1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * BlueZ - Bluetooth protocol stack for Linux 4 * 5 * Copyright (C) 2021 Intel Corporation 6 */ 7 8 #include <linux/property.h> 9 10 #include <net/bluetooth/bluetooth.h> 11 #include <net/bluetooth/hci_core.h> 12 #include <net/bluetooth/mgmt.h> 13 14 #include "hci_request.h" 15 #include "hci_codec.h" 16 #include "hci_debugfs.h" 17 #include "smp.h" 18 #include "eir.h" 19 #include "msft.h" 20 #include "aosp.h" 21 #include "leds.h" 22 23 static void hci_cmd_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode, 24 struct sk_buff *skb) 25 { 26 bt_dev_dbg(hdev, "result 0x%2.2x", result); 27 28 if (hdev->req_status != HCI_REQ_PEND) 29 return; 30 31 hdev->req_result = result; 32 hdev->req_status = HCI_REQ_DONE; 33 34 if (skb) { 35 struct sock *sk = hci_skb_sk(skb); 36 37 /* Drop sk reference if set */ 38 if (sk) 39 sock_put(sk); 40 41 hdev->req_skb = skb_get(skb); 42 } 43 44 wake_up_interruptible(&hdev->req_wait_q); 45 } 46 47 static struct sk_buff *hci_cmd_sync_alloc(struct hci_dev *hdev, u16 opcode, 48 u32 plen, const void *param, 49 struct sock *sk) 50 { 51 int len = HCI_COMMAND_HDR_SIZE + plen; 52 struct hci_command_hdr *hdr; 53 struct sk_buff *skb; 54 55 skb = bt_skb_alloc(len, GFP_ATOMIC); 56 if (!skb) 57 return NULL; 58 59 hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE); 60 hdr->opcode = cpu_to_le16(opcode); 61 hdr->plen = plen; 62 63 if (plen) 64 skb_put_data(skb, param, plen); 65 66 bt_dev_dbg(hdev, "skb len %d", skb->len); 67 68 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; 69 hci_skb_opcode(skb) = opcode; 70 71 /* Grab a reference if command needs to be associated with a sock (e.g. 72 * likely mgmt socket that initiated the command). 73 */ 74 if (sk) { 75 hci_skb_sk(skb) = sk; 76 sock_hold(sk); 77 } 78 79 return skb; 80 } 81 82 static void hci_cmd_sync_add(struct hci_request *req, u16 opcode, u32 plen, 83 const void *param, u8 event, struct sock *sk) 84 { 85 struct hci_dev *hdev = req->hdev; 86 struct sk_buff *skb; 87 88 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); 89 90 /* If an error occurred during request building, there is no point in 91 * queueing the HCI command. We can simply return. 92 */ 93 if (req->err) 94 return; 95 96 skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, sk); 97 if (!skb) { 98 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)", 99 opcode); 100 req->err = -ENOMEM; 101 return; 102 } 103 104 if (skb_queue_empty(&req->cmd_q)) 105 bt_cb(skb)->hci.req_flags |= HCI_REQ_START; 106 107 hci_skb_event(skb) = event; 108 109 skb_queue_tail(&req->cmd_q, skb); 110 } 111 112 static int hci_cmd_sync_run(struct hci_request *req) 113 { 114 struct hci_dev *hdev = req->hdev; 115 struct sk_buff *skb; 116 unsigned long flags; 117 118 bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q)); 119 120 /* If an error occurred during request building, remove all HCI 121 * commands queued on the HCI request queue. 122 */ 123 if (req->err) { 124 skb_queue_purge(&req->cmd_q); 125 return req->err; 126 } 127 128 /* Do not allow empty requests */ 129 if (skb_queue_empty(&req->cmd_q)) 130 return -ENODATA; 131 132 skb = skb_peek_tail(&req->cmd_q); 133 bt_cb(skb)->hci.req_complete_skb = hci_cmd_sync_complete; 134 bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB; 135 136 spin_lock_irqsave(&hdev->cmd_q.lock, flags); 137 skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q); 138 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); 139 140 queue_work(hdev->workqueue, &hdev->cmd_work); 141 142 return 0; 143 } 144 145 /* This function requires the caller holds hdev->req_lock. */ 146 struct sk_buff *__hci_cmd_sync_sk(struct hci_dev *hdev, u16 opcode, u32 plen, 147 const void *param, u8 event, u32 timeout, 148 struct sock *sk) 149 { 150 struct hci_request req; 151 struct sk_buff *skb; 152 int err = 0; 153 154 bt_dev_dbg(hdev, "Opcode 0x%4x", opcode); 155 156 hci_req_init(&req, hdev); 157 158 hci_cmd_sync_add(&req, opcode, plen, param, event, sk); 159 160 hdev->req_status = HCI_REQ_PEND; 161 162 err = hci_cmd_sync_run(&req); 163 if (err < 0) 164 return ERR_PTR(err); 165 166 err = wait_event_interruptible_timeout(hdev->req_wait_q, 167 hdev->req_status != HCI_REQ_PEND, 168 timeout); 169 170 if (err == -ERESTARTSYS) 171 return ERR_PTR(-EINTR); 172 173 switch (hdev->req_status) { 174 case HCI_REQ_DONE: 175 err = -bt_to_errno(hdev->req_result); 176 break; 177 178 case HCI_REQ_CANCELED: 179 err = -hdev->req_result; 180 break; 181 182 default: 183 err = -ETIMEDOUT; 184 break; 185 } 186 187 hdev->req_status = 0; 188 hdev->req_result = 0; 189 skb = hdev->req_skb; 190 hdev->req_skb = NULL; 191 192 bt_dev_dbg(hdev, "end: err %d", err); 193 194 if (err < 0) { 195 kfree_skb(skb); 196 return ERR_PTR(err); 197 } 198 199 return skb; 200 } 201 EXPORT_SYMBOL(__hci_cmd_sync_sk); 202 203 /* This function requires the caller holds hdev->req_lock. */ 204 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 205 const void *param, u32 timeout) 206 { 207 return __hci_cmd_sync_sk(hdev, opcode, plen, param, 0, timeout, NULL); 208 } 209 EXPORT_SYMBOL(__hci_cmd_sync); 210 211 /* Send HCI command and wait for command complete event */ 212 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 213 const void *param, u32 timeout) 214 { 215 struct sk_buff *skb; 216 217 if (!test_bit(HCI_UP, &hdev->flags)) 218 return ERR_PTR(-ENETDOWN); 219 220 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); 221 222 hci_req_sync_lock(hdev); 223 skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout); 224 hci_req_sync_unlock(hdev); 225 226 return skb; 227 } 228 EXPORT_SYMBOL(hci_cmd_sync); 229 230 /* This function requires the caller holds hdev->req_lock. */ 231 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen, 232 const void *param, u8 event, u32 timeout) 233 { 234 return __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, 235 NULL); 236 } 237 EXPORT_SYMBOL(__hci_cmd_sync_ev); 238 239 /* This function requires the caller holds hdev->req_lock. */ 240 int __hci_cmd_sync_status_sk(struct hci_dev *hdev, u16 opcode, u32 plen, 241 const void *param, u8 event, u32 timeout, 242 struct sock *sk) 243 { 244 struct sk_buff *skb; 245 u8 status; 246 247 skb = __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, sk); 248 if (IS_ERR(skb)) { 249 bt_dev_err(hdev, "Opcode 0x%4x failed: %ld", opcode, 250 PTR_ERR(skb)); 251 return PTR_ERR(skb); 252 } 253 254 /* If command return a status event skb will be set to NULL as there are 255 * no parameters, in case of failure IS_ERR(skb) would have be set to 256 * the actual error would be found with PTR_ERR(skb). 257 */ 258 if (!skb) 259 return 0; 260 261 status = skb->data[0]; 262 263 kfree_skb(skb); 264 265 return status; 266 } 267 EXPORT_SYMBOL(__hci_cmd_sync_status_sk); 268 269 int __hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen, 270 const void *param, u32 timeout) 271 { 272 return __hci_cmd_sync_status_sk(hdev, opcode, plen, param, 0, timeout, 273 NULL); 274 } 275 EXPORT_SYMBOL(__hci_cmd_sync_status); 276 277 static void hci_cmd_sync_work(struct work_struct *work) 278 { 279 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_work); 280 281 bt_dev_dbg(hdev, ""); 282 283 /* Dequeue all entries and run them */ 284 while (1) { 285 struct hci_cmd_sync_work_entry *entry; 286 287 mutex_lock(&hdev->cmd_sync_work_lock); 288 entry = list_first_entry_or_null(&hdev->cmd_sync_work_list, 289 struct hci_cmd_sync_work_entry, 290 list); 291 if (entry) 292 list_del(&entry->list); 293 mutex_unlock(&hdev->cmd_sync_work_lock); 294 295 if (!entry) 296 break; 297 298 bt_dev_dbg(hdev, "entry %p", entry); 299 300 if (entry->func) { 301 int err; 302 303 hci_req_sync_lock(hdev); 304 err = entry->func(hdev, entry->data); 305 if (entry->destroy) 306 entry->destroy(hdev, entry->data, err); 307 hci_req_sync_unlock(hdev); 308 } 309 310 kfree(entry); 311 } 312 } 313 314 static void hci_cmd_sync_cancel_work(struct work_struct *work) 315 { 316 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_cancel_work); 317 318 cancel_delayed_work_sync(&hdev->cmd_timer); 319 cancel_delayed_work_sync(&hdev->ncmd_timer); 320 atomic_set(&hdev->cmd_cnt, 1); 321 322 wake_up_interruptible(&hdev->req_wait_q); 323 } 324 325 static int hci_scan_disable_sync(struct hci_dev *hdev); 326 static int scan_disable_sync(struct hci_dev *hdev, void *data) 327 { 328 return hci_scan_disable_sync(hdev); 329 } 330 331 static int hci_inquiry_sync(struct hci_dev *hdev, u8 length); 332 static int interleaved_inquiry_sync(struct hci_dev *hdev, void *data) 333 { 334 return hci_inquiry_sync(hdev, DISCOV_INTERLEAVED_INQUIRY_LEN); 335 } 336 337 static void le_scan_disable(struct work_struct *work) 338 { 339 struct hci_dev *hdev = container_of(work, struct hci_dev, 340 le_scan_disable.work); 341 int status; 342 343 bt_dev_dbg(hdev, ""); 344 hci_dev_lock(hdev); 345 346 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 347 goto _return; 348 349 cancel_delayed_work(&hdev->le_scan_restart); 350 351 status = hci_cmd_sync_queue(hdev, scan_disable_sync, NULL, NULL); 352 if (status) { 353 bt_dev_err(hdev, "failed to disable LE scan: %d", status); 354 goto _return; 355 } 356 357 hdev->discovery.scan_start = 0; 358 359 /* If we were running LE only scan, change discovery state. If 360 * we were running both LE and BR/EDR inquiry simultaneously, 361 * and BR/EDR inquiry is already finished, stop discovery, 362 * otherwise BR/EDR inquiry will stop discovery when finished. 363 * If we will resolve remote device name, do not change 364 * discovery state. 365 */ 366 367 if (hdev->discovery.type == DISCOV_TYPE_LE) 368 goto discov_stopped; 369 370 if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED) 371 goto _return; 372 373 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) { 374 if (!test_bit(HCI_INQUIRY, &hdev->flags) && 375 hdev->discovery.state != DISCOVERY_RESOLVING) 376 goto discov_stopped; 377 378 goto _return; 379 } 380 381 status = hci_cmd_sync_queue(hdev, interleaved_inquiry_sync, NULL, NULL); 382 if (status) { 383 bt_dev_err(hdev, "inquiry failed: status %d", status); 384 goto discov_stopped; 385 } 386 387 goto _return; 388 389 discov_stopped: 390 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 391 392 _return: 393 hci_dev_unlock(hdev); 394 } 395 396 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val, 397 u8 filter_dup); 398 static int hci_le_scan_restart_sync(struct hci_dev *hdev) 399 { 400 /* If controller is not scanning we are done. */ 401 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 402 return 0; 403 404 if (hdev->scanning_paused) { 405 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 406 return 0; 407 } 408 409 hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00); 410 return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, 411 LE_SCAN_FILTER_DUP_ENABLE); 412 } 413 414 static int le_scan_restart_sync(struct hci_dev *hdev, void *data) 415 { 416 return hci_le_scan_restart_sync(hdev); 417 } 418 419 static void le_scan_restart(struct work_struct *work) 420 { 421 struct hci_dev *hdev = container_of(work, struct hci_dev, 422 le_scan_restart.work); 423 unsigned long timeout, duration, scan_start, now; 424 int status; 425 426 bt_dev_dbg(hdev, ""); 427 428 hci_dev_lock(hdev); 429 430 status = hci_cmd_sync_queue(hdev, le_scan_restart_sync, NULL, NULL); 431 if (status) { 432 bt_dev_err(hdev, "failed to restart LE scan: status %d", 433 status); 434 goto unlock; 435 } 436 437 if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) || 438 !hdev->discovery.scan_start) 439 goto unlock; 440 441 /* When the scan was started, hdev->le_scan_disable has been queued 442 * after duration from scan_start. During scan restart this job 443 * has been canceled, and we need to queue it again after proper 444 * timeout, to make sure that scan does not run indefinitely. 445 */ 446 duration = hdev->discovery.scan_duration; 447 scan_start = hdev->discovery.scan_start; 448 now = jiffies; 449 if (now - scan_start <= duration) { 450 int elapsed; 451 452 if (now >= scan_start) 453 elapsed = now - scan_start; 454 else 455 elapsed = ULONG_MAX - scan_start + now; 456 457 timeout = duration - elapsed; 458 } else { 459 timeout = 0; 460 } 461 462 queue_delayed_work(hdev->req_workqueue, 463 &hdev->le_scan_disable, timeout); 464 465 unlock: 466 hci_dev_unlock(hdev); 467 } 468 469 static int reenable_adv_sync(struct hci_dev *hdev, void *data) 470 { 471 bt_dev_dbg(hdev, ""); 472 473 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) && 474 list_empty(&hdev->adv_instances)) 475 return 0; 476 477 if (hdev->cur_adv_instance) { 478 return hci_schedule_adv_instance_sync(hdev, 479 hdev->cur_adv_instance, 480 true); 481 } else { 482 if (ext_adv_capable(hdev)) { 483 hci_start_ext_adv_sync(hdev, 0x00); 484 } else { 485 hci_update_adv_data_sync(hdev, 0x00); 486 hci_update_scan_rsp_data_sync(hdev, 0x00); 487 hci_enable_advertising_sync(hdev); 488 } 489 } 490 491 return 0; 492 } 493 494 static void reenable_adv(struct work_struct *work) 495 { 496 struct hci_dev *hdev = container_of(work, struct hci_dev, 497 reenable_adv_work); 498 int status; 499 500 bt_dev_dbg(hdev, ""); 501 502 hci_dev_lock(hdev); 503 504 status = hci_cmd_sync_queue(hdev, reenable_adv_sync, NULL, NULL); 505 if (status) 506 bt_dev_err(hdev, "failed to reenable ADV: %d", status); 507 508 hci_dev_unlock(hdev); 509 } 510 511 static void cancel_adv_timeout(struct hci_dev *hdev) 512 { 513 if (hdev->adv_instance_timeout) { 514 hdev->adv_instance_timeout = 0; 515 cancel_delayed_work(&hdev->adv_instance_expire); 516 } 517 } 518 519 /* For a single instance: 520 * - force == true: The instance will be removed even when its remaining 521 * lifetime is not zero. 522 * - force == false: the instance will be deactivated but kept stored unless 523 * the remaining lifetime is zero. 524 * 525 * For instance == 0x00: 526 * - force == true: All instances will be removed regardless of their timeout 527 * setting. 528 * - force == false: Only instances that have a timeout will be removed. 529 */ 530 int hci_clear_adv_instance_sync(struct hci_dev *hdev, struct sock *sk, 531 u8 instance, bool force) 532 { 533 struct adv_info *adv_instance, *n, *next_instance = NULL; 534 int err; 535 u8 rem_inst; 536 537 /* Cancel any timeout concerning the removed instance(s). */ 538 if (!instance || hdev->cur_adv_instance == instance) 539 cancel_adv_timeout(hdev); 540 541 /* Get the next instance to advertise BEFORE we remove 542 * the current one. This can be the same instance again 543 * if there is only one instance. 544 */ 545 if (instance && hdev->cur_adv_instance == instance) 546 next_instance = hci_get_next_instance(hdev, instance); 547 548 if (instance == 0x00) { 549 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, 550 list) { 551 if (!(force || adv_instance->timeout)) 552 continue; 553 554 rem_inst = adv_instance->instance; 555 err = hci_remove_adv_instance(hdev, rem_inst); 556 if (!err) 557 mgmt_advertising_removed(sk, hdev, rem_inst); 558 } 559 } else { 560 adv_instance = hci_find_adv_instance(hdev, instance); 561 562 if (force || (adv_instance && adv_instance->timeout && 563 !adv_instance->remaining_time)) { 564 /* Don't advertise a removed instance. */ 565 if (next_instance && 566 next_instance->instance == instance) 567 next_instance = NULL; 568 569 err = hci_remove_adv_instance(hdev, instance); 570 if (!err) 571 mgmt_advertising_removed(sk, hdev, instance); 572 } 573 } 574 575 if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING)) 576 return 0; 577 578 if (next_instance && !ext_adv_capable(hdev)) 579 return hci_schedule_adv_instance_sync(hdev, 580 next_instance->instance, 581 false); 582 583 return 0; 584 } 585 586 static int adv_timeout_expire_sync(struct hci_dev *hdev, void *data) 587 { 588 u8 instance = *(u8 *)data; 589 590 kfree(data); 591 592 hci_clear_adv_instance_sync(hdev, NULL, instance, false); 593 594 if (list_empty(&hdev->adv_instances)) 595 return hci_disable_advertising_sync(hdev); 596 597 return 0; 598 } 599 600 static void adv_timeout_expire(struct work_struct *work) 601 { 602 u8 *inst_ptr; 603 struct hci_dev *hdev = container_of(work, struct hci_dev, 604 adv_instance_expire.work); 605 606 bt_dev_dbg(hdev, ""); 607 608 hci_dev_lock(hdev); 609 610 hdev->adv_instance_timeout = 0; 611 612 if (hdev->cur_adv_instance == 0x00) 613 goto unlock; 614 615 inst_ptr = kmalloc(1, GFP_KERNEL); 616 if (!inst_ptr) 617 goto unlock; 618 619 *inst_ptr = hdev->cur_adv_instance; 620 hci_cmd_sync_queue(hdev, adv_timeout_expire_sync, inst_ptr, NULL); 621 622 unlock: 623 hci_dev_unlock(hdev); 624 } 625 626 void hci_cmd_sync_init(struct hci_dev *hdev) 627 { 628 INIT_WORK(&hdev->cmd_sync_work, hci_cmd_sync_work); 629 INIT_LIST_HEAD(&hdev->cmd_sync_work_list); 630 mutex_init(&hdev->cmd_sync_work_lock); 631 632 INIT_WORK(&hdev->cmd_sync_cancel_work, hci_cmd_sync_cancel_work); 633 INIT_WORK(&hdev->reenable_adv_work, reenable_adv); 634 INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable); 635 INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart); 636 INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire); 637 } 638 639 void hci_cmd_sync_clear(struct hci_dev *hdev) 640 { 641 struct hci_cmd_sync_work_entry *entry, *tmp; 642 643 cancel_work_sync(&hdev->cmd_sync_work); 644 cancel_work_sync(&hdev->reenable_adv_work); 645 646 list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) { 647 if (entry->destroy) 648 entry->destroy(hdev, entry->data, -ECANCELED); 649 650 list_del(&entry->list); 651 kfree(entry); 652 } 653 } 654 655 void __hci_cmd_sync_cancel(struct hci_dev *hdev, int err) 656 { 657 bt_dev_dbg(hdev, "err 0x%2.2x", err); 658 659 if (hdev->req_status == HCI_REQ_PEND) { 660 hdev->req_result = err; 661 hdev->req_status = HCI_REQ_CANCELED; 662 663 cancel_delayed_work_sync(&hdev->cmd_timer); 664 cancel_delayed_work_sync(&hdev->ncmd_timer); 665 atomic_set(&hdev->cmd_cnt, 1); 666 667 wake_up_interruptible(&hdev->req_wait_q); 668 } 669 } 670 671 void hci_cmd_sync_cancel(struct hci_dev *hdev, int err) 672 { 673 bt_dev_dbg(hdev, "err 0x%2.2x", err); 674 675 if (hdev->req_status == HCI_REQ_PEND) { 676 hdev->req_result = err; 677 hdev->req_status = HCI_REQ_CANCELED; 678 679 queue_work(hdev->workqueue, &hdev->cmd_sync_cancel_work); 680 } 681 } 682 EXPORT_SYMBOL(hci_cmd_sync_cancel); 683 684 int hci_cmd_sync_queue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 685 void *data, hci_cmd_sync_work_destroy_t destroy) 686 { 687 struct hci_cmd_sync_work_entry *entry; 688 689 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) 690 return -ENODEV; 691 692 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 693 if (!entry) 694 return -ENOMEM; 695 696 entry->func = func; 697 entry->data = data; 698 entry->destroy = destroy; 699 700 mutex_lock(&hdev->cmd_sync_work_lock); 701 list_add_tail(&entry->list, &hdev->cmd_sync_work_list); 702 mutex_unlock(&hdev->cmd_sync_work_lock); 703 704 queue_work(hdev->req_workqueue, &hdev->cmd_sync_work); 705 706 return 0; 707 } 708 EXPORT_SYMBOL(hci_cmd_sync_queue); 709 710 int hci_update_eir_sync(struct hci_dev *hdev) 711 { 712 struct hci_cp_write_eir cp; 713 714 bt_dev_dbg(hdev, ""); 715 716 if (!hdev_is_powered(hdev)) 717 return 0; 718 719 if (!lmp_ext_inq_capable(hdev)) 720 return 0; 721 722 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 723 return 0; 724 725 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 726 return 0; 727 728 memset(&cp, 0, sizeof(cp)); 729 730 eir_create(hdev, cp.data); 731 732 if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0) 733 return 0; 734 735 memcpy(hdev->eir, cp.data, sizeof(cp.data)); 736 737 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp, 738 HCI_CMD_TIMEOUT); 739 } 740 741 static u8 get_service_classes(struct hci_dev *hdev) 742 { 743 struct bt_uuid *uuid; 744 u8 val = 0; 745 746 list_for_each_entry(uuid, &hdev->uuids, list) 747 val |= uuid->svc_hint; 748 749 return val; 750 } 751 752 int hci_update_class_sync(struct hci_dev *hdev) 753 { 754 u8 cod[3]; 755 756 bt_dev_dbg(hdev, ""); 757 758 if (!hdev_is_powered(hdev)) 759 return 0; 760 761 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 762 return 0; 763 764 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 765 return 0; 766 767 cod[0] = hdev->minor_class; 768 cod[1] = hdev->major_class; 769 cod[2] = get_service_classes(hdev); 770 771 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) 772 cod[1] |= 0x20; 773 774 if (memcmp(cod, hdev->dev_class, 3) == 0) 775 return 0; 776 777 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CLASS_OF_DEV, 778 sizeof(cod), cod, HCI_CMD_TIMEOUT); 779 } 780 781 static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable) 782 { 783 /* If there is no connection we are OK to advertise. */ 784 if (hci_conn_num(hdev, LE_LINK) == 0) 785 return true; 786 787 /* Check le_states if there is any connection in peripheral role. */ 788 if (hdev->conn_hash.le_num_peripheral > 0) { 789 /* Peripheral connection state and non connectable mode 790 * bit 20. 791 */ 792 if (!connectable && !(hdev->le_states[2] & 0x10)) 793 return false; 794 795 /* Peripheral connection state and connectable mode bit 38 796 * and scannable bit 21. 797 */ 798 if (connectable && (!(hdev->le_states[4] & 0x40) || 799 !(hdev->le_states[2] & 0x20))) 800 return false; 801 } 802 803 /* Check le_states if there is any connection in central role. */ 804 if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) { 805 /* Central connection state and non connectable mode bit 18. */ 806 if (!connectable && !(hdev->le_states[2] & 0x02)) 807 return false; 808 809 /* Central connection state and connectable mode bit 35 and 810 * scannable 19. 811 */ 812 if (connectable && (!(hdev->le_states[4] & 0x08) || 813 !(hdev->le_states[2] & 0x08))) 814 return false; 815 } 816 817 return true; 818 } 819 820 static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags) 821 { 822 /* If privacy is not enabled don't use RPA */ 823 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 824 return false; 825 826 /* If basic privacy mode is enabled use RPA */ 827 if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) 828 return true; 829 830 /* If limited privacy mode is enabled don't use RPA if we're 831 * both discoverable and bondable. 832 */ 833 if ((flags & MGMT_ADV_FLAG_DISCOV) && 834 hci_dev_test_flag(hdev, HCI_BONDABLE)) 835 return false; 836 837 /* We're neither bondable nor discoverable in the limited 838 * privacy mode, therefore use RPA. 839 */ 840 return true; 841 } 842 843 static int hci_set_random_addr_sync(struct hci_dev *hdev, bdaddr_t *rpa) 844 { 845 /* If we're advertising or initiating an LE connection we can't 846 * go ahead and change the random address at this time. This is 847 * because the eventual initiator address used for the 848 * subsequently created connection will be undefined (some 849 * controllers use the new address and others the one we had 850 * when the operation started). 851 * 852 * In this kind of scenario skip the update and let the random 853 * address be updated at the next cycle. 