1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * BlueZ - Bluetooth protocol stack for Linux 4 * 5 * Copyright (C) 2021 Intel Corporation 6 */ 7 8 #include <linux/property.h> 9 10 #include <net/bluetooth/bluetooth.h> 11 #include <net/bluetooth/hci_core.h> 12 #include <net/bluetooth/mgmt.h> 13 14 #include "hci_request.h" 15 #include "hci_debugfs.h" 16 #include "smp.h" 17 #include "eir.h" 18 #include "msft.h" 19 #include "aosp.h" 20 #include "leds.h" 21 22 static void hci_cmd_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode, 23 struct sk_buff *skb) 24 { 25 bt_dev_dbg(hdev, "result 0x%2.2x", result); 26 27 if (hdev->req_status != HCI_REQ_PEND) 28 return; 29 30 hdev->req_result = result; 31 hdev->req_status = HCI_REQ_DONE; 32 33 if (skb) { 34 struct sock *sk = hci_skb_sk(skb); 35 36 /* Drop sk reference if set */ 37 if (sk) 38 sock_put(sk); 39 40 hdev->req_skb = skb_get(skb); 41 } 42 43 wake_up_interruptible(&hdev->req_wait_q); 44 } 45 46 static struct sk_buff *hci_cmd_sync_alloc(struct hci_dev *hdev, u16 opcode, 47 u32 plen, const void *param, 48 struct sock *sk) 49 { 50 int len = HCI_COMMAND_HDR_SIZE + plen; 51 struct hci_command_hdr *hdr; 52 struct sk_buff *skb; 53 54 skb = bt_skb_alloc(len, GFP_ATOMIC); 55 if (!skb) 56 return NULL; 57 58 hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE); 59 hdr->opcode = cpu_to_le16(opcode); 60 hdr->plen = plen; 61 62 if (plen) 63 skb_put_data(skb, param, plen); 64 65 bt_dev_dbg(hdev, "skb len %d", skb->len); 66 67 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; 68 hci_skb_opcode(skb) = opcode; 69 70 /* Grab a reference if command needs to be associated with a sock (e.g. 71 * likely mgmt socket that initiated the command). 72 */ 73 if (sk) { 74 hci_skb_sk(skb) = sk; 75 sock_hold(sk); 76 } 77 78 return skb; 79 } 80 81 static void hci_cmd_sync_add(struct hci_request *req, u16 opcode, u32 plen, 82 const void *param, u8 event, struct sock *sk) 83 { 84 struct hci_dev *hdev = req->hdev; 85 struct sk_buff *skb; 86 87 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); 88 89 /* If an error occurred during request building, there is no point in 90 * queueing the HCI command. We can simply return. 91 */ 92 if (req->err) 93 return; 94 95 skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, sk); 96 if (!skb) { 97 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)", 98 opcode); 99 req->err = -ENOMEM; 100 return; 101 } 102 103 if (skb_queue_empty(&req->cmd_q)) 104 bt_cb(skb)->hci.req_flags |= HCI_REQ_START; 105 106 hci_skb_event(skb) = event; 107 108 skb_queue_tail(&req->cmd_q, skb); 109 } 110 111 static int hci_cmd_sync_run(struct hci_request *req) 112 { 113 struct hci_dev *hdev = req->hdev; 114 struct sk_buff *skb; 115 unsigned long flags; 116 117 bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q)); 118 119 /* If an error occurred during request building, remove all HCI 120 * commands queued on the HCI request queue. 121 */ 122 if (req->err) { 123 skb_queue_purge(&req->cmd_q); 124 return req->err; 125 } 126 127 /* Do not allow empty requests */ 128 if (skb_queue_empty(&req->cmd_q)) 129 return -ENODATA; 130 131 skb = skb_peek_tail(&req->cmd_q); 132 bt_cb(skb)->hci.req_complete_skb = hci_cmd_sync_complete; 133 bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB; 134 135 spin_lock_irqsave(&hdev->cmd_q.lock, flags); 136 skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q); 137 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); 138 139 queue_work(hdev->workqueue, &hdev->cmd_work); 140 141 return 0; 142 } 143 144 /* This function requires the caller holds hdev->req_lock. */ 145 struct sk_buff *__hci_cmd_sync_sk(struct hci_dev *hdev, u16 opcode, u32 plen, 146 const void *param, u8 event, u32 timeout, 147 struct sock *sk) 148 { 149 struct hci_request req; 150 struct sk_buff *skb; 151 int err = 0; 152 153 bt_dev_dbg(hdev, "Opcode 0x%4x", opcode); 154 155 hci_req_init(&req, hdev); 156 157 hci_cmd_sync_add(&req, opcode, plen, param, event, sk); 158 159 hdev->req_status = HCI_REQ_PEND; 160 161 err = hci_cmd_sync_run(&req); 162 if (err < 0) 163 return ERR_PTR(err); 164 165 err = wait_event_interruptible_timeout(hdev->req_wait_q, 166 hdev->req_status != HCI_REQ_PEND, 167 timeout); 168 169 if (err == -ERESTARTSYS) 170 return ERR_PTR(-EINTR); 171 172 switch (hdev->req_status) { 173 case HCI_REQ_DONE: 174 err = -bt_to_errno(hdev->req_result); 175 break; 176 177 case HCI_REQ_CANCELED: 178 err = -hdev->req_result; 179 break; 180 181 default: 182 err = -ETIMEDOUT; 183 break; 184 } 185 186 hdev->req_status = 0; 187 hdev->req_result = 0; 188 skb = hdev->req_skb; 189 hdev->req_skb = NULL; 190 191 bt_dev_dbg(hdev, "end: err %d", err); 192 193 if (err < 0) { 194 kfree_skb(skb); 195 return ERR_PTR(err); 196 } 197 198 return skb; 199 } 200 EXPORT_SYMBOL(__hci_cmd_sync_sk); 201 202 /* This function requires the caller holds hdev->req_lock. */ 203 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 204 const void *param, u32 timeout) 205 { 206 return __hci_cmd_sync_sk(hdev, opcode, plen, param, 0, timeout, NULL); 207 } 208 EXPORT_SYMBOL(__hci_cmd_sync); 209 210 /* Send HCI command and wait for command complete event */ 211 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 212 const void *param, u32 timeout) 213 { 214 struct sk_buff *skb; 215 216 if (!test_bit(HCI_UP, &hdev->flags)) 217 return ERR_PTR(-ENETDOWN); 218 219 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); 220 221 hci_req_sync_lock(hdev); 222 skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout); 223 hci_req_sync_unlock(hdev); 224 225 return skb; 226 } 227 EXPORT_SYMBOL(hci_cmd_sync); 228 229 /* This function requires the caller holds hdev->req_lock. */ 230 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen, 231 const void *param, u8 event, u32 timeout) 232 { 233 return __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, 234 NULL); 235 } 236 EXPORT_SYMBOL(__hci_cmd_sync_ev); 237 238 /* This function requires the caller holds hdev->req_lock. */ 239 int __hci_cmd_sync_status_sk(struct hci_dev *hdev, u16 opcode, u32 plen, 240 const void *param, u8 event, u32 timeout, 241 struct sock *sk) 242 { 243 struct sk_buff *skb; 244 u8 status; 245 246 skb = __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, sk); 247 if (IS_ERR(skb)) { 248 bt_dev_err(hdev, "Opcode 0x%4x failed: %ld", opcode, 249 PTR_ERR(skb)); 250 return PTR_ERR(skb); 251 } 252 253 /* If command return a status event skb will be set to NULL as there are 254 * no parameters, in case of failure IS_ERR(skb) would have be set to 255 * the actual error would be found with PTR_ERR(skb). 256 */ 257 if (!skb) 258 return 0; 259 260 status = skb->data[0]; 261 262 kfree_skb(skb); 263 264 return status; 265 } 266 EXPORT_SYMBOL(__hci_cmd_sync_status_sk); 267 268 int __hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen, 269 const void *param, u32 timeout) 270 { 271 return __hci_cmd_sync_status_sk(hdev, opcode, plen, param, 0, timeout, 272 NULL); 273 } 274 EXPORT_SYMBOL(__hci_cmd_sync_status); 275 276 static void hci_cmd_sync_work(struct work_struct *work) 277 { 278 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_work); 279 280 bt_dev_dbg(hdev, ""); 281 282 /* Dequeue all entries and run them */ 283 while (1) { 284 struct hci_cmd_sync_work_entry *entry; 285 286 mutex_lock(&hdev->cmd_sync_work_lock); 287 entry = list_first_entry_or_null(&hdev->cmd_sync_work_list, 288 struct hci_cmd_sync_work_entry, 289 list); 290 if (entry) 291 list_del(&entry->list); 292 mutex_unlock(&hdev->cmd_sync_work_lock); 293 294 if (!entry) 295 break; 296 297 bt_dev_dbg(hdev, "entry %p", entry); 298 299 if (entry->func) { 300 int err; 301 302 hci_req_sync_lock(hdev); 303 err = entry->func(hdev, entry->data); 304 if (entry->destroy) 305 entry->destroy(hdev, entry->data, err); 306 hci_req_sync_unlock(hdev); 307 } 308 309 kfree(entry); 310 } 311 } 312 313 static void hci_cmd_sync_cancel_work(struct work_struct *work) 314 { 315 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_cancel_work); 316 317 cancel_delayed_work_sync(&hdev->cmd_timer); 318 cancel_delayed_work_sync(&hdev->ncmd_timer); 319 atomic_set(&hdev->cmd_cnt, 1); 320 321 wake_up_interruptible(&hdev->req_wait_q); 322 } 323 324 void hci_cmd_sync_init(struct hci_dev *hdev) 325 { 326 INIT_WORK(&hdev->cmd_sync_work, hci_cmd_sync_work); 327 INIT_LIST_HEAD(&hdev->cmd_sync_work_list); 328 mutex_init(&hdev->cmd_sync_work_lock); 329 330 INIT_WORK(&hdev->cmd_sync_cancel_work, hci_cmd_sync_cancel_work); 331 } 332 333 void hci_cmd_sync_clear(struct hci_dev *hdev) 334 { 335 struct hci_cmd_sync_work_entry *entry, *tmp; 336 337 cancel_work_sync(&hdev->cmd_sync_work); 338 339 list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) { 340 if (entry->destroy) 341 entry->destroy(hdev, entry->data, -ECANCELED); 342 343 list_del(&entry->list); 344 kfree(entry); 345 } 346 } 347 348 void __hci_cmd_sync_cancel(struct hci_dev *hdev, int err) 349 { 350 bt_dev_dbg(hdev, "err 0x%2.2x", err); 351 352 if (hdev->req_status == HCI_REQ_PEND) { 353 hdev->req_result = err; 354 hdev->req_status = HCI_REQ_CANCELED; 355 356 cancel_delayed_work_sync(&hdev->cmd_timer); 357 cancel_delayed_work_sync(&hdev->ncmd_timer); 358 atomic_set(&hdev->cmd_cnt, 1); 359 360 wake_up_interruptible(&hdev->req_wait_q); 361 } 362 } 363 364 void hci_cmd_sync_cancel(struct hci_dev *hdev, int err) 365 { 366 bt_dev_dbg(hdev, "err 0x%2.2x", err); 367 368 if (hdev->req_status == HCI_REQ_PEND) { 369 hdev->req_result = err; 370 hdev->req_status = HCI_REQ_CANCELED; 371 372 queue_work(hdev->workqueue, &hdev->cmd_sync_cancel_work); 373 } 374 } 375 EXPORT_SYMBOL(hci_cmd_sync_cancel); 376 377 int hci_cmd_sync_queue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 378 void *data, hci_cmd_sync_work_destroy_t destroy) 379 { 380 struct hci_cmd_sync_work_entry *entry; 381 382 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) 383 return -ENODEV; 384 385 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 386 if (!entry) 387 return -ENOMEM; 388 389 entry->func = func; 390 entry->data = data; 391 entry->destroy = destroy; 392 393 mutex_lock(&hdev->cmd_sync_work_lock); 394 list_add_tail(&entry->list, &hdev->cmd_sync_work_list); 395 mutex_unlock(&hdev->cmd_sync_work_lock); 396 397 queue_work(hdev->req_workqueue, &hdev->cmd_sync_work); 398 399 return 0; 400 } 401 EXPORT_SYMBOL(hci_cmd_sync_queue); 402 403 int hci_update_eir_sync(struct hci_dev *hdev) 404 { 405 struct hci_cp_write_eir cp; 406 407 bt_dev_dbg(hdev, ""); 408 409 if (!hdev_is_powered(hdev)) 410 return 0; 411 412 if (!lmp_ext_inq_capable(hdev)) 413 return 0; 414 415 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 416 return 0; 417 418 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 419 return 0; 420 421 memset(&cp, 0, sizeof(cp)); 422 423 eir_create(hdev, cp.data); 424 425 if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0) 426 return 0; 427 428 memcpy(hdev->eir, cp.data, sizeof(cp.data)); 429 430 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp, 431 HCI_CMD_TIMEOUT); 432 } 433 434 static u8 get_service_classes(struct hci_dev *hdev) 435 { 436 struct bt_uuid *uuid; 437 u8 val = 0; 438 439 list_for_each_entry(uuid, &hdev->uuids, list) 440 val |= uuid->svc_hint; 441 442 return val; 443 } 444 445 int hci_update_class_sync(struct hci_dev *hdev) 446 { 447 u8 cod[3]; 448 449 bt_dev_dbg(hdev, ""); 450 451 if (!hdev_is_powered(hdev)) 452 return 0; 453 454 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 455 return 0; 456 457 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 458 return 0; 459 460 cod[0] = hdev->minor_class; 461 cod[1] = hdev->major_class; 462 cod[2] = get_service_classes(hdev); 463 464 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) 465 cod[1] |= 0x20; 466 467 if (memcmp(cod, hdev->dev_class, 3) == 0) 468 return 0; 469 470 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CLASS_OF_DEV, 471 sizeof(cod), cod, HCI_CMD_TIMEOUT); 472 } 473 474 static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable) 475 { 476 /* If there is no connection we are OK to advertise. */ 477 if (hci_conn_num(hdev, LE_LINK) == 0) 478 return true; 479 480 /* Check le_states if there is any connection in peripheral role. */ 481 if (hdev->conn_hash.le_num_peripheral > 0) { 482 /* Peripheral connection state and non connectable mode 483 * bit 20. 484 */ 485 if (!connectable && !(hdev->le_states[2] & 0x10)) 486 return false; 487 488 /* Peripheral connection state and connectable mode bit 38 489 * and scannable bit 21. 490 */ 491 if (connectable && (!(hdev->le_states[4] & 0x40) || 492 !(hdev->le_states[2] & 0x20))) 493 return false; 494 } 495 496 /* Check le_states if there is any connection in central role. */ 497 if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) { 498 /* Central connection state and non connectable mode bit 18. */ 499 if (!connectable && !(hdev->le_states[2] & 0x02)) 500 return false; 501 502 /* Central connection state and connectable mode bit 35 and 503 * scannable 19. 504 */ 505 if (connectable && (!(hdev->le_states[4] & 0x08) || 506 !(hdev->le_states[2] & 0x08))) 507 return false; 508 } 509 510 return true; 511 } 512 513 static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags) 514 { 515 /* If privacy is not enabled don't use RPA */ 516 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 517 return false; 518 519 /* If basic privacy mode is enabled use RPA */ 520 if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) 521 return true; 522 523 /* If limited privacy mode is enabled don't use RPA if we're 524 * both discoverable and bondable. 525 */ 526 if ((flags & MGMT_ADV_FLAG_DISCOV) && 527 hci_dev_test_flag(hdev, HCI_BONDABLE)) 528 return false; 529 530 /* We're neither bondable nor discoverable in the limited 531 * privacy mode, therefore use RPA. 532 */ 533 return true; 534 } 535 536 static int hci_set_random_addr_sync(struct hci_dev *hdev, bdaddr_t *rpa) 537 { 538 /* If we're advertising or initiating an LE connection we can't 539 * go ahead and change the random address at this time. This is 540 * because the eventual initiator address used for the 541 * subsequently created connection will be undefined (some 542 * controllers use the new address and others the one we had 543 * when the operation started). 544 * 545 * In this kind of scenario skip the update and let the random 546 * address be updated at the next cycle. 547 */ 548 if (hci_dev_test_flag(hdev, HCI_LE_ADV) || 549 hci_lookup_le_connect(hdev)) { 550 bt_dev_dbg(hdev, "Deferring random address update"); 551 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 552 return 0; 553 } 554 555 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RANDOM_ADDR, 556 6, rpa, HCI_CMD_TIMEOUT); 557 } 558 559 int hci_update_random_address_sync(struct hci_dev *hdev, bool require_privacy, 560 bool rpa, u8 *own_addr_type) 561 { 562 int err; 563 564 /* If privacy is enabled use a resolvable private address. If 565 * current RPA has expired or there is something else than 566 * the current RPA in use, then generate a new one. 567 */ 568 if (rpa) { 569 /* If Controller supports LL Privacy use own address type is 570 * 0x03 571 */ 572 if (use_ll_privacy(hdev)) 573 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED; 574 else 575 *own_addr_type = ADDR_LE_DEV_RANDOM; 576 577 /* Check if RPA is valid */ 578 if (rpa_valid(hdev)) 579 return 0; 580 581 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); 582 if (err < 0) { 583 bt_dev_err(hdev, "failed to generate new RPA"); 584 return err; 585 } 586 587 err = hci_set_random_addr_sync(hdev, &hdev->rpa); 588 if (err) 589 return err; 590 591 return 0; 592 } 593 594 /* In case of required privacy without resolvable private address, 595 * use an non-resolvable private address. This is useful for active 596 * scanning and non-connectable advertising. 597 */ 598 if (require_privacy) { 599 bdaddr_t nrpa; 600 601 while (true) { 602 /* The non-resolvable private address is generated 603 * from random six bytes with the two most significant 604 * bits cleared. 605 */ 606 get_random_bytes(&nrpa, 6); 607 nrpa.b[5] &= 0x3f; 608 609 /* The non-resolvable private address shall not be 610 * equal to the public address. 611 */ 612 if (bacmp(&hdev->bdaddr, &nrpa)) 613 break; 614 } 615 616 *own_addr_type = ADDR_LE_DEV_RANDOM; 617 618 return hci_set_random_addr_sync(hdev, &nrpa); 619 } 620 621 /* If forcing static address is in use or there is no public 622 * address use the static address as random address (but skip 623 * the HCI command if the current random address is already the 624 * static one. 625 * 626 * In case BR/EDR has been disabled on a dual-mode controller 627 * and a static address has been configured, then use that 628 * address instead of the public BR/EDR address. 629 */ 630 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 631 !bacmp(&hdev->bdaddr, BDADDR_ANY) || 632 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && 633 bacmp(&hdev->static_addr, BDADDR_ANY))) { 634 *own_addr_type = ADDR_LE_DEV_RANDOM; 635 if (bacmp(&hdev->static_addr, &hdev->random_addr)) 636 return hci_set_random_addr_sync(hdev, 637 &hdev->static_addr); 638 return 0; 639 } 640 641 /* Neither privacy nor static address is being used so use a 642 * public address. 643 */ 644 *own_addr_type = ADDR_LE_DEV_PUBLIC; 645 646 return 0; 647 } 648 649 static int hci_disable_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance) 650 { 651 struct hci_cp_le_set_ext_adv_enable *cp; 652 struct hci_cp_ext_adv_set *set; 653 u8 data[sizeof(*cp) + sizeof(*set) * 1]; 654 u8 size; 655 656 /* If request specifies an instance that doesn't exist, fail */ 657 if (instance > 0) { 658 struct adv_info *adv; 659 660 adv = hci_find_adv_instance(hdev, instance); 661 if (!adv) 662 return -EINVAL; 663 664 /* If not enabled there is nothing to do */ 665 if (!adv->enabled) 666 return 0; 667 } 668 669 memset(data, 0, sizeof(data)); 670 671 cp = (void *)data; 672 set = (void *)cp->data; 673 674 /* Instance 0x00 indicates all advertising instances will be disabled */ 675 cp->num_of_sets = !!instance; 676 cp->enable = 0x00; 677 678 set->handle = instance; 679 680 size = sizeof(*cp) + sizeof(*set) * cp->num_of_sets; 681 682 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, 683 size, data, HCI_CMD_TIMEOUT); 684 } 685 686 static int hci_set_adv_set_random_addr_sync(struct hci_dev *hdev, u8 instance, 687 bdaddr_t *random_addr) 688 { 689 struct hci_cp_le_set_adv_set_rand_addr cp; 690 int err; 691 692 if (!instance) { 693 /* Instance 0x00 doesn't have an adv_info, instead it uses 694 * hdev->random_addr to track its address so whenever it needs 695 * to be updated this also set the random address since 696 * hdev->random_addr is shared with scan state machine. 697 */ 698 err = hci_set_random_addr_sync(hdev, random_addr); 699 if (err) 700 return err; 701 } 702 703 memset(&cp, 0, sizeof(cp)); 704 705 cp.handle = instance; 706 bacpy(&cp.bdaddr, random_addr); 707 708 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_SET_RAND_ADDR, 709 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 710 } 711 712 int hci_setup_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance) 713 { 714 struct hci_cp_le_set_ext_adv_params cp; 715 bool connectable; 716 u32 flags; 717 bdaddr_t random_addr; 718 u8 own_addr_type; 719 int err; 720 struct adv_info *adv; 721 bool secondary_adv; 722 723 if (instance > 0) { 724 adv = hci_find_adv_instance(hdev, instance); 725 if (!adv) 726 return -EINVAL; 727 } else { 728 adv = NULL; 729 } 730 731 /* Updating parameters of an active instance will return a 732 * Command Disallowed error, so we must first disable the 733 * instance if it is active. 734 */ 735 if (adv && !adv->pending) { 736 err = hci_disable_ext_adv_instance_sync(hdev, instance); 737 if (err) 738 return err; 739 } 740 741 flags = hci_adv_instance_flags(hdev, instance); 742 743 /* If the "connectable" instance flag was not set, then choose between 744 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. 745 */ 746 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || 747 mgmt_get_connectable(hdev); 748 749 if (!is_advertising_allowed(hdev, connectable)) 750 return -EPERM; 751 752 /* Set require_privacy to true only when non-connectable 753 * advertising is used. In that case it is fine to use a 754 * non-resolvable private address. 755 */ 756 err = hci_get_random_address(hdev, !connectable, 757 adv_use_rpa(hdev, flags), adv, 758 &own_addr_type, &random_addr); 759 if (err < 0) 760 return err; 761 762 memset(&cp, 0, sizeof(cp)); 763 764 if (adv) { 765 hci_cpu_to_le24(adv->min_interval, cp.min_interval); 766 hci_cpu_to_le24(adv->max_interval, cp.max_interval); 767 cp.tx_power = adv->tx_power; 768 } else { 769 hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval); 770 hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval); 771 cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE; 772 } 773 774 secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK); 775 776 if (connectable) { 777 if (secondary_adv) 778 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND); 779 else 780 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND); 781 } else if (hci_adv_instance_is_scannable(hdev, instance) || 782 (flags & MGMT_ADV_PARAM_SCAN_RSP)) { 783 if (secondary_adv) 784 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND); 785 else 786 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND); 787 } else { 788 if (secondary_adv) 789 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND); 790 else 791 cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND); 792 } 793 794 /* If Own_Address_Type equals 0x02 or 0x03, the Peer_Address parameter 795 * contains the peer’s Identity Address and the Peer_Address_Type 796 * parameter contains the peer’s Identity Type (i.e., 0x00 or 0x01). 