1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * BlueZ - Bluetooth protocol stack for Linux 4 * 5 * Copyright (C) 2021 Intel Corporation 6 */ 7 8 #include <linux/property.h> 9 10 #include <net/bluetooth/bluetooth.h> 11 #include <net/bluetooth/hci_core.h> 12 #include <net/bluetooth/mgmt.h> 13 14 #include "hci_request.h" 15 #include "hci_debugfs.h" 16 #include "smp.h" 17 #include "eir.h" 18 #include "msft.h" 19 #include "aosp.h" 20 #include "leds.h" 21 22 static void hci_cmd_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode, 23 struct sk_buff *skb) 24 { 25 bt_dev_dbg(hdev, "result 0x%2.2x", result); 26 27 if (hdev->req_status != HCI_REQ_PEND) 28 return; 29 30 hdev->req_result = result; 31 hdev->req_status = HCI_REQ_DONE; 32 33 if (skb) { 34 struct sock *sk = hci_skb_sk(skb); 35 36 /* Drop sk reference if set */ 37 if (sk) 38 sock_put(sk); 39 40 hdev->req_skb = skb_get(skb); 41 } 42 43 wake_up_interruptible(&hdev->req_wait_q); 44 } 45 46 static struct sk_buff *hci_cmd_sync_alloc(struct hci_dev *hdev, u16 opcode, 47 u32 plen, const void *param, 48 struct sock *sk) 49 { 50 int len = HCI_COMMAND_HDR_SIZE + plen; 51 struct hci_command_hdr *hdr; 52 struct sk_buff *skb; 53 54 skb = bt_skb_alloc(len, GFP_ATOMIC); 55 if (!skb) 56 return NULL; 57 58 hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE); 59 hdr->opcode = cpu_to_le16(opcode); 60 hdr->plen = plen; 61 62 if (plen) 63 skb_put_data(skb, param, plen); 64 65 bt_dev_dbg(hdev, "skb len %d", skb->len); 66 67 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; 68 hci_skb_opcode(skb) = opcode; 69 70 /* Grab a reference if command needs to be associated with a sock (e.g. 71 * likely mgmt socket that initiated the command). 72 */ 73 if (sk) { 74 hci_skb_sk(skb) = sk; 75 sock_hold(sk); 76 } 77 78 return skb; 79 } 80 81 static void hci_cmd_sync_add(struct hci_request *req, u16 opcode, u32 plen, 82 const void *param, u8 event, struct sock *sk) 83 { 84 struct hci_dev *hdev = req->hdev; 85 struct sk_buff *skb; 86 87 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); 88 89 /* If an error occurred during request building, there is no point in 90 * queueing the HCI command. We can simply return. 91 */ 92 if (req->err) 93 return; 94 95 skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, sk); 96 if (!skb) { 97 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)", 98 opcode); 99 req->err = -ENOMEM; 100 return; 101 } 102 103 if (skb_queue_empty(&req->cmd_q)) 104 bt_cb(skb)->hci.req_flags |= HCI_REQ_START; 105 106 hci_skb_event(skb) = event; 107 108 skb_queue_tail(&req->cmd_q, skb); 109 } 110 111 static int hci_cmd_sync_run(struct hci_request *req) 112 { 113 struct hci_dev *hdev = req->hdev; 114 struct sk_buff *skb; 115 unsigned long flags; 116 117 bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q)); 118 119 /* If an error occurred during request building, remove all HCI 120 * commands queued on the HCI request queue. 121 */ 122 if (req->err) { 123 skb_queue_purge(&req->cmd_q); 124 return req->err; 125 } 126 127 /* Do not allow empty requests */ 128 if (skb_queue_empty(&req->cmd_q)) 129 return -ENODATA; 130 131 skb = skb_peek_tail(&req->cmd_q); 132 bt_cb(skb)->hci.req_complete_skb = hci_cmd_sync_complete; 133 bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB; 134 135 spin_lock_irqsave(&hdev->cmd_q.lock, flags); 136 skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q); 137 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); 138 139 queue_work(hdev->workqueue, &hdev->cmd_work); 140 141 return 0; 142 } 143 144 /* This function requires the caller holds hdev->req_lock. */ 145 struct sk_buff *__hci_cmd_sync_sk(struct hci_dev *hdev, u16 opcode, u32 plen, 146 const void *param, u8 event, u32 timeout, 147 struct sock *sk) 148 { 149 struct hci_request req; 150 struct sk_buff *skb; 151 int err = 0; 152 153 bt_dev_dbg(hdev, "Opcode 0x%4x", opcode); 154 155 hci_req_init(&req, hdev); 156 157 hci_cmd_sync_add(&req, opcode, plen, param, event, sk); 158 159 hdev->req_status = HCI_REQ_PEND; 160 161 err = hci_cmd_sync_run(&req); 162 if (err < 0) 163 return ERR_PTR(err); 164 165 err = wait_event_interruptible_timeout(hdev->req_wait_q, 166 hdev->req_status != HCI_REQ_PEND, 167 timeout); 168 169 if (err == -ERESTARTSYS) 170 return ERR_PTR(-EINTR); 171 172 switch (hdev->req_status) { 173 case HCI_REQ_DONE: 174 err = -bt_to_errno(hdev->req_result); 175 break; 176 177 case HCI_REQ_CANCELED: 178 err = -hdev->req_result; 179 break; 180 181 default: 182 err = -ETIMEDOUT; 183 break; 184 } 185 186 hdev->req_status = 0; 187 hdev->req_result = 0; 188 skb = hdev->req_skb; 189 hdev->req_skb = NULL; 190 191 bt_dev_dbg(hdev, "end: err %d", err); 192 193 if (err < 0) { 194 kfree_skb(skb); 195 return ERR_PTR(err); 196 } 197 198 return skb; 199 } 200 EXPORT_SYMBOL(__hci_cmd_sync_sk); 201 202 /* This function requires the caller holds hdev->req_lock. */ 203 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 204 const void *param, u32 timeout) 205 { 206 return __hci_cmd_sync_sk(hdev, opcode, plen, param, 0, timeout, NULL); 207 } 208 EXPORT_SYMBOL(__hci_cmd_sync); 209 210 /* Send HCI command and wait for command complete event */ 211 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 212 const void *param, u32 timeout) 213 { 214 struct sk_buff *skb; 215 216 if (!test_bit(HCI_UP, &hdev->flags)) 217 return ERR_PTR(-ENETDOWN); 218 219 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); 220 221 hci_req_sync_lock(hdev); 222 skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout); 223 hci_req_sync_unlock(hdev); 224 225 return skb; 226 } 227 EXPORT_SYMBOL(hci_cmd_sync); 228 229 /* This function requires the caller holds hdev->req_lock. */ 230 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen, 231 const void *param, u8 event, u32 timeout) 232 { 233 return __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, 234 NULL); 235 } 236 EXPORT_SYMBOL(__hci_cmd_sync_ev); 237 238 /* This function requires the caller holds hdev->req_lock. */ 239 int __hci_cmd_sync_status_sk(struct hci_dev *hdev, u16 opcode, u32 plen, 240 const void *param, u8 event, u32 timeout, 241 struct sock *sk) 242 { 243 struct sk_buff *skb; 244 u8 status; 245 246 skb = __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, sk); 247 if (IS_ERR(skb)) { 248 bt_dev_err(hdev, "Opcode 0x%4x failed: %ld", opcode, 249 PTR_ERR(skb)); 250 return PTR_ERR(skb); 251 } 252 253 /* If command return a status event skb will be set to NULL as there are 254 * no parameters, in case of failure IS_ERR(skb) would have be set to 255 * the actual error would be found with PTR_ERR(skb). 256 */ 257 if (!skb) 258 return 0; 259 260 status = skb->data[0]; 261 262 kfree_skb(skb); 263 264 return status; 265 } 266 EXPORT_SYMBOL(__hci_cmd_sync_status_sk); 267 268 int __hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen, 269 const void *param, u32 timeout) 270 { 271 return __hci_cmd_sync_status_sk(hdev, opcode, plen, param, 0, timeout, 272 NULL); 273 } 274 EXPORT_SYMBOL(__hci_cmd_sync_status); 275 276 static void hci_cmd_sync_work(struct work_struct *work) 277 { 278 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_work); 279 280 bt_dev_dbg(hdev, ""); 281 282 /* Dequeue all entries and run them */ 283 while (1) { 284 struct hci_cmd_sync_work_entry *entry; 285 286 mutex_lock(&hdev->cmd_sync_work_lock); 287 entry = list_first_entry_or_null(&hdev->cmd_sync_work_list, 288 struct hci_cmd_sync_work_entry, 289 list); 290 if (entry) 291 list_del(&entry->list); 292 mutex_unlock(&hdev->cmd_sync_work_lock); 293 294 if (!entry) 295 break; 296 297 bt_dev_dbg(hdev, "entry %p", entry); 298 299 if (entry->func) { 300 int err; 301 302 hci_req_sync_lock(hdev); 303 err = entry->func(hdev, entry->data); 304 if (entry->destroy) 305 entry->destroy(hdev, entry->data, err); 306 hci_req_sync_unlock(hdev); 307 } 308 309 kfree(entry); 310 } 311 } 312 313 static void hci_cmd_sync_cancel_work(struct work_struct *work) 314 { 315 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_cancel_work); 316 317 cancel_delayed_work_sync(&hdev->cmd_timer); 318 cancel_delayed_work_sync(&hdev->ncmd_timer); 319 atomic_set(&hdev->cmd_cnt, 1); 320 321 wake_up_interruptible(&hdev->req_wait_q); 322 } 323 324 void hci_cmd_sync_init(struct hci_dev *hdev) 325 { 326 INIT_WORK(&hdev->cmd_sync_work, hci_cmd_sync_work); 327 INIT_LIST_HEAD(&hdev->cmd_sync_work_list); 328 mutex_init(&hdev->cmd_sync_work_lock); 329 330 INIT_WORK(&hdev->cmd_sync_cancel_work, hci_cmd_sync_cancel_work); 331 } 332 333 void hci_cmd_sync_clear(struct hci_dev *hdev) 334 { 335 struct hci_cmd_sync_work_entry *entry, *tmp; 336 337 cancel_work_sync(&hdev->cmd_sync_work); 338 339 list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) { 340 if (entry->destroy) 341 entry->destroy(hdev, entry->data, -ECANCELED); 342 343 list_del(&entry->list); 344 kfree(entry); 345 } 346 } 347 348 void __hci_cmd_sync_cancel(struct hci_dev *hdev, int err) 349 { 350 bt_dev_dbg(hdev, "err 0x%2.2x", err); 351 352 if (hdev->req_status == HCI_REQ_PEND) { 353 hdev->req_result = err; 354 hdev->req_status = HCI_REQ_CANCELED; 355 356 cancel_delayed_work_sync(&hdev->cmd_timer); 357 cancel_delayed_work_sync(&hdev->ncmd_timer); 358 atomic_set(&hdev->cmd_cnt, 1); 359 360 wake_up_interruptible(&hdev->req_wait_q); 361 } 362 } 363 364 void hci_cmd_sync_cancel(struct hci_dev *hdev, int err) 365 { 366 bt_dev_dbg(hdev, "err 0x%2.2x", err); 367 368 if (hdev->req_status == HCI_REQ_PEND) { 369 hdev->req_result = err; 370 hdev->req_status = HCI_REQ_CANCELED; 371 372 queue_work(hdev->workqueue, &hdev->cmd_sync_cancel_work); 373 } 374 } 375 EXPORT_SYMBOL(hci_cmd_sync_cancel); 376 377 int hci_cmd_sync_queue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 378 void *data, hci_cmd_sync_work_destroy_t destroy) 379 { 380 struct hci_cmd_sync_work_entry *entry; 381 382 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) 383 return -ENODEV; 384 385 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 386 if (!entry) 387 return -ENOMEM; 388 389 entry->func = func; 390 entry->data = data; 391 entry->destroy = destroy; 392 393 mutex_lock(&hdev->cmd_sync_work_lock); 394 list_add_tail(&entry->list, &hdev->cmd_sync_work_list); 395 mutex_unlock(&hdev->cmd_sync_work_lock); 396 397 queue_work(hdev->req_workqueue, &hdev->cmd_sync_work); 398 399 return 0; 400 } 401 EXPORT_SYMBOL(hci_cmd_sync_queue); 402 403 int hci_update_eir_sync(struct hci_dev *hdev) 404 { 405 struct hci_cp_write_eir cp; 406 407 bt_dev_dbg(hdev, ""); 408 409 if (!hdev_is_powered(hdev)) 410 return 0; 411 412 if (!lmp_ext_inq_capable(hdev)) 413 return 0; 414 415 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 416 return 0; 417 418 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 419 return 0; 420 421 memset(&cp, 0, sizeof(cp)); 422 423 eir_create(hdev, cp.data); 424 425 if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0) 426 return 0; 427 428 memcpy(hdev->eir, cp.data, sizeof(cp.data)); 429 430 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp, 431 HCI_CMD_TIMEOUT); 432 } 433 434 static u8 get_service_classes(struct hci_dev *hdev) 435 { 436 struct bt_uuid *uuid; 437 u8 val = 0; 438 439 list_for_each_entry(uuid, &hdev->uuids, list) 440 val |= uuid->svc_hint; 441 442 return val; 443 } 444 445 int hci_update_class_sync(struct hci_dev *hdev) 446 { 447 u8 cod[3]; 448 449 bt_dev_dbg(hdev, ""); 450 451 if (!hdev_is_powered(hdev)) 452 return 0; 453 454 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 455 return 0; 456 457 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 458 return 0; 459 460 cod[0] = hdev->minor_class; 461 cod[1] = hdev->major_class; 462 cod[2] = get_service_classes(hdev); 463 464 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) 465 cod[1] |= 0x20; 466 467 if (memcmp(cod, hdev->dev_class, 3) == 0) 468 return 0; 469 470 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CLASS_OF_DEV, 471 sizeof(cod), cod, HCI_CMD_TIMEOUT); 472 } 473 474 static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable) 475 { 476 /* If there is no connection we are OK to advertise. */ 477 if (hci_conn_num(hdev, LE_LINK) == 0) 478 return true; 479 480 /* Check le_states if there is any connection in peripheral role. */ 481 if (hdev->conn_hash.le_num_peripheral > 0) { 482 /* Peripheral connection state and non connectable mode 483 * bit 20. 484 */ 485 if (!connectable && !(hdev->le_states[2] & 0x10)) 486 return false; 487 488 /* Peripheral connection state and connectable mode bit 38 489 * and scannable bit 21. 490 */ 491 if (connectable && (!(hdev->le_states[4] & 0x40) || 492 !(hdev->le_states[2] & 0x20))) 493 return false; 494 } 495 496 /* Check le_states if there is any connection in central role. */ 497 if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) { 498 /* Central connection state and non connectable mode bit 18. */ 499 if (!connectable && !(hdev->le_states[2] & 0x02)) 500 return false; 501 502 /* Central connection state and connectable mode bit 35 and 503 * scannable 19. 504 */ 505 if (connectable && (!(hdev->le_states[4] & 0x08) || 506 !(hdev->le_states[2] & 0x08))) 507 return false; 508 } 509 510 return true; 511 } 512 513 static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags) 514 { 515 /* If privacy is not enabled don't use RPA */ 516 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 517 return false; 518 519 /* If basic privacy mode is enabled use RPA */ 520 if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) 521 return true; 522 523 /* If limited privacy mode is enabled don't use RPA if we're 524 * both discoverable and bondable. 525 */ 526 if ((flags & MGMT_ADV_FLAG_DISCOV) && 527 hci_dev_test_flag(hdev, HCI_BONDABLE)) 528 return false; 529 530 /* We're neither bondable nor discoverable in the limited 531 * privacy mode, therefore use RPA. 532 */ 533 return true; 534 } 535 536 static int hci_set_random_addr_sync(struct hci_dev *hdev, bdaddr_t *rpa) 537 { 538 /* If we're advertising or initiating an LE connection we can't 539 * go ahead and change the random address at this time. This is 540 * because the eventual initiator address used for the 541 * subsequently created connection will be undefined (some 542 * controllers use the new address and others the one we had 543 * when the operation started). 544 * 545 * In this kind of scenario skip the update and let the random 546 * address be updated at the next cycle. 547 */ 548 if (hci_dev_test_flag(hdev, HCI_LE_ADV) || 549 hci_lookup_le_connect(hdev)) { 550 bt_dev_dbg(hdev, "Deferring random address update"); 551 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 552 return 0; 553 } 554 555 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RANDOM_ADDR, 556 6, rpa, HCI_CMD_TIMEOUT); 557 } 558 559 int hci_update_random_address_sync(struct hci_dev *hdev, bool require_privacy, 560 bool rpa, u8 *own_addr_type) 561 { 562 int err; 563 564 /* If privacy is enabled use a resolvable private address. If 565 * current RPA has expired or there is something else than 566 * the current RPA in use, then generate a new one. 567 */ 568 if (rpa) { 569 /* If Controller supports LL Privacy use own address type is 570 * 0x03 571 */ 572 if (use_ll_privacy(hdev)) 573 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED; 574 else 575 *own_addr_type = ADDR_LE_DEV_RANDOM; 576 577 /* Check if RPA is valid */ 578 if (rpa_valid(hdev)) 579 return 0; 580 581 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); 582 if (err < 0) { 583 bt_dev_err(hdev, "failed to generate new RPA"); 584 return err; 585 } 586 587 err = hci_set_random_addr_sync(hdev, &hdev->rpa); 588 if (err) 589 return err; 590 591 return 0; 592 } 593 594 /* In case of required privacy without resolvable private address, 595 * use an non-resolvable private address. This is useful for active 596 * scanning and non-connectable advertising. 597 */ 598 if (require_privacy) { 599 bdaddr_t nrpa; 600 601 while (true) { 602 /* The non-resolvable private address is generated 603 * from random six bytes with the two most significant 604 * bits cleared. 605 */ 606 get_random_bytes(&nrpa, 6); 607 nrpa.b[5] &= 0x3f; 608 609 /* The non-resolvable private address shall not be 610 * equal to the public address. 611 */ 612 if (bacmp(&hdev->bdaddr, &nrpa)) 613 break; 614 } 615 616 *own_addr_type = ADDR_LE_DEV_RANDOM; 617 618 return hci_set_random_addr_sync(hdev, &nrpa); 619 } 620 621 /* If forcing static address is in use or there is no public 622 * address use the static address as random address (but skip 623 * the HCI command if the current random address is already the 624 * static one. 625 * 626 * In case BR/EDR has been disabled on a dual-mode controller 627 * and a static address has been configured, then use that 628 * address instead of the public BR/EDR address. 629 */ 630 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 631 !bacmp(&hdev->bdaddr, BDADDR_ANY) || 632 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && 633 bacmp(&hdev->static_addr, BDADDR_ANY))) { 634 *own_addr_type = ADDR_LE_DEV_RANDOM; 635 if (bacmp(&hdev->static_addr, &hdev->random_addr)) 636 return hci_set_random_addr_sync(hdev, 637 &hdev->static_addr); 638 return 0; 639 } 640 641 /* Neither privacy nor static address is being used so use a 642 * public address. 643 */ 644 *own_addr_type = ADDR_LE_DEV_PUBLIC; 645 646 return 0; 647 } 648 649 static int hci_disable_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance) 650 { 651 struct hci_cp_le_set_ext_adv_enable *cp; 652 struct hci_cp_ext_adv_set *set; 653 u8 data[sizeof(*cp) + sizeof(*set) * 1]; 654 u8 size; 655 656 /* If request specifies an instance that doesn't exist, fail */ 657 if (instance > 0) { 658 struct adv_info *adv; 659 660 adv = hci_find_adv_instance(hdev, instance); 661 if (!adv) 662 return -EINVAL; 663 664 /* If not enabled there is nothing to do */ 665 if (!adv->enabled) 666 return 0; 667 } 668 669 memset(data, 0, sizeof(data)); 670 671 cp = (void *)data; 672 set = (void *)cp->data; 673 674 /* Instance 0x00 indicates all advertising instances will be disabled */ 675 cp->num_of_sets = !!instance; 676 cp->enable = 0x00; 677 678 set->handle = instance; 679 680 size = sizeof(*cp) + sizeof(*set) * cp->num_of_sets; 681 682 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, 683 size, data, HCI_CMD_TIMEOUT); 684 } 685 686 static int hci_set_adv_set_random_addr_sync(struct hci_dev *hdev, u8 instance, 687 bdaddr_t *random_addr) 688 { 689 struct hci_cp_le_set_adv_set_rand_addr cp; 690 int err; 691 692 if (!instance) { 693 /* Instance 0x00 doesn't have an adv_info, instead it uses 694 * hdev->random_addr to track its address so whenever it needs 695 * to be updated this also set the random address since 696 * hdev->random_addr is shared with scan state machine. 697 */ 698 err = hci_set_random_addr_sync(hdev, random_addr); 699 if (err) 700 return err; 701 } 702 703 memset(&cp, 0, sizeof(cp)); 704 705 cp.handle = instance; 706 bacpy(&cp.bdaddr, random_addr); 707 708 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_SET_RAND_ADDR, 709 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 710 } 711 712 int hci_setup_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance) 713 { 714 struct hci_cp_le_set_ext_adv_params cp; 715 bool connectable; 716 u32 flags; 717 bdaddr_t random_addr; 718 u8 own_addr_type; 719 int err; 720 struct adv_info *adv; 721 bool secondary_adv; 722 723 if (instance > 0) { 724 adv = hci_find_adv_instance(hdev, instance); 725 if (!adv) 726 return -EINVAL; 727 } else { 728 adv = NULL; 729 } 730 731 /* Updating parameters of an active instance will return a 732 * Command Disallowed error, so we must first disable the 733 * instance if it is active. 734 */ 735 if (adv && !adv->pending) { 736 err = hci_disable_ext_adv_instance_sync(hdev, instance); 737 if (err) 738 return err; 739 } 740 741 flags = hci_adv_instance_flags(hdev, instance); 742 743 /* If the "connectable" instance flag was not set, then choose between 744 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. 