xref: /linux/net/bluetooth/hci_sync.c (revision 41fb0cf1bced59c1fe178cf6cc9f716b5da9e40e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * BlueZ - Bluetooth protocol stack for Linux
4  *
5  * Copyright (C) 2021 Intel Corporation
6  */
7 
8 #include <linux/property.h>
9 
10 #include <net/bluetooth/bluetooth.h>
11 #include <net/bluetooth/hci_core.h>
12 #include <net/bluetooth/mgmt.h>
13 
14 #include "hci_request.h"
15 #include "hci_debugfs.h"
16 #include "smp.h"
17 #include "eir.h"
18 #include "msft.h"
19 #include "aosp.h"
20 #include "leds.h"
21 
22 static void hci_cmd_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
23 				  struct sk_buff *skb)
24 {
25 	bt_dev_dbg(hdev, "result 0x%2.2x", result);
26 
27 	if (hdev->req_status != HCI_REQ_PEND)
28 		return;
29 
30 	hdev->req_result = result;
31 	hdev->req_status = HCI_REQ_DONE;
32 
33 	if (skb) {
34 		struct sock *sk = hci_skb_sk(skb);
35 
36 		/* Drop sk reference if set */
37 		if (sk)
38 			sock_put(sk);
39 
40 		hdev->req_skb = skb_get(skb);
41 	}
42 
43 	wake_up_interruptible(&hdev->req_wait_q);
44 }
45 
46 static struct sk_buff *hci_cmd_sync_alloc(struct hci_dev *hdev, u16 opcode,
47 					  u32 plen, const void *param,
48 					  struct sock *sk)
49 {
50 	int len = HCI_COMMAND_HDR_SIZE + plen;
51 	struct hci_command_hdr *hdr;
52 	struct sk_buff *skb;
53 
54 	skb = bt_skb_alloc(len, GFP_ATOMIC);
55 	if (!skb)
56 		return NULL;
57 
58 	hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE);
59 	hdr->opcode = cpu_to_le16(opcode);
60 	hdr->plen   = plen;
61 
62 	if (plen)
63 		skb_put_data(skb, param, plen);
64 
65 	bt_dev_dbg(hdev, "skb len %d", skb->len);
66 
67 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
68 	hci_skb_opcode(skb) = opcode;
69 
70 	/* Grab a reference if command needs to be associated with a sock (e.g.
71 	 * likely mgmt socket that initiated the command).
72 	 */
73 	if (sk) {
74 		hci_skb_sk(skb) = sk;
75 		sock_hold(sk);
76 	}
77 
78 	return skb;
79 }
80 
81 static void hci_cmd_sync_add(struct hci_request *req, u16 opcode, u32 plen,
82 			     const void *param, u8 event, struct sock *sk)
83 {
84 	struct hci_dev *hdev = req->hdev;
85 	struct sk_buff *skb;
86 
87 	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
88 
89 	/* If an error occurred during request building, there is no point in
90 	 * queueing the HCI command. We can simply return.
91 	 */
92 	if (req->err)
93 		return;
94 
95 	skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, sk);
96 	if (!skb) {
97 		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
98 			   opcode);
99 		req->err = -ENOMEM;
100 		return;
101 	}
102 
103 	if (skb_queue_empty(&req->cmd_q))
104 		bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
105 
106 	bt_cb(skb)->hci.req_event = event;
107 
108 	skb_queue_tail(&req->cmd_q, skb);
109 }
110 
111 static int hci_cmd_sync_run(struct hci_request *req)
112 {
113 	struct hci_dev *hdev = req->hdev;
114 	struct sk_buff *skb;
115 	unsigned long flags;
116 
117 	bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q));
118 
119 	/* If an error occurred during request building, remove all HCI
120 	 * commands queued on the HCI request queue.
121 	 */
122 	if (req->err) {
123 		skb_queue_purge(&req->cmd_q);
124 		return req->err;
125 	}
126 
127 	/* Do not allow empty requests */
128 	if (skb_queue_empty(&req->cmd_q))
129 		return -ENODATA;
130 
131 	skb = skb_peek_tail(&req->cmd_q);
132 	bt_cb(skb)->hci.req_complete_skb = hci_cmd_sync_complete;
133 	bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
134 
135 	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
136 	skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
137 	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
138 
139 	queue_work(hdev->workqueue, &hdev->cmd_work);
140 
141 	return 0;
142 }
143 
144 /* This function requires the caller holds hdev->req_lock. */
145 struct sk_buff *__hci_cmd_sync_sk(struct hci_dev *hdev, u16 opcode, u32 plen,
146 				  const void *param, u8 event, u32 timeout,
147 				  struct sock *sk)
148 {
149 	struct hci_request req;
150 	struct sk_buff *skb;
151 	int err = 0;
152 
153 	bt_dev_dbg(hdev, "Opcode 0x%4x", opcode);
154 
155 	hci_req_init(&req, hdev);
156 
157 	hci_cmd_sync_add(&req, opcode, plen, param, event, sk);
158 
159 	hdev->req_status = HCI_REQ_PEND;
160 
161 	err = hci_cmd_sync_run(&req);
162 	if (err < 0)
163 		return ERR_PTR(err);
164 
165 	err = wait_event_interruptible_timeout(hdev->req_wait_q,
166 					       hdev->req_status != HCI_REQ_PEND,
167 					       timeout);
168 
169 	if (err == -ERESTARTSYS)
170 		return ERR_PTR(-EINTR);
171 
172 	switch (hdev->req_status) {
173 	case HCI_REQ_DONE:
174 		err = -bt_to_errno(hdev->req_result);
175 		break;
176 
177 	case HCI_REQ_CANCELED:
178 		err = -hdev->req_result;
179 		break;
180 
181 	default:
182 		err = -ETIMEDOUT;
183 		break;
184 	}
185 
186 	hdev->req_status = 0;
187 	hdev->req_result = 0;
188 	skb = hdev->req_skb;
189 	hdev->req_skb = NULL;
190 
191 	bt_dev_dbg(hdev, "end: err %d", err);
192 
193 	if (err < 0) {
194 		kfree_skb(skb);
195 		return ERR_PTR(err);
196 	}
197 
198 	return skb;
199 }
200 EXPORT_SYMBOL(__hci_cmd_sync_sk);
201 
202 /* This function requires the caller holds hdev->req_lock. */
203 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
204 			       const void *param, u32 timeout)
205 {
206 	return __hci_cmd_sync_sk(hdev, opcode, plen, param, 0, timeout, NULL);
207 }
208 EXPORT_SYMBOL(__hci_cmd_sync);
209 
210 /* Send HCI command and wait for command complete event */
211 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
212 			     const void *param, u32 timeout)
213 {
214 	struct sk_buff *skb;
215 
216 	if (!test_bit(HCI_UP, &hdev->flags))
217 		return ERR_PTR(-ENETDOWN);
218 
219 	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
220 
221 	hci_req_sync_lock(hdev);
222 	skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
223 	hci_req_sync_unlock(hdev);
224 
225 	return skb;
226 }
227 EXPORT_SYMBOL(hci_cmd_sync);
228 
229 /* This function requires the caller holds hdev->req_lock. */
230 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
231 				  const void *param, u8 event, u32 timeout)
232 {
233 	return __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout,
234 				 NULL);
235 }
236 EXPORT_SYMBOL(__hci_cmd_sync_ev);
237 
238 /* This function requires the caller holds hdev->req_lock. */
239 int __hci_cmd_sync_status_sk(struct hci_dev *hdev, u16 opcode, u32 plen,
240 			     const void *param, u8 event, u32 timeout,
241 			     struct sock *sk)
242 {
243 	struct sk_buff *skb;
244 	u8 status;
245 
246 	skb = __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, sk);
247 	if (IS_ERR(skb)) {
248 		bt_dev_err(hdev, "Opcode 0x%4x failed: %ld", opcode,
249 			   PTR_ERR(skb));
250 		return PTR_ERR(skb);
251 	}
252 
253 	/* If command return a status event skb will be set to NULL as there are
254 	 * no parameters, in case of failure IS_ERR(skb) would have be set to
255 	 * the actual error would be found with PTR_ERR(skb).
256 	 */
257 	if (!skb)
258 		return 0;
259 
260 	status = skb->data[0];
261 
262 	kfree_skb(skb);
263 
264 	return status;
265 }
266 EXPORT_SYMBOL(__hci_cmd_sync_status_sk);
267 
268 int __hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen,
269 			  const void *param, u32 timeout)
270 {
271 	return __hci_cmd_sync_status_sk(hdev, opcode, plen, param, 0, timeout,
272 					NULL);
273 }
274 EXPORT_SYMBOL(__hci_cmd_sync_status);
275 
276 static void hci_cmd_sync_work(struct work_struct *work)
277 {
278 	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_work);
279 	struct hci_cmd_sync_work_entry *entry;
280 	hci_cmd_sync_work_func_t func;
281 	hci_cmd_sync_work_destroy_t destroy;
282 	void *data;
283 
284 	bt_dev_dbg(hdev, "");
285 
286 	mutex_lock(&hdev->cmd_sync_work_lock);
287 	entry = list_first_entry(&hdev->cmd_sync_work_list,
288 				 struct hci_cmd_sync_work_entry, list);
289 	if (entry) {
290 		list_del(&entry->list);
291 		func = entry->func;
292 		data = entry->data;
293 		destroy = entry->destroy;
294 		kfree(entry);
295 	} else {
296 		func = NULL;
297 		data = NULL;
298 		destroy = NULL;
299 	}
300 	mutex_unlock(&hdev->cmd_sync_work_lock);
301 
302 	if (func) {
303 		int err;
304 
305 		hci_req_sync_lock(hdev);
306 
307 		err = func(hdev, data);
308 
309 		if (destroy)
310 			destroy(hdev, data, err);
311 
312 		hci_req_sync_unlock(hdev);
313 	}
314 }
315 
316 void hci_cmd_sync_init(struct hci_dev *hdev)
317 {
318 	INIT_WORK(&hdev->cmd_sync_work, hci_cmd_sync_work);
319 	INIT_LIST_HEAD(&hdev->cmd_sync_work_list);
320 	mutex_init(&hdev->cmd_sync_work_lock);
321 }
322 
323 void hci_cmd_sync_clear(struct hci_dev *hdev)
324 {
325 	struct hci_cmd_sync_work_entry *entry, *tmp;
326 
327 	cancel_work_sync(&hdev->cmd_sync_work);
328 
329 	list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) {
330 		if (entry->destroy)
331 			entry->destroy(hdev, entry->data, -ECANCELED);
332 
333 		list_del(&entry->list);
334 		kfree(entry);
335 	}
336 }
337 
338 int hci_cmd_sync_queue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
339 		       void *data, hci_cmd_sync_work_destroy_t destroy)
340 {
341 	struct hci_cmd_sync_work_entry *entry;
342 
343 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
344 	if (!entry)
345 		return -ENOMEM;
346 
347 	entry->func = func;
348 	entry->data = data;
349 	entry->destroy = destroy;
350 
351 	mutex_lock(&hdev->cmd_sync_work_lock);
352 	list_add_tail(&entry->list, &hdev->cmd_sync_work_list);
353 	mutex_unlock(&hdev->cmd_sync_work_lock);
354 
355 	queue_work(hdev->req_workqueue, &hdev->cmd_sync_work);
356 
357 	return 0;
358 }
359 EXPORT_SYMBOL(hci_cmd_sync_queue);
360 
361 int hci_update_eir_sync(struct hci_dev *hdev)
362 {
363 	struct hci_cp_write_eir cp;
364 
365 	bt_dev_dbg(hdev, "");
366 
367 	if (!hdev_is_powered(hdev))
368 		return 0;
369 
370 	if (!lmp_ext_inq_capable(hdev))
371 		return 0;
372 
373 	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
374 		return 0;
375 
376 	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
377 		return 0;
378 
379 	memset(&cp, 0, sizeof(cp));
380 
381 	eir_create(hdev, cp.data);
382 
383 	if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
384 		return 0;
385 
386 	memcpy(hdev->eir, cp.data, sizeof(cp.data));
387 
388 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp,
389 				     HCI_CMD_TIMEOUT);
390 }
391 
392 static u8 get_service_classes(struct hci_dev *hdev)
393 {
394 	struct bt_uuid *uuid;
395 	u8 val = 0;
396 
397 	list_for_each_entry(uuid, &hdev->uuids, list)
398 		val |= uuid->svc_hint;
399 
400 	return val;
401 }
402 
403 int hci_update_class_sync(struct hci_dev *hdev)
404 {
405 	u8 cod[3];
406 
407 	bt_dev_dbg(hdev, "");
408 
409 	if (!hdev_is_powered(hdev))
410 		return 0;
411 
412 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
413 		return 0;
414 
415 	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
416 		return 0;
417 
418 	cod[0] = hdev->minor_class;
419 	cod[1] = hdev->major_class;
420 	cod[2] = get_service_classes(hdev);
421 
422 	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
423 		cod[1] |= 0x20;
424 
425 	if (memcmp(cod, hdev->dev_class, 3) == 0)
426 		return 0;
427 
428 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CLASS_OF_DEV,
429 				     sizeof(cod), cod, HCI_CMD_TIMEOUT);
430 }
431 
432 static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable)
433 {
434 	/* If there is no connection we are OK to advertise. */
435 	if (hci_conn_num(hdev, LE_LINK) == 0)
436 		return true;
437 
438 	/* Check le_states if there is any connection in peripheral role. */
439 	if (hdev->conn_hash.le_num_peripheral > 0) {
440 		/* Peripheral connection state and non connectable mode
441 		 * bit 20.
442 		 */
443 		if (!connectable && !(hdev->le_states[2] & 0x10))
444 			return false;
445 
446 		/* Peripheral connection state and connectable mode bit 38
447 		 * and scannable bit 21.
448 		 */
449 		if (connectable && (!(hdev->le_states[4] & 0x40) ||
450 				    !(hdev->le_states[2] & 0x20)))
451 			return false;
452 	}
453 
454 	/* Check le_states if there is any connection in central role. */
455 	if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) {
456 		/* Central connection state and non connectable mode bit 18. */
457 		if (!connectable && !(hdev->le_states[2] & 0x02))
458 			return false;
459 
460 		/* Central connection state and connectable mode bit 35 and
461 		 * scannable 19.
462 		 */
463 		if (connectable && (!(hdev->le_states[4] & 0x08) ||
464 				    !(hdev->le_states[2] & 0x08)))
465 			return false;
466 	}
467 
468 	return true;
469 }
470 
471 static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
472 {
473 	/* If privacy is not enabled don't use RPA */
474 	if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
475 		return false;
476 
477 	/* If basic privacy mode is enabled use RPA */
478 	if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
479 		return true;
480 
481 	/* If limited privacy mode is enabled don't use RPA if we're
482 	 * both discoverable and bondable.
483 	 */
484 	if ((flags & MGMT_ADV_FLAG_DISCOV) &&
485 	    hci_dev_test_flag(hdev, HCI_BONDABLE))
486 		return false;
487 
488 	/* We're neither bondable nor discoverable in the limited
489 	 * privacy mode, therefore use RPA.
490 	 */
491 	return true;
492 }
493 
494 static int hci_set_random_addr_sync(struct hci_dev *hdev, bdaddr_t *rpa)
495 {
496 	/* If we're advertising or initiating an LE connection we can't
497 	 * go ahead and change the random address at this time. This is
498 	 * because the eventual initiator address used for the
499 	 * subsequently created connection will be undefined (some
500 	 * controllers use the new address and others the one we had
501 	 * when the operation started).
502 	 *
503 	 * In this kind of scenario skip the update and let the random
504 	 * address be updated at the next cycle.
505 	 */
506 	if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
507 	    hci_lookup_le_connect(hdev)) {
508 		bt_dev_dbg(hdev, "Deferring random address update");
509 		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
510 		return 0;
511 	}
512 
513 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RANDOM_ADDR,
514 				     6, rpa, HCI_CMD_TIMEOUT);
515 }
516 
517 int hci_update_random_address_sync(struct hci_dev *hdev, bool require_privacy,
518 				   bool rpa, u8 *own_addr_type)
519 {
520 	int err;
521 
522 	/* If privacy is enabled use a resolvable private address. If
523 	 * current RPA has expired or there is something else than
524 	 * the current RPA in use, then generate a new one.
525 	 */
526 	if (rpa) {
527 		/* If Controller supports LL Privacy use own address type is
528 		 * 0x03
529 		 */
530 		if (use_ll_privacy(hdev))
531 			*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
532 		else
533 			*own_addr_type = ADDR_LE_DEV_RANDOM;
534 
535 		/* Check if RPA is valid */
536 		if (rpa_valid(hdev))
537 			return 0;
538 
539 		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
540 		if (err < 0) {
541 			bt_dev_err(hdev, "failed to generate new RPA");
542 			return err;
543 		}
544 
545 		err = hci_set_random_addr_sync(hdev, &hdev->rpa);
546 		if (err)
547 			return err;
548 
549 		return 0;
550 	}
551 
552 	/* In case of required privacy without resolvable private address,
553 	 * use an non-resolvable private address. This is useful for active
554 	 * scanning and non-connectable advertising.
555 	 */
556 	if (require_privacy) {
557 		bdaddr_t nrpa;
558 
559 		while (true) {
560 			/* The non-resolvable private address is generated
561 			 * from random six bytes with the two most significant
562 			 * bits cleared.
563 			 */
564 			get_random_bytes(&nrpa, 6);
565 			nrpa.b[5] &= 0x3f;
566 
567 			/* The non-resolvable private address shall not be
568 			 * equal to the public address.
569 			 */
570 			if (bacmp(&hdev->bdaddr, &nrpa))
571 				break;
572 		}
573 
574 		*own_addr_type = ADDR_LE_DEV_RANDOM;
575 
576 		return hci_set_random_addr_sync(hdev, &nrpa);
577 	}
578 
579 	/* If forcing static address is in use or there is no public
580 	 * address use the static address as random address (but skip
581 	 * the HCI command if the current random address is already the
582 	 * static one.
583 	 *
584 	 * In case BR/EDR has been disabled on a dual-mode controller
585 	 * and a static address has been configured, then use that
586 	 * address instead of the public BR/EDR address.
587 	 */
588 	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
589 	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
590 	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
591 	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
592 		*own_addr_type = ADDR_LE_DEV_RANDOM;
593 		if (bacmp(&hdev->static_addr, &hdev->random_addr))
594 			return hci_set_random_addr_sync(hdev,
595 							&hdev->static_addr);
596 		return 0;
597 	}
598 
599 	/* Neither privacy nor static address is being used so use a
600 	 * public address.
601 	 */
602 	*own_addr_type = ADDR_LE_DEV_PUBLIC;
603 
604 	return 0;
605 }
606 
607 static int hci_disable_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance)
608 {
609 	struct hci_cp_le_set_ext_adv_enable *cp;
610 	struct hci_cp_ext_adv_set *set;
611 	u8 data[sizeof(*cp) + sizeof(*set) * 1];
612 	u8 size;
613 
614 	/* If request specifies an instance that doesn't exist, fail */
615 	if (instance > 0) {
616 		struct adv_info *adv;
617 
618 		adv = hci_find_adv_instance(hdev, instance);
619 		if (!adv)
620 			return -EINVAL;
621 
622 		/* If not enabled there is nothing to do */
623 		if (!adv->enabled)
624 			return 0;
625 	}
626 
627 	memset(data, 0, sizeof(data));
628 
629 	cp = (void *)data;
630 	set = (void *)cp->data;
631 
632 	/* Instance 0x00 indicates all advertising instances will be disabled */
633 	cp->num_of_sets = !!instance;
634 	cp->enable = 0x00;
635 
636 	set->handle = instance;
637 
638 	size = sizeof(*cp) + sizeof(*set) * cp->num_of_sets;
639 
640 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE,
641 				     size, data, HCI_CMD_TIMEOUT);
642 }
643 
644 static int hci_set_adv_set_random_addr_sync(struct hci_dev *hdev, u8 instance,
645 					    bdaddr_t *random_addr)
646 {
647 	struct hci_cp_le_set_adv_set_rand_addr cp;
648 	int err;
649 
650 	if (!instance) {
651 		/* Instance 0x00 doesn't have an adv_info, instead it uses
652 		 * hdev->random_addr to track its address so whenever it needs
653 		 * to be updated this also set the random address since
654 		 * hdev->random_addr is shared with scan state machine.
655 		 */
656 		err = hci_set_random_addr_sync(hdev, random_addr);
657 		if (err)
658 			return err;
659 	}
660 
661 	memset(&cp, 0, sizeof(cp));
662 
663 	cp.handle = instance;
664 	bacpy(&cp.bdaddr, random_addr);
665 
666 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
667 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
668 }
669 
670 int hci_setup_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance)
671 {
672 	struct hci_cp_le_set_ext_adv_params cp;
673 	bool connectable;
674 	u32 flags;
675 	bdaddr_t random_addr;
676 	u8 own_addr_type;
677 	int err;
678 	struct adv_info *adv;
679 	bool secondary_adv;
680 
681 	if (instance > 0) {
682 		adv = hci_find_adv_instance(hdev, instance);
683 		if (!adv)
684 			return -EINVAL;
685 	} else {
686 		adv = NULL;
687 	}
688 
689 	/* Updating parameters of an active instance will return a
690 	 * Command Disallowed error, so we must first disable the
691 	 * instance if it is active.
692 	 */
693 	if (adv && !adv->pending) {
694 		err = hci_disable_ext_adv_instance_sync(hdev, instance);
695 		if (err)
696 			return err;
697 	}
698 
699 	flags = hci_adv_instance_flags(hdev, instance);
700 
701 	/* If the "connectable" instance flag was not set, then choose between
702 	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
703 	 */
704 	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
705 		      mgmt_get_connectable(hdev);
706 
707 	if (!is_advertising_allowed(hdev, connectable))
708 		return -EPERM;
709 
710 	/* Set require_privacy to true only when non-connectable
711 	 * advertising is used. In that case it is fine to use a
712 	 * non-resolvable private address.
