 	return hci_read_local_ext_features_sync(hdev, 0x01);
2952 }
2953 
2954 /* HCI Controller init stage 2 command sequence */
2955 static const struct hci_init_stage hci_init2[] = {
2956 	/* HCI_OP_READ_LOCAL_COMMANDS */
2957 	HCI_INIT(hci_read_local_cmds_sync),
2958 	/* HCI_OP_WRITE_SSP_MODE */
2959 	HCI_INIT(hci_write_ssp_mode_1_sync),
2960 	/* HCI_OP_WRITE_EIR */
2961 	HCI_INIT(hci_write_eir_sync),
2962 	/* HCI_OP_WRITE_INQUIRY_MODE */
2963 	HCI_INIT(hci_write_inquiry_mode_sync),
2964 	/* HCI_OP_READ_INQ_RSP_TX_POWER */
2965 	HCI_INIT(hci_read_inq_rsp_tx_power_sync),
2966 	/* HCI_OP_READ_LOCAL_EXT_FEATURES */
2967 	HCI_INIT(hci_read_local_ext_features_1_sync),
2968 	/* HCI_OP_WRITE_AUTH_ENABLE */
2969 	HCI_INIT(hci_write_auth_enable_sync),
2970 	{}
2971 };
2972 
2973 /* Read LE Buffer Size */
2974 static int hci_le_read_buffer_size_sync(struct hci_dev *hdev)
2975 {
2976 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_BUFFER_SIZE,
2977 				     0, NULL, HCI_CMD_TIMEOUT);
2978 }
2979 
2980 /* Read LE Local Supported Features */
2981 static int hci_le_read_local_features_sync(struct hci_dev *hdev)
2982 {
2983 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_LOCAL_FEATURES,
2984 				     0, NULL, HCI_CMD_TIMEOUT);
2985 }
2986 
2987 /* Read LE Supported States */
2988 static int hci_le_read_supported_states_sync(struct hci_dev *hdev)
2989 {
2990 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_SUPPORTED_STATES,
2991 				     0, NULL, HCI_CMD_TIMEOUT);
2992 }
2993 
2994 /* LE Controller init stage 2 command sequence */
2995 static const struct hci_init_stage le_init2[] = {
2996 	/* HCI_OP_LE_READ_BUFFER_SIZE */
2997 	HCI_INIT(hci_le_read_buffer_size_sync),
2998 	/* HCI_OP_LE_READ_LOCAL_FEATURES */
2999 	HCI_INIT(hci_le_read_local_features_sync),
3000 	/* HCI_OP_LE_READ_SUPPORTED_STATES */
3001 	HCI_INIT(hci_le_read_supported_states_sync),
3002 	{}
3003 };
3004 
3005 static int hci_init2_sync(struct hci_dev *hdev)
3006 {
3007 	int err;
3008 
3009 	bt_dev_dbg(hdev, "");
3010 
3011 	if (hdev->dev_type == HCI_AMP)
3012 		return hci_init_stage_sync(hdev, amp_init2);
3013 
3014 	if (lmp_bredr_capable(hdev)) {
3015 		err = hci_init_stage_sync(hdev, br_init2);
3016 		if (err)
3017 			return err;
3018 	} else {
3019 		hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
3020 	}
3021 
3022 	if (lmp_le_capable(hdev)) {
3023 		err = hci_init_stage_sync(hdev, le_init2);
3024 		if (err)
3025 			return err;
3026 		/* LE-only controllers have LE implicitly enabled */
3027 		if (!lmp_bredr_capable(hdev))
3028 			hci_dev_set_flag(hdev, HCI_LE_ENABLED);
3029 	}
3030 
3031 	return hci_init_stage_sync(hdev, hci_init2);
3032 }
3033 
3034 static int hci_set_event_mask_sync(struct hci_dev *hdev)
3035 {
3036 	/* The second byte is 0xff instead of 0x9f (two reserved bits
3037 	 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
3038 	 * command otherwise.
3039 	 */
3040 	u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
3041 
3042 	/* CSR 1.1 dongles does not accept any bitfield so don't try to set
3043 	 * any event mask for pre 1.2 devices.
3044 	 */
3045 	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
3046 		return 0;
3047 
3048 	if (lmp_bredr_capable(hdev)) {
3049 		events[4] |= 0x01; /* Flow Specification Complete */
3050 
3051 		/* Don't set Disconnect Complete when suspended as that
3052 		 * would wakeup the host when disconnecting due to
3053 		 * suspend.
3054 		 */
3055 		if (hdev->suspended)
3056 			events[0] &= 0xef;
3057 	} else {
3058 		/* Use a different default for LE-only devices */
3059 		memset(events, 0, sizeof(events));
3060 		events[1] |= 0x20; /* Command Complete */
3061 		events[1] |= 0x40; /* Command Status */
3062 		events[1] |= 0x80; /* Hardware Error */
3063 
3064 		/* If the controller supports the Disconnect command, enable
3065 		 * the corresponding event. In addition enable packet flow
3066 		 * control related events.
3067 		 */
3068 		if (hdev->commands[0] & 0x20) {
3069 			/* Don't set Disconnect Complete when suspended as that
3070 			 * would wakeup the host when disconnecting due to
3071 			 * suspend.
3072 			 */
3073 			if (!hdev->suspended)
3074 				events[0] |= 0x10; /* Disconnection Complete */
3075 			events[2] |= 0x04; /* Number of Completed Packets */
3076 			events[3] |= 0x02; /* Data Buffer Overflow */
3077 		}
3078 
3079 		/* If the controller supports the Read Remote Version
3080 		 * Information command, enable the corresponding event.
3081 		 */
3082 		if (hdev->commands[2] & 0x80)
3083 			events[1] |= 0x08; /* Read Remote Version Information
3084 					    * Complete
3085 					    */
3086 
3087 		if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
3088 			events[0] |= 0x80; /* Encryption Change */
3089 			events[5] |= 0x80; /* Encryption Key Refresh Complete */
3090 		}
3091 	}
3092 
3093 	if (lmp_inq_rssi_capable(hdev) ||
3094 	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
3095 		events[4] |= 0x02; /* Inquiry Result with RSSI */
3096 
3097 	if (lmp_ext_feat_capable(hdev))
3098 		events[4] |= 0x04; /* Read Remote Extended Features Complete */
3099 
3100 	if (lmp_esco_capable(hdev)) {
3101 		events[5] |= 0x08; /* Synchronous Connection Complete */
3102 		events[5] |= 0x10; /* Synchronous Connection Changed */
3103 	}
3104 
3105 	if (lmp_sniffsubr_capable(hdev))
3106 		events[5] |= 0x20; /* Sniff Subrating */
3107 
3108 	if (lmp_pause_enc_capable(hdev))
3109 		events[5] |= 0x80; /* Encryption Key Refresh Complete */
3110 
3111 	if (lmp_ext_inq_capable(hdev))
3112 		events[5] |= 0x40; /* Extended Inquiry Result */
3113 
3114 	if (lmp_no_flush_capable(hdev))
3115 		events[7] |= 0x01; /* Enhanced Flush Complete */
3116 
3117 	if (lmp_lsto_capable(hdev))
3118 		events[6] |= 0x80; /* Link Supervision Timeout Changed */
3119 
3120 	if (lmp_ssp_capable(hdev)) {
3121 		events[6] |= 0x01;	/* IO Capability Request */
3122 		events[6] |= 0x02;	/* IO Capability Response */
3123 		events[6] |= 0x04;	/* User Confirmation Request */
3124 		events[6] |= 0x08;	/* User Passkey Request */
3125 		events[6] |= 0x10;	/* Remote OOB Data Request */
3126 		events[6] |= 0x20;	/* Simple Pairing Complete */
3127 		events[7] |= 0x04;	/* User Passkey Notification */
3128 		events[7] |= 0x08;	/* Keypress Notification */
3129 		events[7] |= 0x10;	/* Remote Host Supported
3130 					 * Features Notification
3131 					 */
3132 	}
3133 
3134 	if (lmp_le_capable(hdev))
3135 		events[7] |= 0x20;	/* LE Meta-Event */
3136 
3137 	return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK,
3138 				     sizeof(events), events, HCI_CMD_TIMEOUT);
3139 }
3140 
3141 static int hci_read_stored_link_key_sync(struct hci_dev *hdev)
3142 {
3143 	struct hci_cp_read_stored_link_key cp;
3144 
3145 	if (!(hdev->commands[6] & 0x20) ||
3146 	    test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks))
3147 		return 0;
3148 
3149 	memset(&cp, 0, sizeof(cp));
3150 	bacpy(&cp.bdaddr, BDADDR_ANY);
3151 	cp.read_all = 0x01;
3152 
3153 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_STORED_LINK_KEY,
3154 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3155 }
3156 
3157 static int hci_setup_link_policy_sync(struct hci_dev *hdev)
3158 {
3159 	struct hci_cp_write_def_link_policy cp;
3160 	u16 link_policy = 0;
3161 
3162 	if (!(hdev->commands[5] & 0x10))
3163 		return 0;
3164 
3165 	memset(&cp, 0, sizeof(cp));
3166 
3167 	if (lmp_rswitch_capable(hdev))
3168 		link_policy |= HCI_LP_RSWITCH;
3169 	if (lmp_hold_capable(hdev))
3170 		link_policy |= HCI_LP_HOLD;
3171 	if (lmp_sniff_capable(hdev))
3172 		link_policy |= HCI_LP_SNIFF;
3173 	if (lmp_park_capable(hdev))
3174 		link_policy |= HCI_LP_PARK;
3175 
3176 	cp.policy = cpu_to_le16(link_policy);
3177 
3178 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY,
3179 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3180 }
3181 
3182 static int hci_read_page_scan_activity_sync(struct hci_dev *hdev)
3183 {
3184 	if (!(hdev->commands[8] & 0x01))
3185 		return 0;
3186 
3187 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_ACTIVITY,
3188 				     0, NULL, HCI_CMD_TIMEOUT);
3189 }
3190 
3191 static int hci_read_def_err_data_reporting_sync(struct hci_dev *hdev)
3192 {
3193 	if (!(hdev->commands[18] & 0x04) ||
3194 	    test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks))
3195 		return 0;
3196 
3197 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_DEF_ERR_DATA_REPORTING,
3198 				     0, NULL, HCI_CMD_TIMEOUT);
3199 }
3200 
3201 static int hci_read_page_scan_type_sync(struct hci_dev *hdev)
3202 {
3203 	/* Some older Broadcom based Bluetooth 1.2 controllers do not
3204 	 * support the Read Page Scan Type command. Check support for
3205 	 * this command in the bit mask of supported commands.
