1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * BlueZ - Bluetooth protocol stack for Linux 4 * 5 * Copyright (C) 2021 Intel Corporation 6 */ 7 8 #include <linux/property.h> 9 10 #include <net/bluetooth/bluetooth.h> 11 #include <net/bluetooth/hci_core.h> 12 #include <net/bluetooth/mgmt.h> 13 14 #include "hci_request.h" 15 #include "hci_debugfs.h" 16 #include "smp.h" 17 #include "eir.h" 18 #include "msft.h" 19 #include "aosp.h" 20 #include "leds.h" 21 22 static void hci_cmd_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode, 23 struct sk_buff *skb) 24 { 25 bt_dev_dbg(hdev, "result 0x%2.2x", result); 26 27 if (hdev->req_status != HCI_REQ_PEND) 28 return; 29 30 hdev->req_result = result; 31 hdev->req_status = HCI_REQ_DONE; 32 33 if (skb) { 34 struct sock *sk = hci_skb_sk(skb); 35 36 /* Drop sk reference if set */ 37 if (sk) 38 sock_put(sk); 39 40 hdev->req_skb = skb_get(skb); 41 } 42 43 wake_up_interruptible(&hdev->req_wait_q); 44 } 45 46 static struct sk_buff *hci_cmd_sync_alloc(struct hci_dev *hdev, u16 opcode, 47 u32 plen, const void *param, 48 struct sock *sk) 49 { 50 int len = HCI_COMMAND_HDR_SIZE + plen; 51 struct hci_command_hdr *hdr; 52 struct sk_buff *skb; 53 54 skb = bt_skb_alloc(len, GFP_ATOMIC); 55 if (!skb) 56 return NULL; 57 58 hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE); 59 hdr->opcode = cpu_to_le16(opcode); 60 hdr->plen = plen; 61 62 if (plen) 63 skb_put_data(skb, param, plen); 64 65 bt_dev_dbg(hdev, "skb len %d", skb->len); 66 67 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; 68 hci_skb_opcode(skb) = opcode; 69 70 /* Grab a reference if command needs to be associated with a sock (e.g. 71 * likely mgmt socket that initiated the command). 72 */ 73 if (sk) { 74 hci_skb_sk(skb) = sk; 75 sock_hold(sk); 76 } 77 78 return skb; 79 } 80 81 static void hci_cmd_sync_add(struct hci_request *req, u16 opcode, u32 plen, 82 const void *param, u8 event, struct sock *sk) 83 { 84 struct hci_dev *hdev = req->hdev; 85 struct sk_buff *skb; 86 87 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); 88 89 /* If an error occurred during request building, there is no point in 90 * queueing the HCI command. We can simply return. 91 */ 92 if (req->err) 93 return; 94 95 skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, sk); 96 if (!skb) { 97 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)", 98 opcode); 99 req->err = -ENOMEM; 100 return; 101 } 102 103 if (skb_queue_empty(&req->cmd_q)) 104 bt_cb(skb)->hci.req_flags |= HCI_REQ_START; 105 106 hci_skb_event(skb) = event; 107 108 skb_queue_tail(&req->cmd_q, skb); 109 } 110 111 static int hci_cmd_sync_run(struct hci_request *req) 112 { 113 struct hci_dev *hdev = req->hdev; 114 struct sk_buff *skb; 115 unsigned long flags; 116 117 bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q)); 118 119 /* If an error occurred during request building, remove all HCI 120 * commands queued on the HCI request queue. 121 */ 122 if (req->err) { 123 skb_queue_purge(&req->cmd_q); 124 return req->err; 125 } 126 127 /* Do not allow empty requests */ 128 if (skb_queue_empty(&req->cmd_q)) 129 return -ENODATA; 130 131 skb = skb_peek_tail(&req->cmd_q); 132 bt_cb(skb)->hci.req_complete_skb = hci_cmd_sync_complete; 133 bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB; 134 135 spin_lock_irqsave(&hdev->cmd_q.lock, flags); 136 skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q); 137 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); 138 139 queue_work(hdev->workqueue, &hdev->cmd_work); 140 141 return 0; 142 } 143 144 /* This function requires the caller holds hdev->req_lock. */ 145 struct sk_buff *__hci_cmd_sync_sk(struct hci_dev *hdev, u16 opcode, u32 plen, 146 const void *param, u8 event, u32 timeout, 147 struct sock *sk) 148 { 149 struct hci_request req; 150 struct sk_buff *skb; 151 int err = 0; 152 153 bt_dev_dbg(hdev, "Opcode 0x%4x", opcode); 154 155 hci_req_init(&req, hdev); 156 157 hci_cmd_sync_add(&req, opcode, plen, param, event, sk); 158 159 hdev->req_status = HCI_REQ_PEND; 160 161 err = hci_cmd_sync_run(&req); 162 if (err < 0) 163 return ERR_PTR(err); 164 165 err = wait_event_interruptible_timeout(hdev->req_wait_q, 166 hdev->req_status != HCI_REQ_PEND, 167 timeout); 168 169 if (err == -ERESTARTSYS) 170 return ERR_PTR(-EINTR); 171 172 switch (hdev->req_status) { 173 case HCI_REQ_DONE: 174 err = -bt_to_errno(hdev->req_result); 175 break; 176 177 case HCI_REQ_CANCELED: 178 err = -hdev->req_result; 179 break; 180 181 default: 182 err = -ETIMEDOUT; 183 break; 184 } 185 186 hdev->req_status = 0; 187 hdev->req_result = 0; 188 skb = hdev->req_skb; 189 hdev->req_skb = NULL; 190 191 bt_dev_dbg(hdev, "end: err %d", err); 192 193 if (err < 0) { 194 kfree_skb(skb); 195 return ERR_PTR(err); 196 } 197 198 return skb; 199 } 200 EXPORT_SYMBOL(__hci_cmd_sync_sk); 201 202 /* This function requires the caller holds hdev->req_lock. */ 203 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 204 const void *param, u32 timeout) 205 { 206 return __hci_cmd_sync_sk(hdev, opcode, plen, param, 0, timeout, NULL); 207 } 208 EXPORT_SYMBOL(__hci_cmd_sync); 209 210 /* Send HCI command and wait for command complete event */ 211 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 212 const void *param, u32 timeout) 213 { 214 struct sk_buff *skb; 215 216 if (!test_bit(HCI_UP, &hdev->flags)) 217 return ERR_PTR(-ENETDOWN); 218 219 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); 220 221 hci_req_sync_lock(hdev); 222 skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout); 223 hci_req_sync_unlock(hdev); 224 225 return skb; 226 } 227 EXPORT_SYMBOL(hci_cmd_sync); 228 229 /* This function requires the caller holds hdev->req_lock. */ 230 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen, 231 const void *param, u8 event, u32 timeout) 232 { 233 return __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, 234 NULL); 235 } 236 EXPORT_SYMBOL(__hci_cmd_sync_ev); 237 238 /* This function requires the caller holds hdev->req_lock. */ 239 int __hci_cmd_sync_status_sk(struct hci_dev *hdev, u16 opcode, u32 plen, 240 const void *param, u8 event, u32 timeout, 241 struct sock *sk) 242 { 243 struct sk_buff *skb; 244 u8 status; 245 246 skb = __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, sk); 247 if (IS_ERR(skb)) { 248 bt_dev_err(hdev, "Opcode 0x%4x failed: %ld", opcode, 249 PTR_ERR(skb)); 250 return PTR_ERR(skb); 251 } 252 253 /* If command return a status event skb will be set to NULL as there are 254 * no parameters, in case of failure IS_ERR(skb) would have be set to 255 * the actual error would be found with PTR_ERR(skb). 256 */ 257 if (!skb) 258 return 0; 259 260 status = skb->data[0]; 261 262 kfree_skb(skb); 263 264 return status; 265 } 266 EXPORT_SYMBOL(__hci_cmd_sync_status_sk); 267 268 int __hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen, 269 const void *param, u32 timeout) 270 { 271 return __hci_cmd_sync_status_sk(hdev, opcode, plen, param, 0, timeout, 272 NULL); 273 } 274 EXPORT_SYMBOL(__hci_cmd_sync_status); 275 276 static void hci_cmd_sync_work(struct work_struct *work) 277 { 278 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_work); 279 struct hci_cmd_sync_work_entry *entry; 280 hci_cmd_sync_work_func_t func; 281 hci_cmd_sync_work_destroy_t destroy; 282 void *data; 283 284 bt_dev_dbg(hdev, ""); 285 286 mutex_lock(&hdev->cmd_sync_work_lock); 287 entry = list_first_entry(&hdev->cmd_sync_work_list, 288 struct hci_cmd_sync_work_entry, list); 289 if (entry) { 290 list_del(&entry->list); 291 func = entry->func; 292 data = entry->data; 293 destroy = entry->destroy; 294 kfree(entry); 295 } else { 296 func = NULL; 297 data = NULL; 298 destroy = NULL; 299 } 300 mutex_unlock(&hdev->cmd_sync_work_lock); 301 302 if (func) { 303 int err; 304 305 hci_req_sync_lock(hdev); 306 307 err = func(hdev, data); 308 309 if (destroy) 310 destroy(hdev, data, err); 311 312 hci_req_sync_unlock(hdev); 313 } 314 } 315 316 static void hci_cmd_sync_cancel_work(struct work_struct *work) 317 { 318 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_cancel_work); 319 320 cancel_delayed_work_sync(&hdev->cmd_timer); 321 cancel_delayed_work_sync(&hdev->ncmd_timer); 322 atomic_set(&hdev->cmd_cnt, 1); 323 324 wake_up_interruptible(&hdev->req_wait_q); 325 } 326 327 void hci_cmd_sync_init(struct hci_dev *hdev) 328 { 329 INIT_WORK(&hdev->cmd_sync_work, hci_cmd_sync_work); 330 INIT_LIST_HEAD(&hdev->cmd_sync_work_list); 331 mutex_init(&hdev->cmd_sync_work_lock); 332 333 INIT_WORK(&hdev->cmd_sync_cancel_work, hci_cmd_sync_cancel_work); 334 } 335 336 void hci_cmd_sync_clear(struct hci_dev *hdev) 337 { 338 struct hci_cmd_sync_work_entry *entry, *tmp; 339 340 cancel_work_sync(&hdev->cmd_sync_work); 341 342 list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) { 343 if (entry->destroy) 344 entry->destroy(hdev, entry->data, -ECANCELED); 345 346 list_del(&entry->list); 347 kfree(entry); 348 } 349 } 350 351 void __hci_cmd_sync_cancel(struct hci_dev *hdev, int err) 352 { 353 bt_dev_dbg(hdev, "err 0x%2.2x", err); 354 355 if (hdev->req_status == HCI_REQ_PEND) { 356 hdev->req_result = err; 357 hdev->req_status = HCI_REQ_CANCELED; 358 359 cancel_delayed_work_sync(&hdev->cmd_timer); 360 cancel_delayed_work_sync(&hdev->ncmd_timer); 361 atomic_set(&hdev->cmd_cnt, 1); 362 363 wake_up_interruptible(&hdev->req_wait_q); 364 } 365 } 366 367 void hci_cmd_sync_cancel(struct hci_dev *hdev, int err) 368 { 369 bt_dev_dbg(hdev, "err 0x%2.2x", err); 370 371 if (hdev->req_status == HCI_REQ_PEND) { 372 hdev->req_result = err; 373 hdev->req_status = HCI_REQ_CANCELED; 374 375 queue_work(hdev->workqueue, &hdev->cmd_sync_cancel_work); 376 } 377 } 378 EXPORT_SYMBOL(hci_cmd_sync_cancel); 379 380 int hci_cmd_sync_queue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 381 void *data, hci_cmd_sync_work_destroy_t destroy) 382 { 383 struct hci_cmd_sync_work_entry *entry; 384 385 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) 386 return -ENODEV; 387 388 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 389 if (!entry) 390 return -ENOMEM; 391 392 entry->func = func; 393 entry->data = data; 394 entry->destroy = destroy; 395 396 mutex_lock(&hdev->cmd_sync_work_lock); 397 list_add_tail(&entry->list, &hdev->cmd_sync_work_list); 398 mutex_unlock(&hdev->cmd_sync_work_lock); 399 400 queue_work(hdev->req_workqueue, &hdev->cmd_sync_work); 401 402 return 0; 403 } 404 EXPORT_SYMBOL(hci_cmd_sync_queue); 405 406 int hci_update_eir_sync(struct hci_dev *hdev) 407 { 408 struct hci_cp_write_eir cp; 409 410 bt_dev_dbg(hdev, ""); 411 412 if (!hdev_is_powered(hdev)) 413 return 0; 414 415 if (!lmp_ext_inq_capable(hdev)) 416 return 0; 417 418 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 419 return 0; 420 421 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 422 return 0; 423 424 memset(&cp, 0, sizeof(cp)); 425 426 eir_create(hdev, cp.data); 427 428 if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0) 429 return 0; 430 431 memcpy(hdev->eir, cp.data, sizeof(cp.data)); 432 433 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp, 434 HCI_CMD_TIMEOUT); 435 } 436 437 static u8 get_service_classes(struct hci_dev *hdev) 438 { 439 struct bt_uuid *uuid; 440 u8 val = 0; 441 442 list_for_each_entry(uuid, &hdev->uuids, list) 443 val |= uuid->svc_hint; 444 445 return val; 446 } 447 448 int hci_update_class_sync(struct hci_dev *hdev) 449 { 450 u8 cod[3]; 451 452 bt_dev_dbg(hdev, ""); 453 454 if (!hdev_is_powered(hdev)) 455 return 0; 456 457 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 458 return 0; 459 460 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 461 return 0; 462 463 cod[0] = hdev->minor_class; 464 cod[1] = hdev->major_class; 465 cod[2] = get_service_classes(hdev); 466 467 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) 468 cod[1] |= 0x20; 469 470 if (memcmp(cod, hdev->dev_class, 3) == 0) 471 return 0; 472 473 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CLASS_OF_DEV, 474 sizeof(cod), cod, HCI_CMD_TIMEOUT); 475 } 476 477 static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable) 478 { 479 /* If there is no connection we are OK to advertise. */ 480 if (hci_conn_num(hdev, LE_LINK) == 0) 481 return true; 482 483 /* Check le_states if there is any connection in peripheral role. */ 484 if (hdev->conn_hash.le_num_peripheral > 0) { 485 /* Peripheral connection state and non connectable mode 486 * bit 20. 487 */ 488 if (!connectable && !(hdev->le_states[2] & 0x10)) 489 return false; 490 491 /* Peripheral connection state and connectable mode bit 38 492 * and scannable bit 21. 493 */ 494 if (connectable && (!(hdev->le_states[4] & 0x40) || 495 !(hdev->le_states[2] & 0x20))) 496 return false; 497 } 498 499 /* Check le_states if there is any connection in central role. */ 500 if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) { 501 /* Central connection state and non connectable mode bit 18. */ 502 if (!connectable && !(hdev->le_states[2] & 0x02)) 503 return false; 504 505 /* Central connection state and connectable mode bit 35 and 506 * scannable 19. 507 */ 508 if (connectable && (!(hdev->le_states[4] & 0x08) || 509 !(hdev->le_states[2] & 0x08))) 510 return false; 511 } 512 513 return true; 514 } 515 516 static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags) 517 { 518 /* If privacy is not enabled don't use RPA */ 519 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 520 return false; 521 522 /* If basic privacy mode is enabled use RPA */ 523 if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) 524 return true; 525 526 /* If limited privacy mode is enabled don't use RPA if we're 527 * both discoverable and bondable. 528 */ 529 if ((flags & MGMT_ADV_FLAG_DISCOV) && 530 hci_dev_test_flag(hdev, HCI_BONDABLE)) 531 return false; 532 533 /* We're neither bondable nor discoverable in the limited 534 * privacy mode, therefore use RPA. 535 */ 536 return true; 537 } 538 539 static int hci_set_random_addr_sync(struct hci_dev *hdev, bdaddr_t *rpa) 540 { 541 /* If we're advertising or initiating an LE connection we can't 542 * go ahead and change the random address at this time. This is 543 * because the eventual initiator address used for the 544 * subsequently created connection will be undefined (some 545 * controllers use the new address and others the one we had 546 * when the operation started). 547 * 548 * In this kind of scenario skip the update and let the random 549 * address be updated at the next cycle. 550 */ 551 if (hci_dev_test_flag(hdev, HCI_LE_ADV) || 552 hci_lookup_le_connect(hdev)) { 553 bt_dev_dbg(hdev, "Deferring random address update"); 554 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 555 return 0; 556 } 557 558 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RANDOM_ADDR, 559 6, rpa, HCI_CMD_TIMEOUT); 560 } 561 562 int hci_update_random_address_sync(struct hci_dev *hdev, bool require_privacy, 563 bool rpa, u8 *own_addr_type) 564 { 565 int err; 566 567 /* If privacy is enabled use a resolvable private address. If 568 * current RPA has expired or there is something else than 569 * the current RPA in use, then generate a new one. 570 */ 571 if (rpa) { 572 /* If Controller supports LL Privacy use own address type is 573 * 0x03 574 */ 575 if (use_ll_privacy(hdev)) 576 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED; 577 else 578 *own_addr_type = ADDR_LE_DEV_RANDOM; 579 580 /* Check if RPA is valid */ 581 if (rpa_valid(hdev)) 582 return 0; 583 584 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); 585 if (err < 0) { 586 bt_dev_err(hdev, "failed to generate new RPA"); 587 return err; 588 } 589 590 err = hci_set_random_addr_sync(hdev, &hdev->rpa); 591 if (err) 592 return err; 593 594 return 0; 595 } 596 597 /* In case of required privacy without resolvable private address, 598 * use an non-resolvable private address. This is useful for active 599 * scanning and non-connectable advertising. 600 */ 601 if (require_privacy) { 602 bdaddr_t nrpa; 603 604 while (true) { 605 /* The non-resolvable private address is generated 606 * from random six bytes with the two most significant 607 * bits cleared. 608 */ 609 get_random_bytes(&nrpa, 6); 610 nrpa.b[5] &= 0x3f; 611 612 /* The non-resolvable private address shall not be 613 * equal to the public address. 614 */ 615 if (bacmp(&hdev->bdaddr, &nrpa)) 616 break; 617 } 618 619 *own_addr_type = ADDR_LE_DEV_RANDOM; 620 621 return hci_set_random_addr_sync(hdev, &nrpa); 622 } 623 624 /* If forcing static address is in use or there is no public 625 * address use the static address as random address (but skip 626 * the HCI command if the current random address is already the 627 * static one. 628 * 629 * In case BR/EDR has been disabled on a dual-mode controller 630 * and a static address has been configured, then use that 631 * address instead of the public BR/EDR address. 632 */ 633 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 634 !bacmp(&hdev->bdaddr, BDADDR_ANY) || 635 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && 636 bacmp(&hdev->static_addr, BDADDR_ANY))) { 637 *own_addr_type = ADDR_LE_DEV_RANDOM; 638 if (bacmp(&hdev->static_addr, &hdev->random_addr)) 639 return hci_set_random_addr_sync(hdev, 640 &hdev->static_addr); 641 return 0; 642 } 643 644 /* Neither privacy nor static address is being used so use a 645 * public address. 646 */ 647 *own_addr_type = ADDR_LE_DEV_PUBLIC; 648 649 return 0; 650 } 651 652 static int hci_disable_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance) 653 { 654 struct hci_cp_le_set_ext_adv_enable *cp; 655 struct hci_cp_ext_adv_set *set; 656 u8 data[sizeof(*cp) + sizeof(*set) * 1]; 657 u8 size; 658 659 /* If request specifies an instance that doesn't exist, fail */ 660 if (instance > 0) { 661 struct adv_info *adv; 662 663 adv = hci_find_adv_instance(hdev, instance); 664 if (!adv) 665 return -EINVAL; 666 667 /* If not enabled there is nothing to do */ 668 if (!adv->enabled) 669 return 0; 670 } 671 672 memset(data, 0, sizeof(data)); 673 674 cp = (void *)data; 675 set = (void *)cp->data; 676 677 /* Instance 0x00 indicates all advertising instances will be disabled */ 678 cp->num_of_sets = !!instance; 679 cp->enable = 0x00; 680 681 set->handle = instance; 682 683 size = sizeof(*cp) + sizeof(*set) * cp->num_of_sets; 684 685 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, 686 size, data, HCI_CMD_TIMEOUT); 687 } 688 689 static int hci_set_adv_set_random_addr_sync(struct hci_dev *hdev, u8 instance, 690 bdaddr_t *random_addr) 691 { 692 struct hci_cp_le_set_adv_set_rand_addr cp; 693 int err; 694 695 if (!instance) { 696 /* Instance 0x00 doesn't have an adv_info, instead it uses 697 * hdev->random_addr to track its address so whenever it needs 698 * to be updated this also set the random address since 699 * hdev->random_addr is shared with scan state machine. 700 */ 701 err = hci_set_random_addr_sync(hdev, random_addr); 702 if (err) 703 return err; 704 } 705 706 memset(&cp, 0, sizeof(cp)); 707 708 cp.handle = instance; 709 bacpy(&cp.bdaddr, random_addr); 710 711 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_SET_RAND_ADDR, 712 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 713 } 714 715 int hci_setup_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance) 716 { 717 struct hci_cp_le_set_ext_adv_params cp; 718 bool connectable; 719 u32 flags; 720 bdaddr_t random_addr; 721 u8 own_addr_type; 722 int err; 723 struct adv_info *adv; 724 bool secondary_adv; 725 726 if (instance > 0) { 727 adv = hci_find_adv_instance(hdev, instance); 728 if (!adv) 729 return -EINVAL; 730 } else { 731 adv = NULL; 732 } 733 734 /* Updating parameters of an active instance will return a 735 * Command Disallowed error, so we must first disable the 736 * instance if it is active. 737 */ 738 if (adv && !adv->pending) { 739 err = hci_disable_ext_adv_instance_sync(hdev, instance); 740 if (err) 741 return err; 742 } 743 744 flags = hci_adv_instance_flags(hdev, instance); 745 746 /* If the "connectable" instance flag was not set, then choose between 747 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. 