797 * These parameters are used to locate the corresponding local IRK in 798 * the resolving list; this IRK is used to generate their own address 799 * used in the advertisement. 800 */ 801 if (own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) 802 hci_copy_identity_address(hdev, &cp.peer_addr, 803 &cp.peer_addr_type); 804 805 cp.own_addr_type = own_addr_type; 806 cp.channel_map = hdev->le_adv_channel_map; 807 cp.handle = instance; 808 809 if (flags & MGMT_ADV_FLAG_SEC_2M) { 810 cp.primary_phy = HCI_ADV_PHY_1M; 811 cp.secondary_phy = HCI_ADV_PHY_2M; 812 } else if (flags & MGMT_ADV_FLAG_SEC_CODED) { 813 cp.primary_phy = HCI_ADV_PHY_CODED; 814 cp.secondary_phy = HCI_ADV_PHY_CODED; 815 } else { 816 /* In all other cases use 1M */ 817 cp.primary_phy = HCI_ADV_PHY_1M; 818 cp.secondary_phy = HCI_ADV_PHY_1M; 819 } 820 821 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS, 822 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 823 if (err) 824 return err; 825 826 if ((own_addr_type == ADDR_LE_DEV_RANDOM || 827 own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) && 828 bacmp(&random_addr, BDADDR_ANY)) { 829 /* Check if random address need to be updated */ 830 if (adv) { 831 if (!bacmp(&random_addr, &adv->random_addr)) 832 return 0; 833 } else { 834 if (!bacmp(&random_addr, &hdev->random_addr)) 835 return 0; 836 } 837 838 return hci_set_adv_set_random_addr_sync(hdev, instance, 839 &random_addr); 840 } 841 842 return 0; 843 } 844 845 static int hci_set_ext_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 846 { 847 struct { 848 struct hci_cp_le_set_ext_scan_rsp_data cp; 849 u8 data[HCI_MAX_EXT_AD_LENGTH]; 850 } pdu; 851 u8 len; 852 struct adv_info *adv = NULL; 853 int err; 854 855 memset(&pdu, 0, sizeof(pdu)); 856 857 if (instance) { 858 adv = hci_find_adv_instance(hdev, instance); 859 if (!adv || !adv->scan_rsp_changed) 860 return 0; 861 } 862 863 len = eir_create_scan_rsp(hdev, instance, pdu.data); 864 865 pdu.cp.handle = instance; 866 pdu.cp.length = len; 867 pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; 868 pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG; 869 870 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA, 871 sizeof(pdu.cp) + len, &pdu.cp, 872 HCI_CMD_TIMEOUT); 873 if (err) 874 return err; 875 876 if (adv) { 877 adv->scan_rsp_changed = false; 878 } else { 879 memcpy(hdev->scan_rsp_data, pdu.data, len); 880 hdev->scan_rsp_data_len = len; 881 } 882 883 return 0; 884 } 885 886 static int __hci_set_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 887 { 888 struct hci_cp_le_set_scan_rsp_data cp; 889 u8 len; 890 891 memset(&cp, 0, sizeof(cp)); 892 893 len = eir_create_scan_rsp(hdev, instance, cp.data); 894 895 if (hdev->scan_rsp_data_len == len && 896 !memcmp(cp.data, hdev->scan_rsp_data, len)) 897 return 0; 898 899 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data)); 900 hdev->scan_rsp_data_len = len; 901 902 cp.length = len; 903 904 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_RSP_DATA, 905 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 906 } 907 908 int hci_update_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 909 { 910 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 911 return 0; 912 913 if (ext_adv_capable(hdev)) 914 return hci_set_ext_scan_rsp_data_sync(hdev, instance); 915 916 return __hci_set_scan_rsp_data_sync(hdev, instance); 917 } 918 919 int hci_enable_ext_advertising_sync(struct hci_dev *hdev, u8 instance) 920 { 921 struct hci_cp_le_set_ext_adv_enable *cp; 922 struct hci_cp_ext_adv_set *set; 923 u8 data[sizeof(*cp) + sizeof(*set) * 1]; 924 struct adv_info *adv; 925 926 if (instance > 0) { 927 adv = hci_find_adv_instance(hdev, instance); 928 if (!adv) 929 return -EINVAL; 930 /* If already enabled there is nothing to do */ 931 if (adv->enabled) 932 return 0; 933 } else { 934 adv = NULL; 935 } 936 937 cp = (void *)data; 938 set = (void *)cp->data; 939 940 memset(cp, 0, sizeof(*cp)); 941 942 cp->enable = 0x01; 943 cp->num_of_sets = 0x01; 944 945 memset(set, 0, sizeof(*set)); 946 947 set->handle = instance; 948 949 /* Set duration per instance since controller is responsible for 950 * scheduling it. 951 */ 952 if (adv && adv->timeout) { 953 u16 duration = adv->timeout * MSEC_PER_SEC; 954 955 /* Time = N * 10 ms */ 956 set->duration = cpu_to_le16(duration / 10); 957 } 958 959 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, 960 sizeof(*cp) + 961 sizeof(*set) * cp->num_of_sets, 962 data, HCI_CMD_TIMEOUT); 963 } 964 965 int hci_start_ext_adv_sync(struct hci_dev *hdev, u8 instance) 966 { 967 int err; 968 969 err = hci_setup_ext_adv_instance_sync(hdev, instance); 970 if (err) 971 return err; 972 973 err = hci_set_ext_scan_rsp_data_sync(hdev, instance); 974 if (err) 975 return err; 976 977 return hci_enable_ext_advertising_sync(hdev, instance); 978 } 979 980 static int hci_disable_per_advertising_sync(struct hci_dev *hdev, u8 instance) 981 { 982 struct hci_cp_le_set_per_adv_enable cp; 983 984 /* If periodic advertising already disabled there is nothing to do. */ 985 if (!hci_dev_test_flag(hdev, HCI_LE_PER_ADV)) 986 return 0; 987 988 memset(&cp, 0, sizeof(cp)); 989 990 cp.enable = 0x00; 991 cp.handle = instance; 992 993 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE, 994 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 995 } 996 997 static int hci_set_per_adv_params_sync(struct hci_dev *hdev, u8 instance, 998 u16 min_interval, u16 max_interval) 999 { 1000 struct hci_cp_le_set_per_adv_params cp; 1001 1002 memset(&cp, 0, sizeof(cp)); 1003 1004 if (!min_interval) 1005 min_interval = DISCOV_LE_PER_ADV_INT_MIN; 1006 1007 if (!max_interval) 1008 max_interval = DISCOV_LE_PER_ADV_INT_MAX; 1009 1010 cp.handle = instance; 1011 cp.min_interval = cpu_to_le16(min_interval); 1012 cp.max_interval = cpu_to_le16(max_interval); 1013 cp.periodic_properties = 0x0000; 1014 1015 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_PARAMS, 1016 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1017 } 1018 1019 static int hci_set_per_adv_data_sync(struct hci_dev *hdev, u8 instance) 1020 { 1021 struct { 1022 struct hci_cp_le_set_per_adv_data cp; 1023 u8 data[HCI_MAX_PER_AD_LENGTH]; 1024 } pdu; 1025 u8 len; 1026 1027 memset(&pdu, 0, sizeof(pdu)); 1028 1029 if (instance) { 1030 struct adv_info *adv = hci_find_adv_instance(hdev, instance); 1031 1032 if (!adv || !adv->periodic) 1033 return 0; 1034 } 1035 1036 len = eir_create_per_adv_data(hdev, instance, pdu.data); 1037 1038 pdu.cp.length = len; 1039 pdu.cp.handle = instance; 1040 pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; 1041 1042 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_DATA, 1043 sizeof(pdu.cp) + len, &pdu, 1044 HCI_CMD_TIMEOUT); 1045 } 1046 1047 static int hci_enable_per_advertising_sync(struct hci_dev *hdev, u8 instance) 1048 { 1049 struct hci_cp_le_set_per_adv_enable cp; 1050 1051 /* If periodic advertising already enabled there is nothing to do. */ 1052 if (hci_dev_test_flag(hdev, HCI_LE_PER_ADV)) 1053 return 0; 1054 1055 memset(&cp, 0, sizeof(cp)); 1056 1057 cp.enable = 0x01; 1058 cp.handle = instance; 1059 1060 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE, 1061 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1062 } 1063 1064 /* Checks if periodic advertising data contains a Basic Announcement and if it 1065 * does generates a Broadcast ID and add Broadcast Announcement. 1066 */ 1067 static int hci_adv_bcast_annoucement(struct hci_dev *hdev, struct adv_info *adv) 1068 { 1069 u8 bid[3]; 1070 u8 ad[4 + 3]; 1071 1072 /* Skip if NULL adv as instance 0x00 is used for general purpose 1073 * advertising so it cannot used for the likes of Broadcast Announcement 1074 * as it can be overwritten at any point. 1075 */ 1076 if (!adv) 1077 return 0; 1078 1079 /* Check if PA data doesn't contains a Basic Audio Announcement then 1080 * there is nothing to do. 1081 */ 1082 if (!eir_get_service_data(adv->per_adv_data, adv->per_adv_data_len, 1083 0x1851, NULL)) 1084 return 0; 1085 1086 /* Check if advertising data already has a Broadcast Announcement since 1087 * the process may want to control the Broadcast ID directly and in that 1088 * case the kernel shall no interfere. 1089 */ 1090 if (eir_get_service_data(adv->adv_data, adv->adv_data_len, 0x1852, 1091 NULL)) 1092 return 0; 1093 1094 /* Generate Broadcast ID */ 1095 get_random_bytes(bid, sizeof(bid)); 1096 eir_append_service_data(ad, 0, 0x1852, bid, sizeof(bid)); 1097 hci_set_adv_instance_data(hdev, adv->instance, sizeof(ad), ad, 0, NULL); 1098 1099 return hci_update_adv_data_sync(hdev, adv->instance); 1100 } 1101 1102 int hci_start_per_adv_sync(struct hci_dev *hdev, u8 instance, u8 data_len, 1103 u8 *data, u32 flags, u16 min_interval, 1104 u16 max_interval, u16 sync_interval) 1105 { 1106 struct adv_info *adv = NULL; 1107 int err; 1108 bool added = false; 1109 1110 hci_disable_per_advertising_sync(hdev, instance); 1111 1112 if (instance) { 1113 adv = hci_find_adv_instance(hdev, instance); 1114 /* Create an instance if that could not be found */ 1115 if (!adv) { 1116 adv = hci_add_per_instance(hdev, instance, flags, 1117 data_len, data, 1118 sync_interval, 1119 sync_interval); 1120 if (IS_ERR(adv)) 1121 return PTR_ERR(adv); 1122 added = true; 1123 } 1124 } 1125 1126 /* Only start advertising if instance 0 or if a dedicated instance has 1127 * been added. 1128 */ 1129 if (!adv || added) { 1130 err = hci_start_ext_adv_sync(hdev, instance); 1131 if (err < 0) 1132 goto fail; 1133 1134 err = hci_adv_bcast_annoucement(hdev, adv); 1135 if (err < 0) 1136 goto fail; 1137 } 1138 1139 err = hci_set_per_adv_params_sync(hdev, instance, min_interval, 1140 max_interval); 1141 if (err < 0) 1142 goto fail; 1143 1144 err = hci_set_per_adv_data_sync(hdev, instance); 1145 if (err < 0) 1146 goto fail; 1147 1148 err = hci_enable_per_advertising_sync(hdev, instance); 1149 if (err < 0) 1150 goto fail; 1151 1152 return 0; 1153 1154 fail: 1155 if (added) 1156 hci_remove_adv_instance(hdev, instance); 1157 1158 return err; 1159 } 1160 1161 static int hci_start_adv_sync(struct hci_dev *hdev, u8 instance) 1162 { 1163 int err; 1164 1165 if (ext_adv_capable(hdev)) 1166 return hci_start_ext_adv_sync(hdev, instance); 1167 1168 err = hci_update_adv_data_sync(hdev, instance); 1169 if (err) 1170 return err; 1171 1172 err = hci_update_scan_rsp_data_sync(hdev, instance); 1173 if (err) 1174 return err; 1175 1176 return hci_enable_advertising_sync(hdev); 1177 } 1178 1179 int hci_enable_advertising_sync(struct hci_dev *hdev) 1180 { 1181 struct adv_info *adv_instance; 1182 struct hci_cp_le_set_adv_param cp; 1183 u8 own_addr_type, enable = 0x01; 1184 bool connectable; 1185 u16 adv_min_interval, adv_max_interval; 1186 u32 flags; 1187 u8 status; 1188 1189 if (ext_adv_capable(hdev)) 1190 return hci_enable_ext_advertising_sync(hdev, 1191 hdev->cur_adv_instance); 1192 1193 flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance); 1194 adv_instance = hci_find_adv_instance(hdev, hdev->cur_adv_instance); 1195 1196 /* If the "connectable" instance flag was not set, then choose between 1197 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. 1198 */ 1199 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || 1200 mgmt_get_connectable(hdev); 1201 1202 if (!is_advertising_allowed(hdev, connectable)) 1203 return -EINVAL; 1204 1205 status = hci_disable_advertising_sync(hdev); 1206 if (status) 1207 return status; 1208 1209 /* Clear the HCI_LE_ADV bit temporarily so that the 1210 * hci_update_random_address knows that it's safe to go ahead 1211 * and write a new random address. The flag will be set back on 1212 * as soon as the SET_ADV_ENABLE HCI command completes. 1213 */ 1214 hci_dev_clear_flag(hdev, HCI_LE_ADV); 1215 1216 /* Set require_privacy to true only when non-connectable 1217 * advertising is used. In that case it is fine to use a 1218 * non-resolvable private address. 1219 */ 1220 status = hci_update_random_address_sync(hdev, !connectable, 1221 adv_use_rpa(hdev, flags), 1222 &own_addr_type); 1223 if (status) 1224 return status; 1225 1226 memset(&cp, 0, sizeof(cp)); 1227 1228 if (adv_instance) { 1229 adv_min_interval = adv_instance->min_interval; 1230 adv_max_interval = adv_instance->max_interval; 1231 } else { 1232 adv_min_interval = hdev->le_adv_min_interval; 1233 adv_max_interval = hdev->le_adv_max_interval; 1234 } 1235 1236 if (connectable) { 1237 cp.type = LE_ADV_IND; 1238 } else { 1239 if (hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance)) 1240 cp.type = LE_ADV_SCAN_IND; 1241 else 1242 cp.type = LE_ADV_NONCONN_IND; 1243 1244 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) || 1245 hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { 1246 adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN; 1247 adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX; 1248 } 1249 } 1250 1251 cp.min_interval = cpu_to_le16(adv_min_interval); 1252 cp.max_interval = cpu_to_le16(adv_max_interval); 1253 cp.own_address_type = own_addr_type; 1254 cp.channel_map = hdev->le_adv_channel_map; 1255 1256 status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM, 1257 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1258 if (status) 1259 return status; 1260 1261 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 1262 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 1263 } 1264 1265 static int enable_advertising_sync(struct hci_dev *hdev, void *data) 1266 { 1267 return hci_enable_advertising_sync(hdev); 1268 } 1269 1270 int hci_enable_advertising(struct hci_dev *hdev) 1271 { 1272 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) && 1273 list_empty(&hdev->adv_instances)) 1274 return 0; 1275 1276 return hci_cmd_sync_queue(hdev, enable_advertising_sync, NULL, NULL); 1277 } 1278 1279 int hci_remove_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance, 1280 struct sock *sk) 1281 { 1282 int err; 1283 1284 if (!ext_adv_capable(hdev)) 1285 return 0; 1286 1287 err = hci_disable_ext_adv_instance_sync(hdev, instance); 1288 if (err) 1289 return err; 1290 1291 /* If request specifies an instance that doesn't exist, fail */ 1292 if (instance > 0 && !hci_find_adv_instance(hdev, instance)) 1293 return -EINVAL; 1294 1295 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_REMOVE_ADV_SET, 1296 sizeof(instance), &instance, 0, 1297 HCI_CMD_TIMEOUT, sk); 1298 } 1299 1300 static int remove_ext_adv_sync(struct hci_dev *hdev, void *data) 1301 { 1302 struct adv_info *adv = data; 1303 u8 instance = 0; 1304 1305 if (adv) 1306 instance = adv->instance; 1307 1308 return hci_remove_ext_adv_instance_sync(hdev, instance, NULL); 1309 } 1310 1311 int hci_remove_ext_adv_instance(struct hci_dev *hdev, u8 instance) 1312 { 1313 struct adv_info *adv = NULL; 1314 1315 if (instance) { 1316 adv = hci_find_adv_instance(hdev, instance); 1317 if (!adv) 1318 return -EINVAL; 1319 } 1320 1321 return hci_cmd_sync_queue(hdev, remove_ext_adv_sync, adv, NULL); 1322 } 1323 1324 int hci_le_terminate_big_sync(struct hci_dev *hdev, u8 handle, u8 reason) 1325 { 1326 struct hci_cp_le_term_big cp; 1327 1328 memset(&cp, 0, sizeof(cp)); 1329 cp.handle = handle; 1330 cp.reason = reason; 1331 1332 return __hci_cmd_sync_status(hdev, HCI_OP_LE_TERM_BIG, 1333 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1334 } 1335 1336 static void cancel_adv_timeout(struct hci_dev *hdev) 1337 { 1338 if (hdev->adv_instance_timeout) { 1339 hdev->adv_instance_timeout = 0; 1340 cancel_delayed_work(&hdev->adv_instance_expire); 1341 } 1342 } 1343 1344 static int hci_set_ext_adv_data_sync(struct hci_dev *hdev, u8 instance) 1345 { 1346 struct { 1347 struct hci_cp_le_set_ext_adv_data cp; 1348 u8 data[HCI_MAX_EXT_AD_LENGTH]; 1349 } pdu; 1350 u8 len; 1351 struct adv_info *adv = NULL; 1352 int err; 1353 1354 memset(&pdu, 0, sizeof(pdu)); 1355 1356 if (instance) { 1357 adv = hci_find_adv_instance(hdev, instance); 1358 if (!adv || !adv->adv_data_changed) 1359 return 0; 1360 } 1361 1362 len = eir_create_adv_data(hdev, instance, pdu.data); 1363 1364 pdu.cp.length = len; 1365 pdu.cp.handle = instance; 1366 pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; 1367 pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG; 1368 1369 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_DATA, 1370 sizeof(pdu.cp) + len, &pdu.cp, 1371 HCI_CMD_TIMEOUT); 1372 if (err) 1373 return err; 1374 1375 /* Update data if the command succeed */ 1376 if (adv) { 1377 adv->adv_data_changed = false; 1378 } else { 1379 memcpy(hdev->adv_data, pdu.data, len); 1380 hdev->adv_data_len = len; 1381 } 1382 1383 return 0; 1384 } 1385 1386 static int hci_set_adv_data_sync(struct hci_dev *hdev, u8 instance) 1387 { 1388 struct hci_cp_le_set_adv_data cp; 1389 u8 len; 1390 1391 memset(&cp, 0, sizeof(cp)); 1392 1393 len = eir_create_adv_data(hdev, instance, cp.data); 1394 1395 /* There's nothing to do if the data hasn't changed */ 1396 if (hdev->adv_data_len == len && 1397 memcmp(cp.data, hdev->adv_data, len) == 0) 1398 return 0; 1399 1400 memcpy(hdev->adv_data, cp.data, sizeof(cp.data)); 1401 hdev->adv_data_len = len; 1402 1403 cp.length = len; 1404 1405 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_DATA, 1406 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1407 } 1408 1409 int hci_update_adv_data_sync(struct hci_dev *hdev, u8 instance) 1410 { 1411 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1412 return 0; 1413 1414 if (ext_adv_capable(hdev)) 1415 return hci_set_ext_adv_data_sync(hdev, instance); 1416 1417 return hci_set_adv_data_sync(hdev, instance); 1418 } 1419 1420 int hci_schedule_adv_instance_sync(struct hci_dev *hdev, u8 instance, 1421 bool force) 1422 { 1423 struct adv_info *adv = NULL; 1424 u16 timeout; 1425 1426 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) && !ext_adv_capable(hdev)) 1427 return -EPERM; 1428 1429 if (hdev->adv_instance_timeout) 1430 return -EBUSY; 1431 1432 adv = hci_find_adv_instance(hdev, instance); 1433 if (!adv) 1434 return -ENOENT; 1435 1436 /* A zero timeout means unlimited advertising. As long as there is 1437 * only one instance, duration should be ignored. We still set a timeout 1438 * in case further instances are being added later on. 1439 * 1440 * If the remaining lifetime of the instance is more than the duration 1441 * then the timeout corresponds to the duration, otherwise it will be 1442 * reduced to the remaining instance lifetime. 1443 */ 1444 if (adv->timeout == 0 || adv->duration <= adv->remaining_time) 1445 timeout = adv->duration; 1446 else 1447 timeout = adv->remaining_time; 1448 1449 /* The remaining time is being reduced unless the instance is being 1450 * advertised without time limit. 1451 */ 1452 if (adv->timeout) 1453 adv->remaining_time = adv->remaining_time - timeout; 1454 1455 /* Only use work for scheduling instances with legacy advertising */ 1456 if (!ext_adv_capable(hdev)) { 1457 hdev->adv_instance_timeout = timeout; 1458 queue_delayed_work(hdev->req_workqueue, 1459 &hdev->adv_instance_expire, 1460 msecs_to_jiffies(timeout * 1000)); 1461 } 1462 1463 /* If we're just re-scheduling the same instance again then do not 1464 * execute any HCI commands. This happens when a single instance is 1465 * being advertised. 1466 */ 1467 if (!force && hdev->cur_adv_instance == instance && 1468 hci_dev_test_flag(hdev, HCI_LE_ADV)) 1469 return 0; 1470 1471 hdev->cur_adv_instance = instance; 1472 1473 return hci_start_adv_sync(hdev, instance); 1474 } 1475 1476 static int hci_clear_adv_sets_sync(struct hci_dev *hdev, struct sock *sk) 1477 { 1478 int err; 1479 1480 if (!ext_adv_capable(hdev)) 1481 return 0; 1482 1483 /* Disable instance 0x00 to disable all instances */ 1484 err = hci_disable_ext_adv_instance_sync(hdev, 0x00); 1485 if (err) 1486 return err; 1487 1488 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CLEAR_ADV_SETS, 1489 0, NULL, 0, HCI_CMD_TIMEOUT, sk); 1490 } 1491 1492 static int hci_clear_adv_sync(struct hci_dev *hdev, struct sock *sk, bool force) 1493 { 1494 struct adv_info *adv, *n; 1495 1496 if (ext_adv_capable(hdev)) 1497 /* Remove all existing sets */ 1498 return hci_clear_adv_sets_sync(hdev, sk); 1499 1500 /* This is safe as long as there is no command send while the lock is 1501 * held. 1502 */ 1503 hci_dev_lock(hdev); 1504 1505 /* Cleanup non-ext instances */ 1506 list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) { 1507 u8 instance = adv->instance; 1508 int err; 1509 1510 if (!(force || adv->timeout)) 1511 continue; 1512 1513 err = hci_remove_adv_instance(hdev, instance); 1514 if (!err) 1515 mgmt_advertising_removed(sk, hdev, instance); 1516 } 1517 1518 hci_dev_unlock(hdev); 1519 1520 return 0; 1521 } 1522 1523 static int hci_remove_adv_sync(struct hci_dev *hdev, u8 instance, 1524 struct sock *sk) 1525 { 1526 int err; 1527 1528 /* If we use extended advertising, instance has to be removed first. */ 1529 if (ext_adv_capable(hdev)) 1530 return hci_remove_ext_adv_instance_sync(hdev, instance, sk); 1531 1532 /* This is safe as long as there is no command send while the lock is 1533 * held. 1534 */ 1535 hci_dev_lock(hdev); 1536 1537 err = hci_remove_adv_instance(hdev, instance); 1538 if (!err) 1539 mgmt_advertising_removed(sk, hdev, instance); 1540 1541 hci_dev_unlock(hdev); 1542 1543 return err; 1544 } 1545 1546 /* For a single instance: 1547 * - force == true: The instance will be removed even when its remaining 1548 * lifetime is not zero. 1549 * - force == false: the instance will be deactivated but kept stored unless 1550 * the remaining lifetime is zero. 1551 * 1552 * For instance == 0x00: 1553 * - force == true: All instances will be removed regardless of their timeout 1554 * setting. 