3206 	 */
3207 	if (!(hdev->commands[13] & 0x01))
3208 		return 0;
3209 
3210 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_TYPE,
3211 				     0, NULL, HCI_CMD_TIMEOUT);
3212 }
3213 
3214 /* Read features beyond page 1 if available */
3215 static int hci_read_local_ext_features_all_sync(struct hci_dev *hdev)
3216 {
3217 	u8 page;
3218 	int err;
3219 
3220 	if (!lmp_ext_feat_capable(hdev))
3221 		return 0;
3222 
3223 	for (page = 2; page < HCI_MAX_PAGES && page <= hdev->max_page;
3224 	     page++) {
3225 		err = hci_read_local_ext_features_sync(hdev, page);
3226 		if (err)
3227 			return err;
3228 	}
3229 
3230 	return 0;
3231 }
3232 
3233 /* HCI Controller init stage 3 command sequence */
3234 static const struct hci_init_stage hci_init3[] = {
3235 	/* HCI_OP_SET_EVENT_MASK */
3236 	HCI_INIT(hci_set_event_mask_sync),
3237 	/* HCI_OP_READ_STORED_LINK_KEY */
3238 	HCI_INIT(hci_read_stored_link_key_sync),
3239 	/* HCI_OP_WRITE_DEF_LINK_POLICY */
3240 	HCI_INIT(hci_setup_link_policy_sync),
3241 	/* HCI_OP_READ_PAGE_SCAN_ACTIVITY */
3242 	HCI_INIT(hci_read_page_scan_activity_sync),
3243 	/* HCI_OP_READ_DEF_ERR_DATA_REPORTING */
3244 	HCI_INIT(hci_read_def_err_data_reporting_sync),
3245 	/* HCI_OP_READ_PAGE_SCAN_TYPE */
3246 	HCI_INIT(hci_read_page_scan_type_sync),
3247 	/* HCI_OP_READ_LOCAL_EXT_FEATURES */
3248 	HCI_INIT(hci_read_local_ext_features_all_sync),
3249 	{}
3250 };
3251 
3252 static int hci_le_set_event_mask_sync(struct hci_dev *hdev)
3253 {
3254 	u8 events[8];
3255 
3256 	if (!lmp_le_capable(hdev))
3257 		return 0;
3258 
3259 	memset(events, 0, sizeof(events));
3260 
3261 	if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
3262 		events[0] |= 0x10;	/* LE Long Term Key Request */
3263 
3264 	/* If controller supports the Connection Parameters Request
3265 	 * Link Layer Procedure, enable the corresponding event.
3266 	 */
3267 	if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
3268 		/* LE Remote Connection Parameter Request */
3269 		events[0] |= 0x20;
3270 
3271 	/* If the controller supports the Data Length Extension
3272 	 * feature, enable the corresponding event.
3273 	 */
3274 	if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
3275 		events[0] |= 0x40;	/* LE Data Length Change */
3276 
3277 	/* If the controller supports LL Privacy feature or LE Extended Adv,
3278 	 * enable the corresponding event.
3279 	 */
3280 	if (use_enhanced_conn_complete(hdev))
3281 		events[1] |= 0x02;	/* LE Enhanced Connection Complete */
3282 
3283 	/* If the controller supports Extended Scanner Filter
3284 	 * Policies, enable the corresponding event.
3285 	 */
3286 	if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
3287 		events[1] |= 0x04;	/* LE Direct Advertising Report */
3288 
3289 	/* If the controller supports Channel Selection Algorithm #2
3290 	 * feature, enable the corresponding event.
3291 	 */
3292 	if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
3293 		events[2] |= 0x08;	/* LE Channel Selection Algorithm */
3294 
3295 	/* If the controller supports the LE Set Scan Enable command,
3296 	 * enable the corresponding advertising report event.
3297 	 */
3298 	if (hdev->commands[26] & 0x08)
3299 		events[0] |= 0x02;	/* LE Advertising Report */
3300 
3301 	/* If the controller supports the LE Create Connection
3302 	 * command, enable the corresponding event.
3303 	 */
3304 	if (hdev->commands[26] & 0x10)
3305 		events[0] |= 0x01;	/* LE Connection Complete */
3306 
3307 	/* If the controller supports the LE Connection Update
3308 	 * command, enable the corresponding event.
3309 	 */
3310 	if (hdev->commands[27] & 0x04)
3311 		events[0] |= 0x04;	/* LE Connection Update Complete */
3312 
3313 	/* If the controller supports the LE Read Remote Used Features
3314 	 * command, enable the corresponding event.
3315 	 */
3316 	if (hdev->commands[27] & 0x20)
3317 		/* LE Read Remote Used Features Complete */
3318 		events[0] |= 0x08;
3319 
3320 	/* If the controller supports the LE Read Local P-256
3321 	 * Public Key command, enable the corresponding event.
3322 	 */
3323 	if (hdev->commands[34] & 0x02)
3324 		/* LE Read Local P-256 Public Key Complete */
3325 		events[0] |= 0x80;
3326 
3327 	/* If the controller supports the LE Generate DHKey
3328 	 * command, enable the corresponding event.
3329 	 */
3330 	if (hdev->commands[34] & 0x04)
3331 		events[1] |= 0x01;	/* LE Generate DHKey Complete */
3332 
3333 	/* If the controller supports the LE Set Default PHY or
3334 	 * LE Set PHY commands, enable the corresponding event.
3335 	 */
3336 	if (hdev->commands[35] & (0x20 | 0x40))
3337 		events[1] |= 0x08;        /* LE PHY Update Complete */
3338 
3339 	/* If the controller supports LE Set Extended Scan Parameters
3340 	 * and LE Set Extended Scan Enable commands, enable the
3341 	 * corresponding event.
3342 	 */
3343 	if (use_ext_scan(hdev))
3344 		events[1] |= 0x10;	/* LE Extended Advertising Report */
3345 
3346 	/* If the controller supports the LE Extended Advertising
3347 	 * command, enable the corresponding event.
3348 	 */
3349 	if (ext_adv_capable(hdev))
3350 		events[2] |= 0x02;	/* LE Advertising Set Terminated */
3351 
3352 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EVENT_MASK,
3353 				     sizeof(events), events, HCI_CMD_TIMEOUT);
3354 }
3355 
3356 /* Read LE Advertising Channel TX Power */
3357 static int hci_le_read_adv_tx_power_sync(struct hci_dev *hdev)
3358 {
3359 	if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) {
3360 		/* HCI TS spec forbids mixing of legacy and extended
3361 		 * advertising commands wherein READ_ADV_TX_POWER is
3362 		 * also included. So do not call it if extended adv
3363 		 * is supported otherwise controller will return
3364 		 * COMMAND_DISALLOWED for extended commands.
3365 		 */
3366 		return __hci_cmd_sync_status(hdev,
3367 					       HCI_OP_LE_READ_ADV_TX_POWER,
3368 					       0, NULL, HCI_CMD_TIMEOUT);
3369 	}
3370 
3371 	return 0;
3372 }
3373 
3374 /* Read LE Min/Max Tx Power*/
3375 static int hci_le_read_tx_power_sync(struct hci_dev *hdev)
3376 {
3377 	if (!(hdev->commands[38] & 0x80) ||
3378 	    test_bit(HCI_QUIRK_BROKEN_READ_TRANSMIT_POWER, &hdev->quirks))
3379 		return 0;
3380 
3381 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_TRANSMIT_POWER,
3382 				     0, NULL, HCI_CMD_TIMEOUT);
3383 }
3384 
3385 /* Read LE Accept List Size */
3386 static int hci_le_read_accept_list_size_sync(struct hci_dev *hdev)
3387 {
3388 	if (!(hdev->commands[26] & 0x40))
3389 		return 0;
3390 
3391 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_ACCEPT_LIST_SIZE,
3392 				     0, NULL, HCI_CMD_TIMEOUT);
3393 }
3394 
3395 /* Clear LE Accept List */
3396 static int hci_le_clear_accept_list_sync(struct hci_dev *hdev)
3397 {
3398 	if (!(hdev->commands[26] & 0x80))
3399 		return 0;
3400 
3401 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL,
3402 				     HCI_CMD_TIMEOUT);
3403 }
3404 
3405 /* Read LE Resolving List Size */
3406 static int hci_le_read_resolv_list_size_sync(struct hci_dev *hdev)
3407 {
3408 	if (!(hdev->commands[34] & 0x40))
3409 		return 0;
3410 
3411 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_RESOLV_LIST_SIZE,
3412 				     0, NULL, HCI_CMD_TIMEOUT);
3413 }
3414 
3415 /* Clear LE Resolving List */
3416 static int hci_le_clear_resolv_list_sync(struct hci_dev *hdev)
3417 {
3418 	if (!(hdev->commands[34] & 0x20))
3419 		return 0;
3420 
3421 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL,
3422 				     HCI_CMD_TIMEOUT);
3423 }
3424 
3425 /* Set RPA timeout */
3426 static int hci_le_set_rpa_timeout_sync(struct hci_dev *hdev)
3427 {
3428 	__le16 timeout = cpu_to_le16(hdev->rpa_timeout);
3429 
3430 	if (!(hdev->commands[35] & 0x04))
3431 		return 0;
3432 
3433 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RPA_TIMEOUT,
3434 				     sizeof(timeout), &timeout,
3435 				     HCI_CMD_TIMEOUT);
3436 }
3437 
3438 /* Read LE Maximum Data Length */
3439 static int hci_le_read_max_data_len_sync(struct hci_dev *hdev)
3440 {
3441 	if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
3442 		return 0;
3443 
3444 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL,
3445 				     HCI_CMD_TIMEOUT);
3446 }
3447 
3448 /* Read LE Suggested Default Data Length */
3449 static int hci_le_read_def_data_len_sync(struct hci_dev *hdev)
3450 {
3451 	if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
3452 		return 0;
3453 
3454 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL,
3455 				     HCI_CMD_TIMEOUT);
3456 }
3457 
3458 /* Read LE Number of Supported Advertising Sets */
3459 static int hci_le_read_num_support_adv_sets_sync(struct hci_dev *hdev)
3460 {
3461 	if (!ext_adv_capable(hdev))
3462 		return 0;
3463 
3464 	return __hci_cmd_sync_status(hdev,
3465 				     HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS,
3466 				     0, NULL, HCI_CMD_TIMEOUT);
3467 }
3468 
3469 /* Write LE Host Supported */
3470 static int hci_set_le_support_sync(struct hci_dev *hdev)
3471 {
3472 	struct hci_cp_write_le_host_supported cp;
3473 
3474 	/* LE-only devices do not support explicit enablement */
3475 	if (!lmp_bredr_capable(hdev))
3476 		return 0;
3477 
3478 	memset(&cp, 0, sizeof(cp));
3479 
3480 	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
3481 		cp.le = 0x01;
3482 		cp.simul = 0x00;
3483 	}
3484 
3485 	if (cp.le == lmp_host_le_capable(hdev))
3486 		return 0;
3487 
3488 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED,
3489 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3490 }
3491 
3492 /* LE Controller init stage 3 command sequence */
3493 static const struct hci_init_stage le_init3[] = {
3494 	/* HCI_OP_LE_SET_EVENT_MASK */
3495 	HCI_INIT(hci_le_set_event_mask_sync),
3496 	/* HCI_OP_LE_READ_ADV_TX_POWER */
3497 	HCI_INIT(hci_le_read_adv_tx_power_sync),
3498 	/* HCI_OP_LE_READ_TRANSMIT_POWER */
3499 	HCI_INIT(hci_le_read_tx_power_sync),
3500 	/* HCI_OP_LE_READ_ACCEPT_LIST_SIZE */
3501 	HCI_INIT(hci_le_read_accept_list_size_sync),
3502 	/* HCI_OP_LE_CLEAR_ACCEPT_LIST */
3503 	HCI_INIT(hci_le_clear_accept_list_sync),
3504 	/* HCI_OP_LE_READ_RESOLV_LIST_SIZE */
3505 	HCI_INIT(hci_le_read_resolv_list_size_sync),
3506 	/* HCI_OP_LE_CLEAR_RESOLV_LIST */
3507 	HCI_INIT(hci_le_clear_resolv_list_sync),
3508 	/* HCI_OP_LE_SET_RPA_TIMEOUT */
3509 	HCI_INIT(hci_le_set_rpa_timeout_sync),
3510 	/* HCI_OP_LE_READ_MAX_DATA_LEN */
3511 	HCI_INIT(hci_le_read_max_data_len_sync),
3512 	/* HCI_OP_LE_READ_DEF_DATA_LEN */
3513 	HCI_INIT(hci_le_read_def_data_len_sync),
3514 	/* HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS */
3515 	HCI_INIT(hci_le_read_num_support_adv_sets_sync),
3516 	/* HCI_OP_WRITE_LE_HOST_SUPPORTED */
3517 	HCI_INIT(hci_set_le_support_sync),
3518 	{}
3519 };
3520 
3521 static int hci_init3_sync(struct hci_dev *hdev)
3522 {
3523 	int err;
3524 
3525 	bt_dev_dbg(hdev, "");
3526 
3527 	err = hci_init_stage_sync(hdev, hci_init3);
3528 	if (err)
3529 		return err;
3530 
3531 	if (lmp_le_capable(hdev))
3532 		return hci_init_stage_sync(hdev, le_init3);
3533 
3534 	return 0;
3535 }
3536 
3537 static int hci_delete_stored_link_key_sync(struct hci_dev *hdev)
3538 {
3539 	struct hci_cp_delete_stored_link_key cp;
3540 
3541 	/* Some Broadcom based Bluetooth controllers do not support the
3542 	 * Delete Stored Link Key command. They are clearly indicating its
3543 	 * absence in the bit mask of supported commands.