713 	 */
714 	err = hci_get_random_address(hdev, !connectable,
715 				     adv_use_rpa(hdev, flags), adv,
716 				     &own_addr_type, &random_addr);
717 	if (err < 0)
718 		return err;
719 
720 	memset(&cp, 0, sizeof(cp));
721 
722 	if (adv) {
723 		hci_cpu_to_le24(adv->min_interval, cp.min_interval);
724 		hci_cpu_to_le24(adv->max_interval, cp.max_interval);
725 		cp.tx_power = adv->tx_power;
726 	} else {
727 		hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval);
728 		hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval);
729 		cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE;
730 	}
731 
732 	secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK);
733 
734 	if (connectable) {
735 		if (secondary_adv)
736 			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND);
737 		else
738 			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND);
739 	} else if (hci_adv_instance_is_scannable(hdev, instance) ||
740 		   (flags & MGMT_ADV_PARAM_SCAN_RSP)) {
741 		if (secondary_adv)
742 			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND);
743 		else
744 			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND);
745 	} else {
746 		if (secondary_adv)
747 			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND);
748 		else
749 			cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND);
750 	}
751 
752 	/* If Own_Address_Type equals 0x02 or 0x03, the Peer_Address parameter
753 	 * contains the peer’s Identity Address and the Peer_Address_Type
754 	 * parameter contains the peer’s Identity Type (i.e., 0x00 or 0x01).
755 	 * These parameters are used to locate the corresponding local IRK in
756 	 * the resolving list; this IRK is used to generate their own address
757 	 * used in the advertisement.
758 	 */
759 	if (own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED)
760 		hci_copy_identity_address(hdev, &cp.peer_addr,
761 					  &cp.peer_addr_type);
762 
763 	cp.own_addr_type = own_addr_type;
764 	cp.channel_map = hdev->le_adv_channel_map;
765 	cp.handle = instance;
766 
767 	if (flags & MGMT_ADV_FLAG_SEC_2M) {
768 		cp.primary_phy = HCI_ADV_PHY_1M;
769 		cp.secondary_phy = HCI_ADV_PHY_2M;
770 	} else if (flags & MGMT_ADV_FLAG_SEC_CODED) {
771 		cp.primary_phy = HCI_ADV_PHY_CODED;
772 		cp.secondary_phy = HCI_ADV_PHY_CODED;
773 	} else {
774 		/* In all other cases use 1M */
775 		cp.primary_phy = HCI_ADV_PHY_1M;
776 		cp.secondary_phy = HCI_ADV_PHY_1M;
777 	}
778 
779 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS,
780 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
781 	if (err)
782 		return err;
783 
784 	if ((own_addr_type == ADDR_LE_DEV_RANDOM ||
785 	     own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) &&
786 	    bacmp(&random_addr, BDADDR_ANY)) {
787 		/* Check if random address need to be updated */
788 		if (adv) {
789 			if (!bacmp(&random_addr, &adv->random_addr))
790 				return 0;
791 		} else {
792 			if (!bacmp(&random_addr, &hdev->random_addr))
793 				return 0;
794 		}
795 
796 		return hci_set_adv_set_random_addr_sync(hdev, instance,
797 							&random_addr);
798 	}
799 
800 	return 0;
801 }
802 
803 static int hci_set_ext_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
804 {
805 	struct {
806 		struct hci_cp_le_set_ext_scan_rsp_data cp;
807 		u8 data[HCI_MAX_EXT_AD_LENGTH];
808 	} pdu;
809 	u8 len;
810 
811 	memset(&pdu, 0, sizeof(pdu));
812 
813 	len = eir_create_scan_rsp(hdev, instance, pdu.data);
814 
815 	if (hdev->scan_rsp_data_len == len &&
816 	    !memcmp(pdu.data, hdev->scan_rsp_data, len))
817 		return 0;
818 
819 	memcpy(hdev->scan_rsp_data, pdu.data, len);
820 	hdev->scan_rsp_data_len = len;
821 
822 	pdu.cp.handle = instance;
823 	pdu.cp.length = len;
824 	pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
825 	pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
826 
827 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA,
828 				     sizeof(pdu.cp) + len, &pdu.cp,
829 				     HCI_CMD_TIMEOUT);
830 }
831 
832 static int __hci_set_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
833 {
834 	struct hci_cp_le_set_scan_rsp_data cp;
835 	u8 len;
836 
837 	memset(&cp, 0, sizeof(cp));
838 
839 	len = eir_create_scan_rsp(hdev, instance, cp.data);
840 
841 	if (hdev->scan_rsp_data_len == len &&
842 	    !memcmp(cp.data, hdev->scan_rsp_data, len))
843 		return 0;
844 
845 	memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
846 	hdev->scan_rsp_data_len = len;
847 
848 	cp.length = len;
849 
850 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_RSP_DATA,
851 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
852 }
853 
854 int hci_update_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
855 {
856 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
857 		return 0;
858 
859 	if (ext_adv_capable(hdev))
860 		return hci_set_ext_scan_rsp_data_sync(hdev, instance);
861 
862 	return __hci_set_scan_rsp_data_sync(hdev, instance);
863 }
864 
865 int hci_enable_ext_advertising_sync(struct hci_dev *hdev, u8 instance)
866 {
867 	struct hci_cp_le_set_ext_adv_enable *cp;
868 	struct hci_cp_ext_adv_set *set;
869 	u8 data[sizeof(*cp) + sizeof(*set) * 1];
870 	struct adv_info *adv;
871 
872 	if (instance > 0) {
873 		adv = hci_find_adv_instance(hdev, instance);
874 		if (!adv)
875 			return -EINVAL;
876 		/* If already enabled there is nothing to do */
877 		if (adv->enabled)
878 			return 0;
879 	} else {
880 		adv = NULL;
881 	}
882 
883 	cp = (void *)data;
884 	set = (void *)cp->data;
885 
886 	memset(cp, 0, sizeof(*cp));
887 
888 	cp->enable = 0x01;
889 	cp->num_of_sets = 0x01;
890 
891 	memset(set, 0, sizeof(*set));
892 
893 	set->handle = instance;
894 
895 	/* Set duration per instance since controller is responsible for
896 	 * scheduling it.
897 	 */
898 	if (adv && adv->timeout) {
899 		u16 duration = adv->timeout * MSEC_PER_SEC;
900 
901 		/* Time = N * 10 ms */
902 		set->duration = cpu_to_le16(duration / 10);
903 	}
904 
905 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE,
906 				     sizeof(*cp) +
907 				     sizeof(*set) * cp->num_of_sets,
908 				     data, HCI_CMD_TIMEOUT);
909 }
910 
911 int hci_start_ext_adv_sync(struct hci_dev *hdev, u8 instance)
912 {
913 	int err;
914 
915 	err = hci_setup_ext_adv_instance_sync(hdev, instance);
916 	if (err)
917 		return err;
918 
919 	err = hci_set_ext_scan_rsp_data_sync(hdev, instance);
920 	if (err)
921 		return err;
922 
923 	return hci_enable_ext_advertising_sync(hdev, instance);
924 }
925 
926 static int hci_start_adv_sync(struct hci_dev *hdev, u8 instance)
927 {
928 	int err;
929 
930 	if (ext_adv_capable(hdev))
931 		return hci_start_ext_adv_sync(hdev, instance);
932 
933 	err = hci_update_adv_data_sync(hdev, instance);
934 	if (err)
935 		return err;
936 
937 	err = hci_update_scan_rsp_data_sync(hdev, instance);
938 	if (err)
939 		return err;
940 
941 	return hci_enable_advertising_sync(hdev);
942 }
943 
944 int hci_enable_advertising_sync(struct hci_dev *hdev)
945 {
946 	struct adv_info *adv_instance;
947 	struct hci_cp_le_set_adv_param cp;
948 	u8 own_addr_type, enable = 0x01;
949 	bool connectable;
950 	u16 adv_min_interval, adv_max_interval;
951 	u32 flags;
952 	u8 status;
953 
954 	if (ext_adv_capable(hdev))
955 		return hci_enable_ext_advertising_sync(hdev,
956 						       hdev->cur_adv_instance);
957 
958 	flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance);
959 	adv_instance = hci_find_adv_instance(hdev, hdev->cur_adv_instance);
960 
961 	/* If the "connectable" instance flag was not set, then choose between
962 	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
963 	 */
964 	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
965 		      mgmt_get_connectable(hdev);
966 
967 	if (!is_advertising_allowed(hdev, connectable))
968 		return -EINVAL;
969 
970 	status = hci_disable_advertising_sync(hdev);
971 	if (status)
972 		return status;
973 
974 	/* Clear the HCI_LE_ADV bit temporarily so that the
975 	 * hci_update_random_address knows that it's safe to go ahead
976 	 * and write a new random address. The flag will be set back on
977 	 * as soon as the SET_ADV_ENABLE HCI command completes.
978 	 */
979 	hci_dev_clear_flag(hdev, HCI_LE_ADV);
980 
981 	/* Set require_privacy to true only when non-connectable
982 	 * advertising is used. In that case it is fine to use a
983 	 * non-resolvable private address.
984 	 */
985 	status = hci_update_random_address_sync(hdev, !connectable,
986 						adv_use_rpa(hdev, flags),
987 						&own_addr_type);
988 	if (status)
989 		return status;
990 
991 	memset(&cp, 0, sizeof(cp));
992 
993 	if (adv_instance) {
994 		adv_min_interval = adv_instance->min_interval;
995 		adv_max_interval = adv_instance->max_interval;
996 	} else {
997 		adv_min_interval = hdev->le_adv_min_interval;
998 		adv_max_interval = hdev->le_adv_max_interval;
999 	}
1000 
1001 	if (connectable) {
1002 		cp.type = LE_ADV_IND;
1003 	} else {
1004 		if (hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance))
1005 			cp.type = LE_ADV_SCAN_IND;
1006 		else
1007 			cp.type = LE_ADV_NONCONN_IND;
1008 
1009 		if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) ||
1010 		    hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
1011 			adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN;
1012 			adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX;
1013 		}
1014 	}
1015 
1016 	cp.min_interval = cpu_to_le16(adv_min_interval);
1017 	cp.max_interval = cpu_to_le16(adv_max_interval);
1018 	cp.own_address_type = own_addr_type;
1019 	cp.channel_map = hdev->le_adv_channel_map;
1020 
1021 	status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM,
1022 				       sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1023 	if (status)
1024 		return status;
1025 
1026 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
1027 				     sizeof(enable), &enable, HCI_CMD_TIMEOUT);
1028 }
1029 
1030 static int enable_advertising_sync(struct hci_dev *hdev, void *data)
1031 {
1032 	return hci_enable_advertising_sync(hdev);
1033 }
1034 
1035 int hci_enable_advertising(struct hci_dev *hdev)
1036 {
1037 	if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
1038 	    list_empty(&hdev->adv_instances))
1039 		return 0;
1040 
1041 	return hci_cmd_sync_queue(hdev, enable_advertising_sync, NULL, NULL);
1042 }
1043 
1044 int hci_remove_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance,
1045 				     struct sock *sk)
1046 {
1047 	int err;
1048 
1049 	if (!ext_adv_capable(hdev))
1050 		return 0;
1051 
1052 	err = hci_disable_ext_adv_instance_sync(hdev, instance);
1053 	if (err)
1054 		return err;
1055 
1056 	/* If request specifies an instance that doesn't exist, fail */
1057 	if (instance > 0 && !hci_find_adv_instance(hdev, instance))
1058 		return -EINVAL;
1059 
1060 	return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_REMOVE_ADV_SET,
1061 					sizeof(instance), &instance, 0,
1062 					HCI_CMD_TIMEOUT, sk);
1063 }
1064 
1065 static void cancel_adv_timeout(struct hci_dev *hdev)
1066 {
1067 	if (hdev->adv_instance_timeout) {
1068 		hdev->adv_instance_timeout = 0;
1069 		cancel_delayed_work(&hdev->adv_instance_expire);
1070 	}
1071 }
1072 
1073 static int hci_set_ext_adv_data_sync(struct hci_dev *hdev, u8 instance)
1074 {
1075 	struct {
1076 		struct hci_cp_le_set_ext_adv_data cp;
1077 		u8 data[HCI_MAX_EXT_AD_LENGTH];
1078 	} pdu;
1079 	u8 len;
1080 
1081 	memset(&pdu, 0, sizeof(pdu));
1082 
1083 	len = eir_create_adv_data(hdev, instance, pdu.data);
1084 
1085 	/* There's nothing to do if the data hasn't changed */
1086 	if (hdev->adv_data_len == len &&
1087 	    memcmp(pdu.data, hdev->adv_data, len) == 0)
1088 		return 0;
1089 
1090 	memcpy(hdev->adv_data, pdu.data, len);
1091 	hdev->adv_data_len = len;
1092 
1093 	pdu.cp.length = len;
1094 	pdu.cp.handle = instance;
1095 	pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1096 	pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1097 
1098 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_DATA,
1099 				     sizeof(pdu.cp) + len, &pdu.cp,
1100 				     HCI_CMD_TIMEOUT);
1101 }
1102 
1103 static int hci_set_adv_data_sync(struct hci_dev *hdev, u8 instance)
1104 {
1105 	struct hci_cp_le_set_adv_data cp;
1106 	u8 len;
1107 
1108 	memset(&cp, 0, sizeof(cp));
1109 
1110 	len = eir_create_adv_data(hdev, instance, cp.data);
1111 
1112 	/* There's nothing to do if the data hasn't changed */
1113 	if (hdev->adv_data_len == len &&
1114 	    memcmp(cp.data, hdev->adv_data, len) == 0)
1115 		return 0;
1116 
1117 	memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1118 	hdev->adv_data_len = len;
1119 
1120 	cp.length = len;
1121 
1122 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_DATA,
1123 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1124 }
1125 
1126 int hci_update_adv_data_sync(struct hci_dev *hdev, u8 instance)
1127 {
1128 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1129 		return 0;
1130 
1131 	if (ext_adv_capable(hdev))
1132 		return hci_set_ext_adv_data_sync(hdev, instance);
1133 
1134 	return hci_set_adv_data_sync(hdev, instance);
1135 }
1136 
1137 int hci_schedule_adv_instance_sync(struct hci_dev *hdev, u8 instance,
1138 				   bool force)
1139 {
1140 	struct adv_info *adv = NULL;
1141 	u16 timeout;
1142 
1143 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) && !ext_adv_capable(hdev))
1144 		return -EPERM;
1145 
1146 	if (hdev->adv_instance_timeout)
1147 		return -EBUSY;
1148 
1149 	adv = hci_find_adv_instance(hdev, instance);
1150 	if (!adv)
1151 		return -ENOENT;
1152 
1153 	/* A zero timeout means unlimited advertising. As long as there is
1154 	 * only one instance, duration should be ignored. We still set a timeout
1155 	 * in case further instances are being added later on.
1156 	 *
1157 	 * If the remaining lifetime of the instance is more than the duration
1158 	 * then the timeout corresponds to the duration, otherwise it will be
1159 	 * reduced to the remaining instance lifetime.
1160 	 */
1161 	if (adv->timeout == 0 || adv->duration <= adv->remaining_time)
1162 		timeout = adv->duration;
1163 	else
1164 		timeout = adv->remaining_time;
1165 
1166 	/* The remaining time is being reduced unless the instance is being
1167 	 * advertised without time limit.
1168 	 */
1169 	if (adv->timeout)
1170 		adv->remaining_time = adv->remaining_time - timeout;
1171 
1172 	/* Only use work for scheduling instances with legacy advertising */
1173 	if (!ext_adv_capable(hdev)) {
1174 		hdev->adv_instance_timeout = timeout;
1175 		queue_delayed_work(hdev->req_workqueue,
1176 				   &hdev->adv_instance_expire,
1177 				   msecs_to_jiffies(timeout * 1000));
1178 	}
1179 
1180 	/* If we're just re-scheduling the same instance again then do not
1181 	 * execute any HCI commands. This happens when a single instance is
1182 	 * being advertised.
1183 	 */
1184 	if (!force && hdev->cur_adv_instance == instance &&
1185 	    hci_dev_test_flag(hdev, HCI_LE_ADV))
1186 		return 0;
1187 
1188 	hdev->cur_adv_instance = instance;
1189 
1190 	return hci_start_adv_sync(hdev, instance);
1191 }
1192 
1193 static int hci_clear_adv_sets_sync(struct hci_dev *hdev, struct sock *sk)
1194 {
1195 	int err;
1196 
1197 	if (!ext_adv_capable(hdev))
1198 		return 0;
1199 
1200 	/* Disable instance 0x00 to disable all instances */
1201 	err = hci_disable_ext_adv_instance_sync(hdev, 0x00);
1202 	if (err)
1203 		return err;
1204 
1205 	return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CLEAR_ADV_SETS,
1206 					0, NULL, 0, HCI_CMD_TIMEOUT, sk);
1207 }
1208 
1209 static int hci_clear_adv_sync(struct hci_dev *hdev, struct sock *sk, bool force)
1210 {
1211 	struct adv_info *adv, *n;
1212 
1213 	if (ext_adv_capable(hdev))
1214 		/* Remove all existing sets */
1215 		return hci_clear_adv_sets_sync(hdev, sk);
1216 
1217 	/* This is safe as long as there is no command send while the lock is
1218 	 * held.
1219 	 */
1220 	hci_dev_lock(hdev);
1221 
1222 	/* Cleanup non-ext instances */
1223 	list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) {
1224 		u8 instance = adv->instance;
1225 		int err;
1226 
1227 		if (!(force || adv->timeout))
1228 			continue;
1229 
1230 		err = hci_remove_adv_instance(hdev, instance);
1231 		if (!err)
1232 			mgmt_advertising_removed(sk, hdev, instance);
1233 	}
1234 
1235 	hci_dev_unlock(hdev);
1236 
1237 	return 0;
1238 }
1239 
1240 static int hci_remove_adv_sync(struct hci_dev *hdev, u8 instance,
1241 			       struct sock *sk)
1242 {
1243 	int err;
1244 
1245 	/* If we use extended advertising, instance has to be removed first. */
1246 	if (ext_adv_capable(hdev))
1247 		return hci_remove_ext_adv_instance_sync(hdev, instance, sk);
1248 
1249 	/* This is safe as long as there is no command send while the lock is
1250 	 * held.
1251 	 */
1252 	hci_dev_lock(hdev);
1253 
1254 	err = hci_remove_adv_instance(hdev, instance);
1255 	if (!err)
1256 		mgmt_advertising_removed(sk, hdev, instance);
1257 
1258 	hci_dev_unlock(hdev);
1259 
1260 	return err;
1261 }
1262 
1263 /* For a single instance:
1264  * - force == true: The instance will be removed even when its remaining
1265  *   lifetime is not zero.
1266  * - force == false: the instance will be deactivated but kept stored unless
1267  *   the remaining lifetime is zero.
1268  *
1269  * For instance == 0x00:
1270  * - force == true: All instances will be removed regardless of their timeout
1271  *   setting.
1272  * - force == false: Only instances that have a timeout will be removed.
1273  */
1274 int hci_remove_advertising_sync(struct hci_dev *hdev, struct sock *sk,
1275 				u8 instance, bool force)
1276 {
1277 	struct adv_info *next = NULL;
1278 	int err;
1279 
1280 	/* Cancel any timeout concerning the removed instance(s). */
1281 	if (!instance || hdev->cur_adv_instance == instance)
1282 		cancel_adv_timeout(hdev);
1283 
1284 	/* Get the next instance to advertise BEFORE we remove
1285 	 * the current one. This can be the same instance again
1286 	 * if there is only one instance.
