xref: /linux/net/bluetooth/hci_sync.c (revision 00389c58ffe993782a8ba4bb5a34a102b1f6fe24)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * BlueZ - Bluetooth protocol stack for Linux
4  *
5  * Copyright (C) 2021 Intel Corporation
6  */
7 
8 #include <linux/property.h>
9 
10 #include <net/bluetooth/bluetooth.h>
11 #include <net/bluetooth/hci_core.h>
12 #include <net/bluetooth/mgmt.h>
13 
14 #include "hci_request.h"
15 #include "hci_debugfs.h"
16 #include "smp.h"
17 #include "eir.h"
18 #include "msft.h"
19 #include "aosp.h"
20 #include "leds.h"
21 
22 static void hci_cmd_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
23 				  struct sk_buff *skb)
24 {
25 	bt_dev_dbg(hdev, "result 0x%2.2x", result);
26 
27 	if (hdev->req_status != HCI_REQ_PEND)
28 		return;
29 
30 	hdev->req_result = result;
31 	hdev->req_status = HCI_REQ_DONE;
32 
33 	if (skb) {
34 		struct sock *sk = hci_skb_sk(skb);
35 
36 		/* Drop sk reference if set */
37 		if (sk)
38 			sock_put(sk);
39 
40 		hdev->req_skb = skb_get(skb);
41 	}
42 
43 	wake_up_interruptible(&hdev->req_wait_q);
44 }
45 
46 static struct sk_buff *hci_cmd_sync_alloc(struct hci_dev *hdev, u16 opcode,
47 					  u32 plen, const void *param,
48 					  struct sock *sk)
49 {
50 	int len = HCI_COMMAND_HDR_SIZE + plen;
51 	struct hci_command_hdr *hdr;
52 	struct sk_buff *skb;
53 
54 	skb = bt_skb_alloc(len, GFP_ATOMIC);
55 	if (!skb)
56 		return NULL;
57 
58 	hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE);
59 	hdr->opcode = cpu_to_le16(opcode);
60 	hdr->plen   = plen;
61 
62 	if (plen)
63 		skb_put_data(skb, param, plen);
64 
65 	bt_dev_dbg(hdev, "skb len %d", skb->len);
66 
67 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
68 	hci_skb_opcode(skb) = opcode;
69 
70 	/* Grab a reference if command needs to be associated with a sock (e.g.
71 	 * likely mgmt socket that initiated the command).
72 	 */
73 	if (sk) {
74 		hci_skb_sk(skb) = sk;
75 		sock_hold(sk);
76 	}
77 
78 	return skb;
79 }
80 
81 static void hci_cmd_sync_add(struct hci_request *req, u16 opcode, u32 plen,
82 			     const void *param, u8 event, struct sock *sk)
83 {
84 	struct hci_dev *hdev = req->hdev;
85 	struct sk_buff *skb;
86 
87 	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
88 
89 	/* If an error occurred during request building, there is no point in
90 	 * queueing the HCI command. We can simply return.
91 	 */
92 	if (req->err)
93 		return;
94 
95 	skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, sk);
96 	if (!skb) {
97 		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
98 			   opcode);
99 		req->err = -ENOMEM;
100 		return;
101 	}
102 
103 	if (skb_queue_empty(&req->cmd_q))
104 		bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
105 
106 	hci_skb_event(skb) = event;
107 
108 	skb_queue_tail(&req->cmd_q, skb);
109 }
110 
111 static int hci_cmd_sync_run(struct hci_request *req)
112 {
113 	struct hci_dev *hdev = req->hdev;
114 	struct sk_buff *skb;
115 	unsigned long flags;
116 
117 	bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q));
118 
119 	/* If an error occurred during request building, remove all HCI
120 	 * commands queued on the HCI request queue.
121 	 */
122 	if (req->err) {
123 		skb_queue_purge(&req->cmd_q);
124 		return req->err;
125 	}
126 
127 	/* Do not allow empty requests */
128 	if (skb_queue_empty(&req->cmd_q))
129 		return -ENODATA;
130 
131 	skb = skb_peek_tail(&req->cmd_q);
132 	bt_cb(skb)->hci.req_complete_skb = hci_cmd_sync_complete;
133 	bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
134 
135 	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
136 	skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
137 	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
138 
139 	queue_work(hdev->workqueue, &hdev->cmd_work);
140 
141 	return 0;
142 }
143 
144 /* This function requires the caller holds hdev->req_lock. */
145 struct sk_buff *__hci_cmd_sync_sk(struct hci_dev *hdev, u16 opcode, u32 plen,
146 				  const void *param, u8 event, u32 timeout,
147 				  struct sock *sk)
148 {
149 	struct hci_request req;
150 	struct sk_buff *skb;
151 	int err = 0;
152 
153 	bt_dev_dbg(hdev, "Opcode 0x%4x", opcode);
154 
155 	hci_req_init(&req, hdev);
156 
157 	hci_cmd_sync_add(&req, opcode, plen, param, event, sk);
158 
159 	hdev->req_status = HCI_REQ_PEND;
160 
161 	err = hci_cmd_sync_run(&req);
162 	if (err < 0)
163 		return ERR_PTR(err);
164 
165 	err = wait_event_interruptible_timeout(hdev->req_wait_q,
166 					       hdev->req_status != HCI_REQ_PEND,
167 					       timeout);
168 
169 	if (err == -ERESTARTSYS)
170 		return ERR_PTR(-EINTR);
171 
172 	switch (hdev->req_status) {
173 	case HCI_REQ_DONE:
174 		err = -bt_to_errno(hdev->req_result);
175 		break;
176 
177 	case HCI_REQ_CANCELED:
178 		err = -hdev->req_result;
179 		break;
180 
181 	default:
182 		err = -ETIMEDOUT;
183 		break;
184 	}
185 
186 	hdev->req_status = 0;
187 	hdev->req_result = 0;
188 	skb = hdev->req_skb;
189 	hdev->req_skb = NULL;
190 
191 	bt_dev_dbg(hdev, "end: err %d", err);
192 
193 	if (err < 0) {
194 		kfree_skb(skb);
195 		return ERR_PTR(err);
196 	}
197 
198 	return skb;
199 }
200 EXPORT_SYMBOL(__hci_cmd_sync_sk);
201 
202 /* This function requires the caller holds hdev->req_lock. */
203 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
204 			       const void *param, u32 timeout)
205 {
206 	return __hci_cmd_sync_sk(hdev, opcode, plen, param, 0, timeout, NULL);
207 }
208 EXPORT_SYMBOL(__hci_cmd_sync);
209 
210 /* Send HCI command and wait for command complete event */
211 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
212 			     const void *param, u32 timeout)
213 {
214 	struct sk_buff *skb;
215 
216 	if (!test_bit(HCI_UP, &hdev->flags))
217 		return ERR_PTR(-ENETDOWN);
218 
219 	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
220 
221 	hci_req_sync_lock(hdev);
222 	skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
223 	hci_req_sync_unlock(hdev);
224 
225 	return skb;
226 }
227 EXPORT_SYMBOL(hci_cmd_sync);
228 
229 /* This function requires the caller holds hdev->req_lock. */
230 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
231 				  const void *param, u8 event, u32 timeout)
232 {
233 	return __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout,
234 				 NULL);
235 }
236 EXPORT_SYMBOL(__hci_cmd_sync_ev);
237 
238 /* This function requires the caller holds hdev->req_lock. */
239 int __hci_cmd_sync_status_sk(struct hci_dev *hdev, u16 opcode, u32 plen,
240 			     const void *param, u8 event, u32 timeout,
241 			     struct sock *sk)
242 {
243 	struct sk_buff *skb;
244 	u8 status;
245 
246 	skb = __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, sk);
247 	if (IS_ERR(skb)) {
248 		bt_dev_err(hdev, "Opcode 0x%4x failed: %ld", opcode,
249 			   PTR_ERR(skb));
250 		return PTR_ERR(skb);
251 	}
252 
253 	/* If command return a status event skb will be set to NULL as there are
254 	 * no parameters, in case of failure IS_ERR(skb) would have be set to
255 	 * the actual error would be found with PTR_ERR(skb).
256 	 */
257 	if (!skb)
258 		return 0;
259 
260 	status = skb->data[0];
261 
262 	kfree_skb(skb);
263 
264 	return status;
265 }
266 EXPORT_SYMBOL(__hci_cmd_sync_status_sk);
267 
268 int __hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen,
269 			  const void *param, u32 timeout)
270 {
271 	return __hci_cmd_sync_status_sk(hdev, opcode, plen, param, 0, timeout,
272 					NULL);
273 }
274 EXPORT_SYMBOL(__hci_cmd_sync_status);
275 
276 static void hci_cmd_sync_work(struct work_struct *work)
277 {
278 	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_work);
279 	struct hci_cmd_sync_work_entry *entry;
280 	hci_cmd_sync_work_func_t func;
281 	hci_cmd_sync_work_destroy_t destroy;
282 	void *data;
283 
284 	bt_dev_dbg(hdev, "");
285 
286 	mutex_lock(&hdev->cmd_sync_work_lock);
287 	entry = list_first_entry(&hdev->cmd_sync_work_list,
288 				 struct hci_cmd_sync_work_entry, list);
289 	if (entry) {
290 		list_del(&entry->list);
291 		func = entry->func;
292 		data = entry->data;
293 		destroy = entry->destroy;
294 		kfree(entry);
295 	} else {
296 		func = NULL;
297 		data = NULL;
298 		destroy = NULL;
299 	}
300 	mutex_unlock(&hdev->cmd_sync_work_lock);
301 
302 	if (func) {
303 		int err;
304 
305 		hci_req_sync_lock(hdev);
306 
307 		err = func(hdev, data);
308 
309 		if (destroy)
310 			destroy(hdev, data, err);
311 
312 		hci_req_sync_unlock(hdev);
313 	}
314 }
315 
316 static void hci_cmd_sync_cancel_work(struct work_struct *work)
317 {
318 	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_cancel_work);
319 
320 	cancel_delayed_work_sync(&hdev->cmd_timer);
321 	cancel_delayed_work_sync(&hdev->ncmd_timer);
322 	atomic_set(&hdev->cmd_cnt, 1);
323 
324 	wake_up_interruptible(&hdev->req_wait_q);
325 }
326 
327 void hci_cmd_sync_init(struct hci_dev *hdev)
328 {
329 	INIT_WORK(&hdev->cmd_sync_work, hci_cmd_sync_work);
330 	INIT_LIST_HEAD(&hdev->cmd_sync_work_list);
331 	mutex_init(&hdev->cmd_sync_work_lock);
332 
333 	INIT_WORK(&hdev->cmd_sync_cancel_work, hci_cmd_sync_cancel_work);
334 }
335 
336 void hci_cmd_sync_clear(struct hci_dev *hdev)
337 {
338 	struct hci_cmd_sync_work_entry *entry, *tmp;
339 
340 	cancel_work_sync(&hdev->cmd_sync_work);
341 
342 	list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) {
343 		if (entry->destroy)
344 			entry->destroy(hdev, entry->data, -ECANCELED);
345 
346 		list_del(&entry->list);
347 		kfree(entry);
348 	}
349 }
350 
351 void __hci_cmd_sync_cancel(struct hci_dev *hdev, int err)
352 {
353 	bt_dev_dbg(hdev, "err 0x%2.2x", err);
354 
355 	if (hdev->req_status == HCI_REQ_PEND) {
356 		hdev->req_result = err;
357 		hdev->req_status = HCI_REQ_CANCELED;
358 
359 		cancel_delayed_work_sync(&hdev->cmd_timer);
360 		cancel_delayed_work_sync(&hdev->ncmd_timer);
361 		atomic_set(&hdev->cmd_cnt, 1);
362 
363 		wake_up_interruptible(&hdev->req_wait_q);
364 	}
365 }
366 
367 void hci_cmd_sync_cancel(struct hci_dev *hdev, int err)
368 {
369 	bt_dev_dbg(hdev, "err 0x%2.2x", err);
370 
371 	if (hdev->req_status == HCI_REQ_PEND) {
372 		hdev->req_result = err;
373 		hdev->req_status = HCI_REQ_CANCELED;
374 
375 		queue_work(hdev->workqueue, &hdev->cmd_sync_cancel_work);
376 	}
377 }
378 EXPORT_SYMBOL(hci_cmd_sync_cancel);
379 
380 int hci_cmd_sync_queue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
381 		       void *data, hci_cmd_sync_work_destroy_t destroy)
382 {
383 	struct hci_cmd_sync_work_entry *entry;
384 
385 	if (hci_dev_test_flag(hdev, HCI_UNREGISTER))
386 		return -ENODEV;
387 
388 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
389 	if (!entry)
390 		return -ENOMEM;
391 
392 	entry->func = func;
393 	entry->data = data;
394 	entry->destroy = destroy;
395 
396 	mutex_lock(&hdev->cmd_sync_work_lock);
397 	list_add_tail(&entry->list, &hdev->cmd_sync_work_list);
398 	mutex_unlock(&hdev->cmd_sync_work_lock);
399 
400 	queue_work(hdev->req_workqueue, &hdev->cmd_sync_work);
401 
402 	return 0;
403 }
404 EXPORT_SYMBOL(hci_cmd_sync_queue);
405 
406 int hci_update_eir_sync(struct hci_dev *hdev)
407 {
408 	struct hci_cp_write_eir cp;
409 
410 	bt_dev_dbg(hdev, "");
411 
412 	if (!hdev_is_powered(hdev))
413 		return 0;
414 
415 	if (!lmp_ext_inq_capable(hdev))
416 		return 0;
417 
418 	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
419 		return 0;
420 
421 	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
422 		return 0;
423 
424 	memset(&cp, 0, sizeof(cp));
425 
426 	eir_create(hdev, cp.data);
427 
428 	if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
429 		return 0;
430 
431 	memcpy(hdev->eir, cp.data, sizeof(cp.data));
432 
433 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp,
434 				     HCI_CMD_TIMEOUT);
435 }
436 
437 static u8 get_service_classes(struct hci_dev *hdev)
438 {
439 	struct bt_uuid *uuid;
440 	u8 val = 0;
441 
442 	list_for_each_entry(uuid, &hdev->uuids, list)
443 		val |= uuid->svc_hint;
444 
445 	return val;
446 }
447 
448 int hci_update_class_sync(struct hci_dev *hdev)
449 {
450 	u8 cod[3];
451 
452 	bt_dev_dbg(hdev, "");
453 
454 	if (!hdev_is_powered(hdev))
455 		return 0;
456 
457 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
458 		return 0;
459 
460 	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
461 		return 0;
462 
463 	cod[0] = hdev->minor_class;
464 	cod[1] = hdev->major_class;
465 	cod[2] = get_service_classes(hdev);
466 
467 	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
468 		cod[1] |= 0x20;
469 
470 	if (memcmp(cod, hdev->dev_class, 3) == 0)
471 		return 0;
472 
473 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CLASS_OF_DEV,
474 				     sizeof(cod), cod, HCI_CMD_TIMEOUT);
475 }
476 
477 static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable)
478 {
479 	/* If there is no connection we are OK to advertise. */
480 	if (hci_conn_num(hdev, LE_LINK) == 0)
481 		return true;
482 
483 	/* Check le_states if there is any connection in peripheral role. */
484 	if (hdev->conn_hash.le_num_peripheral > 0) {
485 		/* Peripheral connection state and non connectable mode
486 		 * bit 20.