3544 	 *
3545 	 * Check the supported commands and only if the command is marked
3546 	 * as supported send it. If not supported assume that the controller
3547 	 * does not have actual support for stored link keys which makes this
3548 	 * command redundant anyway.
3549 	 *
3550 	 * Some controllers indicate that they support handling deleting
3551 	 * stored link keys, but they don't. The quirk lets a driver
3552 	 * just disable this command.
3553 	 */
3554 	if (!(hdev->commands[6] & 0x80) ||
3555 	    test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks))
3556 		return 0;
3557 
3558 	memset(&cp, 0, sizeof(cp));
3559 	bacpy(&cp.bdaddr, BDADDR_ANY);
3560 	cp.delete_all = 0x01;
3561 
3562 	return __hci_cmd_sync_status(hdev, HCI_OP_DELETE_STORED_LINK_KEY,
3563 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3564 }
3565 
3566 static int hci_set_event_mask_page_2_sync(struct hci_dev *hdev)
3567 {
3568 	u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
3569 	bool changed = false;
3570 
3571 	/* Set event mask page 2 if the HCI command for it is supported */
3572 	if (!(hdev->commands[22] & 0x04))
3573 		return 0;
3574 
3575 	/* If Connectionless Peripheral Broadcast central role is supported
3576 	 * enable all necessary events for it.
3577 	 */
3578 	if (lmp_cpb_central_capable(hdev)) {
3579 		events[1] |= 0x40;	/* Triggered Clock Capture */
3580 		events[1] |= 0x80;	/* Synchronization Train Complete */
3581 		events[2] |= 0x10;	/* Peripheral Page Response Timeout */
3582 		events[2] |= 0x20;	/* CPB Channel Map Change */
3583 		changed = true;
3584 	}
3585 
3586 	/* If Connectionless Peripheral Broadcast peripheral role is supported
3587 	 * enable all necessary events for it.
3588 	 */
3589 	if (lmp_cpb_peripheral_capable(hdev)) {
3590 		events[2] |= 0x01;	/* Synchronization Train Received */
3591 		events[2] |= 0x02;	/* CPB Receive */
3592 		events[2] |= 0x04;	/* CPB Timeout */
3593 		events[2] |= 0x08;	/* Truncated Page Complete */
3594 		changed = true;
3595 	}
3596 
3597 	/* Enable Authenticated Payload Timeout Expired event if supported */
3598 	if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
3599 		events[2] |= 0x80;
3600 		changed = true;
3601 	}
3602 
3603 	/* Some Broadcom based controllers indicate support for Set Event
3604 	 * Mask Page 2 command, but then actually do not support it. Since
3605 	 * the default value is all bits set to zero, the command is only
3606 	 * required if the event mask has to be changed. In case no change
3607 	 * to the event mask is needed, skip this command.
3608 	 */
3609 	if (!changed)
3610 		return 0;
3611 
3612 	return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK_PAGE_2,
3613 				     sizeof(events), events, HCI_CMD_TIMEOUT);
3614 }
3615 
3616 /* Read local codec list if the HCI command is supported */
3617 static int hci_read_local_codecs_sync(struct hci_dev *hdev)
3618 {
3619 	if (!(hdev->commands[29] & 0x20))
3620 		return 0;
3621 
3622 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_CODECS, 0, NULL,
3623 				     HCI_CMD_TIMEOUT);
3624 }
3625 
3626 /* Read local pairing options if the HCI command is supported */
3627 static int hci_read_local_pairing_opts_sync(struct hci_dev *hdev)
3628 {
3629 	if (!(hdev->commands[41] & 0x08))
3630 		return 0;
3631 
3632 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_PAIRING_OPTS,
3633 				     0, NULL, HCI_CMD_TIMEOUT);
3634 }
3635 
3636 /* Get MWS transport configuration if the HCI command is supported */
3637 static int hci_get_mws_transport_config_sync(struct hci_dev *hdev)
3638 {
3639 	if (!(hdev->commands[30] & 0x08))
3640 		return 0;
3641 
3642 	return __hci_cmd_sync_status(hdev, HCI_OP_GET_MWS_TRANSPORT_CONFIG,
3643 				     0, NULL, HCI_CMD_TIMEOUT);
3644 }
3645 
3646 /* Check for Synchronization Train support */
3647 static int hci_read_sync_train_params_sync(struct hci_dev *hdev)
3648 {
3649 	if (!lmp_sync_train_capable(hdev))
3650 		return 0;
3651 
3652 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_SYNC_TRAIN_PARAMS,
3653 				     0, NULL, HCI_CMD_TIMEOUT);
3654 }
3655 
3656 /* Enable Secure Connections if supported and configured */
3657 static int hci_write_sc_support_1_sync(struct hci_dev *hdev)
3658 {
3659 	u8 support = 0x01;
3660 
3661 	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) ||
3662 	    !bredr_sc_enabled(hdev))
3663 		return 0;
3664 
3665 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT,
3666 				     sizeof(support), &support,
3667 				     HCI_CMD_TIMEOUT);
3668 }
3669 
3670 /* Set erroneous data reporting if supported to the wideband speech
3671  * setting value
3672  */
3673 static int hci_set_err_data_report_sync(struct hci_dev *hdev)
3674 {
3675 	struct hci_cp_write_def_err_data_reporting cp;
3676 	bool enabled = hci_dev_test_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED);
3677 
3678 	if (!(hdev->commands[18] & 0x08) ||
3679 	    test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks))
3680 		return 0;
3681 
3682 	if (enabled == hdev->err_data_reporting)
3683 		return 0;
3684 
3685 	memset(&cp, 0, sizeof(cp));
3686 	cp.err_data_reporting = enabled ? ERR_DATA_REPORTING_ENABLED :
3687 				ERR_DATA_REPORTING_DISABLED;
3688 
3689 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING,
3690 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3691 }
3692 
3693 static const struct hci_init_stage hci_init4[] = {
3694 	 /* HCI_OP_DELETE_STORED_LINK_KEY */
3695 	HCI_INIT(hci_delete_stored_link_key_sync),
3696 	/* HCI_OP_SET_EVENT_MASK_PAGE_2 */
3697 	HCI_INIT(hci_set_event_mask_page_2_sync),
3698 	/* HCI_OP_READ_LOCAL_CODECS */
3699 	HCI_INIT(hci_read_local_codecs_sync),
3700 	 /* HCI_OP_READ_LOCAL_PAIRING_OPTS */
3701 	HCI_INIT(hci_read_local_pairing_opts_sync),
3702 	 /* HCI_OP_GET_MWS_TRANSPORT_CONFIG */
3703 	HCI_INIT(hci_get_mws_transport_config_sync),
3704 	 /* HCI_OP_READ_SYNC_TRAIN_PARAMS */
3705 	HCI_INIT(hci_read_sync_train_params_sync),
3706 	/* HCI_OP_WRITE_SC_SUPPORT */
3707 	HCI_INIT(hci_write_sc_support_1_sync),
3708 	/* HCI_OP_WRITE_DEF_ERR_DATA_REPORTING */
3709 	HCI_INIT(hci_set_err_data_report_sync),
3710 	{}
3711 };
3712 
3713 /* Set Suggested Default Data Length to maximum if supported */
3714 static int hci_le_set_write_def_data_len_sync(struct hci_dev *hdev)
3715 {
3716 	struct hci_cp_le_write_def_data_len cp;
3717 
3718 	if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
3719 		return 0;
3720 
3721 	memset(&cp, 0, sizeof(cp));
3722 	cp.tx_len = cpu_to_le16(hdev->le_max_tx_len);
3723 	cp.tx_time = cpu_to_le16(hdev->le_max_tx_time);
3724 
3725 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_WRITE_DEF_DATA_LEN,
3726 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3727 }
3728 
3729 /* Set Default PHY parameters if command is supported */
3730 static int hci_le_set_default_phy_sync(struct hci_dev *hdev)
3731 {
3732 	struct hci_cp_le_set_default_phy cp;
3733 
3734 	if (!(hdev->commands[35] & 0x20))
3735 		return 0;
3736 
3737 	memset(&cp, 0, sizeof(cp));
3738 	cp.all_phys = 0x00;
3739 	cp.tx_phys = hdev->le_tx_def_phys;
3740 	cp.rx_phys = hdev->le_rx_def_phys;
3741 
3742 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_DEFAULT_PHY,
3743 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3744 }
3745 
3746 static const struct hci_init_stage le_init4[] = {
3747 	/* HCI_OP_LE_WRITE_DEF_DATA_LEN */
3748 	HCI_INIT(hci_le_set_write_def_data_len_sync),
3749 	/* HCI_OP_LE_SET_DEFAULT_PHY */
3750 	HCI_INIT(hci_le_set_default_phy_sync),
3751 	{}
3752 };
3753 
3754 static int hci_init4_sync(struct hci_dev *hdev)
3755 {
3756 	int err;
3757 
3758 	bt_dev_dbg(hdev, "");
3759 
3760 	err = hci_init_stage_sync(hdev, hci_init4);
3761 	if (err)
3762 		return err;
3763 
3764 	if (lmp_le_capable(hdev))
3765 		return hci_init_stage_sync(hdev, le_init4);
3766 
3767 	return 0;
3768 }
3769 
3770 static int hci_init_sync(struct hci_dev *hdev)
3771 {
3772 	int err;
3773 
3774 	err = hci_init1_sync(hdev);
3775 	if (err < 0)
3776 		return err;
3777 
3778 	if (hci_dev_test_flag(hdev, HCI_SETUP))
3779 		hci_debugfs_create_basic(hdev);
3780 
3781 	err = hci_init2_sync(hdev);
3782 	if (err < 0)
3783 		return err;
3784 
3785 	/* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
3786 	 * BR/EDR/LE type controllers. AMP controllers only need the
3787 	 * first two stages of init.
