1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * BlueZ - Bluetooth protocol stack for Linux 4 * 5 * Copyright (C) 2021 Intel Corporation 6 * Copyright 2023 NXP 7 */ 8 9 #include <linux/property.h> 10 11 #include <net/bluetooth/bluetooth.h> 12 #include <net/bluetooth/hci_core.h> 13 #include <net/bluetooth/mgmt.h> 14 15 #include "hci_request.h" 16 #include "hci_codec.h" 17 #include "hci_debugfs.h" 18 #include "smp.h" 19 #include "eir.h" 20 #include "msft.h" 21 #include "aosp.h" 22 #include "leds.h" 23 24 static void hci_cmd_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode, 25 struct sk_buff *skb) 26 { 27 bt_dev_dbg(hdev, "result 0x%2.2x", result); 28 29 if (hdev->req_status != HCI_REQ_PEND) 30 return; 31 32 hdev->req_result = result; 33 hdev->req_status = HCI_REQ_DONE; 34 35 /* Free the request command so it is not used as response */ 36 kfree_skb(hdev->req_skb); 37 hdev->req_skb = NULL; 38 39 if (skb) { 40 struct sock *sk = hci_skb_sk(skb); 41 42 /* Drop sk reference if set */ 43 if (sk) 44 sock_put(sk); 45 46 hdev->req_rsp = skb_get(skb); 47 } 48 49 wake_up_interruptible(&hdev->req_wait_q); 50 } 51 52 static struct sk_buff *hci_cmd_sync_alloc(struct hci_dev *hdev, u16 opcode, 53 u32 plen, const void *param, 54 struct sock *sk) 55 { 56 int len = HCI_COMMAND_HDR_SIZE + plen; 57 struct hci_command_hdr *hdr; 58 struct sk_buff *skb; 59 60 skb = bt_skb_alloc(len, GFP_ATOMIC); 61 if (!skb) 62 return NULL; 63 64 hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE); 65 hdr->opcode = cpu_to_le16(opcode); 66 hdr->plen = plen; 67 68 if (plen) 69 skb_put_data(skb, param, plen); 70 71 bt_dev_dbg(hdev, "skb len %d", skb->len); 72 73 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; 74 hci_skb_opcode(skb) = opcode; 75 76 /* Grab a reference if command needs to be associated with a sock (e.g. 77 * likely mgmt socket that initiated the command). 78 */ 79 if (sk) { 80 hci_skb_sk(skb) = sk; 81 sock_hold(sk); 82 } 83 84 return skb; 85 } 86 87 static void hci_cmd_sync_add(struct hci_request *req, u16 opcode, u32 plen, 88 const void *param, u8 event, struct sock *sk) 89 { 90 struct hci_dev *hdev = req->hdev; 91 struct sk_buff *skb; 92 93 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); 94 95 /* If an error occurred during request building, there is no point in 96 * queueing the HCI command. We can simply return. 97 */ 98 if (req->err) 99 return; 100 101 skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, sk); 102 if (!skb) { 103 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)", 104 opcode); 105 req->err = -ENOMEM; 106 return; 107 } 108 109 if (skb_queue_empty(&req->cmd_q)) 110 bt_cb(skb)->hci.req_flags |= HCI_REQ_START; 111 112 hci_skb_event(skb) = event; 113 114 skb_queue_tail(&req->cmd_q, skb); 115 } 116 117 static int hci_cmd_sync_run(struct hci_request *req) 118 { 119 struct hci_dev *hdev = req->hdev; 120 struct sk_buff *skb; 121 unsigned long flags; 122 123 bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q)); 124 125 /* If an error occurred during request building, remove all HCI 126 * commands queued on the HCI request queue. 127 */ 128 if (req->err) { 129 skb_queue_purge(&req->cmd_q); 130 return req->err; 131 } 132 133 /* Do not allow empty requests */ 134 if (skb_queue_empty(&req->cmd_q)) 135 return -ENODATA; 136 137 skb = skb_peek_tail(&req->cmd_q); 138 bt_cb(skb)->hci.req_complete_skb = hci_cmd_sync_complete; 139 bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB; 140 141 spin_lock_irqsave(&hdev->cmd_q.lock, flags); 142 skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q); 143 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); 144 145 queue_work(hdev->workqueue, &hdev->cmd_work); 146 147 return 0; 148 } 149 150 /* This function requires the caller holds hdev->req_lock. */ 151 struct sk_buff *__hci_cmd_sync_sk(struct hci_dev *hdev, u16 opcode, u32 plen, 152 const void *param, u8 event, u32 timeout, 153 struct sock *sk) 154 { 155 struct hci_request req; 156 struct sk_buff *skb; 157 int err = 0; 158 159 bt_dev_dbg(hdev, "Opcode 0x%4.4x", opcode); 160 161 hci_req_init(&req, hdev); 162 163 hci_cmd_sync_add(&req, opcode, plen, param, event, sk); 164 165 hdev->req_status = HCI_REQ_PEND; 166 167 err = hci_cmd_sync_run(&req); 168 if (err < 0) 169 return ERR_PTR(err); 170 171 err = wait_event_interruptible_timeout(hdev->req_wait_q, 172 hdev->req_status != HCI_REQ_PEND, 173 timeout); 174 175 if (err == -ERESTARTSYS) 176 return ERR_PTR(-EINTR); 177 178 switch (hdev->req_status) { 179 case HCI_REQ_DONE: 180 err = -bt_to_errno(hdev->req_result); 181 break; 182 183 case HCI_REQ_CANCELED: 184 err = -hdev->req_result; 185 break; 186 187 default: 188 err = -ETIMEDOUT; 189 break; 190 } 191 192 hdev->req_status = 0; 193 hdev->req_result = 0; 194 skb = hdev->req_rsp; 195 hdev->req_rsp = NULL; 196 197 bt_dev_dbg(hdev, "end: err %d", err); 198 199 if (err < 0) { 200 kfree_skb(skb); 201 return ERR_PTR(err); 202 } 203 204 return skb; 205 } 206 EXPORT_SYMBOL(__hci_cmd_sync_sk); 207 208 /* This function requires the caller holds hdev->req_lock. */ 209 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 210 const void *param, u32 timeout) 211 { 212 return __hci_cmd_sync_sk(hdev, opcode, plen, param, 0, timeout, NULL); 213 } 214 EXPORT_SYMBOL(__hci_cmd_sync); 215 216 /* Send HCI command and wait for command complete event */ 217 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 218 const void *param, u32 timeout) 219 { 220 struct sk_buff *skb; 221 222 if (!test_bit(HCI_UP, &hdev->flags)) 223 return ERR_PTR(-ENETDOWN); 224 225 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); 226 227 hci_req_sync_lock(hdev); 228 skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout); 229 hci_req_sync_unlock(hdev); 230 231 return skb; 232 } 233 EXPORT_SYMBOL(hci_cmd_sync); 234 235 /* This function requires the caller holds hdev->req_lock. */ 236 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen, 237 const void *param, u8 event, u32 timeout) 238 { 239 return __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, 240 NULL); 241 } 242 EXPORT_SYMBOL(__hci_cmd_sync_ev); 243 244 /* This function requires the caller holds hdev->req_lock. */ 245 int __hci_cmd_sync_status_sk(struct hci_dev *hdev, u16 opcode, u32 plen, 246 const void *param, u8 event, u32 timeout, 247 struct sock *sk) 248 { 249 struct sk_buff *skb; 250 u8 status; 251 252 skb = __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, sk); 253 if (IS_ERR(skb)) { 254 if (!event) 255 bt_dev_err(hdev, "Opcode 0x%4.4x failed: %ld", opcode, 256 PTR_ERR(skb)); 257 return PTR_ERR(skb); 258 } 259 260 /* If command return a status event skb will be set to NULL as there are 261 * no parameters, in case of failure IS_ERR(skb) would have be set to 262 * the actual error would be found with PTR_ERR(skb). 263 */ 264 if (!skb) 265 return 0; 266 267 status = skb->data[0]; 268 269 kfree_skb(skb); 270 271 return status; 272 } 273 EXPORT_SYMBOL(__hci_cmd_sync_status_sk); 274 275 int __hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen, 276 const void *param, u32 timeout) 277 { 278 return __hci_cmd_sync_status_sk(hdev, opcode, plen, param, 0, timeout, 279 NULL); 280 } 281 EXPORT_SYMBOL(__hci_cmd_sync_status); 282 283 static void hci_cmd_sync_work(struct work_struct *work) 284 { 285 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_work); 286 287 bt_dev_dbg(hdev, ""); 288 289 /* Dequeue all entries and run them */ 290 while (1) { 291 struct hci_cmd_sync_work_entry *entry; 292 293 mutex_lock(&hdev->cmd_sync_work_lock); 294 entry = list_first_entry_or_null(&hdev->cmd_sync_work_list, 295 struct hci_cmd_sync_work_entry, 296 list); 297 if (entry) 298 list_del(&entry->list); 299 mutex_unlock(&hdev->cmd_sync_work_lock); 300 301 if (!entry) 302 break; 303 304 bt_dev_dbg(hdev, "entry %p", entry); 305 306 if (entry->func) { 307 int err; 308 309 hci_req_sync_lock(hdev); 310 err = entry->func(hdev, entry->data); 311 if (entry->destroy) 312 entry->destroy(hdev, entry->data, err); 313 hci_req_sync_unlock(hdev); 314 } 315 316 kfree(entry); 317 } 318 } 319 320 static void hci_cmd_sync_cancel_work(struct work_struct *work) 321 { 322 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_cancel_work); 323 324 cancel_delayed_work_sync(&hdev->cmd_timer); 325 cancel_delayed_work_sync(&hdev->ncmd_timer); 326 atomic_set(&hdev->cmd_cnt, 1); 327 328 wake_up_interruptible(&hdev->req_wait_q); 329 } 330 331 static int hci_scan_disable_sync(struct hci_dev *hdev); 332 static int scan_disable_sync(struct hci_dev *hdev, void *data) 333 { 334 return hci_scan_disable_sync(hdev); 335 } 336 337 static int hci_inquiry_sync(struct hci_dev *hdev, u8 length); 338 static int interleaved_inquiry_sync(struct hci_dev *hdev, void *data) 339 { 340 return hci_inquiry_sync(hdev, DISCOV_INTERLEAVED_INQUIRY_LEN); 341 } 342 343 static void le_scan_disable(struct work_struct *work) 344 { 345 struct hci_dev *hdev = container_of(work, struct hci_dev, 346 le_scan_disable.work); 347 int status; 348 349 bt_dev_dbg(hdev, ""); 350 hci_dev_lock(hdev); 351 352 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 353 goto _return; 354 355 status = hci_cmd_sync_queue(hdev, scan_disable_sync, NULL, NULL); 356 if (status) { 357 bt_dev_err(hdev, "failed to disable LE scan: %d", status); 358 goto _return; 359 } 360 361 hdev->discovery.scan_start = 0; 362 363 /* If we were running LE only scan, change discovery state. If 364 * we were running both LE and BR/EDR inquiry simultaneously, 365 * and BR/EDR inquiry is already finished, stop discovery, 366 * otherwise BR/EDR inquiry will stop discovery when finished. 367 * If we will resolve remote device name, do not change 368 * discovery state. 369 */ 370 371 if (hdev->discovery.type == DISCOV_TYPE_LE) 372 goto discov_stopped; 373 374 if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED) 375 goto _return; 376 377 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) { 378 if (!test_bit(HCI_INQUIRY, &hdev->flags) && 379 hdev->discovery.state != DISCOVERY_RESOLVING) 380 goto discov_stopped; 381 382 goto _return; 383 } 384 385 status = hci_cmd_sync_queue(hdev, interleaved_inquiry_sync, NULL, NULL); 386 if (status) { 387 bt_dev_err(hdev, "inquiry failed: status %d", status); 388 goto discov_stopped; 389 } 390 391 goto _return; 392 393 discov_stopped: 394 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 395 396 _return: 397 hci_dev_unlock(hdev); 398 } 399 400 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val, 401 u8 filter_dup); 402 403 static int reenable_adv_sync(struct hci_dev *hdev, void *data) 404 { 405 bt_dev_dbg(hdev, ""); 406 407 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) && 408 list_empty(&hdev->adv_instances)) 409 return 0; 410 411 if (hdev->cur_adv_instance) { 412 return hci_schedule_adv_instance_sync(hdev, 413 hdev->cur_adv_instance, 414 true); 415 } else { 416 if (ext_adv_capable(hdev)) { 417 hci_start_ext_adv_sync(hdev, 0x00); 418 } else { 419 hci_update_adv_data_sync(hdev, 0x00); 420 hci_update_scan_rsp_data_sync(hdev, 0x00); 421 hci_enable_advertising_sync(hdev); 422 } 423 } 424 425 return 0; 426 } 427 428 static void reenable_adv(struct work_struct *work) 429 { 430 struct hci_dev *hdev = container_of(work, struct hci_dev, 431 reenable_adv_work); 432 int status; 433 434 bt_dev_dbg(hdev, ""); 435 436 hci_dev_lock(hdev); 437 438 status = hci_cmd_sync_queue(hdev, reenable_adv_sync, NULL, NULL); 439 if (status) 440 bt_dev_err(hdev, "failed to reenable ADV: %d", status); 441 442 hci_dev_unlock(hdev); 443 } 444 445 static void cancel_adv_timeout(struct hci_dev *hdev) 446 { 447 if (hdev->adv_instance_timeout) { 448 hdev->adv_instance_timeout = 0; 449 cancel_delayed_work(&hdev->adv_instance_expire); 450 } 451 } 452 453 /* For a single instance: 454 * - force == true: The instance will be removed even when its remaining 455 * lifetime is not zero. 456 * - force == false: the instance will be deactivated but kept stored unless 457 * the remaining lifetime is zero. 458 * 459 * For instance == 0x00: 460 * - force == true: All instances will be removed regardless of their timeout 461 * setting. 462 * - force == false: Only instances that have a timeout will be removed. 463 */ 464 int hci_clear_adv_instance_sync(struct hci_dev *hdev, struct sock *sk, 465 u8 instance, bool force) 466 { 467 struct adv_info *adv_instance, *n, *next_instance = NULL; 468 int err; 469 u8 rem_inst; 470 471 /* Cancel any timeout concerning the removed instance(s). */ 472 if (!instance || hdev->cur_adv_instance == instance) 473 cancel_adv_timeout(hdev); 474 475 /* Get the next instance to advertise BEFORE we remove 476 * the current one. This can be the same instance again 477 * if there is only one instance. 478 */ 479 if (instance && hdev->cur_adv_instance == instance) 480 next_instance = hci_get_next_instance(hdev, instance); 481 482 if (instance == 0x00) { 483 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, 484 list) { 485 if (!(force || adv_instance->timeout)) 486 continue; 487 488 rem_inst = adv_instance->instance; 489 err = hci_remove_adv_instance(hdev, rem_inst); 490 if (!err) 491 mgmt_advertising_removed(sk, hdev, rem_inst); 492 } 493 } else { 494 adv_instance = hci_find_adv_instance(hdev, instance); 495 496 if (force || (adv_instance && adv_instance->timeout && 497 !adv_instance->remaining_time)) { 498 /* Don't advertise a removed instance. */ 499 if (next_instance && 500 next_instance->instance == instance) 501 next_instance = NULL; 502 503 err = hci_remove_adv_instance(hdev, instance); 504 if (!err) 505 mgmt_advertising_removed(sk, hdev, instance); 506 } 507 } 508 509 if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING)) 510 return 0; 511 512 if (next_instance && !ext_adv_capable(hdev)) 513 return hci_schedule_adv_instance_sync(hdev, 514 next_instance->instance, 515 false); 516 517 return 0; 518 } 519 520 static int adv_timeout_expire_sync(struct hci_dev *hdev, void *data) 521 { 522 u8 instance = *(u8 *)data; 523 524 kfree(data); 525 526 hci_clear_adv_instance_sync(hdev, NULL, instance, false); 527 528 if (list_empty(&hdev->adv_instances)) 529 return hci_disable_advertising_sync(hdev); 530 531 return 0; 532 } 533 534 static void adv_timeout_expire(struct work_struct *work) 535 { 536 u8 *inst_ptr; 537 struct hci_dev *hdev = container_of(work, struct hci_dev, 538 adv_instance_expire.work); 539 540 bt_dev_dbg(hdev, ""); 541 542 hci_dev_lock(hdev); 543 544 hdev->adv_instance_timeout = 0; 545 546 if (hdev->cur_adv_instance == 0x00) 547 goto unlock; 548 549 inst_ptr = kmalloc(1, GFP_KERNEL); 550 if (!inst_ptr) 551 goto unlock; 552 553 *inst_ptr = hdev->cur_adv_instance; 554 hci_cmd_sync_queue(hdev, adv_timeout_expire_sync, inst_ptr, NULL); 555 556 unlock: 557 hci_dev_unlock(hdev); 558 } 559 560 void hci_cmd_sync_init(struct hci_dev *hdev) 561 { 562 INIT_WORK(&hdev->cmd_sync_work, hci_cmd_sync_work); 563 INIT_LIST_HEAD(&hdev->cmd_sync_work_list); 564 mutex_init(&hdev->cmd_sync_work_lock); 565 mutex_init(&hdev->unregister_lock); 566 567 INIT_WORK(&hdev->cmd_sync_cancel_work, hci_cmd_sync_cancel_work); 568 INIT_WORK(&hdev->reenable_adv_work, reenable_adv); 569 INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable); 570 INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire); 571 } 572 573 static void _hci_cmd_sync_cancel_entry(struct hci_dev *hdev, 574 struct hci_cmd_sync_work_entry *entry, 575 int err) 576 { 577 if (entry->destroy) 578 entry->destroy(hdev, entry->data, err); 579 580 list_del(&entry->list); 581 kfree(entry); 582 } 583 584 void hci_cmd_sync_clear(struct hci_dev *hdev) 585 { 586 struct hci_cmd_sync_work_entry *entry, *tmp; 587 588 cancel_work_sync(&hdev->cmd_sync_work); 589 cancel_work_sync(&hdev->reenable_adv_work); 590 591 mutex_lock(&hdev->cmd_sync_work_lock); 592 list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) 593 _hci_cmd_sync_cancel_entry(hdev, entry, -ECANCELED); 594 mutex_unlock(&hdev->cmd_sync_work_lock); 595 } 596 597 void hci_cmd_sync_cancel(struct hci_dev *hdev, int err) 598 { 599 bt_dev_dbg(hdev, "err 0x%2.2x", err); 600 601 if (hdev->req_status == HCI_REQ_PEND) { 602 hdev->req_result = err; 603 hdev->req_status = HCI_REQ_CANCELED; 604 605 queue_work(hdev->workqueue, &hdev->cmd_sync_cancel_work); 606 } 607 } 608 EXPORT_SYMBOL(hci_cmd_sync_cancel); 609 610 /* Cancel ongoing command request synchronously: 611 * 612 * - Set result and mark status to HCI_REQ_CANCELED 613 * - Wakeup command sync thread 614 */ 615 void hci_cmd_sync_cancel_sync(struct hci_dev *hdev, int err) 616 { 617 bt_dev_dbg(hdev, "err 0x%2.2x", err); 618 619 if (hdev->req_status == HCI_REQ_PEND) { 620 /* req_result is __u32 so error must be positive to be properly 621 * propagated. 622 */ 623 hdev->req_result = err < 0 ? -err : err; 624 hdev->req_status = HCI_REQ_CANCELED; 625 626 wake_up_interruptible(&hdev->req_wait_q); 627 } 628 } 629 EXPORT_SYMBOL(hci_cmd_sync_cancel_sync); 630 631 /* Submit HCI command to be run in as cmd_sync_work: 632 * 633 * - hdev must _not_ be unregistered 634 */ 635 int hci_cmd_sync_submit(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 636 void *data, hci_cmd_sync_work_destroy_t destroy) 637 { 638 struct hci_cmd_sync_work_entry *entry; 639 int err = 0; 640 641 mutex_lock(&hdev->unregister_lock); 642 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 643 err = -ENODEV; 644 goto unlock; 645 } 646 647 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 648 if (!entry) { 649 err = -ENOMEM; 650 goto unlock; 651 } 652 entry->func = func; 653 entry->data = data; 654 entry->destroy = destroy; 655 656 mutex_lock(&hdev->cmd_sync_work_lock); 657 list_add_tail(&entry->list, &hdev->cmd_sync_work_list); 658 mutex_unlock(&hdev->cmd_sync_work_lock); 659 660 queue_work(hdev->req_workqueue, &hdev->cmd_sync_work); 661 662 unlock: 663 mutex_unlock(&hdev->unregister_lock); 664 return err; 665 } 666 EXPORT_SYMBOL(hci_cmd_sync_submit); 667 668 /* Queue HCI command: 669 * 670 * - hdev must be running 671 */ 672 int hci_cmd_sync_queue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 673 void *data, hci_cmd_sync_work_destroy_t destroy) 674 { 675 /* Only queue command if hdev is running which means it had been opened 676 * and is either on init phase or is already up. 677 */ 678 if (!test_bit(HCI_RUNNING, &hdev->flags)) 679 return -ENETDOWN; 680 681 return hci_cmd_sync_submit(hdev, func, data, destroy); 682 } 683 EXPORT_SYMBOL(hci_cmd_sync_queue); 684 685 static struct hci_cmd_sync_work_entry * 686 _hci_cmd_sync_lookup_entry(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 687 void *data, hci_cmd_sync_work_destroy_t destroy) 688 { 689 struct hci_cmd_sync_work_entry *entry, *tmp; 690 691 list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) { 692 if (func && entry->func != func) 693 continue; 694 695 if (data && entry->data != data) 696 continue; 697 698 if (destroy && entry->destroy != destroy) 699 continue; 700 701 return entry; 702 } 703 704 return NULL; 705 } 706 707 /* Queue HCI command entry once: 708 * 709 * - Lookup if an entry already exist and only if it doesn't creates a new entry 710 * and queue it. 711 */ 712 int hci_cmd_sync_queue_once(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 713 void *data, hci_cmd_sync_work_destroy_t destroy) 714 { 715 if (hci_cmd_sync_lookup_entry(hdev, func, data, destroy)) 716 return 0; 717 718 return hci_cmd_sync_queue(hdev, func, data, destroy); 719 } 720 EXPORT_SYMBOL(hci_cmd_sync_queue_once); 721 722 /* Lookup HCI command entry: 723 * 724 * - Return first entry that matches by function callback or data or 725 * destroy callback. 726 */ 727 struct hci_cmd_sync_work_entry * 728 hci_cmd_sync_lookup_entry(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 729 void *data, hci_cmd_sync_work_destroy_t destroy) 730 { 731 struct hci_cmd_sync_work_entry *entry; 732 733 mutex_lock(&hdev->cmd_sync_work_lock); 734 entry = _hci_cmd_sync_lookup_entry(hdev, func, data, destroy); 735 mutex_unlock(&hdev->cmd_sync_work_lock); 736 737 return entry; 738 } 739 EXPORT_SYMBOL(hci_cmd_sync_lookup_entry); 740 741 /* Cancel HCI command entry */ 742 void hci_cmd_sync_cancel_entry(struct hci_dev *hdev, 743 struct hci_cmd_sync_work_entry *entry) 744 { 745 mutex_lock(&hdev->cmd_sync_work_lock); 746 _hci_cmd_sync_cancel_entry(hdev, entry, -ECANCELED); 747 mutex_unlock(&hdev->cmd_sync_work_lock); 748 } 749 EXPORT_SYMBOL(hci_cmd_sync_cancel_entry); 750 751 /* Dequeue one HCI command entry: 752 * 753 * - Lookup and cancel first entry that matches. 754 */ 755 bool hci_cmd_sync_dequeue_once(struct hci_dev *hdev, 756 hci_cmd_sync_work_func_t func, 757 void *data, hci_cmd_sync_work_destroy_t destroy) 758 { 759 struct hci_cmd_sync_work_entry *entry; 760 761 entry = hci_cmd_sync_lookup_entry(hdev, func, data, destroy); 762 if (!entry) 763 return false; 764 765 hci_cmd_sync_cancel_entry(hdev, entry); 766 767 return true; 768 } 769 EXPORT_SYMBOL(hci_cmd_sync_dequeue_once); 770 771 /* Dequeue HCI command entry: 772 * 773 * - Lookup and cancel any entry that matches by function callback or data or 774 * destroy callback. 775 */ 776 bool hci_cmd_sync_dequeue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 777 void *data, hci_cmd_sync_work_destroy_t destroy) 778 { 779 struct hci_cmd_sync_work_entry *entry; 780 bool ret = false; 781 782 mutex_lock(&hdev->cmd_sync_work_lock); 783 while ((entry = _hci_cmd_sync_lookup_entry(hdev, func, data, 784 destroy))) { 785 _hci_cmd_sync_cancel_entry(hdev, entry, -ECANCELED); 786 ret = true; 787 } 788 mutex_unlock(&hdev->cmd_sync_work_lock); 789 790 return ret; 791 } 792 EXPORT_SYMBOL(hci_cmd_sync_dequeue); 793 794 int hci_update_eir_sync(struct hci_dev *hdev) 795 { 796 struct hci_cp_write_eir cp; 797 798 bt_dev_dbg(hdev, ""); 799 800 if (!hdev_is_powered(hdev)) 801 return 0; 802 803 if (!lmp_ext_inq_capable(hdev)) 804 return 0; 805 806 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 807 return 0; 808 809 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 810 return 0; 811 812 memset(&cp, 0, sizeof(cp)); 813 814 eir_create(hdev, cp.data); 815 816 if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0) 817 return 0; 818 819 memcpy(hdev->eir, cp.data, sizeof(cp.data)); 820 821 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp, 822 HCI_CMD_TIMEOUT); 823 } 824 825 static u8 get_service_classes(struct hci_dev *hdev) 826 { 827 struct bt_uuid *uuid; 828 u8 val = 0; 829 830 list_for_each_entry(uuid, &hdev->uuids, list) 831 val |= uuid->svc_hint; 832 833 return val; 834 } 835 836 int hci_update_class_sync(struct hci_dev *hdev) 837 { 838 u8 cod[3]; 839 840 bt_dev_dbg(hdev, ""); 841 842 if (!hdev_is_powered(hdev)) 843 return 0; 844 845 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 846 return 0; 847 848 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 849 return 0; 850 851 cod[0] = hdev->minor_class; 852 cod[1] = hdev->major_class; 853 cod[2] = get_service_classes(hdev); 854 855 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) 856 cod[1] |= 0x20; 857 858 if (memcmp(cod, hdev->dev_class, 3) == 0) 859 return 0; 860 861 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CLASS_OF_DEV, 862 sizeof(cod), cod, HCI_CMD_TIMEOUT); 863 } 864 865 static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable) 866 { 867 /* If there is no connection we are OK to advertise. */ 868 if (hci_conn_num(hdev, LE_LINK) == 0) 869 return true; 870 871 /* Check le_states if there is any connection in peripheral role. */ 872 if (hdev->conn_hash.le_num_peripheral > 0) { 873 /* Peripheral connection state and non connectable mode 874 * bit 20. 875 */ 876 if (!connectable && !(hdev->le_states[2] & 0x10)) 877 return false; 878 879 /* Peripheral connection state and connectable mode bit 38 880 * and scannable bit 21. 881 */ 882 if (connectable && (!(hdev->le_states[4] & 0x40) || 883 !(hdev->le_states[2] & 0x20))) 884 return false; 885 } 886 887 /* Check le_states if there is any connection in central role. */ 888 if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) { 889 /* Central connection state and non connectable mode bit 18. */ 890 if (!connectable && !(hdev->le_states[2] & 0x02)) 891 return false; 892 893 /* Central connection state and connectable mode bit 35 and 894 * scannable 19. 895 */ 896 if (connectable && (!(hdev->le_states[4] & 0x08) || 897 !(hdev->le_states[2] & 0x08))) 898 return false; 899 } 900 901 return true; 902 } 903 904 static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags) 905 { 906 /* If privacy is not enabled don't use RPA */ 907 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 908 return false; 909 910 /* If basic privacy mode is enabled use RPA */ 911 if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) 912 return true; 913 914 /* If limited privacy mode is enabled don't use RPA if we're 915 * both discoverable and bondable. 916 */ 917 if ((flags & MGMT_ADV_FLAG_DISCOV) && 918 hci_dev_test_flag(hdev, HCI_BONDABLE)) 919 return false; 920 921 /* We're neither bondable nor discoverable in the limited 922 * privacy mode, therefore use RPA. 923 */ 924 return true; 925 } 926 927 static int hci_set_random_addr_sync(struct hci_dev *hdev, bdaddr_t *rpa) 928 { 929 /* If we're advertising or initiating an LE connection we can't 930 * go ahead and change the random address at this time. This is 931 * because the eventual initiator address used for the 932 * subsequently created connection will be undefined (some 933 * controllers use the new address and others the one we had 934 * when the operation started). 