1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * BlueZ - Bluetooth protocol stack for Linux 4 * 5 * Copyright (C) 2021 Intel Corporation 6 */ 7 8 #include <linux/property.h> 9 10 #include <net/bluetooth/bluetooth.h> 11 #include <net/bluetooth/hci_core.h> 12 #include <net/bluetooth/mgmt.h> 13 14 #include "hci_request.h" 15 #include "hci_debugfs.h" 16 #include "smp.h" 17 #include "eir.h" 18 #include "msft.h" 19 #include "aosp.h" 20 #include "leds.h" 21 22 static void hci_cmd_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode, 23 struct sk_buff *skb) 24 { 25 bt_dev_dbg(hdev, "result 0x%2.2x", result); 26 27 if (hdev->req_status != HCI_REQ_PEND) 28 return; 29 30 hdev->req_result = result; 31 hdev->req_status = HCI_REQ_DONE; 32 33 if (skb) { 34 struct sock *sk = hci_skb_sk(skb); 35 36 /* Drop sk reference if set */ 37 if (sk) 38 sock_put(sk); 39 40 hdev->req_skb = skb_get(skb); 41 } 42 43 wake_up_interruptible(&hdev->req_wait_q); 44 } 45 46 static struct sk_buff *hci_cmd_sync_alloc(struct hci_dev *hdev, u16 opcode, 47 u32 plen, const void *param, 48 struct sock *sk) 49 { 50 int len = HCI_COMMAND_HDR_SIZE + plen; 51 struct hci_command_hdr *hdr; 52 struct sk_buff *skb; 53 54 skb = bt_skb_alloc(len, GFP_ATOMIC); 55 if (!skb) 56 return NULL; 57 58 hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE); 59 hdr->opcode = cpu_to_le16(opcode); 60 hdr->plen = plen; 61 62 if (plen) 63 skb_put_data(skb, param, plen); 64 65 bt_dev_dbg(hdev, "skb len %d", skb->len); 66 67 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; 68 hci_skb_opcode(skb) = opcode; 69 70 /* Grab a reference if command needs to be associated with a sock (e.g. 71 * likely mgmt socket that initiated the command). 72 */ 73 if (sk) { 74 hci_skb_sk(skb) = sk; 75 sock_hold(sk); 76 } 77 78 return skb; 79 } 80 81 static void hci_cmd_sync_add(struct hci_request *req, u16 opcode, u32 plen, 82 const void *param, u8 event, struct sock *sk) 83 { 84 struct hci_dev *hdev = req->hdev; 85 struct sk_buff *skb; 86 87 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); 88 89 /* If an error occurred during request building, there is no point in 90 * queueing the HCI command. We can simply return. 91 */ 92 if (req->err) 93 return; 94 95 skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, sk); 96 if (!skb) { 97 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)", 98 opcode); 99 req->err = -ENOMEM; 100 return; 101 } 102 103 if (skb_queue_empty(&req->cmd_q)) 104 bt_cb(skb)->hci.req_flags |= HCI_REQ_START; 105 106 bt_cb(skb)->hci.req_event = event; 107 108 skb_queue_tail(&req->cmd_q, skb); 109 } 110 111 static int hci_cmd_sync_run(struct hci_request *req) 112 { 113 struct hci_dev *hdev = req->hdev; 114 struct sk_buff *skb; 115 unsigned long flags; 116 117 bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q)); 118 119 /* If an error occurred during request building, remove all HCI 120 * commands queued on the HCI request queue. 121 */ 122 if (req->err) { 123 skb_queue_purge(&req->cmd_q); 124 return req->err; 125 } 126 127 /* Do not allow empty requests */ 128 if (skb_queue_empty(&req->cmd_q)) 129 return -ENODATA; 130 131 skb = skb_peek_tail(&req->cmd_q); 132 bt_cb(skb)->hci.req_complete_skb = hci_cmd_sync_complete; 133 bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB; 134 135 spin_lock_irqsave(&hdev->cmd_q.lock, flags); 136 skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q); 137 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); 138 139 queue_work(hdev->workqueue, &hdev->cmd_work); 140 141 return 0; 142 } 143 144 /* This function requires the caller holds hdev->req_lock. */ 145 struct sk_buff *__hci_cmd_sync_sk(struct hci_dev *hdev, u16 opcode, u32 plen, 146 const void *param, u8 event, u32 timeout, 147 struct sock *sk) 148 { 149 struct hci_request req; 150 struct sk_buff *skb; 151 int err = 0; 152 153 bt_dev_dbg(hdev, "Opcode 0x%4x", opcode); 154 155 hci_req_init(&req, hdev); 156 157 hci_cmd_sync_add(&req, opcode, plen, param, event, sk); 158 159 hdev->req_status = HCI_REQ_PEND; 160 161 err = hci_cmd_sync_run(&req); 162 if (err < 0) 163 return ERR_PTR(err); 164 165 err = wait_event_interruptible_timeout(hdev->req_wait_q, 166 hdev->req_status != HCI_REQ_PEND, 167 timeout); 168 169 if (err == -ERESTARTSYS) 170 return ERR_PTR(-EINTR); 171 172 switch (hdev->req_status) { 173 case HCI_REQ_DONE: 174 err = -bt_to_errno(hdev->req_result); 175 break; 176 177 case HCI_REQ_CANCELED: 178 err = -hdev->req_result; 179 break; 180 181 default: 182 err = -ETIMEDOUT; 183 break; 184 } 185 186 hdev->req_status = 0; 187 hdev->req_result = 0; 188 skb = hdev->req_skb; 189 hdev->req_skb = NULL; 190 191 bt_dev_dbg(hdev, "end: err %d", err); 192 193 if (err < 0) { 194 kfree_skb(skb); 195 return ERR_PTR(err); 196 } 197 198 return skb; 199 } 200 EXPORT_SYMBOL(__hci_cmd_sync_sk); 201 202 /* This function requires the caller holds hdev->req_lock. */ 203 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 204 const void *param, u32 timeout) 205 { 206 return __hci_cmd_sync_sk(hdev, opcode, plen, param, 0, timeout, NULL); 207 } 208 EXPORT_SYMBOL(__hci_cmd_sync); 209 210 /* Send HCI command and wait for command complete event */ 211 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 212 const void *param, u32 timeout) 213 { 214 struct sk_buff *skb; 215 216 if (!test_bit(HCI_UP, &hdev->flags)) 217 return ERR_PTR(-ENETDOWN); 218 219 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); 220 221 hci_req_sync_lock(hdev); 222 skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout); 223 hci_req_sync_unlock(hdev); 224 225 return skb; 226 } 227 EXPORT_SYMBOL(hci_cmd_sync); 228 229 /* This function requires the caller holds hdev->req_lock. */ 230 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen, 231 const void *param, u8 event, u32 timeout) 232 { 233 return __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, 234 NULL); 235 } 236 EXPORT_SYMBOL(__hci_cmd_sync_ev); 237 238 /* This function requires the caller holds hdev->req_lock. */ 239 int __hci_cmd_sync_status_sk(struct hci_dev *hdev, u16 opcode, u32 plen, 240 const void *param, u8 event, u32 timeout, 241 struct sock *sk) 242 { 243 struct sk_buff *skb; 244 u8 status; 245 246 skb = __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, sk); 247 if (IS_ERR(skb)) { 248 bt_dev_err(hdev, "Opcode 0x%4x failed: %ld", opcode, 249 PTR_ERR(skb)); 250 return PTR_ERR(skb); 251 } 252 253 /* If command return a status event skb will be set to NULL as there are 254 * no parameters, in case of failure IS_ERR(skb) would have be set to 255 * the actual error would be found with PTR_ERR(skb). 256 */ 257 if (!skb) 258 return 0; 259 260 status = skb->data[0]; 261 262 kfree_skb(skb); 263 264 return status; 265 } 266 EXPORT_SYMBOL(__hci_cmd_sync_status_sk); 267 268 int __hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen, 269 const void *param, u32 timeout) 270 { 271 return __hci_cmd_sync_status_sk(hdev, opcode, plen, param, 0, timeout, 272 NULL); 273 } 274 EXPORT_SYMBOL(__hci_cmd_sync_status); 275 276 static void hci_cmd_sync_work(struct work_struct *work) 277 { 278 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_work); 279 struct hci_cmd_sync_work_entry *entry; 280 hci_cmd_sync_work_func_t func; 281 hci_cmd_sync_work_destroy_t destroy; 282 void *data; 283 284 bt_dev_dbg(hdev, ""); 285 286 mutex_lock(&hdev->cmd_sync_work_lock); 287 entry = list_first_entry(&hdev->cmd_sync_work_list, 288 struct hci_cmd_sync_work_entry, list); 289 if (entry) { 290 list_del(&entry->list); 291 func = entry->func; 292 data = entry->data; 293 destroy = entry->destroy; 294 kfree(entry); 295 } else { 296 func = NULL; 297 data = NULL; 298 destroy = NULL; 299 } 300 mutex_unlock(&hdev->cmd_sync_work_lock); 301 302 if (func) { 303 int err; 304 305 hci_req_sync_lock(hdev); 306 307 err = func(hdev, data); 308 309 if (destroy) 310 destroy(hdev, data, err); 311 312 hci_req_sync_unlock(hdev); 313 } 314 } 315 316 void hci_cmd_sync_init(struct hci_dev *hdev) 317 { 318 INIT_WORK(&hdev->cmd_sync_work, hci_cmd_sync_work); 319 INIT_LIST_HEAD(&hdev->cmd_sync_work_list); 320 mutex_init(&hdev->cmd_sync_work_lock); 321 } 322 323 void hci_cmd_sync_clear(struct hci_dev *hdev) 324 { 325 struct hci_cmd_sync_work_entry *entry, *tmp; 326 327 cancel_work_sync(&hdev->cmd_sync_work); 328 329 list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) { 330 if (entry->destroy) 331 entry->destroy(hdev, entry->data, -ECANCELED); 332 333 list_del(&entry->list); 334 kfree(entry); 335 } 336 } 337 338 int hci_cmd_sync_queue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 339 void *data, hci_cmd_sync_work_destroy_t destroy) 340 { 341 struct hci_cmd_sync_work_entry *entry; 342 343 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 344 if (!entry) 345 return -ENOMEM; 346 347 entry->func = func; 348 entry->data = data; 349 entry->destroy = destroy; 350 351 mutex_lock(&hdev->cmd_sync_work_lock); 352 list_add_tail(&entry->list, &hdev->cmd_sync_work_list); 353 mutex_unlock(&hdev->cmd_sync_work_lock); 354 355 queue_work(hdev->req_workqueue, &hdev->cmd_sync_work); 356 357 return 0; 358 } 359 EXPORT_SYMBOL(hci_cmd_sync_queue); 360 361 int hci_update_eir_sync(struct hci_dev *hdev) 362 { 363 struct hci_cp_write_eir cp; 364 365 bt_dev_dbg(hdev, ""); 366 367 if (!hdev_is_powered(hdev)) 368 return 0; 369 370 if (!lmp_ext_inq_capable(hdev)) 371 return 0; 372 373 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 374 return 0; 375 376 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 377 return 0; 378 379 memset(&cp, 0, sizeof(cp)); 380 381 eir_create(hdev, cp.data); 382 383 if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0) 384 return 0; 385 386 memcpy(hdev->eir, cp.data, sizeof(cp.data)); 387 388 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp, 389 HCI_CMD_TIMEOUT); 390 } 391 392 static u8 get_service_classes(struct hci_dev *hdev) 393 { 394 struct bt_uuid *uuid; 395 u8 val = 0; 396 397 list_for_each_entry(uuid, &hdev->uuids, list) 398 val |= uuid->svc_hint; 399 400 return val; 401 } 402 403 int hci_update_class_sync(struct hci_dev *hdev) 404 { 405 u8 cod[3]; 406 407 bt_dev_dbg(hdev, ""); 408 409 if (!hdev_is_powered(hdev)) 410 return 0; 411 412 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 413 return 0; 414 415 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 416 return 0; 417 418 cod[0] = hdev->minor_class; 419 cod[1] = hdev->major_class; 420 cod[2] = get_service_classes(hdev); 421 422 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) 423 cod[1] |= 0x20; 424 425 if (memcmp(cod, hdev->dev_class, 3) == 0) 426 return 0; 427 428 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CLASS_OF_DEV, 429 sizeof(cod), cod, HCI_CMD_TIMEOUT); 430 } 431 432 static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable) 433 { 434 /* If there is no connection we are OK to advertise. */ 435 if (hci_conn_num(hdev, LE_LINK) == 0) 436 return true; 437 438 /* Check le_states if there is any connection in peripheral role. */ 439 if (hdev->conn_hash.le_num_peripheral > 0) { 440 /* Peripheral connection state and non connectable mode 441 * bit 20. 442 */ 443 if (!connectable && !(hdev->le_states[2] & 0x10)) 444 return false; 445 446 /* Peripheral connection state and connectable mode bit 38 447 * and scannable bit 21. 448 */ 449 if (connectable && (!(hdev->le_states[4] & 0x40) || 450 !(hdev->le_states[2] & 0x20))) 451 return false; 452 } 453 454 /* Check le_states if there is any connection in central role. */ 455 if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) { 456 /* Central connection state and non connectable mode bit 18. */ 457 if (!connectable && !(hdev->le_states[2] & 0x02)) 458 return false; 459 460 /* Central connection state and connectable mode bit 35 and 461 * scannable 19. 462 */ 463 if (connectable && (!(hdev->le_states[4] & 0x08) || 464 !(hdev->le_states[2] & 0x08))) 465 return false; 466 } 467 468 return true; 469 } 470 471 static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags) 472 { 473 /* If privacy is not enabled don't use RPA */ 474 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 475 return false; 476 477 /* If basic privacy mode is enabled use RPA */ 478 if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) 479 return true; 480 481 /* If limited privacy mode is enabled don't use RPA if we're 482 * both discoverable and bondable. 483 */ 484 if ((flags & MGMT_ADV_FLAG_DISCOV) && 485 hci_dev_test_flag(hdev, HCI_BONDABLE)) 486 return false; 487 488 /* We're neither bondable nor discoverable in the limited 489 * privacy mode, therefore use RPA. 490 */ 491 return true; 492 } 493 494 static int hci_set_random_addr_sync(struct hci_dev *hdev, bdaddr_t *rpa) 495 { 496 /* If we're advertising or initiating an LE connection we can't 497 * go ahead and change the random address at this time. This is 498 * because the eventual initiator address used for the 499 * subsequently created connection will be undefined (some 500 * controllers use the new address and others the one we had 501 * when the operation started). 502 * 503 * In this kind of scenario skip the update and let the random 504 * address be updated at the next cycle. 505 */ 506 if (hci_dev_test_flag(hdev, HCI_LE_ADV) || 507 hci_lookup_le_connect(hdev)) { 508 bt_dev_dbg(hdev, "Deferring random address update"); 509 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 510 return 0; 511 } 512 513 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RANDOM_ADDR, 514 6, rpa, HCI_CMD_TIMEOUT); 515 } 516 517 int hci_update_random_address_sync(struct hci_dev *hdev, bool require_privacy, 518 bool rpa, u8 *own_addr_type) 519 { 520 int err; 521 522 /* If privacy is enabled use a resolvable private address. If 523 * current RPA has expired or there is something else than 524 * the current RPA in use, then generate a new one. 525 */ 526 if (rpa) { 527 /* If Controller supports LL Privacy use own address type is 528 * 0x03 529 */ 530 if (use_ll_privacy(hdev)) 531 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED; 532 else 533 *own_addr_type = ADDR_LE_DEV_RANDOM; 534 535 /* Check if RPA is valid */ 536 if (rpa_valid(hdev)) 537 return 0; 538 539 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); 540 if (err < 0) { 541 bt_dev_err(hdev, "failed to generate new RPA"); 542 return err; 543 } 544 545 err = hci_set_random_addr_sync(hdev, &hdev->rpa); 546 if (err) 547 return err; 548 549 return 0; 550 } 551 552 /* In case of required privacy without resolvable private address, 553 * use an non-resolvable private address. This is useful for active 554 * scanning and non-connectable advertising. 555 */ 556 if (require_privacy) { 557 bdaddr_t nrpa; 558 559 while (true) { 560 /* The non-resolvable private address is generated 561 * from random six bytes with the two most significant 562 * bits cleared. 563 */ 564 get_random_bytes(&nrpa, 6); 565 nrpa.b[5] &= 0x3f; 566 567 /* The non-resolvable private address shall not be 568 * equal to the public address. 569 */ 570 if (bacmp(&hdev->bdaddr, &nrpa)) 571 break; 572 } 573 574 *own_addr_type = ADDR_LE_DEV_RANDOM; 575 576 return hci_set_random_addr_sync(hdev, &nrpa); 577 } 578 579 /* If forcing static address is in use or there is no public 580 * address use the static address as random address (but skip 581 * the HCI command if the current random address is already the 582 * static one. 583 * 584 * In case BR/EDR has been disabled on a dual-mode controller 585 * and a static address has been configured, then use that 586 * address instead of the public BR/EDR address. 587 */ 588 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 589 !bacmp(&hdev->bdaddr, BDADDR_ANY) || 590 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && 591 bacmp(&hdev->static_addr, BDADDR_ANY))) { 592 *own_addr_type = ADDR_LE_DEV_RANDOM; 593 if (bacmp(&hdev->static_addr, &hdev->random_addr)) 594 return hci_set_random_addr_sync(hdev, 595 &hdev->static_addr); 596 return 0; 597 } 598 599 /* Neither privacy nor static address is being used so use a 600 * public address. 601 */ 602 *own_addr_type = ADDR_LE_DEV_PUBLIC; 603 604 return 0; 605 } 606 607 static int hci_disable_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance) 608 { 609 struct hci_cp_le_set_ext_adv_enable *cp; 610 struct hci_cp_ext_adv_set *set; 611 u8 data[sizeof(*cp) + sizeof(*set) * 1]; 612 u8 size; 613 614 /* If request specifies an instance that doesn't exist, fail */ 615 if (instance > 0) { 616 struct adv_info *adv; 617 618 adv = hci_find_adv_instance(hdev, instance); 619 if (!adv) 620 return -EINVAL; 621 622 /* If not enabled there is nothing to do */ 623 if (!adv->enabled) 624 return 0; 625 } 626 627 memset(data, 0, sizeof(data)); 628 629 cp = (void *)data; 630 set = (void *)cp->data; 631 632 /* Instance 0x00 indicates all advertising instances will be disabled */ 633 cp->num_of_sets = !!instance; 634 cp->enable = 0x00; 635 636 set->handle = instance; 637 638 size = sizeof(*cp) + sizeof(*set) * cp->num_of_sets; 639 640 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, 641 size, data, HCI_CMD_TIMEOUT); 642 } 643 644 static int hci_set_adv_set_random_addr_sync(struct hci_dev *hdev, u8 instance, 645 bdaddr_t *random_addr) 646 { 647 struct hci_cp_le_set_adv_set_rand_addr cp; 648 int err; 649 650 if (!instance) { 651 /* Instance 0x00 doesn't have an adv_info, instead it uses 652 * hdev->random_addr to track its address so whenever it needs 653 * to be updated this also set the random address since 654 * hdev->random_addr is shared with scan state machine. 655 */ 656 err = hci_set_random_addr_sync(hdev, random_addr); 657 if (err) 658 return err; 659 } 660 661 memset(&cp, 0, sizeof(cp)); 662 663 cp.handle = instance; 664 bacpy(&cp.bdaddr, random_addr); 665 666 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_SET_RAND_ADDR, 667 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 668 } 669 670 int hci_setup_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance) 671 { 672 struct hci_cp_le_set_ext_adv_params cp; 673 bool connectable; 674 u32 flags; 675 bdaddr_t random_addr; 676 u8 own_addr_type; 677 int err; 678 struct adv_info *adv; 679 bool secondary_adv; 680 681 if (instance > 0) { 682 adv = hci_find_adv_instance(hdev, instance); 683 if (!adv) 684 return -EINVAL; 685 } else { 686 adv = NULL; 687 } 688 689 /* Updating parameters of an active instance will return a 690 * Command Disallowed error, so we must first disable the 691 * instance if it is active. 