487 		 */
488 		if (!connectable && !(hdev->le_states[2] & 0x10))
489 			return false;
490 
491 		/* Peripheral connection state and connectable mode bit 38
492 		 * and scannable bit 21.
493 		 */
494 		if (connectable && (!(hdev->le_states[4] & 0x40) ||
495 				    !(hdev->le_states[2] & 0x20)))
496 			return false;
497 	}
498 
499 	/* Check le_states if there is any connection in central role. */
500 	if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) {
501 		/* Central connection state and non connectable mode bit 18. */
502 		if (!connectable && !(hdev->le_states[2] & 0x02))
503 			return false;
504 
505 		/* Central connection state and connectable mode bit 35 and
506 		 * scannable 19.
507 		 */
508 		if (connectable && (!(hdev->le_states[4] & 0x08) ||
509 				    !(hdev->le_states[2] & 0x08)))
510 			return false;
511 	}
512 
513 	return true;
514 }
515 
516 static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
517 {
518 	/* If privacy is not enabled don't use RPA */
519 	if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
520 		return false;
521 
522 	/* If basic privacy mode is enabled use RPA */
523 	if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
524 		return true;
525 
526 	/* If limited privacy mode is enabled don't use RPA if we're
527 	 * both discoverable and bondable.
528 	 */
529 	if ((flags & MGMT_ADV_FLAG_DISCOV) &&
530 	    hci_dev_test_flag(hdev, HCI_BONDABLE))
531 		return false;
532 
533 	/* We're neither bondable nor discoverable in the limited
534 	 * privacy mode, therefore use RPA.
535 	 */
536 	return true;
537 }
538 
539 static int hci_set_random_addr_sync(struct hci_dev *hdev, bdaddr_t *rpa)
540 {
541 	/* If we're advertising or initiating an LE connection we can't
542 	 * go ahead and change the random address at this time. This is
543 	 * because the eventual initiator address used for the
544 	 * subsequently created connection will be undefined (some
545 	 * controllers use the new address and others the one we had
546 	 * when the operation started).
547 	 *
548 	 * In this kind of scenario skip the update and let the random
549 	 * address be updated at the next cycle.
550 	 */
551 	if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
552 	    hci_lookup_le_connect(hdev)) {
553 		bt_dev_dbg(hdev, "Deferring random address update");
554 		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
555 		return 0;
556 	}
557 
558 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RANDOM_ADDR,
559 				     6, rpa, HCI_CMD_TIMEOUT);
560 }
561 
562 int hci_update_random_address_sync(struct hci_dev *hdev, bool require_privacy,
563 				   bool rpa, u8 *own_addr_type)
564 {
565 	int err;
566 
567 	/* If privacy is enabled use a resolvable private address. If
568 	 * current RPA has expired or there is something else than
569 	 * the current RPA in use, then generate a new one.
570 	 */
571 	if (rpa) {
572 		/* If Controller supports LL Privacy use own address type is
573 		 * 0x03
574 		 */
575 		if (use_ll_privacy(hdev))
576 			*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
577 		else
578 			*own_addr_type = ADDR_LE_DEV_RANDOM;
579 
580 		/* Check if RPA is valid */
581 		if (rpa_valid(hdev))
582 			return 0;
583 
584 		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
585 		if (err < 0) {
586 			bt_dev_err(hdev, "failed to generate new RPA");
587 			return err;
588 		}
589 
590 		err = hci_set_random_addr_sync(hdev, &hdev->rpa);
591 		if (err)
592 			return err;
593 
594 		return 0;
595 	}
596 
597 	/* In case of required privacy without resolvable private address,
598 	 * use an non-resolvable private address. This is useful for active
599 	 * scanning and non-connectable advertising.
600 	 */
601 	if (require_privacy) {
602 		bdaddr_t nrpa;
603 
604 		while (true) {
605 			/* The non-resolvable private address is generated
606 			 * from random six bytes with the two most significant
607 			 * bits cleared.
608 			 */
609 			get_random_bytes(&nrpa, 6);
610 			nrpa.b[5] &= 0x3f;
611 
612 			/* The non-resolvable private address shall not be
613 			 * equal to the public address.
614 			 */
615 			if (bacmp(&hdev->bdaddr, &nrpa))
616 				break;
617 		}
618 
619 		*own_addr_type = ADDR_LE_DEV_RANDOM;
620 
621 		return hci_set_random_addr_sync(hdev, &nrpa);
622 	}
623 
624 	/* If forcing static address is in use or there is no public
625 	 * address use the static address as random address (but skip
626 	 * the HCI command if the current random address is already the
627 	 * static one.
628 	 *
629 	 * In case BR/EDR has been disabled on a dual-mode controller
630 	 * and a static address has been configured, then use that
631 	 * address instead of the public BR/EDR address.
632 	 */
633 	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
634 	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
635 	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
636 	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
637 		*own_addr_type = ADDR_LE_DEV_RANDOM;
638 		if (bacmp(&hdev->static_addr, &hdev->random_addr))
639 			return hci_set_random_addr_sync(hdev,
640 							&hdev->static_addr);
641 		return 0;
642 	}
643 
644 	/* Neither privacy nor static address is being used so use a
645 	 * public address.
646 	 */
647 	*own_addr_type = ADDR_LE_DEV_PUBLIC;
648 
649 	return 0;
650 }
651 
652 static int hci_disable_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance)
653 {
654 	struct hci_cp_le_set_ext_adv_enable *cp;
655 	struct hci_cp_ext_adv_set *set;
656 	u8 data[sizeof(*cp) + sizeof(*set) * 1];
657 	u8 size;
658 
659 	/* If request specifies an instance that doesn't exist, fail */
660 	if (instance > 0) {
661 		struct adv_info *adv;
662 
663 		adv = hci_find_adv_instance(hdev, instance);
664 		if (!adv)
665 			return -EINVAL;
666 
667 		/* If not enabled there is nothing to do */
668 		if (!adv->enabled)
669 			return 0;
670 	}
671 
672 	memset(data, 0, sizeof(data));
673 
674 	cp = (void *)data;
675 	set = (void *)cp->data;
676 
677 	/* Instance 0x00 indicates all advertising instances will be disabled */
678 	cp->num_of_sets = !!instance;
679 	cp->enable = 0x00;
680 
681 	set->handle = instance;
682 
683 	size = sizeof(*cp) + sizeof(*set) * cp->num_of_sets;
684 
685 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE,
686 				     size, data, HCI_CMD_TIMEOUT);
687 }
688 
689 static int hci_set_adv_set_random_addr_sync(struct hci_dev *hdev, u8 instance,
690 					    bdaddr_t *random_addr)
691 {
692 	struct hci_cp_le_set_adv_set_rand_addr cp;
693 	int err;
694 
695 	if (!instance) {
696 		/* Instance 0x00 doesn't have an adv_info, instead it uses
697 		 * hdev->random_addr to track its address so whenever it needs
698 		 * to be updated this also set the random address since
699 		 * hdev->random_addr is shared with scan state machine.
700 		 */
701 		err = hci_set_random_addr_sync(hdev, random_addr);
702 		if (err)
703 			return err;
704 	}
705 
706 	memset(&cp, 0, sizeof(cp));
707 
708 	cp.handle = instance;
709 	bacpy(&cp.bdaddr, random_addr);
710 
711 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
712 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
713 }
714 
715 int hci_setup_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance)
716 {
717 	struct hci_cp_le_set_ext_adv_params cp;
718 	bool connectable;
719 	u32 flags;
720 	bdaddr_t random_addr;
721 	u8 own_addr_type;
722 	int err;
723 	struct adv_info *adv;
724 	bool secondary_adv;
725 
726 	if (instance > 0) {
727 		adv = hci_find_adv_instance(hdev, instance);
728 		if (!adv)
729 			return -EINVAL;
730 	} else {
731 		adv = NULL;
732 	}
733 
734 	/* Updating parameters of an active instance will return a
735 	 * Command Disallowed error, so we must first disable the
736 	 * instance if it is active.
737 	 */
738 	if (adv && !adv->pending) {
739 		err = hci_disable_ext_adv_instance_sync(hdev, instance);
740 		if (err)
741 			return err;
742 	}
743 
744 	flags = hci_adv_instance_flags(hdev, instance);
745 
746 	/* If the "connectable" instance flag was not set, then choose between
747 	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
748 	 */
749 	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
750 		      mgmt_get_connectable(hdev);
751 
752 	if (!is_advertising_allowed(hdev, connectable))
753 		return -EPERM;
754 
755 	/* Set require_privacy to true only when non-connectable
756 	 * advertising is used. In that case it is fine to use a
757 	 * non-resolvable private address.
758 	 */
759 	err = hci_get_random_address(hdev, !connectable,
760 				     adv_use_rpa(hdev, flags), adv,
761 				     &own_addr_type, &random_addr);
762 	if (err < 0)
763 		return err;
764 
765 	memset(&cp, 0, sizeof(cp));
766 
767 	if (adv) {
768 		hci_cpu_to_le24(adv->min_interval, cp.min_interval);
769 		hci_cpu_to_le24(adv->max_interval, cp.max_interval);
770 		cp.tx_power = adv->tx_power;
771 	} else {
772 		hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval);
773 		hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval);
774 		cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE;
775 	}
776 
777 	secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK);
778 
779 	if (connectable) {
780 		if (secondary_adv)
781 			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND);
782 		else
783 			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND);
784 	} else if (hci_adv_instance_is_scannable(hdev, instance) ||
785 		   (flags & MGMT_ADV_PARAM_SCAN_RSP)) {
786 		if (secondary_adv)
787 			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND);
788 		else
789 			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND);
790 	} else {
791 		if (secondary_adv)
792 			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND);
793 		else
794 			cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND);
795 	}
796 
797 	/* If Own_Address_Type equals 0x02 or 0x03, the Peer_Address parameter
798 	 * contains the peer’s Identity Address and the Peer_Address_Type
799 	 * parameter contains the peer’s Identity Type (i.e., 0x00 or 0x01).
800 	 * These parameters are used to locate the corresponding local IRK in
801 	 * the resolving list; this IRK is used to generate their own address
802 	 * used in the advertisement.
