xref: /linux/net/bluetooth/hci_sync.c (revision 22511e665eadc2c49021886d07aaef39db90ca82)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * BlueZ - Bluetooth protocol stack for Linux
4  *
5  * Copyright (C) 2021 Intel Corporation
6  */
7 
8 #include <linux/property.h>
9 
10 #include <net/bluetooth/bluetooth.h>
11 #include <net/bluetooth/hci_core.h>
12 #include <net/bluetooth/mgmt.h>
13 
14 #include "hci_request.h"
15 #include "hci_debugfs.h"
16 #include "smp.h"
17 #include "eir.h"
18 #include "msft.h"
19 #include "aosp.h"
20 #include "leds.h"
21 
22 static void hci_cmd_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
23 				  struct sk_buff *skb)
24 {
25 	bt_dev_dbg(hdev, "result 0x%2.2x", result);
26 
27 	if (hdev->req_status != HCI_REQ_PEND)
28 		return;
29 
30 	hdev->req_result = result;
31 	hdev->req_status = HCI_REQ_DONE;
32 
33 	if (skb) {
34 		struct sock *sk = hci_skb_sk(skb);
35 
36 		/* Drop sk reference if set */
37 		if (sk)
38 			sock_put(sk);
39 
40 		hdev->req_skb = skb_get(skb);
41 	}
42 
43 	wake_up_interruptible(&hdev->req_wait_q);
44 }
45 
46 static struct sk_buff *hci_cmd_sync_alloc(struct hci_dev *hdev, u16 opcode,
47 					  u32 plen, const void *param,
48 					  struct sock *sk)
49 {
50 	int len = HCI_COMMAND_HDR_SIZE + plen;
51 	struct hci_command_hdr *hdr;
52 	struct sk_buff *skb;
53 
54 	skb = bt_skb_alloc(len, GFP_ATOMIC);
55 	if (!skb)
56 		return NULL;
57 
58 	hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE);
59 	hdr->opcode = cpu_to_le16(opcode);
60 	hdr->plen   = plen;
61 
62 	if (plen)
63 		skb_put_data(skb, param, plen);
64 
65 	bt_dev_dbg(hdev, "skb len %d", skb->len);
66 
67 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
68 	hci_skb_opcode(skb) = opcode;
69 
70 	/* Grab a reference if command needs to be associated with a sock (e.g.
71 	 * likely mgmt socket that initiated the command).
72 	 */
73 	if (sk) {
74 		hci_skb_sk(skb) = sk;
75 		sock_hold(sk);
76 	}
77 
78 	return skb;
79 }
80 
81 static void hci_cmd_sync_add(struct hci_request *req, u16 opcode, u32 plen,
82 			     const void *param, u8 event, struct sock *sk)
83 {
84 	struct hci_dev *hdev = req->hdev;
85 	struct sk_buff *skb;
86 
87 	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
88 
89 	/* If an error occurred during request building, there is no point in
90 	 * queueing the HCI command. We can simply return.
91 	 */
92 	if (req->err)
93 		return;
94 
95 	skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, sk);
96 	if (!skb) {
97 		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
98 			   opcode);
99 		req->err = -ENOMEM;
100 		return;
101 	}
102 
103 	if (skb_queue_empty(&req->cmd_q))
104 		bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
105 
106 	hci_skb_event(skb) = event;
107 
108 	skb_queue_tail(&req->cmd_q, skb);
109 }
110 
111 static int hci_cmd_sync_run(struct hci_request *req)
112 {
113 	struct hci_dev *hdev = req->hdev;
114 	struct sk_buff *skb;
115 	unsigned long flags;
116 
117 	bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q));
118 
119 	/* If an error occurred during request building, remove all HCI
120 	 * commands queued on the HCI request queue.
121 	 */
122 	if (req->err) {
123 		skb_queue_purge(&req->cmd_q);
124 		return req->err;
125 	}
126 
127 	/* Do not allow empty requests */
128 	if (skb_queue_empty(&req->cmd_q))
129 		return -ENODATA;
130 
131 	skb = skb_peek_tail(&req->cmd_q);
132 	bt_cb(skb)->hci.req_complete_skb = hci_cmd_sync_complete;
133 	bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
134 
135 	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
136 	skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
137 	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
138 
139 	queue_work(hdev->workqueue, &hdev->cmd_work);
140 
141 	return 0;
142 }
143 
144 /* This function requires the caller holds hdev->req_lock. */
145 struct sk_buff *__hci_cmd_sync_sk(struct hci_dev *hdev, u16 opcode, u32 plen,
146 				  const void *param, u8 event, u32 timeout,
147 				  struct sock *sk)
148 {
149 	struct hci_request req;
150 	struct sk_buff *skb;
151 	int err = 0;
152 
153 	bt_dev_dbg(hdev, "Opcode 0x%4x", opcode);
154 
155 	hci_req_init(&req, hdev);
156 
157 	hci_cmd_sync_add(&req, opcode, plen, param, event, sk);
158 
159 	hdev->req_status = HCI_REQ_PEND;
160 
161 	err = hci_cmd_sync_run(&req);
162 	if (err < 0)
163 		return ERR_PTR(err);
164 
165 	err = wait_event_interruptible_timeout(hdev->req_wait_q,
166 					       hdev->req_status != HCI_REQ_PEND,
167 					       timeout);
168 
169 	if (err == -ERESTARTSYS)
170 		return ERR_PTR(-EINTR);
171 
172 	switch (hdev->req_status) {
173 	case HCI_REQ_DONE:
174 		err = -bt_to_errno(hdev->req_result);
175 		break;
176 
177 	case HCI_REQ_CANCELED:
178 		err = -hdev->req_result;
179 		break;
180 
181 	default:
182 		err = -ETIMEDOUT;
183 		break;
184 	}
185 
186 	hdev->req_status = 0;
187 	hdev->req_result = 0;
188 	skb = hdev->req_skb;
189 	hdev->req_skb = NULL;
190 
191 	bt_dev_dbg(hdev, "end: err %d", err);
192 
193 	if (err < 0) {
194 		kfree_skb(skb);
195 		return ERR_PTR(err);
196 	}
197 
198 	return skb;
199 }
200 EXPORT_SYMBOL(__hci_cmd_sync_sk);
201 
202 /* This function requires the caller holds hdev->req_lock. */
203 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
204 			       const void *param, u32 timeout)
205 {
206 	return __hci_cmd_sync_sk(hdev, opcode, plen, param, 0, timeout, NULL);
207 }
208 EXPORT_SYMBOL(__hci_cmd_sync);
209 
210 /* Send HCI command and wait for command complete event */
211 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
212 			     const void *param, u32 timeout)
213 {
214 	struct sk_buff *skb;
215 
216 	if (!test_bit(HCI_UP, &hdev->flags))
217 		return ERR_PTR(-ENETDOWN);
218 
219 	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
220 
221 	hci_req_sync_lock(hdev);
222 	skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
223 	hci_req_sync_unlock(hdev);
224 
225 	return skb;
226 }
227 EXPORT_SYMBOL(hci_cmd_sync);
228 
229 /* This function requires the caller holds hdev->req_lock. */
230 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
231 				  const void *param, u8 event, u32 timeout)
232 {
233 	return __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout,
234 				 NULL);
235 }
236 EXPORT_SYMBOL(__hci_cmd_sync_ev);
237 
238 /* This function requires the caller holds hdev->req_lock. */
239 int __hci_cmd_sync_status_sk(struct hci_dev *hdev, u16 opcode, u32 plen,
240 			     const void *param, u8 event, u32 timeout,
241 			     struct sock *sk)
242 {
243 	struct sk_buff *skb;
244 	u8 status;
245 
246 	skb = __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, sk);
247 	if (IS_ERR(skb)) {
248 		bt_dev_err(hdev, "Opcode 0x%4x failed: %ld", opcode,
249 			   PTR_ERR(skb));
250 		return PTR_ERR(skb);
251 	}
252 
253 	/* If command return a status event skb will be set to NULL as there are
254 	 * no parameters, in case of failure IS_ERR(skb) would have be set to
255 	 * the actual error would be found with PTR_ERR(skb).
256 	 */
257 	if (!skb)
258 		return 0;
259 
260 	status = skb->data[0];
261 
262 	kfree_skb(skb);
263 
264 	return status;
265 }
266 EXPORT_SYMBOL(__hci_cmd_sync_status_sk);
267 
268 int __hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen,
269 			  const void *param, u32 timeout)
270 {
271 	return __hci_cmd_sync_status_sk(hdev, opcode, plen, param, 0, timeout,
272 					NULL);
273 }
274 EXPORT_SYMBOL(__hci_cmd_sync_status);
275 
276 static void hci_cmd_sync_work(struct work_struct *work)
277 {
278 	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_work);
279 
280 	bt_dev_dbg(hdev, "");
281 
282 	/* Dequeue all entries and run them */
283 	while (1) {
284 		struct hci_cmd_sync_work_entry *entry;
285 
286 		mutex_lock(&hdev->cmd_sync_work_lock);
287 		entry = list_first_entry_or_null(&hdev->cmd_sync_work_list,
288 						 struct hci_cmd_sync_work_entry,
289 						 list);
290 		if (entry)
291 			list_del(&entry->list);
292 		mutex_unlock(&hdev->cmd_sync_work_lock);
293 
294 		if (!entry)
295 			break;
296 
297 		bt_dev_dbg(hdev, "entry %p", entry);
298 
299 		if (entry->func) {
300 			int err;
301 
302 			hci_req_sync_lock(hdev);
303 			err = entry->func(hdev, entry->data);
304 			if (entry->destroy)
305 				entry->destroy(hdev, entry->data, err);
306 			hci_req_sync_unlock(hdev);
307 		}
308 
309 		kfree(entry);
310 	}
311 }
312 
313 static void hci_cmd_sync_cancel_work(struct work_struct *work)
314 {
315 	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_cancel_work);
316 
317 	cancel_delayed_work_sync(&hdev->cmd_timer);
318 	cancel_delayed_work_sync(&hdev->ncmd_timer);
319 	atomic_set(&hdev->cmd_cnt, 1);
320 
321 	wake_up_interruptible(&hdev->req_wait_q);
322 }
323 
324 void hci_cmd_sync_init(struct hci_dev *hdev)
325 {
326 	INIT_WORK(&hdev->cmd_sync_work, hci_cmd_sync_work);
327 	INIT_LIST_HEAD(&hdev->cmd_sync_work_list);
328 	mutex_init(&hdev->cmd_sync_work_lock);
329 
330 	INIT_WORK(&hdev->cmd_sync_cancel_work, hci_cmd_sync_cancel_work);
331 }
332 
333 void hci_cmd_sync_clear(struct hci_dev *hdev)
334 {
335 	struct hci_cmd_sync_work_entry *entry, *tmp;
336 
337 	cancel_work_sync(&hdev->cmd_sync_work);
338 
339 	list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) {
340 		if (entry->destroy)
341 			entry->destroy(hdev, entry->data, -ECANCELED);
342 
343 		list_del(&entry->list);
344 		kfree(entry);
345 	}
346 }
347 
348 void __hci_cmd_sync_cancel(struct hci_dev *hdev, int err)
349 {
350 	bt_dev_dbg(hdev, "err 0x%2.2x", err);
351 
352 	if (hdev->req_status == HCI_REQ_PEND) {
353 		hdev->req_result = err;
354 		hdev->req_status = HCI_REQ_CANCELED;
355 
356 		cancel_delayed_work_sync(&hdev->cmd_timer);
357 		cancel_delayed_work_sync(&hdev->ncmd_timer);
358 		atomic_set(&hdev->cmd_cnt, 1);
359 
360 		wake_up_interruptible(&hdev->req_wait_q);
361 	}
362 }
363 
364 void hci_cmd_sync_cancel(struct hci_dev *hdev, int err)
365 {
366 	bt_dev_dbg(hdev, "err 0x%2.2x", err);
367 
368 	if (hdev->req_status == HCI_REQ_PEND) {
369 		hdev->req_result = err;
370 		hdev->req_status = HCI_REQ_CANCELED;
371 
372 		queue_work(hdev->workqueue, &hdev->cmd_sync_cancel_work);
373 	}
374 }
375 EXPORT_SYMBOL(hci_cmd_sync_cancel);
376 
377 int hci_cmd_sync_queue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
378 		       void *data, hci_cmd_sync_work_destroy_t destroy)
379 {
380 	struct hci_cmd_sync_work_entry *entry;
381 
382 	if (hci_dev_test_flag(hdev, HCI_UNREGISTER))
383 		return -ENODEV;
384 
385 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
386 	if (!entry)
387 		return -ENOMEM;
388 
389 	entry->func = func;
390 	entry->data = data;
391 	entry->destroy = destroy;
392 
393 	mutex_lock(&hdev->cmd_sync_work_lock);
394 	list_add_tail(&entry->list, &hdev->cmd_sync_work_list);
395 	mutex_unlock(&hdev->cmd_sync_work_lock);
396 
397 	queue_work(hdev->req_workqueue, &hdev->cmd_sync_work);
398 
399 	return 0;
400 }
401 EXPORT_SYMBOL(hci_cmd_sync_queue);
402 
403 int hci_update_eir_sync(struct hci_dev *hdev)
404 {
405 	struct hci_cp_write_eir cp;
406 
407 	bt_dev_dbg(hdev, "");
408 
409 	if (!hdev_is_powered(hdev))
410 		return 0;
411 
412 	if (!lmp_ext_inq_capable(hdev))
413 		return 0;
414 
415 	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
416 		return 0;
417 
418 	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
419 		return 0;
420 
421 	memset(&cp, 0, sizeof(cp));
422 
423 	eir_create(hdev, cp.data);
424 
425 	if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
426 		return 0;
427 
428 	memcpy(hdev->eir, cp.data, sizeof(cp.data));
429 
430 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp,
431 				     HCI_CMD_TIMEOUT);
432 }
433 
434 static u8 get_service_classes(struct hci_dev *hdev)
435 {
436 	struct bt_uuid *uuid;
437 	u8 val = 0;
438 
439 	list_for_each_entry(uuid, &hdev->uuids, list)
440 		val |= uuid->svc_hint;
441 
442 	return val;
443 }
444 
445 int hci_update_class_sync(struct hci_dev *hdev)
446 {
447 	u8 cod[3];
448 
449 	bt_dev_dbg(hdev, "");
450 
451 	if (!hdev_is_powered(hdev))
452 		return 0;
453 
454 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
455 		return 0;
456 
457 	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
458 		return 0;
459 
460 	cod[0] = hdev->minor_class;
461 	cod[1] = hdev->major_class;
462 	cod[2] = get_service_classes(hdev);
463 
464 	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
465 		cod[1] |= 0x20;
466 
467 	if (memcmp(cod, hdev->dev_class, 3) == 0)
468 		return 0;
469 
470 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CLASS_OF_DEV,
471 				     sizeof(cod), cod, HCI_CMD_TIMEOUT);
472 }
473 
474 static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable)
475 {
476 	/* If there is no connection we are OK to advertise. */
477 	if (hci_conn_num(hdev, LE_LINK) == 0)
478 		return true;
479 
480 	/* Check le_states if there is any connection in peripheral role. */
481 	if (hdev->conn_hash.le_num_peripheral > 0) {
482 		/* Peripheral connection state and non connectable mode
483 		 * bit 20.
484 		 */
485 		if (!connectable && !(hdev->le_states[2] & 0x10))
486 			return false;
487 
488 		/* Peripheral connection state and connectable mode bit 38
489 		 * and scannable bit 21.
490 		 */
491 		if (connectable && (!(hdev->le_states[4] & 0x40) ||
492 				    !(hdev->le_states[2] & 0x20)))
493 			return false;
494 	}
495 
496 	/* Check le_states if there is any connection in central role. */
497 	if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) {
498 		/* Central connection state and non connectable mode bit 18. */
499 		if (!connectable && !(hdev->le_states[2] & 0x02))
500 			return false;
501 
502 		/* Central connection state and connectable mode bit 35 and
503 		 * scannable 19.
504 		 */
505 		if (connectable && (!(hdev->le_states[4] & 0x08) ||
506 				    !(hdev->le_states[2] & 0x08)))
507 			return false;
508 	}
509 
510 	return true;
511 }
512 
513 static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
514 {
515 	/* If privacy is not enabled don't use RPA */
516 	if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
517 		return false;
518 
519 	/* If basic privacy mode is enabled use RPA */
520 	if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
521 		return true;
522 
523 	/* If limited privacy mode is enabled don't use RPA if we're
524 	 * both discoverable and bondable.
525 	 */
526 	if ((flags & MGMT_ADV_FLAG_DISCOV) &&
527 	    hci_dev_test_flag(hdev, HCI_BONDABLE))
528 		return false;
529 
530 	/* We're neither bondable nor discoverable in the limited
531 	 * privacy mode, therefore use RPA.
532 	 */
533 	return true;
534 }
535 
536 static int hci_set_random_addr_sync(struct hci_dev *hdev, bdaddr_t *rpa)
537 {
538 	/* If we're advertising or initiating an LE connection we can't
539 	 * go ahead and change the random address at this time. This is
540 	 * because the eventual initiator address used for the
541 	 * subsequently created connection will be undefined (some
542 	 * controllers use the new address and others the one we had
543 	 * when the operation started).
544 	 *
545 	 * In this kind of scenario skip the update and let the random
546 	 * address be updated at the next cycle.
547 	 */
548 	if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
549 	    hci_lookup_le_connect(hdev)) {
550 		bt_dev_dbg(hdev, "Deferring random address update");
551 		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
552 		return 0;
553 	}
554 
555 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RANDOM_ADDR,
556 				     6, rpa, HCI_CMD_TIMEOUT);
557 }
558 
559 int hci_update_random_address_sync(struct hci_dev *hdev, bool require_privacy,
560 				   bool rpa, u8 *own_addr_type)
561 {
562 	int err;
563 
564 	/* If privacy is enabled use a resolvable private address. If
565 	 * current RPA has expired or there is something else than
566 	 * the current RPA in use, then generate a new one.
567 	 */
568 	if (rpa) {
569 		/* If Controller supports LL Privacy use own address type is
570 		 * 0x03
571 		 */
572 		if (use_ll_privacy(hdev))
573 			*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
574 		else
575 			*own_addr_type = ADDR_LE_DEV_RANDOM;
576 
577 		/* Check if RPA is valid */
578 		if (rpa_valid(hdev))
579 			return 0;
580 
581 		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
582 		if (err < 0) {
583 			bt_dev_err(hdev, "failed to generate new RPA");
584 			return err;
585 		}
586 
587 		err = hci_set_random_addr_sync(hdev, &hdev->rpa);
588 		if (err)
589 			return err;
590 
591 		return 0;
592 	}
593 
594 	/* In case of required privacy without resolvable private address,
595 	 * use an non-resolvable private address. This is useful for active
596 	 * scanning and non-connectable advertising.
597 	 */
598 	if (require_privacy) {
599 		bdaddr_t nrpa;
600 
601 		while (true) {
602 			/* The non-resolvable private address is generated
603 			 * from random six bytes with the two most significant
604 			 * bits cleared.
605 			 */
606 			get_random_bytes(&nrpa, 6);
607 			nrpa.b[5] &= 0x3f;
608 
609 			/* The non-resolvable private address shall not be
610 			 * equal to the public address.
611 			 */
612 			if (bacmp(&hdev->bdaddr, &nrpa))
613 				break;
614 		}
615 
616 		*own_addr_type = ADDR_LE_DEV_RANDOM;
617 
618 		return hci_set_random_addr_sync(hdev, &nrpa);
619 	}
620 
621 	/* If forcing static address is in use or there is no public
622 	 * address use the static address as random address (but skip
623 	 * the HCI command if the current random address is already the
624 	 * static one.
625 	 *
626 	 * In case BR/EDR has been disabled on a dual-mode controller
627 	 * and a static address has been configured, then use that
628 	 * address instead of the public BR/EDR address.
629 	 */
630 	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
631 	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
632 	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
633 	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
634 		*own_addr_type = ADDR_LE_DEV_RANDOM;
635 		if (bacmp(&hdev->static_addr, &hdev->random_addr))
636 			return hci_set_random_addr_sync(hdev,
637 							&hdev->static_addr);
638 		return 0;
639 	}
640 
641 	/* Neither privacy nor static address is being used so use a
642 	 * public address.
643 	 */
644 	*own_addr_type = ADDR_LE_DEV_PUBLIC;
645 
646 	return 0;
647 }
648 
649 static int hci_disable_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance)
650 {
651 	struct hci_cp_le_set_ext_adv_enable *cp;
652 	struct hci_cp_ext_adv_set *set;
653 	u8 data[sizeof(*cp) + sizeof(*set) * 1];
654 	u8 size;
655 
656 	/* If request specifies an instance that doesn't exist, fail */
657 	if (instance > 0) {
658 		struct adv_info *adv;
659 
660 		adv = hci_find_adv_instance(hdev, instance);
661 		if (!adv)
662 			return -EINVAL;
663 
664 		/* If not enabled there is nothing to do */
665 		if (!adv->enabled)
666 			return 0;
667 	}
668 
669 	memset(data, 0, sizeof(data));
670 
671 	cp = (void *)data;
672 	set = (void *)cp->data;
673 
674 	/* Instance 0x00 indicates all advertising instances will be disabled */
675 	cp->num_of_sets = !!instance;
676 	cp->enable = 0x00;
677 
678 	set->handle = instance;
679 
680 	size = sizeof(*cp) + sizeof(*set) * cp->num_of_sets;
681 
682 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE,
683 				     size, data, HCI_CMD_TIMEOUT);
684 }
685 
686 static int hci_set_adv_set_random_addr_sync(struct hci_dev *hdev, u8 instance,
687 					    bdaddr_t *random_addr)
688 {
689 	struct hci_cp_le_set_adv_set_rand_addr cp;
690 	int err;
691 
692 	if (!instance) {
693 		/* Instance 0x00 doesn't have an adv_info, instead it uses
694 		 * hdev->random_addr to track its address so whenever it needs
695 		 * to be updated this also set the random address since
696 		 * hdev->random_addr is shared with scan state machine.
697 		 */
698 		err = hci_set_random_addr_sync(hdev, random_addr);
699 		if (err)
700 			return err;
701 	}
702 
703 	memset(&cp, 0, sizeof(cp));
704 
705 	cp.handle = instance;
706 	bacpy(&cp.bdaddr, random_addr);
707 
708 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
709 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
710 }
711 
712 int hci_setup_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance)
713 {
714 	struct hci_cp_le_set_ext_adv_params cp;
715 	bool connectable;
716 	u32 flags;
717 	bdaddr_t random_addr;
718 	u8 own_addr_type;
719 	int err;
720 	struct adv_info *adv;
721 	bool secondary_adv;
722 
723 	if (instance > 0) {
724 		adv = hci_find_adv_instance(hdev, instance);
725 		if (!adv)
726 			return -EINVAL;
727 	} else {
728 		adv = NULL;
729 	}
730 
731 	/* Updating parameters of an active instance will return a
732 	 * Command Disallowed error, so we must first disable the
733 	 * instance if it is active.
734 	 */
735 	if (adv && !adv->pending) {
736 		err = hci_disable_ext_adv_instance_sync(hdev, instance);
737 		if (err)
738 			return err;
739 	}
740 
741 	flags = hci_adv_instance_flags(hdev, instance);
742 
743 	/* If the "connectable" instance flag was not set, then choose between
744 	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
745 	 */
746 	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
747 		      mgmt_get_connectable(hdev);
748 
749 	if (!is_advertising_allowed(hdev, connectable))
750 		return -EPERM;
751 
752 	/* Set require_privacy to true only when non-connectable
753 	 * advertising is used. In that case it is fine to use a
754 	 * non-resolvable private address.