1287 	 */
1288 	if (hdev->cur_adv_instance == instance)
1289 		next = hci_get_next_instance(hdev, instance);
1290 
1291 	if (!instance) {
1292 		err = hci_clear_adv_sync(hdev, sk, force);
1293 		if (err)
1294 			return err;
1295 	} else {
1296 		struct adv_info *adv = hci_find_adv_instance(hdev, instance);
1297 
1298 		if (force || (adv && adv->timeout && !adv->remaining_time)) {
1299 			/* Don't advertise a removed instance. */
1300 			if (next && next->instance == instance)
1301 				next = NULL;
1302 
1303 			err = hci_remove_adv_sync(hdev, instance, sk);
1304 			if (err)
1305 				return err;
1306 		}
1307 	}
1308 
1309 	if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING))
1310 		return 0;
1311 
1312 	if (next && !ext_adv_capable(hdev))
1313 		hci_schedule_adv_instance_sync(hdev, next->instance, false);
1314 
1315 	return 0;
1316 }
1317 
1318 int hci_read_rssi_sync(struct hci_dev *hdev, __le16 handle)
1319 {
1320 	struct hci_cp_read_rssi cp;
1321 
1322 	cp.handle = handle;
1323 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_RSSI,
1324 					sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1325 }
1326 
1327 int hci_read_clock_sync(struct hci_dev *hdev, struct hci_cp_read_clock *cp)
1328 {
1329 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLOCK,
1330 					sizeof(*cp), cp, HCI_CMD_TIMEOUT);
1331 }
1332 
1333 int hci_read_tx_power_sync(struct hci_dev *hdev, __le16 handle, u8 type)
1334 {
1335 	struct hci_cp_read_tx_power cp;
1336 
1337 	cp.handle = handle;
1338 	cp.type = type;
1339 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_TX_POWER,
1340 					sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1341 }
1342 
1343 int hci_disable_advertising_sync(struct hci_dev *hdev)
1344 {
1345 	u8 enable = 0x00;
1346 
1347 	/* If controller is not advertising we are done. */
1348 	if (!hci_dev_test_flag(hdev, HCI_LE_ADV))
1349 		return 0;
1350 
1351 	if (ext_adv_capable(hdev))
1352 		return hci_disable_ext_adv_instance_sync(hdev, 0x00);
1353 
1354 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
1355 				     sizeof(enable), &enable, HCI_CMD_TIMEOUT);
1356 }
1357 
1358 static int hci_le_set_ext_scan_enable_sync(struct hci_dev *hdev, u8 val,
1359 					   u8 filter_dup)
1360 {
1361 	struct hci_cp_le_set_ext_scan_enable cp;
1362 
1363 	memset(&cp, 0, sizeof(cp));
1364 	cp.enable = val;
1365 	cp.filter_dup = filter_dup;
1366 
1367 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
1368 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1369 }
1370 
1371 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val,
1372 				       u8 filter_dup)
1373 {
1374 	struct hci_cp_le_set_scan_enable cp;
1375 
1376 	if (use_ext_scan(hdev))
1377 		return hci_le_set_ext_scan_enable_sync(hdev, val, filter_dup);
1378 
1379 	memset(&cp, 0, sizeof(cp));
1380 	cp.enable = val;
1381 	cp.filter_dup = filter_dup;
1382 
1383 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_ENABLE,
1384 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1385 }
1386 
1387 static int hci_le_set_addr_resolution_enable_sync(struct hci_dev *hdev, u8 val)
1388 {
1389 	if (!use_ll_privacy(hdev))
1390 		return 0;
1391 
1392 	/* If controller is not/already resolving we are done. */
1393 	if (val == hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION))
1394 		return 0;
1395 
1396 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE,
1397 				     sizeof(val), &val, HCI_CMD_TIMEOUT);
1398 }
1399 
1400 static int hci_scan_disable_sync(struct hci_dev *hdev)
1401 {
1402 	int err;
1403 
1404 	/* If controller is not scanning we are done. */
1405 	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
1406 		return 0;
1407 
1408 	if (hdev->scanning_paused) {
1409 		bt_dev_dbg(hdev, "Scanning is paused for suspend");
1410 		return 0;
1411 	}
1412 
1413 	err = hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00);
1414 	if (err) {
1415 		bt_dev_err(hdev, "Unable to disable scanning: %d", err);
1416 		return err;
1417 	}
1418 
1419 	return err;
1420 }
1421 
1422 static bool scan_use_rpa(struct hci_dev *hdev)
1423 {
1424 	return hci_dev_test_flag(hdev, HCI_PRIVACY);
1425 }
1426 
1427 static void hci_start_interleave_scan(struct hci_dev *hdev)
1428 {
1429 	hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER;
1430 	queue_delayed_work(hdev->req_workqueue,
1431 			   &hdev->interleave_scan, 0);
1432 }
1433 
1434 static bool is_interleave_scanning(struct hci_dev *hdev)
1435 {
1436 	return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE;
1437 }
1438 
1439 static void cancel_interleave_scan(struct hci_dev *hdev)
1440 {
1441 	bt_dev_dbg(hdev, "cancelling interleave scan");
1442 
1443 	cancel_delayed_work_sync(&hdev->interleave_scan);
1444 
1445 	hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE;
1446 }
1447 
1448 /* Return true if interleave_scan wasn't started until exiting this function,
1449  * otherwise, return false
1450  */
1451 static bool hci_update_interleaved_scan_sync(struct hci_dev *hdev)
1452 {
1453 	/* Do interleaved scan only if all of the following are true:
1454 	 * - There is at least one ADV monitor
1455 	 * - At least one pending LE connection or one device to be scanned for
1456 	 * - Monitor offloading is not supported
1457 	 * If so, we should alternate between allowlist scan and one without
1458 	 * any filters to save power.
1459 	 */
1460 	bool use_interleaving = hci_is_adv_monitoring(hdev) &&
1461 				!(list_empty(&hdev->pend_le_conns) &&
1462 				  list_empty(&hdev->pend_le_reports)) &&
1463 				hci_get_adv_monitor_offload_ext(hdev) ==
1464 				    HCI_ADV_MONITOR_EXT_NONE;
1465 	bool is_interleaving = is_interleave_scanning(hdev);
1466 
1467 	if (use_interleaving && !is_interleaving) {
1468 		hci_start_interleave_scan(hdev);
1469 		bt_dev_dbg(hdev, "starting interleave scan");
1470 		return true;
1471 	}
1472 
1473 	if (!use_interleaving && is_interleaving)
1474 		cancel_interleave_scan(hdev);
1475 
1476 	return false;
1477 }
1478 
1479 /* Removes connection to resolve list if needed.*/
1480 static int hci_le_del_resolve_list_sync(struct hci_dev *hdev,
1481 					bdaddr_t *bdaddr, u8 bdaddr_type)
1482 {
1483 	struct hci_cp_le_del_from_resolv_list cp;
1484 	struct bdaddr_list_with_irk *entry;
1485 
1486 	if (!use_ll_privacy(hdev))
1487 		return 0;
1488 
1489 	/* Check if the IRK has been programmed */
1490 	entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, bdaddr,
1491 						bdaddr_type);
1492 	if (!entry)
1493 		return 0;
1494 
1495 	cp.bdaddr_type = bdaddr_type;
1496 	bacpy(&cp.bdaddr, bdaddr);
1497 
1498 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_RESOLV_LIST,
1499 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1500 }
1501 
1502 static int hci_le_del_accept_list_sync(struct hci_dev *hdev,
1503 				       bdaddr_t *bdaddr, u8 bdaddr_type)
1504 {
1505 	struct hci_cp_le_del_from_accept_list cp;
1506 	int err;
1507 
1508 	/* Check if device is on accept list before removing it */
1509 	if (!hci_bdaddr_list_lookup(&hdev->le_accept_list, bdaddr, bdaddr_type))
1510 		return 0;
1511 
1512 	cp.bdaddr_type = bdaddr_type;
1513 	bacpy(&cp.bdaddr, bdaddr);
1514 
1515 	/* Ignore errors when removing from resolving list as that is likely
1516 	 * that the device was never added.
1517 	 */
1518 	hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type);
1519 
1520 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_ACCEPT_LIST,
1521 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1522 	if (err) {
1523 		bt_dev_err(hdev, "Unable to remove from allow list: %d", err);
1524 		return err;
1525 	}
1526 
1527 	bt_dev_dbg(hdev, "Remove %pMR (0x%x) from allow list", &cp.bdaddr,
1528 		   cp.bdaddr_type);
1529 
1530 	return 0;
1531 }
1532 
1533 /* Adds connection to resolve list if needed.
1534  * Setting params to NULL programs local hdev->irk
1535  */
1536 static int hci_le_add_resolve_list_sync(struct hci_dev *hdev,
1537 					struct hci_conn_params *params)
1538 {
1539 	struct hci_cp_le_add_to_resolv_list cp;
1540 	struct smp_irk *irk;
1541 	struct bdaddr_list_with_irk *entry;
1542 
1543 	if (!use_ll_privacy(hdev))
1544 		return 0;
1545 
1546 	/* Attempt to program local identity address, type and irk if params is
1547 	 * NULL.
1548 	 */
1549 	if (!params) {
1550 		if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
1551 			return 0;
1552 
1553 		hci_copy_identity_address(hdev, &cp.bdaddr, &cp.bdaddr_type);
1554 		memcpy(cp.peer_irk, hdev->irk, 16);
1555 		goto done;
1556 	}
1557 
1558 	irk = hci_find_irk_by_addr(hdev, &params->addr, params->addr_type);
1559 	if (!irk)
1560 		return 0;
1561 
1562 	/* Check if the IK has _not_ been programmed yet. */
1563 	entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list,
1564 						&params->addr,
1565 						params->addr_type);
1566 	if (entry)
1567 		return 0;
1568 
1569 	cp.bdaddr_type = params->addr_type;
1570 	bacpy(&cp.bdaddr, &params->addr);
1571 	memcpy(cp.peer_irk, irk->val, 16);
1572 
1573 done:
1574 	if (hci_dev_test_flag(hdev, HCI_PRIVACY))
1575 		memcpy(cp.local_irk, hdev->irk, 16);
1576 	else
1577 		memset(cp.local_irk, 0, 16);
1578 
1579 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_RESOLV_LIST,
1580 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1581 }
1582 
1583 /* Adds connection to allow list if needed, if the device uses RPA (has IRK)
1584  * this attempts to program the device in the resolving list as well.
1585  */
1586 static int hci_le_add_accept_list_sync(struct hci_dev *hdev,
1587 				       struct hci_conn_params *params,
1588 				       u8 *num_entries)
1589 {
1590 	struct hci_cp_le_add_to_accept_list cp;
1591 	int err;
1592 
1593 	/* Already in accept list */
1594 	if (hci_bdaddr_list_lookup(&hdev->le_accept_list, &params->addr,
1595 				   params->addr_type))
1596 		return 0;
1597 
1598 	/* Select filter policy to accept all advertising */
1599 	if (*num_entries >= hdev->le_accept_list_size)
1600 		return -ENOSPC;
1601 
1602 	/* Accept list can not be used with RPAs */
1603 	if (!use_ll_privacy(hdev) &&
1604 	    hci_find_irk_by_addr(hdev, &params->addr, params->addr_type)) {
1605 		return -EINVAL;
1606 	}
1607 
1608 	/* During suspend, only wakeable devices can be in acceptlist */
1609 	if (hdev->suspended && !hci_conn_test_flag(HCI_CONN_FLAG_REMOTE_WAKEUP,
1610 						   params->current_flags))
1611 		return 0;
1612 
1613 	/* Attempt to program the device in the resolving list first to avoid
1614 	 * having to rollback in case it fails since the resolving list is
1615 	 * dynamic it can probably be smaller than the accept list.
1616 	 */
1617 	err = hci_le_add_resolve_list_sync(hdev, params);
1618 	if (err) {
1619 		bt_dev_err(hdev, "Unable to add to resolve list: %d", err);
1620 		return err;
1621 	}
1622 
1623 	*num_entries += 1;
1624 	cp.bdaddr_type = params->addr_type;
1625 	bacpy(&cp.bdaddr, &params->addr);
1626 
1627 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST,
1628 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1629 	if (err) {
1630 		bt_dev_err(hdev, "Unable to add to allow list: %d", err);
1631 		/* Rollback the device from the resolving list */
1632 		hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type);
1633 		return err;
1634 	}
1635 
1636 	bt_dev_dbg(hdev, "Add %pMR (0x%x) to allow list", &cp.bdaddr,
1637 		   cp.bdaddr_type);
1638 
1639 	return 0;
1640 }
1641 
1642 /* This function disables/pause all advertising instances */
1643 static int hci_pause_advertising_sync(struct hci_dev *hdev)
1644 {
1645 	int err;
1646 	int old_state;
1647 
1648 	/* If there are no instances or advertising has already been paused
1649 	 * there is nothing to do.
1650 	 */
1651 	if (!hdev->adv_instance_cnt || hdev->advertising_paused)
1652 		return 0;
1653 
1654 	bt_dev_dbg(hdev, "Pausing directed advertising");
1655 
1656 	/* Stop directed advertising */
1657 	old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING);
1658 	if (old_state) {
1659 		/* When discoverable timeout triggers, then just make sure
1660 		 * the limited discoverable flag is cleared. Even in the case
1661 		 * of a timeout triggered from general discoverable, it is
1662 		 * safe to unconditionally clear the flag.
1663 		 */
1664 		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1665 		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1666 		hdev->discov_timeout = 0;
1667 	}
1668 
1669 	bt_dev_dbg(hdev, "Pausing advertising instances");
1670 
1671 	/* Call to disable any advertisements active on the controller.
1672 	 * This will succeed even if no advertisements are configured.
1673 	 */
1674 	err = hci_disable_advertising_sync(hdev);
1675 	if (err)
1676 		return err;
1677 
1678 	/* If we are using software rotation, pause the loop */
1679 	if (!ext_adv_capable(hdev))
1680 		cancel_adv_timeout(hdev);
1681 
1682 	hdev->advertising_paused = true;
1683 	hdev->advertising_old_state = old_state;
1684 
1685 	return 0;
1686 }
1687 
1688 /* This function enables all user advertising instances */
1689 static int hci_resume_advertising_sync(struct hci_dev *hdev)
1690 {
1691 	struct adv_info *adv, *tmp;
1692 	int err;
1693 
1694 	/* If advertising has not been paused there is nothing  to do. */
1695 	if (!hdev->advertising_paused)
1696 		return 0;
1697 
1698 	/* Resume directed advertising */
1699 	hdev->advertising_paused = false;
1700 	if (hdev->advertising_old_state) {
1701 		hci_dev_set_flag(hdev, HCI_ADVERTISING);
1702 		hdev->advertising_old_state = 0;
1703 	}
1704 
1705 	bt_dev_dbg(hdev, "Resuming advertising instances");
1706 
1707 	if (ext_adv_capable(hdev)) {
1708 		/* Call for each tracked instance to be re-enabled */
1709 		list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) {
1710 			err = hci_enable_ext_advertising_sync(hdev,
1711 							      adv->instance);
1712 			if (!err)
1713 				continue;
1714 
1715 			/* If the instance cannot be resumed remove it */
1716 			hci_remove_ext_adv_instance_sync(hdev, adv->instance,
1717 							 NULL);
1718 		}
1719 	} else {
1720 		/* Schedule for most recent instance to be restarted and begin
1721 		 * the software rotation loop
1722 		 */
1723 		err = hci_schedule_adv_instance_sync(hdev,
1724 						     hdev->cur_adv_instance,
1725 						     true);
1726 	}
1727 
1728 	hdev->advertising_paused = false;
1729 
1730 	return err;
1731 }
1732 
1733 struct sk_buff *hci_read_local_oob_data_sync(struct hci_dev *hdev,
1734 					     bool extended, struct sock *sk)
1735 {
1736 	u16 opcode = extended ? HCI_OP_READ_LOCAL_OOB_EXT_DATA :
1737 					HCI_OP_READ_LOCAL_OOB_DATA;
1738 
1739 	return __hci_cmd_sync_sk(hdev, opcode, 0, NULL, 0, HCI_CMD_TIMEOUT, sk);
1740 }
1741 
1742 /* Device must not be scanning when updating the accept list.
1743  *
1744  * Update is done using the following sequence:
1745  *
1746  * use_ll_privacy((Disable Advertising) -> Disable Resolving List) ->
1747  * Remove Devices From Accept List ->
1748  * (has IRK && use_ll_privacy(Remove Devices From Resolving List))->
1749  * Add Devices to Accept List ->
1750  * (has IRK && use_ll_privacy(Remove Devices From Resolving List)) ->
1751  * use_ll_privacy(Enable Resolving List -> (Enable Advertising)) ->
1752  * Enable Scanning
1753  *
1754  * In case of failure advertising shall be restored to its original state and
1755  * return would disable accept list since either accept or resolving list could
1756  * not be programmed.
1757  *
1758  */
1759 static u8 hci_update_accept_list_sync(struct hci_dev *hdev)
1760 {
1761 	struct hci_conn_params *params;
1762 	struct bdaddr_list *b, *t;
1763 	u8 num_entries = 0;
1764 	bool pend_conn, pend_report;
1765 	int err;
1766 
1767 	/* Pause advertising if resolving list can be used as controllers are
1768 	 * cannot accept resolving list modifications while advertising.
1769 	 */
1770 	if (use_ll_privacy(hdev)) {
1771 		err = hci_pause_advertising_sync(hdev);
1772 		if (err) {
1773 			bt_dev_err(hdev, "pause advertising failed: %d", err);
1774 			return 0x00;
1775 		}
1776 	}
1777 
1778 	/* Disable address resolution while reprogramming accept list since
1779 	 * devices that do have an IRK will be programmed in the resolving list
1780 	 * when LL Privacy is enabled.
1781 	 */
1782 	err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00);
1783 	if (err) {
1784 		bt_dev_err(hdev, "Unable to disable LL privacy: %d", err);
1785 		goto done;
1786 	}
1787 
1788 	/* Go through the current accept list programmed into the
1789 	 * controller one by one and check if that address is still
1790 	 * in the list of pending connections or list of devices to
1791 	 * report. If not present in either list, then remove it from
1792 	 * the controller.
1793 	 */
1794 	list_for_each_entry_safe(b, t, &hdev->le_accept_list, list) {
1795 		pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns,
1796 						      &b->bdaddr,
1797 						      b->bdaddr_type);
1798 		pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports,
1799 							&b->bdaddr,
1800 							b->bdaddr_type);
1801 
1802 		/* If the device is not likely to connect or report,
1803 		 * remove it from the acceptlist.
1804 		 */
1805 		if (!pend_conn && !pend_report) {
1806 			hci_le_del_accept_list_sync(hdev, &b->bdaddr,
1807 						    b->bdaddr_type);
1808 			continue;
1809 		}
1810 
1811 		num_entries++;
1812 	}
1813 
1814 	/* Since all no longer valid accept list entries have been
1815 	 * removed, walk through the list of pending connections
1816 	 * and ensure that any new device gets programmed into
1817 	 * the controller.
1818 	 *
1819 	 * If the list of the devices is larger than the list of
1820 	 * available accept list entries in the controller, then
1821 	 * just abort and return filer policy value to not use the
1822 	 * accept list.
1823 	 */
1824 	list_for_each_entry(params, &hdev->pend_le_conns, action) {
1825 		err = hci_le_add_accept_list_sync(hdev, params, &num_entries);
1826 		if (err)
1827 			goto done;
1828 	}
1829 
1830 	/* After adding all new pending connections, walk through
1831 	 * the list of pending reports and also add these to the
1832 	 * accept list if there is still space. Abort if space runs out.
1833 	 */
1834 	list_for_each_entry(params, &hdev->pend_le_reports, action) {
1835 		err = hci_le_add_accept_list_sync(hdev, params, &num_entries);
1836 		if (err)
1837 			goto done;
1838 	}
1839 
1840 	/* Use the allowlist unless the following conditions are all true:
1841 	 * - We are not currently suspending
1842 	 * - There are 1 or more ADV monitors registered and it's not offloaded
1843 	 * - Interleaved scanning is not currently using the allowlist
1844 	 */
1845 	if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended &&
1846 	    hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE &&
1847 	    hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST)
1848 		err = -EINVAL;
1849 
1850 done:
1851 	/* Enable address resolution when LL Privacy is enabled. */
1852 	err = hci_le_set_addr_resolution_enable_sync(hdev, 0x01);
1853 	if (err)
1854 		bt_dev_err(hdev, "Unable to enable LL privacy: %d", err);
1855 
1856 	/* Resume advertising if it was paused */
1857 	if (use_ll_privacy(hdev))
1858 		hci_resume_advertising_sync(hdev);
1859 
1860 	/* Select filter policy to use accept list */
1861 	return err ? 0x00 : 0x01;
1862 }
1863 
1864 /* Returns true if an le connection is in the scanning state */
1865 static inline bool hci_is_le_conn_scanning(struct hci_dev *hdev)
1866 {
1867 	struct hci_conn_hash *h = &hdev->conn_hash;
1868 	struct hci_conn  *c;
1869 
1870 	rcu_read_lock();
1871 
1872 	list_for_each_entry_rcu(c, &h->list, list) {
1873 		if (c->type == LE_LINK && c->state == BT_CONNECT &&
1874 		    test_bit(HCI_CONN_SCANNING, &c->flags)) {
1875 			rcu_read_unlock();
1876 			return true;
1877 		}
1878 	}
1879 
1880 	rcu_read_unlock();
1881 
1882 	return false;
1883 }
1884 
1885 static int hci_le_set_ext_scan_param_sync(struct hci_dev *hdev, u8 type,
1886 					  u16 interval, u16 window,
1887 					  u8 own_addr_type, u8 filter_policy)
1888 {
1889 	struct hci_cp_le_set_ext_scan_params *cp;
1890 	struct hci_cp_le_scan_phy_params *phy;
1891 	u8 data[sizeof(*cp) + sizeof(*phy) * 2];
1892 	u8 num_phy = 0;
1893 
1894 	cp = (void *)data;
1895 	phy = (void *)cp->data;
1896 
1897 	memset(data, 0, sizeof(data));
1898 
1899 	cp->own_addr_type = own_addr_type;
1900 	cp->filter_policy = filter_policy;
1901 
1902 	if (scan_1m(hdev) || scan_2m(hdev)) {
1903 		cp->scanning_phys |= LE_SCAN_PHY_1M;
1904 
1905 		phy->type = type;
1906 		phy->interval = cpu_to_le16(interval);
1907 		phy->window = cpu_to_le16(window);
1908 
1909 		num_phy++;
1910 		phy++;
1911 	}
1912 
1913 	if (scan_coded(hdev)) {
1914 		cp->scanning_phys |= LE_SCAN_PHY_CODED;
1915 
1916 		phy->type = type;
1917 		phy->interval = cpu_to_le16(interval);
1918 		phy->window = cpu_to_le16(window);
1919 
1920 		num_phy++;
1921 		phy++;
1922 	}
1923 
1924 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_PARAMS,
1925 				     sizeof(*cp) + sizeof(*phy) * num_phy,
1926 				     data, HCI_CMD_TIMEOUT);
1927 }
1928 
1929 static int hci_le_set_scan_param_sync(struct hci_dev *hdev, u8 type,
1930 				      u16 interval, u16 window,
1931 				      u8 own_addr_type, u8 filter_policy)
1932 {
1933 	struct hci_cp_le_set_scan_param cp;
1934 
1935 	if (use_ext_scan(hdev))
1936 		return hci_le_set_ext_scan_param_sync(hdev, type, interval,
1937 						      window, own_addr_type,
1938 						      filter_policy);
1939 
1940 	memset(&cp, 0, sizeof(cp));
1941 	cp.type = type;
1942 	cp.interval = cpu_to_le16(interval);
1943 	cp.window = cpu_to_le16(window);
1944 	cp.own_address_type = own_addr_type;
1945 	cp.filter_policy = filter_policy;
1946 
1947 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_PARAM,
1948 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1949 }
1950 
1951 static int hci_start_scan_sync(struct hci_dev *hdev, u8 type, u16 interval,
1952 			       u16 window, u8 own_addr_type, u8 filter_policy,
1953 			       u8 filter_dup)
1954 {
1955 	int err;
1956 
1957 	if (hdev->scanning_paused) {
1958 		bt_dev_dbg(hdev, "Scanning is paused for suspend");
1959 		return 0;
1960 	}
1961 
1962 	err = hci_le_set_scan_param_sync(hdev, type, interval, window,
1963 					 own_addr_type, filter_policy);
1964 	if (err)
1965 		return err;
1966 
1967 	return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, filter_dup);
1968 }
1969 
1970 static int hci_passive_scan_sync(struct hci_dev *hdev)
1971 {
1972 	u8 own_addr_type;
1973 	u8 filter_policy;
1974 	u16 window, interval;
1975 	int err;
1976 
1977 	if (hdev->scanning_paused) {
1978 		bt_dev_dbg(hdev, "Scanning is paused for suspend");
1979 		return 0;
1980 	}
1981 
1982 	err = hci_scan_disable_sync(hdev);
1983 	if (err) {
1984 		bt_dev_err(hdev, "disable scanning failed: %d", err);
1985 		return err;
1986 	}
1987 
1988 	/* Set require_privacy to false since no SCAN_REQ are send
1989 	 * during passive scanning. Not using an non-resolvable address
1990 	 * here is important so that peer devices using direct
1991 	 * advertising with our address will be correctly reported
1992 	 * by the controller.