803 	 */
804 	if (own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED)
805 		hci_copy_identity_address(hdev, &cp.peer_addr,
806 					  &cp.peer_addr_type);
807 
808 	cp.own_addr_type = own_addr_type;
809 	cp.channel_map = hdev->le_adv_channel_map;
810 	cp.handle = instance;
811 
812 	if (flags & MGMT_ADV_FLAG_SEC_2M) {
813 		cp.primary_phy = HCI_ADV_PHY_1M;
814 		cp.secondary_phy = HCI_ADV_PHY_2M;
815 	} else if (flags & MGMT_ADV_FLAG_SEC_CODED) {
816 		cp.primary_phy = HCI_ADV_PHY_CODED;
817 		cp.secondary_phy = HCI_ADV_PHY_CODED;
818 	} else {
819 		/* In all other cases use 1M */
820 		cp.primary_phy = HCI_ADV_PHY_1M;
821 		cp.secondary_phy = HCI_ADV_PHY_1M;
822 	}
823 
824 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS,
825 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
826 	if (err)
827 		return err;
828 
829 	if ((own_addr_type == ADDR_LE_DEV_RANDOM ||
830 	     own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) &&
831 	    bacmp(&random_addr, BDADDR_ANY)) {
832 		/* Check if random address need to be updated */
833 		if (adv) {
834 			if (!bacmp(&random_addr, &adv->random_addr))
835 				return 0;
836 		} else {
837 			if (!bacmp(&random_addr, &hdev->random_addr))
838 				return 0;
839 		}
840 
841 		return hci_set_adv_set_random_addr_sync(hdev, instance,
842 							&random_addr);
843 	}
844 
845 	return 0;
846 }
847 
848 static int hci_set_ext_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
849 {
850 	struct {
851 		struct hci_cp_le_set_ext_scan_rsp_data cp;
852 		u8 data[HCI_MAX_EXT_AD_LENGTH];
853 	} pdu;
854 	u8 len;
855 
856 	memset(&pdu, 0, sizeof(pdu));
857 
858 	len = eir_create_scan_rsp(hdev, instance, pdu.data);
859 
860 	if (hdev->scan_rsp_data_len == len &&
861 	    !memcmp(pdu.data, hdev->scan_rsp_data, len))
862 		return 0;
863 
864 	memcpy(hdev->scan_rsp_data, pdu.data, len);
865 	hdev->scan_rsp_data_len = len;
866 
867 	pdu.cp.handle = instance;
868 	pdu.cp.length = len;
869 	pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
870 	pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
871 
872 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA,
873 				     sizeof(pdu.cp) + len, &pdu.cp,
874 				     HCI_CMD_TIMEOUT);
875 }
876 
877 static int __hci_set_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
878 {
879 	struct hci_cp_le_set_scan_rsp_data cp;
880 	u8 len;
881 
882 	memset(&cp, 0, sizeof(cp));
883 
884 	len = eir_create_scan_rsp(hdev, instance, cp.data);
885 
886 	if (hdev->scan_rsp_data_len == len &&
887 	    !memcmp(cp.data, hdev->scan_rsp_data, len))
888 		return 0;
889 
890 	memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
891 	hdev->scan_rsp_data_len = len;
892 
893 	cp.length = len;
894 
895 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_RSP_DATA,
896 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
897 }
898 
899 int hci_update_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
900 {
901 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
902 		return 0;
903 
904 	if (ext_adv_capable(hdev))
905 		return hci_set_ext_scan_rsp_data_sync(hdev, instance);
906 
907 	return __hci_set_scan_rsp_data_sync(hdev, instance);
908 }
909 
910 int hci_enable_ext_advertising_sync(struct hci_dev *hdev, u8 instance)
911 {
912 	struct hci_cp_le_set_ext_adv_enable *cp;
913 	struct hci_cp_ext_adv_set *set;
914 	u8 data[sizeof(*cp) + sizeof(*set) * 1];
915 	struct adv_info *adv;
916 
917 	if (instance > 0) {
918 		adv = hci_find_adv_instance(hdev, instance);
919 		if (!adv)
920 			return -EINVAL;
921 		/* If already enabled there is nothing to do */
922 		if (adv->enabled)
923 			return 0;
924 	} else {
925 		adv = NULL;
926 	}
927 
928 	cp = (void *)data;
929 	set = (void *)cp->data;
930 
931 	memset(cp, 0, sizeof(*cp));
932 
933 	cp->enable = 0x01;
934 	cp->num_of_sets = 0x01;
935 
936 	memset(set, 0, sizeof(*set));
937 
938 	set->handle = instance;
939 
940 	/* Set duration per instance since controller is responsible for
941 	 * scheduling it.
942 	 */
943 	if (adv && adv->timeout) {
944 		u16 duration = adv->timeout * MSEC_PER_SEC;
945 
946 		/* Time = N * 10 ms */
947 		set->duration = cpu_to_le16(duration / 10);
948 	}
949 
950 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE,
951 				     sizeof(*cp) +
952 				     sizeof(*set) * cp->num_of_sets,
953 				     data, HCI_CMD_TIMEOUT);
954 }
955 
956 int hci_start_ext_adv_sync(struct hci_dev *hdev, u8 instance)
957 {
958 	int err;
959 
960 	err = hci_setup_ext_adv_instance_sync(hdev, instance);
961 	if (err)
962 		return err;
963 
964 	err = hci_set_ext_scan_rsp_data_sync(hdev, instance);
965 	if (err)
966 		return err;
967 
968 	return hci_enable_ext_advertising_sync(hdev, instance);
969 }
970 
971 static int hci_start_adv_sync(struct hci_dev *hdev, u8 instance)
972 {
973 	int err;
974 
975 	if (ext_adv_capable(hdev))
976 		return hci_start_ext_adv_sync(hdev, instance);
977 
978 	err = hci_update_adv_data_sync(hdev, instance);
979 	if (err)
980 		return err;
981 
982 	err = hci_update_scan_rsp_data_sync(hdev, instance);
983 	if (err)
984 		return err;
985 
986 	return hci_enable_advertising_sync(hdev);
987 }
988 
989 int hci_enable_advertising_sync(struct hci_dev *hdev)
990 {
991 	struct adv_info *adv_instance;
992 	struct hci_cp_le_set_adv_param cp;
993 	u8 own_addr_type, enable = 0x01;
994 	bool connectable;
995 	u16 adv_min_interval, adv_max_interval;
996 	u32 flags;
997 	u8 status;
998 
999 	if (ext_adv_capable(hdev))
1000 		return hci_enable_ext_advertising_sync(hdev,
1001 						       hdev->cur_adv_instance);
1002 
1003 	flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance);
1004 	adv_instance = hci_find_adv_instance(hdev, hdev->cur_adv_instance);
1005 
1006 	/* If the "connectable" instance flag was not set, then choose between
1007 	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1008 	 */
1009 	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1010 		      mgmt_get_connectable(hdev);
1011 
1012 	if (!is_advertising_allowed(hdev, connectable))
1013 		return -EINVAL;
1014 
1015 	status = hci_disable_advertising_sync(hdev);
1016 	if (status)
1017 		return status;
1018 
1019 	/* Clear the HCI_LE_ADV bit temporarily so that the
1020 	 * hci_update_random_address knows that it's safe to go ahead
1021 	 * and write a new random address. The flag will be set back on
1022 	 * as soon as the SET_ADV_ENABLE HCI command completes.
1023 	 */
1024 	hci_dev_clear_flag(hdev, HCI_LE_ADV);
1025 
1026 	/* Set require_privacy to true only when non-connectable
1027 	 * advertising is used. In that case it is fine to use a
1028 	 * non-resolvable private address.
1029 	 */
1030 	status = hci_update_random_address_sync(hdev, !connectable,
1031 						adv_use_rpa(hdev, flags),
1032 						&own_addr_type);
1033 	if (status)
1034 		return status;
1035 
1036 	memset(&cp, 0, sizeof(cp));
1037 
1038 	if (adv_instance) {
1039 		adv_min_interval = adv_instance->min_interval;
1040 		adv_max_interval = adv_instance->max_interval;
1041 	} else {
1042 		adv_min_interval = hdev->le_adv_min_interval;
1043 		adv_max_interval = hdev->le_adv_max_interval;
1044 	}
1045 
1046 	if (connectable) {
1047 		cp.type = LE_ADV_IND;
1048 	} else {
1049 		if (hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance))
1050 			cp.type = LE_ADV_SCAN_IND;
1051 		else
1052 			cp.type = LE_ADV_NONCONN_IND;
1053 
1054 		if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) ||
1055 		    hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
1056 			adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN;
1057 			adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX;
1058 		}
1059 	}
1060 
1061 	cp.min_interval = cpu_to_le16(adv_min_interval);
1062 	cp.max_interval = cpu_to_le16(adv_max_interval);
1063 	cp.own_address_type = own_addr_type;
1064 	cp.channel_map = hdev->le_adv_channel_map;
1065 
1066 	status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM,
1067 				       sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1068 	if (status)
1069 		return status;
1070 
1071 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
1072 				     sizeof(enable), &enable, HCI_CMD_TIMEOUT);
1073 }
1074 
1075 static int enable_advertising_sync(struct hci_dev *hdev, void *data)
1076 {
1077 	return hci_enable_advertising_sync(hdev);
1078 }
1079 
1080 int hci_enable_advertising(struct hci_dev *hdev)
1081 {
1082 	if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
1083 	    list_empty(&hdev->adv_instances))
1084 		return 0;
1085 
1086 	return hci_cmd_sync_queue(hdev, enable_advertising_sync, NULL, NULL);
1087 }
1088 
1089 int hci_remove_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance,
1090 				     struct sock *sk)
1091 {
1092 	int err;
1093 
1094 	if (!ext_adv_capable(hdev))
1095 		return 0;
1096 
1097 	err = hci_disable_ext_adv_instance_sync(hdev, instance);
1098 	if (err)
1099 		return err;
1100 
1101 	/* If request specifies an instance that doesn't exist, fail */
1102 	if (instance > 0 && !hci_find_adv_instance(hdev, instance))
1103 		return -EINVAL;
1104 
1105 	return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_REMOVE_ADV_SET,
1106 					sizeof(instance), &instance, 0,
1107 					HCI_CMD_TIMEOUT, sk);
1108 }
1109 
1110 static void cancel_adv_timeout(struct hci_dev *hdev)
1111 {
1112 	if (hdev->adv_instance_timeout) {
1113 		hdev->adv_instance_timeout = 0;
1114 		cancel_delayed_work(&hdev->adv_instance_expire);
1115 	}
1116 }
1117 
1118 static int hci_set_ext_adv_data_sync(struct hci_dev *hdev, u8 instance)
1119 {
1120 	struct {
1121 		struct hci_cp_le_set_ext_adv_data cp;
1122 		u8 data[HCI_MAX_EXT_AD_LENGTH];
1123 	} pdu;
1124 	u8 len;
1125 
1126 	memset(&pdu, 0, sizeof(pdu));
1127 
1128 	len = eir_create_adv_data(hdev, instance, pdu.data);
1129 
1130 	/* There's nothing to do if the data hasn't changed */
1131 	if (hdev->adv_data_len == len &&
1132 	    memcmp(pdu.data, hdev->adv_data, len) == 0)
1133 		return 0;
1134 
1135 	memcpy(hdev->adv_data, pdu.data, len);
1136 	hdev->adv_data_len = len;
1137 
1138 	pdu.cp.length = len;
1139 	pdu.cp.handle = instance;
1140 	pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1141 	pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1142 
1143 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_DATA,
1144 				     sizeof(pdu.cp) + len, &pdu.cp,
1145 				     HCI_CMD_TIMEOUT);
1146 }
1147 
1148 static int hci_set_adv_data_sync(struct hci_dev *hdev, u8 instance)
1149 {
1150 	struct hci_cp_le_set_adv_data cp;
1151 	u8 len;
1152 
1153 	memset(&cp, 0, sizeof(cp));
1154 
1155 	len = eir_create_adv_data(hdev, instance, cp.data);
1156 
1157 	/* There's nothing to do if the data hasn't changed */
1158 	if (hdev->adv_data_len == len &&
1159 	    memcmp(cp.data, hdev->adv_data, len) == 0)
1160 		return 0;
1161 
1162 	memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1163 	hdev->adv_data_len = len;
1164 
1165 	cp.length = len;
1166 
1167 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_DATA,
1168 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1169 }
1170 
1171 int hci_update_adv_data_sync(struct hci_dev *hdev, u8 instance)
1172 {
1173 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1174 		return 0;
1175 
1176 	if (ext_adv_capable(hdev))
1177 		return hci_set_ext_adv_data_sync(hdev, instance);
1178 
1179 	return hci_set_adv_data_sync(hdev, instance);
1180 }
1181 
1182 int hci_schedule_adv_instance_sync(struct hci_dev *hdev, u8 instance,
1183 				   bool force)
1184 {
1185 	struct adv_info *adv = NULL;
1186 	u16 timeout;
1187 
1188 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) && !ext_adv_capable(hdev))
1189 		return -EPERM;
1190 
1191 	if (hdev->adv_instance_timeout)
1192 		return -EBUSY;
1193 
1194 	adv = hci_find_adv_instance(hdev, instance);
1195 	if (!adv)
1196 		return -ENOENT;
1197 
1198 	/* A zero timeout means unlimited advertising. As long as there is
1199 	 * only one instance, duration should be ignored. We still set a timeout
1200 	 * in case further instances are being added later on.
1201 	 *
1202 	 * If the remaining lifetime of the instance is more than the duration
1203 	 * then the timeout corresponds to the duration, otherwise it will be
1204 	 * reduced to the remaining instance lifetime.
1205 	 */
1206 	if (adv->timeout == 0 || adv->duration <= adv->remaining_time)
1207 		timeout = adv->duration;
1208 	else
1209 		timeout = adv->remaining_time;
1210 
1211 	/* The remaining time is being reduced unless the instance is being
1212 	 * advertised without time limit.
1213 	 */
1214 	if (adv->timeout)
1215 		adv->remaining_time = adv->remaining_time - timeout;
1216 
1217 	/* Only use work for scheduling instances with legacy advertising */
1218 	if (!ext_adv_capable(hdev)) {
1219 		hdev->adv_instance_timeout = timeout;
1220 		queue_delayed_work(hdev->req_workqueue,
1221 				   &hdev->adv_instance_expire,
1222 				   msecs_to_jiffies(timeout * 1000));
1223 	}
1224 
1225 	/* If we're just re-scheduling the same instance again then do not
1226 	 * execute any HCI commands. This happens when a single instance is
1227 	 * being advertised.
1228 	 */
1229 	if (!force && hdev->cur_adv_instance == instance &&
1230 	    hci_dev_test_flag(hdev, HCI_LE_ADV))
1231 		return 0;
1232 
1233 	hdev->cur_adv_instance = instance;
1234 
1235 	return hci_start_adv_sync(hdev, instance);
1236 }
1237 
1238 static int hci_clear_adv_sets_sync(struct hci_dev *hdev, struct sock *sk)
1239 {
1240 	int err;
1241 
1242 	if (!ext_adv_capable(hdev))
1243 		return 0;
1244 
1245 	/* Disable instance 0x00 to disable all instances */
1246 	err = hci_disable_ext_adv_instance_sync(hdev, 0x00);
1247 	if (err)
1248 		return err;
1249 
1250 	return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CLEAR_ADV_SETS,
1251 					0, NULL, 0, HCI_CMD_TIMEOUT, sk);
1252 }
1253 
1254 static int hci_clear_adv_sync(struct hci_dev *hdev, struct sock *sk, bool force)
1255 {
1256 	struct adv_info *adv, *n;
1257 
1258 	if (ext_adv_capable(hdev))
1259 		/* Remove all existing sets */
1260 		return hci_clear_adv_sets_sync(hdev, sk);
1261 
1262 	/* This is safe as long as there is no command send while the lock is
1263 	 * held.