755 	 */
756 	err = hci_get_random_address(hdev, !connectable,
757 				     adv_use_rpa(hdev, flags), adv,
758 				     &own_addr_type, &random_addr);
759 	if (err < 0)
760 		return err;
761 
762 	memset(&cp, 0, sizeof(cp));
763 
764 	if (adv) {
765 		hci_cpu_to_le24(adv->min_interval, cp.min_interval);
766 		hci_cpu_to_le24(adv->max_interval, cp.max_interval);
767 		cp.tx_power = adv->tx_power;
768 	} else {
769 		hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval);
770 		hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval);
771 		cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE;
772 	}
773 
774 	secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK);
775 
776 	if (connectable) {
777 		if (secondary_adv)
778 			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND);
779 		else
780 			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND);
781 	} else if (hci_adv_instance_is_scannable(hdev, instance) ||
782 		   (flags & MGMT_ADV_PARAM_SCAN_RSP)) {
783 		if (secondary_adv)
784 			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND);
785 		else
786 			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND);
787 	} else {
788 		if (secondary_adv)
789 			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND);
790 		else
791 			cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND);
792 	}
793 
794 	/* If Own_Address_Type equals 0x02 or 0x03, the Peer_Address parameter
795 	 * contains the peer’s Identity Address and the Peer_Address_Type
796 	 * parameter contains the peer’s Identity Type (i.e., 0x00 or 0x01).
797 	 * These parameters are used to locate the corresponding local IRK in
798 	 * the resolving list; this IRK is used to generate their own address
799 	 * used in the advertisement.
800 	 */
801 	if (own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED)
802 		hci_copy_identity_address(hdev, &cp.peer_addr,
803 					  &cp.peer_addr_type);
804 
805 	cp.own_addr_type = own_addr_type;
806 	cp.channel_map = hdev->le_adv_channel_map;
807 	cp.handle = instance;
808 
809 	if (flags & MGMT_ADV_FLAG_SEC_2M) {
810 		cp.primary_phy = HCI_ADV_PHY_1M;
811 		cp.secondary_phy = HCI_ADV_PHY_2M;
812 	} else if (flags & MGMT_ADV_FLAG_SEC_CODED) {
813 		cp.primary_phy = HCI_ADV_PHY_CODED;
814 		cp.secondary_phy = HCI_ADV_PHY_CODED;
815 	} else {
816 		/* In all other cases use 1M */
817 		cp.primary_phy = HCI_ADV_PHY_1M;
818 		cp.secondary_phy = HCI_ADV_PHY_1M;
819 	}
820 
821 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS,
822 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
823 	if (err)
824 		return err;
825 
826 	if ((own_addr_type == ADDR_LE_DEV_RANDOM ||
827 	     own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) &&
828 	    bacmp(&random_addr, BDADDR_ANY)) {
829 		/* Check if random address need to be updated */
830 		if (adv) {
831 			if (!bacmp(&random_addr, &adv->random_addr))
832 				return 0;
833 		} else {
834 			if (!bacmp(&random_addr, &hdev->random_addr))
835 				return 0;
836 		}
837 
838 		return hci_set_adv_set_random_addr_sync(hdev, instance,
839 							&random_addr);
840 	}
841 
842 	return 0;
843 }
844 
845 static int hci_set_ext_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
846 {
847 	struct {
848 		struct hci_cp_le_set_ext_scan_rsp_data cp;
849 		u8 data[HCI_MAX_EXT_AD_LENGTH];
850 	} pdu;
851 	u8 len;
852 
853 	memset(&pdu, 0, sizeof(pdu));
854 
855 	len = eir_create_scan_rsp(hdev, instance, pdu.data);
856 
857 	if (hdev->scan_rsp_data_len == len &&
858 	    !memcmp(pdu.data, hdev->scan_rsp_data, len))
859 		return 0;
860 
861 	memcpy(hdev->scan_rsp_data, pdu.data, len);
862 	hdev->scan_rsp_data_len = len;
863 
864 	pdu.cp.handle = instance;
865 	pdu.cp.length = len;
866 	pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
867 	pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
868 
869 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA,
870 				     sizeof(pdu.cp) + len, &pdu.cp,
871 				     HCI_CMD_TIMEOUT);
872 }
873 
874 static int __hci_set_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
875 {
876 	struct hci_cp_le_set_scan_rsp_data cp;
877 	u8 len;
878 
879 	memset(&cp, 0, sizeof(cp));
880 
881 	len = eir_create_scan_rsp(hdev, instance, cp.data);
882 
883 	if (hdev->scan_rsp_data_len == len &&
884 	    !memcmp(cp.data, hdev->scan_rsp_data, len))
885 		return 0;
886 
887 	memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
888 	hdev->scan_rsp_data_len = len;
889 
890 	cp.length = len;
891 
892 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_RSP_DATA,
893 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
894 }
895 
896 int hci_update_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
897 {
898 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
899 		return 0;
900 
901 	if (ext_adv_capable(hdev))
902 		return hci_set_ext_scan_rsp_data_sync(hdev, instance);
903 
904 	return __hci_set_scan_rsp_data_sync(hdev, instance);
905 }
906 
907 int hci_enable_ext_advertising_sync(struct hci_dev *hdev, u8 instance)
908 {
909 	struct hci_cp_le_set_ext_adv_enable *cp;
910 	struct hci_cp_ext_adv_set *set;
911 	u8 data[sizeof(*cp) + sizeof(*set) * 1];
912 	struct adv_info *adv;
913 
914 	if (instance > 0) {
915 		adv = hci_find_adv_instance(hdev, instance);
916 		if (!adv)
917 			return -EINVAL;
918 		/* If already enabled there is nothing to do */
919 		if (adv->enabled)
920 			return 0;
921 	} else {
922 		adv = NULL;
923 	}
924 
925 	cp = (void *)data;
926 	set = (void *)cp->data;
927 
928 	memset(cp, 0, sizeof(*cp));
929 
930 	cp->enable = 0x01;
931 	cp->num_of_sets = 0x01;
932 
933 	memset(set, 0, sizeof(*set));
934 
935 	set->handle = instance;
936 
937 	/* Set duration per instance since controller is responsible for
938 	 * scheduling it.
939 	 */
940 	if (adv && adv->timeout) {
941 		u16 duration = adv->timeout * MSEC_PER_SEC;
942 
943 		/* Time = N * 10 ms */
944 		set->duration = cpu_to_le16(duration / 10);
945 	}
946 
947 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE,
948 				     sizeof(*cp) +
949 				     sizeof(*set) * cp->num_of_sets,
950 				     data, HCI_CMD_TIMEOUT);
951 }
952 
953 int hci_start_ext_adv_sync(struct hci_dev *hdev, u8 instance)
954 {
955 	int err;
956 
957 	err = hci_setup_ext_adv_instance_sync(hdev, instance);
958 	if (err)
959 		return err;
960 
961 	err = hci_set_ext_scan_rsp_data_sync(hdev, instance);
962 	if (err)
963 		return err;
964 
965 	return hci_enable_ext_advertising_sync(hdev, instance);
966 }
967 
968 static int hci_start_adv_sync(struct hci_dev *hdev, u8 instance)
969 {
970 	int err;
971 
972 	if (ext_adv_capable(hdev))
973 		return hci_start_ext_adv_sync(hdev, instance);
974 
975 	err = hci_update_adv_data_sync(hdev, instance);
976 	if (err)
977 		return err;
978 
979 	err = hci_update_scan_rsp_data_sync(hdev, instance);
980 	if (err)
981 		return err;
982 
983 	return hci_enable_advertising_sync(hdev);
984 }
985 
986 int hci_enable_advertising_sync(struct hci_dev *hdev)
987 {
988 	struct adv_info *adv_instance;
989 	struct hci_cp_le_set_adv_param cp;
990 	u8 own_addr_type, enable = 0x01;
991 	bool connectable;
992 	u16 adv_min_interval, adv_max_interval;
993 	u32 flags;
994 	u8 status;
995 
996 	if (ext_adv_capable(hdev))
997 		return hci_enable_ext_advertising_sync(hdev,
998 						       hdev->cur_adv_instance);
999 
1000 	flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance);
1001 	adv_instance = hci_find_adv_instance(hdev, hdev->cur_adv_instance);
1002 
1003 	/* If the "connectable" instance flag was not set, then choose between
1004 	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1005 	 */
1006 	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1007 		      mgmt_get_connectable(hdev);
1008 
1009 	if (!is_advertising_allowed(hdev, connectable))
1010 		return -EINVAL;
1011 
1012 	status = hci_disable_advertising_sync(hdev);
1013 	if (status)
1014 		return status;
1015 
1016 	/* Clear the HCI_LE_ADV bit temporarily so that the
1017 	 * hci_update_random_address knows that it's safe to go ahead
1018 	 * and write a new random address. The flag will be set back on
1019 	 * as soon as the SET_ADV_ENABLE HCI command completes.
1020 	 */
1021 	hci_dev_clear_flag(hdev, HCI_LE_ADV);
1022 
1023 	/* Set require_privacy to true only when non-connectable
1024 	 * advertising is used. In that case it is fine to use a
1025 	 * non-resolvable private address.
1026 	 */
1027 	status = hci_update_random_address_sync(hdev, !connectable,
1028 						adv_use_rpa(hdev, flags),
1029 						&own_addr_type);
1030 	if (status)
1031 		return status;
1032 
1033 	memset(&cp, 0, sizeof(cp));
1034 
1035 	if (adv_instance) {
1036 		adv_min_interval = adv_instance->min_interval;
1037 		adv_max_interval = adv_instance->max_interval;
1038 	} else {
1039 		adv_min_interval = hdev->le_adv_min_interval;
1040 		adv_max_interval = hdev->le_adv_max_interval;
1041 	}
1042 
1043 	if (connectable) {
1044 		cp.type = LE_ADV_IND;
1045 	} else {
1046 		if (hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance))
1047 			cp.type = LE_ADV_SCAN_IND;
1048 		else
1049 			cp.type = LE_ADV_NONCONN_IND;
1050 
1051 		if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) ||
1052 		    hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
1053 			adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN;
1054 			adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX;
1055 		}
1056 	}
1057 
1058 	cp.min_interval = cpu_to_le16(adv_min_interval);
1059 	cp.max_interval = cpu_to_le16(adv_max_interval);
1060 	cp.own_address_type = own_addr_type;
1061 	cp.channel_map = hdev->le_adv_channel_map;
1062 
1063 	status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM,
1064 				       sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1065 	if (status)
1066 		return status;
1067 
1068 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
1069 				     sizeof(enable), &enable, HCI_CMD_TIMEOUT);
1070 }
1071 
1072 static int enable_advertising_sync(struct hci_dev *hdev, void *data)
1073 {
1074 	return hci_enable_advertising_sync(hdev);
1075 }
1076 
1077 int hci_enable_advertising(struct hci_dev *hdev)
1078 {
1079 	if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
1080 	    list_empty(&hdev->adv_instances))
1081 		return 0;
1082 
1083 	return hci_cmd_sync_queue(hdev, enable_advertising_sync, NULL, NULL);
1084 }
1085 
1086 int hci_remove_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance,
1087 				     struct sock *sk)
1088 {
1089 	int err;
1090 
1091 	if (!ext_adv_capable(hdev))
1092 		return 0;
1093 
1094 	err = hci_disable_ext_adv_instance_sync(hdev, instance);
1095 	if (err)
1096 		return err;
1097 
1098 	/* If request specifies an instance that doesn't exist, fail */
1099 	if (instance > 0 && !hci_find_adv_instance(hdev, instance))
1100 		return -EINVAL;
1101 
1102 	return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_REMOVE_ADV_SET,
1103 					sizeof(instance), &instance, 0,
1104 					HCI_CMD_TIMEOUT, sk);
1105 }
1106 
1107 static void cancel_adv_timeout(struct hci_dev *hdev)
1108 {
1109 	if (hdev->adv_instance_timeout) {
1110 		hdev->adv_instance_timeout = 0;
1111 		cancel_delayed_work(&hdev->adv_instance_expire);
1112 	}
1113 }
1114 
1115 static int hci_set_ext_adv_data_sync(struct hci_dev *hdev, u8 instance)
1116 {
1117 	struct {
1118 		struct hci_cp_le_set_ext_adv_data cp;
1119 		u8 data[HCI_MAX_EXT_AD_LENGTH];
1120 	} pdu;
1121 	u8 len;
1122 
1123 	memset(&pdu, 0, sizeof(pdu));
1124 
1125 	len = eir_create_adv_data(hdev, instance, pdu.data);
1126 
1127 	/* There's nothing to do if the data hasn't changed */
1128 	if (hdev->adv_data_len == len &&
1129 	    memcmp(pdu.data, hdev->adv_data, len) == 0)
1130 		return 0;
1131 
1132 	memcpy(hdev->adv_data, pdu.data, len);
1133 	hdev->adv_data_len = len;
1134 
1135 	pdu.cp.length = len;
1136 	pdu.cp.handle = instance;
1137 	pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1138 	pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1139 
1140 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_DATA,
1141 				     sizeof(pdu.cp) + len, &pdu.cp,
1142 				     HCI_CMD_TIMEOUT);
1143 }
1144 
1145 static int hci_set_adv_data_sync(struct hci_dev *hdev, u8 instance)
1146 {
1147 	struct hci_cp_le_set_adv_data cp;
1148 	u8 len;
1149 
1150 	memset(&cp, 0, sizeof(cp));
1151 
1152 	len = eir_create_adv_data(hdev, instance, cp.data);
1153 
1154 	/* There's nothing to do if the data hasn't changed */
1155 	if (hdev->adv_data_len == len &&
1156 	    memcmp(cp.data, hdev->adv_data, len) == 0)
1157 		return 0;
1158 
1159 	memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1160 	hdev->adv_data_len = len;
1161 
1162 	cp.length = len;
1163 
1164 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_DATA,
1165 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1166 }
1167 
1168 int hci_update_adv_data_sync(struct hci_dev *hdev, u8 instance)
1169 {
1170 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1171 		return 0;
1172 
1173 	if (ext_adv_capable(hdev))
1174 		return hci_set_ext_adv_data_sync(hdev, instance);
1175 
1176 	return hci_set_adv_data_sync(hdev, instance);
1177 }
1178 
1179 int hci_schedule_adv_instance_sync(struct hci_dev *hdev, u8 instance,
1180 				   bool force)
1181 {
1182 	struct adv_info *adv = NULL;
1183 	u16 timeout;
1184 
1185 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) && !ext_adv_capable(hdev))
1186 		return -EPERM;
1187 
1188 	if (hdev->adv_instance_timeout)
1189 		return -EBUSY;
1190 
1191 	adv = hci_find_adv_instance(hdev, instance);
1192 	if (!adv)
1193 		return -ENOENT;
1194 
1195 	/* A zero timeout means unlimited advertising. As long as there is
1196 	 * only one instance, duration should be ignored. We still set a timeout
1197 	 * in case further instances are being added later on.
1198 	 *
1199 	 * If the remaining lifetime of the instance is more than the duration
1200 	 * then the timeout corresponds to the duration, otherwise it will be
1201 	 * reduced to the remaining instance lifetime.
1202 	 */
1203 	if (adv->timeout == 0 || adv->duration <= adv->remaining_time)
1204 		timeout = adv->duration;
1205 	else
1206 		timeout = adv->remaining_time;
1207 
1208 	/* The remaining time is being reduced unless the instance is being
1209 	 * advertised without time limit.
1210 	 */
1211 	if (adv->timeout)
1212 		adv->remaining_time = adv->remaining_time - timeout;
1213 
1214 	/* Only use work for scheduling instances with legacy advertising */
1215 	if (!ext_adv_capable(hdev)) {
1216 		hdev->adv_instance_timeout = timeout;
1217 		queue_delayed_work(hdev->req_workqueue,
1218 				   &hdev->adv_instance_expire,
1219 				   msecs_to_jiffies(timeout * 1000));
1220 	}
1221 
1222 	/* If we're just re-scheduling the same instance again then do not
1223 	 * execute any HCI commands. This happens when a single instance is
1224 	 * being advertised.
1225 	 */
1226 	if (!force && hdev->cur_adv_instance == instance &&
1227 	    hci_dev_test_flag(hdev, HCI_LE_ADV))
1228 		return 0;
1229 
1230 	hdev->cur_adv_instance = instance;
1231 
1232 	return hci_start_adv_sync(hdev, instance);
1233 }
1234 
1235 static int hci_clear_adv_sets_sync(struct hci_dev *hdev, struct sock *sk)
1236 {
1237 	int err;
1238 
1239 	if (!ext_adv_capable(hdev))
1240 		return 0;
1241 
1242 	/* Disable instance 0x00 to disable all instances */
1243 	err = hci_disable_ext_adv_instance_sync(hdev, 0x00);
1244 	if (err)
1245 		return err;
1246 
1247 	return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CLEAR_ADV_SETS,
1248 					0, NULL, 0, HCI_CMD_TIMEOUT, sk);
1249 }
1250 
1251 static int hci_clear_adv_sync(struct hci_dev *hdev, struct sock *sk, bool force)
1252 {
1253 	struct adv_info *adv, *n;
1254 
1255 	if (ext_adv_capable(hdev))
1256 		/* Remove all existing sets */
1257 		return hci_clear_adv_sets_sync(hdev, sk);
1258 
1259 	/* This is safe as long as there is no command send while the lock is
1260 	 * held.
1261 	 */
1262 	hci_dev_lock(hdev);
1263 
1264 	/* Cleanup non-ext instances */
1265 	list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) {
1266 		u8 instance = adv->instance;
1267 		int err;
1268 
1269 		if (!(force || adv->timeout))
1270 			continue;
1271 
1272 		err = hci_remove_adv_instance(hdev, instance);
1273 		if (!err)
1274 			mgmt_advertising_removed(sk, hdev, instance);
1275 	}
1276 
1277 	hci_dev_unlock(hdev);
1278 
1279 	return 0;
1280 }
1281 
1282 static int hci_remove_adv_sync(struct hci_dev *hdev, u8 instance,
1283 			       struct sock *sk)
1284 {
1285 	int err;
1286 
1287 	/* If we use extended advertising, instance has to be removed first. */
1288 	if (ext_adv_capable(hdev))
1289 		return hci_remove_ext_adv_instance_sync(hdev, instance, sk);
1290 
1291 	/* This is safe as long as there is no command send while the lock is
1292 	 * held.
1293 	 */
1294 	hci_dev_lock(hdev);
1295 
1296 	err = hci_remove_adv_instance(hdev, instance);
1297 	if (!err)
1298 		mgmt_advertising_removed(sk, hdev, instance);
1299 
1300 	hci_dev_unlock(hdev);
1301 
1302 	return err;
1303 }
1304 
1305 /* For a single instance:
1306  * - force == true: The instance will be removed even when its remaining
1307  *   lifetime is not zero.
1308  * - force == false: the instance will be deactivated but kept stored unless
1309  *   the remaining lifetime is zero.
1310  *
1311  * For instance == 0x00:
1312  * - force == true: All instances will be removed regardless of their timeout
1313  *   setting.
1314  * - force == false: Only instances that have a timeout will be removed.
1315  */
1316 int hci_remove_advertising_sync(struct hci_dev *hdev, struct sock *sk,
1317 				u8 instance, bool force)
1318 {
1319 	struct adv_info *next = NULL;
1320 	int err;
1321 
1322 	/* Cancel any timeout concerning the removed instance(s). */
1323 	if (!instance || hdev->cur_adv_instance == instance)
1324 		cancel_adv_timeout(hdev);
1325 
1326 	/* Get the next instance to advertise BEFORE we remove
1327 	 * the current one. This can be the same instance again
1328 	 * if there is only one instance.
1329 	 */
1330 	if (hdev->cur_adv_instance == instance)
1331 		next = hci_get_next_instance(hdev, instance);
1332 
1333 	if (!instance) {
1334 		err = hci_clear_adv_sync(hdev, sk, force);
1335 		if (err)
1336 			return err;
1337 	} else {
1338 		struct adv_info *adv = hci_find_adv_instance(hdev, instance);
1339 
1340 		if (force || (adv && adv->timeout && !adv->remaining_time)) {
1341 			/* Don't advertise a removed instance. */
1342 			if (next && next->instance == instance)
1343 				next = NULL;
1344 
1345 			err = hci_remove_adv_sync(hdev, instance, sk);
1346 			if (err)
1347 				return err;
1348 		}
1349 	}
1350 
1351 	if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING))
1352 		return 0;
1353 
1354 	if (next && !ext_adv_capable(hdev))
1355 		hci_schedule_adv_instance_sync(hdev, next->instance, false);
1356 
1357 	return 0;
1358 }
1359 
1360 int hci_read_rssi_sync(struct hci_dev *hdev, __le16 handle)
1361 {
1362 	struct hci_cp_read_rssi cp;
1363 
1364 	cp.handle = handle;
1365 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_RSSI,
1366 					sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1367 }
1368 
1369 int hci_read_clock_sync(struct hci_dev *hdev, struct hci_cp_read_clock *cp)
1370 {
1371 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLOCK,
1372 					sizeof(*cp), cp, HCI_CMD_TIMEOUT);
1373 }
1374 
1375 int hci_read_tx_power_sync(struct hci_dev *hdev, __le16 handle, u8 type)
1376 {
1377 	struct hci_cp_read_tx_power cp;
1378 
1379 	cp.handle = handle;
1380 	cp.type = type;
1381 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_TX_POWER,
1382 					sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1383 }
1384 
1385 int hci_disable_advertising_sync(struct hci_dev *hdev)
1386 {
1387 	u8 enable = 0x00;
1388 
1389 	/* If controller is not advertising we are done. */
1390 	if (!hci_dev_test_flag(hdev, HCI_LE_ADV))
1391 		return 0;
1392 
1393 	if (ext_adv_capable(hdev))
1394 		return hci_disable_ext_adv_instance_sync(hdev, 0x00);
1395 
1396 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
1397 				     sizeof(enable), &enable, HCI_CMD_TIMEOUT);
1398 }
1399 
1400 static int hci_le_set_ext_scan_enable_sync(struct hci_dev *hdev, u8 val,
1401 					   u8 filter_dup)
1402 {
1403 	struct hci_cp_le_set_ext_scan_enable cp;
1404 
1405 	memset(&cp, 0, sizeof(cp));
1406 	cp.enable = val;
1407 	cp.filter_dup = filter_dup;
1408 
1409 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
1410 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1411 }
1412 
1413 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val,
1414 				       u8 filter_dup)
1415 {
1416 	struct hci_cp_le_set_scan_enable cp;
1417 
1418 	if (use_ext_scan(hdev))
1419 		return hci_le_set_ext_scan_enable_sync(hdev, val, filter_dup);
1420 
1421 	memset(&cp, 0, sizeof(cp));
1422 	cp.enable = val;
1423 	cp.filter_dup = filter_dup;
1424 
1425 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_ENABLE,
1426 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1427 }
1428 
1429 static int hci_le_set_addr_resolution_enable_sync(struct hci_dev *hdev, u8 val)
1430 {
1431 	if (!use_ll_privacy(hdev))
1432 		return 0;
1433 
1434 	/* If controller is not/already resolving we are done. */
1435 	if (val == hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION))
1436 		return 0;
1437 
1438 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE,
1439 				     sizeof(val), &val, HCI_CMD_TIMEOUT);
1440 }
1441 
1442 static int hci_scan_disable_sync(struct hci_dev *hdev)
1443 {
1444 	int err;
1445 
1446 	/* If controller is not scanning we are done. */
1447 	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
1448 		return 0;
1449 
1450 	if (hdev->scanning_paused) {
1451 		bt_dev_dbg(hdev, "Scanning is paused for suspend");
1452 		return 0;
1453 	}
1454 
1455 	err = hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00);
1456 	if (err) {
1457 		bt_dev_err(hdev, "Unable to disable scanning: %d", err);
1458 		return err;
1459 	}
1460 
1461 	return err;
1462 }
1463 
1464 static bool scan_use_rpa(struct hci_dev *hdev)
1465 {
1466 	return hci_dev_test_flag(hdev, HCI_PRIVACY);
1467 }
1468 
1469 static void hci_start_interleave_scan(struct hci_dev *hdev)
1470 {
1471 	hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER;
1472 	queue_delayed_work(hdev->req_workqueue,
1473 			   &hdev->interleave_scan, 0);
1474 }
1475 
1476 static bool is_interleave_scanning(struct hci_dev *hdev)
1477 {
1478 	return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE;
1479 }
1480 
1481 static void cancel_interleave_scan(struct hci_dev *hdev)
1482 {
1483 	bt_dev_dbg(hdev, "cancelling interleave scan");
1484 
1485 	cancel_delayed_work_sync(&hdev->interleave_scan);
1486 
1487 	hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE;
1488 }
1489 
1490 /* Return true if interleave_scan wasn't started until exiting this function,
1491  * otherwise, return false
1492  */
1493 static bool hci_update_interleaved_scan_sync(struct hci_dev *hdev)
1494 {
1495 	/* Do interleaved scan only if all of the following are true:
1496 	 * - There is at least one ADV monitor
1497 	 * - At least one pending LE connection or one device to be scanned for
1498 	 * - Monitor offloading is not supported
1499 	 * If so, we should alternate between allowlist scan and one without
1500 	 * any filters to save power.