3788 	 */
3789 	if (hdev->dev_type != HCI_PRIMARY)
3790 		return 0;
3791 
3792 	err = hci_init3_sync(hdev);
3793 	if (err < 0)
3794 		return err;
3795 
3796 	err = hci_init4_sync(hdev);
3797 	if (err < 0)
3798 		return err;
3799 
3800 	/* This function is only called when the controller is actually in
3801 	 * configured state. When the controller is marked as unconfigured,
3802 	 * this initialization procedure is not run.
3803 	 *
3804 	 * It means that it is possible that a controller runs through its
3805 	 * setup phase and then discovers missing settings. If that is the
3806 	 * case, then this function will not be called. It then will only
3807 	 * be called during the config phase.
3808 	 *
3809 	 * So only when in setup phase or config phase, create the debugfs
3810 	 * entries and register the SMP channels.
3811 	 */
3812 	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
3813 	    !hci_dev_test_flag(hdev, HCI_CONFIG))
3814 		return 0;
3815 
3816 	hci_debugfs_create_common(hdev);
3817 
3818 	if (lmp_bredr_capable(hdev))
3819 		hci_debugfs_create_bredr(hdev);
3820 
3821 	if (lmp_le_capable(hdev))
3822 		hci_debugfs_create_le(hdev);
3823 
3824 	return 0;
3825 }
3826 
3827 #define HCI_QUIRK_BROKEN(_quirk, _desc) { HCI_QUIRK_BROKEN_##_quirk, _desc }
3828 
3829 static const struct {
3830 	unsigned long quirk;
3831 	const char *desc;
3832 } hci_broken_table[] = {
3833 	HCI_QUIRK_BROKEN(LOCAL_COMMANDS,
3834 			 "HCI Read Local Supported Commands not supported"),
3835 	HCI_QUIRK_BROKEN(STORED_LINK_KEY,
3836 			 "HCI Delete Stored Link Key command is advertised, "
3837 			 "but not supported."),
3838 	HCI_QUIRK_BROKEN(ERR_DATA_REPORTING,
3839 			 "HCI Read Default Erroneous Data Reporting command is "
3840 			 "advertised, but not supported."),
3841 	HCI_QUIRK_BROKEN(READ_TRANSMIT_POWER,
3842 			 "HCI Read Transmit Power Level command is advertised, "
3843 			 "but not supported."),
3844 	HCI_QUIRK_BROKEN(FILTER_CLEAR_ALL,
3845 			 "HCI Set Event Filter command not supported."),
3846 	HCI_QUIRK_BROKEN(ENHANCED_SETUP_SYNC_CONN,
3847 			 "HCI Enhanced Setup Synchronous Connection command is "
3848 			 "advertised, but not supported.")
3849 };
3850 
3851 int hci_dev_open_sync(struct hci_dev *hdev)
3852 {
3853 	int ret = 0;
3854 
3855 	bt_dev_dbg(hdev, "");
3856 
3857 	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
3858 		ret = -ENODEV;
3859 		goto done;
3860 	}
3861 
3862 	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
3863 	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3864 		/* Check for rfkill but allow the HCI setup stage to
3865 		 * proceed (which in itself doesn't cause any RF activity).
3866 		 */
3867 		if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
3868 			ret = -ERFKILL;
3869 			goto done;
3870 		}
3871 
3872 		/* Check for valid public address or a configured static
3873 		 * random address, but let the HCI setup proceed to
3874 		 * be able to determine if there is a public address
3875 		 * or not.
3876 		 *
3877 		 * In case of user channel usage, it is not important
3878 		 * if a public address or static random address is
3879 		 * available.
3880 		 *
3881 		 * This check is only valid for BR/EDR controllers
3882 		 * since AMP controllers do not have an address.
3883 		 */
3884 		if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
3885 		    hdev->dev_type == HCI_PRIMARY &&
3886 		    !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
3887 		    !bacmp(&hdev->static_addr, BDADDR_ANY)) {
3888 			ret = -EADDRNOTAVAIL;
3889 			goto done;
3890 		}
3891 	}
3892 
3893 	if (test_bit(HCI_UP, &hdev->flags)) {
3894 		ret = -EALREADY;
3895 		goto done;
3896 	}
3897 
3898 	if (hdev->open(hdev)) {
3899 		ret = -EIO;
3900 		goto done;
3901 	}
3902 
3903 	set_bit(HCI_RUNNING, &hdev->flags);
3904 	hci_sock_dev_event(hdev, HCI_DEV_OPEN);
3905 
3906 	atomic_set(&hdev->cmd_cnt, 1);
3907 	set_bit(HCI_INIT, &hdev->flags);
3908 
3909 	if (hci_dev_test_flag(hdev, HCI_SETUP) ||
3910 	    test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) {
3911 		bool invalid_bdaddr;
3912 		size_t i;
3913 
3914 		hci_sock_dev_event(hdev, HCI_DEV_SETUP);
3915 
3916 		if (hdev->setup)
3917 			ret = hdev->setup(hdev);
3918 
3919 		for (i = 0; i < ARRAY_SIZE(hci_broken_table); i++) {
3920 			if (test_bit(hci_broken_table[i].quirk, &hdev->quirks))
3921 				bt_dev_warn(hdev, "%s",
3922 					    hci_broken_table[i].desc);
3923 		}
3924 
3925 		/* The transport driver can set the quirk to mark the
3926 		 * BD_ADDR invalid before creating the HCI device or in
3927 		 * its setup callback.
3928 		 */
3929 		invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR,
3930 					  &hdev->quirks);
3931 
3932 		if (ret)
3933 			goto setup_failed;
3934 
3935 		if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) {
3936 			if (!bacmp(&hdev->public_addr, BDADDR_ANY))
3937 				hci_dev_get_bd_addr_from_property(hdev);
3938 
3939 			if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
3940 			    hdev->set_bdaddr) {
3941 				ret = hdev->set_bdaddr(hdev,
3942 						       &hdev->public_addr);
3943 
3944 				/* If setting of the BD_ADDR from the device
3945 				 * property succeeds, then treat the address
3946 				 * as valid even if the invalid BD_ADDR
3947 				 * quirk indicates otherwise.
3948 				 */
3949 				if (!ret)
3950 					invalid_bdaddr = false;
3951 			}
3952 		}
3953 
3954 setup_failed:
3955 		/* The transport driver can set these quirks before
3956 		 * creating the HCI device or in its setup callback.
3957 		 *
3958 		 * For the invalid BD_ADDR quirk it is possible that
3959 		 * it becomes a valid address if the bootloader does
3960 		 * provide it (see above).
3961 		 *
3962 		 * In case any of them is set, the controller has to
3963 		 * start up as unconfigured.
3964 		 */
3965 		if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
3966 		    invalid_bdaddr)
3967 			hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3968 
3969 		/* For an unconfigured controller it is required to
3970 		 * read at least the version information provided by
3971 		 * the Read Local Version Information command.
3972 		 *
3973 		 * If the set_bdaddr driver callback is provided, then
3974 		 * also the original Bluetooth public device address
3975 		 * will be read using the Read BD Address command.
3976 		 */
3977 		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
3978 			ret = hci_unconf_init_sync(hdev);
3979 	}
3980 
3981 	if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
3982 		/* If public address change is configured, ensure that
3983 		 * the address gets programmed. If the driver does not
3984 		 * support changing the public address, fail the power
3985 		 * on procedure.
3986 		 */
3987 		if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
3988 		    hdev->set_bdaddr)
3989 			ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
3990 		else
3991 			ret = -EADDRNOTAVAIL;
3992 	}
3993 
3994 	if (!ret) {
3995 		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
3996 		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3997 			ret = hci_init_sync(hdev);
3998 			if (!ret && hdev->post_init)
3999 				ret = hdev->post_init(hdev);
4000 		}
4001 	}
4002 
4003 	/* If the HCI Reset command is clearing all diagnostic settings,
4004 	 * then they need to be reprogrammed after the init procedure
4005 	 * completed.
4006 	 */
4007 	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
4008 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4009 	    hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
4010 		ret = hdev->set_diag(hdev, true);
4011 
4012 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4013 		msft_do_open(hdev);
4014 		aosp_do_open(hdev);
4015 	}
4016 
4017 	clear_bit(HCI_INIT, &hdev->flags);
4018 
4019 	if (!ret) {
4020 		hci_dev_hold(hdev);
4021 		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
4022 		hci_adv_instances_set_rpa_expired(hdev, true);
4023 		set_bit(HCI_UP, &hdev->flags);
4024 		hci_sock_dev_event(hdev, HCI_DEV_UP);
4025 		hci_leds_update_powered(hdev, true);
4026 		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
4027 		    !hci_dev_test_flag(hdev, HCI_CONFIG) &&
4028 		    !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
4029 		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4030 		    hci_dev_test_flag(hdev, HCI_MGMT) &&
4031 		    hdev->dev_type == HCI_PRIMARY) {
4032 			ret = hci_powered_update_sync(hdev);
4033 		}
4034 	} else {
4035 		/* Init failed, cleanup */
4036 		flush_work(&hdev->tx_work);
4037 
4038 		/* Since hci_rx_work() is possible to awake new cmd_work
4039 		 * it should be flushed first to avoid unexpected call of
4040 		 * hci_cmd_work()
4041 		 */
4042 		flush_work(&hdev->rx_work);
4043 		flush_work(&hdev->cmd_work);
4044 
4045 		skb_queue_purge(&hdev->cmd_q);
4046 		skb_queue_purge(&hdev->rx_q);
4047 
4048 		if (hdev->flush)
4049 			hdev->flush(hdev);
4050 
4051 		if (hdev->sent_cmd) {
4052 			kfree_skb(hdev->sent_cmd);
4053 			hdev->sent_cmd = NULL;
4054 		}
4055 
4056 		clear_bit(HCI_RUNNING, &hdev->flags);
4057 		hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
4058 
4059 		hdev->close(hdev);
4060 		hdev->flags &= BIT(HCI_RAW);
4061 	}
4062 
4063 done:
4064 	return ret;
4065 }
4066 
4067 /* This function requires the caller holds hdev->lock */
4068 static void hci_pend_le_actions_clear(struct hci_dev *hdev)
4069 {
4070 	struct hci_conn_params *p;
4071 
4072 	list_for_each_entry(p, &hdev->le_conn_params, list) {
4073 		if (p->conn) {
4074 			hci_conn_drop(p->conn);
4075 			hci_conn_put(p->conn);
4076 			p->conn = NULL;
4077 		}
4078 		list_del_init(&p->action);
4079 	}
4080 
4081 	BT_DBG("All LE pending actions cleared");
4082 }
4083 
4084 int hci_dev_close_sync(struct hci_dev *hdev)
4085 {
4086 	bool auto_off;
4087 	int err = 0;
4088 
4089 	bt_dev_dbg(hdev, "");
4090 
4091 	cancel_work_sync(&hdev->power_on);
4092 	cancel_delayed_work(&hdev->power_off);
4093 	cancel_delayed_work(&hdev->ncmd_timer);
4094 
4095 	hci_request_cancel_all(hdev);
4096 
4097 	if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
4098 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4099 	    test_bit(HCI_UP, &hdev->flags)) {
4100 		/* Execute vendor specific shutdown routine */
4101 		if (hdev->shutdown)
4102 			err = hdev->shutdown(hdev);
4103 	}
4104 
4105 	if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
4106 		cancel_delayed_work_sync(&hdev->cmd_timer);
4107 		return err;
4108 	}
4109 
4110 	hci_leds_update_powered(hdev, false);
4111 
4112 	/* Flush RX and TX works */
4113 	flush_work(&hdev->tx_work);
4114 	flush_work(&hdev->rx_work);
4115 
4116 	if (hdev->discov_timeout > 0) {
4117 		hdev->discov_timeout = 0;
4118 		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
4119 		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
4120 	}
4121 
4122 	if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
4123 		cancel_delayed_work(&hdev->service_cache);
4124 
4125 	if (hci_dev_test_flag(hdev, HCI_MGMT)) {
4126 		struct adv_info *adv_instance;
4127 
4128 		cancel_delayed_work_sync(&hdev->rpa_expired);
4129 
4130 		list_for_each_entry(adv_instance, &hdev->adv_instances, list)
4131 			cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
4132 	}
4133 
4134 	/* Avoid potential lockdep warnings from the *_flush() calls by
4135 	 * ensuring the workqueue is empty up front.