1264 	 */
1265 	hci_dev_lock(hdev);
1266 
1267 	/* Cleanup non-ext instances */
1268 	list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) {
1269 		u8 instance = adv->instance;
1270 		int err;
1271 
1272 		if (!(force || adv->timeout))
1273 			continue;
1274 
1275 		err = hci_remove_adv_instance(hdev, instance);
1276 		if (!err)
1277 			mgmt_advertising_removed(sk, hdev, instance);
1278 	}
1279 
1280 	hci_dev_unlock(hdev);
1281 
1282 	return 0;
1283 }
1284 
1285 static int hci_remove_adv_sync(struct hci_dev *hdev, u8 instance,
1286 			       struct sock *sk)
1287 {
1288 	int err;
1289 
1290 	/* If we use extended advertising, instance has to be removed first. */
1291 	if (ext_adv_capable(hdev))
1292 		return hci_remove_ext_adv_instance_sync(hdev, instance, sk);
1293 
1294 	/* This is safe as long as there is no command send while the lock is
1295 	 * held.
1296 	 */
1297 	hci_dev_lock(hdev);
1298 
1299 	err = hci_remove_adv_instance(hdev, instance);
1300 	if (!err)
1301 		mgmt_advertising_removed(sk, hdev, instance);
1302 
1303 	hci_dev_unlock(hdev);
1304 
1305 	return err;
1306 }
1307 
1308 /* For a single instance:
1309  * - force == true: The instance will be removed even when its remaining
1310  *   lifetime is not zero.
1311  * - force == false: the instance will be deactivated but kept stored unless
1312  *   the remaining lifetime is zero.
1313  *
1314  * For instance == 0x00:
1315  * - force == true: All instances will be removed regardless of their timeout
1316  *   setting.
1317  * - force == false: Only instances that have a timeout will be removed.
1318  */
1319 int hci_remove_advertising_sync(struct hci_dev *hdev, struct sock *sk,
1320 				u8 instance, bool force)
1321 {
1322 	struct adv_info *next = NULL;
1323 	int err;
1324 
1325 	/* Cancel any timeout concerning the removed instance(s). */
1326 	if (!instance || hdev->cur_adv_instance == instance)
1327 		cancel_adv_timeout(hdev);
1328 
1329 	/* Get the next instance to advertise BEFORE we remove
1330 	 * the current one. This can be the same instance again
1331 	 * if there is only one instance.
1332 	 */
1333 	if (hdev->cur_adv_instance == instance)
1334 		next = hci_get_next_instance(hdev, instance);
1335 
1336 	if (!instance) {
1337 		err = hci_clear_adv_sync(hdev, sk, force);
1338 		if (err)
1339 			return err;
1340 	} else {
1341 		struct adv_info *adv = hci_find_adv_instance(hdev, instance);
1342 
1343 		if (force || (adv && adv->timeout && !adv->remaining_time)) {
1344 			/* Don't advertise a removed instance. */
1345 			if (next && next->instance == instance)
1346 				next = NULL;
1347 
1348 			err = hci_remove_adv_sync(hdev, instance, sk);
1349 			if (err)
1350 				return err;
1351 		}
1352 	}
1353 
1354 	if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING))
1355 		return 0;
1356 
1357 	if (next && !ext_adv_capable(hdev))
1358 		hci_schedule_adv_instance_sync(hdev, next->instance, false);
1359 
1360 	return 0;
1361 }
1362 
1363 int hci_read_rssi_sync(struct hci_dev *hdev, __le16 handle)
1364 {
1365 	struct hci_cp_read_rssi cp;
1366 
1367 	cp.handle = handle;
1368 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_RSSI,
1369 					sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1370 }
1371 
1372 int hci_read_clock_sync(struct hci_dev *hdev, struct hci_cp_read_clock *cp)
1373 {
1374 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLOCK,
1375 					sizeof(*cp), cp, HCI_CMD_TIMEOUT);
1376 }
1377 
1378 int hci_read_tx_power_sync(struct hci_dev *hdev, __le16 handle, u8 type)
1379 {
1380 	struct hci_cp_read_tx_power cp;
1381 
1382 	cp.handle = handle;
1383 	cp.type = type;
1384 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_TX_POWER,
1385 					sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1386 }
1387 
1388 int hci_disable_advertising_sync(struct hci_dev *hdev)
1389 {
1390 	u8 enable = 0x00;
1391 
1392 	/* If controller is not advertising we are done. */
1393 	if (!hci_dev_test_flag(hdev, HCI_LE_ADV))
1394 		return 0;
1395 
1396 	if (ext_adv_capable(hdev))
1397 		return hci_disable_ext_adv_instance_sync(hdev, 0x00);
1398 
1399 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
1400 				     sizeof(enable), &enable, HCI_CMD_TIMEOUT);
1401 }
1402 
1403 static int hci_le_set_ext_scan_enable_sync(struct hci_dev *hdev, u8 val,
1404 					   u8 filter_dup)
1405 {
1406 	struct hci_cp_le_set_ext_scan_enable cp;
1407 
1408 	memset(&cp, 0, sizeof(cp));
1409 	cp.enable = val;
1410 	cp.filter_dup = filter_dup;
1411 
1412 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
1413 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1414 }
1415 
1416 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val,
1417 				       u8 filter_dup)
1418 {
1419 	struct hci_cp_le_set_scan_enable cp;
1420 
1421 	if (use_ext_scan(hdev))
1422 		return hci_le_set_ext_scan_enable_sync(hdev, val, filter_dup);
1423 
1424 	memset(&cp, 0, sizeof(cp));
1425 	cp.enable = val;
1426 	cp.filter_dup = filter_dup;
1427 
1428 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_ENABLE,
1429 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1430 }
1431 
1432 static int hci_le_set_addr_resolution_enable_sync(struct hci_dev *hdev, u8 val)
1433 {
1434 	if (!use_ll_privacy(hdev))
1435 		return 0;
1436 
1437 	/* If controller is not/already resolving we are done. */
1438 	if (val == hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION))
1439 		return 0;
1440 
1441 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE,
1442 				     sizeof(val), &val, HCI_CMD_TIMEOUT);
1443 }
1444 
1445 static int hci_scan_disable_sync(struct hci_dev *hdev)
1446 {
1447 	int err;
1448 
1449 	/* If controller is not scanning we are done. */
1450 	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
1451 		return 0;
1452 
1453 	if (hdev->scanning_paused) {
1454 		bt_dev_dbg(hdev, "Scanning is paused for suspend");
1455 		return 0;
1456 	}
1457 
1458 	err = hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00);
1459 	if (err) {
1460 		bt_dev_err(hdev, "Unable to disable scanning: %d", err);
1461 		return err;
1462 	}
1463 
1464 	return err;
1465 }
1466 
1467 static bool scan_use_rpa(struct hci_dev *hdev)
1468 {
1469 	return hci_dev_test_flag(hdev, HCI_PRIVACY);
1470 }
1471 
1472 static void hci_start_interleave_scan(struct hci_dev *hdev)
1473 {
1474 	hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER;
1475 	queue_delayed_work(hdev->req_workqueue,
1476 			   &hdev->interleave_scan, 0);
1477 }
1478 
1479 static bool is_interleave_scanning(struct hci_dev *hdev)
1480 {
1481 	return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE;
1482 }
1483 
1484 static void cancel_interleave_scan(struct hci_dev *hdev)
1485 {
1486 	bt_dev_dbg(hdev, "cancelling interleave scan");
1487 
1488 	cancel_delayed_work_sync(&hdev->interleave_scan);
1489 
1490 	hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE;
1491 }
1492 
1493 /* Return true if interleave_scan wasn't started until exiting this function,
1494  * otherwise, return false
1495  */
1496 static bool hci_update_interleaved_scan_sync(struct hci_dev *hdev)
1497 {
1498 	/* Do interleaved scan only if all of the following are true:
1499 	 * - There is at least one ADV monitor
1500 	 * - At least one pending LE connection or one device to be scanned for
1501 	 * - Monitor offloading is not supported
1502 	 * If so, we should alternate between allowlist scan and one without
1503 	 * any filters to save power.
1504 	 */
1505 	bool use_interleaving = hci_is_adv_monitoring(hdev) &&
1506 				!(list_empty(&hdev->pend_le_conns) &&
1507 				  list_empty(&hdev->pend_le_reports)) &&
1508 				hci_get_adv_monitor_offload_ext(hdev) ==
1509 				    HCI_ADV_MONITOR_EXT_NONE;
1510 	bool is_interleaving = is_interleave_scanning(hdev);
1511 
1512 	if (use_interleaving && !is_interleaving) {
1513 		hci_start_interleave_scan(hdev);
1514 		bt_dev_dbg(hdev, "starting interleave scan");
1515 		return true;
1516 	}
1517 
1518 	if (!use_interleaving && is_interleaving)
1519 		cancel_interleave_scan(hdev);
1520 
1521 	return false;
1522 }
1523 
1524 /* Removes connection to resolve list if needed.*/
1525 static int hci_le_del_resolve_list_sync(struct hci_dev *hdev,
1526 					bdaddr_t *bdaddr, u8 bdaddr_type)
1527 {
1528 	struct hci_cp_le_del_from_resolv_list cp;
1529 	struct bdaddr_list_with_irk *entry;
1530 
1531 	if (!use_ll_privacy(hdev))
1532 		return 0;
1533 
1534 	/* Check if the IRK has been programmed */
1535 	entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, bdaddr,
1536 						bdaddr_type);
1537 	if (!entry)
1538 		return 0;
1539 
1540 	cp.bdaddr_type = bdaddr_type;
1541 	bacpy(&cp.bdaddr, bdaddr);
1542 
1543 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_RESOLV_LIST,
1544 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1545 }
1546 
1547 static int hci_le_del_accept_list_sync(struct hci_dev *hdev,
1548 				       bdaddr_t *bdaddr, u8 bdaddr_type)
1549 {
1550 	struct hci_cp_le_del_from_accept_list cp;
1551 	int err;
1552 
1553 	/* Check if device is on accept list before removing it */
1554 	if (!hci_bdaddr_list_lookup(&hdev->le_accept_list, bdaddr, bdaddr_type))
1555 		return 0;
1556 
1557 	cp.bdaddr_type = bdaddr_type;
1558 	bacpy(&cp.bdaddr, bdaddr);
1559 
1560 	/* Ignore errors when removing from resolving list as that is likely
1561 	 * that the device was never added.
1562 	 */
1563 	hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type);
1564 
1565 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_ACCEPT_LIST,
1566 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1567 	if (err) {
1568 		bt_dev_err(hdev, "Unable to remove from allow list: %d", err);
1569 		return err;
1570 	}
1571 
1572 	bt_dev_dbg(hdev, "Remove %pMR (0x%x) from allow list", &cp.bdaddr,
1573 		   cp.bdaddr_type);
1574 
1575 	return 0;
1576 }
1577 
1578 /* Adds connection to resolve list if needed.
1579  * Setting params to NULL programs local hdev->irk
1580  */
1581 static int hci_le_add_resolve_list_sync(struct hci_dev *hdev,
1582 					struct hci_conn_params *params)
1583 {
1584 	struct hci_cp_le_add_to_resolv_list cp;
1585 	struct smp_irk *irk;
1586 	struct bdaddr_list_with_irk *entry;
1587 
1588 	if (!use_ll_privacy(hdev))
1589 		return 0;
1590 
1591 	/* Attempt to program local identity address, type and irk if params is
1592 	 * NULL.
1593 	 */
1594 	if (!params) {
1595 		if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
1596 			return 0;
1597 
1598 		hci_copy_identity_address(hdev, &cp.bdaddr, &cp.bdaddr_type);
1599 		memcpy(cp.peer_irk, hdev->irk, 16);
1600 		goto done;
1601 	}
1602 
1603 	irk = hci_find_irk_by_addr(hdev, &params->addr, params->addr_type);
1604 	if (!irk)
1605 		return 0;
1606 
1607 	/* Check if the IK has _not_ been programmed yet. */
1608 	entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list,
1609 						&params->addr,
1610 						params->addr_type);
1611 	if (entry)
1612 		return 0;
1613 
1614 	cp.bdaddr_type = params->addr_type;
1615 	bacpy(&cp.bdaddr, &params->addr);
1616 	memcpy(cp.peer_irk, irk->val, 16);
1617 
1618 done:
1619 	if (hci_dev_test_flag(hdev, HCI_PRIVACY))
1620 		memcpy(cp.local_irk, hdev->irk, 16);
1621 	else
1622 		memset(cp.local_irk, 0, 16);
1623 
1624 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_RESOLV_LIST,
1625 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1626 }
1627 
1628 /* Set Device Privacy Mode. */
1629 static int hci_le_set_privacy_mode_sync(struct hci_dev *hdev,
1630 					struct hci_conn_params *params)
1631 {
1632 	struct hci_cp_le_set_privacy_mode cp;
1633 	struct smp_irk *irk;
1634 
1635 	/* If device privacy mode has already been set there is nothing to do */
1636 	if (params->privacy_mode == HCI_DEVICE_PRIVACY)
1637 		return 0;
1638 
1639 	/* Check if HCI_CONN_FLAG_DEVICE_PRIVACY has been set as it also
1640 	 * indicates that LL Privacy has been enabled and
1641 	 * HCI_OP_LE_SET_PRIVACY_MODE is supported.