745 */ 746 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || 747 mgmt_get_connectable(hdev); 748 749 if (!is_advertising_allowed(hdev, connectable)) 750 return -EPERM; 751 752 /* Set require_privacy to true only when non-connectable 753 * advertising is used. In that case it is fine to use a 754 * non-resolvable private address. 755 */ 756 err = hci_get_random_address(hdev, !connectable, 757 adv_use_rpa(hdev, flags), adv, 758 &own_addr_type, &random_addr); 759 if (err < 0) 760 return err; 761 762 memset(&cp, 0, sizeof(cp)); 763 764 if (adv) { 765 hci_cpu_to_le24(adv->min_interval, cp.min_interval); 766 hci_cpu_to_le24(adv->max_interval, cp.max_interval); 767 cp.tx_power = adv->tx_power; 768 } else { 769 hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval); 770 hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval); 771 cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE; 772 } 773 774 secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK); 775 776 if (connectable) { 777 if (secondary_adv) 778 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND); 779 else 780 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND); 781 } else if (hci_adv_instance_is_scannable(hdev, instance) || 782 (flags & MGMT_ADV_PARAM_SCAN_RSP)) { 783 if (secondary_adv) 784 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND); 785 else 786 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND); 787 } else { 788 if (secondary_adv) 789 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND); 790 else 791 cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND); 792 } 793 794 /* If Own_Address_Type equals 0x02 or 0x03, the Peer_Address parameter 795 * contains the peer’s Identity Address and the Peer_Address_Type 796 * parameter contains the peer’s Identity Type (i.e., 0x00 or 0x01). 797 * These parameters are used to locate the corresponding local IRK in 798 * the resolving list; this IRK is used to generate their own address 799 * used in the advertisement. 800 */ 801 if (own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) 802 hci_copy_identity_address(hdev, &cp.peer_addr, 803 &cp.peer_addr_type); 804 805 cp.own_addr_type = own_addr_type; 806 cp.channel_map = hdev->le_adv_channel_map; 807 cp.handle = instance; 808 809 if (flags & MGMT_ADV_FLAG_SEC_2M) { 810 cp.primary_phy = HCI_ADV_PHY_1M; 811 cp.secondary_phy = HCI_ADV_PHY_2M; 812 } else if (flags & MGMT_ADV_FLAG_SEC_CODED) { 813 cp.primary_phy = HCI_ADV_PHY_CODED; 814 cp.secondary_phy = HCI_ADV_PHY_CODED; 815 } else { 816 /* In all other cases use 1M */ 817 cp.primary_phy = HCI_ADV_PHY_1M; 818 cp.secondary_phy = HCI_ADV_PHY_1M; 819 } 820 821 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS, 822 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 823 if (err) 824 return err; 825 826 if ((own_addr_type == ADDR_LE_DEV_RANDOM || 827 own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) && 828 bacmp(&random_addr, BDADDR_ANY)) { 829 /* Check if random address need to be updated */ 830 if (adv) { 831 if (!bacmp(&random_addr, &adv->random_addr)) 832 return 0; 833 } else { 834 if (!bacmp(&random_addr, &hdev->random_addr)) 835 return 0; 836 } 837 838 return hci_set_adv_set_random_addr_sync(hdev, instance, 839 &random_addr); 840 } 841 842 return 0; 843 } 844 845 static int hci_set_ext_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 846 { 847 struct { 848 struct hci_cp_le_set_ext_scan_rsp_data cp; 849 u8 data[HCI_MAX_EXT_AD_LENGTH]; 850 } pdu; 851 u8 len; 852 853 memset(&pdu, 0, sizeof(pdu)); 854 855 len = eir_create_scan_rsp(hdev, instance, pdu.data); 856 857 if (hdev->scan_rsp_data_len == len && 858 !memcmp(pdu.data, hdev->scan_rsp_data, len)) 859 return 0; 860 861 memcpy(hdev->scan_rsp_data, pdu.data, len); 862 hdev->scan_rsp_data_len = len; 863 864 pdu.cp.handle = instance; 865 pdu.cp.length = len; 866 pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; 867 pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG; 868 869 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA, 870 sizeof(pdu.cp) + len, &pdu.cp, 871 HCI_CMD_TIMEOUT); 872 } 873 874 static int __hci_set_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 875 { 876 struct hci_cp_le_set_scan_rsp_data cp; 877 u8 len; 878 879 memset(&cp, 0, sizeof(cp)); 880 881 len = eir_create_scan_rsp(hdev, instance, cp.data); 882 883 if (hdev->scan_rsp_data_len == len && 884 !memcmp(cp.data, hdev->scan_rsp_data, len)) 885 return 0; 886 887 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data)); 888 hdev->scan_rsp_data_len = len; 889 890 cp.length = len; 891 892 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_RSP_DATA, 893 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 894 } 895 896 int hci_update_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 897 { 898 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 899 return 0; 900 901 if (ext_adv_capable(hdev)) 902 return hci_set_ext_scan_rsp_data_sync(hdev, instance); 903 904 return __hci_set_scan_rsp_data_sync(hdev, instance); 905 } 906 907 int hci_enable_ext_advertising_sync(struct hci_dev *hdev, u8 instance) 908 { 909 struct hci_cp_le_set_ext_adv_enable *cp; 910 struct hci_cp_ext_adv_set *set; 911 u8 data[sizeof(*cp) + sizeof(*set) * 1]; 912 struct adv_info *adv; 913 914 if (instance > 0) { 915 adv = hci_find_adv_instance(hdev, instance); 916 if (!adv) 917 return -EINVAL; 918 /* If already enabled there is nothing to do */ 919 if (adv->enabled) 920 return 0; 921 } else { 922 adv = NULL; 923 } 924 925 cp = (void *)data; 926 set = (void *)cp->data; 927 928 memset(cp, 0, sizeof(*cp)); 929 930 cp->enable = 0x01; 931 cp->num_of_sets = 0x01; 932 933 memset(set, 0, sizeof(*set)); 934 935 set->handle = instance; 936 937 /* Set duration per instance since controller is responsible for 938 * scheduling it. 939 */ 940 if (adv && adv->timeout) { 941 u16 duration = adv->timeout * MSEC_PER_SEC; 942 943 /* Time = N * 10 ms */ 944 set->duration = cpu_to_le16(duration / 10); 945 } 946 947 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, 948 sizeof(*cp) + 949 sizeof(*set) * cp->num_of_sets, 950 data, HCI_CMD_TIMEOUT); 951 } 952 953 int hci_start_ext_adv_sync(struct hci_dev *hdev, u8 instance) 954 { 955 int err; 956 957 err = hci_setup_ext_adv_instance_sync(hdev, instance); 958 if (err) 959 return err; 960 961 err = hci_set_ext_scan_rsp_data_sync(hdev, instance); 962 if (err) 963 return err; 964 965 return hci_enable_ext_advertising_sync(hdev, instance); 966 } 967 968 static int hci_start_adv_sync(struct hci_dev *hdev, u8 instance) 969 { 970 int err; 971 972 if (ext_adv_capable(hdev)) 973 return hci_start_ext_adv_sync(hdev, instance); 974 975 err = hci_update_adv_data_sync(hdev, instance); 976 if (err) 977 return err; 978 979 err = hci_update_scan_rsp_data_sync(hdev, instance); 980 if (err) 981 return err; 982 983 return hci_enable_advertising_sync(hdev); 984 } 985 986 int hci_enable_advertising_sync(struct hci_dev *hdev) 987 { 988 struct adv_info *adv_instance; 989 struct hci_cp_le_set_adv_param cp; 990 u8 own_addr_type, enable = 0x01; 991 bool connectable; 992 u16 adv_min_interval, adv_max_interval; 993 u32 flags; 994 u8 status; 995 996 if (ext_adv_capable(hdev)) 997 return hci_enable_ext_advertising_sync(hdev, 998 hdev->cur_adv_instance); 999 1000 flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance); 1001 adv_instance = hci_find_adv_instance(hdev, hdev->cur_adv_instance); 1002 1003 /* If the "connectable" instance flag was not set, then choose between 1004 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. 1005 */ 1006 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || 1007 mgmt_get_connectable(hdev); 1008 1009 if (!is_advertising_allowed(hdev, connectable)) 1010 return -EINVAL; 1011 1012 status = hci_disable_advertising_sync(hdev); 1013 if (status) 1014 return status; 1015 1016 /* Clear the HCI_LE_ADV bit temporarily so that the 1017 * hci_update_random_address knows that it's safe to go ahead 1018 * and write a new random address. The flag will be set back on 1019 * as soon as the SET_ADV_ENABLE HCI command completes. 1020 */ 1021 hci_dev_clear_flag(hdev, HCI_LE_ADV); 1022 1023 /* Set require_privacy to true only when non-connectable 1024 * advertising is used. In that case it is fine to use a 1025 * non-resolvable private address. 1026 */ 1027 status = hci_update_random_address_sync(hdev, !connectable, 1028 adv_use_rpa(hdev, flags), 1029 &own_addr_type); 1030 if (status) 1031 return status; 1032 1033 memset(&cp, 0, sizeof(cp)); 1034 1035 if (adv_instance) { 1036 adv_min_interval = adv_instance->min_interval; 1037 adv_max_interval = adv_instance->max_interval; 1038 } else { 1039 adv_min_interval = hdev->le_adv_min_interval; 1040 adv_max_interval = hdev->le_adv_max_interval; 1041 } 1042 1043 if (connectable) { 1044 cp.type = LE_ADV_IND; 1045 } else { 1046 if (hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance)) 1047 cp.type = LE_ADV_SCAN_IND; 1048 else 1049 cp.type = LE_ADV_NONCONN_IND; 1050 1051 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) || 1052 hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { 1053 adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN; 1054 adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX; 1055 } 1056 } 1057 1058 cp.min_interval = cpu_to_le16(adv_min_interval); 1059 cp.max_interval = cpu_to_le16(adv_max_interval); 1060 cp.own_address_type = own_addr_type; 1061 cp.channel_map = hdev->le_adv_channel_map; 1062 1063 status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM, 1064 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1065 if (status) 1066 return status; 1067 1068 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 1069 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 1070 } 1071 1072 static int enable_advertising_sync(struct hci_dev *hdev, void *data) 1073 { 1074 return hci_enable_advertising_sync(hdev); 1075 } 1076 1077 int hci_enable_advertising(struct hci_dev *hdev) 1078 { 1079 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) && 1080 list_empty(&hdev->adv_instances)) 1081 return 0; 1082 1083 return hci_cmd_sync_queue(hdev, enable_advertising_sync, NULL, NULL); 1084 } 1085 1086 int hci_remove_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance, 1087 struct sock *sk) 1088 { 1089 int err; 1090 1091 if (!ext_adv_capable(hdev)) 1092 return 0; 1093 1094 err = hci_disable_ext_adv_instance_sync(hdev, instance); 1095 if (err) 1096 return err; 1097 1098 /* If request specifies an instance that doesn't exist, fail */ 1099 if (instance > 0 && !hci_find_adv_instance(hdev, instance)) 1100 return -EINVAL; 1101 1102 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_REMOVE_ADV_SET, 1103 sizeof(instance), &instance, 0, 1104 HCI_CMD_TIMEOUT, sk); 1105 } 1106 1107 static void cancel_adv_timeout(struct hci_dev *hdev) 1108 { 1109 if (hdev->adv_instance_timeout) { 1110 hdev->adv_instance_timeout = 0; 1111 cancel_delayed_work(&hdev->adv_instance_expire); 1112 } 1113 } 1114 1115 static int hci_set_ext_adv_data_sync(struct hci_dev *hdev, u8 instance) 1116 { 1117 struct { 1118 struct hci_cp_le_set_ext_adv_data cp; 1119 u8 data[HCI_MAX_EXT_AD_LENGTH]; 1120 } pdu; 1121 u8 len; 1122 1123 memset(&pdu, 0, sizeof(pdu)); 1124 1125 len = eir_create_adv_data(hdev, instance, pdu.data); 1126 1127 /* There's nothing to do if the data hasn't changed */ 1128 if (hdev->adv_data_len == len && 1129 memcmp(pdu.data, hdev->adv_data, len) == 0) 1130 return 0; 1131 1132 memcpy(hdev->adv_data, pdu.data, len); 1133 hdev->adv_data_len = len; 1134 1135 pdu.cp.length = len; 1136 pdu.cp.handle = instance; 1137 pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; 1138 pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG; 1139 1140 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_DATA, 1141 sizeof(pdu.cp) + len, &pdu.cp, 1142 HCI_CMD_TIMEOUT); 1143 } 1144 1145 static int hci_set_adv_data_sync(struct hci_dev *hdev, u8 instance) 1146 { 1147 struct hci_cp_le_set_adv_data cp; 1148 u8 len; 1149 1150 memset(&cp, 0, sizeof(cp)); 1151 1152 len = eir_create_adv_data(hdev, instance, cp.data); 1153 1154 /* There's nothing to do if the data hasn't changed */ 1155 if (hdev->adv_data_len == len && 1156 memcmp(cp.data, hdev->adv_data, len) == 0) 1157 return 0; 1158 1159 memcpy(hdev->adv_data, cp.data, sizeof(cp.data)); 1160 hdev->adv_data_len = len; 1161 1162 cp.length = len; 1163 1164 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_DATA, 1165 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1166 } 1167 1168 int hci_update_adv_data_sync(struct hci_dev *hdev, u8 instance) 1169 { 1170 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1171 return 0; 1172 1173 if (ext_adv_capable(hdev)) 1174 return hci_set_ext_adv_data_sync(hdev, instance); 1175 1176 return hci_set_adv_data_sync(hdev, instance); 1177 } 1178 1179 int hci_schedule_adv_instance_sync(struct hci_dev *hdev, u8 instance, 1180 bool force) 1181 { 1182 struct adv_info *adv = NULL; 1183 u16 timeout; 1184 1185 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) && !ext_adv_capable(hdev)) 1186 return -EPERM; 1187 1188 if (hdev->adv_instance_timeout) 1189 return -EBUSY; 1190 1191 adv = hci_find_adv_instance(hdev, instance); 1192 if (!adv) 1193 return -ENOENT; 1194 1195 /* A zero timeout means unlimited advertising. As long as there is 1196 * only one instance, duration should be ignored. We still set a timeout 1197 * in case further instances are being added later on. 1198 * 1199 * If the remaining lifetime of the instance is more than the duration 1200 * then the timeout corresponds to the duration, otherwise it will be 1201 * reduced to the remaining instance lifetime. 1202 */ 1203 if (adv->timeout == 0 || adv->duration <= adv->remaining_time) 1204 timeout = adv->duration; 1205 else 1206 timeout = adv->remaining_time; 1207 1208 /* The remaining time is being reduced unless the instance is being 1209 * advertised without time limit. 1210 */ 1211 if (adv->timeout) 1212 adv->remaining_time = adv->remaining_time - timeout; 1213 1214 /* Only use work for scheduling instances with legacy advertising */ 1215 if (!ext_adv_capable(hdev)) { 1216 hdev->adv_instance_timeout = timeout; 1217 queue_delayed_work(hdev->req_workqueue, 1218 &hdev->adv_instance_expire, 1219 msecs_to_jiffies(timeout * 1000)); 1220 } 1221 1222 /* If we're just re-scheduling the same instance again then do not 1223 * execute any HCI commands. This happens when a single instance is 1224 * being advertised. 1225 */ 1226 if (!force && hdev->cur_adv_instance == instance && 1227 hci_dev_test_flag(hdev, HCI_LE_ADV)) 1228 return 0; 1229 1230 hdev->cur_adv_instance = instance; 1231 1232 return hci_start_adv_sync(hdev, instance); 1233 } 1234 1235 static int hci_clear_adv_sets_sync(struct hci_dev *hdev, struct sock *sk) 1236 { 1237 int err; 1238 1239 if (!ext_adv_capable(hdev)) 1240 return 0; 1241 1242 /* Disable instance 0x00 to disable all instances */ 1243 err = hci_disable_ext_adv_instance_sync(hdev, 0x00); 1244 if (err) 1245 return err; 1246 1247 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CLEAR_ADV_SETS, 1248 0, NULL, 0, HCI_CMD_TIMEOUT, sk); 1249 } 1250 1251 static int hci_clear_adv_sync(struct hci_dev *hdev, struct sock *sk, bool force) 1252 { 1253 struct adv_info *adv, *n; 1254 1255 if (ext_adv_capable(hdev)) 1256 /* Remove all existing sets */ 1257 return hci_clear_adv_sets_sync(hdev, sk); 1258 1259 /* This is safe as long as there is no command send while the lock is 1260 * held. 1261 */ 1262 hci_dev_lock(hdev); 1263 1264 /* Cleanup non-ext instances */ 1265 list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) { 1266 u8 instance = adv->instance; 1267 int err; 1268 1269 if (!(force || adv->timeout)) 1270 continue; 1271 1272 err = hci_remove_adv_instance(hdev, instance); 1273 if (!err) 1274 mgmt_advertising_removed(sk, hdev, instance); 1275 } 1276 1277 hci_dev_unlock(hdev); 1278 1279 return 0; 1280 } 1281 1282 static int hci_remove_adv_sync(struct hci_dev *hdev, u8 instance, 1283 struct sock *sk) 1284 { 1285 int err; 1286 1287 /* If we use extended advertising, instance has to be removed first. */ 1288 if (ext_adv_capable(hdev)) 1289 return hci_remove_ext_adv_instance_sync(hdev, instance, sk); 1290 1291 /* This is safe as long as there is no command send while the lock is 1292 * held. 1293 */ 1294 hci_dev_lock(hdev); 1295 1296 err = hci_remove_adv_instance(hdev, instance); 1297 if (!err) 1298 mgmt_advertising_removed(sk, hdev, instance); 1299 1300 hci_dev_unlock(hdev); 1301 1302 return err; 1303 } 1304 1305 /* For a single instance: 1306 * - force == true: The instance will be removed even when its remaining 1307 * lifetime is not zero. 1308 * - force == false: the instance will be deactivated but kept stored unless 1309 * the remaining lifetime is zero. 1310 * 1311 * For instance == 0x00: 1312 * - force == true: All instances will be removed regardless of their timeout 1313 * setting. 1314 * - force == false: Only instances that have a timeout will be removed. 1315 */ 1316 int hci_remove_advertising_sync(struct hci_dev *hdev, struct sock *sk, 1317 u8 instance, bool force) 1318 { 1319 struct adv_info *next = NULL; 1320 int err; 1321 1322 /* Cancel any timeout concerning the removed instance(s). */ 1323 if (!instance || hdev->cur_adv_instance == instance) 1324 cancel_adv_timeout(hdev); 1325 1326 /* Get the next instance to advertise BEFORE we remove 1327 * the current one. This can be the same instance again 1328 * if there is only one instance. 1329 */ 1330 if (hdev->cur_adv_instance == instance) 1331 next = hci_get_next_instance(hdev, instance); 1332 1333 if (!instance) { 1334 err = hci_clear_adv_sync(hdev, sk, force); 1335 if (err) 1336 return err; 1337 } else { 1338 struct adv_info *adv = hci_find_adv_instance(hdev, instance); 1339 1340 if (force || (adv && adv->timeout && !adv->remaining_time)) { 1341 /* Don't advertise a removed instance. */ 1342 if (next && next->instance == instance) 1343 next = NULL; 1344 1345 err = hci_remove_adv_sync(hdev, instance, sk); 1346 if (err) 1347 return err; 1348 } 1349 } 1350 1351 if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING)) 1352 return 0; 1353 1354 if (next && !ext_adv_capable(hdev)) 1355 hci_schedule_adv_instance_sync(hdev, next->instance, false); 1356 1357 return 0; 1358 } 1359 1360 int hci_read_rssi_sync(struct hci_dev *hdev, __le16 handle) 1361 { 1362 struct hci_cp_read_rssi cp; 1363 1364 cp.handle = handle; 1365 return __hci_cmd_sync_status(hdev, HCI_OP_READ_RSSI, 1366 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1367 } 1368 1369 int hci_read_clock_sync(struct hci_dev *hdev, struct hci_cp_read_clock *cp) 1370 { 1371 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLOCK, 1372 sizeof(*cp), cp, HCI_CMD_TIMEOUT); 1373 } 1374 1375 int hci_read_tx_power_sync(struct hci_dev *hdev, __le16 handle, u8 type) 1376 { 1377 struct hci_cp_read_tx_power cp; 1378 1379 cp.handle = handle; 1380 cp.type = type; 1381 return __hci_cmd_sync_status(hdev, HCI_OP_READ_TX_POWER, 1382 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1383 } 1384 1385 int hci_disable_advertising_sync(struct hci_dev *hdev) 1386 { 1387 u8 enable = 0x00; 1388 1389 /* If controller is not advertising we are done. */ 1390 if (!hci_dev_test_flag(hdev, HCI_LE_ADV)) 1391 return 0; 1392 1393 if (ext_adv_capable(hdev)) 1394 return hci_disable_ext_adv_instance_sync(hdev, 0x00); 1395 1396 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 1397 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 1398 } 1399 1400 static int hci_le_set_ext_scan_enable_sync(struct hci_dev *hdev, u8 val, 1401 u8 filter_dup) 1402 { 1403 struct hci_cp_le_set_ext_scan_enable cp; 1404 1405 memset(&cp, 0, sizeof(cp)); 1406 cp.enable = val; 1407 cp.filter_dup = filter_dup; 1408 1409 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_ENABLE, 1410 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1411 } 1412 1413 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val, 1414 u8 filter_dup) 1415 { 1416 struct hci_cp_le_set_scan_enable cp; 1417 1418 if (use_ext_scan(hdev)) 1419 return hci_le_set_ext_scan_enable_sync(hdev, val, filter_dup); 1420 1421 memset(&cp, 0, sizeof(cp)); 1422 cp.enable = val; 1423 cp.filter_dup = filter_dup; 1424 1425 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_ENABLE, 1426 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1427 } 1428 1429 static int hci_le_set_addr_resolution_enable_sync(struct hci_dev *hdev, u8 val) 1430 { 1431 if (!use_ll_privacy(hdev)) 1432 return 0; 1433 1434 /* If controller is not/already resolving we are done. */ 1435 if (val == hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) 1436 return 0; 1437 1438 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1439 sizeof(val), &val, HCI_CMD_TIMEOUT); 1440 } 1441 1442 static int hci_scan_disable_sync(struct hci_dev *hdev) 1443 { 1444 int err; 1445 1446 /* If controller is not scanning we are done. */ 1447 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 1448 return 0; 1449 1450 if (hdev->scanning_paused) { 1451 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 1452 return 0; 1453 } 1454 1455 err = hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00); 1456 if (err) { 1457 bt_dev_err(hdev, "Unable to disable scanning: %d", err); 1458 return err; 1459 } 1460 1461 return err; 1462 } 1463 1464 static bool scan_use_rpa(struct hci_dev *hdev) 1465 { 1466 return hci_dev_test_flag(hdev, HCI_PRIVACY); 1467 } 1468 1469 static void hci_start_interleave_scan(struct hci_dev *hdev) 1470 { 1471 hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER; 1472 queue_delayed_work(hdev->req_workqueue, 1473 &hdev->interleave_scan, 0); 1474 } 1475 1476 static bool is_interleave_scanning(struct hci_dev *hdev) 1477 { 1478 return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE; 1479 } 1480 1481 static void cancel_interleave_scan(struct hci_dev *hdev) 1482 { 1483 bt_dev_dbg(hdev, "cancelling interleave scan"); 1484 1485 cancel_delayed_work_sync(&hdev->interleave_scan); 1486 1487 hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE; 1488 } 1489 1490 /* Return true if interleave_scan wasn't started until exiting this function, 1491 * otherwise, return false 1492 */ 1493 static bool hci_update_interleaved_scan_sync(struct hci_dev *hdev) 1494 { 1495 /* Do interleaved scan only if all of the following are true: 1496 * - There is at least one ADV monitor 1497 * - At least one pending LE connection or one device to be scanned for 1498 * - Monitor offloading is not supported 1499 * If so, we should alternate between allowlist scan and one without 1500 * any filters to save power. 