4136 	 */
4137 	drain_workqueue(hdev->workqueue);
4138 
4139 	hci_dev_lock(hdev);
4140 
4141 	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
4142 
4143 	auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
4144 
4145 	if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
4146 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4147 	    hci_dev_test_flag(hdev, HCI_MGMT))
4148 		__mgmt_power_off(hdev);
4149 
4150 	hci_inquiry_cache_flush(hdev);
4151 	hci_pend_le_actions_clear(hdev);
4152 	hci_conn_hash_flush(hdev);
4153 	/* Prevent data races on hdev->smp_data or hdev->smp_bredr_data */
4154 	smp_unregister(hdev);
4155 	hci_dev_unlock(hdev);
4156 
4157 	hci_sock_dev_event(hdev, HCI_DEV_DOWN);
4158 
4159 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4160 		aosp_do_close(hdev);
4161 		msft_do_close(hdev);
4162 	}
4163 
4164 	if (hdev->flush)
4165 		hdev->flush(hdev);
4166 
4167 	/* Reset device */
4168 	skb_queue_purge(&hdev->cmd_q);
4169 	atomic_set(&hdev->cmd_cnt, 1);
4170 	if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
4171 	    !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
4172 		set_bit(HCI_INIT, &hdev->flags);
4173 		hci_reset_sync(hdev);
4174 		clear_bit(HCI_INIT, &hdev->flags);
4175 	}
4176 
4177 	/* flush cmd  work */
4178 	flush_work(&hdev->cmd_work);
4179 
4180 	/* Drop queues */
4181 	skb_queue_purge(&hdev->rx_q);
4182 	skb_queue_purge(&hdev->cmd_q);
4183 	skb_queue_purge(&hdev->raw_q);
4184 
4185 	/* Drop last sent command */
4186 	if (hdev->sent_cmd) {
4187 		cancel_delayed_work_sync(&hdev->cmd_timer);
4188 		kfree_skb(hdev->sent_cmd);
4189 		hdev->sent_cmd = NULL;
4190 	}
4191 
4192 	clear_bit(HCI_RUNNING, &hdev->flags);
4193 	hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
4194 
4195 	/* After this point our queues are empty and no tasks are scheduled. */
4196 	hdev->close(hdev);
4197 
4198 	/* Clear flags */
4199 	hdev->flags &= BIT(HCI_RAW);
4200 	hci_dev_clear_volatile_flags(hdev);
4201 
4202 	/* Controller radio is available but is currently powered down */
4203 	hdev->amp_status = AMP_STATUS_POWERED_DOWN;
4204 
4205 	memset(hdev->eir, 0, sizeof(hdev->eir));
4206 	memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
4207 	bacpy(&hdev->random_addr, BDADDR_ANY);
4208 
4209 	hci_dev_put(hdev);
4210 	return err;
4211 }
4212 
4213 /* This function perform power on HCI command sequence as follows:
4214  *
4215  * If controller is already up (HCI_UP) performs hci_powered_update_sync
4216  * sequence otherwise run hci_dev_open_sync which will follow with
4217  * hci_powered_update_sync after the init sequence is completed.
4218  */
4219 static int hci_power_on_sync(struct hci_dev *hdev)
4220 {
4221 	int err;
4222 
4223 	if (test_bit(HCI_UP, &hdev->flags) &&
4224 	    hci_dev_test_flag(hdev, HCI_MGMT) &&
4225 	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
4226 		cancel_delayed_work(&hdev->power_off);
4227 		return hci_powered_update_sync(hdev);
4228 	}
4229 
4230 	err = hci_dev_open_sync(hdev);
4231 	if (err < 0)
4232 		return err;
4233 
4234 	/* During the HCI setup phase, a few error conditions are
4235 	 * ignored and they need to be checked now. If they are still
4236 	 * valid, it is important to return the device back off.
4237 	 */
4238 	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
4239 	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
4240 	    (hdev->dev_type == HCI_PRIMARY &&
4241 	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
4242 	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
4243 		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
4244 		hci_dev_close_sync(hdev);
4245 	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
4246 		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
4247 				   HCI_AUTO_OFF_TIMEOUT);
4248 	}
4249 
4250 	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
4251 		/* For unconfigured devices, set the HCI_RAW flag
4252 		 * so that userspace can easily identify them.
4253 		 */
4254 		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
4255 			set_bit(HCI_RAW, &hdev->flags);
4256 
4257 		/* For fully configured devices, this will send
4258 		 * the Index Added event. For unconfigured devices,
4259 		 * it will send Unconfigued Index Added event.
4260 		 *
4261 		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
4262 		 * and no event will be send.
4263 		 */
4264 		mgmt_index_added(hdev);
4265 	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
4266 		/* When the controller is now configured, then it
4267 		 * is important to clear the HCI_RAW flag.
4268 		 */
4269 		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
4270 			clear_bit(HCI_RAW, &hdev->flags);
4271 
4272 		/* Powering on the controller with HCI_CONFIG set only
4273 		 * happens with the transition from unconfigured to
4274 		 * configured. This will send the Index Added event.
4275 		 */
4276 		mgmt_index_added(hdev);
4277 	}
4278 
4279 	return 0;
4280 }
4281 
4282 static int hci_remote_name_cancel_sync(struct hci_dev *hdev, bdaddr_t *addr)
4283 {
4284 	struct hci_cp_remote_name_req_cancel cp;
4285 
4286 	memset(&cp, 0, sizeof(cp));
4287 	bacpy(&cp.bdaddr, addr);
4288 
4289 	return __hci_cmd_sync_status(hdev, HCI_OP_REMOTE_NAME_REQ_CANCEL,
4290 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4291 }
4292 
4293 int hci_stop_discovery_sync(struct hci_dev *hdev)
4294 {
4295 	struct discovery_state *d = &hdev->discovery;
4296 	struct inquiry_entry *e;
4297 	int err;
4298 
4299 	bt_dev_dbg(hdev, "state %u", hdev->discovery.state);
4300 
4301 	if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
4302 		if (test_bit(HCI_INQUIRY, &hdev->flags)) {
4303 			err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL,
4304 						    0, NULL, HCI_CMD_TIMEOUT);
4305 			if (err)
4306 				return err;
4307 		}
4308 
4309 		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
4310 			cancel_delayed_work(&hdev->le_scan_disable);
4311 			cancel_delayed_work(&hdev->le_scan_restart);
4312 
4313 			err = hci_scan_disable_sync(hdev);
4314 			if (err)
4315 				return err;
4316 		}
4317 
4318 	} else {
4319 		err = hci_scan_disable_sync(hdev);
4320 		if (err)
4321 			return err;
4322 	}
4323 
4324 	/* Resume advertising if it was paused */
4325 	if (use_ll_privacy(hdev))
4326 		hci_resume_advertising_sync(hdev);
4327 
4328 	/* No further actions needed for LE-only discovery */
4329 	if (d->type == DISCOV_TYPE_LE)
4330 		return 0;
4331 
4332 	if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
4333 		e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
4334 						     NAME_PENDING);
4335 		if (!e)
4336 			return 0;
4337 
4338 		return hci_remote_name_cancel_sync(hdev, &e->data.bdaddr);
4339 	}
4340 
4341 	return 0;
4342 }
4343 
4344 static int hci_disconnect_phy_link_sync(struct hci_dev *hdev, u16 handle,
4345 					u8 reason)
4346 {
4347 	struct hci_cp_disconn_phy_link cp;
4348 
4349 	memset(&cp, 0, sizeof(cp));
4350 	cp.phy_handle = HCI_PHY_HANDLE(handle);
4351 	cp.reason = reason;
4352 
4353 	return __hci_cmd_sync_status(hdev, HCI_OP_DISCONN_PHY_LINK,
4354 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4355 }
4356 
4357 static int hci_disconnect_sync(struct hci_dev *hdev, struct hci_conn *conn,
4358 			       u8 reason)
4359 {
4360 	struct hci_cp_disconnect cp;
4361 
4362 	if (conn->type == AMP_LINK)
4363 		return hci_disconnect_phy_link_sync(hdev, conn->handle, reason);
4364 
4365 	memset(&cp, 0, sizeof(cp));
4366 	cp.handle = cpu_to_le16(conn->handle);
4367 	cp.reason = reason;
4368 
4369 	/* Wait for HCI_EV_DISCONN_COMPLETE not HCI_EV_CMD_STATUS when not
4370 	 * suspending.
4371 	 */
4372 	if (!hdev->suspended)
4373 		return __hci_cmd_sync_status_sk(hdev, HCI_OP_DISCONNECT,
4374 						sizeof(cp), &cp,
4375 						HCI_EV_DISCONN_COMPLETE,
4376 						HCI_CMD_TIMEOUT, NULL);
4377 
4378 	return __hci_cmd_sync_status(hdev, HCI_OP_DISCONNECT, sizeof(cp), &cp,
4379 				     HCI_CMD_TIMEOUT);
4380 }
4381 
4382 static int hci_le_connect_cancel_sync(struct hci_dev *hdev,
4383 				      struct hci_conn *conn)
4384 {
4385 	if (test_bit(HCI_CONN_SCANNING, &conn->flags))
4386 		return 0;
4387 
4388 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_CREATE_CONN_CANCEL,
4389 				     6, &conn->dst, HCI_CMD_TIMEOUT);
4390 }
4391 
4392 static int hci_connect_cancel_sync(struct hci_dev *hdev, struct hci_conn *conn)
4393 {
4394 	if (conn->type == LE_LINK)
4395 		return hci_le_connect_cancel_sync(hdev, conn);
4396 
4397 	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
4398 		return 0;
4399 
4400 	return __hci_cmd_sync_status(hdev, HCI_OP_CREATE_CONN_CANCEL,
4401 				     6, &conn->dst, HCI_CMD_TIMEOUT);
4402 }
4403 
4404 static int hci_reject_sco_sync(struct hci_dev *hdev, struct hci_conn *conn,
4405 			       u8 reason)
4406 {
4407 	struct hci_cp_reject_sync_conn_req cp;
4408 
4409 	memset(&cp, 0, sizeof(cp));
4410 	bacpy(&cp.bdaddr, &conn->dst);
4411 	cp.reason = reason;
4412 
4413 	/* SCO rejection has its own limited set of
4414 	 * allowed error values (0x0D-0x0F).