1501 	 */
1502 	bool use_interleaving = hci_is_adv_monitoring(hdev) &&
1503 				!(list_empty(&hdev->pend_le_conns) &&
1504 				  list_empty(&hdev->pend_le_reports)) &&
1505 				hci_get_adv_monitor_offload_ext(hdev) ==
1506 				    HCI_ADV_MONITOR_EXT_NONE;
1507 	bool is_interleaving = is_interleave_scanning(hdev);
1508 
1509 	if (use_interleaving && !is_interleaving) {
1510 		hci_start_interleave_scan(hdev);
1511 		bt_dev_dbg(hdev, "starting interleave scan");
1512 		return true;
1513 	}
1514 
1515 	if (!use_interleaving && is_interleaving)
1516 		cancel_interleave_scan(hdev);
1517 
1518 	return false;
1519 }
1520 
1521 /* Removes connection to resolve list if needed.*/
1522 static int hci_le_del_resolve_list_sync(struct hci_dev *hdev,
1523 					bdaddr_t *bdaddr, u8 bdaddr_type)
1524 {
1525 	struct hci_cp_le_del_from_resolv_list cp;
1526 	struct bdaddr_list_with_irk *entry;
1527 
1528 	if (!use_ll_privacy(hdev))
1529 		return 0;
1530 
1531 	/* Check if the IRK has been programmed */
1532 	entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, bdaddr,
1533 						bdaddr_type);
1534 	if (!entry)
1535 		return 0;
1536 
1537 	cp.bdaddr_type = bdaddr_type;
1538 	bacpy(&cp.bdaddr, bdaddr);
1539 
1540 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_RESOLV_LIST,
1541 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1542 }
1543 
1544 static int hci_le_del_accept_list_sync(struct hci_dev *hdev,
1545 				       bdaddr_t *bdaddr, u8 bdaddr_type)
1546 {
1547 	struct hci_cp_le_del_from_accept_list cp;
1548 	int err;
1549 
1550 	/* Check if device is on accept list before removing it */
1551 	if (!hci_bdaddr_list_lookup(&hdev->le_accept_list, bdaddr, bdaddr_type))
1552 		return 0;
1553 
1554 	cp.bdaddr_type = bdaddr_type;
1555 	bacpy(&cp.bdaddr, bdaddr);
1556 
1557 	/* Ignore errors when removing from resolving list as that is likely
1558 	 * that the device was never added.
1559 	 */
1560 	hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type);
1561 
1562 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_ACCEPT_LIST,
1563 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1564 	if (err) {
1565 		bt_dev_err(hdev, "Unable to remove from allow list: %d", err);
1566 		return err;
1567 	}
1568 
1569 	bt_dev_dbg(hdev, "Remove %pMR (0x%x) from allow list", &cp.bdaddr,
1570 		   cp.bdaddr_type);
1571 
1572 	return 0;
1573 }
1574 
1575 /* Adds connection to resolve list if needed.
1576  * Setting params to NULL programs local hdev->irk
1577  */
1578 static int hci_le_add_resolve_list_sync(struct hci_dev *hdev,
1579 					struct hci_conn_params *params)
1580 {
1581 	struct hci_cp_le_add_to_resolv_list cp;
1582 	struct smp_irk *irk;
1583 	struct bdaddr_list_with_irk *entry;
1584 
1585 	if (!use_ll_privacy(hdev))
1586 		return 0;
1587 
1588 	/* Attempt to program local identity address, type and irk if params is
1589 	 * NULL.
1590 	 */
1591 	if (!params) {
1592 		if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
1593 			return 0;
1594 
1595 		hci_copy_identity_address(hdev, &cp.bdaddr, &cp.bdaddr_type);
1596 		memcpy(cp.peer_irk, hdev->irk, 16);
1597 		goto done;
1598 	}
1599 
1600 	irk = hci_find_irk_by_addr(hdev, &params->addr, params->addr_type);
1601 	if (!irk)
1602 		return 0;
1603 
1604 	/* Check if the IK has _not_ been programmed yet. */
1605 	entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list,
1606 						&params->addr,
1607 						params->addr_type);
1608 	if (entry)
1609 		return 0;
1610 
1611 	cp.bdaddr_type = params->addr_type;
1612 	bacpy(&cp.bdaddr, &params->addr);
1613 	memcpy(cp.peer_irk, irk->val, 16);
1614 
1615 done:
1616 	if (hci_dev_test_flag(hdev, HCI_PRIVACY))
1617 		memcpy(cp.local_irk, hdev->irk, 16);
1618 	else
1619 		memset(cp.local_irk, 0, 16);
1620 
1621 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_RESOLV_LIST,
1622 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1623 }
1624 
1625 /* Set Device Privacy Mode. */
1626 static int hci_le_set_privacy_mode_sync(struct hci_dev *hdev,
1627 					struct hci_conn_params *params)
1628 {
1629 	struct hci_cp_le_set_privacy_mode cp;
1630 	struct smp_irk *irk;
1631 
1632 	/* If device privacy mode has already been set there is nothing to do */
1633 	if (params->privacy_mode == HCI_DEVICE_PRIVACY)
1634 		return 0;
1635 
1636 	/* Check if HCI_CONN_FLAG_DEVICE_PRIVACY has been set as it also
1637 	 * indicates that LL Privacy has been enabled and
1638 	 * HCI_OP_LE_SET_PRIVACY_MODE is supported.
1639 	 */
1640 	if (!test_bit(HCI_CONN_FLAG_DEVICE_PRIVACY, params->flags))
1641 		return 0;
1642 
1643 	irk = hci_find_irk_by_addr(hdev, &params->addr, params->addr_type);
1644 	if (!irk)
1645 		return 0;
1646 
1647 	memset(&cp, 0, sizeof(cp));
1648 	cp.bdaddr_type = irk->addr_type;
1649 	bacpy(&cp.bdaddr, &irk->bdaddr);
1650 	cp.mode = HCI_DEVICE_PRIVACY;
1651 
1652 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PRIVACY_MODE,
1653 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1654 }
1655 
1656 /* Adds connection to allow list if needed, if the device uses RPA (has IRK)
1657  * this attempts to program the device in the resolving list as well and
1658  * properly set the privacy mode.
1659  */
1660 static int hci_le_add_accept_list_sync(struct hci_dev *hdev,
1661 				       struct hci_conn_params *params,
1662 				       u8 *num_entries)
1663 {
1664 	struct hci_cp_le_add_to_accept_list cp;
1665 	int err;
1666 
1667 	/* Select filter policy to accept all advertising */
1668 	if (*num_entries >= hdev->le_accept_list_size)
1669 		return -ENOSPC;
1670 
1671 	/* Accept list can not be used with RPAs */
1672 	if (!use_ll_privacy(hdev) &&
1673 	    hci_find_irk_by_addr(hdev, &params->addr, params->addr_type)) {
1674 		return -EINVAL;
1675 	}
1676 
1677 	/* During suspend, only wakeable devices can be in acceptlist */
1678 	if (hdev->suspended &&
1679 	    !test_bit(HCI_CONN_FLAG_REMOTE_WAKEUP, params->flags))
1680 		return 0;
1681 
1682 	/* Attempt to program the device in the resolving list first to avoid
1683 	 * having to rollback in case it fails since the resolving list is
1684 	 * dynamic it can probably be smaller than the accept list.
1685 	 */
1686 	err = hci_le_add_resolve_list_sync(hdev, params);
1687 	if (err) {
1688 		bt_dev_err(hdev, "Unable to add to resolve list: %d", err);
1689 		return err;
1690 	}
1691 
1692 	/* Set Privacy Mode */
1693 	err = hci_le_set_privacy_mode_sync(hdev, params);
1694 	if (err) {
1695 		bt_dev_err(hdev, "Unable to set privacy mode: %d", err);
1696 		return err;
1697 	}
1698 
1699 	/* Check if already in accept list */
1700 	if (hci_bdaddr_list_lookup(&hdev->le_accept_list, &params->addr,
1701 				   params->addr_type))
1702 		return 0;
1703 
1704 	*num_entries += 1;
1705 	cp.bdaddr_type = params->addr_type;
1706 	bacpy(&cp.bdaddr, &params->addr);
1707 
1708 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST,
1709 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1710 	if (err) {
1711 		bt_dev_err(hdev, "Unable to add to allow list: %d", err);
1712 		/* Rollback the device from the resolving list */
1713 		hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type);
1714 		return err;
1715 	}
1716 
1717 	bt_dev_dbg(hdev, "Add %pMR (0x%x) to allow list", &cp.bdaddr,
1718 		   cp.bdaddr_type);
1719 
1720 	return 0;
1721 }
1722 
1723 /* This function disables/pause all advertising instances */
1724 static int hci_pause_advertising_sync(struct hci_dev *hdev)
1725 {
1726 	int err;
1727 	int old_state;
1728 
1729 	/* If already been paused there is nothing to do. */
1730 	if (hdev->advertising_paused)
1731 		return 0;
1732 
1733 	bt_dev_dbg(hdev, "Pausing directed advertising");
1734 
1735 	/* Stop directed advertising */
1736 	old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING);
1737 	if (old_state) {
1738 		/* When discoverable timeout triggers, then just make sure
1739 		 * the limited discoverable flag is cleared. Even in the case
1740 		 * of a timeout triggered from general discoverable, it is
1741 		 * safe to unconditionally clear the flag.
1742 		 */
1743 		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1744 		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1745 		hdev->discov_timeout = 0;
1746 	}
1747 
1748 	bt_dev_dbg(hdev, "Pausing advertising instances");
1749 
1750 	/* Call to disable any advertisements active on the controller.
1751 	 * This will succeed even if no advertisements are configured.
1752 	 */
1753 	err = hci_disable_advertising_sync(hdev);
1754 	if (err)
1755 		return err;
1756 
1757 	/* If we are using software rotation, pause the loop */
1758 	if (!ext_adv_capable(hdev))
1759 		cancel_adv_timeout(hdev);
1760 
1761 	hdev->advertising_paused = true;
1762 	hdev->advertising_old_state = old_state;
1763 
1764 	return 0;
1765 }
1766 
1767 /* This function enables all user advertising instances */
1768 static int hci_resume_advertising_sync(struct hci_dev *hdev)
1769 {
1770 	struct adv_info *adv, *tmp;
1771 	int err;
1772 
1773 	/* If advertising has not been paused there is nothing  to do. */
1774 	if (!hdev->advertising_paused)
1775 		return 0;
1776 
1777 	/* Resume directed advertising */
1778 	hdev->advertising_paused = false;
1779 	if (hdev->advertising_old_state) {
1780 		hci_dev_set_flag(hdev, HCI_ADVERTISING);
1781 		hdev->advertising_old_state = 0;
1782 	}
1783 
1784 	bt_dev_dbg(hdev, "Resuming advertising instances");
1785 
1786 	if (ext_adv_capable(hdev)) {
1787 		/* Call for each tracked instance to be re-enabled */
1788 		list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) {
1789 			err = hci_enable_ext_advertising_sync(hdev,
1790 							      adv->instance);
1791 			if (!err)
1792 				continue;
1793 
1794 			/* If the instance cannot be resumed remove it */
1795 			hci_remove_ext_adv_instance_sync(hdev, adv->instance,
1796 							 NULL);
1797 		}
1798 	} else {
1799 		/* Schedule for most recent instance to be restarted and begin
1800 		 * the software rotation loop
1801 		 */
1802 		err = hci_schedule_adv_instance_sync(hdev,
1803 						     hdev->cur_adv_instance,
1804 						     true);
1805 	}
1806 
1807 	hdev->advertising_paused = false;
1808 
1809 	return err;
1810 }
1811 
1812 struct sk_buff *hci_read_local_oob_data_sync(struct hci_dev *hdev,
1813 					     bool extended, struct sock *sk)
1814 {
1815 	u16 opcode = extended ? HCI_OP_READ_LOCAL_OOB_EXT_DATA :
1816 					HCI_OP_READ_LOCAL_OOB_DATA;
1817 
1818 	return __hci_cmd_sync_sk(hdev, opcode, 0, NULL, 0, HCI_CMD_TIMEOUT, sk);
1819 }
1820 
1821 /* Device must not be scanning when updating the accept list.
1822  *
1823  * Update is done using the following sequence:
1824  *
1825  * use_ll_privacy((Disable Advertising) -> Disable Resolving List) ->
1826  * Remove Devices From Accept List ->
1827  * (has IRK && use_ll_privacy(Remove Devices From Resolving List))->
1828  * Add Devices to Accept List ->
1829  * (has IRK && use_ll_privacy(Remove Devices From Resolving List)) ->
1830  * use_ll_privacy(Enable Resolving List -> (Enable Advertising)) ->
1831  * Enable Scanning
1832  *
1833  * In case of failure advertising shall be restored to its original state and
1834  * return would disable accept list since either accept or resolving list could
1835  * not be programmed.
1836  *
1837  */
1838 static u8 hci_update_accept_list_sync(struct hci_dev *hdev)
1839 {
1840 	struct hci_conn_params *params;
1841 	struct bdaddr_list *b, *t;
1842 	u8 num_entries = 0;
1843 	bool pend_conn, pend_report;
1844 	u8 filter_policy;
1845 	int err;
1846 
1847 	/* Pause advertising if resolving list can be used as controllers are
1848 	 * cannot accept resolving list modifications while advertising.
1849 	 */
1850 	if (use_ll_privacy(hdev)) {
1851 		err = hci_pause_advertising_sync(hdev);
1852 		if (err) {
1853 			bt_dev_err(hdev, "pause advertising failed: %d", err);
1854 			return 0x00;
1855 		}
1856 	}
1857 
1858 	/* Disable address resolution while reprogramming accept list since
1859 	 * devices that do have an IRK will be programmed in the resolving list
1860 	 * when LL Privacy is enabled.
1861 	 */
1862 	err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00);
1863 	if (err) {
1864 		bt_dev_err(hdev, "Unable to disable LL privacy: %d", err);
1865 		goto done;
1866 	}
1867 
1868 	/* Go through the current accept list programmed into the
1869 	 * controller one by one and check if that address is still
1870 	 * in the list of pending connections or list of devices to
1871 	 * report. If not present in either list, then remove it from
1872 	 * the controller.
1873 	 */
1874 	list_for_each_entry_safe(b, t, &hdev->le_accept_list, list) {
1875 		pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns,
1876 						      &b->bdaddr,
1877 						      b->bdaddr_type);
1878 		pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports,
1879 							&b->bdaddr,
1880 							b->bdaddr_type);
1881 
1882 		/* If the device is not likely to connect or report,
1883 		 * remove it from the acceptlist.
1884 		 */
1885 		if (!pend_conn && !pend_report) {
1886 			hci_le_del_accept_list_sync(hdev, &b->bdaddr,
1887 						    b->bdaddr_type);
1888 			continue;
1889 		}
1890 
1891 		num_entries++;
1892 	}
1893 
1894 	/* Since all no longer valid accept list entries have been
1895 	 * removed, walk through the list of pending connections
1896 	 * and ensure that any new device gets programmed into
1897 	 * the controller.
1898 	 *
1899 	 * If the list of the devices is larger than the list of
1900 	 * available accept list entries in the controller, then
1901 	 * just abort and return filer policy value to not use the
1902 	 * accept list.
1903 	 */
1904 	list_for_each_entry(params, &hdev->pend_le_conns, action) {
1905 		err = hci_le_add_accept_list_sync(hdev, params, &num_entries);
1906 		if (err)
1907 			goto done;
1908 	}
1909 
1910 	/* After adding all new pending connections, walk through
1911 	 * the list of pending reports and also add these to the
1912 	 * accept list if there is still space. Abort if space runs out.
1913 	 */
1914 	list_for_each_entry(params, &hdev->pend_le_reports, action) {
1915 		err = hci_le_add_accept_list_sync(hdev, params, &num_entries);
1916 		if (err)
1917 			goto done;
1918 	}
1919 
1920 	/* Use the allowlist unless the following conditions are all true:
1921 	 * - We are not currently suspending
1922 	 * - There are 1 or more ADV monitors registered and it's not offloaded
1923 	 * - Interleaved scanning is not currently using the allowlist
1924 	 */
1925 	if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended &&
1926 	    hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE &&
1927 	    hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST)
1928 		err = -EINVAL;
1929 
1930 done:
1931 	filter_policy = err ? 0x00 : 0x01;
1932 
1933 	/* Enable address resolution when LL Privacy is enabled. */
1934 	err = hci_le_set_addr_resolution_enable_sync(hdev, 0x01);
1935 	if (err)
1936 		bt_dev_err(hdev, "Unable to enable LL privacy: %d", err);
1937 
1938 	/* Resume advertising if it was paused */
1939 	if (use_ll_privacy(hdev))
1940 		hci_resume_advertising_sync(hdev);
1941 
1942 	/* Select filter policy to use accept list */
1943 	return filter_policy;
1944 }
1945 
1946 /* Returns true if an le connection is in the scanning state */
1947 static inline bool hci_is_le_conn_scanning(struct hci_dev *hdev)
1948 {
1949 	struct hci_conn_hash *h = &hdev->conn_hash;
1950 	struct hci_conn  *c;
1951 
1952 	rcu_read_lock();
1953 
1954 	list_for_each_entry_rcu(c, &h->list, list) {
1955 		if (c->type == LE_LINK && c->state == BT_CONNECT &&
1956 		    test_bit(HCI_CONN_SCANNING, &c->flags)) {
1957 			rcu_read_unlock();
1958 			return true;
1959 		}
1960 	}
1961 
1962 	rcu_read_unlock();
1963 
1964 	return false;
1965 }
1966 
1967 static int hci_le_set_ext_scan_param_sync(struct hci_dev *hdev, u8 type,
1968 					  u16 interval, u16 window,
1969 					  u8 own_addr_type, u8 filter_policy)
1970 {
1971 	struct hci_cp_le_set_ext_scan_params *cp;
1972 	struct hci_cp_le_scan_phy_params *phy;
1973 	u8 data[sizeof(*cp) + sizeof(*phy) * 2];
1974 	u8 num_phy = 0;
1975 
1976 	cp = (void *)data;
1977 	phy = (void *)cp->data;
1978 
1979 	memset(data, 0, sizeof(data));
1980 
1981 	cp->own_addr_type = own_addr_type;
1982 	cp->filter_policy = filter_policy;
1983 
1984 	if (scan_1m(hdev) || scan_2m(hdev)) {
1985 		cp->scanning_phys |= LE_SCAN_PHY_1M;
1986 
1987 		phy->type = type;
1988 		phy->interval = cpu_to_le16(interval);
1989 		phy->window = cpu_to_le16(window);
1990 
1991 		num_phy++;
1992 		phy++;
1993 	}
1994 
1995 	if (scan_coded(hdev)) {
1996 		cp->scanning_phys |= LE_SCAN_PHY_CODED;
1997 
1998 		phy->type = type;
1999 		phy->interval = cpu_to_le16(interval);
2000 		phy->window = cpu_to_le16(window);
2001 
2002 		num_phy++;
2003 		phy++;
2004 	}
2005 
2006 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_PARAMS,
2007 				     sizeof(*cp) + sizeof(*phy) * num_phy,
2008 				     data, HCI_CMD_TIMEOUT);
2009 }
2010 
2011 static int hci_le_set_scan_param_sync(struct hci_dev *hdev, u8 type,
2012 				      u16 interval, u16 window,
2013 				      u8 own_addr_type, u8 filter_policy)
2014 {
2015 	struct hci_cp_le_set_scan_param cp;
2016 
2017 	if (use_ext_scan(hdev))
2018 		return hci_le_set_ext_scan_param_sync(hdev, type, interval,
2019 						      window, own_addr_type,
2020 						      filter_policy);
2021 
2022 	memset(&cp, 0, sizeof(cp));
2023 	cp.type = type;
2024 	cp.interval = cpu_to_le16(interval);
2025 	cp.window = cpu_to_le16(window);
2026 	cp.own_address_type = own_addr_type;
2027 	cp.filter_policy = filter_policy;
2028 
2029 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_PARAM,
2030 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2031 }
2032 
2033 static int hci_start_scan_sync(struct hci_dev *hdev, u8 type, u16 interval,
2034 			       u16 window, u8 own_addr_type, u8 filter_policy,
2035 			       u8 filter_dup)
2036 {
2037 	int err;
2038 
2039 	if (hdev->scanning_paused) {
2040 		bt_dev_dbg(hdev, "Scanning is paused for suspend");
2041 		return 0;
2042 	}
2043 
2044 	err = hci_le_set_scan_param_sync(hdev, type, interval, window,
2045 					 own_addr_type, filter_policy);
2046 	if (err)
2047 		return err;
2048 
2049 	return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, filter_dup);
2050 }
2051 
2052 static int hci_passive_scan_sync(struct hci_dev *hdev)
2053 {
2054 	u8 own_addr_type;
2055 	u8 filter_policy;
2056 	u16 window, interval;
2057 	int err;
2058 
2059 	if (hdev->scanning_paused) {
2060 		bt_dev_dbg(hdev, "Scanning is paused for suspend");
2061 		return 0;
2062 	}
2063 
2064 	err = hci_scan_disable_sync(hdev);
2065 	if (err) {
2066 		bt_dev_err(hdev, "disable scanning failed: %d", err);
2067 		return err;
2068 	}
2069 
2070 	/* Set require_privacy to false since no SCAN_REQ are send
2071 	 * during passive scanning. Not using an non-resolvable address
2072 	 * here is important so that peer devices using direct
2073 	 * advertising with our address will be correctly reported
2074 	 * by the controller.
2075 	 */
2076 	if (hci_update_random_address_sync(hdev, false, scan_use_rpa(hdev),
2077 					   &own_addr_type))
2078 		return 0;
2079 
2080 	if (hdev->enable_advmon_interleave_scan &&
2081 	    hci_update_interleaved_scan_sync(hdev))
2082 		return 0;
2083 
2084 	bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state);
2085 
2086 	/* Adding or removing entries from the accept list must
2087 	 * happen before enabling scanning. The controller does
2088 	 * not allow accept list modification while scanning.
2089 	 */
2090 	filter_policy = hci_update_accept_list_sync(hdev);
2091 
2092 	/* When the controller is using random resolvable addresses and
2093 	 * with that having LE privacy enabled, then controllers with
2094 	 * Extended Scanner Filter Policies support can now enable support
2095 	 * for handling directed advertising.