1993 	 */
1994 	if (hci_update_random_address_sync(hdev, false, scan_use_rpa(hdev),
1995 					   &own_addr_type))
1996 		return 0;
1997 
1998 	if (hdev->enable_advmon_interleave_scan &&
1999 	    hci_update_interleaved_scan_sync(hdev))
2000 		return 0;
2001 
2002 	bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state);
2003 
2004 	/* Adding or removing entries from the accept list must
2005 	 * happen before enabling scanning. The controller does
2006 	 * not allow accept list modification while scanning.
2007 	 */
2008 	filter_policy = hci_update_accept_list_sync(hdev);
2009 
2010 	/* When the controller is using random resolvable addresses and
2011 	 * with that having LE privacy enabled, then controllers with
2012 	 * Extended Scanner Filter Policies support can now enable support
2013 	 * for handling directed advertising.
2014 	 *
2015 	 * So instead of using filter polices 0x00 (no acceptlist)
2016 	 * and 0x01 (acceptlist enabled) use the new filter policies
2017 	 * 0x02 (no acceptlist) and 0x03 (acceptlist enabled).
2018 	 */
2019 	if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
2020 	    (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
2021 		filter_policy |= 0x02;
2022 
2023 	if (hdev->suspended) {
2024 		window = hdev->le_scan_window_suspend;
2025 		interval = hdev->le_scan_int_suspend;
2026 	} else if (hci_is_le_conn_scanning(hdev)) {
2027 		window = hdev->le_scan_window_connect;
2028 		interval = hdev->le_scan_int_connect;
2029 	} else if (hci_is_adv_monitoring(hdev)) {
2030 		window = hdev->le_scan_window_adv_monitor;
2031 		interval = hdev->le_scan_int_adv_monitor;
2032 	} else {
2033 		window = hdev->le_scan_window;
2034 		interval = hdev->le_scan_interval;
2035 	}
2036 
2037 	bt_dev_dbg(hdev, "LE passive scan with acceptlist = %d", filter_policy);
2038 
2039 	return hci_start_scan_sync(hdev, LE_SCAN_PASSIVE, interval, window,
2040 				   own_addr_type, filter_policy,
2041 				   LE_SCAN_FILTER_DUP_ENABLE);
2042 }
2043 
2044 /* This function controls the passive scanning based on hdev->pend_le_conns
2045  * list. If there are pending LE connection we start the background scanning,
2046  * otherwise we stop it in the following sequence:
2047  *
2048  * If there are devices to scan:
2049  *
2050  * Disable Scanning -> Update Accept List ->
2051  * use_ll_privacy((Disable Advertising) -> Disable Resolving List ->
2052  * Update Resolving List -> Enable Resolving List -> (Enable Advertising)) ->
2053  * Enable Scanning
2054  *
2055  * Otherwise:
2056  *
2057  * Disable Scanning
2058  */
2059 int hci_update_passive_scan_sync(struct hci_dev *hdev)
2060 {
2061 	int err;
2062 
2063 	if (!test_bit(HCI_UP, &hdev->flags) ||
2064 	    test_bit(HCI_INIT, &hdev->flags) ||
2065 	    hci_dev_test_flag(hdev, HCI_SETUP) ||
2066 	    hci_dev_test_flag(hdev, HCI_CONFIG) ||
2067 	    hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
2068 	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2069 		return 0;
2070 
2071 	/* No point in doing scanning if LE support hasn't been enabled */
2072 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
2073 		return 0;
2074 
2075 	/* If discovery is active don't interfere with it */
2076 	if (hdev->discovery.state != DISCOVERY_STOPPED)
2077 		return 0;
2078 
2079 	/* Reset RSSI and UUID filters when starting background scanning
2080 	 * since these filters are meant for service discovery only.
2081 	 *
2082 	 * The Start Discovery and Start Service Discovery operations
2083 	 * ensure to set proper values for RSSI threshold and UUID
2084 	 * filter list. So it is safe to just reset them here.
2085 	 */
2086 	hci_discovery_filter_clear(hdev);
2087 
2088 	bt_dev_dbg(hdev, "ADV monitoring is %s",
2089 		   hci_is_adv_monitoring(hdev) ? "on" : "off");
2090 
2091 	if (list_empty(&hdev->pend_le_conns) &&
2092 	    list_empty(&hdev->pend_le_reports) &&
2093 	    !hci_is_adv_monitoring(hdev)) {
2094 		/* If there is no pending LE connections or devices
2095 		 * to be scanned for or no ADV monitors, we should stop the
2096 		 * background scanning.
2097 		 */
2098 
2099 		bt_dev_dbg(hdev, "stopping background scanning");
2100 
2101 		err = hci_scan_disable_sync(hdev);
2102 		if (err)
2103 			bt_dev_err(hdev, "stop background scanning failed: %d",
2104 				   err);
2105 	} else {
2106 		/* If there is at least one pending LE connection, we should
2107 		 * keep the background scan running.
2108 		 */
2109 
2110 		/* If controller is connecting, we should not start scanning
2111 		 * since some controllers are not able to scan and connect at
2112 		 * the same time.
2113 		 */
2114 		if (hci_lookup_le_connect(hdev))
2115 			return 0;
2116 
2117 		bt_dev_dbg(hdev, "start background scanning");
2118 
2119 		err = hci_passive_scan_sync(hdev);
2120 		if (err)
2121 			bt_dev_err(hdev, "start background scanning failed: %d",
2122 				   err);
2123 	}
2124 
2125 	return err;
2126 }
2127 
2128 static int update_passive_scan_sync(struct hci_dev *hdev, void *data)
2129 {
2130 	return hci_update_passive_scan_sync(hdev);
2131 }
2132 
2133 int hci_update_passive_scan(struct hci_dev *hdev)
2134 {
2135 	/* Only queue if it would have any effect */
2136 	if (!test_bit(HCI_UP, &hdev->flags) ||
2137 	    test_bit(HCI_INIT, &hdev->flags) ||
2138 	    hci_dev_test_flag(hdev, HCI_SETUP) ||
2139 	    hci_dev_test_flag(hdev, HCI_CONFIG) ||
2140 	    hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
2141 	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2142 		return 0;
2143 
2144 	return hci_cmd_sync_queue(hdev, update_passive_scan_sync, NULL, NULL);
2145 }
2146 
2147 int hci_write_sc_support_sync(struct hci_dev *hdev, u8 val)
2148 {
2149 	int err;
2150 
2151 	if (!bredr_sc_enabled(hdev) || lmp_host_sc_capable(hdev))
2152 		return 0;
2153 
2154 	err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT,
2155 				    sizeof(val), &val, HCI_CMD_TIMEOUT);
2156 
2157 	if (!err) {
2158 		if (val) {
2159 			hdev->features[1][0] |= LMP_HOST_SC;
2160 			hci_dev_set_flag(hdev, HCI_SC_ENABLED);
2161 		} else {
2162 			hdev->features[1][0] &= ~LMP_HOST_SC;
2163 			hci_dev_clear_flag(hdev, HCI_SC_ENABLED);
2164 		}
2165 	}
2166 
2167 	return err;
2168 }
2169 
2170 int hci_write_ssp_mode_sync(struct hci_dev *hdev, u8 mode)
2171 {
2172 	int err;
2173 
2174 	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) ||
2175 	    lmp_host_ssp_capable(hdev))
2176 		return 0;
2177 
2178 	if (!mode && hci_dev_test_flag(hdev, HCI_USE_DEBUG_KEYS)) {
2179 		__hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE,
2180 				      sizeof(mode), &mode, HCI_CMD_TIMEOUT);
2181 	}
2182 
2183 	err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE,
2184 				    sizeof(mode), &mode, HCI_CMD_TIMEOUT);
2185 	if (err)
2186 		return err;
2187 
2188 	return hci_write_sc_support_sync(hdev, 0x01);
2189 }
2190 
2191 int hci_write_le_host_supported_sync(struct hci_dev *hdev, u8 le, u8 simul)
2192 {
2193 	struct hci_cp_write_le_host_supported cp;
2194 
2195 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED) ||
2196 	    !lmp_bredr_capable(hdev))
2197 		return 0;
2198 
2199 	/* Check first if we already have the right host state
2200 	 * (host features set)
2201 	 */
2202 	if (le == lmp_host_le_capable(hdev) &&
2203 	    simul == lmp_host_le_br_capable(hdev))
2204 		return 0;
2205 
2206 	memset(&cp, 0, sizeof(cp));
2207 
2208 	cp.le = le;
2209 	cp.simul = simul;
2210 
2211 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED,
2212 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2213 }
2214 
2215 static int hci_powered_update_adv_sync(struct hci_dev *hdev)
2216 {
2217 	struct adv_info *adv, *tmp;
2218 	int err;
2219 
2220 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
2221 		return 0;
2222 
2223 	/* If RPA Resolution has not been enable yet it means the
2224 	 * resolving list is empty and we should attempt to program the
2225 	 * local IRK in order to support using own_addr_type
2226 	 * ADDR_LE_DEV_RANDOM_RESOLVED (0x03).
2227 	 */
2228 	if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) {
2229 		hci_le_add_resolve_list_sync(hdev, NULL);
2230 		hci_le_set_addr_resolution_enable_sync(hdev, 0x01);
2231 	}
2232 
2233 	/* Make sure the controller has a good default for
2234 	 * advertising data. This also applies to the case
2235 	 * where BR/EDR was toggled during the AUTO_OFF phase.
2236 	 */
2237 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2238 	    list_empty(&hdev->adv_instances)) {
2239 		if (ext_adv_capable(hdev)) {
2240 			err = hci_setup_ext_adv_instance_sync(hdev, 0x00);
2241 			if (!err)
2242 				hci_update_scan_rsp_data_sync(hdev, 0x00);
2243 		} else {
2244 			err = hci_update_adv_data_sync(hdev, 0x00);
2245 			if (!err)
2246 				hci_update_scan_rsp_data_sync(hdev, 0x00);
2247 		}
2248 
2249 		if (hci_dev_test_flag(hdev, HCI_ADVERTISING))
2250 			hci_enable_advertising_sync(hdev);
2251 	}
2252 
2253 	/* Call for each tracked instance to be scheduled */
2254 	list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list)
2255 		hci_schedule_adv_instance_sync(hdev, adv->instance, true);
2256 
2257 	return 0;
2258 }
2259 
2260 static int hci_write_auth_enable_sync(struct hci_dev *hdev)
2261 {
2262 	u8 link_sec;
2263 
2264 	link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
2265 	if (link_sec == test_bit(HCI_AUTH, &hdev->flags))
2266 		return 0;
2267 
2268 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE,
2269 				     sizeof(link_sec), &link_sec,
2270 				     HCI_CMD_TIMEOUT);
2271 }
2272 
2273 int hci_write_fast_connectable_sync(struct hci_dev *hdev, bool enable)
2274 {
2275 	struct hci_cp_write_page_scan_activity cp;
2276 	u8 type;
2277 	int err = 0;
2278 
2279 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2280 		return 0;
2281 
2282 	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
2283 		return 0;
2284 
2285 	memset(&cp, 0, sizeof(cp));
2286 
2287 	if (enable) {
2288 		type = PAGE_SCAN_TYPE_INTERLACED;
2289 
2290 		/* 160 msec page scan interval */
2291 		cp.interval = cpu_to_le16(0x0100);
2292 	} else {
2293 		type = hdev->def_page_scan_type;
2294 		cp.interval = cpu_to_le16(hdev->def_page_scan_int);
2295 	}
2296 
2297 	cp.window = cpu_to_le16(hdev->def_page_scan_window);
2298 
2299 	if (__cpu_to_le16(hdev->page_scan_interval) != cp.interval ||
2300 	    __cpu_to_le16(hdev->page_scan_window) != cp.window) {
2301 		err = __hci_cmd_sync_status(hdev,
2302 					    HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
2303 					    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2304 		if (err)
2305 			return err;
2306 	}
2307 
2308 	if (hdev->page_scan_type != type)
2309 		err = __hci_cmd_sync_status(hdev,
2310 					    HCI_OP_WRITE_PAGE_SCAN_TYPE,
2311 					    sizeof(type), &type,
2312 					    HCI_CMD_TIMEOUT);
2313 
2314 	return err;
2315 }
2316 
2317 static bool disconnected_accept_list_entries(struct hci_dev *hdev)
2318 {
2319 	struct bdaddr_list *b;
2320 
2321 	list_for_each_entry(b, &hdev->accept_list, list) {
2322 		struct hci_conn *conn;
2323 
2324 		conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
2325 		if (!conn)
2326 			return true;
2327 
2328 		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
2329 			return true;
2330 	}
2331 
2332 	return false;
2333 }
2334 
2335 static int hci_write_scan_enable_sync(struct hci_dev *hdev, u8 val)
2336 {
2337 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE,
2338 					    sizeof(val), &val,
2339 					    HCI_CMD_TIMEOUT);
2340 }
2341 
2342 int hci_update_scan_sync(struct hci_dev *hdev)
2343 {
2344 	u8 scan;
2345 
2346 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2347 		return 0;
2348 
2349 	if (!hdev_is_powered(hdev))
2350 		return 0;
2351 
2352 	if (mgmt_powering_down(hdev))
2353 		return 0;
2354 
2355 	if (hdev->scanning_paused)
2356 		return 0;
2357 
2358 	if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
2359 	    disconnected_accept_list_entries(hdev))
2360 		scan = SCAN_PAGE;
2361 	else
2362 		scan = SCAN_DISABLED;
2363 
2364 	if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
2365 		scan |= SCAN_INQUIRY;
2366 
2367 	if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
2368 	    test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
2369 		return 0;
2370 
2371 	return hci_write_scan_enable_sync(hdev, scan);
2372 }
2373 
2374 int hci_update_name_sync(struct hci_dev *hdev)
2375 {
2376 	struct hci_cp_write_local_name cp;
2377 
2378 	memset(&cp, 0, sizeof(cp));
2379 
2380 	memcpy(cp.name, hdev->dev_name, sizeof(cp.name));
2381 
2382 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LOCAL_NAME,
2383 					    sizeof(cp), &cp,
2384 					    HCI_CMD_TIMEOUT);
2385 }
2386 
2387 /* This function perform powered update HCI command sequence after the HCI init
2388  * sequence which end up resetting all states, the sequence is as follows:
2389  *
2390  * HCI_SSP_ENABLED(Enable SSP)
2391  * HCI_LE_ENABLED(Enable LE)
2392  * HCI_LE_ENABLED(use_ll_privacy(Add local IRK to Resolving List) ->
2393  * Update adv data)
2394  * Enable Authentication
2395  * lmp_bredr_capable(Set Fast Connectable -> Set Scan Type -> Set Class ->
2396  * Set Name -> Set EIR)
2397  */
2398 int hci_powered_update_sync(struct hci_dev *hdev)
2399 {
2400 	int err;
2401 
2402 	/* Register the available SMP channels (BR/EDR and LE) only when
2403 	 * successfully powering on the controller. This late
2404 	 * registration is required so that LE SMP can clearly decide if
2405 	 * the public address or static address is used.
2406 	 */
2407 	smp_register(hdev);
2408 
2409 	err = hci_write_ssp_mode_sync(hdev, 0x01);
2410 	if (err)
2411 		return err;
2412 
2413 	err = hci_write_le_host_supported_sync(hdev, 0x01, 0x00);
2414 	if (err)
2415 		return err;
2416 
2417 	err = hci_powered_update_adv_sync(hdev);
2418 	if (err)
2419 		return err;
2420 
2421 	err = hci_write_auth_enable_sync(hdev);
2422 	if (err)
2423 		return err;
2424 
2425 	if (lmp_bredr_capable(hdev)) {
2426 		if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
2427 			hci_write_fast_connectable_sync(hdev, true);
2428 		else
2429 			hci_write_fast_connectable_sync(hdev, false);
2430 		hci_update_scan_sync(hdev);
2431 		hci_update_class_sync(hdev);
2432 		hci_update_name_sync(hdev);
2433 		hci_update_eir_sync(hdev);
2434 	}
2435 
2436 	return 0;
2437 }
2438 
2439 /**
2440  * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address
2441  *				       (BD_ADDR) for a HCI device from
2442  *				       a firmware node property.
2443  * @hdev:	The HCI device
2444  *
2445  * Search the firmware node for 'local-bd-address'.
2446  *
2447  * All-zero BD addresses are rejected, because those could be properties
2448  * that exist in the firmware tables, but were not updated by the firmware. For
2449  * example, the DTS could define 'local-bd-address', with zero BD addresses.
2450  */
2451 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev)
2452 {
2453 	struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent);
2454 	bdaddr_t ba;
2455 	int ret;
2456 
2457 	ret = fwnode_property_read_u8_array(fwnode, "local-bd-address",
2458 					    (u8 *)&ba, sizeof(ba));
2459 	if (ret < 0 || !bacmp(&ba, BDADDR_ANY))
2460 		return;
2461 
2462 	bacpy(&hdev->public_addr, &ba);
2463 }
2464 
2465 struct hci_init_stage {
2466 	int (*func)(struct hci_dev *hdev);
2467 };
2468 
2469 /* Run init stage NULL terminated function table */
2470 static int hci_init_stage_sync(struct hci_dev *hdev,
2471 			       const struct hci_init_stage *stage)
2472 {
2473 	size_t i;
2474 
2475 	for (i = 0; stage[i].func; i++) {
2476 		int err;
2477 
2478 		err = stage[i].func(hdev);
2479 		if (err)
2480 			return err;
2481 	}
2482 
2483 	return 0;
2484 }
2485 
2486 /* Read Local Version */
2487 static int hci_read_local_version_sync(struct hci_dev *hdev)
2488 {
2489 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_VERSION,
2490 				     0, NULL, HCI_CMD_TIMEOUT);
2491 }
2492 
2493 /* Read BD Address */
2494 static int hci_read_bd_addr_sync(struct hci_dev *hdev)
2495 {
2496 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_BD_ADDR,
2497 				     0, NULL, HCI_CMD_TIMEOUT);
2498 }
2499 
2500 #define HCI_INIT(_func) \
2501 { \
2502 	.func = _func, \
2503 }
2504 
2505 static const struct hci_init_stage hci_init0[] = {
2506 	/* HCI_OP_READ_LOCAL_VERSION */
2507 	HCI_INIT(hci_read_local_version_sync),
2508 	/* HCI_OP_READ_BD_ADDR */
2509 	HCI_INIT(hci_read_bd_addr_sync),
2510 	{}
2511 };
2512 
2513 int hci_reset_sync(struct hci_dev *hdev)
2514 {
2515 	int err;
2516 
2517 	set_bit(HCI_RESET, &hdev->flags);
2518 
2519 	err = __hci_cmd_sync_status(hdev, HCI_OP_RESET, 0, NULL,
2520 				    HCI_CMD_TIMEOUT);
2521 	if (err)
2522 		return err;
2523 
2524 	return 0;
2525 }
2526 
2527 static int hci_init0_sync(struct hci_dev *hdev)
2528 {
2529 	int err;
2530 
2531 	bt_dev_dbg(hdev, "");
2532 
2533 	/* Reset */
2534 	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
2535 		err = hci_reset_sync(hdev);
2536 		if (err)
2537 			return err;
2538 	}
2539 
2540 	return hci_init_stage_sync(hdev, hci_init0);
2541 }
2542 
2543 static int hci_unconf_init_sync(struct hci_dev *hdev)
2544 {
2545 	int err;
2546 
2547 	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
2548 		return 0;
2549 
2550 	err = hci_init0_sync(hdev);
2551 	if (err < 0)
2552 		return err;
2553 
2554 	if (hci_dev_test_flag(hdev, HCI_SETUP))
2555 		hci_debugfs_create_basic(hdev);
2556 
2557 	return 0;
2558 }
2559 
2560 /* Read Local Supported Features. */
2561 static int hci_read_local_features_sync(struct hci_dev *hdev)
2562 {
2563 	 /* Not all AMP controllers support this command */
2564 	if (hdev->dev_type == HCI_AMP && !(hdev->commands[14] & 0x20))
2565 		return 0;
2566 
2567 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_FEATURES,
2568 				     0, NULL, HCI_CMD_TIMEOUT);
2569 }
2570 
2571 /* BR Controller init stage 1 command sequence */
2572 static const struct hci_init_stage br_init1[] = {
2573 	/* HCI_OP_READ_LOCAL_FEATURES */
2574 	HCI_INIT(hci_read_local_features_sync),
2575 	/* HCI_OP_READ_LOCAL_VERSION */
2576 	HCI_INIT(hci_read_local_version_sync),
2577 	/* HCI_OP_READ_BD_ADDR */
2578 	HCI_INIT(hci_read_bd_addr_sync),
2579 	{}
2580 };
2581 
2582 /* Read Local Commands */
2583 static int hci_read_local_cmds_sync(struct hci_dev *hdev)
2584 {
2585 	/* All Bluetooth 1.2 and later controllers should support the
2586 	 * HCI command for reading the local supported commands.