748 */ 749 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || 750 mgmt_get_connectable(hdev); 751 752 if (!is_advertising_allowed(hdev, connectable)) 753 return -EPERM; 754 755 /* Set require_privacy to true only when non-connectable 756 * advertising is used. In that case it is fine to use a 757 * non-resolvable private address. 758 */ 759 err = hci_get_random_address(hdev, !connectable, 760 adv_use_rpa(hdev, flags), adv, 761 &own_addr_type, &random_addr); 762 if (err < 0) 763 return err; 764 765 memset(&cp, 0, sizeof(cp)); 766 767 if (adv) { 768 hci_cpu_to_le24(adv->min_interval, cp.min_interval); 769 hci_cpu_to_le24(adv->max_interval, cp.max_interval); 770 cp.tx_power = adv->tx_power; 771 } else { 772 hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval); 773 hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval); 774 cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE; 775 } 776 777 secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK); 778 779 if (connectable) { 780 if (secondary_adv) 781 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND); 782 else 783 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND); 784 } else if (hci_adv_instance_is_scannable(hdev, instance) || 785 (flags & MGMT_ADV_PARAM_SCAN_RSP)) { 786 if (secondary_adv) 787 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND); 788 else 789 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND); 790 } else { 791 if (secondary_adv) 792 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND); 793 else 794 cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND); 795 } 796 797 /* If Own_Address_Type equals 0x02 or 0x03, the Peer_Address parameter 798 * contains the peer’s Identity Address and the Peer_Address_Type 799 * parameter contains the peer’s Identity Type (i.e., 0x00 or 0x01). 800 * These parameters are used to locate the corresponding local IRK in 801 * the resolving list; this IRK is used to generate their own address 802 * used in the advertisement. 803 */ 804 if (own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) 805 hci_copy_identity_address(hdev, &cp.peer_addr, 806 &cp.peer_addr_type); 807 808 cp.own_addr_type = own_addr_type; 809 cp.channel_map = hdev->le_adv_channel_map; 810 cp.handle = instance; 811 812 if (flags & MGMT_ADV_FLAG_SEC_2M) { 813 cp.primary_phy = HCI_ADV_PHY_1M; 814 cp.secondary_phy = HCI_ADV_PHY_2M; 815 } else if (flags & MGMT_ADV_FLAG_SEC_CODED) { 816 cp.primary_phy = HCI_ADV_PHY_CODED; 817 cp.secondary_phy = HCI_ADV_PHY_CODED; 818 } else { 819 /* In all other cases use 1M */ 820 cp.primary_phy = HCI_ADV_PHY_1M; 821 cp.secondary_phy = HCI_ADV_PHY_1M; 822 } 823 824 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS, 825 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 826 if (err) 827 return err; 828 829 if ((own_addr_type == ADDR_LE_DEV_RANDOM || 830 own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) && 831 bacmp(&random_addr, BDADDR_ANY)) { 832 /* Check if random address need to be updated */ 833 if (adv) { 834 if (!bacmp(&random_addr, &adv->random_addr)) 835 return 0; 836 } else { 837 if (!bacmp(&random_addr, &hdev->random_addr)) 838 return 0; 839 } 840 841 return hci_set_adv_set_random_addr_sync(hdev, instance, 842 &random_addr); 843 } 844 845 return 0; 846 } 847 848 static int hci_set_ext_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 849 { 850 struct { 851 struct hci_cp_le_set_ext_scan_rsp_data cp; 852 u8 data[HCI_MAX_EXT_AD_LENGTH]; 853 } pdu; 854 u8 len; 855 856 memset(&pdu, 0, sizeof(pdu)); 857 858 len = eir_create_scan_rsp(hdev, instance, pdu.data); 859 860 if (hdev->scan_rsp_data_len == len && 861 !memcmp(pdu.data, hdev->scan_rsp_data, len)) 862 return 0; 863 864 memcpy(hdev->scan_rsp_data, pdu.data, len); 865 hdev->scan_rsp_data_len = len; 866 867 pdu.cp.handle = instance; 868 pdu.cp.length = len; 869 pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; 870 pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG; 871 872 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA, 873 sizeof(pdu.cp) + len, &pdu.cp, 874 HCI_CMD_TIMEOUT); 875 } 876 877 static int __hci_set_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 878 { 879 struct hci_cp_le_set_scan_rsp_data cp; 880 u8 len; 881 882 memset(&cp, 0, sizeof(cp)); 883 884 len = eir_create_scan_rsp(hdev, instance, cp.data); 885 886 if (hdev->scan_rsp_data_len == len && 887 !memcmp(cp.data, hdev->scan_rsp_data, len)) 888 return 0; 889 890 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data)); 891 hdev->scan_rsp_data_len = len; 892 893 cp.length = len; 894 895 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_RSP_DATA, 896 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 897 } 898 899 int hci_update_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 900 { 901 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 902 return 0; 903 904 if (ext_adv_capable(hdev)) 905 return hci_set_ext_scan_rsp_data_sync(hdev, instance); 906 907 return __hci_set_scan_rsp_data_sync(hdev, instance); 908 } 909 910 int hci_enable_ext_advertising_sync(struct hci_dev *hdev, u8 instance) 911 { 912 struct hci_cp_le_set_ext_adv_enable *cp; 913 struct hci_cp_ext_adv_set *set; 914 u8 data[sizeof(*cp) + sizeof(*set) * 1]; 915 struct adv_info *adv; 916 917 if (instance > 0) { 918 adv = hci_find_adv_instance(hdev, instance); 919 if (!adv) 920 return -EINVAL; 921 /* If already enabled there is nothing to do */ 922 if (adv->enabled) 923 return 0; 924 } else { 925 adv = NULL; 926 } 927 928 cp = (void *)data; 929 set = (void *)cp->data; 930 931 memset(cp, 0, sizeof(*cp)); 932 933 cp->enable = 0x01; 934 cp->num_of_sets = 0x01; 935 936 memset(set, 0, sizeof(*set)); 937 938 set->handle = instance; 939 940 /* Set duration per instance since controller is responsible for 941 * scheduling it. 942 */ 943 if (adv && adv->timeout) { 944 u16 duration = adv->timeout * MSEC_PER_SEC; 945 946 /* Time = N * 10 ms */ 947 set->duration = cpu_to_le16(duration / 10); 948 } 949 950 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, 951 sizeof(*cp) + 952 sizeof(*set) * cp->num_of_sets, 953 data, HCI_CMD_TIMEOUT); 954 } 955 956 int hci_start_ext_adv_sync(struct hci_dev *hdev, u8 instance) 957 { 958 int err; 959 960 err = hci_setup_ext_adv_instance_sync(hdev, instance); 961 if (err) 962 return err; 963 964 err = hci_set_ext_scan_rsp_data_sync(hdev, instance); 965 if (err) 966 return err; 967 968 return hci_enable_ext_advertising_sync(hdev, instance); 969 } 970 971 static int hci_start_adv_sync(struct hci_dev *hdev, u8 instance) 972 { 973 int err; 974 975 if (ext_adv_capable(hdev)) 976 return hci_start_ext_adv_sync(hdev, instance); 977 978 err = hci_update_adv_data_sync(hdev, instance); 979 if (err) 980 return err; 981 982 err = hci_update_scan_rsp_data_sync(hdev, instance); 983 if (err) 984 return err; 985 986 return hci_enable_advertising_sync(hdev); 987 } 988 989 int hci_enable_advertising_sync(struct hci_dev *hdev) 990 { 991 struct adv_info *adv_instance; 992 struct hci_cp_le_set_adv_param cp; 993 u8 own_addr_type, enable = 0x01; 994 bool connectable; 995 u16 adv_min_interval, adv_max_interval; 996 u32 flags; 997 u8 status; 998 999 if (ext_adv_capable(hdev)) 1000 return hci_enable_ext_advertising_sync(hdev, 1001 hdev->cur_adv_instance); 1002 1003 flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance); 1004 adv_instance = hci_find_adv_instance(hdev, hdev->cur_adv_instance); 1005 1006 /* If the "connectable" instance flag was not set, then choose between 1007 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. 1008 */ 1009 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || 1010 mgmt_get_connectable(hdev); 1011 1012 if (!is_advertising_allowed(hdev, connectable)) 1013 return -EINVAL; 1014 1015 status = hci_disable_advertising_sync(hdev); 1016 if (status) 1017 return status; 1018 1019 /* Clear the HCI_LE_ADV bit temporarily so that the 1020 * hci_update_random_address knows that it's safe to go ahead 1021 * and write a new random address. The flag will be set back on 1022 * as soon as the SET_ADV_ENABLE HCI command completes. 1023 */ 1024 hci_dev_clear_flag(hdev, HCI_LE_ADV); 1025 1026 /* Set require_privacy to true only when non-connectable 1027 * advertising is used. In that case it is fine to use a 1028 * non-resolvable private address. 1029 */ 1030 status = hci_update_random_address_sync(hdev, !connectable, 1031 adv_use_rpa(hdev, flags), 1032 &own_addr_type); 1033 if (status) 1034 return status; 1035 1036 memset(&cp, 0, sizeof(cp)); 1037 1038 if (adv_instance) { 1039 adv_min_interval = adv_instance->min_interval; 1040 adv_max_interval = adv_instance->max_interval; 1041 } else { 1042 adv_min_interval = hdev->le_adv_min_interval; 1043 adv_max_interval = hdev->le_adv_max_interval; 1044 } 1045 1046 if (connectable) { 1047 cp.type = LE_ADV_IND; 1048 } else { 1049 if (hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance)) 1050 cp.type = LE_ADV_SCAN_IND; 1051 else 1052 cp.type = LE_ADV_NONCONN_IND; 1053 1054 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) || 1055 hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { 1056 adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN; 1057 adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX; 1058 } 1059 } 1060 1061 cp.min_interval = cpu_to_le16(adv_min_interval); 1062 cp.max_interval = cpu_to_le16(adv_max_interval); 1063 cp.own_address_type = own_addr_type; 1064 cp.channel_map = hdev->le_adv_channel_map; 1065 1066 status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM, 1067 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1068 if (status) 1069 return status; 1070 1071 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 1072 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 1073 } 1074 1075 static int enable_advertising_sync(struct hci_dev *hdev, void *data) 1076 { 1077 return hci_enable_advertising_sync(hdev); 1078 } 1079 1080 int hci_enable_advertising(struct hci_dev *hdev) 1081 { 1082 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) && 1083 list_empty(&hdev->adv_instances)) 1084 return 0; 1085 1086 return hci_cmd_sync_queue(hdev, enable_advertising_sync, NULL, NULL); 1087 } 1088 1089 int hci_remove_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance, 1090 struct sock *sk) 1091 { 1092 int err; 1093 1094 if (!ext_adv_capable(hdev)) 1095 return 0; 1096 1097 err = hci_disable_ext_adv_instance_sync(hdev, instance); 1098 if (err) 1099 return err; 1100 1101 /* If request specifies an instance that doesn't exist, fail */ 1102 if (instance > 0 && !hci_find_adv_instance(hdev, instance)) 1103 return -EINVAL; 1104 1105 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_REMOVE_ADV_SET, 1106 sizeof(instance), &instance, 0, 1107 HCI_CMD_TIMEOUT, sk); 1108 } 1109 1110 static void cancel_adv_timeout(struct hci_dev *hdev) 1111 { 1112 if (hdev->adv_instance_timeout) { 1113 hdev->adv_instance_timeout = 0; 1114 cancel_delayed_work(&hdev->adv_instance_expire); 1115 } 1116 } 1117 1118 static int hci_set_ext_adv_data_sync(struct hci_dev *hdev, u8 instance) 1119 { 1120 struct { 1121 struct hci_cp_le_set_ext_adv_data cp; 1122 u8 data[HCI_MAX_EXT_AD_LENGTH]; 1123 } pdu; 1124 u8 len; 1125 1126 memset(&pdu, 0, sizeof(pdu)); 1127 1128 len = eir_create_adv_data(hdev, instance, pdu.data); 1129 1130 /* There's nothing to do if the data hasn't changed */ 1131 if (hdev->adv_data_len == len && 1132 memcmp(pdu.data, hdev->adv_data, len) == 0) 1133 return 0; 1134 1135 memcpy(hdev->adv_data, pdu.data, len); 1136 hdev->adv_data_len = len; 1137 1138 pdu.cp.length = len; 1139 pdu.cp.handle = instance; 1140 pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; 1141 pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG; 1142 1143 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_DATA, 1144 sizeof(pdu.cp) + len, &pdu.cp, 1145 HCI_CMD_TIMEOUT); 1146 } 1147 1148 static int hci_set_adv_data_sync(struct hci_dev *hdev, u8 instance) 1149 { 1150 struct hci_cp_le_set_adv_data cp; 1151 u8 len; 1152 1153 memset(&cp, 0, sizeof(cp)); 1154 1155 len = eir_create_adv_data(hdev, instance, cp.data); 1156 1157 /* There's nothing to do if the data hasn't changed */ 1158 if (hdev->adv_data_len == len && 1159 memcmp(cp.data, hdev->adv_data, len) == 0) 1160 return 0; 1161 1162 memcpy(hdev->adv_data, cp.data, sizeof(cp.data)); 1163 hdev->adv_data_len = len; 1164 1165 cp.length = len; 1166 1167 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_DATA, 1168 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1169 } 1170 1171 int hci_update_adv_data_sync(struct hci_dev *hdev, u8 instance) 1172 { 1173 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1174 return 0; 1175 1176 if (ext_adv_capable(hdev)) 1177 return hci_set_ext_adv_data_sync(hdev, instance); 1178 1179 return hci_set_adv_data_sync(hdev, instance); 1180 } 1181 1182 int hci_schedule_adv_instance_sync(struct hci_dev *hdev, u8 instance, 1183 bool force) 1184 { 1185 struct adv_info *adv = NULL; 1186 u16 timeout; 1187 1188 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) && !ext_adv_capable(hdev)) 1189 return -EPERM; 1190 1191 if (hdev->adv_instance_timeout) 1192 return -EBUSY; 1193 1194 adv = hci_find_adv_instance(hdev, instance); 1195 if (!adv) 1196 return -ENOENT; 1197 1198 /* A zero timeout means unlimited advertising. As long as there is 1199 * only one instance, duration should be ignored. We still set a timeout 1200 * in case further instances are being added later on. 1201 * 1202 * If the remaining lifetime of the instance is more than the duration 1203 * then the timeout corresponds to the duration, otherwise it will be 1204 * reduced to the remaining instance lifetime. 1205 */ 1206 if (adv->timeout == 0 || adv->duration <= adv->remaining_time) 1207 timeout = adv->duration; 1208 else 1209 timeout = adv->remaining_time; 1210 1211 /* The remaining time is being reduced unless the instance is being 1212 * advertised without time limit. 1213 */ 1214 if (adv->timeout) 1215 adv->remaining_time = adv->remaining_time - timeout; 1216 1217 /* Only use work for scheduling instances with legacy advertising */ 1218 if (!ext_adv_capable(hdev)) { 1219 hdev->adv_instance_timeout = timeout; 1220 queue_delayed_work(hdev->req_workqueue, 1221 &hdev->adv_instance_expire, 1222 msecs_to_jiffies(timeout * 1000)); 1223 } 1224 1225 /* If we're just re-scheduling the same instance again then do not 1226 * execute any HCI commands. This happens when a single instance is 1227 * being advertised. 1228 */ 1229 if (!force && hdev->cur_adv_instance == instance && 1230 hci_dev_test_flag(hdev, HCI_LE_ADV)) 1231 return 0; 1232 1233 hdev->cur_adv_instance = instance; 1234 1235 return hci_start_adv_sync(hdev, instance); 1236 } 1237 1238 static int hci_clear_adv_sets_sync(struct hci_dev *hdev, struct sock *sk) 1239 { 1240 int err; 1241 1242 if (!ext_adv_capable(hdev)) 1243 return 0; 1244 1245 /* Disable instance 0x00 to disable all instances */ 1246 err = hci_disable_ext_adv_instance_sync(hdev, 0x00); 1247 if (err) 1248 return err; 1249 1250 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CLEAR_ADV_SETS, 1251 0, NULL, 0, HCI_CMD_TIMEOUT, sk); 1252 } 1253 1254 static int hci_clear_adv_sync(struct hci_dev *hdev, struct sock *sk, bool force) 1255 { 1256 struct adv_info *adv, *n; 1257 1258 if (ext_adv_capable(hdev)) 1259 /* Remove all existing sets */ 1260 return hci_clear_adv_sets_sync(hdev, sk); 1261 1262 /* This is safe as long as there is no command send while the lock is 1263 * held. 1264 */ 1265 hci_dev_lock(hdev); 1266 1267 /* Cleanup non-ext instances */ 1268 list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) { 1269 u8 instance = adv->instance; 1270 int err; 1271 1272 if (!(force || adv->timeout)) 1273 continue; 1274 1275 err = hci_remove_adv_instance(hdev, instance); 1276 if (!err) 1277 mgmt_advertising_removed(sk, hdev, instance); 1278 } 1279 1280 hci_dev_unlock(hdev); 1281 1282 return 0; 1283 } 1284 1285 static int hci_remove_adv_sync(struct hci_dev *hdev, u8 instance, 1286 struct sock *sk) 1287 { 1288 int err; 1289 1290 /* If we use extended advertising, instance has to be removed first. */ 1291 if (ext_adv_capable(hdev)) 1292 return hci_remove_ext_adv_instance_sync(hdev, instance, sk); 1293 1294 /* This is safe as long as there is no command send while the lock is 1295 * held. 1296 */ 1297 hci_dev_lock(hdev); 1298 1299 err = hci_remove_adv_instance(hdev, instance); 1300 if (!err) 1301 mgmt_advertising_removed(sk, hdev, instance); 1302 1303 hci_dev_unlock(hdev); 1304 1305 return err; 1306 } 1307 1308 /* For a single instance: 1309 * - force == true: The instance will be removed even when its remaining 1310 * lifetime is not zero. 1311 * - force == false: the instance will be deactivated but kept stored unless 1312 * the remaining lifetime is zero. 1313 * 1314 * For instance == 0x00: 1315 * - force == true: All instances will be removed regardless of their timeout 1316 * setting. 1317 * - force == false: Only instances that have a timeout will be removed. 1318 */ 1319 int hci_remove_advertising_sync(struct hci_dev *hdev, struct sock *sk, 1320 u8 instance, bool force) 1321 { 1322 struct adv_info *next = NULL; 1323 int err; 1324 1325 /* Cancel any timeout concerning the removed instance(s). */ 1326 if (!instance || hdev->cur_adv_instance == instance) 1327 cancel_adv_timeout(hdev); 1328 1329 /* Get the next instance to advertise BEFORE we remove 1330 * the current one. This can be the same instance again 1331 * if there is only one instance. 