1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * BlueZ - Bluetooth protocol stack for Linux 4 * 5 * Copyright (C) 2021 Intel Corporation 6 * Copyright 2023 NXP 7 */ 8 9 #include <linux/property.h> 10 11 #include <net/bluetooth/bluetooth.h> 12 #include <net/bluetooth/hci_core.h> 13 #include <net/bluetooth/mgmt.h> 14 15 #include "hci_codec.h" 16 #include "hci_debugfs.h" 17 #include "smp.h" 18 #include "eir.h" 19 #include "msft.h" 20 #include "aosp.h" 21 #include "leds.h" 22 23 static void hci_cmd_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode, 24 struct sk_buff *skb) 25 { 26 bt_dev_dbg(hdev, "result 0x%2.2x", result); 27 28 if (hdev->req_status != HCI_REQ_PEND) 29 return; 30 31 hdev->req_result = result; 32 hdev->req_status = HCI_REQ_DONE; 33 34 /* Free the request command so it is not used as response */ 35 kfree_skb(hdev->req_skb); 36 hdev->req_skb = NULL; 37 38 if (skb) { 39 struct sock *sk = hci_skb_sk(skb); 40 41 /* Drop sk reference if set */ 42 if (sk) 43 sock_put(sk); 44 45 hdev->req_rsp = skb_get(skb); 46 } 47 48 wake_up_interruptible(&hdev->req_wait_q); 49 } 50 51 struct sk_buff *hci_cmd_sync_alloc(struct hci_dev *hdev, u16 opcode, u32 plen, 52 const void *param, struct sock *sk) 53 { 54 int len = HCI_COMMAND_HDR_SIZE + plen; 55 struct hci_command_hdr *hdr; 56 struct sk_buff *skb; 57 58 skb = bt_skb_alloc(len, GFP_ATOMIC); 59 if (!skb) 60 return NULL; 61 62 hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE); 63 hdr->opcode = cpu_to_le16(opcode); 64 hdr->plen = plen; 65 66 if (plen) 67 skb_put_data(skb, param, plen); 68 69 bt_dev_dbg(hdev, "skb len %d", skb->len); 70 71 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; 72 hci_skb_opcode(skb) = opcode; 73 74 /* Grab a reference if command needs to be associated with a sock (e.g. 75 * likely mgmt socket that initiated the command). 76 */ 77 if (sk) { 78 hci_skb_sk(skb) = sk; 79 sock_hold(sk); 80 } 81 82 return skb; 83 } 84 85 static void hci_cmd_sync_add(struct hci_request *req, u16 opcode, u32 plen, 86 const void *param, u8 event, struct sock *sk) 87 { 88 struct hci_dev *hdev = req->hdev; 89 struct sk_buff *skb; 90 91 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); 92 93 /* If an error occurred during request building, there is no point in 94 * queueing the HCI command. We can simply return. 95 */ 96 if (req->err) 97 return; 98 99 skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, sk); 100 if (!skb) { 101 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)", 102 opcode); 103 req->err = -ENOMEM; 104 return; 105 } 106 107 if (skb_queue_empty(&req->cmd_q)) 108 bt_cb(skb)->hci.req_flags |= HCI_REQ_START; 109 110 hci_skb_event(skb) = event; 111 112 skb_queue_tail(&req->cmd_q, skb); 113 } 114 115 static int hci_cmd_sync_run(struct hci_request *req) 116 { 117 struct hci_dev *hdev = req->hdev; 118 struct sk_buff *skb; 119 unsigned long flags; 120 121 bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q)); 122 123 /* If an error occurred during request building, remove all HCI 124 * commands queued on the HCI request queue. 125 */ 126 if (req->err) { 127 skb_queue_purge(&req->cmd_q); 128 return req->err; 129 } 130 131 /* Do not allow empty requests */ 132 if (skb_queue_empty(&req->cmd_q)) 133 return -ENODATA; 134 135 skb = skb_peek_tail(&req->cmd_q); 136 bt_cb(skb)->hci.req_complete_skb = hci_cmd_sync_complete; 137 bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB; 138 139 spin_lock_irqsave(&hdev->cmd_q.lock, flags); 140 skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q); 141 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); 142 143 queue_work(hdev->workqueue, &hdev->cmd_work); 144 145 return 0; 146 } 147 148 static void hci_request_init(struct hci_request *req, struct hci_dev *hdev) 149 { 150 skb_queue_head_init(&req->cmd_q); 151 req->hdev = hdev; 152 req->err = 0; 153 } 154 155 /* This function requires the caller holds hdev->req_lock. */ 156 struct sk_buff *__hci_cmd_sync_sk(struct hci_dev *hdev, u16 opcode, u32 plen, 157 const void *param, u8 event, u32 timeout, 158 struct sock *sk) 159 { 160 struct hci_request req; 161 struct sk_buff *skb; 162 int err = 0; 163 164 bt_dev_dbg(hdev, "Opcode 0x%4.4x", opcode); 165 166 hci_request_init(&req, hdev); 167 168 hci_cmd_sync_add(&req, opcode, plen, param, event, sk); 169 170 hdev->req_status = HCI_REQ_PEND; 171 172 err = hci_cmd_sync_run(&req); 173 if (err < 0) 174 return ERR_PTR(err); 175 176 err = wait_event_interruptible_timeout(hdev->req_wait_q, 177 hdev->req_status != HCI_REQ_PEND, 178 timeout); 179 180 if (err == -ERESTARTSYS) 181 return ERR_PTR(-EINTR); 182 183 switch (hdev->req_status) { 184 case HCI_REQ_DONE: 185 err = -bt_to_errno(hdev->req_result); 186 break; 187 188 case HCI_REQ_CANCELED: 189 err = -hdev->req_result; 190 break; 191 192 default: 193 err = -ETIMEDOUT; 194 break; 195 } 196 197 hdev->req_status = 0; 198 hdev->req_result = 0; 199 skb = hdev->req_rsp; 200 hdev->req_rsp = NULL; 201 202 bt_dev_dbg(hdev, "end: err %d", err); 203 204 if (err < 0) { 205 kfree_skb(skb); 206 return ERR_PTR(err); 207 } 208 209 return skb; 210 } 211 EXPORT_SYMBOL(__hci_cmd_sync_sk); 212 213 /* This function requires the caller holds hdev->req_lock. */ 214 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 215 const void *param, u32 timeout) 216 { 217 return __hci_cmd_sync_sk(hdev, opcode, plen, param, 0, timeout, NULL); 218 } 219 EXPORT_SYMBOL(__hci_cmd_sync); 220 221 /* Send HCI command and wait for command complete event */ 222 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 223 const void *param, u32 timeout) 224 { 225 struct sk_buff *skb; 226 227 if (!test_bit(HCI_UP, &hdev->flags)) 228 return ERR_PTR(-ENETDOWN); 229 230 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); 231 232 hci_req_sync_lock(hdev); 233 skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout); 234 hci_req_sync_unlock(hdev); 235 236 return skb; 237 } 238 EXPORT_SYMBOL(hci_cmd_sync); 239 240 /* This function requires the caller holds hdev->req_lock. */ 241 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen, 242 const void *param, u8 event, u32 timeout) 243 { 244 return __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, 245 NULL); 246 } 247 EXPORT_SYMBOL(__hci_cmd_sync_ev); 248 249 /* This function requires the caller holds hdev->req_lock. */ 250 int __hci_cmd_sync_status_sk(struct hci_dev *hdev, u16 opcode, u32 plen, 251 const void *param, u8 event, u32 timeout, 252 struct sock *sk) 253 { 254 struct sk_buff *skb; 255 u8 status; 256 257 skb = __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, sk); 258 if (IS_ERR(skb)) { 259 if (!event) 260 bt_dev_err(hdev, "Opcode 0x%4.4x failed: %ld", opcode, 261 PTR_ERR(skb)); 262 return PTR_ERR(skb); 263 } 264 265 /* If command return a status event skb will be set to NULL as there are 266 * no parameters, in case of failure IS_ERR(skb) would have be set to 267 * the actual error would be found with PTR_ERR(skb). 268 */ 269 if (!skb) 270 return 0; 271 272 status = skb->data[0]; 273 274 kfree_skb(skb); 275 276 return status; 277 } 278 EXPORT_SYMBOL(__hci_cmd_sync_status_sk); 279 280 int __hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen, 281 const void *param, u32 timeout) 282 { 283 return __hci_cmd_sync_status_sk(hdev, opcode, plen, param, 0, timeout, 284 NULL); 285 } 286 EXPORT_SYMBOL(__hci_cmd_sync_status); 287 288 int hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen, 289 const void *param, u32 timeout) 290 { 291 int err; 292 293 hci_req_sync_lock(hdev); 294 err = __hci_cmd_sync_status(hdev, opcode, plen, param, timeout); 295 hci_req_sync_unlock(hdev); 296 297 return err; 298 } 299 EXPORT_SYMBOL(hci_cmd_sync_status); 300 301 static void hci_cmd_sync_work(struct work_struct *work) 302 { 303 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_work); 304 305 bt_dev_dbg(hdev, ""); 306 307 /* Dequeue all entries and run them */ 308 while (1) { 309 struct hci_cmd_sync_work_entry *entry; 310 311 mutex_lock(&hdev->cmd_sync_work_lock); 312 entry = list_first_entry_or_null(&hdev->cmd_sync_work_list, 313 struct hci_cmd_sync_work_entry, 314 list); 315 if (entry) 316 list_del(&entry->list); 317 mutex_unlock(&hdev->cmd_sync_work_lock); 318 319 if (!entry) 320 break; 321 322 bt_dev_dbg(hdev, "entry %p", entry); 323 324 if (entry->func) { 325 int err; 326 327 hci_req_sync_lock(hdev); 328 err = entry->func(hdev, entry->data); 329 if (entry->destroy) 330 entry->destroy(hdev, entry->data, err); 331 hci_req_sync_unlock(hdev); 332 } 333 334 kfree(entry); 335 } 336 } 337 338 static void hci_cmd_sync_cancel_work(struct work_struct *work) 339 { 340 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_cancel_work); 341 342 cancel_delayed_work_sync(&hdev->cmd_timer); 343 cancel_delayed_work_sync(&hdev->ncmd_timer); 344 atomic_set(&hdev->cmd_cnt, 1); 345 346 wake_up_interruptible(&hdev->req_wait_q); 347 } 348 349 static int hci_scan_disable_sync(struct hci_dev *hdev); 350 static int scan_disable_sync(struct hci_dev *hdev, void *data) 351 { 352 return hci_scan_disable_sync(hdev); 353 } 354 355 static int interleaved_inquiry_sync(struct hci_dev *hdev, void *data) 356 { 357 return hci_inquiry_sync(hdev, DISCOV_INTERLEAVED_INQUIRY_LEN, 0); 358 } 359 360 static void le_scan_disable(struct work_struct *work) 361 { 362 struct hci_dev *hdev = container_of(work, struct hci_dev, 363 le_scan_disable.work); 364 int status; 365 366 bt_dev_dbg(hdev, ""); 367 hci_dev_lock(hdev); 368 369 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 370 goto _return; 371 372 status = hci_cmd_sync_queue(hdev, scan_disable_sync, NULL, NULL); 373 if (status) { 374 bt_dev_err(hdev, "failed to disable LE scan: %d", status); 375 goto _return; 376 } 377 378 /* If we were running LE only scan, change discovery state. If 379 * we were running both LE and BR/EDR inquiry simultaneously, 380 * and BR/EDR inquiry is already finished, stop discovery, 381 * otherwise BR/EDR inquiry will stop discovery when finished. 382 * If we will resolve remote device name, do not change 383 * discovery state. 384 */ 385 386 if (hdev->discovery.type == DISCOV_TYPE_LE) 387 goto discov_stopped; 388 389 if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED) 390 goto _return; 391 392 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) { 393 if (!test_bit(HCI_INQUIRY, &hdev->flags) && 394 hdev->discovery.state != DISCOVERY_RESOLVING) 395 goto discov_stopped; 396 397 goto _return; 398 } 399 400 status = hci_cmd_sync_queue(hdev, interleaved_inquiry_sync, NULL, NULL); 401 if (status) { 402 bt_dev_err(hdev, "inquiry failed: status %d", status); 403 goto discov_stopped; 404 } 405 406 goto _return; 407 408 discov_stopped: 409 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 410 411 _return: 412 hci_dev_unlock(hdev); 413 } 414 415 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val, 416 u8 filter_dup); 417 418 static int reenable_adv_sync(struct hci_dev *hdev, void *data) 419 { 420 bt_dev_dbg(hdev, ""); 421 422 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) && 423 list_empty(&hdev->adv_instances)) 424 return 0; 425 426 if (hdev->cur_adv_instance) { 427 return hci_schedule_adv_instance_sync(hdev, 428 hdev->cur_adv_instance, 429 true); 430 } else { 431 if (ext_adv_capable(hdev)) { 432 hci_start_ext_adv_sync(hdev, 0x00); 433 } else { 434 hci_update_adv_data_sync(hdev, 0x00); 435 hci_update_scan_rsp_data_sync(hdev, 0x00); 436 hci_enable_advertising_sync(hdev); 437 } 438 } 439 440 return 0; 441 } 442 443 static void reenable_adv(struct work_struct *work) 444 { 445 struct hci_dev *hdev = container_of(work, struct hci_dev, 446 reenable_adv_work); 447 int status; 448 449 bt_dev_dbg(hdev, ""); 450 451 hci_dev_lock(hdev); 452 453 status = hci_cmd_sync_queue(hdev, reenable_adv_sync, NULL, NULL); 454 if (status) 455 bt_dev_err(hdev, "failed to reenable ADV: %d", status); 456 457 hci_dev_unlock(hdev); 458 } 459 460 static void cancel_adv_timeout(struct hci_dev *hdev) 461 { 462 if (hdev->adv_instance_timeout) { 463 hdev->adv_instance_timeout = 0; 464 cancel_delayed_work(&hdev->adv_instance_expire); 465 } 466 } 467 468 /* For a single instance: 469 * - force == true: The instance will be removed even when its remaining 470 * lifetime is not zero. 471 * - force == false: the instance will be deactivated but kept stored unless 472 * the remaining lifetime is zero. 473 * 474 * For instance == 0x00: 475 * - force == true: All instances will be removed regardless of their timeout 476 * setting. 477 * - force == false: Only instances that have a timeout will be removed. 478 */ 479 int hci_clear_adv_instance_sync(struct hci_dev *hdev, struct sock *sk, 480 u8 instance, bool force) 481 { 482 struct adv_info *adv_instance, *n, *next_instance = NULL; 483 int err; 484 u8 rem_inst; 485 486 /* Cancel any timeout concerning the removed instance(s). */ 487 if (!instance || hdev->cur_adv_instance == instance) 488 cancel_adv_timeout(hdev); 489 490 /* Get the next instance to advertise BEFORE we remove 491 * the current one. This can be the same instance again 492 * if there is only one instance. 493 */ 494 if (instance && hdev->cur_adv_instance == instance) 495 next_instance = hci_get_next_instance(hdev, instance); 496 497 if (instance == 0x00) { 498 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, 499 list) { 500 if (!(force || adv_instance->timeout)) 501 continue; 502 503 rem_inst = adv_instance->instance; 504 err = hci_remove_adv_instance(hdev, rem_inst); 505 if (!err) 506 mgmt_advertising_removed(sk, hdev, rem_inst); 507 } 508 } else { 509 adv_instance = hci_find_adv_instance(hdev, instance); 510 511 if (force || (adv_instance && adv_instance->timeout && 512 !adv_instance->remaining_time)) { 513 /* Don't advertise a removed instance. */ 514 if (next_instance && 515 next_instance->instance == instance) 516 next_instance = NULL; 517 518 err = hci_remove_adv_instance(hdev, instance); 519 if (!err) 520 mgmt_advertising_removed(sk, hdev, instance); 521 } 522 } 523 524 if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING)) 525 return 0; 526 527 if (next_instance && !ext_adv_capable(hdev)) 528 return hci_schedule_adv_instance_sync(hdev, 529 next_instance->instance, 530 false); 531 532 return 0; 533 } 534 535 static int adv_timeout_expire_sync(struct hci_dev *hdev, void *data) 536 { 537 u8 instance = *(u8 *)data; 538 539 kfree(data); 540 541 hci_clear_adv_instance_sync(hdev, NULL, instance, false); 542 543 if (list_empty(&hdev->adv_instances)) 544 return hci_disable_advertising_sync(hdev); 545 546 return 0; 547 } 548 549 static void adv_timeout_expire(struct work_struct *work) 550 { 551 u8 *inst_ptr; 552 struct hci_dev *hdev = container_of(work, struct hci_dev, 553 adv_instance_expire.work); 554 555 bt_dev_dbg(hdev, ""); 556 557 hci_dev_lock(hdev); 558 559 hdev->adv_instance_timeout = 0; 560 561 if (hdev->cur_adv_instance == 0x00) 562 goto unlock; 563 564 inst_ptr = kmalloc(1, GFP_KERNEL); 565 if (!inst_ptr) 566 goto unlock; 567 568 *inst_ptr = hdev->cur_adv_instance; 569 hci_cmd_sync_queue(hdev, adv_timeout_expire_sync, inst_ptr, NULL); 570 571 unlock: 572 hci_dev_unlock(hdev); 573 } 574 575 static bool is_interleave_scanning(struct hci_dev *hdev) 576 { 577 return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE; 578 } 579 580 static int hci_passive_scan_sync(struct hci_dev *hdev); 581 582 static void interleave_scan_work(struct work_struct *work) 583 { 584 struct hci_dev *hdev = container_of(work, struct hci_dev, 585 interleave_scan.work); 586 unsigned long timeout; 587 588 if (hdev->interleave_scan_state == INTERLEAVE_SCAN_ALLOWLIST) { 589 timeout = msecs_to_jiffies(hdev->advmon_allowlist_duration); 590 } else if (hdev->interleave_scan_state == INTERLEAVE_SCAN_NO_FILTER) { 591 timeout = msecs_to_jiffies(hdev->advmon_no_filter_duration); 592 } else { 593 bt_dev_err(hdev, "unexpected error"); 594 return; 595 } 596 597 hci_passive_scan_sync(hdev); 598 599 hci_dev_lock(hdev); 600 601 switch (hdev->interleave_scan_state) { 602 case INTERLEAVE_SCAN_ALLOWLIST: 603 bt_dev_dbg(hdev, "next state: allowlist"); 604 hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER; 605 break; 606 case INTERLEAVE_SCAN_NO_FILTER: 607 bt_dev_dbg(hdev, "next state: no filter"); 608 hdev->interleave_scan_state = INTERLEAVE_SCAN_ALLOWLIST; 609 break; 610 case INTERLEAVE_SCAN_NONE: 611 bt_dev_err(hdev, "unexpected error"); 612 } 613 614 hci_dev_unlock(hdev); 615 616 /* Don't continue interleaving if it was canceled */ 617 if (is_interleave_scanning(hdev)) 618 queue_delayed_work(hdev->req_workqueue, 619 &hdev->interleave_scan, timeout); 620 } 621 622 void hci_cmd_sync_init(struct hci_dev *hdev) 623 { 624 INIT_WORK(&hdev->cmd_sync_work, hci_cmd_sync_work); 625 INIT_LIST_HEAD(&hdev->cmd_sync_work_list); 626 mutex_init(&hdev->cmd_sync_work_lock); 627 mutex_init(&hdev->unregister_lock); 628 629 INIT_WORK(&hdev->cmd_sync_cancel_work, hci_cmd_sync_cancel_work); 630 INIT_WORK(&hdev->reenable_adv_work, reenable_adv); 631 INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable); 632 INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire); 633 INIT_DELAYED_WORK(&hdev->interleave_scan, interleave_scan_work); 634 } 635 636 static void _hci_cmd_sync_cancel_entry(struct hci_dev *hdev, 637 struct hci_cmd_sync_work_entry *entry, 638 int err) 639 { 640 if (entry->destroy) 641 entry->destroy(hdev, entry->data, err); 642 643 list_del(&entry->list); 644 kfree(entry); 645 } 646 647 void hci_cmd_sync_clear(struct hci_dev *hdev) 648 { 649 struct hci_cmd_sync_work_entry *entry, *tmp; 650 651 cancel_work_sync(&hdev->cmd_sync_work); 652 cancel_work_sync(&hdev->reenable_adv_work); 653 654 mutex_lock(&hdev->cmd_sync_work_lock); 655 list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) 656 _hci_cmd_sync_cancel_entry(hdev, entry, -ECANCELED); 657 mutex_unlock(&hdev->cmd_sync_work_lock); 658 } 659 660 void hci_cmd_sync_cancel(struct hci_dev *hdev, int err) 661 { 662 bt_dev_dbg(hdev, "err 0x%2.2x", err); 663 664 if (hdev->req_status == HCI_REQ_PEND) { 665 hdev->req_result = err; 666 hdev->req_status = HCI_REQ_CANCELED; 667 668 queue_work(hdev->workqueue, &hdev->cmd_sync_cancel_work); 669 } 670 } 671 EXPORT_SYMBOL(hci_cmd_sync_cancel); 672 673 /* Cancel ongoing command request synchronously: 674 * 675 * - Set result and mark status to HCI_REQ_CANCELED 676 * - Wakeup command sync thread 677 */ 678 void hci_cmd_sync_cancel_sync(struct hci_dev *hdev, int err) 679 { 680 bt_dev_dbg(hdev, "err 0x%2.2x", err); 681 682 if (hdev->req_status == HCI_REQ_PEND) { 683 /* req_result is __u32 so error must be positive to be properly 684 * propagated. 685 */ 686 hdev->req_result = err < 0 ? -err : err; 687 hdev->req_status = HCI_REQ_CANCELED; 688 689 wake_up_interruptible(&hdev->req_wait_q); 690 } 691 } 692 EXPORT_SYMBOL(hci_cmd_sync_cancel_sync); 693 694 /* Submit HCI command to be run in as cmd_sync_work: 695 * 696 * - hdev must _not_ be unregistered 697 */ 698 int hci_cmd_sync_submit(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 699 void *data, hci_cmd_sync_work_destroy_t destroy) 700 { 701 struct hci_cmd_sync_work_entry *entry; 702 int err = 0; 703 704 mutex_lock(&hdev->unregister_lock); 705 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 706 err = -ENODEV; 707 goto unlock; 708 } 709 710 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 711 if (!entry) { 712 err = -ENOMEM; 713 goto unlock; 714 } 715 entry->func = func; 716 entry->data = data; 717 entry->destroy = destroy; 718 719 mutex_lock(&hdev->cmd_sync_work_lock); 720 list_add_tail(&entry->list, &hdev->cmd_sync_work_list); 721 mutex_unlock(&hdev->cmd_sync_work_lock); 722 723 queue_work(hdev->req_workqueue, &hdev->cmd_sync_work); 724 725 unlock: 726 mutex_unlock(&hdev->unregister_lock); 727 return err; 728 } 729 EXPORT_SYMBOL(hci_cmd_sync_submit); 730 731 /* Queue HCI command: 732 * 733 * - hdev must be running 734 */ 735 int hci_cmd_sync_queue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 736 void *data, hci_cmd_sync_work_destroy_t destroy) 737 { 738 /* Only queue command if hdev is running which means it had been opened 739 * and is either on init phase or is already up. 740 */ 741 if (!test_bit(HCI_RUNNING, &hdev->flags)) 742 return -ENETDOWN; 743 744 return hci_cmd_sync_submit(hdev, func, data, destroy); 745 } 746 EXPORT_SYMBOL(hci_cmd_sync_queue); 747 748 static struct hci_cmd_sync_work_entry * 749 _hci_cmd_sync_lookup_entry(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 750 void *data, hci_cmd_sync_work_destroy_t destroy) 751 { 752 struct hci_cmd_sync_work_entry *entry, *tmp; 753 754 list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) { 755 if (func && entry->func != func) 756 continue; 757 758 if (data && entry->data != data) 759 continue; 760 761 if (destroy && entry->destroy != destroy) 762 continue; 763 764 return entry; 765 } 766 767 return NULL; 768 } 769 770 /* Queue HCI command entry once: 771 * 772 * - Lookup if an entry already exist and only if it doesn't creates a new entry 773 * and queue it. 774 */ 775 int hci_cmd_sync_queue_once(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 776 void *data, hci_cmd_sync_work_destroy_t destroy) 777 { 778 if (hci_cmd_sync_lookup_entry(hdev, func, data, destroy)) 779 return 0; 780 781 return hci_cmd_sync_queue(hdev, func, data, destroy); 782 } 783 EXPORT_SYMBOL(hci_cmd_sync_queue_once); 784 785 /* Lookup HCI command entry: 786 * 787 * - Return first entry that matches by function callback or data or 788 * destroy callback. 789 */ 790 struct hci_cmd_sync_work_entry * 791 hci_cmd_sync_lookup_entry(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 792 void *data, hci_cmd_sync_work_destroy_t destroy) 793 { 794 struct hci_cmd_sync_work_entry *entry; 795 796 mutex_lock(&hdev->cmd_sync_work_lock); 797 entry = _hci_cmd_sync_lookup_entry(hdev, func, data, destroy); 798 mutex_unlock(&hdev->cmd_sync_work_lock); 799 800 return entry; 801 } 802 EXPORT_SYMBOL(hci_cmd_sync_lookup_entry); 803 804 /* Cancel HCI command entry */ 805 void hci_cmd_sync_cancel_entry(struct hci_dev *hdev, 806 struct hci_cmd_sync_work_entry *entry) 807 { 808 mutex_lock(&hdev->cmd_sync_work_lock); 809 _hci_cmd_sync_cancel_entry(hdev, entry, -ECANCELED); 810 mutex_unlock(&hdev->cmd_sync_work_lock); 811 } 812 EXPORT_SYMBOL(hci_cmd_sync_cancel_entry); 813 814 /* Dequeue one HCI command entry: 815 * 816 * - Lookup and cancel first entry that matches. 817 */ 818 bool hci_cmd_sync_dequeue_once(struct hci_dev *hdev, 819 hci_cmd_sync_work_func_t func, 820 void *data, hci_cmd_sync_work_destroy_t destroy) 821 { 822 struct hci_cmd_sync_work_entry *entry; 823 824 entry = hci_cmd_sync_lookup_entry(hdev, func, data, destroy); 825 if (!entry) 826 return false; 827 828 hci_cmd_sync_cancel_entry(hdev, entry); 829 830 return true; 831 } 832 EXPORT_SYMBOL(hci_cmd_sync_dequeue_once); 833 834 /* Dequeue HCI command entry: 835 * 836 * - Lookup and cancel any entry that matches by function callback or data or 837 * destroy callback. 838 */ 839 bool hci_cmd_sync_dequeue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 840 void *data, hci_cmd_sync_work_destroy_t destroy) 841 { 842 struct hci_cmd_sync_work_entry *entry; 843 bool ret = false; 844 845 mutex_lock(&hdev->cmd_sync_work_lock); 846 while ((entry = _hci_cmd_sync_lookup_entry(hdev, func, data, 847 destroy))) { 848 _hci_cmd_sync_cancel_entry(hdev, entry, -ECANCELED); 849 ret = true; 850 } 851 mutex_unlock(&hdev->cmd_sync_work_lock); 852 853 return ret; 854 } 855 EXPORT_SYMBOL(hci_cmd_sync_dequeue); 856 857 int hci_update_eir_sync(struct hci_dev *hdev) 858 { 859 struct hci_cp_write_eir cp; 860 861 bt_dev_dbg(hdev, ""); 862 863 if (!hdev_is_powered(hdev)) 864 return 0; 865 866 if (!lmp_ext_inq_capable(hdev)) 867 return 0; 868 869 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 870 return 0; 871 872 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 873 return 0; 874 875 memset(&cp, 0, sizeof(cp)); 876 877 eir_create(hdev, cp.data); 878 879 if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0) 880 return 0; 881 882 memcpy(hdev->eir, cp.data, sizeof(cp.data)); 883 884 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp, 885 HCI_CMD_TIMEOUT); 886 } 887 888 static u8 get_service_classes(struct hci_dev *hdev) 889 { 890 struct bt_uuid *uuid; 891 u8 val = 0; 892 893 list_for_each_entry(uuid, &hdev->uuids, list) 894 val |= uuid->svc_hint; 895 896 return val; 897 } 898 899 int hci_update_class_sync(struct hci_dev *hdev) 900 { 901 u8 cod[3]; 902 903 bt_dev_dbg(hdev, ""); 904 905 if (!hdev_is_powered(hdev)) 906 return 0; 907 908 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 909 return 0; 910 911 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 912 return 0; 913 914 cod[0] = hdev->minor_class; 915 cod[1] = hdev->major_class; 916 cod[2] = get_service_classes(hdev); 917 918 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) 919 cod[1] |= 0x20; 920 921 if (memcmp(cod, hdev->dev_class, 3) == 0) 922 return 0; 923 924 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CLASS_OF_DEV, 925 sizeof(cod), cod, HCI_CMD_TIMEOUT); 926 } 927 928 static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable) 929 { 930 /* If there is no connection we are OK to advertise. */ 931 if (hci_conn_num(hdev, LE_LINK) == 0) 932 return true; 933 934 /* Check le_states if there is any connection in peripheral role. */ 935 if (hdev->conn_hash.le_num_peripheral > 0) { 936 /* Peripheral connection state and non connectable mode 937 * bit 20. 938 */ 939 if (!connectable && !(hdev->le_states[2] & 0x10)) 940 return false; 941 942 /* Peripheral connection state and connectable mode bit 38 943 * and scannable bit 21. 