692 */ 693 if (adv && !adv->pending) { 694 err = hci_disable_ext_adv_instance_sync(hdev, instance); 695 if (err) 696 return err; 697 } 698 699 flags = hci_adv_instance_flags(hdev, instance); 700 701 /* If the "connectable" instance flag was not set, then choose between 702 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. 703 */ 704 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || 705 mgmt_get_connectable(hdev); 706 707 if (!is_advertising_allowed(hdev, connectable)) 708 return -EPERM; 709 710 /* Set require_privacy to true only when non-connectable 711 * advertising is used. In that case it is fine to use a 712 * non-resolvable private address. 713 */ 714 err = hci_get_random_address(hdev, !connectable, 715 adv_use_rpa(hdev, flags), adv, 716 &own_addr_type, &random_addr); 717 if (err < 0) 718 return err; 719 720 memset(&cp, 0, sizeof(cp)); 721 722 if (adv) { 723 hci_cpu_to_le24(adv->min_interval, cp.min_interval); 724 hci_cpu_to_le24(adv->max_interval, cp.max_interval); 725 cp.tx_power = adv->tx_power; 726 } else { 727 hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval); 728 hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval); 729 cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE; 730 } 731 732 secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK); 733 734 if (connectable) { 735 if (secondary_adv) 736 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND); 737 else 738 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND); 739 } else if (hci_adv_instance_is_scannable(hdev, instance) || 740 (flags & MGMT_ADV_PARAM_SCAN_RSP)) { 741 if (secondary_adv) 742 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND); 743 else 744 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND); 745 } else { 746 if (secondary_adv) 747 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND); 748 else 749 cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND); 750 } 751 752 /* If Own_Address_Type equals 0x02 or 0x03, the Peer_Address parameter 753 * contains the peer’s Identity Address and the Peer_Address_Type 754 * parameter contains the peer’s Identity Type (i.e., 0x00 or 0x01). 755 * These parameters are used to locate the corresponding local IRK in 756 * the resolving list; this IRK is used to generate their own address 757 * used in the advertisement. 758 */ 759 if (own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) 760 hci_copy_identity_address(hdev, &cp.peer_addr, 761 &cp.peer_addr_type); 762 763 cp.own_addr_type = own_addr_type; 764 cp.channel_map = hdev->le_adv_channel_map; 765 cp.handle = instance; 766 767 if (flags & MGMT_ADV_FLAG_SEC_2M) { 768 cp.primary_phy = HCI_ADV_PHY_1M; 769 cp.secondary_phy = HCI_ADV_PHY_2M; 770 } else if (flags & MGMT_ADV_FLAG_SEC_CODED) { 771 cp.primary_phy = HCI_ADV_PHY_CODED; 772 cp.secondary_phy = HCI_ADV_PHY_CODED; 773 } else { 774 /* In all other cases use 1M */ 775 cp.primary_phy = HCI_ADV_PHY_1M; 776 cp.secondary_phy = HCI_ADV_PHY_1M; 777 } 778 779 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS, 780 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 781 if (err) 782 return err; 783 784 if ((own_addr_type == ADDR_LE_DEV_RANDOM || 785 own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) && 786 bacmp(&random_addr, BDADDR_ANY)) { 787 /* Check if random address need to be updated */ 788 if (adv) { 789 if (!bacmp(&random_addr, &adv->random_addr)) 790 return 0; 791 } else { 792 if (!bacmp(&random_addr, &hdev->random_addr)) 793 return 0; 794 } 795 796 return hci_set_adv_set_random_addr_sync(hdev, instance, 797 &random_addr); 798 } 799 800 return 0; 801 } 802 803 static int hci_set_ext_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 804 { 805 struct { 806 struct hci_cp_le_set_ext_scan_rsp_data cp; 807 u8 data[HCI_MAX_EXT_AD_LENGTH]; 808 } pdu; 809 u8 len; 810 811 memset(&pdu, 0, sizeof(pdu)); 812 813 len = eir_create_scan_rsp(hdev, instance, pdu.data); 814 815 if (hdev->scan_rsp_data_len == len && 816 !memcmp(pdu.data, hdev->scan_rsp_data, len)) 817 return 0; 818 819 memcpy(hdev->scan_rsp_data, pdu.data, len); 820 hdev->scan_rsp_data_len = len; 821 822 pdu.cp.handle = instance; 823 pdu.cp.length = len; 824 pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; 825 pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG; 826 827 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA, 828 sizeof(pdu.cp) + len, &pdu.cp, 829 HCI_CMD_TIMEOUT); 830 } 831 832 static int __hci_set_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 833 { 834 struct hci_cp_le_set_scan_rsp_data cp; 835 u8 len; 836 837 memset(&cp, 0, sizeof(cp)); 838 839 len = eir_create_scan_rsp(hdev, instance, cp.data); 840 841 if (hdev->scan_rsp_data_len == len && 842 !memcmp(cp.data, hdev->scan_rsp_data, len)) 843 return 0; 844 845 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data)); 846 hdev->scan_rsp_data_len = len; 847 848 cp.length = len; 849 850 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_RSP_DATA, 851 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 852 } 853 854 int hci_update_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 855 { 856 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 857 return 0; 858 859 if (ext_adv_capable(hdev)) 860 return hci_set_ext_scan_rsp_data_sync(hdev, instance); 861 862 return __hci_set_scan_rsp_data_sync(hdev, instance); 863 } 864 865 int hci_enable_ext_advertising_sync(struct hci_dev *hdev, u8 instance) 866 { 867 struct hci_cp_le_set_ext_adv_enable *cp; 868 struct hci_cp_ext_adv_set *set; 869 u8 data[sizeof(*cp) + sizeof(*set) * 1]; 870 struct adv_info *adv; 871 872 if (instance > 0) { 873 adv = hci_find_adv_instance(hdev, instance); 874 if (!adv) 875 return -EINVAL; 876 /* If already enabled there is nothing to do */ 877 if (adv->enabled) 878 return 0; 879 } else { 880 adv = NULL; 881 } 882 883 cp = (void *)data; 884 set = (void *)cp->data; 885 886 memset(cp, 0, sizeof(*cp)); 887 888 cp->enable = 0x01; 889 cp->num_of_sets = 0x01; 890 891 memset(set, 0, sizeof(*set)); 892 893 set->handle = instance; 894 895 /* Set duration per instance since controller is responsible for 896 * scheduling it. 897 */ 898 if (adv && adv->timeout) { 899 u16 duration = adv->timeout * MSEC_PER_SEC; 900 901 /* Time = N * 10 ms */ 902 set->duration = cpu_to_le16(duration / 10); 903 } 904 905 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, 906 sizeof(*cp) + 907 sizeof(*set) * cp->num_of_sets, 908 data, HCI_CMD_TIMEOUT); 909 } 910 911 int hci_start_ext_adv_sync(struct hci_dev *hdev, u8 instance) 912 { 913 int err; 914 915 err = hci_setup_ext_adv_instance_sync(hdev, instance); 916 if (err) 917 return err; 918 919 err = hci_set_ext_scan_rsp_data_sync(hdev, instance); 920 if (err) 921 return err; 922 923 return hci_enable_ext_advertising_sync(hdev, instance); 924 } 925 926 static int hci_start_adv_sync(struct hci_dev *hdev, u8 instance) 927 { 928 int err; 929 930 if (ext_adv_capable(hdev)) 931 return hci_start_ext_adv_sync(hdev, instance); 932 933 err = hci_update_adv_data_sync(hdev, instance); 934 if (err) 935 return err; 936 937 err = hci_update_scan_rsp_data_sync(hdev, instance); 938 if (err) 939 return err; 940 941 return hci_enable_advertising_sync(hdev); 942 } 943 944 int hci_enable_advertising_sync(struct hci_dev *hdev) 945 { 946 struct adv_info *adv_instance; 947 struct hci_cp_le_set_adv_param cp; 948 u8 own_addr_type, enable = 0x01; 949 bool connectable; 950 u16 adv_min_interval, adv_max_interval; 951 u32 flags; 952 u8 status; 953 954 if (ext_adv_capable(hdev)) 955 return hci_enable_ext_advertising_sync(hdev, 956 hdev->cur_adv_instance); 957 958 flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance); 959 adv_instance = hci_find_adv_instance(hdev, hdev->cur_adv_instance); 960 961 /* If the "connectable" instance flag was not set, then choose between 962 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. 963 */ 964 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || 965 mgmt_get_connectable(hdev); 966 967 if (!is_advertising_allowed(hdev, connectable)) 968 return -EINVAL; 969 970 status = hci_disable_advertising_sync(hdev); 971 if (status) 972 return status; 973 974 /* Clear the HCI_LE_ADV bit temporarily so that the 975 * hci_update_random_address knows that it's safe to go ahead 976 * and write a new random address. The flag will be set back on 977 * as soon as the SET_ADV_ENABLE HCI command completes. 978 */ 979 hci_dev_clear_flag(hdev, HCI_LE_ADV); 980 981 /* Set require_privacy to true only when non-connectable 982 * advertising is used. In that case it is fine to use a 983 * non-resolvable private address. 984 */ 985 status = hci_update_random_address_sync(hdev, !connectable, 986 adv_use_rpa(hdev, flags), 987 &own_addr_type); 988 if (status) 989 return status; 990 991 memset(&cp, 0, sizeof(cp)); 992 993 if (adv_instance) { 994 adv_min_interval = adv_instance->min_interval; 995 adv_max_interval = adv_instance->max_interval; 996 } else { 997 adv_min_interval = hdev->le_adv_min_interval; 998 adv_max_interval = hdev->le_adv_max_interval; 999 } 1000 1001 if (connectable) { 1002 cp.type = LE_ADV_IND; 1003 } else { 1004 if (hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance)) 1005 cp.type = LE_ADV_SCAN_IND; 1006 else 1007 cp.type = LE_ADV_NONCONN_IND; 1008 1009 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) || 1010 hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { 1011 adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN; 1012 adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX; 1013 } 1014 } 1015 1016 cp.min_interval = cpu_to_le16(adv_min_interval); 1017 cp.max_interval = cpu_to_le16(adv_max_interval); 1018 cp.own_address_type = own_addr_type; 1019 cp.channel_map = hdev->le_adv_channel_map; 1020 1021 status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM, 1022 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1023 if (status) 1024 return status; 1025 1026 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 1027 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 1028 } 1029 1030 static int enable_advertising_sync(struct hci_dev *hdev, void *data) 1031 { 1032 return hci_enable_advertising_sync(hdev); 1033 } 1034 1035 int hci_enable_advertising(struct hci_dev *hdev) 1036 { 1037 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) && 1038 list_empty(&hdev->adv_instances)) 1039 return 0; 1040 1041 return hci_cmd_sync_queue(hdev, enable_advertising_sync, NULL, NULL); 1042 } 1043 1044 int hci_remove_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance, 1045 struct sock *sk) 1046 { 1047 int err; 1048 1049 if (!ext_adv_capable(hdev)) 1050 return 0; 1051 1052 err = hci_disable_ext_adv_instance_sync(hdev, instance); 1053 if (err) 1054 return err; 1055 1056 /* If request specifies an instance that doesn't exist, fail */ 1057 if (instance > 0 && !hci_find_adv_instance(hdev, instance)) 1058 return -EINVAL; 1059 1060 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_REMOVE_ADV_SET, 1061 sizeof(instance), &instance, 0, 1062 HCI_CMD_TIMEOUT, sk); 1063 } 1064 1065 static void cancel_adv_timeout(struct hci_dev *hdev) 1066 { 1067 if (hdev->adv_instance_timeout) { 1068 hdev->adv_instance_timeout = 0; 1069 cancel_delayed_work(&hdev->adv_instance_expire); 1070 } 1071 } 1072 1073 static int hci_set_ext_adv_data_sync(struct hci_dev *hdev, u8 instance) 1074 { 1075 struct { 1076 struct hci_cp_le_set_ext_adv_data cp; 1077 u8 data[HCI_MAX_EXT_AD_LENGTH]; 1078 } pdu; 1079 u8 len; 1080 1081 memset(&pdu, 0, sizeof(pdu)); 1082 1083 len = eir_create_adv_data(hdev, instance, pdu.data); 1084 1085 /* There's nothing to do if the data hasn't changed */ 1086 if (hdev->adv_data_len == len && 1087 memcmp(pdu.data, hdev->adv_data, len) == 0) 1088 return 0; 1089 1090 memcpy(hdev->adv_data, pdu.data, len); 1091 hdev->adv_data_len = len; 1092 1093 pdu.cp.length = len; 1094 pdu.cp.handle = instance; 1095 pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; 1096 pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG; 1097 1098 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_DATA, 1099 sizeof(pdu.cp) + len, &pdu.cp, 1100 HCI_CMD_TIMEOUT); 1101 } 1102 1103 static int hci_set_adv_data_sync(struct hci_dev *hdev, u8 instance) 1104 { 1105 struct hci_cp_le_set_adv_data cp; 1106 u8 len; 1107 1108 memset(&cp, 0, sizeof(cp)); 1109 1110 len = eir_create_adv_data(hdev, instance, cp.data); 1111 1112 /* There's nothing to do if the data hasn't changed */ 1113 if (hdev->adv_data_len == len && 1114 memcmp(cp.data, hdev->adv_data, len) == 0) 1115 return 0; 1116 1117 memcpy(hdev->adv_data, cp.data, sizeof(cp.data)); 1118 hdev->adv_data_len = len; 1119 1120 cp.length = len; 1121 1122 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_DATA, 1123 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1124 } 1125 1126 int hci_update_adv_data_sync(struct hci_dev *hdev, u8 instance) 1127 { 1128 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1129 return 0; 1130 1131 if (ext_adv_capable(hdev)) 1132 return hci_set_ext_adv_data_sync(hdev, instance); 1133 1134 return hci_set_adv_data_sync(hdev, instance); 1135 } 1136 1137 int hci_schedule_adv_instance_sync(struct hci_dev *hdev, u8 instance, 1138 bool force) 1139 { 1140 struct adv_info *adv = NULL; 1141 u16 timeout; 1142 1143 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) && !ext_adv_capable(hdev)) 1144 return -EPERM; 1145 1146 if (hdev->adv_instance_timeout) 1147 return -EBUSY; 1148 1149 adv = hci_find_adv_instance(hdev, instance); 1150 if (!adv) 1151 return -ENOENT; 1152 1153 /* A zero timeout means unlimited advertising. As long as there is 1154 * only one instance, duration should be ignored. We still set a timeout 1155 * in case further instances are being added later on. 1156 * 1157 * If the remaining lifetime of the instance is more than the duration 1158 * then the timeout corresponds to the duration, otherwise it will be 1159 * reduced to the remaining instance lifetime. 1160 */ 1161 if (adv->timeout == 0 || adv->duration <= adv->remaining_time) 1162 timeout = adv->duration; 1163 else 1164 timeout = adv->remaining_time; 1165 1166 /* The remaining time is being reduced unless the instance is being 1167 * advertised without time limit. 1168 */ 1169 if (adv->timeout) 1170 adv->remaining_time = adv->remaining_time - timeout; 1171 1172 /* Only use work for scheduling instances with legacy advertising */ 1173 if (!ext_adv_capable(hdev)) { 1174 hdev->adv_instance_timeout = timeout; 1175 queue_delayed_work(hdev->req_workqueue, 1176 &hdev->adv_instance_expire, 1177 msecs_to_jiffies(timeout * 1000)); 1178 } 1179 1180 /* If we're just re-scheduling the same instance again then do not 1181 * execute any HCI commands. This happens when a single instance is 1182 * being advertised. 1183 */ 1184 if (!force && hdev->cur_adv_instance == instance && 1185 hci_dev_test_flag(hdev, HCI_LE_ADV)) 1186 return 0; 1187 1188 hdev->cur_adv_instance = instance; 1189 1190 return hci_start_adv_sync(hdev, instance); 1191 } 1192 1193 static int hci_clear_adv_sets_sync(struct hci_dev *hdev, struct sock *sk) 1194 { 1195 int err; 1196 1197 if (!ext_adv_capable(hdev)) 1198 return 0; 1199 1200 /* Disable instance 0x00 to disable all instances */ 1201 err = hci_disable_ext_adv_instance_sync(hdev, 0x00); 1202 if (err) 1203 return err; 1204 1205 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CLEAR_ADV_SETS, 1206 0, NULL, 0, HCI_CMD_TIMEOUT, sk); 1207 } 1208 1209 static int hci_clear_adv_sync(struct hci_dev *hdev, struct sock *sk, bool force) 1210 { 1211 struct adv_info *adv, *n; 1212 1213 if (ext_adv_capable(hdev)) 1214 /* Remove all existing sets */ 1215 return hci_clear_adv_sets_sync(hdev, sk); 1216 1217 /* This is safe as long as there is no command send while the lock is 1218 * held. 1219 */ 1220 hci_dev_lock(hdev); 1221 1222 /* Cleanup non-ext instances */ 1223 list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) { 1224 u8 instance = adv->instance; 1225 int err; 1226 1227 if (!(force || adv->timeout)) 1228 continue; 1229 1230 err = hci_remove_adv_instance(hdev, instance); 1231 if (!err) 1232 mgmt_advertising_removed(sk, hdev, instance); 1233 } 1234 1235 hci_dev_unlock(hdev); 1236 1237 return 0; 1238 } 1239 1240 static int hci_remove_adv_sync(struct hci_dev *hdev, u8 instance, 1241 struct sock *sk) 1242 { 1243 int err; 1244 1245 /* If we use extended advertising, instance has to be removed first. */ 1246 if (ext_adv_capable(hdev)) 1247 return hci_remove_ext_adv_instance_sync(hdev, instance, sk); 1248 1249 /* This is safe as long as there is no command send while the lock is 1250 * held. 1251 */ 1252 hci_dev_lock(hdev); 1253 1254 err = hci_remove_adv_instance(hdev, instance); 1255 if (!err) 1256 mgmt_advertising_removed(sk, hdev, instance); 1257 1258 hci_dev_unlock(hdev); 1259 1260 return err; 1261 } 1262 1263 /* For a single instance: 1264 * - force == true: The instance will be removed even when its remaining 1265 * lifetime is not zero. 1266 * - force == false: the instance will be deactivated but kept stored unless 1267 * the remaining lifetime is zero. 1268 * 1269 * For instance == 0x00: 1270 * - force == true: All instances will be removed regardless of their timeout 1271 * setting. 1272 * - force == false: Only instances that have a timeout will be removed. 1273 */ 1274 int hci_remove_advertising_sync(struct hci_dev *hdev, struct sock *sk, 1275 u8 instance, bool force) 1276 { 1277 struct adv_info *next = NULL; 1278 int err; 1279 1280 /* Cancel any timeout concerning the removed instance(s). */ 1281 if (!instance || hdev->cur_adv_instance == instance) 1282 cancel_adv_timeout(hdev); 1283 1284 /* Get the next instance to advertise BEFORE we remove 1285 * the current one. This can be the same instance again 1286 * if there is only one instance. 