1332 */ 1333 if (hdev->cur_adv_instance == instance) 1334 next = hci_get_next_instance(hdev, instance); 1335 1336 if (!instance) { 1337 err = hci_clear_adv_sync(hdev, sk, force); 1338 if (err) 1339 return err; 1340 } else { 1341 struct adv_info *adv = hci_find_adv_instance(hdev, instance); 1342 1343 if (force || (adv && adv->timeout && !adv->remaining_time)) { 1344 /* Don't advertise a removed instance. */ 1345 if (next && next->instance == instance) 1346 next = NULL; 1347 1348 err = hci_remove_adv_sync(hdev, instance, sk); 1349 if (err) 1350 return err; 1351 } 1352 } 1353 1354 if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING)) 1355 return 0; 1356 1357 if (next && !ext_adv_capable(hdev)) 1358 hci_schedule_adv_instance_sync(hdev, next->instance, false); 1359 1360 return 0; 1361 } 1362 1363 int hci_read_rssi_sync(struct hci_dev *hdev, __le16 handle) 1364 { 1365 struct hci_cp_read_rssi cp; 1366 1367 cp.handle = handle; 1368 return __hci_cmd_sync_status(hdev, HCI_OP_READ_RSSI, 1369 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1370 } 1371 1372 int hci_read_clock_sync(struct hci_dev *hdev, struct hci_cp_read_clock *cp) 1373 { 1374 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLOCK, 1375 sizeof(*cp), cp, HCI_CMD_TIMEOUT); 1376 } 1377 1378 int hci_read_tx_power_sync(struct hci_dev *hdev, __le16 handle, u8 type) 1379 { 1380 struct hci_cp_read_tx_power cp; 1381 1382 cp.handle = handle; 1383 cp.type = type; 1384 return __hci_cmd_sync_status(hdev, HCI_OP_READ_TX_POWER, 1385 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1386 } 1387 1388 int hci_disable_advertising_sync(struct hci_dev *hdev) 1389 { 1390 u8 enable = 0x00; 1391 1392 /* If controller is not advertising we are done. */ 1393 if (!hci_dev_test_flag(hdev, HCI_LE_ADV)) 1394 return 0; 1395 1396 if (ext_adv_capable(hdev)) 1397 return hci_disable_ext_adv_instance_sync(hdev, 0x00); 1398 1399 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 1400 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 1401 } 1402 1403 static int hci_le_set_ext_scan_enable_sync(struct hci_dev *hdev, u8 val, 1404 u8 filter_dup) 1405 { 1406 struct hci_cp_le_set_ext_scan_enable cp; 1407 1408 memset(&cp, 0, sizeof(cp)); 1409 cp.enable = val; 1410 cp.filter_dup = filter_dup; 1411 1412 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_ENABLE, 1413 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1414 } 1415 1416 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val, 1417 u8 filter_dup) 1418 { 1419 struct hci_cp_le_set_scan_enable cp; 1420 1421 if (use_ext_scan(hdev)) 1422 return hci_le_set_ext_scan_enable_sync(hdev, val, filter_dup); 1423 1424 memset(&cp, 0, sizeof(cp)); 1425 cp.enable = val; 1426 cp.filter_dup = filter_dup; 1427 1428 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_ENABLE, 1429 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1430 } 1431 1432 static int hci_le_set_addr_resolution_enable_sync(struct hci_dev *hdev, u8 val) 1433 { 1434 if (!use_ll_privacy(hdev)) 1435 return 0; 1436 1437 /* If controller is not/already resolving we are done. */ 1438 if (val == hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) 1439 return 0; 1440 1441 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1442 sizeof(val), &val, HCI_CMD_TIMEOUT); 1443 } 1444 1445 static int hci_scan_disable_sync(struct hci_dev *hdev) 1446 { 1447 int err; 1448 1449 /* If controller is not scanning we are done. */ 1450 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 1451 return 0; 1452 1453 if (hdev->scanning_paused) { 1454 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 1455 return 0; 1456 } 1457 1458 err = hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00); 1459 if (err) { 1460 bt_dev_err(hdev, "Unable to disable scanning: %d", err); 1461 return err; 1462 } 1463 1464 return err; 1465 } 1466 1467 static bool scan_use_rpa(struct hci_dev *hdev) 1468 { 1469 return hci_dev_test_flag(hdev, HCI_PRIVACY); 1470 } 1471 1472 static void hci_start_interleave_scan(struct hci_dev *hdev) 1473 { 1474 hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER; 1475 queue_delayed_work(hdev->req_workqueue, 1476 &hdev->interleave_scan, 0); 1477 } 1478 1479 static bool is_interleave_scanning(struct hci_dev *hdev) 1480 { 1481 return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE; 1482 } 1483 1484 static void cancel_interleave_scan(struct hci_dev *hdev) 1485 { 1486 bt_dev_dbg(hdev, "cancelling interleave scan"); 1487 1488 cancel_delayed_work_sync(&hdev->interleave_scan); 1489 1490 hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE; 1491 } 1492 1493 /* Return true if interleave_scan wasn't started until exiting this function, 1494 * otherwise, return false 1495 */ 1496 static bool hci_update_interleaved_scan_sync(struct hci_dev *hdev) 1497 { 1498 /* Do interleaved scan only if all of the following are true: 1499 * - There is at least one ADV monitor 1500 * - At least one pending LE connection or one device to be scanned for 1501 * - Monitor offloading is not supported 1502 * If so, we should alternate between allowlist scan and one without 1503 * any filters to save power. 1504 */ 1505 bool use_interleaving = hci_is_adv_monitoring(hdev) && 1506 !(list_empty(&hdev->pend_le_conns) && 1507 list_empty(&hdev->pend_le_reports)) && 1508 hci_get_adv_monitor_offload_ext(hdev) == 1509 HCI_ADV_MONITOR_EXT_NONE; 1510 bool is_interleaving = is_interleave_scanning(hdev); 1511 1512 if (use_interleaving && !is_interleaving) { 1513 hci_start_interleave_scan(hdev); 1514 bt_dev_dbg(hdev, "starting interleave scan"); 1515 return true; 1516 } 1517 1518 if (!use_interleaving && is_interleaving) 1519 cancel_interleave_scan(hdev); 1520 1521 return false; 1522 } 1523 1524 /* Removes connection to resolve list if needed.*/ 1525 static int hci_le_del_resolve_list_sync(struct hci_dev *hdev, 1526 bdaddr_t *bdaddr, u8 bdaddr_type) 1527 { 1528 struct hci_cp_le_del_from_resolv_list cp; 1529 struct bdaddr_list_with_irk *entry; 1530 1531 if (!use_ll_privacy(hdev)) 1532 return 0; 1533 1534 /* Check if the IRK has been programmed */ 1535 entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, bdaddr, 1536 bdaddr_type); 1537 if (!entry) 1538 return 0; 1539 1540 cp.bdaddr_type = bdaddr_type; 1541 bacpy(&cp.bdaddr, bdaddr); 1542 1543 return __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_RESOLV_LIST, 1544 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1545 } 1546 1547 static int hci_le_del_accept_list_sync(struct hci_dev *hdev, 1548 bdaddr_t *bdaddr, u8 bdaddr_type) 1549 { 1550 struct hci_cp_le_del_from_accept_list cp; 1551 int err; 1552 1553 /* Check if device is on accept list before removing it */ 1554 if (!hci_bdaddr_list_lookup(&hdev->le_accept_list, bdaddr, bdaddr_type)) 1555 return 0; 1556 1557 cp.bdaddr_type = bdaddr_type; 1558 bacpy(&cp.bdaddr, bdaddr); 1559 1560 /* Ignore errors when removing from resolving list as that is likely 1561 * that the device was never added. 1562 */ 1563 hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type); 1564 1565 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_ACCEPT_LIST, 1566 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1567 if (err) { 1568 bt_dev_err(hdev, "Unable to remove from allow list: %d", err); 1569 return err; 1570 } 1571 1572 bt_dev_dbg(hdev, "Remove %pMR (0x%x) from allow list", &cp.bdaddr, 1573 cp.bdaddr_type); 1574 1575 return 0; 1576 } 1577 1578 /* Adds connection to resolve list if needed. 1579 * Setting params to NULL programs local hdev->irk 1580 */ 1581 static int hci_le_add_resolve_list_sync(struct hci_dev *hdev, 1582 struct hci_conn_params *params) 1583 { 1584 struct hci_cp_le_add_to_resolv_list cp; 1585 struct smp_irk *irk; 1586 struct bdaddr_list_with_irk *entry; 1587 1588 if (!use_ll_privacy(hdev)) 1589 return 0; 1590 1591 /* Attempt to program local identity address, type and irk if params is 1592 * NULL. 1593 */ 1594 if (!params) { 1595 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 1596 return 0; 1597 1598 hci_copy_identity_address(hdev, &cp.bdaddr, &cp.bdaddr_type); 1599 memcpy(cp.peer_irk, hdev->irk, 16); 1600 goto done; 1601 } 1602 1603 irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type); 1604 if (!irk) 1605 return 0; 1606 1607 /* Check if the IK has _not_ been programmed yet. */ 1608 entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, 1609 ¶ms->addr, 1610 params->addr_type); 1611 if (entry) 1612 return 0; 1613 1614 cp.bdaddr_type = params->addr_type; 1615 bacpy(&cp.bdaddr, ¶ms->addr); 1616 memcpy(cp.peer_irk, irk->val, 16); 1617 1618 done: 1619 if (hci_dev_test_flag(hdev, HCI_PRIVACY)) 1620 memcpy(cp.local_irk, hdev->irk, 16); 1621 else 1622 memset(cp.local_irk, 0, 16); 1623 1624 return __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_RESOLV_LIST, 1625 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1626 } 1627 1628 /* Set Device Privacy Mode. */ 1629 static int hci_le_set_privacy_mode_sync(struct hci_dev *hdev, 1630 struct hci_conn_params *params) 1631 { 1632 struct hci_cp_le_set_privacy_mode cp; 1633 struct smp_irk *irk; 1634 1635 /* If device privacy mode has already been set there is nothing to do */ 1636 if (params->privacy_mode == HCI_DEVICE_PRIVACY) 1637 return 0; 1638 1639 /* Check if HCI_CONN_FLAG_DEVICE_PRIVACY has been set as it also 1640 * indicates that LL Privacy has been enabled and 1641 * HCI_OP_LE_SET_PRIVACY_MODE is supported. 1642 */ 1643 if (!test_bit(HCI_CONN_FLAG_DEVICE_PRIVACY, params->flags)) 1644 return 0; 1645 1646 irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type); 1647 if (!irk) 1648 return 0; 1649 1650 memset(&cp, 0, sizeof(cp)); 1651 cp.bdaddr_type = irk->addr_type; 1652 bacpy(&cp.bdaddr, &irk->bdaddr); 1653 cp.mode = HCI_DEVICE_PRIVACY; 1654 1655 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PRIVACY_MODE, 1656 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1657 } 1658 1659 /* Adds connection to allow list if needed, if the device uses RPA (has IRK) 1660 * this attempts to program the device in the resolving list as well and 1661 * properly set the privacy mode. 1662 */ 1663 static int hci_le_add_accept_list_sync(struct hci_dev *hdev, 1664 struct hci_conn_params *params, 1665 u8 *num_entries) 1666 { 1667 struct hci_cp_le_add_to_accept_list cp; 1668 int err; 1669 1670 /* Select filter policy to accept all advertising */ 1671 if (*num_entries >= hdev->le_accept_list_size) 1672 return -ENOSPC; 1673 1674 /* Accept list can not be used with RPAs */ 1675 if (!use_ll_privacy(hdev) && 1676 hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type)) { 1677 return -EINVAL; 1678 } 1679 1680 /* During suspend, only wakeable devices can be in acceptlist */ 1681 if (hdev->suspended && 1682 !test_bit(HCI_CONN_FLAG_REMOTE_WAKEUP, params->flags)) 1683 return 0; 1684 1685 /* Attempt to program the device in the resolving list first to avoid 1686 * having to rollback in case it fails since the resolving list is 1687 * dynamic it can probably be smaller than the accept list. 1688 */ 1689 err = hci_le_add_resolve_list_sync(hdev, params); 1690 if (err) { 1691 bt_dev_err(hdev, "Unable to add to resolve list: %d", err); 1692 return err; 1693 } 1694 1695 /* Set Privacy Mode */ 1696 err = hci_le_set_privacy_mode_sync(hdev, params); 1697 if (err) { 1698 bt_dev_err(hdev, "Unable to set privacy mode: %d", err); 1699 return err; 1700 } 1701 1702 /* Check if already in accept list */ 1703 if (hci_bdaddr_list_lookup(&hdev->le_accept_list, ¶ms->addr, 1704 params->addr_type)) 1705 return 0; 1706 1707 *num_entries += 1; 1708 cp.bdaddr_type = params->addr_type; 1709 bacpy(&cp.bdaddr, ¶ms->addr); 1710 1711 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST, 1712 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1713 if (err) { 1714 bt_dev_err(hdev, "Unable to add to allow list: %d", err); 1715 /* Rollback the device from the resolving list */ 1716 hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type); 1717 return err; 1718 } 1719 1720 bt_dev_dbg(hdev, "Add %pMR (0x%x) to allow list", &cp.bdaddr, 1721 cp.bdaddr_type); 1722 1723 return 0; 1724 } 1725 1726 /* This function disables/pause all advertising instances */ 1727 static int hci_pause_advertising_sync(struct hci_dev *hdev) 1728 { 1729 int err; 1730 int old_state; 1731 1732 /* If already been paused there is nothing to do. */ 1733 if (hdev->advertising_paused) 1734 return 0; 1735 1736 bt_dev_dbg(hdev, "Pausing directed advertising"); 1737 1738 /* Stop directed advertising */ 1739 old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING); 1740 if (old_state) { 1741 /* When discoverable timeout triggers, then just make sure 1742 * the limited discoverable flag is cleared. Even in the case 1743 * of a timeout triggered from general discoverable, it is 1744 * safe to unconditionally clear the flag. 1745 */ 1746 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 1747 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 1748 hdev->discov_timeout = 0; 1749 } 1750 1751 bt_dev_dbg(hdev, "Pausing advertising instances"); 1752 1753 /* Call to disable any advertisements active on the controller. 1754 * This will succeed even if no advertisements are configured. 1755 */ 1756 err = hci_disable_advertising_sync(hdev); 1757 if (err) 1758 return err; 1759 1760 /* If we are using software rotation, pause the loop */ 1761 if (!ext_adv_capable(hdev)) 1762 cancel_adv_timeout(hdev); 1763 1764 hdev->advertising_paused = true; 1765 hdev->advertising_old_state = old_state; 1766 1767 return 0; 1768 } 1769 1770 /* This function enables all user advertising instances */ 1771 static int hci_resume_advertising_sync(struct hci_dev *hdev) 1772 { 1773 struct adv_info *adv, *tmp; 1774 int err; 1775 1776 /* If advertising has not been paused there is nothing to do. */ 1777 if (!hdev->advertising_paused) 1778 return 0; 1779 1780 /* Resume directed advertising */ 1781 hdev->advertising_paused = false; 1782 if (hdev->advertising_old_state) { 1783 hci_dev_set_flag(hdev, HCI_ADVERTISING); 1784 hdev->advertising_old_state = 0; 1785 } 1786 1787 bt_dev_dbg(hdev, "Resuming advertising instances"); 1788 1789 if (ext_adv_capable(hdev)) { 1790 /* Call for each tracked instance to be re-enabled */ 1791 list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) { 1792 err = hci_enable_ext_advertising_sync(hdev, 1793 adv->instance); 1794 if (!err) 1795 continue; 1796 1797 /* If the instance cannot be resumed remove it */ 1798 hci_remove_ext_adv_instance_sync(hdev, adv->instance, 1799 NULL); 1800 } 1801 } else { 1802 /* Schedule for most recent instance to be restarted and begin 1803 * the software rotation loop 1804 */ 1805 err = hci_schedule_adv_instance_sync(hdev, 1806 hdev->cur_adv_instance, 1807 true); 1808 } 1809 1810 hdev->advertising_paused = false; 1811 1812 return err; 1813 } 1814 1815 struct sk_buff *hci_read_local_oob_data_sync(struct hci_dev *hdev, 1816 bool extended, struct sock *sk) 1817 { 1818 u16 opcode = extended ? HCI_OP_READ_LOCAL_OOB_EXT_DATA : 1819 HCI_OP_READ_LOCAL_OOB_DATA; 1820 1821 return __hci_cmd_sync_sk(hdev, opcode, 0, NULL, 0, HCI_CMD_TIMEOUT, sk); 1822 } 1823 1824 /* Device must not be scanning when updating the accept list. 1825 * 1826 * Update is done using the following sequence: 1827 * 1828 * use_ll_privacy((Disable Advertising) -> Disable Resolving List) -> 1829 * Remove Devices From Accept List -> 1830 * (has IRK && use_ll_privacy(Remove Devices From Resolving List))-> 1831 * Add Devices to Accept List -> 1832 * (has IRK && use_ll_privacy(Remove Devices From Resolving List)) -> 1833 * use_ll_privacy(Enable Resolving List -> (Enable Advertising)) -> 1834 * Enable Scanning 1835 * 1836 * In case of failure advertising shall be restored to its original state and 1837 * return would disable accept list since either accept or resolving list could 1838 * not be programmed. 1839 * 1840 */ 1841 static u8 hci_update_accept_list_sync(struct hci_dev *hdev) 1842 { 1843 struct hci_conn_params *params; 1844 struct bdaddr_list *b, *t; 1845 u8 num_entries = 0; 1846 bool pend_conn, pend_report; 1847 u8 filter_policy; 1848 int err; 1849 1850 /* Pause advertising if resolving list can be used as controllers are 1851 * cannot accept resolving list modifications while advertising. 1852 */ 1853 if (use_ll_privacy(hdev)) { 1854 err = hci_pause_advertising_sync(hdev); 1855 if (err) { 1856 bt_dev_err(hdev, "pause advertising failed: %d", err); 1857 return 0x00; 1858 } 1859 } 1860 1861 /* Disable address resolution while reprogramming accept list since 1862 * devices that do have an IRK will be programmed in the resolving list 1863 * when LL Privacy is enabled. 1864 */ 1865 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00); 1866 if (err) { 1867 bt_dev_err(hdev, "Unable to disable LL privacy: %d", err); 1868 goto done; 1869 } 1870 1871 /* Go through the current accept list programmed into the 1872 * controller one by one and check if that address is still 1873 * in the list of pending connections or list of devices to 1874 * report. If not present in either list, then remove it from 1875 * the controller. 1876 */ 1877 list_for_each_entry_safe(b, t, &hdev->le_accept_list, list) { 1878 pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns, 1879 &b->bdaddr, 1880 b->bdaddr_type); 1881 pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports, 1882 &b->bdaddr, 1883 b->bdaddr_type); 1884 1885 /* If the device is not likely to connect or report, 1886 * remove it from the acceptlist. 1887 */ 1888 if (!pend_conn && !pend_report) { 1889 hci_le_del_accept_list_sync(hdev, &b->bdaddr, 1890 b->bdaddr_type); 1891 continue; 1892 } 1893 1894 num_entries++; 1895 } 1896 1897 /* Since all no longer valid accept list entries have been 1898 * removed, walk through the list of pending connections 1899 * and ensure that any new device gets programmed into 1900 * the controller. 1901 * 1902 * If the list of the devices is larger than the list of 1903 * available accept list entries in the controller, then 1904 * just abort and return filer policy value to not use the 1905 * accept list. 1906 */ 1907 list_for_each_entry(params, &hdev->pend_le_conns, action) { 1908 err = hci_le_add_accept_list_sync(hdev, params, &num_entries); 1909 if (err) 1910 goto done; 1911 } 1912 1913 /* After adding all new pending connections, walk through 1914 * the list of pending reports and also add these to the 1915 * accept list if there is still space. Abort if space runs out. 1916 */ 1917 list_for_each_entry(params, &hdev->pend_le_reports, action) { 1918 err = hci_le_add_accept_list_sync(hdev, params, &num_entries); 1919 if (err) 1920 goto done; 1921 } 1922 1923 /* Use the allowlist unless the following conditions are all true: 1924 * - We are not currently suspending 1925 * - There are 1 or more ADV monitors registered and it's not offloaded 1926 * - Interleaved scanning is not currently using the allowlist 1927 */ 1928 if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended && 1929 hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE && 1930 hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST) 1931 err = -EINVAL; 1932 1933 done: 1934 filter_policy = err ? 0x00 : 0x01; 1935 1936 /* Enable address resolution when LL Privacy is enabled. */ 1937 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x01); 1938 if (err) 1939 bt_dev_err(hdev, "Unable to enable LL privacy: %d", err); 1940 1941 /* Resume advertising if it was paused */ 1942 if (use_ll_privacy(hdev)) 1943 hci_resume_advertising_sync(hdev); 1944 1945 /* Select filter policy to use accept list */ 1946 return filter_policy; 1947 } 1948 1949 /* Returns true if an le connection is in the scanning state */ 1950 static inline bool hci_is_le_conn_scanning(struct hci_dev *hdev) 1951 { 1952 struct hci_conn_hash *h = &hdev->conn_hash; 1953 struct hci_conn *c; 1954 1955 rcu_read_lock(); 1956 1957 list_for_each_entry_rcu(c, &h->list, list) { 1958 if (c->type == LE_LINK && c->state == BT_CONNECT && 1959 test_bit(HCI_CONN_SCANNING, &c->flags)) { 1960 rcu_read_unlock(); 1961 return true; 1962 } 1963 } 1964 1965 rcu_read_unlock(); 1966 1967 return false; 1968 } 1969 1970 static int hci_le_set_ext_scan_param_sync(struct hci_dev *hdev, u8 type, 1971 u16 interval, u16 window, 1972 u8 own_addr_type, u8 filter_policy) 1973 { 1974 struct hci_cp_le_set_ext_scan_params *cp; 1975 struct hci_cp_le_scan_phy_params *phy; 1976 u8 data[sizeof(*cp) + sizeof(*phy) * 2]; 1977 u8 num_phy = 0; 1978 1979 cp = (void *)data; 1980 phy = (void *)cp->data; 1981 1982 memset(data, 0, sizeof(data)); 1983 1984 cp->own_addr_type = own_addr_type; 1985 cp->filter_policy = filter_policy; 1986 1987 if (scan_1m(hdev) || scan_2m(hdev)) { 1988 cp->scanning_phys |= LE_SCAN_PHY_1M; 1989 1990 phy->type = type; 1991 phy->interval = cpu_to_le16(interval); 1992 phy->window = cpu_to_le16(window); 1993 1994 num_phy++; 1995 phy++; 1996 } 1997 1998 if (scan_coded(hdev)) { 1999 cp->scanning_phys |= LE_SCAN_PHY_CODED; 2000 2001 phy->type = type; 2002 phy->interval = cpu_to_le16(interval); 2003 phy->window = cpu_to_le16(window); 2004 2005 num_phy++; 2006 phy++; 2007 } 2008 2009 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_PARAMS, 2010 sizeof(*cp) + sizeof(*phy) * num_phy, 2011 data, HCI_CMD_TIMEOUT); 2012 } 2013 2014 static int hci_le_set_scan_param_sync(struct hci_dev *hdev, u8 type, 2015 u16 interval, u16 window, 2016 u8 own_addr_type, u8 filter_policy) 2017 { 2018 struct hci_cp_le_set_scan_param cp; 2019 2020 if (use_ext_scan(hdev)) 2021 return hci_le_set_ext_scan_param_sync(hdev, type, interval, 2022 window, own_addr_type, 2023 filter_policy); 2024 2025 memset(&cp, 0, sizeof(cp)); 2026 cp.type = type; 2027 cp.interval = cpu_to_le16(interval); 2028 cp.window = cpu_to_le16(window); 2029 cp.own_address_type = own_addr_type; 2030 cp.filter_policy = filter_policy; 2031 2032 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_PARAM, 2033 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2034 } 2035 2036 static int hci_start_scan_sync(struct hci_dev *hdev, u8 type, u16 interval, 2037 u16 window, u8 own_addr_type, u8 filter_policy, 2038 u8 filter_dup) 2039 { 2040 int err; 2041 2042 if (hdev->scanning_paused) { 2043 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2044 return 0; 2045 } 2046 2047 err = hci_le_set_scan_param_sync(hdev, type, interval, window, 2048 own_addr_type, filter_policy); 2049 if (err) 2050 return err; 2051 2052 return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, filter_dup); 2053 } 2054 2055 static int hci_passive_scan_sync(struct hci_dev *hdev) 2056 { 2057 u8 own_addr_type; 2058 u8 filter_policy; 2059 u16 window, interval; 2060 int err; 2061 2062 if (hdev->scanning_paused) { 2063 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2064 return 0; 2065 } 2066 2067 err = hci_scan_disable_sync(hdev); 2068 if (err) { 2069 bt_dev_err(hdev, "disable scanning failed: %d", err); 2070 return err; 2071 } 2072 2073 /* Set require_privacy to false since no SCAN_REQ are send 2074 * during passive scanning. Not using an non-resolvable address 2075 * here is important so that peer devices using direct 2076 * advertising with our address will be correctly reported 2077 * by the controller. 