1555 * - force == false: Only instances that have a timeout will be removed. 1556 */ 1557 int hci_remove_advertising_sync(struct hci_dev *hdev, struct sock *sk, 1558 u8 instance, bool force) 1559 { 1560 struct adv_info *next = NULL; 1561 int err; 1562 1563 /* Cancel any timeout concerning the removed instance(s). */ 1564 if (!instance || hdev->cur_adv_instance == instance) 1565 cancel_adv_timeout(hdev); 1566 1567 /* Get the next instance to advertise BEFORE we remove 1568 * the current one. This can be the same instance again 1569 * if there is only one instance. 1570 */ 1571 if (hdev->cur_adv_instance == instance) 1572 next = hci_get_next_instance(hdev, instance); 1573 1574 if (!instance) { 1575 err = hci_clear_adv_sync(hdev, sk, force); 1576 if (err) 1577 return err; 1578 } else { 1579 struct adv_info *adv = hci_find_adv_instance(hdev, instance); 1580 1581 if (force || (adv && adv->timeout && !adv->remaining_time)) { 1582 /* Don't advertise a removed instance. */ 1583 if (next && next->instance == instance) 1584 next = NULL; 1585 1586 err = hci_remove_adv_sync(hdev, instance, sk); 1587 if (err) 1588 return err; 1589 } 1590 } 1591 1592 if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING)) 1593 return 0; 1594 1595 if (next && !ext_adv_capable(hdev)) 1596 hci_schedule_adv_instance_sync(hdev, next->instance, false); 1597 1598 return 0; 1599 } 1600 1601 int hci_read_rssi_sync(struct hci_dev *hdev, __le16 handle) 1602 { 1603 struct hci_cp_read_rssi cp; 1604 1605 cp.handle = handle; 1606 return __hci_cmd_sync_status(hdev, HCI_OP_READ_RSSI, 1607 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1608 } 1609 1610 int hci_read_clock_sync(struct hci_dev *hdev, struct hci_cp_read_clock *cp) 1611 { 1612 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLOCK, 1613 sizeof(*cp), cp, HCI_CMD_TIMEOUT); 1614 } 1615 1616 int hci_read_tx_power_sync(struct hci_dev *hdev, __le16 handle, u8 type) 1617 { 1618 struct hci_cp_read_tx_power cp; 1619 1620 cp.handle = handle; 1621 cp.type = type; 1622 return __hci_cmd_sync_status(hdev, HCI_OP_READ_TX_POWER, 1623 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1624 } 1625 1626 int hci_disable_advertising_sync(struct hci_dev *hdev) 1627 { 1628 u8 enable = 0x00; 1629 1630 /* If controller is not advertising we are done. */ 1631 if (!hci_dev_test_flag(hdev, HCI_LE_ADV)) 1632 return 0; 1633 1634 if (ext_adv_capable(hdev)) 1635 return hci_disable_ext_adv_instance_sync(hdev, 0x00); 1636 1637 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 1638 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 1639 } 1640 1641 static int hci_le_set_ext_scan_enable_sync(struct hci_dev *hdev, u8 val, 1642 u8 filter_dup) 1643 { 1644 struct hci_cp_le_set_ext_scan_enable cp; 1645 1646 memset(&cp, 0, sizeof(cp)); 1647 cp.enable = val; 1648 cp.filter_dup = filter_dup; 1649 1650 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_ENABLE, 1651 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1652 } 1653 1654 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val, 1655 u8 filter_dup) 1656 { 1657 struct hci_cp_le_set_scan_enable cp; 1658 1659 if (use_ext_scan(hdev)) 1660 return hci_le_set_ext_scan_enable_sync(hdev, val, filter_dup); 1661 1662 memset(&cp, 0, sizeof(cp)); 1663 cp.enable = val; 1664 cp.filter_dup = filter_dup; 1665 1666 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_ENABLE, 1667 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1668 } 1669 1670 static int hci_le_set_addr_resolution_enable_sync(struct hci_dev *hdev, u8 val) 1671 { 1672 if (!use_ll_privacy(hdev)) 1673 return 0; 1674 1675 /* If controller is not/already resolving we are done. */ 1676 if (val == hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) 1677 return 0; 1678 1679 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1680 sizeof(val), &val, HCI_CMD_TIMEOUT); 1681 } 1682 1683 static int hci_scan_disable_sync(struct hci_dev *hdev) 1684 { 1685 int err; 1686 1687 /* If controller is not scanning we are done. */ 1688 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 1689 return 0; 1690 1691 if (hdev->scanning_paused) { 1692 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 1693 return 0; 1694 } 1695 1696 err = hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00); 1697 if (err) { 1698 bt_dev_err(hdev, "Unable to disable scanning: %d", err); 1699 return err; 1700 } 1701 1702 return err; 1703 } 1704 1705 static bool scan_use_rpa(struct hci_dev *hdev) 1706 { 1707 return hci_dev_test_flag(hdev, HCI_PRIVACY); 1708 } 1709 1710 static void hci_start_interleave_scan(struct hci_dev *hdev) 1711 { 1712 hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER; 1713 queue_delayed_work(hdev->req_workqueue, 1714 &hdev->interleave_scan, 0); 1715 } 1716 1717 static bool is_interleave_scanning(struct hci_dev *hdev) 1718 { 1719 return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE; 1720 } 1721 1722 static void cancel_interleave_scan(struct hci_dev *hdev) 1723 { 1724 bt_dev_dbg(hdev, "cancelling interleave scan"); 1725 1726 cancel_delayed_work_sync(&hdev->interleave_scan); 1727 1728 hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE; 1729 } 1730 1731 /* Return true if interleave_scan wasn't started until exiting this function, 1732 * otherwise, return false 1733 */ 1734 static bool hci_update_interleaved_scan_sync(struct hci_dev *hdev) 1735 { 1736 /* Do interleaved scan only if all of the following are true: 1737 * - There is at least one ADV monitor 1738 * - At least one pending LE connection or one device to be scanned for 1739 * - Monitor offloading is not supported 1740 * If so, we should alternate between allowlist scan and one without 1741 * any filters to save power. 1742 */ 1743 bool use_interleaving = hci_is_adv_monitoring(hdev) && 1744 !(list_empty(&hdev->pend_le_conns) && 1745 list_empty(&hdev->pend_le_reports)) && 1746 hci_get_adv_monitor_offload_ext(hdev) == 1747 HCI_ADV_MONITOR_EXT_NONE; 1748 bool is_interleaving = is_interleave_scanning(hdev); 1749 1750 if (use_interleaving && !is_interleaving) { 1751 hci_start_interleave_scan(hdev); 1752 bt_dev_dbg(hdev, "starting interleave scan"); 1753 return true; 1754 } 1755 1756 if (!use_interleaving && is_interleaving) 1757 cancel_interleave_scan(hdev); 1758 1759 return false; 1760 } 1761 1762 /* Removes connection to resolve list if needed.*/ 1763 static int hci_le_del_resolve_list_sync(struct hci_dev *hdev, 1764 bdaddr_t *bdaddr, u8 bdaddr_type) 1765 { 1766 struct hci_cp_le_del_from_resolv_list cp; 1767 struct bdaddr_list_with_irk *entry; 1768 1769 if (!use_ll_privacy(hdev)) 1770 return 0; 1771 1772 /* Check if the IRK has been programmed */ 1773 entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, bdaddr, 1774 bdaddr_type); 1775 if (!entry) 1776 return 0; 1777 1778 cp.bdaddr_type = bdaddr_type; 1779 bacpy(&cp.bdaddr, bdaddr); 1780 1781 return __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_RESOLV_LIST, 1782 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1783 } 1784 1785 static int hci_le_del_accept_list_sync(struct hci_dev *hdev, 1786 bdaddr_t *bdaddr, u8 bdaddr_type) 1787 { 1788 struct hci_cp_le_del_from_accept_list cp; 1789 int err; 1790 1791 /* Check if device is on accept list before removing it */ 1792 if (!hci_bdaddr_list_lookup(&hdev->le_accept_list, bdaddr, bdaddr_type)) 1793 return 0; 1794 1795 cp.bdaddr_type = bdaddr_type; 1796 bacpy(&cp.bdaddr, bdaddr); 1797 1798 /* Ignore errors when removing from resolving list as that is likely 1799 * that the device was never added. 1800 */ 1801 hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type); 1802 1803 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_ACCEPT_LIST, 1804 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1805 if (err) { 1806 bt_dev_err(hdev, "Unable to remove from allow list: %d", err); 1807 return err; 1808 } 1809 1810 bt_dev_dbg(hdev, "Remove %pMR (0x%x) from allow list", &cp.bdaddr, 1811 cp.bdaddr_type); 1812 1813 return 0; 1814 } 1815 1816 /* Adds connection to resolve list if needed. 1817 * Setting params to NULL programs local hdev->irk 1818 */ 1819 static int hci_le_add_resolve_list_sync(struct hci_dev *hdev, 1820 struct hci_conn_params *params) 1821 { 1822 struct hci_cp_le_add_to_resolv_list cp; 1823 struct smp_irk *irk; 1824 struct bdaddr_list_with_irk *entry; 1825 1826 if (!use_ll_privacy(hdev)) 1827 return 0; 1828 1829 /* Attempt to program local identity address, type and irk if params is 1830 * NULL. 1831 */ 1832 if (!params) { 1833 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 1834 return 0; 1835 1836 hci_copy_identity_address(hdev, &cp.bdaddr, &cp.bdaddr_type); 1837 memcpy(cp.peer_irk, hdev->irk, 16); 1838 goto done; 1839 } 1840 1841 irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type); 1842 if (!irk) 1843 return 0; 1844 1845 /* Check if the IK has _not_ been programmed yet. */ 1846 entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, 1847 ¶ms->addr, 1848 params->addr_type); 1849 if (entry) 1850 return 0; 1851 1852 cp.bdaddr_type = params->addr_type; 1853 bacpy(&cp.bdaddr, ¶ms->addr); 1854 memcpy(cp.peer_irk, irk->val, 16); 1855 1856 /* Default privacy mode is always Network */ 1857 params->privacy_mode = HCI_NETWORK_PRIVACY; 1858 1859 done: 1860 if (hci_dev_test_flag(hdev, HCI_PRIVACY)) 1861 memcpy(cp.local_irk, hdev->irk, 16); 1862 else 1863 memset(cp.local_irk, 0, 16); 1864 1865 return __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_RESOLV_LIST, 1866 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1867 } 1868 1869 /* Set Device Privacy Mode. */ 1870 static int hci_le_set_privacy_mode_sync(struct hci_dev *hdev, 1871 struct hci_conn_params *params) 1872 { 1873 struct hci_cp_le_set_privacy_mode cp; 1874 struct smp_irk *irk; 1875 1876 /* If device privacy mode has already been set there is nothing to do */ 1877 if (params->privacy_mode == HCI_DEVICE_PRIVACY) 1878 return 0; 1879 1880 /* Check if HCI_CONN_FLAG_DEVICE_PRIVACY has been set as it also 1881 * indicates that LL Privacy has been enabled and 1882 * HCI_OP_LE_SET_PRIVACY_MODE is supported. 1883 */ 1884 if (!(params->flags & HCI_CONN_FLAG_DEVICE_PRIVACY)) 1885 return 0; 1886 1887 irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type); 1888 if (!irk) 1889 return 0; 1890 1891 memset(&cp, 0, sizeof(cp)); 1892 cp.bdaddr_type = irk->addr_type; 1893 bacpy(&cp.bdaddr, &irk->bdaddr); 1894 cp.mode = HCI_DEVICE_PRIVACY; 1895 1896 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PRIVACY_MODE, 1897 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1898 } 1899 1900 /* Adds connection to allow list if needed, if the device uses RPA (has IRK) 1901 * this attempts to program the device in the resolving list as well and 1902 * properly set the privacy mode. 1903 */ 1904 static int hci_le_add_accept_list_sync(struct hci_dev *hdev, 1905 struct hci_conn_params *params, 1906 u8 *num_entries) 1907 { 1908 struct hci_cp_le_add_to_accept_list cp; 1909 int err; 1910 1911 /* During suspend, only wakeable devices can be in acceptlist */ 1912 if (hdev->suspended && 1913 !(params->flags & HCI_CONN_FLAG_REMOTE_WAKEUP)) 1914 return 0; 1915 1916 /* Select filter policy to accept all advertising */ 1917 if (*num_entries >= hdev->le_accept_list_size) 1918 return -ENOSPC; 1919 1920 /* Accept list can not be used with RPAs */ 1921 if (!use_ll_privacy(hdev) && 1922 hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type)) 1923 return -EINVAL; 1924 1925 /* Attempt to program the device in the resolving list first to avoid 1926 * having to rollback in case it fails since the resolving list is 1927 * dynamic it can probably be smaller than the accept list. 1928 */ 1929 err = hci_le_add_resolve_list_sync(hdev, params); 1930 if (err) { 1931 bt_dev_err(hdev, "Unable to add to resolve list: %d", err); 1932 return err; 1933 } 1934 1935 /* Set Privacy Mode */ 1936 err = hci_le_set_privacy_mode_sync(hdev, params); 1937 if (err) { 1938 bt_dev_err(hdev, "Unable to set privacy mode: %d", err); 1939 return err; 1940 } 1941 1942 /* Check if already in accept list */ 1943 if (hci_bdaddr_list_lookup(&hdev->le_accept_list, ¶ms->addr, 1944 params->addr_type)) 1945 return 0; 1946 1947 *num_entries += 1; 1948 cp.bdaddr_type = params->addr_type; 1949 bacpy(&cp.bdaddr, ¶ms->addr); 1950 1951 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST, 1952 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1953 if (err) { 1954 bt_dev_err(hdev, "Unable to add to allow list: %d", err); 1955 /* Rollback the device from the resolving list */ 1956 hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type); 1957 return err; 1958 } 1959 1960 bt_dev_dbg(hdev, "Add %pMR (0x%x) to allow list", &cp.bdaddr, 1961 cp.bdaddr_type); 1962 1963 return 0; 1964 } 1965 1966 /* This function disables/pause all advertising instances */ 1967 static int hci_pause_advertising_sync(struct hci_dev *hdev) 1968 { 1969 int err; 1970 int old_state; 1971 1972 /* If already been paused there is nothing to do. */ 1973 if (hdev->advertising_paused) 1974 return 0; 1975 1976 bt_dev_dbg(hdev, "Pausing directed advertising"); 1977 1978 /* Stop directed advertising */ 1979 old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING); 1980 if (old_state) { 1981 /* When discoverable timeout triggers, then just make sure 1982 * the limited discoverable flag is cleared. Even in the case 1983 * of a timeout triggered from general discoverable, it is 1984 * safe to unconditionally clear the flag. 1985 */ 1986 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 1987 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 1988 hdev->discov_timeout = 0; 1989 } 1990 1991 bt_dev_dbg(hdev, "Pausing advertising instances"); 1992 1993 /* Call to disable any advertisements active on the controller. 1994 * This will succeed even if no advertisements are configured. 1995 */ 1996 err = hci_disable_advertising_sync(hdev); 1997 if (err) 1998 return err; 1999 2000 /* If we are using software rotation, pause the loop */ 2001 if (!ext_adv_capable(hdev)) 2002 cancel_adv_timeout(hdev); 2003 2004 hdev->advertising_paused = true; 2005 hdev->advertising_old_state = old_state; 2006 2007 return 0; 2008 } 2009 2010 /* This function enables all user advertising instances */ 2011 static int hci_resume_advertising_sync(struct hci_dev *hdev) 2012 { 2013 struct adv_info *adv, *tmp; 2014 int err; 2015 2016 /* If advertising has not been paused there is nothing to do. */ 2017 if (!hdev->advertising_paused) 2018 return 0; 2019 2020 /* Resume directed advertising */ 2021 hdev->advertising_paused = false; 2022 if (hdev->advertising_old_state) { 2023 hci_dev_set_flag(hdev, HCI_ADVERTISING); 2024 hdev->advertising_old_state = 0; 2025 } 2026 2027 bt_dev_dbg(hdev, "Resuming advertising instances"); 2028 2029 if (ext_adv_capable(hdev)) { 2030 /* Call for each tracked instance to be re-enabled */ 2031 list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) { 2032 err = hci_enable_ext_advertising_sync(hdev, 2033 adv->instance); 2034 if (!err) 2035 continue; 2036 2037 /* If the instance cannot be resumed remove it */ 2038 hci_remove_ext_adv_instance_sync(hdev, adv->instance, 2039 NULL); 2040 } 2041 } else { 2042 /* Schedule for most recent instance to be restarted and begin 2043 * the software rotation loop 2044 */ 2045 err = hci_schedule_adv_instance_sync(hdev, 2046 hdev->cur_adv_instance, 2047 true); 2048 } 2049 2050 hdev->advertising_paused = false; 2051 2052 return err; 2053 } 2054 2055 struct sk_buff *hci_read_local_oob_data_sync(struct hci_dev *hdev, 2056 bool extended, struct sock *sk) 2057 { 2058 u16 opcode = extended ? HCI_OP_READ_LOCAL_OOB_EXT_DATA : 2059 HCI_OP_READ_LOCAL_OOB_DATA; 2060 2061 return __hci_cmd_sync_sk(hdev, opcode, 0, NULL, 0, HCI_CMD_TIMEOUT, sk); 2062 } 2063 2064 /* Device must not be scanning when updating the accept list. 2065 * 2066 * Update is done using the following sequence: 2067 * 2068 * use_ll_privacy((Disable Advertising) -> Disable Resolving List) -> 2069 * Remove Devices From Accept List -> 2070 * (has IRK && use_ll_privacy(Remove Devices From Resolving List))-> 2071 * Add Devices to Accept List -> 2072 * (has IRK && use_ll_privacy(Remove Devices From Resolving List)) -> 2073 * use_ll_privacy(Enable Resolving List -> (Enable Advertising)) -> 2074 * Enable Scanning 2075 * 2076 * In case of failure advertising shall be restored to its original state and 2077 * return would disable accept list since either accept or resolving list could 2078 * not be programmed. 2079 * 2080 */ 2081 static u8 hci_update_accept_list_sync(struct hci_dev *hdev) 2082 { 2083 struct hci_conn_params *params; 2084 struct bdaddr_list *b, *t; 2085 u8 num_entries = 0; 2086 bool pend_conn, pend_report; 2087 u8 filter_policy; 2088 int err; 2089 2090 /* Pause advertising if resolving list can be used as controllers are 2091 * cannot accept resolving list modifications while advertising. 2092 */ 2093 if (use_ll_privacy(hdev)) { 2094 err = hci_pause_advertising_sync(hdev); 2095 if (err) { 2096 bt_dev_err(hdev, "pause advertising failed: %d", err); 2097 return 0x00; 2098 } 2099 } 2100 2101 /* Disable address resolution while reprogramming accept list since 2102 * devices that do have an IRK will be programmed in the resolving list 2103 * when LL Privacy is enabled. 2104 */ 2105 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00); 2106 if (err) { 2107 bt_dev_err(hdev, "Unable to disable LL privacy: %d", err); 2108 goto done; 2109 } 2110 2111 /* Go through the current accept list programmed into the 2112 * controller one by one and check if that address is connected or is 2113 * still in the list of pending connections or list of devices to 2114 * report. If not present in either list, then remove it from 2115 * the controller. 2116 */ 2117 list_for_each_entry_safe(b, t, &hdev->le_accept_list, list) { 2118 if (hci_conn_hash_lookup_le(hdev, &b->bdaddr, b->bdaddr_type)) 2119 continue; 2120 2121 pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns, 2122 &b->bdaddr, 2123 b->bdaddr_type); 2124 pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports, 2125 &b->bdaddr, 2126 b->bdaddr_type); 2127 2128 /* If the device is not likely to connect or report, 2129 * remove it from the acceptlist. 2130 */ 2131 if (!pend_conn && !pend_report) { 2132 hci_le_del_accept_list_sync(hdev, &b->bdaddr, 2133 b->bdaddr_type); 2134 continue; 2135 } 2136 2137 num_entries++; 2138 } 2139 2140 /* Since all no longer valid accept list entries have been 2141 * removed, walk through the list of pending connections 2142 * and ensure that any new device gets programmed into 2143 * the controller. 2144 * 2145 * If the list of the devices is larger than the list of 2146 * available accept list entries in the controller, then 2147 * just abort and return filer policy value to not use the 2148 * accept list. 2149 */ 2150 list_for_each_entry(params, &hdev->pend_le_conns, action) { 2151 err = hci_le_add_accept_list_sync(hdev, params, &num_entries); 2152 if (err) 2153 goto done; 2154 } 2155 2156 /* After adding all new pending connections, walk through 2157 * the list of pending reports and also add these to the 2158 * accept list if there is still space. Abort if space runs out. 2159 */ 2160 list_for_each_entry(params, &hdev->pend_le_reports, action) { 2161 err = hci_le_add_accept_list_sync(hdev, params, &num_entries); 2162 if (err) 2163 goto done; 2164 } 2165 2166 /* Use the allowlist unless the following conditions are all true: 2167 * - We are not currently suspending 2168 * - There are 1 or more ADV monitors registered and it's not offloaded 2169 * - Interleaved scanning is not currently using the allowlist 2170 */ 2171 if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended && 2172 hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE && 2173 hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST) 2174 err = -EINVAL; 2175 2176 done: 2177 filter_policy = err ? 