2096 	 *
2097 	 * So instead of using filter polices 0x00 (no acceptlist)
2098 	 * and 0x01 (acceptlist enabled) use the new filter policies
2099 	 * 0x02 (no acceptlist) and 0x03 (acceptlist enabled).
2100 	 */
2101 	if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
2102 	    (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
2103 		filter_policy |= 0x02;
2104 
2105 	if (hdev->suspended) {
2106 		window = hdev->le_scan_window_suspend;
2107 		interval = hdev->le_scan_int_suspend;
2108 	} else if (hci_is_le_conn_scanning(hdev)) {
2109 		window = hdev->le_scan_window_connect;
2110 		interval = hdev->le_scan_int_connect;
2111 	} else if (hci_is_adv_monitoring(hdev)) {
2112 		window = hdev->le_scan_window_adv_monitor;
2113 		interval = hdev->le_scan_int_adv_monitor;
2114 	} else {
2115 		window = hdev->le_scan_window;
2116 		interval = hdev->le_scan_interval;
2117 	}
2118 
2119 	bt_dev_dbg(hdev, "LE passive scan with acceptlist = %d", filter_policy);
2120 
2121 	return hci_start_scan_sync(hdev, LE_SCAN_PASSIVE, interval, window,
2122 				   own_addr_type, filter_policy,
2123 				   LE_SCAN_FILTER_DUP_ENABLE);
2124 }
2125 
2126 /* This function controls the passive scanning based on hdev->pend_le_conns
2127  * list. If there are pending LE connection we start the background scanning,
2128  * otherwise we stop it in the following sequence:
2129  *
2130  * If there are devices to scan:
2131  *
2132  * Disable Scanning -> Update Accept List ->
2133  * use_ll_privacy((Disable Advertising) -> Disable Resolving List ->
2134  * Update Resolving List -> Enable Resolving List -> (Enable Advertising)) ->
2135  * Enable Scanning
2136  *
2137  * Otherwise:
2138  *
2139  * Disable Scanning
2140  */
2141 int hci_update_passive_scan_sync(struct hci_dev *hdev)
2142 {
2143 	int err;
2144 
2145 	if (!test_bit(HCI_UP, &hdev->flags) ||
2146 	    test_bit(HCI_INIT, &hdev->flags) ||
2147 	    hci_dev_test_flag(hdev, HCI_SETUP) ||
2148 	    hci_dev_test_flag(hdev, HCI_CONFIG) ||
2149 	    hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
2150 	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2151 		return 0;
2152 
2153 	/* No point in doing scanning if LE support hasn't been enabled */
2154 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
2155 		return 0;
2156 
2157 	/* If discovery is active don't interfere with it */
2158 	if (hdev->discovery.state != DISCOVERY_STOPPED)
2159 		return 0;
2160 
2161 	/* Reset RSSI and UUID filters when starting background scanning
2162 	 * since these filters are meant for service discovery only.
2163 	 *
2164 	 * The Start Discovery and Start Service Discovery operations
2165 	 * ensure to set proper values for RSSI threshold and UUID
2166 	 * filter list. So it is safe to just reset them here.
2167 	 */
2168 	hci_discovery_filter_clear(hdev);
2169 
2170 	bt_dev_dbg(hdev, "ADV monitoring is %s",
2171 		   hci_is_adv_monitoring(hdev) ? "on" : "off");
2172 
2173 	if (list_empty(&hdev->pend_le_conns) &&
2174 	    list_empty(&hdev->pend_le_reports) &&
2175 	    !hci_is_adv_monitoring(hdev)) {
2176 		/* If there is no pending LE connections or devices
2177 		 * to be scanned for or no ADV monitors, we should stop the
2178 		 * background scanning.
2179 		 */
2180 
2181 		bt_dev_dbg(hdev, "stopping background scanning");
2182 
2183 		err = hci_scan_disable_sync(hdev);
2184 		if (err)
2185 			bt_dev_err(hdev, "stop background scanning failed: %d",
2186 				   err);
2187 	} else {
2188 		/* If there is at least one pending LE connection, we should
2189 		 * keep the background scan running.
2190 		 */
2191 
2192 		/* If controller is connecting, we should not start scanning
2193 		 * since some controllers are not able to scan and connect at
2194 		 * the same time.
2195 		 */
2196 		if (hci_lookup_le_connect(hdev))
2197 			return 0;
2198 
2199 		bt_dev_dbg(hdev, "start background scanning");
2200 
2201 		err = hci_passive_scan_sync(hdev);
2202 		if (err)
2203 			bt_dev_err(hdev, "start background scanning failed: %d",
2204 				   err);
2205 	}
2206 
2207 	return err;
2208 }
2209 
2210 static int update_passive_scan_sync(struct hci_dev *hdev, void *data)
2211 {
2212 	return hci_update_passive_scan_sync(hdev);
2213 }
2214 
2215 int hci_update_passive_scan(struct hci_dev *hdev)
2216 {
2217 	/* Only queue if it would have any effect */
2218 	if (!test_bit(HCI_UP, &hdev->flags) ||
2219 	    test_bit(HCI_INIT, &hdev->flags) ||
2220 	    hci_dev_test_flag(hdev, HCI_SETUP) ||
2221 	    hci_dev_test_flag(hdev, HCI_CONFIG) ||
2222 	    hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
2223 	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2224 		return 0;
2225 
2226 	return hci_cmd_sync_queue(hdev, update_passive_scan_sync, NULL, NULL);
2227 }
2228 
2229 int hci_write_sc_support_sync(struct hci_dev *hdev, u8 val)
2230 {
2231 	int err;
2232 
2233 	if (!bredr_sc_enabled(hdev) || lmp_host_sc_capable(hdev))
2234 		return 0;
2235 
2236 	err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT,
2237 				    sizeof(val), &val, HCI_CMD_TIMEOUT);
2238 
2239 	if (!err) {
2240 		if (val) {
2241 			hdev->features[1][0] |= LMP_HOST_SC;
2242 			hci_dev_set_flag(hdev, HCI_SC_ENABLED);
2243 		} else {
2244 			hdev->features[1][0] &= ~LMP_HOST_SC;
2245 			hci_dev_clear_flag(hdev, HCI_SC_ENABLED);
2246 		}
2247 	}
2248 
2249 	return err;
2250 }
2251 
2252 int hci_write_ssp_mode_sync(struct hci_dev *hdev, u8 mode)
2253 {
2254 	int err;
2255 
2256 	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) ||
2257 	    lmp_host_ssp_capable(hdev))
2258 		return 0;
2259 
2260 	if (!mode && hci_dev_test_flag(hdev, HCI_USE_DEBUG_KEYS)) {
2261 		__hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE,
2262 				      sizeof(mode), &mode, HCI_CMD_TIMEOUT);
2263 	}
2264 
2265 	err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE,
2266 				    sizeof(mode), &mode, HCI_CMD_TIMEOUT);
2267 	if (err)
2268 		return err;
2269 
2270 	return hci_write_sc_support_sync(hdev, 0x01);
2271 }
2272 
2273 int hci_write_le_host_supported_sync(struct hci_dev *hdev, u8 le, u8 simul)
2274 {
2275 	struct hci_cp_write_le_host_supported cp;
2276 
2277 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED) ||
2278 	    !lmp_bredr_capable(hdev))
2279 		return 0;
2280 
2281 	/* Check first if we already have the right host state
2282 	 * (host features set)
2283 	 */
2284 	if (le == lmp_host_le_capable(hdev) &&
2285 	    simul == lmp_host_le_br_capable(hdev))
2286 		return 0;
2287 
2288 	memset(&cp, 0, sizeof(cp));
2289 
2290 	cp.le = le;
2291 	cp.simul = simul;
2292 
2293 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED,
2294 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2295 }
2296 
2297 static int hci_powered_update_adv_sync(struct hci_dev *hdev)
2298 {
2299 	struct adv_info *adv, *tmp;
2300 	int err;
2301 
2302 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
2303 		return 0;
2304 
2305 	/* If RPA Resolution has not been enable yet it means the
2306 	 * resolving list is empty and we should attempt to program the
2307 	 * local IRK in order to support using own_addr_type
2308 	 * ADDR_LE_DEV_RANDOM_RESOLVED (0x03).
2309 	 */
2310 	if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) {
2311 		hci_le_add_resolve_list_sync(hdev, NULL);
2312 		hci_le_set_addr_resolution_enable_sync(hdev, 0x01);
2313 	}
2314 
2315 	/* Make sure the controller has a good default for
2316 	 * advertising data. This also applies to the case
2317 	 * where BR/EDR was toggled during the AUTO_OFF phase.
2318 	 */
2319 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2320 	    list_empty(&hdev->adv_instances)) {
2321 		if (ext_adv_capable(hdev)) {
2322 			err = hci_setup_ext_adv_instance_sync(hdev, 0x00);
2323 			if (!err)
2324 				hci_update_scan_rsp_data_sync(hdev, 0x00);
2325 		} else {
2326 			err = hci_update_adv_data_sync(hdev, 0x00);
2327 			if (!err)
2328 				hci_update_scan_rsp_data_sync(hdev, 0x00);
2329 		}
2330 
2331 		if (hci_dev_test_flag(hdev, HCI_ADVERTISING))
2332 			hci_enable_advertising_sync(hdev);
2333 	}
2334 
2335 	/* Call for each tracked instance to be scheduled */
2336 	list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list)
2337 		hci_schedule_adv_instance_sync(hdev, adv->instance, true);
2338 
2339 	return 0;
2340 }
2341 
2342 static int hci_write_auth_enable_sync(struct hci_dev *hdev)
2343 {
2344 	u8 link_sec;
2345 
2346 	link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
2347 	if (link_sec == test_bit(HCI_AUTH, &hdev->flags))
2348 		return 0;
2349 
2350 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE,
2351 				     sizeof(link_sec), &link_sec,
2352 				     HCI_CMD_TIMEOUT);
2353 }
2354 
2355 int hci_write_fast_connectable_sync(struct hci_dev *hdev, bool enable)
2356 {
2357 	struct hci_cp_write_page_scan_activity cp;
2358 	u8 type;
2359 	int err = 0;
2360 
2361 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2362 		return 0;
2363 
2364 	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
2365 		return 0;
2366 
2367 	memset(&cp, 0, sizeof(cp));
2368 
2369 	if (enable) {
2370 		type = PAGE_SCAN_TYPE_INTERLACED;
2371 
2372 		/* 160 msec page scan interval */
2373 		cp.interval = cpu_to_le16(0x0100);
2374 	} else {
2375 		type = hdev->def_page_scan_type;
2376 		cp.interval = cpu_to_le16(hdev->def_page_scan_int);
2377 	}
2378 
2379 	cp.window = cpu_to_le16(hdev->def_page_scan_window);
2380 
2381 	if (__cpu_to_le16(hdev->page_scan_interval) != cp.interval ||
2382 	    __cpu_to_le16(hdev->page_scan_window) != cp.window) {
2383 		err = __hci_cmd_sync_status(hdev,
2384 					    HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
2385 					    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2386 		if (err)
2387 			return err;
2388 	}
2389 
2390 	if (hdev->page_scan_type != type)
2391 		err = __hci_cmd_sync_status(hdev,
2392 					    HCI_OP_WRITE_PAGE_SCAN_TYPE,
2393 					    sizeof(type), &type,
2394 					    HCI_CMD_TIMEOUT);
2395 
2396 	return err;
2397 }
2398 
2399 static bool disconnected_accept_list_entries(struct hci_dev *hdev)
2400 {
2401 	struct bdaddr_list *b;
2402 
2403 	list_for_each_entry(b, &hdev->accept_list, list) {
2404 		struct hci_conn *conn;
2405 
2406 		conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
2407 		if (!conn)
2408 			return true;
2409 
2410 		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
2411 			return true;
2412 	}
2413 
2414 	return false;
2415 }
2416 
2417 static int hci_write_scan_enable_sync(struct hci_dev *hdev, u8 val)
2418 {
2419 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE,
2420 					    sizeof(val), &val,
2421 					    HCI_CMD_TIMEOUT);
2422 }
2423 
2424 int hci_update_scan_sync(struct hci_dev *hdev)
2425 {
2426 	u8 scan;
2427 
2428 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2429 		return 0;
2430 
2431 	if (!hdev_is_powered(hdev))
2432 		return 0;
2433 
2434 	if (mgmt_powering_down(hdev))
2435 		return 0;
2436 
2437 	if (hdev->scanning_paused)
2438 		return 0;
2439 
2440 	if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
2441 	    disconnected_accept_list_entries(hdev))
2442 		scan = SCAN_PAGE;
2443 	else
2444 		scan = SCAN_DISABLED;
2445 
2446 	if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
2447 		scan |= SCAN_INQUIRY;
2448 
2449 	if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
2450 	    test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
2451 		return 0;
2452 
2453 	return hci_write_scan_enable_sync(hdev, scan);
2454 }
2455 
2456 int hci_update_name_sync(struct hci_dev *hdev)
2457 {
2458 	struct hci_cp_write_local_name cp;
2459 
2460 	memset(&cp, 0, sizeof(cp));
2461 
2462 	memcpy(cp.name, hdev->dev_name, sizeof(cp.name));
2463 
2464 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LOCAL_NAME,
2465 					    sizeof(cp), &cp,
2466 					    HCI_CMD_TIMEOUT);
2467 }
2468 
2469 /* This function perform powered update HCI command sequence after the HCI init
2470  * sequence which end up resetting all states, the sequence is as follows:
2471  *
2472  * HCI_SSP_ENABLED(Enable SSP)
2473  * HCI_LE_ENABLED(Enable LE)
2474  * HCI_LE_ENABLED(use_ll_privacy(Add local IRK to Resolving List) ->
2475  * Update adv data)
2476  * Enable Authentication
2477  * lmp_bredr_capable(Set Fast Connectable -> Set Scan Type -> Set Class ->
2478  * Set Name -> Set EIR)
2479  */
2480 int hci_powered_update_sync(struct hci_dev *hdev)
2481 {
2482 	int err;
2483 
2484 	/* Register the available SMP channels (BR/EDR and LE) only when
2485 	 * successfully powering on the controller. This late
2486 	 * registration is required so that LE SMP can clearly decide if
2487 	 * the public address or static address is used.
2488 	 */
2489 	smp_register(hdev);
2490 
2491 	err = hci_write_ssp_mode_sync(hdev, 0x01);
2492 	if (err)
2493 		return err;
2494 
2495 	err = hci_write_le_host_supported_sync(hdev, 0x01, 0x00);
2496 	if (err)
2497 		return err;
2498 
2499 	err = hci_powered_update_adv_sync(hdev);
2500 	if (err)
2501 		return err;
2502 
2503 	err = hci_write_auth_enable_sync(hdev);
2504 	if (err)
2505 		return err;
2506 
2507 	if (lmp_bredr_capable(hdev)) {
2508 		if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
2509 			hci_write_fast_connectable_sync(hdev, true);
2510 		else
2511 			hci_write_fast_connectable_sync(hdev, false);
2512 		hci_update_scan_sync(hdev);
2513 		hci_update_class_sync(hdev);
2514 		hci_update_name_sync(hdev);
2515 		hci_update_eir_sync(hdev);
2516 	}
2517 
2518 	return 0;
2519 }
2520 
2521 /**
2522  * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address
2523  *				       (BD_ADDR) for a HCI device from
2524  *				       a firmware node property.
2525  * @hdev:	The HCI device
2526  *
2527  * Search the firmware node for 'local-bd-address'.
2528  *
2529  * All-zero BD addresses are rejected, because those could be properties
2530  * that exist in the firmware tables, but were not updated by the firmware. For
2531  * example, the DTS could define 'local-bd-address', with zero BD addresses.
2532  */
2533 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev)
2534 {
2535 	struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent);
2536 	bdaddr_t ba;
2537 	int ret;
2538 
2539 	ret = fwnode_property_read_u8_array(fwnode, "local-bd-address",
2540 					    (u8 *)&ba, sizeof(ba));
2541 	if (ret < 0 || !bacmp(&ba, BDADDR_ANY))
2542 		return;
2543 
2544 	bacpy(&hdev->public_addr, &ba);
2545 }
2546 
2547 struct hci_init_stage {
2548 	int (*func)(struct hci_dev *hdev);
2549 };
2550 
2551 /* Run init stage NULL terminated function table */
2552 static int hci_init_stage_sync(struct hci_dev *hdev,
2553 			       const struct hci_init_stage *stage)
2554 {
2555 	size_t i;
2556 
2557 	for (i = 0; stage[i].func; i++) {
2558 		int err;
2559 
2560 		err = stage[i].func(hdev);
2561 		if (err)
2562 			return err;
2563 	}
2564 
2565 	return 0;
2566 }
2567 
2568 /* Read Local Version */
2569 static int hci_read_local_version_sync(struct hci_dev *hdev)
2570 {
2571 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_VERSION,
2572 				     0, NULL, HCI_CMD_TIMEOUT);
2573 }
2574 
2575 /* Read BD Address */
2576 static int hci_read_bd_addr_sync(struct hci_dev *hdev)
2577 {
2578 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_BD_ADDR,
2579 				     0, NULL, HCI_CMD_TIMEOUT);
2580 }
2581 
2582 #define HCI_INIT(_func) \
2583 { \
2584 	.func = _func, \
2585 }
2586 
2587 static const struct hci_init_stage hci_init0[] = {
2588 	/* HCI_OP_READ_LOCAL_VERSION */
2589 	HCI_INIT(hci_read_local_version_sync),
2590 	/* HCI_OP_READ_BD_ADDR */
2591 	HCI_INIT(hci_read_bd_addr_sync),
2592 	{}
2593 };
2594 
2595 int hci_reset_sync(struct hci_dev *hdev)
2596 {
2597 	int err;
2598 
2599 	set_bit(HCI_RESET, &hdev->flags);
2600 
2601 	err = __hci_cmd_sync_status(hdev, HCI_OP_RESET, 0, NULL,
2602 				    HCI_CMD_TIMEOUT);
2603 	if (err)
2604 		return err;
2605 
2606 	return 0;
2607 }
2608 
2609 static int hci_init0_sync(struct hci_dev *hdev)
2610 {
2611 	int err;
2612 
2613 	bt_dev_dbg(hdev, "");
2614 
2615 	/* Reset */
2616 	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
2617 		err = hci_reset_sync(hdev);
2618 		if (err)
2619 			return err;
2620 	}
2621 
2622 	return hci_init_stage_sync(hdev, hci_init0);
2623 }
2624 
2625 static int hci_unconf_init_sync(struct hci_dev *hdev)
2626 {
2627 	int err;
2628 
2629 	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
2630 		return 0;
2631 
2632 	err = hci_init0_sync(hdev);
2633 	if (err < 0)
2634 		return err;
2635 
2636 	if (hci_dev_test_flag(hdev, HCI_SETUP))
2637 		hci_debugfs_create_basic(hdev);
2638 
2639 	return 0;
2640 }
2641 
2642 /* Read Local Supported Features. */
2643 static int hci_read_local_features_sync(struct hci_dev *hdev)
2644 {
2645 	 /* Not all AMP controllers support this command */
2646 	if (hdev->dev_type == HCI_AMP && !(hdev->commands[14] & 0x20))
2647 		return 0;
2648 
2649 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_FEATURES,
2650 				     0, NULL, HCI_CMD_TIMEOUT);
2651 }
2652 
2653 /* BR Controller init stage 1 command sequence */
2654 static const struct hci_init_stage br_init1[] = {
2655 	/* HCI_OP_READ_LOCAL_FEATURES */
2656 	HCI_INIT(hci_read_local_features_sync),
2657 	/* HCI_OP_READ_LOCAL_VERSION */
2658 	HCI_INIT(hci_read_local_version_sync),
2659 	/* HCI_OP_READ_BD_ADDR */
2660 	HCI_INIT(hci_read_bd_addr_sync),
2661 	{}
2662 };
2663 
2664 /* Read Local Commands */
2665 static int hci_read_local_cmds_sync(struct hci_dev *hdev)
2666 {
2667 	/* All Bluetooth 1.2 and later controllers should support the
2668 	 * HCI command for reading the local supported commands.
2669 	 *
2670 	 * Unfortunately some controllers indicate Bluetooth 1.2 support,
2671 	 * but do not have support for this command. If that is the case,
2672 	 * the driver can quirk the behavior and skip reading the local
2673 	 * supported commands.
2674 	 */
2675 	if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
2676 	    !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
2677 		return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_COMMANDS,
2678 					     0, NULL, HCI_CMD_TIMEOUT);
2679 
2680 	return 0;
2681 }
2682 
2683 /* Read Local AMP Info */
2684 static int hci_read_local_amp_info_sync(struct hci_dev *hdev)
2685 {
2686 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_AMP_INFO,
2687 				     0, NULL, HCI_CMD_TIMEOUT);
2688 }
2689 
2690 /* Read Data Blk size */
2691 static int hci_read_data_block_size_sync(struct hci_dev *hdev)
2692 {
2693 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_DATA_BLOCK_SIZE,
2694 				     0, NULL, HCI_CMD_TIMEOUT);
2695 }
2696 
2697 /* Read Flow Control Mode */
2698 static int hci_read_flow_control_mode_sync(struct hci_dev *hdev)
2699 {
2700 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_FLOW_CONTROL_MODE,
2701 				     0, NULL, HCI_CMD_TIMEOUT);
2702 }
2703 
2704 /* Read Location Data */
2705 static int hci_read_location_data_sync(struct hci_dev *hdev)
2706 {
2707 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCATION_DATA,
2708 				     0, NULL, HCI_CMD_TIMEOUT);
2709 }
2710 
2711 /* AMP Controller init stage 1 command sequence */
2712 static const struct hci_init_stage amp_init1[] = {
2713 	/* HCI_OP_READ_LOCAL_VERSION */
2714 	HCI_INIT(hci_read_local_version_sync),
2715 	/* HCI_OP_READ_LOCAL_COMMANDS */
2716 	HCI_INIT(hci_read_local_cmds_sync),
2717 	/* HCI_OP_READ_LOCAL_AMP_INFO */
2718 	HCI_INIT(hci_read_local_amp_info_sync),
2719 	/* HCI_OP_READ_DATA_BLOCK_SIZE */
2720 	HCI_INIT(hci_read_data_block_size_sync),
2721 	/* HCI_OP_READ_FLOW_CONTROL_MODE */
2722 	HCI_INIT(hci_read_flow_control_mode_sync),
2723 	/* HCI_OP_READ_LOCATION_DATA */
2724 	HCI_INIT(hci_read_location_data_sync),
2725 };
2726 
2727 static int hci_init1_sync(struct hci_dev *hdev)
2728 {
2729 	int err;
2730 
2731 	bt_dev_dbg(hdev, "");
2732 
2733 	/* Reset */
2734 	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
2735 		err = hci_reset_sync(hdev);
2736 		if (err)
2737 			return err;
2738 	}
2739 
2740 	switch (hdev->dev_type) {
2741 	case HCI_PRIMARY:
2742 		hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
2743 		return hci_init_stage_sync(hdev, br_init1);
2744 	case HCI_AMP:
2745 		hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
2746 		return hci_init_stage_sync(hdev, amp_init1);
2747 	default:
2748 		bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type);
2749 		break;
2750 	}
2751 
2752 	return 0;
2753 }
2754 
2755 /* AMP Controller init stage 2 command sequence */
2756 static const struct hci_init_stage amp_init2[] = {
2757 	/* HCI_OP_READ_LOCAL_FEATURES */
2758 	HCI_INIT(hci_read_local_features_sync),
2759 };
2760 
2761 /* Read Buffer Size (ACL mtu, max pkt, etc.) */
2762 static int hci_read_buffer_size_sync(struct hci_dev *hdev)
2763 {
2764 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_BUFFER_SIZE,
2765 				     0, NULL, HCI_CMD_TIMEOUT);
2766 }
2767 
2768 /* Read Class of Device */
2769 static int hci_read_dev_class_sync(struct hci_dev *hdev)
2770 {
2771 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLASS_OF_DEV,
2772 				     0, NULL, HCI_CMD_TIMEOUT);
2773 }
2774 
2775 /* Read Local Name */
2776 static int hci_read_local_name_sync(struct hci_dev *hdev)
2777 {
2778 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_NAME,
2779 				     0, NULL, HCI_CMD_TIMEOUT);
2780 }
2781 
2782 /* Read Voice Setting */
2783 static int hci_read_voice_setting_sync(struct hci_dev *hdev)
2784 {
2785 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_VOICE_SETTING,
2786 				     0, NULL, HCI_CMD_TIMEOUT);
2787 }
2788 
2789 /* Read Number of Supported IAC */
2790 static int hci_read_num_supported_iac_sync(struct hci_dev *hdev)
2791 {
2792 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_NUM_SUPPORTED_IAC,
2793 				     0, NULL, HCI_CMD_TIMEOUT);
2794 }
2795 
2796 /* Read Current IAC LAP */
2797 static int hci_read_current_iac_lap_sync(struct hci_dev *hdev)
2798 {
2799 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_CURRENT_IAC_LAP,
2800 				     0, NULL, HCI_CMD_TIMEOUT);
2801 }
2802 
2803 static int hci_set_event_filter_sync(struct hci_dev *hdev, u8 flt_type,
2804 				     u8 cond_type, bdaddr_t *bdaddr,
2805 				     u8 auto_accept)
2806 {
2807 	struct hci_cp_set_event_filter cp;
2808 
2809 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2810 		return 0;
2811 
2812 	if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
2813 		return 0;
2814 
2815 	memset(&cp, 0, sizeof(cp));
2816 	cp.flt_type = flt_type;
2817 
2818 	if (flt_type != HCI_FLT_CLEAR_ALL) {
2819 		cp.cond_type = cond_type;
2820 		bacpy(&cp.addr_conn_flt.bdaddr, bdaddr);
2821 		cp.addr_conn_flt.auto_accept = auto_accept;
2822 	}
2823 
2824 	return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_FLT,
2825 				     flt_type == HCI_FLT_CLEAR_ALL ?