854 */ 855 if (hci_dev_test_flag(hdev, HCI_LE_ADV) || 856 hci_lookup_le_connect(hdev)) { 857 bt_dev_dbg(hdev, "Deferring random address update"); 858 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 859 return 0; 860 } 861 862 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RANDOM_ADDR, 863 6, rpa, HCI_CMD_TIMEOUT); 864 } 865 866 int hci_update_random_address_sync(struct hci_dev *hdev, bool require_privacy, 867 bool rpa, u8 *own_addr_type) 868 { 869 int err; 870 871 /* If privacy is enabled use a resolvable private address. If 872 * current RPA has expired or there is something else than 873 * the current RPA in use, then generate a new one. 874 */ 875 if (rpa) { 876 /* If Controller supports LL Privacy use own address type is 877 * 0x03 878 */ 879 if (use_ll_privacy(hdev)) 880 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED; 881 else 882 *own_addr_type = ADDR_LE_DEV_RANDOM; 883 884 /* Check if RPA is valid */ 885 if (rpa_valid(hdev)) 886 return 0; 887 888 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); 889 if (err < 0) { 890 bt_dev_err(hdev, "failed to generate new RPA"); 891 return err; 892 } 893 894 err = hci_set_random_addr_sync(hdev, &hdev->rpa); 895 if (err) 896 return err; 897 898 return 0; 899 } 900 901 /* In case of required privacy without resolvable private address, 902 * use an non-resolvable private address. This is useful for active 903 * scanning and non-connectable advertising. 904 */ 905 if (require_privacy) { 906 bdaddr_t nrpa; 907 908 while (true) { 909 /* The non-resolvable private address is generated 910 * from random six bytes with the two most significant 911 * bits cleared. 912 */ 913 get_random_bytes(&nrpa, 6); 914 nrpa.b[5] &= 0x3f; 915 916 /* The non-resolvable private address shall not be 917 * equal to the public address. 918 */ 919 if (bacmp(&hdev->bdaddr, &nrpa)) 920 break; 921 } 922 923 *own_addr_type = ADDR_LE_DEV_RANDOM; 924 925 return hci_set_random_addr_sync(hdev, &nrpa); 926 } 927 928 /* If forcing static address is in use or there is no public 929 * address use the static address as random address (but skip 930 * the HCI command if the current random address is already the 931 * static one. 932 * 933 * In case BR/EDR has been disabled on a dual-mode controller 934 * and a static address has been configured, then use that 935 * address instead of the public BR/EDR address. 936 */ 937 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 938 !bacmp(&hdev->bdaddr, BDADDR_ANY) || 939 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && 940 bacmp(&hdev->static_addr, BDADDR_ANY))) { 941 *own_addr_type = ADDR_LE_DEV_RANDOM; 942 if (bacmp(&hdev->static_addr, &hdev->random_addr)) 943 return hci_set_random_addr_sync(hdev, 944 &hdev->static_addr); 945 return 0; 946 } 947 948 /* Neither privacy nor static address is being used so use a 949 * public address. 950 */ 951 *own_addr_type = ADDR_LE_DEV_PUBLIC; 952 953 return 0; 954 } 955 956 static int hci_disable_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance) 957 { 958 struct hci_cp_le_set_ext_adv_enable *cp; 959 struct hci_cp_ext_adv_set *set; 960 u8 data[sizeof(*cp) + sizeof(*set) * 1]; 961 u8 size; 962 963 /* If request specifies an instance that doesn't exist, fail */ 964 if (instance > 0) { 965 struct adv_info *adv; 966 967 adv = hci_find_adv_instance(hdev, instance); 968 if (!adv) 969 return -EINVAL; 970 971 /* If not enabled there is nothing to do */ 972 if (!adv->enabled) 973 return 0; 974 } 975 976 memset(data, 0, sizeof(data)); 977 978 cp = (void *)data; 979 set = (void *)cp->data; 980 981 /* Instance 0x00 indicates all advertising instances will be disabled */ 982 cp->num_of_sets = !!instance; 983 cp->enable = 0x00; 984 985 set->handle = instance; 986 987 size = sizeof(*cp) + sizeof(*set) * cp->num_of_sets; 988 989 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, 990 size, data, HCI_CMD_TIMEOUT); 991 } 992 993 static int hci_set_adv_set_random_addr_sync(struct hci_dev *hdev, u8 instance, 994 bdaddr_t *random_addr) 995 { 996 struct hci_cp_le_set_adv_set_rand_addr cp; 997 int err; 998 999 if (!instance) { 1000 /* Instance 0x00 doesn't have an adv_info, instead it uses 1001 * hdev->random_addr to track its address so whenever it needs 1002 * to be updated this also set the random address since 1003 * hdev->random_addr is shared with scan state machine. 1004 */ 1005 err = hci_set_random_addr_sync(hdev, random_addr); 1006 if (err) 1007 return err; 1008 } 1009 1010 memset(&cp, 0, sizeof(cp)); 1011 1012 cp.handle = instance; 1013 bacpy(&cp.bdaddr, random_addr); 1014 1015 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_SET_RAND_ADDR, 1016 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1017 } 1018 1019 int hci_setup_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance) 1020 { 1021 struct hci_cp_le_set_ext_adv_params cp; 1022 bool connectable; 1023 u32 flags; 1024 bdaddr_t random_addr; 1025 u8 own_addr_type; 1026 int err; 1027 struct adv_info *adv; 1028 bool secondary_adv; 1029 1030 if (instance > 0) { 1031 adv = hci_find_adv_instance(hdev, instance); 1032 if (!adv) 1033 return -EINVAL; 1034 } else { 1035 adv = NULL; 1036 } 1037 1038 /* Updating parameters of an active instance will return a 1039 * Command Disallowed error, so we must first disable the 1040 * instance if it is active. 1041 */ 1042 if (adv && !adv->pending) { 1043 err = hci_disable_ext_adv_instance_sync(hdev, instance); 1044 if (err) 1045 return err; 1046 } 1047 1048 flags = hci_adv_instance_flags(hdev, instance); 1049 1050 /* If the "connectable" instance flag was not set, then choose between 1051 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. 1052 */ 1053 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || 1054 mgmt_get_connectable(hdev); 1055 1056 if (!is_advertising_allowed(hdev, connectable)) 1057 return -EPERM; 1058 1059 /* Set require_privacy to true only when non-connectable 1060 * advertising is used. In that case it is fine to use a 1061 * non-resolvable private address. 1062 */ 1063 err = hci_get_random_address(hdev, !connectable, 1064 adv_use_rpa(hdev, flags), adv, 1065 &own_addr_type, &random_addr); 1066 if (err < 0) 1067 return err; 1068 1069 memset(&cp, 0, sizeof(cp)); 1070 1071 if (adv) { 1072 hci_cpu_to_le24(adv->min_interval, cp.min_interval); 1073 hci_cpu_to_le24(adv->max_interval, cp.max_interval); 1074 cp.tx_power = adv->tx_power; 1075 } else { 1076 hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval); 1077 hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval); 1078 cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE; 1079 } 1080 1081 secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK); 1082 1083 if (connectable) { 1084 if (secondary_adv) 1085 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND); 1086 else 1087 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND); 1088 } else if (hci_adv_instance_is_scannable(hdev, instance) || 1089 (flags & MGMT_ADV_PARAM_SCAN_RSP)) { 1090 if (secondary_adv) 1091 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND); 1092 else 1093 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND); 1094 } else { 1095 if (secondary_adv) 1096 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND); 1097 else 1098 cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND); 1099 } 1100 1101 /* If Own_Address_Type equals 0x02 or 0x03, the Peer_Address parameter 1102 * contains the peer’s Identity Address and the Peer_Address_Type 1103 * parameter contains the peer’s Identity Type (i.e., 0x00 or 0x01). 1104 * These parameters are used to locate the corresponding local IRK in 1105 * the resolving list; this IRK is used to generate their own address 1106 * used in the advertisement. 1107 */ 1108 if (own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) 1109 hci_copy_identity_address(hdev, &cp.peer_addr, 1110 &cp.peer_addr_type); 1111 1112 cp.own_addr_type = own_addr_type; 1113 cp.channel_map = hdev->le_adv_channel_map; 1114 cp.handle = instance; 1115 1116 if (flags & MGMT_ADV_FLAG_SEC_2M) { 1117 cp.primary_phy = HCI_ADV_PHY_1M; 1118 cp.secondary_phy = HCI_ADV_PHY_2M; 1119 } else if (flags & MGMT_ADV_FLAG_SEC_CODED) { 1120 cp.primary_phy = HCI_ADV_PHY_CODED; 1121 cp.secondary_phy = HCI_ADV_PHY_CODED; 1122 } else { 1123 /* In all other cases use 1M */ 1124 cp.primary_phy = HCI_ADV_PHY_1M; 1125 cp.secondary_phy = HCI_ADV_PHY_1M; 1126 } 1127 1128 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS, 1129 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1130 if (err) 1131 return err; 1132 1133 if ((own_addr_type == ADDR_LE_DEV_RANDOM || 1134 own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) && 1135 bacmp(&random_addr, BDADDR_ANY)) { 1136 /* Check if random address need to be updated */ 1137 if (adv) { 1138 if (!bacmp(&random_addr, &adv->random_addr)) 1139 return 0; 1140 } else { 1141 if (!bacmp(&random_addr, &hdev->random_addr)) 1142 return 0; 1143 } 1144 1145 return hci_set_adv_set_random_addr_sync(hdev, instance, 1146 &random_addr); 1147 } 1148 1149 return 0; 1150 } 1151 1152 static int hci_set_ext_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 1153 { 1154 struct { 1155 struct hci_cp_le_set_ext_scan_rsp_data cp; 1156 u8 data[HCI_MAX_EXT_AD_LENGTH]; 1157 } pdu; 1158 u8 len; 1159 struct adv_info *adv = NULL; 1160 int err; 1161 1162 memset(&pdu, 0, sizeof(pdu)); 1163 1164 if (instance) { 1165 adv = hci_find_adv_instance(hdev, instance); 1166 if (!adv || !adv->scan_rsp_changed) 1167 return 0; 1168 } 1169 1170 len = eir_create_scan_rsp(hdev, instance, pdu.data); 1171 1172 pdu.cp.handle = instance; 1173 pdu.cp.length = len; 1174 pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; 1175 pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG; 1176 1177 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA, 1178 sizeof(pdu.cp) + len, &pdu.cp, 1179 HCI_CMD_TIMEOUT); 1180 if (err) 1181 return err; 1182 1183 if (adv) { 1184 adv->scan_rsp_changed = false; 1185 } else { 1186 memcpy(hdev->scan_rsp_data, pdu.data, len); 1187 hdev->scan_rsp_data_len = len; 1188 } 1189 1190 return 0; 1191 } 1192 1193 static int __hci_set_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 1194 { 1195 struct hci_cp_le_set_scan_rsp_data cp; 1196 u8 len; 1197 1198 memset(&cp, 0, sizeof(cp)); 1199 1200 len = eir_create_scan_rsp(hdev, instance, cp.data); 1201 1202 if (hdev->scan_rsp_data_len == len && 1203 !memcmp(cp.data, hdev->scan_rsp_data, len)) 1204 return 0; 1205 1206 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data)); 1207 hdev->scan_rsp_data_len = len; 1208 1209 cp.length = len; 1210 1211 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_RSP_DATA, 1212 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1213 } 1214 1215 int hci_update_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 1216 { 1217 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1218 return 0; 1219 1220 if (ext_adv_capable(hdev)) 1221 return hci_set_ext_scan_rsp_data_sync(hdev, instance); 1222 1223 return __hci_set_scan_rsp_data_sync(hdev, instance); 1224 } 1225 1226 int hci_enable_ext_advertising_sync(struct hci_dev *hdev, u8 instance) 1227 { 1228 struct hci_cp_le_set_ext_adv_enable *cp; 1229 struct hci_cp_ext_adv_set *set; 1230 u8 data[sizeof(*cp) + sizeof(*set) * 1]; 1231 struct adv_info *adv; 1232 1233 if (instance > 0) { 1234 adv = hci_find_adv_instance(hdev, instance); 1235 if (!adv) 1236 return -EINVAL; 1237 /* If already enabled there is nothing to do */ 1238 if (adv->enabled) 1239 return 0; 1240 } else { 1241 adv = NULL; 1242 } 1243 1244 cp = (void *)data; 1245 set = (void *)cp->data; 1246 1247 memset(cp, 0, sizeof(*cp)); 1248 1249 cp->enable = 0x01; 1250 cp->num_of_sets = 0x01; 1251 1252 memset(set, 0, sizeof(*set)); 1253 1254 set->handle = instance; 1255 1256 /* Set duration per instance since controller is responsible for 1257 * scheduling it. 1258 */ 1259 if (adv && adv->timeout) { 1260 u16 duration = adv->timeout * MSEC_PER_SEC; 1261 1262 /* Time = N * 10 ms */ 1263 set->duration = cpu_to_le16(duration / 10); 1264 } 1265 1266 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, 1267 sizeof(*cp) + 1268 sizeof(*set) * cp->num_of_sets, 1269 data, HCI_CMD_TIMEOUT); 1270 } 1271 1272 int hci_start_ext_adv_sync(struct hci_dev *hdev, u8 instance) 1273 { 1274 int err; 1275 1276 err = hci_setup_ext_adv_instance_sync(hdev, instance); 1277 if (err) 1278 return err; 1279 1280 err = hci_set_ext_scan_rsp_data_sync(hdev, instance); 1281 if (err) 1282 return err; 1283 1284 return hci_enable_ext_advertising_sync(hdev, instance); 1285 } 1286 1287 static int hci_disable_per_advertising_sync(struct hci_dev *hdev, u8 instance) 1288 { 1289 struct hci_cp_le_set_per_adv_enable cp; 1290 1291 /* If periodic advertising already disabled there is nothing to do. */ 1292 if (!hci_dev_test_flag(hdev, HCI_LE_PER_ADV)) 1293 return 0; 1294 1295 memset(&cp, 0, sizeof(cp)); 1296 1297 cp.enable = 0x00; 1298 cp.handle = instance; 1299 1300 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE, 1301 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1302 } 1303 1304 static int hci_set_per_adv_params_sync(struct hci_dev *hdev, u8 instance, 1305 u16 min_interval, u16 max_interval) 1306 { 1307 struct hci_cp_le_set_per_adv_params cp; 1308 1309 memset(&cp, 0, sizeof(cp)); 1310 1311 if (!min_interval) 1312 min_interval = DISCOV_LE_PER_ADV_INT_MIN; 1313 1314 if (!max_interval) 1315 max_interval = DISCOV_LE_PER_ADV_INT_MAX; 1316 1317 cp.handle = instance; 1318 cp.min_interval = cpu_to_le16(min_interval); 1319 cp.max_interval = cpu_to_le16(max_interval); 1320 cp.periodic_properties = 0x0000; 1321 1322 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_PARAMS, 1323 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1324 } 1325 1326 static int hci_set_per_adv_data_sync(struct hci_dev *hdev, u8 instance) 1327 { 1328 struct { 1329 struct hci_cp_le_set_per_adv_data cp; 1330 u8 data[HCI_MAX_PER_AD_LENGTH]; 1331 } pdu; 1332 u8 len; 1333 1334 memset(&pdu, 0, sizeof(pdu)); 1335 1336 if (instance) { 1337 struct adv_info *adv = hci_find_adv_instance(hdev, instance); 1338 1339 if (!adv || !adv->periodic) 1340 return 0; 1341 } 1342 1343 len = eir_create_per_adv_data(hdev, instance, pdu.data); 1344 1345 pdu.cp.length = len; 1346 pdu.cp.handle = instance; 1347 pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; 1348 1349 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_DATA, 1350 sizeof(pdu.cp) + len, &pdu, 1351 HCI_CMD_TIMEOUT); 1352 } 1353 1354 static int hci_enable_per_advertising_sync(struct hci_dev *hdev, u8 instance) 1355 { 1356 struct hci_cp_le_set_per_adv_enable cp; 1357 1358 /* If periodic advertising already enabled there is nothing to do. */ 1359 if (hci_dev_test_flag(hdev, HCI_LE_PER_ADV)) 1360 return 0; 1361 1362 memset(&cp, 0, sizeof(cp)); 1363 1364 cp.enable = 0x01; 1365 cp.handle = instance; 1366 1367 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE, 1368 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1369 } 1370 1371 /* Checks if periodic advertising data contains a Basic Announcement and if it 1372 * does generates a Broadcast ID and add Broadcast Announcement. 1373 */ 1374 static int hci_adv_bcast_annoucement(struct hci_dev *hdev, struct adv_info *adv) 1375 { 1376 u8 bid[3]; 1377 u8 ad[4 + 3]; 1378 1379 /* Skip if NULL adv as instance 0x00 is used for general purpose 1380 * advertising so it cannot used for the likes of Broadcast Announcement 1381 * as it can be overwritten at any point. 1382 */ 1383 if (!adv) 1384 return 0; 1385 1386 /* Check if PA data doesn't contains a Basic Audio Announcement then 1387 * there is nothing to do. 1388 */ 1389 if (!eir_get_service_data(adv->per_adv_data, adv->per_adv_data_len, 1390 0x1851, NULL)) 1391 return 0; 1392 1393 /* Check if advertising data already has a Broadcast Announcement since 1394 * the process may want to control the Broadcast ID directly and in that 1395 * case the kernel shall no interfere. 1396 */ 1397 if (eir_get_service_data(adv->adv_data, adv->adv_data_len, 0x1852, 1398 NULL)) 1399 return 0; 1400 1401 /* Generate Broadcast ID */ 1402 get_random_bytes(bid, sizeof(bid)); 1403 eir_append_service_data(ad, 0, 0x1852, bid, sizeof(bid)); 1404 hci_set_adv_instance_data(hdev, adv->instance, sizeof(ad), ad, 0, NULL); 1405 1406 return hci_update_adv_data_sync(hdev, adv->instance); 1407 } 1408 1409 int hci_start_per_adv_sync(struct hci_dev *hdev, u8 instance, u8 data_len, 1410 u8 *data, u32 flags, u16 min_interval, 1411 u16 max_interval, u16 sync_interval) 1412 { 1413 struct adv_info *adv = NULL; 1414 int err; 1415 bool added = false; 1416 1417 hci_disable_per_advertising_sync(hdev, instance); 1418 1419 if (instance) { 1420 adv = hci_find_adv_instance(hdev, instance); 1421 /* Create an instance if that could not be found */ 1422 if (!adv) { 1423 adv = hci_add_per_instance(hdev, instance, flags, 1424 data_len, data, 1425 sync_interval, 1426 sync_interval); 1427 if (IS_ERR(adv)) 1428 return PTR_ERR(adv); 1429 added = true; 1430 } 1431 } 1432 1433 /* Only start advertising if instance 0 or if a dedicated instance has 1434 * been added. 1435 */ 1436 if (!adv || added) { 1437 err = hci_start_ext_adv_sync(hdev, instance); 1438 if (err < 0) 1439 goto fail; 1440 1441 err = hci_adv_bcast_annoucement(hdev, adv); 1442 if (err < 0) 1443 goto fail; 1444 } 1445 1446 err = hci_set_per_adv_params_sync(hdev, instance, min_interval, 1447 max_interval); 1448 if (err < 0) 1449 goto fail; 1450 1451 err = hci_set_per_adv_data_sync(hdev, instance); 1452 if (err < 0) 1453 goto fail; 1454 1455 err = hci_enable_per_advertising_sync(hdev, instance); 1456 if (err < 0) 1457 goto fail; 1458 1459 return 0; 1460 1461 fail: 1462 if (added) 1463 hci_remove_adv_instance(hdev, instance); 1464 1465 return err; 1466 } 1467 1468 static int hci_start_adv_sync(struct hci_dev *hdev, u8 instance) 1469 { 1470 int err; 1471 1472 if (ext_adv_capable(hdev)) 1473 return hci_start_ext_adv_sync(hdev, instance); 1474 1475 err = hci_update_adv_data_sync(hdev, instance); 1476 if (err) 1477 return err; 1478 1479 err = hci_update_scan_rsp_data_sync(hdev, instance); 1480 if (err) 1481 return err; 1482 1483 return hci_enable_advertising_sync(hdev); 1484 } 1485 1486 int hci_enable_advertising_sync(struct hci_dev *hdev) 1487 { 1488 struct adv_info *adv_instance; 1489 struct hci_cp_le_set_adv_param cp; 1490 u8 own_addr_type, enable = 0x01; 1491 bool connectable; 1492 u16 adv_min_interval, adv_max_interval; 1493 u32 flags; 1494 u8 status; 1495 1496 if (ext_adv_capable(hdev)) 1497 return hci_enable_ext_advertising_sync(hdev, 1498 hdev->cur_adv_instance); 1499 1500 flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance); 1501 adv_instance = hci_find_adv_instance(hdev, hdev->cur_adv_instance); 1502 1503 /* If the "connectable" instance flag was not set, then choose between 1504 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. 1505 */ 1506 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || 1507 mgmt_get_connectable(hdev); 1508 1509 if (!is_advertising_allowed(hdev, connectable)) 1510 return -EINVAL; 1511 1512 status = hci_disable_advertising_sync(hdev); 1513 if (status) 1514 return status; 1515 1516 /* Clear the HCI_LE_ADV bit temporarily so that the 1517 * hci_update_random_address knows that it's safe to go ahead 1518 * and write a new random address. The flag will be set back on 1519 * as soon as the SET_ADV_ENABLE HCI command completes. 1520 */ 1521 hci_dev_clear_flag(hdev, HCI_LE_ADV); 1522 1523 /* Set require_privacy to true only when non-connectable 1524 * advertising is used. In that case it is fine to use a 1525 * non-resolvable private address. 1526 */ 1527 status = hci_update_random_address_sync(hdev, !connectable, 1528 adv_use_rpa(hdev, flags), 1529 &own_addr_type); 1530 if (status) 1531 return status; 1532 1533 memset(&cp, 0, sizeof(cp)); 1534 1535 if (adv_instance) { 1536 adv_min_interval = adv_instance->min_interval; 1537 adv_max_interval = adv_instance->max_interval; 1538 } else { 1539 adv_min_interval = hdev->le_adv_min_interval; 1540 adv_max_interval = hdev->le_adv_max_interval; 1541 } 1542 1543 if (connectable) { 1544 cp.type = LE_ADV_IND; 1545 } else { 1546 if (hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance)) 1547 cp.type = LE_ADV_SCAN_IND; 1548 else 1549 cp.type = LE_ADV_NONCONN_IND; 1550 1551 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) || 1552 hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { 1553 adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN; 1554 adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX; 1555 } 1556 } 1557 1558 cp.min_interval = cpu_to_le16(adv_min_interval); 1559 cp.max_interval = cpu_to_le16(adv_max_interval); 1560 cp.own_address_type = own_addr_type; 1561 cp.channel_map = hdev->le_adv_channel_map; 1562 1563 status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM, 1564 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1565 if (status) 1566 return status; 1567 1568 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 1569 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 1570 } 1571 1572 static int enable_advertising_sync(struct hci_dev *hdev, void *data) 1573 { 1574 return hci_enable_advertising_sync(hdev); 1575 } 1576 1577 int hci_enable_advertising(struct hci_dev *hdev) 1578 { 1579 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) && 1580 list_empty(&hdev->adv_instances)) 1581 return 0; 1582 1583 return hci_cmd_sync_queue(hdev, enable_advertising_sync, NULL, NULL); 1584 } 1585 1586 int hci_remove_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance, 1587 struct sock *sk) 1588 { 1589 int err; 1590 1591 if (!ext_adv_capable(hdev)) 1592 return 0; 1593 1594 err = hci_disable_ext_adv_instance_sync(hdev, instance); 1595 if (err) 1596 return err; 1597 1598 /* If request specifies an instance that doesn't exist, fail */ 1599 if (instance > 0 && !hci_find_adv_instance(hdev, instance)) 1600 return -EINVAL; 1601 1602 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_REMOVE_ADV_SET, 1603 sizeof(instance), &instance, 0, 1604 HCI_CMD_TIMEOUT, sk); 1605 } 1606 1607 static int remove_ext_adv_sync(struct hci_dev *hdev, void *data) 1608 { 1609 struct adv_info *adv = data; 1610 u8 instance = 0; 1611 1612 if (adv) 1613 instance = adv->instance; 1614 1615 return hci_remove_ext_adv_instance_sync(hdev, instance, NULL); 1616 } 1617 1618 int hci_remove_ext_adv_instance(struct hci_dev *hdev, u8 instance) 1619 { 1620 struct adv_info *adv = NULL; 1621 1622 if (instance) { 1623 adv = hci_find_adv_instance(hdev, instance); 1624 if (!adv) 1625 return -EINVAL; 1626 } 1627 1628 return hci_cmd_sync_queue(hdev, remove_ext_adv_sync, adv, NULL); 1629 } 1630 1631 int hci_le_terminate_big_sync(struct hci_dev *hdev, u8 handle, u8 reason) 1632 { 1633 struct hci_cp_le_term_big cp; 1634 1635 memset(&cp, 0, sizeof(cp)); 1636 cp.handle = handle; 1637 cp.reason = reason; 1638 1639 return __hci_cmd_sync_status(hdev, HCI_OP_LE_TERM_BIG, 1640 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1641 } 1642 1643 static int hci_set_ext_adv_data_sync(struct hci_dev *hdev, u8 instance) 1644 { 1645 struct { 1646 struct hci_cp_le_set_ext_adv_data cp; 1647 u8 data[HCI_MAX_EXT_AD_LENGTH]; 1648 } pdu; 1649 u8 len; 1650 struct adv_info *adv = NULL; 1651 int err; 1652 1653 memset(&pdu, 0, sizeof(pdu)); 1654 1655 if (instance) { 1656 adv = hci_find_adv_instance(hdev, instance); 1657 if (!adv || !adv->adv_data_changed) 1658 return 0; 1659 } 1660 1661 len = eir_create_adv_data(hdev, instance, pdu.data); 1662 1663 pdu.cp.length = len; 1664 pdu.cp.handle = instance; 1665 pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; 1666 pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG; 1667 1668 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_DATA, 1669 sizeof(pdu.cp) + len, &pdu.cp, 1670 HCI_CMD_TIMEOUT); 1671 if (err) 1672 return err; 1673 1674 /* Update data if the command succeed */ 1675 if (adv) { 1676 adv->adv_data_changed = false; 1677 } else { 1678 memcpy(hdev->adv_data, pdu.data, len); 1679 hdev->adv_data_len = len; 1680 } 1681 1682 return 0; 1683 } 1684 1685 static int hci_set_adv_data_sync(struct hci_dev *hdev, u8 instance) 1686 { 1687 struct hci_cp_le_set_adv_data cp; 1688 u8 len; 1689 1690 memset(&cp, 0, sizeof(cp)); 1691 1692 len = eir_create_adv_data(hdev, instance, cp.data); 1693 1694 /* There's nothing to do if the data hasn't changed */ 1695 if (hdev->adv_data_len == len && 1696 memcmp(cp.data, hdev->adv_data, len) == 0) 1697 return 0; 1698 1699 memcpy(hdev->adv_data, cp.data, sizeof(cp.data)); 1700 hdev->adv_data_len = len; 1701 1702 cp.length = len; 1703 1704 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_DATA, 1705 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1706 } 1707 1708 int hci_update_adv_data_sync(struct hci_dev *hdev, u8 instance) 1709 { 1710 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1711 return 0; 1712 1713 if (ext_adv_capable(hdev)) 1714 return hci_set_ext_adv_data_sync(hdev, instance); 1715 1716 return hci_set_adv_data_sync(hdev, instance); 1717 } 1718 1719 int hci_schedule_adv_instance_sync(struct hci_dev *hdev, u8 instance, 1720 bool force) 1721 { 1722 struct adv_info *adv = NULL; 1723 u16 timeout; 1724 1725 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) && !ext_adv_capable(hdev)) 1726 return -EPERM; 1727 1728 if (hdev->adv_instance_timeout) 1729 return -EBUSY; 1730 1731 adv = hci_find_adv_instance(hdev, instance); 1732 if (!adv) 1733 return -ENOENT; 1734 1735 /* A zero timeout means unlimited advertising. As long as there is 1736 * only one instance, duration should be ignored. We still set a timeout 1737 * in case further instances are being added later on. 1738 * 1739 * If the remaining lifetime of the instance is more than the duration 1740 * then the timeout corresponds to the duration, otherwise it will be 1741 * reduced to the remaining instance lifetime. 