935 * 936 * In this kind of scenario skip the update and let the random 937 * address be updated at the next cycle. 938 */ 939 if (hci_dev_test_flag(hdev, HCI_LE_ADV) || 940 hci_lookup_le_connect(hdev)) { 941 bt_dev_dbg(hdev, "Deferring random address update"); 942 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 943 return 0; 944 } 945 946 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RANDOM_ADDR, 947 6, rpa, HCI_CMD_TIMEOUT); 948 } 949 950 int hci_update_random_address_sync(struct hci_dev *hdev, bool require_privacy, 951 bool rpa, u8 *own_addr_type) 952 { 953 int err; 954 955 /* If privacy is enabled use a resolvable private address. If 956 * current RPA has expired or there is something else than 957 * the current RPA in use, then generate a new one. 958 */ 959 if (rpa) { 960 /* If Controller supports LL Privacy use own address type is 961 * 0x03 962 */ 963 if (use_ll_privacy(hdev)) 964 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED; 965 else 966 *own_addr_type = ADDR_LE_DEV_RANDOM; 967 968 /* Check if RPA is valid */ 969 if (rpa_valid(hdev)) 970 return 0; 971 972 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); 973 if (err < 0) { 974 bt_dev_err(hdev, "failed to generate new RPA"); 975 return err; 976 } 977 978 err = hci_set_random_addr_sync(hdev, &hdev->rpa); 979 if (err) 980 return err; 981 982 return 0; 983 } 984 985 /* In case of required privacy without resolvable private address, 986 * use an non-resolvable private address. This is useful for active 987 * scanning and non-connectable advertising. 988 */ 989 if (require_privacy) { 990 bdaddr_t nrpa; 991 992 while (true) { 993 /* The non-resolvable private address is generated 994 * from random six bytes with the two most significant 995 * bits cleared. 996 */ 997 get_random_bytes(&nrpa, 6); 998 nrpa.b[5] &= 0x3f; 999 1000 /* The non-resolvable private address shall not be 1001 * equal to the public address. 1002 */ 1003 if (bacmp(&hdev->bdaddr, &nrpa)) 1004 break; 1005 } 1006 1007 *own_addr_type = ADDR_LE_DEV_RANDOM; 1008 1009 return hci_set_random_addr_sync(hdev, &nrpa); 1010 } 1011 1012 /* If forcing static address is in use or there is no public 1013 * address use the static address as random address (but skip 1014 * the HCI command if the current random address is already the 1015 * static one. 1016 * 1017 * In case BR/EDR has been disabled on a dual-mode controller 1018 * and a static address has been configured, then use that 1019 * address instead of the public BR/EDR address. 1020 */ 1021 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 1022 !bacmp(&hdev->bdaddr, BDADDR_ANY) || 1023 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && 1024 bacmp(&hdev->static_addr, BDADDR_ANY))) { 1025 *own_addr_type = ADDR_LE_DEV_RANDOM; 1026 if (bacmp(&hdev->static_addr, &hdev->random_addr)) 1027 return hci_set_random_addr_sync(hdev, 1028 &hdev->static_addr); 1029 return 0; 1030 } 1031 1032 /* Neither privacy nor static address is being used so use a 1033 * public address. 1034 */ 1035 *own_addr_type = ADDR_LE_DEV_PUBLIC; 1036 1037 return 0; 1038 } 1039 1040 static int hci_disable_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance) 1041 { 1042 struct hci_cp_le_set_ext_adv_enable *cp; 1043 struct hci_cp_ext_adv_set *set; 1044 u8 data[sizeof(*cp) + sizeof(*set) * 1]; 1045 u8 size; 1046 1047 /* If request specifies an instance that doesn't exist, fail */ 1048 if (instance > 0) { 1049 struct adv_info *adv; 1050 1051 adv = hci_find_adv_instance(hdev, instance); 1052 if (!adv) 1053 return -EINVAL; 1054 1055 /* If not enabled there is nothing to do */ 1056 if (!adv->enabled) 1057 return 0; 1058 } 1059 1060 memset(data, 0, sizeof(data)); 1061 1062 cp = (void *)data; 1063 set = (void *)cp->data; 1064 1065 /* Instance 0x00 indicates all advertising instances will be disabled */ 1066 cp->num_of_sets = !!instance; 1067 cp->enable = 0x00; 1068 1069 set->handle = instance; 1070 1071 size = sizeof(*cp) + sizeof(*set) * cp->num_of_sets; 1072 1073 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, 1074 size, data, HCI_CMD_TIMEOUT); 1075 } 1076 1077 static int hci_set_adv_set_random_addr_sync(struct hci_dev *hdev, u8 instance, 1078 bdaddr_t *random_addr) 1079 { 1080 struct hci_cp_le_set_adv_set_rand_addr cp; 1081 int err; 1082 1083 if (!instance) { 1084 /* Instance 0x00 doesn't have an adv_info, instead it uses 1085 * hdev->random_addr to track its address so whenever it needs 1086 * to be updated this also set the random address since 1087 * hdev->random_addr is shared with scan state machine. 1088 */ 1089 err = hci_set_random_addr_sync(hdev, random_addr); 1090 if (err) 1091 return err; 1092 } 1093 1094 memset(&cp, 0, sizeof(cp)); 1095 1096 cp.handle = instance; 1097 bacpy(&cp.bdaddr, random_addr); 1098 1099 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_SET_RAND_ADDR, 1100 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1101 } 1102 1103 int hci_setup_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance) 1104 { 1105 struct hci_cp_le_set_ext_adv_params cp; 1106 bool connectable; 1107 u32 flags; 1108 bdaddr_t random_addr; 1109 u8 own_addr_type; 1110 int err; 1111 struct adv_info *adv; 1112 bool secondary_adv; 1113 1114 if (instance > 0) { 1115 adv = hci_find_adv_instance(hdev, instance); 1116 if (!adv) 1117 return -EINVAL; 1118 } else { 1119 adv = NULL; 1120 } 1121 1122 /* Updating parameters of an active instance will return a 1123 * Command Disallowed error, so we must first disable the 1124 * instance if it is active. 1125 */ 1126 if (adv && !adv->pending) { 1127 err = hci_disable_ext_adv_instance_sync(hdev, instance); 1128 if (err) 1129 return err; 1130 } 1131 1132 flags = hci_adv_instance_flags(hdev, instance); 1133 1134 /* If the "connectable" instance flag was not set, then choose between 1135 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. 1136 */ 1137 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || 1138 mgmt_get_connectable(hdev); 1139 1140 if (!is_advertising_allowed(hdev, connectable)) 1141 return -EPERM; 1142 1143 /* Set require_privacy to true only when non-connectable 1144 * advertising is used. In that case it is fine to use a 1145 * non-resolvable private address. 1146 */ 1147 err = hci_get_random_address(hdev, !connectable, 1148 adv_use_rpa(hdev, flags), adv, 1149 &own_addr_type, &random_addr); 1150 if (err < 0) 1151 return err; 1152 1153 memset(&cp, 0, sizeof(cp)); 1154 1155 if (adv) { 1156 hci_cpu_to_le24(adv->min_interval, cp.min_interval); 1157 hci_cpu_to_le24(adv->max_interval, cp.max_interval); 1158 cp.tx_power = adv->tx_power; 1159 } else { 1160 hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval); 1161 hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval); 1162 cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE; 1163 } 1164 1165 secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK); 1166 1167 if (connectable) { 1168 if (secondary_adv) 1169 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND); 1170 else 1171 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND); 1172 } else if (hci_adv_instance_is_scannable(hdev, instance) || 1173 (flags & MGMT_ADV_PARAM_SCAN_RSP)) { 1174 if (secondary_adv) 1175 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND); 1176 else 1177 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND); 1178 } else { 1179 if (secondary_adv) 1180 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND); 1181 else 1182 cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND); 1183 } 1184 1185 /* If Own_Address_Type equals 0x02 or 0x03, the Peer_Address parameter 1186 * contains the peer’s Identity Address and the Peer_Address_Type 1187 * parameter contains the peer’s Identity Type (i.e., 0x00 or 0x01). 1188 * These parameters are used to locate the corresponding local IRK in 1189 * the resolving list; this IRK is used to generate their own address 1190 * used in the advertisement. 1191 */ 1192 if (own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) 1193 hci_copy_identity_address(hdev, &cp.peer_addr, 1194 &cp.peer_addr_type); 1195 1196 cp.own_addr_type = own_addr_type; 1197 cp.channel_map = hdev->le_adv_channel_map; 1198 cp.handle = instance; 1199 1200 if (flags & MGMT_ADV_FLAG_SEC_2M) { 1201 cp.primary_phy = HCI_ADV_PHY_1M; 1202 cp.secondary_phy = HCI_ADV_PHY_2M; 1203 } else if (flags & MGMT_ADV_FLAG_SEC_CODED) { 1204 cp.primary_phy = HCI_ADV_PHY_CODED; 1205 cp.secondary_phy = HCI_ADV_PHY_CODED; 1206 } else { 1207 /* In all other cases use 1M */ 1208 cp.primary_phy = HCI_ADV_PHY_1M; 1209 cp.secondary_phy = HCI_ADV_PHY_1M; 1210 } 1211 1212 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS, 1213 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1214 if (err) 1215 return err; 1216 1217 if ((own_addr_type == ADDR_LE_DEV_RANDOM || 1218 own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) && 1219 bacmp(&random_addr, BDADDR_ANY)) { 1220 /* Check if random address need to be updated */ 1221 if (adv) { 1222 if (!bacmp(&random_addr, &adv->random_addr)) 1223 return 0; 1224 } else { 1225 if (!bacmp(&random_addr, &hdev->random_addr)) 1226 return 0; 1227 } 1228 1229 return hci_set_adv_set_random_addr_sync(hdev, instance, 1230 &random_addr); 1231 } 1232 1233 return 0; 1234 } 1235 1236 static int hci_set_ext_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 1237 { 1238 struct { 1239 struct hci_cp_le_set_ext_scan_rsp_data cp; 1240 u8 data[HCI_MAX_EXT_AD_LENGTH]; 1241 } pdu; 1242 u8 len; 1243 struct adv_info *adv = NULL; 1244 int err; 1245 1246 memset(&pdu, 0, sizeof(pdu)); 1247 1248 if (instance) { 1249 adv = hci_find_adv_instance(hdev, instance); 1250 if (!adv || !adv->scan_rsp_changed) 1251 return 0; 1252 } 1253 1254 len = eir_create_scan_rsp(hdev, instance, pdu.data); 1255 1256 pdu.cp.handle = instance; 1257 pdu.cp.length = len; 1258 pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; 1259 pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG; 1260 1261 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA, 1262 sizeof(pdu.cp) + len, &pdu.cp, 1263 HCI_CMD_TIMEOUT); 1264 if (err) 1265 return err; 1266 1267 if (adv) { 1268 adv->scan_rsp_changed = false; 1269 } else { 1270 memcpy(hdev->scan_rsp_data, pdu.data, len); 1271 hdev->scan_rsp_data_len = len; 1272 } 1273 1274 return 0; 1275 } 1276 1277 static int __hci_set_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 1278 { 1279 struct hci_cp_le_set_scan_rsp_data cp; 1280 u8 len; 1281 1282 memset(&cp, 0, sizeof(cp)); 1283 1284 len = eir_create_scan_rsp(hdev, instance, cp.data); 1285 1286 if (hdev->scan_rsp_data_len == len && 1287 !memcmp(cp.data, hdev->scan_rsp_data, len)) 1288 return 0; 1289 1290 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data)); 1291 hdev->scan_rsp_data_len = len; 1292 1293 cp.length = len; 1294 1295 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_RSP_DATA, 1296 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1297 } 1298 1299 int hci_update_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 1300 { 1301 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1302 return 0; 1303 1304 if (ext_adv_capable(hdev)) 1305 return hci_set_ext_scan_rsp_data_sync(hdev, instance); 1306 1307 return __hci_set_scan_rsp_data_sync(hdev, instance); 1308 } 1309 1310 int hci_enable_ext_advertising_sync(struct hci_dev *hdev, u8 instance) 1311 { 1312 struct hci_cp_le_set_ext_adv_enable *cp; 1313 struct hci_cp_ext_adv_set *set; 1314 u8 data[sizeof(*cp) + sizeof(*set) * 1]; 1315 struct adv_info *adv; 1316 1317 if (instance > 0) { 1318 adv = hci_find_adv_instance(hdev, instance); 1319 if (!adv) 1320 return -EINVAL; 1321 /* If already enabled there is nothing to do */ 1322 if (adv->enabled) 1323 return 0; 1324 } else { 1325 adv = NULL; 1326 } 1327 1328 cp = (void *)data; 1329 set = (void *)cp->data; 1330 1331 memset(cp, 0, sizeof(*cp)); 1332 1333 cp->enable = 0x01; 1334 cp->num_of_sets = 0x01; 1335 1336 memset(set, 0, sizeof(*set)); 1337 1338 set->handle = instance; 1339 1340 /* Set duration per instance since controller is responsible for 1341 * scheduling it. 1342 */ 1343 if (adv && adv->timeout) { 1344 u16 duration = adv->timeout * MSEC_PER_SEC; 1345 1346 /* Time = N * 10 ms */ 1347 set->duration = cpu_to_le16(duration / 10); 1348 } 1349 1350 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, 1351 sizeof(*cp) + 1352 sizeof(*set) * cp->num_of_sets, 1353 data, HCI_CMD_TIMEOUT); 1354 } 1355 1356 int hci_start_ext_adv_sync(struct hci_dev *hdev, u8 instance) 1357 { 1358 int err; 1359 1360 err = hci_setup_ext_adv_instance_sync(hdev, instance); 1361 if (err) 1362 return err; 1363 1364 err = hci_set_ext_scan_rsp_data_sync(hdev, instance); 1365 if (err) 1366 return err; 1367 1368 return hci_enable_ext_advertising_sync(hdev, instance); 1369 } 1370 1371 int hci_disable_per_advertising_sync(struct hci_dev *hdev, u8 instance) 1372 { 1373 struct hci_cp_le_set_per_adv_enable cp; 1374 struct adv_info *adv = NULL; 1375 1376 /* If periodic advertising already disabled there is nothing to do. */ 1377 adv = hci_find_adv_instance(hdev, instance); 1378 if (!adv || !adv->periodic || !adv->enabled) 1379 return 0; 1380 1381 memset(&cp, 0, sizeof(cp)); 1382 1383 cp.enable = 0x00; 1384 cp.handle = instance; 1385 1386 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE, 1387 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1388 } 1389 1390 static int hci_set_per_adv_params_sync(struct hci_dev *hdev, u8 instance, 1391 u16 min_interval, u16 max_interval) 1392 { 1393 struct hci_cp_le_set_per_adv_params cp; 1394 1395 memset(&cp, 0, sizeof(cp)); 1396 1397 if (!min_interval) 1398 min_interval = DISCOV_LE_PER_ADV_INT_MIN; 1399 1400 if (!max_interval) 1401 max_interval = DISCOV_LE_PER_ADV_INT_MAX; 1402 1403 cp.handle = instance; 1404 cp.min_interval = cpu_to_le16(min_interval); 1405 cp.max_interval = cpu_to_le16(max_interval); 1406 cp.periodic_properties = 0x0000; 1407 1408 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_PARAMS, 1409 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1410 } 1411 1412 static int hci_set_per_adv_data_sync(struct hci_dev *hdev, u8 instance) 1413 { 1414 struct { 1415 struct hci_cp_le_set_per_adv_data cp; 1416 u8 data[HCI_MAX_PER_AD_LENGTH]; 1417 } pdu; 1418 u8 len; 1419 1420 memset(&pdu, 0, sizeof(pdu)); 1421 1422 if (instance) { 1423 struct adv_info *adv = hci_find_adv_instance(hdev, instance); 1424 1425 if (!adv || !adv->periodic) 1426 return 0; 1427 } 1428 1429 len = eir_create_per_adv_data(hdev, instance, pdu.data); 1430 1431 pdu.cp.length = len; 1432 pdu.cp.handle = instance; 1433 pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; 1434 1435 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_DATA, 1436 sizeof(pdu.cp) + len, &pdu, 1437 HCI_CMD_TIMEOUT); 1438 } 1439 1440 static int hci_enable_per_advertising_sync(struct hci_dev *hdev, u8 instance) 1441 { 1442 struct hci_cp_le_set_per_adv_enable cp; 1443 struct adv_info *adv = NULL; 1444 1445 /* If periodic advertising already enabled there is nothing to do. */ 1446 adv = hci_find_adv_instance(hdev, instance); 1447 if (adv && adv->periodic && adv->enabled) 1448 return 0; 1449 1450 memset(&cp, 0, sizeof(cp)); 1451 1452 cp.enable = 0x01; 1453 cp.handle = instance; 1454 1455 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE, 1456 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1457 } 1458 1459 /* Checks if periodic advertising data contains a Basic Announcement and if it 1460 * does generates a Broadcast ID and add Broadcast Announcement. 1461 */ 1462 static int hci_adv_bcast_annoucement(struct hci_dev *hdev, struct adv_info *adv) 1463 { 1464 u8 bid[3]; 1465 u8 ad[4 + 3]; 1466 1467 /* Skip if NULL adv as instance 0x00 is used for general purpose 1468 * advertising so it cannot used for the likes of Broadcast Announcement 1469 * as it can be overwritten at any point. 1470 */ 1471 if (!adv) 1472 return 0; 1473 1474 /* Check if PA data doesn't contains a Basic Audio Announcement then 1475 * there is nothing to do. 1476 */ 1477 if (!eir_get_service_data(adv->per_adv_data, adv->per_adv_data_len, 1478 0x1851, NULL)) 1479 return 0; 1480 1481 /* Check if advertising data already has a Broadcast Announcement since 1482 * the process may want to control the Broadcast ID directly and in that 1483 * case the kernel shall no interfere. 1484 */ 1485 if (eir_get_service_data(adv->adv_data, adv->adv_data_len, 0x1852, 1486 NULL)) 1487 return 0; 1488 1489 /* Generate Broadcast ID */ 1490 get_random_bytes(bid, sizeof(bid)); 1491 eir_append_service_data(ad, 0, 0x1852, bid, sizeof(bid)); 1492 hci_set_adv_instance_data(hdev, adv->instance, sizeof(ad), ad, 0, NULL); 1493 1494 return hci_update_adv_data_sync(hdev, adv->instance); 1495 } 1496 1497 int hci_start_per_adv_sync(struct hci_dev *hdev, u8 instance, u8 data_len, 1498 u8 *data, u32 flags, u16 min_interval, 1499 u16 max_interval, u16 sync_interval) 1500 { 1501 struct adv_info *adv = NULL; 1502 int err; 1503 bool added = false; 1504 1505 hci_disable_per_advertising_sync(hdev, instance); 1506 1507 if (instance) { 1508 adv = hci_find_adv_instance(hdev, instance); 1509 /* Create an instance if that could not be found */ 1510 if (!adv) { 1511 adv = hci_add_per_instance(hdev, instance, flags, 1512 data_len, data, 1513 sync_interval, 1514 sync_interval); 1515 if (IS_ERR(adv)) 1516 return PTR_ERR(adv); 1517 adv->pending = false; 1518 added = true; 1519 } 1520 } 1521 1522 /* Start advertising */ 1523 err = hci_start_ext_adv_sync(hdev, instance); 1524 if (err < 0) 1525 goto fail; 1526 1527 err = hci_adv_bcast_annoucement(hdev, adv); 1528 if (err < 0) 1529 goto fail; 1530 1531 err = hci_set_per_adv_params_sync(hdev, instance, min_interval, 1532 max_interval); 1533 if (err < 0) 1534 goto fail; 1535 1536 err = hci_set_per_adv_data_sync(hdev, instance); 1537 if (err < 0) 1538 goto fail; 1539 1540 err = hci_enable_per_advertising_sync(hdev, instance); 1541 if (err < 0) 1542 goto fail; 1543 1544 return 0; 1545 1546 fail: 1547 if (added) 1548 hci_remove_adv_instance(hdev, instance); 1549 1550 return err; 1551 } 1552 1553 static int hci_start_adv_sync(struct hci_dev *hdev, u8 instance) 1554 { 1555 int err; 1556 1557 if (ext_adv_capable(hdev)) 1558 return hci_start_ext_adv_sync(hdev, instance); 1559 1560 err = hci_update_adv_data_sync(hdev, instance); 1561 if (err) 1562 return err; 1563 1564 err = hci_update_scan_rsp_data_sync(hdev, instance); 1565 if (err) 1566 return err; 1567 1568 return hci_enable_advertising_sync(hdev); 1569 } 1570 1571 int hci_enable_advertising_sync(struct hci_dev *hdev) 1572 { 1573 struct adv_info *adv_instance; 1574 struct hci_cp_le_set_adv_param cp; 1575 u8 own_addr_type, enable = 0x01; 1576 bool connectable; 1577 u16 adv_min_interval, adv_max_interval; 1578 u32 flags; 1579 u8 status; 1580 1581 if (ext_adv_capable(hdev)) 1582 return hci_enable_ext_advertising_sync(hdev, 1583 hdev->cur_adv_instance); 1584 1585 flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance); 1586 adv_instance = hci_find_adv_instance(hdev, hdev->cur_adv_instance); 1587 1588 /* If the "connectable" instance flag was not set, then choose between 1589 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. 1590 */ 1591 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || 1592 mgmt_get_connectable(hdev); 1593 1594 if (!is_advertising_allowed(hdev, connectable)) 1595 return -EINVAL; 1596 1597 status = hci_disable_advertising_sync(hdev); 1598 if (status) 1599 return status; 1600 1601 /* Clear the HCI_LE_ADV bit temporarily so that the 1602 * hci_update_random_address knows that it's safe to go ahead 1603 * and write a new random address. The flag will be set back on 1604 * as soon as the SET_ADV_ENABLE HCI command completes. 1605 */ 1606 hci_dev_clear_flag(hdev, HCI_LE_ADV); 1607 1608 /* Set require_privacy to true only when non-connectable 1609 * advertising is used. In that case it is fine to use a 1610 * non-resolvable private address. 1611 */ 1612 status = hci_update_random_address_sync(hdev, !connectable, 1613 adv_use_rpa(hdev, flags), 1614 &own_addr_type); 1615 if (status) 1616 return status; 1617 1618 memset(&cp, 0, sizeof(cp)); 1619 1620 if (adv_instance) { 1621 adv_min_interval = adv_instance->min_interval; 1622 adv_max_interval = adv_instance->max_interval; 1623 } else { 1624 adv_min_interval = hdev->le_adv_min_interval; 1625 adv_max_interval = hdev->le_adv_max_interval; 1626 } 1627 1628 if (connectable) { 1629 cp.type = LE_ADV_IND; 1630 } else { 1631 if (hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance)) 1632 cp.type = LE_ADV_SCAN_IND; 1633 else 1634 cp.type = LE_ADV_NONCONN_IND; 1635 1636 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) || 1637 hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { 1638 adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN; 1639 adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX; 1640 } 1641 } 1642 1643 cp.min_interval = cpu_to_le16(adv_min_interval); 1644 cp.max_interval = cpu_to_le16(adv_max_interval); 1645 cp.own_address_type = own_addr_type; 1646 cp.channel_map = hdev->le_adv_channel_map; 1647 1648 status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM, 1649 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1650 if (status) 1651 return status; 1652 1653 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 1654 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 1655 } 1656 1657 static int enable_advertising_sync(struct hci_dev *hdev, void *data) 1658 { 1659 return hci_enable_advertising_sync(hdev); 1660 } 1661 1662 int hci_enable_advertising(struct hci_dev *hdev) 1663 { 1664 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) && 1665 list_empty(&hdev->adv_instances)) 1666 return 0; 1667 1668 return hci_cmd_sync_queue(hdev, enable_advertising_sync, NULL, NULL); 1669 } 1670 1671 int hci_remove_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance, 1672 struct sock *sk) 1673 { 1674 int err; 1675 1676 if (!ext_adv_capable(hdev)) 1677 return 0; 1678 1679 err = hci_disable_ext_adv_instance_sync(hdev, instance); 1680 if (err) 1681 return err; 1682 1683 /* If request specifies an instance that doesn't exist, fail */ 1684 if (instance > 0 && !hci_find_adv_instance(hdev, instance)) 1685 return -EINVAL; 1686 1687 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_REMOVE_ADV_SET, 1688 sizeof(instance), &instance, 0, 1689 HCI_CMD_TIMEOUT, sk); 1690 } 1691 1692 static int remove_ext_adv_sync(struct hci_dev *hdev, void *data) 1693 { 1694 struct adv_info *adv = data; 1695 u8 instance = 0; 1696 1697 if (adv) 1698 instance = adv->instance; 1699 1700 return hci_remove_ext_adv_instance_sync(hdev, instance, NULL); 1701 } 1702 1703 int hci_remove_ext_adv_instance(struct hci_dev *hdev, u8 instance) 1704 { 1705 struct adv_info *adv = NULL; 1706 1707 if (instance) { 1708 adv = hci_find_adv_instance(hdev, instance); 1709 if (!adv) 1710 return -EINVAL; 1711 } 1712 1713 return hci_cmd_sync_queue(hdev, remove_ext_adv_sync, adv, NULL); 1714 } 1715 1716 int hci_le_terminate_big_sync(struct hci_dev *hdev, u8 handle, u8 reason) 1717 { 1718 struct hci_cp_le_term_big cp; 1719 1720 memset(&cp, 0, sizeof(cp)); 1721 cp.handle = handle; 1722 cp.reason = reason; 1723 1724 return __hci_cmd_sync_status(hdev, HCI_OP_LE_TERM_BIG, 1725 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1726 } 1727 1728 static int hci_set_ext_adv_data_sync(struct hci_dev *hdev, u8 instance) 1729 { 1730 struct { 1731 struct hci_cp_le_set_ext_adv_data cp; 1732 u8 data[HCI_MAX_EXT_AD_LENGTH]; 1733 } pdu; 1734 u8 len; 1735 struct adv_info *adv = NULL; 1736 int err; 1737 1738 memset(&pdu, 0, sizeof(pdu)); 1739 1740 if (instance) { 1741 adv = hci_find_adv_instance(hdev, instance); 1742 if (!adv || !adv->adv_data_changed) 1743 return 0; 1744 } 1745 1746 len = eir_create_adv_data(hdev, instance, pdu.data); 1747 1748 pdu.cp.length = len; 1749 pdu.cp.handle = instance; 1750 pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; 1751 pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG; 1752 1753 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_DATA, 1754 sizeof(pdu.cp) + len, &pdu.cp, 1755 HCI_CMD_TIMEOUT); 1756 if (err) 1757 return err; 1758 1759 /* Update data if the command succeed */ 1760 if (adv) { 1761 adv->adv_data_changed = false; 1762 } else { 1763 memcpy(hdev->adv_data, pdu.data, len); 1764 hdev->adv_data_len = len; 1765 } 1766 1767 return 0; 1768 } 1769 1770 static int hci_set_adv_data_sync(struct hci_dev *hdev, u8 instance) 1771 { 1772 struct hci_cp_le_set_adv_data cp; 1773 u8 len; 1774 1775 memset(&cp, 0, sizeof(cp)); 1776 1777 len = eir_create_adv_data(hdev, instance, cp.data); 1778 1779 /* There's nothing to do if the data hasn't changed */ 1780 if (hdev->adv_data_len == len && 1781 memcmp(cp.data, hdev->adv_data, len) == 0) 1782 return 0; 1783 1784 memcpy(hdev->adv_data, cp.data, sizeof(cp.data)); 1785 hdev->adv_data_len = len; 1786 1787 cp.length = len; 1788 1789 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_DATA, 1790 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1791 } 1792 1793 int hci_update_adv_data_sync(struct hci_dev *hdev, u8 instance) 1794 { 1795 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1796 return 0; 1797 1798 if (ext_adv_capable(hdev)) 1799 return hci_set_ext_adv_data_sync(hdev, instance); 1800 1801 return hci_set_adv_data_sync(hdev, instance); 1802 } 1803 1804 int hci_schedule_adv_instance_sync(struct hci_dev *hdev, u8 instance, 1805 bool force) 1806 { 1807 struct adv_info *adv = NULL; 1808 u16 timeout; 1809 1810 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) && !ext_adv_capable(hdev)) 1811 return -EPERM; 1812 1813 if (hdev->adv_instance_timeout) 1814 return -EBUSY; 1815 1816 adv = hci_find_adv_instance(hdev, instance); 1817 if (!adv) 1818 return -ENOENT; 1819 1820 /* A zero timeout means unlimited advertising. As long as there is 1821 * only one instance, duration should be ignored. We still set a timeout 1822 * in case further instances are being added later on. 1823 * 1824 * If the remaining lifetime of the instance is more than the duration 1825 * then the timeout corresponds to the duration, otherwise it will be 1826 * reduced to the remaining instance lifetime. 