2826 				     sizeof(cp.flt_type) : sizeof(cp), &cp,
2827 				     HCI_CMD_TIMEOUT);
2828 }
2829 
2830 static int hci_clear_event_filter_sync(struct hci_dev *hdev)
2831 {
2832 	if (!hci_dev_test_flag(hdev, HCI_EVENT_FILTER_CONFIGURED))
2833 		return 0;
2834 
2835 	/* In theory the state machine should not reach here unless
2836 	 * a hci_set_event_filter_sync() call succeeds, but we do
2837 	 * the check both for parity and as a future reminder.
2838 	 */
2839 	if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
2840 		return 0;
2841 
2842 	return hci_set_event_filter_sync(hdev, HCI_FLT_CLEAR_ALL, 0x00,
2843 					 BDADDR_ANY, 0x00);
2844 }
2845 
2846 /* Connection accept timeout ~20 secs */
2847 static int hci_write_ca_timeout_sync(struct hci_dev *hdev)
2848 {
2849 	__le16 param = cpu_to_le16(0x7d00);
2850 
2851 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CA_TIMEOUT,
2852 				     sizeof(param), &param, HCI_CMD_TIMEOUT);
2853 }
2854 
2855 /* BR Controller init stage 2 command sequence */
2856 static const struct hci_init_stage br_init2[] = {
2857 	/* HCI_OP_READ_BUFFER_SIZE */
2858 	HCI_INIT(hci_read_buffer_size_sync),
2859 	/* HCI_OP_READ_CLASS_OF_DEV */
2860 	HCI_INIT(hci_read_dev_class_sync),
2861 	/* HCI_OP_READ_LOCAL_NAME */
2862 	HCI_INIT(hci_read_local_name_sync),
2863 	/* HCI_OP_READ_VOICE_SETTING */
2864 	HCI_INIT(hci_read_voice_setting_sync),
2865 	/* HCI_OP_READ_NUM_SUPPORTED_IAC */
2866 	HCI_INIT(hci_read_num_supported_iac_sync),
2867 	/* HCI_OP_READ_CURRENT_IAC_LAP */
2868 	HCI_INIT(hci_read_current_iac_lap_sync),
2869 	/* HCI_OP_SET_EVENT_FLT */
2870 	HCI_INIT(hci_clear_event_filter_sync),
2871 	/* HCI_OP_WRITE_CA_TIMEOUT */
2872 	HCI_INIT(hci_write_ca_timeout_sync),
2873 	{}
2874 };
2875 
2876 static int hci_write_ssp_mode_1_sync(struct hci_dev *hdev)
2877 {
2878 	u8 mode = 0x01;
2879 
2880 	if (!lmp_ssp_capable(hdev) || !hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
2881 		return 0;
2882 
2883 	/* When SSP is available, then the host features page
2884 	 * should also be available as well. However some
2885 	 * controllers list the max_page as 0 as long as SSP
2886 	 * has not been enabled. To achieve proper debugging
2887 	 * output, force the minimum max_page to 1 at least.
2888 	 */
2889 	hdev->max_page = 0x01;
2890 
2891 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE,
2892 				     sizeof(mode), &mode, HCI_CMD_TIMEOUT);
2893 }
2894 
2895 static int hci_write_eir_sync(struct hci_dev *hdev)
2896 {
2897 	struct hci_cp_write_eir cp;
2898 
2899 	if (!lmp_ssp_capable(hdev) || hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
2900 		return 0;
2901 
2902 	memset(hdev->eir, 0, sizeof(hdev->eir));
2903 	memset(&cp, 0, sizeof(cp));
2904 
2905 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp,
2906 				     HCI_CMD_TIMEOUT);
2907 }
2908 
2909 static int hci_write_inquiry_mode_sync(struct hci_dev *hdev)
2910 {
2911 	u8 mode;
2912 
2913 	if (!lmp_inq_rssi_capable(hdev) &&
2914 	    !test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
2915 		return 0;
2916 
2917 	/* If Extended Inquiry Result events are supported, then
2918 	 * they are clearly preferred over Inquiry Result with RSSI
2919 	 * events.
2920 	 */
2921 	mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
2922 
2923 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_INQUIRY_MODE,
2924 				     sizeof(mode), &mode, HCI_CMD_TIMEOUT);
2925 }
2926 
2927 static int hci_read_inq_rsp_tx_power_sync(struct hci_dev *hdev)
2928 {
2929 	if (!lmp_inq_tx_pwr_capable(hdev))
2930 		return 0;
2931 
2932 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_INQ_RSP_TX_POWER,
2933 				     0, NULL, HCI_CMD_TIMEOUT);
2934 }
2935 
2936 static int hci_read_local_ext_features_sync(struct hci_dev *hdev, u8 page)
2937 {
2938 	struct hci_cp_read_local_ext_features cp;
2939 
2940 	if (!lmp_ext_feat_capable(hdev))
2941 		return 0;
2942 
2943 	memset(&cp, 0, sizeof(cp));
2944 	cp.page = page;
2945 
2946 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_EXT_FEATURES,
2947 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2948 }
2949 
2950 static int hci_read_local_ext_features_1_sync(struct hci_dev *hdev)
2951 {
2952 	return hci_read_local_ext_features_sync(hdev, 0x01);
2953 }
2954 
2955 /* HCI Controller init stage 2 command sequence */
2956 static const struct hci_init_stage hci_init2[] = {
2957 	/* HCI_OP_READ_LOCAL_COMMANDS */
2958 	HCI_INIT(hci_read_local_cmds_sync),
2959 	/* HCI_OP_WRITE_SSP_MODE */
2960 	HCI_INIT(hci_write_ssp_mode_1_sync),
2961 	/* HCI_OP_WRITE_EIR */
2962 	HCI_INIT(hci_write_eir_sync),
2963 	/* HCI_OP_WRITE_INQUIRY_MODE */
2964 	HCI_INIT(hci_write_inquiry_mode_sync),
2965 	/* HCI_OP_READ_INQ_RSP_TX_POWER */
2966 	HCI_INIT(hci_read_inq_rsp_tx_power_sync),
2967 	/* HCI_OP_READ_LOCAL_EXT_FEATURES */
2968 	HCI_INIT(hci_read_local_ext_features_1_sync),
2969 	/* HCI_OP_WRITE_AUTH_ENABLE */
2970 	HCI_INIT(hci_write_auth_enable_sync),
2971 	{}
2972 };
2973 
2974 /* Read LE Buffer Size */
2975 static int hci_le_read_buffer_size_sync(struct hci_dev *hdev)
2976 {
2977 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_BUFFER_SIZE,
2978 				     0, NULL, HCI_CMD_TIMEOUT);
2979 }
2980 
2981 /* Read LE Local Supported Features */
2982 static int hci_le_read_local_features_sync(struct hci_dev *hdev)
2983 {
2984 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_LOCAL_FEATURES,
2985 				     0, NULL, HCI_CMD_TIMEOUT);
2986 }
2987 
2988 /* Read LE Supported States */
2989 static int hci_le_read_supported_states_sync(struct hci_dev *hdev)
2990 {
2991 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_SUPPORTED_STATES,
2992 				     0, NULL, HCI_CMD_TIMEOUT);
2993 }
2994 
2995 /* LE Controller init stage 2 command sequence */
2996 static const struct hci_init_stage le_init2[] = {
2997 	/* HCI_OP_LE_READ_BUFFER_SIZE */
2998 	HCI_INIT(hci_le_read_buffer_size_sync),
2999 	/* HCI_OP_LE_READ_LOCAL_FEATURES */
3000 	HCI_INIT(hci_le_read_local_features_sync),
3001 	/* HCI_OP_LE_READ_SUPPORTED_STATES */
3002 	HCI_INIT(hci_le_read_supported_states_sync),
3003 	{}
3004 };
3005 
3006 static int hci_init2_sync(struct hci_dev *hdev)
3007 {
3008 	int err;
3009 
3010 	bt_dev_dbg(hdev, "");
3011 
3012 	if (hdev->dev_type == HCI_AMP)
3013 		return hci_init_stage_sync(hdev, amp_init2);
3014 
3015 	if (lmp_bredr_capable(hdev)) {
3016 		err = hci_init_stage_sync(hdev, br_init2);
3017 		if (err)
3018 			return err;
3019 	} else {
3020 		hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
3021 	}
3022 
3023 	if (lmp_le_capable(hdev)) {
3024 		err = hci_init_stage_sync(hdev, le_init2);
3025 		if (err)
3026 			return err;
3027 		/* LE-only controllers have LE implicitly enabled */
3028 		if (!lmp_bredr_capable(hdev))
3029 			hci_dev_set_flag(hdev, HCI_LE_ENABLED);
3030 	}
3031 
3032 	return hci_init_stage_sync(hdev, hci_init2);
3033 }
3034 
3035 static int hci_set_event_mask_sync(struct hci_dev *hdev)
3036 {
3037 	/* The second byte is 0xff instead of 0x9f (two reserved bits
3038 	 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
3039 	 * command otherwise.
3040 	 */
3041 	u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
3042 
3043 	/* CSR 1.1 dongles does not accept any bitfield so don't try to set
3044 	 * any event mask for pre 1.2 devices.
3045 	 */
3046 	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
3047 		return 0;
3048 
3049 	if (lmp_bredr_capable(hdev)) {
3050 		events[4] |= 0x01; /* Flow Specification Complete */
3051 
3052 		/* Don't set Disconnect Complete when suspended as that
3053 		 * would wakeup the host when disconnecting due to
3054 		 * suspend.
3055 		 */
3056 		if (hdev->suspended)
3057 			events[0] &= 0xef;
3058 	} else {
3059 		/* Use a different default for LE-only devices */
3060 		memset(events, 0, sizeof(events));
3061 		events[1] |= 0x20; /* Command Complete */
3062 		events[1] |= 0x40; /* Command Status */
3063 		events[1] |= 0x80; /* Hardware Error */
3064 
3065 		/* If the controller supports the Disconnect command, enable
3066 		 * the corresponding event. In addition enable packet flow
3067 		 * control related events.
3068 		 */
3069 		if (hdev->commands[0] & 0x20) {
3070 			/* Don't set Disconnect Complete when suspended as that
3071 			 * would wakeup the host when disconnecting due to
3072 			 * suspend.
3073 			 */
3074 			if (!hdev->suspended)
3075 				events[0] |= 0x10; /* Disconnection Complete */
3076 			events[2] |= 0x04; /* Number of Completed Packets */
3077 			events[3] |= 0x02; /* Data Buffer Overflow */
3078 		}
3079 
3080 		/* If the controller supports the Read Remote Version
3081 		 * Information command, enable the corresponding event.
3082 		 */
3083 		if (hdev->commands[2] & 0x80)
3084 			events[1] |= 0x08; /* Read Remote Version Information
3085 					    * Complete
3086 					    */
3087 
3088 		if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
3089 			events[0] |= 0x80; /* Encryption Change */
3090 			events[5] |= 0x80; /* Encryption Key Refresh Complete */
3091 		}
3092 	}
3093 
3094 	if (lmp_inq_rssi_capable(hdev) ||
3095 	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
3096 		events[4] |= 0x02; /* Inquiry Result with RSSI */
3097 
3098 	if (lmp_ext_feat_capable(hdev))
3099 		events[4] |= 0x04; /* Read Remote Extended Features Complete */
3100 
3101 	if (lmp_esco_capable(hdev)) {
3102 		events[5] |= 0x08; /* Synchronous Connection Complete */
3103 		events[5] |= 0x10; /* Synchronous Connection Changed */
3104 	}
3105 
3106 	if (lmp_sniffsubr_capable(hdev))
3107 		events[5] |= 0x20; /* Sniff Subrating */
3108 
3109 	if (lmp_pause_enc_capable(hdev))
3110 		events[5] |= 0x80; /* Encryption Key Refresh Complete */
3111 
3112 	if (lmp_ext_inq_capable(hdev))
3113 		events[5] |= 0x40; /* Extended Inquiry Result */
3114 
3115 	if (lmp_no_flush_capable(hdev))
3116 		events[7] |= 0x01; /* Enhanced Flush Complete */
3117 
3118 	if (lmp_lsto_capable(hdev))
3119 		events[6] |= 0x80; /* Link Supervision Timeout Changed */
3120 
3121 	if (lmp_ssp_capable(hdev)) {
3122 		events[6] |= 0x01;	/* IO Capability Request */
3123 		events[6] |= 0x02;	/* IO Capability Response */
3124 		events[6] |= 0x04;	/* User Confirmation Request */
3125 		events[6] |= 0x08;	/* User Passkey Request */
3126 		events[6] |= 0x10;	/* Remote OOB Data Request */
3127 		events[6] |= 0x20;	/* Simple Pairing Complete */
3128 		events[7] |= 0x04;	/* User Passkey Notification */
3129 		events[7] |= 0x08;	/* Keypress Notification */
3130 		events[7] |= 0x10;	/* Remote Host Supported
3131 					 * Features Notification
3132 					 */
3133 	}
3134 
3135 	if (lmp_le_capable(hdev))
3136 		events[7] |= 0x20;	/* LE Meta-Event */
3137 
3138 	return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK,
3139 				     sizeof(events), events, HCI_CMD_TIMEOUT);
3140 }
3141 
3142 static int hci_read_stored_link_key_sync(struct hci_dev *hdev)
3143 {
3144 	struct hci_cp_read_stored_link_key cp;
3145 
3146 	if (!(hdev->commands[6] & 0x20) ||
3147 	    test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks))
3148 		return 0;
3149 
3150 	memset(&cp, 0, sizeof(cp));
3151 	bacpy(&cp.bdaddr, BDADDR_ANY);
3152 	cp.read_all = 0x01;
3153 
3154 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_STORED_LINK_KEY,
3155 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3156 }
3157 
3158 static int hci_setup_link_policy_sync(struct hci_dev *hdev)
3159 {
3160 	struct hci_cp_write_def_link_policy cp;
3161 	u16 link_policy = 0;
3162 
3163 	if (!(hdev->commands[5] & 0x10))
3164 		return 0;
3165 
3166 	memset(&cp, 0, sizeof(cp));
3167 
3168 	if (lmp_rswitch_capable(hdev))
3169 		link_policy |= HCI_LP_RSWITCH;
3170 	if (lmp_hold_capable(hdev))
3171 		link_policy |= HCI_LP_HOLD;
3172 	if (lmp_sniff_capable(hdev))
3173 		link_policy |= HCI_LP_SNIFF;
3174 	if (lmp_park_capable(hdev))
3175 		link_policy |= HCI_LP_PARK;
3176 
3177 	cp.policy = cpu_to_le16(link_policy);
3178 
3179 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY,
3180 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3181 }
3182 
3183 static int hci_read_page_scan_activity_sync(struct hci_dev *hdev)
3184 {
3185 	if (!(hdev->commands[8] & 0x01))
3186 		return 0;
3187 
3188 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_ACTIVITY,
3189 				     0, NULL, HCI_CMD_TIMEOUT);
3190 }
3191 
3192 static int hci_read_def_err_data_reporting_sync(struct hci_dev *hdev)
3193 {
3194 	if (!(hdev->commands[18] & 0x04) ||
3195 	    test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks))
3196 		return 0;
3197 
3198 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_DEF_ERR_DATA_REPORTING,
3199 				     0, NULL, HCI_CMD_TIMEOUT);
3200 }
3201 
3202 static int hci_read_page_scan_type_sync(struct hci_dev *hdev)
3203 {
3204 	/* Some older Broadcom based Bluetooth 1.2 controllers do not
3205 	 * support the Read Page Scan Type command. Check support for
3206 	 * this command in the bit mask of supported commands.
3207 	 */
3208 	if (!(hdev->commands[13] & 0x01))
3209 		return 0;
3210 
3211 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_TYPE,
3212 				     0, NULL, HCI_CMD_TIMEOUT);
3213 }
3214 
3215 /* Read features beyond page 1 if available */
3216 static int hci_read_local_ext_features_all_sync(struct hci_dev *hdev)
3217 {
3218 	u8 page;
3219 	int err;
3220 
3221 	if (!lmp_ext_feat_capable(hdev))
3222 		return 0;
3223 
3224 	for (page = 2; page < HCI_MAX_PAGES && page <= hdev->max_page;
3225 	     page++) {
3226 		err = hci_read_local_ext_features_sync(hdev, page);
3227 		if (err)
3228 			return err;
3229 	}
3230 
3231 	return 0;
3232 }
3233 
3234 /* HCI Controller init stage 3 command sequence */
3235 static const struct hci_init_stage hci_init3[] = {
3236 	/* HCI_OP_SET_EVENT_MASK */
3237 	HCI_INIT(hci_set_event_mask_sync),
3238 	/* HCI_OP_READ_STORED_LINK_KEY */
3239 	HCI_INIT(hci_read_stored_link_key_sync),
3240 	/* HCI_OP_WRITE_DEF_LINK_POLICY */
3241 	HCI_INIT(hci_setup_link_policy_sync),
3242 	/* HCI_OP_READ_PAGE_SCAN_ACTIVITY */
3243 	HCI_INIT(hci_read_page_scan_activity_sync),
3244 	/* HCI_OP_READ_DEF_ERR_DATA_REPORTING */
3245 	HCI_INIT(hci_read_def_err_data_reporting_sync),
3246 	/* HCI_OP_READ_PAGE_SCAN_TYPE */
3247 	HCI_INIT(hci_read_page_scan_type_sync),
3248 	/* HCI_OP_READ_LOCAL_EXT_FEATURES */
3249 	HCI_INIT(hci_read_local_ext_features_all_sync),
3250 	{}
3251 };
3252 
3253 static int hci_le_set_event_mask_sync(struct hci_dev *hdev)
3254 {
3255 	u8 events[8];
3256 
3257 	if (!lmp_le_capable(hdev))
3258 		return 0;
3259 
3260 	memset(events, 0, sizeof(events));
3261 
3262 	if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
3263 		events[0] |= 0x10;	/* LE Long Term Key Request */
3264 
3265 	/* If controller supports the Connection Parameters Request
3266 	 * Link Layer Procedure, enable the corresponding event.
3267 	 */
3268 	if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
3269 		/* LE Remote Connection Parameter Request */
3270 		events[0] |= 0x20;
3271 
3272 	/* If the controller supports the Data Length Extension
3273 	 * feature, enable the corresponding event.
3274 	 */
3275 	if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
3276 		events[0] |= 0x40;	/* LE Data Length Change */
3277 
3278 	/* If the controller supports LL Privacy feature or LE Extended Adv,
3279 	 * enable the corresponding event.
3280 	 */
3281 	if (use_enhanced_conn_complete(hdev))
3282 		events[1] |= 0x02;	/* LE Enhanced Connection Complete */
3283 
3284 	/* If the controller supports Extended Scanner Filter
3285 	 * Policies, enable the corresponding event.
3286 	 */
3287 	if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
3288 		events[1] |= 0x04;	/* LE Direct Advertising Report */
3289 
3290 	/* If the controller supports Channel Selection Algorithm #2
3291 	 * feature, enable the corresponding event.
3292 	 */
3293 	if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
3294 		events[2] |= 0x08;	/* LE Channel Selection Algorithm */
3295 
3296 	/* If the controller supports the LE Set Scan Enable command,
3297 	 * enable the corresponding advertising report event.
3298 	 */
3299 	if (hdev->commands[26] & 0x08)
3300 		events[0] |= 0x02;	/* LE Advertising Report */
3301 
3302 	/* If the controller supports the LE Create Connection
3303 	 * command, enable the corresponding event.
3304 	 */
3305 	if (hdev->commands[26] & 0x10)
3306 		events[0] |= 0x01;	/* LE Connection Complete */
3307 
3308 	/* If the controller supports the LE Connection Update
3309 	 * command, enable the corresponding event.
3310 	 */
3311 	if (hdev->commands[27] & 0x04)
3312 		events[0] |= 0x04;	/* LE Connection Update Complete */
3313 
3314 	/* If the controller supports the LE Read Remote Used Features
3315 	 * command, enable the corresponding event.
3316 	 */
3317 	if (hdev->commands[27] & 0x20)
3318 		/* LE Read Remote Used Features Complete */
3319 		events[0] |= 0x08;
3320 
3321 	/* If the controller supports the LE Read Local P-256
3322 	 * Public Key command, enable the corresponding event.
3323 	 */
3324 	if (hdev->commands[34] & 0x02)
3325 		/* LE Read Local P-256 Public Key Complete */
3326 		events[0] |= 0x80;
3327 
3328 	/* If the controller supports the LE Generate DHKey
3329 	 * command, enable the corresponding event.
3330 	 */
3331 	if (hdev->commands[34] & 0x04)
3332 		events[1] |= 0x01;	/* LE Generate DHKey Complete */
3333 
3334 	/* If the controller supports the LE Set Default PHY or
3335 	 * LE Set PHY commands, enable the corresponding event.
3336 	 */
3337 	if (hdev->commands[35] & (0x20 | 0x40))
3338 		events[1] |= 0x08;        /* LE PHY Update Complete */
3339 
3340 	/* If the controller supports LE Set Extended Scan Parameters
3341 	 * and LE Set Extended Scan Enable commands, enable the
3342 	 * corresponding event.
3343 	 */
3344 	if (use_ext_scan(hdev))
3345 		events[1] |= 0x10;	/* LE Extended Advertising Report */
3346 
3347 	/* If the controller supports the LE Extended Advertising
3348 	 * command, enable the corresponding event.