1742 */ 1743 if (adv->timeout == 0 || adv->duration <= adv->remaining_time) 1744 timeout = adv->duration; 1745 else 1746 timeout = adv->remaining_time; 1747 1748 /* The remaining time is being reduced unless the instance is being 1749 * advertised without time limit. 1750 */ 1751 if (adv->timeout) 1752 adv->remaining_time = adv->remaining_time - timeout; 1753 1754 /* Only use work for scheduling instances with legacy advertising */ 1755 if (!ext_adv_capable(hdev)) { 1756 hdev->adv_instance_timeout = timeout; 1757 queue_delayed_work(hdev->req_workqueue, 1758 &hdev->adv_instance_expire, 1759 msecs_to_jiffies(timeout * 1000)); 1760 } 1761 1762 /* If we're just re-scheduling the same instance again then do not 1763 * execute any HCI commands. This happens when a single instance is 1764 * being advertised. 1765 */ 1766 if (!force && hdev->cur_adv_instance == instance && 1767 hci_dev_test_flag(hdev, HCI_LE_ADV)) 1768 return 0; 1769 1770 hdev->cur_adv_instance = instance; 1771 1772 return hci_start_adv_sync(hdev, instance); 1773 } 1774 1775 static int hci_clear_adv_sets_sync(struct hci_dev *hdev, struct sock *sk) 1776 { 1777 int err; 1778 1779 if (!ext_adv_capable(hdev)) 1780 return 0; 1781 1782 /* Disable instance 0x00 to disable all instances */ 1783 err = hci_disable_ext_adv_instance_sync(hdev, 0x00); 1784 if (err) 1785 return err; 1786 1787 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CLEAR_ADV_SETS, 1788 0, NULL, 0, HCI_CMD_TIMEOUT, sk); 1789 } 1790 1791 static int hci_clear_adv_sync(struct hci_dev *hdev, struct sock *sk, bool force) 1792 { 1793 struct adv_info *adv, *n; 1794 int err = 0; 1795 1796 if (ext_adv_capable(hdev)) 1797 /* Remove all existing sets */ 1798 err = hci_clear_adv_sets_sync(hdev, sk); 1799 if (ext_adv_capable(hdev)) 1800 return err; 1801 1802 /* This is safe as long as there is no command send while the lock is 1803 * held. 1804 */ 1805 hci_dev_lock(hdev); 1806 1807 /* Cleanup non-ext instances */ 1808 list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) { 1809 u8 instance = adv->instance; 1810 int err; 1811 1812 if (!(force || adv->timeout)) 1813 continue; 1814 1815 err = hci_remove_adv_instance(hdev, instance); 1816 if (!err) 1817 mgmt_advertising_removed(sk, hdev, instance); 1818 } 1819 1820 hci_dev_unlock(hdev); 1821 1822 return 0; 1823 } 1824 1825 static int hci_remove_adv_sync(struct hci_dev *hdev, u8 instance, 1826 struct sock *sk) 1827 { 1828 int err = 0; 1829 1830 /* If we use extended advertising, instance has to be removed first. */ 1831 if (ext_adv_capable(hdev)) 1832 err = hci_remove_ext_adv_instance_sync(hdev, instance, sk); 1833 if (ext_adv_capable(hdev)) 1834 return err; 1835 1836 /* This is safe as long as there is no command send while the lock is 1837 * held. 1838 */ 1839 hci_dev_lock(hdev); 1840 1841 err = hci_remove_adv_instance(hdev, instance); 1842 if (!err) 1843 mgmt_advertising_removed(sk, hdev, instance); 1844 1845 hci_dev_unlock(hdev); 1846 1847 return err; 1848 } 1849 1850 /* For a single instance: 1851 * - force == true: The instance will be removed even when its remaining 1852 * lifetime is not zero. 1853 * - force == false: the instance will be deactivated but kept stored unless 1854 * the remaining lifetime is zero. 1855 * 1856 * For instance == 0x00: 1857 * - force == true: All instances will be removed regardless of their timeout 1858 * setting. 1859 * - force == false: Only instances that have a timeout will be removed. 1860 */ 1861 int hci_remove_advertising_sync(struct hci_dev *hdev, struct sock *sk, 1862 u8 instance, bool force) 1863 { 1864 struct adv_info *next = NULL; 1865 int err; 1866 1867 /* Cancel any timeout concerning the removed instance(s). */ 1868 if (!instance || hdev->cur_adv_instance == instance) 1869 cancel_adv_timeout(hdev); 1870 1871 /* Get the next instance to advertise BEFORE we remove 1872 * the current one. This can be the same instance again 1873 * if there is only one instance. 1874 */ 1875 if (hdev->cur_adv_instance == instance) 1876 next = hci_get_next_instance(hdev, instance); 1877 1878 if (!instance) { 1879 err = hci_clear_adv_sync(hdev, sk, force); 1880 if (err) 1881 return err; 1882 } else { 1883 struct adv_info *adv = hci_find_adv_instance(hdev, instance); 1884 1885 if (force || (adv && adv->timeout && !adv->remaining_time)) { 1886 /* Don't advertise a removed instance. */ 1887 if (next && next->instance == instance) 1888 next = NULL; 1889 1890 err = hci_remove_adv_sync(hdev, instance, sk); 1891 if (err) 1892 return err; 1893 } 1894 } 1895 1896 if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING)) 1897 return 0; 1898 1899 if (next && !ext_adv_capable(hdev)) 1900 hci_schedule_adv_instance_sync(hdev, next->instance, false); 1901 1902 return 0; 1903 } 1904 1905 int hci_read_rssi_sync(struct hci_dev *hdev, __le16 handle) 1906 { 1907 struct hci_cp_read_rssi cp; 1908 1909 cp.handle = handle; 1910 return __hci_cmd_sync_status(hdev, HCI_OP_READ_RSSI, 1911 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1912 } 1913 1914 int hci_read_clock_sync(struct hci_dev *hdev, struct hci_cp_read_clock *cp) 1915 { 1916 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLOCK, 1917 sizeof(*cp), cp, HCI_CMD_TIMEOUT); 1918 } 1919 1920 int hci_read_tx_power_sync(struct hci_dev *hdev, __le16 handle, u8 type) 1921 { 1922 struct hci_cp_read_tx_power cp; 1923 1924 cp.handle = handle; 1925 cp.type = type; 1926 return __hci_cmd_sync_status(hdev, HCI_OP_READ_TX_POWER, 1927 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1928 } 1929 1930 int hci_disable_advertising_sync(struct hci_dev *hdev) 1931 { 1932 u8 enable = 0x00; 1933 int err = 0; 1934 1935 /* If controller is not advertising we are done. */ 1936 if (!hci_dev_test_flag(hdev, HCI_LE_ADV)) 1937 return 0; 1938 1939 if (ext_adv_capable(hdev)) 1940 err = hci_disable_ext_adv_instance_sync(hdev, 0x00); 1941 if (ext_adv_capable(hdev)) 1942 return err; 1943 1944 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 1945 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 1946 } 1947 1948 static int hci_le_set_ext_scan_enable_sync(struct hci_dev *hdev, u8 val, 1949 u8 filter_dup) 1950 { 1951 struct hci_cp_le_set_ext_scan_enable cp; 1952 1953 memset(&cp, 0, sizeof(cp)); 1954 cp.enable = val; 1955 1956 if (hci_dev_test_flag(hdev, HCI_MESH)) 1957 cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 1958 else 1959 cp.filter_dup = filter_dup; 1960 1961 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_ENABLE, 1962 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1963 } 1964 1965 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val, 1966 u8 filter_dup) 1967 { 1968 struct hci_cp_le_set_scan_enable cp; 1969 1970 if (use_ext_scan(hdev)) 1971 return hci_le_set_ext_scan_enable_sync(hdev, val, filter_dup); 1972 1973 memset(&cp, 0, sizeof(cp)); 1974 cp.enable = val; 1975 1976 if (val && hci_dev_test_flag(hdev, HCI_MESH)) 1977 cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 1978 else 1979 cp.filter_dup = filter_dup; 1980 1981 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_ENABLE, 1982 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1983 } 1984 1985 static int hci_le_set_addr_resolution_enable_sync(struct hci_dev *hdev, u8 val) 1986 { 1987 if (!use_ll_privacy(hdev)) 1988 return 0; 1989 1990 /* If controller is not/already resolving we are done. */ 1991 if (val == hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) 1992 return 0; 1993 1994 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1995 sizeof(val), &val, HCI_CMD_TIMEOUT); 1996 } 1997 1998 static int hci_scan_disable_sync(struct hci_dev *hdev) 1999 { 2000 int err; 2001 2002 /* If controller is not scanning we are done. */ 2003 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 2004 return 0; 2005 2006 if (hdev->scanning_paused) { 2007 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2008 return 0; 2009 } 2010 2011 err = hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00); 2012 if (err) { 2013 bt_dev_err(hdev, "Unable to disable scanning: %d", err); 2014 return err; 2015 } 2016 2017 return err; 2018 } 2019 2020 static bool scan_use_rpa(struct hci_dev *hdev) 2021 { 2022 return hci_dev_test_flag(hdev, HCI_PRIVACY); 2023 } 2024 2025 static void hci_start_interleave_scan(struct hci_dev *hdev) 2026 { 2027 hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER; 2028 queue_delayed_work(hdev->req_workqueue, 2029 &hdev->interleave_scan, 0); 2030 } 2031 2032 static bool is_interleave_scanning(struct hci_dev *hdev) 2033 { 2034 return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE; 2035 } 2036 2037 static void cancel_interleave_scan(struct hci_dev *hdev) 2038 { 2039 bt_dev_dbg(hdev, "cancelling interleave scan"); 2040 2041 cancel_delayed_work_sync(&hdev->interleave_scan); 2042 2043 hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE; 2044 } 2045 2046 /* Return true if interleave_scan wasn't started until exiting this function, 2047 * otherwise, return false 2048 */ 2049 static bool hci_update_interleaved_scan_sync(struct hci_dev *hdev) 2050 { 2051 /* Do interleaved scan only if all of the following are true: 2052 * - There is at least one ADV monitor 2053 * - At least one pending LE connection or one device to be scanned for 2054 * - Monitor offloading is not supported 2055 * If so, we should alternate between allowlist scan and one without 2056 * any filters to save power. 2057 */ 2058 bool use_interleaving = hci_is_adv_monitoring(hdev) && 2059 !(list_empty(&hdev->pend_le_conns) && 2060 list_empty(&hdev->pend_le_reports)) && 2061 hci_get_adv_monitor_offload_ext(hdev) == 2062 HCI_ADV_MONITOR_EXT_NONE; 2063 bool is_interleaving = is_interleave_scanning(hdev); 2064 2065 if (use_interleaving && !is_interleaving) { 2066 hci_start_interleave_scan(hdev); 2067 bt_dev_dbg(hdev, "starting interleave scan"); 2068 return true; 2069 } 2070 2071 if (!use_interleaving && is_interleaving) 2072 cancel_interleave_scan(hdev); 2073 2074 return false; 2075 } 2076 2077 /* Removes connection to resolve list if needed.*/ 2078 static int hci_le_del_resolve_list_sync(struct hci_dev *hdev, 2079 bdaddr_t *bdaddr, u8 bdaddr_type) 2080 { 2081 struct hci_cp_le_del_from_resolv_list cp; 2082 struct bdaddr_list_with_irk *entry; 2083 2084 if (!use_ll_privacy(hdev)) 2085 return 0; 2086 2087 /* Check if the IRK has been programmed */ 2088 entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, bdaddr, 2089 bdaddr_type); 2090 if (!entry) 2091 return 0; 2092 2093 cp.bdaddr_type = bdaddr_type; 2094 bacpy(&cp.bdaddr, bdaddr); 2095 2096 return __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_RESOLV_LIST, 2097 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2098 } 2099 2100 static int hci_le_del_accept_list_sync(struct hci_dev *hdev, 2101 bdaddr_t *bdaddr, u8 bdaddr_type) 2102 { 2103 struct hci_cp_le_del_from_accept_list cp; 2104 int err; 2105 2106 /* Check if device is on accept list before removing it */ 2107 if (!hci_bdaddr_list_lookup(&hdev->le_accept_list, bdaddr, bdaddr_type)) 2108 return 0; 2109 2110 cp.bdaddr_type = bdaddr_type; 2111 bacpy(&cp.bdaddr, bdaddr); 2112 2113 /* Ignore errors when removing from resolving list as that is likely 2114 * that the device was never added. 2115 */ 2116 hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type); 2117 2118 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_ACCEPT_LIST, 2119 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2120 if (err) { 2121 bt_dev_err(hdev, "Unable to remove from allow list: %d", err); 2122 return err; 2123 } 2124 2125 bt_dev_dbg(hdev, "Remove %pMR (0x%x) from allow list", &cp.bdaddr, 2126 cp.bdaddr_type); 2127 2128 return 0; 2129 } 2130 2131 /* Adds connection to resolve list if needed. 2132 * Setting params to NULL programs local hdev->irk 2133 */ 2134 static int hci_le_add_resolve_list_sync(struct hci_dev *hdev, 2135 struct hci_conn_params *params) 2136 { 2137 struct hci_cp_le_add_to_resolv_list cp; 2138 struct smp_irk *irk; 2139 struct bdaddr_list_with_irk *entry; 2140 2141 if (!use_ll_privacy(hdev)) 2142 return 0; 2143 2144 /* Attempt to program local identity address, type and irk if params is 2145 * NULL. 2146 */ 2147 if (!params) { 2148 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 2149 return 0; 2150 2151 hci_copy_identity_address(hdev, &cp.bdaddr, &cp.bdaddr_type); 2152 memcpy(cp.peer_irk, hdev->irk, 16); 2153 goto done; 2154 } 2155 2156 irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type); 2157 if (!irk) 2158 return 0; 2159 2160 /* Check if the IK has _not_ been programmed yet. */ 2161 entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, 2162 ¶ms->addr, 2163 params->addr_type); 2164 if (entry) 2165 return 0; 2166 2167 cp.bdaddr_type = params->addr_type; 2168 bacpy(&cp.bdaddr, ¶ms->addr); 2169 memcpy(cp.peer_irk, irk->val, 16); 2170 2171 /* Default privacy mode is always Network */ 2172 params->privacy_mode = HCI_NETWORK_PRIVACY; 2173 2174 done: 2175 if (hci_dev_test_flag(hdev, HCI_PRIVACY)) 2176 memcpy(cp.local_irk, hdev->irk, 16); 2177 else 2178 memset(cp.local_irk, 0, 16); 2179 2180 return __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_RESOLV_LIST, 2181 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2182 } 2183 2184 /* Set Device Privacy Mode. */ 2185 static int hci_le_set_privacy_mode_sync(struct hci_dev *hdev, 2186 struct hci_conn_params *params) 2187 { 2188 struct hci_cp_le_set_privacy_mode cp; 2189 struct smp_irk *irk; 2190 2191 /* If device privacy mode has already been set there is nothing to do */ 2192 if (params->privacy_mode == HCI_DEVICE_PRIVACY) 2193 return 0; 2194 2195 /* Check if HCI_CONN_FLAG_DEVICE_PRIVACY has been set as it also 2196 * indicates that LL Privacy has been enabled and 2197 * HCI_OP_LE_SET_PRIVACY_MODE is supported. 2198 */ 2199 if (!(params->flags & HCI_CONN_FLAG_DEVICE_PRIVACY)) 2200 return 0; 2201 2202 irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type); 2203 if (!irk) 2204 return 0; 2205 2206 memset(&cp, 0, sizeof(cp)); 2207 cp.bdaddr_type = irk->addr_type; 2208 bacpy(&cp.bdaddr, &irk->bdaddr); 2209 cp.mode = HCI_DEVICE_PRIVACY; 2210 2211 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PRIVACY_MODE, 2212 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2213 } 2214 2215 /* Adds connection to allow list if needed, if the device uses RPA (has IRK) 2216 * this attempts to program the device in the resolving list as well and 2217 * properly set the privacy mode. 2218 */ 2219 static int hci_le_add_accept_list_sync(struct hci_dev *hdev, 2220 struct hci_conn_params *params, 2221 u8 *num_entries) 2222 { 2223 struct hci_cp_le_add_to_accept_list cp; 2224 int err; 2225 2226 /* During suspend, only wakeable devices can be in acceptlist */ 2227 if (hdev->suspended && 2228 !(params->flags & HCI_CONN_FLAG_REMOTE_WAKEUP)) 2229 return 0; 2230 2231 /* Select filter policy to accept all advertising */ 2232 if (*num_entries >= hdev->le_accept_list_size) 2233 return -ENOSPC; 2234 2235 /* Accept list can not be used with RPAs */ 2236 if (!use_ll_privacy(hdev) && 2237 hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type)) 2238 return -EINVAL; 2239 2240 /* Attempt to program the device in the resolving list first to avoid 2241 * having to rollback in case it fails since the resolving list is 2242 * dynamic it can probably be smaller than the accept list. 2243 */ 2244 err = hci_le_add_resolve_list_sync(hdev, params); 2245 if (err) { 2246 bt_dev_err(hdev, "Unable to add to resolve list: %d", err); 2247 return err; 2248 } 2249 2250 /* Set Privacy Mode */ 2251 err = hci_le_set_privacy_mode_sync(hdev, params); 2252 if (err) { 2253 bt_dev_err(hdev, "Unable to set privacy mode: %d", err); 2254 return err; 2255 } 2256 2257 /* Check if already in accept list */ 2258 if (hci_bdaddr_list_lookup(&hdev->le_accept_list, ¶ms->addr, 2259 params->addr_type)) 2260 return 0; 2261 2262 *num_entries += 1; 2263 cp.bdaddr_type = params->addr_type; 2264 bacpy(&cp.bdaddr, ¶ms->addr); 2265 2266 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST, 2267 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2268 if (err) { 2269 bt_dev_err(hdev, "Unable to add to allow list: %d", err); 2270 /* Rollback the device from the resolving list */ 2271 hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type); 2272 return err; 2273 } 2274 2275 bt_dev_dbg(hdev, "Add %pMR (0x%x) to allow list", &cp.bdaddr, 2276 cp.bdaddr_type); 2277 2278 return 0; 2279 } 2280 2281 /* This function disables/pause all advertising instances */ 2282 static int hci_pause_advertising_sync(struct hci_dev *hdev) 2283 { 2284 int err; 2285 int old_state; 2286 2287 /* If already been paused there is nothing to do. */ 2288 if (hdev->advertising_paused) 2289 return 0; 2290 2291 bt_dev_dbg(hdev, "Pausing directed advertising"); 2292 2293 /* Stop directed advertising */ 2294 old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING); 2295 if (old_state) { 2296 /* When discoverable timeout triggers, then just make sure 2297 * the limited discoverable flag is cleared. Even in the case 2298 * of a timeout triggered from general discoverable, it is 2299 * safe to unconditionally clear the flag. 2300 */ 2301 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 2302 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 2303 hdev->discov_timeout = 0; 2304 } 2305 2306 bt_dev_dbg(hdev, "Pausing advertising instances"); 2307 2308 /* Call to disable any advertisements active on the controller. 2309 * This will succeed even if no advertisements are configured. 2310 */ 2311 err = hci_disable_advertising_sync(hdev); 2312 if (err) 2313 return err; 2314 2315 /* If we are using software rotation, pause the loop */ 2316 if (!ext_adv_capable(hdev)) 2317 cancel_adv_timeout(hdev); 2318 2319 hdev->advertising_paused = true; 2320 hdev->advertising_old_state = old_state; 2321 2322 return 0; 2323 } 2324 2325 /* This function enables all user advertising instances */ 2326 static int hci_resume_advertising_sync(struct hci_dev *hdev) 2327 { 2328 struct adv_info *adv, *tmp; 2329 int err; 2330 2331 /* If advertising has not been paused there is nothing to do. */ 2332 if (!hdev->advertising_paused) 2333 return 0; 2334 2335 /* Resume directed advertising */ 2336 hdev->advertising_paused = false; 2337 if (hdev->advertising_old_state) { 2338 hci_dev_set_flag(hdev, HCI_ADVERTISING); 2339 hdev->advertising_old_state = 0; 2340 } 2341 2342 bt_dev_dbg(hdev, "Resuming advertising instances"); 2343 2344 if (ext_adv_capable(hdev)) { 2345 /* Call for each tracked instance to be re-enabled */ 2346 list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) { 2347 err = hci_enable_ext_advertising_sync(hdev, 2348 adv->instance); 2349 if (!err) 2350 continue; 2351 2352 /* If the instance cannot be resumed remove it */ 2353 hci_remove_ext_adv_instance_sync(hdev, adv->instance, 2354 NULL); 2355 } 2356 } else { 2357 /* Schedule for most recent instance to be restarted and begin 2358 * the software rotation loop 2359 */ 2360 err = hci_schedule_adv_instance_sync(hdev, 2361 hdev->cur_adv_instance, 2362 true); 2363 } 2364 2365 hdev->advertising_paused = false; 2366 2367 return err; 2368 } 2369 2370 struct sk_buff *hci_read_local_oob_data_sync(struct hci_dev *hdev, 2371 bool extended, struct sock *sk) 2372 { 2373 u16 opcode = extended ? HCI_OP_READ_LOCAL_OOB_EXT_DATA : 2374 HCI_OP_READ_LOCAL_OOB_DATA; 2375 2376 return __hci_cmd_sync_sk(hdev, opcode, 0, NULL, 0, HCI_CMD_TIMEOUT, sk); 2377 } 2378 2379 /* Device must not be scanning when updating the accept list. 2380 * 2381 * Update is done using the following sequence: 2382 * 2383 * use_ll_privacy((Disable Advertising) -> Disable Resolving List) -> 2384 * Remove Devices From Accept List -> 2385 * (has IRK && use_ll_privacy(Remove Devices From Resolving List))-> 2386 * Add Devices to Accept List -> 2387 * (has IRK && use_ll_privacy(Remove Devices From Resolving List)) -> 2388 * use_ll_privacy(Enable Resolving List -> (Enable Advertising)) -> 2389 * Enable Scanning 2390 * 2391 * In case of failure advertising shall be restored to its original state and 2392 * return would disable accept list since either accept or resolving list could 2393 * not be programmed. 2394 * 2395 */ 2396 static u8 hci_update_accept_list_sync(struct hci_dev *hdev) 2397 { 2398 struct hci_conn_params *params; 2399 struct bdaddr_list *b, *t; 2400 u8 num_entries = 0; 2401 bool pend_conn, pend_report; 2402 u8 filter_policy; 2403 int err; 2404 2405 /* Pause advertising if resolving list can be used as controllers are 2406 * cannot accept resolving list modifications while advertising. 2407 */ 2408 if (use_ll_privacy(hdev)) { 2409 err = hci_pause_advertising_sync(hdev); 2410 if (err) { 2411 bt_dev_err(hdev, "pause advertising failed: %d", err); 2412 return 0x00; 2413 } 2414 } 2415 2416 /* Disable address resolution while reprogramming accept list since 2417 * devices that do have an IRK will be programmed in the resolving list 2418 * when LL Privacy is enabled. 