1827 */ 1828 if (adv->timeout == 0 || adv->duration <= adv->remaining_time) 1829 timeout = adv->duration; 1830 else 1831 timeout = adv->remaining_time; 1832 1833 /* The remaining time is being reduced unless the instance is being 1834 * advertised without time limit. 1835 */ 1836 if (adv->timeout) 1837 adv->remaining_time = adv->remaining_time - timeout; 1838 1839 /* Only use work for scheduling instances with legacy advertising */ 1840 if (!ext_adv_capable(hdev)) { 1841 hdev->adv_instance_timeout = timeout; 1842 queue_delayed_work(hdev->req_workqueue, 1843 &hdev->adv_instance_expire, 1844 msecs_to_jiffies(timeout * 1000)); 1845 } 1846 1847 /* If we're just re-scheduling the same instance again then do not 1848 * execute any HCI commands. This happens when a single instance is 1849 * being advertised. 1850 */ 1851 if (!force && hdev->cur_adv_instance == instance && 1852 hci_dev_test_flag(hdev, HCI_LE_ADV)) 1853 return 0; 1854 1855 hdev->cur_adv_instance = instance; 1856 1857 return hci_start_adv_sync(hdev, instance); 1858 } 1859 1860 static int hci_clear_adv_sets_sync(struct hci_dev *hdev, struct sock *sk) 1861 { 1862 int err; 1863 1864 if (!ext_adv_capable(hdev)) 1865 return 0; 1866 1867 /* Disable instance 0x00 to disable all instances */ 1868 err = hci_disable_ext_adv_instance_sync(hdev, 0x00); 1869 if (err) 1870 return err; 1871 1872 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CLEAR_ADV_SETS, 1873 0, NULL, 0, HCI_CMD_TIMEOUT, sk); 1874 } 1875 1876 static int hci_clear_adv_sync(struct hci_dev *hdev, struct sock *sk, bool force) 1877 { 1878 struct adv_info *adv, *n; 1879 int err = 0; 1880 1881 if (ext_adv_capable(hdev)) 1882 /* Remove all existing sets */ 1883 err = hci_clear_adv_sets_sync(hdev, sk); 1884 if (ext_adv_capable(hdev)) 1885 return err; 1886 1887 /* This is safe as long as there is no command send while the lock is 1888 * held. 1889 */ 1890 hci_dev_lock(hdev); 1891 1892 /* Cleanup non-ext instances */ 1893 list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) { 1894 u8 instance = adv->instance; 1895 int err; 1896 1897 if (!(force || adv->timeout)) 1898 continue; 1899 1900 err = hci_remove_adv_instance(hdev, instance); 1901 if (!err) 1902 mgmt_advertising_removed(sk, hdev, instance); 1903 } 1904 1905 hci_dev_unlock(hdev); 1906 1907 return 0; 1908 } 1909 1910 static int hci_remove_adv_sync(struct hci_dev *hdev, u8 instance, 1911 struct sock *sk) 1912 { 1913 int err = 0; 1914 1915 /* If we use extended advertising, instance has to be removed first. */ 1916 if (ext_adv_capable(hdev)) 1917 err = hci_remove_ext_adv_instance_sync(hdev, instance, sk); 1918 if (ext_adv_capable(hdev)) 1919 return err; 1920 1921 /* This is safe as long as there is no command send while the lock is 1922 * held. 1923 */ 1924 hci_dev_lock(hdev); 1925 1926 err = hci_remove_adv_instance(hdev, instance); 1927 if (!err) 1928 mgmt_advertising_removed(sk, hdev, instance); 1929 1930 hci_dev_unlock(hdev); 1931 1932 return err; 1933 } 1934 1935 /* For a single instance: 1936 * - force == true: The instance will be removed even when its remaining 1937 * lifetime is not zero. 1938 * - force == false: the instance will be deactivated but kept stored unless 1939 * the remaining lifetime is zero. 1940 * 1941 * For instance == 0x00: 1942 * - force == true: All instances will be removed regardless of their timeout 1943 * setting. 1944 * - force == false: Only instances that have a timeout will be removed. 1945 */ 1946 int hci_remove_advertising_sync(struct hci_dev *hdev, struct sock *sk, 1947 u8 instance, bool force) 1948 { 1949 struct adv_info *next = NULL; 1950 int err; 1951 1952 /* Cancel any timeout concerning the removed instance(s). */ 1953 if (!instance || hdev->cur_adv_instance == instance) 1954 cancel_adv_timeout(hdev); 1955 1956 /* Get the next instance to advertise BEFORE we remove 1957 * the current one. This can be the same instance again 1958 * if there is only one instance. 1959 */ 1960 if (hdev->cur_adv_instance == instance) 1961 next = hci_get_next_instance(hdev, instance); 1962 1963 if (!instance) { 1964 err = hci_clear_adv_sync(hdev, sk, force); 1965 if (err) 1966 return err; 1967 } else { 1968 struct adv_info *adv = hci_find_adv_instance(hdev, instance); 1969 1970 if (force || (adv && adv->timeout && !adv->remaining_time)) { 1971 /* Don't advertise a removed instance. */ 1972 if (next && next->instance == instance) 1973 next = NULL; 1974 1975 err = hci_remove_adv_sync(hdev, instance, sk); 1976 if (err) 1977 return err; 1978 } 1979 } 1980 1981 if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING)) 1982 return 0; 1983 1984 if (next && !ext_adv_capable(hdev)) 1985 hci_schedule_adv_instance_sync(hdev, next->instance, false); 1986 1987 return 0; 1988 } 1989 1990 int hci_read_rssi_sync(struct hci_dev *hdev, __le16 handle) 1991 { 1992 struct hci_cp_read_rssi cp; 1993 1994 cp.handle = handle; 1995 return __hci_cmd_sync_status(hdev, HCI_OP_READ_RSSI, 1996 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1997 } 1998 1999 int hci_read_clock_sync(struct hci_dev *hdev, struct hci_cp_read_clock *cp) 2000 { 2001 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLOCK, 2002 sizeof(*cp), cp, HCI_CMD_TIMEOUT); 2003 } 2004 2005 int hci_read_tx_power_sync(struct hci_dev *hdev, __le16 handle, u8 type) 2006 { 2007 struct hci_cp_read_tx_power cp; 2008 2009 cp.handle = handle; 2010 cp.type = type; 2011 return __hci_cmd_sync_status(hdev, HCI_OP_READ_TX_POWER, 2012 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2013 } 2014 2015 int hci_disable_advertising_sync(struct hci_dev *hdev) 2016 { 2017 u8 enable = 0x00; 2018 int err = 0; 2019 2020 /* If controller is not advertising we are done. */ 2021 if (!hci_dev_test_flag(hdev, HCI_LE_ADV)) 2022 return 0; 2023 2024 if (ext_adv_capable(hdev)) 2025 err = hci_disable_ext_adv_instance_sync(hdev, 0x00); 2026 if (ext_adv_capable(hdev)) 2027 return err; 2028 2029 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 2030 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 2031 } 2032 2033 static int hci_le_set_ext_scan_enable_sync(struct hci_dev *hdev, u8 val, 2034 u8 filter_dup) 2035 { 2036 struct hci_cp_le_set_ext_scan_enable cp; 2037 2038 memset(&cp, 0, sizeof(cp)); 2039 cp.enable = val; 2040 2041 if (hci_dev_test_flag(hdev, HCI_MESH)) 2042 cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 2043 else 2044 cp.filter_dup = filter_dup; 2045 2046 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_ENABLE, 2047 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2048 } 2049 2050 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val, 2051 u8 filter_dup) 2052 { 2053 struct hci_cp_le_set_scan_enable cp; 2054 2055 if (use_ext_scan(hdev)) 2056 return hci_le_set_ext_scan_enable_sync(hdev, val, filter_dup); 2057 2058 memset(&cp, 0, sizeof(cp)); 2059 cp.enable = val; 2060 2061 if (val && hci_dev_test_flag(hdev, HCI_MESH)) 2062 cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 2063 else 2064 cp.filter_dup = filter_dup; 2065 2066 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_ENABLE, 2067 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2068 } 2069 2070 static int hci_le_set_addr_resolution_enable_sync(struct hci_dev *hdev, u8 val) 2071 { 2072 if (!use_ll_privacy(hdev)) 2073 return 0; 2074 2075 /* If controller is not/already resolving we are done. */ 2076 if (val == hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) 2077 return 0; 2078 2079 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 2080 sizeof(val), &val, HCI_CMD_TIMEOUT); 2081 } 2082 2083 static int hci_scan_disable_sync(struct hci_dev *hdev) 2084 { 2085 int err; 2086 2087 /* If controller is not scanning we are done. */ 2088 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 2089 return 0; 2090 2091 if (hdev->scanning_paused) { 2092 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2093 return 0; 2094 } 2095 2096 err = hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00); 2097 if (err) { 2098 bt_dev_err(hdev, "Unable to disable scanning: %d", err); 2099 return err; 2100 } 2101 2102 return err; 2103 } 2104 2105 static bool scan_use_rpa(struct hci_dev *hdev) 2106 { 2107 return hci_dev_test_flag(hdev, HCI_PRIVACY); 2108 } 2109 2110 static void hci_start_interleave_scan(struct hci_dev *hdev) 2111 { 2112 hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER; 2113 queue_delayed_work(hdev->req_workqueue, 2114 &hdev->interleave_scan, 0); 2115 } 2116 2117 static bool is_interleave_scanning(struct hci_dev *hdev) 2118 { 2119 return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE; 2120 } 2121 2122 static void cancel_interleave_scan(struct hci_dev *hdev) 2123 { 2124 bt_dev_dbg(hdev, "cancelling interleave scan"); 2125 2126 cancel_delayed_work_sync(&hdev->interleave_scan); 2127 2128 hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE; 2129 } 2130 2131 /* Return true if interleave_scan wasn't started until exiting this function, 2132 * otherwise, return false 2133 */ 2134 static bool hci_update_interleaved_scan_sync(struct hci_dev *hdev) 2135 { 2136 /* Do interleaved scan only if all of the following are true: 2137 * - There is at least one ADV monitor 2138 * - At least one pending LE connection or one device to be scanned for 2139 * - Monitor offloading is not supported 2140 * If so, we should alternate between allowlist scan and one without 2141 * any filters to save power. 2142 */ 2143 bool use_interleaving = hci_is_adv_monitoring(hdev) && 2144 !(list_empty(&hdev->pend_le_conns) && 2145 list_empty(&hdev->pend_le_reports)) && 2146 hci_get_adv_monitor_offload_ext(hdev) == 2147 HCI_ADV_MONITOR_EXT_NONE; 2148 bool is_interleaving = is_interleave_scanning(hdev); 2149 2150 if (use_interleaving && !is_interleaving) { 2151 hci_start_interleave_scan(hdev); 2152 bt_dev_dbg(hdev, "starting interleave scan"); 2153 return true; 2154 } 2155 2156 if (!use_interleaving && is_interleaving) 2157 cancel_interleave_scan(hdev); 2158 2159 return false; 2160 } 2161 2162 /* Removes connection to resolve list if needed.*/ 2163 static int hci_le_del_resolve_list_sync(struct hci_dev *hdev, 2164 bdaddr_t *bdaddr, u8 bdaddr_type) 2165 { 2166 struct hci_cp_le_del_from_resolv_list cp; 2167 struct bdaddr_list_with_irk *entry; 2168 2169 if (!use_ll_privacy(hdev)) 2170 return 0; 2171 2172 /* Check if the IRK has been programmed */ 2173 entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, bdaddr, 2174 bdaddr_type); 2175 if (!entry) 2176 return 0; 2177 2178 cp.bdaddr_type = bdaddr_type; 2179 bacpy(&cp.bdaddr, bdaddr); 2180 2181 return __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_RESOLV_LIST, 2182 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2183 } 2184 2185 static int hci_le_del_accept_list_sync(struct hci_dev *hdev, 2186 bdaddr_t *bdaddr, u8 bdaddr_type) 2187 { 2188 struct hci_cp_le_del_from_accept_list cp; 2189 int err; 2190 2191 /* Check if device is on accept list before removing it */ 2192 if (!hci_bdaddr_list_lookup(&hdev->le_accept_list, bdaddr, bdaddr_type)) 2193 return 0; 2194 2195 cp.bdaddr_type = bdaddr_type; 2196 bacpy(&cp.bdaddr, bdaddr); 2197 2198 /* Ignore errors when removing from resolving list as that is likely 2199 * that the device was never added. 2200 */ 2201 hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type); 2202 2203 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_ACCEPT_LIST, 2204 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2205 if (err) { 2206 bt_dev_err(hdev, "Unable to remove from allow list: %d", err); 2207 return err; 2208 } 2209 2210 bt_dev_dbg(hdev, "Remove %pMR (0x%x) from allow list", &cp.bdaddr, 2211 cp.bdaddr_type); 2212 2213 return 0; 2214 } 2215 2216 struct conn_params { 2217 bdaddr_t addr; 2218 u8 addr_type; 2219 hci_conn_flags_t flags; 2220 u8 privacy_mode; 2221 }; 2222 2223 /* Adds connection to resolve list if needed. 2224 * Setting params to NULL programs local hdev->irk 2225 */ 2226 static int hci_le_add_resolve_list_sync(struct hci_dev *hdev, 2227 struct conn_params *params) 2228 { 2229 struct hci_cp_le_add_to_resolv_list cp; 2230 struct smp_irk *irk; 2231 struct bdaddr_list_with_irk *entry; 2232 struct hci_conn_params *p; 2233 2234 if (!use_ll_privacy(hdev)) 2235 return 0; 2236 2237 /* Attempt to program local identity address, type and irk if params is 2238 * NULL. 2239 */ 2240 if (!params) { 2241 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 2242 return 0; 2243 2244 hci_copy_identity_address(hdev, &cp.bdaddr, &cp.bdaddr_type); 2245 memcpy(cp.peer_irk, hdev->irk, 16); 2246 goto done; 2247 } 2248 2249 irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type); 2250 if (!irk) 2251 return 0; 2252 2253 /* Check if the IK has _not_ been programmed yet. */ 2254 entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, 2255 ¶ms->addr, 2256 params->addr_type); 2257 if (entry) 2258 return 0; 2259 2260 cp.bdaddr_type = params->addr_type; 2261 bacpy(&cp.bdaddr, ¶ms->addr); 2262 memcpy(cp.peer_irk, irk->val, 16); 2263 2264 /* Default privacy mode is always Network */ 2265 params->privacy_mode = HCI_NETWORK_PRIVACY; 2266 2267 rcu_read_lock(); 2268 p = hci_pend_le_action_lookup(&hdev->pend_le_conns, 2269 ¶ms->addr, params->addr_type); 2270 if (!p) 2271 p = hci_pend_le_action_lookup(&hdev->pend_le_reports, 2272 ¶ms->addr, params->addr_type); 2273 if (p) 2274 WRITE_ONCE(p->privacy_mode, HCI_NETWORK_PRIVACY); 2275 rcu_read_unlock(); 2276 2277 done: 2278 if (hci_dev_test_flag(hdev, HCI_PRIVACY)) 2279 memcpy(cp.local_irk, hdev->irk, 16); 2280 else 2281 memset(cp.local_irk, 0, 16); 2282 2283 return __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_RESOLV_LIST, 2284 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2285 } 2286 2287 /* Set Device Privacy Mode. */ 2288 static int hci_le_set_privacy_mode_sync(struct hci_dev *hdev, 2289 struct conn_params *params) 2290 { 2291 struct hci_cp_le_set_privacy_mode cp; 2292 struct smp_irk *irk; 2293 2294 /* If device privacy mode has already been set there is nothing to do */ 2295 if (params->privacy_mode == HCI_DEVICE_PRIVACY) 2296 return 0; 2297 2298 /* Check if HCI_CONN_FLAG_DEVICE_PRIVACY has been set as it also 2299 * indicates that LL Privacy has been enabled and 2300 * HCI_OP_LE_SET_PRIVACY_MODE is supported. 2301 */ 2302 if (!(params->flags & HCI_CONN_FLAG_DEVICE_PRIVACY)) 2303 return 0; 2304 2305 irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type); 2306 if (!irk) 2307 return 0; 2308 2309 memset(&cp, 0, sizeof(cp)); 2310 cp.bdaddr_type = irk->addr_type; 2311 bacpy(&cp.bdaddr, &irk->bdaddr); 2312 cp.mode = HCI_DEVICE_PRIVACY; 2313 2314 /* Note: params->privacy_mode is not updated since it is a copy */ 2315 2316 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PRIVACY_MODE, 2317 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2318 } 2319 2320 /* Adds connection to allow list if needed, if the device uses RPA (has IRK) 2321 * this attempts to program the device in the resolving list as well and 2322 * properly set the privacy mode. 2323 */ 2324 static int hci_le_add_accept_list_sync(struct hci_dev *hdev, 2325 struct conn_params *params, 2326 u8 *num_entries) 2327 { 2328 struct hci_cp_le_add_to_accept_list cp; 2329 int err; 2330 2331 /* During suspend, only wakeable devices can be in acceptlist */ 2332 if (hdev->suspended && 2333 !(params->flags & HCI_CONN_FLAG_REMOTE_WAKEUP)) { 2334 hci_le_del_accept_list_sync(hdev, ¶ms->addr, 2335 params->addr_type); 2336 return 0; 2337 } 2338 2339 /* Select filter policy to accept all advertising */ 2340 if (*num_entries >= hdev->le_accept_list_size) 2341 return -ENOSPC; 2342 2343 /* Accept list can not be used with RPAs */ 2344 if (!use_ll_privacy(hdev) && 2345 hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type)) 2346 return -EINVAL; 2347 2348 /* Attempt to program the device in the resolving list first to avoid 2349 * having to rollback in case it fails since the resolving list is 2350 * dynamic it can probably be smaller than the accept list. 2351 */ 2352 err = hci_le_add_resolve_list_sync(hdev, params); 2353 if (err) { 2354 bt_dev_err(hdev, "Unable to add to resolve list: %d", err); 2355 return err; 2356 } 2357 2358 /* Set Privacy Mode */ 2359 err = hci_le_set_privacy_mode_sync(hdev, params); 2360 if (err) { 2361 bt_dev_err(hdev, "Unable to set privacy mode: %d", err); 2362 return err; 2363 } 2364 2365 /* Check if already in accept list */ 2366 if (hci_bdaddr_list_lookup(&hdev->le_accept_list, ¶ms->addr, 2367 params->addr_type)) 2368 return 0; 2369 2370 *num_entries += 1; 2371 cp.bdaddr_type = params->addr_type; 2372 bacpy(&cp.bdaddr, ¶ms->addr); 2373 2374 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST, 2375 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2376 if (err) { 2377 bt_dev_err(hdev, "Unable to add to allow list: %d", err); 2378 /* Rollback the device from the resolving list */ 2379 hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type); 2380 return err; 2381 } 2382 2383 bt_dev_dbg(hdev, "Add %pMR (0x%x) to allow list", &cp.bdaddr, 2384 cp.bdaddr_type); 2385 2386 return 0; 2387 } 2388 2389 /* This function disables/pause all advertising instances */ 2390 static int hci_pause_advertising_sync(struct hci_dev *hdev) 2391 { 2392 int err; 2393 int old_state; 2394 2395 /* If already been paused there is nothing to do. */ 2396 if (hdev->advertising_paused) 2397 return 0; 2398 2399 bt_dev_dbg(hdev, "Pausing directed advertising"); 2400 2401 /* Stop directed advertising */ 2402 old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING); 2403 if (old_state) { 2404 /* When discoverable timeout triggers, then just make sure 2405 * the limited discoverable flag is cleared. Even in the case 2406 * of a timeout triggered from general discoverable, it is 2407 * safe to unconditionally clear the flag. 2408 */ 2409 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 2410 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 2411 hdev->discov_timeout = 0; 2412 } 2413 2414 bt_dev_dbg(hdev, "Pausing advertising instances"); 2415 2416 /* Call to disable any advertisements active on the controller. 2417 * This will succeed even if no advertisements are configured. 2418 */ 2419 err = hci_disable_advertising_sync(hdev); 2420 if (err) 2421 return err; 2422 2423 /* If we are using software rotation, pause the loop */ 2424 if (!ext_adv_capable(hdev)) 2425 cancel_adv_timeout(hdev); 2426 2427 hdev->advertising_paused = true; 2428 hdev->advertising_old_state = old_state; 2429 2430 return 0; 2431 } 2432 2433 /* This function enables all user advertising instances */ 2434 static int hci_resume_advertising_sync(struct hci_dev *hdev) 2435 { 2436 struct adv_info *adv, *tmp; 2437 int err; 2438 2439 /* If advertising has not been paused there is nothing to do. */ 2440 if (!hdev->advertising_paused) 2441 return 0; 2442 2443 /* Resume directed advertising */ 2444 hdev->advertising_paused = false; 2445 if (hdev->advertising_old_state) { 2446 hci_dev_set_flag(hdev, HCI_ADVERTISING); 2447 hdev->advertising_old_state = 0; 2448 } 2449 2450 bt_dev_dbg(hdev, "Resuming advertising instances"); 2451 2452 if (ext_adv_capable(hdev)) { 2453 /* Call for each tracked instance to be re-enabled */ 2454 list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) { 2455 err = hci_enable_ext_advertising_sync(hdev, 2456 adv->instance); 2457 if (!err) 2458 continue; 2459 2460 /* If the instance cannot be resumed remove it */ 2461 hci_remove_ext_adv_instance_sync(hdev, adv->instance, 2462 NULL); 2463 } 2464 } else { 2465 /* Schedule for most recent instance to be restarted and begin 2466 * the software rotation loop 2467 */ 2468 err = hci_schedule_adv_instance_sync(hdev, 2469 hdev->cur_adv_instance, 2470 true); 2471 } 2472 2473 hdev->advertising_paused = false; 2474 2475 return err; 2476 } 2477 2478 static int hci_pause_addr_resolution(struct hci_dev *hdev) 2479 { 2480 int err; 2481 2482 if (!use_ll_privacy(hdev)) 2483 return 0; 2484 2485 if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) 2486 return 0; 2487 2488 /* Cannot disable addr resolution if scanning is enabled or 2489 * when initiating an LE connection. 2490 */ 2491 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) || 2492 hci_lookup_le_connect(hdev)) { 2493 bt_dev_err(hdev, "Command not allowed when scan/LE connect"); 2494 return -EPERM; 2495 } 2496 2497 /* Cannot disable addr resolution if advertising is enabled. */ 2498 err = hci_pause_advertising_sync(hdev); 2499 if (err) { 2500 bt_dev_err(hdev, "Pause advertising failed: %d", err); 2501 return err; 2502 } 2503 2504 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00); 2505 if (err) 2506 bt_dev_err(hdev, "Unable to disable Address Resolution: %d", 2507 err); 2508 2509 /* Return if address resolution is disabled and RPA is not used. */ 2510 if (!err && scan_use_rpa(hdev)) 2511 return 0; 2512 2513 hci_resume_advertising_sync(hdev); 2514 return err; 2515 } 2516 2517 struct sk_buff *hci_read_local_oob_data_sync(struct hci_dev *hdev, 2518 bool extended, struct sock *sk) 2519 { 2520 u16 opcode = extended ? HCI_OP_READ_LOCAL_OOB_EXT_DATA : 2521 HCI_OP_READ_LOCAL_OOB_DATA; 2522 2523 return __hci_cmd_sync_sk(hdev, opcode, 0, NULL, 0, HCI_CMD_TIMEOUT, sk); 2524 } 2525 2526 static struct conn_params *conn_params_copy(struct list_head *list, size_t *n) 2527 { 2528 struct hci_conn_params *params; 2529 struct conn_params *p; 2530 size_t i; 2531 2532 rcu_read_lock(); 2533 2534 i = 0; 2535 list_for_each_entry_rcu(params, list, action) 2536 ++i; 2537 *n = i; 2538 2539 rcu_read_unlock(); 2540 2541 p = kvcalloc(*n, sizeof(struct conn_params), GFP_KERNEL); 2542 if (!p) 2543 return NULL; 2544 2545 rcu_read_lock(); 2546 2547 i = 0; 2548 list_for_each_entry_rcu(params, list, action) { 2549 /* Racing adds are handled in next scan update */ 2550 if (i >= *n) 2551 break; 2552 2553 /* No hdev->lock, but: addr, addr_type are immutable. 2554 * privacy_mode is only written by us or in 2555 * hci_cc_le_set_privacy_mode that we wait for. 2556 * We should be idempotent so MGMT updating flags 2557 * while we are processing is OK. 2558 */ 2559 bacpy(&p[i].addr, ¶ms->addr); 2560 p[i].addr_type = params->addr_type; 2561 p[i].flags = READ_ONCE(params->flags); 2562 p[i].privacy_mode = READ_ONCE(params->privacy_mode); 2563 ++i; 2564 } 2565 2566 rcu_read_unlock(); 2567 2568 *n = i; 2569 return p; 2570 } 2571 2572 /* Clear LE Accept List */ 2573 static int hci_le_clear_accept_list_sync(struct hci_dev *hdev) 2574 { 2575 if (!(hdev->commands[26] & 0x80)) 2576 return 0; 2577 2578 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL, 2579 HCI_CMD_TIMEOUT); 2580 } 2581 2582 /* Device must not be scanning when updating the accept list. 2583 * 2584 * Update is done using the following sequence: 2585 * 2586 * use_ll_privacy((Disable Advertising) -> Disable Resolving List) -> 2587 * Remove Devices From Accept List -> 2588 * (has IRK && use_ll_privacy(Remove Devices From Resolving List))-> 2589 * Add Devices to Accept List -> 2590 * (has IRK && use_ll_privacy(Remove Devices From Resolving List)) -> 2591 * use_ll_privacy(Enable Resolving List -> (Enable Advertising)) -> 2592 * Enable Scanning 2593 * 2594 * In case of failure advertising shall be restored to its original state and 2595 * return would disable accept list since either accept or resolving list could 2596 * not be programmed. 2597 * 2598 */ 2599 static u8 hci_update_accept_list_sync(struct hci_dev *hdev) 2600 { 2601 struct conn_params *params; 2602 struct bdaddr_list *b, *t; 2603 u8 num_entries = 0; 2604 bool pend_conn, pend_report; 2605 u8 filter_policy; 2606 size_t i, n; 2607 int err; 2608 2609 /* Pause advertising if resolving list can be used as controllers 2610 * cannot accept resolving list modifications while advertising. 2611 */ 2612 if (use_ll_privacy(hdev)) { 2613 err = hci_pause_advertising_sync(hdev); 2614 if (err) { 2615 bt_dev_err(hdev, "pause advertising failed: %d", err); 2616 return 0x00; 2617 } 2618 } 2619 2620 /* Disable address resolution while reprogramming accept list since 2621 * devices that do have an IRK will be programmed in the resolving list 2622 * when LL Privacy is enabled. 2623 */ 2624 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00); 2625 if (err) { 2626 bt_dev_err(hdev, "Unable to disable LL privacy: %d", err); 2627 goto done; 2628 } 2629 2630 /* Force address filtering if PA Sync is in progress */ 2631 if (hci_dev_test_flag(hdev, HCI_PA_SYNC)) { 2632 struct hci_cp_le_pa_create_sync *sent; 2633 2634 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_PA_CREATE_SYNC); 2635 if (sent) { 2636 struct conn_params pa; 2637 2638 memset(&pa, 0, sizeof(pa)); 2639 2640 bacpy(&pa.addr, &sent->addr); 2641 pa.addr_type = sent->addr_type; 2642 2643 /* Clear first since there could be addresses left 2644 * behind. 