944 */ 945 if (connectable && (!(hdev->le_states[4] & 0x40) || 946 !(hdev->le_states[2] & 0x20))) 947 return false; 948 } 949 950 /* Check le_states if there is any connection in central role. */ 951 if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) { 952 /* Central connection state and non connectable mode bit 18. */ 953 if (!connectable && !(hdev->le_states[2] & 0x02)) 954 return false; 955 956 /* Central connection state and connectable mode bit 35 and 957 * scannable 19. 958 */ 959 if (connectable && (!(hdev->le_states[4] & 0x08) || 960 !(hdev->le_states[2] & 0x08))) 961 return false; 962 } 963 964 return true; 965 } 966 967 static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags) 968 { 969 /* If privacy is not enabled don't use RPA */ 970 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 971 return false; 972 973 /* If basic privacy mode is enabled use RPA */ 974 if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) 975 return true; 976 977 /* If limited privacy mode is enabled don't use RPA if we're 978 * both discoverable and bondable. 979 */ 980 if ((flags & MGMT_ADV_FLAG_DISCOV) && 981 hci_dev_test_flag(hdev, HCI_BONDABLE)) 982 return false; 983 984 /* We're neither bondable nor discoverable in the limited 985 * privacy mode, therefore use RPA. 986 */ 987 return true; 988 } 989 990 static int hci_set_random_addr_sync(struct hci_dev *hdev, bdaddr_t *rpa) 991 { 992 /* If we're advertising or initiating an LE connection we can't 993 * go ahead and change the random address at this time. This is 994 * because the eventual initiator address used for the 995 * subsequently created connection will be undefined (some 996 * controllers use the new address and others the one we had 997 * when the operation started). 998 * 999 * In this kind of scenario skip the update and let the random 1000 * address be updated at the next cycle. 1001 */ 1002 if (hci_dev_test_flag(hdev, HCI_LE_ADV) || 1003 hci_lookup_le_connect(hdev)) { 1004 bt_dev_dbg(hdev, "Deferring random address update"); 1005 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 1006 return 0; 1007 } 1008 1009 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RANDOM_ADDR, 1010 6, rpa, HCI_CMD_TIMEOUT); 1011 } 1012 1013 int hci_update_random_address_sync(struct hci_dev *hdev, bool require_privacy, 1014 bool rpa, u8 *own_addr_type) 1015 { 1016 int err; 1017 1018 /* If privacy is enabled use a resolvable private address. If 1019 * current RPA has expired or there is something else than 1020 * the current RPA in use, then generate a new one. 1021 */ 1022 if (rpa) { 1023 /* If Controller supports LL Privacy use own address type is 1024 * 0x03 1025 */ 1026 if (use_ll_privacy(hdev)) 1027 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED; 1028 else 1029 *own_addr_type = ADDR_LE_DEV_RANDOM; 1030 1031 /* Check if RPA is valid */ 1032 if (rpa_valid(hdev)) 1033 return 0; 1034 1035 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); 1036 if (err < 0) { 1037 bt_dev_err(hdev, "failed to generate new RPA"); 1038 return err; 1039 } 1040 1041 err = hci_set_random_addr_sync(hdev, &hdev->rpa); 1042 if (err) 1043 return err; 1044 1045 return 0; 1046 } 1047 1048 /* In case of required privacy without resolvable private address, 1049 * use an non-resolvable private address. This is useful for active 1050 * scanning and non-connectable advertising. 1051 */ 1052 if (require_privacy) { 1053 bdaddr_t nrpa; 1054 1055 while (true) { 1056 /* The non-resolvable private address is generated 1057 * from random six bytes with the two most significant 1058 * bits cleared. 1059 */ 1060 get_random_bytes(&nrpa, 6); 1061 nrpa.b[5] &= 0x3f; 1062 1063 /* The non-resolvable private address shall not be 1064 * equal to the public address. 1065 */ 1066 if (bacmp(&hdev->bdaddr, &nrpa)) 1067 break; 1068 } 1069 1070 *own_addr_type = ADDR_LE_DEV_RANDOM; 1071 1072 return hci_set_random_addr_sync(hdev, &nrpa); 1073 } 1074 1075 /* If forcing static address is in use or there is no public 1076 * address use the static address as random address (but skip 1077 * the HCI command if the current random address is already the 1078 * static one. 1079 * 1080 * In case BR/EDR has been disabled on a dual-mode controller 1081 * and a static address has been configured, then use that 1082 * address instead of the public BR/EDR address. 1083 */ 1084 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 1085 !bacmp(&hdev->bdaddr, BDADDR_ANY) || 1086 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && 1087 bacmp(&hdev->static_addr, BDADDR_ANY))) { 1088 *own_addr_type = ADDR_LE_DEV_RANDOM; 1089 if (bacmp(&hdev->static_addr, &hdev->random_addr)) 1090 return hci_set_random_addr_sync(hdev, 1091 &hdev->static_addr); 1092 return 0; 1093 } 1094 1095 /* Neither privacy nor static address is being used so use a 1096 * public address. 1097 */ 1098 *own_addr_type = ADDR_LE_DEV_PUBLIC; 1099 1100 return 0; 1101 } 1102 1103 static int hci_disable_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance) 1104 { 1105 struct hci_cp_le_set_ext_adv_enable *cp; 1106 struct hci_cp_ext_adv_set *set; 1107 u8 data[sizeof(*cp) + sizeof(*set) * 1]; 1108 u8 size; 1109 struct adv_info *adv = NULL; 1110 1111 /* If request specifies an instance that doesn't exist, fail */ 1112 if (instance > 0) { 1113 adv = hci_find_adv_instance(hdev, instance); 1114 if (!adv) 1115 return -EINVAL; 1116 1117 /* If not enabled there is nothing to do */ 1118 if (!adv->enabled) 1119 return 0; 1120 } 1121 1122 memset(data, 0, sizeof(data)); 1123 1124 cp = (void *)data; 1125 set = (void *)cp->data; 1126 1127 /* Instance 0x00 indicates all advertising instances will be disabled */ 1128 cp->num_of_sets = !!instance; 1129 cp->enable = 0x00; 1130 1131 set->handle = adv ? adv->handle : instance; 1132 1133 size = sizeof(*cp) + sizeof(*set) * cp->num_of_sets; 1134 1135 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, 1136 size, data, HCI_CMD_TIMEOUT); 1137 } 1138 1139 static int hci_set_adv_set_random_addr_sync(struct hci_dev *hdev, u8 instance, 1140 bdaddr_t *random_addr) 1141 { 1142 struct hci_cp_le_set_adv_set_rand_addr cp; 1143 int err; 1144 1145 if (!instance) { 1146 /* Instance 0x00 doesn't have an adv_info, instead it uses 1147 * hdev->random_addr to track its address so whenever it needs 1148 * to be updated this also set the random address since 1149 * hdev->random_addr is shared with scan state machine. 1150 */ 1151 err = hci_set_random_addr_sync(hdev, random_addr); 1152 if (err) 1153 return err; 1154 } 1155 1156 memset(&cp, 0, sizeof(cp)); 1157 1158 cp.handle = instance; 1159 bacpy(&cp.bdaddr, random_addr); 1160 1161 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_SET_RAND_ADDR, 1162 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1163 } 1164 1165 int hci_setup_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance) 1166 { 1167 struct hci_cp_le_set_ext_adv_params cp; 1168 bool connectable; 1169 u32 flags; 1170 bdaddr_t random_addr; 1171 u8 own_addr_type; 1172 int err; 1173 struct adv_info *adv; 1174 bool secondary_adv; 1175 1176 if (instance > 0) { 1177 adv = hci_find_adv_instance(hdev, instance); 1178 if (!adv) 1179 return -EINVAL; 1180 } else { 1181 adv = NULL; 1182 } 1183 1184 /* Updating parameters of an active instance will return a 1185 * Command Disallowed error, so we must first disable the 1186 * instance if it is active. 1187 */ 1188 if (adv && !adv->pending) { 1189 err = hci_disable_ext_adv_instance_sync(hdev, instance); 1190 if (err) 1191 return err; 1192 } 1193 1194 flags = hci_adv_instance_flags(hdev, instance); 1195 1196 /* If the "connectable" instance flag was not set, then choose between 1197 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. 1198 */ 1199 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || 1200 mgmt_get_connectable(hdev); 1201 1202 if (!is_advertising_allowed(hdev, connectable)) 1203 return -EPERM; 1204 1205 /* Set require_privacy to true only when non-connectable 1206 * advertising is used. In that case it is fine to use a 1207 * non-resolvable private address. 1208 */ 1209 err = hci_get_random_address(hdev, !connectable, 1210 adv_use_rpa(hdev, flags), adv, 1211 &own_addr_type, &random_addr); 1212 if (err < 0) 1213 return err; 1214 1215 memset(&cp, 0, sizeof(cp)); 1216 1217 if (adv) { 1218 hci_cpu_to_le24(adv->min_interval, cp.min_interval); 1219 hci_cpu_to_le24(adv->max_interval, cp.max_interval); 1220 cp.tx_power = adv->tx_power; 1221 } else { 1222 hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval); 1223 hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval); 1224 cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE; 1225 } 1226 1227 secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK); 1228 1229 if (connectable) { 1230 if (secondary_adv) 1231 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND); 1232 else 1233 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND); 1234 } else if (hci_adv_instance_is_scannable(hdev, instance) || 1235 (flags & MGMT_ADV_PARAM_SCAN_RSP)) { 1236 if (secondary_adv) 1237 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND); 1238 else 1239 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND); 1240 } else { 1241 if (secondary_adv) 1242 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND); 1243 else 1244 cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND); 1245 } 1246 1247 /* If Own_Address_Type equals 0x02 or 0x03, the Peer_Address parameter 1248 * contains the peer’s Identity Address and the Peer_Address_Type 1249 * parameter contains the peer’s Identity Type (i.e., 0x00 or 0x01). 1250 * These parameters are used to locate the corresponding local IRK in 1251 * the resolving list; this IRK is used to generate their own address 1252 * used in the advertisement. 1253 */ 1254 if (own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) 1255 hci_copy_identity_address(hdev, &cp.peer_addr, 1256 &cp.peer_addr_type); 1257 1258 cp.own_addr_type = own_addr_type; 1259 cp.channel_map = hdev->le_adv_channel_map; 1260 cp.handle = adv ? adv->handle : instance; 1261 1262 if (flags & MGMT_ADV_FLAG_SEC_2M) { 1263 cp.primary_phy = HCI_ADV_PHY_1M; 1264 cp.secondary_phy = HCI_ADV_PHY_2M; 1265 } else if (flags & MGMT_ADV_FLAG_SEC_CODED) { 1266 cp.primary_phy = HCI_ADV_PHY_CODED; 1267 cp.secondary_phy = HCI_ADV_PHY_CODED; 1268 } else { 1269 /* In all other cases use 1M */ 1270 cp.primary_phy = HCI_ADV_PHY_1M; 1271 cp.secondary_phy = HCI_ADV_PHY_1M; 1272 } 1273 1274 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS, 1275 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1276 if (err) 1277 return err; 1278 1279 if ((own_addr_type == ADDR_LE_DEV_RANDOM || 1280 own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) && 1281 bacmp(&random_addr, BDADDR_ANY)) { 1282 /* Check if random address need to be updated */ 1283 if (adv) { 1284 if (!bacmp(&random_addr, &adv->random_addr)) 1285 return 0; 1286 } else { 1287 if (!bacmp(&random_addr, &hdev->random_addr)) 1288 return 0; 1289 } 1290 1291 return hci_set_adv_set_random_addr_sync(hdev, instance, 1292 &random_addr); 1293 } 1294 1295 return 0; 1296 } 1297 1298 static int hci_set_ext_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 1299 { 1300 DEFINE_FLEX(struct hci_cp_le_set_ext_scan_rsp_data, pdu, data, length, 1301 HCI_MAX_EXT_AD_LENGTH); 1302 u8 len; 1303 struct adv_info *adv = NULL; 1304 int err; 1305 1306 if (instance) { 1307 adv = hci_find_adv_instance(hdev, instance); 1308 if (!adv || !adv->scan_rsp_changed) 1309 return 0; 1310 } 1311 1312 len = eir_create_scan_rsp(hdev, instance, pdu->data); 1313 1314 pdu->handle = adv ? adv->handle : instance; 1315 pdu->length = len; 1316 pdu->operation = LE_SET_ADV_DATA_OP_COMPLETE; 1317 pdu->frag_pref = LE_SET_ADV_DATA_NO_FRAG; 1318 1319 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA, 1320 struct_size(pdu, data, len), pdu, 1321 HCI_CMD_TIMEOUT); 1322 if (err) 1323 return err; 1324 1325 if (adv) { 1326 adv->scan_rsp_changed = false; 1327 } else { 1328 memcpy(hdev->scan_rsp_data, pdu->data, len); 1329 hdev->scan_rsp_data_len = len; 1330 } 1331 1332 return 0; 1333 } 1334 1335 static int __hci_set_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 1336 { 1337 struct hci_cp_le_set_scan_rsp_data cp; 1338 u8 len; 1339 1340 memset(&cp, 0, sizeof(cp)); 1341 1342 len = eir_create_scan_rsp(hdev, instance, cp.data); 1343 1344 if (hdev->scan_rsp_data_len == len && 1345 !memcmp(cp.data, hdev->scan_rsp_data, len)) 1346 return 0; 1347 1348 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data)); 1349 hdev->scan_rsp_data_len = len; 1350 1351 cp.length = len; 1352 1353 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_RSP_DATA, 1354 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1355 } 1356 1357 int hci_update_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 1358 { 1359 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1360 return 0; 1361 1362 if (ext_adv_capable(hdev)) 1363 return hci_set_ext_scan_rsp_data_sync(hdev, instance); 1364 1365 return __hci_set_scan_rsp_data_sync(hdev, instance); 1366 } 1367 1368 int hci_enable_ext_advertising_sync(struct hci_dev *hdev, u8 instance) 1369 { 1370 struct hci_cp_le_set_ext_adv_enable *cp; 1371 struct hci_cp_ext_adv_set *set; 1372 u8 data[sizeof(*cp) + sizeof(*set) * 1]; 1373 struct adv_info *adv; 1374 1375 if (instance > 0) { 1376 adv = hci_find_adv_instance(hdev, instance); 1377 if (!adv) 1378 return -EINVAL; 1379 /* If already enabled there is nothing to do */ 1380 if (adv->enabled) 1381 return 0; 1382 } else { 1383 adv = NULL; 1384 } 1385 1386 cp = (void *)data; 1387 set = (void *)cp->data; 1388 1389 memset(cp, 0, sizeof(*cp)); 1390 1391 cp->enable = 0x01; 1392 cp->num_of_sets = 0x01; 1393 1394 memset(set, 0, sizeof(*set)); 1395 1396 set->handle = adv ? adv->handle : instance; 1397 1398 /* Set duration per instance since controller is responsible for 1399 * scheduling it. 1400 */ 1401 if (adv && adv->timeout) { 1402 u16 duration = adv->timeout * MSEC_PER_SEC; 1403 1404 /* Time = N * 10 ms */ 1405 set->duration = cpu_to_le16(duration / 10); 1406 } 1407 1408 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, 1409 sizeof(*cp) + 1410 sizeof(*set) * cp->num_of_sets, 1411 data, HCI_CMD_TIMEOUT); 1412 } 1413 1414 int hci_start_ext_adv_sync(struct hci_dev *hdev, u8 instance) 1415 { 1416 int err; 1417 1418 err = hci_setup_ext_adv_instance_sync(hdev, instance); 1419 if (err) 1420 return err; 1421 1422 err = hci_set_ext_scan_rsp_data_sync(hdev, instance); 1423 if (err) 1424 return err; 1425 1426 return hci_enable_ext_advertising_sync(hdev, instance); 1427 } 1428 1429 int hci_disable_per_advertising_sync(struct hci_dev *hdev, u8 instance) 1430 { 1431 struct hci_cp_le_set_per_adv_enable cp; 1432 struct adv_info *adv = NULL; 1433 1434 /* If periodic advertising already disabled there is nothing to do. */ 1435 adv = hci_find_adv_instance(hdev, instance); 1436 if (!adv || !adv->periodic || !adv->enabled) 1437 return 0; 1438 1439 memset(&cp, 0, sizeof(cp)); 1440 1441 cp.enable = 0x00; 1442 cp.handle = instance; 1443 1444 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE, 1445 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1446 } 1447 1448 static int hci_set_per_adv_params_sync(struct hci_dev *hdev, u8 instance, 1449 u16 min_interval, u16 max_interval) 1450 { 1451 struct hci_cp_le_set_per_adv_params cp; 1452 1453 memset(&cp, 0, sizeof(cp)); 1454 1455 if (!min_interval) 1456 min_interval = DISCOV_LE_PER_ADV_INT_MIN; 1457 1458 if (!max_interval) 1459 max_interval = DISCOV_LE_PER_ADV_INT_MAX; 1460 1461 cp.handle = instance; 1462 cp.min_interval = cpu_to_le16(min_interval); 1463 cp.max_interval = cpu_to_le16(max_interval); 1464 cp.periodic_properties = 0x0000; 1465 1466 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_PARAMS, 1467 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1468 } 1469 1470 static int hci_set_per_adv_data_sync(struct hci_dev *hdev, u8 instance) 1471 { 1472 DEFINE_FLEX(struct hci_cp_le_set_per_adv_data, pdu, data, length, 1473 HCI_MAX_PER_AD_LENGTH); 1474 u8 len; 1475 struct adv_info *adv = NULL; 1476 1477 if (instance) { 1478 adv = hci_find_adv_instance(hdev, instance); 1479 if (!adv || !adv->periodic) 1480 return 0; 1481 } 1482 1483 len = eir_create_per_adv_data(hdev, instance, pdu->data); 1484 1485 pdu->length = len; 1486 pdu->handle = adv ? adv->handle : instance; 1487 pdu->operation = LE_SET_ADV_DATA_OP_COMPLETE; 1488 1489 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_DATA, 1490 struct_size(pdu, data, len), pdu, 1491 HCI_CMD_TIMEOUT); 1492 } 1493 1494 static int hci_enable_per_advertising_sync(struct hci_dev *hdev, u8 instance) 1495 { 1496 struct hci_cp_le_set_per_adv_enable cp; 1497 struct adv_info *adv = NULL; 1498 1499 /* If periodic advertising already enabled there is nothing to do. */ 1500 adv = hci_find_adv_instance(hdev, instance); 1501 if (adv && adv->periodic && adv->enabled) 1502 return 0; 1503 1504 memset(&cp, 0, sizeof(cp)); 1505 1506 cp.enable = 0x01; 1507 cp.handle = instance; 1508 1509 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE, 1510 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1511 } 1512 1513 /* Checks if periodic advertising data contains a Basic Announcement and if it 1514 * does generates a Broadcast ID and add Broadcast Announcement. 1515 */ 1516 static int hci_adv_bcast_annoucement(struct hci_dev *hdev, struct adv_info *adv) 1517 { 1518 u8 bid[3]; 1519 u8 ad[4 + 3]; 1520 1521 /* Skip if NULL adv as instance 0x00 is used for general purpose 1522 * advertising so it cannot used for the likes of Broadcast Announcement 1523 * as it can be overwritten at any point. 1524 */ 1525 if (!adv) 1526 return 0; 1527 1528 /* Check if PA data doesn't contains a Basic Audio Announcement then 1529 * there is nothing to do. 1530 */ 1531 if (!eir_get_service_data(adv->per_adv_data, adv->per_adv_data_len, 1532 0x1851, NULL)) 1533 return 0; 1534 1535 /* Check if advertising data already has a Broadcast Announcement since 1536 * the process may want to control the Broadcast ID directly and in that 1537 * case the kernel shall no interfere. 1538 */ 1539 if (eir_get_service_data(adv->adv_data, adv->adv_data_len, 0x1852, 1540 NULL)) 1541 return 0; 1542 1543 /* Generate Broadcast ID */ 1544 get_random_bytes(bid, sizeof(bid)); 1545 eir_append_service_data(ad, 0, 0x1852, bid, sizeof(bid)); 1546 hci_set_adv_instance_data(hdev, adv->instance, sizeof(ad), ad, 0, NULL); 1547 1548 return hci_update_adv_data_sync(hdev, adv->instance); 1549 } 1550 1551 int hci_start_per_adv_sync(struct hci_dev *hdev, u8 instance, u8 data_len, 1552 u8 *data, u32 flags, u16 min_interval, 1553 u16 max_interval, u16 sync_interval) 1554 { 1555 struct adv_info *adv = NULL; 1556 int err; 1557 bool added = false; 1558 1559 hci_disable_per_advertising_sync(hdev, instance); 1560 1561 if (instance) { 1562 adv = hci_find_adv_instance(hdev, instance); 1563 /* Create an instance if that could not be found */ 1564 if (!adv) { 1565 adv = hci_add_per_instance(hdev, instance, flags, 1566 data_len, data, 1567 sync_interval, 1568 sync_interval); 1569 if (IS_ERR(adv)) 1570 return PTR_ERR(adv); 1571 adv->pending = false; 1572 added = true; 1573 } 1574 } 1575 1576 /* Start advertising */ 1577 err = hci_start_ext_adv_sync(hdev, instance); 1578 if (err < 0) 1579 goto fail; 1580 1581 err = hci_adv_bcast_annoucement(hdev, adv); 1582 if (err < 0) 1583 goto fail; 1584 1585 err = hci_set_per_adv_params_sync(hdev, instance, min_interval, 1586 max_interval); 1587 if (err < 0) 1588 goto fail; 1589 1590 err = hci_set_per_adv_data_sync(hdev, instance); 1591 if (err < 0) 1592 goto fail; 1593 1594 err = hci_enable_per_advertising_sync(hdev, instance); 1595 if (err < 0) 1596 goto fail; 1597 1598 return 0; 1599 1600 fail: 1601 if (added) 1602 hci_remove_adv_instance(hdev, instance); 1603 1604 return err; 1605 } 1606 1607 static int hci_start_adv_sync(struct hci_dev *hdev, u8 instance) 1608 { 1609 int err; 1610 1611 if (ext_adv_capable(hdev)) 1612 return hci_start_ext_adv_sync(hdev, instance); 1613 1614 err = hci_update_adv_data_sync(hdev, instance); 1615 if (err) 1616 return err; 1617 1618 err = hci_update_scan_rsp_data_sync(hdev, instance); 1619 if (err) 1620 return err; 1621 1622 return hci_enable_advertising_sync(hdev); 1623 } 1624 1625 int hci_enable_advertising_sync(struct hci_dev *hdev) 1626 { 1627 struct adv_info *adv_instance; 1628 struct hci_cp_le_set_adv_param cp; 1629 u8 own_addr_type, enable = 0x01; 1630 bool connectable; 1631 u16 adv_min_interval, adv_max_interval; 1632 u32 flags; 1633 u8 status; 1634 1635 if (ext_adv_capable(hdev)) 1636 return hci_enable_ext_advertising_sync(hdev, 1637 hdev->cur_adv_instance); 1638 1639 flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance); 1640 adv_instance = hci_find_adv_instance(hdev, hdev->cur_adv_instance); 1641 1642 /* If the "connectable" instance flag was not set, then choose between 1643 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. 1644 */ 1645 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || 1646 mgmt_get_connectable(hdev); 1647 1648 if (!is_advertising_allowed(hdev, connectable)) 1649 return -EINVAL; 1650 1651 status = hci_disable_advertising_sync(hdev); 1652 if (status) 1653 return status; 1654 1655 /* Clear the HCI_LE_ADV bit temporarily so that the 1656 * hci_update_random_address knows that it's safe to go ahead 1657 * and write a new random address. The flag will be set back on 1658 * as soon as the SET_ADV_ENABLE HCI command completes. 1659 */ 1660 hci_dev_clear_flag(hdev, HCI_LE_ADV); 1661 1662 /* Set require_privacy to true only when non-connectable 1663 * advertising is used. In that case it is fine to use a 1664 * non-resolvable private address. 1665 */ 1666 status = hci_update_random_address_sync(hdev, !connectable, 1667 adv_use_rpa(hdev, flags), 1668 &own_addr_type); 1669 if (status) 1670 return status; 1671 1672 memset(&cp, 0, sizeof(cp)); 1673 1674 if (adv_instance) { 1675 adv_min_interval = adv_instance->min_interval; 1676 adv_max_interval = adv_instance->max_interval; 1677 } else { 1678 adv_min_interval = hdev->le_adv_min_interval; 1679 adv_max_interval = hdev->le_adv_max_interval; 1680 } 1681 1682 if (connectable) { 1683 cp.type = LE_ADV_IND; 1684 } else { 1685 if (hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance)) 1686 cp.type = LE_ADV_SCAN_IND; 1687 else 1688 cp.type = LE_ADV_NONCONN_IND; 1689 1690 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) || 1691 hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { 1692 adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN; 1693 adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX; 1694 } 1695 } 1696 1697 cp.min_interval = cpu_to_le16(adv_min_interval); 1698 cp.max_interval = cpu_to_le16(adv_max_interval); 1699 cp.own_address_type = own_addr_type; 1700 cp.channel_map = hdev->le_adv_channel_map; 1701 1702 status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM, 1703 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1704 if (status) 1705 return status; 1706 1707 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 1708 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 1709 } 1710 1711 static int enable_advertising_sync(struct hci_dev *hdev, void *data) 1712 { 1713 return hci_enable_advertising_sync(hdev); 1714 } 1715 1716 int hci_enable_advertising(struct hci_dev *hdev) 1717 { 1718 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) && 1719 list_empty(&hdev->adv_instances)) 1720 return 0; 1721 1722 return hci_cmd_sync_queue(hdev, enable_advertising_sync, NULL, NULL); 1723 } 1724 1725 int hci_remove_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance, 1726 struct sock *sk) 1727 { 1728 int err; 1729 1730 if (!ext_adv_capable(hdev)) 1731 return 0; 1732 1733 err = hci_disable_ext_adv_instance_sync(hdev, instance); 1734 if (err) 1735 return err; 1736 1737 /* If request specifies an instance that doesn't exist, fail */ 1738 if (instance > 0 && !hci_find_adv_instance(hdev, instance)) 1739 return -EINVAL; 1740 1741 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_REMOVE_ADV_SET, 1742 sizeof(instance), &instance, 0, 1743 HCI_CMD_TIMEOUT, sk); 1744 } 1745 1746 static int remove_ext_adv_sync(struct hci_dev *hdev, void *data) 1747 { 1748 struct adv_info *adv = data; 1749 u8 instance = 0; 1750 1751 if (adv) 1752 instance = adv->instance; 1753 1754 return hci_remove_ext_adv_instance_sync(hdev, instance, NULL); 1755 } 1756 1757 int hci_remove_ext_adv_instance(struct hci_dev *hdev, u8 instance) 1758 { 1759 struct adv_info *adv = NULL; 1760 1761 if (instance) { 1762 adv = hci_find_adv_instance(hdev, instance); 1763 if (!adv) 1764 return -EINVAL; 1765 } 1766 1767 return hci_cmd_sync_queue(hdev, remove_ext_adv_sync, adv, NULL); 1768 } 1769 1770 int hci_le_terminate_big_sync(struct hci_dev *hdev, u8 handle, u8 reason) 1771 { 1772 struct hci_cp_le_term_big cp; 1773 1774 memset(&cp, 0, sizeof(cp)); 1775 cp.handle = handle; 1776 cp.reason = reason; 1777 1778 return __hci_cmd_sync_status(hdev, HCI_OP_LE_TERM_BIG, 1779 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1780 } 1781 1782 static int hci_set_ext_adv_data_sync(struct hci_dev *hdev, u8 instance) 1783 { 1784 DEFINE_FLEX(struct hci_cp_le_set_ext_adv_data, pdu, data, length, 1785 HCI_MAX_EXT_AD_LENGTH); 1786 u8 len; 1787 struct adv_info *adv = NULL; 1788 int err; 1789 1790 if (instance) { 1791 adv = hci_find_adv_instance(hdev, instance); 1792 if (!adv || !adv->adv_data_changed) 1793 return 0; 1794 } 1795 1796 len = eir_create_adv_data(hdev, instance, pdu->data); 1797 1798 pdu->length = len; 1799 pdu->handle = adv ? adv->handle : instance; 1800 pdu->operation = LE_SET_ADV_DATA_OP_COMPLETE; 1801 pdu->frag_pref = LE_SET_ADV_DATA_NO_FRAG; 1802 1803 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_DATA, 1804 struct_size(pdu, data, len), pdu, 1805 HCI_CMD_TIMEOUT); 1806 if (err) 1807 return err; 1808 1809 /* Update data if the command succeed */ 1810 if (adv) { 1811 adv->adv_data_changed = false; 1812 } else { 1813 memcpy(hdev->adv_data, pdu->data, len); 1814 hdev->adv_data_len = len; 1815 } 1816 1817 return 0; 1818 } 1819 1820 static int hci_set_adv_data_sync(struct hci_dev *hdev, u8 instance) 1821 { 1822 struct hci_cp_le_set_adv_data cp; 1823 u8 len; 1824 1825 memset(&cp, 0, sizeof(cp)); 1826 1827 len = eir_create_adv_data(hdev, instance, cp.data); 1828 1829 /* There's nothing to do if the data hasn't changed */ 1830 if (hdev->adv_data_len == len && 1831 memcmp(cp.data, hdev->adv_data, len) == 0) 1832 return 0; 1833 1834 memcpy(hdev->adv_data, cp.data, sizeof(cp.data)); 1835 hdev->adv_data_len = len; 1836 1837 cp.length = len; 1838 1839 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_DATA, 1840 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1841 } 1842 1843 int hci_update_adv_data_sync(struct hci_dev *hdev, u8 instance) 1844 { 1845 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1846 return 0; 1847 1848 if (ext_adv_capable(hdev)) 1849 return hci_set_ext_adv_data_sync(hdev, instance); 1850 1851 return hci_set_adv_data_sync(hdev, instance); 1852 } 1853 1854 int hci_schedule_adv_instance_sync(struct hci_dev *hdev, u8 instance, 1855 bool force) 1856 { 1857 struct adv_info *adv = NULL; 1858 u16 timeout; 1859 1860 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) && !ext_adv_capable(hdev)) 1861 return -EPERM; 1862 1863 if (hdev->adv_instance_timeout) 1864 return -EBUSY; 1865 1866 adv = hci_find_adv_instance(hdev, instance); 1867 if (!adv) 1868 return -ENOENT; 1869 1870 /* A zero timeout means unlimited advertising. As long as there is 1871 * only one instance, duration should be ignored. We still set a timeout 1872 * in case further instances are being added later on. 1873 * 1874 * If the remaining lifetime of the instance is more than the duration 1875 * then the timeout corresponds to the duration, otherwise it will be 1876 * reduced to the remaining instance lifetime. 