1287 */ 1288 if (hdev->cur_adv_instance == instance) 1289 next = hci_get_next_instance(hdev, instance); 1290 1291 if (!instance) { 1292 err = hci_clear_adv_sync(hdev, sk, force); 1293 if (err) 1294 return err; 1295 } else { 1296 struct adv_info *adv = hci_find_adv_instance(hdev, instance); 1297 1298 if (force || (adv && adv->timeout && !adv->remaining_time)) { 1299 /* Don't advertise a removed instance. */ 1300 if (next && next->instance == instance) 1301 next = NULL; 1302 1303 err = hci_remove_adv_sync(hdev, instance, sk); 1304 if (err) 1305 return err; 1306 } 1307 } 1308 1309 if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING)) 1310 return 0; 1311 1312 if (next && !ext_adv_capable(hdev)) 1313 hci_schedule_adv_instance_sync(hdev, next->instance, false); 1314 1315 return 0; 1316 } 1317 1318 int hci_read_rssi_sync(struct hci_dev *hdev, __le16 handle) 1319 { 1320 struct hci_cp_read_rssi cp; 1321 1322 cp.handle = handle; 1323 return __hci_cmd_sync_status(hdev, HCI_OP_READ_RSSI, 1324 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1325 } 1326 1327 int hci_read_clock_sync(struct hci_dev *hdev, struct hci_cp_read_clock *cp) 1328 { 1329 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLOCK, 1330 sizeof(*cp), cp, HCI_CMD_TIMEOUT); 1331 } 1332 1333 int hci_read_tx_power_sync(struct hci_dev *hdev, __le16 handle, u8 type) 1334 { 1335 struct hci_cp_read_tx_power cp; 1336 1337 cp.handle = handle; 1338 cp.type = type; 1339 return __hci_cmd_sync_status(hdev, HCI_OP_READ_TX_POWER, 1340 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1341 } 1342 1343 int hci_disable_advertising_sync(struct hci_dev *hdev) 1344 { 1345 u8 enable = 0x00; 1346 1347 /* If controller is not advertising we are done. */ 1348 if (!hci_dev_test_flag(hdev, HCI_LE_ADV)) 1349 return 0; 1350 1351 if (ext_adv_capable(hdev)) 1352 return hci_disable_ext_adv_instance_sync(hdev, 0x00); 1353 1354 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 1355 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 1356 } 1357 1358 static int hci_le_set_ext_scan_enable_sync(struct hci_dev *hdev, u8 val, 1359 u8 filter_dup) 1360 { 1361 struct hci_cp_le_set_ext_scan_enable cp; 1362 1363 memset(&cp, 0, sizeof(cp)); 1364 cp.enable = val; 1365 cp.filter_dup = filter_dup; 1366 1367 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_ENABLE, 1368 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1369 } 1370 1371 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val, 1372 u8 filter_dup) 1373 { 1374 struct hci_cp_le_set_scan_enable cp; 1375 1376 if (use_ext_scan(hdev)) 1377 return hci_le_set_ext_scan_enable_sync(hdev, val, filter_dup); 1378 1379 memset(&cp, 0, sizeof(cp)); 1380 cp.enable = val; 1381 cp.filter_dup = filter_dup; 1382 1383 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_ENABLE, 1384 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1385 } 1386 1387 static int hci_le_set_addr_resolution_enable_sync(struct hci_dev *hdev, u8 val) 1388 { 1389 if (!use_ll_privacy(hdev)) 1390 return 0; 1391 1392 /* If controller is not/already resolving we are done. */ 1393 if (val == hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) 1394 return 0; 1395 1396 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1397 sizeof(val), &val, HCI_CMD_TIMEOUT); 1398 } 1399 1400 static int hci_scan_disable_sync(struct hci_dev *hdev) 1401 { 1402 int err; 1403 1404 /* If controller is not scanning we are done. */ 1405 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 1406 return 0; 1407 1408 if (hdev->scanning_paused) { 1409 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 1410 return 0; 1411 } 1412 1413 err = hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00); 1414 if (err) { 1415 bt_dev_err(hdev, "Unable to disable scanning: %d", err); 1416 return err; 1417 } 1418 1419 return err; 1420 } 1421 1422 static bool scan_use_rpa(struct hci_dev *hdev) 1423 { 1424 return hci_dev_test_flag(hdev, HCI_PRIVACY); 1425 } 1426 1427 static void hci_start_interleave_scan(struct hci_dev *hdev) 1428 { 1429 hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER; 1430 queue_delayed_work(hdev->req_workqueue, 1431 &hdev->interleave_scan, 0); 1432 } 1433 1434 static bool is_interleave_scanning(struct hci_dev *hdev) 1435 { 1436 return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE; 1437 } 1438 1439 static void cancel_interleave_scan(struct hci_dev *hdev) 1440 { 1441 bt_dev_dbg(hdev, "cancelling interleave scan"); 1442 1443 cancel_delayed_work_sync(&hdev->interleave_scan); 1444 1445 hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE; 1446 } 1447 1448 /* Return true if interleave_scan wasn't started until exiting this function, 1449 * otherwise, return false 1450 */ 1451 static bool hci_update_interleaved_scan_sync(struct hci_dev *hdev) 1452 { 1453 /* Do interleaved scan only if all of the following are true: 1454 * - There is at least one ADV monitor 1455 * - At least one pending LE connection or one device to be scanned for 1456 * - Monitor offloading is not supported 1457 * If so, we should alternate between allowlist scan and one without 1458 * any filters to save power. 1459 */ 1460 bool use_interleaving = hci_is_adv_monitoring(hdev) && 1461 !(list_empty(&hdev->pend_le_conns) && 1462 list_empty(&hdev->pend_le_reports)) && 1463 hci_get_adv_monitor_offload_ext(hdev) == 1464 HCI_ADV_MONITOR_EXT_NONE; 1465 bool is_interleaving = is_interleave_scanning(hdev); 1466 1467 if (use_interleaving && !is_interleaving) { 1468 hci_start_interleave_scan(hdev); 1469 bt_dev_dbg(hdev, "starting interleave scan"); 1470 return true; 1471 } 1472 1473 if (!use_interleaving && is_interleaving) 1474 cancel_interleave_scan(hdev); 1475 1476 return false; 1477 } 1478 1479 /* Removes connection to resolve list if needed.*/ 1480 static int hci_le_del_resolve_list_sync(struct hci_dev *hdev, 1481 bdaddr_t *bdaddr, u8 bdaddr_type) 1482 { 1483 struct hci_cp_le_del_from_resolv_list cp; 1484 struct bdaddr_list_with_irk *entry; 1485 1486 if (!use_ll_privacy(hdev)) 1487 return 0; 1488 1489 /* Check if the IRK has been programmed */ 1490 entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, bdaddr, 1491 bdaddr_type); 1492 if (!entry) 1493 return 0; 1494 1495 cp.bdaddr_type = bdaddr_type; 1496 bacpy(&cp.bdaddr, bdaddr); 1497 1498 return __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_RESOLV_LIST, 1499 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1500 } 1501 1502 static int hci_le_del_accept_list_sync(struct hci_dev *hdev, 1503 bdaddr_t *bdaddr, u8 bdaddr_type) 1504 { 1505 struct hci_cp_le_del_from_accept_list cp; 1506 int err; 1507 1508 /* Check if device is on accept list before removing it */ 1509 if (!hci_bdaddr_list_lookup(&hdev->le_accept_list, bdaddr, bdaddr_type)) 1510 return 0; 1511 1512 cp.bdaddr_type = bdaddr_type; 1513 bacpy(&cp.bdaddr, bdaddr); 1514 1515 /* Ignore errors when removing from resolving list as that is likely 1516 * that the device was never added. 1517 */ 1518 hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type); 1519 1520 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_ACCEPT_LIST, 1521 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1522 if (err) { 1523 bt_dev_err(hdev, "Unable to remove from allow list: %d", err); 1524 return err; 1525 } 1526 1527 bt_dev_dbg(hdev, "Remove %pMR (0x%x) from allow list", &cp.bdaddr, 1528 cp.bdaddr_type); 1529 1530 return 0; 1531 } 1532 1533 /* Adds connection to resolve list if needed. 1534 * Setting params to NULL programs local hdev->irk 1535 */ 1536 static int hci_le_add_resolve_list_sync(struct hci_dev *hdev, 1537 struct hci_conn_params *params) 1538 { 1539 struct hci_cp_le_add_to_resolv_list cp; 1540 struct smp_irk *irk; 1541 struct bdaddr_list_with_irk *entry; 1542 1543 if (!use_ll_privacy(hdev)) 1544 return 0; 1545 1546 /* Attempt to program local identity address, type and irk if params is 1547 * NULL. 1548 */ 1549 if (!params) { 1550 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 1551 return 0; 1552 1553 hci_copy_identity_address(hdev, &cp.bdaddr, &cp.bdaddr_type); 1554 memcpy(cp.peer_irk, hdev->irk, 16); 1555 goto done; 1556 } 1557 1558 irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type); 1559 if (!irk) 1560 return 0; 1561 1562 /* Check if the IK has _not_ been programmed yet. */ 1563 entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, 1564 ¶ms->addr, 1565 params->addr_type); 1566 if (entry) 1567 return 0; 1568 1569 cp.bdaddr_type = params->addr_type; 1570 bacpy(&cp.bdaddr, ¶ms->addr); 1571 memcpy(cp.peer_irk, irk->val, 16); 1572 1573 done: 1574 if (hci_dev_test_flag(hdev, HCI_PRIVACY)) 1575 memcpy(cp.local_irk, hdev->irk, 16); 1576 else 1577 memset(cp.local_irk, 0, 16); 1578 1579 return __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_RESOLV_LIST, 1580 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1581 } 1582 1583 /* Adds connection to allow list if needed, if the device uses RPA (has IRK) 1584 * this attempts to program the device in the resolving list as well. 1585 */ 1586 static int hci_le_add_accept_list_sync(struct hci_dev *hdev, 1587 struct hci_conn_params *params, 1588 u8 *num_entries) 1589 { 1590 struct hci_cp_le_add_to_accept_list cp; 1591 int err; 1592 1593 /* Already in accept list */ 1594 if (hci_bdaddr_list_lookup(&hdev->le_accept_list, ¶ms->addr, 1595 params->addr_type)) 1596 return 0; 1597 1598 /* Select filter policy to accept all advertising */ 1599 if (*num_entries >= hdev->le_accept_list_size) 1600 return -ENOSPC; 1601 1602 /* Accept list can not be used with RPAs */ 1603 if (!use_ll_privacy(hdev) && 1604 hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type)) { 1605 return -EINVAL; 1606 } 1607 1608 /* During suspend, only wakeable devices can be in acceptlist */ 1609 if (hdev->suspended && !hci_conn_test_flag(HCI_CONN_FLAG_REMOTE_WAKEUP, 1610 params->current_flags)) 1611 return 0; 1612 1613 /* Attempt to program the device in the resolving list first to avoid 1614 * having to rollback in case it fails since the resolving list is 1615 * dynamic it can probably be smaller than the accept list. 1616 */ 1617 err = hci_le_add_resolve_list_sync(hdev, params); 1618 if (err) { 1619 bt_dev_err(hdev, "Unable to add to resolve list: %d", err); 1620 return err; 1621 } 1622 1623 *num_entries += 1; 1624 cp.bdaddr_type = params->addr_type; 1625 bacpy(&cp.bdaddr, ¶ms->addr); 1626 1627 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST, 1628 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1629 if (err) { 1630 bt_dev_err(hdev, "Unable to add to allow list: %d", err); 1631 /* Rollback the device from the resolving list */ 1632 hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type); 1633 return err; 1634 } 1635 1636 bt_dev_dbg(hdev, "Add %pMR (0x%x) to allow list", &cp.bdaddr, 1637 cp.bdaddr_type); 1638 1639 return 0; 1640 } 1641 1642 /* This function disables/pause all advertising instances */ 1643 static int hci_pause_advertising_sync(struct hci_dev *hdev) 1644 { 1645 int err; 1646 int old_state; 1647 1648 /* If there are no instances or advertising has already been paused 1649 * there is nothing to do. 1650 */ 1651 if (!hdev->adv_instance_cnt || hdev->advertising_paused) 1652 return 0; 1653 1654 bt_dev_dbg(hdev, "Pausing directed advertising"); 1655 1656 /* Stop directed advertising */ 1657 old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING); 1658 if (old_state) { 1659 /* When discoverable timeout triggers, then just make sure 1660 * the limited discoverable flag is cleared. Even in the case 1661 * of a timeout triggered from general discoverable, it is 1662 * safe to unconditionally clear the flag. 1663 */ 1664 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 1665 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 1666 hdev->discov_timeout = 0; 1667 } 1668 1669 bt_dev_dbg(hdev, "Pausing advertising instances"); 1670 1671 /* Call to disable any advertisements active on the controller. 1672 * This will succeed even if no advertisements are configured. 1673 */ 1674 err = hci_disable_advertising_sync(hdev); 1675 if (err) 1676 return err; 1677 1678 /* If we are using software rotation, pause the loop */ 1679 if (!ext_adv_capable(hdev)) 1680 cancel_adv_timeout(hdev); 1681 1682 hdev->advertising_paused = true; 1683 hdev->advertising_old_state = old_state; 1684 1685 return 0; 1686 } 1687 1688 /* This function enables all user advertising instances */ 1689 static int hci_resume_advertising_sync(struct hci_dev *hdev) 1690 { 1691 struct adv_info *adv, *tmp; 1692 int err; 1693 1694 /* If advertising has not been paused there is nothing to do. */ 1695 if (!hdev->advertising_paused) 1696 return 0; 1697 1698 /* Resume directed advertising */ 1699 hdev->advertising_paused = false; 1700 if (hdev->advertising_old_state) { 1701 hci_dev_set_flag(hdev, HCI_ADVERTISING); 1702 hdev->advertising_old_state = 0; 1703 } 1704 1705 bt_dev_dbg(hdev, "Resuming advertising instances"); 1706 1707 if (ext_adv_capable(hdev)) { 1708 /* Call for each tracked instance to be re-enabled */ 1709 list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) { 1710 err = hci_enable_ext_advertising_sync(hdev, 1711 adv->instance); 1712 if (!err) 1713 continue; 1714 1715 /* If the instance cannot be resumed remove it */ 1716 hci_remove_ext_adv_instance_sync(hdev, adv->instance, 1717 NULL); 1718 } 1719 } else { 1720 /* Schedule for most recent instance to be restarted and begin 1721 * the software rotation loop 1722 */ 1723 err = hci_schedule_adv_instance_sync(hdev, 1724 hdev->cur_adv_instance, 1725 true); 1726 } 1727 1728 hdev->advertising_paused = false; 1729 1730 return err; 1731 } 1732 1733 struct sk_buff *hci_read_local_oob_data_sync(struct hci_dev *hdev, 1734 bool extended, struct sock *sk) 1735 { 1736 u16 opcode = extended ? HCI_OP_READ_LOCAL_OOB_EXT_DATA : 1737 HCI_OP_READ_LOCAL_OOB_DATA; 1738 1739 return __hci_cmd_sync_sk(hdev, opcode, 0, NULL, 0, HCI_CMD_TIMEOUT, sk); 1740 } 1741 1742 /* Device must not be scanning when updating the accept list. 1743 * 1744 * Update is done using the following sequence: 1745 * 1746 * use_ll_privacy((Disable Advertising) -> Disable Resolving List) -> 1747 * Remove Devices From Accept List -> 1748 * (has IRK && use_ll_privacy(Remove Devices From Resolving List))-> 1749 * Add Devices to Accept List -> 1750 * (has IRK && use_ll_privacy(Remove Devices From Resolving List)) -> 1751 * use_ll_privacy(Enable Resolving List -> (Enable Advertising)) -> 1752 * Enable Scanning 1753 * 1754 * In case of failure advertising shall be restored to its original state and 1755 * return would disable accept list since either accept or resolving list could 1756 * not be programmed. 1757 * 1758 */ 1759 static u8 hci_update_accept_list_sync(struct hci_dev *hdev) 1760 { 1761 struct hci_conn_params *params; 1762 struct bdaddr_list *b, *t; 1763 u8 num_entries = 0; 1764 bool pend_conn, pend_report; 1765 int err; 1766 1767 /* Pause advertising if resolving list can be used as controllers are 1768 * cannot accept resolving list modifications while advertising. 1769 */ 1770 if (use_ll_privacy(hdev)) { 1771 err = hci_pause_advertising_sync(hdev); 1772 if (err) { 1773 bt_dev_err(hdev, "pause advertising failed: %d", err); 1774 return 0x00; 1775 } 1776 } 1777 1778 /* Disable address resolution while reprogramming accept list since 1779 * devices that do have an IRK will be programmed in the resolving list 1780 * when LL Privacy is enabled. 1781 */ 1782 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00); 1783 if (err) { 1784 bt_dev_err(hdev, "Unable to disable LL privacy: %d", err); 1785 goto done; 1786 } 1787 1788 /* Go through the current accept list programmed into the 1789 * controller one by one and check if that address is still 1790 * in the list of pending connections or list of devices to 1791 * report. If not present in either list, then remove it from 1792 * the controller. 1793 */ 1794 list_for_each_entry_safe(b, t, &hdev->le_accept_list, list) { 1795 pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns, 1796 &b->bdaddr, 1797 b->bdaddr_type); 1798 pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports, 1799 &b->bdaddr, 1800 b->bdaddr_type); 1801 1802 /* If the device is not likely to connect or report, 1803 * remove it from the acceptlist. 1804 */ 1805 if (!pend_conn && !pend_report) { 1806 hci_le_del_accept_list_sync(hdev, &b->bdaddr, 1807 b->bdaddr_type); 1808 continue; 1809 } 1810 1811 num_entries++; 1812 } 1813 1814 /* Since all no longer valid accept list entries have been 1815 * removed, walk through the list of pending connections 1816 * and ensure that any new device gets programmed into 1817 * the controller. 1818 * 1819 * If the list of the devices is larger than the list of 1820 * available accept list entries in the controller, then 1821 * just abort and return filer policy value to not use the 1822 * accept list. 1823 */ 1824 list_for_each_entry(params, &hdev->pend_le_conns, action) { 1825 err = hci_le_add_accept_list_sync(hdev, params, &num_entries); 1826 if (err) 1827 goto done; 1828 } 1829 1830 /* After adding all new pending connections, walk through 1831 * the list of pending reports and also add these to the 1832 * accept list if there is still space. Abort if space runs out. 1833 */ 1834 list_for_each_entry(params, &hdev->pend_le_reports, action) { 1835 err = hci_le_add_accept_list_sync(hdev, params, &num_entries); 1836 if (err) 1837 goto done; 1838 } 1839 1840 /* Use the allowlist unless the following conditions are all true: 1841 * - We are not currently suspending 1842 * - There are 1 or more ADV monitors registered and it's not offloaded 1843 * - Interleaved scanning is not currently using the allowlist 1844 */ 1845 if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended && 1846 hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE && 1847 hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST) 1848 err = -EINVAL; 1849 1850 done: 1851 /* Enable address resolution when LL Privacy is enabled. */ 1852 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x01); 1853 if (err) 1854 bt_dev_err(hdev, "Unable to enable LL privacy: %d", err); 1855 1856 /* Resume advertising if it was paused */ 1857 if (use_ll_privacy(hdev)) 1858 hci_resume_advertising_sync(hdev); 1859 1860 /* Select filter policy to use accept list */ 1861 return err ? 