2645 */ 2646 hci_le_clear_accept_list_sync(hdev); 2647 2648 num_entries = 1; 2649 err = hci_le_add_accept_list_sync(hdev, &pa, 2650 &num_entries); 2651 goto done; 2652 } 2653 } 2654 2655 /* Go through the current accept list programmed into the 2656 * controller one by one and check if that address is connected or is 2657 * still in the list of pending connections or list of devices to 2658 * report. If not present in either list, then remove it from 2659 * the controller. 2660 */ 2661 list_for_each_entry_safe(b, t, &hdev->le_accept_list, list) { 2662 if (hci_conn_hash_lookup_le(hdev, &b->bdaddr, b->bdaddr_type)) 2663 continue; 2664 2665 /* Pointers not dereferenced, no locks needed */ 2666 pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns, 2667 &b->bdaddr, 2668 b->bdaddr_type); 2669 pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports, 2670 &b->bdaddr, 2671 b->bdaddr_type); 2672 2673 /* If the device is not likely to connect or report, 2674 * remove it from the acceptlist. 2675 */ 2676 if (!pend_conn && !pend_report) { 2677 hci_le_del_accept_list_sync(hdev, &b->bdaddr, 2678 b->bdaddr_type); 2679 continue; 2680 } 2681 2682 num_entries++; 2683 } 2684 2685 /* Since all no longer valid accept list entries have been 2686 * removed, walk through the list of pending connections 2687 * and ensure that any new device gets programmed into 2688 * the controller. 2689 * 2690 * If the list of the devices is larger than the list of 2691 * available accept list entries in the controller, then 2692 * just abort and return filer policy value to not use the 2693 * accept list. 2694 * 2695 * The list and params may be mutated while we wait for events, 2696 * so make a copy and iterate it. 2697 */ 2698 2699 params = conn_params_copy(&hdev->pend_le_conns, &n); 2700 if (!params) { 2701 err = -ENOMEM; 2702 goto done; 2703 } 2704 2705 for (i = 0; i < n; ++i) { 2706 err = hci_le_add_accept_list_sync(hdev, ¶ms[i], 2707 &num_entries); 2708 if (err) { 2709 kvfree(params); 2710 goto done; 2711 } 2712 } 2713 2714 kvfree(params); 2715 2716 /* After adding all new pending connections, walk through 2717 * the list of pending reports and also add these to the 2718 * accept list if there is still space. Abort if space runs out. 2719 */ 2720 2721 params = conn_params_copy(&hdev->pend_le_reports, &n); 2722 if (!params) { 2723 err = -ENOMEM; 2724 goto done; 2725 } 2726 2727 for (i = 0; i < n; ++i) { 2728 err = hci_le_add_accept_list_sync(hdev, ¶ms[i], 2729 &num_entries); 2730 if (err) { 2731 kvfree(params); 2732 goto done; 2733 } 2734 } 2735 2736 kvfree(params); 2737 2738 /* Use the allowlist unless the following conditions are all true: 2739 * - We are not currently suspending 2740 * - There are 1 or more ADV monitors registered and it's not offloaded 2741 * - Interleaved scanning is not currently using the allowlist 2742 */ 2743 if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended && 2744 hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE && 2745 hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST) 2746 err = -EINVAL; 2747 2748 done: 2749 filter_policy = err ? 0x00 : 0x01; 2750 2751 /* Enable address resolution when LL Privacy is enabled. */ 2752 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x01); 2753 if (err) 2754 bt_dev_err(hdev, "Unable to enable LL privacy: %d", err); 2755 2756 /* Resume advertising if it was paused */ 2757 if (use_ll_privacy(hdev)) 2758 hci_resume_advertising_sync(hdev); 2759 2760 /* Select filter policy to use accept list */ 2761 return filter_policy; 2762 } 2763 2764 static void hci_le_scan_phy_params(struct hci_cp_le_scan_phy_params *cp, 2765 u8 type, u16 interval, u16 window) 2766 { 2767 cp->type = type; 2768 cp->interval = cpu_to_le16(interval); 2769 cp->window = cpu_to_le16(window); 2770 } 2771 2772 static int hci_le_set_ext_scan_param_sync(struct hci_dev *hdev, u8 type, 2773 u16 interval, u16 window, 2774 u8 own_addr_type, u8 filter_policy) 2775 { 2776 struct hci_cp_le_set_ext_scan_params *cp; 2777 struct hci_cp_le_scan_phy_params *phy; 2778 u8 data[sizeof(*cp) + sizeof(*phy) * 2]; 2779 u8 num_phy = 0x00; 2780 2781 cp = (void *)data; 2782 phy = (void *)cp->data; 2783 2784 memset(data, 0, sizeof(data)); 2785 2786 cp->own_addr_type = own_addr_type; 2787 cp->filter_policy = filter_policy; 2788 2789 /* Check if PA Sync is in progress then select the PHY based on the 2790 * hci_conn.iso_qos. 2791 */ 2792 if (hci_dev_test_flag(hdev, HCI_PA_SYNC)) { 2793 struct hci_cp_le_add_to_accept_list *sent; 2794 2795 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST); 2796 if (sent) { 2797 struct hci_conn *conn; 2798 2799 conn = hci_conn_hash_lookup_ba(hdev, ISO_LINK, 2800 &sent->bdaddr); 2801 if (conn) { 2802 struct bt_iso_qos *qos = &conn->iso_qos; 2803 2804 if (qos->bcast.in.phy & BT_ISO_PHY_1M || 2805 qos->bcast.in.phy & BT_ISO_PHY_2M) { 2806 cp->scanning_phys |= LE_SCAN_PHY_1M; 2807 hci_le_scan_phy_params(phy, type, 2808 interval, 2809 window); 2810 num_phy++; 2811 phy++; 2812 } 2813 2814 if (qos->bcast.in.phy & BT_ISO_PHY_CODED) { 2815 cp->scanning_phys |= LE_SCAN_PHY_CODED; 2816 hci_le_scan_phy_params(phy, type, 2817 interval * 3, 2818 window * 3); 2819 num_phy++; 2820 phy++; 2821 } 2822 2823 if (num_phy) 2824 goto done; 2825 } 2826 } 2827 } 2828 2829 if (scan_1m(hdev) || scan_2m(hdev)) { 2830 cp->scanning_phys |= LE_SCAN_PHY_1M; 2831 hci_le_scan_phy_params(phy, type, interval, window); 2832 num_phy++; 2833 phy++; 2834 } 2835 2836 if (scan_coded(hdev)) { 2837 cp->scanning_phys |= LE_SCAN_PHY_CODED; 2838 hci_le_scan_phy_params(phy, type, interval * 3, window * 3); 2839 num_phy++; 2840 phy++; 2841 } 2842 2843 done: 2844 if (!num_phy) 2845 return -EINVAL; 2846 2847 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_PARAMS, 2848 sizeof(*cp) + sizeof(*phy) * num_phy, 2849 data, HCI_CMD_TIMEOUT); 2850 } 2851 2852 static int hci_le_set_scan_param_sync(struct hci_dev *hdev, u8 type, 2853 u16 interval, u16 window, 2854 u8 own_addr_type, u8 filter_policy) 2855 { 2856 struct hci_cp_le_set_scan_param cp; 2857 2858 if (use_ext_scan(hdev)) 2859 return hci_le_set_ext_scan_param_sync(hdev, type, interval, 2860 window, own_addr_type, 2861 filter_policy); 2862 2863 memset(&cp, 0, sizeof(cp)); 2864 cp.type = type; 2865 cp.interval = cpu_to_le16(interval); 2866 cp.window = cpu_to_le16(window); 2867 cp.own_address_type = own_addr_type; 2868 cp.filter_policy = filter_policy; 2869 2870 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_PARAM, 2871 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2872 } 2873 2874 static int hci_start_scan_sync(struct hci_dev *hdev, u8 type, u16 interval, 2875 u16 window, u8 own_addr_type, u8 filter_policy, 2876 u8 filter_dup) 2877 { 2878 int err; 2879 2880 if (hdev->scanning_paused) { 2881 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2882 return 0; 2883 } 2884 2885 err = hci_le_set_scan_param_sync(hdev, type, interval, window, 2886 own_addr_type, filter_policy); 2887 if (err) 2888 return err; 2889 2890 return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, filter_dup); 2891 } 2892 2893 static int hci_passive_scan_sync(struct hci_dev *hdev) 2894 { 2895 u8 own_addr_type; 2896 u8 filter_policy; 2897 u16 window, interval; 2898 u8 filter_dups = LE_SCAN_FILTER_DUP_ENABLE; 2899 int err; 2900 2901 if (hdev->scanning_paused) { 2902 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2903 return 0; 2904 } 2905 2906 err = hci_scan_disable_sync(hdev); 2907 if (err) { 2908 bt_dev_err(hdev, "disable scanning failed: %d", err); 2909 return err; 2910 } 2911 2912 /* Set require_privacy to false since no SCAN_REQ are send 2913 * during passive scanning. Not using an non-resolvable address 2914 * here is important so that peer devices using direct 2915 * advertising with our address will be correctly reported 2916 * by the controller. 2917 */ 2918 if (hci_update_random_address_sync(hdev, false, scan_use_rpa(hdev), 2919 &own_addr_type)) 2920 return 0; 2921 2922 if (hdev->enable_advmon_interleave_scan && 2923 hci_update_interleaved_scan_sync(hdev)) 2924 return 0; 2925 2926 bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state); 2927 2928 /* Adding or removing entries from the accept list must 2929 * happen before enabling scanning. The controller does 2930 * not allow accept list modification while scanning. 2931 */ 2932 filter_policy = hci_update_accept_list_sync(hdev); 2933 2934 /* When the controller is using random resolvable addresses and 2935 * with that having LE privacy enabled, then controllers with 2936 * Extended Scanner Filter Policies support can now enable support 2937 * for handling directed advertising. 2938 * 2939 * So instead of using filter polices 0x00 (no acceptlist) 2940 * and 0x01 (acceptlist enabled) use the new filter policies 2941 * 0x02 (no acceptlist) and 0x03 (acceptlist enabled). 2942 */ 2943 if (hci_dev_test_flag(hdev, HCI_PRIVACY) && 2944 (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)) 2945 filter_policy |= 0x02; 2946 2947 if (hdev->suspended) { 2948 window = hdev->le_scan_window_suspend; 2949 interval = hdev->le_scan_int_suspend; 2950 } else if (hci_is_le_conn_scanning(hdev)) { 2951 window = hdev->le_scan_window_connect; 2952 interval = hdev->le_scan_int_connect; 2953 } else if (hci_is_adv_monitoring(hdev)) { 2954 window = hdev->le_scan_window_adv_monitor; 2955 interval = hdev->le_scan_int_adv_monitor; 2956 } else { 2957 window = hdev->le_scan_window; 2958 interval = hdev->le_scan_interval; 2959 } 2960 2961 /* Disable all filtering for Mesh */ 2962 if (hci_dev_test_flag(hdev, HCI_MESH)) { 2963 filter_policy = 0; 2964 filter_dups = LE_SCAN_FILTER_DUP_DISABLE; 2965 } 2966 2967 bt_dev_dbg(hdev, "LE passive scan with acceptlist = %d", filter_policy); 2968 2969 return hci_start_scan_sync(hdev, LE_SCAN_PASSIVE, interval, window, 2970 own_addr_type, filter_policy, filter_dups); 2971 } 2972 2973 /* This function controls the passive scanning based on hdev->pend_le_conns 2974 * list. If there are pending LE connection we start the background scanning, 2975 * otherwise we stop it in the following sequence: 2976 * 2977 * If there are devices to scan: 2978 * 2979 * Disable Scanning -> Update Accept List -> 2980 * use_ll_privacy((Disable Advertising) -> Disable Resolving List -> 2981 * Update Resolving List -> Enable Resolving List -> (Enable Advertising)) -> 2982 * Enable Scanning 2983 * 2984 * Otherwise: 2985 * 2986 * Disable Scanning 2987 */ 2988 int hci_update_passive_scan_sync(struct hci_dev *hdev) 2989 { 2990 int err; 2991 2992 if (!test_bit(HCI_UP, &hdev->flags) || 2993 test_bit(HCI_INIT, &hdev->flags) || 2994 hci_dev_test_flag(hdev, HCI_SETUP) || 2995 hci_dev_test_flag(hdev, HCI_CONFIG) || 2996 hci_dev_test_flag(hdev, HCI_AUTO_OFF) || 2997 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 2998 return 0; 2999 3000 /* No point in doing scanning if LE support hasn't been enabled */ 3001 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 3002 return 0; 3003 3004 /* If discovery is active don't interfere with it */ 3005 if (hdev->discovery.state != DISCOVERY_STOPPED) 3006 return 0; 3007 3008 /* Reset RSSI and UUID filters when starting background scanning 3009 * since these filters are meant for service discovery only. 3010 * 3011 * The Start Discovery and Start Service Discovery operations 3012 * ensure to set proper values for RSSI threshold and UUID 3013 * filter list. So it is safe to just reset them here. 3014 */ 3015 hci_discovery_filter_clear(hdev); 3016 3017 bt_dev_dbg(hdev, "ADV monitoring is %s", 3018 hci_is_adv_monitoring(hdev) ? "on" : "off"); 3019 3020 if (!hci_dev_test_flag(hdev, HCI_MESH) && 3021 list_empty(&hdev->pend_le_conns) && 3022 list_empty(&hdev->pend_le_reports) && 3023 !hci_is_adv_monitoring(hdev) && 3024 !hci_dev_test_flag(hdev, HCI_PA_SYNC)) { 3025 /* If there is no pending LE connections or devices 3026 * to be scanned for or no ADV monitors, we should stop the 3027 * background scanning. 3028 */ 3029 3030 bt_dev_dbg(hdev, "stopping background scanning"); 3031 3032 err = hci_scan_disable_sync(hdev); 3033 if (err) 3034 bt_dev_err(hdev, "stop background scanning failed: %d", 3035 err); 3036 } else { 3037 /* If there is at least one pending LE connection, we should 3038 * keep the background scan running. 3039 */ 3040 3041 /* If controller is connecting, we should not start scanning 3042 * since some controllers are not able to scan and connect at 3043 * the same time. 3044 */ 3045 if (hci_lookup_le_connect(hdev)) 3046 return 0; 3047 3048 bt_dev_dbg(hdev, "start background scanning"); 3049 3050 err = hci_passive_scan_sync(hdev); 3051 if (err) 3052 bt_dev_err(hdev, "start background scanning failed: %d", 3053 err); 3054 } 3055 3056 return err; 3057 } 3058 3059 static int update_scan_sync(struct hci_dev *hdev, void *data) 3060 { 3061 return hci_update_scan_sync(hdev); 3062 } 3063 3064 int hci_update_scan(struct hci_dev *hdev) 3065 { 3066 return hci_cmd_sync_queue(hdev, update_scan_sync, NULL, NULL); 3067 } 3068 3069 static int update_passive_scan_sync(struct hci_dev *hdev, void *data) 3070 { 3071 return hci_update_passive_scan_sync(hdev); 3072 } 3073 3074 int hci_update_passive_scan(struct hci_dev *hdev) 3075 { 3076 /* Only queue if it would have any effect */ 3077 if (!test_bit(HCI_UP, &hdev->flags) || 3078 test_bit(HCI_INIT, &hdev->flags) || 3079 hci_dev_test_flag(hdev, HCI_SETUP) || 3080 hci_dev_test_flag(hdev, HCI_CONFIG) || 3081 hci_dev_test_flag(hdev, HCI_AUTO_OFF) || 3082 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 3083 return 0; 3084 3085 return hci_cmd_sync_queue_once(hdev, update_passive_scan_sync, NULL, 3086 NULL); 3087 } 3088 3089 int hci_write_sc_support_sync(struct hci_dev *hdev, u8 val) 3090 { 3091 int err; 3092 3093 if (!bredr_sc_enabled(hdev) || lmp_host_sc_capable(hdev)) 3094 return 0; 3095 3096 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT, 3097 sizeof(val), &val, HCI_CMD_TIMEOUT); 3098 3099 if (!err) { 3100 if (val) { 3101 hdev->features[1][0] |= LMP_HOST_SC; 3102 hci_dev_set_flag(hdev, HCI_SC_ENABLED); 3103 } else { 3104 hdev->features[1][0] &= ~LMP_HOST_SC; 3105 hci_dev_clear_flag(hdev, HCI_SC_ENABLED); 3106 } 3107 } 3108 3109 return err; 3110 } 3111 3112 int hci_write_ssp_mode_sync(struct hci_dev *hdev, u8 mode) 3113 { 3114 int err; 3115 3116 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) || 3117 lmp_host_ssp_capable(hdev)) 3118 return 0; 3119 3120 if (!mode && hci_dev_test_flag(hdev, HCI_USE_DEBUG_KEYS)) { 3121 __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE, 3122 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3123 } 3124 3125 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE, 3126 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3127 if (err) 3128 return err; 3129 3130 return hci_write_sc_support_sync(hdev, 0x01); 3131 } 3132 3133 int hci_write_le_host_supported_sync(struct hci_dev *hdev, u8 le, u8 simul) 3134 { 3135 struct hci_cp_write_le_host_supported cp; 3136 3137 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED) || 3138 !lmp_bredr_capable(hdev)) 3139 return 0; 3140 3141 /* Check first if we already have the right host state 3142 * (host features set) 3143 */ 3144 if (le == lmp_host_le_capable(hdev) && 3145 simul == lmp_host_le_br_capable(hdev)) 3146 return 0; 3147 3148 memset(&cp, 0, sizeof(cp)); 3149 3150 cp.le = le; 3151 cp.simul = simul; 3152 3153 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED, 3154 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3155 } 3156 3157 static int hci_powered_update_adv_sync(struct hci_dev *hdev) 3158 { 3159 struct adv_info *adv, *tmp; 3160 int err; 3161 3162 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 3163 return 0; 3164 3165 /* If RPA Resolution has not been enable yet it means the 3166 * resolving list is empty and we should attempt to program the 3167 * local IRK in order to support using own_addr_type 3168 * ADDR_LE_DEV_RANDOM_RESOLVED (0x03). 3169 */ 3170 if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) { 3171 hci_le_add_resolve_list_sync(hdev, NULL); 3172 hci_le_set_addr_resolution_enable_sync(hdev, 0x01); 3173 } 3174 3175 /* Make sure the controller has a good default for 3176 * advertising data. This also applies to the case 3177 * where BR/EDR was toggled during the AUTO_OFF phase. 3178 */ 3179 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 3180 list_empty(&hdev->adv_instances)) { 3181 if (ext_adv_capable(hdev)) { 3182 err = hci_setup_ext_adv_instance_sync(hdev, 0x00); 3183 if (!err) 3184 hci_update_scan_rsp_data_sync(hdev, 0x00); 3185 } else { 3186 err = hci_update_adv_data_sync(hdev, 0x00); 3187 if (!err) 3188 hci_update_scan_rsp_data_sync(hdev, 0x00); 3189 } 3190 3191 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) 3192 hci_enable_advertising_sync(hdev); 3193 } 3194 3195 /* Call for each tracked instance to be scheduled */ 3196 list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) 3197 hci_schedule_adv_instance_sync(hdev, adv->instance, true); 3198 3199 return 0; 3200 } 3201 3202 static int hci_write_auth_enable_sync(struct hci_dev *hdev) 3203 { 3204 u8 link_sec; 3205 3206 link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY); 3207 if (link_sec == test_bit(HCI_AUTH, &hdev->flags)) 3208 return 0; 3209 3210 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE, 3211 sizeof(link_sec), &link_sec, 3212 HCI_CMD_TIMEOUT); 3213 } 3214 3215 int hci_write_fast_connectable_sync(struct hci_dev *hdev, bool enable) 3216 { 3217 struct hci_cp_write_page_scan_activity cp; 3218 u8 type; 3219 int err = 0; 3220 3221 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 3222 return 0; 3223 3224 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 3225 return 0; 3226 3227 memset(&cp, 0, sizeof(cp)); 3228 3229 if (enable) { 3230 type = PAGE_SCAN_TYPE_INTERLACED; 3231 3232 /* 160 msec page scan interval */ 3233 cp.interval = cpu_to_le16(0x0100); 3234 } else { 3235 type = hdev->def_page_scan_type; 3236 cp.interval = cpu_to_le16(hdev->def_page_scan_int); 3237 } 3238 3239 cp.window = cpu_to_le16(hdev->def_page_scan_window); 3240 3241 if (__cpu_to_le16(hdev->page_scan_interval) != cp.interval || 3242 __cpu_to_le16(hdev->page_scan_window) != cp.window) { 3243 err = __hci_cmd_sync_status(hdev, 3244 HCI_OP_WRITE_PAGE_SCAN_ACTIVITY, 3245 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3246 if (err) 3247 return err; 3248 } 3249 3250 if (hdev->page_scan_type != type) 3251 err = __hci_cmd_sync_status(hdev, 3252 HCI_OP_WRITE_PAGE_SCAN_TYPE, 3253 sizeof(type), &type, 3254 HCI_CMD_TIMEOUT); 3255 3256 return err; 3257 } 3258 3259 static bool disconnected_accept_list_entries(struct hci_dev *hdev) 3260 { 3261 struct bdaddr_list *b; 3262 3263 list_for_each_entry(b, &hdev->accept_list, list) { 3264 struct hci_conn *conn; 3265 3266 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr); 3267 if (!conn) 3268 return true; 3269 3270 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 3271 return true; 3272 } 3273 3274 return false; 3275 } 3276 3277 static int hci_write_scan_enable_sync(struct hci_dev *hdev, u8 val) 3278 { 3279 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE, 3280 sizeof(val), &val, 3281 HCI_CMD_TIMEOUT); 3282 } 3283 3284 int hci_update_scan_sync(struct hci_dev *hdev) 3285 { 3286 u8 scan; 3287 3288 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 3289 return 0; 3290 3291 if (!hdev_is_powered(hdev)) 3292 return 0; 3293 3294 if (mgmt_powering_down(hdev)) 3295 return 0; 3296 3297 if (hdev->scanning_paused) 3298 return 0; 3299 3300 if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) || 3301 disconnected_accept_list_entries(hdev)) 3302 scan = SCAN_PAGE; 3303 else 3304 scan = SCAN_DISABLED; 3305 3306 if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 3307 scan |= SCAN_INQUIRY; 3308 3309 if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) && 3310 test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY)) 3311 return 0; 3312 3313 return hci_write_scan_enable_sync(hdev, scan); 3314 } 3315 3316 int hci_update_name_sync(struct hci_dev *hdev) 3317 { 3318 struct hci_cp_write_local_name cp; 3319 3320 memset(&cp, 0, sizeof(cp)); 3321 3322 memcpy(cp.name, hdev->dev_name, sizeof(cp.name)); 3323 3324 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LOCAL_NAME, 3325 sizeof(cp), &cp, 3326 HCI_CMD_TIMEOUT); 3327 } 3328 3329 /* This function perform powered update HCI command sequence after the HCI init 3330 * sequence which end up resetting all states, the sequence is as follows: 3331 * 3332 * HCI_SSP_ENABLED(Enable SSP) 3333 * HCI_LE_ENABLED(Enable LE) 3334 * HCI_LE_ENABLED(use_ll_privacy(Add local IRK to Resolving List) -> 3335 * Update adv data) 3336 * Enable Authentication 3337 * lmp_bredr_capable(Set Fast Connectable -> Set Scan Type -> Set Class -> 3338 * Set Name -> Set EIR) 3339 * HCI_FORCE_STATIC_ADDR | BDADDR_ANY && !HCI_BREDR_ENABLED (Set Static Address) 3340 */ 3341 int hci_powered_update_sync(struct hci_dev *hdev) 3342 { 3343 int err; 3344 3345 /* Register the available SMP channels (BR/EDR and LE) only when 3346 * successfully powering on the controller. This late 3347 * registration is required so that LE SMP can clearly decide if 3348 * the public address or static address is used. 3349 */ 3350 smp_register(hdev); 3351 3352 err = hci_write_ssp_mode_sync(hdev, 0x01); 3353 if (err) 3354 return err; 3355 3356 err = hci_write_le_host_supported_sync(hdev, 0x01, 0x00); 3357 if (err) 3358 return err; 3359 3360 err = hci_powered_update_adv_sync(hdev); 3361 if (err) 3362 return err; 3363 3364 err = hci_write_auth_enable_sync(hdev); 3365 if (err) 3366 return err; 3367 3368 if (lmp_bredr_capable(hdev)) { 3369 if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE)) 3370 hci_write_fast_connectable_sync(hdev, true); 3371 else 3372 hci_write_fast_connectable_sync(hdev, false); 3373 hci_update_scan_sync(hdev); 3374 hci_update_class_sync(hdev); 3375 hci_update_name_sync(hdev); 3376 hci_update_eir_sync(hdev); 3377 } 3378 3379 /* If forcing static address is in use or there is no public 3380 * address use the static address as random address (but skip 3381 * the HCI command if the current random address is already the 3382 * static one. 3383 * 3384 * In case BR/EDR has been disabled on a dual-mode controller 3385 * and a static address has been configured, then use that 3386 * address instead of the public BR/EDR address. 3387 */ 3388 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 3389 (!bacmp(&hdev->bdaddr, BDADDR_ANY) && 3390 !hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))) { 3391 if (bacmp(&hdev->static_addr, BDADDR_ANY)) 3392 return hci_set_random_addr_sync(hdev, 3393 &hdev->static_addr); 3394 } 3395 3396 return 0; 3397 } 3398 3399 /** 3400 * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address 3401 * (BD_ADDR) for a HCI device from 3402 * a firmware node property. 3403 * @hdev: The HCI device 3404 * 3405 * Search the firmware node for 'local-bd-address'. 3406 * 3407 * All-zero BD addresses are rejected, because those could be properties 3408 * that exist in the firmware tables, but were not updated by the firmware. For 3409 * example, the DTS could define 'local-bd-address', with zero BD addresses. 3410 */ 3411 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev) 3412 { 3413 struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent); 3414 bdaddr_t ba; 3415 int ret; 3416 3417 ret = fwnode_property_read_u8_array(fwnode, "local-bd-address", 3418 (u8 *)&ba, sizeof(ba)); 3419 if (ret < 0 || !bacmp(&ba, BDADDR_ANY)) 3420 return; 3421 3422 if (test_bit(HCI_QUIRK_BDADDR_PROPERTY_BROKEN, &hdev->quirks)) 3423 baswap(&hdev->public_addr, &ba); 3424 else 3425 bacpy(&hdev->public_addr, &ba); 3426 } 3427 3428 struct hci_init_stage { 3429 int (*func)(struct hci_dev *hdev); 3430 }; 3431 3432 /* Run init stage NULL terminated function table */ 3433 static int hci_init_stage_sync(struct hci_dev *hdev, 3434 const struct hci_init_stage *stage) 3435 { 3436 size_t i; 3437 3438 for (i = 0; stage[i].func; i++) { 3439 int err; 3440 3441 err = stage[i].func(hdev); 3442 if (err) 3443 return err; 3444 } 3445 3446 return 0; 3447 } 3448 3449 /* Read Local Version */ 3450 static int hci_read_local_version_sync(struct hci_dev *hdev) 3451 { 3452 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_VERSION, 3453 0, NULL, HCI_CMD_TIMEOUT); 3454 } 3455 3456 /* Read BD Address */ 3457 static int hci_read_bd_addr_sync(struct hci_dev *hdev) 3458 { 3459 return __hci_cmd_sync_status(hdev, HCI_OP_READ_BD_ADDR, 3460 0, NULL, HCI_CMD_TIMEOUT); 3461 } 3462 3463 #define HCI_INIT(_func) \ 3464 { \ 3465 .func = _func, \ 3466 } 3467 3468 static const struct hci_init_stage hci_init0[] = { 3469 /* HCI_OP_READ_LOCAL_VERSION */ 3470 HCI_INIT(hci_read_local_version_sync), 3471 /* HCI_OP_READ_BD_ADDR */ 3472 HCI_INIT(hci_read_bd_addr_sync), 3473 {} 3474 }; 3475 3476 int hci_reset_sync(struct hci_dev *hdev) 3477 { 3478 int err; 3479 3480 set_bit(HCI_RESET, &hdev->flags); 3481 3482 err = __hci_cmd_sync_status(hdev, HCI_OP_RESET, 0, NULL, 3483 HCI_CMD_TIMEOUT); 3484 if (err) 3485 return err; 3486 3487 return 0; 3488 } 3489 3490 static int hci_init0_sync(struct hci_dev *hdev) 3491 { 3492 int err; 3493 3494 bt_dev_dbg(hdev, ""); 3495 3496 /* Reset */ 3497 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) { 3498 err = hci_reset_sync(hdev); 3499 if (err) 3500 return err; 3501 } 3502 3503 return hci_init_stage_sync(hdev, hci_init0); 3504 } 3505 3506 static int hci_unconf_init_sync(struct hci_dev *hdev) 3507 { 3508 int err; 3509 3510 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) 3511 return 0; 3512 3513 err = hci_init0_sync(hdev); 3514 if (err < 0) 3515 return err; 3516 3517 if (hci_dev_test_flag(hdev, HCI_SETUP)) 3518 hci_debugfs_create_basic(hdev); 3519 3520 return 0; 3521 } 3522 3523 /* Read Local Supported Features. */ 3524 static int hci_read_local_features_sync(struct hci_dev *hdev) 3525 { 3526 /* Not all AMP controllers support this command */ 3527 if (hdev->dev_type == HCI_AMP && !