3349 	 */
3350 	if (ext_adv_capable(hdev))
3351 		events[2] |= 0x02;	/* LE Advertising Set Terminated */
3352 
3353 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EVENT_MASK,
3354 				     sizeof(events), events, HCI_CMD_TIMEOUT);
3355 }
3356 
3357 /* Read LE Advertising Channel TX Power */
3358 static int hci_le_read_adv_tx_power_sync(struct hci_dev *hdev)
3359 {
3360 	if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) {
3361 		/* HCI TS spec forbids mixing of legacy and extended
3362 		 * advertising commands wherein READ_ADV_TX_POWER is
3363 		 * also included. So do not call it if extended adv
3364 		 * is supported otherwise controller will return
3365 		 * COMMAND_DISALLOWED for extended commands.
3366 		 */
3367 		return __hci_cmd_sync_status(hdev,
3368 					       HCI_OP_LE_READ_ADV_TX_POWER,
3369 					       0, NULL, HCI_CMD_TIMEOUT);
3370 	}
3371 
3372 	return 0;
3373 }
3374 
3375 /* Read LE Min/Max Tx Power*/
3376 static int hci_le_read_tx_power_sync(struct hci_dev *hdev)
3377 {
3378 	if (!(hdev->commands[38] & 0x80) ||
3379 	    test_bit(HCI_QUIRK_BROKEN_READ_TRANSMIT_POWER, &hdev->quirks))
3380 		return 0;
3381 
3382 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_TRANSMIT_POWER,
3383 				     0, NULL, HCI_CMD_TIMEOUT);
3384 }
3385 
3386 /* Read LE Accept List Size */
3387 static int hci_le_read_accept_list_size_sync(struct hci_dev *hdev)
3388 {
3389 	if (!(hdev->commands[26] & 0x40))
3390 		return 0;
3391 
3392 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_ACCEPT_LIST_SIZE,
3393 				     0, NULL, HCI_CMD_TIMEOUT);
3394 }
3395 
3396 /* Clear LE Accept List */
3397 static int hci_le_clear_accept_list_sync(struct hci_dev *hdev)
3398 {
3399 	if (!(hdev->commands[26] & 0x80))
3400 		return 0;
3401 
3402 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL,
3403 				     HCI_CMD_TIMEOUT);
3404 }
3405 
3406 /* Read LE Resolving List Size */
3407 static int hci_le_read_resolv_list_size_sync(struct hci_dev *hdev)
3408 {
3409 	if (!(hdev->commands[34] & 0x40))
3410 		return 0;
3411 
3412 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_RESOLV_LIST_SIZE,
3413 				     0, NULL, HCI_CMD_TIMEOUT);
3414 }
3415 
3416 /* Clear LE Resolving List */
3417 static int hci_le_clear_resolv_list_sync(struct hci_dev *hdev)
3418 {
3419 	if (!(hdev->commands[34] & 0x20))
3420 		return 0;
3421 
3422 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL,
3423 				     HCI_CMD_TIMEOUT);
3424 }
3425 
3426 /* Set RPA timeout */
3427 static int hci_le_set_rpa_timeout_sync(struct hci_dev *hdev)
3428 {
3429 	__le16 timeout = cpu_to_le16(hdev->rpa_timeout);
3430 
3431 	if (!(hdev->commands[35] & 0x04))
3432 		return 0;
3433 
3434 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RPA_TIMEOUT,
3435 				     sizeof(timeout), &timeout,
3436 				     HCI_CMD_TIMEOUT);
3437 }
3438 
3439 /* Read LE Maximum Data Length */
3440 static int hci_le_read_max_data_len_sync(struct hci_dev *hdev)
3441 {
3442 	if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
3443 		return 0;
3444 
3445 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL,
3446 				     HCI_CMD_TIMEOUT);
3447 }
3448 
3449 /* Read LE Suggested Default Data Length */
3450 static int hci_le_read_def_data_len_sync(struct hci_dev *hdev)
3451 {
3452 	if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
3453 		return 0;
3454 
3455 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL,
3456 				     HCI_CMD_TIMEOUT);
3457 }
3458 
3459 /* Read LE Number of Supported Advertising Sets */
3460 static int hci_le_read_num_support_adv_sets_sync(struct hci_dev *hdev)
3461 {
3462 	if (!ext_adv_capable(hdev))
3463 		return 0;
3464 
3465 	return __hci_cmd_sync_status(hdev,
3466 				     HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS,
3467 				     0, NULL, HCI_CMD_TIMEOUT);
3468 }
3469 
3470 /* Write LE Host Supported */
3471 static int hci_set_le_support_sync(struct hci_dev *hdev)
3472 {
3473 	struct hci_cp_write_le_host_supported cp;
3474 
3475 	/* LE-only devices do not support explicit enablement */
3476 	if (!lmp_bredr_capable(hdev))
3477 		return 0;
3478 
3479 	memset(&cp, 0, sizeof(cp));
3480 
3481 	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
3482 		cp.le = 0x01;
3483 		cp.simul = 0x00;
3484 	}
3485 
3486 	if (cp.le == lmp_host_le_capable(hdev))
3487 		return 0;
3488 
3489 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED,
3490 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3491 }
3492 
3493 /* LE Controller init stage 3 command sequence */
3494 static const struct hci_init_stage le_init3[] = {
3495 	/* HCI_OP_LE_SET_EVENT_MASK */
3496 	HCI_INIT(hci_le_set_event_mask_sync),
3497 	/* HCI_OP_LE_READ_ADV_TX_POWER */
3498 	HCI_INIT(hci_le_read_adv_tx_power_sync),
3499 	/* HCI_OP_LE_READ_TRANSMIT_POWER */
3500 	HCI_INIT(hci_le_read_tx_power_sync),
3501 	/* HCI_OP_LE_READ_ACCEPT_LIST_SIZE */
3502 	HCI_INIT(hci_le_read_accept_list_size_sync),
3503 	/* HCI_OP_LE_CLEAR_ACCEPT_LIST */
3504 	HCI_INIT(hci_le_clear_accept_list_sync),
3505 	/* HCI_OP_LE_READ_RESOLV_LIST_SIZE */
3506 	HCI_INIT(hci_le_read_resolv_list_size_sync),
3507 	/* HCI_OP_LE_CLEAR_RESOLV_LIST */
3508 	HCI_INIT(hci_le_clear_resolv_list_sync),
3509 	/* HCI_OP_LE_SET_RPA_TIMEOUT */
3510 	HCI_INIT(hci_le_set_rpa_timeout_sync),
3511 	/* HCI_OP_LE_READ_MAX_DATA_LEN */
3512 	HCI_INIT(hci_le_read_max_data_len_sync),
3513 	/* HCI_OP_LE_READ_DEF_DATA_LEN */
3514 	HCI_INIT(hci_le_read_def_data_len_sync),
3515 	/* HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS */
3516 	HCI_INIT(hci_le_read_num_support_adv_sets_sync),
3517 	/* HCI_OP_WRITE_LE_HOST_SUPPORTED */
3518 	HCI_INIT(hci_set_le_support_sync),
3519 	{}
3520 };
3521 
3522 static int hci_init3_sync(struct hci_dev *hdev)
3523 {
3524 	int err;
3525 
3526 	bt_dev_dbg(hdev, "");
3527 
3528 	err = hci_init_stage_sync(hdev, hci_init3);
3529 	if (err)
3530 		return err;
3531 
3532 	if (lmp_le_capable(hdev))
3533 		return hci_init_stage_sync(hdev, le_init3);
3534 
3535 	return 0;
3536 }
3537 
3538 static int hci_delete_stored_link_key_sync(struct hci_dev *hdev)
3539 {
3540 	struct hci_cp_delete_stored_link_key cp;
3541 
3542 	/* Some Broadcom based Bluetooth controllers do not support the
3543 	 * Delete Stored Link Key command. They are clearly indicating its
3544 	 * absence in the bit mask of supported commands.
3545 	 *
3546 	 * Check the supported commands and only if the command is marked
3547 	 * as supported send it. If not supported assume that the controller
3548 	 * does not have actual support for stored link keys which makes this
3549 	 * command redundant anyway.
3550 	 *
3551 	 * Some controllers indicate that they support handling deleting
3552 	 * stored link keys, but they don't. The quirk lets a driver
3553 	 * just disable this command.
3554 	 */
3555 	if (!(hdev->commands[6] & 0x80) ||
3556 	    test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks))
3557 		return 0;
3558 
3559 	memset(&cp, 0, sizeof(cp));
3560 	bacpy(&cp.bdaddr, BDADDR_ANY);
3561 	cp.delete_all = 0x01;
3562 
3563 	return __hci_cmd_sync_status(hdev, HCI_OP_DELETE_STORED_LINK_KEY,
3564 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3565 }
3566 
3567 static int hci_set_event_mask_page_2_sync(struct hci_dev *hdev)
3568 {
3569 	u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
3570 	bool changed = false;
3571 
3572 	/* Set event mask page 2 if the HCI command for it is supported */
3573 	if (!(hdev->commands[22] & 0x04))
3574 		return 0;
3575 
3576 	/* If Connectionless Peripheral Broadcast central role is supported
3577 	 * enable all necessary events for it.
3578 	 */
3579 	if (lmp_cpb_central_capable(hdev)) {
3580 		events[1] |= 0x40;	/* Triggered Clock Capture */
3581 		events[1] |= 0x80;	/* Synchronization Train Complete */
3582 		events[2] |= 0x10;	/* Peripheral Page Response Timeout */
3583 		events[2] |= 0x20;	/* CPB Channel Map Change */
3584 		changed = true;
3585 	}
3586 
3587 	/* If Connectionless Peripheral Broadcast peripheral role is supported
3588 	 * enable all necessary events for it.
3589 	 */
3590 	if (lmp_cpb_peripheral_capable(hdev)) {
3591 		events[2] |= 0x01;	/* Synchronization Train Received */
3592 		events[2] |= 0x02;	/* CPB Receive */
3593 		events[2] |= 0x04;	/* CPB Timeout */
3594 		events[2] |= 0x08;	/* Truncated Page Complete */
3595 		changed = true;
3596 	}
3597 
3598 	/* Enable Authenticated Payload Timeout Expired event if supported */
3599 	if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
3600 		events[2] |= 0x80;
3601 		changed = true;
3602 	}
3603 
3604 	/* Some Broadcom based controllers indicate support for Set Event
3605 	 * Mask Page 2 command, but then actually do not support it. Since
3606 	 * the default value is all bits set to zero, the command is only
3607 	 * required if the event mask has to be changed. In case no change
3608 	 * to the event mask is needed, skip this command.
3609 	 */
3610 	if (!changed)
3611 		return 0;
3612 
3613 	return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK_PAGE_2,
3614 				     sizeof(events), events, HCI_CMD_TIMEOUT);
3615 }
3616 
3617 /* Read local codec list if the HCI command is supported */
3618 static int hci_read_local_codecs_sync(struct hci_dev *hdev)
3619 {
3620 	if (!(hdev->commands[29] & 0x20))
3621 		return 0;
3622 
3623 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_CODECS, 0, NULL,
3624 				     HCI_CMD_TIMEOUT);
3625 }
3626 
3627 /* Read local pairing options if the HCI command is supported */
3628 static int hci_read_local_pairing_opts_sync(struct hci_dev *hdev)
3629 {
3630 	if (!(hdev->commands[41] & 0x08))
3631 		return 0;
3632 
3633 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_PAIRING_OPTS,
3634 				     0, NULL, HCI_CMD_TIMEOUT);
3635 }
3636 
3637 /* Get MWS transport configuration if the HCI command is supported */
3638 static int hci_get_mws_transport_config_sync(struct hci_dev *hdev)
3639 {
3640 	if (!(hdev->commands[30] & 0x08))
3641 		return 0;
3642 
3643 	return __hci_cmd_sync_status(hdev, HCI_OP_GET_MWS_TRANSPORT_CONFIG,
3644 				     0, NULL, HCI_CMD_TIMEOUT);
3645 }
3646 
3647 /* Check for Synchronization Train support */
3648 static int hci_read_sync_train_params_sync(struct hci_dev *hdev)
3649 {
3650 	if (!lmp_sync_train_capable(hdev))
3651 		return 0;
3652 
3653 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_SYNC_TRAIN_PARAMS,
3654 				     0, NULL, HCI_CMD_TIMEOUT);
3655 }
3656 
3657 /* Enable Secure Connections if supported and configured */
3658 static int hci_write_sc_support_1_sync(struct hci_dev *hdev)
3659 {
3660 	u8 support = 0x01;
3661 
3662 	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) ||
3663 	    !bredr_sc_enabled(hdev))
3664 		return 0;
3665 
3666 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT,
3667 				     sizeof(support), &support,
3668 				     HCI_CMD_TIMEOUT);
3669 }
3670 
3671 /* Set erroneous data reporting if supported to the wideband speech
3672  * setting value
3673  */
3674 static int hci_set_err_data_report_sync(struct hci_dev *hdev)
3675 {
3676 	struct hci_cp_write_def_err_data_reporting cp;
3677 	bool enabled = hci_dev_test_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED);
3678 
3679 	if (!(hdev->commands[18] & 0x08) ||
3680 	    test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks))
3681 		return 0;
3682 
3683 	if (enabled == hdev->err_data_reporting)
3684 		return 0;
3685 
3686 	memset(&cp, 0, sizeof(cp));
3687 	cp.err_data_reporting = enabled ? ERR_DATA_REPORTING_ENABLED :
3688 				ERR_DATA_REPORTING_DISABLED;
3689 
3690 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING,
3691 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3692 }
3693 
3694 static const struct hci_init_stage hci_init4[] = {
3695 	 /* HCI_OP_DELETE_STORED_LINK_KEY */
3696 	HCI_INIT(hci_delete_stored_link_key_sync),
3697 	/* HCI_OP_SET_EVENT_MASK_PAGE_2 */
3698 	HCI_INIT(hci_set_event_mask_page_2_sync),
3699 	/* HCI_OP_READ_LOCAL_CODECS */
3700 	HCI_INIT(hci_read_local_codecs_sync),
3701 	 /* HCI_OP_READ_LOCAL_PAIRING_OPTS */
3702 	HCI_INIT(hci_read_local_pairing_opts_sync),
3703 	 /* HCI_OP_GET_MWS_TRANSPORT_CONFIG */
3704 	HCI_INIT(hci_get_mws_transport_config_sync),
3705 	 /* HCI_OP_READ_SYNC_TRAIN_PARAMS */
3706 	HCI_INIT(hci_read_sync_train_params_sync),
3707 	/* HCI_OP_WRITE_SC_SUPPORT */
3708 	HCI_INIT(hci_write_sc_support_1_sync),
3709 	/* HCI_OP_WRITE_DEF_ERR_DATA_REPORTING */
3710 	HCI_INIT(hci_set_err_data_report_sync),
3711 	{}
3712 };
3713 
3714 /* Set Suggested Default Data Length to maximum if supported */
3715 static int hci_le_set_write_def_data_len_sync(struct hci_dev *hdev)
3716 {
3717 	struct hci_cp_le_write_def_data_len cp;
3718 
3719 	if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
3720 		return 0;
3721 
3722 	memset(&cp, 0, sizeof(cp));
3723 	cp.tx_len = cpu_to_le16(hdev->le_max_tx_len);
3724 	cp.tx_time = cpu_to_le16(hdev->le_max_tx_time);
3725 
3726 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_WRITE_DEF_DATA_LEN,
3727 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3728 }
3729 
3730 /* Set Default PHY parameters if command is supported */
3731 static int hci_le_set_default_phy_sync(struct hci_dev *hdev)
3732 {
3733 	struct hci_cp_le_set_default_phy cp;
3734 
3735 	if (!(hdev->commands[35] & 0x20))
3736 		return 0;
3737 
3738 	memset(&cp, 0, sizeof(cp));
3739 	cp.all_phys = 0x00;
3740 	cp.tx_phys = hdev->le_tx_def_phys;
3741 	cp.rx_phys = hdev->le_rx_def_phys;
3742 
3743 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_DEFAULT_PHY,
3744 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3745 }
3746 
3747 static const struct hci_init_stage le_init4[] = {
3748 	/* HCI_OP_LE_WRITE_DEF_DATA_LEN */
3749 	HCI_INIT(hci_le_set_write_def_data_len_sync),
3750 	/* HCI_OP_LE_SET_DEFAULT_PHY */
3751 	HCI_INIT(hci_le_set_default_phy_sync),
3752 	{}
3753 };
3754 
3755 static int hci_init4_sync(struct hci_dev *hdev)
3756 {
3757 	int err;
3758 
3759 	bt_dev_dbg(hdev, "");
3760 
3761 	err = hci_init_stage_sync(hdev, hci_init4);
3762 	if (err)
3763 		return err;
3764 
3765 	if (lmp_le_capable(hdev))
3766 		return hci_init_stage_sync(hdev, le_init4);
3767 
3768 	return 0;
3769 }
3770 
3771 static int hci_init_sync(struct hci_dev *hdev)
3772 {
3773 	int err;
3774 
3775 	err = hci_init1_sync(hdev);
3776 	if (err < 0)
3777 		return err;
3778 
3779 	if (hci_dev_test_flag(hdev, HCI_SETUP))
3780 		hci_debugfs_create_basic(hdev);
3781 
3782 	err = hci_init2_sync(hdev);
3783 	if (err < 0)
3784 		return err;
3785 
3786 	/* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
3787 	 * BR/EDR/LE type controllers. AMP controllers only need the
3788 	 * first two stages of init.
3789 	 */
3790 	if (hdev->dev_type != HCI_PRIMARY)
3791 		return 0;
3792 
3793 	err = hci_init3_sync(hdev);
3794 	if (err < 0)
3795 		return err;
3796 
3797 	err = hci_init4_sync(hdev);
3798 	if (err < 0)
3799 		return err;
3800 
3801 	/* This function is only called when the controller is actually in
3802 	 * configured state. When the controller is marked as unconfigured,
3803 	 * this initialization procedure is not run.
3804 	 *
3805 	 * It means that it is possible that a controller runs through its
3806 	 * setup phase and then discovers missing settings. If that is the
3807 	 * case, then this function will not be called. It then will only
3808 	 * be called during the config phase.
3809 	 *
3810 	 * So only when in setup phase or config phase, create the debugfs
3811 	 * entries and register the SMP channels.
3812 	 */
3813 	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
3814 	    !hci_dev_test_flag(hdev, HCI_CONFIG))
3815 		return 0;
3816 
3817 	hci_debugfs_create_common(hdev);
3818 
3819 	if (lmp_bredr_capable(hdev))
3820 		hci_debugfs_create_bredr(hdev);
3821 
3822 	if (lmp_le_capable(hdev))
3823 		hci_debugfs_create_le(hdev);
3824 
3825 	return 0;
3826 }
3827 
3828 int hci_dev_open_sync(struct hci_dev *hdev)
3829 {
3830 	int ret = 0;
3831 
3832 	bt_dev_dbg(hdev, "");
3833 
3834 	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
3835 		ret = -ENODEV;
3836 		goto done;
3837 	}
3838 
3839 	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
3840 	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3841 		/* Check for rfkill but allow the HCI setup stage to
3842 		 * proceed (which in itself doesn't cause any RF activity).
3843 		 */
3844 		if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
3845 			ret = -ERFKILL;
3846 			goto done;
3847 		}
3848 
3849 		/* Check for valid public address or a configured static
3850 		 * random address, but let the HCI setup proceed to
3851 		 * be able to determine if there is a public address
3852 		 * or not.
3853 		 *
3854 		 * In case of user channel usage, it is not important
3855 		 * if a public address or static random address is
3856 		 * available.
3857 		 *
3858 		 * This check is only valid for BR/EDR controllers
3859 		 * since AMP controllers do not have an address.
3860 		 */
3861 		if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
3862 		    hdev->dev_type == HCI_PRIMARY &&
3863 		    !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
3864 		    !bacmp(&hdev->static_addr, BDADDR_ANY)) {
3865 			ret = -EADDRNOTAVAIL;
3866 			goto done;
3867 		}
3868 	}
3869 
3870 	if (test_bit(HCI_UP, &hdev->flags)) {
3871 		ret = -EALREADY;
3872 		goto done;
3873 	}
3874 
3875 	if (hdev->open(hdev)) {
3876 		ret = -EIO;
3877 		goto done;
3878 	}
3879 
3880 	set_bit(HCI_RUNNING, &hdev->flags);
3881 	hci_sock_dev_event(hdev, HCI_DEV_OPEN);
3882 
3883 	atomic_set(&hdev->cmd_cnt, 1);
3884 	set_bit(HCI_INIT, &hdev->flags);
3885 
3886 	if (hci_dev_test_flag(hdev, HCI_SETUP) ||
3887 	    test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) {
3888 		bool invalid_bdaddr;
3889 
3890 		hci_sock_dev_event(hdev, HCI_DEV_SETUP);
3891 
3892 		if (hdev->setup)
3893 			ret = hdev->setup(hdev);
3894 
3895 		/* The transport driver can set the quirk to mark the
3896 		 * BD_ADDR invalid before creating the HCI device or in
3897 		 * its setup callback.
3898 		 */
3899 		invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR,
3900 					  &hdev->quirks);
3901 
3902 		if (ret)
3903 			goto setup_failed;
3904 
3905 		if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) {
3906 			if (!bacmp(&hdev->public_addr, BDADDR_ANY))
3907 				hci_dev_get_bd_addr_from_property(hdev);
3908 
3909 			if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
3910 			    hdev->set_bdaddr) {
3911 				ret = hdev->set_bdaddr(hdev,
3912 						       &hdev->public_addr);
3913 
3914 				/* If setting of the BD_ADDR from the device
3915 				 * property succeeds, then treat the address
3916 				 * as valid even if the invalid BD_ADDR
3917 				 * quirk indicates otherwise.
3918 				 */
3919 				if (!ret)
3920 					invalid_bdaddr = false;
3921 			}
3922 		}
3923 
3924 setup_failed:
3925 		/* The transport driver can set these quirks before
3926 		 * creating the HCI device or in its setup callback.
3927 		 *
3928 		 * For the invalid BD_ADDR quirk it is possible that
3929 		 * it becomes a valid address if the bootloader does
3930 		 * provide it (see above).
3931 		 *
3932 		 * In case any of them is set, the controller has to
3933 		 * start up as unconfigured.
3934 		 */
3935 		if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
3936 		    invalid_bdaddr)
3937 			hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3938 
3939 		/* For an unconfigured controller it is required to
3940 		 * read at least the version information provided by
3941 		 * the Read Local Version Information command.
3942 		 *
3943 		 * If the set_bdaddr driver callback is provided, then
3944 		 * also the original Bluetooth public device address
3945 		 * will be read using the Read BD Address command.
3946 		 */
3947 		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
3948 			ret = hci_unconf_init_sync(hdev);
3949 	}
3950 
3951 	if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
3952 		/* If public address change is configured, ensure that
3953 		 * the address gets programmed. If the driver does not
3954 		 * support changing the public address, fail the power
3955 		 * on procedure.
3956 		 */
3957 		if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
3958 		    hdev->set_bdaddr)
3959 			ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
3960 		else
3961 			ret = -EADDRNOTAVAIL;
3962 	}
3963 
3964 	if (!ret) {
3965 		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
3966 		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3967 			ret = hci_init_sync(hdev);
3968 			if (!ret && hdev->post_init)
3969 				ret = hdev->post_init(hdev);
3970 		}
3971 	}
3972 
3973 	/* If the HCI Reset command is clearing all diagnostic settings,
3974 	 * then they need to be reprogrammed after the init procedure
3975 	 * completed.