0x00 : 0x01; 1862 } 1863 1864 /* Returns true if an le connection is in the scanning state */ 1865 static inline bool hci_is_le_conn_scanning(struct hci_dev *hdev) 1866 { 1867 struct hci_conn_hash *h = &hdev->conn_hash; 1868 struct hci_conn *c; 1869 1870 rcu_read_lock(); 1871 1872 list_for_each_entry_rcu(c, &h->list, list) { 1873 if (c->type == LE_LINK && c->state == BT_CONNECT && 1874 test_bit(HCI_CONN_SCANNING, &c->flags)) { 1875 rcu_read_unlock(); 1876 return true; 1877 } 1878 } 1879 1880 rcu_read_unlock(); 1881 1882 return false; 1883 } 1884 1885 static int hci_le_set_ext_scan_param_sync(struct hci_dev *hdev, u8 type, 1886 u16 interval, u16 window, 1887 u8 own_addr_type, u8 filter_policy) 1888 { 1889 struct hci_cp_le_set_ext_scan_params *cp; 1890 struct hci_cp_le_scan_phy_params *phy; 1891 u8 data[sizeof(*cp) + sizeof(*phy) * 2]; 1892 u8 num_phy = 0; 1893 1894 cp = (void *)data; 1895 phy = (void *)cp->data; 1896 1897 memset(data, 0, sizeof(data)); 1898 1899 cp->own_addr_type = own_addr_type; 1900 cp->filter_policy = filter_policy; 1901 1902 if (scan_1m(hdev) || scan_2m(hdev)) { 1903 cp->scanning_phys |= LE_SCAN_PHY_1M; 1904 1905 phy->type = type; 1906 phy->interval = cpu_to_le16(interval); 1907 phy->window = cpu_to_le16(window); 1908 1909 num_phy++; 1910 phy++; 1911 } 1912 1913 if (scan_coded(hdev)) { 1914 cp->scanning_phys |= LE_SCAN_PHY_CODED; 1915 1916 phy->type = type; 1917 phy->interval = cpu_to_le16(interval); 1918 phy->window = cpu_to_le16(window); 1919 1920 num_phy++; 1921 phy++; 1922 } 1923 1924 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_PARAMS, 1925 sizeof(*cp) + sizeof(*phy) * num_phy, 1926 data, HCI_CMD_TIMEOUT); 1927 } 1928 1929 static int hci_le_set_scan_param_sync(struct hci_dev *hdev, u8 type, 1930 u16 interval, u16 window, 1931 u8 own_addr_type, u8 filter_policy) 1932 { 1933 struct hci_cp_le_set_scan_param cp; 1934 1935 if (use_ext_scan(hdev)) 1936 return hci_le_set_ext_scan_param_sync(hdev, type, interval, 1937 window, own_addr_type, 1938 filter_policy); 1939 1940 memset(&cp, 0, sizeof(cp)); 1941 cp.type = type; 1942 cp.interval = cpu_to_le16(interval); 1943 cp.window = cpu_to_le16(window); 1944 cp.own_address_type = own_addr_type; 1945 cp.filter_policy = filter_policy; 1946 1947 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_PARAM, 1948 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1949 } 1950 1951 static int hci_start_scan_sync(struct hci_dev *hdev, u8 type, u16 interval, 1952 u16 window, u8 own_addr_type, u8 filter_policy, 1953 u8 filter_dup) 1954 { 1955 int err; 1956 1957 if (hdev->scanning_paused) { 1958 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 1959 return 0; 1960 } 1961 1962 err = hci_le_set_scan_param_sync(hdev, type, interval, window, 1963 own_addr_type, filter_policy); 1964 if (err) 1965 return err; 1966 1967 return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, filter_dup); 1968 } 1969 1970 static int hci_passive_scan_sync(struct hci_dev *hdev) 1971 { 1972 u8 own_addr_type; 1973 u8 filter_policy; 1974 u16 window, interval; 1975 int err; 1976 1977 if (hdev->scanning_paused) { 1978 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 1979 return 0; 1980 } 1981 1982 err = hci_scan_disable_sync(hdev); 1983 if (err) { 1984 bt_dev_err(hdev, "disable scanning failed: %d", err); 1985 return err; 1986 } 1987 1988 /* Set require_privacy to false since no SCAN_REQ are send 1989 * during passive scanning. Not using an non-resolvable address 1990 * here is important so that peer devices using direct 1991 * advertising with our address will be correctly reported 1992 * by the controller. 1993 */ 1994 if (hci_update_random_address_sync(hdev, false, scan_use_rpa(hdev), 1995 &own_addr_type)) 1996 return 0; 1997 1998 if (hdev->enable_advmon_interleave_scan && 1999 hci_update_interleaved_scan_sync(hdev)) 2000 return 0; 2001 2002 bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state); 2003 2004 /* Adding or removing entries from the accept list must 2005 * happen before enabling scanning. The controller does 2006 * not allow accept list modification while scanning. 2007 */ 2008 filter_policy = hci_update_accept_list_sync(hdev); 2009 2010 /* When the controller is using random resolvable addresses and 2011 * with that having LE privacy enabled, then controllers with 2012 * Extended Scanner Filter Policies support can now enable support 2013 * for handling directed advertising. 2014 * 2015 * So instead of using filter polices 0x00 (no acceptlist) 2016 * and 0x01 (acceptlist enabled) use the new filter policies 2017 * 0x02 (no acceptlist) and 0x03 (acceptlist enabled). 2018 */ 2019 if (hci_dev_test_flag(hdev, HCI_PRIVACY) && 2020 (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)) 2021 filter_policy |= 0x02; 2022 2023 if (hdev->suspended) { 2024 window = hdev->le_scan_window_suspend; 2025 interval = hdev->le_scan_int_suspend; 2026 } else if (hci_is_le_conn_scanning(hdev)) { 2027 window = hdev->le_scan_window_connect; 2028 interval = hdev->le_scan_int_connect; 2029 } else if (hci_is_adv_monitoring(hdev)) { 2030 window = hdev->le_scan_window_adv_monitor; 2031 interval = hdev->le_scan_int_adv_monitor; 2032 } else { 2033 window = hdev->le_scan_window; 2034 interval = hdev->le_scan_interval; 2035 } 2036 2037 bt_dev_dbg(hdev, "LE passive scan with acceptlist = %d", filter_policy); 2038 2039 return hci_start_scan_sync(hdev, LE_SCAN_PASSIVE, interval, window, 2040 own_addr_type, filter_policy, 2041 LE_SCAN_FILTER_DUP_ENABLE); 2042 } 2043 2044 /* This function controls the passive scanning based on hdev->pend_le_conns 2045 * list. If there are pending LE connection we start the background scanning, 2046 * otherwise we stop it in the following sequence: 2047 * 2048 * If there are devices to scan: 2049 * 2050 * Disable Scanning -> Update Accept List -> 2051 * use_ll_privacy((Disable Advertising) -> Disable Resolving List -> 2052 * Update Resolving List -> Enable Resolving List -> (Enable Advertising)) -> 2053 * Enable Scanning 2054 * 2055 * Otherwise: 2056 * 2057 * Disable Scanning 2058 */ 2059 int hci_update_passive_scan_sync(struct hci_dev *hdev) 2060 { 2061 int err; 2062 2063 if (!test_bit(HCI_UP, &hdev->flags) || 2064 test_bit(HCI_INIT, &hdev->flags) || 2065 hci_dev_test_flag(hdev, HCI_SETUP) || 2066 hci_dev_test_flag(hdev, HCI_CONFIG) || 2067 hci_dev_test_flag(hdev, HCI_AUTO_OFF) || 2068 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 2069 return 0; 2070 2071 /* No point in doing scanning if LE support hasn't been enabled */ 2072 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 2073 return 0; 2074 2075 /* If discovery is active don't interfere with it */ 2076 if (hdev->discovery.state != DISCOVERY_STOPPED) 2077 return 0; 2078 2079 /* Reset RSSI and UUID filters when starting background scanning 2080 * since these filters are meant for service discovery only. 2081 * 2082 * The Start Discovery and Start Service Discovery operations 2083 * ensure to set proper values for RSSI threshold and UUID 2084 * filter list. So it is safe to just reset them here. 2085 */ 2086 hci_discovery_filter_clear(hdev); 2087 2088 bt_dev_dbg(hdev, "ADV monitoring is %s", 2089 hci_is_adv_monitoring(hdev) ? "on" : "off"); 2090 2091 if (list_empty(&hdev->pend_le_conns) && 2092 list_empty(&hdev->pend_le_reports) && 2093 !hci_is_adv_monitoring(hdev)) { 2094 /* If there is no pending LE connections or devices 2095 * to be scanned for or no ADV monitors, we should stop the 2096 * background scanning. 2097 */ 2098 2099 bt_dev_dbg(hdev, "stopping background scanning"); 2100 2101 err = hci_scan_disable_sync(hdev); 2102 if (err) 2103 bt_dev_err(hdev, "stop background scanning failed: %d", 2104 err); 2105 } else { 2106 /* If there is at least one pending LE connection, we should 2107 * keep the background scan running. 2108 */ 2109 2110 /* If controller is connecting, we should not start scanning 2111 * since some controllers are not able to scan and connect at 2112 * the same time. 2113 */ 2114 if (hci_lookup_le_connect(hdev)) 2115 return 0; 2116 2117 bt_dev_dbg(hdev, "start background scanning"); 2118 2119 err = hci_passive_scan_sync(hdev); 2120 if (err) 2121 bt_dev_err(hdev, "start background scanning failed: %d", 2122 err); 2123 } 2124 2125 return err; 2126 } 2127 2128 static int update_passive_scan_sync(struct hci_dev *hdev, void *data) 2129 { 2130 return hci_update_passive_scan_sync(hdev); 2131 } 2132 2133 int hci_update_passive_scan(struct hci_dev *hdev) 2134 { 2135 /* Only queue if it would have any effect */ 2136 if (!test_bit(HCI_UP, &hdev->flags) || 2137 test_bit(HCI_INIT, &hdev->flags) || 2138 hci_dev_test_flag(hdev, HCI_SETUP) || 2139 hci_dev_test_flag(hdev, HCI_CONFIG) || 2140 hci_dev_test_flag(hdev, HCI_AUTO_OFF) || 2141 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 2142 return 0; 2143 2144 return hci_cmd_sync_queue(hdev, update_passive_scan_sync, NULL, NULL); 2145 } 2146 2147 int hci_write_sc_support_sync(struct hci_dev *hdev, u8 val) 2148 { 2149 int err; 2150 2151 if (!bredr_sc_enabled(hdev) || lmp_host_sc_capable(hdev)) 2152 return 0; 2153 2154 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT, 2155 sizeof(val), &val, HCI_CMD_TIMEOUT); 2156 2157 if (!err) { 2158 if (val) { 2159 hdev->features[1][0] |= LMP_HOST_SC; 2160 hci_dev_set_flag(hdev, HCI_SC_ENABLED); 2161 } else { 2162 hdev->features[1][0] &= ~LMP_HOST_SC; 2163 hci_dev_clear_flag(hdev, HCI_SC_ENABLED); 2164 } 2165 } 2166 2167 return err; 2168 } 2169 2170 int hci_write_ssp_mode_sync(struct hci_dev *hdev, u8 mode) 2171 { 2172 int err; 2173 2174 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) || 2175 lmp_host_ssp_capable(hdev)) 2176 return 0; 2177 2178 if (!mode && hci_dev_test_flag(hdev, HCI_USE_DEBUG_KEYS)) { 2179 __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE, 2180 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 2181 } 2182 2183 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE, 2184 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 2185 if (err) 2186 return err; 2187 2188 return hci_write_sc_support_sync(hdev, 0x01); 2189 } 2190 2191 int hci_write_le_host_supported_sync(struct hci_dev *hdev, u8 le, u8 simul) 2192 { 2193 struct hci_cp_write_le_host_supported cp; 2194 2195 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED) || 2196 !lmp_bredr_capable(hdev)) 2197 return 0; 2198 2199 /* Check first if we already have the right host state 2200 * (host features set) 2201 */ 2202 if (le == lmp_host_le_capable(hdev) && 2203 simul == lmp_host_le_br_capable(hdev)) 2204 return 0; 2205 2206 memset(&cp, 0, sizeof(cp)); 2207 2208 cp.le = le; 2209 cp.simul = simul; 2210 2211 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED, 2212 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2213 } 2214 2215 static int hci_powered_update_adv_sync(struct hci_dev *hdev) 2216 { 2217 struct adv_info *adv, *tmp; 2218 int err; 2219 2220 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 2221 return 0; 2222 2223 /* If RPA Resolution has not been enable yet it means the 2224 * resolving list is empty and we should attempt to program the 2225 * local IRK in order to support using own_addr_type 2226 * ADDR_LE_DEV_RANDOM_RESOLVED (0x03). 2227 */ 2228 if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) { 2229 hci_le_add_resolve_list_sync(hdev, NULL); 2230 hci_le_set_addr_resolution_enable_sync(hdev, 0x01); 2231 } 2232 2233 /* Make sure the controller has a good default for 2234 * advertising data. This also applies to the case 2235 * where BR/EDR was toggled during the AUTO_OFF phase. 2236 */ 2237 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 2238 list_empty(&hdev->adv_instances)) { 2239 if (ext_adv_capable(hdev)) { 2240 err = hci_setup_ext_adv_instance_sync(hdev, 0x00); 2241 if (!err) 2242 hci_update_scan_rsp_data_sync(hdev, 0x00); 2243 } else { 2244 err = hci_update_adv_data_sync(hdev, 0x00); 2245 if (!err) 2246 hci_update_scan_rsp_data_sync(hdev, 0x00); 2247 } 2248 2249 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) 2250 hci_enable_advertising_sync(hdev); 2251 } 2252 2253 /* Call for each tracked instance to be scheduled */ 2254 list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) 2255 hci_schedule_adv_instance_sync(hdev, adv->instance, true); 2256 2257 return 0; 2258 } 2259 2260 static int hci_write_auth_enable_sync(struct hci_dev *hdev) 2261 { 2262 u8 link_sec; 2263 2264 link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY); 2265 if (link_sec == test_bit(HCI_AUTH, &hdev->flags)) 2266 return 0; 2267 2268 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE, 2269 sizeof(link_sec), &link_sec, 2270 HCI_CMD_TIMEOUT); 2271 } 2272 2273 int hci_write_fast_connectable_sync(struct hci_dev *hdev, bool enable) 2274 { 2275 struct hci_cp_write_page_scan_activity cp; 2276 u8 type; 2277 int err = 0; 2278 2279 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 2280 return 0; 2281 2282 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 2283 return 0; 2284 2285 memset(&cp, 0, sizeof(cp)); 2286 2287 if (enable) { 2288 type = PAGE_SCAN_TYPE_INTERLACED; 2289 2290 /* 160 msec page scan interval */ 2291 cp.interval = cpu_to_le16(0x0100); 2292 } else { 2293 type = hdev->def_page_scan_type; 2294 cp.interval = cpu_to_le16(hdev->def_page_scan_int); 2295 } 2296 2297 cp.window = cpu_to_le16(hdev->def_page_scan_window); 2298 2299 if (__cpu_to_le16(hdev->page_scan_interval) != cp.interval || 2300 __cpu_to_le16(hdev->page_scan_window) != cp.window) { 2301 err = __hci_cmd_sync_status(hdev, 2302 HCI_OP_WRITE_PAGE_SCAN_ACTIVITY, 2303 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2304 if (err) 2305 return err; 2306 } 2307 2308 if (hdev->page_scan_type != type) 2309 err = __hci_cmd_sync_status(hdev, 2310 HCI_OP_WRITE_PAGE_SCAN_TYPE, 2311 sizeof(type), &type, 2312 HCI_CMD_TIMEOUT); 2313 2314 return err; 2315 } 2316 2317 static bool disconnected_accept_list_entries(struct hci_dev *hdev) 2318 { 2319 struct bdaddr_list *b; 2320 2321 list_for_each_entry(b, &hdev->accept_list, list) { 2322 struct hci_conn *conn; 2323 2324 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr); 2325 if (!conn) 2326 return true; 2327 2328 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 2329 return true; 2330 } 2331 2332 return false; 2333 } 2334 2335 static int hci_write_scan_enable_sync(struct hci_dev *hdev, u8 val) 2336 { 2337 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE, 2338 sizeof(val), &val, 2339 HCI_CMD_TIMEOUT); 2340 } 2341 2342 int hci_update_scan_sync(struct hci_dev *hdev) 2343 { 2344 u8 scan; 2345 2346 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 2347 return 0; 2348 2349 if (!hdev_is_powered(hdev)) 2350 return 0; 2351 2352 if (mgmt_powering_down(hdev)) 2353 return 0; 2354 2355 if (hdev->scanning_paused) 2356 return 0; 2357 2358 if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) || 2359 disconnected_accept_list_entries(hdev)) 2360 scan = SCAN_PAGE; 2361 else 2362 scan = SCAN_DISABLED; 2363 2364 if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 2365 scan |= SCAN_INQUIRY; 2366 2367 if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) && 2368 test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY)) 2369 return 0; 2370 2371 return hci_write_scan_enable_sync(hdev, scan); 2372 } 2373 2374 int hci_update_name_sync(struct hci_dev *hdev) 2375 { 2376 struct hci_cp_write_local_name cp; 2377 2378 memset(&cp, 0, sizeof(cp)); 2379 2380 memcpy(cp.name, hdev->dev_name, sizeof(cp.name)); 2381 2382 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LOCAL_NAME, 2383 sizeof(cp), &cp, 2384 HCI_CMD_TIMEOUT); 2385 } 2386 2387 /* This function perform powered update HCI command sequence after the HCI init 2388 * sequence which end up resetting all states, the sequence is as follows: 2389 * 2390 * HCI_SSP_ENABLED(Enable SSP) 2391 * HCI_LE_ENABLED(Enable LE) 2392 * HCI_LE_ENABLED(use_ll_privacy(Add local IRK to Resolving List) -> 2393 * Update adv data) 2394 * Enable Authentication 2395 * lmp_bredr_capable(Set Fast Connectable -> Set Scan Type -> Set Class -> 2396 * Set Name -> Set EIR) 2397 */ 2398 int hci_powered_update_sync(struct hci_dev *hdev) 2399 { 2400 int err; 2401 2402 /* Register the available SMP channels (BR/EDR and LE) only when 2403 * successfully powering on the controller. This late 2404 * registration is required so that LE SMP can clearly decide if 2405 * the public address or static address is used. 2406 */ 2407 smp_register(hdev); 2408 2409 err = hci_write_ssp_mode_sync(hdev, 0x01); 2410 if (err) 2411 return err; 2412 2413 err = hci_write_le_host_supported_sync(hdev, 0x01, 0x00); 2414 if (err) 2415 return err; 2416 2417 err = hci_powered_update_adv_sync(hdev); 2418 if (err) 2419 return err; 2420 2421 err = hci_write_auth_enable_sync(hdev); 2422 if (err) 2423 return err; 2424 2425 if (lmp_bredr_capable(hdev)) { 2426 if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE)) 2427 hci_write_fast_connectable_sync(hdev, true); 2428 else 2429 hci_write_fast_connectable_sync(hdev, false); 2430 hci_update_scan_sync(hdev); 2431 hci_update_class_sync(hdev); 2432 hci_update_name_sync(hdev); 2433 hci_update_eir_sync(hdev); 2434 } 2435 2436 return 0; 2437 } 2438 2439 /** 2440 * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address 2441 * (BD_ADDR) for a HCI device from 2442 * a firmware node property. 2443 * @hdev: The HCI device 2444 * 2445 * Search the firmware node for 'local-bd-address'. 2446 * 2447 * All-zero BD addresses are rejected, because those could be properties 2448 * that exist in the firmware tables, but were not updated by the firmware. For 2449 * example, the DTS could define 'local-bd-address', with zero BD addresses. 2450 */ 2451 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev) 2452 { 2453 struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent); 2454 bdaddr_t ba; 2455 int ret; 2456 2457 ret = fwnode_property_read_u8_array(fwnode, "local-bd-address", 2458 (u8 *)&ba, sizeof(ba)); 2459 if (ret < 0 || !bacmp(&ba, BDADDR_ANY)) 2460 return; 2461 2462 bacpy(&hdev->public_addr, &ba); 2463 } 2464 2465 struct hci_init_stage { 2466 int (*func)(struct hci_dev *hdev); 2467 }; 2468 2469 /* Run init stage NULL terminated function table */ 2470 static int hci_init_stage_sync(struct hci_dev *hdev, 2471 const struct hci_init_stage *stage) 2472 { 2473 size_t i; 2474 2475 for (i = 0; stage[i].func; i++) { 2476 int err; 2477 2478 err = stage[i].func(hdev); 2479 if (err) 2480 return err; 2481 } 2482 2483 return 0; 2484 } 2485 2486 /* Read Local Version */ 2487 static int hci_read_local_version_sync(struct hci_dev *hdev) 2488 { 2489 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_VERSION, 2490 0, NULL, HCI_CMD_TIMEOUT); 2491 } 2492 2493 /* Read BD Address */ 2494 static int hci_read_bd_addr_sync(struct hci_dev *hdev) 2495 { 2496 return __hci_cmd_sync_status(hdev, HCI_OP_READ_BD_ADDR, 2497 0, NULL, HCI_CMD_TIMEOUT); 2498 } 2499 2500 #define HCI_INIT(_func) \ 2501 { \ 2502 .func = _func, \ 2503 } 2504 2505 static const struct hci_init_stage hci_init0[] = { 2506 /* HCI_OP_READ_LOCAL_VERSION */ 2507 HCI_INIT(hci_read_local_version_sync), 2508 /* HCI_OP_READ_BD_ADDR */ 2509 HCI_INIT(hci_read_bd_addr_sync), 2510 {} 2511 }; 2512 2513 int hci_reset_sync(struct hci_dev *hdev) 2514 { 2515 int err; 2516 2517 set_bit(HCI_RESET, &hdev->flags); 2518 2519 err = __hci_cmd_sync_status(hdev, HCI_OP_RESET, 0, NULL, 2520 HCI_CMD_TIMEOUT); 2521 if (err) 2522 return err; 2523 2524 return 0; 2525 } 2526 2527 static int hci_init0_sync(struct hci_dev *hdev) 2528 { 2529 int err; 2530 2531 bt_dev_dbg(hdev, ""); 2532 2533 /* Reset */ 2534 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) { 2535 err = hci_reset_sync(hdev); 2536 if (err) 2537 return err; 2538 } 2539 2540 return hci_init_stage_sync(hdev, hci_init0); 2541 } 2542 2543 static int hci_unconf_init_sync(struct hci_dev *hdev) 2544 { 2545 int err; 2546 2547 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) 2548 return 0; 2549 2550 err = hci_init0_sync(hdev); 2551 if (err < 0) 2552 return err; 2553 2554 if (hci_dev_test_flag(hdev, HCI_SETUP)) 2555 hci_debugfs_create_basic(hdev); 2556 2557 return 0; 2558 } 2559 2560 /* Read Local Supported Features. */ 2561 static int hci_read_local_features_sync(struct hci_dev *hdev) 2562 { 2563 /* Not all AMP controllers support this command */ 2564 if (hdev->dev_type == HCI_AMP && !