(hdev->commands[14] & 0x20)) 3528 return 0; 3529 3530 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_FEATURES, 3531 0, NULL, HCI_CMD_TIMEOUT); 3532 } 3533 3534 /* BR Controller init stage 1 command sequence */ 3535 static const struct hci_init_stage br_init1[] = { 3536 /* HCI_OP_READ_LOCAL_FEATURES */ 3537 HCI_INIT(hci_read_local_features_sync), 3538 /* HCI_OP_READ_LOCAL_VERSION */ 3539 HCI_INIT(hci_read_local_version_sync), 3540 /* HCI_OP_READ_BD_ADDR */ 3541 HCI_INIT(hci_read_bd_addr_sync), 3542 {} 3543 }; 3544 3545 /* Read Local Commands */ 3546 static int hci_read_local_cmds_sync(struct hci_dev *hdev) 3547 { 3548 /* All Bluetooth 1.2 and later controllers should support the 3549 * HCI command for reading the local supported commands. 3550 * 3551 * Unfortunately some controllers indicate Bluetooth 1.2 support, 3552 * but do not have support for this command. If that is the case, 3553 * the driver can quirk the behavior and skip reading the local 3554 * supported commands. 3555 */ 3556 if (hdev->hci_ver > BLUETOOTH_VER_1_1 && 3557 !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks)) 3558 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_COMMANDS, 3559 0, NULL, HCI_CMD_TIMEOUT); 3560 3561 return 0; 3562 } 3563 3564 /* Read Local AMP Info */ 3565 static int hci_read_local_amp_info_sync(struct hci_dev *hdev) 3566 { 3567 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_AMP_INFO, 3568 0, NULL, HCI_CMD_TIMEOUT); 3569 } 3570 3571 /* Read Data Blk size */ 3572 static int hci_read_data_block_size_sync(struct hci_dev *hdev) 3573 { 3574 return __hci_cmd_sync_status(hdev, HCI_OP_READ_DATA_BLOCK_SIZE, 3575 0, NULL, HCI_CMD_TIMEOUT); 3576 } 3577 3578 /* Read Flow Control Mode */ 3579 static int hci_read_flow_control_mode_sync(struct hci_dev *hdev) 3580 { 3581 return __hci_cmd_sync_status(hdev, HCI_OP_READ_FLOW_CONTROL_MODE, 3582 0, NULL, HCI_CMD_TIMEOUT); 3583 } 3584 3585 /* Read Location Data */ 3586 static int hci_read_location_data_sync(struct hci_dev *hdev) 3587 { 3588 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCATION_DATA, 3589 0, NULL, HCI_CMD_TIMEOUT); 3590 } 3591 3592 /* AMP Controller init stage 1 command sequence */ 3593 static const struct hci_init_stage amp_init1[] = { 3594 /* HCI_OP_READ_LOCAL_VERSION */ 3595 HCI_INIT(hci_read_local_version_sync), 3596 /* HCI_OP_READ_LOCAL_COMMANDS */ 3597 HCI_INIT(hci_read_local_cmds_sync), 3598 /* HCI_OP_READ_LOCAL_AMP_INFO */ 3599 HCI_INIT(hci_read_local_amp_info_sync), 3600 /* HCI_OP_READ_DATA_BLOCK_SIZE */ 3601 HCI_INIT(hci_read_data_block_size_sync), 3602 /* HCI_OP_READ_FLOW_CONTROL_MODE */ 3603 HCI_INIT(hci_read_flow_control_mode_sync), 3604 /* HCI_OP_READ_LOCATION_DATA */ 3605 HCI_INIT(hci_read_location_data_sync), 3606 {} 3607 }; 3608 3609 static int hci_init1_sync(struct hci_dev *hdev) 3610 { 3611 int err; 3612 3613 bt_dev_dbg(hdev, ""); 3614 3615 /* Reset */ 3616 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) { 3617 err = hci_reset_sync(hdev); 3618 if (err) 3619 return err; 3620 } 3621 3622 switch (hdev->dev_type) { 3623 case HCI_PRIMARY: 3624 hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED; 3625 return hci_init_stage_sync(hdev, br_init1); 3626 case HCI_AMP: 3627 hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED; 3628 return hci_init_stage_sync(hdev, amp_init1); 3629 default: 3630 bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type); 3631 break; 3632 } 3633 3634 return 0; 3635 } 3636 3637 /* AMP Controller init stage 2 command sequence */ 3638 static const struct hci_init_stage amp_init2[] = { 3639 /* HCI_OP_READ_LOCAL_FEATURES */ 3640 HCI_INIT(hci_read_local_features_sync), 3641 {} 3642 }; 3643 3644 /* Read Buffer Size (ACL mtu, max pkt, etc.) */ 3645 static int hci_read_buffer_size_sync(struct hci_dev *hdev) 3646 { 3647 return __hci_cmd_sync_status(hdev, HCI_OP_READ_BUFFER_SIZE, 3648 0, NULL, HCI_CMD_TIMEOUT); 3649 } 3650 3651 /* Read Class of Device */ 3652 static int hci_read_dev_class_sync(struct hci_dev *hdev) 3653 { 3654 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLASS_OF_DEV, 3655 0, NULL, HCI_CMD_TIMEOUT); 3656 } 3657 3658 /* Read Local Name */ 3659 static int hci_read_local_name_sync(struct hci_dev *hdev) 3660 { 3661 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_NAME, 3662 0, NULL, HCI_CMD_TIMEOUT); 3663 } 3664 3665 /* Read Voice Setting */ 3666 static int hci_read_voice_setting_sync(struct hci_dev *hdev) 3667 { 3668 return __hci_cmd_sync_status(hdev, HCI_OP_READ_VOICE_SETTING, 3669 0, NULL, HCI_CMD_TIMEOUT); 3670 } 3671 3672 /* Read Number of Supported IAC */ 3673 static int hci_read_num_supported_iac_sync(struct hci_dev *hdev) 3674 { 3675 return __hci_cmd_sync_status(hdev, HCI_OP_READ_NUM_SUPPORTED_IAC, 3676 0, NULL, HCI_CMD_TIMEOUT); 3677 } 3678 3679 /* Read Current IAC LAP */ 3680 static int hci_read_current_iac_lap_sync(struct hci_dev *hdev) 3681 { 3682 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CURRENT_IAC_LAP, 3683 0, NULL, HCI_CMD_TIMEOUT); 3684 } 3685 3686 static int hci_set_event_filter_sync(struct hci_dev *hdev, u8 flt_type, 3687 u8 cond_type, bdaddr_t *bdaddr, 3688 u8 auto_accept) 3689 { 3690 struct hci_cp_set_event_filter cp; 3691 3692 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 3693 return 0; 3694 3695 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 3696 return 0; 3697 3698 memset(&cp, 0, sizeof(cp)); 3699 cp.flt_type = flt_type; 3700 3701 if (flt_type != HCI_FLT_CLEAR_ALL) { 3702 cp.cond_type = cond_type; 3703 bacpy(&cp.addr_conn_flt.bdaddr, bdaddr); 3704 cp.addr_conn_flt.auto_accept = auto_accept; 3705 } 3706 3707 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_FLT, 3708 flt_type == HCI_FLT_CLEAR_ALL ? 3709 sizeof(cp.flt_type) : sizeof(cp), &cp, 3710 HCI_CMD_TIMEOUT); 3711 } 3712 3713 static int hci_clear_event_filter_sync(struct hci_dev *hdev) 3714 { 3715 if (!hci_dev_test_flag(hdev, HCI_EVENT_FILTER_CONFIGURED)) 3716 return 0; 3717 3718 /* In theory the state machine should not reach here unless 3719 * a hci_set_event_filter_sync() call succeeds, but we do 3720 * the check both for parity and as a future reminder. 3721 */ 3722 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 3723 return 0; 3724 3725 return hci_set_event_filter_sync(hdev, HCI_FLT_CLEAR_ALL, 0x00, 3726 BDADDR_ANY, 0x00); 3727 } 3728 3729 /* Connection accept timeout ~20 secs */ 3730 static int hci_write_ca_timeout_sync(struct hci_dev *hdev) 3731 { 3732 __le16 param = cpu_to_le16(0x7d00); 3733 3734 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CA_TIMEOUT, 3735 sizeof(param), ¶m, HCI_CMD_TIMEOUT); 3736 } 3737 3738 /* BR Controller init stage 2 command sequence */ 3739 static const struct hci_init_stage br_init2[] = { 3740 /* HCI_OP_READ_BUFFER_SIZE */ 3741 HCI_INIT(hci_read_buffer_size_sync), 3742 /* HCI_OP_READ_CLASS_OF_DEV */ 3743 HCI_INIT(hci_read_dev_class_sync), 3744 /* HCI_OP_READ_LOCAL_NAME */ 3745 HCI_INIT(hci_read_local_name_sync), 3746 /* HCI_OP_READ_VOICE_SETTING */ 3747 HCI_INIT(hci_read_voice_setting_sync), 3748 /* HCI_OP_READ_NUM_SUPPORTED_IAC */ 3749 HCI_INIT(hci_read_num_supported_iac_sync), 3750 /* HCI_OP_READ_CURRENT_IAC_LAP */ 3751 HCI_INIT(hci_read_current_iac_lap_sync), 3752 /* HCI_OP_SET_EVENT_FLT */ 3753 HCI_INIT(hci_clear_event_filter_sync), 3754 /* HCI_OP_WRITE_CA_TIMEOUT */ 3755 HCI_INIT(hci_write_ca_timeout_sync), 3756 {} 3757 }; 3758 3759 static int hci_write_ssp_mode_1_sync(struct hci_dev *hdev) 3760 { 3761 u8 mode = 0x01; 3762 3763 if (!lmp_ssp_capable(hdev) || !hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 3764 return 0; 3765 3766 /* When SSP is available, then the host features page 3767 * should also be available as well. However some 3768 * controllers list the max_page as 0 as long as SSP 3769 * has not been enabled. To achieve proper debugging 3770 * output, force the minimum max_page to 1 at least. 3771 */ 3772 hdev->max_page = 0x01; 3773 3774 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE, 3775 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3776 } 3777 3778 static int hci_write_eir_sync(struct hci_dev *hdev) 3779 { 3780 struct hci_cp_write_eir cp; 3781 3782 if (!lmp_ssp_capable(hdev) || hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 3783 return 0; 3784 3785 memset(hdev->eir, 0, sizeof(hdev->eir)); 3786 memset(&cp, 0, sizeof(cp)); 3787 3788 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp, 3789 HCI_CMD_TIMEOUT); 3790 } 3791 3792 static int hci_write_inquiry_mode_sync(struct hci_dev *hdev) 3793 { 3794 u8 mode; 3795 3796 if (!lmp_inq_rssi_capable(hdev) && 3797 !test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) 3798 return 0; 3799 3800 /* If Extended Inquiry Result events are supported, then 3801 * they are clearly preferred over Inquiry Result with RSSI 3802 * events. 3803 */ 3804 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01; 3805 3806 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_INQUIRY_MODE, 3807 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3808 } 3809 3810 static int hci_read_inq_rsp_tx_power_sync(struct hci_dev *hdev) 3811 { 3812 if (!lmp_inq_tx_pwr_capable(hdev)) 3813 return 0; 3814 3815 return __hci_cmd_sync_status(hdev, HCI_OP_READ_INQ_RSP_TX_POWER, 3816 0, NULL, HCI_CMD_TIMEOUT); 3817 } 3818 3819 static int hci_read_local_ext_features_sync(struct hci_dev *hdev, u8 page) 3820 { 3821 struct hci_cp_read_local_ext_features cp; 3822 3823 if (!lmp_ext_feat_capable(hdev)) 3824 return 0; 3825 3826 memset(&cp, 0, sizeof(cp)); 3827 cp.page = page; 3828 3829 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_EXT_FEATURES, 3830 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3831 } 3832 3833 static int hci_read_local_ext_features_1_sync(struct hci_dev *hdev) 3834 { 3835 return hci_read_local_ext_features_sync(hdev, 0x01); 3836 } 3837 3838 /* HCI Controller init stage 2 command sequence */ 3839 static const struct hci_init_stage hci_init2[] = { 3840 /* HCI_OP_READ_LOCAL_COMMANDS */ 3841 HCI_INIT(hci_read_local_cmds_sync), 3842 /* HCI_OP_WRITE_SSP_MODE */ 3843 HCI_INIT(hci_write_ssp_mode_1_sync), 3844 /* HCI_OP_WRITE_EIR */ 3845 HCI_INIT(hci_write_eir_sync), 3846 /* HCI_OP_WRITE_INQUIRY_MODE */ 3847 HCI_INIT(hci_write_inquiry_mode_sync), 3848 /* HCI_OP_READ_INQ_RSP_TX_POWER */ 3849 HCI_INIT(hci_read_inq_rsp_tx_power_sync), 3850 /* HCI_OP_READ_LOCAL_EXT_FEATURES */ 3851 HCI_INIT(hci_read_local_ext_features_1_sync), 3852 /* HCI_OP_WRITE_AUTH_ENABLE */ 3853 HCI_INIT(hci_write_auth_enable_sync), 3854 {} 3855 }; 3856 3857 /* Read LE Buffer Size */ 3858 static int hci_le_read_buffer_size_sync(struct hci_dev *hdev) 3859 { 3860 /* Use Read LE Buffer Size V2 if supported */ 3861 if (iso_capable(hdev) && hdev->commands[41] & 0x20) 3862 return __hci_cmd_sync_status(hdev, 3863 HCI_OP_LE_READ_BUFFER_SIZE_V2, 3864 0, NULL, HCI_CMD_TIMEOUT); 3865 3866 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_BUFFER_SIZE, 3867 0, NULL, HCI_CMD_TIMEOUT); 3868 } 3869 3870 /* Read LE Local Supported Features */ 3871 static int hci_le_read_local_features_sync(struct hci_dev *hdev) 3872 { 3873 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_LOCAL_FEATURES, 3874 0, NULL, HCI_CMD_TIMEOUT); 3875 } 3876 3877 /* Read LE Supported States */ 3878 static int hci_le_read_supported_states_sync(struct hci_dev *hdev) 3879 { 3880 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_SUPPORTED_STATES, 3881 0, NULL, HCI_CMD_TIMEOUT); 3882 } 3883 3884 /* LE Controller init stage 2 command sequence */ 3885 static const struct hci_init_stage le_init2[] = { 3886 /* HCI_OP_LE_READ_LOCAL_FEATURES */ 3887 HCI_INIT(hci_le_read_local_features_sync), 3888 /* HCI_OP_LE_READ_BUFFER_SIZE */ 3889 HCI_INIT(hci_le_read_buffer_size_sync), 3890 /* HCI_OP_LE_READ_SUPPORTED_STATES */ 3891 HCI_INIT(hci_le_read_supported_states_sync), 3892 {} 3893 }; 3894 3895 static int hci_init2_sync(struct hci_dev *hdev) 3896 { 3897 int err; 3898 3899 bt_dev_dbg(hdev, ""); 3900 3901 if (hdev->dev_type == HCI_AMP) 3902 return hci_init_stage_sync(hdev, amp_init2); 3903 3904 err = hci_init_stage_sync(hdev, hci_init2); 3905 if (err) 3906 return err; 3907 3908 if (lmp_bredr_capable(hdev)) { 3909 err = hci_init_stage_sync(hdev, br_init2); 3910 if (err) 3911 return err; 3912 } else { 3913 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED); 3914 } 3915 3916 if (lmp_le_capable(hdev)) { 3917 err = hci_init_stage_sync(hdev, le_init2); 3918 if (err) 3919 return err; 3920 /* LE-only controllers have LE implicitly enabled */ 3921 if (!lmp_bredr_capable(hdev)) 3922 hci_dev_set_flag(hdev, HCI_LE_ENABLED); 3923 } 3924 3925 return 0; 3926 } 3927 3928 static int hci_set_event_mask_sync(struct hci_dev *hdev) 3929 { 3930 /* The second byte is 0xff instead of 0x9f (two reserved bits 3931 * disabled) since a Broadcom 1.2 dongle doesn't respond to the 3932 * command otherwise. 3933 */ 3934 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 }; 3935 3936 /* CSR 1.1 dongles does not accept any bitfield so don't try to set 3937 * any event mask for pre 1.2 devices. 3938 */ 3939 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 3940 return 0; 3941 3942 if (lmp_bredr_capable(hdev)) { 3943 events[4] |= 0x01; /* Flow Specification Complete */ 3944 3945 /* Don't set Disconnect Complete and mode change when 3946 * suspended as that would wakeup the host when disconnecting 3947 * due to suspend. 3948 */ 3949 if (hdev->suspended) { 3950 events[0] &= 0xef; 3951 events[2] &= 0xf7; 3952 } 3953 } else { 3954 /* Use a different default for LE-only devices */ 3955 memset(events, 0, sizeof(events)); 3956 events[1] |= 0x20; /* Command Complete */ 3957 events[1] |= 0x40; /* Command Status */ 3958 events[1] |= 0x80; /* Hardware Error */ 3959 3960 /* If the controller supports the Disconnect command, enable 3961 * the corresponding event. In addition enable packet flow 3962 * control related events. 3963 */ 3964 if (hdev->commands[0] & 0x20) { 3965 /* Don't set Disconnect Complete when suspended as that 3966 * would wakeup the host when disconnecting due to 3967 * suspend. 3968 */ 3969 if (!hdev->suspended) 3970 events[0] |= 0x10; /* Disconnection Complete */ 3971 events[2] |= 0x04; /* Number of Completed Packets */ 3972 events[3] |= 0x02; /* Data Buffer Overflow */ 3973 } 3974 3975 /* If the controller supports the Read Remote Version 3976 * Information command, enable the corresponding event. 3977 */ 3978 if (hdev->commands[2] & 0x80) 3979 events[1] |= 0x08; /* Read Remote Version Information 3980 * Complete 3981 */ 3982 3983 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) { 3984 events[0] |= 0x80; /* Encryption Change */ 3985 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 3986 } 3987 } 3988 3989 if (lmp_inq_rssi_capable(hdev) || 3990 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) 3991 events[4] |= 0x02; /* Inquiry Result with RSSI */ 3992 3993 if (lmp_ext_feat_capable(hdev)) 3994 events[4] |= 0x04; /* Read Remote Extended Features Complete */ 3995 3996 if (lmp_esco_capable(hdev)) { 3997 events[5] |= 0x08; /* Synchronous Connection Complete */ 3998 events[5] |= 0x10; /* Synchronous Connection Changed */ 3999 } 4000 4001 if (lmp_sniffsubr_capable(hdev)) 4002 events[5] |= 0x20; /* Sniff Subrating */ 4003 4004 if (lmp_pause_enc_capable(hdev)) 4005 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 4006 4007 if (lmp_ext_inq_capable(hdev)) 4008 events[5] |= 0x40; /* Extended Inquiry Result */ 4009 4010 if (lmp_no_flush_capable(hdev)) 4011 events[7] |= 0x01; /* Enhanced Flush Complete */ 4012 4013 if (lmp_lsto_capable(hdev)) 4014 events[6] |= 0x80; /* Link Supervision Timeout Changed */ 4015 4016 if (lmp_ssp_capable(hdev)) { 4017 events[6] |= 0x01; /* IO Capability Request */ 4018 events[6] |= 0x02; /* IO Capability Response */ 4019 events[6] |= 0x04; /* User Confirmation Request */ 4020 events[6] |= 0x08; /* User Passkey Request */ 4021 events[6] |= 0x10; /* Remote OOB Data Request */ 4022 events[6] |= 0x20; /* Simple Pairing Complete */ 4023 events[7] |= 0x04; /* User Passkey Notification */ 4024 events[7] |= 0x08; /* Keypress Notification */ 4025 events[7] |= 0x10; /* Remote Host Supported 4026 * Features Notification 4027 */ 4028 } 4029 4030 if (lmp_le_capable(hdev)) 4031 events[7] |= 0x20; /* LE Meta-Event */ 4032 4033 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK, 4034 sizeof(events), events, HCI_CMD_TIMEOUT); 4035 } 4036 4037 static int hci_read_stored_link_key_sync(struct hci_dev *hdev) 4038 { 4039 struct hci_cp_read_stored_link_key cp; 4040 4041 if (!(hdev->commands[6] & 0x20) || 4042 test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) 4043 return 0; 4044 4045 memset(&cp, 0, sizeof(cp)); 4046 bacpy(&cp.bdaddr, BDADDR_ANY); 4047 cp.read_all = 0x01; 4048 4049 return __hci_cmd_sync_status(hdev, HCI_OP_READ_STORED_LINK_KEY, 4050 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4051 } 4052 4053 static int hci_setup_link_policy_sync(struct hci_dev *hdev) 4054 { 4055 struct hci_cp_write_def_link_policy cp; 4056 u16 link_policy = 0; 4057 4058 if (!(hdev->commands[5] & 0x10)) 4059 return 0; 4060 4061 memset(&cp, 0, sizeof(cp)); 4062 4063 if (lmp_rswitch_capable(hdev)) 4064 link_policy |= HCI_LP_RSWITCH; 4065 if (lmp_hold_capable(hdev)) 4066 link_policy |= HCI_LP_HOLD; 4067 if (lmp_sniff_capable(hdev)) 4068 link_policy |= HCI_LP_SNIFF; 4069 if (lmp_park_capable(hdev)) 4070 link_policy |= HCI_LP_PARK; 4071 4072 cp.policy = cpu_to_le16(link_policy); 4073 4074 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY, 4075 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4076 } 4077 4078 static int hci_read_page_scan_activity_sync(struct hci_dev *hdev) 4079 { 4080 if (!(hdev->commands[8] & 0x01)) 4081 return 0; 4082 4083 return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 4084 0, NULL, HCI_CMD_TIMEOUT); 4085 } 4086 4087 static int hci_read_def_err_data_reporting_sync(struct hci_dev *hdev) 4088 { 4089 if (!(hdev->commands[18] & 0x04) || 4090 !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) || 4091 test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) 4092 return 0; 4093 4094 return __hci_cmd_sync_status(hdev, HCI_OP_READ_DEF_ERR_DATA_REPORTING, 4095 0, NULL, HCI_CMD_TIMEOUT); 4096 } 4097 4098 static int hci_read_page_scan_type_sync(struct hci_dev *hdev) 4099 { 4100 /* Some older Broadcom based Bluetooth 1.2 controllers do not 4101 * support the Read Page Scan Type command. Check support for 4102 * this command in the bit mask of supported commands. 4103 */ 4104 if (!(hdev->commands[13] & 0x01)) 4105 return 0; 4106 4107 return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_TYPE, 4108 0, NULL, HCI_CMD_TIMEOUT); 4109 } 4110 4111 /* Read features beyond page 1 if available */ 4112 static int hci_read_local_ext_features_all_sync(struct hci_dev *hdev) 4113 { 4114 u8 page; 4115 int err; 4116 4117 if (!lmp_ext_feat_capable(hdev)) 4118 return 0; 4119 4120 for (page = 2; page < HCI_MAX_PAGES && page <= hdev->max_page; 4121 page++) { 4122 err = hci_read_local_ext_features_sync(hdev, page); 4123 if (err) 4124 return err; 4125 } 4126 4127 return 0; 4128 } 4129 4130 /* HCI Controller init stage 3 command sequence */ 4131 static const struct hci_init_stage hci_init3[] = { 4132 /* HCI_OP_SET_EVENT_MASK */ 4133 HCI_INIT(hci_set_event_mask_sync), 4134 /* HCI_OP_READ_STORED_LINK_KEY */ 4135 HCI_INIT(hci_read_stored_link_key_sync), 4136 /* HCI_OP_WRITE_DEF_LINK_POLICY */ 4137 HCI_INIT(hci_setup_link_policy_sync), 4138 /* HCI_OP_READ_PAGE_SCAN_ACTIVITY */ 4139 HCI_INIT(hci_read_page_scan_activity_sync), 4140 /* HCI_OP_READ_DEF_ERR_DATA_REPORTING */ 4141 HCI_INIT(hci_read_def_err_data_reporting_sync), 4142 /* HCI_OP_READ_PAGE_SCAN_TYPE */ 4143 HCI_INIT(hci_read_page_scan_type_sync), 4144 /* HCI_OP_READ_LOCAL_EXT_FEATURES */ 4145 HCI_INIT(hci_read_local_ext_features_all_sync), 4146 {} 4147 }; 4148 4149 static int hci_le_set_event_mask_sync(struct hci_dev *hdev) 4150 { 4151 u8 events[8]; 4152 4153 if (!lmp_le_capable(hdev)) 4154 return 0; 4155 4156 memset(events, 0, sizeof(events)); 4157 4158 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) 4159 events[0] |= 0x10; /* LE Long Term Key Request */ 4160 4161 /* If controller supports the Connection Parameters Request 4162 * Link Layer Procedure, enable the corresponding event. 4163 */ 4164 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC) 4165 /* LE Remote Connection Parameter Request */ 4166 events[0] |= 0x20; 4167 4168 /* If the controller supports the Data Length Extension 4169 * feature, enable the corresponding event. 4170 */ 4171 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) 4172 events[0] |= 0x40; /* LE Data Length Change */ 4173 4174 /* If the controller supports LL Privacy feature or LE Extended Adv, 4175 * enable the corresponding event. 4176 */ 4177 if (use_enhanced_conn_complete(hdev)) 4178 events[1] |= 0x02; /* LE Enhanced Connection Complete */ 4179 4180 /* If the controller supports Extended Scanner Filter 4181 * Policies, enable the corresponding event. 4182 */ 4183 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY) 4184 events[1] |= 0x04; /* LE Direct Advertising Report */ 4185 4186 /* If the controller supports Channel Selection Algorithm #2 4187 * feature, enable the corresponding event. 4188 */ 4189 if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2) 4190 events[2] |= 0x08; /* LE Channel Selection Algorithm */ 4191 4192 /* If the controller supports the LE Set Scan Enable command, 4193 * enable the corresponding advertising report event. 4194 */ 4195 if (hdev->commands[26] & 0x08) 4196 events[0] |= 0x02; /* LE Advertising Report */ 4197 4198 /* If the controller supports the LE Create Connection 4199 * command, enable the corresponding event. 4200 */ 4201 if (hdev->commands[26] & 0x10) 4202 events[0] |= 0x01; /* LE Connection Complete */ 4203 4204 /* If the controller supports the LE Connection Update 4205 * command, enable the corresponding event. 4206 */ 4207 if (hdev->commands[27] & 0x04) 4208 events[0] |= 0x04; /* LE Connection Update Complete */ 4209 4210 /* If the controller supports the LE Read Remote Used Features 4211 * command, enable the corresponding event. 4212 */ 4213 if (hdev->commands[27] & 0x20) 4214 /* LE Read Remote Used Features Complete */ 4215 events[0] |= 0x08; 4216 4217 /* If the controller supports the LE Read Local P-256 4218 * Public Key command, enable the corresponding event. 4219 */ 4220 if (hdev->commands[34] & 0x02) 4221 /* LE Read Local P-256 Public Key Complete */ 4222 events[0] |= 0x80; 4223 4224 /* If the controller supports the LE Generate DHKey 4225 * command, enable the corresponding event. 4226 */ 4227 if (hdev->commands[34] & 0x04) 4228 events[1] |= 0x01; /* LE Generate DHKey Complete */ 4229 4230 /* If the controller supports the LE Set Default PHY or 4231 * LE Set PHY commands, enable the corresponding event. 4232 */ 4233 if (hdev->commands[35] & (0x20 | 0x40)) 4234 events[1] |= 0x08; /* LE PHY Update Complete */ 4235 4236 /* If the controller supports LE Set Extended Scan Parameters 4237 * and LE Set Extended Scan Enable commands, enable the 4238 * corresponding event. 4239 */ 4240 if (use_ext_scan(hdev)) 4241 events[1] |= 0x10; /* LE Extended Advertising Report */ 4242 4243 /* If the controller supports the LE Extended Advertising 4244 * command, enable the corresponding event. 4245 */ 4246 if (ext_adv_capable(hdev)) 4247 events[2] |= 0x02; /* LE Advertising Set Terminated */ 4248 4249 if (cis_capable(hdev)) { 4250 events[3] |= 0x01; /* LE CIS Established */ 4251 if (cis_peripheral_capable(hdev)) 4252 events[3] |= 0x02; /* LE CIS Request */ 4253 } 4254 4255 if (bis_capable(hdev)) { 4256 events[1] |= 0x20; /* LE PA Report */ 4257 events[1] |= 0x40; /* LE PA Sync Established */ 4258 events[3] |= 0x04; /* LE Create BIG Complete */ 4259 events[3] |= 0x08; /* LE Terminate BIG Complete */ 4260 events[3] |= 0x10; /* LE BIG Sync Established */ 4261 events[3] |= 0x20; /* LE BIG Sync Loss */ 4262 events[4] |= 0x02; /* LE BIG Info Advertising Report */ 4263 } 4264 4265 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EVENT_MASK, 4266 sizeof(events), events, HCI_CMD_TIMEOUT); 4267 } 4268 4269 /* Read LE Advertising Channel TX Power */ 4270 static int hci_le_read_adv_tx_power_sync(struct hci_dev *hdev) 4271 { 4272 if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) { 4273 /* HCI TS spec forbids mixing of legacy and extended 4274 * advertising commands wherein READ_ADV_TX_POWER is 4275 * also included. So do not call it if extended adv 4276 * is supported otherwise controller will return 4277 * COMMAND_DISALLOWED for extended commands. 4278 */ 4279 return __hci_cmd_sync_status(hdev, 4280 HCI_OP_LE_READ_ADV_TX_POWER, 4281 0, NULL, HCI_CMD_TIMEOUT); 4282 } 4283 4284 return 0; 4285 } 4286 4287 /* Read LE Min/Max Tx Power*/ 4288 static int hci_le_read_tx_power_sync(struct hci_dev *hdev) 4289 { 4290 if (!(hdev->commands[38] & 0x80) || 4291 test_bit(HCI_QUIRK_BROKEN_READ_TRANSMIT_POWER, &hdev->quirks)) 4292 return 0; 4293 4294 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_TRANSMIT_POWER, 4295 0, NULL, HCI_CMD_TIMEOUT); 4296 } 4297 4298 /* Read LE Accept List Size */ 4299 static int hci_le_read_accept_list_size_sync(struct hci_dev *hdev) 4300 { 4301 if (!