3976 	 */
3977 	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
3978 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
3979 	    hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
3980 		ret = hdev->set_diag(hdev, true);
3981 
3982 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3983 		msft_do_open(hdev);
3984 		aosp_do_open(hdev);
3985 	}
3986 
3987 	clear_bit(HCI_INIT, &hdev->flags);
3988 
3989 	if (!ret) {
3990 		hci_dev_hold(hdev);
3991 		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
3992 		hci_adv_instances_set_rpa_expired(hdev, true);
3993 		set_bit(HCI_UP, &hdev->flags);
3994 		hci_sock_dev_event(hdev, HCI_DEV_UP);
3995 		hci_leds_update_powered(hdev, true);
3996 		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
3997 		    !hci_dev_test_flag(hdev, HCI_CONFIG) &&
3998 		    !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
3999 		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4000 		    hci_dev_test_flag(hdev, HCI_MGMT) &&
4001 		    hdev->dev_type == HCI_PRIMARY) {
4002 			ret = hci_powered_update_sync(hdev);
4003 		}
4004 	} else {
4005 		/* Init failed, cleanup */
4006 		flush_work(&hdev->tx_work);
4007 
4008 		/* Since hci_rx_work() is possible to awake new cmd_work
4009 		 * it should be flushed first to avoid unexpected call of
4010 		 * hci_cmd_work()
4011 		 */
4012 		flush_work(&hdev->rx_work);
4013 		flush_work(&hdev->cmd_work);
4014 
4015 		skb_queue_purge(&hdev->cmd_q);
4016 		skb_queue_purge(&hdev->rx_q);
4017 
4018 		if (hdev->flush)
4019 			hdev->flush(hdev);
4020 
4021 		if (hdev->sent_cmd) {
4022 			kfree_skb(hdev->sent_cmd);
4023 			hdev->sent_cmd = NULL;
4024 		}
4025 
4026 		clear_bit(HCI_RUNNING, &hdev->flags);
4027 		hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
4028 
4029 		hdev->close(hdev);
4030 		hdev->flags &= BIT(HCI_RAW);
4031 	}
4032 
4033 done:
4034 	return ret;
4035 }
4036 
4037 /* This function requires the caller holds hdev->lock */
4038 static void hci_pend_le_actions_clear(struct hci_dev *hdev)
4039 {
4040 	struct hci_conn_params *p;
4041 
4042 	list_for_each_entry(p, &hdev->le_conn_params, list) {
4043 		if (p->conn) {
4044 			hci_conn_drop(p->conn);
4045 			hci_conn_put(p->conn);
4046 			p->conn = NULL;
4047 		}
4048 		list_del_init(&p->action);
4049 	}
4050 
4051 	BT_DBG("All LE pending actions cleared");
4052 }
4053 
4054 int hci_dev_close_sync(struct hci_dev *hdev)
4055 {
4056 	bool auto_off;
4057 	int err = 0;
4058 
4059 	bt_dev_dbg(hdev, "");
4060 
4061 	cancel_delayed_work(&hdev->power_off);
4062 	cancel_delayed_work(&hdev->ncmd_timer);
4063 
4064 	hci_request_cancel_all(hdev);
4065 
4066 	if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
4067 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4068 	    test_bit(HCI_UP, &hdev->flags)) {
4069 		/* Execute vendor specific shutdown routine */
4070 		if (hdev->shutdown)
4071 			err = hdev->shutdown(hdev);
4072 	}
4073 
4074 	if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
4075 		cancel_delayed_work_sync(&hdev->cmd_timer);
4076 		return err;
4077 	}
4078 
4079 	hci_leds_update_powered(hdev, false);
4080 
4081 	/* Flush RX and TX works */
4082 	flush_work(&hdev->tx_work);
4083 	flush_work(&hdev->rx_work);
4084 
4085 	if (hdev->discov_timeout > 0) {
4086 		hdev->discov_timeout = 0;
4087 		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
4088 		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
4089 	}
4090 
4091 	if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
4092 		cancel_delayed_work(&hdev->service_cache);
4093 
4094 	if (hci_dev_test_flag(hdev, HCI_MGMT)) {
4095 		struct adv_info *adv_instance;
4096 
4097 		cancel_delayed_work_sync(&hdev->rpa_expired);
4098 
4099 		list_for_each_entry(adv_instance, &hdev->adv_instances, list)
4100 			cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
4101 	}
4102 
4103 	/* Avoid potential lockdep warnings from the *_flush() calls by
4104 	 * ensuring the workqueue is empty up front.
4105 	 */
4106 	drain_workqueue(hdev->workqueue);
4107 
4108 	hci_dev_lock(hdev);
4109 
4110 	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
4111 
4112 	auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
4113 
4114 	if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
4115 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4116 	    hci_dev_test_flag(hdev, HCI_MGMT))
4117 		__mgmt_power_off(hdev);
4118 
4119 	hci_inquiry_cache_flush(hdev);
4120 	hci_pend_le_actions_clear(hdev);
4121 	hci_conn_hash_flush(hdev);
4122 	/* Prevent data races on hdev->smp_data or hdev->smp_bredr_data */
4123 	smp_unregister(hdev);
4124 	hci_dev_unlock(hdev);
4125 
4126 	hci_sock_dev_event(hdev, HCI_DEV_DOWN);
4127 
4128 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4129 		aosp_do_close(hdev);
4130 		msft_do_close(hdev);
4131 	}
4132 
4133 	if (hdev->flush)
4134 		hdev->flush(hdev);
4135 
4136 	/* Reset device */
4137 	skb_queue_purge(&hdev->cmd_q);
4138 	atomic_set(&hdev->cmd_cnt, 1);
4139 	if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
4140 	    !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
4141 		set_bit(HCI_INIT, &hdev->flags);
4142 		hci_reset_sync(hdev);
4143 		clear_bit(HCI_INIT, &hdev->flags);
4144 	}
4145 
4146 	/* flush cmd  work */
4147 	flush_work(&hdev->cmd_work);
4148 
4149 	/* Drop queues */
4150 	skb_queue_purge(&hdev->rx_q);
4151 	skb_queue_purge(&hdev->cmd_q);
4152 	skb_queue_purge(&hdev->raw_q);
4153 
4154 	/* Drop last sent command */
4155 	if (hdev->sent_cmd) {
4156 		cancel_delayed_work_sync(&hdev->cmd_timer);
4157 		kfree_skb(hdev->sent_cmd);
4158 		hdev->sent_cmd = NULL;
4159 	}
4160 
4161 	clear_bit(HCI_RUNNING, &hdev->flags);
4162 	hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
4163 
4164 	/* After this point our queues are empty and no tasks are scheduled. */
4165 	hdev->close(hdev);
4166 
4167 	/* Clear flags */
4168 	hdev->flags &= BIT(HCI_RAW);
4169 	hci_dev_clear_volatile_flags(hdev);
4170 
4171 	/* Controller radio is available but is currently powered down */
4172 	hdev->amp_status = AMP_STATUS_POWERED_DOWN;
4173 
4174 	memset(hdev->eir, 0, sizeof(hdev->eir));
4175 	memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
4176 	bacpy(&hdev->random_addr, BDADDR_ANY);
4177 
4178 	hci_dev_put(hdev);
4179 	return err;
4180 }
4181 
4182 /* This function perform power on HCI command sequence as follows:
4183  *
4184  * If controller is already up (HCI_UP) performs hci_powered_update_sync
4185  * sequence otherwise run hci_dev_open_sync which will follow with
4186  * hci_powered_update_sync after the init sequence is completed.
4187  */
4188 static int hci_power_on_sync(struct hci_dev *hdev)
4189 {
4190 	int err;
4191 
4192 	if (test_bit(HCI_UP, &hdev->flags) &&
4193 	    hci_dev_test_flag(hdev, HCI_MGMT) &&
4194 	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
4195 		cancel_delayed_work(&hdev->power_off);
4196 		return hci_powered_update_sync(hdev);
4197 	}
4198 
4199 	err = hci_dev_open_sync(hdev);
4200 	if (err < 0)
4201 		return err;
4202 
4203 	/* During the HCI setup phase, a few error conditions are
4204 	 * ignored and they need to be checked now. If they are still
4205 	 * valid, it is important to return the device back off.
4206 	 */
4207 	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
4208 	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
4209 	    (hdev->dev_type == HCI_PRIMARY &&
4210 	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
4211 	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
4212 		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
4213 		hci_dev_close_sync(hdev);
4214 	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
4215 		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
4216 				   HCI_AUTO_OFF_TIMEOUT);
4217 	}
4218 
4219 	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
4220 		/* For unconfigured devices, set the HCI_RAW flag
4221 		 * so that userspace can easily identify them.
4222 		 */
4223 		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
4224 			set_bit(HCI_RAW, &hdev->flags);
4225 
4226 		/* For fully configured devices, this will send
4227 		 * the Index Added event. For unconfigured devices,
4228 		 * it will send Unconfigued Index Added event.
4229 		 *
4230 		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
4231 		 * and no event will be send.
4232 		 */
4233 		mgmt_index_added(hdev);
4234 	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
4235 		/* When the controller is now configured, then it
4236 		 * is important to clear the HCI_RAW flag.
4237 		 */
4238 		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
4239 			clear_bit(HCI_RAW, &hdev->flags);
4240 
4241 		/* Powering on the controller with HCI_CONFIG set only
4242 		 * happens with the transition from unconfigured to
4243 		 * configured. This will send the Index Added event.
4244 		 */
4245 		mgmt_index_added(hdev);
4246 	}
4247 
4248 	return 0;
4249 }
4250 
4251 static int hci_remote_name_cancel_sync(struct hci_dev *hdev, bdaddr_t *addr)
4252 {
4253 	struct hci_cp_remote_name_req_cancel cp;
4254 
4255 	memset(&cp, 0, sizeof(cp));
4256 	bacpy(&cp.bdaddr, addr);
4257 
4258 	return __hci_cmd_sync_status(hdev, HCI_OP_REMOTE_NAME_REQ_CANCEL,
4259 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4260 }
4261 
4262 int hci_stop_discovery_sync(struct hci_dev *hdev)
4263 {
4264 	struct discovery_state *d = &hdev->discovery;
4265 	struct inquiry_entry *e;
4266 	int err;
4267 
4268 	bt_dev_dbg(hdev, "state %u", hdev->discovery.state);
4269 
4270 	if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
4271 		if (test_bit(HCI_INQUIRY, &hdev->flags)) {
4272 			err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL,
4273 						    0, NULL, HCI_CMD_TIMEOUT);
4274 			if (err)
4275 				return err;
4276 		}
4277 
4278 		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
4279 			cancel_delayed_work(&hdev->le_scan_disable);
4280 			cancel_delayed_work(&hdev->le_scan_restart);
4281 
4282 			err = hci_scan_disable_sync(hdev);
4283 			if (err)
4284 				return err;
4285 		}
4286 
4287 	} else {
4288 		err = hci_scan_disable_sync(hdev);
4289 		if (err)
4290 			return err;
4291 	}
4292 
4293 	/* Resume advertising if it was paused */
4294 	if (use_ll_privacy(hdev))
4295 		hci_resume_advertising_sync(hdev);
4296 
4297 	/* No further actions needed for LE-only discovery */
4298 	if (d->type == DISCOV_TYPE_LE)
4299 		return 0;
4300 
4301 	if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
4302 		e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
4303 						     NAME_PENDING);
4304 		if (!e)
4305 			return 0;
4306 
4307 		return hci_remote_name_cancel_sync(hdev, &e->data.bdaddr);
4308 	}
4309 
4310 	return 0;
4311 }
4312 
4313 static int hci_disconnect_phy_link_sync(struct hci_dev *hdev, u16 handle,
4314 					u8 reason)
4315 {
4316 	struct hci_cp_disconn_phy_link cp;
4317 
4318 	memset(&cp, 0, sizeof(cp));
4319 	cp.phy_handle = HCI_PHY_HANDLE(handle);
4320 	cp.reason = reason;
4321 
4322 	return __hci_cmd_sync_status(hdev, HCI_OP_DISCONN_PHY_LINK,
4323 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4324 }
4325 
4326 static int hci_disconnect_sync(struct hci_dev *hdev, struct hci_conn *conn,
4327 			       u8 reason)
4328 {
4329 	struct hci_cp_disconnect cp;
4330 
4331 	if (conn->type == AMP_LINK)
4332 		return hci_disconnect_phy_link_sync(hdev, conn->handle, reason);
4333 
4334 	memset(&cp, 0, sizeof(cp));
4335 	cp.handle = cpu_to_le16(conn->handle);
4336 	cp.reason = reason;
4337 
4338 	/* Wait for HCI_EV_DISCONN_COMPLETE not HCI_EV_CMD_STATUS when not
4339 	 * suspending.
4340 	 */
4341 	if (!hdev->suspended)
4342 		return __hci_cmd_sync_status_sk(hdev, HCI_OP_DISCONNECT,
4343 						sizeof(cp), &cp,
4344 						HCI_EV_DISCONN_COMPLETE,
4345 						HCI_CMD_TIMEOUT, NULL);
4346 
4347 	return __hci_cmd_sync_status(hdev, HCI_OP_DISCONNECT, sizeof(cp), &cp,
4348 				     HCI_CMD_TIMEOUT);
4349 }
4350 
4351 static int hci_le_connect_cancel_sync(struct hci_dev *hdev,
4352 				      struct hci_conn *conn)
4353 {
4354 	if (test_bit(HCI_CONN_SCANNING, &conn->flags))
4355 		return 0;
4356 
4357 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_CREATE_CONN_CANCEL,
4358 				     6, &conn->dst, HCI_CMD_TIMEOUT);
4359 }
4360 
4361 static int hci_connect_cancel_sync(struct hci_dev *hdev, struct hci_conn *conn)
4362 {
4363 	if (conn->type == LE_LINK)
4364 		return hci_le_connect_cancel_sync(hdev, conn);
4365 
4366 	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
4367 		return 0;
4368 
4369 	return __hci_cmd_sync_status(hdev, HCI_OP_CREATE_CONN_CANCEL,
4370 				     6, &conn->dst, HCI_CMD_TIMEOUT);
4371 }
4372 
4373 static int hci_reject_sco_sync(struct hci_dev *hdev, struct hci_conn *conn,
4374 			       u8 reason)
4375 {
4376 	struct hci_cp_reject_sync_conn_req cp;
4377 
4378 	memset(&cp, 0, sizeof(cp));
4379 	bacpy(&cp.bdaddr, &conn->dst);
4380 	cp.reason = reason;
4381 
4382 	/* SCO rejection has its own limited set of
4383 	 * allowed error values (0x0D-0x0F).
4384 	 */
4385 	if (reason < 0x0d || reason > 0x0f)
4386 		cp.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
4387 
4388 	return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_SYNC_CONN_REQ,
4389 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4390 }
4391 
4392 static int hci_reject_conn_sync(struct hci_dev *hdev, struct hci_conn *conn,
4393 				u8 reason)
4394 {
4395 	struct hci_cp_reject_conn_req cp;
4396 
4397 	if (conn->type == SCO_LINK || conn->type == ESCO_LINK)
4398 		return hci_reject_sco_sync(hdev, conn, reason);
4399 
4400 	memset(&cp, 0, sizeof(cp));
4401 	bacpy(&cp.bdaddr, &conn->dst);
4402 	cp.reason = reason;
4403 
4404 	return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_CONN_REQ,
4405 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4406 }
4407 
4408 static int hci_abort_conn_sync(struct hci_dev *hdev, struct hci_conn *conn,
4409 			       u8 reason)
4410 {
4411 	switch (conn->state) {
4412 	case BT_CONNECTED:
4413 	case BT_CONFIG:
4414 		return hci_disconnect_sync(hdev, conn, reason);
4415 	case BT_CONNECT:
4416 		return hci_connect_cancel_sync(hdev, conn);
4417 	case BT_CONNECT2:
4418 		return hci_reject_conn_sync(hdev, conn, reason);
4419 	default:
4420 		conn->state = BT_CLOSED;
4421 		break;
4422 	}
4423 
4424 	return 0;
4425 }
4426 
4427 static int hci_disconnect_all_sync(struct hci_dev *hdev, u8 reason)
4428 {
4429 	struct hci_conn *conn, *tmp;
4430 	int err;
4431 
4432 	list_for_each_entry_safe(conn, tmp, &hdev->conn_hash.list, list) {
4433 		err = hci_abort_conn_sync(hdev, conn, reason);
4434 		if (err)
4435 			return err;
4436 	}
4437 
4438 	return 0;
4439 }
4440 
4441 /* This function perform power off HCI command sequence as follows:
4442  *
4443  * Clear Advertising
4444  * Stop Discovery
4445  * Disconnect all connections
4446  * hci_dev_close_sync
4447  */
4448 static int hci_power_off_sync(struct hci_dev *hdev)
4449 {
4450 	int err;
4451 
4452 	/* If controller is already down there is nothing to do */
4453 	if (!test_bit(HCI_UP, &hdev->flags))
4454 		return 0;
4455 
4456 	if (test_bit(HCI_ISCAN, &hdev->flags) ||
4457 	    test_bit(HCI_PSCAN, &hdev->flags)) {
4458 		err = hci_write_scan_enable_sync(hdev, 0x00);
4459 		if (err)
4460 			return err;
4461 	}
4462 
4463 	err = hci_clear_adv_sync(hdev, NULL, false);
4464 	if (err)
4465 		return err;
4466 
4467 	err = hci_stop_discovery_sync(hdev);
4468 	if (err)
4469 		return err;
4470 
4471 	/* Terminated due to Power Off */
4472 	err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF);
4473 	if (err)
4474 		return err;
4475 
4476 	return hci_dev_close_sync(hdev);
4477 }
4478 
4479 int hci_set_powered_sync(struct hci_dev *hdev, u8 val)
4480 {
4481 	if (val)
4482 		return hci_power_on_sync(hdev);
4483 
4484 	return hci_power_off_sync(hdev);
4485 }
4486 
4487 static int hci_write_iac_sync(struct hci_dev *hdev)
4488 {
4489 	struct hci_cp_write_current_iac_lap cp;
4490 
4491 	if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
4492 		return 0;
4493 
4494 	memset(&cp, 0, sizeof(cp));
4495 
4496 	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
4497 		/* Limited discoverable mode */
4498 		cp.num_iac = min_t(u8, hdev->num_iac, 2);
4499 		cp.iac_lap[0] = 0x00;	/* LIAC */
4500 		cp.iac_lap[1] = 0x8b;
4501 		cp.iac_lap[2] = 0x9e;
4502 		cp.iac_lap[3] = 0x33;	/* GIAC */
4503 		cp.iac_lap[4] = 0x8b;
4504 		cp.iac_lap[5] = 0x9e;
4505 	} else {
4506 		/* General discoverable mode */
4507 		cp.num_iac = 1;
4508 		cp.iac_lap[0] = 0x33;	/* GIAC */
4509 		cp.iac_lap[1] = 0x8b;
4510 		cp.iac_lap[2] = 0x9e;
4511 	}
4512 
4513 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CURRENT_IAC_LAP,
4514 				     (cp.num_iac * 3) + 1, &cp,
4515 				     HCI_CMD_TIMEOUT);
4516 }
4517 
4518 int hci_update_discoverable_sync(struct hci_dev *hdev)
4519 {
4520 	int err = 0;
4521 
4522 	if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
4523 		err = hci_write_iac_sync(hdev);
4524 		if (err)
4525 			return err;
4526 
4527 		err = hci_update_scan_sync(hdev);
4528 		if (err)
4529 			return err;
4530 
4531 		err = hci_update_class_sync(hdev);
4532 		if (err)
4533 			return err;
4534 	}
4535 
4536 	/* Advertising instances don't use the global discoverable setting, so
4537 	 * only update AD if advertising was enabled using Set Advertising.
4538 	 */
4539 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
4540 		err = hci_update_adv_data_sync(hdev, 0x00);
4541 		if (err)
4542 			return err;
4543 
4544 		/* Discoverable mode affects the local advertising
4545 		 * address in limited privacy mode.
4546 		 */
4547 		if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) {
4548 			if (ext_adv_capable(hdev))
4549 				err = hci_start_ext_adv_sync(hdev, 0x00);
4550 			else
4551 				err = hci_enable_advertising_sync(hdev);
4552 		}
4553 	}
4554 
4555 	return err;
4556 }
4557 
4558 static int update_discoverable_sync(struct hci_dev *hdev, void *data)
4559 {
4560 	return hci_update_discoverable_sync(hdev);
4561 }
4562 
4563 int hci_update_discoverable(struct hci_dev *hdev)
4564 {
4565 	/* Only queue if it would have any effect */
4566 	if (hdev_is_powered(hdev) &&
4567 	    hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
4568 	    hci_dev_test_flag(hdev, HCI_DISCOVERABLE) &&
4569 	    hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
4570 		return hci_cmd_sync_queue(hdev, update_discoverable_sync, NULL,
4571 					  NULL);
4572 
4573 	return 0;
4574 }
4575 
4576 int hci_update_connectable_sync(struct hci_dev *hdev)
4577 {
4578 	int err;
4579 
4580 	err = hci_update_scan_sync(hdev);
4581 	if (err)
4582 		return err;
4583 
4584 	/* If BR/EDR is not enabled and we disable advertising as a
4585 	 * by-product of disabling connectable, we need to update the
4586 	 * advertising flags.
4587 	 */
4588 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
4589 		err = hci_update_adv_data_sync(hdev, hdev->cur_adv_instance);
4590 
4591 	/* Update the advertising parameters if necessary */
4592 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
4593 	    !list_empty(&hdev->adv_instances)) {
4594 		if (ext_adv_capable(hdev))
4595 			err = hci_start_ext_adv_sync(hdev,
4596 						     hdev->cur_adv_instance);
4597 		else
4598 			err = hci_enable_advertising_sync(hdev);
4599 
4600 		if (err)
4601 			return err;
4602 	}
4603 
4604 	return hci_update_passive_scan_sync(hdev);
4605 }
4606 
4607 static int hci_inquiry_sync(struct hci_dev *hdev, u8 length)
4608 {
4609 	const u8 giac[3] = { 0x33, 0x8b, 0x9e };
4610 	const u8 liac[3] = { 0x00, 0x8b, 0x9e };
4611 	struct hci_cp_inquiry cp;
4612 
4613 	bt_dev_dbg(hdev, "");
4614 
4615 	if (hci_dev_test_flag(hdev, HCI_INQUIRY))
4616 		return 0;
4617 
4618 	hci_dev_lock(hdev);
4619 	hci_inquiry_cache_flush(hdev);
4620 	hci_dev_unlock(hdev);
4621 
4622 	memset(&cp, 0, sizeof(cp));
4623 
4624 	if (hdev->discovery.limited)
4625 		memcpy(&cp.lap, liac, sizeof(cp.lap));
4626 	else
4627 		memcpy(&cp.lap, giac, sizeof(cp.lap));
4628 
4629 	cp.length = length;
4630 
4631 	return __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY,
4632 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4633 }
4634 
4635 static int hci_active_scan_sync(struct hci_dev *hdev, uint16_t interval)
4636 {
4637 	u8 own_addr_type;
4638 	/* Accept list is not used for discovery */
4639 	u8 filter_policy = 0x00;
4640 	/* Default is to enable duplicates filter */
4641 	u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
4642 	int err;
4643 
4644 	bt_dev_dbg(hdev, "");
4645 
4646 	/* If controller is scanning, it means the passive scanning is
4647 	 * running. Thus, we should temporarily stop it in order to set the
4648 	 * discovery scanning parameters.
4649 	 */
4650 	err = hci_scan_disable_sync(hdev);
4651 	if (err) {
4652 		bt_dev_err(hdev, "Unable to disable scanning: %d", err);
4653 		return err;
4654 	}
4655 
4656 	cancel_interleave_scan(hdev);
4657 
4658 	/* Pause advertising since active scanning disables address resolution
4659 	 * which advertising depend on in order to generate its RPAs.