(hdev->commands[14] & 0x20)) 2565 return 0; 2566 2567 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_FEATURES, 2568 0, NULL, HCI_CMD_TIMEOUT); 2569 } 2570 2571 /* BR Controller init stage 1 command sequence */ 2572 static const struct hci_init_stage br_init1[] = { 2573 /* HCI_OP_READ_LOCAL_FEATURES */ 2574 HCI_INIT(hci_read_local_features_sync), 2575 /* HCI_OP_READ_LOCAL_VERSION */ 2576 HCI_INIT(hci_read_local_version_sync), 2577 /* HCI_OP_READ_BD_ADDR */ 2578 HCI_INIT(hci_read_bd_addr_sync), 2579 {} 2580 }; 2581 2582 /* Read Local Commands */ 2583 static int hci_read_local_cmds_sync(struct hci_dev *hdev) 2584 { 2585 /* All Bluetooth 1.2 and later controllers should support the 2586 * HCI command for reading the local supported commands. 2587 * 2588 * Unfortunately some controllers indicate Bluetooth 1.2 support, 2589 * but do not have support for this command. If that is the case, 2590 * the driver can quirk the behavior and skip reading the local 2591 * supported commands. 2592 */ 2593 if (hdev->hci_ver > BLUETOOTH_VER_1_1 && 2594 !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks)) 2595 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_COMMANDS, 2596 0, NULL, HCI_CMD_TIMEOUT); 2597 2598 return 0; 2599 } 2600 2601 /* Read Local AMP Info */ 2602 static int hci_read_local_amp_info_sync(struct hci_dev *hdev) 2603 { 2604 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_AMP_INFO, 2605 0, NULL, HCI_CMD_TIMEOUT); 2606 } 2607 2608 /* Read Data Blk size */ 2609 static int hci_read_data_block_size_sync(struct hci_dev *hdev) 2610 { 2611 return __hci_cmd_sync_status(hdev, HCI_OP_READ_DATA_BLOCK_SIZE, 2612 0, NULL, HCI_CMD_TIMEOUT); 2613 } 2614 2615 /* Read Flow Control Mode */ 2616 static int hci_read_flow_control_mode_sync(struct hci_dev *hdev) 2617 { 2618 return __hci_cmd_sync_status(hdev, HCI_OP_READ_FLOW_CONTROL_MODE, 2619 0, NULL, HCI_CMD_TIMEOUT); 2620 } 2621 2622 /* Read Location Data */ 2623 static int hci_read_location_data_sync(struct hci_dev *hdev) 2624 { 2625 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCATION_DATA, 2626 0, NULL, HCI_CMD_TIMEOUT); 2627 } 2628 2629 /* AMP Controller init stage 1 command sequence */ 2630 static const struct hci_init_stage amp_init1[] = { 2631 /* HCI_OP_READ_LOCAL_VERSION */ 2632 HCI_INIT(hci_read_local_version_sync), 2633 /* HCI_OP_READ_LOCAL_COMMANDS */ 2634 HCI_INIT(hci_read_local_cmds_sync), 2635 /* HCI_OP_READ_LOCAL_AMP_INFO */ 2636 HCI_INIT(hci_read_local_amp_info_sync), 2637 /* HCI_OP_READ_DATA_BLOCK_SIZE */ 2638 HCI_INIT(hci_read_data_block_size_sync), 2639 /* HCI_OP_READ_FLOW_CONTROL_MODE */ 2640 HCI_INIT(hci_read_flow_control_mode_sync), 2641 /* HCI_OP_READ_LOCATION_DATA */ 2642 HCI_INIT(hci_read_location_data_sync), 2643 }; 2644 2645 static int hci_init1_sync(struct hci_dev *hdev) 2646 { 2647 int err; 2648 2649 bt_dev_dbg(hdev, ""); 2650 2651 /* Reset */ 2652 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) { 2653 err = hci_reset_sync(hdev); 2654 if (err) 2655 return err; 2656 } 2657 2658 switch (hdev->dev_type) { 2659 case HCI_PRIMARY: 2660 hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED; 2661 return hci_init_stage_sync(hdev, br_init1); 2662 case HCI_AMP: 2663 hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED; 2664 return hci_init_stage_sync(hdev, amp_init1); 2665 default: 2666 bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type); 2667 break; 2668 } 2669 2670 return 0; 2671 } 2672 2673 /* AMP Controller init stage 2 command sequence */ 2674 static const struct hci_init_stage amp_init2[] = { 2675 /* HCI_OP_READ_LOCAL_FEATURES */ 2676 HCI_INIT(hci_read_local_features_sync), 2677 }; 2678 2679 /* Read Buffer Size (ACL mtu, max pkt, etc.) */ 2680 static int hci_read_buffer_size_sync(struct hci_dev *hdev) 2681 { 2682 return __hci_cmd_sync_status(hdev, HCI_OP_READ_BUFFER_SIZE, 2683 0, NULL, HCI_CMD_TIMEOUT); 2684 } 2685 2686 /* Read Class of Device */ 2687 static int hci_read_dev_class_sync(struct hci_dev *hdev) 2688 { 2689 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLASS_OF_DEV, 2690 0, NULL, HCI_CMD_TIMEOUT); 2691 } 2692 2693 /* Read Local Name */ 2694 static int hci_read_local_name_sync(struct hci_dev *hdev) 2695 { 2696 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_NAME, 2697 0, NULL, HCI_CMD_TIMEOUT); 2698 } 2699 2700 /* Read Voice Setting */ 2701 static int hci_read_voice_setting_sync(struct hci_dev *hdev) 2702 { 2703 return __hci_cmd_sync_status(hdev, HCI_OP_READ_VOICE_SETTING, 2704 0, NULL, HCI_CMD_TIMEOUT); 2705 } 2706 2707 /* Read Number of Supported IAC */ 2708 static int hci_read_num_supported_iac_sync(struct hci_dev *hdev) 2709 { 2710 return __hci_cmd_sync_status(hdev, HCI_OP_READ_NUM_SUPPORTED_IAC, 2711 0, NULL, HCI_CMD_TIMEOUT); 2712 } 2713 2714 /* Read Current IAC LAP */ 2715 static int hci_read_current_iac_lap_sync(struct hci_dev *hdev) 2716 { 2717 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CURRENT_IAC_LAP, 2718 0, NULL, HCI_CMD_TIMEOUT); 2719 } 2720 2721 static int hci_set_event_filter_sync(struct hci_dev *hdev, u8 flt_type, 2722 u8 cond_type, bdaddr_t *bdaddr, 2723 u8 auto_accept) 2724 { 2725 struct hci_cp_set_event_filter cp; 2726 2727 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 2728 return 0; 2729 2730 memset(&cp, 0, sizeof(cp)); 2731 cp.flt_type = flt_type; 2732 2733 if (flt_type != HCI_FLT_CLEAR_ALL) { 2734 cp.cond_type = cond_type; 2735 bacpy(&cp.addr_conn_flt.bdaddr, bdaddr); 2736 cp.addr_conn_flt.auto_accept = auto_accept; 2737 } 2738 2739 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_FLT, 2740 flt_type == HCI_FLT_CLEAR_ALL ? 2741 sizeof(cp.flt_type) : sizeof(cp), &cp, 2742 HCI_CMD_TIMEOUT); 2743 } 2744 2745 static int hci_clear_event_filter_sync(struct hci_dev *hdev) 2746 { 2747 if (!hci_dev_test_flag(hdev, HCI_EVENT_FILTER_CONFIGURED)) 2748 return 0; 2749 2750 return hci_set_event_filter_sync(hdev, HCI_FLT_CLEAR_ALL, 0x00, 2751 BDADDR_ANY, 0x00); 2752 } 2753 2754 /* Connection accept timeout ~20 secs */ 2755 static int hci_write_ca_timeout_sync(struct hci_dev *hdev) 2756 { 2757 __le16 param = cpu_to_le16(0x7d00); 2758 2759 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CA_TIMEOUT, 2760 sizeof(param), ¶m, HCI_CMD_TIMEOUT); 2761 } 2762 2763 /* BR Controller init stage 2 command sequence */ 2764 static const struct hci_init_stage br_init2[] = { 2765 /* HCI_OP_READ_BUFFER_SIZE */ 2766 HCI_INIT(hci_read_buffer_size_sync), 2767 /* HCI_OP_READ_CLASS_OF_DEV */ 2768 HCI_INIT(hci_read_dev_class_sync), 2769 /* HCI_OP_READ_LOCAL_NAME */ 2770 HCI_INIT(hci_read_local_name_sync), 2771 /* HCI_OP_READ_VOICE_SETTING */ 2772 HCI_INIT(hci_read_voice_setting_sync), 2773 /* HCI_OP_READ_NUM_SUPPORTED_IAC */ 2774 HCI_INIT(hci_read_num_supported_iac_sync), 2775 /* HCI_OP_READ_CURRENT_IAC_LAP */ 2776 HCI_INIT(hci_read_current_iac_lap_sync), 2777 /* HCI_OP_SET_EVENT_FLT */ 2778 HCI_INIT(hci_clear_event_filter_sync), 2779 /* HCI_OP_WRITE_CA_TIMEOUT */ 2780 HCI_INIT(hci_write_ca_timeout_sync), 2781 {} 2782 }; 2783 2784 static int hci_write_ssp_mode_1_sync(struct hci_dev *hdev) 2785 { 2786 u8 mode = 0x01; 2787 2788 if (!lmp_ssp_capable(hdev) || !hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 2789 return 0; 2790 2791 /* When SSP is available, then the host features page 2792 * should also be available as well. However some 2793 * controllers list the max_page as 0 as long as SSP 2794 * has not been enabled. To achieve proper debugging 2795 * output, force the minimum max_page to 1 at least. 2796 */ 2797 hdev->max_page = 0x01; 2798 2799 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE, 2800 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 2801 } 2802 2803 static int hci_write_eir_sync(struct hci_dev *hdev) 2804 { 2805 struct hci_cp_write_eir cp; 2806 2807 if (!lmp_ssp_capable(hdev) || hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 2808 return 0; 2809 2810 memset(hdev->eir, 0, sizeof(hdev->eir)); 2811 memset(&cp, 0, sizeof(cp)); 2812 2813 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp, 2814 HCI_CMD_TIMEOUT); 2815 } 2816 2817 static int hci_write_inquiry_mode_sync(struct hci_dev *hdev) 2818 { 2819 u8 mode; 2820 2821 if (!lmp_inq_rssi_capable(hdev) && 2822 !test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) 2823 return 0; 2824 2825 /* If Extended Inquiry Result events are supported, then 2826 * they are clearly preferred over Inquiry Result with RSSI 2827 * events. 2828 */ 2829 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01; 2830 2831 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_INQUIRY_MODE, 2832 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 2833 } 2834 2835 static int hci_read_inq_rsp_tx_power_sync(struct hci_dev *hdev) 2836 { 2837 if (!lmp_inq_tx_pwr_capable(hdev)) 2838 return 0; 2839 2840 return __hci_cmd_sync_status(hdev, HCI_OP_READ_INQ_RSP_TX_POWER, 2841 0, NULL, HCI_CMD_TIMEOUT); 2842 } 2843 2844 static int hci_read_local_ext_features_sync(struct hci_dev *hdev, u8 page) 2845 { 2846 struct hci_cp_read_local_ext_features cp; 2847 2848 if (!lmp_ext_feat_capable(hdev)) 2849 return 0; 2850 2851 memset(&cp, 0, sizeof(cp)); 2852 cp.page = page; 2853 2854 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_EXT_FEATURES, 2855 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2856 } 2857 2858 static int hci_read_local_ext_features_1_sync(struct hci_dev *hdev) 2859 { 2860 return hci_read_local_ext_features_sync(hdev, 0x01); 2861 } 2862 2863 /* HCI Controller init stage 2 command sequence */ 2864 static const struct hci_init_stage hci_init2[] = { 2865 /* HCI_OP_READ_LOCAL_COMMANDS */ 2866 HCI_INIT(hci_read_local_cmds_sync), 2867 /* HCI_OP_WRITE_SSP_MODE */ 2868 HCI_INIT(hci_write_ssp_mode_1_sync), 2869 /* HCI_OP_WRITE_EIR */ 2870 HCI_INIT(hci_write_eir_sync), 2871 /* HCI_OP_WRITE_INQUIRY_MODE */ 2872 HCI_INIT(hci_write_inquiry_mode_sync), 2873 /* HCI_OP_READ_INQ_RSP_TX_POWER */ 2874 HCI_INIT(hci_read_inq_rsp_tx_power_sync), 2875 /* HCI_OP_READ_LOCAL_EXT_FEATURES */ 2876 HCI_INIT(hci_read_local_ext_features_1_sync), 2877 /* HCI_OP_WRITE_AUTH_ENABLE */ 2878 HCI_INIT(hci_write_auth_enable_sync), 2879 {} 2880 }; 2881 2882 /* Read LE Buffer Size */ 2883 static int hci_le_read_buffer_size_sync(struct hci_dev *hdev) 2884 { 2885 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_BUFFER_SIZE, 2886 0, NULL, HCI_CMD_TIMEOUT); 2887 } 2888 2889 /* Read LE Local Supported Features */ 2890 static int hci_le_read_local_features_sync(struct hci_dev *hdev) 2891 { 2892 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_LOCAL_FEATURES, 2893 0, NULL, HCI_CMD_TIMEOUT); 2894 } 2895 2896 /* Read LE Supported States */ 2897 static int hci_le_read_supported_states_sync(struct hci_dev *hdev) 2898 { 2899 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_SUPPORTED_STATES, 2900 0, NULL, HCI_CMD_TIMEOUT); 2901 } 2902 2903 /* LE Controller init stage 2 command sequence */ 2904 static const struct hci_init_stage le_init2[] = { 2905 /* HCI_OP_LE_READ_BUFFER_SIZE */ 2906 HCI_INIT(hci_le_read_buffer_size_sync), 2907 /* HCI_OP_LE_READ_LOCAL_FEATURES */ 2908 HCI_INIT(hci_le_read_local_features_sync), 2909 /* HCI_OP_LE_READ_SUPPORTED_STATES */ 2910 HCI_INIT(hci_le_read_supported_states_sync), 2911 {} 2912 }; 2913 2914 static int hci_init2_sync(struct hci_dev *hdev) 2915 { 2916 int err; 2917 2918 bt_dev_dbg(hdev, ""); 2919 2920 if (hdev->dev_type == HCI_AMP) 2921 return hci_init_stage_sync(hdev, amp_init2); 2922 2923 if (lmp_bredr_capable(hdev)) { 2924 err = hci_init_stage_sync(hdev, br_init2); 2925 if (err) 2926 return err; 2927 } else { 2928 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED); 2929 } 2930 2931 if (lmp_le_capable(hdev)) { 2932 err = hci_init_stage_sync(hdev, le_init2); 2933 if (err) 2934 return err; 2935 /* LE-only controllers have LE implicitly enabled */ 2936 if (!lmp_bredr_capable(hdev)) 2937 hci_dev_set_flag(hdev, HCI_LE_ENABLED); 2938 } 2939 2940 return hci_init_stage_sync(hdev, hci_init2); 2941 } 2942 2943 static int hci_set_event_mask_sync(struct hci_dev *hdev) 2944 { 2945 /* The second byte is 0xff instead of 0x9f (two reserved bits 2946 * disabled) since a Broadcom 1.2 dongle doesn't respond to the 2947 * command otherwise. 2948 */ 2949 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 }; 2950 2951 /* CSR 1.1 dongles does not accept any bitfield so don't try to set 2952 * any event mask for pre 1.2 devices. 2953 */ 2954 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 2955 return 0; 2956 2957 if (lmp_bredr_capable(hdev)) { 2958 events[4] |= 0x01; /* Flow Specification Complete */ 2959 2960 /* Don't set Disconnect Complete when suspended as that 2961 * would wakeup the host when disconnecting due to 2962 * suspend. 2963 */ 2964 if (hdev->suspended) 2965 events[0] &= 0xef; 2966 } else { 2967 /* Use a different default for LE-only devices */ 2968 memset(events, 0, sizeof(events)); 2969 events[1] |= 0x20; /* Command Complete */ 2970 events[1] |= 0x40; /* Command Status */ 2971 events[1] |= 0x80; /* Hardware Error */ 2972 2973 /* If the controller supports the Disconnect command, enable 2974 * the corresponding event. In addition enable packet flow 2975 * control related events. 2976 */ 2977 if (hdev->commands[0] & 0x20) { 2978 /* Don't set Disconnect Complete when suspended as that 2979 * would wakeup the host when disconnecting due to 2980 * suspend. 2981 */ 2982 if (!hdev->suspended) 2983 events[0] |= 0x10; /* Disconnection Complete */ 2984 events[2] |= 0x04; /* Number of Completed Packets */ 2985 events[3] |= 0x02; /* Data Buffer Overflow */ 2986 } 2987 2988 /* If the controller supports the Read Remote Version 2989 * Information command, enable the corresponding event. 2990 */ 2991 if (hdev->commands[2] & 0x80) 2992 events[1] |= 0x08; /* Read Remote Version Information 2993 * Complete 2994 */ 2995 2996 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) { 2997 events[0] |= 0x80; /* Encryption Change */ 2998 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 2999 } 3000 } 3001 3002 if (lmp_inq_rssi_capable(hdev) || 3003 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) 3004 events[4] |= 0x02; /* Inquiry Result with RSSI */ 3005 3006 if (lmp_ext_feat_capable(hdev)) 3007 events[4] |= 0x04; /* Read Remote Extended Features Complete */ 3008 3009 if (lmp_esco_capable(hdev)) { 3010 events[5] |= 0x08; /* Synchronous Connection Complete */ 3011 events[5] |= 0x10; /* Synchronous Connection Changed */ 3012 } 3013 3014 if (lmp_sniffsubr_capable(hdev)) 3015 events[5] |= 0x20; /* Sniff Subrating */ 3016 3017 if (lmp_pause_enc_capable(hdev)) 3018 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 3019 3020 if (lmp_ext_inq_capable(hdev)) 3021 events[5] |= 0x40; /* Extended Inquiry Result */ 3022 3023 if (lmp_no_flush_capable(hdev)) 3024 events[7] |= 0x01; /* Enhanced Flush Complete */ 3025 3026 if (lmp_lsto_capable(hdev)) 3027 events[6] |= 0x80; /* Link Supervision Timeout Changed */ 3028 3029 if (lmp_ssp_capable(hdev)) { 3030 events[6] |= 0x01; /* IO Capability Request */ 3031 events[6] |= 0x02; /* IO Capability Response */ 3032 events[6] |= 0x04; /* User Confirmation Request */ 3033 events[6] |= 0x08; /* User Passkey Request */ 3034 events[6] |= 0x10; /* Remote OOB Data Request */ 3035 events[6] |= 0x20; /* Simple Pairing Complete */ 3036 events[7] |= 0x04; /* User Passkey Notification */ 3037 events[7] |= 0x08; /* Keypress Notification */ 3038 events[7] |= 0x10; /* Remote Host Supported 3039 * Features Notification 3040 */ 3041 } 3042 3043 if (lmp_le_capable(hdev)) 3044 events[7] |= 0x20; /* LE Meta-Event */ 3045 3046 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK, 3047 sizeof(events), events, HCI_CMD_TIMEOUT); 3048 } 3049 3050 static int hci_read_stored_link_key_sync(struct hci_dev *hdev) 3051 { 3052 struct hci_cp_read_stored_link_key cp; 3053 3054 if (!(hdev->commands[6] & 0x20) || 3055 test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) 3056 return 0; 3057 3058 memset(&cp, 0, sizeof(cp)); 3059 bacpy(&cp.bdaddr, BDADDR_ANY); 3060 cp.read_all = 0x01; 3061 3062 return __hci_cmd_sync_status(hdev, HCI_OP_READ_STORED_LINK_KEY, 3063 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3064 } 3065 3066 static int hci_setup_link_policy_sync(struct hci_dev *hdev) 3067 { 3068 struct hci_cp_write_def_link_policy cp; 3069 u16 link_policy = 0; 3070 3071 if (!(hdev->commands[5] & 0x10)) 3072 return 0; 3073 3074 memset(&cp, 0, sizeof(cp)); 3075 3076 if (lmp_rswitch_capable(hdev)) 3077 link_policy |= HCI_LP_RSWITCH; 3078 if (lmp_hold_capable(hdev)) 3079 link_policy |= HCI_LP_HOLD; 3080 if (lmp_sniff_capable(hdev)) 3081 link_policy |= HCI_LP_SNIFF; 3082 if (lmp_park_capable(hdev)) 3083 link_policy |= HCI_LP_PARK; 3084 3085 cp.policy = cpu_to_le16(link_policy); 3086 3087 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY, 3088 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3089 } 3090 3091 static int hci_read_page_scan_activity_sync(struct hci_dev *hdev) 3092 { 3093 if (!(hdev->commands[8] & 0x01)) 3094 return 0; 3095 3096 return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 3097 0, NULL, HCI_CMD_TIMEOUT); 3098 } 3099 3100 static int hci_read_def_err_data_reporting_sync(struct hci_dev *hdev) 3101 { 3102 if (!(hdev->commands[18] & 0x04) || 3103 test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) 3104 return 0; 3105 3106 return __hci_cmd_sync_status(hdev, HCI_OP_READ_DEF_ERR_DATA_REPORTING, 3107 0, NULL, HCI_CMD_TIMEOUT); 3108 } 3109 3110 static int hci_read_page_scan_type_sync(struct hci_dev *hdev) 3111 { 3112 /* Some older Broadcom based Bluetooth 1.2 controllers do not 3113 * support the Read Page Scan Type command. Check support for 3114 * this command in the bit mask of supported commands. 