2078 */ 2079 if (hci_update_random_address_sync(hdev, false, scan_use_rpa(hdev), 2080 &own_addr_type)) 2081 return 0; 2082 2083 if (hdev->enable_advmon_interleave_scan && 2084 hci_update_interleaved_scan_sync(hdev)) 2085 return 0; 2086 2087 bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state); 2088 2089 /* Adding or removing entries from the accept list must 2090 * happen before enabling scanning. The controller does 2091 * not allow accept list modification while scanning. 2092 */ 2093 filter_policy = hci_update_accept_list_sync(hdev); 2094 2095 /* When the controller is using random resolvable addresses and 2096 * with that having LE privacy enabled, then controllers with 2097 * Extended Scanner Filter Policies support can now enable support 2098 * for handling directed advertising. 2099 * 2100 * So instead of using filter polices 0x00 (no acceptlist) 2101 * and 0x01 (acceptlist enabled) use the new filter policies 2102 * 0x02 (no acceptlist) and 0x03 (acceptlist enabled). 2103 */ 2104 if (hci_dev_test_flag(hdev, HCI_PRIVACY) && 2105 (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)) 2106 filter_policy |= 0x02; 2107 2108 if (hdev->suspended) { 2109 window = hdev->le_scan_window_suspend; 2110 interval = hdev->le_scan_int_suspend; 2111 } else if (hci_is_le_conn_scanning(hdev)) { 2112 window = hdev->le_scan_window_connect; 2113 interval = hdev->le_scan_int_connect; 2114 } else if (hci_is_adv_monitoring(hdev)) { 2115 window = hdev->le_scan_window_adv_monitor; 2116 interval = hdev->le_scan_int_adv_monitor; 2117 } else { 2118 window = hdev->le_scan_window; 2119 interval = hdev->le_scan_interval; 2120 } 2121 2122 bt_dev_dbg(hdev, "LE passive scan with acceptlist = %d", filter_policy); 2123 2124 return hci_start_scan_sync(hdev, LE_SCAN_PASSIVE, interval, window, 2125 own_addr_type, filter_policy, 2126 LE_SCAN_FILTER_DUP_ENABLE); 2127 } 2128 2129 /* This function controls the passive scanning based on hdev->pend_le_conns 2130 * list. If there are pending LE connection we start the background scanning, 2131 * otherwise we stop it in the following sequence: 2132 * 2133 * If there are devices to scan: 2134 * 2135 * Disable Scanning -> Update Accept List -> 2136 * use_ll_privacy((Disable Advertising) -> Disable Resolving List -> 2137 * Update Resolving List -> Enable Resolving List -> (Enable Advertising)) -> 2138 * Enable Scanning 2139 * 2140 * Otherwise: 2141 * 2142 * Disable Scanning 2143 */ 2144 int hci_update_passive_scan_sync(struct hci_dev *hdev) 2145 { 2146 int err; 2147 2148 if (!test_bit(HCI_UP, &hdev->flags) || 2149 test_bit(HCI_INIT, &hdev->flags) || 2150 hci_dev_test_flag(hdev, HCI_SETUP) || 2151 hci_dev_test_flag(hdev, HCI_CONFIG) || 2152 hci_dev_test_flag(hdev, HCI_AUTO_OFF) || 2153 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 2154 return 0; 2155 2156 /* No point in doing scanning if LE support hasn't been enabled */ 2157 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 2158 return 0; 2159 2160 /* If discovery is active don't interfere with it */ 2161 if (hdev->discovery.state != DISCOVERY_STOPPED) 2162 return 0; 2163 2164 /* Reset RSSI and UUID filters when starting background scanning 2165 * since these filters are meant for service discovery only. 2166 * 2167 * The Start Discovery and Start Service Discovery operations 2168 * ensure to set proper values for RSSI threshold and UUID 2169 * filter list. So it is safe to just reset them here. 2170 */ 2171 hci_discovery_filter_clear(hdev); 2172 2173 bt_dev_dbg(hdev, "ADV monitoring is %s", 2174 hci_is_adv_monitoring(hdev) ? "on" : "off"); 2175 2176 if (list_empty(&hdev->pend_le_conns) && 2177 list_empty(&hdev->pend_le_reports) && 2178 !hci_is_adv_monitoring(hdev)) { 2179 /* If there is no pending LE connections or devices 2180 * to be scanned for or no ADV monitors, we should stop the 2181 * background scanning. 2182 */ 2183 2184 bt_dev_dbg(hdev, "stopping background scanning"); 2185 2186 err = hci_scan_disable_sync(hdev); 2187 if (err) 2188 bt_dev_err(hdev, "stop background scanning failed: %d", 2189 err); 2190 } else { 2191 /* If there is at least one pending LE connection, we should 2192 * keep the background scan running. 2193 */ 2194 2195 /* If controller is connecting, we should not start scanning 2196 * since some controllers are not able to scan and connect at 2197 * the same time. 2198 */ 2199 if (hci_lookup_le_connect(hdev)) 2200 return 0; 2201 2202 bt_dev_dbg(hdev, "start background scanning"); 2203 2204 err = hci_passive_scan_sync(hdev); 2205 if (err) 2206 bt_dev_err(hdev, "start background scanning failed: %d", 2207 err); 2208 } 2209 2210 return err; 2211 } 2212 2213 static int update_passive_scan_sync(struct hci_dev *hdev, void *data) 2214 { 2215 return hci_update_passive_scan_sync(hdev); 2216 } 2217 2218 int hci_update_passive_scan(struct hci_dev *hdev) 2219 { 2220 /* Only queue if it would have any effect */ 2221 if (!test_bit(HCI_UP, &hdev->flags) || 2222 test_bit(HCI_INIT, &hdev->flags) || 2223 hci_dev_test_flag(hdev, HCI_SETUP) || 2224 hci_dev_test_flag(hdev, HCI_CONFIG) || 2225 hci_dev_test_flag(hdev, HCI_AUTO_OFF) || 2226 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 2227 return 0; 2228 2229 return hci_cmd_sync_queue(hdev, update_passive_scan_sync, NULL, NULL); 2230 } 2231 2232 int hci_write_sc_support_sync(struct hci_dev *hdev, u8 val) 2233 { 2234 int err; 2235 2236 if (!bredr_sc_enabled(hdev) || lmp_host_sc_capable(hdev)) 2237 return 0; 2238 2239 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT, 2240 sizeof(val), &val, HCI_CMD_TIMEOUT); 2241 2242 if (!err) { 2243 if (val) { 2244 hdev->features[1][0] |= LMP_HOST_SC; 2245 hci_dev_set_flag(hdev, HCI_SC_ENABLED); 2246 } else { 2247 hdev->features[1][0] &= ~LMP_HOST_SC; 2248 hci_dev_clear_flag(hdev, HCI_SC_ENABLED); 2249 } 2250 } 2251 2252 return err; 2253 } 2254 2255 int hci_write_ssp_mode_sync(struct hci_dev *hdev, u8 mode) 2256 { 2257 int err; 2258 2259 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) || 2260 lmp_host_ssp_capable(hdev)) 2261 return 0; 2262 2263 if (!mode && hci_dev_test_flag(hdev, HCI_USE_DEBUG_KEYS)) { 2264 __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE, 2265 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 2266 } 2267 2268 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE, 2269 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 2270 if (err) 2271 return err; 2272 2273 return hci_write_sc_support_sync(hdev, 0x01); 2274 } 2275 2276 int hci_write_le_host_supported_sync(struct hci_dev *hdev, u8 le, u8 simul) 2277 { 2278 struct hci_cp_write_le_host_supported cp; 2279 2280 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED) || 2281 !lmp_bredr_capable(hdev)) 2282 return 0; 2283 2284 /* Check first if we already have the right host state 2285 * (host features set) 2286 */ 2287 if (le == lmp_host_le_capable(hdev) && 2288 simul == lmp_host_le_br_capable(hdev)) 2289 return 0; 2290 2291 memset(&cp, 0, sizeof(cp)); 2292 2293 cp.le = le; 2294 cp.simul = simul; 2295 2296 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED, 2297 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2298 } 2299 2300 static int hci_powered_update_adv_sync(struct hci_dev *hdev) 2301 { 2302 struct adv_info *adv, *tmp; 2303 int err; 2304 2305 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 2306 return 0; 2307 2308 /* If RPA Resolution has not been enable yet it means the 2309 * resolving list is empty and we should attempt to program the 2310 * local IRK in order to support using own_addr_type 2311 * ADDR_LE_DEV_RANDOM_RESOLVED (0x03). 2312 */ 2313 if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) { 2314 hci_le_add_resolve_list_sync(hdev, NULL); 2315 hci_le_set_addr_resolution_enable_sync(hdev, 0x01); 2316 } 2317 2318 /* Make sure the controller has a good default for 2319 * advertising data. This also applies to the case 2320 * where BR/EDR was toggled during the AUTO_OFF phase. 2321 */ 2322 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 2323 list_empty(&hdev->adv_instances)) { 2324 if (ext_adv_capable(hdev)) { 2325 err = hci_setup_ext_adv_instance_sync(hdev, 0x00); 2326 if (!err) 2327 hci_update_scan_rsp_data_sync(hdev, 0x00); 2328 } else { 2329 err = hci_update_adv_data_sync(hdev, 0x00); 2330 if (!err) 2331 hci_update_scan_rsp_data_sync(hdev, 0x00); 2332 } 2333 2334 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) 2335 hci_enable_advertising_sync(hdev); 2336 } 2337 2338 /* Call for each tracked instance to be scheduled */ 2339 list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) 2340 hci_schedule_adv_instance_sync(hdev, adv->instance, true); 2341 2342 return 0; 2343 } 2344 2345 static int hci_write_auth_enable_sync(struct hci_dev *hdev) 2346 { 2347 u8 link_sec; 2348 2349 link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY); 2350 if (link_sec == test_bit(HCI_AUTH, &hdev->flags)) 2351 return 0; 2352 2353 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE, 2354 sizeof(link_sec), &link_sec, 2355 HCI_CMD_TIMEOUT); 2356 } 2357 2358 int hci_write_fast_connectable_sync(struct hci_dev *hdev, bool enable) 2359 { 2360 struct hci_cp_write_page_scan_activity cp; 2361 u8 type; 2362 int err = 0; 2363 2364 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 2365 return 0; 2366 2367 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 2368 return 0; 2369 2370 memset(&cp, 0, sizeof(cp)); 2371 2372 if (enable) { 2373 type = PAGE_SCAN_TYPE_INTERLACED; 2374 2375 /* 160 msec page scan interval */ 2376 cp.interval = cpu_to_le16(0x0100); 2377 } else { 2378 type = hdev->def_page_scan_type; 2379 cp.interval = cpu_to_le16(hdev->def_page_scan_int); 2380 } 2381 2382 cp.window = cpu_to_le16(hdev->def_page_scan_window); 2383 2384 if (__cpu_to_le16(hdev->page_scan_interval) != cp.interval || 2385 __cpu_to_le16(hdev->page_scan_window) != cp.window) { 2386 err = __hci_cmd_sync_status(hdev, 2387 HCI_OP_WRITE_PAGE_SCAN_ACTIVITY, 2388 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2389 if (err) 2390 return err; 2391 } 2392 2393 if (hdev->page_scan_type != type) 2394 err = __hci_cmd_sync_status(hdev, 2395 HCI_OP_WRITE_PAGE_SCAN_TYPE, 2396 sizeof(type), &type, 2397 HCI_CMD_TIMEOUT); 2398 2399 return err; 2400 } 2401 2402 static bool disconnected_accept_list_entries(struct hci_dev *hdev) 2403 { 2404 struct bdaddr_list *b; 2405 2406 list_for_each_entry(b, &hdev->accept_list, list) { 2407 struct hci_conn *conn; 2408 2409 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr); 2410 if (!conn) 2411 return true; 2412 2413 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 2414 return true; 2415 } 2416 2417 return false; 2418 } 2419 2420 static int hci_write_scan_enable_sync(struct hci_dev *hdev, u8 val) 2421 { 2422 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE, 2423 sizeof(val), &val, 2424 HCI_CMD_TIMEOUT); 2425 } 2426 2427 int hci_update_scan_sync(struct hci_dev *hdev) 2428 { 2429 u8 scan; 2430 2431 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 2432 return 0; 2433 2434 if (!hdev_is_powered(hdev)) 2435 return 0; 2436 2437 if (mgmt_powering_down(hdev)) 2438 return 0; 2439 2440 if (hdev->scanning_paused) 2441 return 0; 2442 2443 if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) || 2444 disconnected_accept_list_entries(hdev)) 2445 scan = SCAN_PAGE; 2446 else 2447 scan = SCAN_DISABLED; 2448 2449 if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 2450 scan |= SCAN_INQUIRY; 2451 2452 if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) && 2453 test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY)) 2454 return 0; 2455 2456 return hci_write_scan_enable_sync(hdev, scan); 2457 } 2458 2459 int hci_update_name_sync(struct hci_dev *hdev) 2460 { 2461 struct hci_cp_write_local_name cp; 2462 2463 memset(&cp, 0, sizeof(cp)); 2464 2465 memcpy(cp.name, hdev->dev_name, sizeof(cp.name)); 2466 2467 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LOCAL_NAME, 2468 sizeof(cp), &cp, 2469 HCI_CMD_TIMEOUT); 2470 } 2471 2472 /* This function perform powered update HCI command sequence after the HCI init 2473 * sequence which end up resetting all states, the sequence is as follows: 2474 * 2475 * HCI_SSP_ENABLED(Enable SSP) 2476 * HCI_LE_ENABLED(Enable LE) 2477 * HCI_LE_ENABLED(use_ll_privacy(Add local IRK to Resolving List) -> 2478 * Update adv data) 2479 * Enable Authentication 2480 * lmp_bredr_capable(Set Fast Connectable -> Set Scan Type -> Set Class -> 2481 * Set Name -> Set EIR) 2482 */ 2483 int hci_powered_update_sync(struct hci_dev *hdev) 2484 { 2485 int err; 2486 2487 /* Register the available SMP channels (BR/EDR and LE) only when 2488 * successfully powering on the controller. This late 2489 * registration is required so that LE SMP can clearly decide if 2490 * the public address or static address is used. 2491 */ 2492 smp_register(hdev); 2493 2494 err = hci_write_ssp_mode_sync(hdev, 0x01); 2495 if (err) 2496 return err; 2497 2498 err = hci_write_le_host_supported_sync(hdev, 0x01, 0x00); 2499 if (err) 2500 return err; 2501 2502 err = hci_powered_update_adv_sync(hdev); 2503 if (err) 2504 return err; 2505 2506 err = hci_write_auth_enable_sync(hdev); 2507 if (err) 2508 return err; 2509 2510 if (lmp_bredr_capable(hdev)) { 2511 if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE)) 2512 hci_write_fast_connectable_sync(hdev, true); 2513 else 2514 hci_write_fast_connectable_sync(hdev, false); 2515 hci_update_scan_sync(hdev); 2516 hci_update_class_sync(hdev); 2517 hci_update_name_sync(hdev); 2518 hci_update_eir_sync(hdev); 2519 } 2520 2521 return 0; 2522 } 2523 2524 /** 2525 * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address 2526 * (BD_ADDR) for a HCI device from 2527 * a firmware node property. 2528 * @hdev: The HCI device 2529 * 2530 * Search the firmware node for 'local-bd-address'. 2531 * 2532 * All-zero BD addresses are rejected, because those could be properties 2533 * that exist in the firmware tables, but were not updated by the firmware. For 2534 * example, the DTS could define 'local-bd-address', with zero BD addresses. 2535 */ 2536 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev) 2537 { 2538 struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent); 2539 bdaddr_t ba; 2540 int ret; 2541 2542 ret = fwnode_property_read_u8_array(fwnode, "local-bd-address", 2543 (u8 *)&ba, sizeof(ba)); 2544 if (ret < 0 || !bacmp(&ba, BDADDR_ANY)) 2545 return; 2546 2547 bacpy(&hdev->public_addr, &ba); 2548 } 2549 2550 struct hci_init_stage { 2551 int (*func)(struct hci_dev *hdev); 2552 }; 2553 2554 /* Run init stage NULL terminated function table */ 2555 static int hci_init_stage_sync(struct hci_dev *hdev, 2556 const struct hci_init_stage *stage) 2557 { 2558 size_t i; 2559 2560 for (i = 0; stage[i].func; i++) { 2561 int err; 2562 2563 err = stage[i].func(hdev); 2564 if (err) 2565 return err; 2566 } 2567 2568 return 0; 2569 } 2570 2571 /* Read Local Version */ 2572 static int hci_read_local_version_sync(struct hci_dev *hdev) 2573 { 2574 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_VERSION, 2575 0, NULL, HCI_CMD_TIMEOUT); 2576 } 2577 2578 /* Read BD Address */ 2579 static int hci_read_bd_addr_sync(struct hci_dev *hdev) 2580 { 2581 return __hci_cmd_sync_status(hdev, HCI_OP_READ_BD_ADDR, 2582 0, NULL, HCI_CMD_TIMEOUT); 2583 } 2584 2585 #define HCI_INIT(_func) \ 2586 { \ 2587 .func = _func, \ 2588 } 2589 2590 static const struct hci_init_stage hci_init0[] = { 2591 /* HCI_OP_READ_LOCAL_VERSION */ 2592 HCI_INIT(hci_read_local_version_sync), 2593 /* HCI_OP_READ_BD_ADDR */ 2594 HCI_INIT(hci_read_bd_addr_sync), 2595 {} 2596 }; 2597 2598 int hci_reset_sync(struct hci_dev *hdev) 2599 { 2600 int err; 2601 2602 set_bit(HCI_RESET, &hdev->flags); 2603 2604 err = __hci_cmd_sync_status(hdev, HCI_OP_RESET, 0, NULL, 2605 HCI_CMD_TIMEOUT); 2606 if (err) 2607 return err; 2608 2609 return 0; 2610 } 2611 2612 static int hci_init0_sync(struct hci_dev *hdev) 2613 { 2614 int err; 2615 2616 bt_dev_dbg(hdev, ""); 2617 2618 /* Reset */ 2619 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) { 2620 err = hci_reset_sync(hdev); 2621 if (err) 2622 return err; 2623 } 2624 2625 return hci_init_stage_sync(hdev, hci_init0); 2626 } 2627 2628 static int hci_unconf_init_sync(struct hci_dev *hdev) 2629 { 2630 int err; 2631 2632 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) 2633 return 0; 2634 2635 err = hci_init0_sync(hdev); 2636 if (err < 0) 2637 return err; 2638 2639 if (hci_dev_test_flag(hdev, HCI_SETUP)) 2640 hci_debugfs_create_basic(hdev); 2641 2642 return 0; 2643 } 2644 2645 /* Read Local Supported Features. */ 2646 static int hci_read_local_features_sync(struct hci_dev *hdev) 2647 { 2648 /* Not all AMP controllers support this command */ 2649 if (hdev->dev_type == HCI_AMP && !(hdev->commands[14] & 0x20)) 2650 return 0; 2651 2652 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_FEATURES, 2653 0, NULL, HCI_CMD_TIMEOUT); 2654 } 2655 2656 /* BR Controller init stage 1 command sequence */ 2657 static const struct hci_init_stage br_init1[] = { 2658 /* HCI_OP_READ_LOCAL_FEATURES */ 2659 HCI_INIT(hci_read_local_features_sync), 2660 /* HCI_OP_READ_LOCAL_VERSION */ 2661 HCI_INIT(hci_read_local_version_sync), 2662 /* HCI_OP_READ_BD_ADDR */ 2663 HCI_INIT(hci_read_bd_addr_sync), 2664 {} 2665 }; 2666 2667 /* Read Local Commands */ 2668 static int hci_read_local_cmds_sync(struct hci_dev *hdev) 2669 { 2670 /* All Bluetooth 1.2 and later controllers should support the 2671 * HCI command for reading the local supported commands. 2672 * 2673 * Unfortunately some controllers indicate Bluetooth 1.2 support, 2674 * but do not have support for this command. If that is the case, 2675 * the driver can quirk the behavior and skip reading the local 2676 * supported commands. 2677 */ 2678 if (hdev->hci_ver > BLUETOOTH_VER_1_1 && 2679 !