1642 	 */
1643 	if (!test_bit(HCI_CONN_FLAG_DEVICE_PRIVACY, params->flags))
1644 		return 0;
1645 
1646 	irk = hci_find_irk_by_addr(hdev, &params->addr, params->addr_type);
1647 	if (!irk)
1648 		return 0;
1649 
1650 	memset(&cp, 0, sizeof(cp));
1651 	cp.bdaddr_type = irk->addr_type;
1652 	bacpy(&cp.bdaddr, &irk->bdaddr);
1653 	cp.mode = HCI_DEVICE_PRIVACY;
1654 
1655 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PRIVACY_MODE,
1656 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1657 }
1658 
1659 /* Adds connection to allow list if needed, if the device uses RPA (has IRK)
1660  * this attempts to program the device in the resolving list as well and
1661  * properly set the privacy mode.
1662  */
1663 static int hci_le_add_accept_list_sync(struct hci_dev *hdev,
1664 				       struct hci_conn_params *params,
1665 				       u8 *num_entries)
1666 {
1667 	struct hci_cp_le_add_to_accept_list cp;
1668 	int err;
1669 
1670 	/* Select filter policy to accept all advertising */
1671 	if (*num_entries >= hdev->le_accept_list_size)
1672 		return -ENOSPC;
1673 
1674 	/* Accept list can not be used with RPAs */
1675 	if (!use_ll_privacy(hdev) &&
1676 	    hci_find_irk_by_addr(hdev, &params->addr, params->addr_type)) {
1677 		return -EINVAL;
1678 	}
1679 
1680 	/* During suspend, only wakeable devices can be in acceptlist */
1681 	if (hdev->suspended &&
1682 	    !test_bit(HCI_CONN_FLAG_REMOTE_WAKEUP, params->flags))
1683 		return 0;
1684 
1685 	/* Attempt to program the device in the resolving list first to avoid
1686 	 * having to rollback in case it fails since the resolving list is
1687 	 * dynamic it can probably be smaller than the accept list.
1688 	 */
1689 	err = hci_le_add_resolve_list_sync(hdev, params);
1690 	if (err) {
1691 		bt_dev_err(hdev, "Unable to add to resolve list: %d", err);
1692 		return err;
1693 	}
1694 
1695 	/* Set Privacy Mode */
1696 	err = hci_le_set_privacy_mode_sync(hdev, params);
1697 	if (err) {
1698 		bt_dev_err(hdev, "Unable to set privacy mode: %d", err);
1699 		return err;
1700 	}
1701 
1702 	/* Check if already in accept list */
1703 	if (hci_bdaddr_list_lookup(&hdev->le_accept_list, &params->addr,
1704 				   params->addr_type))
1705 		return 0;
1706 
1707 	*num_entries += 1;
1708 	cp.bdaddr_type = params->addr_type;
1709 	bacpy(&cp.bdaddr, &params->addr);
1710 
1711 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST,
1712 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1713 	if (err) {
1714 		bt_dev_err(hdev, "Unable to add to allow list: %d", err);
1715 		/* Rollback the device from the resolving list */
1716 		hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type);
1717 		return err;
1718 	}
1719 
1720 	bt_dev_dbg(hdev, "Add %pMR (0x%x) to allow list", &cp.bdaddr,
1721 		   cp.bdaddr_type);
1722 
1723 	return 0;
1724 }
1725 
1726 /* This function disables/pause all advertising instances */
1727 static int hci_pause_advertising_sync(struct hci_dev *hdev)
1728 {
1729 	int err;
1730 	int old_state;
1731 
1732 	/* If already been paused there is nothing to do. */
1733 	if (hdev->advertising_paused)
1734 		return 0;
1735 
1736 	bt_dev_dbg(hdev, "Pausing directed advertising");
1737 
1738 	/* Stop directed advertising */
1739 	old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING);
1740 	if (old_state) {
1741 		/* When discoverable timeout triggers, then just make sure
1742 		 * the limited discoverable flag is cleared. Even in the case
1743 		 * of a timeout triggered from general discoverable, it is
1744 		 * safe to unconditionally clear the flag.
1745 		 */
1746 		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1747 		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1748 		hdev->discov_timeout = 0;
1749 	}
1750 
1751 	bt_dev_dbg(hdev, "Pausing advertising instances");
1752 
1753 	/* Call to disable any advertisements active on the controller.
1754 	 * This will succeed even if no advertisements are configured.
1755 	 */
1756 	err = hci_disable_advertising_sync(hdev);
1757 	if (err)
1758 		return err;
1759 
1760 	/* If we are using software rotation, pause the loop */
1761 	if (!ext_adv_capable(hdev))
1762 		cancel_adv_timeout(hdev);
1763 
1764 	hdev->advertising_paused = true;
1765 	hdev->advertising_old_state = old_state;
1766 
1767 	return 0;
1768 }
1769 
1770 /* This function enables all user advertising instances */
1771 static int hci_resume_advertising_sync(struct hci_dev *hdev)
1772 {
1773 	struct adv_info *adv, *tmp;
1774 	int err;
1775 
1776 	/* If advertising has not been paused there is nothing  to do. */
1777 	if (!hdev->advertising_paused)
1778 		return 0;
1779 
1780 	/* Resume directed advertising */
1781 	hdev->advertising_paused = false;
1782 	if (hdev->advertising_old_state) {
1783 		hci_dev_set_flag(hdev, HCI_ADVERTISING);
1784 		hdev->advertising_old_state = 0;
1785 	}
1786 
1787 	bt_dev_dbg(hdev, "Resuming advertising instances");
1788 
1789 	if (ext_adv_capable(hdev)) {
1790 		/* Call for each tracked instance to be re-enabled */
1791 		list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) {
1792 			err = hci_enable_ext_advertising_sync(hdev,
1793 							      adv->instance);
1794 			if (!err)
1795 				continue;
1796 
1797 			/* If the instance cannot be resumed remove it */
1798 			hci_remove_ext_adv_instance_sync(hdev, adv->instance,
1799 							 NULL);
1800 		}
1801 	} else {
1802 		/* Schedule for most recent instance to be restarted and begin
1803 		 * the software rotation loop
1804 		 */
1805 		err = hci_schedule_adv_instance_sync(hdev,
1806 						     hdev->cur_adv_instance,
1807 						     true);
1808 	}
1809 
1810 	hdev->advertising_paused = false;
1811 
1812 	return err;
1813 }
1814 
1815 struct sk_buff *hci_read_local_oob_data_sync(struct hci_dev *hdev,
1816 					     bool extended, struct sock *sk)
1817 {
1818 	u16 opcode = extended ? HCI_OP_READ_LOCAL_OOB_EXT_DATA :
1819 					HCI_OP_READ_LOCAL_OOB_DATA;
1820 
1821 	return __hci_cmd_sync_sk(hdev, opcode, 0, NULL, 0, HCI_CMD_TIMEOUT, sk);
1822 }
1823 
1824 /* Device must not be scanning when updating the accept list.
1825  *
1826  * Update is done using the following sequence:
1827  *
1828  * use_ll_privacy((Disable Advertising) -> Disable Resolving List) ->
1829  * Remove Devices From Accept List ->
1830  * (has IRK && use_ll_privacy(Remove Devices From Resolving List))->
1831  * Add Devices to Accept List ->
1832  * (has IRK && use_ll_privacy(Remove Devices From Resolving List)) ->
1833  * use_ll_privacy(Enable Resolving List -> (Enable Advertising)) ->
1834  * Enable Scanning
1835  *
1836  * In case of failure advertising shall be restored to its original state and
1837  * return would disable accept list since either accept or resolving list could
1838  * not be programmed.
1839  *
1840  */
1841 static u8 hci_update_accept_list_sync(struct hci_dev *hdev)
1842 {
1843 	struct hci_conn_params *params;
1844 	struct bdaddr_list *b, *t;
1845 	u8 num_entries = 0;
1846 	bool pend_conn, pend_report;
1847 	u8 filter_policy;
1848 	int err;
1849 
1850 	/* Pause advertising if resolving list can be used as controllers are
1851 	 * cannot accept resolving list modifications while advertising.
1852 	 */
1853 	if (use_ll_privacy(hdev)) {
1854 		err = hci_pause_advertising_sync(hdev);
1855 		if (err) {
1856 			bt_dev_err(hdev, "pause advertising failed: %d", err);
1857 			return 0x00;
1858 		}
1859 	}
1860 
1861 	/* Disable address resolution while reprogramming accept list since
1862 	 * devices that do have an IRK will be programmed in the resolving list
1863 	 * when LL Privacy is enabled.
1864 	 */
1865 	err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00);
1866 	if (err) {
1867 		bt_dev_err(hdev, "Unable to disable LL privacy: %d", err);
1868 		goto done;
1869 	}
1870 
1871 	/* Go through the current accept list programmed into the
1872 	 * controller one by one and check if that address is still
1873 	 * in the list of pending connections or list of devices to
1874 	 * report. If not present in either list, then remove it from
1875 	 * the controller.
1876 	 */
1877 	list_for_each_entry_safe(b, t, &hdev->le_accept_list, list) {
1878 		pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns,
1879 						      &b->bdaddr,
1880 						      b->bdaddr_type);
1881 		pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports,
1882 							&b->bdaddr,
1883 							b->bdaddr_type);
1884 
1885 		/* If the device is not likely to connect or report,
1886 		 * remove it from the acceptlist.
1887 		 */
1888 		if (!pend_conn && !pend_report) {
1889 			hci_le_del_accept_list_sync(hdev, &b->bdaddr,
1890 						    b->bdaddr_type);
1891 			continue;
1892 		}
1893 
1894 		num_entries++;
1895 	}
1896 
1897 	/* Since all no longer valid accept list entries have been
1898 	 * removed, walk through the list of pending connections
1899 	 * and ensure that any new device gets programmed into
1900 	 * the controller.
1901 	 *
1902 	 * If the list of the devices is larger than the list of
1903 	 * available accept list entries in the controller, then
1904 	 * just abort and return filer policy value to not use the
1905 	 * accept list.
1906 	 */
1907 	list_for_each_entry(params, &hdev->pend_le_conns, action) {
1908 		err = hci_le_add_accept_list_sync(hdev, params, &num_entries);
1909 		if (err)
1910 			goto done;
1911 	}
1912 
1913 	/* After adding all new pending connections, walk through
1914 	 * the list of pending reports and also add these to the
1915 	 * accept list if there is still space. Abort if space runs out.
1916 	 */
1917 	list_for_each_entry(params, &hdev->pend_le_reports, action) {
1918 		err = hci_le_add_accept_list_sync(hdev, params, &num_entries);
1919 		if (err)
1920 			goto done;
1921 	}
1922 
1923 	/* Use the allowlist unless the following conditions are all true:
1924 	 * - We are not currently suspending
1925 	 * - There are 1 or more ADV monitors registered and it's not offloaded
1926 	 * - Interleaved scanning is not currently using the allowlist
1927 	 */
1928 	if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended &&
1929 	    hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE &&
1930 	    hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST)
1931 		err = -EINVAL;
1932 
1933 done:
1934 	filter_policy = err ? 0x00 : 0x01;
1935 
1936 	/* Enable address resolution when LL Privacy is enabled. */
1937 	err = hci_le_set_addr_resolution_enable_sync(hdev, 0x01);
1938 	if (err)
1939 		bt_dev_err(hdev, "Unable to enable LL privacy: %d", err);
1940 
1941 	/* Resume advertising if it was paused */
1942 	if (use_ll_privacy(hdev))
1943 		hci_resume_advertising_sync(hdev);
1944 
1945 	/* Select filter policy to use accept list */
1946 	return filter_policy;
1947 }
1948 
1949 /* Returns true if an le connection is in the scanning state */
1950 static inline bool hci_is_le_conn_scanning(struct hci_dev *hdev)
1951 {
1952 	struct hci_conn_hash *h = &hdev->conn_hash;
1953 	struct hci_conn  *c;
1954 
1955 	rcu_read_lock();
1956 
1957 	list_for_each_entry_rcu(c, &h->list, list) {
1958 		if (c->type == LE_LINK && c->state == BT_CONNECT &&
1959 		    test_bit(HCI_CONN_SCANNING, &c->flags)) {
1960 			rcu_read_unlock();
1961 			return true;
1962 		}
1963 	}
1964 
1965 	rcu_read_unlock();
1966 
1967 	return false;
1968 }
1969 
1970 static int hci_le_set_ext_scan_param_sync(struct hci_dev *hdev, u8 type,
1971 					  u16 interval, u16 window,
1972 					  u8 own_addr_type, u8 filter_policy)
1973 {
1974 	struct hci_cp_le_set_ext_scan_params *cp;
1975 	struct hci_cp_le_scan_phy_params *phy;
1976 	u8 data[sizeof(*cp) + sizeof(*phy) * 2];
1977 	u8 num_phy = 0;
1978 
1979 	cp = (void *)data;
1980 	phy = (void *)cp->data;
1981 
1982 	memset(data, 0, sizeof(data));
1983 
1984 	cp->own_addr_type = own_addr_type;
1985 	cp->filter_policy = filter_policy;
1986 
1987 	if (scan_1m(hdev) || scan_2m(hdev)) {
1988 		cp->scanning_phys |= LE_SCAN_PHY_1M;
1989 
1990 		phy->type = type;
1991 		phy->interval = cpu_to_le16(interval);
1992 		phy->window = cpu_to_le16(window);
1993 
1994 		num_phy++;
1995 		phy++;
1996 	}
1997 
1998 	if (scan_coded(hdev)) {
1999 		cp->scanning_phys |= LE_SCAN_PHY_CODED;
2000 
2001 		phy->type = type;
2002 		phy->interval = cpu_to_le16(interval);
2003 		phy->window = cpu_to_le16(window);
2004 
2005 		num_phy++;
2006 		phy++;
2007 	}
2008 
2009 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_PARAMS,
2010 				     sizeof(*cp) + sizeof(*phy) * num_phy,
2011 				     data, HCI_CMD_TIMEOUT);
2012 }
2013 
2014 static int hci_le_set_scan_param_sync(struct hci_dev *hdev, u8 type,
2015 				      u16 interval, u16 window,
2016 				      u8 own_addr_type, u8 filter_policy)
2017 {
2018 	struct hci_cp_le_set_scan_param cp;
2019 
2020 	if (use_ext_scan(hdev))
2021 		return hci_le_set_ext_scan_param_sync(hdev, type, interval,
2022 						      window, own_addr_type,
2023 						      filter_policy);
2024 
2025 	memset(&cp, 0, sizeof(cp));
2026 	cp.type = type;
2027 	cp.interval = cpu_to_le16(interval);
2028 	cp.window = cpu_to_le16(window);
2029 	cp.own_address_type = own_addr_type;
2030 	cp.filter_policy = filter_policy;
2031 
2032 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_PARAM,
2033 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2034 }
2035 
2036 static int hci_start_scan_sync(struct hci_dev *hdev, u8 type, u16 interval,
2037 			       u16 window, u8 own_addr_type, u8 filter_policy,
2038 			       u8 filter_dup)
2039 {
2040 	int err;
2041 
2042 	if (hdev->scanning_paused) {
2043 		bt_dev_dbg(hdev, "Scanning is paused for suspend");
2044 		return 0;
2045 	}
2046 
2047 	err = hci_le_set_scan_param_sync(hdev, type, interval, window,
2048 					 own_addr_type, filter_policy);
2049 	if (err)
2050 		return err;
2051 
2052 	return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, filter_dup);
2053 }
2054 
2055 static int hci_passive_scan_sync(struct hci_dev *hdev)
2056 {
2057 	u8 own_addr_type;
2058 	u8 filter_policy;
2059 	u16 window, interval;
2060 	int err;
2061 
2062 	if (hdev->scanning_paused) {
2063 		bt_dev_dbg(hdev, "Scanning is paused for suspend");
2064 		return 0;
2065 	}
2066 
2067 	err = hci_scan_disable_sync(hdev);
2068 	if (err) {
2069 		bt_dev_err(hdev, "disable scanning failed: %d", err);
2070 		return err;
2071 	}
2072 
2073 	/* Set require_privacy to false since no SCAN_REQ are send
2074 	 * during passive scanning. Not using an non-resolvable address
2075 	 * here is important so that peer devices using direct
2076 	 * advertising with our address will be correctly reported
2077 	 * by the controller.