3115 */ 3116 if (!(hdev->commands[13] & 0x01)) 3117 return 0; 3118 3119 return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_TYPE, 3120 0, NULL, HCI_CMD_TIMEOUT); 3121 } 3122 3123 /* Read features beyond page 1 if available */ 3124 static int hci_read_local_ext_features_all_sync(struct hci_dev *hdev) 3125 { 3126 u8 page; 3127 int err; 3128 3129 if (!lmp_ext_feat_capable(hdev)) 3130 return 0; 3131 3132 for (page = 2; page < HCI_MAX_PAGES && page <= hdev->max_page; 3133 page++) { 3134 err = hci_read_local_ext_features_sync(hdev, page); 3135 if (err) 3136 return err; 3137 } 3138 3139 return 0; 3140 } 3141 3142 /* HCI Controller init stage 3 command sequence */ 3143 static const struct hci_init_stage hci_init3[] = { 3144 /* HCI_OP_SET_EVENT_MASK */ 3145 HCI_INIT(hci_set_event_mask_sync), 3146 /* HCI_OP_READ_STORED_LINK_KEY */ 3147 HCI_INIT(hci_read_stored_link_key_sync), 3148 /* HCI_OP_WRITE_DEF_LINK_POLICY */ 3149 HCI_INIT(hci_setup_link_policy_sync), 3150 /* HCI_OP_READ_PAGE_SCAN_ACTIVITY */ 3151 HCI_INIT(hci_read_page_scan_activity_sync), 3152 /* HCI_OP_READ_DEF_ERR_DATA_REPORTING */ 3153 HCI_INIT(hci_read_def_err_data_reporting_sync), 3154 /* HCI_OP_READ_PAGE_SCAN_TYPE */ 3155 HCI_INIT(hci_read_page_scan_type_sync), 3156 /* HCI_OP_READ_LOCAL_EXT_FEATURES */ 3157 HCI_INIT(hci_read_local_ext_features_all_sync), 3158 {} 3159 }; 3160 3161 static int hci_le_set_event_mask_sync(struct hci_dev *hdev) 3162 { 3163 u8 events[8]; 3164 3165 if (!lmp_le_capable(hdev)) 3166 return 0; 3167 3168 memset(events, 0, sizeof(events)); 3169 3170 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) 3171 events[0] |= 0x10; /* LE Long Term Key Request */ 3172 3173 /* If controller supports the Connection Parameters Request 3174 * Link Layer Procedure, enable the corresponding event. 3175 */ 3176 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC) 3177 /* LE Remote Connection Parameter Request */ 3178 events[0] |= 0x20; 3179 3180 /* If the controller supports the Data Length Extension 3181 * feature, enable the corresponding event. 3182 */ 3183 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) 3184 events[0] |= 0x40; /* LE Data Length Change */ 3185 3186 /* If the controller supports LL Privacy feature, enable 3187 * the corresponding event. 3188 */ 3189 if (hdev->le_features[0] & HCI_LE_LL_PRIVACY) 3190 events[1] |= 0x02; /* LE Enhanced Connection Complete */ 3191 3192 /* If the controller supports Extended Scanner Filter 3193 * Policies, enable the corresponding event. 3194 */ 3195 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY) 3196 events[1] |= 0x04; /* LE Direct Advertising Report */ 3197 3198 /* If the controller supports Channel Selection Algorithm #2 3199 * feature, enable the corresponding event. 3200 */ 3201 if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2) 3202 events[2] |= 0x08; /* LE Channel Selection Algorithm */ 3203 3204 /* If the controller supports the LE Set Scan Enable command, 3205 * enable the corresponding advertising report event. 3206 */ 3207 if (hdev->commands[26] & 0x08) 3208 events[0] |= 0x02; /* LE Advertising Report */ 3209 3210 /* If the controller supports the LE Create Connection 3211 * command, enable the corresponding event. 3212 */ 3213 if (hdev->commands[26] & 0x10) 3214 events[0] |= 0x01; /* LE Connection Complete */ 3215 3216 /* If the controller supports the LE Connection Update 3217 * command, enable the corresponding event. 3218 */ 3219 if (hdev->commands[27] & 0x04) 3220 events[0] |= 0x04; /* LE Connection Update Complete */ 3221 3222 /* If the controller supports the LE Read Remote Used Features 3223 * command, enable the corresponding event. 3224 */ 3225 if (hdev->commands[27] & 0x20) 3226 /* LE Read Remote Used Features Complete */ 3227 events[0] |= 0x08; 3228 3229 /* If the controller supports the LE Read Local P-256 3230 * Public Key command, enable the corresponding event. 3231 */ 3232 if (hdev->commands[34] & 0x02) 3233 /* LE Read Local P-256 Public Key Complete */ 3234 events[0] |= 0x80; 3235 3236 /* If the controller supports the LE Generate DHKey 3237 * command, enable the corresponding event. 3238 */ 3239 if (hdev->commands[34] & 0x04) 3240 events[1] |= 0x01; /* LE Generate DHKey Complete */ 3241 3242 /* If the controller supports the LE Set Default PHY or 3243 * LE Set PHY commands, enable the corresponding event. 3244 */ 3245 if (hdev->commands[35] & (0x20 | 0x40)) 3246 events[1] |= 0x08; /* LE PHY Update Complete */ 3247 3248 /* If the controller supports LE Set Extended Scan Parameters 3249 * and LE Set Extended Scan Enable commands, enable the 3250 * corresponding event. 3251 */ 3252 if (use_ext_scan(hdev)) 3253 events[1] |= 0x10; /* LE Extended Advertising Report */ 3254 3255 /* If the controller supports the LE Extended Advertising 3256 * command, enable the corresponding event. 3257 */ 3258 if (ext_adv_capable(hdev)) 3259 events[2] |= 0x02; /* LE Advertising Set Terminated */ 3260 3261 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EVENT_MASK, 3262 sizeof(events), events, HCI_CMD_TIMEOUT); 3263 } 3264 3265 /* Read LE Advertising Channel TX Power */ 3266 static int hci_le_read_adv_tx_power_sync(struct hci_dev *hdev) 3267 { 3268 if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) { 3269 /* HCI TS spec forbids mixing of legacy and extended 3270 * advertising commands wherein READ_ADV_TX_POWER is 3271 * also included. So do not call it if extended adv 3272 * is supported otherwise controller will return 3273 * COMMAND_DISALLOWED for extended commands. 3274 */ 3275 return __hci_cmd_sync_status(hdev, 3276 HCI_OP_LE_READ_ADV_TX_POWER, 3277 0, NULL, HCI_CMD_TIMEOUT); 3278 } 3279 3280 return 0; 3281 } 3282 3283 /* Read LE Min/Max Tx Power*/ 3284 static int hci_le_read_tx_power_sync(struct hci_dev *hdev) 3285 { 3286 if (!(hdev->commands[38] & 0x80)) 3287 return 0; 3288 3289 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_TRANSMIT_POWER, 3290 0, NULL, HCI_CMD_TIMEOUT); 3291 } 3292 3293 /* Read LE Accept List Size */ 3294 static int hci_le_read_accept_list_size_sync(struct hci_dev *hdev) 3295 { 3296 if (!(hdev->commands[26] & 0x40)) 3297 return 0; 3298 3299 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_ACCEPT_LIST_SIZE, 3300 0, NULL, HCI_CMD_TIMEOUT); 3301 } 3302 3303 /* Clear LE Accept List */ 3304 static int hci_le_clear_accept_list_sync(struct hci_dev *hdev) 3305 { 3306 if (!(hdev->commands[26] & 0x80)) 3307 return 0; 3308 3309 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL, 3310 HCI_CMD_TIMEOUT); 3311 } 3312 3313 /* Read LE Resolving List Size */ 3314 static int hci_le_read_resolv_list_size_sync(struct hci_dev *hdev) 3315 { 3316 if (!(hdev->commands[34] & 0x40)) 3317 return 0; 3318 3319 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_RESOLV_LIST_SIZE, 3320 0, NULL, HCI_CMD_TIMEOUT); 3321 } 3322 3323 /* Clear LE Resolving List */ 3324 static int hci_le_clear_resolv_list_sync(struct hci_dev *hdev) 3325 { 3326 if (!(hdev->commands[34] & 0x20)) 3327 return 0; 3328 3329 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL, 3330 HCI_CMD_TIMEOUT); 3331 } 3332 3333 /* Set RPA timeout */ 3334 static int hci_le_set_rpa_timeout_sync(struct hci_dev *hdev) 3335 { 3336 __le16 timeout = cpu_to_le16(hdev->rpa_timeout); 3337 3338 if (!(hdev->commands[35] & 0x04)) 3339 return 0; 3340 3341 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RPA_TIMEOUT, 3342 sizeof(timeout), &timeout, 3343 HCI_CMD_TIMEOUT); 3344 } 3345 3346 /* Read LE Maximum Data Length */ 3347 static int hci_le_read_max_data_len_sync(struct hci_dev *hdev) 3348 { 3349 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 3350 return 0; 3351 3352 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL, 3353 HCI_CMD_TIMEOUT); 3354 } 3355 3356 /* Read LE Suggested Default Data Length */ 3357 static int hci_le_read_def_data_len_sync(struct hci_dev *hdev) 3358 { 3359 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 3360 return 0; 3361 3362 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL, 3363 HCI_CMD_TIMEOUT); 3364 } 3365 3366 /* Read LE Number of Supported Advertising Sets */ 3367 static int hci_le_read_num_support_adv_sets_sync(struct hci_dev *hdev) 3368 { 3369 if (!ext_adv_capable(hdev)) 3370 return 0; 3371 3372 return __hci_cmd_sync_status(hdev, 3373 HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS, 3374 0, NULL, HCI_CMD_TIMEOUT); 3375 } 3376 3377 /* Write LE Host Supported */ 3378 static int hci_set_le_support_sync(struct hci_dev *hdev) 3379 { 3380 struct hci_cp_write_le_host_supported cp; 3381 3382 /* LE-only devices do not support explicit enablement */ 3383 if (!lmp_bredr_capable(hdev)) 3384 return 0; 3385 3386 memset(&cp, 0, sizeof(cp)); 3387 3388 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 3389 cp.le = 0x01; 3390 cp.simul = 0x00; 3391 } 3392 3393 if (cp.le == lmp_host_le_capable(hdev)) 3394 return 0; 3395 3396 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED, 3397 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3398 } 3399 3400 /* LE Controller init stage 3 command sequence */ 3401 static const struct hci_init_stage le_init3[] = { 3402 /* HCI_OP_LE_SET_EVENT_MASK */ 3403 HCI_INIT(hci_le_set_event_mask_sync), 3404 /* HCI_OP_LE_READ_ADV_TX_POWER */ 3405 HCI_INIT(hci_le_read_adv_tx_power_sync), 3406 /* HCI_OP_LE_READ_TRANSMIT_POWER */ 3407 HCI_INIT(hci_le_read_tx_power_sync), 3408 /* HCI_OP_LE_READ_ACCEPT_LIST_SIZE */ 3409 HCI_INIT(hci_le_read_accept_list_size_sync), 3410 /* HCI_OP_LE_CLEAR_ACCEPT_LIST */ 3411 HCI_INIT(hci_le_clear_accept_list_sync), 3412 /* HCI_OP_LE_READ_RESOLV_LIST_SIZE */ 3413 HCI_INIT(hci_le_read_resolv_list_size_sync), 3414 /* HCI_OP_LE_CLEAR_RESOLV_LIST */ 3415 HCI_INIT(hci_le_clear_resolv_list_sync), 3416 /* HCI_OP_LE_SET_RPA_TIMEOUT */ 3417 HCI_INIT(hci_le_set_rpa_timeout_sync), 3418 /* HCI_OP_LE_READ_MAX_DATA_LEN */ 3419 HCI_INIT(hci_le_read_max_data_len_sync), 3420 /* HCI_OP_LE_READ_DEF_DATA_LEN */ 3421 HCI_INIT(hci_le_read_def_data_len_sync), 3422 /* HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS */ 3423 HCI_INIT(hci_le_read_num_support_adv_sets_sync), 3424 /* HCI_OP_WRITE_LE_HOST_SUPPORTED */ 3425 HCI_INIT(hci_set_le_support_sync), 3426 {} 3427 }; 3428 3429 static int hci_init3_sync(struct hci_dev *hdev) 3430 { 3431 int err; 3432 3433 bt_dev_dbg(hdev, ""); 3434 3435 err = hci_init_stage_sync(hdev, hci_init3); 3436 if (err) 3437 return err; 3438 3439 if (lmp_le_capable(hdev)) 3440 return hci_init_stage_sync(hdev, le_init3); 3441 3442 return 0; 3443 } 3444 3445 static int hci_delete_stored_link_key_sync(struct hci_dev *hdev) 3446 { 3447 struct hci_cp_delete_stored_link_key cp; 3448 3449 /* Some Broadcom based Bluetooth controllers do not support the 3450 * Delete Stored Link Key command. They are clearly indicating its 3451 * absence in the bit mask of supported commands. 3452 * 3453 * Check the supported commands and only if the command is marked 3454 * as supported send it. If not supported assume that the controller 3455 * does not have actual support for stored link keys which makes this 3456 * command redundant anyway. 3457 * 3458 * Some controllers indicate that they support handling deleting 3459 * stored link keys, but they don't. The quirk lets a driver 3460 * just disable this command. 3461 */ 3462 if (!(hdev->commands[6] & 0x80) || 3463 test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) 3464 return 0; 3465 3466 memset(&cp, 0, sizeof(cp)); 3467 bacpy(&cp.bdaddr, BDADDR_ANY); 3468 cp.delete_all = 0x01; 3469 3470 return __hci_cmd_sync_status(hdev, HCI_OP_DELETE_STORED_LINK_KEY, 3471 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3472 } 3473 3474 static int hci_set_event_mask_page_2_sync(struct hci_dev *hdev) 3475 { 3476 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 3477 bool changed = false; 3478 3479 /* Set event mask page 2 if the HCI command for it is supported */ 3480 if (!(hdev->commands[22] & 0x04)) 3481 return 0; 3482 3483 /* If Connectionless Peripheral Broadcast central role is supported 3484 * enable all necessary events for it. 3485 */ 3486 if (lmp_cpb_central_capable(hdev)) { 3487 events[1] |= 0x40; /* Triggered Clock Capture */ 3488 events[1] |= 0x80; /* Synchronization Train Complete */ 3489 events[2] |= 0x10; /* Peripheral Page Response Timeout */ 3490 events[2] |= 0x20; /* CPB Channel Map Change */ 3491 changed = true; 3492 } 3493 3494 /* If Connectionless Peripheral Broadcast peripheral role is supported 3495 * enable all necessary events for it. 3496 */ 3497 if (lmp_cpb_peripheral_capable(hdev)) { 3498 events[2] |= 0x01; /* Synchronization Train Received */ 3499 events[2] |= 0x02; /* CPB Receive */ 3500 events[2] |= 0x04; /* CPB Timeout */ 3501 events[2] |= 0x08; /* Truncated Page Complete */ 3502 changed = true; 3503 } 3504 3505 /* Enable Authenticated Payload Timeout Expired event if supported */ 3506 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) { 3507 events[2] |= 0x80; 3508 changed = true; 3509 } 3510 3511 /* Some Broadcom based controllers indicate support for Set Event 3512 * Mask Page 2 command, but then actually do not support it. Since 3513 * the default value is all bits set to zero, the command is only 3514 * required if the event mask has to be changed. In case no change 3515 * to the event mask is needed, skip this command. 3516 */ 3517 if (!changed) 3518 return 0; 3519 3520 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK_PAGE_2, 3521 sizeof(events), events, HCI_CMD_TIMEOUT); 3522 } 3523 3524 /* Read local codec list if the HCI command is supported */ 3525 static int hci_read_local_codecs_sync(struct hci_dev *hdev) 3526 { 3527 if (!(hdev->commands[29] & 0x20)) 3528 return 0; 3529 3530 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_CODECS, 0, NULL, 3531 HCI_CMD_TIMEOUT); 3532 } 3533 3534 /* Read local pairing options if the HCI command is supported */ 3535 static int hci_read_local_pairing_opts_sync(struct hci_dev *hdev) 3536 { 3537 if (!(hdev->commands[41] & 0x08)) 3538 return 0; 3539 3540 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_PAIRING_OPTS, 3541 0, NULL, HCI_CMD_TIMEOUT); 3542 } 3543 3544 /* Get MWS transport configuration if the HCI command is supported */ 3545 static int hci_get_mws_transport_config_sync(struct hci_dev *hdev) 3546 { 3547 if (!(hdev->commands[30] & 0x08)) 3548 return 0; 3549 3550 return __hci_cmd_sync_status(hdev, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 3551 0, NULL, HCI_CMD_TIMEOUT); 3552 } 3553 3554 /* Check for Synchronization Train support */ 3555 static int hci_read_sync_train_params_sync(struct hci_dev *hdev) 3556 { 3557 if (!lmp_sync_train_capable(hdev)) 3558 return 0; 3559 3560 return __hci_cmd_sync_status(hdev, HCI_OP_READ_SYNC_TRAIN_PARAMS, 3561 0, NULL, HCI_CMD_TIMEOUT); 3562 } 3563 3564 /* Enable Secure Connections if supported and configured */ 3565 static int hci_write_sc_support_1_sync(struct hci_dev *hdev) 3566 { 3567 u8 support = 0x01; 3568 3569 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) || 3570 !bredr_sc_enabled(hdev)) 3571 return 0; 3572 3573 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT, 3574 sizeof(support), &support, 3575 HCI_CMD_TIMEOUT); 3576 } 3577 3578 /* Set erroneous data reporting if supported to the wideband speech 3579 * setting value 3580 */ 3581 static int hci_set_err_data_report_sync(struct hci_dev *hdev) 3582 { 3583 struct hci_cp_write_def_err_data_reporting cp; 3584 bool enabled = hci_dev_test_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED); 3585 3586 if (!(hdev->commands[18] & 0x08) || 3587 test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) 3588 return 0; 3589 3590 if (enabled == hdev->err_data_reporting) 3591 return 0; 3592 3593 memset(&cp, 0, sizeof(cp)); 3594 cp.err_data_reporting = enabled ? ERR_DATA_REPORTING_ENABLED : 3595 ERR_DATA_REPORTING_DISABLED; 3596 3597 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING, 3598 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3599 } 3600 3601 static const struct hci_init_stage hci_init4[] = { 3602 /* HCI_OP_DELETE_STORED_LINK_KEY */ 3603 HCI_INIT(hci_delete_stored_link_key_sync), 3604 /* HCI_OP_SET_EVENT_MASK_PAGE_2 */ 3605 HCI_INIT(hci_set_event_mask_page_2_sync), 3606 /* HCI_OP_READ_LOCAL_CODECS */ 3607 HCI_INIT(hci_read_local_codecs_sync), 3608 /* HCI_OP_READ_LOCAL_PAIRING_OPTS */ 3609 HCI_INIT(hci_read_local_pairing_opts_sync), 3610 /* HCI_OP_GET_MWS_TRANSPORT_CONFIG */ 3611 HCI_INIT(hci_get_mws_transport_config_sync), 3612 /* HCI_OP_READ_SYNC_TRAIN_PARAMS */ 3613 HCI_INIT(hci_read_sync_train_params_sync), 3614 /* HCI_OP_WRITE_SC_SUPPORT */ 3615 HCI_INIT(hci_write_sc_support_1_sync), 3616 /* HCI_OP_WRITE_DEF_ERR_DATA_REPORTING */ 3617 HCI_INIT(hci_set_err_data_report_sync), 3618 {} 3619 }; 3620 3621 /* Set Suggested Default Data Length to maximum if supported */ 3622 static int hci_le_set_write_def_data_len_sync(struct hci_dev *hdev) 3623 { 3624 struct hci_cp_le_write_def_data_len cp; 3625 3626 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 3627 return 0; 3628 3629 memset(&cp, 0, sizeof(cp)); 3630 cp.tx_len = cpu_to_le16(hdev->le_max_tx_len); 3631 cp.tx_time = cpu_to_le16(hdev->le_max_tx_time); 3632 3633 return __hci_cmd_sync_status(hdev, HCI_OP_LE_WRITE_DEF_DATA_LEN, 3634 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3635 } 3636 3637 /* Set Default PHY parameters if command is supported */ 3638 static int hci_le_set_default_phy_sync(struct hci_dev *hdev) 3639 { 3640 struct hci_cp_le_set_default_phy cp; 3641 3642 if (!