2587 	 *
2588 	 * Unfortunately some controllers indicate Bluetooth 1.2 support,
2589 	 * but do not have support for this command. If that is the case,
2590 	 * the driver can quirk the behavior and skip reading the local
2591 	 * supported commands.
2592 	 */
2593 	if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
2594 	    !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
2595 		return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_COMMANDS,
2596 					     0, NULL, HCI_CMD_TIMEOUT);
2597 
2598 	return 0;
2599 }
2600 
2601 /* Read Local AMP Info */
2602 static int hci_read_local_amp_info_sync(struct hci_dev *hdev)
2603 {
2604 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_AMP_INFO,
2605 				     0, NULL, HCI_CMD_TIMEOUT);
2606 }
2607 
2608 /* Read Data Blk size */
2609 static int hci_read_data_block_size_sync(struct hci_dev *hdev)
2610 {
2611 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_DATA_BLOCK_SIZE,
2612 				     0, NULL, HCI_CMD_TIMEOUT);
2613 }
2614 
2615 /* Read Flow Control Mode */
2616 static int hci_read_flow_control_mode_sync(struct hci_dev *hdev)
2617 {
2618 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_FLOW_CONTROL_MODE,
2619 				     0, NULL, HCI_CMD_TIMEOUT);
2620 }
2621 
2622 /* Read Location Data */
2623 static int hci_read_location_data_sync(struct hci_dev *hdev)
2624 {
2625 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCATION_DATA,
2626 				     0, NULL, HCI_CMD_TIMEOUT);
2627 }
2628 
2629 /* AMP Controller init stage 1 command sequence */
2630 static const struct hci_init_stage amp_init1[] = {
2631 	/* HCI_OP_READ_LOCAL_VERSION */
2632 	HCI_INIT(hci_read_local_version_sync),
2633 	/* HCI_OP_READ_LOCAL_COMMANDS */
2634 	HCI_INIT(hci_read_local_cmds_sync),
2635 	/* HCI_OP_READ_LOCAL_AMP_INFO */
2636 	HCI_INIT(hci_read_local_amp_info_sync),
2637 	/* HCI_OP_READ_DATA_BLOCK_SIZE */
2638 	HCI_INIT(hci_read_data_block_size_sync),
2639 	/* HCI_OP_READ_FLOW_CONTROL_MODE */
2640 	HCI_INIT(hci_read_flow_control_mode_sync),
2641 	/* HCI_OP_READ_LOCATION_DATA */
2642 	HCI_INIT(hci_read_location_data_sync),
2643 };
2644 
2645 static int hci_init1_sync(struct hci_dev *hdev)
2646 {
2647 	int err;
2648 
2649 	bt_dev_dbg(hdev, "");
2650 
2651 	/* Reset */
2652 	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
2653 		err = hci_reset_sync(hdev);
2654 		if (err)
2655 			return err;
2656 	}
2657 
2658 	switch (hdev->dev_type) {
2659 	case HCI_PRIMARY:
2660 		hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
2661 		return hci_init_stage_sync(hdev, br_init1);
2662 	case HCI_AMP:
2663 		hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
2664 		return hci_init_stage_sync(hdev, amp_init1);
2665 	default:
2666 		bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type);
2667 		break;
2668 	}
2669 
2670 	return 0;
2671 }
2672 
2673 /* AMP Controller init stage 2 command sequence */
2674 static const struct hci_init_stage amp_init2[] = {
2675 	/* HCI_OP_READ_LOCAL_FEATURES */
2676 	HCI_INIT(hci_read_local_features_sync),
2677 };
2678 
2679 /* Read Buffer Size (ACL mtu, max pkt, etc.) */
2680 static int hci_read_buffer_size_sync(struct hci_dev *hdev)
2681 {
2682 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_BUFFER_SIZE,
2683 				     0, NULL, HCI_CMD_TIMEOUT);
2684 }
2685 
2686 /* Read Class of Device */
2687 static int hci_read_dev_class_sync(struct hci_dev *hdev)
2688 {
2689 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLASS_OF_DEV,
2690 				     0, NULL, HCI_CMD_TIMEOUT);
2691 }
2692 
2693 /* Read Local Name */
2694 static int hci_read_local_name_sync(struct hci_dev *hdev)
2695 {
2696 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_NAME,
2697 				     0, NULL, HCI_CMD_TIMEOUT);
2698 }
2699 
2700 /* Read Voice Setting */
2701 static int hci_read_voice_setting_sync(struct hci_dev *hdev)
2702 {
2703 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_VOICE_SETTING,
2704 				     0, NULL, HCI_CMD_TIMEOUT);
2705 }
2706 
2707 /* Read Number of Supported IAC */
2708 static int hci_read_num_supported_iac_sync(struct hci_dev *hdev)
2709 {
2710 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_NUM_SUPPORTED_IAC,
2711 				     0, NULL, HCI_CMD_TIMEOUT);
2712 }
2713 
2714 /* Read Current IAC LAP */
2715 static int hci_read_current_iac_lap_sync(struct hci_dev *hdev)
2716 {
2717 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_CURRENT_IAC_LAP,
2718 				     0, NULL, HCI_CMD_TIMEOUT);
2719 }
2720 
2721 static int hci_set_event_filter_sync(struct hci_dev *hdev, u8 flt_type,
2722 				     u8 cond_type, bdaddr_t *bdaddr,
2723 				     u8 auto_accept)
2724 {
2725 	struct hci_cp_set_event_filter cp;
2726 
2727 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2728 		return 0;
2729 
2730 	memset(&cp, 0, sizeof(cp));
2731 	cp.flt_type = flt_type;
2732 
2733 	if (flt_type != HCI_FLT_CLEAR_ALL) {
2734 		cp.cond_type = cond_type;
2735 		bacpy(&cp.addr_conn_flt.bdaddr, bdaddr);
2736 		cp.addr_conn_flt.auto_accept = auto_accept;
2737 	}
2738 
2739 	return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_FLT,
2740 				     flt_type == HCI_FLT_CLEAR_ALL ?
2741 				     sizeof(cp.flt_type) : sizeof(cp), &cp,
2742 				     HCI_CMD_TIMEOUT);
2743 }
2744 
2745 static int hci_clear_event_filter_sync(struct hci_dev *hdev)
2746 {
2747 	if (!hci_dev_test_flag(hdev, HCI_EVENT_FILTER_CONFIGURED))
2748 		return 0;
2749 
2750 	return hci_set_event_filter_sync(hdev, HCI_FLT_CLEAR_ALL, 0x00,
2751 					 BDADDR_ANY, 0x00);
2752 }
2753 
2754 /* Connection accept timeout ~20 secs */
2755 static int hci_write_ca_timeout_sync(struct hci_dev *hdev)
2756 {
2757 	__le16 param = cpu_to_le16(0x7d00);
2758 
2759 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CA_TIMEOUT,
2760 				     sizeof(param), &param, HCI_CMD_TIMEOUT);
2761 }
2762 
2763 /* BR Controller init stage 2 command sequence */
2764 static const struct hci_init_stage br_init2[] = {
2765 	/* HCI_OP_READ_BUFFER_SIZE */
2766 	HCI_INIT(hci_read_buffer_size_sync),
2767 	/* HCI_OP_READ_CLASS_OF_DEV */
2768 	HCI_INIT(hci_read_dev_class_sync),
2769 	/* HCI_OP_READ_LOCAL_NAME */
2770 	HCI_INIT(hci_read_local_name_sync),
2771 	/* HCI_OP_READ_VOICE_SETTING */
2772 	HCI_INIT(hci_read_voice_setting_sync),
2773 	/* HCI_OP_READ_NUM_SUPPORTED_IAC */
2774 	HCI_INIT(hci_read_num_supported_iac_sync),
2775 	/* HCI_OP_READ_CURRENT_IAC_LAP */
2776 	HCI_INIT(hci_read_current_iac_lap_sync),
2777 	/* HCI_OP_SET_EVENT_FLT */
2778 	HCI_INIT(hci_clear_event_filter_sync),
2779 	/* HCI_OP_WRITE_CA_TIMEOUT */
2780 	HCI_INIT(hci_write_ca_timeout_sync),
2781 	{}
2782 };
2783 
2784 static int hci_write_ssp_mode_1_sync(struct hci_dev *hdev)
2785 {
2786 	u8 mode = 0x01;
2787 
2788 	if (!lmp_ssp_capable(hdev) || !hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
2789 		return 0;
2790 
2791 	/* When SSP is available, then the host features page
2792 	 * should also be available as well. However some
2793 	 * controllers list the max_page as 0 as long as SSP
2794 	 * has not been enabled. To achieve proper debugging
2795 	 * output, force the minimum max_page to 1 at least.
2796 	 */
2797 	hdev->max_page = 0x01;
2798 
2799 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE,
2800 				     sizeof(mode), &mode, HCI_CMD_TIMEOUT);
2801 }
2802 
2803 static int hci_write_eir_sync(struct hci_dev *hdev)
2804 {
2805 	struct hci_cp_write_eir cp;
2806 
2807 	if (!lmp_ssp_capable(hdev) || hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
2808 		return 0;
2809 
2810 	memset(hdev->eir, 0, sizeof(hdev->eir));
2811 	memset(&cp, 0, sizeof(cp));
2812 
2813 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp,
2814 				     HCI_CMD_TIMEOUT);
2815 }
2816 
2817 static int hci_write_inquiry_mode_sync(struct hci_dev *hdev)
2818 {
2819 	u8 mode;
2820 
2821 	if (!lmp_inq_rssi_capable(hdev) &&
2822 	    !test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
2823 		return 0;
2824 
2825 	/* If Extended Inquiry Result events are supported, then
2826 	 * they are clearly preferred over Inquiry Result with RSSI
2827 	 * events.
2828 	 */
2829 	mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
2830 
2831 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_INQUIRY_MODE,
2832 				     sizeof(mode), &mode, HCI_CMD_TIMEOUT);
2833 }
2834 
2835 static int hci_read_inq_rsp_tx_power_sync(struct hci_dev *hdev)
2836 {
2837 	if (!lmp_inq_tx_pwr_capable(hdev))
2838 		return 0;
2839 
2840 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_INQ_RSP_TX_POWER,
2841 				     0, NULL, HCI_CMD_TIMEOUT);
2842 }
2843 
2844 static int hci_read_local_ext_features_sync(struct hci_dev *hdev, u8 page)
2845 {
2846 	struct hci_cp_read_local_ext_features cp;
2847 
2848 	if (!lmp_ext_feat_capable(hdev))
2849 		return 0;
2850 
2851 	memset(&cp, 0, sizeof(cp));
2852 	cp.page = page;
2853 
2854 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_EXT_FEATURES,
2855 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2856 }
2857 
2858 static int hci_read_local_ext_features_1_sync(struct hci_dev *hdev)
2859 {
2860 	return hci_read_local_ext_features_sync(hdev, 0x01);
2861 }
2862 
2863 /* HCI Controller init stage 2 command sequence */
2864 static const struct hci_init_stage hci_init2[] = {
2865 	/* HCI_OP_READ_LOCAL_COMMANDS */
2866 	HCI_INIT(hci_read_local_cmds_sync),
2867 	/* HCI_OP_WRITE_SSP_MODE */
2868 	HCI_INIT(hci_write_ssp_mode_1_sync),
2869 	/* HCI_OP_WRITE_EIR */
2870 	HCI_INIT(hci_write_eir_sync),
2871 	/* HCI_OP_WRITE_INQUIRY_MODE */
2872 	HCI_INIT(hci_write_inquiry_mode_sync),
2873 	/* HCI_OP_READ_INQ_RSP_TX_POWER */
2874 	HCI_INIT(hci_read_inq_rsp_tx_power_sync),
2875 	/* HCI_OP_READ_LOCAL_EXT_FEATURES */
2876 	HCI_INIT(hci_read_local_ext_features_1_sync),
2877 	/* HCI_OP_WRITE_AUTH_ENABLE */
2878 	HCI_INIT(hci_write_auth_enable_sync),
2879 	{}
2880 };
2881 
2882 /* Read LE Buffer Size */
2883 static int hci_le_read_buffer_size_sync(struct hci_dev *hdev)
2884 {
2885 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_BUFFER_SIZE,
2886 				     0, NULL, HCI_CMD_TIMEOUT);
2887 }
2888 
2889 /* Read LE Local Supported Features */
2890 static int hci_le_read_local_features_sync(struct hci_dev *hdev)
2891 {
2892 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_LOCAL_FEATURES,
2893 				     0, NULL, HCI_CMD_TIMEOUT);
2894 }
2895 
2896 /* Read LE Supported States */
2897 static int hci_le_read_supported_states_sync(struct hci_dev *hdev)
2898 {
2899 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_SUPPORTED_STATES,
2900 				     0, NULL, HCI_CMD_TIMEOUT);
2901 }
2902 
2903 /* LE Controller init stage 2 command sequence */
2904 static const struct hci_init_stage le_init2[] = {
2905 	/* HCI_OP_LE_READ_BUFFER_SIZE */
2906 	HCI_INIT(hci_le_read_buffer_size_sync),
2907 	/* HCI_OP_LE_READ_LOCAL_FEATURES */
2908 	HCI_INIT(hci_le_read_local_features_sync),
2909 	/* HCI_OP_LE_READ_SUPPORTED_STATES */
2910 	HCI_INIT(hci_le_read_supported_states_sync),
2911 	{}
2912 };
2913 
2914 static int hci_init2_sync(struct hci_dev *hdev)
2915 {
2916 	int err;
2917 
2918 	bt_dev_dbg(hdev, "");
2919 
2920 	if (hdev->dev_type == HCI_AMP)
2921 		return hci_init_stage_sync(hdev, amp_init2);
2922 
2923 	if (lmp_bredr_capable(hdev)) {
2924 		err = hci_init_stage_sync(hdev, br_init2);
2925 		if (err)
2926 			return err;
2927 	} else {
2928 		hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
2929 	}
2930 
2931 	if (lmp_le_capable(hdev)) {
2932 		err = hci_init_stage_sync(hdev, le_init2);
2933 		if (err)
2934 			return err;
2935 		/* LE-only controllers have LE implicitly enabled */
2936 		if (!lmp_bredr_capable(hdev))
2937 			hci_dev_set_flag(hdev, HCI_LE_ENABLED);
2938 	}
2939 
2940 	return hci_init_stage_sync(hdev, hci_init2);
2941 }
2942 
2943 static int hci_set_event_mask_sync(struct hci_dev *hdev)
2944 {
2945 	/* The second byte is 0xff instead of 0x9f (two reserved bits
2946 	 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
2947 	 * command otherwise.
2948 	 */
2949 	u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
2950 
2951 	/* CSR 1.1 dongles does not accept any bitfield so don't try to set
2952 	 * any event mask for pre 1.2 devices.
2953 	 */
2954 	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
2955 		return 0;
2956 
2957 	if (lmp_bredr_capable(hdev)) {
2958 		events[4] |= 0x01; /* Flow Specification Complete */
2959 
2960 		/* Don't set Disconnect Complete when suspended as that
2961 		 * would wakeup the host when disconnecting due to
2962 		 * suspend.
2963 		 */
2964 		if (hdev->suspended)
2965 			events[0] &= 0xef;
2966 	} else {
2967 		/* Use a different default for LE-only devices */
2968 		memset(events, 0, sizeof(events));
2969 		events[1] |= 0x20; /* Command Complete */
2970 		events[1] |= 0x40; /* Command Status */
2971 		events[1] |= 0x80; /* Hardware Error */
2972 
2973 		/* If the controller supports the Disconnect command, enable
2974 		 * the corresponding event. In addition enable packet flow
2975 		 * control related events.
2976 		 */
2977 		if (hdev->commands[0] & 0x20) {
2978 			/* Don't set Disconnect Complete when suspended as that
2979 			 * would wakeup the host when disconnecting due to
2980 			 * suspend.
2981 			 */
2982 			if (!hdev->suspended)
2983 				events[0] |= 0x10; /* Disconnection Complete */
2984 			events[2] |= 0x04; /* Number of Completed Packets */
2985 			events[3] |= 0x02; /* Data Buffer Overflow */
2986 		}
2987 
2988 		/* If the controller supports the Read Remote Version
2989 		 * Information command, enable the corresponding event.
2990 		 */
2991 		if (hdev->commands[2] & 0x80)
2992 			events[1] |= 0x08; /* Read Remote Version Information
2993 					    * Complete
2994 					    */
2995 
2996 		if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
2997 			events[0] |= 0x80; /* Encryption Change */
2998 			events[5] |= 0x80; /* Encryption Key Refresh Complete */
2999 		}
3000 	}
3001 
3002 	if (lmp_inq_rssi_capable(hdev) ||
3003 	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
3004 		events[4] |= 0x02; /* Inquiry Result with RSSI */
3005 
3006 	if (lmp_ext_feat_capable(hdev))
3007 		events[4] |= 0x04; /* Read Remote Extended Features Complete */
3008 
3009 	if (lmp_esco_capable(hdev)) {
3010 		events[5] |= 0x08; /* Synchronous Connection Complete */
3011 		events[5] |= 0x10; /* Synchronous Connection Changed */
3012 	}
3013 
3014 	if (lmp_sniffsubr_capable(hdev))
3015 		events[5] |= 0x20; /* Sniff Subrating */
3016 
3017 	if (lmp_pause_enc_capable(hdev))
3018 		events[5] |= 0x80; /* Encryption Key Refresh Complete */
3019 
3020 	if (lmp_ext_inq_capable(hdev))
3021 		events[5] |= 0x40; /* Extended Inquiry Result */
3022 
3023 	if (lmp_no_flush_capable(hdev))
3024 		events[7] |= 0x01; /* Enhanced Flush Complete */
3025 
3026 	if (lmp_lsto_capable(hdev))
3027 		events[6] |= 0x80; /* Link Supervision Timeout Changed */
3028 
3029 	if (lmp_ssp_capable(hdev)) {
3030 		events[6] |= 0x01;	/* IO Capability Request */
3031 		events[6] |= 0x02;	/* IO Capability Response */
3032 		events[6] |= 0x04;	/* User Confirmation Request */
3033 		events[6] |= 0x08;	/* User Passkey Request */
3034 		events[6] |= 0x10;	/* Remote OOB Data Request */
3035 		events[6] |= 0x20;	/* Simple Pairing Complete */
3036 		events[7] |= 0x04;	/* User Passkey Notification */
3037 		events[7] |= 0x08;	/* Keypress Notification */
3038 		events[7] |= 0x10;	/* Remote Host Supported
3039 					 * Features Notification
3040 					 */
3041 	}
3042 
3043 	if (lmp_le_capable(hdev))
3044 		events[7] |= 0x20;	/* LE Meta-Event */
3045 
3046 	return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK,
3047 				     sizeof(events), events, HCI_CMD_TIMEOUT);
3048 }
3049 
3050 static int hci_read_stored_link_key_sync(struct hci_dev *hdev)
3051 {
3052 	struct hci_cp_read_stored_link_key cp;
3053 
3054 	if (!(hdev->commands[6] & 0x20) ||
3055 	    test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks))
3056 		return 0;
3057 
3058 	memset(&cp, 0, sizeof(cp));
3059 	bacpy(&cp.bdaddr, BDADDR_ANY);
3060 	cp.read_all = 0x01;
3061 
3062 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_STORED_LINK_KEY,
3063 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3064 }
3065 
3066 static int hci_setup_link_policy_sync(struct hci_dev *hdev)
3067 {
3068 	struct hci_cp_write_def_link_policy cp;
3069 	u16 link_policy = 0;
3070 
3071 	if (!(hdev->commands[5] & 0x10))
3072 		return 0;
3073 
3074 	memset(&cp, 0, sizeof(cp));
3075 
3076 	if (lmp_rswitch_capable(hdev))
3077 		link_policy |= HCI_LP_RSWITCH;
3078 	if (lmp_hold_capable(hdev))
3079 		link_policy |= HCI_LP_HOLD;
3080 	if (lmp_sniff_capable(hdev))
3081 		link_policy |= HCI_LP_SNIFF;
3082 	if (lmp_park_capable(hdev))
3083 		link_policy |= HCI_LP_PARK;
3084 
3085 	cp.policy = cpu_to_le16(link_policy);
3086 
3087 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY,
3088 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3089 }
3090 
3091 static int hci_read_page_scan_activity_sync(struct hci_dev *hdev)
3092 {
3093 	if (!(hdev->commands[8] & 0x01))
3094 		return 0;
3095 
3096 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_ACTIVITY,
3097 				     0, NULL, HCI_CMD_TIMEOUT);
3098 }
3099 
3100 static int hci_read_def_err_data_reporting_sync(struct hci_dev *hdev)
3101 {
3102 	if (!(hdev->commands[18] & 0x04) ||
3103 	    test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks))
3104 		return 0;
3105 
3106 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_DEF_ERR_DATA_REPORTING,
3107 				     0, NULL, HCI_CMD_TIMEOUT);
3108 }
3109 
3110 static int hci_read_page_scan_type_sync(struct hci_dev *hdev)
3111 {
3112 	/* Some older Broadcom based Bluetooth 1.2 controllers do not
3113 	 * support the Read Page Scan Type command. Check support for
3114 	 * this command in the bit mask of supported commands.