0x00 : 0x01; 2178 2179 /* Enable address resolution when LL Privacy is enabled. */ 2180 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x01); 2181 if (err) 2182 bt_dev_err(hdev, "Unable to enable LL privacy: %d", err); 2183 2184 /* Resume advertising if it was paused */ 2185 if (use_ll_privacy(hdev)) 2186 hci_resume_advertising_sync(hdev); 2187 2188 /* Select filter policy to use accept list */ 2189 return filter_policy; 2190 } 2191 2192 /* Returns true if an le connection is in the scanning state */ 2193 static inline bool hci_is_le_conn_scanning(struct hci_dev *hdev) 2194 { 2195 struct hci_conn_hash *h = &hdev->conn_hash; 2196 struct hci_conn *c; 2197 2198 rcu_read_lock(); 2199 2200 list_for_each_entry_rcu(c, &h->list, list) { 2201 if (c->type == LE_LINK && c->state == BT_CONNECT && 2202 test_bit(HCI_CONN_SCANNING, &c->flags)) { 2203 rcu_read_unlock(); 2204 return true; 2205 } 2206 } 2207 2208 rcu_read_unlock(); 2209 2210 return false; 2211 } 2212 2213 static int hci_le_set_ext_scan_param_sync(struct hci_dev *hdev, u8 type, 2214 u16 interval, u16 window, 2215 u8 own_addr_type, u8 filter_policy) 2216 { 2217 struct hci_cp_le_set_ext_scan_params *cp; 2218 struct hci_cp_le_scan_phy_params *phy; 2219 u8 data[sizeof(*cp) + sizeof(*phy) * 2]; 2220 u8 num_phy = 0; 2221 2222 cp = (void *)data; 2223 phy = (void *)cp->data; 2224 2225 memset(data, 0, sizeof(data)); 2226 2227 cp->own_addr_type = own_addr_type; 2228 cp->filter_policy = filter_policy; 2229 2230 if (scan_1m(hdev) || scan_2m(hdev)) { 2231 cp->scanning_phys |= LE_SCAN_PHY_1M; 2232 2233 phy->type = type; 2234 phy->interval = cpu_to_le16(interval); 2235 phy->window = cpu_to_le16(window); 2236 2237 num_phy++; 2238 phy++; 2239 } 2240 2241 if (scan_coded(hdev)) { 2242 cp->scanning_phys |= LE_SCAN_PHY_CODED; 2243 2244 phy->type = type; 2245 phy->interval = cpu_to_le16(interval); 2246 phy->window = cpu_to_le16(window); 2247 2248 num_phy++; 2249 phy++; 2250 } 2251 2252 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_PARAMS, 2253 sizeof(*cp) + sizeof(*phy) * num_phy, 2254 data, HCI_CMD_TIMEOUT); 2255 } 2256 2257 static int hci_le_set_scan_param_sync(struct hci_dev *hdev, u8 type, 2258 u16 interval, u16 window, 2259 u8 own_addr_type, u8 filter_policy) 2260 { 2261 struct hci_cp_le_set_scan_param cp; 2262 2263 if (use_ext_scan(hdev)) 2264 return hci_le_set_ext_scan_param_sync(hdev, type, interval, 2265 window, own_addr_type, 2266 filter_policy); 2267 2268 memset(&cp, 0, sizeof(cp)); 2269 cp.type = type; 2270 cp.interval = cpu_to_le16(interval); 2271 cp.window = cpu_to_le16(window); 2272 cp.own_address_type = own_addr_type; 2273 cp.filter_policy = filter_policy; 2274 2275 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_PARAM, 2276 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2277 } 2278 2279 static int hci_start_scan_sync(struct hci_dev *hdev, u8 type, u16 interval, 2280 u16 window, u8 own_addr_type, u8 filter_policy, 2281 u8 filter_dup) 2282 { 2283 int err; 2284 2285 if (hdev->scanning_paused) { 2286 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2287 return 0; 2288 } 2289 2290 err = hci_le_set_scan_param_sync(hdev, type, interval, window, 2291 own_addr_type, filter_policy); 2292 if (err) 2293 return err; 2294 2295 return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, filter_dup); 2296 } 2297 2298 static int hci_passive_scan_sync(struct hci_dev *hdev) 2299 { 2300 u8 own_addr_type; 2301 u8 filter_policy; 2302 u16 window, interval; 2303 int err; 2304 2305 if (hdev->scanning_paused) { 2306 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2307 return 0; 2308 } 2309 2310 err = hci_scan_disable_sync(hdev); 2311 if (err) { 2312 bt_dev_err(hdev, "disable scanning failed: %d", err); 2313 return err; 2314 } 2315 2316 /* Set require_privacy to false since no SCAN_REQ are send 2317 * during passive scanning. Not using an non-resolvable address 2318 * here is important so that peer devices using direct 2319 * advertising with our address will be correctly reported 2320 * by the controller. 2321 */ 2322 if (hci_update_random_address_sync(hdev, false, scan_use_rpa(hdev), 2323 &own_addr_type)) 2324 return 0; 2325 2326 if (hdev->enable_advmon_interleave_scan && 2327 hci_update_interleaved_scan_sync(hdev)) 2328 return 0; 2329 2330 bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state); 2331 2332 /* Adding or removing entries from the accept list must 2333 * happen before enabling scanning. The controller does 2334 * not allow accept list modification while scanning. 2335 */ 2336 filter_policy = hci_update_accept_list_sync(hdev); 2337 2338 /* When the controller is using random resolvable addresses and 2339 * with that having LE privacy enabled, then controllers with 2340 * Extended Scanner Filter Policies support can now enable support 2341 * for handling directed advertising. 2342 * 2343 * So instead of using filter polices 0x00 (no acceptlist) 2344 * and 0x01 (acceptlist enabled) use the new filter policies 2345 * 0x02 (no acceptlist) and 0x03 (acceptlist enabled). 2346 */ 2347 if (hci_dev_test_flag(hdev, HCI_PRIVACY) && 2348 (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)) 2349 filter_policy |= 0x02; 2350 2351 if (hdev->suspended) { 2352 window = hdev->le_scan_window_suspend; 2353 interval = hdev->le_scan_int_suspend; 2354 } else if (hci_is_le_conn_scanning(hdev)) { 2355 window = hdev->le_scan_window_connect; 2356 interval = hdev->le_scan_int_connect; 2357 } else if (hci_is_adv_monitoring(hdev)) { 2358 window = hdev->le_scan_window_adv_monitor; 2359 interval = hdev->le_scan_int_adv_monitor; 2360 } else { 2361 window = hdev->le_scan_window; 2362 interval = hdev->le_scan_interval; 2363 } 2364 2365 bt_dev_dbg(hdev, "LE passive scan with acceptlist = %d", filter_policy); 2366 2367 return hci_start_scan_sync(hdev, LE_SCAN_PASSIVE, interval, window, 2368 own_addr_type, filter_policy, 2369 LE_SCAN_FILTER_DUP_ENABLE); 2370 } 2371 2372 /* This function controls the passive scanning based on hdev->pend_le_conns 2373 * list. If there are pending LE connection we start the background scanning, 2374 * otherwise we stop it in the following sequence: 2375 * 2376 * If there are devices to scan: 2377 * 2378 * Disable Scanning -> Update Accept List -> 2379 * use_ll_privacy((Disable Advertising) -> Disable Resolving List -> 2380 * Update Resolving List -> Enable Resolving List -> (Enable Advertising)) -> 2381 * Enable Scanning 2382 * 2383 * Otherwise: 2384 * 2385 * Disable Scanning 2386 */ 2387 int hci_update_passive_scan_sync(struct hci_dev *hdev) 2388 { 2389 int err; 2390 2391 if (!test_bit(HCI_UP, &hdev->flags) || 2392 test_bit(HCI_INIT, &hdev->flags) || 2393 hci_dev_test_flag(hdev, HCI_SETUP) || 2394 hci_dev_test_flag(hdev, HCI_CONFIG) || 2395 hci_dev_test_flag(hdev, HCI_AUTO_OFF) || 2396 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 2397 return 0; 2398 2399 /* No point in doing scanning if LE support hasn't been enabled */ 2400 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 2401 return 0; 2402 2403 /* If discovery is active don't interfere with it */ 2404 if (hdev->discovery.state != DISCOVERY_STOPPED) 2405 return 0; 2406 2407 /* Reset RSSI and UUID filters when starting background scanning 2408 * since these filters are meant for service discovery only. 2409 * 2410 * The Start Discovery and Start Service Discovery operations 2411 * ensure to set proper values for RSSI threshold and UUID 2412 * filter list. So it is safe to just reset them here. 2413 */ 2414 hci_discovery_filter_clear(hdev); 2415 2416 bt_dev_dbg(hdev, "ADV monitoring is %s", 2417 hci_is_adv_monitoring(hdev) ? "on" : "off"); 2418 2419 if (list_empty(&hdev->pend_le_conns) && 2420 list_empty(&hdev->pend_le_reports) && 2421 !hci_is_adv_monitoring(hdev) && 2422 !hci_dev_test_flag(hdev, HCI_PA_SYNC)) { 2423 /* If there is no pending LE connections or devices 2424 * to be scanned for or no ADV monitors, we should stop the 2425 * background scanning. 2426 */ 2427 2428 bt_dev_dbg(hdev, "stopping background scanning"); 2429 2430 err = hci_scan_disable_sync(hdev); 2431 if (err) 2432 bt_dev_err(hdev, "stop background scanning failed: %d", 2433 err); 2434 } else { 2435 /* If there is at least one pending LE connection, we should 2436 * keep the background scan running. 2437 */ 2438 2439 /* If controller is connecting, we should not start scanning 2440 * since some controllers are not able to scan and connect at 2441 * the same time. 2442 */ 2443 if (hci_lookup_le_connect(hdev)) 2444 return 0; 2445 2446 bt_dev_dbg(hdev, "start background scanning"); 2447 2448 err = hci_passive_scan_sync(hdev); 2449 if (err) 2450 bt_dev_err(hdev, "start background scanning failed: %d", 2451 err); 2452 } 2453 2454 return err; 2455 } 2456 2457 static int update_scan_sync(struct hci_dev *hdev, void *data) 2458 { 2459 return hci_update_scan_sync(hdev); 2460 } 2461 2462 int hci_update_scan(struct hci_dev *hdev) 2463 { 2464 return hci_cmd_sync_queue(hdev, update_scan_sync, NULL, NULL); 2465 } 2466 2467 static int update_passive_scan_sync(struct hci_dev *hdev, void *data) 2468 { 2469 return hci_update_passive_scan_sync(hdev); 2470 } 2471 2472 int hci_update_passive_scan(struct hci_dev *hdev) 2473 { 2474 /* Only queue if it would have any effect */ 2475 if (!test_bit(HCI_UP, &hdev->flags) || 2476 test_bit(HCI_INIT, &hdev->flags) || 2477 hci_dev_test_flag(hdev, HCI_SETUP) || 2478 hci_dev_test_flag(hdev, HCI_CONFIG) || 2479 hci_dev_test_flag(hdev, HCI_AUTO_OFF) || 2480 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 2481 return 0; 2482 2483 return hci_cmd_sync_queue(hdev, update_passive_scan_sync, NULL, NULL); 2484 } 2485 2486 int hci_write_sc_support_sync(struct hci_dev *hdev, u8 val) 2487 { 2488 int err; 2489 2490 if (!bredr_sc_enabled(hdev) || lmp_host_sc_capable(hdev)) 2491 return 0; 2492 2493 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT, 2494 sizeof(val), &val, HCI_CMD_TIMEOUT); 2495 2496 if (!err) { 2497 if (val) { 2498 hdev->features[1][0] |= LMP_HOST_SC; 2499 hci_dev_set_flag(hdev, HCI_SC_ENABLED); 2500 } else { 2501 hdev->features[1][0] &= ~LMP_HOST_SC; 2502 hci_dev_clear_flag(hdev, HCI_SC_ENABLED); 2503 } 2504 } 2505 2506 return err; 2507 } 2508 2509 int hci_write_ssp_mode_sync(struct hci_dev *hdev, u8 mode) 2510 { 2511 int err; 2512 2513 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) || 2514 lmp_host_ssp_capable(hdev)) 2515 return 0; 2516 2517 if (!mode && hci_dev_test_flag(hdev, HCI_USE_DEBUG_KEYS)) { 2518 __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE, 2519 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 2520 } 2521 2522 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE, 2523 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 2524 if (err) 2525 return err; 2526 2527 return hci_write_sc_support_sync(hdev, 0x01); 2528 } 2529 2530 int hci_write_le_host_supported_sync(struct hci_dev *hdev, u8 le, u8 simul) 2531 { 2532 struct hci_cp_write_le_host_supported cp; 2533 2534 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED) || 2535 !lmp_bredr_capable(hdev)) 2536 return 0; 2537 2538 /* Check first if we already have the right host state 2539 * (host features set) 2540 */ 2541 if (le == lmp_host_le_capable(hdev) && 2542 simul == lmp_host_le_br_capable(hdev)) 2543 return 0; 2544 2545 memset(&cp, 0, sizeof(cp)); 2546 2547 cp.le = le; 2548 cp.simul = simul; 2549 2550 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED, 2551 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2552 } 2553 2554 static int hci_powered_update_adv_sync(struct hci_dev *hdev) 2555 { 2556 struct adv_info *adv, *tmp; 2557 int err; 2558 2559 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 2560 return 0; 2561 2562 /* If RPA Resolution has not been enable yet it means the 2563 * resolving list is empty and we should attempt to program the 2564 * local IRK in order to support using own_addr_type 2565 * ADDR_LE_DEV_RANDOM_RESOLVED (0x03). 2566 */ 2567 if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) { 2568 hci_le_add_resolve_list_sync(hdev, NULL); 2569 hci_le_set_addr_resolution_enable_sync(hdev, 0x01); 2570 } 2571 2572 /* Make sure the controller has a good default for 2573 * advertising data. This also applies to the case 2574 * where BR/EDR was toggled during the AUTO_OFF phase. 2575 */ 2576 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 2577 list_empty(&hdev->adv_instances)) { 2578 if (ext_adv_capable(hdev)) { 2579 err = hci_setup_ext_adv_instance_sync(hdev, 0x00); 2580 if (!err) 2581 hci_update_scan_rsp_data_sync(hdev, 0x00); 2582 } else { 2583 err = hci_update_adv_data_sync(hdev, 0x00); 2584 if (!err) 2585 hci_update_scan_rsp_data_sync(hdev, 0x00); 2586 } 2587 2588 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) 2589 hci_enable_advertising_sync(hdev); 2590 } 2591 2592 /* Call for each tracked instance to be scheduled */ 2593 list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) 2594 hci_schedule_adv_instance_sync(hdev, adv->instance, true); 2595 2596 return 0; 2597 } 2598 2599 static int hci_write_auth_enable_sync(struct hci_dev *hdev) 2600 { 2601 u8 link_sec; 2602 2603 link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY); 2604 if (link_sec == test_bit(HCI_AUTH, &hdev->flags)) 2605 return 0; 2606 2607 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE, 2608 sizeof(link_sec), &link_sec, 2609 HCI_CMD_TIMEOUT); 2610 } 2611 2612 int hci_write_fast_connectable_sync(struct hci_dev *hdev, bool enable) 2613 { 2614 struct hci_cp_write_page_scan_activity cp; 2615 u8 type; 2616 int err = 0; 2617 2618 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 2619 return 0; 2620 2621 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 2622 return 0; 2623 2624 memset(&cp, 0, sizeof(cp)); 2625 2626 if (enable) { 2627 type = PAGE_SCAN_TYPE_INTERLACED; 2628 2629 /* 160 msec page scan interval */ 2630 cp.interval = cpu_to_le16(0x0100); 2631 } else { 2632 type = hdev->def_page_scan_type; 2633 cp.interval = cpu_to_le16(hdev->def_page_scan_int); 2634 } 2635 2636 cp.window = cpu_to_le16(hdev->def_page_scan_window); 2637 2638 if (__cpu_to_le16(hdev->page_scan_interval) != cp.interval || 2639 __cpu_to_le16(hdev->page_scan_window) != cp.window) { 2640 err = __hci_cmd_sync_status(hdev, 2641 HCI_OP_WRITE_PAGE_SCAN_ACTIVITY, 2642 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2643 if (err) 2644 return err; 2645 } 2646 2647 if (hdev->page_scan_type != type) 2648 err = __hci_cmd_sync_status(hdev, 2649 HCI_OP_WRITE_PAGE_SCAN_TYPE, 2650 sizeof(type), &type, 2651 HCI_CMD_TIMEOUT); 2652 2653 return err; 2654 } 2655 2656 static bool disconnected_accept_list_entries(struct hci_dev *hdev) 2657 { 2658 struct bdaddr_list *b; 2659 2660 list_for_each_entry(b, &hdev->accept_list, list) { 2661 struct hci_conn *conn; 2662 2663 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr); 2664 if (!conn) 2665 return true; 2666 2667 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 2668 return true; 2669 } 2670 2671 return false; 2672 } 2673 2674 static int hci_write_scan_enable_sync(struct hci_dev *hdev, u8 val) 2675 { 2676 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE, 2677 sizeof(val), &val, 2678 HCI_CMD_TIMEOUT); 2679 } 2680 2681 int hci_update_scan_sync(struct hci_dev *hdev) 2682 { 2683 u8 scan; 2684 2685 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 2686 return 0; 2687 2688 if (!hdev_is_powered(hdev)) 2689 return 0; 2690 2691 if (mgmt_powering_down(hdev)) 2692 return 0; 2693 2694 if (hdev->scanning_paused) 2695 return 0; 2696 2697 if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) || 2698 disconnected_accept_list_entries(hdev)) 2699 scan = SCAN_PAGE; 2700 else 2701 scan = SCAN_DISABLED; 2702 2703 if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 2704 scan |= SCAN_INQUIRY; 2705 2706 if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) && 2707 test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY)) 2708 return 0; 2709 2710 return hci_write_scan_enable_sync(hdev, scan); 2711 } 2712 2713 int hci_update_name_sync(struct hci_dev *hdev) 2714 { 2715 struct hci_cp_write_local_name cp; 2716 2717 memset(&cp, 0, sizeof(cp)); 2718 2719 memcpy(cp.name, hdev->dev_name, sizeof(cp.name)); 2720 2721 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LOCAL_NAME, 2722 sizeof(cp), &cp, 2723 HCI_CMD_TIMEOUT); 2724 } 2725 2726 /* This function perform powered update HCI command sequence after the HCI init 2727 * sequence which end up resetting all states, the sequence is as follows: 2728 * 2729 * HCI_SSP_ENABLED(Enable SSP) 2730 * HCI_LE_ENABLED(Enable LE) 2731 * HCI_LE_ENABLED(use_ll_privacy(Add local IRK to Resolving List) -> 2732 * Update adv data) 2733 * Enable Authentication 2734 * lmp_bredr_capable(Set Fast Connectable -> Set Scan Type -> Set Class -> 2735 * Set Name -> Set EIR) 2736 */ 2737 int hci_powered_update_sync(struct hci_dev *hdev) 2738 { 2739 int err; 2740 2741 /* Register the available SMP channels (BR/EDR and LE) only when 2742 * successfully powering on the controller. This late 2743 * registration is required so that LE SMP can clearly decide if 2744 * the public address or static address is used. 2745 */ 2746 smp_register(hdev); 2747 2748 err = hci_write_ssp_mode_sync(hdev, 0x01); 2749 if (err) 2750 return err; 2751 2752 err = hci_write_le_host_supported_sync(hdev, 0x01, 0x00); 2753 if (err) 2754 return err; 2755 2756 err = hci_powered_update_adv_sync(hdev); 2757 if (err) 2758 return err; 2759 2760 err = hci_write_auth_enable_sync(hdev); 2761 if (err) 2762 return err; 2763 2764 if (lmp_bredr_capable(hdev)) { 2765 if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE)) 2766 hci_write_fast_connectable_sync(hdev, true); 2767 else 2768 hci_write_fast_connectable_sync(hdev, false); 2769 hci_update_scan_sync(hdev); 2770 hci_update_class_sync(hdev); 2771 hci_update_name_sync(hdev); 2772 hci_update_eir_sync(hdev); 2773 } 2774 2775 return 0; 2776 } 2777 2778 /** 2779 * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address 2780 * (BD_ADDR) for a HCI device from 2781 * a firmware node property. 2782 * @hdev: The HCI device 2783 * 2784 * Search the firmware node for 'local-bd-address'. 2785 * 2786 * All-zero BD addresses are rejected, because those could be properties 2787 * that exist in the firmware tables, but were not updated by the firmware. For 2788 * example, the DTS could define 'local-bd-address', with zero BD addresses. 2789 */ 2790 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev) 2791 { 2792 struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent); 2793 bdaddr_t ba; 2794 int ret; 2795 2796 ret = fwnode_property_read_u8_array(fwnode, "local-bd-address", 2797 (u8 *)&ba, sizeof(ba)); 2798 if (ret < 0 || !bacmp(&ba, BDADDR_ANY)) 2799 return; 2800 2801 bacpy(&hdev->public_addr, &ba); 2802 } 2803 2804 struct hci_init_stage { 2805 int (*func)(struct hci_dev *hdev); 2806 }; 2807 2808 /* Run init stage NULL terminated function table */ 2809 static int hci_init_stage_sync(struct hci_dev *hdev, 2810 const struct hci_init_stage *stage) 2811 { 2812 size_t i; 2813 2814 for (i = 0; stage[i].func; i++) { 2815 int err; 2816 2817 err = stage[i].func(hdev); 2818 if (err) 2819 return err; 2820 } 2821 2822 return 0; 2823 } 2824 2825 /* Read Local Version */ 2826 static int hci_read_local_version_sync(struct hci_dev *hdev) 2827 { 2828 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_VERSION, 2829 0, NULL, HCI_CMD_TIMEOUT); 2830 } 2831 2832 /* Read BD Address */ 2833 static int hci_read_bd_addr_sync(struct hci_dev *hdev) 2834 { 2835 return __hci_cmd_sync_status(hdev, HCI_OP_READ_BD_ADDR, 2836 0, NULL, HCI_CMD_TIMEOUT); 2837 } 2838 2839 #define HCI_INIT(_func) \ 2840 { \ 2841 .func = _func, \ 2842 } 2843 2844 static const struct hci_init_stage hci_init0[] = { 2845 /* HCI_OP_READ_LOCAL_VERSION */ 2846 HCI_INIT(hci_read_local_version_sync), 2847 /* HCI_OP_READ_BD_ADDR */ 2848 HCI_INIT(hci_read_bd_addr_sync), 2849 {} 2850 }; 2851 2852 int hci_reset_sync(struct hci_dev *hdev) 2853 { 2854 int err; 2855 2856 set_bit(HCI_RESET, &hdev->flags); 2857 2858 err = __hci_cmd_sync_status(hdev, HCI_OP_RESET, 0, NULL, 2859 HCI_CMD_TIMEOUT); 2860 if (err) 2861 return err; 2862 2863 return 0; 2864 } 2865 2866 static int hci_init0_sync(struct hci_dev *hdev) 2867 { 2868 int err; 2869 2870 bt_dev_dbg(hdev, ""); 2871 2872 /* Reset */ 2873 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) { 2874 err = hci_reset_sync(hdev); 2875 if (err) 2876 return err; 2877 } 2878 2879 return hci_init_stage_sync(hdev, hci_init0); 2880 } 2881 2882 static int hci_unconf_init_sync(struct hci_dev *hdev) 2883 { 2884 int err; 2885 2886 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) 2887 return 0; 2888 2889 err = hci_init0_sync(hdev); 2890 if (err < 0) 2891 return err; 2892 2893 if (hci_dev_test_flag(hdev, HCI_SETUP)) 2894 hci_debugfs_create_basic(hdev); 2895 2896 return 0; 2897 } 2898 2899 /* Read Local Supported Features. */ 2900 static int hci_read_local_features_sync(struct hci_dev *hdev) 2901 { 2902 /* Not all AMP controllers support this command */ 2903 if (hdev->dev_type == HCI_AMP && !(hdev->commands[14] & 0x20)) 2904 return 0; 2905 2906 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_FEATURES, 2907 0, NULL, HCI_CMD_TIMEOUT); 2908 } 2909 2910 /* BR Controller init stage 1 command sequence */ 2911 static const struct hci_init_stage br_init1[] = { 2912 /* HCI_OP_READ_LOCAL_FEATURES */ 2913 HCI_INIT(hci_read_local_features_sync), 2914 /* HCI_OP_READ_LOCAL_VERSION */ 2915 HCI_INIT(hci_read_local_version_sync), 2916 /* HCI_OP_READ_BD_ADDR */ 2917 HCI_INIT(hci_read_bd_addr_sync), 2918 {} 2919 }; 2920 2921 /* Read Local Commands */ 2922 static int hci_read_local_cmds_sync(struct hci_dev *hdev) 2923 { 2924 /* All Bluetooth 1.2 and later controllers should support the 2925 * HCI command for reading the local supported commands. 2926 * 2927 * Unfortunately some controllers indicate Bluetooth 1.2 support, 2928 * but do not have support for this command. If that is the case, 2929 * the driver can quirk the behavior and skip reading the local 2930 * supported commands. 2931 */ 2932 if (hdev->hci_ver > BLUETOOTH_VER_1_1 && 2933 !