4415 	 */
4416 	if (reason < 0x0d || reason > 0x0f)
4417 		cp.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
4418 
4419 	return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_SYNC_CONN_REQ,
4420 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4421 }
4422 
4423 static int hci_reject_conn_sync(struct hci_dev *hdev, struct hci_conn *conn,
4424 				u8 reason)
4425 {
4426 	struct hci_cp_reject_conn_req cp;
4427 
4428 	if (conn->type == SCO_LINK || conn->type == ESCO_LINK)
4429 		return hci_reject_sco_sync(hdev, conn, reason);
4430 
4431 	memset(&cp, 0, sizeof(cp));
4432 	bacpy(&cp.bdaddr, &conn->dst);
4433 	cp.reason = reason;
4434 
4435 	return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_CONN_REQ,
4436 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4437 }
4438 
4439 static int hci_abort_conn_sync(struct hci_dev *hdev, struct hci_conn *conn,
4440 			       u8 reason)
4441 {
4442 	int err;
4443 
4444 	switch (conn->state) {
4445 	case BT_CONNECTED:
4446 	case BT_CONFIG:
4447 		return hci_disconnect_sync(hdev, conn, reason);
4448 	case BT_CONNECT:
4449 		err = hci_connect_cancel_sync(hdev, conn);
4450 		/* Cleanup hci_conn object if it cannot be cancelled as it
4451 		 * likelly means the controller and host stack are out of sync.
4452 		 */
4453 		if (err)
4454 			hci_conn_failed(conn, err);
4455 
4456 		return err;
4457 	case BT_CONNECT2:
4458 		return hci_reject_conn_sync(hdev, conn, reason);
4459 	default:
4460 		conn->state = BT_CLOSED;
4461 		break;
4462 	}
4463 
4464 	return 0;
4465 }
4466 
4467 static int hci_disconnect_all_sync(struct hci_dev *hdev, u8 reason)
4468 {
4469 	struct hci_conn *conn, *tmp;
4470 	int err;
4471 
4472 	list_for_each_entry_safe(conn, tmp, &hdev->conn_hash.list, list) {
4473 		err = hci_abort_conn_sync(hdev, conn, reason);
4474 		if (err)
4475 			return err;
4476 	}
4477 
4478 	return 0;
4479 }
4480 
4481 /* This function perform power off HCI command sequence as follows:
4482  *
4483  * Clear Advertising
4484  * Stop Discovery
4485  * Disconnect all connections
4486  * hci_dev_close_sync
4487  */
4488 static int hci_power_off_sync(struct hci_dev *hdev)
4489 {
4490 	int err;
4491 
4492 	/* If controller is already down there is nothing to do */
4493 	if (!test_bit(HCI_UP, &hdev->flags))
4494 		return 0;
4495 
4496 	if (test_bit(HCI_ISCAN, &hdev->flags) ||
4497 	    test_bit(HCI_PSCAN, &hdev->flags)) {
4498 		err = hci_write_scan_enable_sync(hdev, 0x00);
4499 		if (err)
4500 			return err;
4501 	}
4502 
4503 	err = hci_clear_adv_sync(hdev, NULL, false);
4504 	if (err)
4505 		return err;
4506 
4507 	err = hci_stop_discovery_sync(hdev);
4508 	if (err)
4509 		return err;
4510 
4511 	/* Terminated due to Power Off */
4512 	err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF);
4513 	if (err)
4514 		return err;
4515 
4516 	return hci_dev_close_sync(hdev);
4517 }
4518 
4519 int hci_set_powered_sync(struct hci_dev *hdev, u8 val)
4520 {
4521 	if (val)
4522 		return hci_power_on_sync(hdev);
4523 
4524 	return hci_power_off_sync(hdev);
4525 }
4526 
4527 static int hci_write_iac_sync(struct hci_dev *hdev)
4528 {
4529 	struct hci_cp_write_current_iac_lap cp;
4530 
4531 	if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
4532 		return 0;
4533 
4534 	memset(&cp, 0, sizeof(cp));
4535 
4536 	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
4537 		/* Limited discoverable mode */
4538 		cp.num_iac = min_t(u8, hdev->num_iac, 2);
4539 		cp.iac_lap[0] = 0x00;	/* LIAC */
4540 		cp.iac_lap[1] = 0x8b;
4541 		cp.iac_lap[2] = 0x9e;
4542 		cp.iac_lap[3] = 0x33;	/* GIAC */
4543 		cp.iac_lap[4] = 0x8b;
4544 		cp.iac_lap[5] = 0x9e;
4545 	} else {
4546 		/* General discoverable mode */
4547 		cp.num_iac = 1;
4548 		cp.iac_lap[0] = 0x33;	/* GIAC */
4549 		cp.iac_lap[1] = 0x8b;
4550 		cp.iac_lap[2] = 0x9e;
4551 	}
4552 
4553 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CURRENT_IAC_LAP,
4554 				     (cp.num_iac * 3) + 1, &cp,
4555 				     HCI_CMD_TIMEOUT);
4556 }
4557 
4558 int hci_update_discoverable_sync(struct hci_dev *hdev)
4559 {
4560 	int err = 0;
4561 
4562 	if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
4563 		err = hci_write_iac_sync(hdev);
4564 		if (err)
4565 			return err;
4566 
4567 		err = hci_update_scan_sync(hdev);
4568 		if (err)
4569 			return err;
4570 
4571 		err = hci_update_class_sync(hdev);
4572 		if (err)
4573 			return err;
4574 	}
4575 
4576 	/* Advertising instances don't use the global discoverable setting, so
4577 	 * only update AD if advertising was enabled using Set Advertising.
4578 	 */
4579 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
4580 		err = hci_update_adv_data_sync(hdev, 0x00);
4581 		if (err)
4582 			return err;
4583 
4584 		/* Discoverable mode affects the local advertising
4585 		 * address in limited privacy mode.
4586 		 */
4587 		if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) {
4588 			if (ext_adv_capable(hdev))
4589 				err = hci_start_ext_adv_sync(hdev, 0x00);
4590 			else
4591 				err = hci_enable_advertising_sync(hdev);
4592 		}
4593 	}
4594 
4595 	return err;
4596 }
4597 
4598 static int update_discoverable_sync(struct hci_dev *hdev, void *data)
4599 {
4600 	return hci_update_discoverable_sync(hdev);
4601 }
4602 
4603 int hci_update_discoverable(struct hci_dev *hdev)
4604 {
4605 	/* Only queue if it would have any effect */
4606 	if (hdev_is_powered(hdev) &&
4607 	    hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
4608 	    hci_dev_test_flag(hdev, HCI_DISCOVERABLE) &&
4609 	    hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
4610 		return hci_cmd_sync_queue(hdev, update_discoverable_sync, NULL,
4611 					  NULL);
4612 
4613 	return 0;
4614 }
4615 
4616 int hci_update_connectable_sync(struct hci_dev *hdev)
4617 {
4618 	int err;
4619 
4620 	err = hci_update_scan_sync(hdev);
4621 	if (err)
4622 		return err;
4623 
4624 	/* If BR/EDR is not enabled and we disable advertising as a
4625 	 * by-product of disabling connectable, we need to update the
4626 	 * advertising flags.
4627 	 */
4628 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
4629 		err = hci_update_adv_data_sync(hdev, hdev->cur_adv_instance);
4630 
4631 	/* Update the advertising parameters if necessary */
4632 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
4633 	    !list_empty(&hdev->adv_instances)) {
4634 		if (ext_adv_capable(hdev))
4635 			err = hci_start_ext_adv_sync(hdev,
4636 						     hdev->cur_adv_instance);
4637 		else
4638 			err = hci_enable_advertising_sync(hdev);
4639 
4640 		if (err)
4641 			return err;
4642 	}
4643 
4644 	return hci_update_passive_scan_sync(hdev);
4645 }
4646 
4647 static int hci_inquiry_sync(struct hci_dev *hdev, u8 length)
4648 {
4649 	const u8 giac[3] = { 0x33, 0x8b, 0x9e };
4650 	const u8 liac[3] = { 0x00, 0x8b, 0x9e };
4651 	struct hci_cp_inquiry cp;
4652 
4653 	bt_dev_dbg(hdev, "");
4654 
4655 	if (hci_dev_test_flag(hdev, HCI_INQUIRY))
4656 		return 0;
4657 
4658 	hci_dev_lock(hdev);
4659 	hci_inquiry_cache_flush(hdev);
4660 	hci_dev_unlock(hdev);
4661 
4662 	memset(&cp, 0, sizeof(cp));
4663 
4664 	if (hdev->discovery.limited)
4665 		memcpy(&cp.lap, liac, sizeof(cp.lap));
4666 	else
4667 		memcpy(&cp.lap, giac, sizeof(cp.lap));
4668 
4669 	cp.length = length;
4670 
4671 	return __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY,
4672 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4673 }
4674 
4675 static int hci_active_scan_sync(struct hci_dev *hdev, uint16_t interval)
4676 {
4677 	u8 own_addr_type;
4678 	/* Accept list is not used for discovery */
4679 	u8 filter_policy = 0x00;
4680 	/* Default is to enable duplicates filter */
4681 	u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
4682 	int err;
4683 
4684 	bt_dev_dbg(hdev, "");
4685 
4686 	/* If controller is scanning, it means the passive scanning is
4687 	 * running. Thus, we should temporarily stop it in order to set the
4688 	 * discovery scanning parameters.
4689 	 */
4690 	err = hci_scan_disable_sync(hdev);
4691 	if (err) {
4692 		bt_dev_err(hdev, "Unable to disable scanning: %d", err);
4693 		return err;
4694 	}
4695 
4696 	cancel_interleave_scan(hdev);
4697 
4698 	/* Pause advertising since active scanning disables address resolution
4699 	 * which advertising depend on in order to generate its RPAs.
4700 	 */
4701 	if (use_ll_privacy(hdev)) {
4702 		err = hci_pause_advertising_sync(hdev);
4703 		if (err) {
4704 			bt_dev_err(hdev, "pause advertising failed: %d", err);
4705 			goto failed;
4706 		}
4707 	}
4708 
4709 	/* Disable address resolution while doing active scanning since the
4710 	 * accept list shall not be used and all reports shall reach the host
4711 	 * anyway.
4712 	 */
4713 	err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00);
4714 	if (err) {
4715 		bt_dev_err(hdev, "Unable to disable Address Resolution: %d",
4716 			   err);
4717 		goto failed;
4718 	}
4719 
4720 	/* All active scans will be done with either a resolvable private
4721 	 * address (when privacy feature has been enabled) or non-resolvable
4722 	 * private address.
4723 	 */
4724 	err = hci_update_random_address_sync(hdev, true, scan_use_rpa(hdev),
4725 					     &own_addr_type);
4726 	if (err < 0)
4727 		own_addr_type = ADDR_LE_DEV_PUBLIC;
4728 
4729 	if (hci_is_adv_monitoring(hdev)) {
4730 		/* Duplicate filter should be disabled when some advertisement
4731 		 * monitor is activated, otherwise AdvMon can only receive one
4732 		 * advertisement for one peer(*) during active scanning, and
4733 		 * might report loss to these peers.
4734 		 *
4735 		 * Note that different controllers have different meanings of
4736 		 * |duplicate|. Some of them consider packets with the same
4737 		 * address as duplicate, and others consider packets with the
4738 		 * same address and the same RSSI as duplicate. Although in the
4739 		 * latter case we don't need to disable duplicate filter, but
4740 		 * it is common to have active scanning for a short period of
4741 		 * time, the power impact should be neglectable.