1501 */ 1502 bool use_interleaving = hci_is_adv_monitoring(hdev) && 1503 !(list_empty(&hdev->pend_le_conns) && 1504 list_empty(&hdev->pend_le_reports)) && 1505 hci_get_adv_monitor_offload_ext(hdev) == 1506 HCI_ADV_MONITOR_EXT_NONE; 1507 bool is_interleaving = is_interleave_scanning(hdev); 1508 1509 if (use_interleaving && !is_interleaving) { 1510 hci_start_interleave_scan(hdev); 1511 bt_dev_dbg(hdev, "starting interleave scan"); 1512 return true; 1513 } 1514 1515 if (!use_interleaving && is_interleaving) 1516 cancel_interleave_scan(hdev); 1517 1518 return false; 1519 } 1520 1521 /* Removes connection to resolve list if needed.*/ 1522 static int hci_le_del_resolve_list_sync(struct hci_dev *hdev, 1523 bdaddr_t *bdaddr, u8 bdaddr_type) 1524 { 1525 struct hci_cp_le_del_from_resolv_list cp; 1526 struct bdaddr_list_with_irk *entry; 1527 1528 if (!use_ll_privacy(hdev)) 1529 return 0; 1530 1531 /* Check if the IRK has been programmed */ 1532 entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, bdaddr, 1533 bdaddr_type); 1534 if (!entry) 1535 return 0; 1536 1537 cp.bdaddr_type = bdaddr_type; 1538 bacpy(&cp.bdaddr, bdaddr); 1539 1540 return __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_RESOLV_LIST, 1541 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1542 } 1543 1544 static int hci_le_del_accept_list_sync(struct hci_dev *hdev, 1545 bdaddr_t *bdaddr, u8 bdaddr_type) 1546 { 1547 struct hci_cp_le_del_from_accept_list cp; 1548 int err; 1549 1550 /* Check if device is on accept list before removing it */ 1551 if (!hci_bdaddr_list_lookup(&hdev->le_accept_list, bdaddr, bdaddr_type)) 1552 return 0; 1553 1554 cp.bdaddr_type = bdaddr_type; 1555 bacpy(&cp.bdaddr, bdaddr); 1556 1557 /* Ignore errors when removing from resolving list as that is likely 1558 * that the device was never added. 1559 */ 1560 hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type); 1561 1562 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_ACCEPT_LIST, 1563 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1564 if (err) { 1565 bt_dev_err(hdev, "Unable to remove from allow list: %d", err); 1566 return err; 1567 } 1568 1569 bt_dev_dbg(hdev, "Remove %pMR (0x%x) from allow list", &cp.bdaddr, 1570 cp.bdaddr_type); 1571 1572 return 0; 1573 } 1574 1575 /* Adds connection to resolve list if needed. 1576 * Setting params to NULL programs local hdev->irk 1577 */ 1578 static int hci_le_add_resolve_list_sync(struct hci_dev *hdev, 1579 struct hci_conn_params *params) 1580 { 1581 struct hci_cp_le_add_to_resolv_list cp; 1582 struct smp_irk *irk; 1583 struct bdaddr_list_with_irk *entry; 1584 1585 if (!use_ll_privacy(hdev)) 1586 return 0; 1587 1588 /* Attempt to program local identity address, type and irk if params is 1589 * NULL. 1590 */ 1591 if (!params) { 1592 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 1593 return 0; 1594 1595 hci_copy_identity_address(hdev, &cp.bdaddr, &cp.bdaddr_type); 1596 memcpy(cp.peer_irk, hdev->irk, 16); 1597 goto done; 1598 } 1599 1600 irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type); 1601 if (!irk) 1602 return 0; 1603 1604 /* Check if the IK has _not_ been programmed yet. */ 1605 entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, 1606 ¶ms->addr, 1607 params->addr_type); 1608 if (entry) 1609 return 0; 1610 1611 cp.bdaddr_type = params->addr_type; 1612 bacpy(&cp.bdaddr, ¶ms->addr); 1613 memcpy(cp.peer_irk, irk->val, 16); 1614 1615 done: 1616 if (hci_dev_test_flag(hdev, HCI_PRIVACY)) 1617 memcpy(cp.local_irk, hdev->irk, 16); 1618 else 1619 memset(cp.local_irk, 0, 16); 1620 1621 return __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_RESOLV_LIST, 1622 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1623 } 1624 1625 /* Set Device Privacy Mode. */ 1626 static int hci_le_set_privacy_mode_sync(struct hci_dev *hdev, 1627 struct hci_conn_params *params) 1628 { 1629 struct hci_cp_le_set_privacy_mode cp; 1630 struct smp_irk *irk; 1631 1632 /* If device privacy mode has already been set there is nothing to do */ 1633 if (params->privacy_mode == HCI_DEVICE_PRIVACY) 1634 return 0; 1635 1636 /* Check if HCI_CONN_FLAG_DEVICE_PRIVACY has been set as it also 1637 * indicates that LL Privacy has been enabled and 1638 * HCI_OP_LE_SET_PRIVACY_MODE is supported. 1639 */ 1640 if (!test_bit(HCI_CONN_FLAG_DEVICE_PRIVACY, params->flags)) 1641 return 0; 1642 1643 irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type); 1644 if (!irk) 1645 return 0; 1646 1647 memset(&cp, 0, sizeof(cp)); 1648 cp.bdaddr_type = irk->addr_type; 1649 bacpy(&cp.bdaddr, &irk->bdaddr); 1650 cp.mode = HCI_DEVICE_PRIVACY; 1651 1652 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PRIVACY_MODE, 1653 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1654 } 1655 1656 /* Adds connection to allow list if needed, if the device uses RPA (has IRK) 1657 * this attempts to program the device in the resolving list as well and 1658 * properly set the privacy mode. 1659 */ 1660 static int hci_le_add_accept_list_sync(struct hci_dev *hdev, 1661 struct hci_conn_params *params, 1662 u8 *num_entries) 1663 { 1664 struct hci_cp_le_add_to_accept_list cp; 1665 int err; 1666 1667 /* Select filter policy to accept all advertising */ 1668 if (*num_entries >= hdev->le_accept_list_size) 1669 return -ENOSPC; 1670 1671 /* Accept list can not be used with RPAs */ 1672 if (!use_ll_privacy(hdev) && 1673 hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type)) { 1674 return -EINVAL; 1675 } 1676 1677 /* During suspend, only wakeable devices can be in acceptlist */ 1678 if (hdev->suspended && 1679 !test_bit(HCI_CONN_FLAG_REMOTE_WAKEUP, params->flags)) 1680 return 0; 1681 1682 /* Attempt to program the device in the resolving list first to avoid 1683 * having to rollback in case it fails since the resolving list is 1684 * dynamic it can probably be smaller than the accept list. 1685 */ 1686 err = hci_le_add_resolve_list_sync(hdev, params); 1687 if (err) { 1688 bt_dev_err(hdev, "Unable to add to resolve list: %d", err); 1689 return err; 1690 } 1691 1692 /* Set Privacy Mode */ 1693 err = hci_le_set_privacy_mode_sync(hdev, params); 1694 if (err) { 1695 bt_dev_err(hdev, "Unable to set privacy mode: %d", err); 1696 return err; 1697 } 1698 1699 /* Check if already in accept list */ 1700 if (hci_bdaddr_list_lookup(&hdev->le_accept_list, ¶ms->addr, 1701 params->addr_type)) 1702 return 0; 1703 1704 *num_entries += 1; 1705 cp.bdaddr_type = params->addr_type; 1706 bacpy(&cp.bdaddr, ¶ms->addr); 1707 1708 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST, 1709 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1710 if (err) { 1711 bt_dev_err(hdev, "Unable to add to allow list: %d", err); 1712 /* Rollback the device from the resolving list */ 1713 hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type); 1714 return err; 1715 } 1716 1717 bt_dev_dbg(hdev, "Add %pMR (0x%x) to allow list", &cp.bdaddr, 1718 cp.bdaddr_type); 1719 1720 return 0; 1721 } 1722 1723 /* This function disables/pause all advertising instances */ 1724 static int hci_pause_advertising_sync(struct hci_dev *hdev) 1725 { 1726 int err; 1727 int old_state; 1728 1729 /* If already been paused there is nothing to do. */ 1730 if (hdev->advertising_paused) 1731 return 0; 1732 1733 bt_dev_dbg(hdev, "Pausing directed advertising"); 1734 1735 /* Stop directed advertising */ 1736 old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING); 1737 if (old_state) { 1738 /* When discoverable timeout triggers, then just make sure 1739 * the limited discoverable flag is cleared. Even in the case 1740 * of a timeout triggered from general discoverable, it is 1741 * safe to unconditionally clear the flag. 1742 */ 1743 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 1744 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 1745 hdev->discov_timeout = 0; 1746 } 1747 1748 bt_dev_dbg(hdev, "Pausing advertising instances"); 1749 1750 /* Call to disable any advertisements active on the controller. 1751 * This will succeed even if no advertisements are configured. 1752 */ 1753 err = hci_disable_advertising_sync(hdev); 1754 if (err) 1755 return err; 1756 1757 /* If we are using software rotation, pause the loop */ 1758 if (!ext_adv_capable(hdev)) 1759 cancel_adv_timeout(hdev); 1760 1761 hdev->advertising_paused = true; 1762 hdev->advertising_old_state = old_state; 1763 1764 return 0; 1765 } 1766 1767 /* This function enables all user advertising instances */ 1768 static int hci_resume_advertising_sync(struct hci_dev *hdev) 1769 { 1770 struct adv_info *adv, *tmp; 1771 int err; 1772 1773 /* If advertising has not been paused there is nothing to do. */ 1774 if (!hdev->advertising_paused) 1775 return 0; 1776 1777 /* Resume directed advertising */ 1778 hdev->advertising_paused = false; 1779 if (hdev->advertising_old_state) { 1780 hci_dev_set_flag(hdev, HCI_ADVERTISING); 1781 hdev->advertising_old_state = 0; 1782 } 1783 1784 bt_dev_dbg(hdev, "Resuming advertising instances"); 1785 1786 if (ext_adv_capable(hdev)) { 1787 /* Call for each tracked instance to be re-enabled */ 1788 list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) { 1789 err = hci_enable_ext_advertising_sync(hdev, 1790 adv->instance); 1791 if (!err) 1792 continue; 1793 1794 /* If the instance cannot be resumed remove it */ 1795 hci_remove_ext_adv_instance_sync(hdev, adv->instance, 1796 NULL); 1797 } 1798 } else { 1799 /* Schedule for most recent instance to be restarted and begin 1800 * the software rotation loop 1801 */ 1802 err = hci_schedule_adv_instance_sync(hdev, 1803 hdev->cur_adv_instance, 1804 true); 1805 } 1806 1807 hdev->advertising_paused = false; 1808 1809 return err; 1810 } 1811 1812 struct sk_buff *hci_read_local_oob_data_sync(struct hci_dev *hdev, 1813 bool extended, struct sock *sk) 1814 { 1815 u16 opcode = extended ? HCI_OP_READ_LOCAL_OOB_EXT_DATA : 1816 HCI_OP_READ_LOCAL_OOB_DATA; 1817 1818 return __hci_cmd_sync_sk(hdev, opcode, 0, NULL, 0, HCI_CMD_TIMEOUT, sk); 1819 } 1820 1821 /* Device must not be scanning when updating the accept list. 1822 * 1823 * Update is done using the following sequence: 1824 * 1825 * use_ll_privacy((Disable Advertising) -> Disable Resolving List) -> 1826 * Remove Devices From Accept List -> 1827 * (has IRK && use_ll_privacy(Remove Devices From Resolving List))-> 1828 * Add Devices to Accept List -> 1829 * (has IRK && use_ll_privacy(Remove Devices From Resolving List)) -> 1830 * use_ll_privacy(Enable Resolving List -> (Enable Advertising)) -> 1831 * Enable Scanning 1832 * 1833 * In case of failure advertising shall be restored to its original state and 1834 * return would disable accept list since either accept or resolving list could 1835 * not be programmed. 1836 * 1837 */ 1838 static u8 hci_update_accept_list_sync(struct hci_dev *hdev) 1839 { 1840 struct hci_conn_params *params; 1841 struct bdaddr_list *b, *t; 1842 u8 num_entries = 0; 1843 bool pend_conn, pend_report; 1844 u8 filter_policy; 1845 int err; 1846 1847 /* Pause advertising if resolving list can be used as controllers are 1848 * cannot accept resolving list modifications while advertising. 1849 */ 1850 if (use_ll_privacy(hdev)) { 1851 err = hci_pause_advertising_sync(hdev); 1852 if (err) { 1853 bt_dev_err(hdev, "pause advertising failed: %d", err); 1854 return 0x00; 1855 } 1856 } 1857 1858 /* Disable address resolution while reprogramming accept list since 1859 * devices that do have an IRK will be programmed in the resolving list 1860 * when LL Privacy is enabled. 1861 */ 1862 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00); 1863 if (err) { 1864 bt_dev_err(hdev, "Unable to disable LL privacy: %d", err); 1865 goto done; 1866 } 1867 1868 /* Go through the current accept list programmed into the 1869 * controller one by one and check if that address is still 1870 * in the list of pending connections or list of devices to 1871 * report. If not present in either list, then remove it from 1872 * the controller. 1873 */ 1874 list_for_each_entry_safe(b, t, &hdev->le_accept_list, list) { 1875 pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns, 1876 &b->bdaddr, 1877 b->bdaddr_type); 1878 pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports, 1879 &b->bdaddr, 1880 b->bdaddr_type); 1881 1882 /* If the device is not likely to connect or report, 1883 * remove it from the acceptlist. 1884 */ 1885 if (!pend_conn && !pend_report) { 1886 hci_le_del_accept_list_sync(hdev, &b->bdaddr, 1887 b->bdaddr_type); 1888 continue; 1889 } 1890 1891 num_entries++; 1892 } 1893 1894 /* Since all no longer valid accept list entries have been 1895 * removed, walk through the list of pending connections 1896 * and ensure that any new device gets programmed into 1897 * the controller. 1898 * 1899 * If the list of the devices is larger than the list of 1900 * available accept list entries in the controller, then 1901 * just abort and return filer policy value to not use the 1902 * accept list. 1903 */ 1904 list_for_each_entry(params, &hdev->pend_le_conns, action) { 1905 err = hci_le_add_accept_list_sync(hdev, params, &num_entries); 1906 if (err) 1907 goto done; 1908 } 1909 1910 /* After adding all new pending connections, walk through 1911 * the list of pending reports and also add these to the 1912 * accept list if there is still space. Abort if space runs out. 1913 */ 1914 list_for_each_entry(params, &hdev->pend_le_reports, action) { 1915 err = hci_le_add_accept_list_sync(hdev, params, &num_entries); 1916 if (err) 1917 goto done; 1918 } 1919 1920 /* Use the allowlist unless the following conditions are all true: 1921 * - We are not currently suspending 1922 * - There are 1 or more ADV monitors registered and it's not offloaded 1923 * - Interleaved scanning is not currently using the allowlist 1924 */ 1925 if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended && 1926 hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE && 1927 hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST) 1928 err = -EINVAL; 1929 1930 done: 1931 filter_policy = err ? 0x00 : 0x01; 1932 1933 /* Enable address resolution when LL Privacy is enabled. */ 1934 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x01); 1935 if (err) 1936 bt_dev_err(hdev, "Unable to enable LL privacy: %d", err); 1937 1938 /* Resume advertising if it was paused */ 1939 if (use_ll_privacy(hdev)) 1940 hci_resume_advertising_sync(hdev); 1941 1942 /* Select filter policy to use accept list */ 1943 return filter_policy; 1944 } 1945 1946 /* Returns true if an le connection is in the scanning state */ 1947 static inline bool hci_is_le_conn_scanning(struct hci_dev *hdev) 1948 { 1949 struct hci_conn_hash *h = &hdev->conn_hash; 1950 struct hci_conn *c; 1951 1952 rcu_read_lock(); 1953 1954 list_for_each_entry_rcu(c, &h->list, list) { 1955 if (c->type == LE_LINK && c->state == BT_CONNECT && 1956 test_bit(HCI_CONN_SCANNING, &c->flags)) { 1957 rcu_read_unlock(); 1958 return true; 1959 } 1960 } 1961 1962 rcu_read_unlock(); 1963 1964 return false; 1965 } 1966 1967 static int hci_le_set_ext_scan_param_sync(struct hci_dev *hdev, u8 type, 1968 u16 interval, u16 window, 1969 u8 own_addr_type, u8 filter_policy) 1970 { 1971 struct hci_cp_le_set_ext_scan_params *cp; 1972 struct hci_cp_le_scan_phy_params *phy; 1973 u8 data[sizeof(*cp) + sizeof(*phy) * 2]; 1974 u8 num_phy = 0; 1975 1976 cp = (void *)data; 1977 phy = (void *)cp->data; 1978 1979 memset(data, 0, sizeof(data)); 1980 1981 cp->own_addr_type = own_addr_type; 1982 cp->filter_policy = filter_policy; 1983 1984 if (scan_1m(hdev) || scan_2m(hdev)) { 1985 cp->scanning_phys |= LE_SCAN_PHY_1M; 1986 1987 phy->type = type; 1988 phy->interval = cpu_to_le16(interval); 1989 phy->window = cpu_to_le16(window); 1990 1991 num_phy++; 1992 phy++; 1993 } 1994 1995 if (scan_coded(hdev)) { 1996 cp->scanning_phys |= LE_SCAN_PHY_CODED; 1997 1998 phy->type = type; 1999 phy->interval = cpu_to_le16(interval); 2000 phy->window = cpu_to_le16(window); 2001 2002 num_phy++; 2003 phy++; 2004 } 2005 2006 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_PARAMS, 2007 sizeof(*cp) + sizeof(*phy) * num_phy, 2008 data, HCI_CMD_TIMEOUT); 2009 } 2010 2011 static int hci_le_set_scan_param_sync(struct hci_dev *hdev, u8 type, 2012 u16 interval, u16 window, 2013 u8 own_addr_type, u8 filter_policy) 2014 { 2015 struct hci_cp_le_set_scan_param cp; 2016 2017 if (use_ext_scan(hdev)) 2018 return hci_le_set_ext_scan_param_sync(hdev, type, interval, 2019 window, own_addr_type, 2020 filter_policy); 2021 2022 memset(&cp, 0, sizeof(cp)); 2023 cp.type = type; 2024 cp.interval = cpu_to_le16(interval); 2025 cp.window = cpu_to_le16(window); 2026 cp.own_address_type = own_addr_type; 2027 cp.filter_policy = filter_policy; 2028 2029 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_PARAM, 2030 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2031 } 2032 2033 static int hci_start_scan_sync(struct hci_dev *hdev, u8 type, u16 interval, 2034 u16 window, u8 own_addr_type, u8 filter_policy, 2035 u8 filter_dup) 2036 { 2037 int err; 2038 2039 if (hdev->scanning_paused) { 2040 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2041 return 0; 2042 } 2043 2044 err = hci_le_set_scan_param_sync(hdev, type, interval, window, 2045 own_addr_type, filter_policy); 2046 if (err) 2047 return err; 2048 2049 return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, filter_dup); 2050 } 2051 2052 static int hci_passive_scan_sync(struct hci_dev *hdev) 2053 { 2054 u8 own_addr_type; 2055 u8 filter_policy; 2056 u16 window, interval; 2057 int err; 2058 2059 if (hdev->scanning_paused) { 2060 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2061 return 0; 2062 } 2063 2064 err = hci_scan_disable_sync(hdev); 2065 if (err) { 2066 bt_dev_err(hdev, "disable scanning failed: %d", err); 2067 return err; 2068 } 2069 2070 /* Set require_privacy to false since no SCAN_REQ are send 2071 * during passive scanning. Not using an non-resolvable address 2072 * here is important so that peer devices using direct 2073 * advertising with our address will be correctly reported 2074 * by the controller. 