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks)) 2680 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_COMMANDS, 2681 0, NULL, HCI_CMD_TIMEOUT); 2682 2683 return 0; 2684 } 2685 2686 /* Read Local AMP Info */ 2687 static int hci_read_local_amp_info_sync(struct hci_dev *hdev) 2688 { 2689 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_AMP_INFO, 2690 0, NULL, HCI_CMD_TIMEOUT); 2691 } 2692 2693 /* Read Data Blk size */ 2694 static int hci_read_data_block_size_sync(struct hci_dev *hdev) 2695 { 2696 return __hci_cmd_sync_status(hdev, HCI_OP_READ_DATA_BLOCK_SIZE, 2697 0, NULL, HCI_CMD_TIMEOUT); 2698 } 2699 2700 /* Read Flow Control Mode */ 2701 static int hci_read_flow_control_mode_sync(struct hci_dev *hdev) 2702 { 2703 return __hci_cmd_sync_status(hdev, HCI_OP_READ_FLOW_CONTROL_MODE, 2704 0, NULL, HCI_CMD_TIMEOUT); 2705 } 2706 2707 /* Read Location Data */ 2708 static int hci_read_location_data_sync(struct hci_dev *hdev) 2709 { 2710 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCATION_DATA, 2711 0, NULL, HCI_CMD_TIMEOUT); 2712 } 2713 2714 /* AMP Controller init stage 1 command sequence */ 2715 static const struct hci_init_stage amp_init1[] = { 2716 /* HCI_OP_READ_LOCAL_VERSION */ 2717 HCI_INIT(hci_read_local_version_sync), 2718 /* HCI_OP_READ_LOCAL_COMMANDS */ 2719 HCI_INIT(hci_read_local_cmds_sync), 2720 /* HCI_OP_READ_LOCAL_AMP_INFO */ 2721 HCI_INIT(hci_read_local_amp_info_sync), 2722 /* HCI_OP_READ_DATA_BLOCK_SIZE */ 2723 HCI_INIT(hci_read_data_block_size_sync), 2724 /* HCI_OP_READ_FLOW_CONTROL_MODE */ 2725 HCI_INIT(hci_read_flow_control_mode_sync), 2726 /* HCI_OP_READ_LOCATION_DATA */ 2727 HCI_INIT(hci_read_location_data_sync), 2728 }; 2729 2730 static int hci_init1_sync(struct hci_dev *hdev) 2731 { 2732 int err; 2733 2734 bt_dev_dbg(hdev, ""); 2735 2736 /* Reset */ 2737 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) { 2738 err = hci_reset_sync(hdev); 2739 if (err) 2740 return err; 2741 } 2742 2743 switch (hdev->dev_type) { 2744 case HCI_PRIMARY: 2745 hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED; 2746 return hci_init_stage_sync(hdev, br_init1); 2747 case HCI_AMP: 2748 hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED; 2749 return hci_init_stage_sync(hdev, amp_init1); 2750 default: 2751 bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type); 2752 break; 2753 } 2754 2755 return 0; 2756 } 2757 2758 /* AMP Controller init stage 2 command sequence */ 2759 static const struct hci_init_stage amp_init2[] = { 2760 /* HCI_OP_READ_LOCAL_FEATURES */ 2761 HCI_INIT(hci_read_local_features_sync), 2762 }; 2763 2764 /* Read Buffer Size (ACL mtu, max pkt, etc.) */ 2765 static int hci_read_buffer_size_sync(struct hci_dev *hdev) 2766 { 2767 return __hci_cmd_sync_status(hdev, HCI_OP_READ_BUFFER_SIZE, 2768 0, NULL, HCI_CMD_TIMEOUT); 2769 } 2770 2771 /* Read Class of Device */ 2772 static int hci_read_dev_class_sync(struct hci_dev *hdev) 2773 { 2774 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLASS_OF_DEV, 2775 0, NULL, HCI_CMD_TIMEOUT); 2776 } 2777 2778 /* Read Local Name */ 2779 static int hci_read_local_name_sync(struct hci_dev *hdev) 2780 { 2781 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_NAME, 2782 0, NULL, HCI_CMD_TIMEOUT); 2783 } 2784 2785 /* Read Voice Setting */ 2786 static int hci_read_voice_setting_sync(struct hci_dev *hdev) 2787 { 2788 return __hci_cmd_sync_status(hdev, HCI_OP_READ_VOICE_SETTING, 2789 0, NULL, HCI_CMD_TIMEOUT); 2790 } 2791 2792 /* Read Number of Supported IAC */ 2793 static int hci_read_num_supported_iac_sync(struct hci_dev *hdev) 2794 { 2795 return __hci_cmd_sync_status(hdev, HCI_OP_READ_NUM_SUPPORTED_IAC, 2796 0, NULL, HCI_CMD_TIMEOUT); 2797 } 2798 2799 /* Read Current IAC LAP */ 2800 static int hci_read_current_iac_lap_sync(struct hci_dev *hdev) 2801 { 2802 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CURRENT_IAC_LAP, 2803 0, NULL, HCI_CMD_TIMEOUT); 2804 } 2805 2806 static int hci_set_event_filter_sync(struct hci_dev *hdev, u8 flt_type, 2807 u8 cond_type, bdaddr_t *bdaddr, 2808 u8 auto_accept) 2809 { 2810 struct hci_cp_set_event_filter cp; 2811 2812 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 2813 return 0; 2814 2815 memset(&cp, 0, sizeof(cp)); 2816 cp.flt_type = flt_type; 2817 2818 if (flt_type != HCI_FLT_CLEAR_ALL) { 2819 cp.cond_type = cond_type; 2820 bacpy(&cp.addr_conn_flt.bdaddr, bdaddr); 2821 cp.addr_conn_flt.auto_accept = auto_accept; 2822 } 2823 2824 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_FLT, 2825 flt_type == HCI_FLT_CLEAR_ALL ? 2826 sizeof(cp.flt_type) : sizeof(cp), &cp, 2827 HCI_CMD_TIMEOUT); 2828 } 2829 2830 static int hci_clear_event_filter_sync(struct hci_dev *hdev) 2831 { 2832 if (!hci_dev_test_flag(hdev, HCI_EVENT_FILTER_CONFIGURED)) 2833 return 0; 2834 2835 return hci_set_event_filter_sync(hdev, HCI_FLT_CLEAR_ALL, 0x00, 2836 BDADDR_ANY, 0x00); 2837 } 2838 2839 /* Connection accept timeout ~20 secs */ 2840 static int hci_write_ca_timeout_sync(struct hci_dev *hdev) 2841 { 2842 __le16 param = cpu_to_le16(0x7d00); 2843 2844 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CA_TIMEOUT, 2845 sizeof(param), ¶m, HCI_CMD_TIMEOUT); 2846 } 2847 2848 /* BR Controller init stage 2 command sequence */ 2849 static const struct hci_init_stage br_init2[] = { 2850 /* HCI_OP_READ_BUFFER_SIZE */ 2851 HCI_INIT(hci_read_buffer_size_sync), 2852 /* HCI_OP_READ_CLASS_OF_DEV */ 2853 HCI_INIT(hci_read_dev_class_sync), 2854 /* HCI_OP_READ_LOCAL_NAME */ 2855 HCI_INIT(hci_read_local_name_sync), 2856 /* HCI_OP_READ_VOICE_SETTING */ 2857 HCI_INIT(hci_read_voice_setting_sync), 2858 /* HCI_OP_READ_NUM_SUPPORTED_IAC */ 2859 HCI_INIT(hci_read_num_supported_iac_sync), 2860 /* HCI_OP_READ_CURRENT_IAC_LAP */ 2861 HCI_INIT(hci_read_current_iac_lap_sync), 2862 /* HCI_OP_SET_EVENT_FLT */ 2863 HCI_INIT(hci_clear_event_filter_sync), 2864 /* HCI_OP_WRITE_CA_TIMEOUT */ 2865 HCI_INIT(hci_write_ca_timeout_sync), 2866 {} 2867 }; 2868 2869 static int hci_write_ssp_mode_1_sync(struct hci_dev *hdev) 2870 { 2871 u8 mode = 0x01; 2872 2873 if (!lmp_ssp_capable(hdev) || !hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 2874 return 0; 2875 2876 /* When SSP is available, then the host features page 2877 * should also be available as well. However some 2878 * controllers list the max_page as 0 as long as SSP 2879 * has not been enabled. To achieve proper debugging 2880 * output, force the minimum max_page to 1 at least. 2881 */ 2882 hdev->max_page = 0x01; 2883 2884 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE, 2885 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 2886 } 2887 2888 static int hci_write_eir_sync(struct hci_dev *hdev) 2889 { 2890 struct hci_cp_write_eir cp; 2891 2892 if (!lmp_ssp_capable(hdev) || hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 2893 return 0; 2894 2895 memset(hdev->eir, 0, sizeof(hdev->eir)); 2896 memset(&cp, 0, sizeof(cp)); 2897 2898 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp, 2899 HCI_CMD_TIMEOUT); 2900 } 2901 2902 static int hci_write_inquiry_mode_sync(struct hci_dev *hdev) 2903 { 2904 u8 mode; 2905 2906 if (!lmp_inq_rssi_capable(hdev) && 2907 !test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) 2908 return 0; 2909 2910 /* If Extended Inquiry Result events are supported, then 2911 * they are clearly preferred over Inquiry Result with RSSI 2912 * events. 2913 */ 2914 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01; 2915 2916 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_INQUIRY_MODE, 2917 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 2918 } 2919 2920 static int hci_read_inq_rsp_tx_power_sync(struct hci_dev *hdev) 2921 { 2922 if (!lmp_inq_tx_pwr_capable(hdev)) 2923 return 0; 2924 2925 return __hci_cmd_sync_status(hdev, HCI_OP_READ_INQ_RSP_TX_POWER, 2926 0, NULL, HCI_CMD_TIMEOUT); 2927 } 2928 2929 static int hci_read_local_ext_features_sync(struct hci_dev *hdev, u8 page) 2930 { 2931 struct hci_cp_read_local_ext_features cp; 2932 2933 if (!lmp_ext_feat_capable(hdev)) 2934 return 0; 2935 2936 memset(&cp, 0, sizeof(cp)); 2937 cp.page = page; 2938 2939 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_EXT_FEATURES, 2940 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2941 } 2942 2943 static int hci_read_local_ext_features_1_sync(struct hci_dev *hdev) 2944 { 2945 return hci_read_local_ext_features_sync(hdev, 0x01); 2946 } 2947 2948 /* HCI Controller init stage 2 command sequence */ 2949 static const struct hci_init_stage hci_init2[] = { 2950 /* HCI_OP_READ_LOCAL_COMMANDS */ 2951 HCI_INIT(hci_read_local_cmds_sync), 2952 /* HCI_OP_WRITE_SSP_MODE */ 2953 HCI_INIT(hci_write_ssp_mode_1_sync), 2954 /* HCI_OP_WRITE_EIR */ 2955 HCI_INIT(hci_write_eir_sync), 2956 /* HCI_OP_WRITE_INQUIRY_MODE */ 2957 HCI_INIT(hci_write_inquiry_mode_sync), 2958 /* HCI_OP_READ_INQ_RSP_TX_POWER */ 2959 HCI_INIT(hci_read_inq_rsp_tx_power_sync), 2960 /* HCI_OP_READ_LOCAL_EXT_FEATURES */ 2961 HCI_INIT(hci_read_local_ext_features_1_sync), 2962 /* HCI_OP_WRITE_AUTH_ENABLE */ 2963 HCI_INIT(hci_write_auth_enable_sync), 2964 {} 2965 }; 2966 2967 /* Read LE Buffer Size */ 2968 static int hci_le_read_buffer_size_sync(struct hci_dev *hdev) 2969 { 2970 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_BUFFER_SIZE, 2971 0, NULL, HCI_CMD_TIMEOUT); 2972 } 2973 2974 /* Read LE Local Supported Features */ 2975 static int hci_le_read_local_features_sync(struct hci_dev *hdev) 2976 { 2977 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_LOCAL_FEATURES, 2978 0, NULL, HCI_CMD_TIMEOUT); 2979 } 2980 2981 /* Read LE Supported States */ 2982 static int hci_le_read_supported_states_sync(struct hci_dev *hdev) 2983 { 2984 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_SUPPORTED_STATES, 2985 0, NULL, HCI_CMD_TIMEOUT); 2986 } 2987 2988 /* LE Controller init stage 2 command sequence */ 2989 static const struct hci_init_stage le_init2[] = { 2990 /* HCI_OP_LE_READ_BUFFER_SIZE */ 2991 HCI_INIT(hci_le_read_buffer_size_sync), 2992 /* HCI_OP_LE_READ_LOCAL_FEATURES */ 2993 HCI_INIT(hci_le_read_local_features_sync), 2994 /* HCI_OP_LE_READ_SUPPORTED_STATES */ 2995 HCI_INIT(hci_le_read_supported_states_sync), 2996 {} 2997 }; 2998 2999 static int hci_init2_sync(struct hci_dev *hdev) 3000 { 3001 int err; 3002 3003 bt_dev_dbg(hdev, ""); 3004 3005 if (hdev->dev_type == HCI_AMP) 3006 return hci_init_stage_sync(hdev, amp_init2); 3007 3008 if (lmp_bredr_capable(hdev)) { 3009 err = hci_init_stage_sync(hdev, br_init2); 3010 if (err) 3011 return err; 3012 } else { 3013 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED); 3014 } 3015 3016 if (lmp_le_capable(hdev)) { 3017 err = hci_init_stage_sync(hdev, le_init2); 3018 if (err) 3019 return err; 3020 /* LE-only controllers have LE implicitly enabled */ 3021 if (!lmp_bredr_capable(hdev)) 3022 hci_dev_set_flag(hdev, HCI_LE_ENABLED); 3023 } 3024 3025 return hci_init_stage_sync(hdev, hci_init2); 3026 } 3027 3028 static int hci_set_event_mask_sync(struct hci_dev *hdev) 3029 { 3030 /* The second byte is 0xff instead of 0x9f (two reserved bits 3031 * disabled) since a Broadcom 1.2 dongle doesn't respond to the 3032 * command otherwise. 3033 */ 3034 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 }; 3035 3036 /* CSR 1.1 dongles does not accept any bitfield so don't try to set 3037 * any event mask for pre 1.2 devices. 3038 */ 3039 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 3040 return 0; 3041 3042 if (lmp_bredr_capable(hdev)) { 3043 events[4] |= 0x01; /* Flow Specification Complete */ 3044 3045 /* Don't set Disconnect Complete when suspended as that 3046 * would wakeup the host when disconnecting due to 3047 * suspend. 3048 */ 3049 if (hdev->suspended) 3050 events[0] &= 0xef; 3051 } else { 3052 /* Use a different default for LE-only devices */ 3053 memset(events, 0, sizeof(events)); 3054 events[1] |= 0x20; /* Command Complete */ 3055 events[1] |= 0x40; /* Command Status */ 3056 events[1] |= 0x80; /* Hardware Error */ 3057 3058 /* If the controller supports the Disconnect command, enable 3059 * the corresponding event. In addition enable packet flow 3060 * control related events. 3061 */ 3062 if (hdev->commands[0] & 0x20) { 3063 /* Don't set Disconnect Complete when suspended as that 3064 * would wakeup the host when disconnecting due to 3065 * suspend. 3066 */ 3067 if (!hdev->suspended) 3068 events[0] |= 0x10; /* Disconnection Complete */ 3069 events[2] |= 0x04; /* Number of Completed Packets */ 3070 events[3] |= 0x02; /* Data Buffer Overflow */ 3071 } 3072 3073 /* If the controller supports the Read Remote Version 3074 * Information command, enable the corresponding event. 3075 */ 3076 if (hdev->commands[2] & 0x80) 3077 events[1] |= 0x08; /* Read Remote Version Information 3078 * Complete 3079 */ 3080 3081 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) { 3082 events[0] |= 0x80; /* Encryption Change */ 3083 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 3084 } 3085 } 3086 3087 if (lmp_inq_rssi_capable(hdev) || 3088 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) 3089 events[4] |= 0x02; /* Inquiry Result with RSSI */ 3090 3091 if (lmp_ext_feat_capable(hdev)) 3092 events[4] |= 0x04; /* Read Remote Extended Features Complete */ 3093 3094 if (lmp_esco_capable(hdev)) { 3095 events[5] |= 0x08; /* Synchronous Connection Complete */ 3096 events[5] |= 0x10; /* Synchronous Connection Changed */ 3097 } 3098 3099 if (lmp_sniffsubr_capable(hdev)) 3100 events[5] |= 0x20; /* Sniff Subrating */ 3101 3102 if (lmp_pause_enc_capable(hdev)) 3103 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 3104 3105 if (lmp_ext_inq_capable(hdev)) 3106 events[5] |= 0x40; /* Extended Inquiry Result */ 3107 3108 if (lmp_no_flush_capable(hdev)) 3109 events[7] |= 0x01; /* Enhanced Flush Complete */ 3110 3111 if (lmp_lsto_capable(hdev)) 3112 events[6] |= 0x80; /* Link Supervision Timeout Changed */ 3113 3114 if (lmp_ssp_capable(hdev)) { 3115 events[6] |= 0x01; /* IO Capability Request */ 3116 events[6] |= 0x02; /* IO Capability Response */ 3117 events[6] |= 0x04; /* User Confirmation Request */ 3118 events[6] |= 0x08; /* User Passkey Request */ 3119 events[6] |= 0x10; /* Remote OOB Data Request */ 3120 events[6] |= 0x20; /* Simple Pairing Complete */ 3121 events[7] |= 0x04; /* User Passkey Notification */ 3122 events[7] |= 0x08; /* Keypress Notification */ 3123 events[7] |= 0x10; /* Remote Host Supported 3124 * Features Notification 3125 */ 3126 } 3127 3128 if (lmp_le_capable(hdev)) 3129 events[7] |= 0x20; /* LE Meta-Event */ 3130 3131 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK, 3132 sizeof(events), events, HCI_CMD_TIMEOUT); 3133 } 3134 3135 static int hci_read_stored_link_key_sync(struct hci_dev *hdev) 3136 { 3137 struct hci_cp_read_stored_link_key cp; 3138 3139 if (!(hdev->commands[6] & 0x20) || 3140 test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) 3141 return 0; 3142 3143 memset(&cp, 0, sizeof(cp)); 3144 bacpy(&cp.bdaddr, BDADDR_ANY); 3145 cp.read_all = 0x01; 3146 3147 return __hci_cmd_sync_status(hdev, HCI_OP_READ_STORED_LINK_KEY, 3148 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3149 } 3150 3151 static int hci_setup_link_policy_sync(struct hci_dev *hdev) 3152 { 3153 struct hci_cp_write_def_link_policy cp; 3154 u16 link_policy = 0; 3155 3156 if (!(hdev->commands[5] & 0x10)) 3157 return 0; 3158 3159 memset(&cp, 0, sizeof(cp)); 3160 3161 if (lmp_rswitch_capable(hdev)) 3162 link_policy |= HCI_LP_RSWITCH; 3163 if (lmp_hold_capable(hdev)) 3164 link_policy |= HCI_LP_HOLD; 3165 if (lmp_sniff_capable(hdev)) 3166 link_policy |= HCI_LP_SNIFF; 3167 if (lmp_park_capable(hdev)) 3168 link_policy |= HCI_LP_PARK; 3169 3170 cp.policy = cpu_to_le16(link_policy); 3171 3172 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY, 3173 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3174 } 3175 3176 static int hci_read_page_scan_activity_sync(struct hci_dev *hdev) 3177 { 3178 if (!(hdev->commands[8] & 0x01)) 3179 return 0; 3180 3181 return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 3182 0, NULL, HCI_CMD_TIMEOUT); 3183 } 3184 3185 static int hci_read_def_err_data_reporting_sync(struct hci_dev *hdev) 3186 { 3187 if (!(hdev->commands[18] & 0x04) || 3188 test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) 3189 return 0; 3190 3191 return __hci_cmd_sync_status(hdev, HCI_OP_READ_DEF_ERR_DATA_REPORTING, 3192 0, NULL, HCI_CMD_TIMEOUT); 3193 } 3194 3195 static int hci_read_page_scan_type_sync(struct hci_dev *hdev) 3196 { 3197 /* Some older Broadcom based Bluetooth 1.2 controllers do not 3198 * support the Read Page Scan Type command. Check support for 3199 * this command in the bit mask of supported commands. 3200 */ 3201 if (!(hdev->commands[13] & 0x01)) 3202 return 0; 3203 3204 return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_TYPE, 3205 0, NULL, HCI_CMD_TIMEOUT); 3206 } 3207 3208 /* Read features beyond page 1 if available */ 3209 static int hci_read_local_ext_features_all_sync(struct hci_dev *hdev) 3210 { 3211 u8 page; 3212 int err; 3213 3214 if (!lmp_ext_feat_capable(hdev)) 3215 return 0; 3216 3217 for (page = 2; page < HCI_MAX_PAGES && page <= hdev->max_page; 3218 page++) { 3219 err = hci_read_local_ext_features_sync(hdev, page); 3220 if (err) 3221 return err; 3222 } 3223 3224 return 0; 3225 } 3226 3227 /* HCI Controller init stage 3 command sequence */ 3228 static const struct hci_init_stage hci_init3[] = { 3229 /* HCI_OP_SET_EVENT_MASK */ 3230 HCI_INIT(hci_set_event_mask_sync), 3231 /* HCI_OP_READ_STORED_LINK_KEY */ 3232 HCI_INIT(hci_read_stored_link_key_sync), 3233 /* HCI_OP_WRITE_DEF_LINK_POLICY */ 3234 HCI_INIT(hci_setup_link_policy_sync), 3235 /* HCI_OP_READ_PAGE_SCAN_ACTIVITY */ 3236 HCI_INIT(hci_read_page_scan_activity_sync), 3237 /* HCI_OP_READ_DEF_ERR_DATA_REPORTING */ 3238 HCI_INIT(hci_read_def_err_data_reporting_sync), 3239 /* HCI_OP_READ_PAGE_SCAN_TYPE */ 3240 HCI_INIT(hci_read_page_scan_type_sync), 3241 /* HCI_OP_READ_LOCAL_EXT_FEATURES */ 3242 HCI_INIT(hci_read_local_ext_features_all_sync), 3243 {} 3244 }; 3245 3246 static int hci_le_set_event_mask_sync(struct hci_dev *hdev) 3247 { 3248 u8 events[8]; 3249 3250 if (!lmp_le_capable(hdev)) 3251 return 0; 3252 3253 memset(events, 0, sizeof(events)); 3254 3255 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) 3256 events[0] |= 0x10; /* LE Long Term Key Request */ 3257 3258 /* If controller supports the Connection Parameters Request 3259 * Link Layer Procedure, enable the corresponding event. 3260 */ 3261 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC) 3262 /* LE Remote Connection Parameter Request */ 3263 events[0] |= 0x20; 3264 3265 /* If the controller supports the Data Length Extension 3266 * feature, enable the corresponding event. 3267 */ 3268 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) 3269 events[0] |= 0x40; /* LE Data Length Change */ 3270 3271 /* If the controller supports LL Privacy feature or LE Extended Adv, 3272 * enable the corresponding event. 3273 */ 3274 if (use_enhanced_conn_complete(hdev)) 3275 events[1] |= 0x02; /* LE Enhanced Connection Complete */ 3276 3277 /* If the controller supports Extended Scanner Filter 3278 * Policies, enable the corresponding event. 3279 */ 3280 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY) 3281 events[1] |= 0x04; /* LE Direct Advertising Report */ 3282 3283 /* If the controller supports Channel Selection Algorithm #2 3284 * feature, enable the corresponding event. 3285 */ 3286 if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2) 3287 events[2] |= 0x08; /* LE Channel Selection Algorithm */ 3288 3289 /* If the controller supports the LE Set Scan Enable command, 3290 * enable the corresponding advertising report event. 3291 */ 3292 if (hdev->commands[26] & 0x08) 3293 events[0] |= 0x02; /* LE Advertising Report */ 3294 3295 /* If the controller supports the LE Create Connection 3296 * command, enable the corresponding event. 3297 */ 3298 if (hdev->commands[26] & 0x10) 3299 events[0] |= 0x01; /* LE Connection Complete */ 3300 3301 /* If the controller supports the LE Connection Update 3302 * command, enable the corresponding event. 3303 */ 3304 if (hdev->commands[27] & 0x04) 3305 events[0] |= 0x04; /* LE Connection Update Complete */ 3306 3307 /* If the controller supports the LE Read Remote Used Features 3308 * command, enable the corresponding event. 3309 */ 3310 if (hdev->commands[27] & 0x20) 3311 /* LE Read Remote Used Features Complete */ 3312 events[0] |= 0x08; 3313 3314 /* If the controller supports the LE Read Local P-256 3315 * Public Key command, enable the corresponding event. 3316 */ 3317 if (hdev->commands[34] & 0x02) 3318 /* LE Read Local P-256 Public Key Complete */ 3319 events[0] |= 0x80; 3320 3321 /* If the controller supports the LE Generate DHKey 3322 * command, enable the corresponding event. 3323 */ 3324 if (hdev->commands[34] & 0x04) 3325 events[1] |= 0x01; /* LE Generate DHKey Complete */ 3326 3327 /* If the controller supports the LE Set Default PHY or 3328 * LE Set PHY commands, enable the corresponding event. 3329 */ 3330 if (hdev->commands[35] & (0x20 | 0x40)) 3331 events[1] |= 0x08; /* LE PHY Update Complete */ 3332 3333 /* If the controller supports LE Set Extended Scan Parameters 3334 * and LE Set Extended Scan Enable commands, enable the 3335 * corresponding event. 3336 */ 3337 if (use_ext_scan(hdev)) 3338 events[1] |= 0x10; /* LE Extended Advertising Report */ 3339 3340 /* If the controller supports the LE Extended Advertising 3341 * command, enable the corresponding event. 