2078 	 */
2079 	if (hci_update_random_address_sync(hdev, false, scan_use_rpa(hdev),
2080 					   &own_addr_type))
2081 		return 0;
2082 
2083 	if (hdev->enable_advmon_interleave_scan &&
2084 	    hci_update_interleaved_scan_sync(hdev))
2085 		return 0;
2086 
2087 	bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state);
2088 
2089 	/* Adding or removing entries from the accept list must
2090 	 * happen before enabling scanning. The controller does
2091 	 * not allow accept list modification while scanning.
2092 	 */
2093 	filter_policy = hci_update_accept_list_sync(hdev);
2094 
2095 	/* When the controller is using random resolvable addresses and
2096 	 * with that having LE privacy enabled, then controllers with
2097 	 * Extended Scanner Filter Policies support can now enable support
2098 	 * for handling directed advertising.
2099 	 *
2100 	 * So instead of using filter polices 0x00 (no acceptlist)
2101 	 * and 0x01 (acceptlist enabled) use the new filter policies
2102 	 * 0x02 (no acceptlist) and 0x03 (acceptlist enabled).
2103 	 */
2104 	if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
2105 	    (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
2106 		filter_policy |= 0x02;
2107 
2108 	if (hdev->suspended) {
2109 		window = hdev->le_scan_window_suspend;
2110 		interval = hdev->le_scan_int_suspend;
2111 	} else if (hci_is_le_conn_scanning(hdev)) {
2112 		window = hdev->le_scan_window_connect;
2113 		interval = hdev->le_scan_int_connect;
2114 	} else if (hci_is_adv_monitoring(hdev)) {
2115 		window = hdev->le_scan_window_adv_monitor;
2116 		interval = hdev->le_scan_int_adv_monitor;
2117 	} else {
2118 		window = hdev->le_scan_window;
2119 		interval = hdev->le_scan_interval;
2120 	}
2121 
2122 	bt_dev_dbg(hdev, "LE passive scan with acceptlist = %d", filter_policy);
2123 
2124 	return hci_start_scan_sync(hdev, LE_SCAN_PASSIVE, interval, window,
2125 				   own_addr_type, filter_policy,
2126 				   LE_SCAN_FILTER_DUP_ENABLE);
2127 }
2128 
2129 /* This function controls the passive scanning based on hdev->pend_le_conns
2130  * list. If there are pending LE connection we start the background scanning,
2131  * otherwise we stop it in the following sequence:
2132  *
2133  * If there are devices to scan:
2134  *
2135  * Disable Scanning -> Update Accept List ->
2136  * use_ll_privacy((Disable Advertising) -> Disable Resolving List ->
2137  * Update Resolving List -> Enable Resolving List -> (Enable Advertising)) ->
2138  * Enable Scanning
2139  *
2140  * Otherwise:
2141  *
2142  * Disable Scanning
2143  */
2144 int hci_update_passive_scan_sync(struct hci_dev *hdev)
2145 {
2146 	int err;
2147 
2148 	if (!test_bit(HCI_UP, &hdev->flags) ||
2149 	    test_bit(HCI_INIT, &hdev->flags) ||
2150 	    hci_dev_test_flag(hdev, HCI_SETUP) ||
2151 	    hci_dev_test_flag(hdev, HCI_CONFIG) ||
2152 	    hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
2153 	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2154 		return 0;
2155 
2156 	/* No point in doing scanning if LE support hasn't been enabled */
2157 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
2158 		return 0;
2159 
2160 	/* If discovery is active don't interfere with it */
2161 	if (hdev->discovery.state != DISCOVERY_STOPPED)
2162 		return 0;
2163 
2164 	/* Reset RSSI and UUID filters when starting background scanning
2165 	 * since these filters are meant for service discovery only.
2166 	 *
2167 	 * The Start Discovery and Start Service Discovery operations
2168 	 * ensure to set proper values for RSSI threshold and UUID
2169 	 * filter list. So it is safe to just reset them here.
2170 	 */
2171 	hci_discovery_filter_clear(hdev);
2172 
2173 	bt_dev_dbg(hdev, "ADV monitoring is %s",
2174 		   hci_is_adv_monitoring(hdev) ? "on" : "off");
2175 
2176 	if (list_empty(&hdev->pend_le_conns) &&
2177 	    list_empty(&hdev->pend_le_reports) &&
2178 	    !hci_is_adv_monitoring(hdev)) {
2179 		/* If there is no pending LE connections or devices
2180 		 * to be scanned for or no ADV monitors, we should stop the
2181 		 * background scanning.
2182 		 */
2183 
2184 		bt_dev_dbg(hdev, "stopping background scanning");
2185 
2186 		err = hci_scan_disable_sync(hdev);
2187 		if (err)
2188 			bt_dev_err(hdev, "stop background scanning failed: %d",
2189 				   err);
2190 	} else {
2191 		/* If there is at least one pending LE connection, we should
2192 		 * keep the background scan running.
2193 		 */
2194 
2195 		/* If controller is connecting, we should not start scanning
2196 		 * since some controllers are not able to scan and connect at
2197 		 * the same time.
2198 		 */
2199 		if (hci_lookup_le_connect(hdev))
2200 			return 0;
2201 
2202 		bt_dev_dbg(hdev, "start background scanning");
2203 
2204 		err = hci_passive_scan_sync(hdev);
2205 		if (err)
2206 			bt_dev_err(hdev, "start background scanning failed: %d",
2207 				   err);
2208 	}
2209 
2210 	return err;
2211 }
2212 
2213 static int update_passive_scan_sync(struct hci_dev *hdev, void *data)
2214 {
2215 	return hci_update_passive_scan_sync(hdev);
2216 }
2217 
2218 int hci_update_passive_scan(struct hci_dev *hdev)
2219 {
2220 	/* Only queue if it would have any effect */
2221 	if (!test_bit(HCI_UP, &hdev->flags) ||
2222 	    test_bit(HCI_INIT, &hdev->flags) ||
2223 	    hci_dev_test_flag(hdev, HCI_SETUP) ||
2224 	    hci_dev_test_flag(hdev, HCI_CONFIG) ||
2225 	    hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
2226 	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2227 		return 0;
2228 
2229 	return hci_cmd_sync_queue(hdev, update_passive_scan_sync, NULL, NULL);
2230 }
2231 
2232 int hci_write_sc_support_sync(struct hci_dev *hdev, u8 val)
2233 {
2234 	int err;
2235 
2236 	if (!bredr_sc_enabled(hdev) || lmp_host_sc_capable(hdev))
2237 		return 0;
2238 
2239 	err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT,
2240 				    sizeof(val), &val, HCI_CMD_TIMEOUT);
2241 
2242 	if (!err) {
2243 		if (val) {
2244 			hdev->features[1][0] |= LMP_HOST_SC;
2245 			hci_dev_set_flag(hdev, HCI_SC_ENABLED);
2246 		} else {
2247 			hdev->features[1][0] &= ~LMP_HOST_SC;
2248 			hci_dev_clear_flag(hdev, HCI_SC_ENABLED);
2249 		}
2250 	}
2251 
2252 	return err;
2253 }
2254 
2255 int hci_write_ssp_mode_sync(struct hci_dev *hdev, u8 mode)
2256 {
2257 	int err;
2258 
2259 	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) ||
2260 	    lmp_host_ssp_capable(hdev))
2261 		return 0;
2262 
2263 	if (!mode && hci_dev_test_flag(hdev, HCI_USE_DEBUG_KEYS)) {
2264 		__hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE,
2265 				      sizeof(mode), &mode, HCI_CMD_TIMEOUT);
2266 	}
2267 
2268 	err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE,
2269 				    sizeof(mode), &mode, HCI_CMD_TIMEOUT);
2270 	if (err)
2271 		return err;
2272 
2273 	return hci_write_sc_support_sync(hdev, 0x01);
2274 }
2275 
2276 int hci_write_le_host_supported_sync(struct hci_dev *hdev, u8 le, u8 simul)
2277 {
2278 	struct hci_cp_write_le_host_supported cp;
2279 
2280 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED) ||
2281 	    !lmp_bredr_capable(hdev))
2282 		return 0;
2283 
2284 	/* Check first if we already have the right host state
2285 	 * (host features set)
2286 	 */
2287 	if (le == lmp_host_le_capable(hdev) &&
2288 	    simul == lmp_host_le_br_capable(hdev))
2289 		return 0;
2290 
2291 	memset(&cp, 0, sizeof(cp));
2292 
2293 	cp.le = le;
2294 	cp.simul = simul;
2295 
2296 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED,
2297 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2298 }
2299 
2300 static int hci_powered_update_adv_sync(struct hci_dev *hdev)
2301 {
2302 	struct adv_info *adv, *tmp;
2303 	int err;
2304 
2305 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
2306 		return 0;
2307 
2308 	/* If RPA Resolution has not been enable yet it means the
2309 	 * resolving list is empty and we should attempt to program the
2310 	 * local IRK in order to support using own_addr_type
2311 	 * ADDR_LE_DEV_RANDOM_RESOLVED (0x03).
2312 	 */
2313 	if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) {
2314 		hci_le_add_resolve_list_sync(hdev, NULL);
2315 		hci_le_set_addr_resolution_enable_sync(hdev, 0x01);
2316 	}
2317 
2318 	/* Make sure the controller has a good default for
2319 	 * advertising data. This also applies to the case
2320 	 * where BR/EDR was toggled during the AUTO_OFF phase.