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks)) 2934 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_COMMANDS, 2935 0, NULL, HCI_CMD_TIMEOUT); 2936 2937 return 0; 2938 } 2939 2940 /* Read Local AMP Info */ 2941 static int hci_read_local_amp_info_sync(struct hci_dev *hdev) 2942 { 2943 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_AMP_INFO, 2944 0, NULL, HCI_CMD_TIMEOUT); 2945 } 2946 2947 /* Read Data Blk size */ 2948 static int hci_read_data_block_size_sync(struct hci_dev *hdev) 2949 { 2950 return __hci_cmd_sync_status(hdev, HCI_OP_READ_DATA_BLOCK_SIZE, 2951 0, NULL, HCI_CMD_TIMEOUT); 2952 } 2953 2954 /* Read Flow Control Mode */ 2955 static int hci_read_flow_control_mode_sync(struct hci_dev *hdev) 2956 { 2957 return __hci_cmd_sync_status(hdev, HCI_OP_READ_FLOW_CONTROL_MODE, 2958 0, NULL, HCI_CMD_TIMEOUT); 2959 } 2960 2961 /* Read Location Data */ 2962 static int hci_read_location_data_sync(struct hci_dev *hdev) 2963 { 2964 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCATION_DATA, 2965 0, NULL, HCI_CMD_TIMEOUT); 2966 } 2967 2968 /* AMP Controller init stage 1 command sequence */ 2969 static const struct hci_init_stage amp_init1[] = { 2970 /* HCI_OP_READ_LOCAL_VERSION */ 2971 HCI_INIT(hci_read_local_version_sync), 2972 /* HCI_OP_READ_LOCAL_COMMANDS */ 2973 HCI_INIT(hci_read_local_cmds_sync), 2974 /* HCI_OP_READ_LOCAL_AMP_INFO */ 2975 HCI_INIT(hci_read_local_amp_info_sync), 2976 /* HCI_OP_READ_DATA_BLOCK_SIZE */ 2977 HCI_INIT(hci_read_data_block_size_sync), 2978 /* HCI_OP_READ_FLOW_CONTROL_MODE */ 2979 HCI_INIT(hci_read_flow_control_mode_sync), 2980 /* HCI_OP_READ_LOCATION_DATA */ 2981 HCI_INIT(hci_read_location_data_sync), 2982 }; 2983 2984 static int hci_init1_sync(struct hci_dev *hdev) 2985 { 2986 int err; 2987 2988 bt_dev_dbg(hdev, ""); 2989 2990 /* Reset */ 2991 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) { 2992 err = hci_reset_sync(hdev); 2993 if (err) 2994 return err; 2995 } 2996 2997 switch (hdev->dev_type) { 2998 case HCI_PRIMARY: 2999 hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED; 3000 return hci_init_stage_sync(hdev, br_init1); 3001 case HCI_AMP: 3002 hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED; 3003 return hci_init_stage_sync(hdev, amp_init1); 3004 default: 3005 bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type); 3006 break; 3007 } 3008 3009 return 0; 3010 } 3011 3012 /* AMP Controller init stage 2 command sequence */ 3013 static const struct hci_init_stage amp_init2[] = { 3014 /* HCI_OP_READ_LOCAL_FEATURES */ 3015 HCI_INIT(hci_read_local_features_sync), 3016 }; 3017 3018 /* Read Buffer Size (ACL mtu, max pkt, etc.) */ 3019 static int hci_read_buffer_size_sync(struct hci_dev *hdev) 3020 { 3021 /* Use Read LE Buffer Size V2 if supported */ 3022 if (hdev->commands[41] & 0x20) 3023 return __hci_cmd_sync_status(hdev, 3024 HCI_OP_LE_READ_BUFFER_SIZE_V2, 3025 0, NULL, HCI_CMD_TIMEOUT); 3026 3027 return __hci_cmd_sync_status(hdev, HCI_OP_READ_BUFFER_SIZE, 3028 0, NULL, HCI_CMD_TIMEOUT); 3029 } 3030 3031 /* Read Class of Device */ 3032 static int hci_read_dev_class_sync(struct hci_dev *hdev) 3033 { 3034 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLASS_OF_DEV, 3035 0, NULL, HCI_CMD_TIMEOUT); 3036 } 3037 3038 /* Read Local Name */ 3039 static int hci_read_local_name_sync(struct hci_dev *hdev) 3040 { 3041 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_NAME, 3042 0, NULL, HCI_CMD_TIMEOUT); 3043 } 3044 3045 /* Read Voice Setting */ 3046 static int hci_read_voice_setting_sync(struct hci_dev *hdev) 3047 { 3048 return __hci_cmd_sync_status(hdev, HCI_OP_READ_VOICE_SETTING, 3049 0, NULL, HCI_CMD_TIMEOUT); 3050 } 3051 3052 /* Read Number of Supported IAC */ 3053 static int hci_read_num_supported_iac_sync(struct hci_dev *hdev) 3054 { 3055 return __hci_cmd_sync_status(hdev, HCI_OP_READ_NUM_SUPPORTED_IAC, 3056 0, NULL, HCI_CMD_TIMEOUT); 3057 } 3058 3059 /* Read Current IAC LAP */ 3060 static int hci_read_current_iac_lap_sync(struct hci_dev *hdev) 3061 { 3062 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CURRENT_IAC_LAP, 3063 0, NULL, HCI_CMD_TIMEOUT); 3064 } 3065 3066 static int hci_set_event_filter_sync(struct hci_dev *hdev, u8 flt_type, 3067 u8 cond_type, bdaddr_t *bdaddr, 3068 u8 auto_accept) 3069 { 3070 struct hci_cp_set_event_filter cp; 3071 3072 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 3073 return 0; 3074 3075 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 3076 return 0; 3077 3078 memset(&cp, 0, sizeof(cp)); 3079 cp.flt_type = flt_type; 3080 3081 if (flt_type != HCI_FLT_CLEAR_ALL) { 3082 cp.cond_type = cond_type; 3083 bacpy(&cp.addr_conn_flt.bdaddr, bdaddr); 3084 cp.addr_conn_flt.auto_accept = auto_accept; 3085 } 3086 3087 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_FLT, 3088 flt_type == HCI_FLT_CLEAR_ALL ? 3089 sizeof(cp.flt_type) : sizeof(cp), &cp, 3090 HCI_CMD_TIMEOUT); 3091 } 3092 3093 static int hci_clear_event_filter_sync(struct hci_dev *hdev) 3094 { 3095 if (!hci_dev_test_flag(hdev, HCI_EVENT_FILTER_CONFIGURED)) 3096 return 0; 3097 3098 /* In theory the state machine should not reach here unless 3099 * a hci_set_event_filter_sync() call succeeds, but we do 3100 * the check both for parity and as a future reminder. 3101 */ 3102 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 3103 return 0; 3104 3105 return hci_set_event_filter_sync(hdev, HCI_FLT_CLEAR_ALL, 0x00, 3106 BDADDR_ANY, 0x00); 3107 } 3108 3109 /* Connection accept timeout ~20 secs */ 3110 static int hci_write_ca_timeout_sync(struct hci_dev *hdev) 3111 { 3112 __le16 param = cpu_to_le16(0x7d00); 3113 3114 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CA_TIMEOUT, 3115 sizeof(param), ¶m, HCI_CMD_TIMEOUT); 3116 } 3117 3118 /* BR Controller init stage 2 command sequence */ 3119 static const struct hci_init_stage br_init2[] = { 3120 /* HCI_OP_READ_BUFFER_SIZE */ 3121 HCI_INIT(hci_read_buffer_size_sync), 3122 /* HCI_OP_READ_CLASS_OF_DEV */ 3123 HCI_INIT(hci_read_dev_class_sync), 3124 /* HCI_OP_READ_LOCAL_NAME */ 3125 HCI_INIT(hci_read_local_name_sync), 3126 /* HCI_OP_READ_VOICE_SETTING */ 3127 HCI_INIT(hci_read_voice_setting_sync), 3128 /* HCI_OP_READ_NUM_SUPPORTED_IAC */ 3129 HCI_INIT(hci_read_num_supported_iac_sync), 3130 /* HCI_OP_READ_CURRENT_IAC_LAP */ 3131 HCI_INIT(hci_read_current_iac_lap_sync), 3132 /* HCI_OP_SET_EVENT_FLT */ 3133 HCI_INIT(hci_clear_event_filter_sync), 3134 /* HCI_OP_WRITE_CA_TIMEOUT */ 3135 HCI_INIT(hci_write_ca_timeout_sync), 3136 {} 3137 }; 3138 3139 static int hci_write_ssp_mode_1_sync(struct hci_dev *hdev) 3140 { 3141 u8 mode = 0x01; 3142 3143 if (!lmp_ssp_capable(hdev) || !hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 3144 return 0; 3145 3146 /* When SSP is available, then the host features page 3147 * should also be available as well. However some 3148 * controllers list the max_page as 0 as long as SSP 3149 * has not been enabled. To achieve proper debugging 3150 * output, force the minimum max_page to 1 at least. 3151 */ 3152 hdev->max_page = 0x01; 3153 3154 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE, 3155 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3156 } 3157 3158 static int hci_write_eir_sync(struct hci_dev *hdev) 3159 { 3160 struct hci_cp_write_eir cp; 3161 3162 if (!lmp_ssp_capable(hdev) || hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 3163 return 0; 3164 3165 memset(hdev->eir, 0, sizeof(hdev->eir)); 3166 memset(&cp, 0, sizeof(cp)); 3167 3168 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp, 3169 HCI_CMD_TIMEOUT); 3170 } 3171 3172 static int hci_write_inquiry_mode_sync(struct hci_dev *hdev) 3173 { 3174 u8 mode; 3175 3176 if (!lmp_inq_rssi_capable(hdev) && 3177 !test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) 3178 return 0; 3179 3180 /* If Extended Inquiry Result events are supported, then 3181 * they are clearly preferred over Inquiry Result with RSSI 3182 * events. 3183 */ 3184 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01; 3185 3186 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_INQUIRY_MODE, 3187 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3188 } 3189 3190 static int hci_read_inq_rsp_tx_power_sync(struct hci_dev *hdev) 3191 { 3192 if (!lmp_inq_tx_pwr_capable(hdev)) 3193 return 0; 3194 3195 return __hci_cmd_sync_status(hdev, HCI_OP_READ_INQ_RSP_TX_POWER, 3196 0, NULL, HCI_CMD_TIMEOUT); 3197 } 3198 3199 static int hci_read_local_ext_features_sync(struct hci_dev *hdev, u8 page) 3200 { 3201 struct hci_cp_read_local_ext_features cp; 3202 3203 if (!lmp_ext_feat_capable(hdev)) 3204 return 0; 3205 3206 memset(&cp, 0, sizeof(cp)); 3207 cp.page = page; 3208 3209 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_EXT_FEATURES, 3210 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3211 } 3212 3213 static int hci_read_local_ext_features_1_sync(struct hci_dev *hdev) 3214 { 3215 return hci_read_local_ext_features_sync(hdev, 0x01); 3216 } 3217 3218 /* HCI Controller init stage 2 command sequence */ 3219 static const struct hci_init_stage hci_init2[] = { 3220 /* HCI_OP_READ_LOCAL_COMMANDS */ 3221 HCI_INIT(hci_read_local_cmds_sync), 3222 /* HCI_OP_WRITE_SSP_MODE */ 3223 HCI_INIT(hci_write_ssp_mode_1_sync), 3224 /* HCI_OP_WRITE_EIR */ 3225 HCI_INIT(hci_write_eir_sync), 3226 /* HCI_OP_WRITE_INQUIRY_MODE */ 3227 HCI_INIT(hci_write_inquiry_mode_sync), 3228 /* HCI_OP_READ_INQ_RSP_TX_POWER */ 3229 HCI_INIT(hci_read_inq_rsp_tx_power_sync), 3230 /* HCI_OP_READ_LOCAL_EXT_FEATURES */ 3231 HCI_INIT(hci_read_local_ext_features_1_sync), 3232 /* HCI_OP_WRITE_AUTH_ENABLE */ 3233 HCI_INIT(hci_write_auth_enable_sync), 3234 {} 3235 }; 3236 3237 /* Read LE Buffer Size */ 3238 static int hci_le_read_buffer_size_sync(struct hci_dev *hdev) 3239 { 3240 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_BUFFER_SIZE, 3241 0, NULL, HCI_CMD_TIMEOUT); 3242 } 3243 3244 /* Read LE Local Supported Features */ 3245 static int hci_le_read_local_features_sync(struct hci_dev *hdev) 3246 { 3247 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_LOCAL_FEATURES, 3248 0, NULL, HCI_CMD_TIMEOUT); 3249 } 3250 3251 /* Read LE Supported States */ 3252 static int hci_le_read_supported_states_sync(struct hci_dev *hdev) 3253 { 3254 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_SUPPORTED_STATES, 3255 0, NULL, HCI_CMD_TIMEOUT); 3256 } 3257 3258 /* LE Controller init stage 2 command sequence */ 3259 static const struct hci_init_stage le_init2[] = { 3260 /* HCI_OP_LE_READ_BUFFER_SIZE */ 3261 HCI_INIT(hci_le_read_buffer_size_sync), 3262 /* HCI_OP_LE_READ_LOCAL_FEATURES */ 3263 HCI_INIT(hci_le_read_local_features_sync), 3264 /* HCI_OP_LE_READ_SUPPORTED_STATES */ 3265 HCI_INIT(hci_le_read_supported_states_sync), 3266 {} 3267 }; 3268 3269 static int hci_init2_sync(struct hci_dev *hdev) 3270 { 3271 int err; 3272 3273 bt_dev_dbg(hdev, ""); 3274 3275 if (hdev->dev_type == HCI_AMP) 3276 return hci_init_stage_sync(hdev, amp_init2); 3277 3278 err = hci_init_stage_sync(hdev, hci_init2); 3279 if (err) 3280 return err; 3281 3282 if (lmp_bredr_capable(hdev)) { 3283 err = hci_init_stage_sync(hdev, br_init2); 3284 if (err) 3285 return err; 3286 } else { 3287 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED); 3288 } 3289 3290 if (lmp_le_capable(hdev)) { 3291 err = hci_init_stage_sync(hdev, le_init2); 3292 if (err) 3293 return err; 3294 /* LE-only controllers have LE implicitly enabled */ 3295 if (!lmp_bredr_capable(hdev)) 3296 hci_dev_set_flag(hdev, HCI_LE_ENABLED); 3297 } 3298 3299 return 0; 3300 } 3301 3302 static int hci_set_event_mask_sync(struct hci_dev *hdev) 3303 { 3304 /* The second byte is 0xff instead of 0x9f (two reserved bits 3305 * disabled) since a Broadcom 1.2 dongle doesn't respond to the 3306 * command otherwise. 3307 */ 3308 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 }; 3309 3310 /* CSR 1.1 dongles does not accept any bitfield so don't try to set 3311 * any event mask for pre 1.2 devices. 3312 */ 3313 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 3314 return 0; 3315 3316 if (lmp_bredr_capable(hdev)) { 3317 events[4] |= 0x01; /* Flow Specification Complete */ 3318 3319 /* Don't set Disconnect Complete when suspended as that 3320 * would wakeup the host when disconnecting due to 3321 * suspend. 3322 */ 3323 if (hdev->suspended) 3324 events[0] &= 0xef; 3325 } else { 3326 /* Use a different default for LE-only devices */ 3327 memset(events, 0, sizeof(events)); 3328 events[1] |= 0x20; /* Command Complete */ 3329 events[1] |= 0x40; /* Command Status */ 3330 events[1] |= 0x80; /* Hardware Error */ 3331 3332 /* If the controller supports the Disconnect command, enable 3333 * the corresponding event. In addition enable packet flow 3334 * control related events. 3335 */ 3336 if (hdev->commands[0] & 0x20) { 3337 /* Don't set Disconnect Complete when suspended as that 3338 * would wakeup the host when disconnecting due to 3339 * suspend. 3340 */ 3341 if (!hdev->suspended) 3342 events[0] |= 0x10; /* Disconnection Complete */ 3343 events[2] |= 0x04; /* Number of Completed Packets */ 3344 events[3] |= 0x02; /* Data Buffer Overflow */ 3345 } 3346 3347 /* If the controller supports the Read Remote Version 3348 * Information command, enable the corresponding event. 3349 */ 3350 if (hdev->commands[2] & 0x80) 3351 events[1] |= 0x08; /* Read Remote Version Information 3352 * Complete 3353 */ 3354 3355 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) { 3356 events[0] |= 0x80; /* Encryption Change */ 3357 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 3358 } 3359 } 3360 3361 if (lmp_inq_rssi_capable(hdev) || 3362 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) 3363 events[4] |= 0x02; /* Inquiry Result with RSSI */ 3364 3365 if (lmp_ext_feat_capable(hdev)) 3366 events[4] |= 0x04; /* Read Remote Extended Features Complete */ 3367 3368 if (lmp_esco_capable(hdev)) { 3369 events[5] |= 0x08; /* Synchronous Connection Complete */ 3370 events[5] |= 0x10; /* Synchronous Connection Changed */ 3371 } 3372 3373 if (lmp_sniffsubr_capable(hdev)) 3374 events[5] |= 0x20; /* Sniff Subrating */ 3375 3376 if (lmp_pause_enc_capable(hdev)) 3377 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 3378 3379 if (lmp_ext_inq_capable(hdev)) 3380 events[5] |= 0x40; /* Extended Inquiry Result */ 3381 3382 if (lmp_no_flush_capable(hdev)) 3383 events[7] |= 0x01; /* Enhanced Flush Complete */ 3384 3385 if (lmp_lsto_capable(hdev)) 3386 events[6] |= 0x80; /* Link Supervision Timeout Changed */ 3387 3388 if (lmp_ssp_capable(hdev)) { 3389 events[6] |= 0x01; /* IO Capability Request */ 3390 events[6] |= 0x02; /* IO Capability Response */ 3391 events[6] |= 0x04; /* User Confirmation Request */ 3392 events[6] |= 0x08; /* User Passkey Request */ 3393 events[6] |= 0x10; /* Remote OOB Data Request */ 3394 events[6] |= 0x20; /* Simple Pairing Complete */ 3395 events[7] |= 0x04; /* User Passkey Notification */ 3396 events[7] |= 0x08; /* Keypress Notification */ 3397 events[7] |= 0x10; /* Remote Host Supported 3398 * Features Notification 3399 */ 3400 } 3401 3402 if (lmp_le_capable(hdev)) 3403 events[7] |= 0x20; /* LE Meta-Event */ 3404 3405 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK, 3406 sizeof(events), events, HCI_CMD_TIMEOUT); 3407 } 3408 3409 static int hci_read_stored_link_key_sync(struct hci_dev *hdev) 3410 { 3411 struct hci_cp_read_stored_link_key cp; 3412 3413 if (!(hdev->commands[6] & 0x20) || 3414 test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) 3415 return 0; 3416 3417 memset(&cp, 0, sizeof(cp)); 3418 bacpy(&cp.bdaddr, BDADDR_ANY); 3419 cp.read_all = 0x01; 3420 3421 return __hci_cmd_sync_status(hdev, HCI_OP_READ_STORED_LINK_KEY, 3422 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3423 } 3424 3425 static int hci_setup_link_policy_sync(struct hci_dev *hdev) 3426 { 3427 struct hci_cp_write_def_link_policy cp; 3428 u16 link_policy = 0; 3429 3430 if (!(hdev->commands[5] & 0x10)) 3431 return 0; 3432 3433 memset(&cp, 0, sizeof(cp)); 3434 3435 if (lmp_rswitch_capable(hdev)) 3436 link_policy |= HCI_LP_RSWITCH; 3437 if (lmp_hold_capable(hdev)) 3438 link_policy |= HCI_LP_HOLD; 3439 if (lmp_sniff_capable(hdev)) 3440 link_policy |= HCI_LP_SNIFF; 3441 if (lmp_park_capable(hdev)) 3442 link_policy |= HCI_LP_PARK; 3443 3444 cp.policy = cpu_to_le16(link_policy); 3445 3446 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY, 3447 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3448 } 3449 3450 static int hci_read_page_scan_activity_sync(struct hci_dev *hdev) 3451 { 3452 if (!(hdev->commands[8] & 0x01)) 3453 return 0; 3454 3455 return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 3456 0, NULL, HCI_CMD_TIMEOUT); 3457 } 3458 3459 static int hci_read_def_err_data_reporting_sync(struct hci_dev *hdev) 3460 { 3461 if (!(hdev->commands[18] & 0x04) || 3462 !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING)) 3463 return 0; 3464 3465 return __hci_cmd_sync_status(hdev, HCI_OP_READ_DEF_ERR_DATA_REPORTING, 3466 0, NULL, HCI_CMD_TIMEOUT); 3467 } 3468 3469 static int hci_read_page_scan_type_sync(struct hci_dev *hdev) 3470 { 3471 /* Some older Broadcom based Bluetooth 1.2 controllers do not 3472 * support the Read Page Scan Type command. Check support for 3473 * this command in the bit mask of supported commands. 3474 */ 3475 if (!(hdev->commands[13] & 0x01)) 3476 return 0; 3477 3478 return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_TYPE, 3479 0, NULL, HCI_CMD_TIMEOUT); 3480 } 3481 3482 /* Read features beyond page 1 if available */ 3483 static int hci_read_local_ext_features_all_sync(struct hci_dev *hdev) 3484 { 3485 u8 page; 3486 int err; 3487 3488 if (!lmp_ext_feat_capable(hdev)) 3489 return 0; 3490 3491 for (page = 2; page < HCI_MAX_PAGES && page <= hdev->max_page; 3492 page++) { 3493 err = hci_read_local_ext_features_sync(hdev, page); 3494 if (err) 3495 return err; 3496 } 3497 3498 return 0; 3499 } 3500 3501 /* HCI Controller init stage 3 command sequence */ 3502 static const struct hci_init_stage hci_init3[] = { 3503 /* HCI_OP_SET_EVENT_MASK */ 3504 HCI_INIT(hci_set_event_mask_sync), 3505 /* HCI_OP_READ_STORED_LINK_KEY */ 3506 HCI_INIT(hci_read_stored_link_key_sync), 3507 /* HCI_OP_WRITE_DEF_LINK_POLICY */ 3508 HCI_INIT(hci_setup_link_policy_sync), 3509 /* HCI_OP_READ_PAGE_SCAN_ACTIVITY */ 3510 HCI_INIT(hci_read_page_scan_activity_sync), 3511 /* HCI_OP_READ_DEF_ERR_DATA_REPORTING */ 3512 HCI_INIT(hci_read_def_err_data_reporting_sync), 3513 /* HCI_OP_READ_PAGE_SCAN_TYPE */ 3514 HCI_INIT(hci_read_page_scan_type_sync), 3515 /* HCI_OP_READ_LOCAL_EXT_FEATURES */ 3516 HCI_INIT(hci_read_local_ext_features_all_sync), 3517 {} 3518 }; 3519 3520 static int hci_le_set_event_mask_sync(struct hci_dev *hdev) 3521 { 3522 u8 events[8]; 3523 3524 if (!lmp_le_capable(hdev)) 3525 return 0; 3526 3527 memset(events, 0, sizeof(events)); 3528 3529 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) 3530 events[0] |= 0x10; /* LE Long Term Key Request */ 3531 3532 /* If controller supports the Connection Parameters Request 3533 * Link Layer Procedure, enable the corresponding event. 3534 */ 3535 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC) 3536 /* LE Remote Connection Parameter Request */ 3537 events[0] |= 0x20; 3538 3539 /* If the controller supports the Data Length Extension 3540 * feature, enable the corresponding event. 3541 */ 3542 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) 3543 events[0] |= 0x40; /* LE Data Length Change */ 3544 3545 /* If the controller supports LL Privacy feature or LE Extended Adv, 3546 * enable the corresponding event. 3547 */ 3548 if (use_enhanced_conn_complete(hdev)) 3549 events[1] |= 0x02; /* LE Enhanced Connection Complete */ 3550 3551 /* If the controller supports Extended Scanner Filter 3552 * Policies, enable the corresponding event. 3553 */ 3554 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY) 3555 events[1] |= 0x04; /* LE Direct Advertising Report */ 3556 3557 /* If the controller supports Channel Selection Algorithm #2 3558 * feature, enable the corresponding event. 3559 */ 3560 if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2) 3561 events[2] |= 0x08; /* LE Channel Selection Algorithm */ 3562 3563 /* If the controller supports the LE Set Scan Enable command, 3564 * enable the corresponding advertising report event. 3565 */ 3566 if (hdev->commands[26] & 0x08) 3567 events[0] |= 0x02; /* LE Advertising Report */ 3568 3569 /* If the controller supports the LE Create Connection 3570 * command, enable the corresponding event. 3571 */ 3572 if (hdev->commands[26] & 0x10) 3573 events[0] |= 0x01; /* LE Connection Complete */ 3574 3575 /* If the controller supports the LE Connection Update 3576 * command, enable the corresponding event. 3577 */ 3578 if (hdev->commands[27] & 0x04) 3579 events[0] |= 0x04; /* LE Connection Update Complete */ 3580 3581 /* If the controller supports the LE Read Remote Used Features 3582 * command, enable the corresponding event. 3583 */ 3584 if (hdev->commands[27] & 0x20) 3585 /* LE Read Remote Used Features Complete */ 3586 events[0] |= 0x08; 3587 3588 /* If the controller supports the LE Read Local P-256 3589 * Public Key command, enable the corresponding event. 3590 */ 3591 if (hdev->commands[34] & 0x02) 3592 /* LE Read Local P-256 Public Key Complete */ 3593 events[0] |= 0x80; 3594 3595 /* If the controller supports the LE Generate DHKey 3596 * command, enable the corresponding event. 3597 */ 3598 if (hdev->commands[34] & 0x04) 3599 events[1] |= 0x01; /* LE Generate DHKey Complete */ 3600 3601 /* If the controller supports the LE Set Default PHY or 3602 * LE Set PHY commands, enable the corresponding event. 3603 */ 3604 if (hdev->commands[35] & (0x20 | 0x40)) 3605 events[1] |= 0x08; /* LE PHY Update Complete */ 3606 3607 /* If the controller supports LE Set Extended Scan Parameters 3608 * and LE Set Extended Scan Enable commands, enable the 3609 * corresponding event. 3610 */ 3611 if (use_ext_scan(hdev)) 3612 events[1] |= 0x10; /* LE Extended Advertising Report */ 3613 3614 /* If the controller supports the LE Extended Advertising 3615 * command, enable the corresponding event. 