3115 	 */
3116 	if (!(hdev->commands[13] & 0x01))
3117 		return 0;
3118 
3119 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_TYPE,
3120 				     0, NULL, HCI_CMD_TIMEOUT);
3121 }
3122 
3123 /* Read features beyond page 1 if available */
3124 static int hci_read_local_ext_features_all_sync(struct hci_dev *hdev)
3125 {
3126 	u8 page;
3127 	int err;
3128 
3129 	if (!lmp_ext_feat_capable(hdev))
3130 		return 0;
3131 
3132 	for (page = 2; page < HCI_MAX_PAGES && page <= hdev->max_page;
3133 	     page++) {
3134 		err = hci_read_local_ext_features_sync(hdev, page);
3135 		if (err)
3136 			return err;
3137 	}
3138 
3139 	return 0;
3140 }
3141 
3142 /* HCI Controller init stage 3 command sequence */
3143 static const struct hci_init_stage hci_init3[] = {
3144 	/* HCI_OP_SET_EVENT_MASK */
3145 	HCI_INIT(hci_set_event_mask_sync),
3146 	/* HCI_OP_READ_STORED_LINK_KEY */
3147 	HCI_INIT(hci_read_stored_link_key_sync),
3148 	/* HCI_OP_WRITE_DEF_LINK_POLICY */
3149 	HCI_INIT(hci_setup_link_policy_sync),
3150 	/* HCI_OP_READ_PAGE_SCAN_ACTIVITY */
3151 	HCI_INIT(hci_read_page_scan_activity_sync),
3152 	/* HCI_OP_READ_DEF_ERR_DATA_REPORTING */
3153 	HCI_INIT(hci_read_def_err_data_reporting_sync),
3154 	/* HCI_OP_READ_PAGE_SCAN_TYPE */
3155 	HCI_INIT(hci_read_page_scan_type_sync),
3156 	/* HCI_OP_READ_LOCAL_EXT_FEATURES */
3157 	HCI_INIT(hci_read_local_ext_features_all_sync),
3158 	{}
3159 };
3160 
3161 static int hci_le_set_event_mask_sync(struct hci_dev *hdev)
3162 {
3163 	u8 events[8];
3164 
3165 	if (!lmp_le_capable(hdev))
3166 		return 0;
3167 
3168 	memset(events, 0, sizeof(events));
3169 
3170 	if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
3171 		events[0] |= 0x10;	/* LE Long Term Key Request */
3172 
3173 	/* If controller supports the Connection Parameters Request
3174 	 * Link Layer Procedure, enable the corresponding event.
3175 	 */
3176 	if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
3177 		/* LE Remote Connection Parameter Request */
3178 		events[0] |= 0x20;
3179 
3180 	/* If the controller supports the Data Length Extension
3181 	 * feature, enable the corresponding event.
3182 	 */
3183 	if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
3184 		events[0] |= 0x40;	/* LE Data Length Change */
3185 
3186 	/* If the controller supports LL Privacy feature, enable
3187 	 * the corresponding event.
3188 	 */
3189 	if (hdev->le_features[0] & HCI_LE_LL_PRIVACY)
3190 		events[1] |= 0x02;	/* LE Enhanced Connection Complete */
3191 
3192 	/* If the controller supports Extended Scanner Filter
3193 	 * Policies, enable the corresponding event.
3194 	 */
3195 	if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
3196 		events[1] |= 0x04;	/* LE Direct Advertising Report */
3197 
3198 	/* If the controller supports Channel Selection Algorithm #2
3199 	 * feature, enable the corresponding event.
3200 	 */
3201 	if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
3202 		events[2] |= 0x08;	/* LE Channel Selection Algorithm */
3203 
3204 	/* If the controller supports the LE Set Scan Enable command,
3205 	 * enable the corresponding advertising report event.
3206 	 */
3207 	if (hdev->commands[26] & 0x08)
3208 		events[0] |= 0x02;	/* LE Advertising Report */
3209 
3210 	/* If the controller supports the LE Create Connection
3211 	 * command, enable the corresponding event.
3212 	 */
3213 	if (hdev->commands[26] & 0x10)
3214 		events[0] |= 0x01;	/* LE Connection Complete */
3215 
3216 	/* If the controller supports the LE Connection Update
3217 	 * command, enable the corresponding event.
3218 	 */
3219 	if (hdev->commands[27] & 0x04)
3220 		events[0] |= 0x04;	/* LE Connection Update Complete */
3221 
3222 	/* If the controller supports the LE Read Remote Used Features
3223 	 * command, enable the corresponding event.
3224 	 */
3225 	if (hdev->commands[27] & 0x20)
3226 		/* LE Read Remote Used Features Complete */
3227 		events[0] |= 0x08;
3228 
3229 	/* If the controller supports the LE Read Local P-256
3230 	 * Public Key command, enable the corresponding event.
3231 	 */
3232 	if (hdev->commands[34] & 0x02)
3233 		/* LE Read Local P-256 Public Key Complete */
3234 		events[0] |= 0x80;
3235 
3236 	/* If the controller supports the LE Generate DHKey
3237 	 * command, enable the corresponding event.
3238 	 */
3239 	if (hdev->commands[34] & 0x04)
3240 		events[1] |= 0x01;	/* LE Generate DHKey Complete */
3241 
3242 	/* If the controller supports the LE Set Default PHY or
3243 	 * LE Set PHY commands, enable the corresponding event.
3244 	 */
3245 	if (hdev->commands[35] & (0x20 | 0x40))
3246 		events[1] |= 0x08;        /* LE PHY Update Complete */
3247 
3248 	/* If the controller supports LE Set Extended Scan Parameters
3249 	 * and LE Set Extended Scan Enable commands, enable the
3250 	 * corresponding event.
3251 	 */
3252 	if (use_ext_scan(hdev))
3253 		events[1] |= 0x10;	/* LE Extended Advertising Report */
3254 
3255 	/* If the controller supports the LE Extended Advertising
3256 	 * command, enable the corresponding event.
3257 	 */
3258 	if (ext_adv_capable(hdev))
3259 		events[2] |= 0x02;	/* LE Advertising Set Terminated */
3260 
3261 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EVENT_MASK,
3262 				     sizeof(events), events, HCI_CMD_TIMEOUT);
3263 }
3264 
3265 /* Read LE Advertising Channel TX Power */
3266 static int hci_le_read_adv_tx_power_sync(struct hci_dev *hdev)
3267 {
3268 	if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) {
3269 		/* HCI TS spec forbids mixing of legacy and extended
3270 		 * advertising commands wherein READ_ADV_TX_POWER is
3271 		 * also included. So do not call it if extended adv
3272 		 * is supported otherwise controller will return
3273 		 * COMMAND_DISALLOWED for extended commands.
3274 		 */
3275 		return __hci_cmd_sync_status(hdev,
3276 					       HCI_OP_LE_READ_ADV_TX_POWER,
3277 					       0, NULL, HCI_CMD_TIMEOUT);
3278 	}
3279 
3280 	return 0;
3281 }
3282 
3283 /* Read LE Min/Max Tx Power*/
3284 static int hci_le_read_tx_power_sync(struct hci_dev *hdev)
3285 {
3286 	if (!(hdev->commands[38] & 0x80))
3287 		return 0;
3288 
3289 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_TRANSMIT_POWER,
3290 				     0, NULL, HCI_CMD_TIMEOUT);
3291 }
3292 
3293 /* Read LE Accept List Size */
3294 static int hci_le_read_accept_list_size_sync(struct hci_dev *hdev)
3295 {
3296 	if (!(hdev->commands[26] & 0x40))
3297 		return 0;
3298 
3299 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_ACCEPT_LIST_SIZE,
3300 				     0, NULL, HCI_CMD_TIMEOUT);
3301 }
3302 
3303 /* Clear LE Accept List */
3304 static int hci_le_clear_accept_list_sync(struct hci_dev *hdev)
3305 {
3306 	if (!(hdev->commands[26] & 0x80))
3307 		return 0;
3308 
3309 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL,
3310 				     HCI_CMD_TIMEOUT);
3311 }
3312 
3313 /* Read LE Resolving List Size */
3314 static int hci_le_read_resolv_list_size_sync(struct hci_dev *hdev)
3315 {
3316 	if (!(hdev->commands[34] & 0x40))
3317 		return 0;
3318 
3319 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_RESOLV_LIST_SIZE,
3320 				     0, NULL, HCI_CMD_TIMEOUT);
3321 }
3322 
3323 /* Clear LE Resolving List */
3324 static int hci_le_clear_resolv_list_sync(struct hci_dev *hdev)
3325 {
3326 	if (!(hdev->commands[34] & 0x20))
3327 		return 0;
3328 
3329 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL,
3330 				     HCI_CMD_TIMEOUT);
3331 }
3332 
3333 /* Set RPA timeout */
3334 static int hci_le_set_rpa_timeout_sync(struct hci_dev *hdev)
3335 {
3336 	__le16 timeout = cpu_to_le16(hdev->rpa_timeout);
3337 
3338 	if (!(hdev->commands[35] & 0x04))
3339 		return 0;
3340 
3341 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RPA_TIMEOUT,
3342 				     sizeof(timeout), &timeout,
3343 				     HCI_CMD_TIMEOUT);
3344 }
3345 
3346 /* Read LE Maximum Data Length */
3347 static int hci_le_read_max_data_len_sync(struct hci_dev *hdev)
3348 {
3349 	if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
3350 		return 0;
3351 
3352 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL,
3353 				     HCI_CMD_TIMEOUT);
3354 }
3355 
3356 /* Read LE Suggested Default Data Length */
3357 static int hci_le_read_def_data_len_sync(struct hci_dev *hdev)
3358 {
3359 	if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
3360 		return 0;
3361 
3362 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL,
3363 				     HCI_CMD_TIMEOUT);
3364 }
3365 
3366 /* Read LE Number of Supported Advertising Sets */
3367 static int hci_le_read_num_support_adv_sets_sync(struct hci_dev *hdev)
3368 {
3369 	if (!ext_adv_capable(hdev))
3370 		return 0;
3371 
3372 	return __hci_cmd_sync_status(hdev,
3373 				     HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS,
3374 				     0, NULL, HCI_CMD_TIMEOUT);
3375 }
3376 
3377 /* Write LE Host Supported */
3378 static int hci_set_le_support_sync(struct hci_dev *hdev)
3379 {
3380 	struct hci_cp_write_le_host_supported cp;
3381 
3382 	/* LE-only devices do not support explicit enablement */
3383 	if (!lmp_bredr_capable(hdev))
3384 		return 0;
3385 
3386 	memset(&cp, 0, sizeof(cp));
3387 
3388 	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
3389 		cp.le = 0x01;
3390 		cp.simul = 0x00;
3391 	}
3392 
3393 	if (cp.le == lmp_host_le_capable(hdev))
3394 		return 0;
3395 
3396 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED,
3397 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3398 }
3399 
3400 /* LE Controller init stage 3 command sequence */
3401 static const struct hci_init_stage le_init3[] = {
3402 	/* HCI_OP_LE_SET_EVENT_MASK */
3403 	HCI_INIT(hci_le_set_event_mask_sync),
3404 	/* HCI_OP_LE_READ_ADV_TX_POWER */
3405 	HCI_INIT(hci_le_read_adv_tx_power_sync),
3406 	/* HCI_OP_LE_READ_TRANSMIT_POWER */
3407 	HCI_INIT(hci_le_read_tx_power_sync),
3408 	/* HCI_OP_LE_READ_ACCEPT_LIST_SIZE */
3409 	HCI_INIT(hci_le_read_accept_list_size_sync),
3410 	/* HCI_OP_LE_CLEAR_ACCEPT_LIST */
3411 	HCI_INIT(hci_le_clear_accept_list_sync),
3412 	/* HCI_OP_LE_READ_RESOLV_LIST_SIZE */
3413 	HCI_INIT(hci_le_read_resolv_list_size_sync),
3414 	/* HCI_OP_LE_CLEAR_RESOLV_LIST */
3415 	HCI_INIT(hci_le_clear_resolv_list_sync),
3416 	/* HCI_OP_LE_SET_RPA_TIMEOUT */
3417 	HCI_INIT(hci_le_set_rpa_timeout_sync),
3418 	/* HCI_OP_LE_READ_MAX_DATA_LEN */
3419 	HCI_INIT(hci_le_read_max_data_len_sync),
3420 	/* HCI_OP_LE_READ_DEF_DATA_LEN */
3421 	HCI_INIT(hci_le_read_def_data_len_sync),
3422 	/* HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS */
3423 	HCI_INIT(hci_le_read_num_support_adv_sets_sync),
3424 	/* HCI_OP_WRITE_LE_HOST_SUPPORTED */
3425 	HCI_INIT(hci_set_le_support_sync),
3426 	{}
3427 };
3428 
3429 static int hci_init3_sync(struct hci_dev *hdev)
3430 {
3431 	int err;
3432 
3433 	bt_dev_dbg(hdev, "");
3434 
3435 	err = hci_init_stage_sync(hdev, hci_init3);
3436 	if (err)
3437 		return err;
3438 
3439 	if (lmp_le_capable(hdev))
3440 		return hci_init_stage_sync(hdev, le_init3);
3441 
3442 	return 0;
3443 }
3444 
3445 static int hci_delete_stored_link_key_sync(struct hci_dev *hdev)
3446 {
3447 	struct hci_cp_delete_stored_link_key cp;
3448 
3449 	/* Some Broadcom based Bluetooth controllers do not support the
3450 	 * Delete Stored Link Key command. They are clearly indicating its
3451 	 * absence in the bit mask of supported commands.
3452 	 *
3453 	 * Check the supported commands and only if the command is marked
3454 	 * as supported send it. If not supported assume that the controller
3455 	 * does not have actual support for stored link keys which makes this
3456 	 * command redundant anyway.
3457 	 *
3458 	 * Some controllers indicate that they support handling deleting
3459 	 * stored link keys, but they don't. The quirk lets a driver
3460 	 * just disable this command.
3461 	 */
3462 	if (!(hdev->commands[6] & 0x80) ||
3463 	    test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks))
3464 		return 0;
3465 
3466 	memset(&cp, 0, sizeof(cp));
3467 	bacpy(&cp.bdaddr, BDADDR_ANY);
3468 	cp.delete_all = 0x01;
3469 
3470 	return __hci_cmd_sync_status(hdev, HCI_OP_DELETE_STORED_LINK_KEY,
3471 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3472 }
3473 
3474 static int hci_set_event_mask_page_2_sync(struct hci_dev *hdev)
3475 {
3476 	u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
3477 	bool changed = false;
3478 
3479 	/* Set event mask page 2 if the HCI command for it is supported */
3480 	if (!(hdev->commands[22] & 0x04))
3481 		return 0;
3482 
3483 	/* If Connectionless Peripheral Broadcast central role is supported
3484 	 * enable all necessary events for it.
3485 	 */
3486 	if (lmp_cpb_central_capable(hdev)) {
3487 		events[1] |= 0x40;	/* Triggered Clock Capture */
3488 		events[1] |= 0x80;	/* Synchronization Train Complete */
3489 		events[2] |= 0x10;	/* Peripheral Page Response Timeout */
3490 		events[2] |= 0x20;	/* CPB Channel Map Change */
3491 		changed = true;
3492 	}
3493 
3494 	/* If Connectionless Peripheral Broadcast peripheral role is supported
3495 	 * enable all necessary events for it.
3496 	 */
3497 	if (lmp_cpb_peripheral_capable(hdev)) {
3498 		events[2] |= 0x01;	/* Synchronization Train Received */
3499 		events[2] |= 0x02;	/* CPB Receive */
3500 		events[2] |= 0x04;	/* CPB Timeout */
3501 		events[2] |= 0x08;	/* Truncated Page Complete */
3502 		changed = true;
3503 	}
3504 
3505 	/* Enable Authenticated Payload Timeout Expired event if supported */
3506 	if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
3507 		events[2] |= 0x80;
3508 		changed = true;
3509 	}
3510 
3511 	/* Some Broadcom based controllers indicate support for Set Event
3512 	 * Mask Page 2 command, but then actually do not support it. Since
3513 	 * the default value is all bits set to zero, the command is only
3514 	 * required if the event mask has to be changed. In case no change
3515 	 * to the event mask is needed, skip this command.
3516 	 */
3517 	if (!changed)
3518 		return 0;
3519 
3520 	return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK_PAGE_2,
3521 				     sizeof(events), events, HCI_CMD_TIMEOUT);
3522 }
3523 
3524 /* Read local codec list if the HCI command is supported */
3525 static int hci_read_local_codecs_sync(struct hci_dev *hdev)
3526 {
3527 	if (!(hdev->commands[29] & 0x20))
3528 		return 0;
3529 
3530 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_CODECS, 0, NULL,
3531 				     HCI_CMD_TIMEOUT);
3532 }
3533 
3534 /* Read local pairing options if the HCI command is supported */
3535 static int hci_read_local_pairing_opts_sync(struct hci_dev *hdev)
3536 {
3537 	if (!(hdev->commands[41] & 0x08))
3538 		return 0;
3539 
3540 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_PAIRING_OPTS,
3541 				     0, NULL, HCI_CMD_TIMEOUT);
3542 }
3543 
3544 /* Get MWS transport configuration if the HCI command is supported */
3545 static int hci_get_mws_transport_config_sync(struct hci_dev *hdev)
3546 {
3547 	if (!(hdev->commands[30] & 0x08))
3548 		return 0;
3549 
3550 	return __hci_cmd_sync_status(hdev, HCI_OP_GET_MWS_TRANSPORT_CONFIG,
3551 				     0, NULL, HCI_CMD_TIMEOUT);
3552 }
3553 
3554 /* Check for Synchronization Train support */
3555 static int hci_read_sync_train_params_sync(struct hci_dev *hdev)
3556 {
3557 	if (!lmp_sync_train_capable(hdev))
3558 		return 0;
3559 
3560 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_SYNC_TRAIN_PARAMS,
3561 				     0, NULL, HCI_CMD_TIMEOUT);
3562 }
3563 
3564 /* Enable Secure Connections if supported and configured */
3565 static int hci_write_sc_support_1_sync(struct hci_dev *hdev)
3566 {
3567 	u8 support = 0x01;
3568 
3569 	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) ||
3570 	    !bredr_sc_enabled(hdev))
3571 		return 0;
3572 
3573 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT,
3574 				     sizeof(support), &support,
3575 				     HCI_CMD_TIMEOUT);
3576 }
3577 
3578 /* Set erroneous data reporting if supported to the wideband speech
3579  * setting value
3580  */
3581 static int hci_set_err_data_report_sync(struct hci_dev *hdev)
3582 {
3583 	struct hci_cp_write_def_err_data_reporting cp;
3584 	bool enabled = hci_dev_test_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED);
3585 
3586 	if (!(hdev->commands[18] & 0x08) ||
3587 	    test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks))
3588 		return 0;
3589 
3590 	if (enabled == hdev->err_data_reporting)
3591 		return 0;
3592 
3593 	memset(&cp, 0, sizeof(cp));
3594 	cp.err_data_reporting = enabled ? ERR_DATA_REPORTING_ENABLED :
3595 				ERR_DATA_REPORTING_DISABLED;
3596 
3597 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING,
3598 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3599 }
3600 
3601 static const struct hci_init_stage hci_init4[] = {
3602 	 /* HCI_OP_DELETE_STORED_LINK_KEY */
3603 	HCI_INIT(hci_delete_stored_link_key_sync),
3604 	/* HCI_OP_SET_EVENT_MASK_PAGE_2 */
3605 	HCI_INIT(hci_set_event_mask_page_2_sync),
3606 	/* HCI_OP_READ_LOCAL_CODECS */
3607 	HCI_INIT(hci_read_local_codecs_sync),
3608 	 /* HCI_OP_READ_LOCAL_PAIRING_OPTS */
3609 	HCI_INIT(hci_read_local_pairing_opts_sync),
3610 	 /* HCI_OP_GET_MWS_TRANSPORT_CONFIG */
3611 	HCI_INIT(hci_get_mws_transport_config_sync),
3612 	 /* HCI_OP_READ_SYNC_TRAIN_PARAMS */
3613 	HCI_INIT(hci_read_sync_train_params_sync),
3614 	/* HCI_OP_WRITE_SC_SUPPORT */
3615 	HCI_INIT(hci_write_sc_support_1_sync),
3616 	/* HCI_OP_WRITE_DEF_ERR_DATA_REPORTING */
3617 	HCI_INIT(hci_set_err_data_report_sync),
3618 	{}
3619 };
3620 
3621 /* Set Suggested Default Data Length to maximum if supported */
3622 static int hci_le_set_write_def_data_len_sync(struct hci_dev *hdev)
3623 {
3624 	struct hci_cp_le_write_def_data_len cp;
3625 
3626 	if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
3627 		return 0;
3628 
3629 	memset(&cp, 0, sizeof(cp));
3630 	cp.tx_len = cpu_to_le16(hdev->le_max_tx_len);
3631 	cp.tx_time = cpu_to_le16(hdev->le_max_tx_time);
3632 
3633 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_WRITE_DEF_DATA_LEN,
3634 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3635 }
3636 
3637 /* Set Default PHY parameters if command is supported */
3638 static int hci_le_set_default_phy_sync(struct hci_dev *hdev)
3639 {
3640 	struct hci_cp_le_set_default_phy cp;
3641 
3642 	if (!(hdev->commands[35] & 0x20))
3643 		return 0;
3644 
3645 	memset(&cp, 0, sizeof(cp));
3646 	cp.all_phys = 0x00;
3647 	cp.tx_phys = hdev->le_tx_def_phys;
3648 	cp.rx_phys = hdev->le_rx_def_phys;
3649 
3650 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_DEFAULT_PHY,
3651 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3652 }
3653 
3654 static const struct hci_init_stage le_init4[] = {
3655 	/* HCI_OP_LE_WRITE_DEF_DATA_LEN */
3656 	HCI_INIT(hci_le_set_write_def_data_len_sync),
3657 	/* HCI_OP_LE_SET_DEFAULT_PHY */
3658 	HCI_INIT(hci_le_set_default_phy_sync),
3659 	{}
3660 };
3661 
3662 static int hci_init4_sync(struct hci_dev *hdev)
3663 {
3664 	int err;
3665 
3666 	bt_dev_dbg(hdev, "");
3667 
3668 	err = hci_init_stage_sync(hdev, hci_init4);
3669 	if (err)
3670 		return err;
3671 
3672 	if (lmp_le_capable(hdev))
3673 		return hci_init_stage_sync(hdev, le_init4);
3674 
3675 	return 0;
3676 }
3677 
3678 static int hci_init_sync(struct hci_dev *hdev)
3679 {
3680 	int err;
3681 
3682 	err = hci_init1_sync(hdev);
3683 	if (err < 0)
3684 		return err;
3685 
3686 	if (hci_dev_test_flag(hdev, HCI_SETUP))
3687 		hci_debugfs_create_basic(hdev);
3688 
3689 	err = hci_init2_sync(hdev);
3690 	if (err < 0)
3691 		return err;
3692 
3693 	/* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
3694 	 * BR/EDR/LE type controllers. AMP controllers only need the
3695 	 * first two stages of init.