2321 	 */
2322 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2323 	    list_empty(&hdev->adv_instances)) {
2324 		if (ext_adv_capable(hdev)) {
2325 			err = hci_setup_ext_adv_instance_sync(hdev, 0x00);
2326 			if (!err)
2327 				hci_update_scan_rsp_data_sync(hdev, 0x00);
2328 		} else {
2329 			err = hci_update_adv_data_sync(hdev, 0x00);
2330 			if (!err)
2331 				hci_update_scan_rsp_data_sync(hdev, 0x00);
2332 		}
2333 
2334 		if (hci_dev_test_flag(hdev, HCI_ADVERTISING))
2335 			hci_enable_advertising_sync(hdev);
2336 	}
2337 
2338 	/* Call for each tracked instance to be scheduled */
2339 	list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list)
2340 		hci_schedule_adv_instance_sync(hdev, adv->instance, true);
2341 
2342 	return 0;
2343 }
2344 
2345 static int hci_write_auth_enable_sync(struct hci_dev *hdev)
2346 {
2347 	u8 link_sec;
2348 
2349 	link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
2350 	if (link_sec == test_bit(HCI_AUTH, &hdev->flags))
2351 		return 0;
2352 
2353 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE,
2354 				     sizeof(link_sec), &link_sec,
2355 				     HCI_CMD_TIMEOUT);
2356 }
2357 
2358 int hci_write_fast_connectable_sync(struct hci_dev *hdev, bool enable)
2359 {
2360 	struct hci_cp_write_page_scan_activity cp;
2361 	u8 type;
2362 	int err = 0;
2363 
2364 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2365 		return 0;
2366 
2367 	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
2368 		return 0;
2369 
2370 	memset(&cp, 0, sizeof(cp));
2371 
2372 	if (enable) {
2373 		type = PAGE_SCAN_TYPE_INTERLACED;
2374 
2375 		/* 160 msec page scan interval */
2376 		cp.interval = cpu_to_le16(0x0100);
2377 	} else {
2378 		type = hdev->def_page_scan_type;
2379 		cp.interval = cpu_to_le16(hdev->def_page_scan_int);
2380 	}
2381 
2382 	cp.window = cpu_to_le16(hdev->def_page_scan_window);
2383 
2384 	if (__cpu_to_le16(hdev->page_scan_interval) != cp.interval ||
2385 	    __cpu_to_le16(hdev->page_scan_window) != cp.window) {
2386 		err = __hci_cmd_sync_status(hdev,
2387 					    HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
2388 					    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2389 		if (err)
2390 			return err;
2391 	}
2392 
2393 	if (hdev->page_scan_type != type)
2394 		err = __hci_cmd_sync_status(hdev,
2395 					    HCI_OP_WRITE_PAGE_SCAN_TYPE,
2396 					    sizeof(type), &type,
2397 					    HCI_CMD_TIMEOUT);
2398 
2399 	return err;
2400 }
2401 
2402 static bool disconnected_accept_list_entries(struct hci_dev *hdev)
2403 {
2404 	struct bdaddr_list *b;
2405 
2406 	list_for_each_entry(b, &hdev->accept_list, list) {
2407 		struct hci_conn *conn;
2408 
2409 		conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
2410 		if (!conn)
2411 			return true;
2412 
2413 		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
2414 			return true;
2415 	}
2416 
2417 	return false;
2418 }
2419 
2420 static int hci_write_scan_enable_sync(struct hci_dev *hdev, u8 val)
2421 {
2422 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE,
2423 					    sizeof(val), &val,
2424 					    HCI_CMD_TIMEOUT);
2425 }
2426 
2427 int hci_update_scan_sync(struct hci_dev *hdev)
2428 {
2429 	u8 scan;
2430 
2431 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2432 		return 0;
2433 
2434 	if (!hdev_is_powered(hdev))
2435 		return 0;
2436 
2437 	if (mgmt_powering_down(hdev))
2438 		return 0;
2439 
2440 	if (hdev->scanning_paused)
2441 		return 0;
2442 
2443 	if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
2444 	    disconnected_accept_list_entries(hdev))
2445 		scan = SCAN_PAGE;
2446 	else
2447 		scan = SCAN_DISABLED;
2448 
2449 	if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
2450 		scan |= SCAN_INQUIRY;
2451 
2452 	if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
2453 	    test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
2454 		return 0;
2455 
2456 	return hci_write_scan_enable_sync(hdev, scan);
2457 }
2458 
2459 int hci_update_name_sync(struct hci_dev *hdev)
2460 {
2461 	struct hci_cp_write_local_name cp;
2462 
2463 	memset(&cp, 0, sizeof(cp));
2464 
2465 	memcpy(cp.name, hdev->dev_name, sizeof(cp.name));
2466 
2467 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LOCAL_NAME,
2468 					    sizeof(cp), &cp,
2469 					    HCI_CMD_TIMEOUT);
2470 }
2471 
2472 /* This function perform powered update HCI command sequence after the HCI init
2473  * sequence which end up resetting all states, the sequence is as follows:
2474  *
2475  * HCI_SSP_ENABLED(Enable SSP)
2476  * HCI_LE_ENABLED(Enable LE)
2477  * HCI_LE_ENABLED(use_ll_privacy(Add local IRK to Resolving List) ->
2478  * Update adv data)
2479  * Enable Authentication
2480  * lmp_bredr_capable(Set Fast Connectable -> Set Scan Type -> Set Class ->
2481  * Set Name -> Set EIR)
2482  */
2483 int hci_powered_update_sync(struct hci_dev *hdev)
2484 {
2485 	int err;
2486 
2487 	/* Register the available SMP channels (BR/EDR and LE) only when
2488 	 * successfully powering on the controller. This late
2489 	 * registration is required so that LE SMP can clearly decide if
2490 	 * the public address or static address is used.
2491 	 */
2492 	smp_register(hdev);
2493 
2494 	err = hci_write_ssp_mode_sync(hdev, 0x01);
2495 	if (err)
2496 		return err;
2497 
2498 	err = hci_write_le_host_supported_sync(hdev, 0x01, 0x00);
2499 	if (err)
2500 		return err;
2501 
2502 	err = hci_powered_update_adv_sync(hdev);
2503 	if (err)
2504 		return err;
2505 
2506 	err = hci_write_auth_enable_sync(hdev);
2507 	if (err)
2508 		return err;
2509 
2510 	if (lmp_bredr_capable(hdev)) {
2511 		if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
2512 			hci_write_fast_connectable_sync(hdev, true);
2513 		else
2514 			hci_write_fast_connectable_sync(hdev, false);
2515 		hci_update_scan_sync(hdev);
2516 		hci_update_class_sync(hdev);
2517 		hci_update_name_sync(hdev);
2518 		hci_update_eir_sync(hdev);
2519 	}
2520 
2521 	return 0;
2522 }
2523 
2524 /**
2525  * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address
2526  *				       (BD_ADDR) for a HCI device from
2527  *				       a firmware node property.
2528  * @hdev:	The HCI device
2529  *
2530  * Search the firmware node for 'local-bd-address'.
2531  *
2532  * All-zero BD addresses are rejected, because those could be properties
2533  * that exist in the firmware tables, but were not updated by the firmware. For
2534  * example, the DTS could define 'local-bd-address', with zero BD addresses.
2535  */
2536 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev)
2537 {
2538 	struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent);
2539 	bdaddr_t ba;
2540 	int ret;
2541 
2542 	ret = fwnode_property_read_u8_array(fwnode, "local-bd-address",
2543 					    (u8 *)&ba, sizeof(ba));
2544 	if (ret < 0 || !bacmp(&ba, BDADDR_ANY))
2545 		return;
2546 
2547 	bacpy(&hdev->public_addr, &ba);
2548 }
2549 
2550 struct hci_init_stage {
2551 	int (*func)(struct hci_dev *hdev);
2552 };
2553 
2554 /* Run init stage NULL terminated function table */
2555 static int hci_init_stage_sync(struct hci_dev *hdev,
2556 			       const struct hci_init_stage *stage)
2557 {
2558 	size_t i;
2559 
2560 	for (i = 0; stage[i].func; i++) {
2561 		int err;
2562 
2563 		err = stage[i].func(hdev);
2564 		if (err)
2565 			return err;
2566 	}
2567 
2568 	return 0;
2569 }
2570 
2571 /* Read Local Version */
2572 static int hci_read_local_version_sync(struct hci_dev *hdev)
2573 {
2574 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_VERSION,
2575 				     0, NULL, HCI_CMD_TIMEOUT);
2576 }
2577 
2578 /* Read BD Address */
2579 static int hci_read_bd_addr_sync(struct hci_dev *hdev)
2580 {
2581 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_BD_ADDR,
2582 				     0, NULL, HCI_CMD_TIMEOUT);
2583 }
2584 
2585 #define HCI_INIT(_func) \
2586 { \
2587 	.func = _func, \
2588 }
2589 
2590 static const struct hci_init_stage hci_init0[] = {
2591 	/* HCI_OP_READ_LOCAL_VERSION */
2592 	HCI_INIT(hci_read_local_version_sync),
2593 	/* HCI_OP_READ_BD_ADDR */
2594 	HCI_INIT(hci_read_bd_addr_sync),
2595 	{}
2596 };
2597 
2598 int hci_reset_sync(struct hci_dev *hdev)
2599 {
2600 	int err;
2601 
2602 	set_bit(HCI_RESET, &hdev->flags);
2603 
2604 	err = __hci_cmd_sync_status(hdev, HCI_OP_RESET, 0, NULL,
2605 				    HCI_CMD_TIMEOUT);
2606 	if (err)
2607 		return err;
2608 
2609 	return 0;
2610 }
2611 
2612 static int hci_init0_sync(struct hci_dev *hdev)
2613 {
2614 	int err;
2615 
2616 	bt_dev_dbg(hdev, "");
2617 
2618 	/* Reset */
2619 	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
2620 		err = hci_reset_sync(hdev);
2621 		if (err)
2622 			return err;
2623 	}
2624 
2625 	return hci_init_stage_sync(hdev, hci_init0);
2626 }
2627 
2628 static int hci_unconf_init_sync(struct hci_dev *hdev)
2629 {
2630 	int err;
2631 
2632 	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
2633 		return 0;
2634 
2635 	err = hci_init0_sync(hdev);
2636 	if (err < 0)
2637 		return err;
2638 
2639 	if (hci_dev_test_flag(hdev, HCI_SETUP))
2640 		hci_debugfs_create_basic(hdev);
2641 
2642 	return 0;
2643 }
2644 
2645 /* Read Local Supported Features. */
2646 static int hci_read_local_features_sync(struct hci_dev *hdev)
2647 {
2648 	 /* Not all AMP controllers support this command */
2649 	if (hdev->dev_type == HCI_AMP && !(hdev->commands[14] & 0x20))
2650 		return 0;
2651 
2652 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_FEATURES,
2653 				     0, NULL, HCI_CMD_TIMEOUT);
2654 }
2655 
2656 /* BR Controller init stage 1 command sequence */
2657 static const struct hci_init_stage br_init1[] = {
2658 	/* HCI_OP_READ_LOCAL_FEATURES */
2659 	HCI_INIT(hci_read_local_features_sync),
2660 	/* HCI_OP_READ_LOCAL_VERSION */
2661 	HCI_INIT(hci_read_local_version_sync),
2662 	/* HCI_OP_READ_BD_ADDR */
2663 	HCI_INIT(hci_read_bd_addr_sync),
2664 	{}
2665 };
2666 
2667 /* Read Local Commands */
2668 static int hci_read_local_cmds_sync(struct hci_dev *hdev)
2669 {
2670 	/* All Bluetooth 1.2 and later controllers should support the
2671 	 * HCI command for reading the local supported commands.
2672 	 *
2673 	 * Unfortunately some controllers indicate Bluetooth 1.2 support,
2674 	 * but do not have support for this command. If that is the case,
2675 	 * the driver can quirk the behavior and skip reading the local
2676 	 * supported commands.
2677 	 */
2678 	if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
2679 	    !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
2680 		return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_COMMANDS,
2681 					     0, NULL, HCI_CMD_TIMEOUT);
2682 
2683 	return 0;
2684 }
2685 
2686 /* Read Local AMP Info */
2687 static int hci_read_local_amp_info_sync(struct hci_dev *hdev)
2688 {
2689 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_AMP_INFO,
2690 				     0, NULL, HCI_CMD_TIMEOUT);
2691 }
2692 
2693 /* Read Data Blk size */
2694 static int hci_read_data_block_size_sync(struct hci_dev *hdev)
2695 {
2696 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_DATA_BLOCK_SIZE,
2697 				     0, NULL, HCI_CMD_TIMEOUT);
2698 }
2699 
2700 /* Read Flow Control Mode */
2701 static int hci_read_flow_control_mode_sync(struct hci_dev *hdev)
2702 {
2703 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_FLOW_CONTROL_MODE,
2704 				     0, NULL, HCI_CMD_TIMEOUT);
2705 }
2706 
2707 /* Read Location Data */
2708 static int hci_read_location_data_sync(struct hci_dev *hdev)
2709 {
2710 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCATION_DATA,
2711 				     0, NULL, HCI_CMD_TIMEOUT);
2712 }
2713 
2714 /* AMP Controller init stage 1 command sequence */
2715 static const struct hci_init_stage amp_init1[] = {
2716 	/* HCI_OP_READ_LOCAL_VERSION */
2717 	HCI_INIT(hci_read_local_version_sync),
2718 	/* HCI_OP_READ_LOCAL_COMMANDS */
2719 	HCI_INIT(hci_read_local_cmds_sync),
2720 	/* HCI_OP_READ_LOCAL_AMP_INFO */
2721 	HCI_INIT(hci_read_local_amp_info_sync),
2722 	/* HCI_OP_READ_DATA_BLOCK_SIZE */
2723 	HCI_INIT(hci_read_data_block_size_sync),
2724 	/* HCI_OP_READ_FLOW_CONTROL_MODE */
2725 	HCI_INIT(hci_read_flow_control_mode_sync),
2726 	/* HCI_OP_READ_LOCATION_DATA */
2727 	HCI_INIT(hci_read_location_data_sync),
2728 };
2729 
2730 static int hci_init1_sync(struct hci_dev *hdev)
2731 {
2732 	int err;
2733 
2734 	bt_dev_dbg(hdev, "");
2735 
2736 	/* Reset */
2737 	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
2738 		err = hci_reset_sync(hdev);
2739 		if (err)
2740 			return err;
2741 	}
2742 
2743 	switch (hdev->dev_type) {
2744 	case HCI_PRIMARY:
2745 		hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
2746 		return hci_init_stage_sync(hdev, br_init1);
2747 	case HCI_AMP:
2748 		hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
2749 		return hci_init_stage_sync(hdev, amp_init1);
2750 	default:
2751 		bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type);
2752 		break;
2753 	}
2754 
2755 	return 0;
2756 }
2757 
2758 /* AMP Controller init stage 2 command sequence */
2759 static const struct hci_init_stage amp_init2[] = {
2760 	/* HCI_OP_READ_LOCAL_FEATURES */
2761 	HCI_INIT(hci_read_local_features_sync),
2762 };
2763 
2764 /* Read Buffer Size (ACL mtu, max pkt, etc.) */
2765 static int hci_read_buffer_size_sync(struct hci_dev *hdev)
2766 {
2767 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_BUFFER_SIZE,
2768 				     0, NULL, HCI_CMD_TIMEOUT);
2769 }
2770 
2771 /* Read Class of Device */
2772 static int hci_read_dev_class_sync(struct hci_dev *hdev)
2773 {
2774 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLASS_OF_DEV,
2775 				     0, NULL, HCI_CMD_TIMEOUT);
2776 }
2777 
2778 /* Read Local Name */
2779 static int hci_read_local_name_sync(struct hci_dev *hdev)
2780 {
2781 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_NAME,
2782 				     0, NULL, HCI_CMD_TIMEOUT);
2783 }
2784 
2785 /* Read Voice Setting */
2786 static int hci_read_voice_setting_sync(struct hci_dev *hdev)
2787 {
2788 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_VOICE_SETTING,
2789 				     0, NULL, HCI_CMD_TIMEOUT);
2790 }
2791 
2792 /* Read Number of Supported IAC */
2793 static int hci_read_num_supported_iac_sync(struct hci_dev *hdev)
2794 {
2795 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_NUM_SUPPORTED_IAC,
2796 				     0, NULL, HCI_CMD_TIMEOUT);
2797 }
2798 
2799 /* Read Current IAC LAP */
2800 static int hci_read_current_iac_lap_sync(struct hci_dev *hdev)
2801 {
2802 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_CURRENT_IAC_LAP,
2803 				     0, NULL, HCI_CMD_TIMEOUT);
2804 }
2805 
2806 static int hci_set_event_filter_sync(struct hci_dev *hdev, u8 flt_type,
2807 				     u8 cond_type, bdaddr_t *bdaddr,
2808 				     u8 auto_accept)
2809 {
2810 	struct hci_cp_set_event_filter cp;
2811 
2812 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2813 		return 0;
2814 
2815 	memset(&cp, 0, sizeof(cp));
2816 	cp.flt_type = flt_type;
2817 
2818 	if (flt_type != HCI_FLT_CLEAR_ALL) {
2819 		cp.cond_type = cond_type;
2820 		bacpy(&cp.addr_conn_flt.bdaddr, bdaddr);
2821 		cp.addr_conn_flt.auto_accept = auto_accept;
2822 	}
2823 
2824 	return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_FLT,
2825 				     flt_type == HCI_FLT_CLEAR_ALL ?