1877 */ 1878 if (adv->timeout == 0 || adv->duration <= adv->remaining_time) 1879 timeout = adv->duration; 1880 else 1881 timeout = adv->remaining_time; 1882 1883 /* The remaining time is being reduced unless the instance is being 1884 * advertised without time limit. 1885 */ 1886 if (adv->timeout) 1887 adv->remaining_time = adv->remaining_time - timeout; 1888 1889 /* Only use work for scheduling instances with legacy advertising */ 1890 if (!ext_adv_capable(hdev)) { 1891 hdev->adv_instance_timeout = timeout; 1892 queue_delayed_work(hdev->req_workqueue, 1893 &hdev->adv_instance_expire, 1894 msecs_to_jiffies(timeout * 1000)); 1895 } 1896 1897 /* If we're just re-scheduling the same instance again then do not 1898 * execute any HCI commands. This happens when a single instance is 1899 * being advertised. 1900 */ 1901 if (!force && hdev->cur_adv_instance == instance && 1902 hci_dev_test_flag(hdev, HCI_LE_ADV)) 1903 return 0; 1904 1905 hdev->cur_adv_instance = instance; 1906 1907 return hci_start_adv_sync(hdev, instance); 1908 } 1909 1910 static int hci_clear_adv_sets_sync(struct hci_dev *hdev, struct sock *sk) 1911 { 1912 int err; 1913 1914 if (!ext_adv_capable(hdev)) 1915 return 0; 1916 1917 /* Disable instance 0x00 to disable all instances */ 1918 err = hci_disable_ext_adv_instance_sync(hdev, 0x00); 1919 if (err) 1920 return err; 1921 1922 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CLEAR_ADV_SETS, 1923 0, NULL, 0, HCI_CMD_TIMEOUT, sk); 1924 } 1925 1926 static int hci_clear_adv_sync(struct hci_dev *hdev, struct sock *sk, bool force) 1927 { 1928 struct adv_info *adv, *n; 1929 int err = 0; 1930 1931 if (ext_adv_capable(hdev)) 1932 /* Remove all existing sets */ 1933 err = hci_clear_adv_sets_sync(hdev, sk); 1934 if (ext_adv_capable(hdev)) 1935 return err; 1936 1937 /* This is safe as long as there is no command send while the lock is 1938 * held. 1939 */ 1940 hci_dev_lock(hdev); 1941 1942 /* Cleanup non-ext instances */ 1943 list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) { 1944 u8 instance = adv->instance; 1945 int err; 1946 1947 if (!(force || adv->timeout)) 1948 continue; 1949 1950 err = hci_remove_adv_instance(hdev, instance); 1951 if (!err) 1952 mgmt_advertising_removed(sk, hdev, instance); 1953 } 1954 1955 hci_dev_unlock(hdev); 1956 1957 return 0; 1958 } 1959 1960 static int hci_remove_adv_sync(struct hci_dev *hdev, u8 instance, 1961 struct sock *sk) 1962 { 1963 int err = 0; 1964 1965 /* If we use extended advertising, instance has to be removed first. */ 1966 if (ext_adv_capable(hdev)) 1967 err = hci_remove_ext_adv_instance_sync(hdev, instance, sk); 1968 if (ext_adv_capable(hdev)) 1969 return err; 1970 1971 /* This is safe as long as there is no command send while the lock is 1972 * held. 1973 */ 1974 hci_dev_lock(hdev); 1975 1976 err = hci_remove_adv_instance(hdev, instance); 1977 if (!err) 1978 mgmt_advertising_removed(sk, hdev, instance); 1979 1980 hci_dev_unlock(hdev); 1981 1982 return err; 1983 } 1984 1985 /* For a single instance: 1986 * - force == true: The instance will be removed even when its remaining 1987 * lifetime is not zero. 1988 * - force == false: the instance will be deactivated but kept stored unless 1989 * the remaining lifetime is zero. 1990 * 1991 * For instance == 0x00: 1992 * - force == true: All instances will be removed regardless of their timeout 1993 * setting. 1994 * - force == false: Only instances that have a timeout will be removed. 1995 */ 1996 int hci_remove_advertising_sync(struct hci_dev *hdev, struct sock *sk, 1997 u8 instance, bool force) 1998 { 1999 struct adv_info *next = NULL; 2000 int err; 2001 2002 /* Cancel any timeout concerning the removed instance(s). */ 2003 if (!instance || hdev->cur_adv_instance == instance) 2004 cancel_adv_timeout(hdev); 2005 2006 /* Get the next instance to advertise BEFORE we remove 2007 * the current one. This can be the same instance again 2008 * if there is only one instance. 2009 */ 2010 if (hdev->cur_adv_instance == instance) 2011 next = hci_get_next_instance(hdev, instance); 2012 2013 if (!instance) { 2014 err = hci_clear_adv_sync(hdev, sk, force); 2015 if (err) 2016 return err; 2017 } else { 2018 struct adv_info *adv = hci_find_adv_instance(hdev, instance); 2019 2020 if (force || (adv && adv->timeout && !adv->remaining_time)) { 2021 /* Don't advertise a removed instance. */ 2022 if (next && next->instance == instance) 2023 next = NULL; 2024 2025 err = hci_remove_adv_sync(hdev, instance, sk); 2026 if (err) 2027 return err; 2028 } 2029 } 2030 2031 if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING)) 2032 return 0; 2033 2034 if (next && !ext_adv_capable(hdev)) 2035 hci_schedule_adv_instance_sync(hdev, next->instance, false); 2036 2037 return 0; 2038 } 2039 2040 int hci_read_rssi_sync(struct hci_dev *hdev, __le16 handle) 2041 { 2042 struct hci_cp_read_rssi cp; 2043 2044 cp.handle = handle; 2045 return __hci_cmd_sync_status(hdev, HCI_OP_READ_RSSI, 2046 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2047 } 2048 2049 int hci_read_clock_sync(struct hci_dev *hdev, struct hci_cp_read_clock *cp) 2050 { 2051 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLOCK, 2052 sizeof(*cp), cp, HCI_CMD_TIMEOUT); 2053 } 2054 2055 int hci_read_tx_power_sync(struct hci_dev *hdev, __le16 handle, u8 type) 2056 { 2057 struct hci_cp_read_tx_power cp; 2058 2059 cp.handle = handle; 2060 cp.type = type; 2061 return __hci_cmd_sync_status(hdev, HCI_OP_READ_TX_POWER, 2062 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2063 } 2064 2065 int hci_disable_advertising_sync(struct hci_dev *hdev) 2066 { 2067 u8 enable = 0x00; 2068 int err = 0; 2069 2070 /* If controller is not advertising we are done. */ 2071 if (!hci_dev_test_flag(hdev, HCI_LE_ADV)) 2072 return 0; 2073 2074 if (ext_adv_capable(hdev)) 2075 err = hci_disable_ext_adv_instance_sync(hdev, 0x00); 2076 if (ext_adv_capable(hdev)) 2077 return err; 2078 2079 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 2080 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 2081 } 2082 2083 static int hci_le_set_ext_scan_enable_sync(struct hci_dev *hdev, u8 val, 2084 u8 filter_dup) 2085 { 2086 struct hci_cp_le_set_ext_scan_enable cp; 2087 2088 memset(&cp, 0, sizeof(cp)); 2089 cp.enable = val; 2090 2091 if (hci_dev_test_flag(hdev, HCI_MESH)) 2092 cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 2093 else 2094 cp.filter_dup = filter_dup; 2095 2096 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_ENABLE, 2097 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2098 } 2099 2100 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val, 2101 u8 filter_dup) 2102 { 2103 struct hci_cp_le_set_scan_enable cp; 2104 2105 if (use_ext_scan(hdev)) 2106 return hci_le_set_ext_scan_enable_sync(hdev, val, filter_dup); 2107 2108 memset(&cp, 0, sizeof(cp)); 2109 cp.enable = val; 2110 2111 if (val && hci_dev_test_flag(hdev, HCI_MESH)) 2112 cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 2113 else 2114 cp.filter_dup = filter_dup; 2115 2116 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_ENABLE, 2117 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2118 } 2119 2120 static int hci_le_set_addr_resolution_enable_sync(struct hci_dev *hdev, u8 val) 2121 { 2122 if (!use_ll_privacy(hdev)) 2123 return 0; 2124 2125 /* If controller is not/already resolving we are done. */ 2126 if (val == hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) 2127 return 0; 2128 2129 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 2130 sizeof(val), &val, HCI_CMD_TIMEOUT); 2131 } 2132 2133 static int hci_scan_disable_sync(struct hci_dev *hdev) 2134 { 2135 int err; 2136 2137 /* If controller is not scanning we are done. */ 2138 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 2139 return 0; 2140 2141 if (hdev->scanning_paused) { 2142 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2143 return 0; 2144 } 2145 2146 err = hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00); 2147 if (err) { 2148 bt_dev_err(hdev, "Unable to disable scanning: %d", err); 2149 return err; 2150 } 2151 2152 return err; 2153 } 2154 2155 static bool scan_use_rpa(struct hci_dev *hdev) 2156 { 2157 return hci_dev_test_flag(hdev, HCI_PRIVACY); 2158 } 2159 2160 static void hci_start_interleave_scan(struct hci_dev *hdev) 2161 { 2162 hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER; 2163 queue_delayed_work(hdev->req_workqueue, 2164 &hdev->interleave_scan, 0); 2165 } 2166 2167 static void cancel_interleave_scan(struct hci_dev *hdev) 2168 { 2169 bt_dev_dbg(hdev, "cancelling interleave scan"); 2170 2171 cancel_delayed_work_sync(&hdev->interleave_scan); 2172 2173 hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE; 2174 } 2175 2176 /* Return true if interleave_scan wasn't started until exiting this function, 2177 * otherwise, return false 2178 */ 2179 static bool hci_update_interleaved_scan_sync(struct hci_dev *hdev) 2180 { 2181 /* Do interleaved scan only if all of the following are true: 2182 * - There is at least one ADV monitor 2183 * - At least one pending LE connection or one device to be scanned for 2184 * - Monitor offloading is not supported 2185 * If so, we should alternate between allowlist scan and one without 2186 * any filters to save power. 2187 */ 2188 bool use_interleaving = hci_is_adv_monitoring(hdev) && 2189 !(list_empty(&hdev->pend_le_conns) && 2190 list_empty(&hdev->pend_le_reports)) && 2191 hci_get_adv_monitor_offload_ext(hdev) == 2192 HCI_ADV_MONITOR_EXT_NONE; 2193 bool is_interleaving = is_interleave_scanning(hdev); 2194 2195 if (use_interleaving && !is_interleaving) { 2196 hci_start_interleave_scan(hdev); 2197 bt_dev_dbg(hdev, "starting interleave scan"); 2198 return true; 2199 } 2200 2201 if (!use_interleaving && is_interleaving) 2202 cancel_interleave_scan(hdev); 2203 2204 return false; 2205 } 2206 2207 /* Removes connection to resolve list if needed.*/ 2208 static int hci_le_del_resolve_list_sync(struct hci_dev *hdev, 2209 bdaddr_t *bdaddr, u8 bdaddr_type) 2210 { 2211 struct hci_cp_le_del_from_resolv_list cp; 2212 struct bdaddr_list_with_irk *entry; 2213 2214 if (!use_ll_privacy(hdev)) 2215 return 0; 2216 2217 /* Check if the IRK has been programmed */ 2218 entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, bdaddr, 2219 bdaddr_type); 2220 if (!entry) 2221 return 0; 2222 2223 cp.bdaddr_type = bdaddr_type; 2224 bacpy(&cp.bdaddr, bdaddr); 2225 2226 return __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_RESOLV_LIST, 2227 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2228 } 2229 2230 static int hci_le_del_accept_list_sync(struct hci_dev *hdev, 2231 bdaddr_t *bdaddr, u8 bdaddr_type) 2232 { 2233 struct hci_cp_le_del_from_accept_list cp; 2234 int err; 2235 2236 /* Check if device is on accept list before removing it */ 2237 if (!hci_bdaddr_list_lookup(&hdev->le_accept_list, bdaddr, bdaddr_type)) 2238 return 0; 2239 2240 cp.bdaddr_type = bdaddr_type; 2241 bacpy(&cp.bdaddr, bdaddr); 2242 2243 /* Ignore errors when removing from resolving list as that is likely 2244 * that the device was never added. 2245 */ 2246 hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type); 2247 2248 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_ACCEPT_LIST, 2249 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2250 if (err) { 2251 bt_dev_err(hdev, "Unable to remove from allow list: %d", err); 2252 return err; 2253 } 2254 2255 bt_dev_dbg(hdev, "Remove %pMR (0x%x) from allow list", &cp.bdaddr, 2256 cp.bdaddr_type); 2257 2258 return 0; 2259 } 2260 2261 struct conn_params { 2262 bdaddr_t addr; 2263 u8 addr_type; 2264 hci_conn_flags_t flags; 2265 u8 privacy_mode; 2266 }; 2267 2268 /* Adds connection to resolve list if needed. 2269 * Setting params to NULL programs local hdev->irk 2270 */ 2271 static int hci_le_add_resolve_list_sync(struct hci_dev *hdev, 2272 struct conn_params *params) 2273 { 2274 struct hci_cp_le_add_to_resolv_list cp; 2275 struct smp_irk *irk; 2276 struct bdaddr_list_with_irk *entry; 2277 struct hci_conn_params *p; 2278 2279 if (!use_ll_privacy(hdev)) 2280 return 0; 2281 2282 /* Attempt to program local identity address, type and irk if params is 2283 * NULL. 2284 */ 2285 if (!params) { 2286 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 2287 return 0; 2288 2289 hci_copy_identity_address(hdev, &cp.bdaddr, &cp.bdaddr_type); 2290 memcpy(cp.peer_irk, hdev->irk, 16); 2291 goto done; 2292 } 2293 2294 irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type); 2295 if (!irk) 2296 return 0; 2297 2298 /* Check if the IK has _not_ been programmed yet. */ 2299 entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, 2300 ¶ms->addr, 2301 params->addr_type); 2302 if (entry) 2303 return 0; 2304 2305 cp.bdaddr_type = params->addr_type; 2306 bacpy(&cp.bdaddr, ¶ms->addr); 2307 memcpy(cp.peer_irk, irk->val, 16); 2308 2309 /* Default privacy mode is always Network */ 2310 params->privacy_mode = HCI_NETWORK_PRIVACY; 2311 2312 rcu_read_lock(); 2313 p = hci_pend_le_action_lookup(&hdev->pend_le_conns, 2314 ¶ms->addr, params->addr_type); 2315 if (!p) 2316 p = hci_pend_le_action_lookup(&hdev->pend_le_reports, 2317 ¶ms->addr, params->addr_type); 2318 if (p) 2319 WRITE_ONCE(p->privacy_mode, HCI_NETWORK_PRIVACY); 2320 rcu_read_unlock(); 2321 2322 done: 2323 if (hci_dev_test_flag(hdev, HCI_PRIVACY)) 2324 memcpy(cp.local_irk, hdev->irk, 16); 2325 else 2326 memset(cp.local_irk, 0, 16); 2327 2328 return __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_RESOLV_LIST, 2329 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2330 } 2331 2332 /* Set Device Privacy Mode. */ 2333 static int hci_le_set_privacy_mode_sync(struct hci_dev *hdev, 2334 struct conn_params *params) 2335 { 2336 struct hci_cp_le_set_privacy_mode cp; 2337 struct smp_irk *irk; 2338 2339 /* If device privacy mode has already been set there is nothing to do */ 2340 if (params->privacy_mode == HCI_DEVICE_PRIVACY) 2341 return 0; 2342 2343 /* Check if HCI_CONN_FLAG_DEVICE_PRIVACY has been set as it also 2344 * indicates that LL Privacy has been enabled and 2345 * HCI_OP_LE_SET_PRIVACY_MODE is supported. 2346 */ 2347 if (!(params->flags & HCI_CONN_FLAG_DEVICE_PRIVACY)) 2348 return 0; 2349 2350 irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type); 2351 if (!irk) 2352 return 0; 2353 2354 memset(&cp, 0, sizeof(cp)); 2355 cp.bdaddr_type = irk->addr_type; 2356 bacpy(&cp.bdaddr, &irk->bdaddr); 2357 cp.mode = HCI_DEVICE_PRIVACY; 2358 2359 /* Note: params->privacy_mode is not updated since it is a copy */ 2360 2361 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PRIVACY_MODE, 2362 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2363 } 2364 2365 /* Adds connection to allow list if needed, if the device uses RPA (has IRK) 2366 * this attempts to program the device in the resolving list as well and 2367 * properly set the privacy mode. 2368 */ 2369 static int hci_le_add_accept_list_sync(struct hci_dev *hdev, 2370 struct conn_params *params, 2371 u8 *num_entries) 2372 { 2373 struct hci_cp_le_add_to_accept_list cp; 2374 int err; 2375 2376 /* During suspend, only wakeable devices can be in acceptlist */ 2377 if (hdev->suspended && 2378 !(params->flags & HCI_CONN_FLAG_REMOTE_WAKEUP)) { 2379 hci_le_del_accept_list_sync(hdev, ¶ms->addr, 2380 params->addr_type); 2381 return 0; 2382 } 2383 2384 /* Select filter policy to accept all advertising */ 2385 if (*num_entries >= hdev->le_accept_list_size) 2386 return -ENOSPC; 2387 2388 /* Accept list can not be used with RPAs */ 2389 if (!use_ll_privacy(hdev) && 2390 hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type)) 2391 return -EINVAL; 2392 2393 /* Attempt to program the device in the resolving list first to avoid 2394 * having to rollback in case it fails since the resolving list is 2395 * dynamic it can probably be smaller than the accept list. 2396 */ 2397 err = hci_le_add_resolve_list_sync(hdev, params); 2398 if (err) { 2399 bt_dev_err(hdev, "Unable to add to resolve list: %d", err); 2400 return err; 2401 } 2402 2403 /* Set Privacy Mode */ 2404 err = hci_le_set_privacy_mode_sync(hdev, params); 2405 if (err) { 2406 bt_dev_err(hdev, "Unable to set privacy mode: %d", err); 2407 return err; 2408 } 2409 2410 /* Check if already in accept list */ 2411 if (hci_bdaddr_list_lookup(&hdev->le_accept_list, ¶ms->addr, 2412 params->addr_type)) 2413 return 0; 2414 2415 *num_entries += 1; 2416 cp.bdaddr_type = params->addr_type; 2417 bacpy(&cp.bdaddr, ¶ms->addr); 2418 2419 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST, 2420 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2421 if (err) { 2422 bt_dev_err(hdev, "Unable to add to allow list: %d", err); 2423 /* Rollback the device from the resolving list */ 2424 hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type); 2425 return err; 2426 } 2427 2428 bt_dev_dbg(hdev, "Add %pMR (0x%x) to allow list", &cp.bdaddr, 2429 cp.bdaddr_type); 2430 2431 return 0; 2432 } 2433 2434 /* This function disables/pause all advertising instances */ 2435 static int hci_pause_advertising_sync(struct hci_dev *hdev) 2436 { 2437 int err; 2438 int old_state; 2439 2440 /* If already been paused there is nothing to do. */ 2441 if (hdev->advertising_paused) 2442 return 0; 2443 2444 bt_dev_dbg(hdev, "Pausing directed advertising"); 2445 2446 /* Stop directed advertising */ 2447 old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING); 2448 if (old_state) { 2449 /* When discoverable timeout triggers, then just make sure 2450 * the limited discoverable flag is cleared. Even in the case 2451 * of a timeout triggered from general discoverable, it is 2452 * safe to unconditionally clear the flag. 2453 */ 2454 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 2455 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 2456 hdev->discov_timeout = 0; 2457 } 2458 2459 bt_dev_dbg(hdev, "Pausing advertising instances"); 2460 2461 /* Call to disable any advertisements active on the controller. 2462 * This will succeed even if no advertisements are configured. 2463 */ 2464 err = hci_disable_advertising_sync(hdev); 2465 if (err) 2466 return err; 2467 2468 /* If we are using software rotation, pause the loop */ 2469 if (!ext_adv_capable(hdev)) 2470 cancel_adv_timeout(hdev); 2471 2472 hdev->advertising_paused = true; 2473 hdev->advertising_old_state = old_state; 2474 2475 return 0; 2476 } 2477 2478 /* This function enables all user advertising instances */ 2479 static int hci_resume_advertising_sync(struct hci_dev *hdev) 2480 { 2481 struct adv_info *adv, *tmp; 2482 int err; 2483 2484 /* If advertising has not been paused there is nothing to do. */ 2485 if (!hdev->advertising_paused) 2486 return 0; 2487 2488 /* Resume directed advertising */ 2489 hdev->advertising_paused = false; 2490 if (hdev->advertising_old_state) { 2491 hci_dev_set_flag(hdev, HCI_ADVERTISING); 2492 hdev->advertising_old_state = 0; 2493 } 2494 2495 bt_dev_dbg(hdev, "Resuming advertising instances"); 2496 2497 if (ext_adv_capable(hdev)) { 2498 /* Call for each tracked instance to be re-enabled */ 2499 list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) { 2500 err = hci_enable_ext_advertising_sync(hdev, 2501 adv->instance); 2502 if (!err) 2503 continue; 2504 2505 /* If the instance cannot be resumed remove it */ 2506 hci_remove_ext_adv_instance_sync(hdev, adv->instance, 2507 NULL); 2508 } 2509 } else { 2510 /* Schedule for most recent instance to be restarted and begin 2511 * the software rotation loop 2512 */ 2513 err = hci_schedule_adv_instance_sync(hdev, 2514 hdev->cur_adv_instance, 2515 true); 2516 } 2517 2518 hdev->advertising_paused = false; 2519 2520 return err; 2521 } 2522 2523 static int hci_pause_addr_resolution(struct hci_dev *hdev) 2524 { 2525 int err; 2526 2527 if (!use_ll_privacy(hdev)) 2528 return 0; 2529 2530 if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) 2531 return 0; 2532 2533 /* Cannot disable addr resolution if scanning is enabled or 2534 * when initiating an LE connection. 2535 */ 2536 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) || 2537 hci_lookup_le_connect(hdev)) { 2538 bt_dev_err(hdev, "Command not allowed when scan/LE connect"); 2539 return -EPERM; 2540 } 2541 2542 /* Cannot disable addr resolution if advertising is enabled. */ 2543 err = hci_pause_advertising_sync(hdev); 2544 if (err) { 2545 bt_dev_err(hdev, "Pause advertising failed: %d", err); 2546 return err; 2547 } 2548 2549 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00); 2550 if (err) 2551 bt_dev_err(hdev, "Unable to disable Address Resolution: %d", 2552 err); 2553 2554 /* Return if address resolution is disabled and RPA is not used. */ 2555 if (!err && scan_use_rpa(hdev)) 2556 return 0; 2557 2558 hci_resume_advertising_sync(hdev); 2559 return err; 2560 } 2561 2562 struct sk_buff *hci_read_local_oob_data_sync(struct hci_dev *hdev, 2563 bool extended, struct sock *sk) 2564 { 2565 u16 opcode = extended ? HCI_OP_READ_LOCAL_OOB_EXT_DATA : 2566 HCI_OP_READ_LOCAL_OOB_DATA; 2567 2568 return __hci_cmd_sync_sk(hdev, opcode, 0, NULL, 0, HCI_CMD_TIMEOUT, sk); 2569 } 2570 2571 static struct conn_params *conn_params_copy(struct list_head *list, size_t *n) 2572 { 2573 struct hci_conn_params *params; 2574 struct conn_params *p; 2575 size_t i; 2576 2577 rcu_read_lock(); 2578 2579 i = 0; 2580 list_for_each_entry_rcu(params, list, action) 2581 ++i; 2582 *n = i; 2583 2584 rcu_read_unlock(); 2585 2586 p = kvcalloc(*n, sizeof(struct conn_params), GFP_KERNEL); 2587 if (!p) 2588 return NULL; 2589 2590 rcu_read_lock(); 2591 2592 i = 0; 2593 list_for_each_entry_rcu(params, list, action) { 2594 /* Racing adds are handled in next scan update */ 2595 if (i >= *n) 2596 break; 2597 2598 /* No hdev->lock, but: addr, addr_type are immutable. 2599 * privacy_mode is only written by us or in 2600 * hci_cc_le_set_privacy_mode that we wait for. 2601 * We should be idempotent so MGMT updating flags 2602 * while we are processing is OK. 2603 */ 2604 bacpy(&p[i].addr, ¶ms->addr); 2605 p[i].addr_type = params->addr_type; 2606 p[i].flags = READ_ONCE(params->flags); 2607 p[i].privacy_mode = READ_ONCE(params->privacy_mode); 2608 ++i; 2609 } 2610 2611 rcu_read_unlock(); 2612 2613 *n = i; 2614 return p; 2615 } 2616 2617 /* Clear LE Accept List */ 2618 static int hci_le_clear_accept_list_sync(struct hci_dev *hdev) 2619 { 2620 if (!(hdev->commands[26] & 0x80)) 2621 return 0; 2622 2623 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL, 2624 HCI_CMD_TIMEOUT); 2625 } 2626 2627 /* Device must not be scanning when updating the accept list. 2628 * 2629 * Update is done using the following sequence: 2630 * 2631 * use_ll_privacy((Disable Advertising) -> Disable Resolving List) -> 2632 * Remove Devices From Accept List -> 2633 * (has IRK && use_ll_privacy(Remove Devices From Resolving List))-> 2634 * Add Devices to Accept List -> 2635 * (has IRK && use_ll_privacy(Remove Devices From Resolving List)) -> 2636 * use_ll_privacy(Enable Resolving List -> (Enable Advertising)) -> 2637 * Enable Scanning 2638 * 2639 * In case of failure advertising shall be restored to its original state and 2640 * return would disable accept list since either accept or resolving list could 2641 * not be programmed. 