2419 */ 2420 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00); 2421 if (err) { 2422 bt_dev_err(hdev, "Unable to disable LL privacy: %d", err); 2423 goto done; 2424 } 2425 2426 /* Go through the current accept list programmed into the 2427 * controller one by one and check if that address is connected or is 2428 * still in the list of pending connections or list of devices to 2429 * report. If not present in either list, then remove it from 2430 * the controller. 2431 */ 2432 list_for_each_entry_safe(b, t, &hdev->le_accept_list, list) { 2433 if (hci_conn_hash_lookup_le(hdev, &b->bdaddr, b->bdaddr_type)) 2434 continue; 2435 2436 pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns, 2437 &b->bdaddr, 2438 b->bdaddr_type); 2439 pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports, 2440 &b->bdaddr, 2441 b->bdaddr_type); 2442 2443 /* If the device is not likely to connect or report, 2444 * remove it from the acceptlist. 2445 */ 2446 if (!pend_conn && !pend_report) { 2447 hci_le_del_accept_list_sync(hdev, &b->bdaddr, 2448 b->bdaddr_type); 2449 continue; 2450 } 2451 2452 num_entries++; 2453 } 2454 2455 /* Since all no longer valid accept list entries have been 2456 * removed, walk through the list of pending connections 2457 * and ensure that any new device gets programmed into 2458 * the controller. 2459 * 2460 * If the list of the devices is larger than the list of 2461 * available accept list entries in the controller, then 2462 * just abort and return filer policy value to not use the 2463 * accept list. 2464 */ 2465 list_for_each_entry(params, &hdev->pend_le_conns, action) { 2466 err = hci_le_add_accept_list_sync(hdev, params, &num_entries); 2467 if (err) 2468 goto done; 2469 } 2470 2471 /* After adding all new pending connections, walk through 2472 * the list of pending reports and also add these to the 2473 * accept list if there is still space. Abort if space runs out. 2474 */ 2475 list_for_each_entry(params, &hdev->pend_le_reports, action) { 2476 err = hci_le_add_accept_list_sync(hdev, params, &num_entries); 2477 if (err) 2478 goto done; 2479 } 2480 2481 /* Use the allowlist unless the following conditions are all true: 2482 * - We are not currently suspending 2483 * - There are 1 or more ADV monitors registered and it's not offloaded 2484 * - Interleaved scanning is not currently using the allowlist 2485 */ 2486 if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended && 2487 hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE && 2488 hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST) 2489 err = -EINVAL; 2490 2491 done: 2492 filter_policy = err ? 0x00 : 0x01; 2493 2494 /* Enable address resolution when LL Privacy is enabled. */ 2495 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x01); 2496 if (err) 2497 bt_dev_err(hdev, "Unable to enable LL privacy: %d", err); 2498 2499 /* Resume advertising if it was paused */ 2500 if (use_ll_privacy(hdev)) 2501 hci_resume_advertising_sync(hdev); 2502 2503 /* Select filter policy to use accept list */ 2504 return filter_policy; 2505 } 2506 2507 /* Returns true if an le connection is in the scanning state */ 2508 static inline bool hci_is_le_conn_scanning(struct hci_dev *hdev) 2509 { 2510 struct hci_conn_hash *h = &hdev->conn_hash; 2511 struct hci_conn *c; 2512 2513 rcu_read_lock(); 2514 2515 list_for_each_entry_rcu(c, &h->list, list) { 2516 if (c->type == LE_LINK && c->state == BT_CONNECT && 2517 test_bit(HCI_CONN_SCANNING, &c->flags)) { 2518 rcu_read_unlock(); 2519 return true; 2520 } 2521 } 2522 2523 rcu_read_unlock(); 2524 2525 return false; 2526 } 2527 2528 static int hci_le_set_ext_scan_param_sync(struct hci_dev *hdev, u8 type, 2529 u16 interval, u16 window, 2530 u8 own_addr_type, u8 filter_policy) 2531 { 2532 struct hci_cp_le_set_ext_scan_params *cp; 2533 struct hci_cp_le_scan_phy_params *phy; 2534 u8 data[sizeof(*cp) + sizeof(*phy) * 2]; 2535 u8 num_phy = 0; 2536 2537 cp = (void *)data; 2538 phy = (void *)cp->data; 2539 2540 memset(data, 0, sizeof(data)); 2541 2542 cp->own_addr_type = own_addr_type; 2543 cp->filter_policy = filter_policy; 2544 2545 if (scan_1m(hdev) || scan_2m(hdev)) { 2546 cp->scanning_phys |= LE_SCAN_PHY_1M; 2547 2548 phy->type = type; 2549 phy->interval = cpu_to_le16(interval); 2550 phy->window = cpu_to_le16(window); 2551 2552 num_phy++; 2553 phy++; 2554 } 2555 2556 if (scan_coded(hdev)) { 2557 cp->scanning_phys |= LE_SCAN_PHY_CODED; 2558 2559 phy->type = type; 2560 phy->interval = cpu_to_le16(interval); 2561 phy->window = cpu_to_le16(window); 2562 2563 num_phy++; 2564 phy++; 2565 } 2566 2567 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_PARAMS, 2568 sizeof(*cp) + sizeof(*phy) * num_phy, 2569 data, HCI_CMD_TIMEOUT); 2570 } 2571 2572 static int hci_le_set_scan_param_sync(struct hci_dev *hdev, u8 type, 2573 u16 interval, u16 window, 2574 u8 own_addr_type, u8 filter_policy) 2575 { 2576 struct hci_cp_le_set_scan_param cp; 2577 2578 if (use_ext_scan(hdev)) 2579 return hci_le_set_ext_scan_param_sync(hdev, type, interval, 2580 window, own_addr_type, 2581 filter_policy); 2582 2583 memset(&cp, 0, sizeof(cp)); 2584 cp.type = type; 2585 cp.interval = cpu_to_le16(interval); 2586 cp.window = cpu_to_le16(window); 2587 cp.own_address_type = own_addr_type; 2588 cp.filter_policy = filter_policy; 2589 2590 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_PARAM, 2591 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2592 } 2593 2594 static int hci_start_scan_sync(struct hci_dev *hdev, u8 type, u16 interval, 2595 u16 window, u8 own_addr_type, u8 filter_policy, 2596 u8 filter_dup) 2597 { 2598 int err; 2599 2600 if (hdev->scanning_paused) { 2601 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2602 return 0; 2603 } 2604 2605 err = hci_le_set_scan_param_sync(hdev, type, interval, window, 2606 own_addr_type, filter_policy); 2607 if (err) 2608 return err; 2609 2610 return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, filter_dup); 2611 } 2612 2613 static int hci_passive_scan_sync(struct hci_dev *hdev) 2614 { 2615 u8 own_addr_type; 2616 u8 filter_policy; 2617 u16 window, interval; 2618 u8 filter_dups = LE_SCAN_FILTER_DUP_ENABLE; 2619 int err; 2620 2621 if (hdev->scanning_paused) { 2622 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2623 return 0; 2624 } 2625 2626 err = hci_scan_disable_sync(hdev); 2627 if (err) { 2628 bt_dev_err(hdev, "disable scanning failed: %d", err); 2629 return err; 2630 } 2631 2632 /* Set require_privacy to false since no SCAN_REQ are send 2633 * during passive scanning. Not using an non-resolvable address 2634 * here is important so that peer devices using direct 2635 * advertising with our address will be correctly reported 2636 * by the controller. 2637 */ 2638 if (hci_update_random_address_sync(hdev, false, scan_use_rpa(hdev), 2639 &own_addr_type)) 2640 return 0; 2641 2642 if (hdev->enable_advmon_interleave_scan && 2643 hci_update_interleaved_scan_sync(hdev)) 2644 return 0; 2645 2646 bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state); 2647 2648 /* Adding or removing entries from the accept list must 2649 * happen before enabling scanning. The controller does 2650 * not allow accept list modification while scanning. 2651 */ 2652 filter_policy = hci_update_accept_list_sync(hdev); 2653 2654 /* When the controller is using random resolvable addresses and 2655 * with that having LE privacy enabled, then controllers with 2656 * Extended Scanner Filter Policies support can now enable support 2657 * for handling directed advertising. 2658 * 2659 * So instead of using filter polices 0x00 (no acceptlist) 2660 * and 0x01 (acceptlist enabled) use the new filter policies 2661 * 0x02 (no acceptlist) and 0x03 (acceptlist enabled). 2662 */ 2663 if (hci_dev_test_flag(hdev, HCI_PRIVACY) && 2664 (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)) 2665 filter_policy |= 0x02; 2666 2667 if (hdev->suspended) { 2668 window = hdev->le_scan_window_suspend; 2669 interval = hdev->le_scan_int_suspend; 2670 } else if (hci_is_le_conn_scanning(hdev)) { 2671 window = hdev->le_scan_window_connect; 2672 interval = hdev->le_scan_int_connect; 2673 } else if (hci_is_adv_monitoring(hdev)) { 2674 window = hdev->le_scan_window_adv_monitor; 2675 interval = hdev->le_scan_int_adv_monitor; 2676 } else { 2677 window = hdev->le_scan_window; 2678 interval = hdev->le_scan_interval; 2679 } 2680 2681 /* Disable all filtering for Mesh */ 2682 if (hci_dev_test_flag(hdev, HCI_MESH)) { 2683 filter_policy = 0; 2684 filter_dups = LE_SCAN_FILTER_DUP_DISABLE; 2685 } 2686 2687 bt_dev_dbg(hdev, "LE passive scan with acceptlist = %d", filter_policy); 2688 2689 return hci_start_scan_sync(hdev, LE_SCAN_PASSIVE, interval, window, 2690 own_addr_type, filter_policy, filter_dups); 2691 } 2692 2693 /* This function controls the passive scanning based on hdev->pend_le_conns 2694 * list. If there are pending LE connection we start the background scanning, 2695 * otherwise we stop it in the following sequence: 2696 * 2697 * If there are devices to scan: 2698 * 2699 * Disable Scanning -> Update Accept List -> 2700 * use_ll_privacy((Disable Advertising) -> Disable Resolving List -> 2701 * Update Resolving List -> Enable Resolving List -> (Enable Advertising)) -> 2702 * Enable Scanning 2703 * 2704 * Otherwise: 2705 * 2706 * Disable Scanning 2707 */ 2708 int hci_update_passive_scan_sync(struct hci_dev *hdev) 2709 { 2710 int err; 2711 2712 if (!test_bit(HCI_UP, &hdev->flags) || 2713 test_bit(HCI_INIT, &hdev->flags) || 2714 hci_dev_test_flag(hdev, HCI_SETUP) || 2715 hci_dev_test_flag(hdev, HCI_CONFIG) || 2716 hci_dev_test_flag(hdev, HCI_AUTO_OFF) || 2717 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 2718 return 0; 2719 2720 /* No point in doing scanning if LE support hasn't been enabled */ 2721 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 2722 return 0; 2723 2724 /* If discovery is active don't interfere with it */ 2725 if (hdev->discovery.state != DISCOVERY_STOPPED) 2726 return 0; 2727 2728 /* Reset RSSI and UUID filters when starting background scanning 2729 * since these filters are meant for service discovery only. 2730 * 2731 * The Start Discovery and Start Service Discovery operations 2732 * ensure to set proper values for RSSI threshold and UUID 2733 * filter list. So it is safe to just reset them here. 2734 */ 2735 hci_discovery_filter_clear(hdev); 2736 2737 bt_dev_dbg(hdev, "ADV monitoring is %s", 2738 hci_is_adv_monitoring(hdev) ? "on" : "off"); 2739 2740 if (!hci_dev_test_flag(hdev, HCI_MESH) && 2741 list_empty(&hdev->pend_le_conns) && 2742 list_empty(&hdev->pend_le_reports) && 2743 !hci_is_adv_monitoring(hdev) && 2744 !hci_dev_test_flag(hdev, HCI_PA_SYNC)) { 2745 /* If there is no pending LE connections or devices 2746 * to be scanned for or no ADV monitors, we should stop the 2747 * background scanning. 2748 */ 2749 2750 bt_dev_dbg(hdev, "stopping background scanning"); 2751 2752 err = hci_scan_disable_sync(hdev); 2753 if (err) 2754 bt_dev_err(hdev, "stop background scanning failed: %d", 2755 err); 2756 } else { 2757 /* If there is at least one pending LE connection, we should 2758 * keep the background scan running. 2759 */ 2760 2761 /* If controller is connecting, we should not start scanning 2762 * since some controllers are not able to scan and connect at 2763 * the same time. 2764 */ 2765 if (hci_lookup_le_connect(hdev)) 2766 return 0; 2767 2768 bt_dev_dbg(hdev, "start background scanning"); 2769 2770 err = hci_passive_scan_sync(hdev); 2771 if (err) 2772 bt_dev_err(hdev, "start background scanning failed: %d", 2773 err); 2774 } 2775 2776 return err; 2777 } 2778 2779 static int update_scan_sync(struct hci_dev *hdev, void *data) 2780 { 2781 return hci_update_scan_sync(hdev); 2782 } 2783 2784 int hci_update_scan(struct hci_dev *hdev) 2785 { 2786 return hci_cmd_sync_queue(hdev, update_scan_sync, NULL, NULL); 2787 } 2788 2789 static int update_passive_scan_sync(struct hci_dev *hdev, void *data) 2790 { 2791 return hci_update_passive_scan_sync(hdev); 2792 } 2793 2794 int hci_update_passive_scan(struct hci_dev *hdev) 2795 { 2796 /* Only queue if it would have any effect */ 2797 if (!test_bit(HCI_UP, &hdev->flags) || 2798 test_bit(HCI_INIT, &hdev->flags) || 2799 hci_dev_test_flag(hdev, HCI_SETUP) || 2800 hci_dev_test_flag(hdev, HCI_CONFIG) || 2801 hci_dev_test_flag(hdev, HCI_AUTO_OFF) || 2802 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 2803 return 0; 2804 2805 return hci_cmd_sync_queue(hdev, update_passive_scan_sync, NULL, NULL); 2806 } 2807 2808 int hci_write_sc_support_sync(struct hci_dev *hdev, u8 val) 2809 { 2810 int err; 2811 2812 if (!bredr_sc_enabled(hdev) || lmp_host_sc_capable(hdev)) 2813 return 0; 2814 2815 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT, 2816 sizeof(val), &val, HCI_CMD_TIMEOUT); 2817 2818 if (!err) { 2819 if (val) { 2820 hdev->features[1][0] |= LMP_HOST_SC; 2821 hci_dev_set_flag(hdev, HCI_SC_ENABLED); 2822 } else { 2823 hdev->features[1][0] &= ~LMP_HOST_SC; 2824 hci_dev_clear_flag(hdev, HCI_SC_ENABLED); 2825 } 2826 } 2827 2828 return err; 2829 } 2830 2831 int hci_write_ssp_mode_sync(struct hci_dev *hdev, u8 mode) 2832 { 2833 int err; 2834 2835 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) || 2836 lmp_host_ssp_capable(hdev)) 2837 return 0; 2838 2839 if (!mode && hci_dev_test_flag(hdev, HCI_USE_DEBUG_KEYS)) { 2840 __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE, 2841 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 2842 } 2843 2844 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE, 2845 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 2846 if (err) 2847 return err; 2848 2849 return hci_write_sc_support_sync(hdev, 0x01); 2850 } 2851 2852 int hci_write_le_host_supported_sync(struct hci_dev *hdev, u8 le, u8 simul) 2853 { 2854 struct hci_cp_write_le_host_supported cp; 2855 2856 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED) || 2857 !lmp_bredr_capable(hdev)) 2858 return 0; 2859 2860 /* Check first if we already have the right host state 2861 * (host features set) 2862 */ 2863 if (le == lmp_host_le_capable(hdev) && 2864 simul == lmp_host_le_br_capable(hdev)) 2865 return 0; 2866 2867 memset(&cp, 0, sizeof(cp)); 2868 2869 cp.le = le; 2870 cp.simul = simul; 2871 2872 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED, 2873 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2874 } 2875 2876 static int hci_powered_update_adv_sync(struct hci_dev *hdev) 2877 { 2878 struct adv_info *adv, *tmp; 2879 int err; 2880 2881 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 2882 return 0; 2883 2884 /* If RPA Resolution has not been enable yet it means the 2885 * resolving list is empty and we should attempt to program the 2886 * local IRK in order to support using own_addr_type 2887 * ADDR_LE_DEV_RANDOM_RESOLVED (0x03). 2888 */ 2889 if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) { 2890 hci_le_add_resolve_list_sync(hdev, NULL); 2891 hci_le_set_addr_resolution_enable_sync(hdev, 0x01); 2892 } 2893 2894 /* Make sure the controller has a good default for 2895 * advertising data. This also applies to the case 2896 * where BR/EDR was toggled during the AUTO_OFF phase. 2897 */ 2898 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 2899 list_empty(&hdev->adv_instances)) { 2900 if (ext_adv_capable(hdev)) { 2901 err = hci_setup_ext_adv_instance_sync(hdev, 0x00); 2902 if (!err) 2903 hci_update_scan_rsp_data_sync(hdev, 0x00); 2904 } else { 2905 err = hci_update_adv_data_sync(hdev, 0x00); 2906 if (!err) 2907 hci_update_scan_rsp_data_sync(hdev, 0x00); 2908 } 2909 2910 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) 2911 hci_enable_advertising_sync(hdev); 2912 } 2913 2914 /* Call for each tracked instance to be scheduled */ 2915 list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) 2916 hci_schedule_adv_instance_sync(hdev, adv->instance, true); 2917 2918 return 0; 2919 } 2920 2921 static int hci_write_auth_enable_sync(struct hci_dev *hdev) 2922 { 2923 u8 link_sec; 2924 2925 link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY); 2926 if (link_sec == test_bit(HCI_AUTH, &hdev->flags)) 2927 return 0; 2928 2929 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE, 2930 sizeof(link_sec), &link_sec, 2931 HCI_CMD_TIMEOUT); 2932 } 2933 2934 int hci_write_fast_connectable_sync(struct hci_dev *hdev, bool enable) 2935 { 2936 struct hci_cp_write_page_scan_activity cp; 2937 u8 type; 2938 int err = 0; 2939 2940 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 2941 return 0; 2942 2943 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 2944 return 0; 2945 2946 memset(&cp, 0, sizeof(cp)); 2947 2948 if (enable) { 2949 type = PAGE_SCAN_TYPE_INTERLACED; 2950 2951 /* 160 msec page scan interval */ 2952 cp.interval = cpu_to_le16(0x0100); 2953 } else { 2954 type = hdev->def_page_scan_type; 2955 cp.interval = cpu_to_le16(hdev->def_page_scan_int); 2956 } 2957 2958 cp.window = cpu_to_le16(hdev->def_page_scan_window); 2959 2960 if (__cpu_to_le16(hdev->page_scan_interval) != cp.interval || 2961 __cpu_to_le16(hdev->page_scan_window) != cp.window) { 2962 err = __hci_cmd_sync_status(hdev, 2963 HCI_OP_WRITE_PAGE_SCAN_ACTIVITY, 2964 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2965 if (err) 2966 return err; 2967 } 2968 2969 if (hdev->page_scan_type != type) 2970 err = __hci_cmd_sync_status(hdev, 2971 HCI_OP_WRITE_PAGE_SCAN_TYPE, 2972 sizeof(type), &type, 2973 HCI_CMD_TIMEOUT); 2974 2975 return err; 2976 } 2977 2978 static bool disconnected_accept_list_entries(struct hci_dev *hdev) 2979 { 2980 struct bdaddr_list *b; 2981 2982 list_for_each_entry(b, &hdev->accept_list, list) { 2983 struct hci_conn *conn; 2984 2985 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr); 2986 if (!conn) 2987 return true; 2988 2989 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 2990 return true; 2991 } 2992 2993 return false; 2994 } 2995 2996 static int hci_write_scan_enable_sync(struct hci_dev *hdev, u8 val) 2997 { 2998 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE, 2999 sizeof(val), &val, 3000 HCI_CMD_TIMEOUT); 3001 } 3002 3003 int hci_update_scan_sync(struct hci_dev *hdev) 3004 { 3005 u8 scan; 3006 3007 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 3008 return 0; 3009 3010 if (!hdev_is_powered(hdev)) 3011 return 0; 3012 3013 if (mgmt_powering_down(hdev)) 3014 return 0; 3015 3016 if (hdev->scanning_paused) 3017 return 0; 3018 3019 if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) || 3020 disconnected_accept_list_entries(hdev)) 3021 scan = SCAN_PAGE; 3022 else 3023 scan = SCAN_DISABLED; 3024 3025 if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 3026 scan |= SCAN_INQUIRY; 3027 3028 if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) && 3029 test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY)) 3030 return 0; 3031 3032 return hci_write_scan_enable_sync(hdev, scan); 3033 } 3034 3035 int hci_update_name_sync(struct hci_dev *hdev) 3036 { 3037 struct hci_cp_write_local_name cp; 3038 3039 memset(&cp, 0, sizeof(cp)); 3040 3041 memcpy(cp.name, hdev->dev_name, sizeof(cp.name)); 3042 3043 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LOCAL_NAME, 3044 sizeof(cp), &cp, 3045 HCI_CMD_TIMEOUT); 3046 } 3047 3048 /* This function perform powered update HCI command sequence after the HCI init 3049 * sequence which end up resetting all states, the sequence is as follows: 3050 * 3051 * HCI_SSP_ENABLED(Enable SSP) 3052 * HCI_LE_ENABLED(Enable LE) 3053 * HCI_LE_ENABLED(use_ll_privacy(Add local IRK to Resolving List) -> 3054 * Update adv data) 3055 * Enable Authentication 3056 * lmp_bredr_capable(Set Fast Connectable -> Set Scan Type -> Set Class -> 3057 * Set Name -> Set EIR) 3058 * HCI_FORCE_STATIC_ADDR | BDADDR_ANY && !HCI_BREDR_ENABLED (Set Static Address) 3059 */ 3060 int hci_powered_update_sync(struct hci_dev *hdev) 3061 { 3062 int err; 3063 3064 /* Register the available SMP channels (BR/EDR and LE) only when 3065 * successfully powering on the controller. This late 3066 * registration is required so that LE SMP can clearly decide if 3067 * the public address or static address is used. 3068 */ 3069 smp_register(hdev); 3070 3071 err = hci_write_ssp_mode_sync(hdev, 0x01); 3072 if (err) 3073 return err; 3074 3075 err = hci_write_le_host_supported_sync(hdev, 0x01, 0x00); 3076 if (err) 3077 return err; 3078 3079 err = hci_powered_update_adv_sync(hdev); 3080 if (err) 3081 return err; 3082 3083 err = hci_write_auth_enable_sync(hdev); 3084 if (err) 3085 return err; 3086 3087 if (lmp_bredr_capable(hdev)) { 3088 if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE)) 3089 hci_write_fast_connectable_sync(hdev, true); 3090 else 3091 hci_write_fast_connectable_sync(hdev, false); 3092 hci_update_scan_sync(hdev); 3093 hci_update_class_sync(hdev); 3094 hci_update_name_sync(hdev); 3095 hci_update_eir_sync(hdev); 3096 } 3097 3098 /* If forcing static address is in use or there is no public 3099 * address use the static address as random address (but skip 3100 * the HCI command if the current random address is already the 3101 * static one. 3102 * 3103 * In case BR/EDR has been disabled on a dual-mode controller 3104 * and a static address has been configured, then use that 3105 * address instead of the public BR/EDR address. 3106 */ 3107 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 3108 (!bacmp(&hdev->bdaddr, BDADDR_ANY) && 3109 !hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))) { 3110 if (bacmp(&hdev->static_addr, BDADDR_ANY)) 3111 return hci_set_random_addr_sync(hdev, 3112 &hdev->static_addr); 3113 } 3114 3115 return 0; 3116 } 3117 3118 /** 3119 * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address 3120 * (BD_ADDR) for a HCI device from 3121 * a firmware node property. 3122 * @hdev: The HCI device 3123 * 3124 * Search the firmware node for 'local-bd-address'. 3125 * 3126 * All-zero BD addresses are rejected, because those could be properties 3127 * that exist in the firmware tables, but were not updated by the firmware. For 3128 * example, the DTS could define 'local-bd-address', with zero BD addresses. 