2075 */ 2076 if (hci_update_random_address_sync(hdev, false, scan_use_rpa(hdev), 2077 &own_addr_type)) 2078 return 0; 2079 2080 if (hdev->enable_advmon_interleave_scan && 2081 hci_update_interleaved_scan_sync(hdev)) 2082 return 0; 2083 2084 bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state); 2085 2086 /* Adding or removing entries from the accept list must 2087 * happen before enabling scanning. The controller does 2088 * not allow accept list modification while scanning. 2089 */ 2090 filter_policy = hci_update_accept_list_sync(hdev); 2091 2092 /* When the controller is using random resolvable addresses and 2093 * with that having LE privacy enabled, then controllers with 2094 * Extended Scanner Filter Policies support can now enable support 2095 * for handling directed advertising. 2096 * 2097 * So instead of using filter polices 0x00 (no acceptlist) 2098 * and 0x01 (acceptlist enabled) use the new filter policies 2099 * 0x02 (no acceptlist) and 0x03 (acceptlist enabled). 2100 */ 2101 if (hci_dev_test_flag(hdev, HCI_PRIVACY) && 2102 (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)) 2103 filter_policy |= 0x02; 2104 2105 if (hdev->suspended) { 2106 window = hdev->le_scan_window_suspend; 2107 interval = hdev->le_scan_int_suspend; 2108 } else if (hci_is_le_conn_scanning(hdev)) { 2109 window = hdev->le_scan_window_connect; 2110 interval = hdev->le_scan_int_connect; 2111 } else if (hci_is_adv_monitoring(hdev)) { 2112 window = hdev->le_scan_window_adv_monitor; 2113 interval = hdev->le_scan_int_adv_monitor; 2114 } else { 2115 window = hdev->le_scan_window; 2116 interval = hdev->le_scan_interval; 2117 } 2118 2119 bt_dev_dbg(hdev, "LE passive scan with acceptlist = %d", filter_policy); 2120 2121 return hci_start_scan_sync(hdev, LE_SCAN_PASSIVE, interval, window, 2122 own_addr_type, filter_policy, 2123 LE_SCAN_FILTER_DUP_ENABLE); 2124 } 2125 2126 /* This function controls the passive scanning based on hdev->pend_le_conns 2127 * list. If there are pending LE connection we start the background scanning, 2128 * otherwise we stop it in the following sequence: 2129 * 2130 * If there are devices to scan: 2131 * 2132 * Disable Scanning -> Update Accept List -> 2133 * use_ll_privacy((Disable Advertising) -> Disable Resolving List -> 2134 * Update Resolving List -> Enable Resolving List -> (Enable Advertising)) -> 2135 * Enable Scanning 2136 * 2137 * Otherwise: 2138 * 2139 * Disable Scanning 2140 */ 2141 int hci_update_passive_scan_sync(struct hci_dev *hdev) 2142 { 2143 int err; 2144 2145 if (!test_bit(HCI_UP, &hdev->flags) || 2146 test_bit(HCI_INIT, &hdev->flags) || 2147 hci_dev_test_flag(hdev, HCI_SETUP) || 2148 hci_dev_test_flag(hdev, HCI_CONFIG) || 2149 hci_dev_test_flag(hdev, HCI_AUTO_OFF) || 2150 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 2151 return 0; 2152 2153 /* No point in doing scanning if LE support hasn't been enabled */ 2154 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 2155 return 0; 2156 2157 /* If discovery is active don't interfere with it */ 2158 if (hdev->discovery.state != DISCOVERY_STOPPED) 2159 return 0; 2160 2161 /* Reset RSSI and UUID filters when starting background scanning 2162 * since these filters are meant for service discovery only. 2163 * 2164 * The Start Discovery and Start Service Discovery operations 2165 * ensure to set proper values for RSSI threshold and UUID 2166 * filter list. So it is safe to just reset them here. 2167 */ 2168 hci_discovery_filter_clear(hdev); 2169 2170 bt_dev_dbg(hdev, "ADV monitoring is %s", 2171 hci_is_adv_monitoring(hdev) ? "on" : "off"); 2172 2173 if (list_empty(&hdev->pend_le_conns) && 2174 list_empty(&hdev->pend_le_reports) && 2175 !hci_is_adv_monitoring(hdev)) { 2176 /* If there is no pending LE connections or devices 2177 * to be scanned for or no ADV monitors, we should stop the 2178 * background scanning. 2179 */ 2180 2181 bt_dev_dbg(hdev, "stopping background scanning"); 2182 2183 err = hci_scan_disable_sync(hdev); 2184 if (err) 2185 bt_dev_err(hdev, "stop background scanning failed: %d", 2186 err); 2187 } else { 2188 /* If there is at least one pending LE connection, we should 2189 * keep the background scan running. 2190 */ 2191 2192 /* If controller is connecting, we should not start scanning 2193 * since some controllers are not able to scan and connect at 2194 * the same time. 2195 */ 2196 if (hci_lookup_le_connect(hdev)) 2197 return 0; 2198 2199 bt_dev_dbg(hdev, "start background scanning"); 2200 2201 err = hci_passive_scan_sync(hdev); 2202 if (err) 2203 bt_dev_err(hdev, "start background scanning failed: %d", 2204 err); 2205 } 2206 2207 return err; 2208 } 2209 2210 static int update_passive_scan_sync(struct hci_dev *hdev, void *data) 2211 { 2212 return hci_update_passive_scan_sync(hdev); 2213 } 2214 2215 int hci_update_passive_scan(struct hci_dev *hdev) 2216 { 2217 /* Only queue if it would have any effect */ 2218 if (!test_bit(HCI_UP, &hdev->flags) || 2219 test_bit(HCI_INIT, &hdev->flags) || 2220 hci_dev_test_flag(hdev, HCI_SETUP) || 2221 hci_dev_test_flag(hdev, HCI_CONFIG) || 2222 hci_dev_test_flag(hdev, HCI_AUTO_OFF) || 2223 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 2224 return 0; 2225 2226 return hci_cmd_sync_queue(hdev, update_passive_scan_sync, NULL, NULL); 2227 } 2228 2229 int hci_write_sc_support_sync(struct hci_dev *hdev, u8 val) 2230 { 2231 int err; 2232 2233 if (!bredr_sc_enabled(hdev) || lmp_host_sc_capable(hdev)) 2234 return 0; 2235 2236 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT, 2237 sizeof(val), &val, HCI_CMD_TIMEOUT); 2238 2239 if (!err) { 2240 if (val) { 2241 hdev->features[1][0] |= LMP_HOST_SC; 2242 hci_dev_set_flag(hdev, HCI_SC_ENABLED); 2243 } else { 2244 hdev->features[1][0] &= ~LMP_HOST_SC; 2245 hci_dev_clear_flag(hdev, HCI_SC_ENABLED); 2246 } 2247 } 2248 2249 return err; 2250 } 2251 2252 int hci_write_ssp_mode_sync(struct hci_dev *hdev, u8 mode) 2253 { 2254 int err; 2255 2256 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) || 2257 lmp_host_ssp_capable(hdev)) 2258 return 0; 2259 2260 if (!mode && hci_dev_test_flag(hdev, HCI_USE_DEBUG_KEYS)) { 2261 __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE, 2262 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 2263 } 2264 2265 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE, 2266 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 2267 if (err) 2268 return err; 2269 2270 return hci_write_sc_support_sync(hdev, 0x01); 2271 } 2272 2273 int hci_write_le_host_supported_sync(struct hci_dev *hdev, u8 le, u8 simul) 2274 { 2275 struct hci_cp_write_le_host_supported cp; 2276 2277 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED) || 2278 !lmp_bredr_capable(hdev)) 2279 return 0; 2280 2281 /* Check first if we already have the right host state 2282 * (host features set) 2283 */ 2284 if (le == lmp_host_le_capable(hdev) && 2285 simul == lmp_host_le_br_capable(hdev)) 2286 return 0; 2287 2288 memset(&cp, 0, sizeof(cp)); 2289 2290 cp.le = le; 2291 cp.simul = simul; 2292 2293 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED, 2294 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2295 } 2296 2297 static int hci_powered_update_adv_sync(struct hci_dev *hdev) 2298 { 2299 struct adv_info *adv, *tmp; 2300 int err; 2301 2302 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 2303 return 0; 2304 2305 /* If RPA Resolution has not been enable yet it means the 2306 * resolving list is empty and we should attempt to program the 2307 * local IRK in order to support using own_addr_type 2308 * ADDR_LE_DEV_RANDOM_RESOLVED (0x03). 2309 */ 2310 if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) { 2311 hci_le_add_resolve_list_sync(hdev, NULL); 2312 hci_le_set_addr_resolution_enable_sync(hdev, 0x01); 2313 } 2314 2315 /* Make sure the controller has a good default for 2316 * advertising data. This also applies to the case 2317 * where BR/EDR was toggled during the AUTO_OFF phase. 2318 */ 2319 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 2320 list_empty(&hdev->adv_instances)) { 2321 if (ext_adv_capable(hdev)) { 2322 err = hci_setup_ext_adv_instance_sync(hdev, 0x00); 2323 if (!err) 2324 hci_update_scan_rsp_data_sync(hdev, 0x00); 2325 } else { 2326 err = hci_update_adv_data_sync(hdev, 0x00); 2327 if (!err) 2328 hci_update_scan_rsp_data_sync(hdev, 0x00); 2329 } 2330 2331 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) 2332 hci_enable_advertising_sync(hdev); 2333 } 2334 2335 /* Call for each tracked instance to be scheduled */ 2336 list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) 2337 hci_schedule_adv_instance_sync(hdev, adv->instance, true); 2338 2339 return 0; 2340 } 2341 2342 static int hci_write_auth_enable_sync(struct hci_dev *hdev) 2343 { 2344 u8 link_sec; 2345 2346 link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY); 2347 if (link_sec == test_bit(HCI_AUTH, &hdev->flags)) 2348 return 0; 2349 2350 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE, 2351 sizeof(link_sec), &link_sec, 2352 HCI_CMD_TIMEOUT); 2353 } 2354 2355 int hci_write_fast_connectable_sync(struct hci_dev *hdev, bool enable) 2356 { 2357 struct hci_cp_write_page_scan_activity cp; 2358 u8 type; 2359 int err = 0; 2360 2361 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 2362 return 0; 2363 2364 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 2365 return 0; 2366 2367 memset(&cp, 0, sizeof(cp)); 2368 2369 if (enable) { 2370 type = PAGE_SCAN_TYPE_INTERLACED; 2371 2372 /* 160 msec page scan interval */ 2373 cp.interval = cpu_to_le16(0x0100); 2374 } else { 2375 type = hdev->def_page_scan_type; 2376 cp.interval = cpu_to_le16(hdev->def_page_scan_int); 2377 } 2378 2379 cp.window = cpu_to_le16(hdev->def_page_scan_window); 2380 2381 if (__cpu_to_le16(hdev->page_scan_interval) != cp.interval || 2382 __cpu_to_le16(hdev->page_scan_window) != cp.window) { 2383 err = __hci_cmd_sync_status(hdev, 2384 HCI_OP_WRITE_PAGE_SCAN_ACTIVITY, 2385 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2386 if (err) 2387 return err; 2388 } 2389 2390 if (hdev->page_scan_type != type) 2391 err = __hci_cmd_sync_status(hdev, 2392 HCI_OP_WRITE_PAGE_SCAN_TYPE, 2393 sizeof(type), &type, 2394 HCI_CMD_TIMEOUT); 2395 2396 return err; 2397 } 2398 2399 static bool disconnected_accept_list_entries(struct hci_dev *hdev) 2400 { 2401 struct bdaddr_list *b; 2402 2403 list_for_each_entry(b, &hdev->accept_list, list) { 2404 struct hci_conn *conn; 2405 2406 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr); 2407 if (!conn) 2408 return true; 2409 2410 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 2411 return true; 2412 } 2413 2414 return false; 2415 } 2416 2417 static int hci_write_scan_enable_sync(struct hci_dev *hdev, u8 val) 2418 { 2419 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE, 2420 sizeof(val), &val, 2421 HCI_CMD_TIMEOUT); 2422 } 2423 2424 int hci_update_scan_sync(struct hci_dev *hdev) 2425 { 2426 u8 scan; 2427 2428 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 2429 return 0; 2430 2431 if (!hdev_is_powered(hdev)) 2432 return 0; 2433 2434 if (mgmt_powering_down(hdev)) 2435 return 0; 2436 2437 if (hdev->scanning_paused) 2438 return 0; 2439 2440 if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) || 2441 disconnected_accept_list_entries(hdev)) 2442 scan = SCAN_PAGE; 2443 else 2444 scan = SCAN_DISABLED; 2445 2446 if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 2447 scan |= SCAN_INQUIRY; 2448 2449 if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) && 2450 test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY)) 2451 return 0; 2452 2453 return hci_write_scan_enable_sync(hdev, scan); 2454 } 2455 2456 int hci_update_name_sync(struct hci_dev *hdev) 2457 { 2458 struct hci_cp_write_local_name cp; 2459 2460 memset(&cp, 0, sizeof(cp)); 2461 2462 memcpy(cp.name, hdev->dev_name, sizeof(cp.name)); 2463 2464 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LOCAL_NAME, 2465 sizeof(cp), &cp, 2466 HCI_CMD_TIMEOUT); 2467 } 2468 2469 /* This function perform powered update HCI command sequence after the HCI init 2470 * sequence which end up resetting all states, the sequence is as follows: 2471 * 2472 * HCI_SSP_ENABLED(Enable SSP) 2473 * HCI_LE_ENABLED(Enable LE) 2474 * HCI_LE_ENABLED(use_ll_privacy(Add local IRK to Resolving List) -> 2475 * Update adv data) 2476 * Enable Authentication 2477 * lmp_bredr_capable(Set Fast Connectable -> Set Scan Type -> Set Class -> 2478 * Set Name -> Set EIR) 2479 */ 2480 int hci_powered_update_sync(struct hci_dev *hdev) 2481 { 2482 int err; 2483 2484 /* Register the available SMP channels (BR/EDR and LE) only when 2485 * successfully powering on the controller. This late 2486 * registration is required so that LE SMP can clearly decide if 2487 * the public address or static address is used. 2488 */ 2489 smp_register(hdev); 2490 2491 err = hci_write_ssp_mode_sync(hdev, 0x01); 2492 if (err) 2493 return err; 2494 2495 err = hci_write_le_host_supported_sync(hdev, 0x01, 0x00); 2496 if (err) 2497 return err; 2498 2499 err = hci_powered_update_adv_sync(hdev); 2500 if (err) 2501 return err; 2502 2503 err = hci_write_auth_enable_sync(hdev); 2504 if (err) 2505 return err; 2506 2507 if (lmp_bredr_capable(hdev)) { 2508 if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE)) 2509 hci_write_fast_connectable_sync(hdev, true); 2510 else 2511 hci_write_fast_connectable_sync(hdev, false); 2512 hci_update_scan_sync(hdev); 2513 hci_update_class_sync(hdev); 2514 hci_update_name_sync(hdev); 2515 hci_update_eir_sync(hdev); 2516 } 2517 2518 return 0; 2519 } 2520 2521 /** 2522 * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address 2523 * (BD_ADDR) for a HCI device from 2524 * a firmware node property. 2525 * @hdev: The HCI device 2526 * 2527 * Search the firmware node for 'local-bd-address'. 2528 * 2529 * All-zero BD addresses are rejected, because those could be properties 2530 * that exist in the firmware tables, but were not updated by the firmware. For 2531 * example, the DTS could define 'local-bd-address', with zero BD addresses. 2532 */ 2533 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev) 2534 { 2535 struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent); 2536 bdaddr_t ba; 2537 int ret; 2538 2539 ret = fwnode_property_read_u8_array(fwnode, "local-bd-address", 2540 (u8 *)&ba, sizeof(ba)); 2541 if (ret < 0 || !bacmp(&ba, BDADDR_ANY)) 2542 return; 2543 2544 bacpy(&hdev->public_addr, &ba); 2545 } 2546 2547 struct hci_init_stage { 2548 int (*func)(struct hci_dev *hdev); 2549 }; 2550 2551 /* Run init stage NULL terminated function table */ 2552 static int hci_init_stage_sync(struct hci_dev *hdev, 2553 const struct hci_init_stage *stage) 2554 { 2555 size_t i; 2556 2557 for (i = 0; stage[i].func; i++) { 2558 int err; 2559 2560 err = stage[i].func(hdev); 2561 if (err) 2562 return err; 2563 } 2564 2565 return 0; 2566 } 2567 2568 /* Read Local Version */ 2569 static int hci_read_local_version_sync(struct hci_dev *hdev) 2570 { 2571 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_VERSION, 2572 0, NULL, HCI_CMD_TIMEOUT); 2573 } 2574 2575 /* Read BD Address */ 2576 static int hci_read_bd_addr_sync(struct hci_dev *hdev) 2577 { 2578 return __hci_cmd_sync_status(hdev, HCI_OP_READ_BD_ADDR, 2579 0, NULL, HCI_CMD_TIMEOUT); 2580 } 2581 2582 #define HCI_INIT(_func) \ 2583 { \ 2584 .func = _func, \ 2585 } 2586 2587 static const struct hci_init_stage hci_init0[] = { 2588 /* HCI_OP_READ_LOCAL_VERSION */ 2589 HCI_INIT(hci_read_local_version_sync), 2590 /* HCI_OP_READ_BD_ADDR */ 2591 HCI_INIT(hci_read_bd_addr_sync), 2592 {} 2593 }; 2594 2595 int hci_reset_sync(struct hci_dev *hdev) 2596 { 2597 int err; 2598 2599 set_bit(HCI_RESET, &hdev->flags); 2600 2601 err = __hci_cmd_sync_status(hdev, HCI_OP_RESET, 0, NULL, 2602 HCI_CMD_TIMEOUT); 2603 if (err) 2604 return err; 2605 2606 return 0; 2607 } 2608 2609 static int hci_init0_sync(struct hci_dev *hdev) 2610 { 2611 int err; 2612 2613 bt_dev_dbg(hdev, ""); 2614 2615 /* Reset */ 2616 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) { 2617 err = hci_reset_sync(hdev); 2618 if (err) 2619 return err; 2620 } 2621 2622 return hci_init_stage_sync(hdev, hci_init0); 2623 } 2624 2625 static int hci_unconf_init_sync(struct hci_dev *hdev) 2626 { 2627 int err; 2628 2629 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) 2630 return 0; 2631 2632 err = hci_init0_sync(hdev); 2633 if (err < 0) 2634 return err; 2635 2636 if (hci_dev_test_flag(hdev, HCI_SETUP)) 2637 hci_debugfs_create_basic(hdev); 2638 2639 return 0; 2640 } 2641 2642 /* Read Local Supported Features. */ 2643 static int hci_read_local_features_sync(struct hci_dev *hdev) 2644 { 2645 /* Not all AMP controllers support this command */ 2646 if (hdev->dev_type == HCI_AMP && !(hdev->commands[14] & 0x20)) 2647 return 0; 2648 2649 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_FEATURES, 2650 0, NULL, HCI_CMD_TIMEOUT); 2651 } 2652 2653 /* BR Controller init stage 1 command sequence */ 2654 static const struct hci_init_stage br_init1[] = { 2655 /* HCI_OP_READ_LOCAL_FEATURES */ 2656 HCI_INIT(hci_read_local_features_sync), 2657 /* HCI_OP_READ_LOCAL_VERSION */ 2658 HCI_INIT(hci_read_local_version_sync), 2659 /* HCI_OP_READ_BD_ADDR */ 2660 HCI_INIT(hci_read_bd_addr_sync), 2661 {} 2662 }; 2663 2664 /* Read Local Commands */ 2665 static int hci_read_local_cmds_sync(struct hci_dev *hdev) 2666 { 2667 /* All Bluetooth 1.2 and later controllers should support the 2668 * HCI command for reading the local supported commands. 2669 * 2670 * Unfortunately some controllers indicate Bluetooth 1.2 support, 2671 * but do not have support for this command. If that is the case, 2672 * the driver can quirk the behavior and skip reading the local 2673 * supported commands. 2674 */ 2675 if (hdev->hci_ver > BLUETOOTH_VER_1_1 && 2676 !