3616 */ 3617 if (ext_adv_capable(hdev)) 3618 events[2] |= 0x02; /* LE Advertising Set Terminated */ 3619 3620 if (cis_capable(hdev)) { 3621 events[3] |= 0x01; /* LE CIS Established */ 3622 if (cis_peripheral_capable(hdev)) 3623 events[3] |= 0x02; /* LE CIS Request */ 3624 } 3625 3626 if (bis_capable(hdev)) { 3627 events[3] |= 0x04; /* LE Create BIG Complete */ 3628 events[3] |= 0x08; /* LE Terminate BIG Complete */ 3629 events[3] |= 0x10; /* LE BIG Sync Established */ 3630 events[3] |= 0x20; /* LE BIG Sync Loss */ 3631 } 3632 3633 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EVENT_MASK, 3634 sizeof(events), events, HCI_CMD_TIMEOUT); 3635 } 3636 3637 /* Read LE Advertising Channel TX Power */ 3638 static int hci_le_read_adv_tx_power_sync(struct hci_dev *hdev) 3639 { 3640 if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) { 3641 /* HCI TS spec forbids mixing of legacy and extended 3642 * advertising commands wherein READ_ADV_TX_POWER is 3643 * also included. So do not call it if extended adv 3644 * is supported otherwise controller will return 3645 * COMMAND_DISALLOWED for extended commands. 3646 */ 3647 return __hci_cmd_sync_status(hdev, 3648 HCI_OP_LE_READ_ADV_TX_POWER, 3649 0, NULL, HCI_CMD_TIMEOUT); 3650 } 3651 3652 return 0; 3653 } 3654 3655 /* Read LE Min/Max Tx Power*/ 3656 static int hci_le_read_tx_power_sync(struct hci_dev *hdev) 3657 { 3658 if (!(hdev->commands[38] & 0x80) || 3659 test_bit(HCI_QUIRK_BROKEN_READ_TRANSMIT_POWER, &hdev->quirks)) 3660 return 0; 3661 3662 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_TRANSMIT_POWER, 3663 0, NULL, HCI_CMD_TIMEOUT); 3664 } 3665 3666 /* Read LE Accept List Size */ 3667 static int hci_le_read_accept_list_size_sync(struct hci_dev *hdev) 3668 { 3669 if (!(hdev->commands[26] & 0x40)) 3670 return 0; 3671 3672 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_ACCEPT_LIST_SIZE, 3673 0, NULL, HCI_CMD_TIMEOUT); 3674 } 3675 3676 /* Clear LE Accept List */ 3677 static int hci_le_clear_accept_list_sync(struct hci_dev *hdev) 3678 { 3679 if (!(hdev->commands[26] & 0x80)) 3680 return 0; 3681 3682 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL, 3683 HCI_CMD_TIMEOUT); 3684 } 3685 3686 /* Read LE Resolving List Size */ 3687 static int hci_le_read_resolv_list_size_sync(struct hci_dev *hdev) 3688 { 3689 if (!(hdev->commands[34] & 0x40)) 3690 return 0; 3691 3692 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_RESOLV_LIST_SIZE, 3693 0, NULL, HCI_CMD_TIMEOUT); 3694 } 3695 3696 /* Clear LE Resolving List */ 3697 static int hci_le_clear_resolv_list_sync(struct hci_dev *hdev) 3698 { 3699 if (!(hdev->commands[34] & 0x20)) 3700 return 0; 3701 3702 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL, 3703 HCI_CMD_TIMEOUT); 3704 } 3705 3706 /* Set RPA timeout */ 3707 static int hci_le_set_rpa_timeout_sync(struct hci_dev *hdev) 3708 { 3709 __le16 timeout = cpu_to_le16(hdev->rpa_timeout); 3710 3711 if (!(hdev->commands[35] & 0x04)) 3712 return 0; 3713 3714 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RPA_TIMEOUT, 3715 sizeof(timeout), &timeout, 3716 HCI_CMD_TIMEOUT); 3717 } 3718 3719 /* Read LE Maximum Data Length */ 3720 static int hci_le_read_max_data_len_sync(struct hci_dev *hdev) 3721 { 3722 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 3723 return 0; 3724 3725 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL, 3726 HCI_CMD_TIMEOUT); 3727 } 3728 3729 /* Read LE Suggested Default Data Length */ 3730 static int hci_le_read_def_data_len_sync(struct hci_dev *hdev) 3731 { 3732 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 3733 return 0; 3734 3735 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL, 3736 HCI_CMD_TIMEOUT); 3737 } 3738 3739 /* Read LE Number of Supported Advertising Sets */ 3740 static int hci_le_read_num_support_adv_sets_sync(struct hci_dev *hdev) 3741 { 3742 if (!ext_adv_capable(hdev)) 3743 return 0; 3744 3745 return __hci_cmd_sync_status(hdev, 3746 HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS, 3747 0, NULL, HCI_CMD_TIMEOUT); 3748 } 3749 3750 /* Write LE Host Supported */ 3751 static int hci_set_le_support_sync(struct hci_dev *hdev) 3752 { 3753 struct hci_cp_write_le_host_supported cp; 3754 3755 /* LE-only devices do not support explicit enablement */ 3756 if (!lmp_bredr_capable(hdev)) 3757 return 0; 3758 3759 memset(&cp, 0, sizeof(cp)); 3760 3761 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 3762 cp.le = 0x01; 3763 cp.simul = 0x00; 3764 } 3765 3766 if (cp.le == lmp_host_le_capable(hdev)) 3767 return 0; 3768 3769 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED, 3770 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3771 } 3772 3773 /* LE Set Host Feature */ 3774 static int hci_le_set_host_feature_sync(struct hci_dev *hdev) 3775 { 3776 struct hci_cp_le_set_host_feature cp; 3777 3778 if (!iso_capable(hdev)) 3779 return 0; 3780 3781 memset(&cp, 0, sizeof(cp)); 3782 3783 /* Isochronous Channels (Host Support) */ 3784 cp.bit_number = 32; 3785 cp.bit_value = 1; 3786 3787 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_HOST_FEATURE, 3788 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3789 } 3790 3791 /* LE Controller init stage 3 command sequence */ 3792 static const struct hci_init_stage le_init3[] = { 3793 /* HCI_OP_LE_SET_EVENT_MASK */ 3794 HCI_INIT(hci_le_set_event_mask_sync), 3795 /* HCI_OP_LE_READ_ADV_TX_POWER */ 3796 HCI_INIT(hci_le_read_adv_tx_power_sync), 3797 /* HCI_OP_LE_READ_TRANSMIT_POWER */ 3798 HCI_INIT(hci_le_read_tx_power_sync), 3799 /* HCI_OP_LE_READ_ACCEPT_LIST_SIZE */ 3800 HCI_INIT(hci_le_read_accept_list_size_sync), 3801 /* HCI_OP_LE_CLEAR_ACCEPT_LIST */ 3802 HCI_INIT(hci_le_clear_accept_list_sync), 3803 /* HCI_OP_LE_READ_RESOLV_LIST_SIZE */ 3804 HCI_INIT(hci_le_read_resolv_list_size_sync), 3805 /* HCI_OP_LE_CLEAR_RESOLV_LIST */ 3806 HCI_INIT(hci_le_clear_resolv_list_sync), 3807 /* HCI_OP_LE_SET_RPA_TIMEOUT */ 3808 HCI_INIT(hci_le_set_rpa_timeout_sync), 3809 /* HCI_OP_LE_READ_MAX_DATA_LEN */ 3810 HCI_INIT(hci_le_read_max_data_len_sync), 3811 /* HCI_OP_LE_READ_DEF_DATA_LEN */ 3812 HCI_INIT(hci_le_read_def_data_len_sync), 3813 /* HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS */ 3814 HCI_INIT(hci_le_read_num_support_adv_sets_sync), 3815 /* HCI_OP_WRITE_LE_HOST_SUPPORTED */ 3816 HCI_INIT(hci_set_le_support_sync), 3817 /* HCI_OP_LE_SET_HOST_FEATURE */ 3818 HCI_INIT(hci_le_set_host_feature_sync), 3819 {} 3820 }; 3821 3822 static int hci_init3_sync(struct hci_dev *hdev) 3823 { 3824 int err; 3825 3826 bt_dev_dbg(hdev, ""); 3827 3828 err = hci_init_stage_sync(hdev, hci_init3); 3829 if (err) 3830 return err; 3831 3832 if (lmp_le_capable(hdev)) 3833 return hci_init_stage_sync(hdev, le_init3); 3834 3835 return 0; 3836 } 3837 3838 static int hci_delete_stored_link_key_sync(struct hci_dev *hdev) 3839 { 3840 struct hci_cp_delete_stored_link_key cp; 3841 3842 /* Some Broadcom based Bluetooth controllers do not support the 3843 * Delete Stored Link Key command. They are clearly indicating its 3844 * absence in the bit mask of supported commands. 3845 * 3846 * Check the supported commands and only if the command is marked 3847 * as supported send it. If not supported assume that the controller 3848 * does not have actual support for stored link keys which makes this 3849 * command redundant anyway. 3850 * 3851 * Some controllers indicate that they support handling deleting 3852 * stored link keys, but they don't. The quirk lets a driver 3853 * just disable this command. 3854 */ 3855 if (!(hdev->commands[6] & 0x80) || 3856 test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) 3857 return 0; 3858 3859 memset(&cp, 0, sizeof(cp)); 3860 bacpy(&cp.bdaddr, BDADDR_ANY); 3861 cp.delete_all = 0x01; 3862 3863 return __hci_cmd_sync_status(hdev, HCI_OP_DELETE_STORED_LINK_KEY, 3864 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3865 } 3866 3867 static int hci_set_event_mask_page_2_sync(struct hci_dev *hdev) 3868 { 3869 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 3870 bool changed = false; 3871 3872 /* Set event mask page 2 if the HCI command for it is supported */ 3873 if (!(hdev->commands[22] & 0x04)) 3874 return 0; 3875 3876 /* If Connectionless Peripheral Broadcast central role is supported 3877 * enable all necessary events for it. 3878 */ 3879 if (lmp_cpb_central_capable(hdev)) { 3880 events[1] |= 0x40; /* Triggered Clock Capture */ 3881 events[1] |= 0x80; /* Synchronization Train Complete */ 3882 events[2] |= 0x08; /* Truncated Page Complete */ 3883 events[2] |= 0x20; /* CPB Channel Map Change */ 3884 changed = true; 3885 } 3886 3887 /* If Connectionless Peripheral Broadcast peripheral role is supported 3888 * enable all necessary events for it. 3889 */ 3890 if (lmp_cpb_peripheral_capable(hdev)) { 3891 events[2] |= 0x01; /* Synchronization Train Received */ 3892 events[2] |= 0x02; /* CPB Receive */ 3893 events[2] |= 0x04; /* CPB Timeout */ 3894 events[2] |= 0x10; /* Peripheral Page Response Timeout */ 3895 changed = true; 3896 } 3897 3898 /* Enable Authenticated Payload Timeout Expired event if supported */ 3899 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) { 3900 events[2] |= 0x80; 3901 changed = true; 3902 } 3903 3904 /* Some Broadcom based controllers indicate support for Set Event 3905 * Mask Page 2 command, but then actually do not support it. Since 3906 * the default value is all bits set to zero, the command is only 3907 * required if the event mask has to be changed. In case no change 3908 * to the event mask is needed, skip this command. 3909 */ 3910 if (!changed) 3911 return 0; 3912 3913 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK_PAGE_2, 3914 sizeof(events), events, HCI_CMD_TIMEOUT); 3915 } 3916 3917 /* Read local codec list if the HCI command is supported */ 3918 static int hci_read_local_codecs_sync(struct hci_dev *hdev) 3919 { 3920 if (!(hdev->commands[29] & 0x20)) 3921 return 0; 3922 3923 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_CODECS, 0, NULL, 3924 HCI_CMD_TIMEOUT); 3925 } 3926 3927 /* Read local pairing options if the HCI command is supported */ 3928 static int hci_read_local_pairing_opts_sync(struct hci_dev *hdev) 3929 { 3930 if (!(hdev->commands[41] & 0x08)) 3931 return 0; 3932 3933 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_PAIRING_OPTS, 3934 0, NULL, HCI_CMD_TIMEOUT); 3935 } 3936 3937 /* Get MWS transport configuration if the HCI command is supported */ 3938 static int hci_get_mws_transport_config_sync(struct hci_dev *hdev) 3939 { 3940 if (!(hdev->commands[30] & 0x08)) 3941 return 0; 3942 3943 return __hci_cmd_sync_status(hdev, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 3944 0, NULL, HCI_CMD_TIMEOUT); 3945 } 3946 3947 /* Check for Synchronization Train support */ 3948 static int hci_read_sync_train_params_sync(struct hci_dev *hdev) 3949 { 3950 if (!lmp_sync_train_capable(hdev)) 3951 return 0; 3952 3953 return __hci_cmd_sync_status(hdev, HCI_OP_READ_SYNC_TRAIN_PARAMS, 3954 0, NULL, HCI_CMD_TIMEOUT); 3955 } 3956 3957 /* Enable Secure Connections if supported and configured */ 3958 static int hci_write_sc_support_1_sync(struct hci_dev *hdev) 3959 { 3960 u8 support = 0x01; 3961 3962 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) || 3963 !bredr_sc_enabled(hdev)) 3964 return 0; 3965 3966 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT, 3967 sizeof(support), &support, 3968 HCI_CMD_TIMEOUT); 3969 } 3970 3971 /* Set erroneous data reporting if supported to the wideband speech 3972 * setting value 3973 */ 3974 static int hci_set_err_data_report_sync(struct hci_dev *hdev) 3975 { 3976 struct hci_cp_write_def_err_data_reporting cp; 3977 bool enabled = hci_dev_test_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED); 3978 3979 if (!(hdev->commands[18] & 0x08) || 3980 !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING)) 3981 return 0; 3982 3983 if (enabled == hdev->err_data_reporting) 3984 return 0; 3985 3986 memset(&cp, 0, sizeof(cp)); 3987 cp.err_data_reporting = enabled ? ERR_DATA_REPORTING_ENABLED : 3988 ERR_DATA_REPORTING_DISABLED; 3989 3990 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING, 3991 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3992 } 3993 3994 static const struct hci_init_stage hci_init4[] = { 3995 /* HCI_OP_DELETE_STORED_LINK_KEY */ 3996 HCI_INIT(hci_delete_stored_link_key_sync), 3997 /* HCI_OP_SET_EVENT_MASK_PAGE_2 */ 3998 HCI_INIT(hci_set_event_mask_page_2_sync), 3999 /* HCI_OP_READ_LOCAL_CODECS */ 4000 HCI_INIT(hci_read_local_codecs_sync), 4001 /* HCI_OP_READ_LOCAL_PAIRING_OPTS */ 4002 HCI_INIT(hci_read_local_pairing_opts_sync), 4003 /* HCI_OP_GET_MWS_TRANSPORT_CONFIG */ 4004 HCI_INIT(hci_get_mws_transport_config_sync), 4005 /* HCI_OP_READ_SYNC_TRAIN_PARAMS */ 4006 HCI_INIT(hci_read_sync_train_params_sync), 4007 /* HCI_OP_WRITE_SC_SUPPORT */ 4008 HCI_INIT(hci_write_sc_support_1_sync), 4009 /* HCI_OP_WRITE_DEF_ERR_DATA_REPORTING */ 4010 HCI_INIT(hci_set_err_data_report_sync), 4011 {} 4012 }; 4013 4014 /* Set Suggested Default Data Length to maximum if supported */ 4015 static int hci_le_set_write_def_data_len_sync(struct hci_dev *hdev) 4016 { 4017 struct hci_cp_le_write_def_data_len cp; 4018 4019 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 4020 return 0; 4021 4022 memset(&cp, 0, sizeof(cp)); 4023 cp.tx_len = cpu_to_le16(hdev->le_max_tx_len); 4024 cp.tx_time = cpu_to_le16(hdev->le_max_tx_time); 4025 4026 return __hci_cmd_sync_status(hdev, HCI_OP_LE_WRITE_DEF_DATA_LEN, 4027 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4028 } 4029 4030 /* Set Default PHY parameters if command is supported */ 4031 static int hci_le_set_default_phy_sync(struct hci_dev *hdev) 4032 { 4033 struct hci_cp_le_set_default_phy cp; 4034 4035 if (!(hdev->commands[35] & 0x20)) 4036 return 0; 4037 4038 memset(&cp, 0, sizeof(cp)); 4039 cp.all_phys = 0x00; 4040 cp.tx_phys = hdev->le_tx_def_phys; 4041 cp.rx_phys = hdev->le_rx_def_phys; 4042 4043 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_DEFAULT_PHY, 4044 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4045 } 4046 4047 static const struct hci_init_stage le_init4[] = { 4048 /* HCI_OP_LE_WRITE_DEF_DATA_LEN */ 4049 HCI_INIT(hci_le_set_write_def_data_len_sync), 4050 /* HCI_OP_LE_SET_DEFAULT_PHY */ 4051 HCI_INIT(hci_le_set_default_phy_sync), 4052 {} 4053 }; 4054 4055 static int hci_init4_sync(struct hci_dev *hdev) 4056 { 4057 int err; 4058 4059 bt_dev_dbg(hdev, ""); 4060 4061 err = hci_init_stage_sync(hdev, hci_init4); 4062 if (err) 4063 return err; 4064 4065 if (lmp_le_capable(hdev)) 4066 return hci_init_stage_sync(hdev, le_init4); 4067 4068 return 0; 4069 } 4070 4071 static int hci_init_sync(struct hci_dev *hdev) 4072 { 4073 int err; 4074 4075 err = hci_init1_sync(hdev); 4076 if (err < 0) 4077 return err; 4078 4079 if (hci_dev_test_flag(hdev, HCI_SETUP)) 4080 hci_debugfs_create_basic(hdev); 4081 4082 err = hci_init2_sync(hdev); 4083 if (err < 0) 4084 return err; 4085 4086 /* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode 4087 * BR/EDR/LE type controllers. AMP controllers only need the 4088 * first two stages of init. 4089 */ 4090 if (hdev->dev_type != HCI_PRIMARY) 4091 return 0; 4092 4093 err = hci_init3_sync(hdev); 4094 if (err < 0) 4095 return err; 4096 4097 err = hci_init4_sync(hdev); 4098 if (err < 0) 4099 return err; 4100 4101 /* This function is only called when the controller is actually in 4102 * configured state. When the controller is marked as unconfigured, 4103 * this initialization procedure is not run. 4104 * 4105 * It means that it is possible that a controller runs through its 4106 * setup phase and then discovers missing settings. If that is the 4107 * case, then this function will not be called. It then will only 4108 * be called during the config phase. 4109 * 4110 * So only when in setup phase or config phase, create the debugfs 4111 * entries and register the SMP channels. 4112 */ 4113 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4114 !hci_dev_test_flag(hdev, HCI_CONFIG)) 4115 return 0; 4116 4117 hci_debugfs_create_common(hdev); 4118 4119 if (lmp_bredr_capable(hdev)) 4120 hci_debugfs_create_bredr(hdev); 4121 4122 if (lmp_le_capable(hdev)) 4123 hci_debugfs_create_le(hdev); 4124 4125 return 0; 4126 } 4127 4128 #define HCI_QUIRK_BROKEN(_quirk, _desc) { HCI_QUIRK_BROKEN_##_quirk, _desc } 4129 4130 static const struct { 4131 unsigned long quirk; 4132 const char *desc; 4133 } hci_broken_table[] = { 4134 HCI_QUIRK_BROKEN(LOCAL_COMMANDS, 4135 "HCI Read Local Supported Commands not supported"), 4136 HCI_QUIRK_BROKEN(STORED_LINK_KEY, 4137 "HCI Delete Stored Link Key command is advertised, " 4138 "but not supported."), 4139 HCI_QUIRK_BROKEN(READ_TRANSMIT_POWER, 4140 "HCI Read Transmit Power Level command is advertised, " 4141 "but not supported."), 4142 HCI_QUIRK_BROKEN(FILTER_CLEAR_ALL, 4143 "HCI Set Event Filter command not supported."), 4144 HCI_QUIRK_BROKEN(ENHANCED_SETUP_SYNC_CONN, 4145 "HCI Enhanced Setup Synchronous Connection command is " 4146 "advertised, but not supported.") 4147 }; 4148 4149 /* This function handles hdev setup stage: 4150 * 4151 * Calls hdev->setup 4152 * Setup address if HCI_QUIRK_USE_BDADDR_PROPERTY is set. 4153 */ 4154 static int hci_dev_setup_sync(struct hci_dev *hdev) 4155 { 4156 int ret = 0; 4157 bool invalid_bdaddr; 4158 size_t i; 4159 4160 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4161 !test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) 4162 return 0; 4163 4164 bt_dev_dbg(hdev, ""); 4165 4166 hci_sock_dev_event(hdev, HCI_DEV_SETUP); 4167 4168 if (hdev->setup) 4169 ret = hdev->setup(hdev); 4170 4171 for (i = 0; i < ARRAY_SIZE(hci_broken_table); i++) { 4172 if (test_bit(hci_broken_table[i].quirk, &hdev->quirks)) 4173 bt_dev_warn(hdev, "%s", hci_broken_table[i].desc); 4174 } 4175 4176 /* The transport driver can set the quirk to mark the 4177 * BD_ADDR invalid before creating the HCI device or in 4178 * its setup callback. 4179 */ 4180 invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks); 4181 4182 if (!ret) { 4183 if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) { 4184 if (!bacmp(&hdev->public_addr, BDADDR_ANY)) 4185 hci_dev_get_bd_addr_from_property(hdev); 4186 4187 if (bacmp(&hdev->public_addr, BDADDR_ANY) && 4188 hdev->set_bdaddr) { 4189 ret = hdev->set_bdaddr(hdev, 4190 &hdev->public_addr); 4191 4192 /* If setting of the BD_ADDR from the device 4193 * property succeeds, then treat the address 4194 * as valid even if the invalid BD_ADDR 4195 * quirk indicates otherwise. 4196 */ 4197 if (!ret) 4198 invalid_bdaddr = false; 4199 } 4200 } 4201 } 4202 4203 /* The transport driver can set these quirks before 4204 * creating the HCI device or in its setup callback. 4205 * 4206 * For the invalid BD_ADDR quirk it is possible that 4207 * it becomes a valid address if the bootloader does 4208 * provide it (see above). 4209 * 4210 * In case any of them is set, the controller has to 4211 * start up as unconfigured. 4212 */ 4213 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) || 4214 invalid_bdaddr) 4215 hci_dev_set_flag(hdev, HCI_UNCONFIGURED); 4216 4217 /* For an unconfigured controller it is required to 4218 * read at least the version information provided by 4219 * the Read Local Version Information command. 4220 * 4221 * If the set_bdaddr driver callback is provided, then 4222 * also the original Bluetooth public device address 4223 * will be read using the Read BD Address command. 4224 */ 4225 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 4226 return hci_unconf_init_sync(hdev); 4227 4228 return ret; 4229 } 4230 4231 /* This function handles hdev init stage: 4232 * 4233 * Calls hci_dev_setup_sync to perform setup stage 4234 * Calls hci_init_sync to perform HCI command init sequence 4235 */ 4236 static int hci_dev_init_sync(struct hci_dev *hdev) 4237 { 4238 int ret; 4239 4240 bt_dev_dbg(hdev, ""); 4241 4242 atomic_set(&hdev->cmd_cnt, 1); 4243 set_bit(HCI_INIT, &hdev->flags); 4244 4245 ret = hci_dev_setup_sync(hdev); 4246 4247 if (hci_dev_test_flag(hdev, HCI_CONFIG)) { 4248 /* If public address change is configured, ensure that 4249 * the address gets programmed. If the driver does not 4250 * support changing the public address, fail the power 4251 * on procedure. 4252 */ 4253 if (bacmp(&hdev->public_addr, BDADDR_ANY) && 4254 hdev->set_bdaddr) 4255 ret = hdev->set_bdaddr(hdev, &hdev->public_addr); 4256 else 4257 ret = -EADDRNOTAVAIL; 4258 } 4259 4260 if (!ret) { 4261 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 4262 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4263 ret = hci_init_sync(hdev); 4264 if (!ret && hdev->post_init) 4265 ret = hdev->post_init(hdev); 4266 } 4267 } 4268 4269 /* If the HCI Reset command is clearing all diagnostic settings, 4270 * then they need to be reprogrammed after the init procedure 4271 * completed. 4272 */ 4273 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) && 4274 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4275 hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag) 4276 ret = hdev->set_diag(hdev, true); 4277 4278 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4279 msft_do_open(hdev); 4280 aosp_do_open(hdev); 4281 } 4282 4283 clear_bit(HCI_INIT, &hdev->flags); 4284 4285 return ret; 4286 } 4287 4288 int hci_dev_open_sync(struct hci_dev *hdev) 4289 { 4290 int ret; 4291 4292 bt_dev_dbg(hdev, ""); 4293 4294 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 4295 ret = -ENODEV; 4296 goto done; 4297 } 4298 4299 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4300 !hci_dev_test_flag(hdev, HCI_CONFIG)) { 4301 /* Check for rfkill but allow the HCI setup stage to 4302 * proceed (which in itself doesn't cause any RF activity). 