4660 	 */
4661 	if (use_ll_privacy(hdev)) {
4662 		err = hci_pause_advertising_sync(hdev);
4663 		if (err) {
4664 			bt_dev_err(hdev, "pause advertising failed: %d", err);
4665 			goto failed;
4666 		}
4667 	}
4668 
4669 	/* Disable address resolution while doing active scanning since the
4670 	 * accept list shall not be used and all reports shall reach the host
4671 	 * anyway.
4672 	 */
4673 	err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00);
4674 	if (err) {
4675 		bt_dev_err(hdev, "Unable to disable Address Resolution: %d",
4676 			   err);
4677 		goto failed;
4678 	}
4679 
4680 	/* All active scans will be done with either a resolvable private
4681 	 * address (when privacy feature has been enabled) or non-resolvable
4682 	 * private address.
4683 	 */
4684 	err = hci_update_random_address_sync(hdev, true, scan_use_rpa(hdev),
4685 					     &own_addr_type);
4686 	if (err < 0)
4687 		own_addr_type = ADDR_LE_DEV_PUBLIC;
4688 
4689 	if (hci_is_adv_monitoring(hdev)) {
4690 		/* Duplicate filter should be disabled when some advertisement
4691 		 * monitor is activated, otherwise AdvMon can only receive one
4692 		 * advertisement for one peer(*) during active scanning, and
4693 		 * might report loss to these peers.
4694 		 *
4695 		 * Note that different controllers have different meanings of
4696 		 * |duplicate|. Some of them consider packets with the same
4697 		 * address as duplicate, and others consider packets with the
4698 		 * same address and the same RSSI as duplicate. Although in the
4699 		 * latter case we don't need to disable duplicate filter, but
4700 		 * it is common to have active scanning for a short period of
4701 		 * time, the power impact should be neglectable.
4702 		 */
4703 		filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
4704 	}
4705 
4706 	err = hci_start_scan_sync(hdev, LE_SCAN_ACTIVE, interval,
4707 				  hdev->le_scan_window_discovery,
4708 				  own_addr_type, filter_policy, filter_dup);
4709 	if (!err)
4710 		return err;
4711 
4712 failed:
4713 	/* Resume advertising if it was paused */
4714 	if (use_ll_privacy(hdev))
4715 		hci_resume_advertising_sync(hdev);
4716 
4717 	/* Resume passive scanning */
4718 	hci_update_passive_scan_sync(hdev);
4719 	return err;
4720 }
4721 
4722 static int hci_start_interleaved_discovery_sync(struct hci_dev *hdev)
4723 {
4724 	int err;
4725 
4726 	bt_dev_dbg(hdev, "");
4727 
4728 	err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery * 2);
4729 	if (err)
4730 		return err;
4731 
4732 	return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN);
4733 }
4734 
4735 int hci_start_discovery_sync(struct hci_dev *hdev)
4736 {
4737 	unsigned long timeout;
4738 	int err;
4739 
4740 	bt_dev_dbg(hdev, "type %u", hdev->discovery.type);
4741 
4742 	switch (hdev->discovery.type) {
4743 	case DISCOV_TYPE_BREDR:
4744 		return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN);
4745 	case DISCOV_TYPE_INTERLEAVED:
4746 		/* When running simultaneous discovery, the LE scanning time
4747 		 * should occupy the whole discovery time sine BR/EDR inquiry
4748 		 * and LE scanning are scheduled by the controller.
4749 		 *
4750 		 * For interleaving discovery in comparison, BR/EDR inquiry
4751 		 * and LE scanning are done sequentially with separate
4752 		 * timeouts.
4753 		 */
4754 		if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
4755 			     &hdev->quirks)) {
4756 			timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
4757 			/* During simultaneous discovery, we double LE scan
4758 			 * interval. We must leave some time for the controller
4759 			 * to do BR/EDR inquiry.
4760 			 */
4761 			err = hci_start_interleaved_discovery_sync(hdev);
4762 			break;
4763 		}
4764 
4765 		timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
4766 		err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery);
4767 		break;
4768 	case DISCOV_TYPE_LE:
4769 		timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
4770 		err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery);
4771 		break;
4772 	default:
4773 		return -EINVAL;
4774 	}
4775 
4776 	if (err)
4777 		return err;
4778 
4779 	bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout));
4780 
4781 	/* When service discovery is used and the controller has a
4782 	 * strict duplicate filter, it is important to remember the
4783 	 * start and duration of the scan. This is required for
4784 	 * restarting scanning during the discovery phase.
4785 	 */
4786 	if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
4787 	    hdev->discovery.result_filtering) {
4788 		hdev->discovery.scan_start = jiffies;
4789 		hdev->discovery.scan_duration = timeout;
4790 	}
4791 
4792 	queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
4793 			   timeout);
4794 	return 0;
4795 }
4796 
4797 static void hci_suspend_monitor_sync(struct hci_dev *hdev)
4798 {
4799 	switch (hci_get_adv_monitor_offload_ext(hdev)) {
4800 	case HCI_ADV_MONITOR_EXT_MSFT:
4801 		msft_suspend_sync(hdev);
4802 		break;
4803 	default:
4804 		return;
4805 	}
4806 }
4807 
4808 /* This function disables discovery and mark it as paused */
4809 static int hci_pause_discovery_sync(struct hci_dev *hdev)
4810 {
4811 	int old_state = hdev->discovery.state;
4812 	int err;
4813 
4814 	/* If discovery already stopped/stopping/paused there nothing to do */
4815 	if (old_state == DISCOVERY_STOPPED || old_state == DISCOVERY_STOPPING ||
4816 	    hdev->discovery_paused)
4817 		return 0;
4818 
4819 	hci_discovery_set_state(hdev, DISCOVERY_STOPPING);
4820 	err = hci_stop_discovery_sync(hdev);
4821 	if (err)
4822 		return err;
4823 
4824 	hdev->discovery_paused = true;
4825 	hdev->discovery_old_state = old_state;
4826 	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
4827 
4828 	return 0;
4829 }
4830 
4831 static int hci_update_event_filter_sync(struct hci_dev *hdev)
4832 {
4833 	struct bdaddr_list_with_flags *b;
4834 	u8 scan = SCAN_DISABLED;
4835 	bool scanning = test_bit(HCI_PSCAN, &hdev->flags);
4836 	int err;
4837 
4838 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
4839 		return 0;
4840 
4841 	/* Some fake CSR controllers lock up after setting this type of
4842 	 * filter, so avoid sending the request altogether.
4843 	 */
4844 	if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
4845 		return 0;
4846 
4847 	/* Always clear event filter when starting */
4848 	hci_clear_event_filter_sync(hdev);
4849 
4850 	list_for_each_entry(b, &hdev->accept_list, list) {
4851 		if (!test_bit(HCI_CONN_FLAG_REMOTE_WAKEUP, b->flags))
4852 			continue;
4853 
4854 		bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr);
4855 
4856 		err =  hci_set_event_filter_sync(hdev, HCI_FLT_CONN_SETUP,
4857 						 HCI_CONN_SETUP_ALLOW_BDADDR,
4858 						 &b->bdaddr,
4859 						 HCI_CONN_SETUP_AUTO_ON);
4860 		if (err)
4861 			bt_dev_dbg(hdev, "Failed to set event filter for %pMR",
4862 				   &b->bdaddr);
4863 		else
4864 			scan = SCAN_PAGE;
4865 	}
4866 
4867 	if (scan && !scanning)
4868 		hci_write_scan_enable_sync(hdev, scan);
4869 	else if (!scan && scanning)
4870 		hci_write_scan_enable_sync(hdev, scan);
4871 
4872 	return 0;
4873 }
4874 
4875 /* This function performs the HCI suspend procedures in the follow order:
4876  *
4877  * Pause discovery (active scanning/inquiry)
4878  * Pause Directed Advertising/Advertising
4879  * Disconnect all connections
4880  * Set suspend_status to BT_SUSPEND_DISCONNECT if hdev cannot wakeup
4881  * otherwise:
4882  * Update event mask (only set events that are allowed to wake up the host)
4883  * Update event filter (with devices marked with HCI_CONN_FLAG_REMOTE_WAKEUP)
4884  * Update passive scanning (lower duty cycle)
4885  * Set suspend_status to BT_SUSPEND_CONFIGURE_WAKE
4886  */
4887 int hci_suspend_sync(struct hci_dev *hdev)
4888 {
4889 	int err;
4890 
4891 	/* If marked as suspended there nothing to do */
4892 	if (hdev->suspended)
4893 		return 0;
4894 
4895 	/* Mark device as suspended */
4896 	hdev->suspended = true;
4897 
4898 	/* Pause discovery if not already stopped */
4899 	hci_pause_discovery_sync(hdev);
4900 
4901 	/* Pause other advertisements */
4902 	hci_pause_advertising_sync(hdev);
4903 
4904 	/* Disable page scan if enabled */
4905 	if (test_bit(HCI_PSCAN, &hdev->flags))
4906 		hci_write_scan_enable_sync(hdev, SCAN_DISABLED);
4907 
4908 	/* Suspend monitor filters */
4909 	hci_suspend_monitor_sync(hdev);
4910 
4911 	/* Prevent disconnects from causing scanning to be re-enabled */
4912 	hdev->scanning_paused = true;
4913 
4914 	/* Soft disconnect everything (power off) */
4915 	err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF);
4916 	if (err) {
4917 		/* Set state to BT_RUNNING so resume doesn't notify */
4918 		hdev->suspend_state = BT_RUNNING;
4919 		hci_resume_sync(hdev);
4920 		return err;
4921 	}
4922 
4923 	/* Only configure accept list if disconnect succeeded and wake
4924 	 * isn't being prevented.
4925 	 */
4926 	if (!hdev->wakeup || !hdev->wakeup(hdev)) {
4927 		hdev->suspend_state = BT_SUSPEND_DISCONNECT;
4928 		return 0;
4929 	}
4930 
4931 	/* Unpause to take care of updating scanning params */
4932 	hdev->scanning_paused = false;
4933 
4934 	/* Update event mask so only the allowed event can wakeup the host */
4935 	hci_set_event_mask_sync(hdev);
4936 
4937 	/* Enable event filter for paired devices */
4938 	hci_update_event_filter_sync(hdev);
4939 
4940 	/* Update LE passive scan if enabled */
4941 	hci_update_passive_scan_sync(hdev);
4942 
4943 	/* Pause scan changes again. */
4944 	hdev->scanning_paused = true;
4945 
4946 	hdev->suspend_state = BT_SUSPEND_CONFIGURE_WAKE;
4947 
4948 	return 0;
4949 }
4950 
4951 /* This function resumes discovery */
4952 static int hci_resume_discovery_sync(struct hci_dev *hdev)
4953 {
4954 	int err;
4955 
4956 	/* If discovery not paused there nothing to do */
4957 	if (!hdev->discovery_paused)
4958 		return 0;
4959 
4960 	hdev->discovery_paused = false;
4961 
4962 	hci_discovery_set_state(hdev, DISCOVERY_STARTING);
4963 
4964 	err = hci_start_discovery_sync(hdev);
4965 
4966 	hci_discovery_set_state(hdev, err ? DISCOVERY_STOPPED :
4967 				DISCOVERY_FINDING);
4968 
4969 	return err;
4970 }
4971 
4972 static void hci_resume_monitor_sync(struct hci_dev *hdev)
4973 {
4974 	switch (hci_get_adv_monitor_offload_ext(hdev)) {
4975 	case HCI_ADV_MONITOR_EXT_MSFT:
4976 		msft_resume_sync(hdev);
4977 		break;
4978 	default:
4979 		return;
4980 	}
4981 }
4982 
4983 /* This function performs the HCI suspend procedures in the follow order:
4984  *
4985  * Restore event mask
4986  * Clear event filter
4987  * Update passive scanning (normal duty cycle)
4988  * Resume Directed Advertising/Advertising
4989  * Resume discovery (active scanning/inquiry)
4990  */
4991 int hci_resume_sync(struct hci_dev *hdev)
4992 {
4993 	/* If not marked as suspended there nothing to do */
4994 	if (!hdev->suspended)
4995 		return 0;
4996 
4997 	hdev->suspended = false;
4998 	hdev->scanning_paused = false;
4999 
5000 	/* Restore event mask */
5001 	hci_set_event_mask_sync(hdev);
5002 
5003 	/* Clear any event filters and restore scan state */
5004 	hci_clear_event_filter_sync(hdev);
5005 	hci_update_scan_sync(hdev);
5006 
5007 	/* Reset passive scanning to normal */
5008 	hci_update_passive_scan_sync(hdev);
5009 
5010 	/* Resume monitor filters */
5011 	hci_resume_monitor_sync(hdev);
5012 
5013 	/* Resume other advertisements */
5014 	hci_resume_advertising_sync(hdev);
5015 
5016 	/* Resume discovery */
5017 	hci_resume_discovery_sync(hdev);
5018 
5019 	return 0;
5020 }
5021 
5022 static bool conn_use_rpa(struct hci_conn *conn)
5023 {
5024 	struct hci_dev *hdev = conn->hdev;
5025 
5026 	return hci_dev_test_flag(hdev, HCI_PRIVACY);
5027 }
5028 
5029 static int hci_le_ext_directed_advertising_sync(struct hci_dev *hdev,
5030 						struct hci_conn *conn)
5031 {
5032 	struct hci_cp_le_set_ext_adv_params cp;
5033 	int err;
5034 	bdaddr_t random_addr;
5035 	u8 own_addr_type;
5036 
5037 	err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
5038 					     &own_addr_type);
5039 	if (err)
5040 		return err;
5041 
5042 	/* Set require_privacy to false so that the remote device has a
5043 	 * chance of identifying us.
5044 	 */
5045 	err = hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL,
5046 				     &own_addr_type, &random_addr);
5047 	if (err)
5048 		return err;
5049 
5050 	memset(&cp, 0, sizeof(cp));
5051 
5052 	cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND);
5053 	cp.own_addr_type = own_addr_type;
5054 	cp.channel_map = hdev->le_adv_channel_map;
5055 	cp.tx_power = HCI_TX_POWER_INVALID;
5056 	cp.primary_phy = HCI_ADV_PHY_1M;
5057 	cp.secondary_phy = HCI_ADV_PHY_1M;
5058 	cp.handle = 0x00; /* Use instance 0 for directed adv */
5059 	cp.own_addr_type = own_addr_type;
5060 	cp.peer_addr_type = conn->dst_type;
5061 	bacpy(&cp.peer_addr, &conn->dst);
5062 
5063 	/* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for
5064 	 * advertising_event_property LE_LEGACY_ADV_DIRECT_IND
5065 	 * does not supports advertising data when the advertising set already
5066 	 * contains some, the controller shall return erroc code 'Invalid
5067 	 * HCI Command Parameters(0x12).
5068 	 * So it is required to remove adv set for handle 0x00. since we use
5069 	 * instance 0 for directed adv.
5070 	 */
5071 	err = hci_remove_ext_adv_instance_sync(hdev, cp.handle, NULL);
5072 	if (err)
5073 		return err;
5074 
5075 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS,
5076 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5077 	if (err)
5078 		return err;
5079 
5080 	/* Check if random address need to be updated */
5081 	if (own_addr_type == ADDR_LE_DEV_RANDOM &&
5082 	    bacmp(&random_addr, BDADDR_ANY) &&
5083 	    bacmp(&random_addr, &hdev->random_addr)) {
5084 		err = hci_set_adv_set_random_addr_sync(hdev, 0x00,
5085 						       &random_addr);
5086 		if (err)
5087 			return err;
5088 	}
5089 
5090 	return hci_enable_ext_advertising_sync(hdev, 0x00);
5091 }
5092 
5093 static int hci_le_directed_advertising_sync(struct hci_dev *hdev,
5094 					    struct hci_conn *conn)
5095 {
5096 	struct hci_cp_le_set_adv_param cp;
5097 	u8 status;
5098 	u8 own_addr_type;
5099 	u8 enable;
5100 
5101 	if (ext_adv_capable(hdev))
5102 		return hci_le_ext_directed_advertising_sync(hdev, conn);
5103 
5104 	/* Clear the HCI_LE_ADV bit temporarily so that the
5105 	 * hci_update_random_address knows that it's safe to go ahead
5106 	 * and write a new random address. The flag will be set back on
5107 	 * as soon as the SET_ADV_ENABLE HCI command completes.
5108 	 */
5109 	hci_dev_clear_flag(hdev, HCI_LE_ADV);
5110 
5111 	/* Set require_privacy to false so that the remote device has a
5112 	 * chance of identifying us.
5113 	 */
5114 	status = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
5115 						&own_addr_type);
5116 	if (status)
5117 		return status;
5118 
5119 	memset(&cp, 0, sizeof(cp));
5120 
5121 	/* Some controllers might reject command if intervals are not
5122 	 * within range for undirected advertising.
5123 	 * BCM20702A0 is known to be affected by this.
5124 	 */
5125 	cp.min_interval = cpu_to_le16(0x0020);
5126 	cp.max_interval = cpu_to_le16(0x0020);
5127 
5128 	cp.type = LE_ADV_DIRECT_IND;
5129 	cp.own_address_type = own_addr_type;
5130 	cp.direct_addr_type = conn->dst_type;
5131 	bacpy(&cp.direct_addr, &conn->dst);
5132 	cp.channel_map = hdev->le_adv_channel_map;
5133 
5134 	status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM,
5135 				       sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5136 	if (status)
5137 		return status;
5138 
5139 	enable = 0x01;
5140 
5141 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
5142 				     sizeof(enable), &enable, HCI_CMD_TIMEOUT);
5143 }
5144 
5145 static void set_ext_conn_params(struct hci_conn *conn,
5146 				struct hci_cp_le_ext_conn_param *p)
5147 {
5148 	struct hci_dev *hdev = conn->hdev;
5149 
5150 	memset(p, 0, sizeof(*p));
5151 
5152 	p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
5153 	p->scan_window = cpu_to_le16(hdev->le_scan_window_connect);
5154 	p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
5155 	p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
5156 	p->conn_latency = cpu_to_le16(conn->le_conn_latency);
5157 	p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
5158 	p->min_ce_len = cpu_to_le16(0x0000);
5159 	p->max_ce_len = cpu_to_le16(0x0000);
5160 }
5161 
5162 static int hci_le_ext_create_conn_sync(struct hci_dev *hdev,
5163 				       struct hci_conn *conn, u8 own_addr_type)
5164 {
5165 	struct hci_cp_le_ext_create_conn *cp;
5166 	struct hci_cp_le_ext_conn_param *p;
5167 	u8 data[sizeof(*cp) + sizeof(*p) * 3];
5168 	u32 plen;
5169 
5170 	cp = (void *)data;
5171 	p = (void *)cp->data;
5172 
5173 	memset(cp, 0, sizeof(*cp));
5174 
5175 	bacpy(&cp->peer_addr, &conn->dst);
5176 	cp->peer_addr_type = conn->dst_type;
5177 	cp->own_addr_type = own_addr_type;
5178 
5179 	plen = sizeof(*cp);
5180 
5181 	if (scan_1m(hdev)) {
5182 		cp->phys |= LE_SCAN_PHY_1M;
5183 		set_ext_conn_params(conn, p);
5184 
5185 		p++;
5186 		plen += sizeof(*p);
5187 	}
5188 
5189 	if (scan_2m(hdev)) {
5190 		cp->phys |= LE_SCAN_PHY_2M;
5191 		set_ext_conn_params(conn, p);
5192 
5193 		p++;
5194 		plen += sizeof(*p);
5195 	}
5196 
5197 	if (scan_coded(hdev)) {
5198 		cp->phys |= LE_SCAN_PHY_CODED;
5199 		set_ext_conn_params(conn, p);
5200 
5201 		plen += sizeof(*p);
5202 	}
5203 
5204 	return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_EXT_CREATE_CONN,
5205 					plen, data,
5206 					HCI_EV_LE_ENHANCED_CONN_COMPLETE,
5207 					conn->conn_timeout, NULL);
5208 }
5209 
5210 int hci_le_create_conn_sync(struct hci_dev *hdev, struct hci_conn *conn)
5211 {
5212 	struct hci_cp_le_create_conn cp;
5213 	struct hci_conn_params *params;
5214 	u8 own_addr_type;
5215 	int err;
5216 
5217 	/* If requested to connect as peripheral use directed advertising */
5218 	if (conn->role == HCI_ROLE_SLAVE) {
5219 		/* If we're active scanning and simultaneous roles is not
5220 		 * enabled simply reject the attempt.
5221 		 */
5222 		if (hci_dev_test_flag(hdev, HCI_LE_SCAN) &&
5223 		    hdev->le_scan_type == LE_SCAN_ACTIVE &&
5224 		    !hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) {
5225 			hci_conn_del(conn);
5226 			return -EBUSY;
5227 		}
5228 
5229 		/* Pause advertising while doing directed advertising. */
5230 		hci_pause_advertising_sync(hdev);
5231 
5232 		err = hci_le_directed_advertising_sync(hdev, conn);
5233 		goto done;
5234 	}
5235 
5236 	/* Disable advertising if simultaneous roles is not in use. */
5237 	if (!hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES))
5238 		hci_pause_advertising_sync(hdev);
5239 
5240 	params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
5241 	if (params) {
5242 		conn->le_conn_min_interval = params->conn_min_interval;
5243 		conn->le_conn_max_interval = params->conn_max_interval;
5244 		conn->le_conn_latency = params->conn_latency;
5245 		conn->le_supv_timeout = params->supervision_timeout;
5246 	} else {
5247 		conn->le_conn_min_interval = hdev->le_conn_min_interval;
5248 		conn->le_conn_max_interval = hdev->le_conn_max_interval;
5249 		conn->le_conn_latency = hdev->le_conn_latency;
5250 		conn->le_supv_timeout = hdev->le_supv_timeout;
5251 	}
5252 
5253 	/* If controller is scanning, we stop it since some controllers are
5254 	 * not able to scan and connect at the same time. Also set the
5255 	 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete
5256 	 * handler for scan disabling knows to set the correct discovery
5257 	 * state.
5258 	 */
5259 	if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
5260 		hci_scan_disable_sync(hdev);
5261 		hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED);
5262 	}
5263 
5264 	/* Update random address, but set require_privacy to false so
5265 	 * that we never connect with an non-resolvable address.
5266 	 */
5267 	err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
5268 					     &own_addr_type);
5269 	if (err)
5270 		goto done;
5271 
5272 	if (use_ext_conn(hdev)) {
5273 		err = hci_le_ext_create_conn_sync(hdev, conn, own_addr_type);
5274 		goto done;
5275 	}
5276 
5277 	memset(&cp, 0, sizeof(cp));
5278 
5279 	cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
5280 	cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect);
5281 
5282 	bacpy(&cp.peer_addr, &conn->dst);
5283 	cp.peer_addr_type = conn->dst_type;
5284 	cp.own_address_type = own_addr_type;
5285 	cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
5286 	cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
5287 	cp.conn_latency = cpu_to_le16(conn->le_conn_latency);
5288 	cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
5289 	cp.min_ce_len = cpu_to_le16(0x0000);
5290 	cp.max_ce_len = cpu_to_le16(0x0000);
5291 
5292 	/* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E page 2261:
5293 	 *
5294 	 * If this event is unmasked and the HCI_LE_Connection_Complete event
5295 	 * is unmasked, only the HCI_LE_Enhanced_Connection_Complete event is
5296 	 * sent when a new connection has been created.
5297 	 */
5298 	err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CONN,
5299 				       sizeof(cp), &cp,
5300 				       use_enhanced_conn_complete(hdev) ?
5301 				       HCI_EV_LE_ENHANCED_CONN_COMPLETE :
5302 				       HCI_EV_LE_CONN_COMPLETE,
5303 				       conn->conn_timeout, NULL);
5304 
5305 done:
5306 	/* Re-enable advertising after the connection attempt is finished. */
5307 	hci_resume_advertising_sync(hdev);
5308 	return err;
5309 }
5310