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks)) 2677 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_COMMANDS, 2678 0, NULL, HCI_CMD_TIMEOUT); 2679 2680 return 0; 2681 } 2682 2683 /* Read Local AMP Info */ 2684 static int hci_read_local_amp_info_sync(struct hci_dev *hdev) 2685 { 2686 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_AMP_INFO, 2687 0, NULL, HCI_CMD_TIMEOUT); 2688 } 2689 2690 /* Read Data Blk size */ 2691 static int hci_read_data_block_size_sync(struct hci_dev *hdev) 2692 { 2693 return __hci_cmd_sync_status(hdev, HCI_OP_READ_DATA_BLOCK_SIZE, 2694 0, NULL, HCI_CMD_TIMEOUT); 2695 } 2696 2697 /* Read Flow Control Mode */ 2698 static int hci_read_flow_control_mode_sync(struct hci_dev *hdev) 2699 { 2700 return __hci_cmd_sync_status(hdev, HCI_OP_READ_FLOW_CONTROL_MODE, 2701 0, NULL, HCI_CMD_TIMEOUT); 2702 } 2703 2704 /* Read Location Data */ 2705 static int hci_read_location_data_sync(struct hci_dev *hdev) 2706 { 2707 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCATION_DATA, 2708 0, NULL, HCI_CMD_TIMEOUT); 2709 } 2710 2711 /* AMP Controller init stage 1 command sequence */ 2712 static const struct hci_init_stage amp_init1[] = { 2713 /* HCI_OP_READ_LOCAL_VERSION */ 2714 HCI_INIT(hci_read_local_version_sync), 2715 /* HCI_OP_READ_LOCAL_COMMANDS */ 2716 HCI_INIT(hci_read_local_cmds_sync), 2717 /* HCI_OP_READ_LOCAL_AMP_INFO */ 2718 HCI_INIT(hci_read_local_amp_info_sync), 2719 /* HCI_OP_READ_DATA_BLOCK_SIZE */ 2720 HCI_INIT(hci_read_data_block_size_sync), 2721 /* HCI_OP_READ_FLOW_CONTROL_MODE */ 2722 HCI_INIT(hci_read_flow_control_mode_sync), 2723 /* HCI_OP_READ_LOCATION_DATA */ 2724 HCI_INIT(hci_read_location_data_sync), 2725 }; 2726 2727 static int hci_init1_sync(struct hci_dev *hdev) 2728 { 2729 int err; 2730 2731 bt_dev_dbg(hdev, ""); 2732 2733 /* Reset */ 2734 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) { 2735 err = hci_reset_sync(hdev); 2736 if (err) 2737 return err; 2738 } 2739 2740 switch (hdev->dev_type) { 2741 case HCI_PRIMARY: 2742 hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED; 2743 return hci_init_stage_sync(hdev, br_init1); 2744 case HCI_AMP: 2745 hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED; 2746 return hci_init_stage_sync(hdev, amp_init1); 2747 default: 2748 bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type); 2749 break; 2750 } 2751 2752 return 0; 2753 } 2754 2755 /* AMP Controller init stage 2 command sequence */ 2756 static const struct hci_init_stage amp_init2[] = { 2757 /* HCI_OP_READ_LOCAL_FEATURES */ 2758 HCI_INIT(hci_read_local_features_sync), 2759 }; 2760 2761 /* Read Buffer Size (ACL mtu, max pkt, etc.) */ 2762 static int hci_read_buffer_size_sync(struct hci_dev *hdev) 2763 { 2764 return __hci_cmd_sync_status(hdev, HCI_OP_READ_BUFFER_SIZE, 2765 0, NULL, HCI_CMD_TIMEOUT); 2766 } 2767 2768 /* Read Class of Device */ 2769 static int hci_read_dev_class_sync(struct hci_dev *hdev) 2770 { 2771 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLASS_OF_DEV, 2772 0, NULL, HCI_CMD_TIMEOUT); 2773 } 2774 2775 /* Read Local Name */ 2776 static int hci_read_local_name_sync(struct hci_dev *hdev) 2777 { 2778 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_NAME, 2779 0, NULL, HCI_CMD_TIMEOUT); 2780 } 2781 2782 /* Read Voice Setting */ 2783 static int hci_read_voice_setting_sync(struct hci_dev *hdev) 2784 { 2785 return __hci_cmd_sync_status(hdev, HCI_OP_READ_VOICE_SETTING, 2786 0, NULL, HCI_CMD_TIMEOUT); 2787 } 2788 2789 /* Read Number of Supported IAC */ 2790 static int hci_read_num_supported_iac_sync(struct hci_dev *hdev) 2791 { 2792 return __hci_cmd_sync_status(hdev, HCI_OP_READ_NUM_SUPPORTED_IAC, 2793 0, NULL, HCI_CMD_TIMEOUT); 2794 } 2795 2796 /* Read Current IAC LAP */ 2797 static int hci_read_current_iac_lap_sync(struct hci_dev *hdev) 2798 { 2799 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CURRENT_IAC_LAP, 2800 0, NULL, HCI_CMD_TIMEOUT); 2801 } 2802 2803 static int hci_set_event_filter_sync(struct hci_dev *hdev, u8 flt_type, 2804 u8 cond_type, bdaddr_t *bdaddr, 2805 u8 auto_accept) 2806 { 2807 struct hci_cp_set_event_filter cp; 2808 2809 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 2810 return 0; 2811 2812 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 2813 return 0; 2814 2815 memset(&cp, 0, sizeof(cp)); 2816 cp.flt_type = flt_type; 2817 2818 if (flt_type != HCI_FLT_CLEAR_ALL) { 2819 cp.cond_type = cond_type; 2820 bacpy(&cp.addr_conn_flt.bdaddr, bdaddr); 2821 cp.addr_conn_flt.auto_accept = auto_accept; 2822 } 2823 2824 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_FLT, 2825 flt_type == HCI_FLT_CLEAR_ALL ? 2826 sizeof(cp.flt_type) : sizeof(cp), &cp, 2827 HCI_CMD_TIMEOUT); 2828 } 2829 2830 static int hci_clear_event_filter_sync(struct hci_dev *hdev) 2831 { 2832 if (!hci_dev_test_flag(hdev, HCI_EVENT_FILTER_CONFIGURED)) 2833 return 0; 2834 2835 /* In theory the state machine should not reach here unless 2836 * a hci_set_event_filter_sync() call succeeds, but we do 2837 * the check both for parity and as a future reminder. 2838 */ 2839 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 2840 return 0; 2841 2842 return hci_set_event_filter_sync(hdev, HCI_FLT_CLEAR_ALL, 0x00, 2843 BDADDR_ANY, 0x00); 2844 } 2845 2846 /* Connection accept timeout ~20 secs */ 2847 static int hci_write_ca_timeout_sync(struct hci_dev *hdev) 2848 { 2849 __le16 param = cpu_to_le16(0x7d00); 2850 2851 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CA_TIMEOUT, 2852 sizeof(param), ¶m, HCI_CMD_TIMEOUT); 2853 } 2854 2855 /* BR Controller init stage 2 command sequence */ 2856 static const struct hci_init_stage br_init2[] = { 2857 /* HCI_OP_READ_BUFFER_SIZE */ 2858 HCI_INIT(hci_read_buffer_size_sync), 2859 /* HCI_OP_READ_CLASS_OF_DEV */ 2860 HCI_INIT(hci_read_dev_class_sync), 2861 /* HCI_OP_READ_LOCAL_NAME */ 2862 HCI_INIT(hci_read_local_name_sync), 2863 /* HCI_OP_READ_VOICE_SETTING */ 2864 HCI_INIT(hci_read_voice_setting_sync), 2865 /* HCI_OP_READ_NUM_SUPPORTED_IAC */ 2866 HCI_INIT(hci_read_num_supported_iac_sync), 2867 /* HCI_OP_READ_CURRENT_IAC_LAP */ 2868 HCI_INIT(hci_read_current_iac_lap_sync), 2869 /* HCI_OP_SET_EVENT_FLT */ 2870 HCI_INIT(hci_clear_event_filter_sync), 2871 /* HCI_OP_WRITE_CA_TIMEOUT */ 2872 HCI_INIT(hci_write_ca_timeout_sync), 2873 {} 2874 }; 2875 2876 static int hci_write_ssp_mode_1_sync(struct hci_dev *hdev) 2877 { 2878 u8 mode = 0x01; 2879 2880 if (!lmp_ssp_capable(hdev) || !hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 2881 return 0; 2882 2883 /* When SSP is available, then the host features page 2884 * should also be available as well. However some 2885 * controllers list the max_page as 0 as long as SSP 2886 * has not been enabled. To achieve proper debugging 2887 * output, force the minimum max_page to 1 at least. 2888 */ 2889 hdev->max_page = 0x01; 2890 2891 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE, 2892 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 2893 } 2894 2895 static int hci_write_eir_sync(struct hci_dev *hdev) 2896 { 2897 struct hci_cp_write_eir cp; 2898 2899 if (!lmp_ssp_capable(hdev) || hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 2900 return 0; 2901 2902 memset(hdev->eir, 0, sizeof(hdev->eir)); 2903 memset(&cp, 0, sizeof(cp)); 2904 2905 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp, 2906 HCI_CMD_TIMEOUT); 2907 } 2908 2909 static int hci_write_inquiry_mode_sync(struct hci_dev *hdev) 2910 { 2911 u8 mode; 2912 2913 if (!lmp_inq_rssi_capable(hdev) && 2914 !test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) 2915 return 0; 2916 2917 /* If Extended Inquiry Result events are supported, then 2918 * they are clearly preferred over Inquiry Result with RSSI 2919 * events. 2920 */ 2921 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01; 2922 2923 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_INQUIRY_MODE, 2924 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 2925 } 2926 2927 static int hci_read_inq_rsp_tx_power_sync(struct hci_dev *hdev) 2928 { 2929 if (!lmp_inq_tx_pwr_capable(hdev)) 2930 return 0; 2931 2932 return __hci_cmd_sync_status(hdev, HCI_OP_READ_INQ_RSP_TX_POWER, 2933 0, NULL, HCI_CMD_TIMEOUT); 2934 } 2935 2936 static int hci_read_local_ext_features_sync(struct hci_dev *hdev, u8 page) 2937 { 2938 struct hci_cp_read_local_ext_features cp; 2939 2940 if (!lmp_ext_feat_capable(hdev)) 2941 return 0; 2942 2943 memset(&cp, 0, sizeof(cp)); 2944 cp.page = page; 2945 2946 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_EXT_FEATURES, 2947 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2948 } 2949 2950 static int hci_read_local_ext_features_1_sync(struct hci_dev *hdev) 2951 { 2952 return hci_read_local_ext_features_sync(hdev, 0x01); 2953 } 2954 2955 /* HCI Controller init stage 2 command sequence */ 2956 static const struct hci_init_stage hci_init2[] = { 2957 /* HCI_OP_READ_LOCAL_COMMANDS */ 2958 HCI_INIT(hci_read_local_cmds_sync), 2959 /* HCI_OP_WRITE_SSP_MODE */ 2960 HCI_INIT(hci_write_ssp_mode_1_sync), 2961 /* HCI_OP_WRITE_EIR */ 2962 HCI_INIT(hci_write_eir_sync), 2963 /* HCI_OP_WRITE_INQUIRY_MODE */ 2964 HCI_INIT(hci_write_inquiry_mode_sync), 2965 /* HCI_OP_READ_INQ_RSP_TX_POWER */ 2966 HCI_INIT(hci_read_inq_rsp_tx_power_sync), 2967 /* HCI_OP_READ_LOCAL_EXT_FEATURES */ 2968 HCI_INIT(hci_read_local_ext_features_1_sync), 2969 /* HCI_OP_WRITE_AUTH_ENABLE */ 2970 HCI_INIT(hci_write_auth_enable_sync), 2971 {} 2972 }; 2973 2974 /* Read LE Buffer Size */ 2975 static int hci_le_read_buffer_size_sync(struct hci_dev *hdev) 2976 { 2977 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_BUFFER_SIZE, 2978 0, NULL, HCI_CMD_TIMEOUT); 2979 } 2980 2981 /* Read LE Local Supported Features */ 2982 static int hci_le_read_local_features_sync(struct hci_dev *hdev) 2983 { 2984 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_LOCAL_FEATURES, 2985 0, NULL, HCI_CMD_TIMEOUT); 2986 } 2987 2988 /* Read LE Supported States */ 2989 static int hci_le_read_supported_states_sync(struct hci_dev *hdev) 2990 { 2991 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_SUPPORTED_STATES, 2992 0, NULL, HCI_CMD_TIMEOUT); 2993 } 2994 2995 /* LE Controller init stage 2 command sequence */ 2996 static const struct hci_init_stage le_init2[] = { 2997 /* HCI_OP_LE_READ_BUFFER_SIZE */ 2998 HCI_INIT(hci_le_read_buffer_size_sync), 2999 /* HCI_OP_LE_READ_LOCAL_FEATURES */ 3000 HCI_INIT(hci_le_read_local_features_sync), 3001 /* HCI_OP_LE_READ_SUPPORTED_STATES */ 3002 HCI_INIT(hci_le_read_supported_states_sync), 3003 {} 3004 }; 3005 3006 static int hci_init2_sync(struct hci_dev *hdev) 3007 { 3008 int err; 3009 3010 bt_dev_dbg(hdev, ""); 3011 3012 if (hdev->dev_type == HCI_AMP) 3013 return hci_init_stage_sync(hdev, amp_init2); 3014 3015 if (lmp_bredr_capable(hdev)) { 3016 err = hci_init_stage_sync(hdev, br_init2); 3017 if (err) 3018 return err; 3019 } else { 3020 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED); 3021 } 3022 3023 if (lmp_le_capable(hdev)) { 3024 err = hci_init_stage_sync(hdev, le_init2); 3025 if (err) 3026 return err; 3027 /* LE-only controllers have LE implicitly enabled */ 3028 if (!lmp_bredr_capable(hdev)) 3029 hci_dev_set_flag(hdev, HCI_LE_ENABLED); 3030 } 3031 3032 return hci_init_stage_sync(hdev, hci_init2); 3033 } 3034 3035 static int hci_set_event_mask_sync(struct hci_dev *hdev) 3036 { 3037 /* The second byte is 0xff instead of 0x9f (two reserved bits 3038 * disabled) since a Broadcom 1.2 dongle doesn't respond to the 3039 * command otherwise. 3040 */ 3041 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 }; 3042 3043 /* CSR 1.1 dongles does not accept any bitfield so don't try to set 3044 * any event mask for pre 1.2 devices. 3045 */ 3046 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 3047 return 0; 3048 3049 if (lmp_bredr_capable(hdev)) { 3050 events[4] |= 0x01; /* Flow Specification Complete */ 3051 3052 /* Don't set Disconnect Complete when suspended as that 3053 * would wakeup the host when disconnecting due to 3054 * suspend. 3055 */ 3056 if (hdev->suspended) 3057 events[0] &= 0xef; 3058 } else { 3059 /* Use a different default for LE-only devices */ 3060 memset(events, 0, sizeof(events)); 3061 events[1] |= 0x20; /* Command Complete */ 3062 events[1] |= 0x40; /* Command Status */ 3063 events[1] |= 0x80; /* Hardware Error */ 3064 3065 /* If the controller supports the Disconnect command, enable 3066 * the corresponding event. In addition enable packet flow 3067 * control related events. 3068 */ 3069 if (hdev->commands[0] & 0x20) { 3070 /* Don't set Disconnect Complete when suspended as that 3071 * would wakeup the host when disconnecting due to 3072 * suspend. 3073 */ 3074 if (!hdev->suspended) 3075 events[0] |= 0x10; /* Disconnection Complete */ 3076 events[2] |= 0x04; /* Number of Completed Packets */ 3077 events[3] |= 0x02; /* Data Buffer Overflow */ 3078 } 3079 3080 /* If the controller supports the Read Remote Version 3081 * Information command, enable the corresponding event. 3082 */ 3083 if (hdev->commands[2] & 0x80) 3084 events[1] |= 0x08; /* Read Remote Version Information 3085 * Complete 3086 */ 3087 3088 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) { 3089 events[0] |= 0x80; /* Encryption Change */ 3090 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 3091 } 3092 } 3093 3094 if (lmp_inq_rssi_capable(hdev) || 3095 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) 3096 events[4] |= 0x02; /* Inquiry Result with RSSI */ 3097 3098 if (lmp_ext_feat_capable(hdev)) 3099 events[4] |= 0x04; /* Read Remote Extended Features Complete */ 3100 3101 if (lmp_esco_capable(hdev)) { 3102 events[5] |= 0x08; /* Synchronous Connection Complete */ 3103 events[5] |= 0x10; /* Synchronous Connection Changed */ 3104 } 3105 3106 if (lmp_sniffsubr_capable(hdev)) 3107 events[5] |= 0x20; /* Sniff Subrating */ 3108 3109 if (lmp_pause_enc_capable(hdev)) 3110 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 3111 3112 if (lmp_ext_inq_capable(hdev)) 3113 events[5] |= 0x40; /* Extended Inquiry Result */ 3114 3115 if (lmp_no_flush_capable(hdev)) 3116 events[7] |= 0x01; /* Enhanced Flush Complete */ 3117 3118 if (lmp_lsto_capable(hdev)) 3119 events[6] |= 0x80; /* Link Supervision Timeout Changed */ 3120 3121 if (lmp_ssp_capable(hdev)) { 3122 events[6] |= 0x01; /* IO Capability Request */ 3123 events[6] |= 0x02; /* IO Capability Response */ 3124 events[6] |= 0x04; /* User Confirmation Request */ 3125 events[6] |= 0x08; /* User Passkey Request */ 3126 events[6] |= 0x10; /* Remote OOB Data Request */ 3127 events[6] |= 0x20; /* Simple Pairing Complete */ 3128 events[7] |= 0x04; /* User Passkey Notification */ 3129 events[7] |= 0x08; /* Keypress Notification */ 3130 events[7] |= 0x10; /* Remote Host Supported 3131 * Features Notification 3132 */ 3133 } 3134 3135 if (lmp_le_capable(hdev)) 3136 events[7] |= 0x20; /* LE Meta-Event */ 3137 3138 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK, 3139 sizeof(events), events, HCI_CMD_TIMEOUT); 3140 } 3141 3142 static int hci_read_stored_link_key_sync(struct hci_dev *hdev) 3143 { 3144 struct hci_cp_read_stored_link_key cp; 3145 3146 if (!(hdev->commands[6] & 0x20) || 3147 test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) 3148 return 0; 3149 3150 memset(&cp, 0, sizeof(cp)); 3151 bacpy(&cp.bdaddr, BDADDR_ANY); 3152 cp.read_all = 0x01; 3153 3154 return __hci_cmd_sync_status(hdev, HCI_OP_READ_STORED_LINK_KEY, 3155 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3156 } 3157 3158 static int hci_setup_link_policy_sync(struct hci_dev *hdev) 3159 { 3160 struct hci_cp_write_def_link_policy cp; 3161 u16 link_policy = 0; 3162 3163 if (!(hdev->commands[5] & 0x10)) 3164 return 0; 3165 3166 memset(&cp, 0, sizeof(cp)); 3167 3168 if (lmp_rswitch_capable(hdev)) 3169 link_policy |= HCI_LP_RSWITCH; 3170 if (lmp_hold_capable(hdev)) 3171 link_policy |= HCI_LP_HOLD; 3172 if (lmp_sniff_capable(hdev)) 3173 link_policy |= HCI_LP_SNIFF; 3174 if (lmp_park_capable(hdev)) 3175 link_policy |= HCI_LP_PARK; 3176 3177 cp.policy = cpu_to_le16(link_policy); 3178 3179 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY, 3180 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3181 } 3182 3183 static int hci_read_page_scan_activity_sync(struct hci_dev *hdev) 3184 { 3185 if (!(hdev->commands[8] & 0x01)) 3186 return 0; 3187 3188 return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 3189 0, NULL, HCI_CMD_TIMEOUT); 3190 } 3191 3192 static int hci_read_def_err_data_reporting_sync(struct hci_dev *hdev) 3193 { 3194 if (!(hdev->commands[18] & 0x04) || 3195 test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) 3196 return 0; 3197 3198 return __hci_cmd_sync_status(hdev, HCI_OP_READ_DEF_ERR_DATA_REPORTING, 3199 0, NULL, HCI_CMD_TIMEOUT); 3200 } 3201 3202 static int hci_read_page_scan_type_sync(struct hci_dev *hdev) 3203 { 3204 /* Some older Broadcom based Bluetooth 1.2 controllers do not 3205 * support the Read Page Scan Type command. Check support for 3206 * this command in the bit mask of supported commands. 3207 */ 3208 if (!(hdev->commands[13] & 0x01)) 3209 return 0; 3210 3211 return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_TYPE, 3212 0, NULL, HCI_CMD_TIMEOUT); 3213 } 3214 3215 /* Read features beyond page 1 if available */ 3216 static int hci_read_local_ext_features_all_sync(struct hci_dev *hdev) 3217 { 3218 u8 page; 3219 int err; 3220 3221 if (!lmp_ext_feat_capable(hdev)) 3222 return 0; 3223 3224 for (page = 2; page < HCI_MAX_PAGES && page <= hdev->max_page; 3225 page++) { 3226 err = hci_read_local_ext_features_sync(hdev, page); 3227 if (err) 3228 return err; 3229 } 3230 3231 return 0; 3232 } 3233 3234 /* HCI Controller init stage 3 command sequence */ 3235 static const struct hci_init_stage hci_init3[] = { 3236 /* HCI_OP_SET_EVENT_MASK */ 3237 HCI_INIT(hci_set_event_mask_sync), 3238 /* HCI_OP_READ_STORED_LINK_KEY */ 3239 HCI_INIT(hci_read_stored_link_key_sync), 3240 /* HCI_OP_WRITE_DEF_LINK_POLICY */ 3241 HCI_INIT(hci_setup_link_policy_sync), 3242 /* HCI_OP_READ_PAGE_SCAN_ACTIVITY */ 3243 HCI_INIT(hci_read_page_scan_activity_sync), 3244 /* HCI_OP_READ_DEF_ERR_DATA_REPORTING */ 3245 HCI_INIT(hci_read_def_err_data_reporting_sync), 3246 /* HCI_OP_READ_PAGE_SCAN_TYPE */ 3247 HCI_INIT(hci_read_page_scan_type_sync), 3248 /* HCI_OP_READ_LOCAL_EXT_FEATURES */ 3249 HCI_INIT(hci_read_local_ext_features_all_sync), 3250 {} 3251 }; 3252 3253 static int hci_le_set_event_mask_sync(struct hci_dev *hdev) 3254 { 3255 u8 events[8]; 3256 3257 if (!lmp_le_capable(hdev)) 3258 return 0; 3259 3260 memset(events, 0, sizeof(events)); 3261 3262 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) 3263 events[0] |= 0x10; /* LE Long Term Key Request */ 3264 3265 /* If controller supports the Connection Parameters Request 3266 * Link Layer Procedure, enable the corresponding event. 3267 */ 3268 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC) 3269 /* LE Remote Connection Parameter Request */ 3270 events[0] |= 0x20; 3271 3272 /* If the controller supports the Data Length Extension 3273 * feature, enable the corresponding event. 3274 */ 3275 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) 3276 events[0] |= 0x40; /* LE Data Length Change */ 3277 3278 /* If the controller supports LL Privacy feature or LE Extended Adv, 3279 * enable the corresponding event. 3280 */ 3281 if (use_enhanced_conn_complete(hdev)) 3282 events[1] |= 0x02; /* LE Enhanced Connection Complete */ 3283 3284 /* If the controller supports Extended Scanner Filter 3285 * Policies, enable the corresponding event. 3286 */ 3287 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY) 3288 events[1] |= 0x04; /* LE Direct Advertising Report */ 3289 3290 /* If the controller supports Channel Selection Algorithm #2 3291 * feature, enable the corresponding event. 3292 */ 3293 if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2) 3294 events[2] |= 0x08; /* LE Channel Selection Algorithm */ 3295 3296 /* If the controller supports the LE Set Scan Enable command, 3297 * enable the corresponding advertising report event. 3298 */ 3299 if (hdev->commands[26] & 0x08) 3300 events[0] |= 0x02; /* LE Advertising Report */ 3301 3302 /* If the controller supports the LE Create Connection 3303 * command, enable the corresponding event. 3304 */ 3305 if (hdev->commands[26] & 0x10) 3306 events[0] |= 0x01; /* LE Connection Complete */ 3307 3308 /* If the controller supports the LE Connection Update 3309 * command, enable the corresponding event. 3310 */ 3311 if (hdev->commands[27] & 0x04) 3312 events[0] |= 0x04; /* LE Connection Update Complete */ 3313 3314 /* If the controller supports the LE Read Remote Used Features 3315 * command, enable the corresponding event. 3316 */ 3317 if (hdev->commands[27] & 0x20) 3318 /* LE Read Remote Used Features Complete */ 3319 events[0] |= 0x08; 3320 3321 /* If the controller supports the LE Read Local P-256 3322 * Public Key command, enable the corresponding event. 3323 */ 3324 if (hdev->commands[34] & 0x02) 3325 /* LE Read Local P-256 Public Key Complete */ 3326 events[0] |= 0x80; 3327 3328 /* If the controller supports the LE Generate DHKey 3329 * command, enable the corresponding event. 3330 */ 3331 if (hdev->commands[34] & 0x04) 3332 events[1] |= 0x01; /* LE Generate DHKey Complete */ 3333 3334 /* If the controller supports the LE Set Default PHY or 3335 * LE Set PHY commands, enable the corresponding event. 3336 */ 3337 if (hdev->commands[35] & (0x20 | 0x40)) 3338 events[1] |= 0x08; /* LE PHY Update Complete */ 3339 3340 /* If the controller supports LE Set Extended Scan Parameters 3341 * and LE Set Extended Scan Enable commands, enable the 3342 * corresponding event. 3343 */ 3344 if (use_ext_scan(hdev)) 3345 events[1] |= 0x10; /* LE Extended Advertising Report */ 3346 3347 /* If the controller supports the LE Extended Advertising 3348 * command, enable the corresponding event. 