3129 */ 3130 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev) 3131 { 3132 struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent); 3133 bdaddr_t ba; 3134 int ret; 3135 3136 ret = fwnode_property_read_u8_array(fwnode, "local-bd-address", 3137 (u8 *)&ba, sizeof(ba)); 3138 if (ret < 0 || !bacmp(&ba, BDADDR_ANY)) 3139 return; 3140 3141 bacpy(&hdev->public_addr, &ba); 3142 } 3143 3144 struct hci_init_stage { 3145 int (*func)(struct hci_dev *hdev); 3146 }; 3147 3148 /* Run init stage NULL terminated function table */ 3149 static int hci_init_stage_sync(struct hci_dev *hdev, 3150 const struct hci_init_stage *stage) 3151 { 3152 size_t i; 3153 3154 for (i = 0; stage[i].func; i++) { 3155 int err; 3156 3157 err = stage[i].func(hdev); 3158 if (err) 3159 return err; 3160 } 3161 3162 return 0; 3163 } 3164 3165 /* Read Local Version */ 3166 static int hci_read_local_version_sync(struct hci_dev *hdev) 3167 { 3168 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_VERSION, 3169 0, NULL, HCI_CMD_TIMEOUT); 3170 } 3171 3172 /* Read BD Address */ 3173 static int hci_read_bd_addr_sync(struct hci_dev *hdev) 3174 { 3175 return __hci_cmd_sync_status(hdev, HCI_OP_READ_BD_ADDR, 3176 0, NULL, HCI_CMD_TIMEOUT); 3177 } 3178 3179 #define HCI_INIT(_func) \ 3180 { \ 3181 .func = _func, \ 3182 } 3183 3184 static const struct hci_init_stage hci_init0[] = { 3185 /* HCI_OP_READ_LOCAL_VERSION */ 3186 HCI_INIT(hci_read_local_version_sync), 3187 /* HCI_OP_READ_BD_ADDR */ 3188 HCI_INIT(hci_read_bd_addr_sync), 3189 {} 3190 }; 3191 3192 int hci_reset_sync(struct hci_dev *hdev) 3193 { 3194 int err; 3195 3196 set_bit(HCI_RESET, &hdev->flags); 3197 3198 err = __hci_cmd_sync_status(hdev, HCI_OP_RESET, 0, NULL, 3199 HCI_CMD_TIMEOUT); 3200 if (err) 3201 return err; 3202 3203 return 0; 3204 } 3205 3206 static int hci_init0_sync(struct hci_dev *hdev) 3207 { 3208 int err; 3209 3210 bt_dev_dbg(hdev, ""); 3211 3212 /* Reset */ 3213 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) { 3214 err = hci_reset_sync(hdev); 3215 if (err) 3216 return err; 3217 } 3218 3219 return hci_init_stage_sync(hdev, hci_init0); 3220 } 3221 3222 static int hci_unconf_init_sync(struct hci_dev *hdev) 3223 { 3224 int err; 3225 3226 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) 3227 return 0; 3228 3229 err = hci_init0_sync(hdev); 3230 if (err < 0) 3231 return err; 3232 3233 if (hci_dev_test_flag(hdev, HCI_SETUP)) 3234 hci_debugfs_create_basic(hdev); 3235 3236 return 0; 3237 } 3238 3239 /* Read Local Supported Features. */ 3240 static int hci_read_local_features_sync(struct hci_dev *hdev) 3241 { 3242 /* Not all AMP controllers support this command */ 3243 if (hdev->dev_type == HCI_AMP && !(hdev->commands[14] & 0x20)) 3244 return 0; 3245 3246 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_FEATURES, 3247 0, NULL, HCI_CMD_TIMEOUT); 3248 } 3249 3250 /* BR Controller init stage 1 command sequence */ 3251 static const struct hci_init_stage br_init1[] = { 3252 /* HCI_OP_READ_LOCAL_FEATURES */ 3253 HCI_INIT(hci_read_local_features_sync), 3254 /* HCI_OP_READ_LOCAL_VERSION */ 3255 HCI_INIT(hci_read_local_version_sync), 3256 /* HCI_OP_READ_BD_ADDR */ 3257 HCI_INIT(hci_read_bd_addr_sync), 3258 {} 3259 }; 3260 3261 /* Read Local Commands */ 3262 static int hci_read_local_cmds_sync(struct hci_dev *hdev) 3263 { 3264 /* All Bluetooth 1.2 and later controllers should support the 3265 * HCI command for reading the local supported commands. 3266 * 3267 * Unfortunately some controllers indicate Bluetooth 1.2 support, 3268 * but do not have support for this command. If that is the case, 3269 * the driver can quirk the behavior and skip reading the local 3270 * supported commands. 3271 */ 3272 if (hdev->hci_ver > BLUETOOTH_VER_1_1 && 3273 !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks)) 3274 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_COMMANDS, 3275 0, NULL, HCI_CMD_TIMEOUT); 3276 3277 return 0; 3278 } 3279 3280 /* Read Local AMP Info */ 3281 static int hci_read_local_amp_info_sync(struct hci_dev *hdev) 3282 { 3283 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_AMP_INFO, 3284 0, NULL, HCI_CMD_TIMEOUT); 3285 } 3286 3287 /* Read Data Blk size */ 3288 static int hci_read_data_block_size_sync(struct hci_dev *hdev) 3289 { 3290 return __hci_cmd_sync_status(hdev, HCI_OP_READ_DATA_BLOCK_SIZE, 3291 0, NULL, HCI_CMD_TIMEOUT); 3292 } 3293 3294 /* Read Flow Control Mode */ 3295 static int hci_read_flow_control_mode_sync(struct hci_dev *hdev) 3296 { 3297 return __hci_cmd_sync_status(hdev, HCI_OP_READ_FLOW_CONTROL_MODE, 3298 0, NULL, HCI_CMD_TIMEOUT); 3299 } 3300 3301 /* Read Location Data */ 3302 static int hci_read_location_data_sync(struct hci_dev *hdev) 3303 { 3304 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCATION_DATA, 3305 0, NULL, HCI_CMD_TIMEOUT); 3306 } 3307 3308 /* AMP Controller init stage 1 command sequence */ 3309 static const struct hci_init_stage amp_init1[] = { 3310 /* HCI_OP_READ_LOCAL_VERSION */ 3311 HCI_INIT(hci_read_local_version_sync), 3312 /* HCI_OP_READ_LOCAL_COMMANDS */ 3313 HCI_INIT(hci_read_local_cmds_sync), 3314 /* HCI_OP_READ_LOCAL_AMP_INFO */ 3315 HCI_INIT(hci_read_local_amp_info_sync), 3316 /* HCI_OP_READ_DATA_BLOCK_SIZE */ 3317 HCI_INIT(hci_read_data_block_size_sync), 3318 /* HCI_OP_READ_FLOW_CONTROL_MODE */ 3319 HCI_INIT(hci_read_flow_control_mode_sync), 3320 /* HCI_OP_READ_LOCATION_DATA */ 3321 HCI_INIT(hci_read_location_data_sync), 3322 }; 3323 3324 static int hci_init1_sync(struct hci_dev *hdev) 3325 { 3326 int err; 3327 3328 bt_dev_dbg(hdev, ""); 3329 3330 /* Reset */ 3331 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) { 3332 err = hci_reset_sync(hdev); 3333 if (err) 3334 return err; 3335 } 3336 3337 switch (hdev->dev_type) { 3338 case HCI_PRIMARY: 3339 hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED; 3340 return hci_init_stage_sync(hdev, br_init1); 3341 case HCI_AMP: 3342 hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED; 3343 return hci_init_stage_sync(hdev, amp_init1); 3344 default: 3345 bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type); 3346 break; 3347 } 3348 3349 return 0; 3350 } 3351 3352 /* AMP Controller init stage 2 command sequence */ 3353 static const struct hci_init_stage amp_init2[] = { 3354 /* HCI_OP_READ_LOCAL_FEATURES */ 3355 HCI_INIT(hci_read_local_features_sync), 3356 }; 3357 3358 /* Read Buffer Size (ACL mtu, max pkt, etc.) */ 3359 static int hci_read_buffer_size_sync(struct hci_dev *hdev) 3360 { 3361 return __hci_cmd_sync_status(hdev, HCI_OP_READ_BUFFER_SIZE, 3362 0, NULL, HCI_CMD_TIMEOUT); 3363 } 3364 3365 /* Read Class of Device */ 3366 static int hci_read_dev_class_sync(struct hci_dev *hdev) 3367 { 3368 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLASS_OF_DEV, 3369 0, NULL, HCI_CMD_TIMEOUT); 3370 } 3371 3372 /* Read Local Name */ 3373 static int hci_read_local_name_sync(struct hci_dev *hdev) 3374 { 3375 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_NAME, 3376 0, NULL, HCI_CMD_TIMEOUT); 3377 } 3378 3379 /* Read Voice Setting */ 3380 static int hci_read_voice_setting_sync(struct hci_dev *hdev) 3381 { 3382 return __hci_cmd_sync_status(hdev, HCI_OP_READ_VOICE_SETTING, 3383 0, NULL, HCI_CMD_TIMEOUT); 3384 } 3385 3386 /* Read Number of Supported IAC */ 3387 static int hci_read_num_supported_iac_sync(struct hci_dev *hdev) 3388 { 3389 return __hci_cmd_sync_status(hdev, HCI_OP_READ_NUM_SUPPORTED_IAC, 3390 0, NULL, HCI_CMD_TIMEOUT); 3391 } 3392 3393 /* Read Current IAC LAP */ 3394 static int hci_read_current_iac_lap_sync(struct hci_dev *hdev) 3395 { 3396 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CURRENT_IAC_LAP, 3397 0, NULL, HCI_CMD_TIMEOUT); 3398 } 3399 3400 static int hci_set_event_filter_sync(struct hci_dev *hdev, u8 flt_type, 3401 u8 cond_type, bdaddr_t *bdaddr, 3402 u8 auto_accept) 3403 { 3404 struct hci_cp_set_event_filter cp; 3405 3406 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 3407 return 0; 3408 3409 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 3410 return 0; 3411 3412 memset(&cp, 0, sizeof(cp)); 3413 cp.flt_type = flt_type; 3414 3415 if (flt_type != HCI_FLT_CLEAR_ALL) { 3416 cp.cond_type = cond_type; 3417 bacpy(&cp.addr_conn_flt.bdaddr, bdaddr); 3418 cp.addr_conn_flt.auto_accept = auto_accept; 3419 } 3420 3421 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_FLT, 3422 flt_type == HCI_FLT_CLEAR_ALL ? 3423 sizeof(cp.flt_type) : sizeof(cp), &cp, 3424 HCI_CMD_TIMEOUT); 3425 } 3426 3427 static int hci_clear_event_filter_sync(struct hci_dev *hdev) 3428 { 3429 if (!hci_dev_test_flag(hdev, HCI_EVENT_FILTER_CONFIGURED)) 3430 return 0; 3431 3432 /* In theory the state machine should not reach here unless 3433 * a hci_set_event_filter_sync() call succeeds, but we do 3434 * the check both for parity and as a future reminder. 3435 */ 3436 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 3437 return 0; 3438 3439 return hci_set_event_filter_sync(hdev, HCI_FLT_CLEAR_ALL, 0x00, 3440 BDADDR_ANY, 0x00); 3441 } 3442 3443 /* Connection accept timeout ~20 secs */ 3444 static int hci_write_ca_timeout_sync(struct hci_dev *hdev) 3445 { 3446 __le16 param = cpu_to_le16(0x7d00); 3447 3448 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CA_TIMEOUT, 3449 sizeof(param), ¶m, HCI_CMD_TIMEOUT); 3450 } 3451 3452 /* BR Controller init stage 2 command sequence */ 3453 static const struct hci_init_stage br_init2[] = { 3454 /* HCI_OP_READ_BUFFER_SIZE */ 3455 HCI_INIT(hci_read_buffer_size_sync), 3456 /* HCI_OP_READ_CLASS_OF_DEV */ 3457 HCI_INIT(hci_read_dev_class_sync), 3458 /* HCI_OP_READ_LOCAL_NAME */ 3459 HCI_INIT(hci_read_local_name_sync), 3460 /* HCI_OP_READ_VOICE_SETTING */ 3461 HCI_INIT(hci_read_voice_setting_sync), 3462 /* HCI_OP_READ_NUM_SUPPORTED_IAC */ 3463 HCI_INIT(hci_read_num_supported_iac_sync), 3464 /* HCI_OP_READ_CURRENT_IAC_LAP */ 3465 HCI_INIT(hci_read_current_iac_lap_sync), 3466 /* HCI_OP_SET_EVENT_FLT */ 3467 HCI_INIT(hci_clear_event_filter_sync), 3468 /* HCI_OP_WRITE_CA_TIMEOUT */ 3469 HCI_INIT(hci_write_ca_timeout_sync), 3470 {} 3471 }; 3472 3473 static int hci_write_ssp_mode_1_sync(struct hci_dev *hdev) 3474 { 3475 u8 mode = 0x01; 3476 3477 if (!lmp_ssp_capable(hdev) || !hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 3478 return 0; 3479 3480 /* When SSP is available, then the host features page 3481 * should also be available as well. However some 3482 * controllers list the max_page as 0 as long as SSP 3483 * has not been enabled. To achieve proper debugging 3484 * output, force the minimum max_page to 1 at least. 3485 */ 3486 hdev->max_page = 0x01; 3487 3488 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE, 3489 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3490 } 3491 3492 static int hci_write_eir_sync(struct hci_dev *hdev) 3493 { 3494 struct hci_cp_write_eir cp; 3495 3496 if (!lmp_ssp_capable(hdev) || hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 3497 return 0; 3498 3499 memset(hdev->eir, 0, sizeof(hdev->eir)); 3500 memset(&cp, 0, sizeof(cp)); 3501 3502 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp, 3503 HCI_CMD_TIMEOUT); 3504 } 3505 3506 static int hci_write_inquiry_mode_sync(struct hci_dev *hdev) 3507 { 3508 u8 mode; 3509 3510 if (!lmp_inq_rssi_capable(hdev) && 3511 !test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) 3512 return 0; 3513 3514 /* If Extended Inquiry Result events are supported, then 3515 * they are clearly preferred over Inquiry Result with RSSI 3516 * events. 3517 */ 3518 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01; 3519 3520 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_INQUIRY_MODE, 3521 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3522 } 3523 3524 static int hci_read_inq_rsp_tx_power_sync(struct hci_dev *hdev) 3525 { 3526 if (!lmp_inq_tx_pwr_capable(hdev)) 3527 return 0; 3528 3529 return __hci_cmd_sync_status(hdev, HCI_OP_READ_INQ_RSP_TX_POWER, 3530 0, NULL, HCI_CMD_TIMEOUT); 3531 } 3532 3533 static int hci_read_local_ext_features_sync(struct hci_dev *hdev, u8 page) 3534 { 3535 struct hci_cp_read_local_ext_features cp; 3536 3537 if (!lmp_ext_feat_capable(hdev)) 3538 return 0; 3539 3540 memset(&cp, 0, sizeof(cp)); 3541 cp.page = page; 3542 3543 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_EXT_FEATURES, 3544 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3545 } 3546 3547 static int hci_read_local_ext_features_1_sync(struct hci_dev *hdev) 3548 { 3549 return hci_read_local_ext_features_sync(hdev, 0x01); 3550 } 3551 3552 /* HCI Controller init stage 2 command sequence */ 3553 static const struct hci_init_stage hci_init2[] = { 3554 /* HCI_OP_READ_LOCAL_COMMANDS */ 3555 HCI_INIT(hci_read_local_cmds_sync), 3556 /* HCI_OP_WRITE_SSP_MODE */ 3557 HCI_INIT(hci_write_ssp_mode_1_sync), 3558 /* HCI_OP_WRITE_EIR */ 3559 HCI_INIT(hci_write_eir_sync), 3560 /* HCI_OP_WRITE_INQUIRY_MODE */ 3561 HCI_INIT(hci_write_inquiry_mode_sync), 3562 /* HCI_OP_READ_INQ_RSP_TX_POWER */ 3563 HCI_INIT(hci_read_inq_rsp_tx_power_sync), 3564 /* HCI_OP_READ_LOCAL_EXT_FEATURES */ 3565 HCI_INIT(hci_read_local_ext_features_1_sync), 3566 /* HCI_OP_WRITE_AUTH_ENABLE */ 3567 HCI_INIT(hci_write_auth_enable_sync), 3568 {} 3569 }; 3570 3571 /* Read LE Buffer Size */ 3572 static int hci_le_read_buffer_size_sync(struct hci_dev *hdev) 3573 { 3574 /* Use Read LE Buffer Size V2 if supported */ 3575 if (hdev->commands[41] & 0x20) 3576 return __hci_cmd_sync_status(hdev, 3577 HCI_OP_LE_READ_BUFFER_SIZE_V2, 3578 0, NULL, HCI_CMD_TIMEOUT); 3579 3580 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_BUFFER_SIZE, 3581 0, NULL, HCI_CMD_TIMEOUT); 3582 } 3583 3584 /* Read LE Local Supported Features */ 3585 static int hci_le_read_local_features_sync(struct hci_dev *hdev) 3586 { 3587 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_LOCAL_FEATURES, 3588 0, NULL, HCI_CMD_TIMEOUT); 3589 } 3590 3591 /* Read LE Supported States */ 3592 static int hci_le_read_supported_states_sync(struct hci_dev *hdev) 3593 { 3594 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_SUPPORTED_STATES, 3595 0, NULL, HCI_CMD_TIMEOUT); 3596 } 3597 3598 /* LE Controller init stage 2 command sequence */ 3599 static const struct hci_init_stage le_init2[] = { 3600 /* HCI_OP_LE_READ_BUFFER_SIZE */ 3601 HCI_INIT(hci_le_read_buffer_size_sync), 3602 /* HCI_OP_LE_READ_LOCAL_FEATURES */ 3603 HCI_INIT(hci_le_read_local_features_sync), 3604 /* HCI_OP_LE_READ_SUPPORTED_STATES */ 3605 HCI_INIT(hci_le_read_supported_states_sync), 3606 {} 3607 }; 3608 3609 static int hci_init2_sync(struct hci_dev *hdev) 3610 { 3611 int err; 3612 3613 bt_dev_dbg(hdev, ""); 3614 3615 if (hdev->dev_type == HCI_AMP) 3616 return hci_init_stage_sync(hdev, amp_init2); 3617 3618 err = hci_init_stage_sync(hdev, hci_init2); 3619 if (err) 3620 return err; 3621 3622 if (lmp_bredr_capable(hdev)) { 3623 err = hci_init_stage_sync(hdev, br_init2); 3624 if (err) 3625 return err; 3626 } else { 3627 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED); 3628 } 3629 3630 if (lmp_le_capable(hdev)) { 3631 err = hci_init_stage_sync(hdev, le_init2); 3632 if (err) 3633 return err; 3634 /* LE-only controllers have LE implicitly enabled */ 3635 if (!lmp_bredr_capable(hdev)) 3636 hci_dev_set_flag(hdev, HCI_LE_ENABLED); 3637 } 3638 3639 return 0; 3640 } 3641 3642 static int hci_set_event_mask_sync(struct hci_dev *hdev) 3643 { 3644 /* The second byte is 0xff instead of 0x9f (two reserved bits 3645 * disabled) since a Broadcom 1.2 dongle doesn't respond to the 3646 * command otherwise. 3647 */ 3648 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 }; 3649 3650 /* CSR 1.1 dongles does not accept any bitfield so don't try to set 3651 * any event mask for pre 1.2 devices. 3652 */ 3653 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 3654 return 0; 3655 3656 if (lmp_bredr_capable(hdev)) { 3657 events[4] |= 0x01; /* Flow Specification Complete */ 3658 3659 /* Don't set Disconnect Complete when suspended as that 3660 * would wakeup the host when disconnecting due to 3661 * suspend. 3662 */ 3663 if (hdev->suspended) 3664 events[0] &= 0xef; 3665 } else { 3666 /* Use a different default for LE-only devices */ 3667 memset(events, 0, sizeof(events)); 3668 events[1] |= 0x20; /* Command Complete */ 3669 events[1] |= 0x40; /* Command Status */ 3670 events[1] |= 0x80; /* Hardware Error */ 3671 3672 /* If the controller supports the Disconnect command, enable 3673 * the corresponding event. In addition enable packet flow 3674 * control related events. 3675 */ 3676 if (hdev->commands[0] & 0x20) { 3677 /* Don't set Disconnect Complete when suspended as that 3678 * would wakeup the host when disconnecting due to 3679 * suspend. 3680 */ 3681 if (!hdev->suspended) 3682 events[0] |= 0x10; /* Disconnection Complete */ 3683 events[2] |= 0x04; /* Number of Completed Packets */ 3684 events[3] |= 0x02; /* Data Buffer Overflow */ 3685 } 3686 3687 /* If the controller supports the Read Remote Version 3688 * Information command, enable the corresponding event. 3689 */ 3690 if (hdev->commands[2] & 0x80) 3691 events[1] |= 0x08; /* Read Remote Version Information 3692 * Complete 3693 */ 3694 3695 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) { 3696 events[0] |= 0x80; /* Encryption Change */ 3697 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 3698 } 3699 } 3700 3701 if (lmp_inq_rssi_capable(hdev) || 3702 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) 3703 events[4] |= 0x02; /* Inquiry Result with RSSI */ 3704 3705 if (lmp_ext_feat_capable(hdev)) 3706 events[4] |= 0x04; /* Read Remote Extended Features Complete */ 3707 3708 if (lmp_esco_capable(hdev)) { 3709 events[5] |= 0x08; /* Synchronous Connection Complete */ 3710 events[5] |= 0x10; /* Synchronous Connection Changed */ 3711 } 3712 3713 if (lmp_sniffsubr_capable(hdev)) 3714 events[5] |= 0x20; /* Sniff Subrating */ 3715 3716 if (lmp_pause_enc_capable(hdev)) 3717 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 3718 3719 if (lmp_ext_inq_capable(hdev)) 3720 events[5] |= 0x40; /* Extended Inquiry Result */ 3721 3722 if (lmp_no_flush_capable(hdev)) 3723 events[7] |= 0x01; /* Enhanced Flush Complete */ 3724 3725 if (lmp_lsto_capable(hdev)) 3726 events[6] |= 0x80; /* Link Supervision Timeout Changed */ 3727 3728 if (lmp_ssp_capable(hdev)) { 3729 events[6] |= 0x01; /* IO Capability Request */ 3730 events[6] |= 0x02; /* IO Capability Response */ 3731 events[6] |= 0x04; /* User Confirmation Request */ 3732 events[6] |= 0x08; /* User Passkey Request */ 3733 events[6] |= 0x10; /* Remote OOB Data Request */ 3734 events[6] |= 0x20; /* Simple Pairing Complete */ 3735 events[7] |= 0x04; /* User Passkey Notification */ 3736 events[7] |= 0x08; /* Keypress Notification */ 3737 events[7] |= 0x10; /* Remote Host Supported 3738 * Features Notification 3739 */ 3740 } 3741 3742 if (lmp_le_capable(hdev)) 3743 events[7] |= 0x20; /* LE Meta-Event */ 3744 3745 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK, 3746 sizeof(events), events, HCI_CMD_TIMEOUT); 3747 } 3748 3749 static int hci_read_stored_link_key_sync(struct hci_dev *hdev) 3750 { 3751 struct hci_cp_read_stored_link_key cp; 3752 3753 if (!(hdev->commands[6] & 0x20) || 3754 test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) 3755 return 0; 3756 3757 memset(&cp, 0, sizeof(cp)); 3758 bacpy(&cp.bdaddr, BDADDR_ANY); 3759 cp.read_all = 0x01; 3760 3761 return __hci_cmd_sync_status(hdev, HCI_OP_READ_STORED_LINK_KEY, 3762 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3763 } 3764 3765 static int hci_setup_link_policy_sync(struct hci_dev *hdev) 3766 { 3767 struct hci_cp_write_def_link_policy cp; 3768 u16 link_policy = 0; 3769 3770 if (!(hdev->commands[5] & 0x10)) 3771 return 0; 3772 3773 memset(&cp, 0, sizeof(cp)); 3774 3775 if (lmp_rswitch_capable(hdev)) 3776 link_policy |= HCI_LP_RSWITCH; 3777 if (lmp_hold_capable(hdev)) 3778 link_policy |= HCI_LP_HOLD; 3779 if (lmp_sniff_capable(hdev)) 3780 link_policy |= HCI_LP_SNIFF; 3781 if (lmp_park_capable(hdev)) 3782 link_policy |= HCI_LP_PARK; 3783 3784 cp.policy = cpu_to_le16(link_policy); 3785 3786 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY, 3787 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3788 } 3789 3790 static int hci_read_page_scan_activity_sync(struct hci_dev *hdev) 3791 { 3792 if (!(hdev->commands[8] & 0x01)) 3793 return 0; 3794 3795 return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 3796 0, NULL, HCI_CMD_TIMEOUT); 3797 } 3798 3799 static int hci_read_def_err_data_reporting_sync(struct hci_dev *hdev) 3800 { 3801 if (!(hdev->commands[18] & 0x04) || 3802 !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) || 3803 test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) 3804 return 0; 3805 3806 return __hci_cmd_sync_status(hdev, HCI_OP_READ_DEF_ERR_DATA_REPORTING, 3807 0, NULL, HCI_CMD_TIMEOUT); 3808 } 3809 3810 static int hci_read_page_scan_type_sync(struct hci_dev *hdev) 3811 { 3812 /* Some older Broadcom based Bluetooth 1.2 controllers do not 3813 * support the Read Page Scan Type command. Check support for 3814 * this command in the bit mask of supported commands. 3815 */ 3816 if (!(hdev->commands[13] & 0x01)) 3817 return 0; 3818 3819 return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_TYPE, 3820 0, NULL, HCI_CMD_TIMEOUT); 3821 } 3822 3823 /* Read features beyond page 1 if available */ 3824 static int hci_read_local_ext_features_all_sync(struct hci_dev *hdev) 3825 { 3826 u8 page; 3827 int err; 3828 3829 if (!lmp_ext_feat_capable(hdev)) 3830 return 0; 3831 3832 for (page = 2; page < HCI_MAX_PAGES && page <= hdev->max_page; 3833 page++) { 3834 err = hci_read_local_ext_features_sync(hdev, page); 3835 if (err) 3836 return err; 3837 } 3838 3839 return 0; 3840 } 3841 3842 /* HCI Controller init stage 3 command sequence */ 3843 static const struct hci_init_stage hci_init3[] = { 3844 /* HCI_OP_SET_EVENT_MASK */ 3845 HCI_INIT(hci_set_event_mask_sync), 3846 /* HCI_OP_READ_STORED_LINK_KEY */ 3847 HCI_INIT(hci_read_stored_link_key_sync), 3848 /* HCI_OP_WRITE_DEF_LINK_POLICY */ 3849 HCI_INIT(hci_setup_link_policy_sync), 3850 /* HCI_OP_READ_PAGE_SCAN_ACTIVITY */ 3851 HCI_INIT(hci_read_page_scan_activity_sync), 3852 /* HCI_OP_READ_DEF_ERR_DATA_REPORTING */ 3853 HCI_INIT(hci_read_def_err_data_reporting_sync), 3854 /* HCI_OP_READ_PAGE_SCAN_TYPE */ 3855 HCI_INIT(hci_read_page_scan_type_sync), 3856 /* HCI_OP_READ_LOCAL_EXT_FEATURES */ 3857 HCI_INIT(hci_read_local_ext_features_all_sync), 3858 {} 3859 }; 3860 3861 static int hci_le_set_event_mask_sync(struct hci_dev *hdev) 3862 { 3863 u8 events[8]; 3864 3865 if (!lmp_le_capable(hdev)) 3866 return 0; 3867 3868 memset(events, 0, sizeof(events)); 3869 3870 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) 3871 events[0] |= 0x10; /* LE Long Term Key Request */ 3872 3873 /* If controller supports the Connection Parameters Request 3874 * Link Layer Procedure, enable the corresponding event. 3875 */ 3876 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC) 3877 /* LE Remote Connection Parameter Request */ 3878 events[0] |= 0x20; 3879 3880 /* If the controller supports the Data Length Extension 3881 * feature, enable the corresponding event. 3882 */ 3883 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) 3884 events[0] |= 0x40; /* LE Data Length Change */ 3885 3886 /* If the controller supports LL Privacy feature or LE Extended Adv, 3887 * enable the corresponding event. 3888 */ 3889 if (use_enhanced_conn_complete(hdev)) 3890 events[1] |= 0x02; /* LE Enhanced Connection Complete */ 3891 3892 /* If the controller supports Extended Scanner Filter 3893 * Policies, enable the corresponding event. 3894 */ 3895 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY) 3896 events[1] |= 0x04; /* LE Direct Advertising Report */ 3897 3898 /* If the controller supports Channel Selection Algorithm #2 3899 * feature, enable the corresponding event. 3900 */ 3901 if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2) 3902 events[2] |= 0x08; /* LE Channel Selection Algorithm */ 3903 3904 /* If the controller supports the LE Set Scan Enable command, 3905 * enable the corresponding advertising report event. 3906 */ 3907 if (hdev->commands[26] & 0x08) 3908 events[0] |= 0x02; /* LE Advertising Report */ 3909 3910 /* If the controller supports the LE Create Connection 3911 * command, enable the corresponding event. 3912 */ 3913 if (hdev->commands[26] & 0x10) 3914 events[0] |= 0x01; /* LE Connection Complete */ 3915 3916 /* If the controller supports the LE Connection Update 3917 * command, enable the corresponding event. 