(hdev->commands[35] & 0x20)) 3643 return 0; 3644 3645 memset(&cp, 0, sizeof(cp)); 3646 cp.all_phys = 0x00; 3647 cp.tx_phys = hdev->le_tx_def_phys; 3648 cp.rx_phys = hdev->le_rx_def_phys; 3649 3650 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_DEFAULT_PHY, 3651 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3652 } 3653 3654 static const struct hci_init_stage le_init4[] = { 3655 /* HCI_OP_LE_WRITE_DEF_DATA_LEN */ 3656 HCI_INIT(hci_le_set_write_def_data_len_sync), 3657 /* HCI_OP_LE_SET_DEFAULT_PHY */ 3658 HCI_INIT(hci_le_set_default_phy_sync), 3659 {} 3660 }; 3661 3662 static int hci_init4_sync(struct hci_dev *hdev) 3663 { 3664 int err; 3665 3666 bt_dev_dbg(hdev, ""); 3667 3668 err = hci_init_stage_sync(hdev, hci_init4); 3669 if (err) 3670 return err; 3671 3672 if (lmp_le_capable(hdev)) 3673 return hci_init_stage_sync(hdev, le_init4); 3674 3675 return 0; 3676 } 3677 3678 static int hci_init_sync(struct hci_dev *hdev) 3679 { 3680 int err; 3681 3682 err = hci_init1_sync(hdev); 3683 if (err < 0) 3684 return err; 3685 3686 if (hci_dev_test_flag(hdev, HCI_SETUP)) 3687 hci_debugfs_create_basic(hdev); 3688 3689 err = hci_init2_sync(hdev); 3690 if (err < 0) 3691 return err; 3692 3693 /* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode 3694 * BR/EDR/LE type controllers. AMP controllers only need the 3695 * first two stages of init. 3696 */ 3697 if (hdev->dev_type != HCI_PRIMARY) 3698 return 0; 3699 3700 err = hci_init3_sync(hdev); 3701 if (err < 0) 3702 return err; 3703 3704 err = hci_init4_sync(hdev); 3705 if (err < 0) 3706 return err; 3707 3708 /* This function is only called when the controller is actually in 3709 * configured state. When the controller is marked as unconfigured, 3710 * this initialization procedure is not run. 3711 * 3712 * It means that it is possible that a controller runs through its 3713 * setup phase and then discovers missing settings. If that is the 3714 * case, then this function will not be called. It then will only 3715 * be called during the config phase. 3716 * 3717 * So only when in setup phase or config phase, create the debugfs 3718 * entries and register the SMP channels. 3719 */ 3720 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 3721 !hci_dev_test_flag(hdev, HCI_CONFIG)) 3722 return 0; 3723 3724 hci_debugfs_create_common(hdev); 3725 3726 if (lmp_bredr_capable(hdev)) 3727 hci_debugfs_create_bredr(hdev); 3728 3729 if (lmp_le_capable(hdev)) 3730 hci_debugfs_create_le(hdev); 3731 3732 return 0; 3733 } 3734 3735 int hci_dev_open_sync(struct hci_dev *hdev) 3736 { 3737 int ret = 0; 3738 3739 bt_dev_dbg(hdev, ""); 3740 3741 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 3742 ret = -ENODEV; 3743 goto done; 3744 } 3745 3746 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 3747 !hci_dev_test_flag(hdev, HCI_CONFIG)) { 3748 /* Check for rfkill but allow the HCI setup stage to 3749 * proceed (which in itself doesn't cause any RF activity). 3750 */ 3751 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) { 3752 ret = -ERFKILL; 3753 goto done; 3754 } 3755 3756 /* Check for valid public address or a configured static 3757 * random address, but let the HCI setup proceed to 3758 * be able to determine if there is a public address 3759 * or not. 3760 * 3761 * In case of user channel usage, it is not important 3762 * if a public address or static random address is 3763 * available. 3764 * 3765 * This check is only valid for BR/EDR controllers 3766 * since AMP controllers do not have an address. 3767 */ 3768 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 3769 hdev->dev_type == HCI_PRIMARY && 3770 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 3771 !bacmp(&hdev->static_addr, BDADDR_ANY)) { 3772 ret = -EADDRNOTAVAIL; 3773 goto done; 3774 } 3775 } 3776 3777 if (test_bit(HCI_UP, &hdev->flags)) { 3778 ret = -EALREADY; 3779 goto done; 3780 } 3781 3782 if (hdev->open(hdev)) { 3783 ret = -EIO; 3784 goto done; 3785 } 3786 3787 set_bit(HCI_RUNNING, &hdev->flags); 3788 hci_sock_dev_event(hdev, HCI_DEV_OPEN); 3789 3790 atomic_set(&hdev->cmd_cnt, 1); 3791 set_bit(HCI_INIT, &hdev->flags); 3792 3793 if (hci_dev_test_flag(hdev, HCI_SETUP) || 3794 test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) { 3795 bool invalid_bdaddr; 3796 3797 hci_sock_dev_event(hdev, HCI_DEV_SETUP); 3798 3799 if (hdev->setup) 3800 ret = hdev->setup(hdev); 3801 3802 /* The transport driver can set the quirk to mark the 3803 * BD_ADDR invalid before creating the HCI device or in 3804 * its setup callback. 3805 */ 3806 invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR, 3807 &hdev->quirks); 3808 3809 if (ret) 3810 goto setup_failed; 3811 3812 if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) { 3813 if (!bacmp(&hdev->public_addr, BDADDR_ANY)) 3814 hci_dev_get_bd_addr_from_property(hdev); 3815 3816 if (bacmp(&hdev->public_addr, BDADDR_ANY) && 3817 hdev->set_bdaddr) { 3818 ret = hdev->set_bdaddr(hdev, 3819 &hdev->public_addr); 3820 3821 /* If setting of the BD_ADDR from the device 3822 * property succeeds, then treat the address 3823 * as valid even if the invalid BD_ADDR 3824 * quirk indicates otherwise. 3825 */ 3826 if (!ret) 3827 invalid_bdaddr = false; 3828 } 3829 } 3830 3831 setup_failed: 3832 /* The transport driver can set these quirks before 3833 * creating the HCI device or in its setup callback. 3834 * 3835 * For the invalid BD_ADDR quirk it is possible that 3836 * it becomes a valid address if the bootloader does 3837 * provide it (see above). 3838 * 3839 * In case any of them is set, the controller has to 3840 * start up as unconfigured. 3841 */ 3842 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) || 3843 invalid_bdaddr) 3844 hci_dev_set_flag(hdev, HCI_UNCONFIGURED); 3845 3846 /* For an unconfigured controller it is required to 3847 * read at least the version information provided by 3848 * the Read Local Version Information command. 3849 * 3850 * If the set_bdaddr driver callback is provided, then 3851 * also the original Bluetooth public device address 3852 * will be read using the Read BD Address command. 3853 */ 3854 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 3855 ret = hci_unconf_init_sync(hdev); 3856 } 3857 3858 if (hci_dev_test_flag(hdev, HCI_CONFIG)) { 3859 /* If public address change is configured, ensure that 3860 * the address gets programmed. If the driver does not 3861 * support changing the public address, fail the power 3862 * on procedure. 3863 */ 3864 if (bacmp(&hdev->public_addr, BDADDR_ANY) && 3865 hdev->set_bdaddr) 3866 ret = hdev->set_bdaddr(hdev, &hdev->public_addr); 3867 else 3868 ret = -EADDRNOTAVAIL; 3869 } 3870 3871 if (!ret) { 3872 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 3873 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 3874 ret = hci_init_sync(hdev); 3875 if (!ret && hdev->post_init) 3876 ret = hdev->post_init(hdev); 3877 } 3878 } 3879 3880 /* If the HCI Reset command is clearing all diagnostic settings, 3881 * then they need to be reprogrammed after the init procedure 3882 * completed. 3883 */ 3884 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) && 3885 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 3886 hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag) 3887 ret = hdev->set_diag(hdev, true); 3888 3889 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 3890 msft_do_open(hdev); 3891 aosp_do_open(hdev); 3892 } 3893 3894 clear_bit(HCI_INIT, &hdev->flags); 3895 3896 if (!ret) { 3897 hci_dev_hold(hdev); 3898 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 3899 hci_adv_instances_set_rpa_expired(hdev, true); 3900 set_bit(HCI_UP, &hdev->flags); 3901 hci_sock_dev_event(hdev, HCI_DEV_UP); 3902 hci_leds_update_powered(hdev, true); 3903 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 3904 !hci_dev_test_flag(hdev, HCI_CONFIG) && 3905 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 3906 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 3907 hci_dev_test_flag(hdev, HCI_MGMT) && 3908 hdev->dev_type == HCI_PRIMARY) { 3909 ret = hci_powered_update_sync(hdev); 3910 } 3911 } else { 3912 /* Init failed, cleanup */ 3913 flush_work(&hdev->tx_work); 3914 3915 /* Since hci_rx_work() is possible to awake new cmd_work 3916 * it should be flushed first to avoid unexpected call of 3917 * hci_cmd_work() 3918 */ 3919 flush_work(&hdev->rx_work); 3920 flush_work(&hdev->cmd_work); 3921 3922 skb_queue_purge(&hdev->cmd_q); 3923 skb_queue_purge(&hdev->rx_q); 3924 3925 if (hdev->flush) 3926 hdev->flush(hdev); 3927 3928 if (hdev->sent_cmd) { 3929 kfree_skb(hdev->sent_cmd); 3930 hdev->sent_cmd = NULL; 3931 } 3932 3933 clear_bit(HCI_RUNNING, &hdev->flags); 3934 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 3935 3936 hdev->close(hdev); 3937 hdev->flags &= BIT(HCI_RAW); 3938 } 3939 3940 done: 3941 return ret; 3942 } 3943 3944 /* This function requires the caller holds hdev->lock */ 3945 static void hci_pend_le_actions_clear(struct hci_dev *hdev) 3946 { 3947 struct hci_conn_params *p; 3948 3949 list_for_each_entry(p, &hdev->le_conn_params, list) { 3950 if (p->conn) { 3951 hci_conn_drop(p->conn); 3952 hci_conn_put(p->conn); 3953 p->conn = NULL; 3954 } 3955 list_del_init(&p->action); 3956 } 3957 3958 BT_DBG("All LE pending actions cleared"); 3959 } 3960 3961 int hci_dev_close_sync(struct hci_dev *hdev) 3962 { 3963 bool auto_off; 3964 int err = 0; 3965 3966 bt_dev_dbg(hdev, ""); 3967 3968 cancel_delayed_work(&hdev->power_off); 3969 cancel_delayed_work(&hdev->ncmd_timer); 3970 3971 hci_request_cancel_all(hdev); 3972 3973 if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) && 3974 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 3975 test_bit(HCI_UP, &hdev->flags)) { 3976 /* Execute vendor specific shutdown routine */ 3977 if (hdev->shutdown) 3978 err = hdev->shutdown(hdev); 3979 } 3980 3981 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) { 3982 cancel_delayed_work_sync(&hdev->cmd_timer); 3983 return err; 3984 } 3985 3986 hci_leds_update_powered(hdev, false); 3987 3988 /* Flush RX and TX works */ 3989 flush_work(&hdev->tx_work); 3990 flush_work(&hdev->rx_work); 3991 3992 if (hdev->discov_timeout > 0) { 3993 hdev->discov_timeout = 0; 3994 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 3995 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 3996 } 3997 3998 if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE)) 3999 cancel_delayed_work(&hdev->service_cache); 4000 4001 if (hci_dev_test_flag(hdev, HCI_MGMT)) { 4002 struct adv_info *adv_instance; 4003 4004 cancel_delayed_work_sync(&hdev->rpa_expired); 4005 4006 list_for_each_entry(adv_instance, &hdev->adv_instances, list) 4007 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb); 4008 } 4009 4010 /* Avoid potential lockdep warnings from the *_flush() calls by 4011 * ensuring the workqueue is empty up front. 4012 */ 4013 drain_workqueue(hdev->workqueue); 4014 4015 hci_dev_lock(hdev); 4016 4017 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 4018 4019 auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF); 4020 4021 if (!auto_off && hdev->dev_type == HCI_PRIMARY && 4022 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4023 hci_dev_test_flag(hdev, HCI_MGMT)) 4024 __mgmt_power_off(hdev); 4025 4026 hci_inquiry_cache_flush(hdev); 4027 hci_pend_le_actions_clear(hdev); 4028 hci_conn_hash_flush(hdev); 4029 hci_dev_unlock(hdev); 4030 4031 smp_unregister(hdev); 4032 4033 hci_sock_dev_event(hdev, HCI_DEV_DOWN); 4034 4035 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4036 aosp_do_close(hdev); 4037 msft_do_close(hdev); 4038 } 4039 4040 if (hdev->flush) 4041 hdev->flush(hdev); 4042 4043 /* Reset device */ 4044 skb_queue_purge(&hdev->cmd_q); 4045 atomic_set(&hdev->cmd_cnt, 1); 4046 if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) && 4047 !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 4048 set_bit(HCI_INIT, &hdev->flags); 4049 hci_reset_sync(hdev); 4050 clear_bit(HCI_INIT, &hdev->flags); 4051 } 4052 4053 /* flush cmd work */ 4054 flush_work(&hdev->cmd_work); 4055 4056 /* Drop queues */ 4057 skb_queue_purge(&hdev->rx_q); 4058 skb_queue_purge(&hdev->cmd_q); 4059 skb_queue_purge(&hdev->raw_q); 4060 4061 /* Drop last sent command */ 4062 if (hdev->sent_cmd) { 4063 cancel_delayed_work_sync(&hdev->cmd_timer); 4064 kfree_skb(hdev->sent_cmd); 4065 hdev->sent_cmd = NULL; 4066 } 4067 4068 clear_bit(HCI_RUNNING, &hdev->flags); 4069 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 4070 4071 /* After this point our queues are empty and no tasks are scheduled. */ 4072 hdev->close(hdev); 4073 4074 /* Clear flags */ 4075 hdev->flags &= BIT(HCI_RAW); 4076 hci_dev_clear_volatile_flags(hdev); 4077 4078 /* Controller radio is available but is currently powered down */ 4079 hdev->amp_status = AMP_STATUS_POWERED_DOWN; 4080 4081 memset(hdev->eir, 0, sizeof(hdev->eir)); 4082 memset(hdev->dev_class, 0, sizeof(hdev->dev_class)); 4083 bacpy(&hdev->random_addr, BDADDR_ANY); 4084 4085 hci_dev_put(hdev); 4086 return err; 4087 } 4088 4089 /* This function perform power on HCI command sequence as follows: 4090 * 4091 * If controller is already up (HCI_UP) performs hci_powered_update_sync 4092 * sequence otherwise run hci_dev_open_sync which will follow with 4093 * hci_powered_update_sync after the init sequence is completed. 4094 */ 4095 static int hci_power_on_sync(struct hci_dev *hdev) 4096 { 4097 int err; 4098 4099 if (test_bit(HCI_UP, &hdev->flags) && 4100 hci_dev_test_flag(hdev, HCI_MGMT) && 4101 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) { 4102 cancel_delayed_work(&hdev->power_off); 4103 return hci_powered_update_sync(hdev); 4104 } 4105 4106 err = hci_dev_open_sync(hdev); 4107 if (err < 0) 4108 return err; 4109 4110 /* During the HCI setup phase, a few error conditions are 4111 * ignored and they need to be checked now. If they are still 4112 * valid, it is important to return the device back off. 4113 */ 4114 if (hci_dev_test_flag(hdev, HCI_RFKILLED) || 4115 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) || 4116 (hdev->dev_type == HCI_PRIMARY && 4117 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 4118 !bacmp(&hdev->static_addr, BDADDR_ANY))) { 4119 hci_dev_clear_flag(hdev, HCI_AUTO_OFF); 4120 hci_dev_close_sync(hdev); 4121 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) { 4122 queue_delayed_work(hdev->req_workqueue, &hdev->power_off, 4123 HCI_AUTO_OFF_TIMEOUT); 4124 } 4125 4126 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) { 4127 /* For unconfigured devices, set the HCI_RAW flag 4128 * so that userspace can easily identify them. 4129 */ 4130 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 4131 set_bit(HCI_RAW, &hdev->flags); 4132 4133 /* For fully configured devices, this will send 4134 * the Index Added event. For unconfigured devices, 4135 * it will send Unconfigued Index Added event. 4136 * 4137 * Devices with HCI_QUIRK_RAW_DEVICE are ignored 4138 * and no event will be send. 4139 */ 4140 mgmt_index_added(hdev); 4141 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) { 4142 /* When the controller is now configured, then it 4143 * is important to clear the HCI_RAW flag. 4144 */ 4145 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 4146 clear_bit(HCI_RAW, &hdev->flags); 4147 4148 /* Powering on the controller with HCI_CONFIG set only 4149 * happens with the transition from unconfigured to 4150 * configured. This will send the Index Added event. 4151 */ 4152 mgmt_index_added(hdev); 4153 } 4154 4155 return 0; 4156 } 4157 4158 static int hci_remote_name_cancel_sync(struct hci_dev *hdev, bdaddr_t *addr) 4159 { 4160 struct hci_cp_remote_name_req_cancel cp; 4161 4162 memset(&cp, 0, sizeof(cp)); 4163 bacpy(&cp.bdaddr, addr); 4164 4165 return __hci_cmd_sync_status(hdev, HCI_OP_REMOTE_NAME_REQ_CANCEL, 4166 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4167 } 4168 4169 int hci_stop_discovery_sync(struct hci_dev *hdev) 4170 { 4171 struct discovery_state *d = &hdev->discovery; 4172 struct inquiry_entry *e; 4173 int err; 4174 4175 bt_dev_dbg(hdev, "state %u", hdev->discovery.state); 4176 4177 if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) { 4178 if (test_bit(HCI_INQUIRY, &hdev->flags)) { 4179 err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL, 4180 0, NULL, HCI_CMD_TIMEOUT); 4181 if (err) 4182 return err; 4183 } 4184 4185 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 4186 cancel_delayed_work(&hdev->le_scan_disable); 4187 cancel_delayed_work(&hdev->le_scan_restart); 4188 4189 err = hci_scan_disable_sync(hdev); 4190 if (err) 4191 return err; 4192 } 4193 4194 } else { 4195 err = hci_scan_disable_sync(hdev); 4196 if (err) 4197 return err; 4198 } 4199 4200 /* Resume advertising if it was paused */ 4201 if (use_ll_privacy(hdev)) 4202 hci_resume_advertising_sync(hdev); 4203 4204 /* No further actions needed for LE-only discovery */ 4205 if (d->type == DISCOV_TYPE_LE) 4206 return 0; 4207 4208 if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) { 4209 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY, 4210 NAME_PENDING); 4211 if (!e) 4212 return 0; 4213 4214 return hci_remote_name_cancel_sync(hdev, &e->data.bdaddr); 4215 } 4216 4217 return 0; 4218 } 4219 4220 static int hci_disconnect_phy_link_sync(struct hci_dev *hdev, u16 handle, 4221 u8 reason) 4222 { 4223 struct hci_cp_disconn_phy_link cp; 4224 4225 memset(&cp, 0, sizeof(cp)); 4226 cp.phy_handle = HCI_PHY_HANDLE(handle); 4227 cp.reason = reason; 4228 4229 return __hci_cmd_sync_status(hdev, HCI_OP_DISCONN_PHY_LINK, 4230 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4231 } 4232 4233 static int hci_disconnect_sync(struct hci_dev *hdev, struct hci_conn *conn, 4234 u8 reason) 4235 { 4236 struct hci_cp_disconnect cp; 4237 4238 if (conn->type == AMP_LINK) 4239 return hci_disconnect_phy_link_sync(hdev, conn->handle, reason); 4240 4241 memset(&cp, 0, sizeof(cp)); 4242 cp.handle = cpu_to_le16(conn->handle); 4243 cp.reason = reason; 4244 4245 /* Wait for HCI_EV_DISCONN_COMPLETE not HCI_EV_CMD_STATUS when not 4246 * suspending. 4247 */ 4248 if (!hdev->suspended) 4249 return __hci_cmd_sync_status_sk(hdev, HCI_OP_DISCONNECT, 4250 sizeof(cp), &cp, 4251 HCI_EV_DISCONN_COMPLETE, 4252 HCI_CMD_TIMEOUT, NULL); 4253 4254 return __hci_cmd_sync_status(hdev, HCI_OP_DISCONNECT, sizeof(cp), &cp, 4255 HCI_CMD_TIMEOUT); 4256 } 4257 4258 static int hci_le_connect_cancel_sync(struct hci_dev *hdev, 4259 struct hci_conn *conn) 4260 { 4261 if (test_bit(HCI_CONN_SCANNING, &conn->flags)) 4262 return 0; 4263 4264 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CREATE_CONN_CANCEL, 4265 6, &conn->dst, HCI_CMD_TIMEOUT); 4266 } 4267 4268 static int hci_connect_cancel_sync(struct hci_dev *hdev, struct hci_conn *conn) 4269 { 4270 if (conn->type == LE_LINK) 4271 return hci_le_connect_cancel_sync(hdev, conn); 4272 4273 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 4274 return 0; 4275 4276 return __hci_cmd_sync_status(hdev, HCI_OP_CREATE_CONN_CANCEL, 4277 6, &conn->dst, HCI_CMD_TIMEOUT); 4278 } 4279 4280 static int hci_reject_sco_sync(struct hci_dev *hdev, struct hci_conn *conn, 4281 u8 reason) 4282 { 4283 struct hci_cp_reject_sync_conn_req cp; 4284 4285 memset(&cp, 0, sizeof(cp)); 4286 bacpy(&cp.bdaddr, &conn->dst); 4287 cp.reason = reason; 4288 4289 /* SCO rejection has its own limited set of 4290 * allowed error values (0x0D-0x0F). 