3342 */ 3343 if (ext_adv_capable(hdev)) 3344 events[2] |= 0x02; /* LE Advertising Set Terminated */ 3345 3346 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EVENT_MASK, 3347 sizeof(events), events, HCI_CMD_TIMEOUT); 3348 } 3349 3350 /* Read LE Advertising Channel TX Power */ 3351 static int hci_le_read_adv_tx_power_sync(struct hci_dev *hdev) 3352 { 3353 if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) { 3354 /* HCI TS spec forbids mixing of legacy and extended 3355 * advertising commands wherein READ_ADV_TX_POWER is 3356 * also included. So do not call it if extended adv 3357 * is supported otherwise controller will return 3358 * COMMAND_DISALLOWED for extended commands. 3359 */ 3360 return __hci_cmd_sync_status(hdev, 3361 HCI_OP_LE_READ_ADV_TX_POWER, 3362 0, NULL, HCI_CMD_TIMEOUT); 3363 } 3364 3365 return 0; 3366 } 3367 3368 /* Read LE Min/Max Tx Power*/ 3369 static int hci_le_read_tx_power_sync(struct hci_dev *hdev) 3370 { 3371 if (!(hdev->commands[38] & 0x80) || 3372 test_bit(HCI_QUIRK_BROKEN_READ_TRANSMIT_POWER, &hdev->quirks)) 3373 return 0; 3374 3375 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_TRANSMIT_POWER, 3376 0, NULL, HCI_CMD_TIMEOUT); 3377 } 3378 3379 /* Read LE Accept List Size */ 3380 static int hci_le_read_accept_list_size_sync(struct hci_dev *hdev) 3381 { 3382 if (!(hdev->commands[26] & 0x40)) 3383 return 0; 3384 3385 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_ACCEPT_LIST_SIZE, 3386 0, NULL, HCI_CMD_TIMEOUT); 3387 } 3388 3389 /* Clear LE Accept List */ 3390 static int hci_le_clear_accept_list_sync(struct hci_dev *hdev) 3391 { 3392 if (!(hdev->commands[26] & 0x80)) 3393 return 0; 3394 3395 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL, 3396 HCI_CMD_TIMEOUT); 3397 } 3398 3399 /* Read LE Resolving List Size */ 3400 static int hci_le_read_resolv_list_size_sync(struct hci_dev *hdev) 3401 { 3402 if (!(hdev->commands[34] & 0x40)) 3403 return 0; 3404 3405 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_RESOLV_LIST_SIZE, 3406 0, NULL, HCI_CMD_TIMEOUT); 3407 } 3408 3409 /* Clear LE Resolving List */ 3410 static int hci_le_clear_resolv_list_sync(struct hci_dev *hdev) 3411 { 3412 if (!(hdev->commands[34] & 0x20)) 3413 return 0; 3414 3415 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL, 3416 HCI_CMD_TIMEOUT); 3417 } 3418 3419 /* Set RPA timeout */ 3420 static int hci_le_set_rpa_timeout_sync(struct hci_dev *hdev) 3421 { 3422 __le16 timeout = cpu_to_le16(hdev->rpa_timeout); 3423 3424 if (!(hdev->commands[35] & 0x04)) 3425 return 0; 3426 3427 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RPA_TIMEOUT, 3428 sizeof(timeout), &timeout, 3429 HCI_CMD_TIMEOUT); 3430 } 3431 3432 /* Read LE Maximum Data Length */ 3433 static int hci_le_read_max_data_len_sync(struct hci_dev *hdev) 3434 { 3435 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 3436 return 0; 3437 3438 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL, 3439 HCI_CMD_TIMEOUT); 3440 } 3441 3442 /* Read LE Suggested Default Data Length */ 3443 static int hci_le_read_def_data_len_sync(struct hci_dev *hdev) 3444 { 3445 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 3446 return 0; 3447 3448 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL, 3449 HCI_CMD_TIMEOUT); 3450 } 3451 3452 /* Read LE Number of Supported Advertising Sets */ 3453 static int hci_le_read_num_support_adv_sets_sync(struct hci_dev *hdev) 3454 { 3455 if (!ext_adv_capable(hdev)) 3456 return 0; 3457 3458 return __hci_cmd_sync_status(hdev, 3459 HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS, 3460 0, NULL, HCI_CMD_TIMEOUT); 3461 } 3462 3463 /* Write LE Host Supported */ 3464 static int hci_set_le_support_sync(struct hci_dev *hdev) 3465 { 3466 struct hci_cp_write_le_host_supported cp; 3467 3468 /* LE-only devices do not support explicit enablement */ 3469 if (!lmp_bredr_capable(hdev)) 3470 return 0; 3471 3472 memset(&cp, 0, sizeof(cp)); 3473 3474 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 3475 cp.le = 0x01; 3476 cp.simul = 0x00; 3477 } 3478 3479 if (cp.le == lmp_host_le_capable(hdev)) 3480 return 0; 3481 3482 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED, 3483 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3484 } 3485 3486 /* LE Controller init stage 3 command sequence */ 3487 static const struct hci_init_stage le_init3[] = { 3488 /* HCI_OP_LE_SET_EVENT_MASK */ 3489 HCI_INIT(hci_le_set_event_mask_sync), 3490 /* HCI_OP_LE_READ_ADV_TX_POWER */ 3491 HCI_INIT(hci_le_read_adv_tx_power_sync), 3492 /* HCI_OP_LE_READ_TRANSMIT_POWER */ 3493 HCI_INIT(hci_le_read_tx_power_sync), 3494 /* HCI_OP_LE_READ_ACCEPT_LIST_SIZE */ 3495 HCI_INIT(hci_le_read_accept_list_size_sync), 3496 /* HCI_OP_LE_CLEAR_ACCEPT_LIST */ 3497 HCI_INIT(hci_le_clear_accept_list_sync), 3498 /* HCI_OP_LE_READ_RESOLV_LIST_SIZE */ 3499 HCI_INIT(hci_le_read_resolv_list_size_sync), 3500 /* HCI_OP_LE_CLEAR_RESOLV_LIST */ 3501 HCI_INIT(hci_le_clear_resolv_list_sync), 3502 /* HCI_OP_LE_SET_RPA_TIMEOUT */ 3503 HCI_INIT(hci_le_set_rpa_timeout_sync), 3504 /* HCI_OP_LE_READ_MAX_DATA_LEN */ 3505 HCI_INIT(hci_le_read_max_data_len_sync), 3506 /* HCI_OP_LE_READ_DEF_DATA_LEN */ 3507 HCI_INIT(hci_le_read_def_data_len_sync), 3508 /* HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS */ 3509 HCI_INIT(hci_le_read_num_support_adv_sets_sync), 3510 /* HCI_OP_WRITE_LE_HOST_SUPPORTED */ 3511 HCI_INIT(hci_set_le_support_sync), 3512 {} 3513 }; 3514 3515 static int hci_init3_sync(struct hci_dev *hdev) 3516 { 3517 int err; 3518 3519 bt_dev_dbg(hdev, ""); 3520 3521 err = hci_init_stage_sync(hdev, hci_init3); 3522 if (err) 3523 return err; 3524 3525 if (lmp_le_capable(hdev)) 3526 return hci_init_stage_sync(hdev, le_init3); 3527 3528 return 0; 3529 } 3530 3531 static int hci_delete_stored_link_key_sync(struct hci_dev *hdev) 3532 { 3533 struct hci_cp_delete_stored_link_key cp; 3534 3535 /* Some Broadcom based Bluetooth controllers do not support the 3536 * Delete Stored Link Key command. They are clearly indicating its 3537 * absence in the bit mask of supported commands. 3538 * 3539 * Check the supported commands and only if the command is marked 3540 * as supported send it. If not supported assume that the controller 3541 * does not have actual support for stored link keys which makes this 3542 * command redundant anyway. 3543 * 3544 * Some controllers indicate that they support handling deleting 3545 * stored link keys, but they don't. The quirk lets a driver 3546 * just disable this command. 3547 */ 3548 if (!(hdev->commands[6] & 0x80) || 3549 test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) 3550 return 0; 3551 3552 memset(&cp, 0, sizeof(cp)); 3553 bacpy(&cp.bdaddr, BDADDR_ANY); 3554 cp.delete_all = 0x01; 3555 3556 return __hci_cmd_sync_status(hdev, HCI_OP_DELETE_STORED_LINK_KEY, 3557 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3558 } 3559 3560 static int hci_set_event_mask_page_2_sync(struct hci_dev *hdev) 3561 { 3562 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 3563 bool changed = false; 3564 3565 /* Set event mask page 2 if the HCI command for it is supported */ 3566 if (!(hdev->commands[22] & 0x04)) 3567 return 0; 3568 3569 /* If Connectionless Peripheral Broadcast central role is supported 3570 * enable all necessary events for it. 3571 */ 3572 if (lmp_cpb_central_capable(hdev)) { 3573 events[1] |= 0x40; /* Triggered Clock Capture */ 3574 events[1] |= 0x80; /* Synchronization Train Complete */ 3575 events[2] |= 0x10; /* Peripheral Page Response Timeout */ 3576 events[2] |= 0x20; /* CPB Channel Map Change */ 3577 changed = true; 3578 } 3579 3580 /* If Connectionless Peripheral Broadcast peripheral role is supported 3581 * enable all necessary events for it. 3582 */ 3583 if (lmp_cpb_peripheral_capable(hdev)) { 3584 events[2] |= 0x01; /* Synchronization Train Received */ 3585 events[2] |= 0x02; /* CPB Receive */ 3586 events[2] |= 0x04; /* CPB Timeout */ 3587 events[2] |= 0x08; /* Truncated Page Complete */ 3588 changed = true; 3589 } 3590 3591 /* Enable Authenticated Payload Timeout Expired event if supported */ 3592 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) { 3593 events[2] |= 0x80; 3594 changed = true; 3595 } 3596 3597 /* Some Broadcom based controllers indicate support for Set Event 3598 * Mask Page 2 command, but then actually do not support it. Since 3599 * the default value is all bits set to zero, the command is only 3600 * required if the event mask has to be changed. In case no change 3601 * to the event mask is needed, skip this command. 3602 */ 3603 if (!changed) 3604 return 0; 3605 3606 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK_PAGE_2, 3607 sizeof(events), events, HCI_CMD_TIMEOUT); 3608 } 3609 3610 /* Read local codec list if the HCI command is supported */ 3611 static int hci_read_local_codecs_sync(struct hci_dev *hdev) 3612 { 3613 if (!(hdev->commands[29] & 0x20)) 3614 return 0; 3615 3616 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_CODECS, 0, NULL, 3617 HCI_CMD_TIMEOUT); 3618 } 3619 3620 /* Read local pairing options if the HCI command is supported */ 3621 static int hci_read_local_pairing_opts_sync(struct hci_dev *hdev) 3622 { 3623 if (!(hdev->commands[41] & 0x08)) 3624 return 0; 3625 3626 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_PAIRING_OPTS, 3627 0, NULL, HCI_CMD_TIMEOUT); 3628 } 3629 3630 /* Get MWS transport configuration if the HCI command is supported */ 3631 static int hci_get_mws_transport_config_sync(struct hci_dev *hdev) 3632 { 3633 if (!(hdev->commands[30] & 0x08)) 3634 return 0; 3635 3636 return __hci_cmd_sync_status(hdev, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 3637 0, NULL, HCI_CMD_TIMEOUT); 3638 } 3639 3640 /* Check for Synchronization Train support */ 3641 static int hci_read_sync_train_params_sync(struct hci_dev *hdev) 3642 { 3643 if (!lmp_sync_train_capable(hdev)) 3644 return 0; 3645 3646 return __hci_cmd_sync_status(hdev, HCI_OP_READ_SYNC_TRAIN_PARAMS, 3647 0, NULL, HCI_CMD_TIMEOUT); 3648 } 3649 3650 /* Enable Secure Connections if supported and configured */ 3651 static int hci_write_sc_support_1_sync(struct hci_dev *hdev) 3652 { 3653 u8 support = 0x01; 3654 3655 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) || 3656 !bredr_sc_enabled(hdev)) 3657 return 0; 3658 3659 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT, 3660 sizeof(support), &support, 3661 HCI_CMD_TIMEOUT); 3662 } 3663 3664 /* Set erroneous data reporting if supported to the wideband speech 3665 * setting value 3666 */ 3667 static int hci_set_err_data_report_sync(struct hci_dev *hdev) 3668 { 3669 struct hci_cp_write_def_err_data_reporting cp; 3670 bool enabled = hci_dev_test_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED); 3671 3672 if (!(hdev->commands[18] & 0x08) || 3673 test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) 3674 return 0; 3675 3676 if (enabled == hdev->err_data_reporting) 3677 return 0; 3678 3679 memset(&cp, 0, sizeof(cp)); 3680 cp.err_data_reporting = enabled ? ERR_DATA_REPORTING_ENABLED : 3681 ERR_DATA_REPORTING_DISABLED; 3682 3683 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING, 3684 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3685 } 3686 3687 static const struct hci_init_stage hci_init4[] = { 3688 /* HCI_OP_DELETE_STORED_LINK_KEY */ 3689 HCI_INIT(hci_delete_stored_link_key_sync), 3690 /* HCI_OP_SET_EVENT_MASK_PAGE_2 */ 3691 HCI_INIT(hci_set_event_mask_page_2_sync), 3692 /* HCI_OP_READ_LOCAL_CODECS */ 3693 HCI_INIT(hci_read_local_codecs_sync), 3694 /* HCI_OP_READ_LOCAL_PAIRING_OPTS */ 3695 HCI_INIT(hci_read_local_pairing_opts_sync), 3696 /* HCI_OP_GET_MWS_TRANSPORT_CONFIG */ 3697 HCI_INIT(hci_get_mws_transport_config_sync), 3698 /* HCI_OP_READ_SYNC_TRAIN_PARAMS */ 3699 HCI_INIT(hci_read_sync_train_params_sync), 3700 /* HCI_OP_WRITE_SC_SUPPORT */ 3701 HCI_INIT(hci_write_sc_support_1_sync), 3702 /* HCI_OP_WRITE_DEF_ERR_DATA_REPORTING */ 3703 HCI_INIT(hci_set_err_data_report_sync), 3704 {} 3705 }; 3706 3707 /* Set Suggested Default Data Length to maximum if supported */ 3708 static int hci_le_set_write_def_data_len_sync(struct hci_dev *hdev) 3709 { 3710 struct hci_cp_le_write_def_data_len cp; 3711 3712 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 3713 return 0; 3714 3715 memset(&cp, 0, sizeof(cp)); 3716 cp.tx_len = cpu_to_le16(hdev->le_max_tx_len); 3717 cp.tx_time = cpu_to_le16(hdev->le_max_tx_time); 3718 3719 return __hci_cmd_sync_status(hdev, HCI_OP_LE_WRITE_DEF_DATA_LEN, 3720 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3721 } 3722 3723 /* Set Default PHY parameters if command is supported */ 3724 static int hci_le_set_default_phy_sync(struct hci_dev *hdev) 3725 { 3726 struct hci_cp_le_set_default_phy cp; 3727 3728 if (!(hdev->commands[35] & 0x20)) 3729 return 0; 3730 3731 memset(&cp, 0, sizeof(cp)); 3732 cp.all_phys = 0x00; 3733 cp.tx_phys = hdev->le_tx_def_phys; 3734 cp.rx_phys = hdev->le_rx_def_phys; 3735 3736 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_DEFAULT_PHY, 3737 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3738 } 3739 3740 static const struct hci_init_stage le_init4[] = { 3741 /* HCI_OP_LE_WRITE_DEF_DATA_LEN */ 3742 HCI_INIT(hci_le_set_write_def_data_len_sync), 3743 /* HCI_OP_LE_SET_DEFAULT_PHY */ 3744 HCI_INIT(hci_le_set_default_phy_sync), 3745 {} 3746 }; 3747 3748 static int hci_init4_sync(struct hci_dev *hdev) 3749 { 3750 int err; 3751 3752 bt_dev_dbg(hdev, ""); 3753 3754 err = hci_init_stage_sync(hdev, hci_init4); 3755 if (err) 3756 return err; 3757 3758 if (lmp_le_capable(hdev)) 3759 return hci_init_stage_sync(hdev, le_init4); 3760 3761 return 0; 3762 } 3763 3764 static int hci_init_sync(struct hci_dev *hdev) 3765 { 3766 int err; 3767 3768 err = hci_init1_sync(hdev); 3769 if (err < 0) 3770 return err; 3771 3772 if (hci_dev_test_flag(hdev, HCI_SETUP)) 3773 hci_debugfs_create_basic(hdev); 3774 3775 err = hci_init2_sync(hdev); 3776 if (err < 0) 3777 return err; 3778 3779 /* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode 3780 * BR/EDR/LE type controllers. AMP controllers only need the 3781 * first two stages of init. 3782 */ 3783 if (hdev->dev_type != HCI_PRIMARY) 3784 return 0; 3785 3786 err = hci_init3_sync(hdev); 3787 if (err < 0) 3788 return err; 3789 3790 err = hci_init4_sync(hdev); 3791 if (err < 0) 3792 return err; 3793 3794 /* This function is only called when the controller is actually in 3795 * configured state. When the controller is marked as unconfigured, 3796 * this initialization procedure is not run. 3797 * 3798 * It means that it is possible that a controller runs through its 3799 * setup phase and then discovers missing settings. If that is the 3800 * case, then this function will not be called. It then will only 3801 * be called during the config phase. 3802 * 3803 * So only when in setup phase or config phase, create the debugfs 3804 * entries and register the SMP channels. 3805 */ 3806 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 3807 !hci_dev_test_flag(hdev, HCI_CONFIG)) 3808 return 0; 3809 3810 hci_debugfs_create_common(hdev); 3811 3812 if (lmp_bredr_capable(hdev)) 3813 hci_debugfs_create_bredr(hdev); 3814 3815 if (lmp_le_capable(hdev)) 3816 hci_debugfs_create_le(hdev); 3817 3818 return 0; 3819 } 3820 3821 int hci_dev_open_sync(struct hci_dev *hdev) 3822 { 3823 int ret = 0; 3824 3825 bt_dev_dbg(hdev, ""); 3826 3827 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 3828 ret = -ENODEV; 3829 goto done; 3830 } 3831 3832 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 3833 !hci_dev_test_flag(hdev, HCI_CONFIG)) { 3834 /* Check for rfkill but allow the HCI setup stage to 3835 * proceed (which in itself doesn't cause any RF activity). 3836 */ 3837 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) { 3838 ret = -ERFKILL; 3839 goto done; 3840 } 3841 3842 /* Check for valid public address or a configured static 3843 * random address, but let the HCI setup proceed to 3844 * be able to determine if there is a public address 3845 * or not. 3846 * 3847 * In case of user channel usage, it is not important 3848 * if a public address or static random address is 3849 * available. 3850 * 3851 * This check is only valid for BR/EDR controllers 3852 * since AMP controllers do not have an address. 3853 */ 3854 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 3855 hdev->dev_type == HCI_PRIMARY && 3856 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 3857 !bacmp(&hdev->static_addr, BDADDR_ANY)) { 3858 ret = -EADDRNOTAVAIL; 3859 goto done; 3860 } 3861 } 3862 3863 if (test_bit(HCI_UP, &hdev->flags)) { 3864 ret = -EALREADY; 3865 goto done; 3866 } 3867 3868 if (hdev->open(hdev)) { 3869 ret = -EIO; 3870 goto done; 3871 } 3872 3873 set_bit(HCI_RUNNING, &hdev->flags); 3874 hci_sock_dev_event(hdev, HCI_DEV_OPEN); 3875 3876 atomic_set(&hdev->cmd_cnt, 1); 3877 set_bit(HCI_INIT, &hdev->flags); 3878 3879 if (hci_dev_test_flag(hdev, HCI_SETUP) || 3880 test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) { 3881 bool invalid_bdaddr; 3882 3883 hci_sock_dev_event(hdev, HCI_DEV_SETUP); 3884 3885 if (hdev->setup) 3886 ret = hdev->setup(hdev); 3887 3888 /* The transport driver can set the quirk to mark the 3889 * BD_ADDR invalid before creating the HCI device or in 3890 * its setup callback. 3891 */ 3892 invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR, 3893 &hdev->quirks); 3894 3895 if (ret) 3896 goto setup_failed; 3897 3898 if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) { 3899 if (!bacmp(&hdev->public_addr, BDADDR_ANY)) 3900 hci_dev_get_bd_addr_from_property(hdev); 3901 3902 if (bacmp(&hdev->public_addr, BDADDR_ANY) && 3903 hdev->set_bdaddr) { 3904 ret = hdev->set_bdaddr(hdev, 3905 &hdev->public_addr); 3906 3907 /* If setting of the BD_ADDR from the device 3908 * property succeeds, then treat the address 3909 * as valid even if the invalid BD_ADDR 3910 * quirk indicates otherwise. 3911 */ 3912 if (!ret) 3913 invalid_bdaddr = false; 3914 } 3915 } 3916 3917 setup_failed: 3918 /* The transport driver can set these quirks before 3919 * creating the HCI device or in its setup callback. 3920 * 3921 * For the invalid BD_ADDR quirk it is possible that 3922 * it becomes a valid address if the bootloader does 3923 * provide it (see above). 3924 * 3925 * In case any of them is set, the controller has to 3926 * start up as unconfigured. 3927 */ 3928 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) || 3929 invalid_bdaddr) 3930 hci_dev_set_flag(hdev, HCI_UNCONFIGURED); 3931 3932 /* For an unconfigured controller it is required to 3933 * read at least the version information provided by 3934 * the Read Local Version Information command. 3935 * 3936 * If the set_bdaddr driver callback is provided, then 3937 * also the original Bluetooth public device address 3938 * will be read using the Read BD Address command. 3939 */ 3940 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 3941 ret = hci_unconf_init_sync(hdev); 3942 } 3943 3944 if (hci_dev_test_flag(hdev, HCI_CONFIG)) { 3945 /* If public address change is configured, ensure that 3946 * the address gets programmed. If the driver does not 3947 * support changing the public address, fail the power 3948 * on procedure. 3949 */ 3950 if (bacmp(&hdev->public_addr, BDADDR_ANY) && 3951 hdev->set_bdaddr) 3952 ret = hdev->set_bdaddr(hdev, &hdev->public_addr); 3953 else 3954 ret = -EADDRNOTAVAIL; 3955 } 3956 3957 if (!ret) { 3958 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 3959 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 3960 ret = hci_init_sync(hdev); 3961 if (!ret && hdev->post_init) 3962 ret = hdev->post_init(hdev); 3963 } 3964 } 3965 3966 /* If the HCI Reset command is clearing all diagnostic settings, 3967 * then they need to be reprogrammed after the init procedure 3968 * completed. 