3918 */ 3919 if (hdev->commands[27] & 0x04) 3920 events[0] |= 0x04; /* LE Connection Update Complete */ 3921 3922 /* If the controller supports the LE Read Remote Used Features 3923 * command, enable the corresponding event. 3924 */ 3925 if (hdev->commands[27] & 0x20) 3926 /* LE Read Remote Used Features Complete */ 3927 events[0] |= 0x08; 3928 3929 /* If the controller supports the LE Read Local P-256 3930 * Public Key command, enable the corresponding event. 3931 */ 3932 if (hdev->commands[34] & 0x02) 3933 /* LE Read Local P-256 Public Key Complete */ 3934 events[0] |= 0x80; 3935 3936 /* If the controller supports the LE Generate DHKey 3937 * command, enable the corresponding event. 3938 */ 3939 if (hdev->commands[34] & 0x04) 3940 events[1] |= 0x01; /* LE Generate DHKey Complete */ 3941 3942 /* If the controller supports the LE Set Default PHY or 3943 * LE Set PHY commands, enable the corresponding event. 3944 */ 3945 if (hdev->commands[35] & (0x20 | 0x40)) 3946 events[1] |= 0x08; /* LE PHY Update Complete */ 3947 3948 /* If the controller supports LE Set Extended Scan Parameters 3949 * and LE Set Extended Scan Enable commands, enable the 3950 * corresponding event. 3951 */ 3952 if (use_ext_scan(hdev)) 3953 events[1] |= 0x10; /* LE Extended Advertising Report */ 3954 3955 /* If the controller supports the LE Extended Advertising 3956 * command, enable the corresponding event. 3957 */ 3958 if (ext_adv_capable(hdev)) 3959 events[2] |= 0x02; /* LE Advertising Set Terminated */ 3960 3961 if (cis_capable(hdev)) { 3962 events[3] |= 0x01; /* LE CIS Established */ 3963 if (cis_peripheral_capable(hdev)) 3964 events[3] |= 0x02; /* LE CIS Request */ 3965 } 3966 3967 if (bis_capable(hdev)) { 3968 events[3] |= 0x04; /* LE Create BIG Complete */ 3969 events[3] |= 0x08; /* LE Terminate BIG Complete */ 3970 events[3] |= 0x10; /* LE BIG Sync Established */ 3971 events[3] |= 0x20; /* LE BIG Sync Loss */ 3972 } 3973 3974 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EVENT_MASK, 3975 sizeof(events), events, HCI_CMD_TIMEOUT); 3976 } 3977 3978 /* Read LE Advertising Channel TX Power */ 3979 static int hci_le_read_adv_tx_power_sync(struct hci_dev *hdev) 3980 { 3981 if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) { 3982 /* HCI TS spec forbids mixing of legacy and extended 3983 * advertising commands wherein READ_ADV_TX_POWER is 3984 * also included. So do not call it if extended adv 3985 * is supported otherwise controller will return 3986 * COMMAND_DISALLOWED for extended commands. 3987 */ 3988 return __hci_cmd_sync_status(hdev, 3989 HCI_OP_LE_READ_ADV_TX_POWER, 3990 0, NULL, HCI_CMD_TIMEOUT); 3991 } 3992 3993 return 0; 3994 } 3995 3996 /* Read LE Min/Max Tx Power*/ 3997 static int hci_le_read_tx_power_sync(struct hci_dev *hdev) 3998 { 3999 if (!(hdev->commands[38] & 0x80) || 4000 test_bit(HCI_QUIRK_BROKEN_READ_TRANSMIT_POWER, &hdev->quirks)) 4001 return 0; 4002 4003 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_TRANSMIT_POWER, 4004 0, NULL, HCI_CMD_TIMEOUT); 4005 } 4006 4007 /* Read LE Accept List Size */ 4008 static int hci_le_read_accept_list_size_sync(struct hci_dev *hdev) 4009 { 4010 if (!(hdev->commands[26] & 0x40)) 4011 return 0; 4012 4013 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_ACCEPT_LIST_SIZE, 4014 0, NULL, HCI_CMD_TIMEOUT); 4015 } 4016 4017 /* Clear LE Accept List */ 4018 static int hci_le_clear_accept_list_sync(struct hci_dev *hdev) 4019 { 4020 if (!(hdev->commands[26] & 0x80)) 4021 return 0; 4022 4023 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL, 4024 HCI_CMD_TIMEOUT); 4025 } 4026 4027 /* Read LE Resolving List Size */ 4028 static int hci_le_read_resolv_list_size_sync(struct hci_dev *hdev) 4029 { 4030 if (!(hdev->commands[34] & 0x40)) 4031 return 0; 4032 4033 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_RESOLV_LIST_SIZE, 4034 0, NULL, HCI_CMD_TIMEOUT); 4035 } 4036 4037 /* Clear LE Resolving List */ 4038 static int hci_le_clear_resolv_list_sync(struct hci_dev *hdev) 4039 { 4040 if (!(hdev->commands[34] & 0x20)) 4041 return 0; 4042 4043 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL, 4044 HCI_CMD_TIMEOUT); 4045 } 4046 4047 /* Set RPA timeout */ 4048 static int hci_le_set_rpa_timeout_sync(struct hci_dev *hdev) 4049 { 4050 __le16 timeout = cpu_to_le16(hdev->rpa_timeout); 4051 4052 if (!(hdev->commands[35] & 0x04)) 4053 return 0; 4054 4055 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RPA_TIMEOUT, 4056 sizeof(timeout), &timeout, 4057 HCI_CMD_TIMEOUT); 4058 } 4059 4060 /* Read LE Maximum Data Length */ 4061 static int hci_le_read_max_data_len_sync(struct hci_dev *hdev) 4062 { 4063 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 4064 return 0; 4065 4066 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL, 4067 HCI_CMD_TIMEOUT); 4068 } 4069 4070 /* Read LE Suggested Default Data Length */ 4071 static int hci_le_read_def_data_len_sync(struct hci_dev *hdev) 4072 { 4073 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 4074 return 0; 4075 4076 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL, 4077 HCI_CMD_TIMEOUT); 4078 } 4079 4080 /* Read LE Number of Supported Advertising Sets */ 4081 static int hci_le_read_num_support_adv_sets_sync(struct hci_dev *hdev) 4082 { 4083 if (!ext_adv_capable(hdev)) 4084 return 0; 4085 4086 return __hci_cmd_sync_status(hdev, 4087 HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS, 4088 0, NULL, HCI_CMD_TIMEOUT); 4089 } 4090 4091 /* Write LE Host Supported */ 4092 static int hci_set_le_support_sync(struct hci_dev *hdev) 4093 { 4094 struct hci_cp_write_le_host_supported cp; 4095 4096 /* LE-only devices do not support explicit enablement */ 4097 if (!lmp_bredr_capable(hdev)) 4098 return 0; 4099 4100 memset(&cp, 0, sizeof(cp)); 4101 4102 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 4103 cp.le = 0x01; 4104 cp.simul = 0x00; 4105 } 4106 4107 if (cp.le == lmp_host_le_capable(hdev)) 4108 return 0; 4109 4110 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED, 4111 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4112 } 4113 4114 /* LE Set Host Feature */ 4115 static int hci_le_set_host_feature_sync(struct hci_dev *hdev) 4116 { 4117 struct hci_cp_le_set_host_feature cp; 4118 4119 if (!iso_capable(hdev)) 4120 return 0; 4121 4122 memset(&cp, 0, sizeof(cp)); 4123 4124 /* Isochronous Channels (Host Support) */ 4125 cp.bit_number = 32; 4126 cp.bit_value = 1; 4127 4128 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_HOST_FEATURE, 4129 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4130 } 4131 4132 /* LE Controller init stage 3 command sequence */ 4133 static const struct hci_init_stage le_init3[] = { 4134 /* HCI_OP_LE_SET_EVENT_MASK */ 4135 HCI_INIT(hci_le_set_event_mask_sync), 4136 /* HCI_OP_LE_READ_ADV_TX_POWER */ 4137 HCI_INIT(hci_le_read_adv_tx_power_sync), 4138 /* HCI_OP_LE_READ_TRANSMIT_POWER */ 4139 HCI_INIT(hci_le_read_tx_power_sync), 4140 /* HCI_OP_LE_READ_ACCEPT_LIST_SIZE */ 4141 HCI_INIT(hci_le_read_accept_list_size_sync), 4142 /* HCI_OP_LE_CLEAR_ACCEPT_LIST */ 4143 HCI_INIT(hci_le_clear_accept_list_sync), 4144 /* HCI_OP_LE_READ_RESOLV_LIST_SIZE */ 4145 HCI_INIT(hci_le_read_resolv_list_size_sync), 4146 /* HCI_OP_LE_CLEAR_RESOLV_LIST */ 4147 HCI_INIT(hci_le_clear_resolv_list_sync), 4148 /* HCI_OP_LE_SET_RPA_TIMEOUT */ 4149 HCI_INIT(hci_le_set_rpa_timeout_sync), 4150 /* HCI_OP_LE_READ_MAX_DATA_LEN */ 4151 HCI_INIT(hci_le_read_max_data_len_sync), 4152 /* HCI_OP_LE_READ_DEF_DATA_LEN */ 4153 HCI_INIT(hci_le_read_def_data_len_sync), 4154 /* HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS */ 4155 HCI_INIT(hci_le_read_num_support_adv_sets_sync), 4156 /* HCI_OP_WRITE_LE_HOST_SUPPORTED */ 4157 HCI_INIT(hci_set_le_support_sync), 4158 /* HCI_OP_LE_SET_HOST_FEATURE */ 4159 HCI_INIT(hci_le_set_host_feature_sync), 4160 {} 4161 }; 4162 4163 static int hci_init3_sync(struct hci_dev *hdev) 4164 { 4165 int err; 4166 4167 bt_dev_dbg(hdev, ""); 4168 4169 err = hci_init_stage_sync(hdev, hci_init3); 4170 if (err) 4171 return err; 4172 4173 if (lmp_le_capable(hdev)) 4174 return hci_init_stage_sync(hdev, le_init3); 4175 4176 return 0; 4177 } 4178 4179 static int hci_delete_stored_link_key_sync(struct hci_dev *hdev) 4180 { 4181 struct hci_cp_delete_stored_link_key cp; 4182 4183 /* Some Broadcom based Bluetooth controllers do not support the 4184 * Delete Stored Link Key command. They are clearly indicating its 4185 * absence in the bit mask of supported commands. 4186 * 4187 * Check the supported commands and only if the command is marked 4188 * as supported send it. If not supported assume that the controller 4189 * does not have actual support for stored link keys which makes this 4190 * command redundant anyway. 4191 * 4192 * Some controllers indicate that they support handling deleting 4193 * stored link keys, but they don't. The quirk lets a driver 4194 * just disable this command. 4195 */ 4196 if (!(hdev->commands[6] & 0x80) || 4197 test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) 4198 return 0; 4199 4200 memset(&cp, 0, sizeof(cp)); 4201 bacpy(&cp.bdaddr, BDADDR_ANY); 4202 cp.delete_all = 0x01; 4203 4204 return __hci_cmd_sync_status(hdev, HCI_OP_DELETE_STORED_LINK_KEY, 4205 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4206 } 4207 4208 static int hci_set_event_mask_page_2_sync(struct hci_dev *hdev) 4209 { 4210 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 4211 bool changed = false; 4212 4213 /* Set event mask page 2 if the HCI command for it is supported */ 4214 if (!(hdev->commands[22] & 0x04)) 4215 return 0; 4216 4217 /* If Connectionless Peripheral Broadcast central role is supported 4218 * enable all necessary events for it. 4219 */ 4220 if (lmp_cpb_central_capable(hdev)) { 4221 events[1] |= 0x40; /* Triggered Clock Capture */ 4222 events[1] |= 0x80; /* Synchronization Train Complete */ 4223 events[2] |= 0x08; /* Truncated Page Complete */ 4224 events[2] |= 0x20; /* CPB Channel Map Change */ 4225 changed = true; 4226 } 4227 4228 /* If Connectionless Peripheral Broadcast peripheral role is supported 4229 * enable all necessary events for it. 4230 */ 4231 if (lmp_cpb_peripheral_capable(hdev)) { 4232 events[2] |= 0x01; /* Synchronization Train Received */ 4233 events[2] |= 0x02; /* CPB Receive */ 4234 events[2] |= 0x04; /* CPB Timeout */ 4235 events[2] |= 0x10; /* Peripheral Page Response Timeout */ 4236 changed = true; 4237 } 4238 4239 /* Enable Authenticated Payload Timeout Expired event if supported */ 4240 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) { 4241 events[2] |= 0x80; 4242 changed = true; 4243 } 4244 4245 /* Some Broadcom based controllers indicate support for Set Event 4246 * Mask Page 2 command, but then actually do not support it. Since 4247 * the default value is all bits set to zero, the command is only 4248 * required if the event mask has to be changed. In case no change 4249 * to the event mask is needed, skip this command. 4250 */ 4251 if (!changed) 4252 return 0; 4253 4254 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK_PAGE_2, 4255 sizeof(events), events, HCI_CMD_TIMEOUT); 4256 } 4257 4258 /* Read local codec list if the HCI command is supported */ 4259 static int hci_read_local_codecs_sync(struct hci_dev *hdev) 4260 { 4261 if (hdev->commands[45] & 0x04) 4262 hci_read_supported_codecs_v2(hdev); 4263 else if (hdev->commands[29] & 0x20) 4264 hci_read_supported_codecs(hdev); 4265 4266 return 0; 4267 } 4268 4269 /* Read local pairing options if the HCI command is supported */ 4270 static int hci_read_local_pairing_opts_sync(struct hci_dev *hdev) 4271 { 4272 if (!(hdev->commands[41] & 0x08)) 4273 return 0; 4274 4275 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_PAIRING_OPTS, 4276 0, NULL, HCI_CMD_TIMEOUT); 4277 } 4278 4279 /* Get MWS transport configuration if the HCI command is supported */ 4280 static int hci_get_mws_transport_config_sync(struct hci_dev *hdev) 4281 { 4282 if (!mws_transport_config_capable(hdev)) 4283 return 0; 4284 4285 return __hci_cmd_sync_status(hdev, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 4286 0, NULL, HCI_CMD_TIMEOUT); 4287 } 4288 4289 /* Check for Synchronization Train support */ 4290 static int hci_read_sync_train_params_sync(struct hci_dev *hdev) 4291 { 4292 if (!lmp_sync_train_capable(hdev)) 4293 return 0; 4294 4295 return __hci_cmd_sync_status(hdev, HCI_OP_READ_SYNC_TRAIN_PARAMS, 4296 0, NULL, HCI_CMD_TIMEOUT); 4297 } 4298 4299 /* Enable Secure Connections if supported and configured */ 4300 static int hci_write_sc_support_1_sync(struct hci_dev *hdev) 4301 { 4302 u8 support = 0x01; 4303 4304 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) || 4305 !bredr_sc_enabled(hdev)) 4306 return 0; 4307 4308 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT, 4309 sizeof(support), &support, 4310 HCI_CMD_TIMEOUT); 4311 } 4312 4313 /* Set erroneous data reporting if supported to the wideband speech 4314 * setting value 4315 */ 4316 static int hci_set_err_data_report_sync(struct hci_dev *hdev) 4317 { 4318 struct hci_cp_write_def_err_data_reporting cp; 4319 bool enabled = hci_dev_test_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED); 4320 4321 if (!(hdev->commands[18] & 0x08) || 4322 !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) || 4323 test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) 4324 return 0; 4325 4326 if (enabled == hdev->err_data_reporting) 4327 return 0; 4328 4329 memset(&cp, 0, sizeof(cp)); 4330 cp.err_data_reporting = enabled ? ERR_DATA_REPORTING_ENABLED : 4331 ERR_DATA_REPORTING_DISABLED; 4332 4333 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING, 4334 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4335 } 4336 4337 static const struct hci_init_stage hci_init4[] = { 4338 /* HCI_OP_DELETE_STORED_LINK_KEY */ 4339 HCI_INIT(hci_delete_stored_link_key_sync), 4340 /* HCI_OP_SET_EVENT_MASK_PAGE_2 */ 4341 HCI_INIT(hci_set_event_mask_page_2_sync), 4342 /* HCI_OP_READ_LOCAL_CODECS */ 4343 HCI_INIT(hci_read_local_codecs_sync), 4344 /* HCI_OP_READ_LOCAL_PAIRING_OPTS */ 4345 HCI_INIT(hci_read_local_pairing_opts_sync), 4346 /* HCI_OP_GET_MWS_TRANSPORT_CONFIG */ 4347 HCI_INIT(hci_get_mws_transport_config_sync), 4348 /* HCI_OP_READ_SYNC_TRAIN_PARAMS */ 4349 HCI_INIT(hci_read_sync_train_params_sync), 4350 /* HCI_OP_WRITE_SC_SUPPORT */ 4351 HCI_INIT(hci_write_sc_support_1_sync), 4352 /* HCI_OP_WRITE_DEF_ERR_DATA_REPORTING */ 4353 HCI_INIT(hci_set_err_data_report_sync), 4354 {} 4355 }; 4356 4357 /* Set Suggested Default Data Length to maximum if supported */ 4358 static int hci_le_set_write_def_data_len_sync(struct hci_dev *hdev) 4359 { 4360 struct hci_cp_le_write_def_data_len cp; 4361 4362 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 4363 return 0; 4364 4365 memset(&cp, 0, sizeof(cp)); 4366 cp.tx_len = cpu_to_le16(hdev->le_max_tx_len); 4367 cp.tx_time = cpu_to_le16(hdev->le_max_tx_time); 4368 4369 return __hci_cmd_sync_status(hdev, HCI_OP_LE_WRITE_DEF_DATA_LEN, 4370 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4371 } 4372 4373 /* Set Default PHY parameters if command is supported */ 4374 static int hci_le_set_default_phy_sync(struct hci_dev *hdev) 4375 { 4376 struct hci_cp_le_set_default_phy cp; 4377 4378 if (!(hdev->commands[35] & 0x20)) 4379 return 0; 4380 4381 memset(&cp, 0, sizeof(cp)); 4382 cp.all_phys = 0x00; 4383 cp.tx_phys = hdev->le_tx_def_phys; 4384 cp.rx_phys = hdev->le_rx_def_phys; 4385 4386 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_DEFAULT_PHY, 4387 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4388 } 4389 4390 static const struct hci_init_stage le_init4[] = { 4391 /* HCI_OP_LE_WRITE_DEF_DATA_LEN */ 4392 HCI_INIT(hci_le_set_write_def_data_len_sync), 4393 /* HCI_OP_LE_SET_DEFAULT_PHY */ 4394 HCI_INIT(hci_le_set_default_phy_sync), 4395 {} 4396 }; 4397 4398 static int hci_init4_sync(struct hci_dev *hdev) 4399 { 4400 int err; 4401 4402 bt_dev_dbg(hdev, ""); 4403 4404 err = hci_init_stage_sync(hdev, hci_init4); 4405 if (err) 4406 return err; 4407 4408 if (lmp_le_capable(hdev)) 4409 return hci_init_stage_sync(hdev, le_init4); 4410 4411 return 0; 4412 } 4413 4414 static int hci_init_sync(struct hci_dev *hdev) 4415 { 4416 int err; 4417 4418 err = hci_init1_sync(hdev); 4419 if (err < 0) 4420 return err; 4421 4422 if (hci_dev_test_flag(hdev, HCI_SETUP)) 4423 hci_debugfs_create_basic(hdev); 4424 4425 err = hci_init2_sync(hdev); 4426 if (err < 0) 4427 return err; 4428 4429 /* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode 4430 * BR/EDR/LE type controllers. AMP controllers only need the 4431 * first two stages of init. 4432 */ 4433 if (hdev->dev_type != HCI_PRIMARY) 4434 return 0; 4435 4436 err = hci_init3_sync(hdev); 4437 if (err < 0) 4438 return err; 4439 4440 err = hci_init4_sync(hdev); 4441 if (err < 0) 4442 return err; 4443 4444 /* This function is only called when the controller is actually in 4445 * configured state. When the controller is marked as unconfigured, 4446 * this initialization procedure is not run. 4447 * 4448 * It means that it is possible that a controller runs through its 4449 * setup phase and then discovers missing settings. If that is the 4450 * case, then this function will not be called. It then will only 4451 * be called during the config phase. 4452 * 4453 * So only when in setup phase or config phase, create the debugfs 4454 * entries and register the SMP channels. 4455 */ 4456 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4457 !hci_dev_test_flag(hdev, HCI_CONFIG)) 4458 return 0; 4459 4460 hci_debugfs_create_common(hdev); 4461 4462 if (lmp_bredr_capable(hdev)) 4463 hci_debugfs_create_bredr(hdev); 4464 4465 if (lmp_le_capable(hdev)) 4466 hci_debugfs_create_le(hdev); 4467 4468 return 0; 4469 } 4470 4471 #define HCI_QUIRK_BROKEN(_quirk, _desc) { HCI_QUIRK_BROKEN_##_quirk, _desc } 4472 4473 static const struct { 4474 unsigned long quirk; 4475 const char *desc; 4476 } hci_broken_table[] = { 4477 HCI_QUIRK_BROKEN(LOCAL_COMMANDS, 4478 "HCI Read Local Supported Commands not supported"), 4479 HCI_QUIRK_BROKEN(STORED_LINK_KEY, 4480 "HCI Delete Stored Link Key command is advertised, " 4481 "but not supported."), 4482 HCI_QUIRK_BROKEN(ERR_DATA_REPORTING, 4483 "HCI Read Default Erroneous Data Reporting command is " 4484 "advertised, but not supported."), 4485 HCI_QUIRK_BROKEN(READ_TRANSMIT_POWER, 4486 "HCI Read Transmit Power Level command is advertised, " 4487 "but not supported."), 4488 HCI_QUIRK_BROKEN(FILTER_CLEAR_ALL, 4489 "HCI Set Event Filter command not supported."), 4490 HCI_QUIRK_BROKEN(ENHANCED_SETUP_SYNC_CONN, 4491 "HCI Enhanced Setup Synchronous Connection command is " 4492 "advertised, but not supported.") 4493 }; 4494 4495 /* This function handles hdev setup stage: 4496 * 4497 * Calls hdev->setup 4498 * Setup address if HCI_QUIRK_USE_BDADDR_PROPERTY is set. 4499 */ 4500 static int hci_dev_setup_sync(struct hci_dev *hdev) 4501 { 4502 int ret = 0; 4503 bool invalid_bdaddr; 4504 size_t i; 4505 4506 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4507 !test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) 4508 return 0; 4509 4510 bt_dev_dbg(hdev, ""); 4511 4512 hci_sock_dev_event(hdev, HCI_DEV_SETUP); 4513 4514 if (hdev->setup) 4515 ret = hdev->setup(hdev); 4516 4517 for (i = 0; i < ARRAY_SIZE(hci_broken_table); i++) { 4518 if (test_bit(hci_broken_table[i].quirk, &hdev->quirks)) 4519 bt_dev_warn(hdev, "%s", hci_broken_table[i].desc); 4520 } 4521 4522 /* The transport driver can set the quirk to mark the 4523 * BD_ADDR invalid before creating the HCI device or in 4524 * its setup callback. 4525 */ 4526 invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks); 4527 4528 if (!ret) { 4529 if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) { 4530 if (!bacmp(&hdev->public_addr, BDADDR_ANY)) 4531 hci_dev_get_bd_addr_from_property(hdev); 4532 4533 if (bacmp(&hdev->public_addr, BDADDR_ANY) && 4534 hdev->set_bdaddr) { 4535 ret = hdev->set_bdaddr(hdev, 4536 &hdev->public_addr); 4537 4538 /* If setting of the BD_ADDR from the device 4539 * property succeeds, then treat the address 4540 * as valid even if the invalid BD_ADDR 4541 * quirk indicates otherwise. 4542 */ 4543 if (!ret) 4544 invalid_bdaddr = false; 4545 } 4546 } 4547 } 4548 4549 /* The transport driver can set these quirks before 4550 * creating the HCI device or in its setup callback. 4551 * 4552 * For the invalid BD_ADDR quirk it is possible that 4553 * it becomes a valid address if the bootloader does 4554 * provide it (see above). 4555 * 4556 * In case any of them is set, the controller has to 4557 * start up as unconfigured. 4558 */ 4559 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) || 4560 invalid_bdaddr) 4561 hci_dev_set_flag(hdev, HCI_UNCONFIGURED); 4562 4563 /* For an unconfigured controller it is required to 4564 * read at least the version information provided by 4565 * the Read Local Version Information command. 4566 * 4567 * If the set_bdaddr driver callback is provided, then 4568 * also the original Bluetooth public device address 4569 * will be read using the Read BD Address command. 4570 */ 4571 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 4572 return hci_unconf_init_sync(hdev); 4573 4574 return ret; 4575 } 4576 4577 /* This function handles hdev init stage: 4578 * 4579 * Calls hci_dev_setup_sync to perform setup stage 4580 * Calls hci_init_sync to perform HCI command init sequence 4581 */ 4582 static int hci_dev_init_sync(struct hci_dev *hdev) 4583 { 4584 int ret; 4585 4586 bt_dev_dbg(hdev, ""); 4587 4588 atomic_set(&hdev->cmd_cnt, 1); 4589 set_bit(HCI_INIT, &hdev->flags); 4590 4591 ret = hci_dev_setup_sync(hdev); 4592 4593 if (hci_dev_test_flag(hdev, HCI_CONFIG)) { 4594 /* If public address change is configured, ensure that 4595 * the address gets programmed. If the driver does not 4596 * support changing the public address, fail the power 4597 * on procedure. 4598 */ 4599 if (bacmp(&hdev->public_addr, BDADDR_ANY) && 4600 hdev->set_bdaddr) 4601 ret = hdev->set_bdaddr(hdev, &hdev->public_addr); 4602 else 4603 ret = -EADDRNOTAVAIL; 4604 } 4605 4606 if (!ret) { 4607 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 4608 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4609 ret = hci_init_sync(hdev); 4610 if (!ret && hdev->post_init) 4611 ret = hdev->post_init(hdev); 4612 } 4613 } 4614 4615 /* If the HCI Reset command is clearing all diagnostic settings, 4616 * then they need to be reprogrammed after the init procedure 4617 * completed. 4618 */ 4619 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) && 4620 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4621 hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag) 4622 ret = hdev->set_diag(hdev, true); 4623 4624 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4625 msft_do_open(hdev); 4626 aosp_do_open(hdev); 4627 } 4628 4629 clear_bit(HCI_INIT, &hdev->flags); 4630 4631 return ret; 4632 } 4633 4634 int hci_dev_open_sync(struct hci_dev *hdev) 4635 { 4636 int ret; 4637 4638 bt_dev_dbg(hdev, ""); 4639 4640 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 4641 ret = -ENODEV; 4642 goto done; 4643 } 4644 4645 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4646 !hci_dev_test_flag(hdev, HCI_CONFIG)) { 4647 /* Check for rfkill but allow the HCI setup stage to 4648 * proceed (which in itself doesn't cause any RF activity). 