(hdev->commands[26] & 0x40)) 4302 return 0; 4303 4304 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_ACCEPT_LIST_SIZE, 4305 0, NULL, HCI_CMD_TIMEOUT); 4306 } 4307 4308 /* Read LE Resolving List Size */ 4309 static int hci_le_read_resolv_list_size_sync(struct hci_dev *hdev) 4310 { 4311 if (!(hdev->commands[34] & 0x40)) 4312 return 0; 4313 4314 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_RESOLV_LIST_SIZE, 4315 0, NULL, HCI_CMD_TIMEOUT); 4316 } 4317 4318 /* Clear LE Resolving List */ 4319 static int hci_le_clear_resolv_list_sync(struct hci_dev *hdev) 4320 { 4321 if (!(hdev->commands[34] & 0x20)) 4322 return 0; 4323 4324 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL, 4325 HCI_CMD_TIMEOUT); 4326 } 4327 4328 /* Set RPA timeout */ 4329 static int hci_le_set_rpa_timeout_sync(struct hci_dev *hdev) 4330 { 4331 __le16 timeout = cpu_to_le16(hdev->rpa_timeout); 4332 4333 if (!(hdev->commands[35] & 0x04) || 4334 test_bit(HCI_QUIRK_BROKEN_SET_RPA_TIMEOUT, &hdev->quirks)) 4335 return 0; 4336 4337 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RPA_TIMEOUT, 4338 sizeof(timeout), &timeout, 4339 HCI_CMD_TIMEOUT); 4340 } 4341 4342 /* Read LE Maximum Data Length */ 4343 static int hci_le_read_max_data_len_sync(struct hci_dev *hdev) 4344 { 4345 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 4346 return 0; 4347 4348 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL, 4349 HCI_CMD_TIMEOUT); 4350 } 4351 4352 /* Read LE Suggested Default Data Length */ 4353 static int hci_le_read_def_data_len_sync(struct hci_dev *hdev) 4354 { 4355 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 4356 return 0; 4357 4358 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL, 4359 HCI_CMD_TIMEOUT); 4360 } 4361 4362 /* Read LE Number of Supported Advertising Sets */ 4363 static int hci_le_read_num_support_adv_sets_sync(struct hci_dev *hdev) 4364 { 4365 if (!ext_adv_capable(hdev)) 4366 return 0; 4367 4368 return __hci_cmd_sync_status(hdev, 4369 HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS, 4370 0, NULL, HCI_CMD_TIMEOUT); 4371 } 4372 4373 /* Write LE Host Supported */ 4374 static int hci_set_le_support_sync(struct hci_dev *hdev) 4375 { 4376 struct hci_cp_write_le_host_supported cp; 4377 4378 /* LE-only devices do not support explicit enablement */ 4379 if (!lmp_bredr_capable(hdev)) 4380 return 0; 4381 4382 memset(&cp, 0, sizeof(cp)); 4383 4384 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 4385 cp.le = 0x01; 4386 cp.simul = 0x00; 4387 } 4388 4389 if (cp.le == lmp_host_le_capable(hdev)) 4390 return 0; 4391 4392 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED, 4393 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4394 } 4395 4396 /* LE Set Host Feature */ 4397 static int hci_le_set_host_feature_sync(struct hci_dev *hdev) 4398 { 4399 struct hci_cp_le_set_host_feature cp; 4400 4401 if (!cis_capable(hdev)) 4402 return 0; 4403 4404 memset(&cp, 0, sizeof(cp)); 4405 4406 /* Connected Isochronous Channels (Host Support) */ 4407 cp.bit_number = 32; 4408 cp.bit_value = 1; 4409 4410 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_HOST_FEATURE, 4411 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4412 } 4413 4414 /* LE Controller init stage 3 command sequence */ 4415 static const struct hci_init_stage le_init3[] = { 4416 /* HCI_OP_LE_SET_EVENT_MASK */ 4417 HCI_INIT(hci_le_set_event_mask_sync), 4418 /* HCI_OP_LE_READ_ADV_TX_POWER */ 4419 HCI_INIT(hci_le_read_adv_tx_power_sync), 4420 /* HCI_OP_LE_READ_TRANSMIT_POWER */ 4421 HCI_INIT(hci_le_read_tx_power_sync), 4422 /* HCI_OP_LE_READ_ACCEPT_LIST_SIZE */ 4423 HCI_INIT(hci_le_read_accept_list_size_sync), 4424 /* HCI_OP_LE_CLEAR_ACCEPT_LIST */ 4425 HCI_INIT(hci_le_clear_accept_list_sync), 4426 /* HCI_OP_LE_READ_RESOLV_LIST_SIZE */ 4427 HCI_INIT(hci_le_read_resolv_list_size_sync), 4428 /* HCI_OP_LE_CLEAR_RESOLV_LIST */ 4429 HCI_INIT(hci_le_clear_resolv_list_sync), 4430 /* HCI_OP_LE_SET_RPA_TIMEOUT */ 4431 HCI_INIT(hci_le_set_rpa_timeout_sync), 4432 /* HCI_OP_LE_READ_MAX_DATA_LEN */ 4433 HCI_INIT(hci_le_read_max_data_len_sync), 4434 /* HCI_OP_LE_READ_DEF_DATA_LEN */ 4435 HCI_INIT(hci_le_read_def_data_len_sync), 4436 /* HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS */ 4437 HCI_INIT(hci_le_read_num_support_adv_sets_sync), 4438 /* HCI_OP_WRITE_LE_HOST_SUPPORTED */ 4439 HCI_INIT(hci_set_le_support_sync), 4440 /* HCI_OP_LE_SET_HOST_FEATURE */ 4441 HCI_INIT(hci_le_set_host_feature_sync), 4442 {} 4443 }; 4444 4445 static int hci_init3_sync(struct hci_dev *hdev) 4446 { 4447 int err; 4448 4449 bt_dev_dbg(hdev, ""); 4450 4451 err = hci_init_stage_sync(hdev, hci_init3); 4452 if (err) 4453 return err; 4454 4455 if (lmp_le_capable(hdev)) 4456 return hci_init_stage_sync(hdev, le_init3); 4457 4458 return 0; 4459 } 4460 4461 static int hci_delete_stored_link_key_sync(struct hci_dev *hdev) 4462 { 4463 struct hci_cp_delete_stored_link_key cp; 4464 4465 /* Some Broadcom based Bluetooth controllers do not support the 4466 * Delete Stored Link Key command. They are clearly indicating its 4467 * absence in the bit mask of supported commands. 4468 * 4469 * Check the supported commands and only if the command is marked 4470 * as supported send it. If not supported assume that the controller 4471 * does not have actual support for stored link keys which makes this 4472 * command redundant anyway. 4473 * 4474 * Some controllers indicate that they support handling deleting 4475 * stored link keys, but they don't. The quirk lets a driver 4476 * just disable this command. 4477 */ 4478 if (!(hdev->commands[6] & 0x80) || 4479 test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) 4480 return 0; 4481 4482 memset(&cp, 0, sizeof(cp)); 4483 bacpy(&cp.bdaddr, BDADDR_ANY); 4484 cp.delete_all = 0x01; 4485 4486 return __hci_cmd_sync_status(hdev, HCI_OP_DELETE_STORED_LINK_KEY, 4487 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4488 } 4489 4490 static int hci_set_event_mask_page_2_sync(struct hci_dev *hdev) 4491 { 4492 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 4493 bool changed = false; 4494 4495 /* Set event mask page 2 if the HCI command for it is supported */ 4496 if (!(hdev->commands[22] & 0x04)) 4497 return 0; 4498 4499 /* If Connectionless Peripheral Broadcast central role is supported 4500 * enable all necessary events for it. 4501 */ 4502 if (lmp_cpb_central_capable(hdev)) { 4503 events[1] |= 0x40; /* Triggered Clock Capture */ 4504 events[1] |= 0x80; /* Synchronization Train Complete */ 4505 events[2] |= 0x08; /* Truncated Page Complete */ 4506 events[2] |= 0x20; /* CPB Channel Map Change */ 4507 changed = true; 4508 } 4509 4510 /* If Connectionless Peripheral Broadcast peripheral role is supported 4511 * enable all necessary events for it. 4512 */ 4513 if (lmp_cpb_peripheral_capable(hdev)) { 4514 events[2] |= 0x01; /* Synchronization Train Received */ 4515 events[2] |= 0x02; /* CPB Receive */ 4516 events[2] |= 0x04; /* CPB Timeout */ 4517 events[2] |= 0x10; /* Peripheral Page Response Timeout */ 4518 changed = true; 4519 } 4520 4521 /* Enable Authenticated Payload Timeout Expired event if supported */ 4522 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) { 4523 events[2] |= 0x80; 4524 changed = true; 4525 } 4526 4527 /* Some Broadcom based controllers indicate support for Set Event 4528 * Mask Page 2 command, but then actually do not support it. Since 4529 * the default value is all bits set to zero, the command is only 4530 * required if the event mask has to be changed. In case no change 4531 * to the event mask is needed, skip this command. 4532 */ 4533 if (!changed) 4534 return 0; 4535 4536 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK_PAGE_2, 4537 sizeof(events), events, HCI_CMD_TIMEOUT); 4538 } 4539 4540 /* Read local codec list if the HCI command is supported */ 4541 static int hci_read_local_codecs_sync(struct hci_dev *hdev) 4542 { 4543 if (hdev->commands[45] & 0x04) 4544 hci_read_supported_codecs_v2(hdev); 4545 else if (hdev->commands[29] & 0x20) 4546 hci_read_supported_codecs(hdev); 4547 4548 return 0; 4549 } 4550 4551 /* Read local pairing options if the HCI command is supported */ 4552 static int hci_read_local_pairing_opts_sync(struct hci_dev *hdev) 4553 { 4554 if (!(hdev->commands[41] & 0x08)) 4555 return 0; 4556 4557 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_PAIRING_OPTS, 4558 0, NULL, HCI_CMD_TIMEOUT); 4559 } 4560 4561 /* Get MWS transport configuration if the HCI command is supported */ 4562 static int hci_get_mws_transport_config_sync(struct hci_dev *hdev) 4563 { 4564 if (!mws_transport_config_capable(hdev)) 4565 return 0; 4566 4567 return __hci_cmd_sync_status(hdev, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 4568 0, NULL, HCI_CMD_TIMEOUT); 4569 } 4570 4571 /* Check for Synchronization Train support */ 4572 static int hci_read_sync_train_params_sync(struct hci_dev *hdev) 4573 { 4574 if (!lmp_sync_train_capable(hdev)) 4575 return 0; 4576 4577 return __hci_cmd_sync_status(hdev, HCI_OP_READ_SYNC_TRAIN_PARAMS, 4578 0, NULL, HCI_CMD_TIMEOUT); 4579 } 4580 4581 /* Enable Secure Connections if supported and configured */ 4582 static int hci_write_sc_support_1_sync(struct hci_dev *hdev) 4583 { 4584 u8 support = 0x01; 4585 4586 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) || 4587 !bredr_sc_enabled(hdev)) 4588 return 0; 4589 4590 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT, 4591 sizeof(support), &support, 4592 HCI_CMD_TIMEOUT); 4593 } 4594 4595 /* Set erroneous data reporting if supported to the wideband speech 4596 * setting value 4597 */ 4598 static int hci_set_err_data_report_sync(struct hci_dev *hdev) 4599 { 4600 struct hci_cp_write_def_err_data_reporting cp; 4601 bool enabled = hci_dev_test_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED); 4602 4603 if (!(hdev->commands[18] & 0x08) || 4604 !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) || 4605 test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) 4606 return 0; 4607 4608 if (enabled == hdev->err_data_reporting) 4609 return 0; 4610 4611 memset(&cp, 0, sizeof(cp)); 4612 cp.err_data_reporting = enabled ? ERR_DATA_REPORTING_ENABLED : 4613 ERR_DATA_REPORTING_DISABLED; 4614 4615 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING, 4616 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4617 } 4618 4619 static const struct hci_init_stage hci_init4[] = { 4620 /* HCI_OP_DELETE_STORED_LINK_KEY */ 4621 HCI_INIT(hci_delete_stored_link_key_sync), 4622 /* HCI_OP_SET_EVENT_MASK_PAGE_2 */ 4623 HCI_INIT(hci_set_event_mask_page_2_sync), 4624 /* HCI_OP_READ_LOCAL_CODECS */ 4625 HCI_INIT(hci_read_local_codecs_sync), 4626 /* HCI_OP_READ_LOCAL_PAIRING_OPTS */ 4627 HCI_INIT(hci_read_local_pairing_opts_sync), 4628 /* HCI_OP_GET_MWS_TRANSPORT_CONFIG */ 4629 HCI_INIT(hci_get_mws_transport_config_sync), 4630 /* HCI_OP_READ_SYNC_TRAIN_PARAMS */ 4631 HCI_INIT(hci_read_sync_train_params_sync), 4632 /* HCI_OP_WRITE_SC_SUPPORT */ 4633 HCI_INIT(hci_write_sc_support_1_sync), 4634 /* HCI_OP_WRITE_DEF_ERR_DATA_REPORTING */ 4635 HCI_INIT(hci_set_err_data_report_sync), 4636 {} 4637 }; 4638 4639 /* Set Suggested Default Data Length to maximum if supported */ 4640 static int hci_le_set_write_def_data_len_sync(struct hci_dev *hdev) 4641 { 4642 struct hci_cp_le_write_def_data_len cp; 4643 4644 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 4645 return 0; 4646 4647 memset(&cp, 0, sizeof(cp)); 4648 cp.tx_len = cpu_to_le16(hdev->le_max_tx_len); 4649 cp.tx_time = cpu_to_le16(hdev->le_max_tx_time); 4650 4651 return __hci_cmd_sync_status(hdev, HCI_OP_LE_WRITE_DEF_DATA_LEN, 4652 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4653 } 4654 4655 /* Set Default PHY parameters if command is supported, enables all supported 4656 * PHYs according to the LE Features bits. 4657 */ 4658 static int hci_le_set_default_phy_sync(struct hci_dev *hdev) 4659 { 4660 struct hci_cp_le_set_default_phy cp; 4661 4662 if (!(hdev->commands[35] & 0x20)) { 4663 /* If the command is not supported it means only 1M PHY is 4664 * supported. 4665 */ 4666 hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M; 4667 hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M; 4668 return 0; 4669 } 4670 4671 memset(&cp, 0, sizeof(cp)); 4672 cp.all_phys = 0x00; 4673 cp.tx_phys = HCI_LE_SET_PHY_1M; 4674 cp.rx_phys = HCI_LE_SET_PHY_1M; 4675 4676 /* Enables 2M PHY if supported */ 4677 if (le_2m_capable(hdev)) { 4678 cp.tx_phys |= HCI_LE_SET_PHY_2M; 4679 cp.rx_phys |= HCI_LE_SET_PHY_2M; 4680 } 4681 4682 /* Enables Coded PHY if supported */ 4683 if (le_coded_capable(hdev)) { 4684 cp.tx_phys |= HCI_LE_SET_PHY_CODED; 4685 cp.rx_phys |= HCI_LE_SET_PHY_CODED; 4686 } 4687 4688 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_DEFAULT_PHY, 4689 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4690 } 4691 4692 static const struct hci_init_stage le_init4[] = { 4693 /* HCI_OP_LE_WRITE_DEF_DATA_LEN */ 4694 HCI_INIT(hci_le_set_write_def_data_len_sync), 4695 /* HCI_OP_LE_SET_DEFAULT_PHY */ 4696 HCI_INIT(hci_le_set_default_phy_sync), 4697 {} 4698 }; 4699 4700 static int hci_init4_sync(struct hci_dev *hdev) 4701 { 4702 int err; 4703 4704 bt_dev_dbg(hdev, ""); 4705 4706 err = hci_init_stage_sync(hdev, hci_init4); 4707 if (err) 4708 return err; 4709 4710 if (lmp_le_capable(hdev)) 4711 return hci_init_stage_sync(hdev, le_init4); 4712 4713 return 0; 4714 } 4715 4716 static int hci_init_sync(struct hci_dev *hdev) 4717 { 4718 int err; 4719 4720 err = hci_init1_sync(hdev); 4721 if (err < 0) 4722 return err; 4723 4724 if (hci_dev_test_flag(hdev, HCI_SETUP)) 4725 hci_debugfs_create_basic(hdev); 4726 4727 err = hci_init2_sync(hdev); 4728 if (err < 0) 4729 return err; 4730 4731 /* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode 4732 * BR/EDR/LE type controllers. AMP controllers only need the 4733 * first two stages of init. 4734 */ 4735 if (hdev->dev_type != HCI_PRIMARY) 4736 return 0; 4737 4738 err = hci_init3_sync(hdev); 4739 if (err < 0) 4740 return err; 4741 4742 err = hci_init4_sync(hdev); 4743 if (err < 0) 4744 return err; 4745 4746 /* This function is only called when the controller is actually in 4747 * configured state. When the controller is marked as unconfigured, 4748 * this initialization procedure is not run. 4749 * 4750 * It means that it is possible that a controller runs through its 4751 * setup phase and then discovers missing settings. If that is the 4752 * case, then this function will not be called. It then will only 4753 * be called during the config phase. 4754 * 4755 * So only when in setup phase or config phase, create the debugfs 4756 * entries and register the SMP channels. 4757 */ 4758 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4759 !hci_dev_test_flag(hdev, HCI_CONFIG)) 4760 return 0; 4761 4762 if (hci_dev_test_and_set_flag(hdev, HCI_DEBUGFS_CREATED)) 4763 return 0; 4764 4765 hci_debugfs_create_common(hdev); 4766 4767 if (lmp_bredr_capable(hdev)) 4768 hci_debugfs_create_bredr(hdev); 4769 4770 if (lmp_le_capable(hdev)) 4771 hci_debugfs_create_le(hdev); 4772 4773 return 0; 4774 } 4775 4776 #define HCI_QUIRK_BROKEN(_quirk, _desc) { HCI_QUIRK_BROKEN_##_quirk, _desc } 4777 4778 static const struct { 4779 unsigned long quirk; 4780 const char *desc; 4781 } hci_broken_table[] = { 4782 HCI_QUIRK_BROKEN(LOCAL_COMMANDS, 4783 "HCI Read Local Supported Commands not supported"), 4784 HCI_QUIRK_BROKEN(STORED_LINK_KEY, 4785 "HCI Delete Stored Link Key command is advertised, " 4786 "but not supported."), 4787 HCI_QUIRK_BROKEN(ERR_DATA_REPORTING, 4788 "HCI Read Default Erroneous Data Reporting command is " 4789 "advertised, but not supported."), 4790 HCI_QUIRK_BROKEN(READ_TRANSMIT_POWER, 4791 "HCI Read Transmit Power Level command is advertised, " 4792 "but not supported."), 4793 HCI_QUIRK_BROKEN(FILTER_CLEAR_ALL, 4794 "HCI Set Event Filter command not supported."), 4795 HCI_QUIRK_BROKEN(ENHANCED_SETUP_SYNC_CONN, 4796 "HCI Enhanced Setup Synchronous Connection command is " 4797 "advertised, but not supported."), 4798 HCI_QUIRK_BROKEN(SET_RPA_TIMEOUT, 4799 "HCI LE Set Random Private Address Timeout command is " 4800 "advertised, but not supported."), 4801 HCI_QUIRK_BROKEN(LE_CODED, 4802 "HCI LE Coded PHY feature bit is set, " 4803 "but its usage is not supported.") 4804 }; 4805 4806 /* This function handles hdev setup stage: 4807 * 4808 * Calls hdev->setup 4809 * Setup address if HCI_QUIRK_USE_BDADDR_PROPERTY is set. 4810 */ 4811 static int hci_dev_setup_sync(struct hci_dev *hdev) 4812 { 4813 int ret = 0; 4814 bool invalid_bdaddr; 4815 size_t i; 4816 4817 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4818 !test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) 4819 return 0; 4820 4821 bt_dev_dbg(hdev, ""); 4822 4823 hci_sock_dev_event(hdev, HCI_DEV_SETUP); 4824 4825 if (hdev->setup) 4826 ret = hdev->setup(hdev); 4827 4828 for (i = 0; i < ARRAY_SIZE(hci_broken_table); i++) { 4829 if (test_bit(hci_broken_table[i].quirk, &hdev->quirks)) 4830 bt_dev_warn(hdev, "%s", hci_broken_table[i].desc); 4831 } 4832 4833 /* The transport driver can set the quirk to mark the 4834 * BD_ADDR invalid before creating the HCI device or in 4835 * its setup callback. 4836 */ 4837 invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks) || 4838 test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks); 4839 if (!ret) { 4840 if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks) && 4841 !bacmp(&hdev->public_addr, BDADDR_ANY)) 4842 hci_dev_get_bd_addr_from_property(hdev); 4843 4844 if (invalid_bdaddr && bacmp(&hdev->public_addr, BDADDR_ANY) && 4845 hdev->set_bdaddr) { 4846 ret = hdev->set_bdaddr(hdev, &hdev->public_addr); 4847 if (!ret) 4848 invalid_bdaddr = false; 4849 } 4850 } 4851 4852 /* The transport driver can set these quirks before 4853 * creating the HCI device or in its setup callback. 4854 * 4855 * For the invalid BD_ADDR quirk it is possible that 4856 * it becomes a valid address if the bootloader does 4857 * provide it (see above). 4858 * 4859 * In case any of them is set, the controller has to 4860 * start up as unconfigured. 4861 */ 4862 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) || 4863 invalid_bdaddr) 4864 hci_dev_set_flag(hdev, HCI_UNCONFIGURED); 4865 4866 /* For an unconfigured controller it is required to 4867 * read at least the version information provided by 4868 * the Read Local Version Information command. 4869 * 4870 * If the set_bdaddr driver callback is provided, then 4871 * also the original Bluetooth public device address 4872 * will be read using the Read BD Address command. 4873 */ 4874 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 4875 return hci_unconf_init_sync(hdev); 4876 4877 return ret; 4878 } 4879 4880 /* This function handles hdev init stage: 4881 * 4882 * Calls hci_dev_setup_sync to perform setup stage 4883 * Calls hci_init_sync to perform HCI command init sequence 4884 */ 4885 static int hci_dev_init_sync(struct hci_dev *hdev) 4886 { 4887 int ret; 4888 4889 bt_dev_dbg(hdev, ""); 4890 4891 atomic_set(&hdev->cmd_cnt, 1); 4892 set_bit(HCI_INIT, &hdev->flags); 4893 4894 ret = hci_dev_setup_sync(hdev); 4895 4896 if (hci_dev_test_flag(hdev, HCI_CONFIG)) { 4897 /* If public address change is configured, ensure that 4898 * the address gets programmed. If the driver does not 4899 * support changing the public address, fail the power 4900 * on procedure. 4901 */ 4902 if (bacmp(&hdev->public_addr, BDADDR_ANY) && 4903 hdev->set_bdaddr) 4904 ret = hdev->set_bdaddr(hdev, &hdev->public_addr); 4905 else 4906 ret = -EADDRNOTAVAIL; 4907 } 4908 4909 if (!ret) { 4910 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 4911 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4912 ret = hci_init_sync(hdev); 4913 if (!ret && hdev->post_init) 4914 ret = hdev->post_init(hdev); 4915 } 4916 } 4917 4918 /* If the HCI Reset command is clearing all diagnostic settings, 4919 * then they need to be reprogrammed after the init procedure 4920 * completed. 4921 */ 4922 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) && 4923 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4924 hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag) 4925 ret = hdev->set_diag(hdev, true); 4926 4927 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4928 msft_do_open(hdev); 4929 aosp_do_open(hdev); 4930 } 4931 4932 clear_bit(HCI_INIT, &hdev->flags); 4933 4934 return ret; 4935 } 4936 4937 int hci_dev_open_sync(struct hci_dev *hdev) 4938 { 4939 int ret; 4940 4941 bt_dev_dbg(hdev, ""); 4942 4943 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 4944 ret = -ENODEV; 4945 goto done; 4946 } 4947 4948 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4949 !hci_dev_test_flag(hdev, HCI_CONFIG)) { 4950 /* Check for rfkill but allow the HCI setup stage to 4951 * proceed (which in itself doesn't cause any RF activity). 4952 */ 4953 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) { 4954 ret = -ERFKILL; 4955 goto done; 4956 } 4957 4958 /* Check for valid public address or a configured static 4959 * random address, but let the HCI setup proceed to 4960 * be able to determine if there is a public address 4961 * or not. 4962 * 4963 * In case of user channel usage, it is not important 4964 * if a public address or static random address is 4965 * available. 4966 * 4967 * This check is only valid for BR/EDR controllers 4968 * since AMP controllers do not have an address. 4969 */ 4970 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4971 hdev->dev_type == HCI_PRIMARY && 4972 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 4973 !bacmp(&hdev->static_addr, BDADDR_ANY)) { 4974 ret = -EADDRNOTAVAIL; 4975 goto done; 4976 } 4977 } 4978 4979 if (test_bit(HCI_UP, &hdev->flags)) { 4980 ret = -EALREADY; 4981 goto done; 4982 } 4983 4984 if (hdev->open(hdev)) { 4985 ret = -EIO; 4986 goto done; 4987 } 4988 4989 hci_devcd_reset(hdev); 4990 4991 set_bit(HCI_RUNNING, &hdev->flags); 4992 hci_sock_dev_event(hdev, HCI_DEV_OPEN); 4993 4994 ret = hci_dev_init_sync(hdev); 4995 if (!ret) { 4996 hci_dev_hold(hdev); 4997 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 4998 hci_adv_instances_set_rpa_expired(hdev, true); 4999 set_bit(HCI_UP, &hdev->flags); 5000 hci_sock_dev_event(hdev, HCI_DEV_UP); 5001 hci_leds_update_powered(hdev, true); 5002 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 5003 !hci_dev_test_flag(hdev, HCI_CONFIG) && 5004 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 5005 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 5006 hci_dev_test_flag(hdev, HCI_MGMT) && 5007 hdev->dev_type == HCI_PRIMARY) { 5008 ret = hci_powered_update_sync(hdev); 5009 mgmt_power_on(hdev, ret); 5010 } 5011 } else { 5012 /* Init failed, cleanup */ 5013 flush_work(&hdev->tx_work); 5014 5015 /* Since hci_rx_work() is possible to awake new cmd_work 5016 * it should be flushed first to avoid unexpected call of 5017 * hci_cmd_work() 5018 */ 5019 flush_work(&hdev->rx_work); 5020 flush_work(&hdev->cmd_work); 5021 5022 skb_queue_purge(&hdev->cmd_q); 5023 skb_queue_purge(&hdev->rx_q); 5024 5025 if (hdev->flush) 5026 hdev->flush(hdev); 5027 5028 if (hdev->sent_cmd) { 5029 cancel_delayed_work_sync(&hdev->cmd_timer); 5030 kfree_skb(hdev->sent_cmd); 5031 hdev->sent_cmd = NULL; 5032 } 5033 5034 if (hdev->req_skb) { 5035 kfree_skb(hdev->req_skb); 5036 hdev->req_skb = NULL; 5037 } 5038 5039 clear_bit(HCI_RUNNING, &hdev->flags); 5040 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 5041 5042 hdev->close(hdev); 5043 hdev->flags &= BIT(HCI_RAW); 5044 } 5045 5046 done: 5047 return ret; 5048 } 5049 5050 /* This function requires the caller holds hdev->lock */ 5051 static void hci_pend_le_actions_clear(struct hci_dev *hdev) 5052 { 5053 struct hci_conn_params *p; 5054 5055 list_for_each_entry(p, &hdev->le_conn_params, list) { 5056 hci_pend_le_list_del_init(p); 5057 if (p->conn) { 5058 hci_conn_drop(p->conn); 5059 hci_conn_put(p->conn); 5060 p->conn = NULL; 5061 } 5062 } 5063 5064 BT_DBG("All LE pending actions cleared"); 5065 } 5066 5067 static int hci_dev_shutdown(struct hci_dev *hdev) 5068 { 5069 int err = 0; 5070 /* Similar to how we first do setup and then set the exclusive access 5071 * bit for userspace, we must first unset userchannel and then clean up. 5072 * Otherwise, the kernel can't properly use the hci channel to clean up 5073 * the controller (some shutdown routines require sending additional 5074 * commands to the controller for example). 5075 */ 5076 bool was_userchannel = 5077 hci_dev_test_and_clear_flag(hdev, HCI_USER_CHANNEL); 5078 5079 if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) && 5080 test_bit(HCI_UP, &hdev->flags)) { 5081 /* Execute vendor specific shutdown routine */ 5082 if (hdev->shutdown) 5083 err = hdev->shutdown(hdev); 5084 } 5085 5086 if (was_userchannel) 5087 hci_dev_set_flag(hdev, HCI_USER_CHANNEL); 5088 5089 return err; 5090 } 5091 5092 int hci_dev_close_sync(struct hci_dev *hdev) 5093 { 5094 bool auto_off; 5095 int err = 0; 5096 5097 bt_dev_dbg(hdev, ""); 5098 5099 cancel_delayed_work(&hdev->power_off); 5100 cancel_delayed_work(&hdev->ncmd_timer); 5101 cancel_delayed_work(&hdev->le_scan_disable); 5102 5103 hci_request_cancel_all(hdev); 5104 5105 if (hdev->adv_instance_timeout) { 5106 cancel_delayed_work_sync(&hdev->adv_instance_expire); 5107 hdev->adv_instance_timeout = 0; 5108 } 5109 5110 err = hci_dev_shutdown(hdev); 5111 5112 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) { 5113 cancel_delayed_work_sync(&hdev->cmd_timer); 5114 return err; 5115 } 5116 5117 hci_leds_update_powered(hdev, false); 5118 5119 /* Flush RX and TX works */ 5120 flush_work(&hdev->tx_work); 5121 flush_work(&hdev->rx_work); 5122 5123 if (hdev->discov_timeout > 0) { 5124 hdev->discov_timeout = 0; 5125 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 5126 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 5127 } 5128 5129 if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE)) 5130 cancel_delayed_work(&hdev->service_cache); 5131 5132 if (hci_dev_test_flag(hdev, HCI_MGMT)) { 5133 struct adv_info *adv_instance; 5134 5135 cancel_delayed_work_sync(&hdev->rpa_expired); 5136 5137 list_for_each_entry(adv_instance, &hdev->adv_instances, list) 5138 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb); 5139 } 5140 5141 /* Avoid potential lockdep warnings from the *_flush() calls by 5142 * ensuring the workqueue is empty up front. 