3349 */ 3350 if (ext_adv_capable(hdev)) 3351 events[2] |= 0x02; /* LE Advertising Set Terminated */ 3352 3353 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EVENT_MASK, 3354 sizeof(events), events, HCI_CMD_TIMEOUT); 3355 } 3356 3357 /* Read LE Advertising Channel TX Power */ 3358 static int hci_le_read_adv_tx_power_sync(struct hci_dev *hdev) 3359 { 3360 if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) { 3361 /* HCI TS spec forbids mixing of legacy and extended 3362 * advertising commands wherein READ_ADV_TX_POWER is 3363 * also included. So do not call it if extended adv 3364 * is supported otherwise controller will return 3365 * COMMAND_DISALLOWED for extended commands. 3366 */ 3367 return __hci_cmd_sync_status(hdev, 3368 HCI_OP_LE_READ_ADV_TX_POWER, 3369 0, NULL, HCI_CMD_TIMEOUT); 3370 } 3371 3372 return 0; 3373 } 3374 3375 /* Read LE Min/Max Tx Power*/ 3376 static int hci_le_read_tx_power_sync(struct hci_dev *hdev) 3377 { 3378 if (!(hdev->commands[38] & 0x80) || 3379 test_bit(HCI_QUIRK_BROKEN_READ_TRANSMIT_POWER, &hdev->quirks)) 3380 return 0; 3381 3382 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_TRANSMIT_POWER, 3383 0, NULL, HCI_CMD_TIMEOUT); 3384 } 3385 3386 /* Read LE Accept List Size */ 3387 static int hci_le_read_accept_list_size_sync(struct hci_dev *hdev) 3388 { 3389 if (!(hdev->commands[26] & 0x40)) 3390 return 0; 3391 3392 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_ACCEPT_LIST_SIZE, 3393 0, NULL, HCI_CMD_TIMEOUT); 3394 } 3395 3396 /* Clear LE Accept List */ 3397 static int hci_le_clear_accept_list_sync(struct hci_dev *hdev) 3398 { 3399 if (!(hdev->commands[26] & 0x80)) 3400 return 0; 3401 3402 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL, 3403 HCI_CMD_TIMEOUT); 3404 } 3405 3406 /* Read LE Resolving List Size */ 3407 static int hci_le_read_resolv_list_size_sync(struct hci_dev *hdev) 3408 { 3409 if (!(hdev->commands[34] & 0x40)) 3410 return 0; 3411 3412 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_RESOLV_LIST_SIZE, 3413 0, NULL, HCI_CMD_TIMEOUT); 3414 } 3415 3416 /* Clear LE Resolving List */ 3417 static int hci_le_clear_resolv_list_sync(struct hci_dev *hdev) 3418 { 3419 if (!(hdev->commands[34] & 0x20)) 3420 return 0; 3421 3422 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL, 3423 HCI_CMD_TIMEOUT); 3424 } 3425 3426 /* Set RPA timeout */ 3427 static int hci_le_set_rpa_timeout_sync(struct hci_dev *hdev) 3428 { 3429 __le16 timeout = cpu_to_le16(hdev->rpa_timeout); 3430 3431 if (!(hdev->commands[35] & 0x04)) 3432 return 0; 3433 3434 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RPA_TIMEOUT, 3435 sizeof(timeout), &timeout, 3436 HCI_CMD_TIMEOUT); 3437 } 3438 3439 /* Read LE Maximum Data Length */ 3440 static int hci_le_read_max_data_len_sync(struct hci_dev *hdev) 3441 { 3442 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 3443 return 0; 3444 3445 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL, 3446 HCI_CMD_TIMEOUT); 3447 } 3448 3449 /* Read LE Suggested Default Data Length */ 3450 static int hci_le_read_def_data_len_sync(struct hci_dev *hdev) 3451 { 3452 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 3453 return 0; 3454 3455 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL, 3456 HCI_CMD_TIMEOUT); 3457 } 3458 3459 /* Read LE Number of Supported Advertising Sets */ 3460 static int hci_le_read_num_support_adv_sets_sync(struct hci_dev *hdev) 3461 { 3462 if (!ext_adv_capable(hdev)) 3463 return 0; 3464 3465 return __hci_cmd_sync_status(hdev, 3466 HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS, 3467 0, NULL, HCI_CMD_TIMEOUT); 3468 } 3469 3470 /* Write LE Host Supported */ 3471 static int hci_set_le_support_sync(struct hci_dev *hdev) 3472 { 3473 struct hci_cp_write_le_host_supported cp; 3474 3475 /* LE-only devices do not support explicit enablement */ 3476 if (!lmp_bredr_capable(hdev)) 3477 return 0; 3478 3479 memset(&cp, 0, sizeof(cp)); 3480 3481 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 3482 cp.le = 0x01; 3483 cp.simul = 0x00; 3484 } 3485 3486 if (cp.le == lmp_host_le_capable(hdev)) 3487 return 0; 3488 3489 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED, 3490 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3491 } 3492 3493 /* LE Controller init stage 3 command sequence */ 3494 static const struct hci_init_stage le_init3[] = { 3495 /* HCI_OP_LE_SET_EVENT_MASK */ 3496 HCI_INIT(hci_le_set_event_mask_sync), 3497 /* HCI_OP_LE_READ_ADV_TX_POWER */ 3498 HCI_INIT(hci_le_read_adv_tx_power_sync), 3499 /* HCI_OP_LE_READ_TRANSMIT_POWER */ 3500 HCI_INIT(hci_le_read_tx_power_sync), 3501 /* HCI_OP_LE_READ_ACCEPT_LIST_SIZE */ 3502 HCI_INIT(hci_le_read_accept_list_size_sync), 3503 /* HCI_OP_LE_CLEAR_ACCEPT_LIST */ 3504 HCI_INIT(hci_le_clear_accept_list_sync), 3505 /* HCI_OP_LE_READ_RESOLV_LIST_SIZE */ 3506 HCI_INIT(hci_le_read_resolv_list_size_sync), 3507 /* HCI_OP_LE_CLEAR_RESOLV_LIST */ 3508 HCI_INIT(hci_le_clear_resolv_list_sync), 3509 /* HCI_OP_LE_SET_RPA_TIMEOUT */ 3510 HCI_INIT(hci_le_set_rpa_timeout_sync), 3511 /* HCI_OP_LE_READ_MAX_DATA_LEN */ 3512 HCI_INIT(hci_le_read_max_data_len_sync), 3513 /* HCI_OP_LE_READ_DEF_DATA_LEN */ 3514 HCI_INIT(hci_le_read_def_data_len_sync), 3515 /* HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS */ 3516 HCI_INIT(hci_le_read_num_support_adv_sets_sync), 3517 /* HCI_OP_WRITE_LE_HOST_SUPPORTED */ 3518 HCI_INIT(hci_set_le_support_sync), 3519 {} 3520 }; 3521 3522 static int hci_init3_sync(struct hci_dev *hdev) 3523 { 3524 int err; 3525 3526 bt_dev_dbg(hdev, ""); 3527 3528 err = hci_init_stage_sync(hdev, hci_init3); 3529 if (err) 3530 return err; 3531 3532 if (lmp_le_capable(hdev)) 3533 return hci_init_stage_sync(hdev, le_init3); 3534 3535 return 0; 3536 } 3537 3538 static int hci_delete_stored_link_key_sync(struct hci_dev *hdev) 3539 { 3540 struct hci_cp_delete_stored_link_key cp; 3541 3542 /* Some Broadcom based Bluetooth controllers do not support the 3543 * Delete Stored Link Key command. They are clearly indicating its 3544 * absence in the bit mask of supported commands. 3545 * 3546 * Check the supported commands and only if the command is marked 3547 * as supported send it. If not supported assume that the controller 3548 * does not have actual support for stored link keys which makes this 3549 * command redundant anyway. 3550 * 3551 * Some controllers indicate that they support handling deleting 3552 * stored link keys, but they don't. The quirk lets a driver 3553 * just disable this command. 3554 */ 3555 if (!(hdev->commands[6] & 0x80) || 3556 test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) 3557 return 0; 3558 3559 memset(&cp, 0, sizeof(cp)); 3560 bacpy(&cp.bdaddr, BDADDR_ANY); 3561 cp.delete_all = 0x01; 3562 3563 return __hci_cmd_sync_status(hdev, HCI_OP_DELETE_STORED_LINK_KEY, 3564 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3565 } 3566 3567 static int hci_set_event_mask_page_2_sync(struct hci_dev *hdev) 3568 { 3569 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 3570 bool changed = false; 3571 3572 /* Set event mask page 2 if the HCI command for it is supported */ 3573 if (!(hdev->commands[22] & 0x04)) 3574 return 0; 3575 3576 /* If Connectionless Peripheral Broadcast central role is supported 3577 * enable all necessary events for it. 3578 */ 3579 if (lmp_cpb_central_capable(hdev)) { 3580 events[1] |= 0x40; /* Triggered Clock Capture */ 3581 events[1] |= 0x80; /* Synchronization Train Complete */ 3582 events[2] |= 0x10; /* Peripheral Page Response Timeout */ 3583 events[2] |= 0x20; /* CPB Channel Map Change */ 3584 changed = true; 3585 } 3586 3587 /* If Connectionless Peripheral Broadcast peripheral role is supported 3588 * enable all necessary events for it. 3589 */ 3590 if (lmp_cpb_peripheral_capable(hdev)) { 3591 events[2] |= 0x01; /* Synchronization Train Received */ 3592 events[2] |= 0x02; /* CPB Receive */ 3593 events[2] |= 0x04; /* CPB Timeout */ 3594 events[2] |= 0x08; /* Truncated Page Complete */ 3595 changed = true; 3596 } 3597 3598 /* Enable Authenticated Payload Timeout Expired event if supported */ 3599 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) { 3600 events[2] |= 0x80; 3601 changed = true; 3602 } 3603 3604 /* Some Broadcom based controllers indicate support for Set Event 3605 * Mask Page 2 command, but then actually do not support it. Since 3606 * the default value is all bits set to zero, the command is only 3607 * required if the event mask has to be changed. In case no change 3608 * to the event mask is needed, skip this command. 3609 */ 3610 if (!changed) 3611 return 0; 3612 3613 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK_PAGE_2, 3614 sizeof(events), events, HCI_CMD_TIMEOUT); 3615 } 3616 3617 /* Read local codec list if the HCI command is supported */ 3618 static int hci_read_local_codecs_sync(struct hci_dev *hdev) 3619 { 3620 if (!(hdev->commands[29] & 0x20)) 3621 return 0; 3622 3623 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_CODECS, 0, NULL, 3624 HCI_CMD_TIMEOUT); 3625 } 3626 3627 /* Read local pairing options if the HCI command is supported */ 3628 static int hci_read_local_pairing_opts_sync(struct hci_dev *hdev) 3629 { 3630 if (!(hdev->commands[41] & 0x08)) 3631 return 0; 3632 3633 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_PAIRING_OPTS, 3634 0, NULL, HCI_CMD_TIMEOUT); 3635 } 3636 3637 /* Get MWS transport configuration if the HCI command is supported */ 3638 static int hci_get_mws_transport_config_sync(struct hci_dev *hdev) 3639 { 3640 if (!(hdev->commands[30] & 0x08)) 3641 return 0; 3642 3643 return __hci_cmd_sync_status(hdev, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 3644 0, NULL, HCI_CMD_TIMEOUT); 3645 } 3646 3647 /* Check for Synchronization Train support */ 3648 static int hci_read_sync_train_params_sync(struct hci_dev *hdev) 3649 { 3650 if (!lmp_sync_train_capable(hdev)) 3651 return 0; 3652 3653 return __hci_cmd_sync_status(hdev, HCI_OP_READ_SYNC_TRAIN_PARAMS, 3654 0, NULL, HCI_CMD_TIMEOUT); 3655 } 3656 3657 /* Enable Secure Connections if supported and configured */ 3658 static int hci_write_sc_support_1_sync(struct hci_dev *hdev) 3659 { 3660 u8 support = 0x01; 3661 3662 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) || 3663 !bredr_sc_enabled(hdev)) 3664 return 0; 3665 3666 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT, 3667 sizeof(support), &support, 3668 HCI_CMD_TIMEOUT); 3669 } 3670 3671 /* Set erroneous data reporting if supported to the wideband speech 3672 * setting value 3673 */ 3674 static int hci_set_err_data_report_sync(struct hci_dev *hdev) 3675 { 3676 struct hci_cp_write_def_err_data_reporting cp; 3677 bool enabled = hci_dev_test_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED); 3678 3679 if (!(hdev->commands[18] & 0x08) || 3680 test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) 3681 return 0; 3682 3683 if (enabled == hdev->err_data_reporting) 3684 return 0; 3685 3686 memset(&cp, 0, sizeof(cp)); 3687 cp.err_data_reporting = enabled ? ERR_DATA_REPORTING_ENABLED : 3688 ERR_DATA_REPORTING_DISABLED; 3689 3690 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING, 3691 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3692 } 3693 3694 static const struct hci_init_stage hci_init4[] = { 3695 /* HCI_OP_DELETE_STORED_LINK_KEY */ 3696 HCI_INIT(hci_delete_stored_link_key_sync), 3697 /* HCI_OP_SET_EVENT_MASK_PAGE_2 */ 3698 HCI_INIT(hci_set_event_mask_page_2_sync), 3699 /* HCI_OP_READ_LOCAL_CODECS */ 3700 HCI_INIT(hci_read_local_codecs_sync), 3701 /* HCI_OP_READ_LOCAL_PAIRING_OPTS */ 3702 HCI_INIT(hci_read_local_pairing_opts_sync), 3703 /* HCI_OP_GET_MWS_TRANSPORT_CONFIG */ 3704 HCI_INIT(hci_get_mws_transport_config_sync), 3705 /* HCI_OP_READ_SYNC_TRAIN_PARAMS */ 3706 HCI_INIT(hci_read_sync_train_params_sync), 3707 /* HCI_OP_WRITE_SC_SUPPORT */ 3708 HCI_INIT(hci_write_sc_support_1_sync), 3709 /* HCI_OP_WRITE_DEF_ERR_DATA_REPORTING */ 3710 HCI_INIT(hci_set_err_data_report_sync), 3711 {} 3712 }; 3713 3714 /* Set Suggested Default Data Length to maximum if supported */ 3715 static int hci_le_set_write_def_data_len_sync(struct hci_dev *hdev) 3716 { 3717 struct hci_cp_le_write_def_data_len cp; 3718 3719 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 3720 return 0; 3721 3722 memset(&cp, 0, sizeof(cp)); 3723 cp.tx_len = cpu_to_le16(hdev->le_max_tx_len); 3724 cp.tx_time = cpu_to_le16(hdev->le_max_tx_time); 3725 3726 return __hci_cmd_sync_status(hdev, HCI_OP_LE_WRITE_DEF_DATA_LEN, 3727 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3728 } 3729 3730 /* Set Default PHY parameters if command is supported */ 3731 static int hci_le_set_default_phy_sync(struct hci_dev *hdev) 3732 { 3733 struct hci_cp_le_set_default_phy cp; 3734 3735 if (!(hdev->commands[35] & 0x20)) 3736 return 0; 3737 3738 memset(&cp, 0, sizeof(cp)); 3739 cp.all_phys = 0x00; 3740 cp.tx_phys = hdev->le_tx_def_phys; 3741 cp.rx_phys = hdev->le_rx_def_phys; 3742 3743 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_DEFAULT_PHY, 3744 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3745 } 3746 3747 static const struct hci_init_stage le_init4[] = { 3748 /* HCI_OP_LE_WRITE_DEF_DATA_LEN */ 3749 HCI_INIT(hci_le_set_write_def_data_len_sync), 3750 /* HCI_OP_LE_SET_DEFAULT_PHY */ 3751 HCI_INIT(hci_le_set_default_phy_sync), 3752 {} 3753 }; 3754 3755 static int hci_init4_sync(struct hci_dev *hdev) 3756 { 3757 int err; 3758 3759 bt_dev_dbg(hdev, ""); 3760 3761 err = hci_init_stage_sync(hdev, hci_init4); 3762 if (err) 3763 return err; 3764 3765 if (lmp_le_capable(hdev)) 3766 return hci_init_stage_sync(hdev, le_init4); 3767 3768 return 0; 3769 } 3770 3771 static int hci_init_sync(struct hci_dev *hdev) 3772 { 3773 int err; 3774 3775 err = hci_init1_sync(hdev); 3776 if (err < 0) 3777 return err; 3778 3779 if (hci_dev_test_flag(hdev, HCI_SETUP)) 3780 hci_debugfs_create_basic(hdev); 3781 3782 err = hci_init2_sync(hdev); 3783 if (err < 0) 3784 return err; 3785 3786 /* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode 3787 * BR/EDR/LE type controllers. AMP controllers only need the 3788 * first two stages of init. 3789 */ 3790 if (hdev->dev_type != HCI_PRIMARY) 3791 return 0; 3792 3793 err = hci_init3_sync(hdev); 3794 if (err < 0) 3795 return err; 3796 3797 err = hci_init4_sync(hdev); 3798 if (err < 0) 3799 return err; 3800 3801 /* This function is only called when the controller is actually in 3802 * configured state. When the controller is marked as unconfigured, 3803 * this initialization procedure is not run. 3804 * 3805 * It means that it is possible that a controller runs through its 3806 * setup phase and then discovers missing settings. If that is the 3807 * case, then this function will not be called. It then will only 3808 * be called during the config phase. 3809 * 3810 * So only when in setup phase or config phase, create the debugfs 3811 * entries and register the SMP channels. 3812 */ 3813 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 3814 !hci_dev_test_flag(hdev, HCI_CONFIG)) 3815 return 0; 3816 3817 hci_debugfs_create_common(hdev); 3818 3819 if (lmp_bredr_capable(hdev)) 3820 hci_debugfs_create_bredr(hdev); 3821 3822 if (lmp_le_capable(hdev)) 3823 hci_debugfs_create_le(hdev); 3824 3825 return 0; 3826 } 3827 3828 int hci_dev_open_sync(struct hci_dev *hdev) 3829 { 3830 int ret = 0; 3831 3832 bt_dev_dbg(hdev, ""); 3833 3834 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 3835 ret = -ENODEV; 3836 goto done; 3837 } 3838 3839 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 3840 !hci_dev_test_flag(hdev, HCI_CONFIG)) { 3841 /* Check for rfkill but allow the HCI setup stage to 3842 * proceed (which in itself doesn't cause any RF activity). 3843 */ 3844 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) { 3845 ret = -ERFKILL; 3846 goto done; 3847 } 3848 3849 /* Check for valid public address or a configured static 3850 * random address, but let the HCI setup proceed to 3851 * be able to determine if there is a public address 3852 * or not. 3853 * 3854 * In case of user channel usage, it is not important 3855 * if a public address or static random address is 3856 * available. 3857 * 3858 * This check is only valid for BR/EDR controllers 3859 * since AMP controllers do not have an address. 3860 */ 3861 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 3862 hdev->dev_type == HCI_PRIMARY && 3863 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 3864 !bacmp(&hdev->static_addr, BDADDR_ANY)) { 3865 ret = -EADDRNOTAVAIL; 3866 goto done; 3867 } 3868 } 3869 3870 if (test_bit(HCI_UP, &hdev->flags)) { 3871 ret = -EALREADY; 3872 goto done; 3873 } 3874 3875 if (hdev->open(hdev)) { 3876 ret = -EIO; 3877 goto done; 3878 } 3879 3880 set_bit(HCI_RUNNING, &hdev->flags); 3881 hci_sock_dev_event(hdev, HCI_DEV_OPEN); 3882 3883 atomic_set(&hdev->cmd_cnt, 1); 3884 set_bit(HCI_INIT, &hdev->flags); 3885 3886 if (hci_dev_test_flag(hdev, HCI_SETUP) || 3887 test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) { 3888 bool invalid_bdaddr; 3889 3890 hci_sock_dev_event(hdev, HCI_DEV_SETUP); 3891 3892 if (hdev->setup) 3893 ret = hdev->setup(hdev); 3894 3895 /* The transport driver can set the quirk to mark the 3896 * BD_ADDR invalid before creating the HCI device or in 3897 * its setup callback. 3898 */ 3899 invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR, 3900 &hdev->quirks); 3901 3902 if (ret) 3903 goto setup_failed; 3904 3905 if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) { 3906 if (!bacmp(&hdev->public_addr, BDADDR_ANY)) 3907 hci_dev_get_bd_addr_from_property(hdev); 3908 3909 if (bacmp(&hdev->public_addr, BDADDR_ANY) && 3910 hdev->set_bdaddr) { 3911 ret = hdev->set_bdaddr(hdev, 3912 &hdev->public_addr); 3913 3914 /* If setting of the BD_ADDR from the device 3915 * property succeeds, then treat the address 3916 * as valid even if the invalid BD_ADDR 3917 * quirk indicates otherwise. 3918 */ 3919 if (!ret) 3920 invalid_bdaddr = false; 3921 } 3922 } 3923 3924 setup_failed: 3925 /* The transport driver can set these quirks before 3926 * creating the HCI device or in its setup callback. 3927 * 3928 * For the invalid BD_ADDR quirk it is possible that 3929 * it becomes a valid address if the bootloader does 3930 * provide it (see above). 3931 * 3932 * In case any of them is set, the controller has to 3933 * start up as unconfigured. 3934 */ 3935 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) || 3936 invalid_bdaddr) 3937 hci_dev_set_flag(hdev, HCI_UNCONFIGURED); 3938 3939 /* For an unconfigured controller it is required to 3940 * read at least the version information provided by 3941 * the Read Local Version Information command. 3942 * 3943 * If the set_bdaddr driver callback is provided, then 3944 * also the original Bluetooth public device address 3945 * will be read using the Read BD Address command. 3946 */ 3947 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 3948 ret = hci_unconf_init_sync(hdev); 3949 } 3950 3951 if (hci_dev_test_flag(hdev, HCI_CONFIG)) { 3952 /* If public address change is configured, ensure that 3953 * the address gets programmed. If the driver does not 3954 * support changing the public address, fail the power 3955 * on procedure. 3956 */ 3957 if (bacmp(&hdev->public_addr, BDADDR_ANY) && 3958 hdev->set_bdaddr) 3959 ret = hdev->set_bdaddr(hdev, &hdev->public_addr); 3960 else 3961 ret = -EADDRNOTAVAIL; 3962 } 3963 3964 if (!ret) { 3965 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 3966 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 3967 ret = hci_init_sync(hdev); 3968 if (!ret && hdev->post_init) 3969 ret = hdev->post_init(hdev); 3970 } 3971 } 3972 3973 /* If the HCI Reset command is clearing all diagnostic settings, 3974 * then they need to be reprogrammed after the init procedure 3975 * completed. 