2642 * 2643 */ 2644 static u8 hci_update_accept_list_sync(struct hci_dev *hdev) 2645 { 2646 struct conn_params *params; 2647 struct bdaddr_list *b, *t; 2648 u8 num_entries = 0; 2649 bool pend_conn, pend_report; 2650 u8 filter_policy; 2651 size_t i, n; 2652 int err; 2653 2654 /* Pause advertising if resolving list can be used as controllers 2655 * cannot accept resolving list modifications while advertising. 2656 */ 2657 if (use_ll_privacy(hdev)) { 2658 err = hci_pause_advertising_sync(hdev); 2659 if (err) { 2660 bt_dev_err(hdev, "pause advertising failed: %d", err); 2661 return 0x00; 2662 } 2663 } 2664 2665 /* Disable address resolution while reprogramming accept list since 2666 * devices that do have an IRK will be programmed in the resolving list 2667 * when LL Privacy is enabled. 2668 */ 2669 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00); 2670 if (err) { 2671 bt_dev_err(hdev, "Unable to disable LL privacy: %d", err); 2672 goto done; 2673 } 2674 2675 /* Force address filtering if PA Sync is in progress */ 2676 if (hci_dev_test_flag(hdev, HCI_PA_SYNC)) { 2677 struct hci_cp_le_pa_create_sync *sent; 2678 2679 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_PA_CREATE_SYNC); 2680 if (sent) { 2681 struct conn_params pa; 2682 2683 memset(&pa, 0, sizeof(pa)); 2684 2685 bacpy(&pa.addr, &sent->addr); 2686 pa.addr_type = sent->addr_type; 2687 2688 /* Clear first since there could be addresses left 2689 * behind. 2690 */ 2691 hci_le_clear_accept_list_sync(hdev); 2692 2693 num_entries = 1; 2694 err = hci_le_add_accept_list_sync(hdev, &pa, 2695 &num_entries); 2696 goto done; 2697 } 2698 } 2699 2700 /* Go through the current accept list programmed into the 2701 * controller one by one and check if that address is connected or is 2702 * still in the list of pending connections or list of devices to 2703 * report. If not present in either list, then remove it from 2704 * the controller. 2705 */ 2706 list_for_each_entry_safe(b, t, &hdev->le_accept_list, list) { 2707 if (hci_conn_hash_lookup_le(hdev, &b->bdaddr, b->bdaddr_type)) 2708 continue; 2709 2710 /* Pointers not dereferenced, no locks needed */ 2711 pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns, 2712 &b->bdaddr, 2713 b->bdaddr_type); 2714 pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports, 2715 &b->bdaddr, 2716 b->bdaddr_type); 2717 2718 /* If the device is not likely to connect or report, 2719 * remove it from the acceptlist. 2720 */ 2721 if (!pend_conn && !pend_report) { 2722 hci_le_del_accept_list_sync(hdev, &b->bdaddr, 2723 b->bdaddr_type); 2724 continue; 2725 } 2726 2727 num_entries++; 2728 } 2729 2730 /* Since all no longer valid accept list entries have been 2731 * removed, walk through the list of pending connections 2732 * and ensure that any new device gets programmed into 2733 * the controller. 2734 * 2735 * If the list of the devices is larger than the list of 2736 * available accept list entries in the controller, then 2737 * just abort and return filer policy value to not use the 2738 * accept list. 2739 * 2740 * The list and params may be mutated while we wait for events, 2741 * so make a copy and iterate it. 2742 */ 2743 2744 params = conn_params_copy(&hdev->pend_le_conns, &n); 2745 if (!params) { 2746 err = -ENOMEM; 2747 goto done; 2748 } 2749 2750 for (i = 0; i < n; ++i) { 2751 err = hci_le_add_accept_list_sync(hdev, ¶ms[i], 2752 &num_entries); 2753 if (err) { 2754 kvfree(params); 2755 goto done; 2756 } 2757 } 2758 2759 kvfree(params); 2760 2761 /* After adding all new pending connections, walk through 2762 * the list of pending reports and also add these to the 2763 * accept list if there is still space. Abort if space runs out. 2764 */ 2765 2766 params = conn_params_copy(&hdev->pend_le_reports, &n); 2767 if (!params) { 2768 err = -ENOMEM; 2769 goto done; 2770 } 2771 2772 for (i = 0; i < n; ++i) { 2773 err = hci_le_add_accept_list_sync(hdev, ¶ms[i], 2774 &num_entries); 2775 if (err) { 2776 kvfree(params); 2777 goto done; 2778 } 2779 } 2780 2781 kvfree(params); 2782 2783 /* Use the allowlist unless the following conditions are all true: 2784 * - We are not currently suspending 2785 * - There are 1 or more ADV monitors registered and it's not offloaded 2786 * - Interleaved scanning is not currently using the allowlist 2787 */ 2788 if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended && 2789 hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE && 2790 hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST) 2791 err = -EINVAL; 2792 2793 done: 2794 filter_policy = err ? 0x00 : 0x01; 2795 2796 /* Enable address resolution when LL Privacy is enabled. */ 2797 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x01); 2798 if (err) 2799 bt_dev_err(hdev, "Unable to enable LL privacy: %d", err); 2800 2801 /* Resume advertising if it was paused */ 2802 if (use_ll_privacy(hdev)) 2803 hci_resume_advertising_sync(hdev); 2804 2805 /* Select filter policy to use accept list */ 2806 return filter_policy; 2807 } 2808 2809 static void hci_le_scan_phy_params(struct hci_cp_le_scan_phy_params *cp, 2810 u8 type, u16 interval, u16 window) 2811 { 2812 cp->type = type; 2813 cp->interval = cpu_to_le16(interval); 2814 cp->window = cpu_to_le16(window); 2815 } 2816 2817 static int hci_le_set_ext_scan_param_sync(struct hci_dev *hdev, u8 type, 2818 u16 interval, u16 window, 2819 u8 own_addr_type, u8 filter_policy) 2820 { 2821 struct hci_cp_le_set_ext_scan_params *cp; 2822 struct hci_cp_le_scan_phy_params *phy; 2823 u8 data[sizeof(*cp) + sizeof(*phy) * 2]; 2824 u8 num_phy = 0x00; 2825 2826 cp = (void *)data; 2827 phy = (void *)cp->data; 2828 2829 memset(data, 0, sizeof(data)); 2830 2831 cp->own_addr_type = own_addr_type; 2832 cp->filter_policy = filter_policy; 2833 2834 /* Check if PA Sync is in progress then select the PHY based on the 2835 * hci_conn.iso_qos. 2836 */ 2837 if (hci_dev_test_flag(hdev, HCI_PA_SYNC)) { 2838 struct hci_cp_le_add_to_accept_list *sent; 2839 2840 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST); 2841 if (sent) { 2842 struct hci_conn *conn; 2843 2844 conn = hci_conn_hash_lookup_ba(hdev, ISO_LINK, 2845 &sent->bdaddr); 2846 if (conn) { 2847 struct bt_iso_qos *qos = &conn->iso_qos; 2848 2849 if (qos->bcast.in.phy & BT_ISO_PHY_1M || 2850 qos->bcast.in.phy & BT_ISO_PHY_2M) { 2851 cp->scanning_phys |= LE_SCAN_PHY_1M; 2852 hci_le_scan_phy_params(phy, type, 2853 interval, 2854 window); 2855 num_phy++; 2856 phy++; 2857 } 2858 2859 if (qos->bcast.in.phy & BT_ISO_PHY_CODED) { 2860 cp->scanning_phys |= LE_SCAN_PHY_CODED; 2861 hci_le_scan_phy_params(phy, type, 2862 interval * 3, 2863 window * 3); 2864 num_phy++; 2865 phy++; 2866 } 2867 2868 if (num_phy) 2869 goto done; 2870 } 2871 } 2872 } 2873 2874 if (scan_1m(hdev) || scan_2m(hdev)) { 2875 cp->scanning_phys |= LE_SCAN_PHY_1M; 2876 hci_le_scan_phy_params(phy, type, interval, window); 2877 num_phy++; 2878 phy++; 2879 } 2880 2881 if (scan_coded(hdev)) { 2882 cp->scanning_phys |= LE_SCAN_PHY_CODED; 2883 hci_le_scan_phy_params(phy, type, interval * 3, window * 3); 2884 num_phy++; 2885 phy++; 2886 } 2887 2888 done: 2889 if (!num_phy) 2890 return -EINVAL; 2891 2892 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_PARAMS, 2893 sizeof(*cp) + sizeof(*phy) * num_phy, 2894 data, HCI_CMD_TIMEOUT); 2895 } 2896 2897 static int hci_le_set_scan_param_sync(struct hci_dev *hdev, u8 type, 2898 u16 interval, u16 window, 2899 u8 own_addr_type, u8 filter_policy) 2900 { 2901 struct hci_cp_le_set_scan_param cp; 2902 2903 if (use_ext_scan(hdev)) 2904 return hci_le_set_ext_scan_param_sync(hdev, type, interval, 2905 window, own_addr_type, 2906 filter_policy); 2907 2908 memset(&cp, 0, sizeof(cp)); 2909 cp.type = type; 2910 cp.interval = cpu_to_le16(interval); 2911 cp.window = cpu_to_le16(window); 2912 cp.own_address_type = own_addr_type; 2913 cp.filter_policy = filter_policy; 2914 2915 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_PARAM, 2916 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2917 } 2918 2919 static int hci_start_scan_sync(struct hci_dev *hdev, u8 type, u16 interval, 2920 u16 window, u8 own_addr_type, u8 filter_policy, 2921 u8 filter_dup) 2922 { 2923 int err; 2924 2925 if (hdev->scanning_paused) { 2926 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2927 return 0; 2928 } 2929 2930 err = hci_le_set_scan_param_sync(hdev, type, interval, window, 2931 own_addr_type, filter_policy); 2932 if (err) 2933 return err; 2934 2935 return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, filter_dup); 2936 } 2937 2938 static int hci_passive_scan_sync(struct hci_dev *hdev) 2939 { 2940 u8 own_addr_type; 2941 u8 filter_policy; 2942 u16 window, interval; 2943 u8 filter_dups = LE_SCAN_FILTER_DUP_ENABLE; 2944 int err; 2945 2946 if (hdev->scanning_paused) { 2947 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2948 return 0; 2949 } 2950 2951 err = hci_scan_disable_sync(hdev); 2952 if (err) { 2953 bt_dev_err(hdev, "disable scanning failed: %d", err); 2954 return err; 2955 } 2956 2957 /* Set require_privacy to false since no SCAN_REQ are send 2958 * during passive scanning. Not using an non-resolvable address 2959 * here is important so that peer devices using direct 2960 * advertising with our address will be correctly reported 2961 * by the controller. 2962 */ 2963 if (hci_update_random_address_sync(hdev, false, scan_use_rpa(hdev), 2964 &own_addr_type)) 2965 return 0; 2966 2967 if (hdev->enable_advmon_interleave_scan && 2968 hci_update_interleaved_scan_sync(hdev)) 2969 return 0; 2970 2971 bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state); 2972 2973 /* Adding or removing entries from the accept list must 2974 * happen before enabling scanning. The controller does 2975 * not allow accept list modification while scanning. 2976 */ 2977 filter_policy = hci_update_accept_list_sync(hdev); 2978 2979 /* If suspended and filter_policy set to 0x00 (no acceptlist) then 2980 * passive scanning cannot be started since that would require the host 2981 * to be woken up to process the reports. 2982 */ 2983 if (hdev->suspended && !filter_policy) { 2984 /* Check if accept list is empty then there is no need to scan 2985 * while suspended. 2986 */ 2987 if (list_empty(&hdev->le_accept_list)) 2988 return 0; 2989 2990 /* If there are devices is the accept_list that means some 2991 * devices could not be programmed which in non-suspended case 2992 * means filter_policy needs to be set to 0x00 so the host needs 2993 * to filter, but since this is treating suspended case we 2994 * can ignore device needing host to filter to allow devices in 2995 * the acceptlist to be able to wakeup the system. 2996 */ 2997 filter_policy = 0x01; 2998 } 2999 3000 /* When the controller is using random resolvable addresses and 3001 * with that having LE privacy enabled, then controllers with 3002 * Extended Scanner Filter Policies support can now enable support 3003 * for handling directed advertising. 3004 * 3005 * So instead of using filter polices 0x00 (no acceptlist) 3006 * and 0x01 (acceptlist enabled) use the new filter policies 3007 * 0x02 (no acceptlist) and 0x03 (acceptlist enabled). 3008 */ 3009 if (hci_dev_test_flag(hdev, HCI_PRIVACY) && 3010 (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)) 3011 filter_policy |= 0x02; 3012 3013 if (hdev->suspended) { 3014 window = hdev->le_scan_window_suspend; 3015 interval = hdev->le_scan_int_suspend; 3016 } else if (hci_is_le_conn_scanning(hdev)) { 3017 window = hdev->le_scan_window_connect; 3018 interval = hdev->le_scan_int_connect; 3019 } else if (hci_is_adv_monitoring(hdev)) { 3020 window = hdev->le_scan_window_adv_monitor; 3021 interval = hdev->le_scan_int_adv_monitor; 3022 3023 /* Disable duplicates filter when scanning for advertisement 3024 * monitor for the following reasons. 3025 * 3026 * For HW pattern filtering (ex. MSFT), Realtek and Qualcomm 3027 * controllers ignore RSSI_Sampling_Period when the duplicates 3028 * filter is enabled. 3029 * 3030 * For SW pattern filtering, when we're not doing interleaved 3031 * scanning, it is necessary to disable duplicates filter, 3032 * otherwise hosts can only receive one advertisement and it's 3033 * impossible to know if a peer is still in range. 3034 */ 3035 filter_dups = LE_SCAN_FILTER_DUP_DISABLE; 3036 } else { 3037 window = hdev->le_scan_window; 3038 interval = hdev->le_scan_interval; 3039 } 3040 3041 /* Disable all filtering for Mesh */ 3042 if (hci_dev_test_flag(hdev, HCI_MESH)) { 3043 filter_policy = 0; 3044 filter_dups = LE_SCAN_FILTER_DUP_DISABLE; 3045 } 3046 3047 bt_dev_dbg(hdev, "LE passive scan with acceptlist = %d", filter_policy); 3048 3049 return hci_start_scan_sync(hdev, LE_SCAN_PASSIVE, interval, window, 3050 own_addr_type, filter_policy, filter_dups); 3051 } 3052 3053 /* This function controls the passive scanning based on hdev->pend_le_conns 3054 * list. If there are pending LE connection we start the background scanning, 3055 * otherwise we stop it in the following sequence: 3056 * 3057 * If there are devices to scan: 3058 * 3059 * Disable Scanning -> Update Accept List -> 3060 * use_ll_privacy((Disable Advertising) -> Disable Resolving List -> 3061 * Update Resolving List -> Enable Resolving List -> (Enable Advertising)) -> 3062 * Enable Scanning 3063 * 3064 * Otherwise: 3065 * 3066 * Disable Scanning 3067 */ 3068 int hci_update_passive_scan_sync(struct hci_dev *hdev) 3069 { 3070 int err; 3071 3072 if (!test_bit(HCI_UP, &hdev->flags) || 3073 test_bit(HCI_INIT, &hdev->flags) || 3074 hci_dev_test_flag(hdev, HCI_SETUP) || 3075 hci_dev_test_flag(hdev, HCI_CONFIG) || 3076 hci_dev_test_flag(hdev, HCI_AUTO_OFF) || 3077 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 3078 return 0; 3079 3080 /* No point in doing scanning if LE support hasn't been enabled */ 3081 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 3082 return 0; 3083 3084 /* If discovery is active don't interfere with it */ 3085 if (hdev->discovery.state != DISCOVERY_STOPPED) 3086 return 0; 3087 3088 /* Reset RSSI and UUID filters when starting background scanning 3089 * since these filters are meant for service discovery only. 3090 * 3091 * The Start Discovery and Start Service Discovery operations 3092 * ensure to set proper values for RSSI threshold and UUID 3093 * filter list. So it is safe to just reset them here. 3094 */ 3095 hci_discovery_filter_clear(hdev); 3096 3097 bt_dev_dbg(hdev, "ADV monitoring is %s", 3098 hci_is_adv_monitoring(hdev) ? "on" : "off"); 3099 3100 if (!hci_dev_test_flag(hdev, HCI_MESH) && 3101 list_empty(&hdev->pend_le_conns) && 3102 list_empty(&hdev->pend_le_reports) && 3103 !hci_is_adv_monitoring(hdev) && 3104 !hci_dev_test_flag(hdev, HCI_PA_SYNC)) { 3105 /* If there is no pending LE connections or devices 3106 * to be scanned for or no ADV monitors, we should stop the 3107 * background scanning. 3108 */ 3109 3110 bt_dev_dbg(hdev, "stopping background scanning"); 3111 3112 err = hci_scan_disable_sync(hdev); 3113 if (err) 3114 bt_dev_err(hdev, "stop background scanning failed: %d", 3115 err); 3116 } else { 3117 /* If there is at least one pending LE connection, we should 3118 * keep the background scan running. 3119 */ 3120 3121 /* If controller is connecting, we should not start scanning 3122 * since some controllers are not able to scan and connect at 3123 * the same time. 3124 */ 3125 if (hci_lookup_le_connect(hdev)) 3126 return 0; 3127 3128 bt_dev_dbg(hdev, "start background scanning"); 3129 3130 err = hci_passive_scan_sync(hdev); 3131 if (err) 3132 bt_dev_err(hdev, "start background scanning failed: %d", 3133 err); 3134 } 3135 3136 return err; 3137 } 3138 3139 static int update_scan_sync(struct hci_dev *hdev, void *data) 3140 { 3141 return hci_update_scan_sync(hdev); 3142 } 3143 3144 int hci_update_scan(struct hci_dev *hdev) 3145 { 3146 return hci_cmd_sync_queue(hdev, update_scan_sync, NULL, NULL); 3147 } 3148 3149 static int update_passive_scan_sync(struct hci_dev *hdev, void *data) 3150 { 3151 return hci_update_passive_scan_sync(hdev); 3152 } 3153 3154 int hci_update_passive_scan(struct hci_dev *hdev) 3155 { 3156 /* Only queue if it would have any effect */ 3157 if (!test_bit(HCI_UP, &hdev->flags) || 3158 test_bit(HCI_INIT, &hdev->flags) || 3159 hci_dev_test_flag(hdev, HCI_SETUP) || 3160 hci_dev_test_flag(hdev, HCI_CONFIG) || 3161 hci_dev_test_flag(hdev, HCI_AUTO_OFF) || 3162 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 3163 return 0; 3164 3165 return hci_cmd_sync_queue_once(hdev, update_passive_scan_sync, NULL, 3166 NULL); 3167 } 3168 3169 int hci_write_sc_support_sync(struct hci_dev *hdev, u8 val) 3170 { 3171 int err; 3172 3173 if (!bredr_sc_enabled(hdev) || lmp_host_sc_capable(hdev)) 3174 return 0; 3175 3176 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT, 3177 sizeof(val), &val, HCI_CMD_TIMEOUT); 3178 3179 if (!err) { 3180 if (val) { 3181 hdev->features[1][0] |= LMP_HOST_SC; 3182 hci_dev_set_flag(hdev, HCI_SC_ENABLED); 3183 } else { 3184 hdev->features[1][0] &= ~LMP_HOST_SC; 3185 hci_dev_clear_flag(hdev, HCI_SC_ENABLED); 3186 } 3187 } 3188 3189 return err; 3190 } 3191 3192 int hci_write_ssp_mode_sync(struct hci_dev *hdev, u8 mode) 3193 { 3194 int err; 3195 3196 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) || 3197 lmp_host_ssp_capable(hdev)) 3198 return 0; 3199 3200 if (!mode && hci_dev_test_flag(hdev, HCI_USE_DEBUG_KEYS)) { 3201 __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE, 3202 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3203 } 3204 3205 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE, 3206 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3207 if (err) 3208 return err; 3209 3210 return hci_write_sc_support_sync(hdev, 0x01); 3211 } 3212 3213 int hci_write_le_host_supported_sync(struct hci_dev *hdev, u8 le, u8 simul) 3214 { 3215 struct hci_cp_write_le_host_supported cp; 3216 3217 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED) || 3218 !lmp_bredr_capable(hdev)) 3219 return 0; 3220 3221 /* Check first if we already have the right host state 3222 * (host features set) 3223 */ 3224 if (le == lmp_host_le_capable(hdev) && 3225 simul == lmp_host_le_br_capable(hdev)) 3226 return 0; 3227 3228 memset(&cp, 0, sizeof(cp)); 3229 3230 cp.le = le; 3231 cp.simul = simul; 3232 3233 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED, 3234 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3235 } 3236 3237 static int hci_powered_update_adv_sync(struct hci_dev *hdev) 3238 { 3239 struct adv_info *adv, *tmp; 3240 int err; 3241 3242 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 3243 return 0; 3244 3245 /* If RPA Resolution has not been enable yet it means the 3246 * resolving list is empty and we should attempt to program the 3247 * local IRK in order to support using own_addr_type 3248 * ADDR_LE_DEV_RANDOM_RESOLVED (0x03). 3249 */ 3250 if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) { 3251 hci_le_add_resolve_list_sync(hdev, NULL); 3252 hci_le_set_addr_resolution_enable_sync(hdev, 0x01); 3253 } 3254 3255 /* Make sure the controller has a good default for 3256 * advertising data. This also applies to the case 3257 * where BR/EDR was toggled during the AUTO_OFF phase. 3258 */ 3259 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 3260 list_empty(&hdev->adv_instances)) { 3261 if (ext_adv_capable(hdev)) { 3262 err = hci_setup_ext_adv_instance_sync(hdev, 0x00); 3263 if (!err) 3264 hci_update_scan_rsp_data_sync(hdev, 0x00); 3265 } else { 3266 err = hci_update_adv_data_sync(hdev, 0x00); 3267 if (!err) 3268 hci_update_scan_rsp_data_sync(hdev, 0x00); 3269 } 3270 3271 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) 3272 hci_enable_advertising_sync(hdev); 3273 } 3274 3275 /* Call for each tracked instance to be scheduled */ 3276 list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) 3277 hci_schedule_adv_instance_sync(hdev, adv->instance, true); 3278 3279 return 0; 3280 } 3281 3282 static int hci_write_auth_enable_sync(struct hci_dev *hdev) 3283 { 3284 u8 link_sec; 3285 3286 link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY); 3287 if (link_sec == test_bit(HCI_AUTH, &hdev->flags)) 3288 return 0; 3289 3290 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE, 3291 sizeof(link_sec), &link_sec, 3292 HCI_CMD_TIMEOUT); 3293 } 3294 3295 int hci_write_fast_connectable_sync(struct hci_dev *hdev, bool enable) 3296 { 3297 struct hci_cp_write_page_scan_activity cp; 3298 u8 type; 3299 int err = 0; 3300 3301 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 3302 return 0; 3303 3304 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 3305 return 0; 3306 3307 memset(&cp, 0, sizeof(cp)); 3308 3309 if (enable) { 3310 type = PAGE_SCAN_TYPE_INTERLACED; 3311 3312 /* 160 msec page scan interval */ 3313 cp.interval = cpu_to_le16(0x0100); 3314 } else { 3315 type = hdev->def_page_scan_type; 3316 cp.interval = cpu_to_le16(hdev->def_page_scan_int); 3317 } 3318 3319 cp.window = cpu_to_le16(hdev->def_page_scan_window); 3320 3321 if (__cpu_to_le16(hdev->page_scan_interval) != cp.interval || 3322 __cpu_to_le16(hdev->page_scan_window) != cp.window) { 3323 err = __hci_cmd_sync_status(hdev, 3324 HCI_OP_WRITE_PAGE_SCAN_ACTIVITY, 3325 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3326 if (err) 3327 return err; 3328 } 3329 3330 if (hdev->page_scan_type != type) 3331 err = __hci_cmd_sync_status(hdev, 3332 HCI_OP_WRITE_PAGE_SCAN_TYPE, 3333 sizeof(type), &type, 3334 HCI_CMD_TIMEOUT); 3335 3336 return err; 3337 } 3338 3339 static bool disconnected_accept_list_entries(struct hci_dev *hdev) 3340 { 3341 struct bdaddr_list *b; 3342 3343 list_for_each_entry(b, &hdev->accept_list, list) { 3344 struct hci_conn *conn; 3345 3346 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr); 3347 if (!conn) 3348 return true; 3349 3350 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 3351 return true; 3352 } 3353 3354 return false; 3355 } 3356 3357 static int hci_write_scan_enable_sync(struct hci_dev *hdev, u8 val) 3358 { 3359 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE, 3360 sizeof(val), &val, 3361 HCI_CMD_TIMEOUT); 3362 } 3363 3364 int hci_update_scan_sync(struct hci_dev *hdev) 3365 { 3366 u8 scan; 3367 3368 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 3369 return 0; 3370 3371 if (!hdev_is_powered(hdev)) 3372 return 0; 3373 3374 if (mgmt_powering_down(hdev)) 3375 return 0; 3376 3377 if (hdev->scanning_paused) 3378 return 0; 3379 3380 if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) || 3381 disconnected_accept_list_entries(hdev)) 3382 scan = SCAN_PAGE; 3383 else 3384 scan = SCAN_DISABLED; 3385 3386 if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 3387 scan |= SCAN_INQUIRY; 3388 3389 if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) && 3390 test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY)) 3391 return 0; 3392 3393 return hci_write_scan_enable_sync(hdev, scan); 3394 } 3395 3396 int hci_update_name_sync(struct hci_dev *hdev) 3397 { 3398 struct hci_cp_write_local_name cp; 3399 3400 memset(&cp, 0, sizeof(cp)); 3401 3402 memcpy(cp.name, hdev->dev_name, sizeof(cp.name)); 3403 3404 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LOCAL_NAME, 3405 sizeof(cp), &cp, 3406 HCI_CMD_TIMEOUT); 3407 } 3408 3409 /* This function perform powered update HCI command sequence after the HCI init 3410 * sequence which end up resetting all states, the sequence is as follows: 3411 * 3412 * HCI_SSP_ENABLED(Enable SSP) 3413 * HCI_LE_ENABLED(Enable LE) 3414 * HCI_LE_ENABLED(use_ll_privacy(Add local IRK to Resolving List) -> 3415 * Update adv data) 3416 * Enable Authentication 3417 * lmp_bredr_capable(Set Fast Connectable -> Set Scan Type -> Set Class -> 3418 * Set Name -> Set EIR) 3419 * HCI_FORCE_STATIC_ADDR | BDADDR_ANY && !HCI_BREDR_ENABLED (Set Static Address) 3420 */ 3421 int hci_powered_update_sync(struct hci_dev *hdev) 3422 { 3423 int err; 3424 3425 /* Register the available SMP channels (BR/EDR and LE) only when 3426 * successfully powering on the controller. This late 3427 * registration is required so that LE SMP can clearly decide if 3428 * the public address or static address is used. 3429 */ 3430 smp_register(hdev); 3431 3432 err = hci_write_ssp_mode_sync(hdev, 0x01); 3433 if (err) 3434 return err; 3435 3436 err = hci_write_le_host_supported_sync(hdev, 0x01, 0x00); 3437 if (err) 3438 return err; 3439 3440 err = hci_powered_update_adv_sync(hdev); 3441 if (err) 3442 return err; 3443 3444 err = hci_write_auth_enable_sync(hdev); 3445 if (err) 3446 return err; 3447 3448 if (lmp_bredr_capable(hdev)) { 3449 if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE)) 3450 hci_write_fast_connectable_sync(hdev, true); 3451 else 3452 hci_write_fast_connectable_sync(hdev, false); 3453 hci_update_scan_sync(hdev); 3454 hci_update_class_sync(hdev); 3455 hci_update_name_sync(hdev); 3456 hci_update_eir_sync(hdev); 3457 } 3458 3459 /* If forcing static address is in use or there is no public 3460 * address use the static address as random address (but skip 3461 * the HCI command if the current random address is already the 3462 * static one. 3463 * 3464 * In case BR/EDR has been disabled on a dual-mode controller 3465 * and a static address has been configured, then use that 3466 * address instead of the public BR/EDR address. 3467 */ 3468 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 3469 (!bacmp(&hdev->bdaddr, BDADDR_ANY) && 3470 !hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))) { 3471 if (bacmp(&hdev->static_addr, BDADDR_ANY)) 3472 return hci_set_random_addr_sync(hdev, 3473 &hdev->static_addr); 3474 } 3475 3476 return 0; 3477 } 3478 3479 /** 3480 * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address 3481 * (BD_ADDR) for a HCI device from 3482 * a firmware node property. 3483 * @hdev: The HCI device 3484 * 3485 * Search the firmware node for 'local-bd-address'. 