3969 */ 3970 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) && 3971 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 3972 hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag) 3973 ret = hdev->set_diag(hdev, true); 3974 3975 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 3976 msft_do_open(hdev); 3977 aosp_do_open(hdev); 3978 } 3979 3980 clear_bit(HCI_INIT, &hdev->flags); 3981 3982 if (!ret) { 3983 hci_dev_hold(hdev); 3984 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 3985 hci_adv_instances_set_rpa_expired(hdev, true); 3986 set_bit(HCI_UP, &hdev->flags); 3987 hci_sock_dev_event(hdev, HCI_DEV_UP); 3988 hci_leds_update_powered(hdev, true); 3989 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 3990 !hci_dev_test_flag(hdev, HCI_CONFIG) && 3991 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 3992 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 3993 hci_dev_test_flag(hdev, HCI_MGMT) && 3994 hdev->dev_type == HCI_PRIMARY) { 3995 ret = hci_powered_update_sync(hdev); 3996 } 3997 } else { 3998 /* Init failed, cleanup */ 3999 flush_work(&hdev->tx_work); 4000 4001 /* Since hci_rx_work() is possible to awake new cmd_work 4002 * it should be flushed first to avoid unexpected call of 4003 * hci_cmd_work() 4004 */ 4005 flush_work(&hdev->rx_work); 4006 flush_work(&hdev->cmd_work); 4007 4008 skb_queue_purge(&hdev->cmd_q); 4009 skb_queue_purge(&hdev->rx_q); 4010 4011 if (hdev->flush) 4012 hdev->flush(hdev); 4013 4014 if (hdev->sent_cmd) { 4015 kfree_skb(hdev->sent_cmd); 4016 hdev->sent_cmd = NULL; 4017 } 4018 4019 clear_bit(HCI_RUNNING, &hdev->flags); 4020 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 4021 4022 hdev->close(hdev); 4023 hdev->flags &= BIT(HCI_RAW); 4024 } 4025 4026 done: 4027 return ret; 4028 } 4029 4030 /* This function requires the caller holds hdev->lock */ 4031 static void hci_pend_le_actions_clear(struct hci_dev *hdev) 4032 { 4033 struct hci_conn_params *p; 4034 4035 list_for_each_entry(p, &hdev->le_conn_params, list) { 4036 if (p->conn) { 4037 hci_conn_drop(p->conn); 4038 hci_conn_put(p->conn); 4039 p->conn = NULL; 4040 } 4041 list_del_init(&p->action); 4042 } 4043 4044 BT_DBG("All LE pending actions cleared"); 4045 } 4046 4047 int hci_dev_close_sync(struct hci_dev *hdev) 4048 { 4049 bool auto_off; 4050 int err = 0; 4051 4052 bt_dev_dbg(hdev, ""); 4053 4054 cancel_delayed_work(&hdev->power_off); 4055 cancel_delayed_work(&hdev->ncmd_timer); 4056 4057 hci_request_cancel_all(hdev); 4058 4059 if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) && 4060 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4061 test_bit(HCI_UP, &hdev->flags)) { 4062 /* Execute vendor specific shutdown routine */ 4063 if (hdev->shutdown) 4064 err = hdev->shutdown(hdev); 4065 } 4066 4067 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) { 4068 cancel_delayed_work_sync(&hdev->cmd_timer); 4069 return err; 4070 } 4071 4072 hci_leds_update_powered(hdev, false); 4073 4074 /* Flush RX and TX works */ 4075 flush_work(&hdev->tx_work); 4076 flush_work(&hdev->rx_work); 4077 4078 if (hdev->discov_timeout > 0) { 4079 hdev->discov_timeout = 0; 4080 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 4081 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 4082 } 4083 4084 if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE)) 4085 cancel_delayed_work(&hdev->service_cache); 4086 4087 if (hci_dev_test_flag(hdev, HCI_MGMT)) { 4088 struct adv_info *adv_instance; 4089 4090 cancel_delayed_work_sync(&hdev->rpa_expired); 4091 4092 list_for_each_entry(adv_instance, &hdev->adv_instances, list) 4093 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb); 4094 } 4095 4096 /* Avoid potential lockdep warnings from the *_flush() calls by 4097 * ensuring the workqueue is empty up front. 4098 */ 4099 drain_workqueue(hdev->workqueue); 4100 4101 hci_dev_lock(hdev); 4102 4103 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 4104 4105 auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF); 4106 4107 if (!auto_off && hdev->dev_type == HCI_PRIMARY && 4108 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4109 hci_dev_test_flag(hdev, HCI_MGMT)) 4110 __mgmt_power_off(hdev); 4111 4112 hci_inquiry_cache_flush(hdev); 4113 hci_pend_le_actions_clear(hdev); 4114 hci_conn_hash_flush(hdev); 4115 /* Prevent data races on hdev->smp_data or hdev->smp_bredr_data */ 4116 smp_unregister(hdev); 4117 hci_dev_unlock(hdev); 4118 4119 hci_sock_dev_event(hdev, HCI_DEV_DOWN); 4120 4121 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4122 aosp_do_close(hdev); 4123 msft_do_close(hdev); 4124 } 4125 4126 if (hdev->flush) 4127 hdev->flush(hdev); 4128 4129 /* Reset device */ 4130 skb_queue_purge(&hdev->cmd_q); 4131 atomic_set(&hdev->cmd_cnt, 1); 4132 if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) && 4133 !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 4134 set_bit(HCI_INIT, &hdev->flags); 4135 hci_reset_sync(hdev); 4136 clear_bit(HCI_INIT, &hdev->flags); 4137 } 4138 4139 /* flush cmd work */ 4140 flush_work(&hdev->cmd_work); 4141 4142 /* Drop queues */ 4143 skb_queue_purge(&hdev->rx_q); 4144 skb_queue_purge(&hdev->cmd_q); 4145 skb_queue_purge(&hdev->raw_q); 4146 4147 /* Drop last sent command */ 4148 if (hdev->sent_cmd) { 4149 cancel_delayed_work_sync(&hdev->cmd_timer); 4150 kfree_skb(hdev->sent_cmd); 4151 hdev->sent_cmd = NULL; 4152 } 4153 4154 clear_bit(HCI_RUNNING, &hdev->flags); 4155 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 4156 4157 /* After this point our queues are empty and no tasks are scheduled. */ 4158 hdev->close(hdev); 4159 4160 /* Clear flags */ 4161 hdev->flags &= BIT(HCI_RAW); 4162 hci_dev_clear_volatile_flags(hdev); 4163 4164 /* Controller radio is available but is currently powered down */ 4165 hdev->amp_status = AMP_STATUS_POWERED_DOWN; 4166 4167 memset(hdev->eir, 0, sizeof(hdev->eir)); 4168 memset(hdev->dev_class, 0, sizeof(hdev->dev_class)); 4169 bacpy(&hdev->random_addr, BDADDR_ANY); 4170 4171 hci_dev_put(hdev); 4172 return err; 4173 } 4174 4175 /* This function perform power on HCI command sequence as follows: 4176 * 4177 * If controller is already up (HCI_UP) performs hci_powered_update_sync 4178 * sequence otherwise run hci_dev_open_sync which will follow with 4179 * hci_powered_update_sync after the init sequence is completed. 4180 */ 4181 static int hci_power_on_sync(struct hci_dev *hdev) 4182 { 4183 int err; 4184 4185 if (test_bit(HCI_UP, &hdev->flags) && 4186 hci_dev_test_flag(hdev, HCI_MGMT) && 4187 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) { 4188 cancel_delayed_work(&hdev->power_off); 4189 return hci_powered_update_sync(hdev); 4190 } 4191 4192 err = hci_dev_open_sync(hdev); 4193 if (err < 0) 4194 return err; 4195 4196 /* During the HCI setup phase, a few error conditions are 4197 * ignored and they need to be checked now. If they are still 4198 * valid, it is important to return the device back off. 4199 */ 4200 if (hci_dev_test_flag(hdev, HCI_RFKILLED) || 4201 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) || 4202 (hdev->dev_type == HCI_PRIMARY && 4203 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 4204 !bacmp(&hdev->static_addr, BDADDR_ANY))) { 4205 hci_dev_clear_flag(hdev, HCI_AUTO_OFF); 4206 hci_dev_close_sync(hdev); 4207 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) { 4208 queue_delayed_work(hdev->req_workqueue, &hdev->power_off, 4209 HCI_AUTO_OFF_TIMEOUT); 4210 } 4211 4212 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) { 4213 /* For unconfigured devices, set the HCI_RAW flag 4214 * so that userspace can easily identify them. 4215 */ 4216 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 4217 set_bit(HCI_RAW, &hdev->flags); 4218 4219 /* For fully configured devices, this will send 4220 * the Index Added event. For unconfigured devices, 4221 * it will send Unconfigued Index Added event. 4222 * 4223 * Devices with HCI_QUIRK_RAW_DEVICE are ignored 4224 * and no event will be send. 4225 */ 4226 mgmt_index_added(hdev); 4227 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) { 4228 /* When the controller is now configured, then it 4229 * is important to clear the HCI_RAW flag. 4230 */ 4231 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 4232 clear_bit(HCI_RAW, &hdev->flags); 4233 4234 /* Powering on the controller with HCI_CONFIG set only 4235 * happens with the transition from unconfigured to 4236 * configured. This will send the Index Added event. 4237 */ 4238 mgmt_index_added(hdev); 4239 } 4240 4241 return 0; 4242 } 4243 4244 static int hci_remote_name_cancel_sync(struct hci_dev *hdev, bdaddr_t *addr) 4245 { 4246 struct hci_cp_remote_name_req_cancel cp; 4247 4248 memset(&cp, 0, sizeof(cp)); 4249 bacpy(&cp.bdaddr, addr); 4250 4251 return __hci_cmd_sync_status(hdev, HCI_OP_REMOTE_NAME_REQ_CANCEL, 4252 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4253 } 4254 4255 int hci_stop_discovery_sync(struct hci_dev *hdev) 4256 { 4257 struct discovery_state *d = &hdev->discovery; 4258 struct inquiry_entry *e; 4259 int err; 4260 4261 bt_dev_dbg(hdev, "state %u", hdev->discovery.state); 4262 4263 if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) { 4264 if (test_bit(HCI_INQUIRY, &hdev->flags)) { 4265 err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL, 4266 0, NULL, HCI_CMD_TIMEOUT); 4267 if (err) 4268 return err; 4269 } 4270 4271 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 4272 cancel_delayed_work(&hdev->le_scan_disable); 4273 cancel_delayed_work(&hdev->le_scan_restart); 4274 4275 err = hci_scan_disable_sync(hdev); 4276 if (err) 4277 return err; 4278 } 4279 4280 } else { 4281 err = hci_scan_disable_sync(hdev); 4282 if (err) 4283 return err; 4284 } 4285 4286 /* Resume advertising if it was paused */ 4287 if (use_ll_privacy(hdev)) 4288 hci_resume_advertising_sync(hdev); 4289 4290 /* No further actions needed for LE-only discovery */ 4291 if (d->type == DISCOV_TYPE_LE) 4292 return 0; 4293 4294 if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) { 4295 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY, 4296 NAME_PENDING); 4297 if (!e) 4298 return 0; 4299 4300 return hci_remote_name_cancel_sync(hdev, &e->data.bdaddr); 4301 } 4302 4303 return 0; 4304 } 4305 4306 static int hci_disconnect_phy_link_sync(struct hci_dev *hdev, u16 handle, 4307 u8 reason) 4308 { 4309 struct hci_cp_disconn_phy_link cp; 4310 4311 memset(&cp, 0, sizeof(cp)); 4312 cp.phy_handle = HCI_PHY_HANDLE(handle); 4313 cp.reason = reason; 4314 4315 return __hci_cmd_sync_status(hdev, HCI_OP_DISCONN_PHY_LINK, 4316 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4317 } 4318 4319 static int hci_disconnect_sync(struct hci_dev *hdev, struct hci_conn *conn, 4320 u8 reason) 4321 { 4322 struct hci_cp_disconnect cp; 4323 4324 if (conn->type == AMP_LINK) 4325 return hci_disconnect_phy_link_sync(hdev, conn->handle, reason); 4326 4327 memset(&cp, 0, sizeof(cp)); 4328 cp.handle = cpu_to_le16(conn->handle); 4329 cp.reason = reason; 4330 4331 /* Wait for HCI_EV_DISCONN_COMPLETE not HCI_EV_CMD_STATUS when not 4332 * suspending. 4333 */ 4334 if (!hdev->suspended) 4335 return __hci_cmd_sync_status_sk(hdev, HCI_OP_DISCONNECT, 4336 sizeof(cp), &cp, 4337 HCI_EV_DISCONN_COMPLETE, 4338 HCI_CMD_TIMEOUT, NULL); 4339 4340 return __hci_cmd_sync_status(hdev, HCI_OP_DISCONNECT, sizeof(cp), &cp, 4341 HCI_CMD_TIMEOUT); 4342 } 4343 4344 static int hci_le_connect_cancel_sync(struct hci_dev *hdev, 4345 struct hci_conn *conn) 4346 { 4347 if (test_bit(HCI_CONN_SCANNING, &conn->flags)) 4348 return 0; 4349 4350 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CREATE_CONN_CANCEL, 4351 6, &conn->dst, HCI_CMD_TIMEOUT); 4352 } 4353 4354 static int hci_connect_cancel_sync(struct hci_dev *hdev, struct hci_conn *conn) 4355 { 4356 if (conn->type == LE_LINK) 4357 return hci_le_connect_cancel_sync(hdev, conn); 4358 4359 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 4360 return 0; 4361 4362 return __hci_cmd_sync_status(hdev, HCI_OP_CREATE_CONN_CANCEL, 4363 6, &conn->dst, HCI_CMD_TIMEOUT); 4364 } 4365 4366 static int hci_reject_sco_sync(struct hci_dev *hdev, struct hci_conn *conn, 4367 u8 reason) 4368 { 4369 struct hci_cp_reject_sync_conn_req cp; 4370 4371 memset(&cp, 0, sizeof(cp)); 4372 bacpy(&cp.bdaddr, &conn->dst); 4373 cp.reason = reason; 4374 4375 /* SCO rejection has its own limited set of 4376 * allowed error values (0x0D-0x0F). 4377 */ 4378 if (reason < 0x0d || reason > 0x0f) 4379 cp.reason = HCI_ERROR_REJ_LIMITED_RESOURCES; 4380 4381 return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_SYNC_CONN_REQ, 4382 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4383 } 4384 4385 static int hci_reject_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, 4386 u8 reason) 4387 { 4388 struct hci_cp_reject_conn_req cp; 4389 4390 if (conn->type == SCO_LINK || conn->type == ESCO_LINK) 4391 return hci_reject_sco_sync(hdev, conn, reason); 4392 4393 memset(&cp, 0, sizeof(cp)); 4394 bacpy(&cp.bdaddr, &conn->dst); 4395 cp.reason = reason; 4396 4397 return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_CONN_REQ, 4398 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4399 } 4400 4401 static int hci_abort_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, 4402 u8 reason) 4403 { 4404 switch (conn->state) { 4405 case BT_CONNECTED: 4406 case BT_CONFIG: 4407 return hci_disconnect_sync(hdev, conn, reason); 4408 case BT_CONNECT: 4409 return hci_connect_cancel_sync(hdev, conn); 4410 case BT_CONNECT2: 4411 return hci_reject_conn_sync(hdev, conn, reason); 4412 default: 4413 conn->state = BT_CLOSED; 4414 break; 4415 } 4416 4417 return 0; 4418 } 4419 4420 static int hci_disconnect_all_sync(struct hci_dev *hdev, u8 reason) 4421 { 4422 struct hci_conn *conn, *tmp; 4423 int err; 4424 4425 list_for_each_entry_safe(conn, tmp, &hdev->conn_hash.list, list) { 4426 err = hci_abort_conn_sync(hdev, conn, reason); 4427 if (err) 4428 return err; 4429 } 4430 4431 return 0; 4432 } 4433 4434 /* This function perform power off HCI command sequence as follows: 4435 * 4436 * Clear Advertising 4437 * Stop Discovery 4438 * Disconnect all connections 4439 * hci_dev_close_sync 4440 */ 4441 static int hci_power_off_sync(struct hci_dev *hdev) 4442 { 4443 int err; 4444 4445 /* If controller is already down there is nothing to do */ 4446 if (!test_bit(HCI_UP, &hdev->flags)) 4447 return 0; 4448 4449 if (test_bit(HCI_ISCAN, &hdev->flags) || 4450 test_bit(HCI_PSCAN, &hdev->flags)) { 4451 err = hci_write_scan_enable_sync(hdev, 0x00); 4452 if (err) 4453 return err; 4454 } 4455 4456 err = hci_clear_adv_sync(hdev, NULL, false); 4457 if (err) 4458 return err; 4459 4460 err = hci_stop_discovery_sync(hdev); 4461 if (err) 4462 return err; 4463 4464 /* Terminated due to Power Off */ 4465 err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF); 4466 if (err) 4467 return err; 4468 4469 return hci_dev_close_sync(hdev); 4470 } 4471 4472 int hci_set_powered_sync(struct hci_dev *hdev, u8 val) 4473 { 4474 if (val) 4475 return hci_power_on_sync(hdev); 4476 4477 return hci_power_off_sync(hdev); 4478 } 4479 4480 static int hci_write_iac_sync(struct hci_dev *hdev) 4481 { 4482 struct hci_cp_write_current_iac_lap cp; 4483 4484 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 4485 return 0; 4486 4487 memset(&cp, 0, sizeof(cp)); 4488 4489 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { 4490 /* Limited discoverable mode */ 4491 cp.num_iac = min_t(u8, hdev->num_iac, 2); 4492 cp.iac_lap[0] = 0x00; /* LIAC */ 4493 cp.iac_lap[1] = 0x8b; 4494 cp.iac_lap[2] = 0x9e; 4495 cp.iac_lap[3] = 0x33; /* GIAC */ 4496 cp.iac_lap[4] = 0x8b; 4497 cp.iac_lap[5] = 0x9e; 4498 } else { 4499 /* General discoverable mode */ 4500 cp.num_iac = 1; 4501 cp.iac_lap[0] = 0x33; /* GIAC */ 4502 cp.iac_lap[1] = 0x8b; 4503 cp.iac_lap[2] = 0x9e; 4504 } 4505 4506 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CURRENT_IAC_LAP, 4507 (cp.num_iac * 3) + 1, &cp, 4508 HCI_CMD_TIMEOUT); 4509 } 4510 4511 int hci_update_discoverable_sync(struct hci_dev *hdev) 4512 { 4513 int err = 0; 4514 4515 if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 4516 err = hci_write_iac_sync(hdev); 4517 if (err) 4518 return err; 4519 4520 err = hci_update_scan_sync(hdev); 4521 if (err) 4522 return err; 4523 4524 err = hci_update_class_sync(hdev); 4525 if (err) 4526 return err; 4527 } 4528 4529 /* Advertising instances don't use the global discoverable setting, so 4530 * only update AD if advertising was enabled using Set Advertising. 4531 */ 4532 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) { 4533 err = hci_update_adv_data_sync(hdev, 0x00); 4534 if (err) 4535 return err; 4536 4537 /* Discoverable mode affects the local advertising 4538 * address in limited privacy mode. 4539 */ 4540 if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) { 4541 if (ext_adv_capable(hdev)) 4542 err = hci_start_ext_adv_sync(hdev, 0x00); 4543 else 4544 err = hci_enable_advertising_sync(hdev); 4545 } 4546 } 4547 4548 return err; 4549 } 4550 4551 static int update_discoverable_sync(struct hci_dev *hdev, void *data) 4552 { 4553 return hci_update_discoverable_sync(hdev); 4554 } 4555 4556 int hci_update_discoverable(struct hci_dev *hdev) 4557 { 4558 /* Only queue if it would have any effect */ 4559 if (hdev_is_powered(hdev) && 4560 hci_dev_test_flag(hdev, HCI_ADVERTISING) && 4561 hci_dev_test_flag(hdev, HCI_DISCOVERABLE) && 4562 hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) 4563 return hci_cmd_sync_queue(hdev, update_discoverable_sync, NULL, 4564 NULL); 4565 4566 return 0; 4567 } 4568 4569 int hci_update_connectable_sync(struct hci_dev *hdev) 4570 { 4571 int err; 4572 4573 err = hci_update_scan_sync(hdev); 4574 if (err) 4575 return err; 4576 4577 /* If BR/EDR is not enabled and we disable advertising as a 4578 * by-product of disabling connectable, we need to update the 4579 * advertising flags. 4580 */ 4581 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 4582 err = hci_update_adv_data_sync(hdev, hdev->cur_adv_instance); 4583 4584 /* Update the advertising parameters if necessary */ 4585 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 4586 !list_empty(&hdev->adv_instances)) { 4587 if (ext_adv_capable(hdev)) 4588 err = hci_start_ext_adv_sync(hdev, 4589 hdev->cur_adv_instance); 4590 else 4591 err = hci_enable_advertising_sync(hdev); 4592 4593 if (err) 4594 return err; 4595 } 4596 4597 return hci_update_passive_scan_sync(hdev); 4598 } 4599 4600 static int hci_inquiry_sync(struct hci_dev *hdev, u8 length) 4601 { 4602 const u8 giac[3] = { 0x33, 0x8b, 0x9e }; 4603 const u8 liac[3] = { 0x00, 0x8b, 0x9e }; 4604 struct hci_cp_inquiry cp; 4605 4606 bt_dev_dbg(hdev, ""); 4607 4608 if (hci_dev_test_flag(hdev, HCI_INQUIRY)) 4609 return 0; 4610 4611 hci_dev_lock(hdev); 4612 hci_inquiry_cache_flush(hdev); 4613 hci_dev_unlock(hdev); 4614 4615 memset(&cp, 0, sizeof(cp)); 4616 4617 if (hdev->discovery.limited) 4618 memcpy(&cp.lap, liac, sizeof(cp.lap)); 4619 else 4620 memcpy(&cp.lap, giac, sizeof(cp.lap)); 4621 4622 cp.length = length; 4623 4624 return __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY, 4625 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4626 } 4627 4628 static int hci_active_scan_sync(struct hci_dev *hdev, uint16_t interval) 4629 { 4630 u8 own_addr_type; 4631 /* Accept list is not used for discovery */ 4632 u8 filter_policy = 0x00; 4633 /* Default is to enable duplicates filter */ 4634 u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE; 4635 int err; 4636 4637 bt_dev_dbg(hdev, ""); 4638 4639 /* If controller is scanning, it means the passive scanning is 4640 * running. Thus, we should temporarily stop it in order to set the 4641 * discovery scanning parameters. 4642 */ 4643 err = hci_scan_disable_sync(hdev); 4644 if (err) { 4645 bt_dev_err(hdev, "Unable to disable scanning: %d", err); 4646 return err; 4647 } 4648 4649 cancel_interleave_scan(hdev); 4650 4651 /* Pause advertising since active scanning disables address resolution 4652 * which advertising depend on in order to generate its RPAs. 4653 */ 4654 if (use_ll_privacy(hdev)) { 4655 err = hci_pause_advertising_sync(hdev); 4656 if (err) { 4657 bt_dev_err(hdev, "pause advertising failed: %d", err); 4658 goto failed; 4659 } 4660 } 4661 4662 /* Disable address resolution while doing active scanning since the 4663 * accept list shall not be used and all reports shall reach the host 4664 * anyway. 