5143 */ 5144 drain_workqueue(hdev->workqueue); 5145 5146 hci_dev_lock(hdev); 5147 5148 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 5149 5150 auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF); 5151 5152 if (!auto_off && hdev->dev_type == HCI_PRIMARY && 5153 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 5154 hci_dev_test_flag(hdev, HCI_MGMT)) 5155 __mgmt_power_off(hdev); 5156 5157 hci_inquiry_cache_flush(hdev); 5158 hci_pend_le_actions_clear(hdev); 5159 hci_conn_hash_flush(hdev); 5160 /* Prevent data races on hdev->smp_data or hdev->smp_bredr_data */ 5161 smp_unregister(hdev); 5162 hci_dev_unlock(hdev); 5163 5164 hci_sock_dev_event(hdev, HCI_DEV_DOWN); 5165 5166 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 5167 aosp_do_close(hdev); 5168 msft_do_close(hdev); 5169 } 5170 5171 if (hdev->flush) 5172 hdev->flush(hdev); 5173 5174 /* Reset device */ 5175 skb_queue_purge(&hdev->cmd_q); 5176 atomic_set(&hdev->cmd_cnt, 1); 5177 if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) && 5178 !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 5179 set_bit(HCI_INIT, &hdev->flags); 5180 hci_reset_sync(hdev); 5181 clear_bit(HCI_INIT, &hdev->flags); 5182 } 5183 5184 /* flush cmd work */ 5185 flush_work(&hdev->cmd_work); 5186 5187 /* Drop queues */ 5188 skb_queue_purge(&hdev->rx_q); 5189 skb_queue_purge(&hdev->cmd_q); 5190 skb_queue_purge(&hdev->raw_q); 5191 5192 /* Drop last sent command */ 5193 if (hdev->sent_cmd) { 5194 cancel_delayed_work_sync(&hdev->cmd_timer); 5195 kfree_skb(hdev->sent_cmd); 5196 hdev->sent_cmd = NULL; 5197 } 5198 5199 /* Drop last request */ 5200 if (hdev->req_skb) { 5201 kfree_skb(hdev->req_skb); 5202 hdev->req_skb = NULL; 5203 } 5204 5205 clear_bit(HCI_RUNNING, &hdev->flags); 5206 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 5207 5208 /* After this point our queues are empty and no tasks are scheduled. */ 5209 hdev->close(hdev); 5210 5211 /* Clear flags */ 5212 hdev->flags &= BIT(HCI_RAW); 5213 hci_dev_clear_volatile_flags(hdev); 5214 5215 /* Controller radio is available but is currently powered down */ 5216 hdev->amp_status = AMP_STATUS_POWERED_DOWN; 5217 5218 memset(hdev->eir, 0, sizeof(hdev->eir)); 5219 memset(hdev->dev_class, 0, sizeof(hdev->dev_class)); 5220 bacpy(&hdev->random_addr, BDADDR_ANY); 5221 hci_codec_list_clear(&hdev->local_codecs); 5222 5223 hci_dev_put(hdev); 5224 return err; 5225 } 5226 5227 /* This function perform power on HCI command sequence as follows: 5228 * 5229 * If controller is already up (HCI_UP) performs hci_powered_update_sync 5230 * sequence otherwise run hci_dev_open_sync which will follow with 5231 * hci_powered_update_sync after the init sequence is completed. 5232 */ 5233 static int hci_power_on_sync(struct hci_dev *hdev) 5234 { 5235 int err; 5236 5237 if (test_bit(HCI_UP, &hdev->flags) && 5238 hci_dev_test_flag(hdev, HCI_MGMT) && 5239 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) { 5240 cancel_delayed_work(&hdev->power_off); 5241 return hci_powered_update_sync(hdev); 5242 } 5243 5244 err = hci_dev_open_sync(hdev); 5245 if (err < 0) 5246 return err; 5247 5248 /* During the HCI setup phase, a few error conditions are 5249 * ignored and they need to be checked now. If they are still 5250 * valid, it is important to return the device back off. 5251 */ 5252 if (hci_dev_test_flag(hdev, HCI_RFKILLED) || 5253 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) || 5254 (hdev->dev_type == HCI_PRIMARY && 5255 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 5256 !bacmp(&hdev->static_addr, BDADDR_ANY))) { 5257 hci_dev_clear_flag(hdev, HCI_AUTO_OFF); 5258 hci_dev_close_sync(hdev); 5259 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) { 5260 queue_delayed_work(hdev->req_workqueue, &hdev->power_off, 5261 HCI_AUTO_OFF_TIMEOUT); 5262 } 5263 5264 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) { 5265 /* For unconfigured devices, set the HCI_RAW flag 5266 * so that userspace can easily identify them. 5267 */ 5268 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 5269 set_bit(HCI_RAW, &hdev->flags); 5270 5271 /* For fully configured devices, this will send 5272 * the Index Added event. For unconfigured devices, 5273 * it will send Unconfigued Index Added event. 5274 * 5275 * Devices with HCI_QUIRK_RAW_DEVICE are ignored 5276 * and no event will be send. 5277 */ 5278 mgmt_index_added(hdev); 5279 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) { 5280 /* When the controller is now configured, then it 5281 * is important to clear the HCI_RAW flag. 5282 */ 5283 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 5284 clear_bit(HCI_RAW, &hdev->flags); 5285 5286 /* Powering on the controller with HCI_CONFIG set only 5287 * happens with the transition from unconfigured to 5288 * configured. This will send the Index Added event. 5289 */ 5290 mgmt_index_added(hdev); 5291 } 5292 5293 return 0; 5294 } 5295 5296 static int hci_remote_name_cancel_sync(struct hci_dev *hdev, bdaddr_t *addr) 5297 { 5298 struct hci_cp_remote_name_req_cancel cp; 5299 5300 memset(&cp, 0, sizeof(cp)); 5301 bacpy(&cp.bdaddr, addr); 5302 5303 return __hci_cmd_sync_status(hdev, HCI_OP_REMOTE_NAME_REQ_CANCEL, 5304 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5305 } 5306 5307 int hci_stop_discovery_sync(struct hci_dev *hdev) 5308 { 5309 struct discovery_state *d = &hdev->discovery; 5310 struct inquiry_entry *e; 5311 int err; 5312 5313 bt_dev_dbg(hdev, "state %u", hdev->discovery.state); 5314 5315 if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) { 5316 if (test_bit(HCI_INQUIRY, &hdev->flags)) { 5317 err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL, 5318 0, NULL, HCI_CMD_TIMEOUT); 5319 if (err) 5320 return err; 5321 } 5322 5323 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 5324 cancel_delayed_work(&hdev->le_scan_disable); 5325 5326 err = hci_scan_disable_sync(hdev); 5327 if (err) 5328 return err; 5329 } 5330 5331 } else { 5332 err = hci_scan_disable_sync(hdev); 5333 if (err) 5334 return err; 5335 } 5336 5337 /* Resume advertising if it was paused */ 5338 if (use_ll_privacy(hdev)) 5339 hci_resume_advertising_sync(hdev); 5340 5341 /* No further actions needed for LE-only discovery */ 5342 if (d->type == DISCOV_TYPE_LE) 5343 return 0; 5344 5345 if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) { 5346 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY, 5347 NAME_PENDING); 5348 if (!e) 5349 return 0; 5350 5351 return hci_remote_name_cancel_sync(hdev, &e->data.bdaddr); 5352 } 5353 5354 return 0; 5355 } 5356 5357 static int hci_disconnect_phy_link_sync(struct hci_dev *hdev, u16 handle, 5358 u8 reason) 5359 { 5360 struct hci_cp_disconn_phy_link cp; 5361 5362 memset(&cp, 0, sizeof(cp)); 5363 cp.phy_handle = HCI_PHY_HANDLE(handle); 5364 cp.reason = reason; 5365 5366 return __hci_cmd_sync_status(hdev, HCI_OP_DISCONN_PHY_LINK, 5367 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5368 } 5369 5370 static int hci_disconnect_sync(struct hci_dev *hdev, struct hci_conn *conn, 5371 u8 reason) 5372 { 5373 struct hci_cp_disconnect cp; 5374 5375 if (conn->type == AMP_LINK) 5376 return hci_disconnect_phy_link_sync(hdev, conn->handle, reason); 5377 5378 if (test_bit(HCI_CONN_BIG_CREATED, &conn->flags)) { 5379 /* This is a BIS connection, hci_conn_del will 5380 * do the necessary cleanup. 5381 */ 5382 hci_dev_lock(hdev); 5383 hci_conn_failed(conn, reason); 5384 hci_dev_unlock(hdev); 5385 5386 return 0; 5387 } 5388 5389 memset(&cp, 0, sizeof(cp)); 5390 cp.handle = cpu_to_le16(conn->handle); 5391 cp.reason = reason; 5392 5393 /* Wait for HCI_EV_DISCONN_COMPLETE, not HCI_EV_CMD_STATUS, when the 5394 * reason is anything but HCI_ERROR_REMOTE_POWER_OFF. This reason is 5395 * used when suspending or powering off, where we don't want to wait 5396 * for the peer's response. 5397 */ 5398 if (reason != HCI_ERROR_REMOTE_POWER_OFF) 5399 return __hci_cmd_sync_status_sk(hdev, HCI_OP_DISCONNECT, 5400 sizeof(cp), &cp, 5401 HCI_EV_DISCONN_COMPLETE, 5402 HCI_CMD_TIMEOUT, NULL); 5403 5404 return __hci_cmd_sync_status(hdev, HCI_OP_DISCONNECT, sizeof(cp), &cp, 5405 HCI_CMD_TIMEOUT); 5406 } 5407 5408 static int hci_le_connect_cancel_sync(struct hci_dev *hdev, 5409 struct hci_conn *conn, u8 reason) 5410 { 5411 /* Return reason if scanning since the connection shall probably be 5412 * cleanup directly. 5413 */ 5414 if (test_bit(HCI_CONN_SCANNING, &conn->flags)) 5415 return reason; 5416 5417 if (conn->role == HCI_ROLE_SLAVE || 5418 test_and_set_bit(HCI_CONN_CANCEL, &conn->flags)) 5419 return 0; 5420 5421 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CREATE_CONN_CANCEL, 5422 0, NULL, HCI_CMD_TIMEOUT); 5423 } 5424 5425 static int hci_connect_cancel_sync(struct hci_dev *hdev, struct hci_conn *conn, 5426 u8 reason) 5427 { 5428 if (conn->type == LE_LINK) 5429 return hci_le_connect_cancel_sync(hdev, conn, reason); 5430 5431 if (conn->type == ISO_LINK) { 5432 /* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E 5433 * page 1857: 5434 * 5435 * If this command is issued for a CIS on the Central and the 5436 * CIS is successfully terminated before being established, 5437 * then an HCI_LE_CIS_Established event shall also be sent for 5438 * this CIS with the Status Operation Cancelled by Host (0x44). 5439 */ 5440 if (test_bit(HCI_CONN_CREATE_CIS, &conn->flags)) 5441 return hci_disconnect_sync(hdev, conn, reason); 5442 5443 /* CIS with no Create CIS sent have nothing to cancel */ 5444 if (bacmp(&conn->dst, BDADDR_ANY)) 5445 return HCI_ERROR_LOCAL_HOST_TERM; 5446 5447 /* There is no way to cancel a BIS without terminating the BIG 5448 * which is done later on connection cleanup. 5449 */ 5450 return 0; 5451 } 5452 5453 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 5454 return 0; 5455 5456 /* Wait for HCI_EV_CONN_COMPLETE, not HCI_EV_CMD_STATUS, when the 5457 * reason is anything but HCI_ERROR_REMOTE_POWER_OFF. This reason is 5458 * used when suspending or powering off, where we don't want to wait 5459 * for the peer's response. 5460 */ 5461 if (reason != HCI_ERROR_REMOTE_POWER_OFF) 5462 return __hci_cmd_sync_status_sk(hdev, HCI_OP_CREATE_CONN_CANCEL, 5463 6, &conn->dst, 5464 HCI_EV_CONN_COMPLETE, 5465 HCI_CMD_TIMEOUT, NULL); 5466 5467 return __hci_cmd_sync_status(hdev, HCI_OP_CREATE_CONN_CANCEL, 5468 6, &conn->dst, HCI_CMD_TIMEOUT); 5469 } 5470 5471 static int hci_reject_sco_sync(struct hci_dev *hdev, struct hci_conn *conn, 5472 u8 reason) 5473 { 5474 struct hci_cp_reject_sync_conn_req cp; 5475 5476 memset(&cp, 0, sizeof(cp)); 5477 bacpy(&cp.bdaddr, &conn->dst); 5478 cp.reason = reason; 5479 5480 /* SCO rejection has its own limited set of 5481 * allowed error values (0x0D-0x0F). 5482 */ 5483 if (reason < 0x0d || reason > 0x0f) 5484 cp.reason = HCI_ERROR_REJ_LIMITED_RESOURCES; 5485 5486 return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_SYNC_CONN_REQ, 5487 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5488 } 5489 5490 static int hci_le_reject_cis_sync(struct hci_dev *hdev, struct hci_conn *conn, 5491 u8 reason) 5492 { 5493 struct hci_cp_le_reject_cis cp; 5494 5495 memset(&cp, 0, sizeof(cp)); 5496 cp.handle = cpu_to_le16(conn->handle); 5497 cp.reason = reason; 5498 5499 return __hci_cmd_sync_status(hdev, HCI_OP_LE_REJECT_CIS, 5500 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5501 } 5502 5503 static int hci_reject_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, 5504 u8 reason) 5505 { 5506 struct hci_cp_reject_conn_req cp; 5507 5508 if (conn->type == ISO_LINK) 5509 return hci_le_reject_cis_sync(hdev, conn, reason); 5510 5511 if (conn->type == SCO_LINK || conn->type == ESCO_LINK) 5512 return hci_reject_sco_sync(hdev, conn, reason); 5513 5514 memset(&cp, 0, sizeof(cp)); 5515 bacpy(&cp.bdaddr, &conn->dst); 5516 cp.reason = reason; 5517 5518 return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_CONN_REQ, 5519 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5520 } 5521 5522 int hci_abort_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, u8 reason) 5523 { 5524 int err = 0; 5525 u16 handle = conn->handle; 5526 bool disconnect = false; 5527 struct hci_conn *c; 5528 5529 switch (conn->state) { 5530 case BT_CONNECTED: 5531 case BT_CONFIG: 5532 err = hci_disconnect_sync(hdev, conn, reason); 5533 break; 5534 case BT_CONNECT: 5535 err = hci_connect_cancel_sync(hdev, conn, reason); 5536 break; 5537 case BT_CONNECT2: 5538 err = hci_reject_conn_sync(hdev, conn, reason); 5539 break; 5540 case BT_OPEN: 5541 case BT_BOUND: 5542 break; 5543 default: 5544 disconnect = true; 5545 break; 5546 } 5547 5548 hci_dev_lock(hdev); 5549 5550 /* Check if the connection has been cleaned up concurrently */ 5551 c = hci_conn_hash_lookup_handle(hdev, handle); 5552 if (!c || c != conn) { 5553 err = 0; 5554 goto unlock; 5555 } 5556 5557 /* Cleanup hci_conn object if it cannot be cancelled as it 5558 * likelly means the controller and host stack are out of sync 5559 * or in case of LE it was still scanning so it can be cleanup 5560 * safely. 5561 */ 5562 if (disconnect) { 5563 conn->state = BT_CLOSED; 5564 hci_disconn_cfm(conn, reason); 5565 hci_conn_del(conn); 5566 } else { 5567 hci_conn_failed(conn, reason); 5568 } 5569 5570 unlock: 5571 hci_dev_unlock(hdev); 5572 return err; 5573 } 5574 5575 static int hci_disconnect_all_sync(struct hci_dev *hdev, u8 reason) 5576 { 5577 struct list_head *head = &hdev->conn_hash.list; 5578 struct hci_conn *conn; 5579 5580 rcu_read_lock(); 5581 while ((conn = list_first_or_null_rcu(head, struct hci_conn, list))) { 5582 /* Make sure the connection is not freed while unlocking */ 5583 conn = hci_conn_get(conn); 5584 rcu_read_unlock(); 5585 /* Disregard possible errors since hci_conn_del shall have been 5586 * called even in case of errors had occurred since it would 5587 * then cause hci_conn_failed to be called which calls 5588 * hci_conn_del internally. 5589 */ 5590 hci_abort_conn_sync(hdev, conn, reason); 5591 hci_conn_put(conn); 5592 rcu_read_lock(); 5593 } 5594 rcu_read_unlock(); 5595 5596 return 0; 5597 } 5598 5599 /* This function perform power off HCI command sequence as follows: 5600 * 5601 * Clear Advertising 5602 * Stop Discovery 5603 * Disconnect all connections 5604 * hci_dev_close_sync 5605 */ 5606 static int hci_power_off_sync(struct hci_dev *hdev) 5607 { 5608 int err; 5609 5610 /* If controller is already down there is nothing to do */ 5611 if (!test_bit(HCI_UP, &hdev->flags)) 5612 return 0; 5613 5614 hci_dev_set_flag(hdev, HCI_POWERING_DOWN); 5615 5616 if (test_bit(HCI_ISCAN, &hdev->flags) || 5617 test_bit(HCI_PSCAN, &hdev->flags)) { 5618 err = hci_write_scan_enable_sync(hdev, 0x00); 5619 if (err) 5620 goto out; 5621 } 5622 5623 err = hci_clear_adv_sync(hdev, NULL, false); 5624 if (err) 5625 goto out; 5626 5627 err = hci_stop_discovery_sync(hdev); 5628 if (err) 5629 goto out; 5630 5631 /* Terminated due to Power Off */ 5632 err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF); 5633 if (err) 5634 goto out; 5635 5636 err = hci_dev_close_sync(hdev); 5637 5638 out: 5639 hci_dev_clear_flag(hdev, HCI_POWERING_DOWN); 5640 return err; 5641 } 5642 5643 int hci_set_powered_sync(struct hci_dev *hdev, u8 val) 5644 { 5645 if (val) 5646 return hci_power_on_sync(hdev); 5647 5648 return hci_power_off_sync(hdev); 5649 } 5650 5651 static int hci_write_iac_sync(struct hci_dev *hdev) 5652 { 5653 struct hci_cp_write_current_iac_lap cp; 5654 5655 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 5656 return 0; 5657 5658 memset(&cp, 0, sizeof(cp)); 5659 5660 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { 5661 /* Limited discoverable mode */ 5662 cp.num_iac = min_t(u8, hdev->num_iac, 2); 5663 cp.iac_lap[0] = 0x00; /* LIAC */ 5664 cp.iac_lap[1] = 0x8b; 5665 cp.iac_lap[2] = 0x9e; 5666 cp.iac_lap[3] = 0x33; /* GIAC */ 5667 cp.iac_lap[4] = 0x8b; 5668 cp.iac_lap[5] = 0x9e; 5669 } else { 5670 /* General discoverable mode */ 5671 cp.num_iac = 1; 5672 cp.iac_lap[0] = 0x33; /* GIAC */ 5673 cp.iac_lap[1] = 0x8b; 5674 cp.iac_lap[2] = 0x9e; 5675 } 5676 5677 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CURRENT_IAC_LAP, 5678 (cp.num_iac * 3) + 1, &cp, 5679 HCI_CMD_TIMEOUT); 5680 } 5681 5682 int hci_update_discoverable_sync(struct hci_dev *hdev) 5683 { 5684 int err = 0; 5685 5686 if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 5687 err = hci_write_iac_sync(hdev); 5688 if (err) 5689 return err; 5690 5691 err = hci_update_scan_sync(hdev); 5692 if (err) 5693 return err; 5694 5695 err = hci_update_class_sync(hdev); 5696 if (err) 5697 return err; 5698 } 5699 5700 /* Advertising instances don't use the global discoverable setting, so 5701 * only update AD if advertising was enabled using Set Advertising. 5702 */ 5703 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) { 5704 err = hci_update_adv_data_sync(hdev, 0x00); 5705 if (err) 5706 return err; 5707 5708 /* Discoverable mode affects the local advertising 5709 * address in limited privacy mode. 5710 */ 5711 if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) { 5712 if (ext_adv_capable(hdev)) 5713 err = hci_start_ext_adv_sync(hdev, 0x00); 5714 else 5715 err = hci_enable_advertising_sync(hdev); 5716 } 5717 } 5718 5719 return err; 5720 } 5721 5722 static int update_discoverable_sync(struct hci_dev *hdev, void *data) 5723 { 5724 return hci_update_discoverable_sync(hdev); 5725 } 5726 5727 int hci_update_discoverable(struct hci_dev *hdev) 5728 { 5729 /* Only queue if it would have any effect */ 5730 if (hdev_is_powered(hdev) && 5731 hci_dev_test_flag(hdev, HCI_ADVERTISING) && 5732 hci_dev_test_flag(hdev, HCI_DISCOVERABLE) && 5733 hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) 5734 return hci_cmd_sync_queue(hdev, update_discoverable_sync, NULL, 5735 NULL); 5736 5737 return 0; 5738 } 5739 5740 int hci_update_connectable_sync(struct hci_dev *hdev) 5741 { 5742 int err; 5743 5744 err = hci_update_scan_sync(hdev); 5745 if (err) 5746 return err; 5747 5748 /* If BR/EDR is not enabled and we disable advertising as a 5749 * by-product of disabling connectable, we need to update the 5750 * advertising flags. 5751 */ 5752 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 5753 err = hci_update_adv_data_sync(hdev, hdev->cur_adv_instance); 5754 5755 /* Update the advertising parameters if necessary */ 5756 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 5757 !list_empty(&hdev->adv_instances)) { 5758 if (ext_adv_capable(hdev)) 5759 err = hci_start_ext_adv_sync(hdev, 5760 hdev->cur_adv_instance); 5761 else 5762 err = hci_enable_advertising_sync(hdev); 5763 5764 if (err) 5765 return err; 5766 } 5767 5768 return hci_update_passive_scan_sync(hdev); 5769 } 5770 5771 static int hci_inquiry_sync(struct hci_dev *hdev, u8 length) 5772 { 5773 const u8 giac[3] = { 0x33, 0x8b, 0x9e }; 5774 const u8 liac[3] = { 0x00, 0x8b, 0x9e }; 5775 struct hci_cp_inquiry cp; 5776 5777 bt_dev_dbg(hdev, ""); 5778 5779 if (test_bit(HCI_INQUIRY, &hdev->flags)) 5780 return 0; 5781 5782 hci_dev_lock(hdev); 5783 hci_inquiry_cache_flush(hdev); 5784 hci_dev_unlock(hdev); 5785 5786 memset(&cp, 0, sizeof(cp)); 5787 5788 if (hdev->discovery.limited) 5789 memcpy(&cp.lap, liac, sizeof(cp.lap)); 5790 else 5791 memcpy(&cp.lap, giac, sizeof(cp.lap)); 5792 5793 cp.length = length; 5794 5795 return __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY, 5796 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5797 } 5798 5799 static int hci_active_scan_sync(struct hci_dev *hdev, uint16_t interval) 5800 { 5801 u8 own_addr_type; 5802 /* Accept list is not used for discovery */ 5803 u8 filter_policy = 0x00; 5804 /* Default is to enable duplicates filter */ 5805 u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE; 5806 int err; 5807 5808 bt_dev_dbg(hdev, ""); 5809 5810 /* If controller is scanning, it means the passive scanning is 5811 * running. Thus, we should temporarily stop it in order to set the 5812 * discovery scanning parameters. 5813 */ 5814 err = hci_scan_disable_sync(hdev); 5815 if (err) { 5816 bt_dev_err(hdev, "Unable to disable scanning: %d", err); 5817 return err; 5818 } 5819 5820 cancel_interleave_scan(hdev); 5821 5822 /* Pause address resolution for active scan and stop advertising if 5823 * privacy is enabled. 5824 */ 5825 err = hci_pause_addr_resolution(hdev); 5826 if (err) 5827 goto failed; 5828 5829 /* All active scans will be done with either a resolvable private 5830 * address (when privacy feature has been enabled) or non-resolvable 5831 * private address. 5832 */ 5833 err = hci_update_random_address_sync(hdev, true, scan_use_rpa(hdev), 5834 &own_addr_type); 5835 if (err < 0) 5836 own_addr_type = ADDR_LE_DEV_PUBLIC; 5837 5838 if (hci_is_adv_monitoring(hdev) || 5839 (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) && 5840 hdev->discovery.result_filtering)) { 5841 /* Duplicate filter should be disabled when some advertisement 5842 * monitor is activated, otherwise AdvMon can only receive one 5843 * advertisement for one peer(*) during active scanning, and 5844 * might report loss to these peers. 5845 * 5846 * If controller does strict duplicate filtering and the 5847 * discovery requires result filtering disables controller based 5848 * filtering since that can cause reports that would match the 5849 * host filter to not be reported. 5850 */ 5851 filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 5852 } 5853 5854 err = hci_start_scan_sync(hdev, LE_SCAN_ACTIVE, interval, 5855 hdev->le_scan_window_discovery, 5856 own_addr_type, filter_policy, filter_dup); 5857 if (!err) 5858 return err; 5859 5860 failed: 5861 /* Resume advertising if it was paused */ 5862 if (use_ll_privacy(hdev)) 5863 hci_resume_advertising_sync(hdev); 5864 5865 /* Resume passive scanning */ 5866 hci_update_passive_scan_sync(hdev); 5867 return err; 5868 } 5869 5870 static int hci_start_interleaved_discovery_sync(struct hci_dev *hdev) 5871 { 5872 int err; 5873 5874 bt_dev_dbg(hdev, ""); 5875 5876 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery * 2); 5877 if (err) 5878 return err; 5879 5880 return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN); 5881 } 5882 5883 int hci_start_discovery_sync(struct hci_dev *hdev) 5884 { 5885 unsigned long timeout; 5886 int err; 5887 5888 bt_dev_dbg(hdev, "type %u", hdev->discovery.type); 5889 5890 switch (hdev->discovery.type) { 5891 case DISCOV_TYPE_BREDR: 5892 return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN); 5893 case DISCOV_TYPE_INTERLEAVED: 5894 /* When running simultaneous discovery, the LE scanning time 5895 * should occupy the whole discovery time sine BR/EDR inquiry 5896 * and LE scanning are scheduled by the controller. 5897 * 5898 * For interleaving discovery in comparison, BR/EDR inquiry 5899 * and LE scanning are done sequentially with separate 5900 * timeouts. 5901 */ 5902 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, 5903 &hdev->quirks)) { 5904 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 5905 /* During simultaneous discovery, we double LE scan 5906 * interval. We must leave some time for the controller 5907 * to do BR/EDR inquiry. 5908 */ 5909 err = hci_start_interleaved_discovery_sync(hdev); 5910 break; 5911 } 5912 5913 timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout); 5914 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery); 5915 break; 5916 case DISCOV_TYPE_LE: 5917 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 5918 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery); 5919 break; 5920 default: 5921 return -EINVAL; 5922 } 5923 5924 if (err) 5925 return err; 5926 5927 bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout)); 5928 5929 queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable, 5930 timeout); 5931 return 0; 5932 } 5933 5934 static void hci_suspend_monitor_sync(struct hci_dev *hdev) 5935 { 5936 switch (hci_get_adv_monitor_offload_ext(hdev)) { 5937 case HCI_ADV_MONITOR_EXT_MSFT: 5938 msft_suspend_sync(hdev); 5939 break; 5940 default: 5941 return; 5942 } 5943 } 5944 5945 /* This function disables discovery and mark it as paused */ 5946 static int hci_pause_discovery_sync(struct hci_dev *hdev) 5947 { 5948 int old_state = hdev->discovery.state; 5949 int err; 5950 5951 /* If discovery already stopped/stopping/paused there nothing to do */ 5952 if (old_state == DISCOVERY_STOPPED || old_state == DISCOVERY_STOPPING || 5953 hdev->discovery_paused) 5954 return 0; 5955 5956 hci_discovery_set_state(hdev, DISCOVERY_STOPPING); 5957 err = hci_stop_discovery_sync(hdev); 5958 if (err) 5959 return err; 5960 5961 hdev->discovery_paused = true; 5962 hdev->discovery_old_state = old_state; 5963 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 5964 5965 return 0; 5966 } 5967 5968 static int hci_update_event_filter_sync(struct hci_dev *hdev) 5969 { 5970 struct bdaddr_list_with_flags *b; 5971 u8 scan = SCAN_DISABLED; 5972 bool scanning = test_bit(HCI_PSCAN, &hdev->flags); 5973 int err; 5974 5975 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 5976 return 0; 5977 5978 /* Some fake CSR controllers lock up after setting this type of 5979 * filter, so avoid sending the request altogether. 