3486 * 3487 * All-zero BD addresses are rejected, because those could be properties 3488 * that exist in the firmware tables, but were not updated by the firmware. For 3489 * example, the DTS could define 'local-bd-address', with zero BD addresses. 3490 */ 3491 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev) 3492 { 3493 struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent); 3494 bdaddr_t ba; 3495 int ret; 3496 3497 ret = fwnode_property_read_u8_array(fwnode, "local-bd-address", 3498 (u8 *)&ba, sizeof(ba)); 3499 if (ret < 0 || !bacmp(&ba, BDADDR_ANY)) 3500 return; 3501 3502 if (test_bit(HCI_QUIRK_BDADDR_PROPERTY_BROKEN, &hdev->quirks)) 3503 baswap(&hdev->public_addr, &ba); 3504 else 3505 bacpy(&hdev->public_addr, &ba); 3506 } 3507 3508 struct hci_init_stage { 3509 int (*func)(struct hci_dev *hdev); 3510 }; 3511 3512 /* Run init stage NULL terminated function table */ 3513 static int hci_init_stage_sync(struct hci_dev *hdev, 3514 const struct hci_init_stage *stage) 3515 { 3516 size_t i; 3517 3518 for (i = 0; stage[i].func; i++) { 3519 int err; 3520 3521 err = stage[i].func(hdev); 3522 if (err) 3523 return err; 3524 } 3525 3526 return 0; 3527 } 3528 3529 /* Read Local Version */ 3530 static int hci_read_local_version_sync(struct hci_dev *hdev) 3531 { 3532 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_VERSION, 3533 0, NULL, HCI_CMD_TIMEOUT); 3534 } 3535 3536 /* Read BD Address */ 3537 static int hci_read_bd_addr_sync(struct hci_dev *hdev) 3538 { 3539 return __hci_cmd_sync_status(hdev, HCI_OP_READ_BD_ADDR, 3540 0, NULL, HCI_CMD_TIMEOUT); 3541 } 3542 3543 #define HCI_INIT(_func) \ 3544 { \ 3545 .func = _func, \ 3546 } 3547 3548 static const struct hci_init_stage hci_init0[] = { 3549 /* HCI_OP_READ_LOCAL_VERSION */ 3550 HCI_INIT(hci_read_local_version_sync), 3551 /* HCI_OP_READ_BD_ADDR */ 3552 HCI_INIT(hci_read_bd_addr_sync), 3553 {} 3554 }; 3555 3556 int hci_reset_sync(struct hci_dev *hdev) 3557 { 3558 int err; 3559 3560 set_bit(HCI_RESET, &hdev->flags); 3561 3562 err = __hci_cmd_sync_status(hdev, HCI_OP_RESET, 0, NULL, 3563 HCI_CMD_TIMEOUT); 3564 if (err) 3565 return err; 3566 3567 return 0; 3568 } 3569 3570 static int hci_init0_sync(struct hci_dev *hdev) 3571 { 3572 int err; 3573 3574 bt_dev_dbg(hdev, ""); 3575 3576 /* Reset */ 3577 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) { 3578 err = hci_reset_sync(hdev); 3579 if (err) 3580 return err; 3581 } 3582 3583 return hci_init_stage_sync(hdev, hci_init0); 3584 } 3585 3586 static int hci_unconf_init_sync(struct hci_dev *hdev) 3587 { 3588 int err; 3589 3590 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) 3591 return 0; 3592 3593 err = hci_init0_sync(hdev); 3594 if (err < 0) 3595 return err; 3596 3597 if (hci_dev_test_flag(hdev, HCI_SETUP)) 3598 hci_debugfs_create_basic(hdev); 3599 3600 return 0; 3601 } 3602 3603 /* Read Local Supported Features. */ 3604 static int hci_read_local_features_sync(struct hci_dev *hdev) 3605 { 3606 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_FEATURES, 3607 0, NULL, HCI_CMD_TIMEOUT); 3608 } 3609 3610 /* BR Controller init stage 1 command sequence */ 3611 static const struct hci_init_stage br_init1[] = { 3612 /* HCI_OP_READ_LOCAL_FEATURES */ 3613 HCI_INIT(hci_read_local_features_sync), 3614 /* HCI_OP_READ_LOCAL_VERSION */ 3615 HCI_INIT(hci_read_local_version_sync), 3616 /* HCI_OP_READ_BD_ADDR */ 3617 HCI_INIT(hci_read_bd_addr_sync), 3618 {} 3619 }; 3620 3621 /* Read Local Commands */ 3622 static int hci_read_local_cmds_sync(struct hci_dev *hdev) 3623 { 3624 /* All Bluetooth 1.2 and later controllers should support the 3625 * HCI command for reading the local supported commands. 3626 * 3627 * Unfortunately some controllers indicate Bluetooth 1.2 support, 3628 * but do not have support for this command. If that is the case, 3629 * the driver can quirk the behavior and skip reading the local 3630 * supported commands. 3631 */ 3632 if (hdev->hci_ver > BLUETOOTH_VER_1_1 && 3633 !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks)) 3634 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_COMMANDS, 3635 0, NULL, HCI_CMD_TIMEOUT); 3636 3637 return 0; 3638 } 3639 3640 static int hci_init1_sync(struct hci_dev *hdev) 3641 { 3642 int err; 3643 3644 bt_dev_dbg(hdev, ""); 3645 3646 /* Reset */ 3647 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) { 3648 err = hci_reset_sync(hdev); 3649 if (err) 3650 return err; 3651 } 3652 3653 return hci_init_stage_sync(hdev, br_init1); 3654 } 3655 3656 /* Read Buffer Size (ACL mtu, max pkt, etc.) */ 3657 static int hci_read_buffer_size_sync(struct hci_dev *hdev) 3658 { 3659 return __hci_cmd_sync_status(hdev, HCI_OP_READ_BUFFER_SIZE, 3660 0, NULL, HCI_CMD_TIMEOUT); 3661 } 3662 3663 /* Read Class of Device */ 3664 static int hci_read_dev_class_sync(struct hci_dev *hdev) 3665 { 3666 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLASS_OF_DEV, 3667 0, NULL, HCI_CMD_TIMEOUT); 3668 } 3669 3670 /* Read Local Name */ 3671 static int hci_read_local_name_sync(struct hci_dev *hdev) 3672 { 3673 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_NAME, 3674 0, NULL, HCI_CMD_TIMEOUT); 3675 } 3676 3677 /* Read Voice Setting */ 3678 static int hci_read_voice_setting_sync(struct hci_dev *hdev) 3679 { 3680 return __hci_cmd_sync_status(hdev, HCI_OP_READ_VOICE_SETTING, 3681 0, NULL, HCI_CMD_TIMEOUT); 3682 } 3683 3684 /* Read Number of Supported IAC */ 3685 static int hci_read_num_supported_iac_sync(struct hci_dev *hdev) 3686 { 3687 return __hci_cmd_sync_status(hdev, HCI_OP_READ_NUM_SUPPORTED_IAC, 3688 0, NULL, HCI_CMD_TIMEOUT); 3689 } 3690 3691 /* Read Current IAC LAP */ 3692 static int hci_read_current_iac_lap_sync(struct hci_dev *hdev) 3693 { 3694 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CURRENT_IAC_LAP, 3695 0, NULL, HCI_CMD_TIMEOUT); 3696 } 3697 3698 static int hci_set_event_filter_sync(struct hci_dev *hdev, u8 flt_type, 3699 u8 cond_type, bdaddr_t *bdaddr, 3700 u8 auto_accept) 3701 { 3702 struct hci_cp_set_event_filter cp; 3703 3704 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 3705 return 0; 3706 3707 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 3708 return 0; 3709 3710 memset(&cp, 0, sizeof(cp)); 3711 cp.flt_type = flt_type; 3712 3713 if (flt_type != HCI_FLT_CLEAR_ALL) { 3714 cp.cond_type = cond_type; 3715 bacpy(&cp.addr_conn_flt.bdaddr, bdaddr); 3716 cp.addr_conn_flt.auto_accept = auto_accept; 3717 } 3718 3719 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_FLT, 3720 flt_type == HCI_FLT_CLEAR_ALL ? 3721 sizeof(cp.flt_type) : sizeof(cp), &cp, 3722 HCI_CMD_TIMEOUT); 3723 } 3724 3725 static int hci_clear_event_filter_sync(struct hci_dev *hdev) 3726 { 3727 if (!hci_dev_test_flag(hdev, HCI_EVENT_FILTER_CONFIGURED)) 3728 return 0; 3729 3730 /* In theory the state machine should not reach here unless 3731 * a hci_set_event_filter_sync() call succeeds, but we do 3732 * the check both for parity and as a future reminder. 3733 */ 3734 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 3735 return 0; 3736 3737 return hci_set_event_filter_sync(hdev, HCI_FLT_CLEAR_ALL, 0x00, 3738 BDADDR_ANY, 0x00); 3739 } 3740 3741 /* Connection accept timeout ~20 secs */ 3742 static int hci_write_ca_timeout_sync(struct hci_dev *hdev) 3743 { 3744 __le16 param = cpu_to_le16(0x7d00); 3745 3746 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CA_TIMEOUT, 3747 sizeof(param), ¶m, HCI_CMD_TIMEOUT); 3748 } 3749 3750 /* BR Controller init stage 2 command sequence */ 3751 static const struct hci_init_stage br_init2[] = { 3752 /* HCI_OP_READ_BUFFER_SIZE */ 3753 HCI_INIT(hci_read_buffer_size_sync), 3754 /* HCI_OP_READ_CLASS_OF_DEV */ 3755 HCI_INIT(hci_read_dev_class_sync), 3756 /* HCI_OP_READ_LOCAL_NAME */ 3757 HCI_INIT(hci_read_local_name_sync), 3758 /* HCI_OP_READ_VOICE_SETTING */ 3759 HCI_INIT(hci_read_voice_setting_sync), 3760 /* HCI_OP_READ_NUM_SUPPORTED_IAC */ 3761 HCI_INIT(hci_read_num_supported_iac_sync), 3762 /* HCI_OP_READ_CURRENT_IAC_LAP */ 3763 HCI_INIT(hci_read_current_iac_lap_sync), 3764 /* HCI_OP_SET_EVENT_FLT */ 3765 HCI_INIT(hci_clear_event_filter_sync), 3766 /* HCI_OP_WRITE_CA_TIMEOUT */ 3767 HCI_INIT(hci_write_ca_timeout_sync), 3768 {} 3769 }; 3770 3771 static int hci_write_ssp_mode_1_sync(struct hci_dev *hdev) 3772 { 3773 u8 mode = 0x01; 3774 3775 if (!lmp_ssp_capable(hdev) || !hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 3776 return 0; 3777 3778 /* When SSP is available, then the host features page 3779 * should also be available as well. However some 3780 * controllers list the max_page as 0 as long as SSP 3781 * has not been enabled. To achieve proper debugging 3782 * output, force the minimum max_page to 1 at least. 3783 */ 3784 hdev->max_page = 0x01; 3785 3786 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE, 3787 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3788 } 3789 3790 static int hci_write_eir_sync(struct hci_dev *hdev) 3791 { 3792 struct hci_cp_write_eir cp; 3793 3794 if (!lmp_ssp_capable(hdev) || hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 3795 return 0; 3796 3797 memset(hdev->eir, 0, sizeof(hdev->eir)); 3798 memset(&cp, 0, sizeof(cp)); 3799 3800 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp, 3801 HCI_CMD_TIMEOUT); 3802 } 3803 3804 static int hci_write_inquiry_mode_sync(struct hci_dev *hdev) 3805 { 3806 u8 mode; 3807 3808 if (!lmp_inq_rssi_capable(hdev) && 3809 !test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) 3810 return 0; 3811 3812 /* If Extended Inquiry Result events are supported, then 3813 * they are clearly preferred over Inquiry Result with RSSI 3814 * events. 3815 */ 3816 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01; 3817 3818 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_INQUIRY_MODE, 3819 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3820 } 3821 3822 static int hci_read_inq_rsp_tx_power_sync(struct hci_dev *hdev) 3823 { 3824 if (!lmp_inq_tx_pwr_capable(hdev)) 3825 return 0; 3826 3827 return __hci_cmd_sync_status(hdev, HCI_OP_READ_INQ_RSP_TX_POWER, 3828 0, NULL, HCI_CMD_TIMEOUT); 3829 } 3830 3831 static int hci_read_local_ext_features_sync(struct hci_dev *hdev, u8 page) 3832 { 3833 struct hci_cp_read_local_ext_features cp; 3834 3835 if (!lmp_ext_feat_capable(hdev)) 3836 return 0; 3837 3838 memset(&cp, 0, sizeof(cp)); 3839 cp.page = page; 3840 3841 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_EXT_FEATURES, 3842 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3843 } 3844 3845 static int hci_read_local_ext_features_1_sync(struct hci_dev *hdev) 3846 { 3847 return hci_read_local_ext_features_sync(hdev, 0x01); 3848 } 3849 3850 /* HCI Controller init stage 2 command sequence */ 3851 static const struct hci_init_stage hci_init2[] = { 3852 /* HCI_OP_READ_LOCAL_COMMANDS */ 3853 HCI_INIT(hci_read_local_cmds_sync), 3854 /* HCI_OP_WRITE_SSP_MODE */ 3855 HCI_INIT(hci_write_ssp_mode_1_sync), 3856 /* HCI_OP_WRITE_EIR */ 3857 HCI_INIT(hci_write_eir_sync), 3858 /* HCI_OP_WRITE_INQUIRY_MODE */ 3859 HCI_INIT(hci_write_inquiry_mode_sync), 3860 /* HCI_OP_READ_INQ_RSP_TX_POWER */ 3861 HCI_INIT(hci_read_inq_rsp_tx_power_sync), 3862 /* HCI_OP_READ_LOCAL_EXT_FEATURES */ 3863 HCI_INIT(hci_read_local_ext_features_1_sync), 3864 /* HCI_OP_WRITE_AUTH_ENABLE */ 3865 HCI_INIT(hci_write_auth_enable_sync), 3866 {} 3867 }; 3868 3869 /* Read LE Buffer Size */ 3870 static int hci_le_read_buffer_size_sync(struct hci_dev *hdev) 3871 { 3872 /* Use Read LE Buffer Size V2 if supported */ 3873 if (iso_capable(hdev) && hdev->commands[41] & 0x20) 3874 return __hci_cmd_sync_status(hdev, 3875 HCI_OP_LE_READ_BUFFER_SIZE_V2, 3876 0, NULL, HCI_CMD_TIMEOUT); 3877 3878 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_BUFFER_SIZE, 3879 0, NULL, HCI_CMD_TIMEOUT); 3880 } 3881 3882 /* Read LE Local Supported Features */ 3883 static int hci_le_read_local_features_sync(struct hci_dev *hdev) 3884 { 3885 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_LOCAL_FEATURES, 3886 0, NULL, HCI_CMD_TIMEOUT); 3887 } 3888 3889 /* Read LE Supported States */ 3890 static int hci_le_read_supported_states_sync(struct hci_dev *hdev) 3891 { 3892 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_SUPPORTED_STATES, 3893 0, NULL, HCI_CMD_TIMEOUT); 3894 } 3895 3896 /* LE Controller init stage 2 command sequence */ 3897 static const struct hci_init_stage le_init2[] = { 3898 /* HCI_OP_LE_READ_LOCAL_FEATURES */ 3899 HCI_INIT(hci_le_read_local_features_sync), 3900 /* HCI_OP_LE_READ_BUFFER_SIZE */ 3901 HCI_INIT(hci_le_read_buffer_size_sync), 3902 /* HCI_OP_LE_READ_SUPPORTED_STATES */ 3903 HCI_INIT(hci_le_read_supported_states_sync), 3904 {} 3905 }; 3906 3907 static int hci_init2_sync(struct hci_dev *hdev) 3908 { 3909 int err; 3910 3911 bt_dev_dbg(hdev, ""); 3912 3913 err = hci_init_stage_sync(hdev, hci_init2); 3914 if (err) 3915 return err; 3916 3917 if (lmp_bredr_capable(hdev)) { 3918 err = hci_init_stage_sync(hdev, br_init2); 3919 if (err) 3920 return err; 3921 } else { 3922 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED); 3923 } 3924 3925 if (lmp_le_capable(hdev)) { 3926 err = hci_init_stage_sync(hdev, le_init2); 3927 if (err) 3928 return err; 3929 /* LE-only controllers have LE implicitly enabled */ 3930 if (!lmp_bredr_capable(hdev)) 3931 hci_dev_set_flag(hdev, HCI_LE_ENABLED); 3932 } 3933 3934 return 0; 3935 } 3936 3937 static int hci_set_event_mask_sync(struct hci_dev *hdev) 3938 { 3939 /* The second byte is 0xff instead of 0x9f (two reserved bits 3940 * disabled) since a Broadcom 1.2 dongle doesn't respond to the 3941 * command otherwise. 3942 */ 3943 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 }; 3944 3945 /* CSR 1.1 dongles does not accept any bitfield so don't try to set 3946 * any event mask for pre 1.2 devices. 3947 */ 3948 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 3949 return 0; 3950 3951 if (lmp_bredr_capable(hdev)) { 3952 events[4] |= 0x01; /* Flow Specification Complete */ 3953 3954 /* Don't set Disconnect Complete and mode change when 3955 * suspended as that would wakeup the host when disconnecting 3956 * due to suspend. 3957 */ 3958 if (hdev->suspended) { 3959 events[0] &= 0xef; 3960 events[2] &= 0xf7; 3961 } 3962 } else { 3963 /* Use a different default for LE-only devices */ 3964 memset(events, 0, sizeof(events)); 3965 events[1] |= 0x20; /* Command Complete */ 3966 events[1] |= 0x40; /* Command Status */ 3967 events[1] |= 0x80; /* Hardware Error */ 3968 3969 /* If the controller supports the Disconnect command, enable 3970 * the corresponding event. In addition enable packet flow 3971 * control related events. 3972 */ 3973 if (hdev->commands[0] & 0x20) { 3974 /* Don't set Disconnect Complete when suspended as that 3975 * would wakeup the host when disconnecting due to 3976 * suspend. 3977 */ 3978 if (!hdev->suspended) 3979 events[0] |= 0x10; /* Disconnection Complete */ 3980 events[2] |= 0x04; /* Number of Completed Packets */ 3981 events[3] |= 0x02; /* Data Buffer Overflow */ 3982 } 3983 3984 /* If the controller supports the Read Remote Version 3985 * Information command, enable the corresponding event. 3986 */ 3987 if (hdev->commands[2] & 0x80) 3988 events[1] |= 0x08; /* Read Remote Version Information 3989 * Complete 3990 */ 3991 3992 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) { 3993 events[0] |= 0x80; /* Encryption Change */ 3994 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 3995 } 3996 } 3997 3998 if (lmp_inq_rssi_capable(hdev) || 3999 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) 4000 events[4] |= 0x02; /* Inquiry Result with RSSI */ 4001 4002 if (lmp_ext_feat_capable(hdev)) 4003 events[4] |= 0x04; /* Read Remote Extended Features Complete */ 4004 4005 if (lmp_esco_capable(hdev)) { 4006 events[5] |= 0x08; /* Synchronous Connection Complete */ 4007 events[5] |= 0x10; /* Synchronous Connection Changed */ 4008 } 4009 4010 if (lmp_sniffsubr_capable(hdev)) 4011 events[5] |= 0x20; /* Sniff Subrating */ 4012 4013 if (lmp_pause_enc_capable(hdev)) 4014 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 4015 4016 if (lmp_ext_inq_capable(hdev)) 4017 events[5] |= 0x40; /* Extended Inquiry Result */ 4018 4019 if (lmp_no_flush_capable(hdev)) 4020 events[7] |= 0x01; /* Enhanced Flush Complete */ 4021 4022 if (lmp_lsto_capable(hdev)) 4023 events[6] |= 0x80; /* Link Supervision Timeout Changed */ 4024 4025 if (lmp_ssp_capable(hdev)) { 4026 events[6] |= 0x01; /* IO Capability Request */ 4027 events[6] |= 0x02; /* IO Capability Response */ 4028 events[6] |= 0x04; /* User Confirmation Request */ 4029 events[6] |= 0x08; /* User Passkey Request */ 4030 events[6] |= 0x10; /* Remote OOB Data Request */ 4031 events[6] |= 0x20; /* Simple Pairing Complete */ 4032 events[7] |= 0x04; /* User Passkey Notification */ 4033 events[7] |= 0x08; /* Keypress Notification */ 4034 events[7] |= 0x10; /* Remote Host Supported 4035 * Features Notification 4036 */ 4037 } 4038 4039 if (lmp_le_capable(hdev)) 4040 events[7] |= 0x20; /* LE Meta-Event */ 4041 4042 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK, 4043 sizeof(events), events, HCI_CMD_TIMEOUT); 4044 } 4045 4046 static int hci_read_stored_link_key_sync(struct hci_dev *hdev) 4047 { 4048 struct hci_cp_read_stored_link_key cp; 4049 4050 if (!(hdev->commands[6] & 0x20) || 4051 test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) 4052 return 0; 4053 4054 memset(&cp, 0, sizeof(cp)); 4055 bacpy(&cp.bdaddr, BDADDR_ANY); 4056 cp.read_all = 0x01; 4057 4058 return __hci_cmd_sync_status(hdev, HCI_OP_READ_STORED_LINK_KEY, 4059 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4060 } 4061 4062 static int hci_setup_link_policy_sync(struct hci_dev *hdev) 4063 { 4064 struct hci_cp_write_def_link_policy cp; 4065 u16 link_policy = 0; 4066 4067 if (!(hdev->commands[5] & 0x10)) 4068 return 0; 4069 4070 memset(&cp, 0, sizeof(cp)); 4071 4072 if (lmp_rswitch_capable(hdev)) 4073 link_policy |= HCI_LP_RSWITCH; 4074 if (lmp_hold_capable(hdev)) 4075 link_policy |= HCI_LP_HOLD; 4076 if (lmp_sniff_capable(hdev)) 4077 link_policy |= HCI_LP_SNIFF; 4078 if (lmp_park_capable(hdev)) 4079 link_policy |= HCI_LP_PARK; 4080 4081 cp.policy = cpu_to_le16(link_policy); 4082 4083 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY, 4084 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4085 } 4086 4087 static int hci_read_page_scan_activity_sync(struct hci_dev *hdev) 4088 { 4089 if (!(hdev->commands[8] & 0x01)) 4090 return 0; 4091 4092 return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 4093 0, NULL, HCI_CMD_TIMEOUT); 4094 } 4095 4096 static int hci_read_def_err_data_reporting_sync(struct hci_dev *hdev) 4097 { 4098 if (!(hdev->commands[18] & 0x04) || 4099 !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) || 4100 test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) 4101 return 0; 4102 4103 return __hci_cmd_sync_status(hdev, HCI_OP_READ_DEF_ERR_DATA_REPORTING, 4104 0, NULL, HCI_CMD_TIMEOUT); 4105 } 4106 4107 static int hci_read_page_scan_type_sync(struct hci_dev *hdev) 4108 { 4109 /* Some older Broadcom based Bluetooth 1.2 controllers do not 4110 * support the Read Page Scan Type command. Check support for 4111 * this command in the bit mask of supported commands. 4112 */ 4113 if (!(hdev->commands[13] & 0x01)) 4114 return 0; 4115 4116 return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_TYPE, 4117 0, NULL, HCI_CMD_TIMEOUT); 4118 } 4119 4120 /* Read features beyond page 1 if available */ 4121 static int hci_read_local_ext_features_all_sync(struct hci_dev *hdev) 4122 { 4123 u8 page; 4124 int err; 4125 4126 if (!lmp_ext_feat_capable(hdev)) 4127 return 0; 4128 4129 for (page = 2; page < HCI_MAX_PAGES && page <= hdev->max_page; 4130 page++) { 4131 err = hci_read_local_ext_features_sync(hdev, page); 4132 if (err) 4133 return err; 4134 } 4135 4136 return 0; 4137 } 4138 4139 /* HCI Controller init stage 3 command sequence */ 4140 static const struct hci_init_stage hci_init3[] = { 4141 /* HCI_OP_SET_EVENT_MASK */ 4142 HCI_INIT(hci_set_event_mask_sync), 4143 /* HCI_OP_READ_STORED_LINK_KEY */ 4144 HCI_INIT(hci_read_stored_link_key_sync), 4145 /* HCI_OP_WRITE_DEF_LINK_POLICY */ 4146 HCI_INIT(hci_setup_link_policy_sync), 4147 /* HCI_OP_READ_PAGE_SCAN_ACTIVITY */ 4148 HCI_INIT(hci_read_page_scan_activity_sync), 4149 /* HCI_OP_READ_DEF_ERR_DATA_REPORTING */ 4150 HCI_INIT(hci_read_def_err_data_reporting_sync), 4151 /* HCI_OP_READ_PAGE_SCAN_TYPE */ 4152 HCI_INIT(hci_read_page_scan_type_sync), 4153 /* HCI_OP_READ_LOCAL_EXT_FEATURES */ 4154 HCI_INIT(hci_read_local_ext_features_all_sync), 4155 {} 4156 }; 4157 4158 static int hci_le_set_event_mask_sync(struct hci_dev *hdev) 4159 { 4160 u8 events[8]; 4161 4162 if (!lmp_le_capable(hdev)) 4163 return 0; 4164 4165 memset(events, 0, sizeof(events)); 4166 4167 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) 4168 events[0] |= 0x10; /* LE Long Term Key Request */ 4169 4170 /* If controller supports the Connection Parameters Request 4171 * Link Layer Procedure, enable the corresponding event. 4172 */ 4173 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC) 4174 /* LE Remote Connection Parameter Request */ 4175 events[0] |= 0x20; 4176 4177 /* If the controller supports the Data Length Extension 4178 * feature, enable the corresponding event. 4179 */ 4180 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) 4181 events[0] |= 0x40; /* LE Data Length Change */ 4182 4183 /* If the controller supports LL Privacy feature or LE Extended Adv, 4184 * enable the corresponding event. 4185 */ 4186 if (use_enhanced_conn_complete(hdev)) 4187 events[1] |= 0x02; /* LE Enhanced Connection Complete */ 4188 4189 /* If the controller supports Extended Scanner Filter 4190 * Policies, enable the corresponding event. 4191 */ 4192 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY) 4193 events[1] |= 0x04; /* LE Direct Advertising Report */ 4194 4195 /* If the controller supports Channel Selection Algorithm #2 4196 * feature, enable the corresponding event. 4197 */ 4198 if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2) 4199 events[2] |= 0x08; /* LE Channel Selection Algorithm */ 4200 4201 /* If the controller supports the LE Set Scan Enable command, 4202 * enable the corresponding advertising report event. 4203 */ 4204 if (hdev->commands[26] & 0x08) 4205 events[0] |= 0x02; /* LE Advertising Report */ 4206 4207 /* If the controller supports the LE Create Connection 4208 * command, enable the corresponding event. 4209 */ 4210 if (hdev->commands[26] & 0x10) 4211 events[0] |= 0x01; /* LE Connection Complete */ 4212 4213 /* If the controller supports the LE Connection Update 4214 * command, enable the corresponding event. 4215 */ 4216 if (hdev->commands[27] & 0x04) 4217 events[0] |= 0x04; /* LE Connection Update Complete */ 4218 4219 /* If the controller supports the LE Read Remote Used Features 4220 * command, enable the corresponding event. 4221 */ 4222 if (hdev->commands[27] & 0x20) 4223 /* LE Read Remote Used Features Complete */ 4224 events[0] |= 0x08; 4225 4226 /* If the controller supports the LE Read Local P-256 4227 * Public Key command, enable the corresponding event. 4228 */ 4229 if (hdev->commands[34] & 0x02) 4230 /* LE Read Local P-256 Public Key Complete */ 4231 events[0] |= 0x80; 4232 4233 /* If the controller supports the LE Generate DHKey 4234 * command, enable the corresponding event. 4235 */ 4236 if (hdev->commands[34] & 0x04) 4237 events[1] |= 0x01; /* LE Generate DHKey Complete */ 4238 4239 /* If the controller supports the LE Set Default PHY or 4240 * LE Set PHY commands, enable the corresponding event. 4241 */ 4242 if (hdev->commands[35] & (0x20 | 0x40)) 4243 events[1] |= 0x08; /* LE PHY Update Complete */ 4244 4245 /* If the controller supports LE Set Extended Scan Parameters 4246 * and LE Set Extended Scan Enable commands, enable the 4247 * corresponding event. 4248 */ 4249 if (use_ext_scan(hdev)) 4250 events[1] |= 0x10; /* LE Extended Advertising Report */ 4251 4252 /* If the controller supports the LE Extended Advertising 4253 * command, enable the corresponding event. 4254 */ 4255 if (ext_adv_capable(hdev)) 4256 events[2] |= 0x02; /* LE Advertising Set Terminated */ 4257 4258 if (cis_capable(hdev)) { 4259 events[3] |= 0x01; /* LE CIS Established */ 4260 if (cis_peripheral_capable(hdev)) 4261 events[3] |= 0x02; /* LE CIS Request */ 4262 } 4263 4264 if (bis_capable(hdev)) { 4265 events[1] |= 0x20; /* LE PA Report */ 4266 events[1] |= 0x40; /* LE PA Sync Established */ 4267 events[3] |= 0x04; /* LE Create BIG Complete */ 4268 events[3] |= 0x08; /* LE Terminate BIG Complete */ 4269 events[3] |= 0x10; /* LE BIG Sync Established */ 4270 events[3] |= 0x20; /* LE BIG Sync Loss */ 4271 events[4] |= 0x02; /* LE BIG Info Advertising Report */ 4272 } 4273 4274 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EVENT_MASK, 4275 sizeof(events), events, HCI_CMD_TIMEOUT); 4276 } 4277 4278 /* Read LE Advertising Channel TX Power */ 4279 static int hci_le_read_adv_tx_power_sync(struct hci_dev *hdev) 4280 { 4281 if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) { 4282 /* HCI TS spec forbids mixing of legacy and extended 4283 * advertising commands wherein READ_ADV_TX_POWER is 4284 * also included. So do not call it if extended adv 4285 * is supported otherwise controller will return 4286 * COMMAND_DISALLOWED for extended commands. 4287 */ 4288 return __hci_cmd_sync_status(hdev, 4289 HCI_OP_LE_READ_ADV_TX_POWER, 4290 0, NULL, HCI_CMD_TIMEOUT); 4291 } 4292 4293 return 0; 4294 } 4295 4296 /* Read LE Min/Max Tx Power*/ 4297 static int hci_le_read_tx_power_sync(struct hci_dev *hdev) 4298 { 4299 if (!