4665 */ 4666 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00); 4667 if (err) { 4668 bt_dev_err(hdev, "Unable to disable Address Resolution: %d", 4669 err); 4670 goto failed; 4671 } 4672 4673 /* All active scans will be done with either a resolvable private 4674 * address (when privacy feature has been enabled) or non-resolvable 4675 * private address. 4676 */ 4677 err = hci_update_random_address_sync(hdev, true, scan_use_rpa(hdev), 4678 &own_addr_type); 4679 if (err < 0) 4680 own_addr_type = ADDR_LE_DEV_PUBLIC; 4681 4682 if (hci_is_adv_monitoring(hdev)) { 4683 /* Duplicate filter should be disabled when some advertisement 4684 * monitor is activated, otherwise AdvMon can only receive one 4685 * advertisement for one peer(*) during active scanning, and 4686 * might report loss to these peers. 4687 * 4688 * Note that different controllers have different meanings of 4689 * |duplicate|. Some of them consider packets with the same 4690 * address as duplicate, and others consider packets with the 4691 * same address and the same RSSI as duplicate. Although in the 4692 * latter case we don't need to disable duplicate filter, but 4693 * it is common to have active scanning for a short period of 4694 * time, the power impact should be neglectable. 4695 */ 4696 filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 4697 } 4698 4699 err = hci_start_scan_sync(hdev, LE_SCAN_ACTIVE, interval, 4700 hdev->le_scan_window_discovery, 4701 own_addr_type, filter_policy, filter_dup); 4702 if (!err) 4703 return err; 4704 4705 failed: 4706 /* Resume advertising if it was paused */ 4707 if (use_ll_privacy(hdev)) 4708 hci_resume_advertising_sync(hdev); 4709 4710 /* Resume passive scanning */ 4711 hci_update_passive_scan_sync(hdev); 4712 return err; 4713 } 4714 4715 static int hci_start_interleaved_discovery_sync(struct hci_dev *hdev) 4716 { 4717 int err; 4718 4719 bt_dev_dbg(hdev, ""); 4720 4721 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery * 2); 4722 if (err) 4723 return err; 4724 4725 return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN); 4726 } 4727 4728 int hci_start_discovery_sync(struct hci_dev *hdev) 4729 { 4730 unsigned long timeout; 4731 int err; 4732 4733 bt_dev_dbg(hdev, "type %u", hdev->discovery.type); 4734 4735 switch (hdev->discovery.type) { 4736 case DISCOV_TYPE_BREDR: 4737 return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN); 4738 case DISCOV_TYPE_INTERLEAVED: 4739 /* When running simultaneous discovery, the LE scanning time 4740 * should occupy the whole discovery time sine BR/EDR inquiry 4741 * and LE scanning are scheduled by the controller. 4742 * 4743 * For interleaving discovery in comparison, BR/EDR inquiry 4744 * and LE scanning are done sequentially with separate 4745 * timeouts. 4746 */ 4747 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, 4748 &hdev->quirks)) { 4749 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 4750 /* During simultaneous discovery, we double LE scan 4751 * interval. We must leave some time for the controller 4752 * to do BR/EDR inquiry. 4753 */ 4754 err = hci_start_interleaved_discovery_sync(hdev); 4755 break; 4756 } 4757 4758 timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout); 4759 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery); 4760 break; 4761 case DISCOV_TYPE_LE: 4762 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 4763 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery); 4764 break; 4765 default: 4766 return -EINVAL; 4767 } 4768 4769 if (err) 4770 return err; 4771 4772 bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout)); 4773 4774 /* When service discovery is used and the controller has a 4775 * strict duplicate filter, it is important to remember the 4776 * start and duration of the scan. This is required for 4777 * restarting scanning during the discovery phase. 4778 */ 4779 if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) && 4780 hdev->discovery.result_filtering) { 4781 hdev->discovery.scan_start = jiffies; 4782 hdev->discovery.scan_duration = timeout; 4783 } 4784 4785 queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable, 4786 timeout); 4787 return 0; 4788 } 4789 4790 static void hci_suspend_monitor_sync(struct hci_dev *hdev) 4791 { 4792 switch (hci_get_adv_monitor_offload_ext(hdev)) { 4793 case HCI_ADV_MONITOR_EXT_MSFT: 4794 msft_suspend_sync(hdev); 4795 break; 4796 default: 4797 return; 4798 } 4799 } 4800 4801 /* This function disables discovery and mark it as paused */ 4802 static int hci_pause_discovery_sync(struct hci_dev *hdev) 4803 { 4804 int old_state = hdev->discovery.state; 4805 int err; 4806 4807 /* If discovery already stopped/stopping/paused there nothing to do */ 4808 if (old_state == DISCOVERY_STOPPED || old_state == DISCOVERY_STOPPING || 4809 hdev->discovery_paused) 4810 return 0; 4811 4812 hci_discovery_set_state(hdev, DISCOVERY_STOPPING); 4813 err = hci_stop_discovery_sync(hdev); 4814 if (err) 4815 return err; 4816 4817 hdev->discovery_paused = true; 4818 hdev->discovery_old_state = old_state; 4819 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 4820 4821 return 0; 4822 } 4823 4824 static int hci_update_event_filter_sync(struct hci_dev *hdev) 4825 { 4826 struct bdaddr_list_with_flags *b; 4827 u8 scan = SCAN_DISABLED; 4828 bool scanning = test_bit(HCI_PSCAN, &hdev->flags); 4829 int err; 4830 4831 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 4832 return 0; 4833 4834 /* Always clear event filter when starting */ 4835 hci_clear_event_filter_sync(hdev); 4836 4837 list_for_each_entry(b, &hdev->accept_list, list) { 4838 if (!test_bit(HCI_CONN_FLAG_REMOTE_WAKEUP, b->flags)) 4839 continue; 4840 4841 bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr); 4842 4843 err = hci_set_event_filter_sync(hdev, HCI_FLT_CONN_SETUP, 4844 HCI_CONN_SETUP_ALLOW_BDADDR, 4845 &b->bdaddr, 4846 HCI_CONN_SETUP_AUTO_ON); 4847 if (err) 4848 bt_dev_dbg(hdev, "Failed to set event filter for %pMR", 4849 &b->bdaddr); 4850 else 4851 scan = SCAN_PAGE; 4852 } 4853 4854 if (scan && !scanning) 4855 hci_write_scan_enable_sync(hdev, scan); 4856 else if (!scan && scanning) 4857 hci_write_scan_enable_sync(hdev, scan); 4858 4859 return 0; 4860 } 4861 4862 /* This function performs the HCI suspend procedures in the follow order: 4863 * 4864 * Pause discovery (active scanning/inquiry) 4865 * Pause Directed Advertising/Advertising 4866 * Disconnect all connections 4867 * Set suspend_status to BT_SUSPEND_DISCONNECT if hdev cannot wakeup 4868 * otherwise: 4869 * Update event mask (only set events that are allowed to wake up the host) 4870 * Update event filter (with devices marked with HCI_CONN_FLAG_REMOTE_WAKEUP) 4871 * Update passive scanning (lower duty cycle) 4872 * Set suspend_status to BT_SUSPEND_CONFIGURE_WAKE 4873 */ 4874 int hci_suspend_sync(struct hci_dev *hdev) 4875 { 4876 int err; 4877 4878 /* If marked as suspended there nothing to do */ 4879 if (hdev->suspended) 4880 return 0; 4881 4882 /* Mark device as suspended */ 4883 hdev->suspended = true; 4884 4885 /* Pause discovery if not already stopped */ 4886 hci_pause_discovery_sync(hdev); 4887 4888 /* Pause other advertisements */ 4889 hci_pause_advertising_sync(hdev); 4890 4891 /* Disable page scan if enabled */ 4892 if (test_bit(HCI_PSCAN, &hdev->flags)) 4893 hci_write_scan_enable_sync(hdev, SCAN_DISABLED); 4894 4895 /* Suspend monitor filters */ 4896 hci_suspend_monitor_sync(hdev); 4897 4898 /* Prevent disconnects from causing scanning to be re-enabled */ 4899 hdev->scanning_paused = true; 4900 4901 /* Soft disconnect everything (power off) */ 4902 err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF); 4903 if (err) { 4904 /* Set state to BT_RUNNING so resume doesn't notify */ 4905 hdev->suspend_state = BT_RUNNING; 4906 hci_resume_sync(hdev); 4907 return err; 4908 } 4909 4910 /* Only configure accept list if disconnect succeeded and wake 4911 * isn't being prevented. 4912 */ 4913 if (!hdev->wakeup || !hdev->wakeup(hdev)) { 4914 hdev->suspend_state = BT_SUSPEND_DISCONNECT; 4915 return 0; 4916 } 4917 4918 /* Unpause to take care of updating scanning params */ 4919 hdev->scanning_paused = false; 4920 4921 /* Update event mask so only the allowed event can wakeup the host */ 4922 hci_set_event_mask_sync(hdev); 4923 4924 /* Enable event filter for paired devices */ 4925 hci_update_event_filter_sync(hdev); 4926 4927 /* Update LE passive scan if enabled */ 4928 hci_update_passive_scan_sync(hdev); 4929 4930 /* Pause scan changes again. */ 4931 hdev->scanning_paused = true; 4932 4933 hdev->suspend_state = BT_SUSPEND_CONFIGURE_WAKE; 4934 4935 return 0; 4936 } 4937 4938 /* This function resumes discovery */ 4939 static int hci_resume_discovery_sync(struct hci_dev *hdev) 4940 { 4941 int err; 4942 4943 /* If discovery not paused there nothing to do */ 4944 if (!hdev->discovery_paused) 4945 return 0; 4946 4947 hdev->discovery_paused = false; 4948 4949 hci_discovery_set_state(hdev, DISCOVERY_STARTING); 4950 4951 err = hci_start_discovery_sync(hdev); 4952 4953 hci_discovery_set_state(hdev, err ? DISCOVERY_STOPPED : 4954 DISCOVERY_FINDING); 4955 4956 return err; 4957 } 4958 4959 static void hci_resume_monitor_sync(struct hci_dev *hdev) 4960 { 4961 switch (hci_get_adv_monitor_offload_ext(hdev)) { 4962 case HCI_ADV_MONITOR_EXT_MSFT: 4963 msft_resume_sync(hdev); 4964 break; 4965 default: 4966 return; 4967 } 4968 } 4969 4970 /* This function performs the HCI suspend procedures in the follow order: 4971 * 4972 * Restore event mask 4973 * Clear event filter 4974 * Update passive scanning (normal duty cycle) 4975 * Resume Directed Advertising/Advertising 4976 * Resume discovery (active scanning/inquiry) 4977 */ 4978 int hci_resume_sync(struct hci_dev *hdev) 4979 { 4980 /* If not marked as suspended there nothing to do */ 4981 if (!hdev->suspended) 4982 return 0; 4983 4984 hdev->suspended = false; 4985 hdev->scanning_paused = false; 4986 4987 /* Restore event mask */ 4988 hci_set_event_mask_sync(hdev); 4989 4990 /* Clear any event filters and restore scan state */ 4991 hci_clear_event_filter_sync(hdev); 4992 hci_update_scan_sync(hdev); 4993 4994 /* Reset passive scanning to normal */ 4995 hci_update_passive_scan_sync(hdev); 4996 4997 /* Resume monitor filters */ 4998 hci_resume_monitor_sync(hdev); 4999 5000 /* Resume other advertisements */ 5001 hci_resume_advertising_sync(hdev); 5002 5003 /* Resume discovery */ 5004 hci_resume_discovery_sync(hdev); 5005 5006 return 0; 5007 } 5008 5009 static bool conn_use_rpa(struct hci_conn *conn) 5010 { 5011 struct hci_dev *hdev = conn->hdev; 5012 5013 return hci_dev_test_flag(hdev, HCI_PRIVACY); 5014 } 5015 5016 static int hci_le_ext_directed_advertising_sync(struct hci_dev *hdev, 5017 struct hci_conn *conn) 5018 { 5019 struct hci_cp_le_set_ext_adv_params cp; 5020 int err; 5021 bdaddr_t random_addr; 5022 u8 own_addr_type; 5023 5024 err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 5025 &own_addr_type); 5026 if (err) 5027 return err; 5028 5029 /* Set require_privacy to false so that the remote device has a 5030 * chance of identifying us. 5031 */ 5032 err = hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL, 5033 &own_addr_type, &random_addr); 5034 if (err) 5035 return err; 5036 5037 memset(&cp, 0, sizeof(cp)); 5038 5039 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND); 5040 cp.own_addr_type = own_addr_type; 5041 cp.channel_map = hdev->le_adv_channel_map; 5042 cp.tx_power = HCI_TX_POWER_INVALID; 5043 cp.primary_phy = HCI_ADV_PHY_1M; 5044 cp.secondary_phy = HCI_ADV_PHY_1M; 5045 cp.handle = 0x00; /* Use instance 0 for directed adv */ 5046 cp.own_addr_type = own_addr_type; 5047 cp.peer_addr_type = conn->dst_type; 5048 bacpy(&cp.peer_addr, &conn->dst); 5049 5050 /* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for 5051 * advertising_event_property LE_LEGACY_ADV_DIRECT_IND 5052 * does not supports advertising data when the advertising set already 5053 * contains some, the controller shall return erroc code 'Invalid 5054 * HCI Command Parameters(0x12). 5055 * So it is required to remove adv set for handle 0x00. since we use 5056 * instance 0 for directed adv. 5057 */ 5058 err = hci_remove_ext_adv_instance_sync(hdev, cp.handle, NULL); 5059 if (err) 5060 return err; 5061 5062 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS, 5063 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5064 if (err) 5065 return err; 5066 5067 /* Check if random address need to be updated */ 5068 if (own_addr_type == ADDR_LE_DEV_RANDOM && 5069 bacmp(&random_addr, BDADDR_ANY) && 5070 bacmp(&random_addr, &hdev->random_addr)) { 5071 err = hci_set_adv_set_random_addr_sync(hdev, 0x00, 5072 &random_addr); 5073 if (err) 5074 return err; 5075 } 5076 5077 return hci_enable_ext_advertising_sync(hdev, 0x00); 5078 } 5079 5080 static int hci_le_directed_advertising_sync(struct hci_dev *hdev, 5081 struct hci_conn *conn) 5082 { 5083 struct hci_cp_le_set_adv_param cp; 5084 u8 status; 5085 u8 own_addr_type; 5086 u8 enable; 5087 5088 if (ext_adv_capable(hdev)) 5089 return hci_le_ext_directed_advertising_sync(hdev, conn); 5090 5091 /* Clear the HCI_LE_ADV bit temporarily so that the 5092 * hci_update_random_address knows that it's safe to go ahead 5093 * and write a new random address. The flag will be set back on 5094 * as soon as the SET_ADV_ENABLE HCI command completes. 5095 */ 5096 hci_dev_clear_flag(hdev, HCI_LE_ADV); 5097 5098 /* Set require_privacy to false so that the remote device has a 5099 * chance of identifying us. 5100 */ 5101 status = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 5102 &own_addr_type); 5103 if (status) 5104 return status; 5105 5106 memset(&cp, 0, sizeof(cp)); 5107 5108 /* Some controllers might reject command if intervals are not 5109 * within range for undirected advertising. 5110 * BCM20702A0 is known to be affected by this. 5111 */ 5112 cp.min_interval = cpu_to_le16(0x0020); 5113 cp.max_interval = cpu_to_le16(0x0020); 5114 5115 cp.type = LE_ADV_DIRECT_IND; 5116 cp.own_address_type = own_addr_type; 5117 cp.direct_addr_type = conn->dst_type; 5118 bacpy(&cp.direct_addr, &conn->dst); 5119 cp.channel_map = hdev->le_adv_channel_map; 5120 5121 status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM, 5122 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5123 if (status) 5124 return status; 5125 5126 enable = 0x01; 5127 5128 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 5129 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 5130 } 5131 5132 static void set_ext_conn_params(struct hci_conn *conn, 5133 struct hci_cp_le_ext_conn_param *p) 5134 { 5135 struct hci_dev *hdev = conn->hdev; 5136 5137 memset(p, 0, sizeof(*p)); 5138 5139 p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect); 5140 p->scan_window = cpu_to_le16(hdev->le_scan_window_connect); 5141 p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 5142 p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 5143 p->conn_latency = cpu_to_le16(conn->le_conn_latency); 5144 p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 5145 p->min_ce_len = cpu_to_le16(0x0000); 5146 p->max_ce_len = cpu_to_le16(0x0000); 5147 } 5148 5149 static int hci_le_ext_create_conn_sync(struct hci_dev *hdev, 5150 struct hci_conn *conn, u8 own_addr_type) 5151 { 5152 struct hci_cp_le_ext_create_conn *cp; 5153 struct hci_cp_le_ext_conn_param *p; 5154 u8 data[sizeof(*cp) + sizeof(*p) * 3]; 5155 u32 plen; 5156 5157 cp = (void *)data; 5158 p = (void *)cp->data; 5159 5160 memset(cp, 0, sizeof(*cp)); 5161 5162 bacpy(&cp->peer_addr, &conn->dst); 5163 cp->peer_addr_type = conn->dst_type; 5164 cp->own_addr_type = own_addr_type; 5165 5166 plen = sizeof(*cp); 5167 5168 if (scan_1m(hdev)) { 5169 cp->phys |= LE_SCAN_PHY_1M; 5170 set_ext_conn_params(conn, p); 5171 5172 p++; 5173 plen += sizeof(*p); 5174 } 5175 5176 if (scan_2m(hdev)) { 5177 cp->phys |= LE_SCAN_PHY_2M; 5178 set_ext_conn_params(conn, p); 5179 5180 p++; 5181 plen += sizeof(*p); 5182 } 5183 5184 if (scan_coded(hdev)) { 5185 cp->phys |= LE_SCAN_PHY_CODED; 5186 set_ext_conn_params(conn, p); 5187 5188 plen += sizeof(*p); 5189 } 5190 5191 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_EXT_CREATE_CONN, 5192 plen, data, 5193 HCI_EV_LE_ENHANCED_CONN_COMPLETE, 5194 conn->conn_timeout, NULL); 5195 } 5196 5197 int hci_le_create_conn_sync(struct hci_dev *hdev, struct hci_conn *conn) 5198 { 5199 struct hci_cp_le_create_conn cp; 5200 struct hci_conn_params *params; 5201 u8 own_addr_type; 5202 int err; 5203 5204 /* If requested to connect as peripheral use directed advertising */ 5205 if (conn->role == HCI_ROLE_SLAVE) { 5206 /* If we're active scanning and simultaneous roles is not 5207 * enabled simply reject the attempt. 5208 */ 5209 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) && 5210 hdev->le_scan_type == LE_SCAN_ACTIVE && 5211 !hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) { 5212 hci_conn_del(conn); 5213 return -EBUSY; 5214 } 5215 5216 /* Pause advertising while doing directed advertising. */ 5217 hci_pause_advertising_sync(hdev); 5218 5219 err = hci_le_directed_advertising_sync(hdev, conn); 5220 goto done; 5221 } 5222 5223 /* Disable advertising if simultaneous roles is not in use. */ 5224 if (!hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) 5225 hci_pause_advertising_sync(hdev); 5226 5227 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); 5228 if (params) { 5229 conn->le_conn_min_interval = params->conn_min_interval; 5230 conn->le_conn_max_interval = params->conn_max_interval; 5231 conn->le_conn_latency = params->conn_latency; 5232 conn->le_supv_timeout = params->supervision_timeout; 5233 } else { 5234 conn->le_conn_min_interval = hdev->le_conn_min_interval; 5235 conn->le_conn_max_interval = hdev->le_conn_max_interval; 5236 conn->le_conn_latency = hdev->le_conn_latency; 5237 conn->le_supv_timeout = hdev->le_supv_timeout; 5238 } 5239 5240 /* If controller is scanning, we stop it since some controllers are 5241 * not able to scan and connect at the same time. Also set the 5242 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete 5243 * handler for scan disabling knows to set the correct discovery 5244 * state. 5245 */ 5246 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 5247 hci_scan_disable_sync(hdev); 5248 hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED); 5249 } 5250 5251 /* Update random address, but set require_privacy to false so 5252 * that we never connect with an non-resolvable address. 5253 */ 5254 err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 5255 &own_addr_type); 5256 if (err) 5257 goto done; 5258 5259 if (use_ext_conn(hdev)) { 5260 err = hci_le_ext_create_conn_sync(hdev, conn, own_addr_type); 5261 goto done; 5262 } 5263 5264 memset(&cp, 0, sizeof(cp)); 5265 5266 cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect); 5267 cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect); 5268 5269 bacpy(&cp.peer_addr, &conn->dst); 5270 cp.peer_addr_type = conn->dst_type; 5271 cp.own_address_type = own_addr_type; 5272 cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 5273 cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 5274 cp.conn_latency = cpu_to_le16(conn->le_conn_latency); 5275 cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 5276 cp.min_ce_len = cpu_to_le16(0x0000); 5277 cp.max_ce_len = cpu_to_le16(0x0000); 5278 5279 /* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E page 2261: 5280 * 5281 * If this event is unmasked and the HCI_LE_Connection_Complete event 5282 * is unmasked, only the HCI_LE_Enhanced_Connection_Complete event is 5283 * sent when a new connection has been created. 5284 */ 5285 err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CONN, 5286 sizeof(cp), &cp, 5287 use_enhanced_conn_complete(hdev) ? 5288 HCI_EV_LE_ENHANCED_CONN_COMPLETE : 5289 HCI_EV_LE_CONN_COMPLETE, 5290 conn->conn_timeout, NULL); 5291 5292 done: 5293 /* Re-enable advertising after the connection attempt is finished. */ 5294 hci_resume_advertising_sync(hdev); 5295 return err; 5296 } 5297