4303 */ 4304 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) { 4305 ret = -ERFKILL; 4306 goto done; 4307 } 4308 4309 /* Check for valid public address or a configured static 4310 * random address, but let the HCI setup proceed to 4311 * be able to determine if there is a public address 4312 * or not. 4313 * 4314 * In case of user channel usage, it is not important 4315 * if a public address or static random address is 4316 * available. 4317 * 4318 * This check is only valid for BR/EDR controllers 4319 * since AMP controllers do not have an address. 4320 */ 4321 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4322 hdev->dev_type == HCI_PRIMARY && 4323 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 4324 !bacmp(&hdev->static_addr, BDADDR_ANY)) { 4325 ret = -EADDRNOTAVAIL; 4326 goto done; 4327 } 4328 } 4329 4330 if (test_bit(HCI_UP, &hdev->flags)) { 4331 ret = -EALREADY; 4332 goto done; 4333 } 4334 4335 if (hdev->open(hdev)) { 4336 ret = -EIO; 4337 goto done; 4338 } 4339 4340 set_bit(HCI_RUNNING, &hdev->flags); 4341 hci_sock_dev_event(hdev, HCI_DEV_OPEN); 4342 4343 ret = hci_dev_init_sync(hdev); 4344 if (!ret) { 4345 hci_dev_hold(hdev); 4346 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 4347 hci_adv_instances_set_rpa_expired(hdev, true); 4348 set_bit(HCI_UP, &hdev->flags); 4349 hci_sock_dev_event(hdev, HCI_DEV_UP); 4350 hci_leds_update_powered(hdev, true); 4351 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4352 !hci_dev_test_flag(hdev, HCI_CONFIG) && 4353 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 4354 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4355 hci_dev_test_flag(hdev, HCI_MGMT) && 4356 hdev->dev_type == HCI_PRIMARY) { 4357 ret = hci_powered_update_sync(hdev); 4358 } 4359 } else { 4360 /* Init failed, cleanup */ 4361 flush_work(&hdev->tx_work); 4362 4363 /* Since hci_rx_work() is possible to awake new cmd_work 4364 * it should be flushed first to avoid unexpected call of 4365 * hci_cmd_work() 4366 */ 4367 flush_work(&hdev->rx_work); 4368 flush_work(&hdev->cmd_work); 4369 4370 skb_queue_purge(&hdev->cmd_q); 4371 skb_queue_purge(&hdev->rx_q); 4372 4373 if (hdev->flush) 4374 hdev->flush(hdev); 4375 4376 if (hdev->sent_cmd) { 4377 kfree_skb(hdev->sent_cmd); 4378 hdev->sent_cmd = NULL; 4379 } 4380 4381 clear_bit(HCI_RUNNING, &hdev->flags); 4382 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 4383 4384 hdev->close(hdev); 4385 hdev->flags &= BIT(HCI_RAW); 4386 } 4387 4388 done: 4389 return ret; 4390 } 4391 4392 /* This function requires the caller holds hdev->lock */ 4393 static void hci_pend_le_actions_clear(struct hci_dev *hdev) 4394 { 4395 struct hci_conn_params *p; 4396 4397 list_for_each_entry(p, &hdev->le_conn_params, list) { 4398 if (p->conn) { 4399 hci_conn_drop(p->conn); 4400 hci_conn_put(p->conn); 4401 p->conn = NULL; 4402 } 4403 list_del_init(&p->action); 4404 } 4405 4406 BT_DBG("All LE pending actions cleared"); 4407 } 4408 4409 int hci_dev_close_sync(struct hci_dev *hdev) 4410 { 4411 bool auto_off; 4412 int err = 0; 4413 4414 bt_dev_dbg(hdev, ""); 4415 4416 cancel_delayed_work(&hdev->power_off); 4417 cancel_delayed_work(&hdev->ncmd_timer); 4418 4419 hci_request_cancel_all(hdev); 4420 4421 if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) && 4422 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4423 test_bit(HCI_UP, &hdev->flags)) { 4424 /* Execute vendor specific shutdown routine */ 4425 if (hdev->shutdown) 4426 err = hdev->shutdown(hdev); 4427 } 4428 4429 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) { 4430 cancel_delayed_work_sync(&hdev->cmd_timer); 4431 return err; 4432 } 4433 4434 hci_leds_update_powered(hdev, false); 4435 4436 /* Flush RX and TX works */ 4437 flush_work(&hdev->tx_work); 4438 flush_work(&hdev->rx_work); 4439 4440 if (hdev->discov_timeout > 0) { 4441 hdev->discov_timeout = 0; 4442 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 4443 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 4444 } 4445 4446 if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE)) 4447 cancel_delayed_work(&hdev->service_cache); 4448 4449 if (hci_dev_test_flag(hdev, HCI_MGMT)) { 4450 struct adv_info *adv_instance; 4451 4452 cancel_delayed_work_sync(&hdev->rpa_expired); 4453 4454 list_for_each_entry(adv_instance, &hdev->adv_instances, list) 4455 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb); 4456 } 4457 4458 /* Avoid potential lockdep warnings from the *_flush() calls by 4459 * ensuring the workqueue is empty up front. 4460 */ 4461 drain_workqueue(hdev->workqueue); 4462 4463 hci_dev_lock(hdev); 4464 4465 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 4466 4467 auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF); 4468 4469 if (!auto_off && hdev->dev_type == HCI_PRIMARY && 4470 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4471 hci_dev_test_flag(hdev, HCI_MGMT)) 4472 __mgmt_power_off(hdev); 4473 4474 hci_inquiry_cache_flush(hdev); 4475 hci_pend_le_actions_clear(hdev); 4476 hci_conn_hash_flush(hdev); 4477 /* Prevent data races on hdev->smp_data or hdev->smp_bredr_data */ 4478 smp_unregister(hdev); 4479 hci_dev_unlock(hdev); 4480 4481 hci_sock_dev_event(hdev, HCI_DEV_DOWN); 4482 4483 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4484 aosp_do_close(hdev); 4485 msft_do_close(hdev); 4486 } 4487 4488 if (hdev->flush) 4489 hdev->flush(hdev); 4490 4491 /* Reset device */ 4492 skb_queue_purge(&hdev->cmd_q); 4493 atomic_set(&hdev->cmd_cnt, 1); 4494 if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) && 4495 !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 4496 set_bit(HCI_INIT, &hdev->flags); 4497 hci_reset_sync(hdev); 4498 clear_bit(HCI_INIT, &hdev->flags); 4499 } 4500 4501 /* flush cmd work */ 4502 flush_work(&hdev->cmd_work); 4503 4504 /* Drop queues */ 4505 skb_queue_purge(&hdev->rx_q); 4506 skb_queue_purge(&hdev->cmd_q); 4507 skb_queue_purge(&hdev->raw_q); 4508 4509 /* Drop last sent command */ 4510 if (hdev->sent_cmd) { 4511 cancel_delayed_work_sync(&hdev->cmd_timer); 4512 kfree_skb(hdev->sent_cmd); 4513 hdev->sent_cmd = NULL; 4514 } 4515 4516 clear_bit(HCI_RUNNING, &hdev->flags); 4517 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 4518 4519 /* After this point our queues are empty and no tasks are scheduled. */ 4520 hdev->close(hdev); 4521 4522 /* Clear flags */ 4523 hdev->flags &= BIT(HCI_RAW); 4524 hci_dev_clear_volatile_flags(hdev); 4525 4526 /* Controller radio is available but is currently powered down */ 4527 hdev->amp_status = AMP_STATUS_POWERED_DOWN; 4528 4529 memset(hdev->eir, 0, sizeof(hdev->eir)); 4530 memset(hdev->dev_class, 0, sizeof(hdev->dev_class)); 4531 bacpy(&hdev->random_addr, BDADDR_ANY); 4532 4533 hci_dev_put(hdev); 4534 return err; 4535 } 4536 4537 /* This function perform power on HCI command sequence as follows: 4538 * 4539 * If controller is already up (HCI_UP) performs hci_powered_update_sync 4540 * sequence otherwise run hci_dev_open_sync which will follow with 4541 * hci_powered_update_sync after the init sequence is completed. 4542 */ 4543 static int hci_power_on_sync(struct hci_dev *hdev) 4544 { 4545 int err; 4546 4547 if (test_bit(HCI_UP, &hdev->flags) && 4548 hci_dev_test_flag(hdev, HCI_MGMT) && 4549 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) { 4550 cancel_delayed_work(&hdev->power_off); 4551 return hci_powered_update_sync(hdev); 4552 } 4553 4554 err = hci_dev_open_sync(hdev); 4555 if (err < 0) 4556 return err; 4557 4558 /* During the HCI setup phase, a few error conditions are 4559 * ignored and they need to be checked now. If they are still 4560 * valid, it is important to return the device back off. 4561 */ 4562 if (hci_dev_test_flag(hdev, HCI_RFKILLED) || 4563 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) || 4564 (hdev->dev_type == HCI_PRIMARY && 4565 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 4566 !bacmp(&hdev->static_addr, BDADDR_ANY))) { 4567 hci_dev_clear_flag(hdev, HCI_AUTO_OFF); 4568 hci_dev_close_sync(hdev); 4569 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) { 4570 queue_delayed_work(hdev->req_workqueue, &hdev->power_off, 4571 HCI_AUTO_OFF_TIMEOUT); 4572 } 4573 4574 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) { 4575 /* For unconfigured devices, set the HCI_RAW flag 4576 * so that userspace can easily identify them. 4577 */ 4578 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 4579 set_bit(HCI_RAW, &hdev->flags); 4580 4581 /* For fully configured devices, this will send 4582 * the Index Added event. For unconfigured devices, 4583 * it will send Unconfigued Index Added event. 4584 * 4585 * Devices with HCI_QUIRK_RAW_DEVICE are ignored 4586 * and no event will be send. 4587 */ 4588 mgmt_index_added(hdev); 4589 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) { 4590 /* When the controller is now configured, then it 4591 * is important to clear the HCI_RAW flag. 4592 */ 4593 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 4594 clear_bit(HCI_RAW, &hdev->flags); 4595 4596 /* Powering on the controller with HCI_CONFIG set only 4597 * happens with the transition from unconfigured to 4598 * configured. This will send the Index Added event. 4599 */ 4600 mgmt_index_added(hdev); 4601 } 4602 4603 return 0; 4604 } 4605 4606 static int hci_remote_name_cancel_sync(struct hci_dev *hdev, bdaddr_t *addr) 4607 { 4608 struct hci_cp_remote_name_req_cancel cp; 4609 4610 memset(&cp, 0, sizeof(cp)); 4611 bacpy(&cp.bdaddr, addr); 4612 4613 return __hci_cmd_sync_status(hdev, HCI_OP_REMOTE_NAME_REQ_CANCEL, 4614 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4615 } 4616 4617 int hci_stop_discovery_sync(struct hci_dev *hdev) 4618 { 4619 struct discovery_state *d = &hdev->discovery; 4620 struct inquiry_entry *e; 4621 int err; 4622 4623 bt_dev_dbg(hdev, "state %u", hdev->discovery.state); 4624 4625 if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) { 4626 if (test_bit(HCI_INQUIRY, &hdev->flags)) { 4627 err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL, 4628 0, NULL, HCI_CMD_TIMEOUT); 4629 if (err) 4630 return err; 4631 } 4632 4633 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 4634 cancel_delayed_work(&hdev->le_scan_disable); 4635 cancel_delayed_work(&hdev->le_scan_restart); 4636 4637 err = hci_scan_disable_sync(hdev); 4638 if (err) 4639 return err; 4640 } 4641 4642 } else { 4643 err = hci_scan_disable_sync(hdev); 4644 if (err) 4645 return err; 4646 } 4647 4648 /* Resume advertising if it was paused */ 4649 if (use_ll_privacy(hdev)) 4650 hci_resume_advertising_sync(hdev); 4651 4652 /* No further actions needed for LE-only discovery */ 4653 if (d->type == DISCOV_TYPE_LE) 4654 return 0; 4655 4656 if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) { 4657 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY, 4658 NAME_PENDING); 4659 if (!e) 4660 return 0; 4661 4662 return hci_remote_name_cancel_sync(hdev, &e->data.bdaddr); 4663 } 4664 4665 return 0; 4666 } 4667 4668 static int hci_disconnect_phy_link_sync(struct hci_dev *hdev, u16 handle, 4669 u8 reason) 4670 { 4671 struct hci_cp_disconn_phy_link cp; 4672 4673 memset(&cp, 0, sizeof(cp)); 4674 cp.phy_handle = HCI_PHY_HANDLE(handle); 4675 cp.reason = reason; 4676 4677 return __hci_cmd_sync_status(hdev, HCI_OP_DISCONN_PHY_LINK, 4678 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4679 } 4680 4681 static int hci_disconnect_sync(struct hci_dev *hdev, struct hci_conn *conn, 4682 u8 reason) 4683 { 4684 struct hci_cp_disconnect cp; 4685 4686 if (conn->type == AMP_LINK) 4687 return hci_disconnect_phy_link_sync(hdev, conn->handle, reason); 4688 4689 memset(&cp, 0, sizeof(cp)); 4690 cp.handle = cpu_to_le16(conn->handle); 4691 cp.reason = reason; 4692 4693 /* Wait for HCI_EV_DISCONN_COMPLETE not HCI_EV_CMD_STATUS when not 4694 * suspending. 4695 */ 4696 if (!hdev->suspended) 4697 return __hci_cmd_sync_status_sk(hdev, HCI_OP_DISCONNECT, 4698 sizeof(cp), &cp, 4699 HCI_EV_DISCONN_COMPLETE, 4700 HCI_CMD_TIMEOUT, NULL); 4701 4702 return __hci_cmd_sync_status(hdev, HCI_OP_DISCONNECT, sizeof(cp), &cp, 4703 HCI_CMD_TIMEOUT); 4704 } 4705 4706 static int hci_le_connect_cancel_sync(struct hci_dev *hdev, 4707 struct hci_conn *conn) 4708 { 4709 if (test_bit(HCI_CONN_SCANNING, &conn->flags)) 4710 return 0; 4711 4712 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CREATE_CONN_CANCEL, 4713 6, &conn->dst, HCI_CMD_TIMEOUT); 4714 } 4715 4716 static int hci_connect_cancel_sync(struct hci_dev *hdev, struct hci_conn *conn) 4717 { 4718 if (conn->type == LE_LINK) 4719 return hci_le_connect_cancel_sync(hdev, conn); 4720 4721 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 4722 return 0; 4723 4724 return __hci_cmd_sync_status(hdev, HCI_OP_CREATE_CONN_CANCEL, 4725 6, &conn->dst, HCI_CMD_TIMEOUT); 4726 } 4727 4728 static int hci_reject_sco_sync(struct hci_dev *hdev, struct hci_conn *conn, 4729 u8 reason) 4730 { 4731 struct hci_cp_reject_sync_conn_req cp; 4732 4733 memset(&cp, 0, sizeof(cp)); 4734 bacpy(&cp.bdaddr, &conn->dst); 4735 cp.reason = reason; 4736 4737 /* SCO rejection has its own limited set of 4738 * allowed error values (0x0D-0x0F). 4739 */ 4740 if (reason < 0x0d || reason > 0x0f) 4741 cp.reason = HCI_ERROR_REJ_LIMITED_RESOURCES; 4742 4743 return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_SYNC_CONN_REQ, 4744 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4745 } 4746 4747 static int hci_reject_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, 4748 u8 reason) 4749 { 4750 struct hci_cp_reject_conn_req cp; 4751 4752 if (conn->type == SCO_LINK || conn->type == ESCO_LINK) 4753 return hci_reject_sco_sync(hdev, conn, reason); 4754 4755 memset(&cp, 0, sizeof(cp)); 4756 bacpy(&cp.bdaddr, &conn->dst); 4757 cp.reason = reason; 4758 4759 return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_CONN_REQ, 4760 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4761 } 4762 4763 int hci_abort_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, u8 reason) 4764 { 4765 int err; 4766 4767 switch (conn->state) { 4768 case BT_CONNECTED: 4769 case BT_CONFIG: 4770 return hci_disconnect_sync(hdev, conn, reason); 4771 case BT_CONNECT: 4772 err = hci_connect_cancel_sync(hdev, conn); 4773 /* Cleanup hci_conn object if it cannot be cancelled as it 4774 * likelly means the controller and host stack are out of sync. 4775 */ 4776 if (err) 4777 hci_conn_failed(conn, err); 4778 4779 return err; 4780 case BT_CONNECT2: 4781 return hci_reject_conn_sync(hdev, conn, reason); 4782 default: 4783 conn->state = BT_CLOSED; 4784 break; 4785 } 4786 4787 return 0; 4788 } 4789 4790 static int hci_disconnect_all_sync(struct hci_dev *hdev, u8 reason) 4791 { 4792 struct hci_conn *conn, *tmp; 4793 int err; 4794 4795 list_for_each_entry_safe(conn, tmp, &hdev->conn_hash.list, list) { 4796 err = hci_abort_conn_sync(hdev, conn, reason); 4797 if (err) 4798 return err; 4799 } 4800 4801 return 0; 4802 } 4803 4804 /* This function perform power off HCI command sequence as follows: 4805 * 4806 * Clear Advertising 4807 * Stop Discovery 4808 * Disconnect all connections 4809 * hci_dev_close_sync 4810 */ 4811 static int hci_power_off_sync(struct hci_dev *hdev) 4812 { 4813 int err; 4814 4815 /* If controller is already down there is nothing to do */ 4816 if (!test_bit(HCI_UP, &hdev->flags)) 4817 return 0; 4818 4819 if (test_bit(HCI_ISCAN, &hdev->flags) || 4820 test_bit(HCI_PSCAN, &hdev->flags)) { 4821 err = hci_write_scan_enable_sync(hdev, 0x00); 4822 if (err) 4823 return err; 4824 } 4825 4826 err = hci_clear_adv_sync(hdev, NULL, false); 4827 if (err) 4828 return err; 4829 4830 err = hci_stop_discovery_sync(hdev); 4831 if (err) 4832 return err; 4833 4834 /* Terminated due to Power Off */ 4835 err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF); 4836 if (err) 4837 return err; 4838 4839 return hci_dev_close_sync(hdev); 4840 } 4841 4842 int hci_set_powered_sync(struct hci_dev *hdev, u8 val) 4843 { 4844 if (val) 4845 return hci_power_on_sync(hdev); 4846 4847 return hci_power_off_sync(hdev); 4848 } 4849 4850 static int hci_write_iac_sync(struct hci_dev *hdev) 4851 { 4852 struct hci_cp_write_current_iac_lap cp; 4853 4854 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 4855 return 0; 4856 4857 memset(&cp, 0, sizeof(cp)); 4858 4859 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { 4860 /* Limited discoverable mode */ 4861 cp.num_iac = min_t(u8, hdev->num_iac, 2); 4862 cp.iac_lap[0] = 0x00; /* LIAC */ 4863 cp.iac_lap[1] = 0x8b; 4864 cp.iac_lap[2] = 0x9e; 4865 cp.iac_lap[3] = 0x33; /* GIAC */ 4866 cp.iac_lap[4] = 0x8b; 4867 cp.iac_lap[5] = 0x9e; 4868 } else { 4869 /* General discoverable mode */ 4870 cp.num_iac = 1; 4871 cp.iac_lap[0] = 0x33; /* GIAC */ 4872 cp.iac_lap[1] = 0x8b; 4873 cp.iac_lap[2] = 0x9e; 4874 } 4875 4876 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CURRENT_IAC_LAP, 4877 (cp.num_iac * 3) + 1, &cp, 4878 HCI_CMD_TIMEOUT); 4879 } 4880 4881 int hci_update_discoverable_sync(struct hci_dev *hdev) 4882 { 4883 int err = 0; 4884 4885 if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 4886 err = hci_write_iac_sync(hdev); 4887 if (err) 4888 return err; 4889 4890 err = hci_update_scan_sync(hdev); 4891 if (err) 4892 return err; 4893 4894 err = hci_update_class_sync(hdev); 4895 if (err) 4896 return err; 4897 } 4898 4899 /* Advertising instances don't use the global discoverable setting, so 4900 * only update AD if advertising was enabled using Set Advertising. 4901 */ 4902 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) { 4903 err = hci_update_adv_data_sync(hdev, 0x00); 4904 if (err) 4905 return err; 4906 4907 /* Discoverable mode affects the local advertising 4908 * address in limited privacy mode. 4909 */ 4910 if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) { 4911 if (ext_adv_capable(hdev)) 4912 err = hci_start_ext_adv_sync(hdev, 0x00); 4913 else 4914 err = hci_enable_advertising_sync(hdev); 4915 } 4916 } 4917 4918 return err; 4919 } 4920 4921 static int update_discoverable_sync(struct hci_dev *hdev, void *data) 4922 { 4923 return hci_update_discoverable_sync(hdev); 4924 } 4925 4926 int hci_update_discoverable(struct hci_dev *hdev) 4927 { 4928 /* Only queue if it would have any effect */ 4929 if (hdev_is_powered(hdev) && 4930 hci_dev_test_flag(hdev, HCI_ADVERTISING) && 4931 hci_dev_test_flag(hdev, HCI_DISCOVERABLE) && 4932 hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) 4933 return hci_cmd_sync_queue(hdev, update_discoverable_sync, NULL, 4934 NULL); 4935 4936 return 0; 4937 } 4938 4939 int hci_update_connectable_sync(struct hci_dev *hdev) 4940 { 4941 int err; 4942 4943 err = hci_update_scan_sync(hdev); 4944 if (err) 4945 return err; 4946 4947 /* If BR/EDR is not enabled and we disable advertising as a 4948 * by-product of disabling connectable, we need to update the 4949 * advertising flags. 4950 */ 4951 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 4952 err = hci_update_adv_data_sync(hdev, hdev->cur_adv_instance); 4953 4954 /* Update the advertising parameters if necessary */ 4955 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 4956 !list_empty(&hdev->adv_instances)) { 4957 if (ext_adv_capable(hdev)) 4958 err = hci_start_ext_adv_sync(hdev, 4959 hdev->cur_adv_instance); 4960 else 4961 err = hci_enable_advertising_sync(hdev); 4962 4963 if (err) 4964 return err; 4965 } 4966 4967 return hci_update_passive_scan_sync(hdev); 4968 } 4969 4970 static int hci_inquiry_sync(struct hci_dev *hdev, u8 length) 4971 { 4972 const u8 giac[3] = { 0x33, 0x8b, 0x9e }; 4973 const u8 liac[3] = { 0x00, 0x8b, 0x9e }; 4974 struct hci_cp_inquiry cp; 4975 4976 bt_dev_dbg(hdev, ""); 4977 4978 if (hci_dev_test_flag(hdev, HCI_INQUIRY)) 4979 return 0; 4980 4981 hci_dev_lock(hdev); 4982 hci_inquiry_cache_flush(hdev); 4983 hci_dev_unlock(hdev); 4984 4985 memset(&cp, 0, sizeof(cp)); 4986 4987 if (hdev->discovery.limited) 4988 memcpy(&cp.lap, liac, sizeof(cp.lap)); 4989 else 4990 memcpy(&cp.lap, giac, sizeof(cp.lap)); 4991 4992 cp.length = length; 4993 4994 return __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY, 4995 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4996 } 4997 4998 static int hci_active_scan_sync(struct hci_dev *hdev, uint16_t interval) 4999 { 5000 u8 own_addr_type; 5001 /* Accept list is not used for discovery */ 5002 u8 filter_policy = 0x00; 5003 /* Default is to enable duplicates filter */ 5004 u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE; 5005 int err; 5006 5007 bt_dev_dbg(hdev, ""); 5008 5009 /* If controller is scanning, it means the passive scanning is 5010 * running. Thus, we should temporarily stop it in order to set the 5011 * discovery scanning parameters. 5012 */ 5013 err = hci_scan_disable_sync(hdev); 5014 if (err) { 5015 bt_dev_err(hdev, "Unable to disable scanning: %d", err); 5016 return err; 5017 } 5018 5019 cancel_interleave_scan(hdev); 5020 5021 /* Pause advertising since active scanning disables address resolution 5022 * which advertising depend on in order to generate its RPAs. 5023 */ 5024 if (use_ll_privacy(hdev)) { 5025 err = hci_pause_advertising_sync(hdev); 5026 if (err) { 5027 bt_dev_err(hdev, "pause advertising failed: %d", err); 5028 goto failed; 5029 } 5030 } 5031 5032 /* Disable address resolution while doing active scanning since the 5033 * accept list shall not be used and all reports shall reach the host 5034 * anyway. 5035 */ 5036 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00); 5037 if (err) { 5038 bt_dev_err(hdev, "Unable to disable Address Resolution: %d", 5039 err); 5040 goto failed; 5041 } 5042 5043 /* All active scans will be done with either a resolvable private 5044 * address (when privacy feature has been enabled) or non-resolvable 5045 * private address. 