(hdev->commands[38] & 0x80) || 4300 test_bit(HCI_QUIRK_BROKEN_READ_TRANSMIT_POWER, &hdev->quirks)) 4301 return 0; 4302 4303 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_TRANSMIT_POWER, 4304 0, NULL, HCI_CMD_TIMEOUT); 4305 } 4306 4307 /* Read LE Accept List Size */ 4308 static int hci_le_read_accept_list_size_sync(struct hci_dev *hdev) 4309 { 4310 if (!(hdev->commands[26] & 0x40)) 4311 return 0; 4312 4313 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_ACCEPT_LIST_SIZE, 4314 0, NULL, HCI_CMD_TIMEOUT); 4315 } 4316 4317 /* Read LE Resolving List Size */ 4318 static int hci_le_read_resolv_list_size_sync(struct hci_dev *hdev) 4319 { 4320 if (!(hdev->commands[34] & 0x40)) 4321 return 0; 4322 4323 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_RESOLV_LIST_SIZE, 4324 0, NULL, HCI_CMD_TIMEOUT); 4325 } 4326 4327 /* Clear LE Resolving List */ 4328 static int hci_le_clear_resolv_list_sync(struct hci_dev *hdev) 4329 { 4330 if (!(hdev->commands[34] & 0x20)) 4331 return 0; 4332 4333 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL, 4334 HCI_CMD_TIMEOUT); 4335 } 4336 4337 /* Set RPA timeout */ 4338 static int hci_le_set_rpa_timeout_sync(struct hci_dev *hdev) 4339 { 4340 __le16 timeout = cpu_to_le16(hdev->rpa_timeout); 4341 4342 if (!(hdev->commands[35] & 0x04) || 4343 test_bit(HCI_QUIRK_BROKEN_SET_RPA_TIMEOUT, &hdev->quirks)) 4344 return 0; 4345 4346 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RPA_TIMEOUT, 4347 sizeof(timeout), &timeout, 4348 HCI_CMD_TIMEOUT); 4349 } 4350 4351 /* Read LE Maximum Data Length */ 4352 static int hci_le_read_max_data_len_sync(struct hci_dev *hdev) 4353 { 4354 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 4355 return 0; 4356 4357 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL, 4358 HCI_CMD_TIMEOUT); 4359 } 4360 4361 /* Read LE Suggested Default Data Length */ 4362 static int hci_le_read_def_data_len_sync(struct hci_dev *hdev) 4363 { 4364 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 4365 return 0; 4366 4367 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL, 4368 HCI_CMD_TIMEOUT); 4369 } 4370 4371 /* Read LE Number of Supported Advertising Sets */ 4372 static int hci_le_read_num_support_adv_sets_sync(struct hci_dev *hdev) 4373 { 4374 if (!ext_adv_capable(hdev)) 4375 return 0; 4376 4377 return __hci_cmd_sync_status(hdev, 4378 HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS, 4379 0, NULL, HCI_CMD_TIMEOUT); 4380 } 4381 4382 /* Write LE Host Supported */ 4383 static int hci_set_le_support_sync(struct hci_dev *hdev) 4384 { 4385 struct hci_cp_write_le_host_supported cp; 4386 4387 /* LE-only devices do not support explicit enablement */ 4388 if (!lmp_bredr_capable(hdev)) 4389 return 0; 4390 4391 memset(&cp, 0, sizeof(cp)); 4392 4393 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 4394 cp.le = 0x01; 4395 cp.simul = 0x00; 4396 } 4397 4398 if (cp.le == lmp_host_le_capable(hdev)) 4399 return 0; 4400 4401 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED, 4402 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4403 } 4404 4405 /* LE Set Host Feature */ 4406 static int hci_le_set_host_feature_sync(struct hci_dev *hdev) 4407 { 4408 struct hci_cp_le_set_host_feature cp; 4409 4410 if (!cis_capable(hdev)) 4411 return 0; 4412 4413 memset(&cp, 0, sizeof(cp)); 4414 4415 /* Connected Isochronous Channels (Host Support) */ 4416 cp.bit_number = 32; 4417 cp.bit_value = 1; 4418 4419 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_HOST_FEATURE, 4420 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4421 } 4422 4423 /* LE Controller init stage 3 command sequence */ 4424 static const struct hci_init_stage le_init3[] = { 4425 /* HCI_OP_LE_SET_EVENT_MASK */ 4426 HCI_INIT(hci_le_set_event_mask_sync), 4427 /* HCI_OP_LE_READ_ADV_TX_POWER */ 4428 HCI_INIT(hci_le_read_adv_tx_power_sync), 4429 /* HCI_OP_LE_READ_TRANSMIT_POWER */ 4430 HCI_INIT(hci_le_read_tx_power_sync), 4431 /* HCI_OP_LE_READ_ACCEPT_LIST_SIZE */ 4432 HCI_INIT(hci_le_read_accept_list_size_sync), 4433 /* HCI_OP_LE_CLEAR_ACCEPT_LIST */ 4434 HCI_INIT(hci_le_clear_accept_list_sync), 4435 /* HCI_OP_LE_READ_RESOLV_LIST_SIZE */ 4436 HCI_INIT(hci_le_read_resolv_list_size_sync), 4437 /* HCI_OP_LE_CLEAR_RESOLV_LIST */ 4438 HCI_INIT(hci_le_clear_resolv_list_sync), 4439 /* HCI_OP_LE_SET_RPA_TIMEOUT */ 4440 HCI_INIT(hci_le_set_rpa_timeout_sync), 4441 /* HCI_OP_LE_READ_MAX_DATA_LEN */ 4442 HCI_INIT(hci_le_read_max_data_len_sync), 4443 /* HCI_OP_LE_READ_DEF_DATA_LEN */ 4444 HCI_INIT(hci_le_read_def_data_len_sync), 4445 /* HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS */ 4446 HCI_INIT(hci_le_read_num_support_adv_sets_sync), 4447 /* HCI_OP_WRITE_LE_HOST_SUPPORTED */ 4448 HCI_INIT(hci_set_le_support_sync), 4449 /* HCI_OP_LE_SET_HOST_FEATURE */ 4450 HCI_INIT(hci_le_set_host_feature_sync), 4451 {} 4452 }; 4453 4454 static int hci_init3_sync(struct hci_dev *hdev) 4455 { 4456 int err; 4457 4458 bt_dev_dbg(hdev, ""); 4459 4460 err = hci_init_stage_sync(hdev, hci_init3); 4461 if (err) 4462 return err; 4463 4464 if (lmp_le_capable(hdev)) 4465 return hci_init_stage_sync(hdev, le_init3); 4466 4467 return 0; 4468 } 4469 4470 static int hci_delete_stored_link_key_sync(struct hci_dev *hdev) 4471 { 4472 struct hci_cp_delete_stored_link_key cp; 4473 4474 /* Some Broadcom based Bluetooth controllers do not support the 4475 * Delete Stored Link Key command. They are clearly indicating its 4476 * absence in the bit mask of supported commands. 4477 * 4478 * Check the supported commands and only if the command is marked 4479 * as supported send it. If not supported assume that the controller 4480 * does not have actual support for stored link keys which makes this 4481 * command redundant anyway. 4482 * 4483 * Some controllers indicate that they support handling deleting 4484 * stored link keys, but they don't. The quirk lets a driver 4485 * just disable this command. 4486 */ 4487 if (!(hdev->commands[6] & 0x80) || 4488 test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) 4489 return 0; 4490 4491 memset(&cp, 0, sizeof(cp)); 4492 bacpy(&cp.bdaddr, BDADDR_ANY); 4493 cp.delete_all = 0x01; 4494 4495 return __hci_cmd_sync_status(hdev, HCI_OP_DELETE_STORED_LINK_KEY, 4496 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4497 } 4498 4499 static int hci_set_event_mask_page_2_sync(struct hci_dev *hdev) 4500 { 4501 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 4502 bool changed = false; 4503 4504 /* Set event mask page 2 if the HCI command for it is supported */ 4505 if (!(hdev->commands[22] & 0x04)) 4506 return 0; 4507 4508 /* If Connectionless Peripheral Broadcast central role is supported 4509 * enable all necessary events for it. 4510 */ 4511 if (lmp_cpb_central_capable(hdev)) { 4512 events[1] |= 0x40; /* Triggered Clock Capture */ 4513 events[1] |= 0x80; /* Synchronization Train Complete */ 4514 events[2] |= 0x08; /* Truncated Page Complete */ 4515 events[2] |= 0x20; /* CPB Channel Map Change */ 4516 changed = true; 4517 } 4518 4519 /* If Connectionless Peripheral Broadcast peripheral role is supported 4520 * enable all necessary events for it. 4521 */ 4522 if (lmp_cpb_peripheral_capable(hdev)) { 4523 events[2] |= 0x01; /* Synchronization Train Received */ 4524 events[2] |= 0x02; /* CPB Receive */ 4525 events[2] |= 0x04; /* CPB Timeout */ 4526 events[2] |= 0x10; /* Peripheral Page Response Timeout */ 4527 changed = true; 4528 } 4529 4530 /* Enable Authenticated Payload Timeout Expired event if supported */ 4531 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) { 4532 events[2] |= 0x80; 4533 changed = true; 4534 } 4535 4536 /* Some Broadcom based controllers indicate support for Set Event 4537 * Mask Page 2 command, but then actually do not support it. Since 4538 * the default value is all bits set to zero, the command is only 4539 * required if the event mask has to be changed. In case no change 4540 * to the event mask is needed, skip this command. 4541 */ 4542 if (!changed) 4543 return 0; 4544 4545 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK_PAGE_2, 4546 sizeof(events), events, HCI_CMD_TIMEOUT); 4547 } 4548 4549 /* Read local codec list if the HCI command is supported */ 4550 static int hci_read_local_codecs_sync(struct hci_dev *hdev) 4551 { 4552 if (hdev->commands[45] & 0x04) 4553 hci_read_supported_codecs_v2(hdev); 4554 else if (hdev->commands[29] & 0x20) 4555 hci_read_supported_codecs(hdev); 4556 4557 return 0; 4558 } 4559 4560 /* Read local pairing options if the HCI command is supported */ 4561 static int hci_read_local_pairing_opts_sync(struct hci_dev *hdev) 4562 { 4563 if (!(hdev->commands[41] & 0x08)) 4564 return 0; 4565 4566 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_PAIRING_OPTS, 4567 0, NULL, HCI_CMD_TIMEOUT); 4568 } 4569 4570 /* Get MWS transport configuration if the HCI command is supported */ 4571 static int hci_get_mws_transport_config_sync(struct hci_dev *hdev) 4572 { 4573 if (!mws_transport_config_capable(hdev)) 4574 return 0; 4575 4576 return __hci_cmd_sync_status(hdev, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 4577 0, NULL, HCI_CMD_TIMEOUT); 4578 } 4579 4580 /* Check for Synchronization Train support */ 4581 static int hci_read_sync_train_params_sync(struct hci_dev *hdev) 4582 { 4583 if (!lmp_sync_train_capable(hdev)) 4584 return 0; 4585 4586 return __hci_cmd_sync_status(hdev, HCI_OP_READ_SYNC_TRAIN_PARAMS, 4587 0, NULL, HCI_CMD_TIMEOUT); 4588 } 4589 4590 /* Enable Secure Connections if supported and configured */ 4591 static int hci_write_sc_support_1_sync(struct hci_dev *hdev) 4592 { 4593 u8 support = 0x01; 4594 4595 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) || 4596 !bredr_sc_enabled(hdev)) 4597 return 0; 4598 4599 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT, 4600 sizeof(support), &support, 4601 HCI_CMD_TIMEOUT); 4602 } 4603 4604 /* Set erroneous data reporting if supported to the wideband speech 4605 * setting value 4606 */ 4607 static int hci_set_err_data_report_sync(struct hci_dev *hdev) 4608 { 4609 struct hci_cp_write_def_err_data_reporting cp; 4610 bool enabled = hci_dev_test_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED); 4611 4612 if (!(hdev->commands[18] & 0x08) || 4613 !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) || 4614 test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) 4615 return 0; 4616 4617 if (enabled == hdev->err_data_reporting) 4618 return 0; 4619 4620 memset(&cp, 0, sizeof(cp)); 4621 cp.err_data_reporting = enabled ? ERR_DATA_REPORTING_ENABLED : 4622 ERR_DATA_REPORTING_DISABLED; 4623 4624 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING, 4625 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4626 } 4627 4628 static const struct hci_init_stage hci_init4[] = { 4629 /* HCI_OP_DELETE_STORED_LINK_KEY */ 4630 HCI_INIT(hci_delete_stored_link_key_sync), 4631 /* HCI_OP_SET_EVENT_MASK_PAGE_2 */ 4632 HCI_INIT(hci_set_event_mask_page_2_sync), 4633 /* HCI_OP_READ_LOCAL_CODECS */ 4634 HCI_INIT(hci_read_local_codecs_sync), 4635 /* HCI_OP_READ_LOCAL_PAIRING_OPTS */ 4636 HCI_INIT(hci_read_local_pairing_opts_sync), 4637 /* HCI_OP_GET_MWS_TRANSPORT_CONFIG */ 4638 HCI_INIT(hci_get_mws_transport_config_sync), 4639 /* HCI_OP_READ_SYNC_TRAIN_PARAMS */ 4640 HCI_INIT(hci_read_sync_train_params_sync), 4641 /* HCI_OP_WRITE_SC_SUPPORT */ 4642 HCI_INIT(hci_write_sc_support_1_sync), 4643 /* HCI_OP_WRITE_DEF_ERR_DATA_REPORTING */ 4644 HCI_INIT(hci_set_err_data_report_sync), 4645 {} 4646 }; 4647 4648 /* Set Suggested Default Data Length to maximum if supported */ 4649 static int hci_le_set_write_def_data_len_sync(struct hci_dev *hdev) 4650 { 4651 struct hci_cp_le_write_def_data_len cp; 4652 4653 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 4654 return 0; 4655 4656 memset(&cp, 0, sizeof(cp)); 4657 cp.tx_len = cpu_to_le16(hdev->le_max_tx_len); 4658 cp.tx_time = cpu_to_le16(hdev->le_max_tx_time); 4659 4660 return __hci_cmd_sync_status(hdev, HCI_OP_LE_WRITE_DEF_DATA_LEN, 4661 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4662 } 4663 4664 /* Set Default PHY parameters if command is supported, enables all supported 4665 * PHYs according to the LE Features bits. 4666 */ 4667 static int hci_le_set_default_phy_sync(struct hci_dev *hdev) 4668 { 4669 struct hci_cp_le_set_default_phy cp; 4670 4671 if (!(hdev->commands[35] & 0x20)) { 4672 /* If the command is not supported it means only 1M PHY is 4673 * supported. 4674 */ 4675 hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M; 4676 hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M; 4677 return 0; 4678 } 4679 4680 memset(&cp, 0, sizeof(cp)); 4681 cp.all_phys = 0x00; 4682 cp.tx_phys = HCI_LE_SET_PHY_1M; 4683 cp.rx_phys = HCI_LE_SET_PHY_1M; 4684 4685 /* Enables 2M PHY if supported */ 4686 if (le_2m_capable(hdev)) { 4687 cp.tx_phys |= HCI_LE_SET_PHY_2M; 4688 cp.rx_phys |= HCI_LE_SET_PHY_2M; 4689 } 4690 4691 /* Enables Coded PHY if supported */ 4692 if (le_coded_capable(hdev)) { 4693 cp.tx_phys |= HCI_LE_SET_PHY_CODED; 4694 cp.rx_phys |= HCI_LE_SET_PHY_CODED; 4695 } 4696 4697 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_DEFAULT_PHY, 4698 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4699 } 4700 4701 static const struct hci_init_stage le_init4[] = { 4702 /* HCI_OP_LE_WRITE_DEF_DATA_LEN */ 4703 HCI_INIT(hci_le_set_write_def_data_len_sync), 4704 /* HCI_OP_LE_SET_DEFAULT_PHY */ 4705 HCI_INIT(hci_le_set_default_phy_sync), 4706 {} 4707 }; 4708 4709 static int hci_init4_sync(struct hci_dev *hdev) 4710 { 4711 int err; 4712 4713 bt_dev_dbg(hdev, ""); 4714 4715 err = hci_init_stage_sync(hdev, hci_init4); 4716 if (err) 4717 return err; 4718 4719 if (lmp_le_capable(hdev)) 4720 return hci_init_stage_sync(hdev, le_init4); 4721 4722 return 0; 4723 } 4724 4725 static int hci_init_sync(struct hci_dev *hdev) 4726 { 4727 int err; 4728 4729 err = hci_init1_sync(hdev); 4730 if (err < 0) 4731 return err; 4732 4733 if (hci_dev_test_flag(hdev, HCI_SETUP)) 4734 hci_debugfs_create_basic(hdev); 4735 4736 err = hci_init2_sync(hdev); 4737 if (err < 0) 4738 return err; 4739 4740 err = hci_init3_sync(hdev); 4741 if (err < 0) 4742 return err; 4743 4744 err = hci_init4_sync(hdev); 4745 if (err < 0) 4746 return err; 4747 4748 /* This function is only called when the controller is actually in 4749 * configured state. When the controller is marked as unconfigured, 4750 * this initialization procedure is not run. 4751 * 4752 * It means that it is possible that a controller runs through its 4753 * setup phase and then discovers missing settings. If that is the 4754 * case, then this function will not be called. It then will only 4755 * be called during the config phase. 4756 * 4757 * So only when in setup phase or config phase, create the debugfs 4758 * entries and register the SMP channels. 4759 */ 4760 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4761 !hci_dev_test_flag(hdev, HCI_CONFIG)) 4762 return 0; 4763 4764 if (hci_dev_test_and_set_flag(hdev, HCI_DEBUGFS_CREATED)) 4765 return 0; 4766 4767 hci_debugfs_create_common(hdev); 4768 4769 if (lmp_bredr_capable(hdev)) 4770 hci_debugfs_create_bredr(hdev); 4771 4772 if (lmp_le_capable(hdev)) 4773 hci_debugfs_create_le(hdev); 4774 4775 return 0; 4776 } 4777 4778 #define HCI_QUIRK_BROKEN(_quirk, _desc) { HCI_QUIRK_BROKEN_##_quirk, _desc } 4779 4780 static const struct { 4781 unsigned long quirk; 4782 const char *desc; 4783 } hci_broken_table[] = { 4784 HCI_QUIRK_BROKEN(LOCAL_COMMANDS, 4785 "HCI Read Local Supported Commands not supported"), 4786 HCI_QUIRK_BROKEN(STORED_LINK_KEY, 4787 "HCI Delete Stored Link Key command is advertised, " 4788 "but not supported."), 4789 HCI_QUIRK_BROKEN(ERR_DATA_REPORTING, 4790 "HCI Read Default Erroneous Data Reporting command is " 4791 "advertised, but not supported."), 4792 HCI_QUIRK_BROKEN(READ_TRANSMIT_POWER, 4793 "HCI Read Transmit Power Level command is advertised, " 4794 "but not supported."), 4795 HCI_QUIRK_BROKEN(FILTER_CLEAR_ALL, 4796 "HCI Set Event Filter command not supported."), 4797 HCI_QUIRK_BROKEN(ENHANCED_SETUP_SYNC_CONN, 4798 "HCI Enhanced Setup Synchronous Connection command is " 4799 "advertised, but not supported."), 4800 HCI_QUIRK_BROKEN(SET_RPA_TIMEOUT, 4801 "HCI LE Set Random Private Address Timeout command is " 4802 "advertised, but not supported."), 4803 HCI_QUIRK_BROKEN(LE_CODED, 4804 "HCI LE Coded PHY feature bit is set, " 4805 "but its usage is not supported.") 4806 }; 4807 4808 /* This function handles hdev setup stage: 4809 * 4810 * Calls hdev->setup 4811 * Setup address if HCI_QUIRK_USE_BDADDR_PROPERTY is set. 4812 */ 4813 static int hci_dev_setup_sync(struct hci_dev *hdev) 4814 { 4815 int ret = 0; 4816 bool invalid_bdaddr; 4817 size_t i; 4818 4819 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4820 !test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) 4821 return 0; 4822 4823 bt_dev_dbg(hdev, ""); 4824 4825 hci_sock_dev_event(hdev, HCI_DEV_SETUP); 4826 4827 if (hdev->setup) 4828 ret = hdev->setup(hdev); 4829 4830 for (i = 0; i < ARRAY_SIZE(hci_broken_table); i++) { 4831 if (test_bit(hci_broken_table[i].quirk, &hdev->quirks)) 4832 bt_dev_warn(hdev, "%s", hci_broken_table[i].desc); 4833 } 4834 4835 /* The transport driver can set the quirk to mark the 4836 * BD_ADDR invalid before creating the HCI device or in 4837 * its setup callback. 4838 */ 4839 invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks) || 4840 test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks); 4841 if (!ret) { 4842 if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks) && 4843 !bacmp(&hdev->public_addr, BDADDR_ANY)) 4844 hci_dev_get_bd_addr_from_property(hdev); 4845 4846 if (invalid_bdaddr && bacmp(&hdev->public_addr, BDADDR_ANY) && 4847 hdev->set_bdaddr) { 4848 ret = hdev->set_bdaddr(hdev, &hdev->public_addr); 4849 if (!ret) 4850 invalid_bdaddr = false; 4851 } 4852 } 4853 4854 /* The transport driver can set these quirks before 4855 * creating the HCI device or in its setup callback. 4856 * 4857 * For the invalid BD_ADDR quirk it is possible that 4858 * it becomes a valid address if the bootloader does 4859 * provide it (see above). 4860 * 4861 * In case any of them is set, the controller has to 4862 * start up as unconfigured. 4863 */ 4864 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) || 4865 invalid_bdaddr) 4866 hci_dev_set_flag(hdev, HCI_UNCONFIGURED); 4867 4868 /* For an unconfigured controller it is required to 4869 * read at least the version information provided by 4870 * the Read Local Version Information command. 4871 * 4872 * If the set_bdaddr driver callback is provided, then 4873 * also the original Bluetooth public device address 4874 * will be read using the Read BD Address command. 4875 */ 4876 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 4877 return hci_unconf_init_sync(hdev); 4878 4879 return ret; 4880 } 4881 4882 /* This function handles hdev init stage: 4883 * 4884 * Calls hci_dev_setup_sync to perform setup stage 4885 * Calls hci_init_sync to perform HCI command init sequence 4886 */ 4887 static int hci_dev_init_sync(struct hci_dev *hdev) 4888 { 4889 int ret; 4890 4891 bt_dev_dbg(hdev, ""); 4892 4893 atomic_set(&hdev->cmd_cnt, 1); 4894 set_bit(HCI_INIT, &hdev->flags); 4895 4896 ret = hci_dev_setup_sync(hdev); 4897 4898 if (hci_dev_test_flag(hdev, HCI_CONFIG)) { 4899 /* If public address change is configured, ensure that 4900 * the address gets programmed. If the driver does not 4901 * support changing the public address, fail the power 4902 * on procedure. 4903 */ 4904 if (bacmp(&hdev->public_addr, BDADDR_ANY) && 4905 hdev->set_bdaddr) 4906 ret = hdev->set_bdaddr(hdev, &hdev->public_addr); 4907 else 4908 ret = -EADDRNOTAVAIL; 4909 } 4910 4911 if (!ret) { 4912 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 4913 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4914 ret = hci_init_sync(hdev); 4915 if (!ret && hdev->post_init) 4916 ret = hdev->post_init(hdev); 4917 } 4918 } 4919 4920 /* If the HCI Reset command is clearing all diagnostic settings, 4921 * then they need to be reprogrammed after the init procedure 4922 * completed. 4923 */ 4924 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) && 4925 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4926 hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag) 4927 ret = hdev->set_diag(hdev, true); 4928 4929 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4930 msft_do_open(hdev); 4931 aosp_do_open(hdev); 4932 } 4933 4934 clear_bit(HCI_INIT, &hdev->flags); 4935 4936 return ret; 4937 } 4938 4939 int hci_dev_open_sync(struct hci_dev *hdev) 4940 { 4941 int ret; 4942 4943 bt_dev_dbg(hdev, ""); 4944 4945 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 4946 ret = -ENODEV; 4947 goto done; 4948 } 4949 4950 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4951 !hci_dev_test_flag(hdev, HCI_CONFIG)) { 4952 /* Check for rfkill but allow the HCI setup stage to 4953 * proceed (which in itself doesn't cause any RF activity). 4954 */ 4955 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) { 4956 ret = -ERFKILL; 4957 goto done; 4958 } 4959 4960 /* Check for valid public address or a configured static 4961 * random address, but let the HCI setup proceed to 4962 * be able to determine if there is a public address 4963 * or not. 4964 * 4965 * In case of user channel usage, it is not important 4966 * if a public address or static random address is 4967 * available. 4968 */ 4969 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4970 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 4971 !bacmp(&hdev->static_addr, BDADDR_ANY)) { 4972 ret = -EADDRNOTAVAIL; 4973 goto done; 4974 } 4975 } 4976 4977 if (test_bit(HCI_UP, &hdev->flags)) { 4978 ret = -EALREADY; 4979 goto done; 4980 } 4981 4982 if (hdev->open(hdev)) { 4983 ret = -EIO; 4984 goto done; 4985 } 4986 4987 hci_devcd_reset(hdev); 4988 4989 set_bit(HCI_RUNNING, &hdev->flags); 4990 hci_sock_dev_event(hdev, HCI_DEV_OPEN); 4991 4992 ret = hci_dev_init_sync(hdev); 4993 if (!ret) { 4994 hci_dev_hold(hdev); 4995 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 4996 hci_adv_instances_set_rpa_expired(hdev, true); 4997 set_bit(HCI_UP, &hdev->flags); 4998 hci_sock_dev_event(hdev, HCI_DEV_UP); 4999 hci_leds_update_powered(hdev, true); 5000 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 5001 !hci_dev_test_flag(hdev, HCI_CONFIG) && 5002 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 5003 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 5004 hci_dev_test_flag(hdev, HCI_MGMT)) { 5005 ret = hci_powered_update_sync(hdev); 5006 mgmt_power_on(hdev, ret); 5007 } 5008 } else { 5009 /* Init failed, cleanup */ 5010 flush_work(&hdev->tx_work); 5011 5012 /* Since hci_rx_work() is possible to awake new cmd_work 5013 * it should be flushed first to avoid unexpected call of 5014 * hci_cmd_work() 5015 */ 5016 flush_work(&hdev->rx_work); 5017 flush_work(&hdev->cmd_work); 5018 5019 skb_queue_purge(&hdev->cmd_q); 5020 skb_queue_purge(&hdev->rx_q); 5021 5022 if (hdev->flush) 5023 hdev->flush(hdev); 5024 5025 if (hdev->sent_cmd) { 5026 cancel_delayed_work_sync(&hdev->cmd_timer); 5027 kfree_skb(hdev->sent_cmd); 5028 hdev->sent_cmd = NULL; 5029 } 5030 5031 if (hdev->req_skb) { 5032 kfree_skb(hdev->req_skb); 5033 hdev->req_skb = NULL; 5034 } 5035 5036 clear_bit(HCI_RUNNING, &hdev->flags); 5037 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 5038 5039 hdev->close(hdev); 5040 hdev->flags &= BIT(HCI_RAW); 5041 } 5042 5043 done: 5044 return ret; 5045 } 5046 5047 /* This function requires the caller holds hdev->lock */ 5048 static void hci_pend_le_actions_clear(struct hci_dev *hdev) 5049 { 5050 struct hci_conn_params *p; 5051 5052 list_for_each_entry(p, &hdev->le_conn_params, list) { 5053 hci_pend_le_list_del_init(p); 5054 if (p->conn) { 5055 hci_conn_drop(p->conn); 5056 hci_conn_put(p->conn); 5057 p->conn = NULL; 5058 } 5059 } 5060 5061 BT_DBG("All LE pending actions cleared"); 5062 } 5063 5064 static int hci_dev_shutdown(struct hci_dev *hdev) 5065 { 5066 int err = 0; 5067 /* Similar to how we first do setup and then set the exclusive access 5068 * bit for userspace, we must first unset userchannel and then clean up. 5069 * Otherwise, the kernel can't properly use the hci channel to clean up 5070 * the controller (some shutdown routines require sending additional 5071 * commands to the controller for example). 5072 */ 5073 bool was_userchannel = 5074 hci_dev_test_and_clear_flag(hdev, HCI_USER_CHANNEL); 5075 5076 if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) && 5077 test_bit(HCI_UP, &hdev->flags)) { 5078 /* Execute vendor specific shutdown routine */ 5079 if (hdev->shutdown) 5080 err = hdev->shutdown(hdev); 5081 } 5082 5083 if (was_userchannel) 5084 hci_dev_set_flag(hdev, HCI_USER_CHANNEL); 5085 5086 return err; 5087 } 5088 5089 int hci_dev_close_sync(struct hci_dev *hdev) 5090 { 5091 bool auto_off; 5092 int err = 0; 5093 5094 bt_dev_dbg(hdev, ""); 5095 5096 cancel_delayed_work(&hdev->power_off); 5097 cancel_delayed_work(&hdev->ncmd_timer); 5098 cancel_delayed_work(&hdev->le_scan_disable); 5099 5100 hci_cmd_sync_cancel_sync(hdev, ENODEV); 5101 5102 cancel_interleave_scan(hdev); 5103 5104 if (hdev->adv_instance_timeout) { 5105 cancel_delayed_work_sync(&hdev->adv_instance_expire); 5106 hdev->adv_instance_timeout = 0; 5107 } 5108 5109 err = hci_dev_shutdown(hdev); 5110 5111 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) { 5112 cancel_delayed_work_sync(&hdev->cmd_timer); 5113 return err; 5114 } 5115 5116 hci_leds_update_powered(hdev, false); 5117 5118 /* Flush RX and TX works */ 5119 flush_work(&hdev->tx_work); 5120 flush_work(&hdev->rx_work); 5121 5122 if (hdev->discov_timeout > 0) { 5123 hdev->discov_timeout = 0; 5124 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 5125 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 5126 } 5127 5128 if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE)) 5129 cancel_delayed_work(&hdev->service_cache); 5130 5131 if (hci_dev_test_flag(hdev, HCI_MGMT)) { 5132 struct adv_info *adv_instance; 5133 5134 cancel_delayed_work_sync(&hdev->rpa_expired); 5135 5136 list_for_each_entry(adv_instance, &hdev->adv_instances, list) 5137 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb); 5138 } 5139 5140 /* Avoid potential lockdep warnings from the *_flush() calls by 5141 * ensuring the workqueue is empty up front. 