4649 */ 4650 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) { 4651 ret = -ERFKILL; 4652 goto done; 4653 } 4654 4655 /* Check for valid public address or a configured static 4656 * random address, but let the HCI setup proceed to 4657 * be able to determine if there is a public address 4658 * or not. 4659 * 4660 * In case of user channel usage, it is not important 4661 * if a public address or static random address is 4662 * available. 4663 * 4664 * This check is only valid for BR/EDR controllers 4665 * since AMP controllers do not have an address. 4666 */ 4667 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4668 hdev->dev_type == HCI_PRIMARY && 4669 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 4670 !bacmp(&hdev->static_addr, BDADDR_ANY)) { 4671 ret = -EADDRNOTAVAIL; 4672 goto done; 4673 } 4674 } 4675 4676 if (test_bit(HCI_UP, &hdev->flags)) { 4677 ret = -EALREADY; 4678 goto done; 4679 } 4680 4681 if (hdev->open(hdev)) { 4682 ret = -EIO; 4683 goto done; 4684 } 4685 4686 set_bit(HCI_RUNNING, &hdev->flags); 4687 hci_sock_dev_event(hdev, HCI_DEV_OPEN); 4688 4689 ret = hci_dev_init_sync(hdev); 4690 if (!ret) { 4691 hci_dev_hold(hdev); 4692 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 4693 hci_adv_instances_set_rpa_expired(hdev, true); 4694 set_bit(HCI_UP, &hdev->flags); 4695 hci_sock_dev_event(hdev, HCI_DEV_UP); 4696 hci_leds_update_powered(hdev, true); 4697 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4698 !hci_dev_test_flag(hdev, HCI_CONFIG) && 4699 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 4700 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4701 hci_dev_test_flag(hdev, HCI_MGMT) && 4702 hdev->dev_type == HCI_PRIMARY) { 4703 ret = hci_powered_update_sync(hdev); 4704 mgmt_power_on(hdev, ret); 4705 } 4706 } else { 4707 /* Init failed, cleanup */ 4708 flush_work(&hdev->tx_work); 4709 4710 /* Since hci_rx_work() is possible to awake new cmd_work 4711 * it should be flushed first to avoid unexpected call of 4712 * hci_cmd_work() 4713 */ 4714 flush_work(&hdev->rx_work); 4715 flush_work(&hdev->cmd_work); 4716 4717 skb_queue_purge(&hdev->cmd_q); 4718 skb_queue_purge(&hdev->rx_q); 4719 4720 if (hdev->flush) 4721 hdev->flush(hdev); 4722 4723 if (hdev->sent_cmd) { 4724 cancel_delayed_work_sync(&hdev->cmd_timer); 4725 kfree_skb(hdev->sent_cmd); 4726 hdev->sent_cmd = NULL; 4727 } 4728 4729 clear_bit(HCI_RUNNING, &hdev->flags); 4730 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 4731 4732 hdev->close(hdev); 4733 hdev->flags &= BIT(HCI_RAW); 4734 } 4735 4736 done: 4737 return ret; 4738 } 4739 4740 /* This function requires the caller holds hdev->lock */ 4741 static void hci_pend_le_actions_clear(struct hci_dev *hdev) 4742 { 4743 struct hci_conn_params *p; 4744 4745 list_for_each_entry(p, &hdev->le_conn_params, list) { 4746 if (p->conn) { 4747 hci_conn_drop(p->conn); 4748 hci_conn_put(p->conn); 4749 p->conn = NULL; 4750 } 4751 list_del_init(&p->action); 4752 } 4753 4754 BT_DBG("All LE pending actions cleared"); 4755 } 4756 4757 static int hci_dev_shutdown(struct hci_dev *hdev) 4758 { 4759 int err = 0; 4760 /* Similar to how we first do setup and then set the exclusive access 4761 * bit for userspace, we must first unset userchannel and then clean up. 4762 * Otherwise, the kernel can't properly use the hci channel to clean up 4763 * the controller (some shutdown routines require sending additional 4764 * commands to the controller for example). 4765 */ 4766 bool was_userchannel = 4767 hci_dev_test_and_clear_flag(hdev, HCI_USER_CHANNEL); 4768 4769 if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) && 4770 test_bit(HCI_UP, &hdev->flags)) { 4771 /* Execute vendor specific shutdown routine */ 4772 if (hdev->shutdown) 4773 err = hdev->shutdown(hdev); 4774 } 4775 4776 if (was_userchannel) 4777 hci_dev_set_flag(hdev, HCI_USER_CHANNEL); 4778 4779 return err; 4780 } 4781 4782 int hci_dev_close_sync(struct hci_dev *hdev) 4783 { 4784 bool auto_off; 4785 int err = 0; 4786 4787 bt_dev_dbg(hdev, ""); 4788 4789 cancel_delayed_work(&hdev->power_off); 4790 cancel_delayed_work(&hdev->ncmd_timer); 4791 cancel_delayed_work(&hdev->le_scan_disable); 4792 cancel_delayed_work(&hdev->le_scan_restart); 4793 4794 hci_request_cancel_all(hdev); 4795 4796 if (hdev->adv_instance_timeout) { 4797 cancel_delayed_work_sync(&hdev->adv_instance_expire); 4798 hdev->adv_instance_timeout = 0; 4799 } 4800 4801 err = hci_dev_shutdown(hdev); 4802 4803 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) { 4804 cancel_delayed_work_sync(&hdev->cmd_timer); 4805 return err; 4806 } 4807 4808 hci_leds_update_powered(hdev, false); 4809 4810 /* Flush RX and TX works */ 4811 flush_work(&hdev->tx_work); 4812 flush_work(&hdev->rx_work); 4813 4814 if (hdev->discov_timeout > 0) { 4815 hdev->discov_timeout = 0; 4816 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 4817 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 4818 } 4819 4820 if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE)) 4821 cancel_delayed_work(&hdev->service_cache); 4822 4823 if (hci_dev_test_flag(hdev, HCI_MGMT)) { 4824 struct adv_info *adv_instance; 4825 4826 cancel_delayed_work_sync(&hdev->rpa_expired); 4827 4828 list_for_each_entry(adv_instance, &hdev->adv_instances, list) 4829 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb); 4830 } 4831 4832 /* Avoid potential lockdep warnings from the *_flush() calls by 4833 * ensuring the workqueue is empty up front. 4834 */ 4835 drain_workqueue(hdev->workqueue); 4836 4837 hci_dev_lock(hdev); 4838 4839 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 4840 4841 auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF); 4842 4843 if (!auto_off && hdev->dev_type == HCI_PRIMARY && 4844 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4845 hci_dev_test_flag(hdev, HCI_MGMT)) 4846 __mgmt_power_off(hdev); 4847 4848 hci_inquiry_cache_flush(hdev); 4849 hci_pend_le_actions_clear(hdev); 4850 hci_conn_hash_flush(hdev); 4851 /* Prevent data races on hdev->smp_data or hdev->smp_bredr_data */ 4852 smp_unregister(hdev); 4853 hci_dev_unlock(hdev); 4854 4855 hci_sock_dev_event(hdev, HCI_DEV_DOWN); 4856 4857 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4858 aosp_do_close(hdev); 4859 msft_do_close(hdev); 4860 } 4861 4862 if (hdev->flush) 4863 hdev->flush(hdev); 4864 4865 /* Reset device */ 4866 skb_queue_purge(&hdev->cmd_q); 4867 atomic_set(&hdev->cmd_cnt, 1); 4868 if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) && 4869 !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 4870 set_bit(HCI_INIT, &hdev->flags); 4871 hci_reset_sync(hdev); 4872 clear_bit(HCI_INIT, &hdev->flags); 4873 } 4874 4875 /* flush cmd work */ 4876 flush_work(&hdev->cmd_work); 4877 4878 /* Drop queues */ 4879 skb_queue_purge(&hdev->rx_q); 4880 skb_queue_purge(&hdev->cmd_q); 4881 skb_queue_purge(&hdev->raw_q); 4882 4883 /* Drop last sent command */ 4884 if (hdev->sent_cmd) { 4885 cancel_delayed_work_sync(&hdev->cmd_timer); 4886 kfree_skb(hdev->sent_cmd); 4887 hdev->sent_cmd = NULL; 4888 } 4889 4890 clear_bit(HCI_RUNNING, &hdev->flags); 4891 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 4892 4893 /* After this point our queues are empty and no tasks are scheduled. */ 4894 hdev->close(hdev); 4895 4896 /* Clear flags */ 4897 hdev->flags &= BIT(HCI_RAW); 4898 hci_dev_clear_volatile_flags(hdev); 4899 4900 /* Controller radio is available but is currently powered down */ 4901 hdev->amp_status = AMP_STATUS_POWERED_DOWN; 4902 4903 memset(hdev->eir, 0, sizeof(hdev->eir)); 4904 memset(hdev->dev_class, 0, sizeof(hdev->dev_class)); 4905 bacpy(&hdev->random_addr, BDADDR_ANY); 4906 4907 hci_dev_put(hdev); 4908 return err; 4909 } 4910 4911 /* This function perform power on HCI command sequence as follows: 4912 * 4913 * If controller is already up (HCI_UP) performs hci_powered_update_sync 4914 * sequence otherwise run hci_dev_open_sync which will follow with 4915 * hci_powered_update_sync after the init sequence is completed. 4916 */ 4917 static int hci_power_on_sync(struct hci_dev *hdev) 4918 { 4919 int err; 4920 4921 if (test_bit(HCI_UP, &hdev->flags) && 4922 hci_dev_test_flag(hdev, HCI_MGMT) && 4923 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) { 4924 cancel_delayed_work(&hdev->power_off); 4925 return hci_powered_update_sync(hdev); 4926 } 4927 4928 err = hci_dev_open_sync(hdev); 4929 if (err < 0) 4930 return err; 4931 4932 /* During the HCI setup phase, a few error conditions are 4933 * ignored and they need to be checked now. If they are still 4934 * valid, it is important to return the device back off. 4935 */ 4936 if (hci_dev_test_flag(hdev, HCI_RFKILLED) || 4937 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) || 4938 (hdev->dev_type == HCI_PRIMARY && 4939 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 4940 !bacmp(&hdev->static_addr, BDADDR_ANY))) { 4941 hci_dev_clear_flag(hdev, HCI_AUTO_OFF); 4942 hci_dev_close_sync(hdev); 4943 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) { 4944 queue_delayed_work(hdev->req_workqueue, &hdev->power_off, 4945 HCI_AUTO_OFF_TIMEOUT); 4946 } 4947 4948 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) { 4949 /* For unconfigured devices, set the HCI_RAW flag 4950 * so that userspace can easily identify them. 4951 */ 4952 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 4953 set_bit(HCI_RAW, &hdev->flags); 4954 4955 /* For fully configured devices, this will send 4956 * the Index Added event. For unconfigured devices, 4957 * it will send Unconfigued Index Added event. 4958 * 4959 * Devices with HCI_QUIRK_RAW_DEVICE are ignored 4960 * and no event will be send. 4961 */ 4962 mgmt_index_added(hdev); 4963 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) { 4964 /* When the controller is now configured, then it 4965 * is important to clear the HCI_RAW flag. 4966 */ 4967 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 4968 clear_bit(HCI_RAW, &hdev->flags); 4969 4970 /* Powering on the controller with HCI_CONFIG set only 4971 * happens with the transition from unconfigured to 4972 * configured. This will send the Index Added event. 4973 */ 4974 mgmt_index_added(hdev); 4975 } 4976 4977 return 0; 4978 } 4979 4980 static int hci_remote_name_cancel_sync(struct hci_dev *hdev, bdaddr_t *addr) 4981 { 4982 struct hci_cp_remote_name_req_cancel cp; 4983 4984 memset(&cp, 0, sizeof(cp)); 4985 bacpy(&cp.bdaddr, addr); 4986 4987 return __hci_cmd_sync_status(hdev, HCI_OP_REMOTE_NAME_REQ_CANCEL, 4988 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4989 } 4990 4991 int hci_stop_discovery_sync(struct hci_dev *hdev) 4992 { 4993 struct discovery_state *d = &hdev->discovery; 4994 struct inquiry_entry *e; 4995 int err; 4996 4997 bt_dev_dbg(hdev, "state %u", hdev->discovery.state); 4998 4999 if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) { 5000 if (test_bit(HCI_INQUIRY, &hdev->flags)) { 5001 err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL, 5002 0, NULL, HCI_CMD_TIMEOUT); 5003 if (err) 5004 return err; 5005 } 5006 5007 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 5008 cancel_delayed_work(&hdev->le_scan_disable); 5009 cancel_delayed_work(&hdev->le_scan_restart); 5010 5011 err = hci_scan_disable_sync(hdev); 5012 if (err) 5013 return err; 5014 } 5015 5016 } else { 5017 err = hci_scan_disable_sync(hdev); 5018 if (err) 5019 return err; 5020 } 5021 5022 /* Resume advertising if it was paused */ 5023 if (use_ll_privacy(hdev)) 5024 hci_resume_advertising_sync(hdev); 5025 5026 /* No further actions needed for LE-only discovery */ 5027 if (d->type == DISCOV_TYPE_LE) 5028 return 0; 5029 5030 if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) { 5031 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY, 5032 NAME_PENDING); 5033 if (!e) 5034 return 0; 5035 5036 return hci_remote_name_cancel_sync(hdev, &e->data.bdaddr); 5037 } 5038 5039 return 0; 5040 } 5041 5042 static int hci_disconnect_phy_link_sync(struct hci_dev *hdev, u16 handle, 5043 u8 reason) 5044 { 5045 struct hci_cp_disconn_phy_link cp; 5046 5047 memset(&cp, 0, sizeof(cp)); 5048 cp.phy_handle = HCI_PHY_HANDLE(handle); 5049 cp.reason = reason; 5050 5051 return __hci_cmd_sync_status(hdev, HCI_OP_DISCONN_PHY_LINK, 5052 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5053 } 5054 5055 static int hci_disconnect_sync(struct hci_dev *hdev, struct hci_conn *conn, 5056 u8 reason) 5057 { 5058 struct hci_cp_disconnect cp; 5059 5060 if (conn->type == AMP_LINK) 5061 return hci_disconnect_phy_link_sync(hdev, conn->handle, reason); 5062 5063 memset(&cp, 0, sizeof(cp)); 5064 cp.handle = cpu_to_le16(conn->handle); 5065 cp.reason = reason; 5066 5067 /* Wait for HCI_EV_DISCONN_COMPLETE not HCI_EV_CMD_STATUS when not 5068 * suspending. 5069 */ 5070 if (!hdev->suspended) 5071 return __hci_cmd_sync_status_sk(hdev, HCI_OP_DISCONNECT, 5072 sizeof(cp), &cp, 5073 HCI_EV_DISCONN_COMPLETE, 5074 HCI_CMD_TIMEOUT, NULL); 5075 5076 return __hci_cmd_sync_status(hdev, HCI_OP_DISCONNECT, sizeof(cp), &cp, 5077 HCI_CMD_TIMEOUT); 5078 } 5079 5080 static int hci_le_connect_cancel_sync(struct hci_dev *hdev, 5081 struct hci_conn *conn) 5082 { 5083 if (test_bit(HCI_CONN_SCANNING, &conn->flags)) 5084 return 0; 5085 5086 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CREATE_CONN_CANCEL, 5087 6, &conn->dst, HCI_CMD_TIMEOUT); 5088 } 5089 5090 static int hci_connect_cancel_sync(struct hci_dev *hdev, struct hci_conn *conn) 5091 { 5092 if (conn->type == LE_LINK) 5093 return hci_le_connect_cancel_sync(hdev, conn); 5094 5095 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 5096 return 0; 5097 5098 return __hci_cmd_sync_status(hdev, HCI_OP_CREATE_CONN_CANCEL, 5099 6, &conn->dst, HCI_CMD_TIMEOUT); 5100 } 5101 5102 static int hci_reject_sco_sync(struct hci_dev *hdev, struct hci_conn *conn, 5103 u8 reason) 5104 { 5105 struct hci_cp_reject_sync_conn_req cp; 5106 5107 memset(&cp, 0, sizeof(cp)); 5108 bacpy(&cp.bdaddr, &conn->dst); 5109 cp.reason = reason; 5110 5111 /* SCO rejection has its own limited set of 5112 * allowed error values (0x0D-0x0F). 5113 */ 5114 if (reason < 0x0d || reason > 0x0f) 5115 cp.reason = HCI_ERROR_REJ_LIMITED_RESOURCES; 5116 5117 return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_SYNC_CONN_REQ, 5118 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5119 } 5120 5121 static int hci_reject_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, 5122 u8 reason) 5123 { 5124 struct hci_cp_reject_conn_req cp; 5125 5126 if (conn->type == SCO_LINK || conn->type == ESCO_LINK) 5127 return hci_reject_sco_sync(hdev, conn, reason); 5128 5129 memset(&cp, 0, sizeof(cp)); 5130 bacpy(&cp.bdaddr, &conn->dst); 5131 cp.reason = reason; 5132 5133 return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_CONN_REQ, 5134 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5135 } 5136 5137 int hci_abort_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, u8 reason) 5138 { 5139 int err; 5140 5141 switch (conn->state) { 5142 case BT_CONNECTED: 5143 case BT_CONFIG: 5144 return hci_disconnect_sync(hdev, conn, reason); 5145 case BT_CONNECT: 5146 err = hci_connect_cancel_sync(hdev, conn); 5147 /* Cleanup hci_conn object if it cannot be cancelled as it 5148 * likelly means the controller and host stack are out of sync. 5149 */ 5150 if (err) { 5151 hci_dev_lock(hdev); 5152 hci_conn_failed(conn, err); 5153 hci_dev_unlock(hdev); 5154 } 5155 return err; 5156 case BT_CONNECT2: 5157 return hci_reject_conn_sync(hdev, conn, reason); 5158 default: 5159 conn->state = BT_CLOSED; 5160 break; 5161 } 5162 5163 return 0; 5164 } 5165 5166 static int hci_disconnect_all_sync(struct hci_dev *hdev, u8 reason) 5167 { 5168 struct hci_conn *conn, *tmp; 5169 int err; 5170 5171 list_for_each_entry_safe(conn, tmp, &hdev->conn_hash.list, list) { 5172 err = hci_abort_conn_sync(hdev, conn, reason); 5173 if (err) 5174 return err; 5175 } 5176 5177 return 0; 5178 } 5179 5180 /* This function perform power off HCI command sequence as follows: 5181 * 5182 * Clear Advertising 5183 * Stop Discovery 5184 * Disconnect all connections 5185 * hci_dev_close_sync 5186 */ 5187 static int hci_power_off_sync(struct hci_dev *hdev) 5188 { 5189 int err; 5190 5191 /* If controller is already down there is nothing to do */ 5192 if (!test_bit(HCI_UP, &hdev->flags)) 5193 return 0; 5194 5195 if (test_bit(HCI_ISCAN, &hdev->flags) || 5196 test_bit(HCI_PSCAN, &hdev->flags)) { 5197 err = hci_write_scan_enable_sync(hdev, 0x00); 5198 if (err) 5199 return err; 5200 } 5201 5202 err = hci_clear_adv_sync(hdev, NULL, false); 5203 if (err) 5204 return err; 5205 5206 err = hci_stop_discovery_sync(hdev); 5207 if (err) 5208 return err; 5209 5210 /* Terminated due to Power Off */ 5211 err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF); 5212 if (err) 5213 return err; 5214 5215 return hci_dev_close_sync(hdev); 5216 } 5217 5218 int hci_set_powered_sync(struct hci_dev *hdev, u8 val) 5219 { 5220 if (val) 5221 return hci_power_on_sync(hdev); 5222 5223 return hci_power_off_sync(hdev); 5224 } 5225 5226 static int hci_write_iac_sync(struct hci_dev *hdev) 5227 { 5228 struct hci_cp_write_current_iac_lap cp; 5229 5230 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 5231 return 0; 5232 5233 memset(&cp, 0, sizeof(cp)); 5234 5235 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { 5236 /* Limited discoverable mode */ 5237 cp.num_iac = min_t(u8, hdev->num_iac, 2); 5238 cp.iac_lap[0] = 0x00; /* LIAC */ 5239 cp.iac_lap[1] = 0x8b; 5240 cp.iac_lap[2] = 0x9e; 5241 cp.iac_lap[3] = 0x33; /* GIAC */ 5242 cp.iac_lap[4] = 0x8b; 5243 cp.iac_lap[5] = 0x9e; 5244 } else { 5245 /* General discoverable mode */ 5246 cp.num_iac = 1; 5247 cp.iac_lap[0] = 0x33; /* GIAC */ 5248 cp.iac_lap[1] = 0x8b; 5249 cp.iac_lap[2] = 0x9e; 5250 } 5251 5252 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CURRENT_IAC_LAP, 5253 (cp.num_iac * 3) + 1, &cp, 5254 HCI_CMD_TIMEOUT); 5255 } 5256 5257 int hci_update_discoverable_sync(struct hci_dev *hdev) 5258 { 5259 int err = 0; 5260 5261 if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 5262 err = hci_write_iac_sync(hdev); 5263 if (err) 5264 return err; 5265 5266 err = hci_update_scan_sync(hdev); 5267 if (err) 5268 return err; 5269 5270 err = hci_update_class_sync(hdev); 5271 if (err) 5272 return err; 5273 } 5274 5275 /* Advertising instances don't use the global discoverable setting, so 5276 * only update AD if advertising was enabled using Set Advertising. 5277 */ 5278 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) { 5279 err = hci_update_adv_data_sync(hdev, 0x00); 5280 if (err) 5281 return err; 5282 5283 /* Discoverable mode affects the local advertising 5284 * address in limited privacy mode. 5285 */ 5286 if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) { 5287 if (ext_adv_capable(hdev)) 5288 err = hci_start_ext_adv_sync(hdev, 0x00); 5289 else 5290 err = hci_enable_advertising_sync(hdev); 5291 } 5292 } 5293 5294 return err; 5295 } 5296 5297 static int update_discoverable_sync(struct hci_dev *hdev, void *data) 5298 { 5299 return hci_update_discoverable_sync(hdev); 5300 } 5301 5302 int hci_update_discoverable(struct hci_dev *hdev) 5303 { 5304 /* Only queue if it would have any effect */ 5305 if (hdev_is_powered(hdev) && 5306 hci_dev_test_flag(hdev, HCI_ADVERTISING) && 5307 hci_dev_test_flag(hdev, HCI_DISCOVERABLE) && 5308 hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) 5309 return hci_cmd_sync_queue(hdev, update_discoverable_sync, NULL, 5310 NULL); 5311 5312 return 0; 5313 } 5314 5315 int hci_update_connectable_sync(struct hci_dev *hdev) 5316 { 5317 int err; 5318 5319 err = hci_update_scan_sync(hdev); 5320 if (err) 5321 return err; 5322 5323 /* If BR/EDR is not enabled and we disable advertising as a 5324 * by-product of disabling connectable, we need to update the 5325 * advertising flags. 5326 */ 5327 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 5328 err = hci_update_adv_data_sync(hdev, hdev->cur_adv_instance); 5329 5330 /* Update the advertising parameters if necessary */ 5331 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 5332 !list_empty(&hdev->adv_instances)) { 5333 if (ext_adv_capable(hdev)) 5334 err = hci_start_ext_adv_sync(hdev, 5335 hdev->cur_adv_instance); 5336 else 5337 err = hci_enable_advertising_sync(hdev); 5338 5339 if (err) 5340 return err; 5341 } 5342 5343 return hci_update_passive_scan_sync(hdev); 5344 } 5345 5346 static int hci_inquiry_sync(struct hci_dev *hdev, u8 length) 5347 { 5348 const u8 giac[3] = { 0x33, 0x8b, 0x9e }; 5349 const u8 liac[3] = { 0x00, 0x8b, 0x9e }; 5350 struct hci_cp_inquiry cp; 5351 5352 bt_dev_dbg(hdev, ""); 5353 5354 if (hci_dev_test_flag(hdev, HCI_INQUIRY)) 5355 return 0; 5356 5357 hci_dev_lock(hdev); 5358 hci_inquiry_cache_flush(hdev); 5359 hci_dev_unlock(hdev); 5360 5361 memset(&cp, 0, sizeof(cp)); 5362 5363 if (hdev->discovery.limited) 5364 memcpy(&cp.lap, liac, sizeof(cp.lap)); 5365 else 5366 memcpy(&cp.lap, giac, sizeof(cp.lap)); 5367 5368 cp.length = length; 5369 5370 return __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY, 5371 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5372 } 5373 5374 static int hci_active_scan_sync(struct hci_dev *hdev, uint16_t interval) 5375 { 5376 u8 own_addr_type; 5377 /* Accept list is not used for discovery */ 5378 u8 filter_policy = 0x00; 5379 /* Default is to enable duplicates filter */ 5380 u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE; 5381 int err; 5382 5383 bt_dev_dbg(hdev, ""); 5384 5385 /* If controller is scanning, it means the passive scanning is 5386 * running. Thus, we should temporarily stop it in order to set the 5387 * discovery scanning parameters. 5388 */ 5389 err = hci_scan_disable_sync(hdev); 5390 if (err) { 5391 bt_dev_err(hdev, "Unable to disable scanning: %d", err); 5392 return err; 5393 } 5394 5395 cancel_interleave_scan(hdev); 5396 5397 /* Pause advertising since active scanning disables address resolution 5398 * which advertising depend on in order to generate its RPAs. 5399 */ 5400 if (use_ll_privacy(hdev) && hci_dev_test_flag(hdev, HCI_PRIVACY)) { 5401 err = hci_pause_advertising_sync(hdev); 5402 if (err) { 5403 bt_dev_err(hdev, "pause advertising failed: %d", err); 5404 goto failed; 5405 } 5406 } 5407 5408 /* Disable address resolution while doing active scanning since the 5409 * accept list shall not be used and all reports shall reach the host 5410 * anyway. 5411 */ 5412 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00); 5413 if (err) { 5414 bt_dev_err(hdev, "Unable to disable Address Resolution: %d", 5415 err); 5416 goto failed; 5417 } 5418 5419 /* All active scans will be done with either a resolvable private 5420 * address (when privacy feature has been enabled) or non-resolvable 5421 * private address. 5422 */ 5423 err = hci_update_random_address_sync(hdev, true, scan_use_rpa(hdev), 5424 &own_addr_type); 5425 if (err < 0) 5426 own_addr_type = ADDR_LE_DEV_PUBLIC; 5427 5428 if (hci_is_adv_monitoring(hdev)) { 5429 /* Duplicate filter should be disabled when some advertisement 5430 * monitor is activated, otherwise AdvMon can only receive one 5431 * advertisement for one peer(*) during active scanning, and 5432 * might report loss to these peers. 