5046 */ 5047 err = hci_update_random_address_sync(hdev, true, scan_use_rpa(hdev), 5048 &own_addr_type); 5049 if (err < 0) 5050 own_addr_type = ADDR_LE_DEV_PUBLIC; 5051 5052 if (hci_is_adv_monitoring(hdev)) { 5053 /* Duplicate filter should be disabled when some advertisement 5054 * monitor is activated, otherwise AdvMon can only receive one 5055 * advertisement for one peer(*) during active scanning, and 5056 * might report loss to these peers. 5057 * 5058 * Note that different controllers have different meanings of 5059 * |duplicate|. Some of them consider packets with the same 5060 * address as duplicate, and others consider packets with the 5061 * same address and the same RSSI as duplicate. Although in the 5062 * latter case we don't need to disable duplicate filter, but 5063 * it is common to have active scanning for a short period of 5064 * time, the power impact should be neglectable. 5065 */ 5066 filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 5067 } 5068 5069 err = hci_start_scan_sync(hdev, LE_SCAN_ACTIVE, interval, 5070 hdev->le_scan_window_discovery, 5071 own_addr_type, filter_policy, filter_dup); 5072 if (!err) 5073 return err; 5074 5075 failed: 5076 /* Resume advertising if it was paused */ 5077 if (use_ll_privacy(hdev)) 5078 hci_resume_advertising_sync(hdev); 5079 5080 /* Resume passive scanning */ 5081 hci_update_passive_scan_sync(hdev); 5082 return err; 5083 } 5084 5085 static int hci_start_interleaved_discovery_sync(struct hci_dev *hdev) 5086 { 5087 int err; 5088 5089 bt_dev_dbg(hdev, ""); 5090 5091 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery * 2); 5092 if (err) 5093 return err; 5094 5095 return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN); 5096 } 5097 5098 int hci_start_discovery_sync(struct hci_dev *hdev) 5099 { 5100 unsigned long timeout; 5101 int err; 5102 5103 bt_dev_dbg(hdev, "type %u", hdev->discovery.type); 5104 5105 switch (hdev->discovery.type) { 5106 case DISCOV_TYPE_BREDR: 5107 return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN); 5108 case DISCOV_TYPE_INTERLEAVED: 5109 /* When running simultaneous discovery, the LE scanning time 5110 * should occupy the whole discovery time sine BR/EDR inquiry 5111 * and LE scanning are scheduled by the controller. 5112 * 5113 * For interleaving discovery in comparison, BR/EDR inquiry 5114 * and LE scanning are done sequentially with separate 5115 * timeouts. 5116 */ 5117 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, 5118 &hdev->quirks)) { 5119 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 5120 /* During simultaneous discovery, we double LE scan 5121 * interval. We must leave some time for the controller 5122 * to do BR/EDR inquiry. 5123 */ 5124 err = hci_start_interleaved_discovery_sync(hdev); 5125 break; 5126 } 5127 5128 timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout); 5129 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery); 5130 break; 5131 case DISCOV_TYPE_LE: 5132 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 5133 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery); 5134 break; 5135 default: 5136 return -EINVAL; 5137 } 5138 5139 if (err) 5140 return err; 5141 5142 bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout)); 5143 5144 /* When service discovery is used and the controller has a 5145 * strict duplicate filter, it is important to remember the 5146 * start and duration of the scan. This is required for 5147 * restarting scanning during the discovery phase. 5148 */ 5149 if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) && 5150 hdev->discovery.result_filtering) { 5151 hdev->discovery.scan_start = jiffies; 5152 hdev->discovery.scan_duration = timeout; 5153 } 5154 5155 queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable, 5156 timeout); 5157 return 0; 5158 } 5159 5160 static void hci_suspend_monitor_sync(struct hci_dev *hdev) 5161 { 5162 switch (hci_get_adv_monitor_offload_ext(hdev)) { 5163 case HCI_ADV_MONITOR_EXT_MSFT: 5164 msft_suspend_sync(hdev); 5165 break; 5166 default: 5167 return; 5168 } 5169 } 5170 5171 /* This function disables discovery and mark it as paused */ 5172 static int hci_pause_discovery_sync(struct hci_dev *hdev) 5173 { 5174 int old_state = hdev->discovery.state; 5175 int err; 5176 5177 /* If discovery already stopped/stopping/paused there nothing to do */ 5178 if (old_state == DISCOVERY_STOPPED || old_state == DISCOVERY_STOPPING || 5179 hdev->discovery_paused) 5180 return 0; 5181 5182 hci_discovery_set_state(hdev, DISCOVERY_STOPPING); 5183 err = hci_stop_discovery_sync(hdev); 5184 if (err) 5185 return err; 5186 5187 hdev->discovery_paused = true; 5188 hdev->discovery_old_state = old_state; 5189 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 5190 5191 return 0; 5192 } 5193 5194 static int hci_update_event_filter_sync(struct hci_dev *hdev) 5195 { 5196 struct bdaddr_list_with_flags *b; 5197 u8 scan = SCAN_DISABLED; 5198 bool scanning = test_bit(HCI_PSCAN, &hdev->flags); 5199 int err; 5200 5201 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 5202 return 0; 5203 5204 /* Some fake CSR controllers lock up after setting this type of 5205 * filter, so avoid sending the request altogether. 5206 */ 5207 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 5208 return 0; 5209 5210 /* Always clear event filter when starting */ 5211 hci_clear_event_filter_sync(hdev); 5212 5213 list_for_each_entry(b, &hdev->accept_list, list) { 5214 if (!(b->flags & HCI_CONN_FLAG_REMOTE_WAKEUP)) 5215 continue; 5216 5217 bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr); 5218 5219 err = hci_set_event_filter_sync(hdev, HCI_FLT_CONN_SETUP, 5220 HCI_CONN_SETUP_ALLOW_BDADDR, 5221 &b->bdaddr, 5222 HCI_CONN_SETUP_AUTO_ON); 5223 if (err) 5224 bt_dev_dbg(hdev, "Failed to set event filter for %pMR", 5225 &b->bdaddr); 5226 else 5227 scan = SCAN_PAGE; 5228 } 5229 5230 if (scan && !scanning) 5231 hci_write_scan_enable_sync(hdev, scan); 5232 else if (!scan && scanning) 5233 hci_write_scan_enable_sync(hdev, scan); 5234 5235 return 0; 5236 } 5237 5238 /* This function disables scan (BR and LE) and mark it as paused */ 5239 static int hci_pause_scan_sync(struct hci_dev *hdev) 5240 { 5241 if (hdev->scanning_paused) 5242 return 0; 5243 5244 /* Disable page scan if enabled */ 5245 if (test_bit(HCI_PSCAN, &hdev->flags)) 5246 hci_write_scan_enable_sync(hdev, SCAN_DISABLED); 5247 5248 hci_scan_disable_sync(hdev); 5249 5250 hdev->scanning_paused = true; 5251 5252 return 0; 5253 } 5254 5255 /* This function performs the HCI suspend procedures in the follow order: 5256 * 5257 * Pause discovery (active scanning/inquiry) 5258 * Pause Directed Advertising/Advertising 5259 * Pause Scanning (passive scanning in case discovery was not active) 5260 * Disconnect all connections 5261 * Set suspend_status to BT_SUSPEND_DISCONNECT if hdev cannot wakeup 5262 * otherwise: 5263 * Update event mask (only set events that are allowed to wake up the host) 5264 * Update event filter (with devices marked with HCI_CONN_FLAG_REMOTE_WAKEUP) 5265 * Update passive scanning (lower duty cycle) 5266 * Set suspend_status to BT_SUSPEND_CONFIGURE_WAKE 5267 */ 5268 int hci_suspend_sync(struct hci_dev *hdev) 5269 { 5270 int err; 5271 5272 /* If marked as suspended there nothing to do */ 5273 if (hdev->suspended) 5274 return 0; 5275 5276 /* Mark device as suspended */ 5277 hdev->suspended = true; 5278 5279 /* Pause discovery if not already stopped */ 5280 hci_pause_discovery_sync(hdev); 5281 5282 /* Pause other advertisements */ 5283 hci_pause_advertising_sync(hdev); 5284 5285 /* Suspend monitor filters */ 5286 hci_suspend_monitor_sync(hdev); 5287 5288 /* Prevent disconnects from causing scanning to be re-enabled */ 5289 hci_pause_scan_sync(hdev); 5290 5291 /* Soft disconnect everything (power off) */ 5292 err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF); 5293 if (err) { 5294 /* Set state to BT_RUNNING so resume doesn't notify */ 5295 hdev->suspend_state = BT_RUNNING; 5296 hci_resume_sync(hdev); 5297 return err; 5298 } 5299 5300 /* Update event mask so only the allowed event can wakeup the host */ 5301 hci_set_event_mask_sync(hdev); 5302 5303 /* Only configure accept list if disconnect succeeded and wake 5304 * isn't being prevented. 5305 */ 5306 if (!hdev->wakeup || !hdev->wakeup(hdev)) { 5307 hdev->suspend_state = BT_SUSPEND_DISCONNECT; 5308 return 0; 5309 } 5310 5311 /* Unpause to take care of updating scanning params */ 5312 hdev->scanning_paused = false; 5313 5314 /* Enable event filter for paired devices */ 5315 hci_update_event_filter_sync(hdev); 5316 5317 /* Update LE passive scan if enabled */ 5318 hci_update_passive_scan_sync(hdev); 5319 5320 /* Pause scan changes again. */ 5321 hdev->scanning_paused = true; 5322 5323 hdev->suspend_state = BT_SUSPEND_CONFIGURE_WAKE; 5324 5325 return 0; 5326 } 5327 5328 /* This function resumes discovery */ 5329 static int hci_resume_discovery_sync(struct hci_dev *hdev) 5330 { 5331 int err; 5332 5333 /* If discovery not paused there nothing to do */ 5334 if (!hdev->discovery_paused) 5335 return 0; 5336 5337 hdev->discovery_paused = false; 5338 5339 hci_discovery_set_state(hdev, DISCOVERY_STARTING); 5340 5341 err = hci_start_discovery_sync(hdev); 5342 5343 hci_discovery_set_state(hdev, err ? DISCOVERY_STOPPED : 5344 DISCOVERY_FINDING); 5345 5346 return err; 5347 } 5348 5349 static void hci_resume_monitor_sync(struct hci_dev *hdev) 5350 { 5351 switch (hci_get_adv_monitor_offload_ext(hdev)) { 5352 case HCI_ADV_MONITOR_EXT_MSFT: 5353 msft_resume_sync(hdev); 5354 break; 5355 default: 5356 return; 5357 } 5358 } 5359 5360 /* This function resume scan and reset paused flag */ 5361 static int hci_resume_scan_sync(struct hci_dev *hdev) 5362 { 5363 if (!hdev->scanning_paused) 5364 return 0; 5365 5366 hdev->scanning_paused = false; 5367 5368 hci_update_scan_sync(hdev); 5369 5370 /* Reset passive scanning to normal */ 5371 hci_update_passive_scan_sync(hdev); 5372 5373 return 0; 5374 } 5375 5376 /* This function performs the HCI suspend procedures in the follow order: 5377 * 5378 * Restore event mask 5379 * Clear event filter 5380 * Update passive scanning (normal duty cycle) 5381 * Resume Directed Advertising/Advertising 5382 * Resume discovery (active scanning/inquiry) 5383 */ 5384 int hci_resume_sync(struct hci_dev *hdev) 5385 { 5386 /* If not marked as suspended there nothing to do */ 5387 if (!hdev->suspended) 5388 return 0; 5389 5390 hdev->suspended = false; 5391 5392 /* Restore event mask */ 5393 hci_set_event_mask_sync(hdev); 5394 5395 /* Clear any event filters and restore scan state */ 5396 hci_clear_event_filter_sync(hdev); 5397 5398 /* Resume scanning */ 5399 hci_resume_scan_sync(hdev); 5400 5401 /* Resume monitor filters */ 5402 hci_resume_monitor_sync(hdev); 5403 5404 /* Resume other advertisements */ 5405 hci_resume_advertising_sync(hdev); 5406 5407 /* Resume discovery */ 5408 hci_resume_discovery_sync(hdev); 5409 5410 return 0; 5411 } 5412 5413 static bool conn_use_rpa(struct hci_conn *conn) 5414 { 5415 struct hci_dev *hdev = conn->hdev; 5416 5417 return hci_dev_test_flag(hdev, HCI_PRIVACY); 5418 } 5419 5420 static int hci_le_ext_directed_advertising_sync(struct hci_dev *hdev, 5421 struct hci_conn *conn) 5422 { 5423 struct hci_cp_le_set_ext_adv_params cp; 5424 int err; 5425 bdaddr_t random_addr; 5426 u8 own_addr_type; 5427 5428 err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 5429 &own_addr_type); 5430 if (err) 5431 return err; 5432 5433 /* Set require_privacy to false so that the remote device has a 5434 * chance of identifying us. 5435 */ 5436 err = hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL, 5437 &own_addr_type, &random_addr); 5438 if (err) 5439 return err; 5440 5441 memset(&cp, 0, sizeof(cp)); 5442 5443 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND); 5444 cp.own_addr_type = own_addr_type; 5445 cp.channel_map = hdev->le_adv_channel_map; 5446 cp.tx_power = HCI_TX_POWER_INVALID; 5447 cp.primary_phy = HCI_ADV_PHY_1M; 5448 cp.secondary_phy = HCI_ADV_PHY_1M; 5449 cp.handle = 0x00; /* Use instance 0 for directed adv */ 5450 cp.own_addr_type = own_addr_type; 5451 cp.peer_addr_type = conn->dst_type; 5452 bacpy(&cp.peer_addr, &conn->dst); 5453 5454 /* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for 5455 * advertising_event_property LE_LEGACY_ADV_DIRECT_IND 5456 * does not supports advertising data when the advertising set already 5457 * contains some, the controller shall return erroc code 'Invalid 5458 * HCI Command Parameters(0x12). 5459 * So it is required to remove adv set for handle 0x00. since we use 5460 * instance 0 for directed adv. 5461 */ 5462 err = hci_remove_ext_adv_instance_sync(hdev, cp.handle, NULL); 5463 if (err) 5464 return err; 5465 5466 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS, 5467 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5468 if (err) 5469 return err; 5470 5471 /* Check if random address need to be updated */ 5472 if (own_addr_type == ADDR_LE_DEV_RANDOM && 5473 bacmp(&random_addr, BDADDR_ANY) && 5474 bacmp(&random_addr, &hdev->random_addr)) { 5475 err = hci_set_adv_set_random_addr_sync(hdev, 0x00, 5476 &random_addr); 5477 if (err) 5478 return err; 5479 } 5480 5481 return hci_enable_ext_advertising_sync(hdev, 0x00); 5482 } 5483 5484 static int hci_le_directed_advertising_sync(struct hci_dev *hdev, 5485 struct hci_conn *conn) 5486 { 5487 struct hci_cp_le_set_adv_param cp; 5488 u8 status; 5489 u8 own_addr_type; 5490 u8 enable; 5491 5492 if (ext_adv_capable(hdev)) 5493 return hci_le_ext_directed_advertising_sync(hdev, conn); 5494 5495 /* Clear the HCI_LE_ADV bit temporarily so that the 5496 * hci_update_random_address knows that it's safe to go ahead 5497 * and write a new random address. The flag will be set back on 5498 * as soon as the SET_ADV_ENABLE HCI command completes. 5499 */ 5500 hci_dev_clear_flag(hdev, HCI_LE_ADV); 5501 5502 /* Set require_privacy to false so that the remote device has a 5503 * chance of identifying us. 5504 */ 5505 status = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 5506 &own_addr_type); 5507 if (status) 5508 return status; 5509 5510 memset(&cp, 0, sizeof(cp)); 5511 5512 /* Some controllers might reject command if intervals are not 5513 * within range for undirected advertising. 5514 * BCM20702A0 is known to be affected by this. 5515 */ 5516 cp.min_interval = cpu_to_le16(0x0020); 5517 cp.max_interval = cpu_to_le16(0x0020); 5518 5519 cp.type = LE_ADV_DIRECT_IND; 5520 cp.own_address_type = own_addr_type; 5521 cp.direct_addr_type = conn->dst_type; 5522 bacpy(&cp.direct_addr, &conn->dst); 5523 cp.channel_map = hdev->le_adv_channel_map; 5524 5525 status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM, 5526 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5527 if (status) 5528 return status; 5529 5530 enable = 0x01; 5531 5532 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 5533 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 5534 } 5535 5536 static void set_ext_conn_params(struct hci_conn *conn, 5537 struct hci_cp_le_ext_conn_param *p) 5538 { 5539 struct hci_dev *hdev = conn->hdev; 5540 5541 memset(p, 0, sizeof(*p)); 5542 5543 p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect); 5544 p->scan_window = cpu_to_le16(hdev->le_scan_window_connect); 5545 p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 5546 p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 5547 p->conn_latency = cpu_to_le16(conn->le_conn_latency); 5548 p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 5549 p->min_ce_len = cpu_to_le16(0x0000); 5550 p->max_ce_len = cpu_to_le16(0x0000); 5551 } 5552 5553 static int hci_le_ext_create_conn_sync(struct hci_dev *hdev, 5554 struct hci_conn *conn, u8 own_addr_type) 5555 { 5556 struct hci_cp_le_ext_create_conn *cp; 5557 struct hci_cp_le_ext_conn_param *p; 5558 u8 data[sizeof(*cp) + sizeof(*p) * 3]; 5559 u32 plen; 5560 5561 cp = (void *)data; 5562 p = (void *)cp->data; 5563 5564 memset(cp, 0, sizeof(*cp)); 5565 5566 bacpy(&cp->peer_addr, &conn->dst); 5567 cp->peer_addr_type = conn->dst_type; 5568 cp->own_addr_type = own_addr_type; 5569 5570 plen = sizeof(*cp); 5571 5572 if (scan_1m(hdev)) { 5573 cp->phys |= LE_SCAN_PHY_1M; 5574 set_ext_conn_params(conn, p); 5575 5576 p++; 5577 plen += sizeof(*p); 5578 } 5579 5580 if (scan_2m(hdev)) { 5581 cp->phys |= LE_SCAN_PHY_2M; 5582 set_ext_conn_params(conn, p); 5583 5584 p++; 5585 plen += sizeof(*p); 5586 } 5587 5588 if (scan_coded(hdev)) { 5589 cp->phys |= LE_SCAN_PHY_CODED; 5590 set_ext_conn_params(conn, p); 5591 5592 plen += sizeof(*p); 5593 } 5594 5595 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_EXT_CREATE_CONN, 5596 plen, data, 5597 HCI_EV_LE_ENHANCED_CONN_COMPLETE, 5598 conn->conn_timeout, NULL); 5599 } 5600 5601 int hci_le_create_conn_sync(struct hci_dev *hdev, struct hci_conn *conn) 5602 { 5603 struct hci_cp_le_create_conn cp; 5604 struct hci_conn_params *params; 5605 u8 own_addr_type; 5606 int err; 5607 5608 /* If requested to connect as peripheral use directed advertising */ 5609 if (conn->role == HCI_ROLE_SLAVE) { 5610 /* If we're active scanning and simultaneous roles is not 5611 * enabled simply reject the attempt. 5612 */ 5613 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) && 5614 hdev->le_scan_type == LE_SCAN_ACTIVE && 5615 !hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) { 5616 hci_conn_del(conn); 5617 return -EBUSY; 5618 } 5619 5620 /* Pause advertising while doing directed advertising. */ 5621 hci_pause_advertising_sync(hdev); 5622 5623 err = hci_le_directed_advertising_sync(hdev, conn); 5624 goto done; 5625 } 5626 5627 /* Disable advertising if simultaneous roles is not in use. */ 5628 if (!hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) 5629 hci_pause_advertising_sync(hdev); 5630 5631 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); 5632 if (params) { 5633 conn->le_conn_min_interval = params->conn_min_interval; 5634 conn->le_conn_max_interval = params->conn_max_interval; 5635 conn->le_conn_latency = params->conn_latency; 5636 conn->le_supv_timeout = params->supervision_timeout; 5637 } else { 5638 conn->le_conn_min_interval = hdev->le_conn_min_interval; 5639 conn->le_conn_max_interval = hdev->le_conn_max_interval; 5640 conn->le_conn_latency = hdev->le_conn_latency; 5641 conn->le_supv_timeout = hdev->le_supv_timeout; 5642 } 5643 5644 /* If controller is scanning, we stop it since some controllers are 5645 * not able to scan and connect at the same time. Also set the 5646 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete 5647 * handler for scan disabling knows to set the correct discovery 5648 * state. 5649 */ 5650 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 5651 hci_scan_disable_sync(hdev); 5652 hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED); 5653 } 5654 5655 /* Update random address, but set require_privacy to false so 5656 * that we never connect with an non-resolvable address. 5657 */ 5658 err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 5659 &own_addr_type); 5660 if (err) 5661 goto done; 5662 5663 if (use_ext_conn(hdev)) { 5664 err = hci_le_ext_create_conn_sync(hdev, conn, own_addr_type); 5665 goto done; 5666 } 5667 5668 memset(&cp, 0, sizeof(cp)); 5669 5670 cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect); 5671 cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect); 5672 5673 bacpy(&cp.peer_addr, &conn->dst); 5674 cp.peer_addr_type = conn->dst_type; 5675 cp.own_address_type = own_addr_type; 5676 cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 5677 cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 5678 cp.conn_latency = cpu_to_le16(conn->le_conn_latency); 5679 cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 5680 cp.min_ce_len = cpu_to_le16(0x0000); 5681 cp.max_ce_len = cpu_to_le16(0x0000); 5682 5683 /* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E page 2261: 5684 * 5685 * If this event is unmasked and the HCI_LE_Connection_Complete event 5686 * is unmasked, only the HCI_LE_Enhanced_Connection_Complete event is 5687 * sent when a new connection has been created. 5688 */ 5689 err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CONN, 5690 sizeof(cp), &cp, 5691 use_enhanced_conn_complete(hdev) ? 5692 HCI_EV_LE_ENHANCED_CONN_COMPLETE : 5693 HCI_EV_LE_CONN_COMPLETE, 5694 conn->conn_timeout, NULL); 5695 5696 done: 5697 /* Re-enable advertising after the connection attempt is finished. */ 5698 hci_resume_advertising_sync(hdev); 5699 return err; 5700 } 5701 5702 int hci_le_remove_cig_sync(struct hci_dev *hdev, u8 handle) 5703 { 5704 struct hci_cp_le_remove_cig cp; 5705 5706 memset(&cp, 0, sizeof(cp)); 5707 cp.cig_id = handle; 5708 5709 return __hci_cmd_sync_status(hdev, HCI_OP_LE_REMOVE_CIG, sizeof(cp), 5710 &cp, HCI_CMD_TIMEOUT); 5711 } 5712 5713 int hci_le_big_terminate_sync(struct hci_dev *hdev, u8 handle) 5714 { 5715 struct hci_cp_le_big_term_sync cp; 5716 5717 memset(&cp, 0, sizeof(cp)); 5718 cp.handle = handle; 5719 5720 return __hci_cmd_sync_status(hdev, HCI_OP_LE_BIG_TERM_SYNC, 5721 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5722 } 5723 5724 int hci_le_pa_terminate_sync(struct hci_dev *hdev, u16 handle) 5725 { 5726 struct hci_cp_le_pa_term_sync cp; 5727 5728 memset(&cp, 0, sizeof(cp)); 5729 cp.handle = cpu_to_le16(handle); 5730 5731 return __hci_cmd_sync_status(hdev, HCI_OP_LE_PA_TERM_SYNC, 5732 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5733 } 5734