5142 */ 5143 drain_workqueue(hdev->workqueue); 5144 5145 hci_dev_lock(hdev); 5146 5147 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 5148 5149 auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF); 5150 5151 if (!auto_off && !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 5152 hci_dev_test_flag(hdev, HCI_MGMT)) 5153 __mgmt_power_off(hdev); 5154 5155 hci_inquiry_cache_flush(hdev); 5156 hci_pend_le_actions_clear(hdev); 5157 hci_conn_hash_flush(hdev); 5158 /* Prevent data races on hdev->smp_data or hdev->smp_bredr_data */ 5159 smp_unregister(hdev); 5160 hci_dev_unlock(hdev); 5161 5162 hci_sock_dev_event(hdev, HCI_DEV_DOWN); 5163 5164 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 5165 aosp_do_close(hdev); 5166 msft_do_close(hdev); 5167 } 5168 5169 if (hdev->flush) 5170 hdev->flush(hdev); 5171 5172 /* Reset device */ 5173 skb_queue_purge(&hdev->cmd_q); 5174 atomic_set(&hdev->cmd_cnt, 1); 5175 if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) && 5176 !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 5177 set_bit(HCI_INIT, &hdev->flags); 5178 hci_reset_sync(hdev); 5179 clear_bit(HCI_INIT, &hdev->flags); 5180 } 5181 5182 /* flush cmd work */ 5183 flush_work(&hdev->cmd_work); 5184 5185 /* Drop queues */ 5186 skb_queue_purge(&hdev->rx_q); 5187 skb_queue_purge(&hdev->cmd_q); 5188 skb_queue_purge(&hdev->raw_q); 5189 5190 /* Drop last sent command */ 5191 if (hdev->sent_cmd) { 5192 cancel_delayed_work_sync(&hdev->cmd_timer); 5193 kfree_skb(hdev->sent_cmd); 5194 hdev->sent_cmd = NULL; 5195 } 5196 5197 /* Drop last request */ 5198 if (hdev->req_skb) { 5199 kfree_skb(hdev->req_skb); 5200 hdev->req_skb = NULL; 5201 } 5202 5203 clear_bit(HCI_RUNNING, &hdev->flags); 5204 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 5205 5206 /* After this point our queues are empty and no tasks are scheduled. */ 5207 hdev->close(hdev); 5208 5209 /* Clear flags */ 5210 hdev->flags &= BIT(HCI_RAW); 5211 hci_dev_clear_volatile_flags(hdev); 5212 5213 memset(hdev->eir, 0, sizeof(hdev->eir)); 5214 memset(hdev->dev_class, 0, sizeof(hdev->dev_class)); 5215 bacpy(&hdev->random_addr, BDADDR_ANY); 5216 hci_codec_list_clear(&hdev->local_codecs); 5217 5218 hci_dev_put(hdev); 5219 return err; 5220 } 5221 5222 /* This function perform power on HCI command sequence as follows: 5223 * 5224 * If controller is already up (HCI_UP) performs hci_powered_update_sync 5225 * sequence otherwise run hci_dev_open_sync which will follow with 5226 * hci_powered_update_sync after the init sequence is completed. 5227 */ 5228 static int hci_power_on_sync(struct hci_dev *hdev) 5229 { 5230 int err; 5231 5232 if (test_bit(HCI_UP, &hdev->flags) && 5233 hci_dev_test_flag(hdev, HCI_MGMT) && 5234 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) { 5235 cancel_delayed_work(&hdev->power_off); 5236 return hci_powered_update_sync(hdev); 5237 } 5238 5239 err = hci_dev_open_sync(hdev); 5240 if (err < 0) 5241 return err; 5242 5243 /* During the HCI setup phase, a few error conditions are 5244 * ignored and they need to be checked now. If they are still 5245 * valid, it is important to return the device back off. 5246 */ 5247 if (hci_dev_test_flag(hdev, HCI_RFKILLED) || 5248 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) || 5249 (!bacmp(&hdev->bdaddr, BDADDR_ANY) && 5250 !bacmp(&hdev->static_addr, BDADDR_ANY))) { 5251 hci_dev_clear_flag(hdev, HCI_AUTO_OFF); 5252 hci_dev_close_sync(hdev); 5253 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) { 5254 queue_delayed_work(hdev->req_workqueue, &hdev->power_off, 5255 HCI_AUTO_OFF_TIMEOUT); 5256 } 5257 5258 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) { 5259 /* For unconfigured devices, set the HCI_RAW flag 5260 * so that userspace can easily identify them. 5261 */ 5262 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 5263 set_bit(HCI_RAW, &hdev->flags); 5264 5265 /* For fully configured devices, this will send 5266 * the Index Added event. For unconfigured devices, 5267 * it will send Unconfigued Index Added event. 5268 * 5269 * Devices with HCI_QUIRK_RAW_DEVICE are ignored 5270 * and no event will be send. 5271 */ 5272 mgmt_index_added(hdev); 5273 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) { 5274 /* When the controller is now configured, then it 5275 * is important to clear the HCI_RAW flag. 5276 */ 5277 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 5278 clear_bit(HCI_RAW, &hdev->flags); 5279 5280 /* Powering on the controller with HCI_CONFIG set only 5281 * happens with the transition from unconfigured to 5282 * configured. This will send the Index Added event. 5283 */ 5284 mgmt_index_added(hdev); 5285 } 5286 5287 return 0; 5288 } 5289 5290 static int hci_remote_name_cancel_sync(struct hci_dev *hdev, bdaddr_t *addr) 5291 { 5292 struct hci_cp_remote_name_req_cancel cp; 5293 5294 memset(&cp, 0, sizeof(cp)); 5295 bacpy(&cp.bdaddr, addr); 5296 5297 return __hci_cmd_sync_status(hdev, HCI_OP_REMOTE_NAME_REQ_CANCEL, 5298 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5299 } 5300 5301 int hci_stop_discovery_sync(struct hci_dev *hdev) 5302 { 5303 struct discovery_state *d = &hdev->discovery; 5304 struct inquiry_entry *e; 5305 int err; 5306 5307 bt_dev_dbg(hdev, "state %u", hdev->discovery.state); 5308 5309 if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) { 5310 if (test_bit(HCI_INQUIRY, &hdev->flags)) { 5311 err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL, 5312 0, NULL, HCI_CMD_TIMEOUT); 5313 if (err) 5314 return err; 5315 } 5316 5317 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 5318 cancel_delayed_work(&hdev->le_scan_disable); 5319 5320 err = hci_scan_disable_sync(hdev); 5321 if (err) 5322 return err; 5323 } 5324 5325 } else { 5326 err = hci_scan_disable_sync(hdev); 5327 if (err) 5328 return err; 5329 } 5330 5331 /* Resume advertising if it was paused */ 5332 if (use_ll_privacy(hdev)) 5333 hci_resume_advertising_sync(hdev); 5334 5335 /* No further actions needed for LE-only discovery */ 5336 if (d->type == DISCOV_TYPE_LE) 5337 return 0; 5338 5339 if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) { 5340 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY, 5341 NAME_PENDING); 5342 if (!e) 5343 return 0; 5344 5345 return hci_remote_name_cancel_sync(hdev, &e->data.bdaddr); 5346 } 5347 5348 return 0; 5349 } 5350 5351 static int hci_disconnect_sync(struct hci_dev *hdev, struct hci_conn *conn, 5352 u8 reason) 5353 { 5354 struct hci_cp_disconnect cp; 5355 5356 if (test_bit(HCI_CONN_BIG_CREATED, &conn->flags)) { 5357 /* This is a BIS connection, hci_conn_del will 5358 * do the necessary cleanup. 5359 */ 5360 hci_dev_lock(hdev); 5361 hci_conn_failed(conn, reason); 5362 hci_dev_unlock(hdev); 5363 5364 return 0; 5365 } 5366 5367 memset(&cp, 0, sizeof(cp)); 5368 cp.handle = cpu_to_le16(conn->handle); 5369 cp.reason = reason; 5370 5371 /* Wait for HCI_EV_DISCONN_COMPLETE, not HCI_EV_CMD_STATUS, when the 5372 * reason is anything but HCI_ERROR_REMOTE_POWER_OFF. This reason is 5373 * used when suspending or powering off, where we don't want to wait 5374 * for the peer's response. 5375 */ 5376 if (reason != HCI_ERROR_REMOTE_POWER_OFF) 5377 return __hci_cmd_sync_status_sk(hdev, HCI_OP_DISCONNECT, 5378 sizeof(cp), &cp, 5379 HCI_EV_DISCONN_COMPLETE, 5380 HCI_CMD_TIMEOUT, NULL); 5381 5382 return __hci_cmd_sync_status(hdev, HCI_OP_DISCONNECT, sizeof(cp), &cp, 5383 HCI_CMD_TIMEOUT); 5384 } 5385 5386 static int hci_le_connect_cancel_sync(struct hci_dev *hdev, 5387 struct hci_conn *conn, u8 reason) 5388 { 5389 /* Return reason if scanning since the connection shall probably be 5390 * cleanup directly. 5391 */ 5392 if (test_bit(HCI_CONN_SCANNING, &conn->flags)) 5393 return reason; 5394 5395 if (conn->role == HCI_ROLE_SLAVE || 5396 test_and_set_bit(HCI_CONN_CANCEL, &conn->flags)) 5397 return 0; 5398 5399 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CREATE_CONN_CANCEL, 5400 0, NULL, HCI_CMD_TIMEOUT); 5401 } 5402 5403 static int hci_connect_cancel_sync(struct hci_dev *hdev, struct hci_conn *conn, 5404 u8 reason) 5405 { 5406 if (conn->type == LE_LINK) 5407 return hci_le_connect_cancel_sync(hdev, conn, reason); 5408 5409 if (conn->type == ISO_LINK) { 5410 /* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E 5411 * page 1857: 5412 * 5413 * If this command is issued for a CIS on the Central and the 5414 * CIS is successfully terminated before being established, 5415 * then an HCI_LE_CIS_Established event shall also be sent for 5416 * this CIS with the Status Operation Cancelled by Host (0x44). 5417 */ 5418 if (test_bit(HCI_CONN_CREATE_CIS, &conn->flags)) 5419 return hci_disconnect_sync(hdev, conn, reason); 5420 5421 /* CIS with no Create CIS sent have nothing to cancel */ 5422 if (bacmp(&conn->dst, BDADDR_ANY)) 5423 return HCI_ERROR_LOCAL_HOST_TERM; 5424 5425 /* There is no way to cancel a BIS without terminating the BIG 5426 * which is done later on connection cleanup. 5427 */ 5428 return 0; 5429 } 5430 5431 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 5432 return 0; 5433 5434 /* Wait for HCI_EV_CONN_COMPLETE, not HCI_EV_CMD_STATUS, when the 5435 * reason is anything but HCI_ERROR_REMOTE_POWER_OFF. This reason is 5436 * used when suspending or powering off, where we don't want to wait 5437 * for the peer's response. 5438 */ 5439 if (reason != HCI_ERROR_REMOTE_POWER_OFF) 5440 return __hci_cmd_sync_status_sk(hdev, HCI_OP_CREATE_CONN_CANCEL, 5441 6, &conn->dst, 5442 HCI_EV_CONN_COMPLETE, 5443 HCI_CMD_TIMEOUT, NULL); 5444 5445 return __hci_cmd_sync_status(hdev, HCI_OP_CREATE_CONN_CANCEL, 5446 6, &conn->dst, HCI_CMD_TIMEOUT); 5447 } 5448 5449 static int hci_reject_sco_sync(struct hci_dev *hdev, struct hci_conn *conn, 5450 u8 reason) 5451 { 5452 struct hci_cp_reject_sync_conn_req cp; 5453 5454 memset(&cp, 0, sizeof(cp)); 5455 bacpy(&cp.bdaddr, &conn->dst); 5456 cp.reason = reason; 5457 5458 /* SCO rejection has its own limited set of 5459 * allowed error values (0x0D-0x0F). 5460 */ 5461 if (reason < 0x0d || reason > 0x0f) 5462 cp.reason = HCI_ERROR_REJ_LIMITED_RESOURCES; 5463 5464 return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_SYNC_CONN_REQ, 5465 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5466 } 5467 5468 static int hci_le_reject_cis_sync(struct hci_dev *hdev, struct hci_conn *conn, 5469 u8 reason) 5470 { 5471 struct hci_cp_le_reject_cis cp; 5472 5473 memset(&cp, 0, sizeof(cp)); 5474 cp.handle = cpu_to_le16(conn->handle); 5475 cp.reason = reason; 5476 5477 return __hci_cmd_sync_status(hdev, HCI_OP_LE_REJECT_CIS, 5478 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5479 } 5480 5481 static int hci_reject_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, 5482 u8 reason) 5483 { 5484 struct hci_cp_reject_conn_req cp; 5485 5486 if (conn->type == ISO_LINK) 5487 return hci_le_reject_cis_sync(hdev, conn, reason); 5488 5489 if (conn->type == SCO_LINK || conn->type == ESCO_LINK) 5490 return hci_reject_sco_sync(hdev, conn, reason); 5491 5492 memset(&cp, 0, sizeof(cp)); 5493 bacpy(&cp.bdaddr, &conn->dst); 5494 cp.reason = reason; 5495 5496 return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_CONN_REQ, 5497 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5498 } 5499 5500 int hci_abort_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, u8 reason) 5501 { 5502 int err = 0; 5503 u16 handle = conn->handle; 5504 bool disconnect = false; 5505 struct hci_conn *c; 5506 5507 switch (conn->state) { 5508 case BT_CONNECTED: 5509 case BT_CONFIG: 5510 err = hci_disconnect_sync(hdev, conn, reason); 5511 break; 5512 case BT_CONNECT: 5513 err = hci_connect_cancel_sync(hdev, conn, reason); 5514 break; 5515 case BT_CONNECT2: 5516 err = hci_reject_conn_sync(hdev, conn, reason); 5517 break; 5518 case BT_OPEN: 5519 case BT_BOUND: 5520 break; 5521 default: 5522 disconnect = true; 5523 break; 5524 } 5525 5526 hci_dev_lock(hdev); 5527 5528 /* Check if the connection has been cleaned up concurrently */ 5529 c = hci_conn_hash_lookup_handle(hdev, handle); 5530 if (!c || c != conn) { 5531 err = 0; 5532 goto unlock; 5533 } 5534 5535 /* Cleanup hci_conn object if it cannot be cancelled as it 5536 * likelly means the controller and host stack are out of sync 5537 * or in case of LE it was still scanning so it can be cleanup 5538 * safely. 5539 */ 5540 if (disconnect) { 5541 conn->state = BT_CLOSED; 5542 hci_disconn_cfm(conn, reason); 5543 hci_conn_del(conn); 5544 } else { 5545 hci_conn_failed(conn, reason); 5546 } 5547 5548 unlock: 5549 hci_dev_unlock(hdev); 5550 return err; 5551 } 5552 5553 static int hci_disconnect_all_sync(struct hci_dev *hdev, u8 reason) 5554 { 5555 struct list_head *head = &hdev->conn_hash.list; 5556 struct hci_conn *conn; 5557 5558 rcu_read_lock(); 5559 while ((conn = list_first_or_null_rcu(head, struct hci_conn, list))) { 5560 /* Make sure the connection is not freed while unlocking */ 5561 conn = hci_conn_get(conn); 5562 rcu_read_unlock(); 5563 /* Disregard possible errors since hci_conn_del shall have been 5564 * called even in case of errors had occurred since it would 5565 * then cause hci_conn_failed to be called which calls 5566 * hci_conn_del internally. 5567 */ 5568 hci_abort_conn_sync(hdev, conn, reason); 5569 hci_conn_put(conn); 5570 rcu_read_lock(); 5571 } 5572 rcu_read_unlock(); 5573 5574 return 0; 5575 } 5576 5577 /* This function perform power off HCI command sequence as follows: 5578 * 5579 * Clear Advertising 5580 * Stop Discovery 5581 * Disconnect all connections 5582 * hci_dev_close_sync 5583 */ 5584 static int hci_power_off_sync(struct hci_dev *hdev) 5585 { 5586 int err; 5587 5588 /* If controller is already down there is nothing to do */ 5589 if (!test_bit(HCI_UP, &hdev->flags)) 5590 return 0; 5591 5592 hci_dev_set_flag(hdev, HCI_POWERING_DOWN); 5593 5594 if (test_bit(HCI_ISCAN, &hdev->flags) || 5595 test_bit(HCI_PSCAN, &hdev->flags)) { 5596 err = hci_write_scan_enable_sync(hdev, 0x00); 5597 if (err) 5598 goto out; 5599 } 5600 5601 err = hci_clear_adv_sync(hdev, NULL, false); 5602 if (err) 5603 goto out; 5604 5605 err = hci_stop_discovery_sync(hdev); 5606 if (err) 5607 goto out; 5608 5609 /* Terminated due to Power Off */ 5610 err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF); 5611 if (err) 5612 goto out; 5613 5614 err = hci_dev_close_sync(hdev); 5615 5616 out: 5617 hci_dev_clear_flag(hdev, HCI_POWERING_DOWN); 5618 return err; 5619 } 5620 5621 int hci_set_powered_sync(struct hci_dev *hdev, u8 val) 5622 { 5623 if (val) 5624 return hci_power_on_sync(hdev); 5625 5626 return hci_power_off_sync(hdev); 5627 } 5628 5629 static int hci_write_iac_sync(struct hci_dev *hdev) 5630 { 5631 struct hci_cp_write_current_iac_lap cp; 5632 5633 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 5634 return 0; 5635 5636 memset(&cp, 0, sizeof(cp)); 5637 5638 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { 5639 /* Limited discoverable mode */ 5640 cp.num_iac = min_t(u8, hdev->num_iac, 2); 5641 cp.iac_lap[0] = 0x00; /* LIAC */ 5642 cp.iac_lap[1] = 0x8b; 5643 cp.iac_lap[2] = 0x9e; 5644 cp.iac_lap[3] = 0x33; /* GIAC */ 5645 cp.iac_lap[4] = 0x8b; 5646 cp.iac_lap[5] = 0x9e; 5647 } else { 5648 /* General discoverable mode */ 5649 cp.num_iac = 1; 5650 cp.iac_lap[0] = 0x33; /* GIAC */ 5651 cp.iac_lap[1] = 0x8b; 5652 cp.iac_lap[2] = 0x9e; 5653 } 5654 5655 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CURRENT_IAC_LAP, 5656 (cp.num_iac * 3) + 1, &cp, 5657 HCI_CMD_TIMEOUT); 5658 } 5659 5660 int hci_update_discoverable_sync(struct hci_dev *hdev) 5661 { 5662 int err = 0; 5663 5664 if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 5665 err = hci_write_iac_sync(hdev); 5666 if (err) 5667 return err; 5668 5669 err = hci_update_scan_sync(hdev); 5670 if (err) 5671 return err; 5672 5673 err = hci_update_class_sync(hdev); 5674 if (err) 5675 return err; 5676 } 5677 5678 /* Advertising instances don't use the global discoverable setting, so 5679 * only update AD if advertising was enabled using Set Advertising. 5680 */ 5681 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) { 5682 err = hci_update_adv_data_sync(hdev, 0x00); 5683 if (err) 5684 return err; 5685 5686 /* Discoverable mode affects the local advertising 5687 * address in limited privacy mode. 5688 */ 5689 if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) { 5690 if (ext_adv_capable(hdev)) 5691 err = hci_start_ext_adv_sync(hdev, 0x00); 5692 else 5693 err = hci_enable_advertising_sync(hdev); 5694 } 5695 } 5696 5697 return err; 5698 } 5699 5700 static int update_discoverable_sync(struct hci_dev *hdev, void *data) 5701 { 5702 return hci_update_discoverable_sync(hdev); 5703 } 5704 5705 int hci_update_discoverable(struct hci_dev *hdev) 5706 { 5707 /* Only queue if it would have any effect */ 5708 if (hdev_is_powered(hdev) && 5709 hci_dev_test_flag(hdev, HCI_ADVERTISING) && 5710 hci_dev_test_flag(hdev, HCI_DISCOVERABLE) && 5711 hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) 5712 return hci_cmd_sync_queue(hdev, update_discoverable_sync, NULL, 5713 NULL); 5714 5715 return 0; 5716 } 5717 5718 int hci_update_connectable_sync(struct hci_dev *hdev) 5719 { 5720 int err; 5721 5722 err = hci_update_scan_sync(hdev); 5723 if (err) 5724 return err; 5725 5726 /* If BR/EDR is not enabled and we disable advertising as a 5727 * by-product of disabling connectable, we need to update the 5728 * advertising flags. 5729 */ 5730 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 5731 err = hci_update_adv_data_sync(hdev, hdev->cur_adv_instance); 5732 5733 /* Update the advertising parameters if necessary */ 5734 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 5735 !list_empty(&hdev->adv_instances)) { 5736 if (ext_adv_capable(hdev)) 5737 err = hci_start_ext_adv_sync(hdev, 5738 hdev->cur_adv_instance); 5739 else 5740 err = hci_enable_advertising_sync(hdev); 5741 5742 if (err) 5743 return err; 5744 } 5745 5746 return hci_update_passive_scan_sync(hdev); 5747 } 5748 5749 int hci_inquiry_sync(struct hci_dev *hdev, u8 length, u8 num_rsp) 5750 { 5751 const u8 giac[3] = { 0x33, 0x8b, 0x9e }; 5752 const u8 liac[3] = { 0x00, 0x8b, 0x9e }; 5753 struct hci_cp_inquiry cp; 5754 5755 bt_dev_dbg(hdev, ""); 5756 5757 if (test_bit(HCI_INQUIRY, &hdev->flags)) 5758 return 0; 5759 5760 hci_dev_lock(hdev); 5761 hci_inquiry_cache_flush(hdev); 5762 hci_dev_unlock(hdev); 5763 5764 memset(&cp, 0, sizeof(cp)); 5765 5766 if (hdev->discovery.limited) 5767 memcpy(&cp.lap, liac, sizeof(cp.lap)); 5768 else 5769 memcpy(&cp.lap, giac, sizeof(cp.lap)); 5770 5771 cp.length = length; 5772 cp.num_rsp = num_rsp; 5773 5774 return __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY, 5775 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5776 } 5777 5778 static int hci_active_scan_sync(struct hci_dev *hdev, uint16_t interval) 5779 { 5780 u8 own_addr_type; 5781 /* Accept list is not used for discovery */ 5782 u8 filter_policy = 0x00; 5783 /* Default is to enable duplicates filter */ 5784 u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE; 5785 int err; 5786 5787 bt_dev_dbg(hdev, ""); 5788 5789 /* If controller is scanning, it means the passive scanning is 5790 * running. Thus, we should temporarily stop it in order to set the 5791 * discovery scanning parameters. 5792 */ 5793 err = hci_scan_disable_sync(hdev); 5794 if (err) { 5795 bt_dev_err(hdev, "Unable to disable scanning: %d", err); 5796 return err; 5797 } 5798 5799 cancel_interleave_scan(hdev); 5800 5801 /* Pause address resolution for active scan and stop advertising if 5802 * privacy is enabled. 5803 */ 5804 err = hci_pause_addr_resolution(hdev); 5805 if (err) 5806 goto failed; 5807 5808 /* All active scans will be done with either a resolvable private 5809 * address (when privacy feature has been enabled) or non-resolvable 5810 * private address. 5811 */ 5812 err = hci_update_random_address_sync(hdev, true, scan_use_rpa(hdev), 5813 &own_addr_type); 5814 if (err < 0) 5815 own_addr_type = ADDR_LE_DEV_PUBLIC; 5816 5817 if (hci_is_adv_monitoring(hdev) || 5818 (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) && 5819 hdev->discovery.result_filtering)) { 5820 /* Duplicate filter should be disabled when some advertisement 5821 * monitor is activated, otherwise AdvMon can only receive one 5822 * advertisement for one peer(*) during active scanning, and 5823 * might report loss to these peers. 5824 * 5825 * If controller does strict duplicate filtering and the 5826 * discovery requires result filtering disables controller based 5827 * filtering since that can cause reports that would match the 5828 * host filter to not be reported. 5829 */ 5830 filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 5831 } 5832 5833 err = hci_start_scan_sync(hdev, LE_SCAN_ACTIVE, interval, 5834 hdev->le_scan_window_discovery, 5835 own_addr_type, filter_policy, filter_dup); 5836 if (!err) 5837 return err; 5838 5839 failed: 5840 /* Resume advertising if it was paused */ 5841 if (use_ll_privacy(hdev)) 5842 hci_resume_advertising_sync(hdev); 5843 5844 /* Resume passive scanning */ 5845 hci_update_passive_scan_sync(hdev); 5846 return err; 5847 } 5848 5849 static int hci_start_interleaved_discovery_sync(struct hci_dev *hdev) 5850 { 5851 int err; 5852 5853 bt_dev_dbg(hdev, ""); 5854 5855 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery * 2); 5856 if (err) 5857 return err; 5858 5859 return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN, 0); 5860 } 5861 5862 int hci_start_discovery_sync(struct hci_dev *hdev) 5863 { 5864 unsigned long timeout; 5865 int err; 5866 5867 bt_dev_dbg(hdev, "type %u", hdev->discovery.type); 5868 5869 switch (hdev->discovery.type) { 5870 case DISCOV_TYPE_BREDR: 5871 return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN, 0); 5872 case DISCOV_TYPE_INTERLEAVED: 5873 /* When running simultaneous discovery, the LE scanning time 5874 * should occupy the whole discovery time sine BR/EDR inquiry 5875 * and LE scanning are scheduled by the controller. 5876 * 5877 * For interleaving discovery in comparison, BR/EDR inquiry 5878 * and LE scanning are done sequentially with separate 5879 * timeouts. 5880 */ 5881 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, 5882 &hdev->quirks)) { 5883 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 5884 /* During simultaneous discovery, we double LE scan 5885 * interval. We must leave some time for the controller 5886 * to do BR/EDR inquiry. 5887 */ 5888 err = hci_start_interleaved_discovery_sync(hdev); 5889 break; 5890 } 5891 5892 timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout); 5893 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery); 5894 break; 5895 case DISCOV_TYPE_LE: 5896 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 5897 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery); 5898 break; 5899 default: 5900 return -EINVAL; 5901 } 5902 5903 if (err) 5904 return err; 5905 5906 bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout)); 5907 5908 queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable, 5909 timeout); 5910 return 0; 5911 } 5912 5913 static void hci_suspend_monitor_sync(struct hci_dev *hdev) 5914 { 5915 switch (hci_get_adv_monitor_offload_ext(hdev)) { 5916 case HCI_ADV_MONITOR_EXT_MSFT: 5917 msft_suspend_sync(hdev); 5918 break; 5919 default: 5920 return; 5921 } 5922 } 5923 5924 /* This function disables discovery and mark it as paused */ 5925 static int hci_pause_discovery_sync(struct hci_dev *hdev) 5926 { 5927 int old_state = hdev->discovery.state; 5928 int err; 5929 5930 /* If discovery already stopped/stopping/paused there nothing to do */ 5931 if (old_state == DISCOVERY_STOPPED || old_state == DISCOVERY_STOPPING || 5932 hdev->discovery_paused) 5933 return 0; 5934 5935 hci_discovery_set_state(hdev, DISCOVERY_STOPPING); 5936 err = hci_stop_discovery_sync(hdev); 5937 if (err) 5938 return err; 5939 5940 hdev->discovery_paused = true; 5941 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 5942 5943 return 0; 5944 } 5945 5946 static int hci_update_event_filter_sync(struct hci_dev *hdev) 5947 { 5948 struct bdaddr_list_with_flags *b; 5949 u8 scan = SCAN_DISABLED; 5950 bool scanning = test_bit(HCI_PSCAN, &hdev->flags); 5951 int err; 5952 5953 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 5954 return 0; 5955 5956 /* Some fake CSR controllers lock up after setting this type of 5957 * filter, so avoid sending the request altogether. 5958 */ 5959 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 5960 return 0; 5961 5962 /* Always clear event filter when starting */ 5963 hci_clear_event_filter_sync(hdev); 5964 5965 list_for_each_entry(b, &hdev->accept_list, list) { 5966 if (!