3976 */ 3977 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) && 3978 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 3979 hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag) 3980 ret = hdev->set_diag(hdev, true); 3981 3982 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 3983 msft_do_open(hdev); 3984 aosp_do_open(hdev); 3985 } 3986 3987 clear_bit(HCI_INIT, &hdev->flags); 3988 3989 if (!ret) { 3990 hci_dev_hold(hdev); 3991 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 3992 hci_adv_instances_set_rpa_expired(hdev, true); 3993 set_bit(HCI_UP, &hdev->flags); 3994 hci_sock_dev_event(hdev, HCI_DEV_UP); 3995 hci_leds_update_powered(hdev, true); 3996 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 3997 !hci_dev_test_flag(hdev, HCI_CONFIG) && 3998 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 3999 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4000 hci_dev_test_flag(hdev, HCI_MGMT) && 4001 hdev->dev_type == HCI_PRIMARY) { 4002 ret = hci_powered_update_sync(hdev); 4003 } 4004 } else { 4005 /* Init failed, cleanup */ 4006 flush_work(&hdev->tx_work); 4007 4008 /* Since hci_rx_work() is possible to awake new cmd_work 4009 * it should be flushed first to avoid unexpected call of 4010 * hci_cmd_work() 4011 */ 4012 flush_work(&hdev->rx_work); 4013 flush_work(&hdev->cmd_work); 4014 4015 skb_queue_purge(&hdev->cmd_q); 4016 skb_queue_purge(&hdev->rx_q); 4017 4018 if (hdev->flush) 4019 hdev->flush(hdev); 4020 4021 if (hdev->sent_cmd) { 4022 kfree_skb(hdev->sent_cmd); 4023 hdev->sent_cmd = NULL; 4024 } 4025 4026 clear_bit(HCI_RUNNING, &hdev->flags); 4027 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 4028 4029 hdev->close(hdev); 4030 hdev->flags &= BIT(HCI_RAW); 4031 } 4032 4033 done: 4034 return ret; 4035 } 4036 4037 /* This function requires the caller holds hdev->lock */ 4038 static void hci_pend_le_actions_clear(struct hci_dev *hdev) 4039 { 4040 struct hci_conn_params *p; 4041 4042 list_for_each_entry(p, &hdev->le_conn_params, list) { 4043 if (p->conn) { 4044 hci_conn_drop(p->conn); 4045 hci_conn_put(p->conn); 4046 p->conn = NULL; 4047 } 4048 list_del_init(&p->action); 4049 } 4050 4051 BT_DBG("All LE pending actions cleared"); 4052 } 4053 4054 int hci_dev_close_sync(struct hci_dev *hdev) 4055 { 4056 bool auto_off; 4057 int err = 0; 4058 4059 bt_dev_dbg(hdev, ""); 4060 4061 cancel_delayed_work(&hdev->power_off); 4062 cancel_delayed_work(&hdev->ncmd_timer); 4063 4064 hci_request_cancel_all(hdev); 4065 4066 if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) && 4067 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4068 test_bit(HCI_UP, &hdev->flags)) { 4069 /* Execute vendor specific shutdown routine */ 4070 if (hdev->shutdown) 4071 err = hdev->shutdown(hdev); 4072 } 4073 4074 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) { 4075 cancel_delayed_work_sync(&hdev->cmd_timer); 4076 return err; 4077 } 4078 4079 hci_leds_update_powered(hdev, false); 4080 4081 /* Flush RX and TX works */ 4082 flush_work(&hdev->tx_work); 4083 flush_work(&hdev->rx_work); 4084 4085 if (hdev->discov_timeout > 0) { 4086 hdev->discov_timeout = 0; 4087 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 4088 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 4089 } 4090 4091 if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE)) 4092 cancel_delayed_work(&hdev->service_cache); 4093 4094 if (hci_dev_test_flag(hdev, HCI_MGMT)) { 4095 struct adv_info *adv_instance; 4096 4097 cancel_delayed_work_sync(&hdev->rpa_expired); 4098 4099 list_for_each_entry(adv_instance, &hdev->adv_instances, list) 4100 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb); 4101 } 4102 4103 /* Avoid potential lockdep warnings from the *_flush() calls by 4104 * ensuring the workqueue is empty up front. 4105 */ 4106 drain_workqueue(hdev->workqueue); 4107 4108 hci_dev_lock(hdev); 4109 4110 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 4111 4112 auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF); 4113 4114 if (!auto_off && hdev->dev_type == HCI_PRIMARY && 4115 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4116 hci_dev_test_flag(hdev, HCI_MGMT)) 4117 __mgmt_power_off(hdev); 4118 4119 hci_inquiry_cache_flush(hdev); 4120 hci_pend_le_actions_clear(hdev); 4121 hci_conn_hash_flush(hdev); 4122 /* Prevent data races on hdev->smp_data or hdev->smp_bredr_data */ 4123 smp_unregister(hdev); 4124 hci_dev_unlock(hdev); 4125 4126 hci_sock_dev_event(hdev, HCI_DEV_DOWN); 4127 4128 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4129 aosp_do_close(hdev); 4130 msft_do_close(hdev); 4131 } 4132 4133 if (hdev->flush) 4134 hdev->flush(hdev); 4135 4136 /* Reset device */ 4137 skb_queue_purge(&hdev->cmd_q); 4138 atomic_set(&hdev->cmd_cnt, 1); 4139 if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) && 4140 !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 4141 set_bit(HCI_INIT, &hdev->flags); 4142 hci_reset_sync(hdev); 4143 clear_bit(HCI_INIT, &hdev->flags); 4144 } 4145 4146 /* flush cmd work */ 4147 flush_work(&hdev->cmd_work); 4148 4149 /* Drop queues */ 4150 skb_queue_purge(&hdev->rx_q); 4151 skb_queue_purge(&hdev->cmd_q); 4152 skb_queue_purge(&hdev->raw_q); 4153 4154 /* Drop last sent command */ 4155 if (hdev->sent_cmd) { 4156 cancel_delayed_work_sync(&hdev->cmd_timer); 4157 kfree_skb(hdev->sent_cmd); 4158 hdev->sent_cmd = NULL; 4159 } 4160 4161 clear_bit(HCI_RUNNING, &hdev->flags); 4162 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 4163 4164 /* After this point our queues are empty and no tasks are scheduled. */ 4165 hdev->close(hdev); 4166 4167 /* Clear flags */ 4168 hdev->flags &= BIT(HCI_RAW); 4169 hci_dev_clear_volatile_flags(hdev); 4170 4171 /* Controller radio is available but is currently powered down */ 4172 hdev->amp_status = AMP_STATUS_POWERED_DOWN; 4173 4174 memset(hdev->eir, 0, sizeof(hdev->eir)); 4175 memset(hdev->dev_class, 0, sizeof(hdev->dev_class)); 4176 bacpy(&hdev->random_addr, BDADDR_ANY); 4177 4178 hci_dev_put(hdev); 4179 return err; 4180 } 4181 4182 /* This function perform power on HCI command sequence as follows: 4183 * 4184 * If controller is already up (HCI_UP) performs hci_powered_update_sync 4185 * sequence otherwise run hci_dev_open_sync which will follow with 4186 * hci_powered_update_sync after the init sequence is completed. 4187 */ 4188 static int hci_power_on_sync(struct hci_dev *hdev) 4189 { 4190 int err; 4191 4192 if (test_bit(HCI_UP, &hdev->flags) && 4193 hci_dev_test_flag(hdev, HCI_MGMT) && 4194 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) { 4195 cancel_delayed_work(&hdev->power_off); 4196 return hci_powered_update_sync(hdev); 4197 } 4198 4199 err = hci_dev_open_sync(hdev); 4200 if (err < 0) 4201 return err; 4202 4203 /* During the HCI setup phase, a few error conditions are 4204 * ignored and they need to be checked now. If they are still 4205 * valid, it is important to return the device back off. 4206 */ 4207 if (hci_dev_test_flag(hdev, HCI_RFKILLED) || 4208 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) || 4209 (hdev->dev_type == HCI_PRIMARY && 4210 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 4211 !bacmp(&hdev->static_addr, BDADDR_ANY))) { 4212 hci_dev_clear_flag(hdev, HCI_AUTO_OFF); 4213 hci_dev_close_sync(hdev); 4214 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) { 4215 queue_delayed_work(hdev->req_workqueue, &hdev->power_off, 4216 HCI_AUTO_OFF_TIMEOUT); 4217 } 4218 4219 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) { 4220 /* For unconfigured devices, set the HCI_RAW flag 4221 * so that userspace can easily identify them. 4222 */ 4223 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 4224 set_bit(HCI_RAW, &hdev->flags); 4225 4226 /* For fully configured devices, this will send 4227 * the Index Added event. For unconfigured devices, 4228 * it will send Unconfigued Index Added event. 4229 * 4230 * Devices with HCI_QUIRK_RAW_DEVICE are ignored 4231 * and no event will be send. 4232 */ 4233 mgmt_index_added(hdev); 4234 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) { 4235 /* When the controller is now configured, then it 4236 * is important to clear the HCI_RAW flag. 4237 */ 4238 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 4239 clear_bit(HCI_RAW, &hdev->flags); 4240 4241 /* Powering on the controller with HCI_CONFIG set only 4242 * happens with the transition from unconfigured to 4243 * configured. This will send the Index Added event. 4244 */ 4245 mgmt_index_added(hdev); 4246 } 4247 4248 return 0; 4249 } 4250 4251 static int hci_remote_name_cancel_sync(struct hci_dev *hdev, bdaddr_t *addr) 4252 { 4253 struct hci_cp_remote_name_req_cancel cp; 4254 4255 memset(&cp, 0, sizeof(cp)); 4256 bacpy(&cp.bdaddr, addr); 4257 4258 return __hci_cmd_sync_status(hdev, HCI_OP_REMOTE_NAME_REQ_CANCEL, 4259 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4260 } 4261 4262 int hci_stop_discovery_sync(struct hci_dev *hdev) 4263 { 4264 struct discovery_state *d = &hdev->discovery; 4265 struct inquiry_entry *e; 4266 int err; 4267 4268 bt_dev_dbg(hdev, "state %u", hdev->discovery.state); 4269 4270 if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) { 4271 if (test_bit(HCI_INQUIRY, &hdev->flags)) { 4272 err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL, 4273 0, NULL, HCI_CMD_TIMEOUT); 4274 if (err) 4275 return err; 4276 } 4277 4278 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 4279 cancel_delayed_work(&hdev->le_scan_disable); 4280 cancel_delayed_work(&hdev->le_scan_restart); 4281 4282 err = hci_scan_disable_sync(hdev); 4283 if (err) 4284 return err; 4285 } 4286 4287 } else { 4288 err = hci_scan_disable_sync(hdev); 4289 if (err) 4290 return err; 4291 } 4292 4293 /* Resume advertising if it was paused */ 4294 if (use_ll_privacy(hdev)) 4295 hci_resume_advertising_sync(hdev); 4296 4297 /* No further actions needed for LE-only discovery */ 4298 if (d->type == DISCOV_TYPE_LE) 4299 return 0; 4300 4301 if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) { 4302 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY, 4303 NAME_PENDING); 4304 if (!e) 4305 return 0; 4306 4307 return hci_remote_name_cancel_sync(hdev, &e->data.bdaddr); 4308 } 4309 4310 return 0; 4311 } 4312 4313 static int hci_disconnect_phy_link_sync(struct hci_dev *hdev, u16 handle, 4314 u8 reason) 4315 { 4316 struct hci_cp_disconn_phy_link cp; 4317 4318 memset(&cp, 0, sizeof(cp)); 4319 cp.phy_handle = HCI_PHY_HANDLE(handle); 4320 cp.reason = reason; 4321 4322 return __hci_cmd_sync_status(hdev, HCI_OP_DISCONN_PHY_LINK, 4323 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4324 } 4325 4326 static int hci_disconnect_sync(struct hci_dev *hdev, struct hci_conn *conn, 4327 u8 reason) 4328 { 4329 struct hci_cp_disconnect cp; 4330 4331 if (conn->type == AMP_LINK) 4332 return hci_disconnect_phy_link_sync(hdev, conn->handle, reason); 4333 4334 memset(&cp, 0, sizeof(cp)); 4335 cp.handle = cpu_to_le16(conn->handle); 4336 cp.reason = reason; 4337 4338 /* Wait for HCI_EV_DISCONN_COMPLETE not HCI_EV_CMD_STATUS when not 4339 * suspending. 4340 */ 4341 if (!hdev->suspended) 4342 return __hci_cmd_sync_status_sk(hdev, HCI_OP_DISCONNECT, 4343 sizeof(cp), &cp, 4344 HCI_EV_DISCONN_COMPLETE, 4345 HCI_CMD_TIMEOUT, NULL); 4346 4347 return __hci_cmd_sync_status(hdev, HCI_OP_DISCONNECT, sizeof(cp), &cp, 4348 HCI_CMD_TIMEOUT); 4349 } 4350 4351 static int hci_le_connect_cancel_sync(struct hci_dev *hdev, 4352 struct hci_conn *conn) 4353 { 4354 if (test_bit(HCI_CONN_SCANNING, &conn->flags)) 4355 return 0; 4356 4357 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CREATE_CONN_CANCEL, 4358 6, &conn->dst, HCI_CMD_TIMEOUT); 4359 } 4360 4361 static int hci_connect_cancel_sync(struct hci_dev *hdev, struct hci_conn *conn) 4362 { 4363 if (conn->type == LE_LINK) 4364 return hci_le_connect_cancel_sync(hdev, conn); 4365 4366 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 4367 return 0; 4368 4369 return __hci_cmd_sync_status(hdev, HCI_OP_CREATE_CONN_CANCEL, 4370 6, &conn->dst, HCI_CMD_TIMEOUT); 4371 } 4372 4373 static int hci_reject_sco_sync(struct hci_dev *hdev, struct hci_conn *conn, 4374 u8 reason) 4375 { 4376 struct hci_cp_reject_sync_conn_req cp; 4377 4378 memset(&cp, 0, sizeof(cp)); 4379 bacpy(&cp.bdaddr, &conn->dst); 4380 cp.reason = reason; 4381 4382 /* SCO rejection has its own limited set of 4383 * allowed error values (0x0D-0x0F). 4384 */ 4385 if (reason < 0x0d || reason > 0x0f) 4386 cp.reason = HCI_ERROR_REJ_LIMITED_RESOURCES; 4387 4388 return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_SYNC_CONN_REQ, 4389 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4390 } 4391 4392 static int hci_reject_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, 4393 u8 reason) 4394 { 4395 struct hci_cp_reject_conn_req cp; 4396 4397 if (conn->type == SCO_LINK || conn->type == ESCO_LINK) 4398 return hci_reject_sco_sync(hdev, conn, reason); 4399 4400 memset(&cp, 0, sizeof(cp)); 4401 bacpy(&cp.bdaddr, &conn->dst); 4402 cp.reason = reason; 4403 4404 return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_CONN_REQ, 4405 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4406 } 4407 4408 static int hci_abort_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, 4409 u8 reason) 4410 { 4411 switch (conn->state) { 4412 case BT_CONNECTED: 4413 case BT_CONFIG: 4414 return hci_disconnect_sync(hdev, conn, reason); 4415 case BT_CONNECT: 4416 return hci_connect_cancel_sync(hdev, conn); 4417 case BT_CONNECT2: 4418 return hci_reject_conn_sync(hdev, conn, reason); 4419 default: 4420 conn->state = BT_CLOSED; 4421 break; 4422 } 4423 4424 return 0; 4425 } 4426 4427 static int hci_disconnect_all_sync(struct hci_dev *hdev, u8 reason) 4428 { 4429 struct hci_conn *conn, *tmp; 4430 int err; 4431 4432 list_for_each_entry_safe(conn, tmp, &hdev->conn_hash.list, list) { 4433 err = hci_abort_conn_sync(hdev, conn, reason); 4434 if (err) 4435 return err; 4436 } 4437 4438 return 0; 4439 } 4440 4441 /* This function perform power off HCI command sequence as follows: 4442 * 4443 * Clear Advertising 4444 * Stop Discovery 4445 * Disconnect all connections 4446 * hci_dev_close_sync 4447 */ 4448 static int hci_power_off_sync(struct hci_dev *hdev) 4449 { 4450 int err; 4451 4452 /* If controller is already down there is nothing to do */ 4453 if (!test_bit(HCI_UP, &hdev->flags)) 4454 return 0; 4455 4456 if (test_bit(HCI_ISCAN, &hdev->flags) || 4457 test_bit(HCI_PSCAN, &hdev->flags)) { 4458 err = hci_write_scan_enable_sync(hdev, 0x00); 4459 if (err) 4460 return err; 4461 } 4462 4463 err = hci_clear_adv_sync(hdev, NULL, false); 4464 if (err) 4465 return err; 4466 4467 err = hci_stop_discovery_sync(hdev); 4468 if (err) 4469 return err; 4470 4471 /* Terminated due to Power Off */ 4472 err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF); 4473 if (err) 4474 return err; 4475 4476 return hci_dev_close_sync(hdev); 4477 } 4478 4479 int hci_set_powered_sync(struct hci_dev *hdev, u8 val) 4480 { 4481 if (val) 4482 return hci_power_on_sync(hdev); 4483 4484 return hci_power_off_sync(hdev); 4485 } 4486 4487 static int hci_write_iac_sync(struct hci_dev *hdev) 4488 { 4489 struct hci_cp_write_current_iac_lap cp; 4490 4491 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 4492 return 0; 4493 4494 memset(&cp, 0, sizeof(cp)); 4495 4496 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { 4497 /* Limited discoverable mode */ 4498 cp.num_iac = min_t(u8, hdev->num_iac, 2); 4499 cp.iac_lap[0] = 0x00; /* LIAC */ 4500 cp.iac_lap[1] = 0x8b; 4501 cp.iac_lap[2] = 0x9e; 4502 cp.iac_lap[3] = 0x33; /* GIAC */ 4503 cp.iac_lap[4] = 0x8b; 4504 cp.iac_lap[5] = 0x9e; 4505 } else { 4506 /* General discoverable mode */ 4507 cp.num_iac = 1; 4508 cp.iac_lap[0] = 0x33; /* GIAC */ 4509 cp.iac_lap[1] = 0x8b; 4510 cp.iac_lap[2] = 0x9e; 4511 } 4512 4513 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CURRENT_IAC_LAP, 4514 (cp.num_iac * 3) + 1, &cp, 4515 HCI_CMD_TIMEOUT); 4516 } 4517 4518 int hci_update_discoverable_sync(struct hci_dev *hdev) 4519 { 4520 int err = 0; 4521 4522 if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 4523 err = hci_write_iac_sync(hdev); 4524 if (err) 4525 return err; 4526 4527 err = hci_update_scan_sync(hdev); 4528 if (err) 4529 return err; 4530 4531 err = hci_update_class_sync(hdev); 4532 if (err) 4533 return err; 4534 } 4535 4536 /* Advertising instances don't use the global discoverable setting, so 4537 * only update AD if advertising was enabled using Set Advertising. 4538 */ 4539 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) { 4540 err = hci_update_adv_data_sync(hdev, 0x00); 4541 if (err) 4542 return err; 4543 4544 /* Discoverable mode affects the local advertising 4545 * address in limited privacy mode. 4546 */ 4547 if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) { 4548 if (ext_adv_capable(hdev)) 4549 err = hci_start_ext_adv_sync(hdev, 0x00); 4550 else 4551 err = hci_enable_advertising_sync(hdev); 4552 } 4553 } 4554 4555 return err; 4556 } 4557 4558 static int update_discoverable_sync(struct hci_dev *hdev, void *data) 4559 { 4560 return hci_update_discoverable_sync(hdev); 4561 } 4562 4563 int hci_update_discoverable(struct hci_dev *hdev) 4564 { 4565 /* Only queue if it would have any effect */ 4566 if (hdev_is_powered(hdev) && 4567 hci_dev_test_flag(hdev, HCI_ADVERTISING) && 4568 hci_dev_test_flag(hdev, HCI_DISCOVERABLE) && 4569 hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) 4570 return hci_cmd_sync_queue(hdev, update_discoverable_sync, NULL, 4571 NULL); 4572 4573 return 0; 4574 } 4575 4576 int hci_update_connectable_sync(struct hci_dev *hdev) 4577 { 4578 int err; 4579 4580 err = hci_update_scan_sync(hdev); 4581 if (err) 4582 return err; 4583 4584 /* If BR/EDR is not enabled and we disable advertising as a 4585 * by-product of disabling connectable, we need to update the 4586 * advertising flags. 4587 */ 4588 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 4589 err = hci_update_adv_data_sync(hdev, hdev->cur_adv_instance); 4590 4591 /* Update the advertising parameters if necessary */ 4592 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 4593 !list_empty(&hdev->adv_instances)) { 4594 if (ext_adv_capable(hdev)) 4595 err = hci_start_ext_adv_sync(hdev, 4596 hdev->cur_adv_instance); 4597 else 4598 err = hci_enable_advertising_sync(hdev); 4599 4600 if (err) 4601 return err; 4602 } 4603 4604 return hci_update_passive_scan_sync(hdev); 4605 } 4606 4607 static int hci_inquiry_sync(struct hci_dev *hdev, u8 length) 4608 { 4609 const u8 giac[3] = { 0x33, 0x8b, 0x9e }; 4610 const u8 liac[3] = { 0x00, 0x8b, 0x9e }; 4611 struct hci_cp_inquiry cp; 4612 4613 bt_dev_dbg(hdev, ""); 4614 4615 if (hci_dev_test_flag(hdev, HCI_INQUIRY)) 4616 return 0; 4617 4618 hci_dev_lock(hdev); 4619 hci_inquiry_cache_flush(hdev); 4620 hci_dev_unlock(hdev); 4621 4622 memset(&cp, 0, sizeof(cp)); 4623 4624 if (hdev->discovery.limited) 4625 memcpy(&cp.lap, liac, sizeof(cp.lap)); 4626 else 4627 memcpy(&cp.lap, giac, sizeof(cp.lap)); 4628 4629 cp.length = length; 4630 4631 return __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY, 4632 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4633 } 4634 4635 static int hci_active_scan_sync(struct hci_dev *hdev, uint16_t interval) 4636 { 4637 u8 own_addr_type; 4638 /* Accept list is not used for discovery */ 4639 u8 filter_policy = 0x00; 4640 /* Default is to enable duplicates filter */ 4641 u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE; 4642 int err; 4643 4644 bt_dev_dbg(hdev, ""); 4645 4646 /* If controller is scanning, it means the passive scanning is 4647 * running. Thus, we should temporarily stop it in order to set the 4648 * discovery scanning parameters. 4649 */ 4650 err = hci_scan_disable_sync(hdev); 4651 if (err) { 4652 bt_dev_err(hdev, "Unable to disable scanning: %d", err); 4653 return err; 4654 } 4655 4656 cancel_interleave_scan(hdev); 4657 4658 /* Pause advertising since active scanning disables address resolution 4659 * which advertising depend on in order to generate its RPAs. 4660 */ 4661 if (use_ll_privacy(hdev)) { 4662 err = hci_pause_advertising_sync(hdev); 4663 if (err) { 4664 bt_dev_err(hdev, "pause advertising failed: %d", err); 4665 goto failed; 4666 } 4667 } 4668 4669 /* Disable address resolution while doing active scanning since the 4670 * accept list shall not be used and all reports shall reach the host 4671 * anyway. 