3696 	 */
3697 	if (hdev->dev_type != HCI_PRIMARY)
3698 		return 0;
3699 
3700 	err = hci_init3_sync(hdev);
3701 	if (err < 0)
3702 		return err;
3703 
3704 	err = hci_init4_sync(hdev);
3705 	if (err < 0)
3706 		return err;
3707 
3708 	/* This function is only called when the controller is actually in
3709 	 * configured state. When the controller is marked as unconfigured,
3710 	 * this initialization procedure is not run.
3711 	 *
3712 	 * It means that it is possible that a controller runs through its
3713 	 * setup phase and then discovers missing settings. If that is the
3714 	 * case, then this function will not be called. It then will only
3715 	 * be called during the config phase.
3716 	 *
3717 	 * So only when in setup phase or config phase, create the debugfs
3718 	 * entries and register the SMP channels.
3719 	 */
3720 	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
3721 	    !hci_dev_test_flag(hdev, HCI_CONFIG))
3722 		return 0;
3723 
3724 	hci_debugfs_create_common(hdev);
3725 
3726 	if (lmp_bredr_capable(hdev))
3727 		hci_debugfs_create_bredr(hdev);
3728 
3729 	if (lmp_le_capable(hdev))
3730 		hci_debugfs_create_le(hdev);
3731 
3732 	return 0;
3733 }
3734 
3735 int hci_dev_open_sync(struct hci_dev *hdev)
3736 {
3737 	int ret = 0;
3738 
3739 	bt_dev_dbg(hdev, "");
3740 
3741 	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
3742 		ret = -ENODEV;
3743 		goto done;
3744 	}
3745 
3746 	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
3747 	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3748 		/* Check for rfkill but allow the HCI setup stage to
3749 		 * proceed (which in itself doesn't cause any RF activity).
3750 		 */
3751 		if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
3752 			ret = -ERFKILL;
3753 			goto done;
3754 		}
3755 
3756 		/* Check for valid public address or a configured static
3757 		 * random address, but let the HCI setup proceed to
3758 		 * be able to determine if there is a public address
3759 		 * or not.
3760 		 *
3761 		 * In case of user channel usage, it is not important
3762 		 * if a public address or static random address is
3763 		 * available.
3764 		 *
3765 		 * This check is only valid for BR/EDR controllers
3766 		 * since AMP controllers do not have an address.
3767 		 */
3768 		if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
3769 		    hdev->dev_type == HCI_PRIMARY &&
3770 		    !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
3771 		    !bacmp(&hdev->static_addr, BDADDR_ANY)) {
3772 			ret = -EADDRNOTAVAIL;
3773 			goto done;
3774 		}
3775 	}
3776 
3777 	if (test_bit(HCI_UP, &hdev->flags)) {
3778 		ret = -EALREADY;
3779 		goto done;
3780 	}
3781 
3782 	if (hdev->open(hdev)) {
3783 		ret = -EIO;
3784 		goto done;
3785 	}
3786 
3787 	set_bit(HCI_RUNNING, &hdev->flags);
3788 	hci_sock_dev_event(hdev, HCI_DEV_OPEN);
3789 
3790 	atomic_set(&hdev->cmd_cnt, 1);
3791 	set_bit(HCI_INIT, &hdev->flags);
3792 
3793 	if (hci_dev_test_flag(hdev, HCI_SETUP) ||
3794 	    test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) {
3795 		bool invalid_bdaddr;
3796 
3797 		hci_sock_dev_event(hdev, HCI_DEV_SETUP);
3798 
3799 		if (hdev->setup)
3800 			ret = hdev->setup(hdev);
3801 
3802 		/* The transport driver can set the quirk to mark the
3803 		 * BD_ADDR invalid before creating the HCI device or in
3804 		 * its setup callback.
3805 		 */
3806 		invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR,
3807 					  &hdev->quirks);
3808 
3809 		if (ret)
3810 			goto setup_failed;
3811 
3812 		if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) {
3813 			if (!bacmp(&hdev->public_addr, BDADDR_ANY))
3814 				hci_dev_get_bd_addr_from_property(hdev);
3815 
3816 			if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
3817 			    hdev->set_bdaddr) {
3818 				ret = hdev->set_bdaddr(hdev,
3819 						       &hdev->public_addr);
3820 
3821 				/* If setting of the BD_ADDR from the device
3822 				 * property succeeds, then treat the address
3823 				 * as valid even if the invalid BD_ADDR
3824 				 * quirk indicates otherwise.
3825 				 */
3826 				if (!ret)
3827 					invalid_bdaddr = false;
3828 			}
3829 		}
3830 
3831 setup_failed:
3832 		/* The transport driver can set these quirks before
3833 		 * creating the HCI device or in its setup callback.
3834 		 *
3835 		 * For the invalid BD_ADDR quirk it is possible that
3836 		 * it becomes a valid address if the bootloader does
3837 		 * provide it (see above).
3838 		 *
3839 		 * In case any of them is set, the controller has to
3840 		 * start up as unconfigured.
3841 		 */
3842 		if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
3843 		    invalid_bdaddr)
3844 			hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3845 
3846 		/* For an unconfigured controller it is required to
3847 		 * read at least the version information provided by
3848 		 * the Read Local Version Information command.
3849 		 *
3850 		 * If the set_bdaddr driver callback is provided, then
3851 		 * also the original Bluetooth public device address
3852 		 * will be read using the Read BD Address command.
3853 		 */
3854 		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
3855 			ret = hci_unconf_init_sync(hdev);
3856 	}
3857 
3858 	if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
3859 		/* If public address change is configured, ensure that
3860 		 * the address gets programmed. If the driver does not
3861 		 * support changing the public address, fail the power
3862 		 * on procedure.
3863 		 */
3864 		if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
3865 		    hdev->set_bdaddr)
3866 			ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
3867 		else
3868 			ret = -EADDRNOTAVAIL;
3869 	}
3870 
3871 	if (!ret) {
3872 		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
3873 		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3874 			ret = hci_init_sync(hdev);
3875 			if (!ret && hdev->post_init)
3876 				ret = hdev->post_init(hdev);
3877 		}
3878 	}
3879 
3880 	/* If the HCI Reset command is clearing all diagnostic settings,
3881 	 * then they need to be reprogrammed after the init procedure
3882 	 * completed.
3883 	 */
3884 	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
3885 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
3886 	    hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
3887 		ret = hdev->set_diag(hdev, true);
3888 
3889 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3890 		msft_do_open(hdev);
3891 		aosp_do_open(hdev);
3892 	}
3893 
3894 	clear_bit(HCI_INIT, &hdev->flags);
3895 
3896 	if (!ret) {
3897 		hci_dev_hold(hdev);
3898 		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
3899 		hci_adv_instances_set_rpa_expired(hdev, true);
3900 		set_bit(HCI_UP, &hdev->flags);
3901 		hci_sock_dev_event(hdev, HCI_DEV_UP);
3902 		hci_leds_update_powered(hdev, true);
3903 		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
3904 		    !hci_dev_test_flag(hdev, HCI_CONFIG) &&
3905 		    !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
3906 		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
3907 		    hci_dev_test_flag(hdev, HCI_MGMT) &&
3908 		    hdev->dev_type == HCI_PRIMARY) {
3909 			ret = hci_powered_update_sync(hdev);
3910 		}
3911 	} else {
3912 		/* Init failed, cleanup */
3913 		flush_work(&hdev->tx_work);
3914 
3915 		/* Since hci_rx_work() is possible to awake new cmd_work
3916 		 * it should be flushed first to avoid unexpected call of
3917 		 * hci_cmd_work()
3918 		 */
3919 		flush_work(&hdev->rx_work);
3920 		flush_work(&hdev->cmd_work);
3921 
3922 		skb_queue_purge(&hdev->cmd_q);
3923 		skb_queue_purge(&hdev->rx_q);
3924 
3925 		if (hdev->flush)
3926 			hdev->flush(hdev);
3927 
3928 		if (hdev->sent_cmd) {
3929 			kfree_skb(hdev->sent_cmd);
3930 			hdev->sent_cmd = NULL;
3931 		}
3932 
3933 		clear_bit(HCI_RUNNING, &hdev->flags);
3934 		hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
3935 
3936 		hdev->close(hdev);
3937 		hdev->flags &= BIT(HCI_RAW);
3938 	}
3939 
3940 done:
3941 	return ret;
3942 }
3943 
3944 /* This function requires the caller holds hdev->lock */
3945 static void hci_pend_le_actions_clear(struct hci_dev *hdev)
3946 {
3947 	struct hci_conn_params *p;
3948 
3949 	list_for_each_entry(p, &hdev->le_conn_params, list) {
3950 		if (p->conn) {
3951 			hci_conn_drop(p->conn);
3952 			hci_conn_put(p->conn);
3953 			p->conn = NULL;
3954 		}
3955 		list_del_init(&p->action);
3956 	}
3957 
3958 	BT_DBG("All LE pending actions cleared");
3959 }
3960 
3961 int hci_dev_close_sync(struct hci_dev *hdev)
3962 {
3963 	bool auto_off;
3964 	int err = 0;
3965 
3966 	bt_dev_dbg(hdev, "");
3967 
3968 	cancel_delayed_work(&hdev->power_off);
3969 	cancel_delayed_work(&hdev->ncmd_timer);
3970 
3971 	hci_request_cancel_all(hdev);
3972 
3973 	if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
3974 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
3975 	    test_bit(HCI_UP, &hdev->flags)) {
3976 		/* Execute vendor specific shutdown routine */
3977 		if (hdev->shutdown)
3978 			err = hdev->shutdown(hdev);
3979 	}
3980 
3981 	if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
3982 		cancel_delayed_work_sync(&hdev->cmd_timer);
3983 		return err;
3984 	}
3985 
3986 	hci_leds_update_powered(hdev, false);
3987 
3988 	/* Flush RX and TX works */
3989 	flush_work(&hdev->tx_work);
3990 	flush_work(&hdev->rx_work);
3991 
3992 	if (hdev->discov_timeout > 0) {
3993 		hdev->discov_timeout = 0;
3994 		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
3995 		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
3996 	}
3997 
3998 	if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
3999 		cancel_delayed_work(&hdev->service_cache);
4000 
4001 	if (hci_dev_test_flag(hdev, HCI_MGMT)) {
4002 		struct adv_info *adv_instance;
4003 
4004 		cancel_delayed_work_sync(&hdev->rpa_expired);
4005 
4006 		list_for_each_entry(adv_instance, &hdev->adv_instances, list)
4007 			cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
4008 	}
4009 
4010 	/* Avoid potential lockdep warnings from the *_flush() calls by
4011 	 * ensuring the workqueue is empty up front.
4012 	 */
4013 	drain_workqueue(hdev->workqueue);
4014 
4015 	hci_dev_lock(hdev);
4016 
4017 	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
4018 
4019 	auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
4020 
4021 	if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
4022 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4023 	    hci_dev_test_flag(hdev, HCI_MGMT))
4024 		__mgmt_power_off(hdev);
4025 
4026 	hci_inquiry_cache_flush(hdev);
4027 	hci_pend_le_actions_clear(hdev);
4028 	hci_conn_hash_flush(hdev);
4029 	hci_dev_unlock(hdev);
4030 
4031 	smp_unregister(hdev);
4032 
4033 	hci_sock_dev_event(hdev, HCI_DEV_DOWN);
4034 
4035 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4036 		aosp_do_close(hdev);
4037 		msft_do_close(hdev);
4038 	}
4039 
4040 	if (hdev->flush)
4041 		hdev->flush(hdev);
4042 
4043 	/* Reset device */
4044 	skb_queue_purge(&hdev->cmd_q);
4045 	atomic_set(&hdev->cmd_cnt, 1);
4046 	if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
4047 	    !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
4048 		set_bit(HCI_INIT, &hdev->flags);
4049 		hci_reset_sync(hdev);
4050 		clear_bit(HCI_INIT, &hdev->flags);
4051 	}
4052 
4053 	/* flush cmd  work */
4054 	flush_work(&hdev->cmd_work);
4055 
4056 	/* Drop queues */
4057 	skb_queue_purge(&hdev->rx_q);
4058 	skb_queue_purge(&hdev->cmd_q);
4059 	skb_queue_purge(&hdev->raw_q);
4060 
4061 	/* Drop last sent command */
4062 	if (hdev->sent_cmd) {
4063 		cancel_delayed_work_sync(&hdev->cmd_timer);
4064 		kfree_skb(hdev->sent_cmd);
4065 		hdev->sent_cmd = NULL;
4066 	}
4067 
4068 	clear_bit(HCI_RUNNING, &hdev->flags);
4069 	hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
4070 
4071 	/* After this point our queues are empty and no tasks are scheduled. */
4072 	hdev->close(hdev);
4073 
4074 	/* Clear flags */
4075 	hdev->flags &= BIT(HCI_RAW);
4076 	hci_dev_clear_volatile_flags(hdev);
4077 
4078 	/* Controller radio is available but is currently powered down */
4079 	hdev->amp_status = AMP_STATUS_POWERED_DOWN;
4080 
4081 	memset(hdev->eir, 0, sizeof(hdev->eir));
4082 	memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
4083 	bacpy(&hdev->random_addr, BDADDR_ANY);
4084 
4085 	hci_dev_put(hdev);
4086 	return err;
4087 }
4088 
4089 /* This function perform power on HCI command sequence as follows:
4090  *
4091  * If controller is already up (HCI_UP) performs hci_powered_update_sync
4092  * sequence otherwise run hci_dev_open_sync which will follow with
4093  * hci_powered_update_sync after the init sequence is completed.
4094  */
4095 static int hci_power_on_sync(struct hci_dev *hdev)
4096 {
4097 	int err;
4098 
4099 	if (test_bit(HCI_UP, &hdev->flags) &&
4100 	    hci_dev_test_flag(hdev, HCI_MGMT) &&
4101 	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
4102 		cancel_delayed_work(&hdev->power_off);
4103 		return hci_powered_update_sync(hdev);
4104 	}
4105 
4106 	err = hci_dev_open_sync(hdev);
4107 	if (err < 0)
4108 		return err;
4109 
4110 	/* During the HCI setup phase, a few error conditions are
4111 	 * ignored and they need to be checked now. If they are still
4112 	 * valid, it is important to return the device back off.
4113 	 */
4114 	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
4115 	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
4116 	    (hdev->dev_type == HCI_PRIMARY &&
4117 	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
4118 	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
4119 		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
4120 		hci_dev_close_sync(hdev);
4121 	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
4122 		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
4123 				   HCI_AUTO_OFF_TIMEOUT);
4124 	}
4125 
4126 	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
4127 		/* For unconfigured devices, set the HCI_RAW flag
4128 		 * so that userspace can easily identify them.
4129 		 */
4130 		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
4131 			set_bit(HCI_RAW, &hdev->flags);
4132 
4133 		/* For fully configured devices, this will send
4134 		 * the Index Added event. For unconfigured devices,
4135 		 * it will send Unconfigued Index Added event.
4136 		 *
4137 		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
4138 		 * and no event will be send.
4139 		 */
4140 		mgmt_index_added(hdev);
4141 	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
4142 		/* When the controller is now configured, then it
4143 		 * is important to clear the HCI_RAW flag.
4144 		 */
4145 		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
4146 			clear_bit(HCI_RAW, &hdev->flags);
4147 
4148 		/* Powering on the controller with HCI_CONFIG set only
4149 		 * happens with the transition from unconfigured to
4150 		 * configured. This will send the Index Added event.
4151 		 */
4152 		mgmt_index_added(hdev);
4153 	}
4154 
4155 	return 0;
4156 }
4157 
4158 static int hci_remote_name_cancel_sync(struct hci_dev *hdev, bdaddr_t *addr)
4159 {
4160 	struct hci_cp_remote_name_req_cancel cp;
4161 
4162 	memset(&cp, 0, sizeof(cp));
4163 	bacpy(&cp.bdaddr, addr);
4164 
4165 	return __hci_cmd_sync_status(hdev, HCI_OP_REMOTE_NAME_REQ_CANCEL,
4166 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4167 }
4168 
4169 int hci_stop_discovery_sync(struct hci_dev *hdev)
4170 {
4171 	struct discovery_state *d = &hdev->discovery;
4172 	struct inquiry_entry *e;
4173 	int err;
4174 
4175 	bt_dev_dbg(hdev, "state %u", hdev->discovery.state);
4176 
4177 	if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
4178 		if (test_bit(HCI_INQUIRY, &hdev->flags)) {
4179 			err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL,
4180 						    0, NULL, HCI_CMD_TIMEOUT);
4181 			if (err)
4182 				return err;
4183 		}
4184 
4185 		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
4186 			cancel_delayed_work(&hdev->le_scan_disable);
4187 			cancel_delayed_work(&hdev->le_scan_restart);
4188 
4189 			err = hci_scan_disable_sync(hdev);
4190 			if (err)
4191 				return err;
4192 		}
4193 
4194 	} else {
4195 		err = hci_scan_disable_sync(hdev);
4196 		if (err)
4197 			return err;
4198 	}
4199 
4200 	/* Resume advertising if it was paused */
4201 	if (use_ll_privacy(hdev))
4202 		hci_resume_advertising_sync(hdev);
4203 
4204 	/* No further actions needed for LE-only discovery */
4205 	if (d->type == DISCOV_TYPE_LE)
4206 		return 0;
4207 
4208 	if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
4209 		e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
4210 						     NAME_PENDING);
4211 		if (!e)
4212 			return 0;
4213 
4214 		return hci_remote_name_cancel_sync(hdev, &e->data.bdaddr);
4215 	}
4216 
4217 	return 0;
4218 }
4219 
4220 static int hci_disconnect_phy_link_sync(struct hci_dev *hdev, u16 handle,
4221 					u8 reason)
4222 {
4223 	struct hci_cp_disconn_phy_link cp;
4224 
4225 	memset(&cp, 0, sizeof(cp));
4226 	cp.phy_handle = HCI_PHY_HANDLE(handle);
4227 	cp.reason = reason;
4228 
4229 	return __hci_cmd_sync_status(hdev, HCI_OP_DISCONN_PHY_LINK,
4230 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4231 }
4232 
4233 static int hci_disconnect_sync(struct hci_dev *hdev, struct hci_conn *conn,
4234 			       u8 reason)
4235 {
4236 	struct hci_cp_disconnect cp;
4237 
4238 	if (conn->type == AMP_LINK)
4239 		return hci_disconnect_phy_link_sync(hdev, conn->handle, reason);
4240 
4241 	memset(&cp, 0, sizeof(cp));
4242 	cp.handle = cpu_to_le16(conn->handle);
4243 	cp.reason = reason;
4244 
4245 	/* Wait for HCI_EV_DISCONN_COMPLETE not HCI_EV_CMD_STATUS when not
4246 	 * suspending.
4247 	 */
4248 	if (!hdev->suspended)
4249 		return __hci_cmd_sync_status_sk(hdev, HCI_OP_DISCONNECT,
4250 						sizeof(cp), &cp,
4251 						HCI_EV_DISCONN_COMPLETE,
4252 						HCI_CMD_TIMEOUT, NULL);
4253 
4254 	return __hci_cmd_sync_status(hdev, HCI_OP_DISCONNECT, sizeof(cp), &cp,
4255 				     HCI_CMD_TIMEOUT);
4256 }
4257 
4258 static int hci_le_connect_cancel_sync(struct hci_dev *hdev,
4259 				      struct hci_conn *conn)
4260 {
4261 	if (test_bit(HCI_CONN_SCANNING, &conn->flags))
4262 		return 0;
4263 
4264 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_CREATE_CONN_CANCEL,
4265 				     6, &conn->dst, HCI_CMD_TIMEOUT);
4266 }
4267 
4268 static int hci_connect_cancel_sync(struct hci_dev *hdev, struct hci_conn *conn)
4269 {
4270 	if (conn->type == LE_LINK)
4271 		return hci_le_connect_cancel_sync(hdev, conn);
4272 
4273 	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
4274 		return 0;
4275 
4276 	return __hci_cmd_sync_status(hdev, HCI_OP_CREATE_CONN_CANCEL,
4277 				     6, &conn->dst, HCI_CMD_TIMEOUT);
4278 }
4279 
4280 static int hci_reject_sco_sync(struct hci_dev *hdev, struct hci_conn *conn,
4281 			       u8 reason)
4282 {
4283 	struct hci_cp_reject_sync_conn_req cp;
4284 
4285 	memset(&cp, 0, sizeof(cp));
4286 	bacpy(&cp.bdaddr, &conn->dst);
4287 	cp.reason = reason;
4288 
4289 	/* SCO rejection has its own limited set of
4290 	 * allowed error values (0x0D-0x0F).