4291 */ 4292 if (reason < 0x0d || reason > 0x0f) 4293 cp.reason = HCI_ERROR_REJ_LIMITED_RESOURCES; 4294 4295 return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_SYNC_CONN_REQ, 4296 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4297 } 4298 4299 static int hci_reject_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, 4300 u8 reason) 4301 { 4302 struct hci_cp_reject_conn_req cp; 4303 4304 if (conn->type == SCO_LINK || conn->type == ESCO_LINK) 4305 return hci_reject_sco_sync(hdev, conn, reason); 4306 4307 memset(&cp, 0, sizeof(cp)); 4308 bacpy(&cp.bdaddr, &conn->dst); 4309 cp.reason = reason; 4310 4311 return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_CONN_REQ, 4312 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4313 } 4314 4315 static int hci_abort_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, 4316 u8 reason) 4317 { 4318 switch (conn->state) { 4319 case BT_CONNECTED: 4320 case BT_CONFIG: 4321 return hci_disconnect_sync(hdev, conn, reason); 4322 case BT_CONNECT: 4323 return hci_connect_cancel_sync(hdev, conn); 4324 case BT_CONNECT2: 4325 return hci_reject_conn_sync(hdev, conn, reason); 4326 default: 4327 conn->state = BT_CLOSED; 4328 break; 4329 } 4330 4331 return 0; 4332 } 4333 4334 static int hci_disconnect_all_sync(struct hci_dev *hdev, u8 reason) 4335 { 4336 struct hci_conn *conn, *tmp; 4337 int err; 4338 4339 list_for_each_entry_safe(conn, tmp, &hdev->conn_hash.list, list) { 4340 err = hci_abort_conn_sync(hdev, conn, reason); 4341 if (err) 4342 return err; 4343 } 4344 4345 return err; 4346 } 4347 4348 /* This function perform power off HCI command sequence as follows: 4349 * 4350 * Clear Advertising 4351 * Stop Discovery 4352 * Disconnect all connections 4353 * hci_dev_close_sync 4354 */ 4355 static int hci_power_off_sync(struct hci_dev *hdev) 4356 { 4357 int err; 4358 4359 /* If controller is already down there is nothing to do */ 4360 if (!test_bit(HCI_UP, &hdev->flags)) 4361 return 0; 4362 4363 if (test_bit(HCI_ISCAN, &hdev->flags) || 4364 test_bit(HCI_PSCAN, &hdev->flags)) { 4365 err = hci_write_scan_enable_sync(hdev, 0x00); 4366 if (err) 4367 return err; 4368 } 4369 4370 err = hci_clear_adv_sync(hdev, NULL, false); 4371 if (err) 4372 return err; 4373 4374 err = hci_stop_discovery_sync(hdev); 4375 if (err) 4376 return err; 4377 4378 /* Terminated due to Power Off */ 4379 err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF); 4380 if (err) 4381 return err; 4382 4383 return hci_dev_close_sync(hdev); 4384 } 4385 4386 int hci_set_powered_sync(struct hci_dev *hdev, u8 val) 4387 { 4388 if (val) 4389 return hci_power_on_sync(hdev); 4390 4391 return hci_power_off_sync(hdev); 4392 } 4393 4394 static int hci_write_iac_sync(struct hci_dev *hdev) 4395 { 4396 struct hci_cp_write_current_iac_lap cp; 4397 4398 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 4399 return 0; 4400 4401 memset(&cp, 0, sizeof(cp)); 4402 4403 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { 4404 /* Limited discoverable mode */ 4405 cp.num_iac = min_t(u8, hdev->num_iac, 2); 4406 cp.iac_lap[0] = 0x00; /* LIAC */ 4407 cp.iac_lap[1] = 0x8b; 4408 cp.iac_lap[2] = 0x9e; 4409 cp.iac_lap[3] = 0x33; /* GIAC */ 4410 cp.iac_lap[4] = 0x8b; 4411 cp.iac_lap[5] = 0x9e; 4412 } else { 4413 /* General discoverable mode */ 4414 cp.num_iac = 1; 4415 cp.iac_lap[0] = 0x33; /* GIAC */ 4416 cp.iac_lap[1] = 0x8b; 4417 cp.iac_lap[2] = 0x9e; 4418 } 4419 4420 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CURRENT_IAC_LAP, 4421 (cp.num_iac * 3) + 1, &cp, 4422 HCI_CMD_TIMEOUT); 4423 } 4424 4425 int hci_update_discoverable_sync(struct hci_dev *hdev) 4426 { 4427 int err = 0; 4428 4429 if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 4430 err = hci_write_iac_sync(hdev); 4431 if (err) 4432 return err; 4433 4434 err = hci_update_scan_sync(hdev); 4435 if (err) 4436 return err; 4437 4438 err = hci_update_class_sync(hdev); 4439 if (err) 4440 return err; 4441 } 4442 4443 /* Advertising instances don't use the global discoverable setting, so 4444 * only update AD if advertising was enabled using Set Advertising. 4445 */ 4446 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) { 4447 err = hci_update_adv_data_sync(hdev, 0x00); 4448 if (err) 4449 return err; 4450 4451 /* Discoverable mode affects the local advertising 4452 * address in limited privacy mode. 4453 */ 4454 if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) { 4455 if (ext_adv_capable(hdev)) 4456 err = hci_start_ext_adv_sync(hdev, 0x00); 4457 else 4458 err = hci_enable_advertising_sync(hdev); 4459 } 4460 } 4461 4462 return err; 4463 } 4464 4465 static int update_discoverable_sync(struct hci_dev *hdev, void *data) 4466 { 4467 return hci_update_discoverable_sync(hdev); 4468 } 4469 4470 int hci_update_discoverable(struct hci_dev *hdev) 4471 { 4472 /* Only queue if it would have any effect */ 4473 if (hdev_is_powered(hdev) && 4474 hci_dev_test_flag(hdev, HCI_ADVERTISING) && 4475 hci_dev_test_flag(hdev, HCI_DISCOVERABLE) && 4476 hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) 4477 return hci_cmd_sync_queue(hdev, update_discoverable_sync, NULL, 4478 NULL); 4479 4480 return 0; 4481 } 4482 4483 int hci_update_connectable_sync(struct hci_dev *hdev) 4484 { 4485 int err; 4486 4487 err = hci_update_scan_sync(hdev); 4488 if (err) 4489 return err; 4490 4491 /* If BR/EDR is not enabled and we disable advertising as a 4492 * by-product of disabling connectable, we need to update the 4493 * advertising flags. 4494 */ 4495 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 4496 err = hci_update_adv_data_sync(hdev, hdev->cur_adv_instance); 4497 4498 /* Update the advertising parameters if necessary */ 4499 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 4500 !list_empty(&hdev->adv_instances)) { 4501 if (ext_adv_capable(hdev)) 4502 err = hci_start_ext_adv_sync(hdev, 4503 hdev->cur_adv_instance); 4504 else 4505 err = hci_enable_advertising_sync(hdev); 4506 4507 if (err) 4508 return err; 4509 } 4510 4511 return hci_update_passive_scan_sync(hdev); 4512 } 4513 4514 static int hci_inquiry_sync(struct hci_dev *hdev, u8 length) 4515 { 4516 const u8 giac[3] = { 0x33, 0x8b, 0x9e }; 4517 const u8 liac[3] = { 0x00, 0x8b, 0x9e }; 4518 struct hci_cp_inquiry cp; 4519 4520 bt_dev_dbg(hdev, ""); 4521 4522 if (hci_dev_test_flag(hdev, HCI_INQUIRY)) 4523 return 0; 4524 4525 hci_dev_lock(hdev); 4526 hci_inquiry_cache_flush(hdev); 4527 hci_dev_unlock(hdev); 4528 4529 memset(&cp, 0, sizeof(cp)); 4530 4531 if (hdev->discovery.limited) 4532 memcpy(&cp.lap, liac, sizeof(cp.lap)); 4533 else 4534 memcpy(&cp.lap, giac, sizeof(cp.lap)); 4535 4536 cp.length = length; 4537 4538 return __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY, 4539 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4540 } 4541 4542 static int hci_active_scan_sync(struct hci_dev *hdev, uint16_t interval) 4543 { 4544 u8 own_addr_type; 4545 /* Accept list is not used for discovery */ 4546 u8 filter_policy = 0x00; 4547 /* Default is to enable duplicates filter */ 4548 u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE; 4549 int err; 4550 4551 bt_dev_dbg(hdev, ""); 4552 4553 /* If controller is scanning, it means the passive scanning is 4554 * running. Thus, we should temporarily stop it in order to set the 4555 * discovery scanning parameters. 4556 */ 4557 err = hci_scan_disable_sync(hdev); 4558 if (err) { 4559 bt_dev_err(hdev, "Unable to disable scanning: %d", err); 4560 return err; 4561 } 4562 4563 cancel_interleave_scan(hdev); 4564 4565 /* Pause advertising since active scanning disables address resolution 4566 * which advertising depend on in order to generate its RPAs. 4567 */ 4568 if (use_ll_privacy(hdev)) { 4569 err = hci_pause_advertising_sync(hdev); 4570 if (err) { 4571 bt_dev_err(hdev, "pause advertising failed: %d", err); 4572 goto failed; 4573 } 4574 } 4575 4576 /* Disable address resolution while doing active scanning since the 4577 * accept list shall not be used and all reports shall reach the host 4578 * anyway. 4579 */ 4580 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00); 4581 if (err) { 4582 bt_dev_err(hdev, "Unable to disable Address Resolution: %d", 4583 err); 4584 goto failed; 4585 } 4586 4587 /* All active scans will be done with either a resolvable private 4588 * address (when privacy feature has been enabled) or non-resolvable 4589 * private address. 4590 */ 4591 err = hci_update_random_address_sync(hdev, true, scan_use_rpa(hdev), 4592 &own_addr_type); 4593 if (err < 0) 4594 own_addr_type = ADDR_LE_DEV_PUBLIC; 4595 4596 if (hci_is_adv_monitoring(hdev)) { 4597 /* Duplicate filter should be disabled when some advertisement 4598 * monitor is activated, otherwise AdvMon can only receive one 4599 * advertisement for one peer(*) during active scanning, and 4600 * might report loss to these peers. 4601 * 4602 * Note that different controllers have different meanings of 4603 * |duplicate|. Some of them consider packets with the same 4604 * address as duplicate, and others consider packets with the 4605 * same address and the same RSSI as duplicate. Although in the 4606 * latter case we don't need to disable duplicate filter, but 4607 * it is common to have active scanning for a short period of 4608 * time, the power impact should be neglectable. 4609 */ 4610 filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 4611 } 4612 4613 err = hci_start_scan_sync(hdev, LE_SCAN_ACTIVE, interval, 4614 hdev->le_scan_window_discovery, 4615 own_addr_type, filter_policy, filter_dup); 4616 if (!err) 4617 return err; 4618 4619 failed: 4620 /* Resume advertising if it was paused */ 4621 if (use_ll_privacy(hdev)) 4622 hci_resume_advertising_sync(hdev); 4623 4624 /* Resume passive scanning */ 4625 hci_update_passive_scan_sync(hdev); 4626 return err; 4627 } 4628 4629 static int hci_start_interleaved_discovery_sync(struct hci_dev *hdev) 4630 { 4631 int err; 4632 4633 bt_dev_dbg(hdev, ""); 4634 4635 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery * 2); 4636 if (err) 4637 return err; 4638 4639 return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN); 4640 } 4641 4642 int hci_start_discovery_sync(struct hci_dev *hdev) 4643 { 4644 unsigned long timeout; 4645 int err; 4646 4647 bt_dev_dbg(hdev, "type %u", hdev->discovery.type); 4648 4649 switch (hdev->discovery.type) { 4650 case DISCOV_TYPE_BREDR: 4651 return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN); 4652 case DISCOV_TYPE_INTERLEAVED: 4653 /* When running simultaneous discovery, the LE scanning time 4654 * should occupy the whole discovery time sine BR/EDR inquiry 4655 * and LE scanning are scheduled by the controller. 4656 * 4657 * For interleaving discovery in comparison, BR/EDR inquiry 4658 * and LE scanning are done sequentially with separate 4659 * timeouts. 4660 */ 4661 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, 4662 &hdev->quirks)) { 4663 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 4664 /* During simultaneous discovery, we double LE scan 4665 * interval. We must leave some time for the controller 4666 * to do BR/EDR inquiry. 4667 */ 4668 err = hci_start_interleaved_discovery_sync(hdev); 4669 break; 4670 } 4671 4672 timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout); 4673 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery); 4674 break; 4675 case DISCOV_TYPE_LE: 4676 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 4677 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery); 4678 break; 4679 default: 4680 return -EINVAL; 4681 } 4682 4683 if (err) 4684 return err; 4685 4686 bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout)); 4687 4688 /* When service discovery is used and the controller has a 4689 * strict duplicate filter, it is important to remember the 4690 * start and duration of the scan. This is required for 4691 * restarting scanning during the discovery phase. 4692 */ 4693 if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) && 4694 hdev->discovery.result_filtering) { 4695 hdev->discovery.scan_start = jiffies; 4696 hdev->discovery.scan_duration = timeout; 4697 } 4698 4699 queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable, 4700 timeout); 4701 return 0; 4702 } 4703 4704 static void hci_suspend_monitor_sync(struct hci_dev *hdev) 4705 { 4706 switch (hci_get_adv_monitor_offload_ext(hdev)) { 4707 case HCI_ADV_MONITOR_EXT_MSFT: 4708 msft_suspend_sync(hdev); 4709 break; 4710 default: 4711 return; 4712 } 4713 } 4714 4715 /* This function disables discovery and mark it as paused */ 4716 static int hci_pause_discovery_sync(struct hci_dev *hdev) 4717 { 4718 int old_state = hdev->discovery.state; 4719 int err; 4720 4721 /* If discovery already stopped/stopping/paused there nothing to do */ 4722 if (old_state == DISCOVERY_STOPPED || old_state == DISCOVERY_STOPPING || 4723 hdev->discovery_paused) 4724 return 0; 4725 4726 hci_discovery_set_state(hdev, DISCOVERY_STOPPING); 4727 err = hci_stop_discovery_sync(hdev); 4728 if (err) 4729 return err; 4730 4731 hdev->discovery_paused = true; 4732 hdev->discovery_old_state = old_state; 4733 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 4734 4735 return 0; 4736 } 4737 4738 static int hci_update_event_filter_sync(struct hci_dev *hdev) 4739 { 4740 struct bdaddr_list_with_flags *b; 4741 u8 scan = SCAN_DISABLED; 4742 bool scanning = test_bit(HCI_PSCAN, &hdev->flags); 4743 int err; 4744 4745 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 4746 return 0; 4747 4748 /* Always clear event filter when starting */ 4749 hci_clear_event_filter_sync(hdev); 4750 4751 list_for_each_entry(b, &hdev->accept_list, list) { 4752 if (!hci_conn_test_flag(HCI_CONN_FLAG_REMOTE_WAKEUP, 4753 b->current_flags)) 4754 continue; 4755 4756 bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr); 4757 4758 err = hci_set_event_filter_sync(hdev, HCI_FLT_CONN_SETUP, 4759 HCI_CONN_SETUP_ALLOW_BDADDR, 4760 &b->bdaddr, 4761 HCI_CONN_SETUP_AUTO_ON); 4762 if (err) 4763 bt_dev_dbg(hdev, "Failed to set event filter for %pMR", 4764 &b->bdaddr); 4765 else 4766 scan = SCAN_PAGE; 4767 } 4768 4769 if (scan && !scanning) 4770 hci_write_scan_enable_sync(hdev, scan); 4771 else if (!scan && scanning) 4772 hci_write_scan_enable_sync(hdev, scan); 4773 4774 return 0; 4775 } 4776 4777 /* This function performs the HCI suspend procedures in the follow order: 4778 * 4779 * Pause discovery (active scanning/inquiry) 4780 * Pause Directed Advertising/Advertising 4781 * Disconnect all connections 4782 * Set suspend_status to BT_SUSPEND_DISCONNECT if hdev cannot wakeup 4783 * otherwise: 4784 * Update event mask (only set events that are allowed to wake up the host) 4785 * Update event filter (with devices marked with HCI_CONN_FLAG_REMOTE_WAKEUP) 4786 * Update passive scanning (lower duty cycle) 4787 * Set suspend_status to BT_SUSPEND_CONFIGURE_WAKE 4788 */ 4789 int hci_suspend_sync(struct hci_dev *hdev) 4790 { 4791 int err; 4792 4793 /* If marked as suspended there nothing to do */ 4794 if (hdev->suspended) 4795 return 0; 4796 4797 /* Mark device as suspended */ 4798 hdev->suspended = true; 4799 4800 /* Pause discovery if not already stopped */ 4801 hci_pause_discovery_sync(hdev); 4802 4803 /* Pause other advertisements */ 4804 hci_pause_advertising_sync(hdev); 4805 4806 /* Disable page scan if enabled */ 4807 if (test_bit(HCI_PSCAN, &hdev->flags)) 4808 hci_write_scan_enable_sync(hdev, SCAN_DISABLED); 4809 4810 /* Suspend monitor filters */ 4811 hci_suspend_monitor_sync(hdev); 4812 4813 /* Prevent disconnects from causing scanning to be re-enabled */ 4814 hdev->scanning_paused = true; 4815 4816 /* Soft disconnect everything (power off) */ 4817 err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF); 4818 if (err) { 4819 /* Set state to BT_RUNNING so resume doesn't notify */ 4820 hdev->suspend_state = BT_RUNNING; 4821 hci_resume_sync(hdev); 4822 return err; 4823 } 4824 4825 /* Only configure accept list if disconnect succeeded and wake 4826 * isn't being prevented. 4827 */ 4828 if (!hdev->wakeup || !hdev->wakeup(hdev)) { 4829 hdev->suspend_state = BT_SUSPEND_DISCONNECT; 4830 return 0; 4831 } 4832 4833 /* Unpause to take care of updating scanning params */ 4834 hdev->scanning_paused = false; 4835 4836 /* Update event mask so only the allowed event can wakeup the host */ 4837 hci_set_event_mask_sync(hdev); 4838 4839 /* Enable event filter for paired devices */ 4840 hci_update_event_filter_sync(hdev); 4841 4842 /* Update LE passive scan if enabled */ 4843 hci_update_passive_scan_sync(hdev); 4844 4845 /* Pause scan changes again. */ 4846 hdev->scanning_paused = true; 4847 4848 hdev->suspend_state = BT_SUSPEND_CONFIGURE_WAKE; 4849 4850 return 0; 4851 } 4852 4853 /* This function resumes discovery */ 4854 static int hci_resume_discovery_sync(struct hci_dev *hdev) 4855 { 4856 int err; 4857 4858 /* If discovery not paused there nothing to do */ 4859 if (!hdev->discovery_paused) 4860 return 0; 4861 4862 hdev->discovery_paused = false; 4863 4864 hci_discovery_set_state(hdev, DISCOVERY_STARTING); 4865 4866 err = hci_start_discovery_sync(hdev); 4867 4868 hci_discovery_set_state(hdev, err ? DISCOVERY_STOPPED : 4869 DISCOVERY_FINDING); 4870 4871 return err; 4872 } 4873 4874 static void hci_resume_monitor_sync(struct hci_dev *hdev) 4875 { 4876 switch (hci_get_adv_monitor_offload_ext(hdev)) { 4877 case HCI_ADV_MONITOR_EXT_MSFT: 4878 msft_resume_sync(hdev); 4879 break; 4880 default: 4881 return; 4882 } 4883 } 4884 4885 /* This function performs the HCI suspend procedures in the follow order: 4886 * 4887 * Restore event mask 4888 * Clear event filter 4889 * Update passive scanning (normal duty cycle) 4890 * Resume Directed Advertising/Advertising 4891 * Resume discovery (active scanning/inquiry) 4892 */ 4893 int hci_resume_sync(struct hci_dev *hdev) 4894 { 4895 /* If not marked as suspended there nothing to do */ 4896 if (!hdev->suspended) 4897 return 0; 4898 4899 hdev->suspended = false; 4900 hdev->scanning_paused = false; 4901 4902 /* Restore event mask */ 4903 hci_set_event_mask_sync(hdev); 4904 4905 /* Clear any event filters and restore scan state */ 4906 hci_clear_event_filter_sync(hdev); 4907 hci_update_scan_sync(hdev); 4908 4909 /* Reset passive scanning to normal */ 4910 hci_update_passive_scan_sync(hdev); 4911 4912 /* Resume monitor filters */ 4913 hci_resume_monitor_sync(hdev); 4914 4915 /* Resume other advertisements */ 4916 hci_resume_advertising_sync(hdev); 4917 4918 /* Resume discovery */ 4919 hci_resume_discovery_sync(hdev); 4920 4921 return 0; 4922 } 4923