5980 */ 5981 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 5982 return 0; 5983 5984 /* Always clear event filter when starting */ 5985 hci_clear_event_filter_sync(hdev); 5986 5987 list_for_each_entry(b, &hdev->accept_list, list) { 5988 if (!(b->flags & HCI_CONN_FLAG_REMOTE_WAKEUP)) 5989 continue; 5990 5991 bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr); 5992 5993 err = hci_set_event_filter_sync(hdev, HCI_FLT_CONN_SETUP, 5994 HCI_CONN_SETUP_ALLOW_BDADDR, 5995 &b->bdaddr, 5996 HCI_CONN_SETUP_AUTO_ON); 5997 if (err) 5998 bt_dev_dbg(hdev, "Failed to set event filter for %pMR", 5999 &b->bdaddr); 6000 else 6001 scan = SCAN_PAGE; 6002 } 6003 6004 if (scan && !scanning) 6005 hci_write_scan_enable_sync(hdev, scan); 6006 else if (!scan && scanning) 6007 hci_write_scan_enable_sync(hdev, scan); 6008 6009 return 0; 6010 } 6011 6012 /* This function disables scan (BR and LE) and mark it as paused */ 6013 static int hci_pause_scan_sync(struct hci_dev *hdev) 6014 { 6015 if (hdev->scanning_paused) 6016 return 0; 6017 6018 /* Disable page scan if enabled */ 6019 if (test_bit(HCI_PSCAN, &hdev->flags)) 6020 hci_write_scan_enable_sync(hdev, SCAN_DISABLED); 6021 6022 hci_scan_disable_sync(hdev); 6023 6024 hdev->scanning_paused = true; 6025 6026 return 0; 6027 } 6028 6029 /* This function performs the HCI suspend procedures in the follow order: 6030 * 6031 * Pause discovery (active scanning/inquiry) 6032 * Pause Directed Advertising/Advertising 6033 * Pause Scanning (passive scanning in case discovery was not active) 6034 * Disconnect all connections 6035 * Set suspend_status to BT_SUSPEND_DISCONNECT if hdev cannot wakeup 6036 * otherwise: 6037 * Update event mask (only set events that are allowed to wake up the host) 6038 * Update event filter (with devices marked with HCI_CONN_FLAG_REMOTE_WAKEUP) 6039 * Update passive scanning (lower duty cycle) 6040 * Set suspend_status to BT_SUSPEND_CONFIGURE_WAKE 6041 */ 6042 int hci_suspend_sync(struct hci_dev *hdev) 6043 { 6044 int err; 6045 6046 /* If marked as suspended there nothing to do */ 6047 if (hdev->suspended) 6048 return 0; 6049 6050 /* Mark device as suspended */ 6051 hdev->suspended = true; 6052 6053 /* Pause discovery if not already stopped */ 6054 hci_pause_discovery_sync(hdev); 6055 6056 /* Pause other advertisements */ 6057 hci_pause_advertising_sync(hdev); 6058 6059 /* Suspend monitor filters */ 6060 hci_suspend_monitor_sync(hdev); 6061 6062 /* Prevent disconnects from causing scanning to be re-enabled */ 6063 hci_pause_scan_sync(hdev); 6064 6065 if (hci_conn_count(hdev)) { 6066 /* Soft disconnect everything (power off) */ 6067 err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF); 6068 if (err) { 6069 /* Set state to BT_RUNNING so resume doesn't notify */ 6070 hdev->suspend_state = BT_RUNNING; 6071 hci_resume_sync(hdev); 6072 return err; 6073 } 6074 6075 /* Update event mask so only the allowed event can wakeup the 6076 * host. 6077 */ 6078 hci_set_event_mask_sync(hdev); 6079 } 6080 6081 /* Only configure accept list if disconnect succeeded and wake 6082 * isn't being prevented. 6083 */ 6084 if (!hdev->wakeup || !hdev->wakeup(hdev)) { 6085 hdev->suspend_state = BT_SUSPEND_DISCONNECT; 6086 return 0; 6087 } 6088 6089 /* Unpause to take care of updating scanning params */ 6090 hdev->scanning_paused = false; 6091 6092 /* Enable event filter for paired devices */ 6093 hci_update_event_filter_sync(hdev); 6094 6095 /* Update LE passive scan if enabled */ 6096 hci_update_passive_scan_sync(hdev); 6097 6098 /* Pause scan changes again. */ 6099 hdev->scanning_paused = true; 6100 6101 hdev->suspend_state = BT_SUSPEND_CONFIGURE_WAKE; 6102 6103 return 0; 6104 } 6105 6106 /* This function resumes discovery */ 6107 static int hci_resume_discovery_sync(struct hci_dev *hdev) 6108 { 6109 int err; 6110 6111 /* If discovery not paused there nothing to do */ 6112 if (!hdev->discovery_paused) 6113 return 0; 6114 6115 hdev->discovery_paused = false; 6116 6117 hci_discovery_set_state(hdev, DISCOVERY_STARTING); 6118 6119 err = hci_start_discovery_sync(hdev); 6120 6121 hci_discovery_set_state(hdev, err ? DISCOVERY_STOPPED : 6122 DISCOVERY_FINDING); 6123 6124 return err; 6125 } 6126 6127 static void hci_resume_monitor_sync(struct hci_dev *hdev) 6128 { 6129 switch (hci_get_adv_monitor_offload_ext(hdev)) { 6130 case HCI_ADV_MONITOR_EXT_MSFT: 6131 msft_resume_sync(hdev); 6132 break; 6133 default: 6134 return; 6135 } 6136 } 6137 6138 /* This function resume scan and reset paused flag */ 6139 static int hci_resume_scan_sync(struct hci_dev *hdev) 6140 { 6141 if (!hdev->scanning_paused) 6142 return 0; 6143 6144 hdev->scanning_paused = false; 6145 6146 hci_update_scan_sync(hdev); 6147 6148 /* Reset passive scanning to normal */ 6149 hci_update_passive_scan_sync(hdev); 6150 6151 return 0; 6152 } 6153 6154 /* This function performs the HCI suspend procedures in the follow order: 6155 * 6156 * Restore event mask 6157 * Clear event filter 6158 * Update passive scanning (normal duty cycle) 6159 * Resume Directed Advertising/Advertising 6160 * Resume discovery (active scanning/inquiry) 6161 */ 6162 int hci_resume_sync(struct hci_dev *hdev) 6163 { 6164 /* If not marked as suspended there nothing to do */ 6165 if (!hdev->suspended) 6166 return 0; 6167 6168 hdev->suspended = false; 6169 6170 /* Restore event mask */ 6171 hci_set_event_mask_sync(hdev); 6172 6173 /* Clear any event filters and restore scan state */ 6174 hci_clear_event_filter_sync(hdev); 6175 6176 /* Resume scanning */ 6177 hci_resume_scan_sync(hdev); 6178 6179 /* Resume monitor filters */ 6180 hci_resume_monitor_sync(hdev); 6181 6182 /* Resume other advertisements */ 6183 hci_resume_advertising_sync(hdev); 6184 6185 /* Resume discovery */ 6186 hci_resume_discovery_sync(hdev); 6187 6188 return 0; 6189 } 6190 6191 static bool conn_use_rpa(struct hci_conn *conn) 6192 { 6193 struct hci_dev *hdev = conn->hdev; 6194 6195 return hci_dev_test_flag(hdev, HCI_PRIVACY); 6196 } 6197 6198 static int hci_le_ext_directed_advertising_sync(struct hci_dev *hdev, 6199 struct hci_conn *conn) 6200 { 6201 struct hci_cp_le_set_ext_adv_params cp; 6202 int err; 6203 bdaddr_t random_addr; 6204 u8 own_addr_type; 6205 6206 err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 6207 &own_addr_type); 6208 if (err) 6209 return err; 6210 6211 /* Set require_privacy to false so that the remote device has a 6212 * chance of identifying us. 6213 */ 6214 err = hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL, 6215 &own_addr_type, &random_addr); 6216 if (err) 6217 return err; 6218 6219 memset(&cp, 0, sizeof(cp)); 6220 6221 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND); 6222 cp.channel_map = hdev->le_adv_channel_map; 6223 cp.tx_power = HCI_TX_POWER_INVALID; 6224 cp.primary_phy = HCI_ADV_PHY_1M; 6225 cp.secondary_phy = HCI_ADV_PHY_1M; 6226 cp.handle = 0x00; /* Use instance 0 for directed adv */ 6227 cp.own_addr_type = own_addr_type; 6228 cp.peer_addr_type = conn->dst_type; 6229 bacpy(&cp.peer_addr, &conn->dst); 6230 6231 /* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for 6232 * advertising_event_property LE_LEGACY_ADV_DIRECT_IND 6233 * does not supports advertising data when the advertising set already 6234 * contains some, the controller shall return erroc code 'Invalid 6235 * HCI Command Parameters(0x12). 6236 * So it is required to remove adv set for handle 0x00. since we use 6237 * instance 0 for directed adv. 6238 */ 6239 err = hci_remove_ext_adv_instance_sync(hdev, cp.handle, NULL); 6240 if (err) 6241 return err; 6242 6243 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS, 6244 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6245 if (err) 6246 return err; 6247 6248 /* Check if random address need to be updated */ 6249 if (own_addr_type == ADDR_LE_DEV_RANDOM && 6250 bacmp(&random_addr, BDADDR_ANY) && 6251 bacmp(&random_addr, &hdev->random_addr)) { 6252 err = hci_set_adv_set_random_addr_sync(hdev, 0x00, 6253 &random_addr); 6254 if (err) 6255 return err; 6256 } 6257 6258 return hci_enable_ext_advertising_sync(hdev, 0x00); 6259 } 6260 6261 static int hci_le_directed_advertising_sync(struct hci_dev *hdev, 6262 struct hci_conn *conn) 6263 { 6264 struct hci_cp_le_set_adv_param cp; 6265 u8 status; 6266 u8 own_addr_type; 6267 u8 enable; 6268 6269 if (ext_adv_capable(hdev)) 6270 return hci_le_ext_directed_advertising_sync(hdev, conn); 6271 6272 /* Clear the HCI_LE_ADV bit temporarily so that the 6273 * hci_update_random_address knows that it's safe to go ahead 6274 * and write a new random address. The flag will be set back on 6275 * as soon as the SET_ADV_ENABLE HCI command completes. 6276 */ 6277 hci_dev_clear_flag(hdev, HCI_LE_ADV); 6278 6279 /* Set require_privacy to false so that the remote device has a 6280 * chance of identifying us. 6281 */ 6282 status = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 6283 &own_addr_type); 6284 if (status) 6285 return status; 6286 6287 memset(&cp, 0, sizeof(cp)); 6288 6289 /* Some controllers might reject command if intervals are not 6290 * within range for undirected advertising. 6291 * BCM20702A0 is known to be affected by this. 6292 */ 6293 cp.min_interval = cpu_to_le16(0x0020); 6294 cp.max_interval = cpu_to_le16(0x0020); 6295 6296 cp.type = LE_ADV_DIRECT_IND; 6297 cp.own_address_type = own_addr_type; 6298 cp.direct_addr_type = conn->dst_type; 6299 bacpy(&cp.direct_addr, &conn->dst); 6300 cp.channel_map = hdev->le_adv_channel_map; 6301 6302 status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM, 6303 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6304 if (status) 6305 return status; 6306 6307 enable = 0x01; 6308 6309 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 6310 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 6311 } 6312 6313 static void set_ext_conn_params(struct hci_conn *conn, 6314 struct hci_cp_le_ext_conn_param *p) 6315 { 6316 struct hci_dev *hdev = conn->hdev; 6317 6318 memset(p, 0, sizeof(*p)); 6319 6320 p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect); 6321 p->scan_window = cpu_to_le16(hdev->le_scan_window_connect); 6322 p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 6323 p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 6324 p->conn_latency = cpu_to_le16(conn->le_conn_latency); 6325 p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 6326 p->min_ce_len = cpu_to_le16(0x0000); 6327 p->max_ce_len = cpu_to_le16(0x0000); 6328 } 6329 6330 static int hci_le_ext_create_conn_sync(struct hci_dev *hdev, 6331 struct hci_conn *conn, u8 own_addr_type) 6332 { 6333 struct hci_cp_le_ext_create_conn *cp; 6334 struct hci_cp_le_ext_conn_param *p; 6335 u8 data[sizeof(*cp) + sizeof(*p) * 3]; 6336 u32 plen; 6337 6338 cp = (void *)data; 6339 p = (void *)cp->data; 6340 6341 memset(cp, 0, sizeof(*cp)); 6342 6343 bacpy(&cp->peer_addr, &conn->dst); 6344 cp->peer_addr_type = conn->dst_type; 6345 cp->own_addr_type = own_addr_type; 6346 6347 plen = sizeof(*cp); 6348 6349 if (scan_1m(hdev)) { 6350 cp->phys |= LE_SCAN_PHY_1M; 6351 set_ext_conn_params(conn, p); 6352 6353 p++; 6354 plen += sizeof(*p); 6355 } 6356 6357 if (scan_2m(hdev)) { 6358 cp->phys |= LE_SCAN_PHY_2M; 6359 set_ext_conn_params(conn, p); 6360 6361 p++; 6362 plen += sizeof(*p); 6363 } 6364 6365 if (scan_coded(hdev)) { 6366 cp->phys |= LE_SCAN_PHY_CODED; 6367 set_ext_conn_params(conn, p); 6368 6369 plen += sizeof(*p); 6370 } 6371 6372 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_EXT_CREATE_CONN, 6373 plen, data, 6374 HCI_EV_LE_ENHANCED_CONN_COMPLETE, 6375 conn->conn_timeout, NULL); 6376 } 6377 6378 static int hci_le_create_conn_sync(struct hci_dev *hdev, void *data) 6379 { 6380 struct hci_cp_le_create_conn cp; 6381 struct hci_conn_params *params; 6382 u8 own_addr_type; 6383 int err; 6384 struct hci_conn *conn = data; 6385 6386 if (!hci_conn_valid(hdev, conn)) 6387 return -ECANCELED; 6388 6389 bt_dev_dbg(hdev, "conn %p", conn); 6390 6391 clear_bit(HCI_CONN_SCANNING, &conn->flags); 6392 conn->state = BT_CONNECT; 6393 6394 /* If requested to connect as peripheral use directed advertising */ 6395 if (conn->role == HCI_ROLE_SLAVE) { 6396 /* If we're active scanning and simultaneous roles is not 6397 * enabled simply reject the attempt. 6398 */ 6399 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) && 6400 hdev->le_scan_type == LE_SCAN_ACTIVE && 6401 !hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) { 6402 hci_conn_del(conn); 6403 return -EBUSY; 6404 } 6405 6406 /* Pause advertising while doing directed advertising. */ 6407 hci_pause_advertising_sync(hdev); 6408 6409 err = hci_le_directed_advertising_sync(hdev, conn); 6410 goto done; 6411 } 6412 6413 /* Disable advertising if simultaneous roles is not in use. */ 6414 if (!hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) 6415 hci_pause_advertising_sync(hdev); 6416 6417 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); 6418 if (params) { 6419 conn->le_conn_min_interval = params->conn_min_interval; 6420 conn->le_conn_max_interval = params->conn_max_interval; 6421 conn->le_conn_latency = params->conn_latency; 6422 conn->le_supv_timeout = params->supervision_timeout; 6423 } else { 6424 conn->le_conn_min_interval = hdev->le_conn_min_interval; 6425 conn->le_conn_max_interval = hdev->le_conn_max_interval; 6426 conn->le_conn_latency = hdev->le_conn_latency; 6427 conn->le_supv_timeout = hdev->le_supv_timeout; 6428 } 6429 6430 /* If controller is scanning, we stop it since some controllers are 6431 * not able to scan and connect at the same time. Also set the 6432 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete 6433 * handler for scan disabling knows to set the correct discovery 6434 * state. 6435 */ 6436 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 6437 hci_scan_disable_sync(hdev); 6438 hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED); 6439 } 6440 6441 /* Update random address, but set require_privacy to false so 6442 * that we never connect with an non-resolvable address. 6443 */ 6444 err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 6445 &own_addr_type); 6446 if (err) 6447 goto done; 6448 6449 if (use_ext_conn(hdev)) { 6450 err = hci_le_ext_create_conn_sync(hdev, conn, own_addr_type); 6451 goto done; 6452 } 6453 6454 memset(&cp, 0, sizeof(cp)); 6455 6456 cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect); 6457 cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect); 6458 6459 bacpy(&cp.peer_addr, &conn->dst); 6460 cp.peer_addr_type = conn->dst_type; 6461 cp.own_address_type = own_addr_type; 6462 cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 6463 cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 6464 cp.conn_latency = cpu_to_le16(conn->le_conn_latency); 6465 cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 6466 cp.min_ce_len = cpu_to_le16(0x0000); 6467 cp.max_ce_len = cpu_to_le16(0x0000); 6468 6469 /* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E page 2261: 6470 * 6471 * If this event is unmasked and the HCI_LE_Connection_Complete event 6472 * is unmasked, only the HCI_LE_Enhanced_Connection_Complete event is 6473 * sent when a new connection has been created. 6474 */ 6475 err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CONN, 6476 sizeof(cp), &cp, 6477 use_enhanced_conn_complete(hdev) ? 6478 HCI_EV_LE_ENHANCED_CONN_COMPLETE : 6479 HCI_EV_LE_CONN_COMPLETE, 6480 conn->conn_timeout, NULL); 6481 6482 done: 6483 if (err == -ETIMEDOUT) 6484 hci_le_connect_cancel_sync(hdev, conn, 0x00); 6485 6486 /* Re-enable advertising after the connection attempt is finished. */ 6487 hci_resume_advertising_sync(hdev); 6488 return err; 6489 } 6490 6491 int hci_le_create_cis_sync(struct hci_dev *hdev) 6492 { 6493 struct { 6494 struct hci_cp_le_create_cis cp; 6495 struct hci_cis cis[0x1f]; 6496 } cmd; 6497 struct hci_conn *conn; 6498 u8 cig = BT_ISO_QOS_CIG_UNSET; 6499 6500 /* The spec allows only one pending LE Create CIS command at a time. If 6501 * the command is pending now, don't do anything. We check for pending 6502 * connections after each CIS Established event. 6503 * 6504 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E 6505 * page 2566: 6506 * 6507 * If the Host issues this command before all the 6508 * HCI_LE_CIS_Established events from the previous use of the 6509 * command have been generated, the Controller shall return the 6510 * error code Command Disallowed (0x0C). 6511 * 6512 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E 6513 * page 2567: 6514 * 6515 * When the Controller receives the HCI_LE_Create_CIS command, the 6516 * Controller sends the HCI_Command_Status event to the Host. An 6517 * HCI_LE_CIS_Established event will be generated for each CIS when it 6518 * is established or if it is disconnected or considered lost before 6519 * being established; until all the events are generated, the command 6520 * remains pending. 6521 */ 6522 6523 memset(&cmd, 0, sizeof(cmd)); 6524 6525 hci_dev_lock(hdev); 6526 6527 rcu_read_lock(); 6528 6529 /* Wait until previous Create CIS has completed */ 6530 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) { 6531 if (test_bit(HCI_CONN_CREATE_CIS, &conn->flags)) 6532 goto done; 6533 } 6534 6535 /* Find CIG with all CIS ready */ 6536 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) { 6537 struct hci_conn *link; 6538 6539 if (hci_conn_check_create_cis(conn)) 6540 continue; 6541 6542 cig = conn->iso_qos.ucast.cig; 6543 6544 list_for_each_entry_rcu(link, &hdev->conn_hash.list, list) { 6545 if (hci_conn_check_create_cis(link) > 0 && 6546 link->iso_qos.ucast.cig == cig && 6547 link->state != BT_CONNECTED) { 6548 cig = BT_ISO_QOS_CIG_UNSET; 6549 break; 6550 } 6551 } 6552 6553 if (cig != BT_ISO_QOS_CIG_UNSET) 6554 break; 6555 } 6556 6557 if (cig == BT_ISO_QOS_CIG_UNSET) 6558 goto done; 6559 6560 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) { 6561 struct hci_cis *cis = &cmd.cis[cmd.cp.num_cis]; 6562 6563 if (hci_conn_check_create_cis(conn) || 6564 conn->iso_qos.ucast.cig != cig) 6565 continue; 6566 6567 set_bit(HCI_CONN_CREATE_CIS, &conn->flags); 6568 cis->acl_handle = cpu_to_le16(conn->parent->handle); 6569 cis->cis_handle = cpu_to_le16(conn->handle); 6570 cmd.cp.num_cis++; 6571 6572 if (cmd.cp.num_cis >= ARRAY_SIZE(cmd.cis)) 6573 break; 6574 } 6575 6576 done: 6577 rcu_read_unlock(); 6578 6579 hci_dev_unlock(hdev); 6580 6581 if (!cmd.cp.num_cis) 6582 return 0; 6583 6584 /* Wait for HCI_LE_CIS_Established */ 6585 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CIS, 6586 sizeof(cmd.cp) + sizeof(cmd.cis[0]) * 6587 cmd.cp.num_cis, &cmd, 6588 HCI_EVT_LE_CIS_ESTABLISHED, 6589 conn->conn_timeout, NULL); 6590 } 6591 6592 int hci_le_remove_cig_sync(struct hci_dev *hdev, u8 handle) 6593 { 6594 struct hci_cp_le_remove_cig cp; 6595 6596 memset(&cp, 0, sizeof(cp)); 6597 cp.cig_id = handle; 6598 6599 return __hci_cmd_sync_status(hdev, HCI_OP_LE_REMOVE_CIG, sizeof(cp), 6600 &cp, HCI_CMD_TIMEOUT); 6601 } 6602 6603 int hci_le_big_terminate_sync(struct hci_dev *hdev, u8 handle) 6604 { 6605 struct hci_cp_le_big_term_sync cp; 6606 6607 memset(&cp, 0, sizeof(cp)); 6608 cp.handle = handle; 6609 6610 return __hci_cmd_sync_status(hdev, HCI_OP_LE_BIG_TERM_SYNC, 6611 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6612 } 6613 6614 int hci_le_pa_terminate_sync(struct hci_dev *hdev, u16 handle) 6615 { 6616 struct hci_cp_le_pa_term_sync cp; 6617 6618 memset(&cp, 0, sizeof(cp)); 6619 cp.handle = cpu_to_le16(handle); 6620 6621 return __hci_cmd_sync_status(hdev, HCI_OP_LE_PA_TERM_SYNC, 6622 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6623 } 6624 6625 int hci_get_random_address(struct hci_dev *hdev, bool require_privacy, 6626 bool use_rpa, struct adv_info *adv_instance, 6627 u8 *own_addr_type, bdaddr_t *rand_addr) 6628 { 6629 int err; 6630 6631 bacpy(rand_addr, BDADDR_ANY); 6632 6633 /* If privacy is enabled use a resolvable private address. If 6634 * current RPA has expired then generate a new one. 6635 */ 6636 if (use_rpa) { 6637 /* If Controller supports LL Privacy use own address type is 6638 * 0x03 6639 */ 6640 if (use_ll_privacy(hdev)) 6641 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED; 6642 else 6643 *own_addr_type = ADDR_LE_DEV_RANDOM; 6644 6645 if (adv_instance) { 6646 if (adv_rpa_valid(adv_instance)) 6647 return 0; 6648 } else { 6649 if (rpa_valid(hdev)) 6650 return 0; 6651 } 6652 6653 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); 6654 if (err < 0) { 6655 bt_dev_err(hdev, "failed to generate new RPA"); 6656 return err; 6657 } 6658 6659 bacpy(rand_addr, &hdev->rpa); 6660 6661 return 0; 6662 } 6663 6664 /* In case of required privacy without resolvable private address, 6665 * use an non-resolvable private address. This is useful for 6666 * non-connectable advertising. 6667 */ 6668 if (require_privacy) { 6669 bdaddr_t nrpa; 6670 6671 while (true) { 6672 /* The non-resolvable private address is generated 6673 * from random six bytes with the two most significant 6674 * bits cleared. 6675 */ 6676 get_random_bytes(&nrpa, 6); 6677 nrpa.b[5] &= 0x3f; 6678 6679 /* The non-resolvable private address shall not be 6680 * equal to the public address. 6681 */ 6682 if (bacmp(&hdev->bdaddr, &nrpa)) 6683 break; 6684 } 6685 6686 *own_addr_type = ADDR_LE_DEV_RANDOM; 6687 bacpy(rand_addr, &nrpa); 6688 6689 return 0; 6690 } 6691 6692 /* No privacy so use a public address. */ 6693 *own_addr_type = ADDR_LE_DEV_PUBLIC; 6694 6695 return 0; 6696 } 6697 6698 static int _update_adv_data_sync(struct hci_dev *hdev, void *data) 6699 { 6700 u8 instance = PTR_UINT(data); 6701 6702 return hci_update_adv_data_sync(hdev, instance); 6703 } 6704 6705 int hci_update_adv_data(struct hci_dev *hdev, u8 instance) 6706 { 6707 return hci_cmd_sync_queue(hdev, _update_adv_data_sync, 6708 UINT_PTR(instance), NULL); 6709 } 6710 6711 static int hci_acl_create_conn_sync(struct hci_dev *hdev, void *data) 6712 { 6713 struct hci_conn *conn = data; 6714 struct inquiry_entry *ie; 6715 struct hci_cp_create_conn cp; 6716 int err; 6717 6718 if (!hci_conn_valid(hdev, conn)) 6719 return -ECANCELED; 6720 6721 /* Many controllers disallow HCI Create Connection while it is doing 6722 * HCI Inquiry. So we cancel the Inquiry first before issuing HCI Create 6723 * Connection. This may cause the MGMT discovering state to become false 6724 * without user space's request but it is okay since the MGMT Discovery 6725 * APIs do not promise that discovery should be done forever. Instead, 6726 * the user space monitors the status of MGMT discovering and it may 6727 * request for discovery again when this flag becomes false. 6728 */ 6729 if (test_bit(HCI_INQUIRY, &hdev->flags)) { 6730 err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL, 0, 6731 NULL, HCI_CMD_TIMEOUT); 6732 if (err) 6733 bt_dev_warn(hdev, "Failed to cancel inquiry %d", err); 6734 } 6735 6736 conn->state = BT_CONNECT; 6737 conn->out = true; 6738 conn->role = HCI_ROLE_MASTER; 6739 6740 conn->attempt++; 6741 6742 conn->link_policy = hdev->link_policy; 6743 6744 memset(&cp, 0, sizeof(cp)); 6745 bacpy(&cp.bdaddr, &conn->dst); 6746 cp.pscan_rep_mode = 0x02; 6747 6748 ie = hci_inquiry_cache_lookup(hdev, &conn->dst); 6749 if (ie) { 6750 if (inquiry_entry_age(ie) <= INQUIRY_ENTRY_AGE_MAX) { 6751 cp.pscan_rep_mode = ie->data.pscan_rep_mode; 6752 cp.pscan_mode = ie->data.pscan_mode; 6753 cp.clock_offset = ie->data.clock_offset | 6754 cpu_to_le16(0x8000); 6755 } 6756 6757 memcpy(conn->dev_class, ie->data.dev_class, 3); 6758 } 6759 6760 cp.pkt_type = cpu_to_le16(conn->pkt_type); 6761 if (lmp_rswitch_capable(hdev) && !(hdev->link_mode & HCI_LM_MASTER)) 6762 cp.role_switch = 0x01; 6763 else 6764 cp.role_switch = 0x00; 6765 6766 return __hci_cmd_sync_status_sk(hdev, HCI_OP_CREATE_CONN, 6767 sizeof(cp), &cp, 6768 HCI_EV_CONN_COMPLETE, 6769 conn->conn_timeout, NULL); 6770 } 6771 6772 int hci_connect_acl_sync(struct hci_dev *hdev, struct hci_conn *conn) 6773 { 6774 return hci_cmd_sync_queue_once(hdev, hci_acl_create_conn_sync, conn, 6775 NULL); 6776 } 6777 6778 static void create_le_conn_complete(struct hci_dev *hdev, void *data, int err) 6779 { 6780 struct hci_conn *conn = data; 6781 6782 bt_dev_dbg(hdev, "err %d", err); 6783 6784 if (err == -ECANCELED) 6785 return; 6786 6787 hci_dev_lock(hdev); 6788 6789 if (!hci_conn_valid(hdev, conn)) 6790 goto done; 6791 6792 if (!err) { 6793 hci_connect_le_scan_cleanup(conn, 0x00); 6794 goto done; 6795 } 6796 6797 /* Check if connection is still pending */ 6798 if (conn != hci_lookup_le_connect(hdev)) 6799 goto done; 6800 6801 /* Flush to make sure we send create conn cancel command if needed */ 6802 flush_delayed_work(&conn->le_conn_timeout); 6803 hci_conn_failed(conn, bt_status(err)); 6804 6805 done: 6806 hci_dev_unlock(hdev); 6807 } 6808 6809 int hci_connect_le_sync(struct hci_dev *hdev, struct hci_conn *conn) 6810 { 6811 return hci_cmd_sync_queue_once(hdev, hci_le_create_conn_sync, conn, 6812 create_le_conn_complete); 6813 } 6814 6815 int hci_cancel_connect_sync(struct hci_dev *hdev, struct hci_conn *conn) 6816 { 6817 if (conn->state != BT_OPEN) 6818 return -EINVAL; 6819 6820 switch (conn->type) { 6821 case ACL_LINK: 6822 return !hci_cmd_sync_dequeue_once(hdev, 6823 hci_acl_create_conn_sync, 6824 conn, NULL); 6825 case LE_LINK: 6826 return !hci_cmd_sync_dequeue_once(hdev, hci_le_create_conn_sync, 6827 conn, create_le_conn_complete); 6828 } 6829 6830 return -ENOENT; 6831 } 6832