5433 * 5434 * Note that different controllers have different meanings of 5435 * |duplicate|. Some of them consider packets with the same 5436 * address as duplicate, and others consider packets with the 5437 * same address and the same RSSI as duplicate. Although in the 5438 * latter case we don't need to disable duplicate filter, but 5439 * it is common to have active scanning for a short period of 5440 * time, the power impact should be neglectable. 5441 */ 5442 filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 5443 } 5444 5445 err = hci_start_scan_sync(hdev, LE_SCAN_ACTIVE, interval, 5446 hdev->le_scan_window_discovery, 5447 own_addr_type, filter_policy, filter_dup); 5448 if (!err) 5449 return err; 5450 5451 failed: 5452 /* Resume advertising if it was paused */ 5453 if (use_ll_privacy(hdev)) 5454 hci_resume_advertising_sync(hdev); 5455 5456 /* Resume passive scanning */ 5457 hci_update_passive_scan_sync(hdev); 5458 return err; 5459 } 5460 5461 static int hci_start_interleaved_discovery_sync(struct hci_dev *hdev) 5462 { 5463 int err; 5464 5465 bt_dev_dbg(hdev, ""); 5466 5467 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery * 2); 5468 if (err) 5469 return err; 5470 5471 return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN); 5472 } 5473 5474 int hci_start_discovery_sync(struct hci_dev *hdev) 5475 { 5476 unsigned long timeout; 5477 int err; 5478 5479 bt_dev_dbg(hdev, "type %u", hdev->discovery.type); 5480 5481 switch (hdev->discovery.type) { 5482 case DISCOV_TYPE_BREDR: 5483 return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN); 5484 case DISCOV_TYPE_INTERLEAVED: 5485 /* When running simultaneous discovery, the LE scanning time 5486 * should occupy the whole discovery time sine BR/EDR inquiry 5487 * and LE scanning are scheduled by the controller. 5488 * 5489 * For interleaving discovery in comparison, BR/EDR inquiry 5490 * and LE scanning are done sequentially with separate 5491 * timeouts. 5492 */ 5493 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, 5494 &hdev->quirks)) { 5495 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 5496 /* During simultaneous discovery, we double LE scan 5497 * interval. We must leave some time for the controller 5498 * to do BR/EDR inquiry. 5499 */ 5500 err = hci_start_interleaved_discovery_sync(hdev); 5501 break; 5502 } 5503 5504 timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout); 5505 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery); 5506 break; 5507 case DISCOV_TYPE_LE: 5508 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 5509 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery); 5510 break; 5511 default: 5512 return -EINVAL; 5513 } 5514 5515 if (err) 5516 return err; 5517 5518 bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout)); 5519 5520 /* When service discovery is used and the controller has a 5521 * strict duplicate filter, it is important to remember the 5522 * start and duration of the scan. This is required for 5523 * restarting scanning during the discovery phase. 5524 */ 5525 if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) && 5526 hdev->discovery.result_filtering) { 5527 hdev->discovery.scan_start = jiffies; 5528 hdev->discovery.scan_duration = timeout; 5529 } 5530 5531 queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable, 5532 timeout); 5533 return 0; 5534 } 5535 5536 static void hci_suspend_monitor_sync(struct hci_dev *hdev) 5537 { 5538 switch (hci_get_adv_monitor_offload_ext(hdev)) { 5539 case HCI_ADV_MONITOR_EXT_MSFT: 5540 msft_suspend_sync(hdev); 5541 break; 5542 default: 5543 return; 5544 } 5545 } 5546 5547 /* This function disables discovery and mark it as paused */ 5548 static int hci_pause_discovery_sync(struct hci_dev *hdev) 5549 { 5550 int old_state = hdev->discovery.state; 5551 int err; 5552 5553 /* If discovery already stopped/stopping/paused there nothing to do */ 5554 if (old_state == DISCOVERY_STOPPED || old_state == DISCOVERY_STOPPING || 5555 hdev->discovery_paused) 5556 return 0; 5557 5558 hci_discovery_set_state(hdev, DISCOVERY_STOPPING); 5559 err = hci_stop_discovery_sync(hdev); 5560 if (err) 5561 return err; 5562 5563 hdev->discovery_paused = true; 5564 hdev->discovery_old_state = old_state; 5565 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 5566 5567 return 0; 5568 } 5569 5570 static int hci_update_event_filter_sync(struct hci_dev *hdev) 5571 { 5572 struct bdaddr_list_with_flags *b; 5573 u8 scan = SCAN_DISABLED; 5574 bool scanning = test_bit(HCI_PSCAN, &hdev->flags); 5575 int err; 5576 5577 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 5578 return 0; 5579 5580 /* Some fake CSR controllers lock up after setting this type of 5581 * filter, so avoid sending the request altogether. 5582 */ 5583 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 5584 return 0; 5585 5586 /* Always clear event filter when starting */ 5587 hci_clear_event_filter_sync(hdev); 5588 5589 list_for_each_entry(b, &hdev->accept_list, list) { 5590 if (!(b->flags & HCI_CONN_FLAG_REMOTE_WAKEUP)) 5591 continue; 5592 5593 bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr); 5594 5595 err = hci_set_event_filter_sync(hdev, HCI_FLT_CONN_SETUP, 5596 HCI_CONN_SETUP_ALLOW_BDADDR, 5597 &b->bdaddr, 5598 HCI_CONN_SETUP_AUTO_ON); 5599 if (err) 5600 bt_dev_dbg(hdev, "Failed to set event filter for %pMR", 5601 &b->bdaddr); 5602 else 5603 scan = SCAN_PAGE; 5604 } 5605 5606 if (scan && !scanning) 5607 hci_write_scan_enable_sync(hdev, scan); 5608 else if (!scan && scanning) 5609 hci_write_scan_enable_sync(hdev, scan); 5610 5611 return 0; 5612 } 5613 5614 /* This function disables scan (BR and LE) and mark it as paused */ 5615 static int hci_pause_scan_sync(struct hci_dev *hdev) 5616 { 5617 if (hdev->scanning_paused) 5618 return 0; 5619 5620 /* Disable page scan if enabled */ 5621 if (test_bit(HCI_PSCAN, &hdev->flags)) 5622 hci_write_scan_enable_sync(hdev, SCAN_DISABLED); 5623 5624 hci_scan_disable_sync(hdev); 5625 5626 hdev->scanning_paused = true; 5627 5628 return 0; 5629 } 5630 5631 /* This function performs the HCI suspend procedures in the follow order: 5632 * 5633 * Pause discovery (active scanning/inquiry) 5634 * Pause Directed Advertising/Advertising 5635 * Pause Scanning (passive scanning in case discovery was not active) 5636 * Disconnect all connections 5637 * Set suspend_status to BT_SUSPEND_DISCONNECT if hdev cannot wakeup 5638 * otherwise: 5639 * Update event mask (only set events that are allowed to wake up the host) 5640 * Update event filter (with devices marked with HCI_CONN_FLAG_REMOTE_WAKEUP) 5641 * Update passive scanning (lower duty cycle) 5642 * Set suspend_status to BT_SUSPEND_CONFIGURE_WAKE 5643 */ 5644 int hci_suspend_sync(struct hci_dev *hdev) 5645 { 5646 int err; 5647 5648 /* If marked as suspended there nothing to do */ 5649 if (hdev->suspended) 5650 return 0; 5651 5652 /* Mark device as suspended */ 5653 hdev->suspended = true; 5654 5655 /* Pause discovery if not already stopped */ 5656 hci_pause_discovery_sync(hdev); 5657 5658 /* Pause other advertisements */ 5659 hci_pause_advertising_sync(hdev); 5660 5661 /* Suspend monitor filters */ 5662 hci_suspend_monitor_sync(hdev); 5663 5664 /* Prevent disconnects from causing scanning to be re-enabled */ 5665 hci_pause_scan_sync(hdev); 5666 5667 if (hci_conn_count(hdev)) { 5668 /* Soft disconnect everything (power off) */ 5669 err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF); 5670 if (err) { 5671 /* Set state to BT_RUNNING so resume doesn't notify */ 5672 hdev->suspend_state = BT_RUNNING; 5673 hci_resume_sync(hdev); 5674 return err; 5675 } 5676 5677 /* Update event mask so only the allowed event can wakeup the 5678 * host. 5679 */ 5680 hci_set_event_mask_sync(hdev); 5681 } 5682 5683 /* Only configure accept list if disconnect succeeded and wake 5684 * isn't being prevented. 5685 */ 5686 if (!hdev->wakeup || !hdev->wakeup(hdev)) { 5687 hdev->suspend_state = BT_SUSPEND_DISCONNECT; 5688 return 0; 5689 } 5690 5691 /* Unpause to take care of updating scanning params */ 5692 hdev->scanning_paused = false; 5693 5694 /* Enable event filter for paired devices */ 5695 hci_update_event_filter_sync(hdev); 5696 5697 /* Update LE passive scan if enabled */ 5698 hci_update_passive_scan_sync(hdev); 5699 5700 /* Pause scan changes again. */ 5701 hdev->scanning_paused = true; 5702 5703 hdev->suspend_state = BT_SUSPEND_CONFIGURE_WAKE; 5704 5705 return 0; 5706 } 5707 5708 /* This function resumes discovery */ 5709 static int hci_resume_discovery_sync(struct hci_dev *hdev) 5710 { 5711 int err; 5712 5713 /* If discovery not paused there nothing to do */ 5714 if (!hdev->discovery_paused) 5715 return 0; 5716 5717 hdev->discovery_paused = false; 5718 5719 hci_discovery_set_state(hdev, DISCOVERY_STARTING); 5720 5721 err = hci_start_discovery_sync(hdev); 5722 5723 hci_discovery_set_state(hdev, err ? DISCOVERY_STOPPED : 5724 DISCOVERY_FINDING); 5725 5726 return err; 5727 } 5728 5729 static void hci_resume_monitor_sync(struct hci_dev *hdev) 5730 { 5731 switch (hci_get_adv_monitor_offload_ext(hdev)) { 5732 case HCI_ADV_MONITOR_EXT_MSFT: 5733 msft_resume_sync(hdev); 5734 break; 5735 default: 5736 return; 5737 } 5738 } 5739 5740 /* This function resume scan and reset paused flag */ 5741 static int hci_resume_scan_sync(struct hci_dev *hdev) 5742 { 5743 if (!hdev->scanning_paused) 5744 return 0; 5745 5746 hdev->scanning_paused = false; 5747 5748 hci_update_scan_sync(hdev); 5749 5750 /* Reset passive scanning to normal */ 5751 hci_update_passive_scan_sync(hdev); 5752 5753 return 0; 5754 } 5755 5756 /* This function performs the HCI suspend procedures in the follow order: 5757 * 5758 * Restore event mask 5759 * Clear event filter 5760 * Update passive scanning (normal duty cycle) 5761 * Resume Directed Advertising/Advertising 5762 * Resume discovery (active scanning/inquiry) 5763 */ 5764 int hci_resume_sync(struct hci_dev *hdev) 5765 { 5766 /* If not marked as suspended there nothing to do */ 5767 if (!hdev->suspended) 5768 return 0; 5769 5770 hdev->suspended = false; 5771 5772 /* Restore event mask */ 5773 hci_set_event_mask_sync(hdev); 5774 5775 /* Clear any event filters and restore scan state */ 5776 hci_clear_event_filter_sync(hdev); 5777 5778 /* Resume scanning */ 5779 hci_resume_scan_sync(hdev); 5780 5781 /* Resume monitor filters */ 5782 hci_resume_monitor_sync(hdev); 5783 5784 /* Resume other advertisements */ 5785 hci_resume_advertising_sync(hdev); 5786 5787 /* Resume discovery */ 5788 hci_resume_discovery_sync(hdev); 5789 5790 return 0; 5791 } 5792 5793 static bool conn_use_rpa(struct hci_conn *conn) 5794 { 5795 struct hci_dev *hdev = conn->hdev; 5796 5797 return hci_dev_test_flag(hdev, HCI_PRIVACY); 5798 } 5799 5800 static int hci_le_ext_directed_advertising_sync(struct hci_dev *hdev, 5801 struct hci_conn *conn) 5802 { 5803 struct hci_cp_le_set_ext_adv_params cp; 5804 int err; 5805 bdaddr_t random_addr; 5806 u8 own_addr_type; 5807 5808 err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 5809 &own_addr_type); 5810 if (err) 5811 return err; 5812 5813 /* Set require_privacy to false so that the remote device has a 5814 * chance of identifying us. 5815 */ 5816 err = hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL, 5817 &own_addr_type, &random_addr); 5818 if (err) 5819 return err; 5820 5821 memset(&cp, 0, sizeof(cp)); 5822 5823 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND); 5824 cp.own_addr_type = own_addr_type; 5825 cp.channel_map = hdev->le_adv_channel_map; 5826 cp.tx_power = HCI_TX_POWER_INVALID; 5827 cp.primary_phy = HCI_ADV_PHY_1M; 5828 cp.secondary_phy = HCI_ADV_PHY_1M; 5829 cp.handle = 0x00; /* Use instance 0 for directed adv */ 5830 cp.own_addr_type = own_addr_type; 5831 cp.peer_addr_type = conn->dst_type; 5832 bacpy(&cp.peer_addr, &conn->dst); 5833 5834 /* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for 5835 * advertising_event_property LE_LEGACY_ADV_DIRECT_IND 5836 * does not supports advertising data when the advertising set already 5837 * contains some, the controller shall return erroc code 'Invalid 5838 * HCI Command Parameters(0x12). 5839 * So it is required to remove adv set for handle 0x00. since we use 5840 * instance 0 for directed adv. 5841 */ 5842 err = hci_remove_ext_adv_instance_sync(hdev, cp.handle, NULL); 5843 if (err) 5844 return err; 5845 5846 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS, 5847 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5848 if (err) 5849 return err; 5850 5851 /* Check if random address need to be updated */ 5852 if (own_addr_type == ADDR_LE_DEV_RANDOM && 5853 bacmp(&random_addr, BDADDR_ANY) && 5854 bacmp(&random_addr, &hdev->random_addr)) { 5855 err = hci_set_adv_set_random_addr_sync(hdev, 0x00, 5856 &random_addr); 5857 if (err) 5858 return err; 5859 } 5860 5861 return hci_enable_ext_advertising_sync(hdev, 0x00); 5862 } 5863 5864 static int hci_le_directed_advertising_sync(struct hci_dev *hdev, 5865 struct hci_conn *conn) 5866 { 5867 struct hci_cp_le_set_adv_param cp; 5868 u8 status; 5869 u8 own_addr_type; 5870 u8 enable; 5871 5872 if (ext_adv_capable(hdev)) 5873 return hci_le_ext_directed_advertising_sync(hdev, conn); 5874 5875 /* Clear the HCI_LE_ADV bit temporarily so that the 5876 * hci_update_random_address knows that it's safe to go ahead 5877 * and write a new random address. The flag will be set back on 5878 * as soon as the SET_ADV_ENABLE HCI command completes. 5879 */ 5880 hci_dev_clear_flag(hdev, HCI_LE_ADV); 5881 5882 /* Set require_privacy to false so that the remote device has a 5883 * chance of identifying us. 5884 */ 5885 status = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 5886 &own_addr_type); 5887 if (status) 5888 return status; 5889 5890 memset(&cp, 0, sizeof(cp)); 5891 5892 /* Some controllers might reject command if intervals are not 5893 * within range for undirected advertising. 5894 * BCM20702A0 is known to be affected by this. 5895 */ 5896 cp.min_interval = cpu_to_le16(0x0020); 5897 cp.max_interval = cpu_to_le16(0x0020); 5898 5899 cp.type = LE_ADV_DIRECT_IND; 5900 cp.own_address_type = own_addr_type; 5901 cp.direct_addr_type = conn->dst_type; 5902 bacpy(&cp.direct_addr, &conn->dst); 5903 cp.channel_map = hdev->le_adv_channel_map; 5904 5905 status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM, 5906 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5907 if (status) 5908 return status; 5909 5910 enable = 0x01; 5911 5912 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 5913 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 5914 } 5915 5916 static void set_ext_conn_params(struct hci_conn *conn, 5917 struct hci_cp_le_ext_conn_param *p) 5918 { 5919 struct hci_dev *hdev = conn->hdev; 5920 5921 memset(p, 0, sizeof(*p)); 5922 5923 p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect); 5924 p->scan_window = cpu_to_le16(hdev->le_scan_window_connect); 5925 p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 5926 p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 5927 p->conn_latency = cpu_to_le16(conn->le_conn_latency); 5928 p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 5929 p->min_ce_len = cpu_to_le16(0x0000); 5930 p->max_ce_len = cpu_to_le16(0x0000); 5931 } 5932 5933 static int hci_le_ext_create_conn_sync(struct hci_dev *hdev, 5934 struct hci_conn *conn, u8 own_addr_type) 5935 { 5936 struct hci_cp_le_ext_create_conn *cp; 5937 struct hci_cp_le_ext_conn_param *p; 5938 u8 data[sizeof(*cp) + sizeof(*p) * 3]; 5939 u32 plen; 5940 5941 cp = (void *)data; 5942 p = (void *)cp->data; 5943 5944 memset(cp, 0, sizeof(*cp)); 5945 5946 bacpy(&cp->peer_addr, &conn->dst); 5947 cp->peer_addr_type = conn->dst_type; 5948 cp->own_addr_type = own_addr_type; 5949 5950 plen = sizeof(*cp); 5951 5952 if (scan_1m(hdev)) { 5953 cp->phys |= LE_SCAN_PHY_1M; 5954 set_ext_conn_params(conn, p); 5955 5956 p++; 5957 plen += sizeof(*p); 5958 } 5959 5960 if (scan_2m(hdev)) { 5961 cp->phys |= LE_SCAN_PHY_2M; 5962 set_ext_conn_params(conn, p); 5963 5964 p++; 5965 plen += sizeof(*p); 5966 } 5967 5968 if (scan_coded(hdev)) { 5969 cp->phys |= LE_SCAN_PHY_CODED; 5970 set_ext_conn_params(conn, p); 5971 5972 plen += sizeof(*p); 5973 } 5974 5975 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_EXT_CREATE_CONN, 5976 plen, data, 5977 HCI_EV_LE_ENHANCED_CONN_COMPLETE, 5978 conn->conn_timeout, NULL); 5979 } 5980 5981 int hci_le_create_conn_sync(struct hci_dev *hdev, struct hci_conn *conn) 5982 { 5983 struct hci_cp_le_create_conn cp; 5984 struct hci_conn_params *params; 5985 u8 own_addr_type; 5986 int err; 5987 5988 /* If requested to connect as peripheral use directed advertising */ 5989 if (conn->role == HCI_ROLE_SLAVE) { 5990 /* If we're active scanning and simultaneous roles is not 5991 * enabled simply reject the attempt. 5992 */ 5993 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) && 5994 hdev->le_scan_type == LE_SCAN_ACTIVE && 5995 !hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) { 5996 hci_conn_del(conn); 5997 return -EBUSY; 5998 } 5999 6000 /* Pause advertising while doing directed advertising. */ 6001 hci_pause_advertising_sync(hdev); 6002 6003 err = hci_le_directed_advertising_sync(hdev, conn); 6004 goto done; 6005 } 6006 6007 /* Disable advertising if simultaneous roles is not in use. */ 6008 if (!hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) 6009 hci_pause_advertising_sync(hdev); 6010 6011 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); 6012 if (params) { 6013 conn->le_conn_min_interval = params->conn_min_interval; 6014 conn->le_conn_max_interval = params->conn_max_interval; 6015 conn->le_conn_latency = params->conn_latency; 6016 conn->le_supv_timeout = params->supervision_timeout; 6017 } else { 6018 conn->le_conn_min_interval = hdev->le_conn_min_interval; 6019 conn->le_conn_max_interval = hdev->le_conn_max_interval; 6020 conn->le_conn_latency = hdev->le_conn_latency; 6021 conn->le_supv_timeout = hdev->le_supv_timeout; 6022 } 6023 6024 /* If controller is scanning, we stop it since some controllers are 6025 * not able to scan and connect at the same time. Also set the 6026 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete 6027 * handler for scan disabling knows to set the correct discovery 6028 * state. 6029 */ 6030 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 6031 hci_scan_disable_sync(hdev); 6032 hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED); 6033 } 6034 6035 /* Update random address, but set require_privacy to false so 6036 * that we never connect with an non-resolvable address. 6037 */ 6038 err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 6039 &own_addr_type); 6040 if (err) 6041 goto done; 6042 6043 if (use_ext_conn(hdev)) { 6044 err = hci_le_ext_create_conn_sync(hdev, conn, own_addr_type); 6045 goto done; 6046 } 6047 6048 memset(&cp, 0, sizeof(cp)); 6049 6050 cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect); 6051 cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect); 6052 6053 bacpy(&cp.peer_addr, &conn->dst); 6054 cp.peer_addr_type = conn->dst_type; 6055 cp.own_address_type = own_addr_type; 6056 cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 6057 cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 6058 cp.conn_latency = cpu_to_le16(conn->le_conn_latency); 6059 cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 6060 cp.min_ce_len = cpu_to_le16(0x0000); 6061 cp.max_ce_len = cpu_to_le16(0x0000); 6062 6063 /* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E page 2261: 6064 * 6065 * If this event is unmasked and the HCI_LE_Connection_Complete event 6066 * is unmasked, only the HCI_LE_Enhanced_Connection_Complete event is 6067 * sent when a new connection has been created. 6068 */ 6069 err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CONN, 6070 sizeof(cp), &cp, 6071 use_enhanced_conn_complete(hdev) ? 6072 HCI_EV_LE_ENHANCED_CONN_COMPLETE : 6073 HCI_EV_LE_CONN_COMPLETE, 6074 conn->conn_timeout, NULL); 6075 6076 done: 6077 /* Re-enable advertising after the connection attempt is finished. */ 6078 hci_resume_advertising_sync(hdev); 6079 return err; 6080 } 6081 6082 int hci_le_remove_cig_sync(struct hci_dev *hdev, u8 handle) 6083 { 6084 struct hci_cp_le_remove_cig cp; 6085 6086 memset(&cp, 0, sizeof(cp)); 6087 cp.cig_id = handle; 6088 6089 return __hci_cmd_sync_status(hdev, HCI_OP_LE_REMOVE_CIG, sizeof(cp), 6090 &cp, HCI_CMD_TIMEOUT); 6091 } 6092 6093 int hci_le_big_terminate_sync(struct hci_dev *hdev, u8 handle) 6094 { 6095 struct hci_cp_le_big_term_sync cp; 6096 6097 memset(&cp, 0, sizeof(cp)); 6098 cp.handle = handle; 6099 6100 return __hci_cmd_sync_status(hdev, HCI_OP_LE_BIG_TERM_SYNC, 6101 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6102 } 6103 6104 int hci_le_pa_terminate_sync(struct hci_dev *hdev, u16 handle) 6105 { 6106 struct hci_cp_le_pa_term_sync cp; 6107 6108 memset(&cp, 0, sizeof(cp)); 6109 cp.handle = cpu_to_le16(handle); 6110 6111 return __hci_cmd_sync_status(hdev, HCI_OP_LE_PA_TERM_SYNC, 6112 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6113 } 6114 6115 int hci_get_random_address(struct hci_dev *hdev, bool require_privacy, 6116 bool use_rpa, struct adv_info *adv_instance, 6117 u8 *own_addr_type, bdaddr_t *rand_addr) 6118 { 6119 int err; 6120 6121 bacpy(rand_addr, BDADDR_ANY); 6122 6123 /* If privacy is enabled use a resolvable private address. If 6124 * current RPA has expired then generate a new one. 6125 */ 6126 if (use_rpa) { 6127 /* If Controller supports LL Privacy use own address type is 6128 * 0x03 6129 */ 6130 if (use_ll_privacy(hdev)) 6131 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED; 6132 else 6133 *own_addr_type = ADDR_LE_DEV_RANDOM; 6134 6135 if (adv_instance) { 6136 if (adv_rpa_valid(adv_instance)) 6137 return 0; 6138 } else { 6139 if (rpa_valid(hdev)) 6140 return 0; 6141 } 6142 6143 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); 6144 if (err < 0) { 6145 bt_dev_err(hdev, "failed to generate new RPA"); 6146 return err; 6147 } 6148 6149 bacpy(rand_addr, &hdev->rpa); 6150 6151 return 0; 6152 } 6153 6154 /* In case of required privacy without resolvable private address, 6155 * use an non-resolvable private address. This is useful for 6156 * non-connectable advertising. 6157 */ 6158 if (require_privacy) { 6159 bdaddr_t nrpa; 6160 6161 while (true) { 6162 /* The non-resolvable private address is generated 6163 * from random six bytes with the two most significant 6164 * bits cleared. 6165 */ 6166 get_random_bytes(&nrpa, 6); 6167 nrpa.b[5] &= 0x3f; 6168 6169 /* The non-resolvable private address shall not be 6170 * equal to the public address. 6171 */ 6172 if (bacmp(&hdev->bdaddr, &nrpa)) 6173 break; 6174 } 6175 6176 *own_addr_type = ADDR_LE_DEV_RANDOM; 6177 bacpy(rand_addr, &nrpa); 6178 6179 return 0; 6180 } 6181 6182 /* No privacy so use a public address. */ 6183 *own_addr_type = ADDR_LE_DEV_PUBLIC; 6184 6185 return 0; 6186 } 6187 6188 static int _update_adv_data_sync(struct hci_dev *hdev, void *data) 6189 { 6190 u8 instance = *(u8 *)data; 6191 6192 kfree(data); 6193 6194 return hci_update_adv_data_sync(hdev, instance); 6195 } 6196 6197 int hci_update_adv_data(struct hci_dev *hdev, u8 instance) 6198 { 6199 u8 *inst_ptr = kmalloc(1, GFP_KERNEL); 6200 6201 if (!inst_ptr) 6202 return -ENOMEM; 6203 6204 *inst_ptr = instance; 6205 return hci_cmd_sync_queue(hdev, _update_adv_data_sync, inst_ptr, NULL); 6206 } 6207