4291 	 */
4292 	if (reason < 0x0d || reason > 0x0f)
4293 		cp.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
4294 
4295 	return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_SYNC_CONN_REQ,
4296 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4297 }
4298 
4299 static int hci_reject_conn_sync(struct hci_dev *hdev, struct hci_conn *conn,
4300 				u8 reason)
4301 {
4302 	struct hci_cp_reject_conn_req cp;
4303 
4304 	if (conn->type == SCO_LINK || conn->type == ESCO_LINK)
4305 		return hci_reject_sco_sync(hdev, conn, reason);
4306 
4307 	memset(&cp, 0, sizeof(cp));
4308 	bacpy(&cp.bdaddr, &conn->dst);
4309 	cp.reason = reason;
4310 
4311 	return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_CONN_REQ,
4312 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4313 }
4314 
4315 static int hci_abort_conn_sync(struct hci_dev *hdev, struct hci_conn *conn,
4316 			       u8 reason)
4317 {
4318 	switch (conn->state) {
4319 	case BT_CONNECTED:
4320 	case BT_CONFIG:
4321 		return hci_disconnect_sync(hdev, conn, reason);
4322 	case BT_CONNECT:
4323 		return hci_connect_cancel_sync(hdev, conn);
4324 	case BT_CONNECT2:
4325 		return hci_reject_conn_sync(hdev, conn, reason);
4326 	default:
4327 		conn->state = BT_CLOSED;
4328 		break;
4329 	}
4330 
4331 	return 0;
4332 }
4333 
4334 static int hci_disconnect_all_sync(struct hci_dev *hdev, u8 reason)
4335 {
4336 	struct hci_conn *conn, *tmp;
4337 	int err;
4338 
4339 	list_for_each_entry_safe(conn, tmp, &hdev->conn_hash.list, list) {
4340 		err = hci_abort_conn_sync(hdev, conn, reason);
4341 		if (err)
4342 			return err;
4343 	}
4344 
4345 	return err;
4346 }
4347 
4348 /* This function perform power off HCI command sequence as follows:
4349  *
4350  * Clear Advertising
4351  * Stop Discovery
4352  * Disconnect all connections
4353  * hci_dev_close_sync
4354  */
4355 static int hci_power_off_sync(struct hci_dev *hdev)
4356 {
4357 	int err;
4358 
4359 	/* If controller is already down there is nothing to do */
4360 	if (!test_bit(HCI_UP, &hdev->flags))
4361 		return 0;
4362 
4363 	if (test_bit(HCI_ISCAN, &hdev->flags) ||
4364 	    test_bit(HCI_PSCAN, &hdev->flags)) {
4365 		err = hci_write_scan_enable_sync(hdev, 0x00);
4366 		if (err)
4367 			return err;
4368 	}
4369 
4370 	err = hci_clear_adv_sync(hdev, NULL, false);
4371 	if (err)
4372 		return err;
4373 
4374 	err = hci_stop_discovery_sync(hdev);
4375 	if (err)
4376 		return err;
4377 
4378 	/* Terminated due to Power Off */
4379 	err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF);
4380 	if (err)
4381 		return err;
4382 
4383 	return hci_dev_close_sync(hdev);
4384 }
4385 
4386 int hci_set_powered_sync(struct hci_dev *hdev, u8 val)
4387 {
4388 	if (val)
4389 		return hci_power_on_sync(hdev);
4390 
4391 	return hci_power_off_sync(hdev);
4392 }
4393 
4394 static int hci_write_iac_sync(struct hci_dev *hdev)
4395 {
4396 	struct hci_cp_write_current_iac_lap cp;
4397 
4398 	if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
4399 		return 0;
4400 
4401 	memset(&cp, 0, sizeof(cp));
4402 
4403 	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
4404 		/* Limited discoverable mode */
4405 		cp.num_iac = min_t(u8, hdev->num_iac, 2);
4406 		cp.iac_lap[0] = 0x00;	/* LIAC */
4407 		cp.iac_lap[1] = 0x8b;
4408 		cp.iac_lap[2] = 0x9e;
4409 		cp.iac_lap[3] = 0x33;	/* GIAC */
4410 		cp.iac_lap[4] = 0x8b;
4411 		cp.iac_lap[5] = 0x9e;
4412 	} else {
4413 		/* General discoverable mode */
4414 		cp.num_iac = 1;
4415 		cp.iac_lap[0] = 0x33;	/* GIAC */
4416 		cp.iac_lap[1] = 0x8b;
4417 		cp.iac_lap[2] = 0x9e;
4418 	}
4419 
4420 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CURRENT_IAC_LAP,
4421 				     (cp.num_iac * 3) + 1, &cp,
4422 				     HCI_CMD_TIMEOUT);
4423 }
4424 
4425 int hci_update_discoverable_sync(struct hci_dev *hdev)
4426 {
4427 	int err = 0;
4428 
4429 	if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
4430 		err = hci_write_iac_sync(hdev);
4431 		if (err)
4432 			return err;
4433 
4434 		err = hci_update_scan_sync(hdev);
4435 		if (err)
4436 			return err;
4437 
4438 		err = hci_update_class_sync(hdev);
4439 		if (err)
4440 			return err;
4441 	}
4442 
4443 	/* Advertising instances don't use the global discoverable setting, so
4444 	 * only update AD if advertising was enabled using Set Advertising.
4445 	 */
4446 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
4447 		err = hci_update_adv_data_sync(hdev, 0x00);
4448 		if (err)
4449 			return err;
4450 
4451 		/* Discoverable mode affects the local advertising
4452 		 * address in limited privacy mode.
4453 		 */
4454 		if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) {
4455 			if (ext_adv_capable(hdev))
4456 				err = hci_start_ext_adv_sync(hdev, 0x00);
4457 			else
4458 				err = hci_enable_advertising_sync(hdev);
4459 		}
4460 	}
4461 
4462 	return err;
4463 }
4464 
4465 static int update_discoverable_sync(struct hci_dev *hdev, void *data)
4466 {
4467 	return hci_update_discoverable_sync(hdev);
4468 }
4469 
4470 int hci_update_discoverable(struct hci_dev *hdev)
4471 {
4472 	/* Only queue if it would have any effect */
4473 	if (hdev_is_powered(hdev) &&
4474 	    hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
4475 	    hci_dev_test_flag(hdev, HCI_DISCOVERABLE) &&
4476 	    hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
4477 		return hci_cmd_sync_queue(hdev, update_discoverable_sync, NULL,
4478 					  NULL);
4479 
4480 	return 0;
4481 }
4482 
4483 int hci_update_connectable_sync(struct hci_dev *hdev)
4484 {
4485 	int err;
4486 
4487 	err = hci_update_scan_sync(hdev);
4488 	if (err)
4489 		return err;
4490 
4491 	/* If BR/EDR is not enabled and we disable advertising as a
4492 	 * by-product of disabling connectable, we need to update the
4493 	 * advertising flags.
4494 	 */
4495 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
4496 		err = hci_update_adv_data_sync(hdev, hdev->cur_adv_instance);
4497 
4498 	/* Update the advertising parameters if necessary */
4499 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
4500 	    !list_empty(&hdev->adv_instances)) {
4501 		if (ext_adv_capable(hdev))
4502 			err = hci_start_ext_adv_sync(hdev,
4503 						     hdev->cur_adv_instance);
4504 		else
4505 			err = hci_enable_advertising_sync(hdev);
4506 
4507 		if (err)
4508 			return err;
4509 	}
4510 
4511 	return hci_update_passive_scan_sync(hdev);
4512 }
4513 
4514 static int hci_inquiry_sync(struct hci_dev *hdev, u8 length)
4515 {
4516 	const u8 giac[3] = { 0x33, 0x8b, 0x9e };
4517 	const u8 liac[3] = { 0x00, 0x8b, 0x9e };
4518 	struct hci_cp_inquiry cp;
4519 
4520 	bt_dev_dbg(hdev, "");
4521 
4522 	if (hci_dev_test_flag(hdev, HCI_INQUIRY))
4523 		return 0;
4524 
4525 	hci_dev_lock(hdev);
4526 	hci_inquiry_cache_flush(hdev);
4527 	hci_dev_unlock(hdev);
4528 
4529 	memset(&cp, 0, sizeof(cp));
4530 
4531 	if (hdev->discovery.limited)
4532 		memcpy(&cp.lap, liac, sizeof(cp.lap));
4533 	else
4534 		memcpy(&cp.lap, giac, sizeof(cp.lap));
4535 
4536 	cp.length = length;
4537 
4538 	return __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY,
4539 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4540 }
4541 
4542 static int hci_active_scan_sync(struct hci_dev *hdev, uint16_t interval)
4543 {
4544 	u8 own_addr_type;
4545 	/* Accept list is not used for discovery */
4546 	u8 filter_policy = 0x00;
4547 	/* Default is to enable duplicates filter */
4548 	u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
4549 	int err;
4550 
4551 	bt_dev_dbg(hdev, "");
4552 
4553 	/* If controller is scanning, it means the passive scanning is
4554 	 * running. Thus, we should temporarily stop it in order to set the
4555 	 * discovery scanning parameters.
4556 	 */
4557 	err = hci_scan_disable_sync(hdev);
4558 	if (err) {
4559 		bt_dev_err(hdev, "Unable to disable scanning: %d", err);
4560 		return err;
4561 	}
4562 
4563 	cancel_interleave_scan(hdev);
4564 
4565 	/* Pause advertising since active scanning disables address resolution
4566 	 * which advertising depend on in order to generate its RPAs.
4567 	 */
4568 	if (use_ll_privacy(hdev)) {
4569 		err = hci_pause_advertising_sync(hdev);
4570 		if (err) {
4571 			bt_dev_err(hdev, "pause advertising failed: %d", err);
4572 			goto failed;
4573 		}
4574 	}
4575 
4576 	/* Disable address resolution while doing active scanning since the
4577 	 * accept list shall not be used and all reports shall reach the host
4578 	 * anyway.
4579 	 */
4580 	err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00);
4581 	if (err) {
4582 		bt_dev_err(hdev, "Unable to disable Address Resolution: %d",
4583 			   err);
4584 		goto failed;
4585 	}
4586 
4587 	/* All active scans will be done with either a resolvable private
4588 	 * address (when privacy feature has been enabled) or non-resolvable
4589 	 * private address.
4590 	 */
4591 	err = hci_update_random_address_sync(hdev, true, scan_use_rpa(hdev),
4592 					     &own_addr_type);
4593 	if (err < 0)
4594 		own_addr_type = ADDR_LE_DEV_PUBLIC;
4595 
4596 	if (hci_is_adv_monitoring(hdev)) {
4597 		/* Duplicate filter should be disabled when some advertisement
4598 		 * monitor is activated, otherwise AdvMon can only receive one
4599 		 * advertisement for one peer(*) during active scanning, and
4600 		 * might report loss to these peers.
4601 		 *
4602 		 * Note that different controllers have different meanings of
4603 		 * |duplicate|. Some of them consider packets with the same
4604 		 * address as duplicate, and others consider packets with the
4605 		 * same address and the same RSSI as duplicate. Although in the
4606 		 * latter case we don't need to disable duplicate filter, but
4607 		 * it is common to have active scanning for a short period of
4608 		 * time, the power impact should be neglectable.
4609 		 */
4610 		filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
4611 	}
4612 
4613 	err = hci_start_scan_sync(hdev, LE_SCAN_ACTIVE, interval,
4614 				  hdev->le_scan_window_discovery,
4615 				  own_addr_type, filter_policy, filter_dup);
4616 	if (!err)
4617 		return err;
4618 
4619 failed:
4620 	/* Resume advertising if it was paused */
4621 	if (use_ll_privacy(hdev))
4622 		hci_resume_advertising_sync(hdev);
4623 
4624 	/* Resume passive scanning */
4625 	hci_update_passive_scan_sync(hdev);
4626 	return err;
4627 }
4628 
4629 static int hci_start_interleaved_discovery_sync(struct hci_dev *hdev)
4630 {
4631 	int err;
4632 
4633 	bt_dev_dbg(hdev, "");
4634 
4635 	err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery * 2);
4636 	if (err)
4637 		return err;
4638 
4639 	return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN);
4640 }
4641 
4642 int hci_start_discovery_sync(struct hci_dev *hdev)
4643 {
4644 	unsigned long timeout;
4645 	int err;
4646 
4647 	bt_dev_dbg(hdev, "type %u", hdev->discovery.type);
4648 
4649 	switch (hdev->discovery.type) {
4650 	case DISCOV_TYPE_BREDR:
4651 		return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN);
4652 	case DISCOV_TYPE_INTERLEAVED:
4653 		/* When running simultaneous discovery, the LE scanning time
4654 		 * should occupy the whole discovery time sine BR/EDR inquiry
4655 		 * and LE scanning are scheduled by the controller.
4656 		 *
4657 		 * For interleaving discovery in comparison, BR/EDR inquiry
4658 		 * and LE scanning are done sequentially with separate
4659 		 * timeouts.
4660 		 */
4661 		if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
4662 			     &hdev->quirks)) {
4663 			timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
4664 			/* During simultaneous discovery, we double LE scan
4665 			 * interval. We must leave some time for the controller
4666 			 * to do BR/EDR inquiry.
4667 			 */
4668 			err = hci_start_interleaved_discovery_sync(hdev);
4669 			break;
4670 		}
4671 
4672 		timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
4673 		err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery);
4674 		break;
4675 	case DISCOV_TYPE_LE:
4676 		timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
4677 		err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery);
4678 		break;
4679 	default:
4680 		return -EINVAL;
4681 	}
4682 
4683 	if (err)
4684 		return err;
4685 
4686 	bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout));
4687 
4688 	/* When service discovery is used and the controller has a
4689 	 * strict duplicate filter, it is important to remember the
4690 	 * start and duration of the scan. This is required for
4691 	 * restarting scanning during the discovery phase.
4692 	 */
4693 	if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
4694 	    hdev->discovery.result_filtering) {
4695 		hdev->discovery.scan_start = jiffies;
4696 		hdev->discovery.scan_duration = timeout;
4697 	}
4698 
4699 	queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
4700 			   timeout);
4701 	return 0;
4702 }
4703 
4704 static void hci_suspend_monitor_sync(struct hci_dev *hdev)
4705 {
4706 	switch (hci_get_adv_monitor_offload_ext(hdev)) {
4707 	case HCI_ADV_MONITOR_EXT_MSFT:
4708 		msft_suspend_sync(hdev);
4709 		break;
4710 	default:
4711 		return;
4712 	}
4713 }
4714 
4715 /* This function disables discovery and mark it as paused */
4716 static int hci_pause_discovery_sync(struct hci_dev *hdev)
4717 {
4718 	int old_state = hdev->discovery.state;
4719 	int err;
4720 
4721 	/* If discovery already stopped/stopping/paused there nothing to do */
4722 	if (old_state == DISCOVERY_STOPPED || old_state == DISCOVERY_STOPPING ||
4723 	    hdev->discovery_paused)
4724 		return 0;
4725 
4726 	hci_discovery_set_state(hdev, DISCOVERY_STOPPING);
4727 	err = hci_stop_discovery_sync(hdev);
4728 	if (err)
4729 		return err;
4730 
4731 	hdev->discovery_paused = true;
4732 	hdev->discovery_old_state = old_state;
4733 	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
4734 
4735 	return 0;
4736 }
4737 
4738 static int hci_update_event_filter_sync(struct hci_dev *hdev)
4739 {
4740 	struct bdaddr_list_with_flags *b;
4741 	u8 scan = SCAN_DISABLED;
4742 	bool scanning = test_bit(HCI_PSCAN, &hdev->flags);
4743 	int err;
4744 
4745 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
4746 		return 0;
4747 
4748 	/* Always clear event filter when starting */
4749 	hci_clear_event_filter_sync(hdev);
4750 
4751 	list_for_each_entry(b, &hdev->accept_list, list) {
4752 		if (!hci_conn_test_flag(HCI_CONN_FLAG_REMOTE_WAKEUP,
4753 					b->current_flags))
4754 			continue;
4755 
4756 		bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr);
4757 
4758 		err =  hci_set_event_filter_sync(hdev, HCI_FLT_CONN_SETUP,
4759 						 HCI_CONN_SETUP_ALLOW_BDADDR,
4760 						 &b->bdaddr,
4761 						 HCI_CONN_SETUP_AUTO_ON);
4762 		if (err)
4763 			bt_dev_dbg(hdev, "Failed to set event filter for %pMR",
4764 				   &b->bdaddr);
4765 		else
4766 			scan = SCAN_PAGE;
4767 	}
4768 
4769 	if (scan && !scanning)
4770 		hci_write_scan_enable_sync(hdev, scan);
4771 	else if (!scan && scanning)
4772 		hci_write_scan_enable_sync(hdev, scan);
4773 
4774 	return 0;
4775 }
4776 
4777 /* This function performs the HCI suspend procedures in the follow order:
4778  *
4779  * Pause discovery (active scanning/inquiry)
4780  * Pause Directed Advertising/Advertising
4781  * Disconnect all connections
4782  * Set suspend_status to BT_SUSPEND_DISCONNECT if hdev cannot wakeup
4783  * otherwise:
4784  * Update event mask (only set events that are allowed to wake up the host)
4785  * Update event filter (with devices marked with HCI_CONN_FLAG_REMOTE_WAKEUP)
4786  * Update passive scanning (lower duty cycle)
4787  * Set suspend_status to BT_SUSPEND_CONFIGURE_WAKE
4788  */
4789 int hci_suspend_sync(struct hci_dev *hdev)
4790 {
4791 	int err;
4792 
4793 	/* If marked as suspended there nothing to do */
4794 	if (hdev->suspended)
4795 		return 0;
4796 
4797 	/* Mark device as suspended */
4798 	hdev->suspended = true;
4799 
4800 	/* Pause discovery if not already stopped */
4801 	hci_pause_discovery_sync(hdev);
4802 
4803 	/* Pause other advertisements */
4804 	hci_pause_advertising_sync(hdev);
4805 
4806 	/* Disable page scan if enabled */
4807 	if (test_bit(HCI_PSCAN, &hdev->flags))
4808 		hci_write_scan_enable_sync(hdev, SCAN_DISABLED);
4809 
4810 	/* Suspend monitor filters */
4811 	hci_suspend_monitor_sync(hdev);
4812 
4813 	/* Prevent disconnects from causing scanning to be re-enabled */
4814 	hdev->scanning_paused = true;
4815 
4816 	/* Soft disconnect everything (power off) */
4817 	err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF);
4818 	if (err) {
4819 		/* Set state to BT_RUNNING so resume doesn't notify */
4820 		hdev->suspend_state = BT_RUNNING;
4821 		hci_resume_sync(hdev);
4822 		return err;
4823 	}
4824 
4825 	/* Only configure accept list if disconnect succeeded and wake
4826 	 * isn't being prevented.
4827 	 */
4828 	if (!hdev->wakeup || !hdev->wakeup(hdev)) {
4829 		hdev->suspend_state = BT_SUSPEND_DISCONNECT;
4830 		return 0;
4831 	}
4832 
4833 	/* Unpause to take care of updating scanning params */
4834 	hdev->scanning_paused = false;
4835 
4836 	/* Update event mask so only the allowed event can wakeup the host */
4837 	hci_set_event_mask_sync(hdev);
4838 
4839 	/* Enable event filter for paired devices */
4840 	hci_update_event_filter_sync(hdev);
4841 
4842 	/* Update LE passive scan if enabled */
4843 	hci_update_passive_scan_sync(hdev);
4844 
4845 	/* Pause scan changes again. */
4846 	hdev->scanning_paused = true;
4847 
4848 	hdev->suspend_state = BT_SUSPEND_CONFIGURE_WAKE;
4849 
4850 	return 0;
4851 }
4852 
4853 /* This function resumes discovery */
4854 static int hci_resume_discovery_sync(struct hci_dev *hdev)
4855 {
4856 	int err;
4857 
4858 	/* If discovery not paused there nothing to do */
4859 	if (!hdev->discovery_paused)
4860 		return 0;
4861 
4862 	hdev->discovery_paused = false;
4863 
4864 	hci_discovery_set_state(hdev, DISCOVERY_STARTING);
4865 
4866 	err = hci_start_discovery_sync(hdev);
4867 
4868 	hci_discovery_set_state(hdev, err ? DISCOVERY_STOPPED :
4869 				DISCOVERY_FINDING);
4870 
4871 	return err;
4872 }
4873 
4874 static void hci_resume_monitor_sync(struct hci_dev *hdev)
4875 {
4876 	switch (hci_get_adv_monitor_offload_ext(hdev)) {
4877 	case HCI_ADV_MONITOR_EXT_MSFT:
4878 		msft_resume_sync(hdev);
4879 		break;
4880 	default:
4881 		return;
4882 	}
4883 }
4884 
4885 /* This function performs the HCI suspend procedures in the follow order:
4886  *
4887  * Restore event mask
4888  * Clear event filter
4889  * Update passive scanning (normal duty cycle)
4890  * Resume Directed Advertising/Advertising
4891  * Resume discovery (active scanning/inquiry)
4892  */
4893 int hci_resume_sync(struct hci_dev *hdev)
4894 {
4895 	/* If not marked as suspended there nothing to do */
4896 	if (!hdev->suspended)
4897 		return 0;
4898 
4899 	hdev->suspended = false;
4900 	hdev->scanning_paused = false;
4901 
4902 	/* Restore event mask */
4903 	hci_set_event_mask_sync(hdev);
4904 
4905 	/* Clear any event filters and restore scan state */
4906 	hci_clear_event_filter_sync(hdev);
4907 	hci_update_scan_sync(hdev);
4908 
4909 	/* Reset passive scanning to normal */
4910 	hci_update_passive_scan_sync(hdev);
4911 
4912 	/* Resume monitor filters */
4913 	hci_resume_monitor_sync(hdev);
4914 
4915 	/* Resume other advertisements */
4916 	hci_resume_advertising_sync(hdev);
4917 
4918 	/* Resume discovery */
4919 	hci_resume_discovery_sync(hdev);
4920 
4921 	return 0;
4922 }
4923