4672 */ 4673 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00); 4674 if (err) { 4675 bt_dev_err(hdev, "Unable to disable Address Resolution: %d", 4676 err); 4677 goto failed; 4678 } 4679 4680 /* All active scans will be done with either a resolvable private 4681 * address (when privacy feature has been enabled) or non-resolvable 4682 * private address. 4683 */ 4684 err = hci_update_random_address_sync(hdev, true, scan_use_rpa(hdev), 4685 &own_addr_type); 4686 if (err < 0) 4687 own_addr_type = ADDR_LE_DEV_PUBLIC; 4688 4689 if (hci_is_adv_monitoring(hdev)) { 4690 /* Duplicate filter should be disabled when some advertisement 4691 * monitor is activated, otherwise AdvMon can only receive one 4692 * advertisement for one peer(*) during active scanning, and 4693 * might report loss to these peers. 4694 * 4695 * Note that different controllers have different meanings of 4696 * |duplicate|. Some of them consider packets with the same 4697 * address as duplicate, and others consider packets with the 4698 * same address and the same RSSI as duplicate. Although in the 4699 * latter case we don't need to disable duplicate filter, but 4700 * it is common to have active scanning for a short period of 4701 * time, the power impact should be neglectable. 4702 */ 4703 filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 4704 } 4705 4706 err = hci_start_scan_sync(hdev, LE_SCAN_ACTIVE, interval, 4707 hdev->le_scan_window_discovery, 4708 own_addr_type, filter_policy, filter_dup); 4709 if (!err) 4710 return err; 4711 4712 failed: 4713 /* Resume advertising if it was paused */ 4714 if (use_ll_privacy(hdev)) 4715 hci_resume_advertising_sync(hdev); 4716 4717 /* Resume passive scanning */ 4718 hci_update_passive_scan_sync(hdev); 4719 return err; 4720 } 4721 4722 static int hci_start_interleaved_discovery_sync(struct hci_dev *hdev) 4723 { 4724 int err; 4725 4726 bt_dev_dbg(hdev, ""); 4727 4728 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery * 2); 4729 if (err) 4730 return err; 4731 4732 return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN); 4733 } 4734 4735 int hci_start_discovery_sync(struct hci_dev *hdev) 4736 { 4737 unsigned long timeout; 4738 int err; 4739 4740 bt_dev_dbg(hdev, "type %u", hdev->discovery.type); 4741 4742 switch (hdev->discovery.type) { 4743 case DISCOV_TYPE_BREDR: 4744 return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN); 4745 case DISCOV_TYPE_INTERLEAVED: 4746 /* When running simultaneous discovery, the LE scanning time 4747 * should occupy the whole discovery time sine BR/EDR inquiry 4748 * and LE scanning are scheduled by the controller. 4749 * 4750 * For interleaving discovery in comparison, BR/EDR inquiry 4751 * and LE scanning are done sequentially with separate 4752 * timeouts. 4753 */ 4754 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, 4755 &hdev->quirks)) { 4756 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 4757 /* During simultaneous discovery, we double LE scan 4758 * interval. We must leave some time for the controller 4759 * to do BR/EDR inquiry. 4760 */ 4761 err = hci_start_interleaved_discovery_sync(hdev); 4762 break; 4763 } 4764 4765 timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout); 4766 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery); 4767 break; 4768 case DISCOV_TYPE_LE: 4769 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 4770 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery); 4771 break; 4772 default: 4773 return -EINVAL; 4774 } 4775 4776 if (err) 4777 return err; 4778 4779 bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout)); 4780 4781 /* When service discovery is used and the controller has a 4782 * strict duplicate filter, it is important to remember the 4783 * start and duration of the scan. This is required for 4784 * restarting scanning during the discovery phase. 4785 */ 4786 if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) && 4787 hdev->discovery.result_filtering) { 4788 hdev->discovery.scan_start = jiffies; 4789 hdev->discovery.scan_duration = timeout; 4790 } 4791 4792 queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable, 4793 timeout); 4794 return 0; 4795 } 4796 4797 static void hci_suspend_monitor_sync(struct hci_dev *hdev) 4798 { 4799 switch (hci_get_adv_monitor_offload_ext(hdev)) { 4800 case HCI_ADV_MONITOR_EXT_MSFT: 4801 msft_suspend_sync(hdev); 4802 break; 4803 default: 4804 return; 4805 } 4806 } 4807 4808 /* This function disables discovery and mark it as paused */ 4809 static int hci_pause_discovery_sync(struct hci_dev *hdev) 4810 { 4811 int old_state = hdev->discovery.state; 4812 int err; 4813 4814 /* If discovery already stopped/stopping/paused there nothing to do */ 4815 if (old_state == DISCOVERY_STOPPED || old_state == DISCOVERY_STOPPING || 4816 hdev->discovery_paused) 4817 return 0; 4818 4819 hci_discovery_set_state(hdev, DISCOVERY_STOPPING); 4820 err = hci_stop_discovery_sync(hdev); 4821 if (err) 4822 return err; 4823 4824 hdev->discovery_paused = true; 4825 hdev->discovery_old_state = old_state; 4826 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 4827 4828 return 0; 4829 } 4830 4831 static int hci_update_event_filter_sync(struct hci_dev *hdev) 4832 { 4833 struct bdaddr_list_with_flags *b; 4834 u8 scan = SCAN_DISABLED; 4835 bool scanning = test_bit(HCI_PSCAN, &hdev->flags); 4836 int err; 4837 4838 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 4839 return 0; 4840 4841 /* Some fake CSR controllers lock up after setting this type of 4842 * filter, so avoid sending the request altogether. 4843 */ 4844 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 4845 return 0; 4846 4847 /* Always clear event filter when starting */ 4848 hci_clear_event_filter_sync(hdev); 4849 4850 list_for_each_entry(b, &hdev->accept_list, list) { 4851 if (!test_bit(HCI_CONN_FLAG_REMOTE_WAKEUP, b->flags)) 4852 continue; 4853 4854 bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr); 4855 4856 err = hci_set_event_filter_sync(hdev, HCI_FLT_CONN_SETUP, 4857 HCI_CONN_SETUP_ALLOW_BDADDR, 4858 &b->bdaddr, 4859 HCI_CONN_SETUP_AUTO_ON); 4860 if (err) 4861 bt_dev_dbg(hdev, "Failed to set event filter for %pMR", 4862 &b->bdaddr); 4863 else 4864 scan = SCAN_PAGE; 4865 } 4866 4867 if (scan && !scanning) 4868 hci_write_scan_enable_sync(hdev, scan); 4869 else if (!scan && scanning) 4870 hci_write_scan_enable_sync(hdev, scan); 4871 4872 return 0; 4873 } 4874 4875 /* This function performs the HCI suspend procedures in the follow order: 4876 * 4877 * Pause discovery (active scanning/inquiry) 4878 * Pause Directed Advertising/Advertising 4879 * Disconnect all connections 4880 * Set suspend_status to BT_SUSPEND_DISCONNECT if hdev cannot wakeup 4881 * otherwise: 4882 * Update event mask (only set events that are allowed to wake up the host) 4883 * Update event filter (with devices marked with HCI_CONN_FLAG_REMOTE_WAKEUP) 4884 * Update passive scanning (lower duty cycle) 4885 * Set suspend_status to BT_SUSPEND_CONFIGURE_WAKE 4886 */ 4887 int hci_suspend_sync(struct hci_dev *hdev) 4888 { 4889 int err; 4890 4891 /* If marked as suspended there nothing to do */ 4892 if (hdev->suspended) 4893 return 0; 4894 4895 /* Mark device as suspended */ 4896 hdev->suspended = true; 4897 4898 /* Pause discovery if not already stopped */ 4899 hci_pause_discovery_sync(hdev); 4900 4901 /* Pause other advertisements */ 4902 hci_pause_advertising_sync(hdev); 4903 4904 /* Disable page scan if enabled */ 4905 if (test_bit(HCI_PSCAN, &hdev->flags)) 4906 hci_write_scan_enable_sync(hdev, SCAN_DISABLED); 4907 4908 /* Suspend monitor filters */ 4909 hci_suspend_monitor_sync(hdev); 4910 4911 /* Prevent disconnects from causing scanning to be re-enabled */ 4912 hdev->scanning_paused = true; 4913 4914 /* Soft disconnect everything (power off) */ 4915 err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF); 4916 if (err) { 4917 /* Set state to BT_RUNNING so resume doesn't notify */ 4918 hdev->suspend_state = BT_RUNNING; 4919 hci_resume_sync(hdev); 4920 return err; 4921 } 4922 4923 /* Only configure accept list if disconnect succeeded and wake 4924 * isn't being prevented. 4925 */ 4926 if (!hdev->wakeup || !hdev->wakeup(hdev)) { 4927 hdev->suspend_state = BT_SUSPEND_DISCONNECT; 4928 return 0; 4929 } 4930 4931 /* Unpause to take care of updating scanning params */ 4932 hdev->scanning_paused = false; 4933 4934 /* Update event mask so only the allowed event can wakeup the host */ 4935 hci_set_event_mask_sync(hdev); 4936 4937 /* Enable event filter for paired devices */ 4938 hci_update_event_filter_sync(hdev); 4939 4940 /* Update LE passive scan if enabled */ 4941 hci_update_passive_scan_sync(hdev); 4942 4943 /* Pause scan changes again. */ 4944 hdev->scanning_paused = true; 4945 4946 hdev->suspend_state = BT_SUSPEND_CONFIGURE_WAKE; 4947 4948 return 0; 4949 } 4950 4951 /* This function resumes discovery */ 4952 static int hci_resume_discovery_sync(struct hci_dev *hdev) 4953 { 4954 int err; 4955 4956 /* If discovery not paused there nothing to do */ 4957 if (!hdev->discovery_paused) 4958 return 0; 4959 4960 hdev->discovery_paused = false; 4961 4962 hci_discovery_set_state(hdev, DISCOVERY_STARTING); 4963 4964 err = hci_start_discovery_sync(hdev); 4965 4966 hci_discovery_set_state(hdev, err ? DISCOVERY_STOPPED : 4967 DISCOVERY_FINDING); 4968 4969 return err; 4970 } 4971 4972 static void hci_resume_monitor_sync(struct hci_dev *hdev) 4973 { 4974 switch (hci_get_adv_monitor_offload_ext(hdev)) { 4975 case HCI_ADV_MONITOR_EXT_MSFT: 4976 msft_resume_sync(hdev); 4977 break; 4978 default: 4979 return; 4980 } 4981 } 4982 4983 /* This function performs the HCI suspend procedures in the follow order: 4984 * 4985 * Restore event mask 4986 * Clear event filter 4987 * Update passive scanning (normal duty cycle) 4988 * Resume Directed Advertising/Advertising 4989 * Resume discovery (active scanning/inquiry) 4990 */ 4991 int hci_resume_sync(struct hci_dev *hdev) 4992 { 4993 /* If not marked as suspended there nothing to do */ 4994 if (!hdev->suspended) 4995 return 0; 4996 4997 hdev->suspended = false; 4998 hdev->scanning_paused = false; 4999 5000 /* Restore event mask */ 5001 hci_set_event_mask_sync(hdev); 5002 5003 /* Clear any event filters and restore scan state */ 5004 hci_clear_event_filter_sync(hdev); 5005 hci_update_scan_sync(hdev); 5006 5007 /* Reset passive scanning to normal */ 5008 hci_update_passive_scan_sync(hdev); 5009 5010 /* Resume monitor filters */ 5011 hci_resume_monitor_sync(hdev); 5012 5013 /* Resume other advertisements */ 5014 hci_resume_advertising_sync(hdev); 5015 5016 /* Resume discovery */ 5017 hci_resume_discovery_sync(hdev); 5018 5019 return 0; 5020 } 5021 5022 static bool conn_use_rpa(struct hci_conn *conn) 5023 { 5024 struct hci_dev *hdev = conn->hdev; 5025 5026 return hci_dev_test_flag(hdev, HCI_PRIVACY); 5027 } 5028 5029 static int hci_le_ext_directed_advertising_sync(struct hci_dev *hdev, 5030 struct hci_conn *conn) 5031 { 5032 struct hci_cp_le_set_ext_adv_params cp; 5033 int err; 5034 bdaddr_t random_addr; 5035 u8 own_addr_type; 5036 5037 err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 5038 &own_addr_type); 5039 if (err) 5040 return err; 5041 5042 /* Set require_privacy to false so that the remote device has a 5043 * chance of identifying us. 5044 */ 5045 err = hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL, 5046 &own_addr_type, &random_addr); 5047 if (err) 5048 return err; 5049 5050 memset(&cp, 0, sizeof(cp)); 5051 5052 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND); 5053 cp.own_addr_type = own_addr_type; 5054 cp.channel_map = hdev->le_adv_channel_map; 5055 cp.tx_power = HCI_TX_POWER_INVALID; 5056 cp.primary_phy = HCI_ADV_PHY_1M; 5057 cp.secondary_phy = HCI_ADV_PHY_1M; 5058 cp.handle = 0x00; /* Use instance 0 for directed adv */ 5059 cp.own_addr_type = own_addr_type; 5060 cp.peer_addr_type = conn->dst_type; 5061 bacpy(&cp.peer_addr, &conn->dst); 5062 5063 /* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for 5064 * advertising_event_property LE_LEGACY_ADV_DIRECT_IND 5065 * does not supports advertising data when the advertising set already 5066 * contains some, the controller shall return erroc code 'Invalid 5067 * HCI Command Parameters(0x12). 5068 * So it is required to remove adv set for handle 0x00. since we use 5069 * instance 0 for directed adv. 5070 */ 5071 err = hci_remove_ext_adv_instance_sync(hdev, cp.handle, NULL); 5072 if (err) 5073 return err; 5074 5075 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS, 5076 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5077 if (err) 5078 return err; 5079 5080 /* Check if random address need to be updated */ 5081 if (own_addr_type == ADDR_LE_DEV_RANDOM && 5082 bacmp(&random_addr, BDADDR_ANY) && 5083 bacmp(&random_addr, &hdev->random_addr)) { 5084 err = hci_set_adv_set_random_addr_sync(hdev, 0x00, 5085 &random_addr); 5086 if (err) 5087 return err; 5088 } 5089 5090 return hci_enable_ext_advertising_sync(hdev, 0x00); 5091 } 5092 5093 static int hci_le_directed_advertising_sync(struct hci_dev *hdev, 5094 struct hci_conn *conn) 5095 { 5096 struct hci_cp_le_set_adv_param cp; 5097 u8 status; 5098 u8 own_addr_type; 5099 u8 enable; 5100 5101 if (ext_adv_capable(hdev)) 5102 return hci_le_ext_directed_advertising_sync(hdev, conn); 5103 5104 /* Clear the HCI_LE_ADV bit temporarily so that the 5105 * hci_update_random_address knows that it's safe to go ahead 5106 * and write a new random address. The flag will be set back on 5107 * as soon as the SET_ADV_ENABLE HCI command completes. 5108 */ 5109 hci_dev_clear_flag(hdev, HCI_LE_ADV); 5110 5111 /* Set require_privacy to false so that the remote device has a 5112 * chance of identifying us. 5113 */ 5114 status = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 5115 &own_addr_type); 5116 if (status) 5117 return status; 5118 5119 memset(&cp, 0, sizeof(cp)); 5120 5121 /* Some controllers might reject command if intervals are not 5122 * within range for undirected advertising. 5123 * BCM20702A0 is known to be affected by this. 5124 */ 5125 cp.min_interval = cpu_to_le16(0x0020); 5126 cp.max_interval = cpu_to_le16(0x0020); 5127 5128 cp.type = LE_ADV_DIRECT_IND; 5129 cp.own_address_type = own_addr_type; 5130 cp.direct_addr_type = conn->dst_type; 5131 bacpy(&cp.direct_addr, &conn->dst); 5132 cp.channel_map = hdev->le_adv_channel_map; 5133 5134 status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM, 5135 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5136 if (status) 5137 return status; 5138 5139 enable = 0x01; 5140 5141 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 5142 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 5143 } 5144 5145 static void set_ext_conn_params(struct hci_conn *conn, 5146 struct hci_cp_le_ext_conn_param *p) 5147 { 5148 struct hci_dev *hdev = conn->hdev; 5149 5150 memset(p, 0, sizeof(*p)); 5151 5152 p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect); 5153 p->scan_window = cpu_to_le16(hdev->le_scan_window_connect); 5154 p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 5155 p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 5156 p->conn_latency = cpu_to_le16(conn->le_conn_latency); 5157 p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 5158 p->min_ce_len = cpu_to_le16(0x0000); 5159 p->max_ce_len = cpu_to_le16(0x0000); 5160 } 5161 5162 static int hci_le_ext_create_conn_sync(struct hci_dev *hdev, 5163 struct hci_conn *conn, u8 own_addr_type) 5164 { 5165 struct hci_cp_le_ext_create_conn *cp; 5166 struct hci_cp_le_ext_conn_param *p; 5167 u8 data[sizeof(*cp) + sizeof(*p) * 3]; 5168 u32 plen; 5169 5170 cp = (void *)data; 5171 p = (void *)cp->data; 5172 5173 memset(cp, 0, sizeof(*cp)); 5174 5175 bacpy(&cp->peer_addr, &conn->dst); 5176 cp->peer_addr_type = conn->dst_type; 5177 cp->own_addr_type = own_addr_type; 5178 5179 plen = sizeof(*cp); 5180 5181 if (scan_1m(hdev)) { 5182 cp->phys |= LE_SCAN_PHY_1M; 5183 set_ext_conn_params(conn, p); 5184 5185 p++; 5186 plen += sizeof(*p); 5187 } 5188 5189 if (scan_2m(hdev)) { 5190 cp->phys |= LE_SCAN_PHY_2M; 5191 set_ext_conn_params(conn, p); 5192 5193 p++; 5194 plen += sizeof(*p); 5195 } 5196 5197 if (scan_coded(hdev)) { 5198 cp->phys |= LE_SCAN_PHY_CODED; 5199 set_ext_conn_params(conn, p); 5200 5201 plen += sizeof(*p); 5202 } 5203 5204 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_EXT_CREATE_CONN, 5205 plen, data, 5206 HCI_EV_LE_ENHANCED_CONN_COMPLETE, 5207 conn->conn_timeout, NULL); 5208 } 5209 5210 int hci_le_create_conn_sync(struct hci_dev *hdev, struct hci_conn *conn) 5211 { 5212 struct hci_cp_le_create_conn cp; 5213 struct hci_conn_params *params; 5214 u8 own_addr_type; 5215 int err; 5216 5217 /* If requested to connect as peripheral use directed advertising */ 5218 if (conn->role == HCI_ROLE_SLAVE) { 5219 /* If we're active scanning and simultaneous roles is not 5220 * enabled simply reject the attempt. 5221 */ 5222 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) && 5223 hdev->le_scan_type == LE_SCAN_ACTIVE && 5224 !hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) { 5225 hci_conn_del(conn); 5226 return -EBUSY; 5227 } 5228 5229 /* Pause advertising while doing directed advertising. */ 5230 hci_pause_advertising_sync(hdev); 5231 5232 err = hci_le_directed_advertising_sync(hdev, conn); 5233 goto done; 5234 } 5235 5236 /* Disable advertising if simultaneous roles is not in use. */ 5237 if (!hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) 5238 hci_pause_advertising_sync(hdev); 5239 5240 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); 5241 if (params) { 5242 conn->le_conn_min_interval = params->conn_min_interval; 5243 conn->le_conn_max_interval = params->conn_max_interval; 5244 conn->le_conn_latency = params->conn_latency; 5245 conn->le_supv_timeout = params->supervision_timeout; 5246 } else { 5247 conn->le_conn_min_interval = hdev->le_conn_min_interval; 5248 conn->le_conn_max_interval = hdev->le_conn_max_interval; 5249 conn->le_conn_latency = hdev->le_conn_latency; 5250 conn->le_supv_timeout = hdev->le_supv_timeout; 5251 } 5252 5253 /* If controller is scanning, we stop it since some controllers are 5254 * not able to scan and connect at the same time. Also set the 5255 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete 5256 * handler for scan disabling knows to set the correct discovery 5257 * state. 5258 */ 5259 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 5260 hci_scan_disable_sync(hdev); 5261 hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED); 5262 } 5263 5264 /* Update random address, but set require_privacy to false so 5265 * that we never connect with an non-resolvable address. 5266 */ 5267 err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 5268 &own_addr_type); 5269 if (err) 5270 goto done; 5271 5272 if (use_ext_conn(hdev)) { 5273 err = hci_le_ext_create_conn_sync(hdev, conn, own_addr_type); 5274 goto done; 5275 } 5276 5277 memset(&cp, 0, sizeof(cp)); 5278 5279 cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect); 5280 cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect); 5281 5282 bacpy(&cp.peer_addr, &conn->dst); 5283 cp.peer_addr_type = conn->dst_type; 5284 cp.own_address_type = own_addr_type; 5285 cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 5286 cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 5287 cp.conn_latency = cpu_to_le16(conn->le_conn_latency); 5288 cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 5289 cp.min_ce_len = cpu_to_le16(0x0000); 5290 cp.max_ce_len = cpu_to_le16(0x0000); 5291 5292 /* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E page 2261: 5293 * 5294 * If this event is unmasked and the HCI_LE_Connection_Complete event 5295 * is unmasked, only the HCI_LE_Enhanced_Connection_Complete event is 5296 * sent when a new connection has been created. 5297 */ 5298 err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CONN, 5299 sizeof(cp), &cp, 5300 use_enhanced_conn_complete(hdev) ? 5301 HCI_EV_LE_ENHANCED_CONN_COMPLETE : 5302 HCI_EV_LE_CONN_COMPLETE, 5303 conn->conn_timeout, NULL); 5304 5305 done: 5306 /* Re-enable advertising after the connection attempt is finished. */ 5307 hci_resume_advertising_sync(hdev); 5308 return err; 5309 } 5310