(b->flags & HCI_CONN_FLAG_REMOTE_WAKEUP)) 5967 continue; 5968 5969 bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr); 5970 5971 err = hci_set_event_filter_sync(hdev, HCI_FLT_CONN_SETUP, 5972 HCI_CONN_SETUP_ALLOW_BDADDR, 5973 &b->bdaddr, 5974 HCI_CONN_SETUP_AUTO_ON); 5975 if (err) 5976 bt_dev_dbg(hdev, "Failed to set event filter for %pMR", 5977 &b->bdaddr); 5978 else 5979 scan = SCAN_PAGE; 5980 } 5981 5982 if (scan && !scanning) 5983 hci_write_scan_enable_sync(hdev, scan); 5984 else if (!scan && scanning) 5985 hci_write_scan_enable_sync(hdev, scan); 5986 5987 return 0; 5988 } 5989 5990 /* This function disables scan (BR and LE) and mark it as paused */ 5991 static int hci_pause_scan_sync(struct hci_dev *hdev) 5992 { 5993 if (hdev->scanning_paused) 5994 return 0; 5995 5996 /* Disable page scan if enabled */ 5997 if (test_bit(HCI_PSCAN, &hdev->flags)) 5998 hci_write_scan_enable_sync(hdev, SCAN_DISABLED); 5999 6000 hci_scan_disable_sync(hdev); 6001 6002 hdev->scanning_paused = true; 6003 6004 return 0; 6005 } 6006 6007 /* This function performs the HCI suspend procedures in the follow order: 6008 * 6009 * Pause discovery (active scanning/inquiry) 6010 * Pause Directed Advertising/Advertising 6011 * Pause Scanning (passive scanning in case discovery was not active) 6012 * Disconnect all connections 6013 * Set suspend_status to BT_SUSPEND_DISCONNECT if hdev cannot wakeup 6014 * otherwise: 6015 * Update event mask (only set events that are allowed to wake up the host) 6016 * Update event filter (with devices marked with HCI_CONN_FLAG_REMOTE_WAKEUP) 6017 * Update passive scanning (lower duty cycle) 6018 * Set suspend_status to BT_SUSPEND_CONFIGURE_WAKE 6019 */ 6020 int hci_suspend_sync(struct hci_dev *hdev) 6021 { 6022 int err; 6023 6024 /* If marked as suspended there nothing to do */ 6025 if (hdev->suspended) 6026 return 0; 6027 6028 /* Mark device as suspended */ 6029 hdev->suspended = true; 6030 6031 /* Pause discovery if not already stopped */ 6032 hci_pause_discovery_sync(hdev); 6033 6034 /* Pause other advertisements */ 6035 hci_pause_advertising_sync(hdev); 6036 6037 /* Suspend monitor filters */ 6038 hci_suspend_monitor_sync(hdev); 6039 6040 /* Prevent disconnects from causing scanning to be re-enabled */ 6041 hci_pause_scan_sync(hdev); 6042 6043 if (hci_conn_count(hdev)) { 6044 /* Soft disconnect everything (power off) */ 6045 err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF); 6046 if (err) { 6047 /* Set state to BT_RUNNING so resume doesn't notify */ 6048 hdev->suspend_state = BT_RUNNING; 6049 hci_resume_sync(hdev); 6050 return err; 6051 } 6052 6053 /* Update event mask so only the allowed event can wakeup the 6054 * host. 6055 */ 6056 hci_set_event_mask_sync(hdev); 6057 } 6058 6059 /* Only configure accept list if disconnect succeeded and wake 6060 * isn't being prevented. 6061 */ 6062 if (!hdev->wakeup || !hdev->wakeup(hdev)) { 6063 hdev->suspend_state = BT_SUSPEND_DISCONNECT; 6064 return 0; 6065 } 6066 6067 /* Unpause to take care of updating scanning params */ 6068 hdev->scanning_paused = false; 6069 6070 /* Enable event filter for paired devices */ 6071 hci_update_event_filter_sync(hdev); 6072 6073 /* Update LE passive scan if enabled */ 6074 hci_update_passive_scan_sync(hdev); 6075 6076 /* Pause scan changes again. */ 6077 hdev->scanning_paused = true; 6078 6079 hdev->suspend_state = BT_SUSPEND_CONFIGURE_WAKE; 6080 6081 return 0; 6082 } 6083 6084 /* This function resumes discovery */ 6085 static int hci_resume_discovery_sync(struct hci_dev *hdev) 6086 { 6087 int err; 6088 6089 /* If discovery not paused there nothing to do */ 6090 if (!hdev->discovery_paused) 6091 return 0; 6092 6093 hdev->discovery_paused = false; 6094 6095 hci_discovery_set_state(hdev, DISCOVERY_STARTING); 6096 6097 err = hci_start_discovery_sync(hdev); 6098 6099 hci_discovery_set_state(hdev, err ? DISCOVERY_STOPPED : 6100 DISCOVERY_FINDING); 6101 6102 return err; 6103 } 6104 6105 static void hci_resume_monitor_sync(struct hci_dev *hdev) 6106 { 6107 switch (hci_get_adv_monitor_offload_ext(hdev)) { 6108 case HCI_ADV_MONITOR_EXT_MSFT: 6109 msft_resume_sync(hdev); 6110 break; 6111 default: 6112 return; 6113 } 6114 } 6115 6116 /* This function resume scan and reset paused flag */ 6117 static int hci_resume_scan_sync(struct hci_dev *hdev) 6118 { 6119 if (!hdev->scanning_paused) 6120 return 0; 6121 6122 hdev->scanning_paused = false; 6123 6124 hci_update_scan_sync(hdev); 6125 6126 /* Reset passive scanning to normal */ 6127 hci_update_passive_scan_sync(hdev); 6128 6129 return 0; 6130 } 6131 6132 /* This function performs the HCI suspend procedures in the follow order: 6133 * 6134 * Restore event mask 6135 * Clear event filter 6136 * Update passive scanning (normal duty cycle) 6137 * Resume Directed Advertising/Advertising 6138 * Resume discovery (active scanning/inquiry) 6139 */ 6140 int hci_resume_sync(struct hci_dev *hdev) 6141 { 6142 /* If not marked as suspended there nothing to do */ 6143 if (!hdev->suspended) 6144 return 0; 6145 6146 hdev->suspended = false; 6147 6148 /* Restore event mask */ 6149 hci_set_event_mask_sync(hdev); 6150 6151 /* Clear any event filters and restore scan state */ 6152 hci_clear_event_filter_sync(hdev); 6153 6154 /* Resume scanning */ 6155 hci_resume_scan_sync(hdev); 6156 6157 /* Resume monitor filters */ 6158 hci_resume_monitor_sync(hdev); 6159 6160 /* Resume other advertisements */ 6161 hci_resume_advertising_sync(hdev); 6162 6163 /* Resume discovery */ 6164 hci_resume_discovery_sync(hdev); 6165 6166 return 0; 6167 } 6168 6169 static bool conn_use_rpa(struct hci_conn *conn) 6170 { 6171 struct hci_dev *hdev = conn->hdev; 6172 6173 return hci_dev_test_flag(hdev, HCI_PRIVACY); 6174 } 6175 6176 static int hci_le_ext_directed_advertising_sync(struct hci_dev *hdev, 6177 struct hci_conn *conn) 6178 { 6179 struct hci_cp_le_set_ext_adv_params cp; 6180 int err; 6181 bdaddr_t random_addr; 6182 u8 own_addr_type; 6183 6184 err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 6185 &own_addr_type); 6186 if (err) 6187 return err; 6188 6189 /* Set require_privacy to false so that the remote device has a 6190 * chance of identifying us. 6191 */ 6192 err = hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL, 6193 &own_addr_type, &random_addr); 6194 if (err) 6195 return err; 6196 6197 memset(&cp, 0, sizeof(cp)); 6198 6199 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND); 6200 cp.channel_map = hdev->le_adv_channel_map; 6201 cp.tx_power = HCI_TX_POWER_INVALID; 6202 cp.primary_phy = HCI_ADV_PHY_1M; 6203 cp.secondary_phy = HCI_ADV_PHY_1M; 6204 cp.handle = 0x00; /* Use instance 0 for directed adv */ 6205 cp.own_addr_type = own_addr_type; 6206 cp.peer_addr_type = conn->dst_type; 6207 bacpy(&cp.peer_addr, &conn->dst); 6208 6209 /* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for 6210 * advertising_event_property LE_LEGACY_ADV_DIRECT_IND 6211 * does not supports advertising data when the advertising set already 6212 * contains some, the controller shall return erroc code 'Invalid 6213 * HCI Command Parameters(0x12). 6214 * So it is required to remove adv set for handle 0x00. since we use 6215 * instance 0 for directed adv. 6216 */ 6217 err = hci_remove_ext_adv_instance_sync(hdev, cp.handle, NULL); 6218 if (err) 6219 return err; 6220 6221 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS, 6222 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6223 if (err) 6224 return err; 6225 6226 /* Check if random address need to be updated */ 6227 if (own_addr_type == ADDR_LE_DEV_RANDOM && 6228 bacmp(&random_addr, BDADDR_ANY) && 6229 bacmp(&random_addr, &hdev->random_addr)) { 6230 err = hci_set_adv_set_random_addr_sync(hdev, 0x00, 6231 &random_addr); 6232 if (err) 6233 return err; 6234 } 6235 6236 return hci_enable_ext_advertising_sync(hdev, 0x00); 6237 } 6238 6239 static int hci_le_directed_advertising_sync(struct hci_dev *hdev, 6240 struct hci_conn *conn) 6241 { 6242 struct hci_cp_le_set_adv_param cp; 6243 u8 status; 6244 u8 own_addr_type; 6245 u8 enable; 6246 6247 if (ext_adv_capable(hdev)) 6248 return hci_le_ext_directed_advertising_sync(hdev, conn); 6249 6250 /* Clear the HCI_LE_ADV bit temporarily so that the 6251 * hci_update_random_address knows that it's safe to go ahead 6252 * and write a new random address. The flag will be set back on 6253 * as soon as the SET_ADV_ENABLE HCI command completes. 6254 */ 6255 hci_dev_clear_flag(hdev, HCI_LE_ADV); 6256 6257 /* Set require_privacy to false so that the remote device has a 6258 * chance of identifying us. 6259 */ 6260 status = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 6261 &own_addr_type); 6262 if (status) 6263 return status; 6264 6265 memset(&cp, 0, sizeof(cp)); 6266 6267 /* Some controllers might reject command if intervals are not 6268 * within range for undirected advertising. 6269 * BCM20702A0 is known to be affected by this. 6270 */ 6271 cp.min_interval = cpu_to_le16(0x0020); 6272 cp.max_interval = cpu_to_le16(0x0020); 6273 6274 cp.type = LE_ADV_DIRECT_IND; 6275 cp.own_address_type = own_addr_type; 6276 cp.direct_addr_type = conn->dst_type; 6277 bacpy(&cp.direct_addr, &conn->dst); 6278 cp.channel_map = hdev->le_adv_channel_map; 6279 6280 status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM, 6281 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6282 if (status) 6283 return status; 6284 6285 enable = 0x01; 6286 6287 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 6288 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 6289 } 6290 6291 static void set_ext_conn_params(struct hci_conn *conn, 6292 struct hci_cp_le_ext_conn_param *p) 6293 { 6294 struct hci_dev *hdev = conn->hdev; 6295 6296 memset(p, 0, sizeof(*p)); 6297 6298 p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect); 6299 p->scan_window = cpu_to_le16(hdev->le_scan_window_connect); 6300 p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 6301 p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 6302 p->conn_latency = cpu_to_le16(conn->le_conn_latency); 6303 p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 6304 p->min_ce_len = cpu_to_le16(0x0000); 6305 p->max_ce_len = cpu_to_le16(0x0000); 6306 } 6307 6308 static int hci_le_ext_create_conn_sync(struct hci_dev *hdev, 6309 struct hci_conn *conn, u8 own_addr_type) 6310 { 6311 struct hci_cp_le_ext_create_conn *cp; 6312 struct hci_cp_le_ext_conn_param *p; 6313 u8 data[sizeof(*cp) + sizeof(*p) * 3]; 6314 u32 plen; 6315 6316 cp = (void *)data; 6317 p = (void *)cp->data; 6318 6319 memset(cp, 0, sizeof(*cp)); 6320 6321 bacpy(&cp->peer_addr, &conn->dst); 6322 cp->peer_addr_type = conn->dst_type; 6323 cp->own_addr_type = own_addr_type; 6324 6325 plen = sizeof(*cp); 6326 6327 if (scan_1m(hdev) && (conn->le_adv_phy == HCI_ADV_PHY_1M || 6328 conn->le_adv_sec_phy == HCI_ADV_PHY_1M)) { 6329 cp->phys |= LE_SCAN_PHY_1M; 6330 set_ext_conn_params(conn, p); 6331 6332 p++; 6333 plen += sizeof(*p); 6334 } 6335 6336 if (scan_2m(hdev) && (conn->le_adv_phy == HCI_ADV_PHY_2M || 6337 conn->le_adv_sec_phy == HCI_ADV_PHY_2M)) { 6338 cp->phys |= LE_SCAN_PHY_2M; 6339 set_ext_conn_params(conn, p); 6340 6341 p++; 6342 plen += sizeof(*p); 6343 } 6344 6345 if (scan_coded(hdev) && (conn->le_adv_phy == HCI_ADV_PHY_CODED || 6346 conn->le_adv_sec_phy == HCI_ADV_PHY_CODED)) { 6347 cp->phys |= LE_SCAN_PHY_CODED; 6348 set_ext_conn_params(conn, p); 6349 6350 plen += sizeof(*p); 6351 } 6352 6353 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_EXT_CREATE_CONN, 6354 plen, data, 6355 HCI_EV_LE_ENHANCED_CONN_COMPLETE, 6356 conn->conn_timeout, NULL); 6357 } 6358 6359 static int hci_le_create_conn_sync(struct hci_dev *hdev, void *data) 6360 { 6361 struct hci_cp_le_create_conn cp; 6362 struct hci_conn_params *params; 6363 u8 own_addr_type; 6364 int err; 6365 struct hci_conn *conn = data; 6366 6367 if (!hci_conn_valid(hdev, conn)) 6368 return -ECANCELED; 6369 6370 bt_dev_dbg(hdev, "conn %p", conn); 6371 6372 clear_bit(HCI_CONN_SCANNING, &conn->flags); 6373 conn->state = BT_CONNECT; 6374 6375 /* If requested to connect as peripheral use directed advertising */ 6376 if (conn->role == HCI_ROLE_SLAVE) { 6377 /* If we're active scanning and simultaneous roles is not 6378 * enabled simply reject the attempt. 6379 */ 6380 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) && 6381 hdev->le_scan_type == LE_SCAN_ACTIVE && 6382 !hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) { 6383 hci_conn_del(conn); 6384 return -EBUSY; 6385 } 6386 6387 /* Pause advertising while doing directed advertising. */ 6388 hci_pause_advertising_sync(hdev); 6389 6390 err = hci_le_directed_advertising_sync(hdev, conn); 6391 goto done; 6392 } 6393 6394 /* Disable advertising if simultaneous roles is not in use. */ 6395 if (!hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) 6396 hci_pause_advertising_sync(hdev); 6397 6398 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); 6399 if (params) { 6400 conn->le_conn_min_interval = params->conn_min_interval; 6401 conn->le_conn_max_interval = params->conn_max_interval; 6402 conn->le_conn_latency = params->conn_latency; 6403 conn->le_supv_timeout = params->supervision_timeout; 6404 } else { 6405 conn->le_conn_min_interval = hdev->le_conn_min_interval; 6406 conn->le_conn_max_interval = hdev->le_conn_max_interval; 6407 conn->le_conn_latency = hdev->le_conn_latency; 6408 conn->le_supv_timeout = hdev->le_supv_timeout; 6409 } 6410 6411 /* If controller is scanning, we stop it since some controllers are 6412 * not able to scan and connect at the same time. Also set the 6413 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete 6414 * handler for scan disabling knows to set the correct discovery 6415 * state. 6416 */ 6417 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 6418 hci_scan_disable_sync(hdev); 6419 hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED); 6420 } 6421 6422 /* Update random address, but set require_privacy to false so 6423 * that we never connect with an non-resolvable address. 6424 */ 6425 err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 6426 &own_addr_type); 6427 if (err) 6428 goto done; 6429 6430 if (use_ext_conn(hdev)) { 6431 err = hci_le_ext_create_conn_sync(hdev, conn, own_addr_type); 6432 goto done; 6433 } 6434 6435 memset(&cp, 0, sizeof(cp)); 6436 6437 cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect); 6438 cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect); 6439 6440 bacpy(&cp.peer_addr, &conn->dst); 6441 cp.peer_addr_type = conn->dst_type; 6442 cp.own_address_type = own_addr_type; 6443 cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 6444 cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 6445 cp.conn_latency = cpu_to_le16(conn->le_conn_latency); 6446 cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 6447 cp.min_ce_len = cpu_to_le16(0x0000); 6448 cp.max_ce_len = cpu_to_le16(0x0000); 6449 6450 /* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E page 2261: 6451 * 6452 * If this event is unmasked and the HCI_LE_Connection_Complete event 6453 * is unmasked, only the HCI_LE_Enhanced_Connection_Complete event is 6454 * sent when a new connection has been created. 6455 */ 6456 err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CONN, 6457 sizeof(cp), &cp, 6458 use_enhanced_conn_complete(hdev) ? 6459 HCI_EV_LE_ENHANCED_CONN_COMPLETE : 6460 HCI_EV_LE_CONN_COMPLETE, 6461 conn->conn_timeout, NULL); 6462 6463 done: 6464 if (err == -ETIMEDOUT) 6465 hci_le_connect_cancel_sync(hdev, conn, 0x00); 6466 6467 /* Re-enable advertising after the connection attempt is finished. */ 6468 hci_resume_advertising_sync(hdev); 6469 return err; 6470 } 6471 6472 int hci_le_create_cis_sync(struct hci_dev *hdev) 6473 { 6474 DEFINE_FLEX(struct hci_cp_le_create_cis, cmd, cis, num_cis, 0x1f); 6475 size_t aux_num_cis = 0; 6476 struct hci_conn *conn; 6477 u8 cig = BT_ISO_QOS_CIG_UNSET; 6478 6479 /* The spec allows only one pending LE Create CIS command at a time. If 6480 * the command is pending now, don't do anything. We check for pending 6481 * connections after each CIS Established event. 6482 * 6483 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E 6484 * page 2566: 6485 * 6486 * If the Host issues this command before all the 6487 * HCI_LE_CIS_Established events from the previous use of the 6488 * command have been generated, the Controller shall return the 6489 * error code Command Disallowed (0x0C). 6490 * 6491 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E 6492 * page 2567: 6493 * 6494 * When the Controller receives the HCI_LE_Create_CIS command, the 6495 * Controller sends the HCI_Command_Status event to the Host. An 6496 * HCI_LE_CIS_Established event will be generated for each CIS when it 6497 * is established or if it is disconnected or considered lost before 6498 * being established; until all the events are generated, the command 6499 * remains pending. 6500 */ 6501 6502 hci_dev_lock(hdev); 6503 6504 rcu_read_lock(); 6505 6506 /* Wait until previous Create CIS has completed */ 6507 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) { 6508 if (test_bit(HCI_CONN_CREATE_CIS, &conn->flags)) 6509 goto done; 6510 } 6511 6512 /* Find CIG with all CIS ready */ 6513 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) { 6514 struct hci_conn *link; 6515 6516 if (hci_conn_check_create_cis(conn)) 6517 continue; 6518 6519 cig = conn->iso_qos.ucast.cig; 6520 6521 list_for_each_entry_rcu(link, &hdev->conn_hash.list, list) { 6522 if (hci_conn_check_create_cis(link) > 0 && 6523 link->iso_qos.ucast.cig == cig && 6524 link->state != BT_CONNECTED) { 6525 cig = BT_ISO_QOS_CIG_UNSET; 6526 break; 6527 } 6528 } 6529 6530 if (cig != BT_ISO_QOS_CIG_UNSET) 6531 break; 6532 } 6533 6534 if (cig == BT_ISO_QOS_CIG_UNSET) 6535 goto done; 6536 6537 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) { 6538 struct hci_cis *cis = &cmd->cis[aux_num_cis]; 6539 6540 if (hci_conn_check_create_cis(conn) || 6541 conn->iso_qos.ucast.cig != cig) 6542 continue; 6543 6544 set_bit(HCI_CONN_CREATE_CIS, &conn->flags); 6545 cis->acl_handle = cpu_to_le16(conn->parent->handle); 6546 cis->cis_handle = cpu_to_le16(conn->handle); 6547 aux_num_cis++; 6548 6549 if (aux_num_cis >= cmd->num_cis) 6550 break; 6551 } 6552 cmd->num_cis = aux_num_cis; 6553 6554 done: 6555 rcu_read_unlock(); 6556 6557 hci_dev_unlock(hdev); 6558 6559 if (!aux_num_cis) 6560 return 0; 6561 6562 /* Wait for HCI_LE_CIS_Established */ 6563 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CIS, 6564 struct_size(cmd, cis, cmd->num_cis), 6565 cmd, HCI_EVT_LE_CIS_ESTABLISHED, 6566 conn->conn_timeout, NULL); 6567 } 6568 6569 int hci_le_remove_cig_sync(struct hci_dev *hdev, u8 handle) 6570 { 6571 struct hci_cp_le_remove_cig cp; 6572 6573 memset(&cp, 0, sizeof(cp)); 6574 cp.cig_id = handle; 6575 6576 return __hci_cmd_sync_status(hdev, HCI_OP_LE_REMOVE_CIG, sizeof(cp), 6577 &cp, HCI_CMD_TIMEOUT); 6578 } 6579 6580 int hci_le_big_terminate_sync(struct hci_dev *hdev, u8 handle) 6581 { 6582 struct hci_cp_le_big_term_sync cp; 6583 6584 memset(&cp, 0, sizeof(cp)); 6585 cp.handle = handle; 6586 6587 return __hci_cmd_sync_status(hdev, HCI_OP_LE_BIG_TERM_SYNC, 6588 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6589 } 6590 6591 int hci_le_pa_terminate_sync(struct hci_dev *hdev, u16 handle) 6592 { 6593 struct hci_cp_le_pa_term_sync cp; 6594 6595 memset(&cp, 0, sizeof(cp)); 6596 cp.handle = cpu_to_le16(handle); 6597 6598 return __hci_cmd_sync_status(hdev, HCI_OP_LE_PA_TERM_SYNC, 6599 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6600 } 6601 6602 int hci_get_random_address(struct hci_dev *hdev, bool require_privacy, 6603 bool use_rpa, struct adv_info *adv_instance, 6604 u8 *own_addr_type, bdaddr_t *rand_addr) 6605 { 6606 int err; 6607 6608 bacpy(rand_addr, BDADDR_ANY); 6609 6610 /* If privacy is enabled use a resolvable private address. If 6611 * current RPA has expired then generate a new one. 6612 */ 6613 if (use_rpa) { 6614 /* If Controller supports LL Privacy use own address type is 6615 * 0x03 6616 */ 6617 if (use_ll_privacy(hdev)) 6618 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED; 6619 else 6620 *own_addr_type = ADDR_LE_DEV_RANDOM; 6621 6622 if (adv_instance) { 6623 if (adv_rpa_valid(adv_instance)) 6624 return 0; 6625 } else { 6626 if (rpa_valid(hdev)) 6627 return 0; 6628 } 6629 6630 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); 6631 if (err < 0) { 6632 bt_dev_err(hdev, "failed to generate new RPA"); 6633 return err; 6634 } 6635 6636 bacpy(rand_addr, &hdev->rpa); 6637 6638 return 0; 6639 } 6640 6641 /* In case of required privacy without resolvable private address, 6642 * use an non-resolvable private address. This is useful for 6643 * non-connectable advertising. 6644 */ 6645 if (require_privacy) { 6646 bdaddr_t nrpa; 6647 6648 while (true) { 6649 /* The non-resolvable private address is generated 6650 * from random six bytes with the two most significant 6651 * bits cleared. 6652 */ 6653 get_random_bytes(&nrpa, 6); 6654 nrpa.b[5] &= 0x3f; 6655 6656 /* The non-resolvable private address shall not be 6657 * equal to the public address. 6658 */ 6659 if (bacmp(&hdev->bdaddr, &nrpa)) 6660 break; 6661 } 6662 6663 *own_addr_type = ADDR_LE_DEV_RANDOM; 6664 bacpy(rand_addr, &nrpa); 6665 6666 return 0; 6667 } 6668 6669 /* No privacy so use a public address. */ 6670 *own_addr_type = ADDR_LE_DEV_PUBLIC; 6671 6672 return 0; 6673 } 6674 6675 static int _update_adv_data_sync(struct hci_dev *hdev, void *data) 6676 { 6677 u8 instance = PTR_UINT(data); 6678 6679 return hci_update_adv_data_sync(hdev, instance); 6680 } 6681 6682 int hci_update_adv_data(struct hci_dev *hdev, u8 instance) 6683 { 6684 return hci_cmd_sync_queue(hdev, _update_adv_data_sync, 6685 UINT_PTR(instance), NULL); 6686 } 6687 6688 static int hci_acl_create_conn_sync(struct hci_dev *hdev, void *data) 6689 { 6690 struct hci_conn *conn = data; 6691 struct inquiry_entry *ie; 6692 struct hci_cp_create_conn cp; 6693 int err; 6694 6695 if (!hci_conn_valid(hdev, conn)) 6696 return -ECANCELED; 6697 6698 /* Many controllers disallow HCI Create Connection while it is doing 6699 * HCI Inquiry. So we cancel the Inquiry first before issuing HCI Create 6700 * Connection. This may cause the MGMT discovering state to become false 6701 * without user space's request but it is okay since the MGMT Discovery 6702 * APIs do not promise that discovery should be done forever. Instead, 6703 * the user space monitors the status of MGMT discovering and it may 6704 * request for discovery again when this flag becomes false. 6705 */ 6706 if (test_bit(HCI_INQUIRY, &hdev->flags)) { 6707 err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL, 0, 6708 NULL, HCI_CMD_TIMEOUT); 6709 if (err) 6710 bt_dev_warn(hdev, "Failed to cancel inquiry %d", err); 6711 } 6712 6713 conn->state = BT_CONNECT; 6714 conn->out = true; 6715 conn->role = HCI_ROLE_MASTER; 6716 6717 conn->attempt++; 6718 6719 conn->link_policy = hdev->link_policy; 6720 6721 memset(&cp, 0, sizeof(cp)); 6722 bacpy(&cp.bdaddr, &conn->dst); 6723 cp.pscan_rep_mode = 0x02; 6724 6725 ie = hci_inquiry_cache_lookup(hdev, &conn->dst); 6726 if (ie) { 6727 if (inquiry_entry_age(ie) <= INQUIRY_ENTRY_AGE_MAX) { 6728 cp.pscan_rep_mode = ie->data.pscan_rep_mode; 6729 cp.pscan_mode = ie->data.pscan_mode; 6730 cp.clock_offset = ie->data.clock_offset | 6731 cpu_to_le16(0x8000); 6732 } 6733 6734 memcpy(conn->dev_class, ie->data.dev_class, 3); 6735 } 6736 6737 cp.pkt_type = cpu_to_le16(conn->pkt_type); 6738 if (lmp_rswitch_capable(hdev) && !(hdev->link_mode & HCI_LM_MASTER)) 6739 cp.role_switch = 0x01; 6740 else 6741 cp.role_switch = 0x00; 6742 6743 return __hci_cmd_sync_status_sk(hdev, HCI_OP_CREATE_CONN, 6744 sizeof(cp), &cp, 6745 HCI_EV_CONN_COMPLETE, 6746 conn->conn_timeout, NULL); 6747 } 6748 6749 int hci_connect_acl_sync(struct hci_dev *hdev, struct hci_conn *conn) 6750 { 6751 return hci_cmd_sync_queue_once(hdev, hci_acl_create_conn_sync, conn, 6752 NULL); 6753 } 6754 6755 static void create_le_conn_complete(struct hci_dev *hdev, void *data, int err) 6756 { 6757 struct hci_conn *conn = data; 6758 6759 bt_dev_dbg(hdev, "err %d", err); 6760 6761 if (err == -ECANCELED) 6762 return; 6763 6764 hci_dev_lock(hdev); 6765 6766 if (!hci_conn_valid(hdev, conn)) 6767 goto done; 6768 6769 if (!err) { 6770 hci_connect_le_scan_cleanup(conn, 0x00); 6771 goto done; 6772 } 6773 6774 /* Check if connection is still pending */ 6775 if (conn != hci_lookup_le_connect(hdev)) 6776 goto done; 6777 6778 /* Flush to make sure we send create conn cancel command if needed */ 6779 flush_delayed_work(&conn->le_conn_timeout); 6780 hci_conn_failed(conn, bt_status(err)); 6781 6782 done: 6783 hci_dev_unlock(hdev); 6784 } 6785 6786 int hci_connect_le_sync(struct hci_dev *hdev, struct hci_conn *conn) 6787 { 6788 return hci_cmd_sync_queue_once(hdev, hci_le_create_conn_sync, conn, 6789 create_le_conn_complete); 6790 } 6791 6792 int hci_cancel_connect_sync(struct hci_dev *hdev, struct hci_conn *conn) 6793 { 6794 if (conn->state != BT_OPEN) 6795 return -EINVAL; 6796 6797 switch (conn->type) { 6798 case ACL_LINK: 6799 return !hci_cmd_sync_dequeue_once(hdev, 6800 hci_acl_create_conn_sync, 6801 conn, NULL); 6802 case LE_LINK: 6803 return !hci_cmd_sync_dequeue_once(hdev, hci_le_create_conn_sync, 6804 conn, create_le_conn_complete); 6805 } 6806 6807 return -ENOENT; 6808 } 6809 6810 int hci_le_conn_update_sync(struct hci_dev *hdev, struct hci_conn *conn, 6811 struct hci_conn_params *params) 6812 { 6813 struct hci_cp_le_conn_update cp; 6814 6815 memset(&cp, 0, sizeof(cp)); 6816 cp.handle = cpu_to_le16(conn->handle); 6817 cp.conn_interval_min = cpu_to_le16(params->conn_min_interval); 6818 cp.conn_interval_max = cpu_to_le16(params->conn_max_interval); 6819 cp.conn_latency = cpu_to_le16(params->conn_latency); 6820 cp.supervision_timeout = cpu_to_le16(params->supervision_timeout); 6821 cp.min_ce_len = cpu_to_le16(0x0000); 6822 cp.max_ce_len = cpu_to_le16(0x0000); 6823 6824 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CONN_UPDATE, 6825 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6826 } 6827