4742 		 */
4743 		filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
4744 	}
4745 
4746 	err = hci_start_scan_sync(hdev, LE_SCAN_ACTIVE, interval,
4747 				  hdev->le_scan_window_discovery,
4748 				  own_addr_type, filter_policy, filter_dup);
4749 	if (!err)
4750 		return err;
4751 
4752 failed:
4753 	/* Resume advertising if it was paused */
4754 	if (use_ll_privacy(hdev))
4755 		hci_resume_advertising_sync(hdev);
4756 
4757 	/* Resume passive scanning */
4758 	hci_update_passive_scan_sync(hdev);
4759 	return err;
4760 }
4761 
4762 static int hci_start_interleaved_discovery_sync(struct hci_dev *hdev)
4763 {
4764 	int err;
4765 
4766 	bt_dev_dbg(hdev, "");
4767 
4768 	err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery * 2);
4769 	if (err)
4770 		return err;
4771 
4772 	return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN);
4773 }
4774 
4775 int hci_start_discovery_sync(struct hci_dev *hdev)
4776 {
4777 	unsigned long timeout;
4778 	int err;
4779 
4780 	bt_dev_dbg(hdev, "type %u", hdev->discovery.type);
4781 
4782 	switch (hdev->discovery.type) {
4783 	case DISCOV_TYPE_BREDR:
4784 		return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN);
4785 	case DISCOV_TYPE_INTERLEAVED:
4786 		/* When running simultaneous discovery, the LE scanning time
4787 		 * should occupy the whole discovery time sine BR/EDR inquiry
4788 		 * and LE scanning are scheduled by the controller.
4789 		 *
4790 		 * For interleaving discovery in comparison, BR/EDR inquiry
4791 		 * and LE scanning are done sequentially with separate
4792 		 * timeouts.
4793 		 */
4794 		if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
4795 			     &hdev->quirks)) {
4796 			timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
4797 			/* During simultaneous discovery, we double LE scan
4798 			 * interval. We must leave some time for the controller
4799 			 * to do BR/EDR inquiry.
4800 			 */
4801 			err = hci_start_interleaved_discovery_sync(hdev);
4802 			break;
4803 		}
4804 
4805 		timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
4806 		err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery);
4807 		break;
4808 	case DISCOV_TYPE_LE:
4809 		timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
4810 		err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery);
4811 		break;
4812 	default:
4813 		return -EINVAL;
4814 	}
4815 
4816 	if (err)
4817 		return err;
4818 
4819 	bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout));
4820 
4821 	/* When service discovery is used and the controller has a
4822 	 * strict duplicate filter, it is important to remember the
4823 	 * start and duration of the scan. This is required for
4824 	 * restarting scanning during the discovery phase.
4825 	 */
4826 	if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
4827 	    hdev->discovery.result_filtering) {
4828 		hdev->discovery.scan_start = jiffies;
4829 		hdev->discovery.scan_duration = timeout;
4830 	}
4831 
4832 	queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
4833 			   timeout);
4834 	return 0;
4835 }
4836 
4837 static void hci_suspend_monitor_sync(struct hci_dev *hdev)
4838 {
4839 	switch (hci_get_adv_monitor_offload_ext(hdev)) {
4840 	case HCI_ADV_MONITOR_EXT_MSFT:
4841 		msft_suspend_sync(hdev);
4842 		break;
4843 	default:
4844 		return;
4845 	}
4846 }
4847 
4848 /* This function disables discovery and mark it as paused */
4849 static int hci_pause_discovery_sync(struct hci_dev *hdev)
4850 {
4851 	int old_state = hdev->discovery.state;
4852 	int err;
4853 
4854 	/* If discovery already stopped/stopping/paused there nothing to do */
4855 	if (old_state == DISCOVERY_STOPPED || old_state == DISCOVERY_STOPPING ||
4856 	    hdev->discovery_paused)
4857 		return 0;
4858 
4859 	hci_discovery_set_state(hdev, DISCOVERY_STOPPING);
4860 	err = hci_stop_discovery_sync(hdev);
4861 	if (err)
4862 		return err;
4863 
4864 	hdev->discovery_paused = true;
4865 	hdev->discovery_old_state = old_state;
4866 	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
4867 
4868 	return 0;
4869 }
4870 
4871 static int hci_update_event_filter_sync(struct hci_dev *hdev)
4872 {
4873 	struct bdaddr_list_with_flags *b;
4874 	u8 scan = SCAN_DISABLED;
4875 	bool scanning = test_bit(HCI_PSCAN, &hdev->flags);
4876 	int err;
4877 
4878 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
4879 		return 0;
4880 
4881 	/* Some fake CSR controllers lock up after setting this type of
4882 	 * filter, so avoid sending the request altogether.
4883 	 */
4884 	if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
4885 		return 0;
4886 
4887 	/* Always clear event filter when starting */
4888 	hci_clear_event_filter_sync(hdev);
4889 
4890 	list_for_each_entry(b, &hdev->accept_list, list) {
4891 		if (!(b->flags & HCI_CONN_FLAG_REMOTE_WAKEUP))
4892 			continue;
4893 
4894 		bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr);
4895 
4896 		err =  hci_set_event_filter_sync(hdev, HCI_FLT_CONN_SETUP,
4897 						 HCI_CONN_SETUP_ALLOW_BDADDR,
4898 						 &b->bdaddr,
4899 						 HCI_CONN_SETUP_AUTO_ON);
4900 		if (err)
4901 			bt_dev_dbg(hdev, "Failed to set event filter for %pMR",
4902 				   &b->bdaddr);
4903 		else
4904 			scan = SCAN_PAGE;
4905 	}
4906 
4907 	if (scan && !scanning)
4908 		hci_write_scan_enable_sync(hdev, scan);
4909 	else if (!scan && scanning)
4910 		hci_write_scan_enable_sync(hdev, scan);
4911 
4912 	return 0;
4913 }
4914 
4915 /* This function disables scan (BR and LE) and mark it as paused */
4916 static int hci_pause_scan_sync(struct hci_dev *hdev)
4917 {
4918 	if (hdev->scanning_paused)
4919 		return 0;
4920 
4921 	/* Disable page scan if enabled */
4922 	if (test_bit(HCI_PSCAN, &hdev->flags))
4923 		hci_write_scan_enable_sync(hdev, SCAN_DISABLED);
4924 
4925 	hci_scan_disable_sync(hdev);
4926 
4927 	hdev->scanning_paused = true;
4928 
4929 	return 0;
4930 }
4931 
4932 /* This function performs the HCI suspend procedures in the follow order:
4933  *
4934  * Pause discovery (active scanning/inquiry)
4935  * Pause Directed Advertising/Advertising
4936  * Pause Scanning (passive scanning in case discovery was not active)
4937  * Disconnect all connections
4938  * Set suspend_status to BT_SUSPEND_DISCONNECT if hdev cannot wakeup
4939  * otherwise:
4940  * Update event mask (only set events that are allowed to wake up the host)
4941  * Update event filter (with devices marked with HCI_CONN_FLAG_REMOTE_WAKEUP)
4942  * Update passive scanning (lower duty cycle)
4943  * Set suspend_status to BT_SUSPEND_CONFIGURE_WAKE
4944  */
4945 int hci_suspend_sync(struct hci_dev *hdev)
4946 {
4947 	int err;
4948 
4949 	/* If marked as suspended there nothing to do */
4950 	if (hdev->suspended)
4951 		return 0;
4952 
4953 	/* Mark device as suspended */
4954 	hdev->suspended = true;
4955 
4956 	/* Pause discovery if not already stopped */
4957 	hci_pause_discovery_sync(hdev);
4958 
4959 	/* Pause other advertisements */
4960 	hci_pause_advertising_sync(hdev);
4961 
4962 	/* Suspend monitor filters */
4963 	hci_suspend_monitor_sync(hdev);
4964 
4965 	/* Prevent disconnects from causing scanning to be re-enabled */
4966 	hci_pause_scan_sync(hdev);
4967 
4968 	/* Soft disconnect everything (power off) */
4969 	err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF);
4970 	if (err) {
4971 		/* Set state to BT_RUNNING so resume doesn't notify */
4972 		hdev->suspend_state = BT_RUNNING;
4973 		hci_resume_sync(hdev);
4974 		return err;
4975 	}
4976 
4977 	/* Only configure accept list if disconnect succeeded and wake
4978 	 * isn't being prevented.
4979 	 */
4980 	if (!hdev->wakeup || !hdev->wakeup(hdev)) {
4981 		hdev->suspend_state = BT_SUSPEND_DISCONNECT;
4982 		return 0;
4983 	}
4984 
4985 	/* Unpause to take care of updating scanning params */
4986 	hdev->scanning_paused = false;
4987 
4988 	/* Update event mask so only the allowed event can wakeup the host */
4989 	hci_set_event_mask_sync(hdev);
4990 
4991 	/* Enable event filter for paired devices */
4992 	hci_update_event_filter_sync(hdev);
4993 
4994 	/* Update LE passive scan if enabled */
4995 	hci_update_passive_scan_sync(hdev);
4996 
4997 	/* Pause scan changes again. */
4998 	hdev->scanning_paused = true;
4999 
5000 	hdev->suspend_state = BT_SUSPEND_CONFIGURE_WAKE;
5001 
5002 	return 0;
5003 }
5004 
5005 /* This function resumes discovery */
5006 static int hci_resume_discovery_sync(struct hci_dev *hdev)
5007 {
5008 	int err;
5009 
5010 	/* If discovery not paused there nothing to do */
5011 	if (!hdev->discovery_paused)
5012 		return 0;
5013 
5014 	hdev->discovery_paused = false;
5015 
5016 	hci_discovery_set_state(hdev, DISCOVERY_STARTING);
5017 
5018 	err = hci_start_discovery_sync(hdev);
5019 
5020 	hci_discovery_set_state(hdev, err ? DISCOVERY_STOPPED :
5021 				DISCOVERY_FINDING);
5022 
5023 	return err;
5024 }
5025 
5026 static void hci_resume_monitor_sync(struct hci_dev *hdev)
5027 {
5028 	switch (hci_get_adv_monitor_offload_ext(hdev)) {
5029 	case HCI_ADV_MONITOR_EXT_MSFT:
5030 		msft_resume_sync(hdev);
5031 		break;
5032 	default:
5033 		return;
5034 	}
5035 }
5036 
5037 /* This function resume scan and reset paused flag */
5038 static int hci_resume_scan_sync(struct hci_dev *hdev)
5039 {
5040 	if (!hdev->scanning_paused)
5041 		return 0;
5042 
5043 	hci_update_scan_sync(hdev);
5044 
5045 	/* Reset passive scanning to normal */
5046 	hci_update_passive_scan_sync(hdev);
5047 
5048 	hdev->scanning_paused = false;
5049 
5050 	return 0;
5051 }
5052 
5053 /* This function performs the HCI suspend procedures in the follow order:
5054  *
5055  * Restore event mask
5056  * Clear event filter
5057  * Update passive scanning (normal duty cycle)
5058  * Resume Directed Advertising/Advertising
5059  * Resume discovery (active scanning/inquiry)
5060  */
5061 int hci_resume_sync(struct hci_dev *hdev)
5062 {
5063 	/* If not marked as suspended there nothing to do */
5064 	if (!hdev->suspended)
5065 		return 0;
5066 
5067 	hdev->suspended = false;
5068 	hdev->scanning_paused = false;
5069 
5070 	/* Restore event mask */
5071 	hci_set_event_mask_sync(hdev);
5072 
5073 	/* Clear any event filters and restore scan state */
5074 	hci_clear_event_filter_sync(hdev);
5075 
5076 	/* Resume scanning */
5077 	hci_resume_scan_sync(hdev);
5078 
5079 	/* Resume monitor filters */
5080 	hci_resume_monitor_sync(hdev);
5081 
5082 	/* Resume other advertisements */
5083 	hci_resume_advertising_sync(hdev);
5084 
5085 	/* Resume discovery */
5086 	hci_resume_discovery_sync(hdev);
5087 
5088 	return 0;
5089 }
5090 
5091 static bool conn_use_rpa(struct hci_conn *conn)
5092 {
5093 	struct hci_dev *hdev = conn->hdev;
5094 
5095 	return hci_dev_test_flag(hdev, HCI_PRIVACY);
5096 }
5097 
5098 static int hci_le_ext_directed_advertising_sync(struct hci_dev *hdev,
5099 						struct hci_conn *conn)
5100 {
5101 	struct hci_cp_le_set_ext_adv_params cp;
5102 	int err;
5103 	bdaddr_t random_addr;
5104 	u8 own_addr_type;
5105 
5106 	err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
5107 					     &own_addr_type);
5108 	if (err)
5109 		return err;
5110 
5111 	/* Set require_privacy to false so that the remote device has a
5112 	 * chance of identifying us.
5113 	 */
5114 	err = hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL,
5115 				     &own_addr_type, &random_addr);
5116 	if (err)
5117 		return err;
5118 
5119 	memset(&cp, 0, sizeof(cp));
5120 
5121 	cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND);
5122 	cp.own_addr_type = own_addr_type;
5123 	cp.channel_map = hdev->le_adv_channel_map;
5124 	cp.tx_power = HCI_TX_POWER_INVALID;
5125 	cp.primary_phy = HCI_ADV_PHY_1M;
5126 	cp.secondary_phy = HCI_ADV_PHY_1M;
5127 	cp.handle = 0x00; /* Use instance 0 for directed adv */
5128 	cp.own_addr_type = own_addr_type;
5129 	cp.peer_addr_type = conn->dst_type;
5130 	bacpy(&cp.peer_addr, &conn->dst);
5131 
5132 	/* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for
5133 	 * advertising_event_property LE_LEGACY_ADV_DIRECT_IND
5134 	 * does not supports advertising data when the advertising set already
5135 	 * contains some, the controller shall return erroc code 'Invalid
5136 	 * HCI Command Parameters(0x12).
5137 	 * So it is required to remove adv set for handle 0x00. since we use
5138 	 * instance 0 for directed adv.
5139 	 */
5140 	err = hci_remove_ext_adv_instance_sync(hdev, cp.handle, NULL);
5141 	if (err)
5142 		return err;
5143 
5144 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS,
5145 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5146 	if (err)
5147 		return err;
5148 
5149 	/* Check if random address need to be updated */
5150 	if (own_addr_type == ADDR_LE_DEV_RANDOM &&
5151 	    bacmp(&random_addr, BDADDR_ANY) &&
5152 	    bacmp(&random_addr, &hdev->random_addr)) {
5153 		err = hci_set_adv_set_random_addr_sync(hdev, 0x00,
5154 						       &random_addr);
5155 		if (err)
5156 			return err;
5157 	}
5158 
5159 	return hci_enable_ext_advertising_sync(hdev, 0x00);
5160 }
5161 
5162 static int hci_le_directed_advertising_sync(struct hci_dev *hdev,
5163 					    struct hci_conn *conn)
5164 {
5165 	struct hci_cp_le_set_adv_param cp;
5166 	u8 status;
5167 	u8 own_addr_type;
5168 	u8 enable;
5169 
5170 	if (ext_adv_capable(hdev))
5171 		return hci_le_ext_directed_advertising_sync(hdev, conn);
5172 
5173 	/* Clear the HCI_LE_ADV bit temporarily so that the
5174 	 * hci_update_random_address knows that it's safe to go ahead
5175 	 * and write a new random address. The flag will be set back on
5176 	 * as soon as the SET_ADV_ENABLE HCI command completes.
5177 	 */
5178 	hci_dev_clear_flag(hdev, HCI_LE_ADV);
5179 
5180 	/* Set require_privacy to false so that the remote device has a
5181 	 * chance of identifying us.
5182 	 */
5183 	status = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
5184 						&own_addr_type);
5185 	if (status)
5186 		return status;
5187 
5188 	memset(&cp, 0, sizeof(cp));
5189 
5190 	/* Some controllers might reject command if intervals are not
5191 	 * within range for undirected advertising.
5192 	 * BCM20702A0 is known to be affected by this.
5193 	 */
5194 	cp.min_interval = cpu_to_le16(0x0020);
5195 	cp.max_interval = cpu_to_le16(0x0020);
5196 
5197 	cp.type = LE_ADV_DIRECT_IND;
5198 	cp.own_address_type = own_addr_type;
5199 	cp.direct_addr_type = conn->dst_type;
5200 	bacpy(&cp.direct_addr, &conn->dst);
5201 	cp.channel_map = hdev->le_adv_channel_map;
5202 
5203 	status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM,
5204 				       sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5205 	if (status)
5206 		return status;
5207 
5208 	enable = 0x01;
5209 
5210 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
5211 				     sizeof(enable), &enable, HCI_CMD_TIMEOUT);
5212 }
5213 
5214 static void set_ext_conn_params(struct hci_conn *conn,
5215 				struct hci_cp_le_ext_conn_param *p)
5216 {
5217 	struct hci_dev *hdev = conn->hdev;
5218 
5219 	memset(p, 0, sizeof(*p));
5220 
5221 	p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
5222 	p->scan_window = cpu_to_le16(hdev->le_scan_window_connect);
5223 	p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
5224 	p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
5225 	p->conn_latency = cpu_to_le16(conn->le_conn_latency);
5226 	p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
5227 	p->min_ce_len = cpu_to_le16(0x0000);
5228 	p->max_ce_len = cpu_to_le16(0x0000);
5229 }
5230 
5231 static int hci_le_ext_create_conn_sync(struct hci_dev *hdev,
5232 				       struct hci_conn *conn, u8 own_addr_type)
5233 {
5234 	struct hci_cp_le_ext_create_conn *cp;
5235 	struct hci_cp_le_ext_conn_param *p;
5236 	u8 data[sizeof(*cp) + sizeof(*p) * 3];
5237 	u32 plen;
5238 
5239 	cp = (void *)data;
5240 	p = (void *)cp->data;
5241 
5242 	memset(cp, 0, sizeof(*cp));
5243 
5244 	bacpy(&cp->peer_addr, &conn->dst);
5245 	cp->peer_addr_type = conn->dst_type;
5246 	cp->own_addr_type = own_addr_type;
5247 
5248 	plen = sizeof(*cp);
5249 
5250 	if (scan_1m(hdev)) {
5251 		cp->phys |= LE_SCAN_PHY_1M;
5252 		set_ext_conn_params(conn, p);
5253 
5254 		p++;
5255 		plen += sizeof(*p);
5256 	}
5257 
5258 	if (scan_2m(hdev)) {
5259 		cp->phys |= LE_SCAN_PHY_2M;
5260 		set_ext_conn_params(conn, p);
5261 
5262 		p++;
5263 		plen += sizeof(*p);
5264 	}
5265 
5266 	if (scan_coded(hdev)) {
5267 		cp->phys |= LE_SCAN_PHY_CODED;
5268 		set_ext_conn_params(conn, p);
5269 
5270 		plen += sizeof(*p);
5271 	}
5272 
5273 	return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_EXT_CREATE_CONN,
5274 					plen, data,
5275 					HCI_EV_LE_ENHANCED_CONN_COMPLETE,
5276 					conn->conn_timeout, NULL);
5277 }
5278 
5279 int hci_le_create_conn_sync(struct hci_dev *hdev, struct hci_conn *conn)
5280 {
5281 	struct hci_cp_le_create_conn cp;
5282 	struct hci_conn_params *params;
5283 	u8 own_addr_type;
5284 	int err;
5285 
5286 	/* If requested to connect as peripheral use directed advertising */
5287 	if (conn->role == HCI_ROLE_SLAVE) {
5288 		/* If we're active scanning and simultaneous roles is not
5289 		 * enabled simply reject the attempt.
5290 		 */
5291 		if (hci_dev_test_flag(hdev, HCI_LE_SCAN) &&
5292 		    hdev->le_scan_type == LE_SCAN_ACTIVE &&
5293 		    !hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) {
5294 			hci_conn_del(conn);
5295 			return -EBUSY;
5296 		}
5297 
5298 		/* Pause advertising while doing directed advertising. */
5299 		hci_pause_advertising_sync(hdev);
5300 
5301 		err = hci_le_directed_advertising_sync(hdev, conn);
5302 		goto done;
5303 	}
5304 
5305 	/* Disable advertising if simultaneous roles is not in use. */
5306 	if (!hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES))
5307 		hci_pause_advertising_sync(hdev);
5308 
5309 	params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
5310 	if (params) {
5311 		conn->le_conn_min_interval = params->conn_min_interval;
5312 		conn->le_conn_max_interval = params->conn_max_interval;
5313 		conn->le_conn_latency = params->conn_latency;
5314 		conn->le_supv_timeout = params->supervision_timeout;
5315 	} else {
5316 		conn->le_conn_min_interval = hdev->le_conn_min_interval;
5317 		conn->le_conn_max_interval = hdev->le_conn_max_interval;
5318 		conn->le_conn_latency = hdev->le_conn_latency;
5319 		conn->le_supv_timeout = hdev->le_supv_timeout;
5320 	}
5321 
5322 	/* If controller is scanning, we stop it since some controllers are
5323 	 * not able to scan and connect at the same time. Also set the
5324 	 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete
5325 	 * handler for scan disabling knows to set the correct discovery
5326 	 * state.
5327 	 */
5328 	if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
5329 		hci_scan_disable_sync(hdev);
5330 		hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED);
5331 	}
5332 
5333 	/* Update random address, but set require_privacy to false so
5334 	 * that we never connect with an non-resolvable address.
5335 	 */
5336 	err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
5337 					     &own_addr_type);
5338 	if (err)
5339 		goto done;
5340 
5341 	if (use_ext_conn(hdev)) {
5342 		err = hci_le_ext_create_conn_sync(hdev, conn, own_addr_type);
5343 		goto done;
5344 	}
5345 
5346 	memset(&cp, 0, sizeof(cp));
5347 
5348 	cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
5349 	cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect);
5350 
5351 	bacpy(&cp.peer_addr, &conn->dst);
5352 	cp.peer_addr_type = conn->dst_type;
5353 	cp.own_address_type = own_addr_type;
5354 	cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
5355 	cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
5356 	cp.conn_latency = cpu_to_le16(conn->le_conn_latency);
5357 	cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
5358 	cp.min_ce_len = cpu_to_le16(0x0000);
5359 	cp.max_ce_len = cpu_to_le16(0x0000);
5360 
5361 	/* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E page 2261:
5362 	 *
5363 	 * If this event is unmasked and the HCI_LE_Connection_Complete event
5364 	 * is unmasked, only the HCI_LE_Enhanced_Connection_Complete event is
5365 	 * sent when a new connection has been created.
5366 	 */
5367 	err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CONN,
5368 				       sizeof(cp), &cp,
5369 				       use_enhanced_conn_complete(hdev) ?
5370 				       HCI_EV_LE_ENHANCED_CONN_COMPLETE :
5371 				       HCI_EV_LE_CONN_COMPLETE,
5372 				       conn->conn_timeout, NULL);
5373 
5374 done:
5375 	/* Re-enable advertising after the connection attempt is finished. */
5376 	hci_resume_advertising_sync(hdev);
5377 	return err;
5378 }
5379