2826 				     sizeof(cp.flt_type) : sizeof(cp), &cp,
2827 				     HCI_CMD_TIMEOUT);
2828 }
2829 
2830 static int hci_clear_event_filter_sync(struct hci_dev *hdev)
2831 {
2832 	if (!hci_dev_test_flag(hdev, HCI_EVENT_FILTER_CONFIGURED))
2833 		return 0;
2834 
2835 	return hci_set_event_filter_sync(hdev, HCI_FLT_CLEAR_ALL, 0x00,
2836 					 BDADDR_ANY, 0x00);
2837 }
2838 
2839 /* Connection accept timeout ~20 secs */
2840 static int hci_write_ca_timeout_sync(struct hci_dev *hdev)
2841 {
2842 	__le16 param = cpu_to_le16(0x7d00);
2843 
2844 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CA_TIMEOUT,
2845 				     sizeof(param), &param, HCI_CMD_TIMEOUT);
2846 }
2847 
2848 /* BR Controller init stage 2 command sequence */
2849 static const struct hci_init_stage br_init2[] = {
2850 	/* HCI_OP_READ_BUFFER_SIZE */
2851 	HCI_INIT(hci_read_buffer_size_sync),
2852 	/* HCI_OP_READ_CLASS_OF_DEV */
2853 	HCI_INIT(hci_read_dev_class_sync),
2854 	/* HCI_OP_READ_LOCAL_NAME */
2855 	HCI_INIT(hci_read_local_name_sync),
2856 	/* HCI_OP_READ_VOICE_SETTING */
2857 	HCI_INIT(hci_read_voice_setting_sync),
2858 	/* HCI_OP_READ_NUM_SUPPORTED_IAC */
2859 	HCI_INIT(hci_read_num_supported_iac_sync),
2860 	/* HCI_OP_READ_CURRENT_IAC_LAP */
2861 	HCI_INIT(hci_read_current_iac_lap_sync),
2862 	/* HCI_OP_SET_EVENT_FLT */
2863 	HCI_INIT(hci_clear_event_filter_sync),
2864 	/* HCI_OP_WRITE_CA_TIMEOUT */
2865 	HCI_INIT(hci_write_ca_timeout_sync),
2866 	{}
2867 };
2868 
2869 static int hci_write_ssp_mode_1_sync(struct hci_dev *hdev)
2870 {
2871 	u8 mode = 0x01;
2872 
2873 	if (!lmp_ssp_capable(hdev) || !hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
2874 		return 0;
2875 
2876 	/* When SSP is available, then the host features page
2877 	 * should also be available as well. However some
2878 	 * controllers list the max_page as 0 as long as SSP
2879 	 * has not been enabled. To achieve proper debugging
2880 	 * output, force the minimum max_page to 1 at least.
2881 	 */
2882 	hdev->max_page = 0x01;
2883 
2884 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE,
2885 				     sizeof(mode), &mode, HCI_CMD_TIMEOUT);
2886 }
2887 
2888 static int hci_write_eir_sync(struct hci_dev *hdev)
2889 {
2890 	struct hci_cp_write_eir cp;
2891 
2892 	if (!lmp_ssp_capable(hdev) || hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
2893 		return 0;
2894 
2895 	memset(hdev->eir, 0, sizeof(hdev->eir));
2896 	memset(&cp, 0, sizeof(cp));
2897 
2898 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp,
2899 				     HCI_CMD_TIMEOUT);
2900 }
2901 
2902 static int hci_write_inquiry_mode_sync(struct hci_dev *hdev)
2903 {
2904 	u8 mode;
2905 
2906 	if (!lmp_inq_rssi_capable(hdev) &&
2907 	    !test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
2908 		return 0;
2909 
2910 	/* If Extended Inquiry Result events are supported, then
2911 	 * they are clearly preferred over Inquiry Result with RSSI
2912 	 * events.
2913 	 */
2914 	mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
2915 
2916 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_INQUIRY_MODE,
2917 				     sizeof(mode), &mode, HCI_CMD_TIMEOUT);
2918 }
2919 
2920 static int hci_read_inq_rsp_tx_power_sync(struct hci_dev *hdev)
2921 {
2922 	if (!lmp_inq_tx_pwr_capable(hdev))
2923 		return 0;
2924 
2925 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_INQ_RSP_TX_POWER,
2926 				     0, NULL, HCI_CMD_TIMEOUT);
2927 }
2928 
2929 static int hci_read_local_ext_features_sync(struct hci_dev *hdev, u8 page)
2930 {
2931 	struct hci_cp_read_local_ext_features cp;
2932 
2933 	if (!lmp_ext_feat_capable(hdev))
2934 		return 0;
2935 
2936 	memset(&cp, 0, sizeof(cp));
2937 	cp.page = page;
2938 
2939 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_EXT_FEATURES,
2940 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2941 }
2942 
2943 static int hci_read_local_ext_features_1_sync(struct hci_dev *hdev)
2944 {
2945 	return hci_read_local_ext_features_sync(hdev, 0x01);
2946 }
2947 
2948 /* HCI Controller init stage 2 command sequence */
2949 static const struct hci_init_stage hci_init2[] = {
2950 	/* HCI_OP_READ_LOCAL_COMMANDS */
2951 	HCI_INIT(hci_read_local_cmds_sync),
2952 	/* HCI_OP_WRITE_SSP_MODE */
2953 	HCI_INIT(hci_write_ssp_mode_1_sync),
2954 	/* HCI_OP_WRITE_EIR */
2955 	HCI_INIT(hci_write_eir_sync),
2956 	/* HCI_OP_WRITE_INQUIRY_MODE */
2957 	HCI_INIT(hci_write_inquiry_mode_sync),
2958 	/* HCI_OP_READ_INQ_RSP_TX_POWER */
2959 	HCI_INIT(hci_read_inq_rsp_tx_power_sync),
2960 	/* HCI_OP_READ_LOCAL_EXT_FEATURES */
2961 	HCI_INIT(hci_read_local_ext_features_1_sync),
2962 	/* HCI_OP_WRITE_AUTH_ENABLE */
2963 	HCI_INIT(hci_write_auth_enable_sync),
2964 	{}
2965 };
2966 
2967 /* Read LE Buffer Size */
2968 static int hci_le_read_buffer_size_sync(struct hci_dev *hdev)
2969 {
2970 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_BUFFER_SIZE,
2971 				     0, NULL, HCI_CMD_TIMEOUT);
2972 }
2973 
2974 /* Read LE Local Supported Features */
2975 static int hci_le_read_local_features_sync(struct hci_dev *hdev)
2976 {
2977 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_LOCAL_FEATURES,
2978 				     0, NULL, HCI_CMD_TIMEOUT);
2979 }
2980 
2981 /* Read LE Supported States */
2982 static int hci_le_read_supported_states_sync(struct hci_dev *hdev)
2983 {
2984 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_SUPPORTED_STATES,
2985 				     0, NULL, HCI_CMD_TIMEOUT);
2986 }
2987 
2988 /* LE Controller init stage 2 command sequence */
2989 static const struct hci_init_stage le_init2[] = {
2990 	/* HCI_OP_LE_READ_BUFFER_SIZE */
2991 	HCI_INIT(hci_le_read_buffer_size_sync),
2992 	/* HCI_OP_LE_READ_LOCAL_FEATURES */
2993 	HCI_INIT(hci_le_read_local_features_sync),
2994 	/* HCI_OP_LE_READ_SUPPORTED_STATES */
2995 	HCI_INIT(hci_le_read_supported_states_sync),
2996 	{}
2997 };
2998 
2999 static int hci_init2_sync(struct hci_dev *hdev)
3000 {
3001 	int err;
3002 
3003 	bt_dev_dbg(hdev, "");
3004 
3005 	if (hdev->dev_type == HCI_AMP)
3006 		return hci_init_stage_sync(hdev, amp_init2);
3007 
3008 	if (lmp_bredr_capable(hdev)) {
3009 		err = hci_init_stage_sync(hdev, br_init2);
3010 		if (err)
3011 			return err;
3012 	} else {
3013 		hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
3014 	}
3015 
3016 	if (lmp_le_capable(hdev)) {
3017 		err = hci_init_stage_sync(hdev, le_init2);
3018 		if (err)
3019 			return err;
3020 		/* LE-only controllers have LE implicitly enabled */
3021 		if (!lmp_bredr_capable(hdev))
3022 			hci_dev_set_flag(hdev, HCI_LE_ENABLED);
3023 	}
3024 
3025 	return hci_init_stage_sync(hdev, hci_init2);
3026 }
3027 
3028 static int hci_set_event_mask_sync(struct hci_dev *hdev)
3029 {
3030 	/* The second byte is 0xff instead of 0x9f (two reserved bits
3031 	 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
3032 	 * command otherwise.
3033 	 */
3034 	u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
3035 
3036 	/* CSR 1.1 dongles does not accept any bitfield so don't try to set
3037 	 * any event mask for pre 1.2 devices.
3038 	 */
3039 	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
3040 		return 0;
3041 
3042 	if (lmp_bredr_capable(hdev)) {
3043 		events[4] |= 0x01; /* Flow Specification Complete */
3044 
3045 		/* Don't set Disconnect Complete when suspended as that
3046 		 * would wakeup the host when disconnecting due to
3047 		 * suspend.
3048 		 */
3049 		if (hdev->suspended)
3050 			events[0] &= 0xef;
3051 	} else {
3052 		/* Use a different default for LE-only devices */
3053 		memset(events, 0, sizeof(events));
3054 		events[1] |= 0x20; /* Command Complete */
3055 		events[1] |= 0x40; /* Command Status */
3056 		events[1] |= 0x80; /* Hardware Error */
3057 
3058 		/* If the controller supports the Disconnect command, enable
3059 		 * the corresponding event. In addition enable packet flow
3060 		 * control related events.
3061 		 */
3062 		if (hdev->commands[0] & 0x20) {
3063 			/* Don't set Disconnect Complete when suspended as that
3064 			 * would wakeup the host when disconnecting due to
3065 			 * suspend.
3066 			 */
3067 			if (!hdev->suspended)
3068 				events[0] |= 0x10; /* Disconnection Complete */
3069 			events[2] |= 0x04; /* Number of Completed Packets */
3070 			events[3] |= 0x02; /* Data Buffer Overflow */
3071 		}
3072 
3073 		/* If the controller supports the Read Remote Version
3074 		 * Information command, enable the corresponding event.
3075 		 */
3076 		if (hdev->commands[2] & 0x80)
3077 			events[1] |= 0x08; /* Read Remote Version Information
3078 					    * Complete
3079 					    */
3080 
3081 		if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
3082 			events[0] |= 0x80; /* Encryption Change */
3083 			events[5] |= 0x80; /* Encryption Key Refresh Complete */
3084 		}
3085 	}
3086 
3087 	if (lmp_inq_rssi_capable(hdev) ||
3088 	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
3089 		events[4] |= 0x02; /* Inquiry Result with RSSI */
3090 
3091 	if (lmp_ext_feat_capable(hdev))
3092 		events[4] |= 0x04; /* Read Remote Extended Features Complete */
3093 
3094 	if (lmp_esco_capable(hdev)) {
3095 		events[5] |= 0x08; /* Synchronous Connection Complete */
3096 		events[5] |= 0x10; /* Synchronous Connection Changed */
3097 	}
3098 
3099 	if (lmp_sniffsubr_capable(hdev))
3100 		events[5] |= 0x20; /* Sniff Subrating */
3101 
3102 	if (lmp_pause_enc_capable(hdev))
3103 		events[5] |= 0x80; /* Encryption Key Refresh Complete */
3104 
3105 	if (lmp_ext_inq_capable(hdev))
3106 		events[5] |= 0x40; /* Extended Inquiry Result */
3107 
3108 	if (lmp_no_flush_capable(hdev))
3109 		events[7] |= 0x01; /* Enhanced Flush Complete */
3110 
3111 	if (lmp_lsto_capable(hdev))
3112 		events[6] |= 0x80; /* Link Supervision Timeout Changed */
3113 
3114 	if (lmp_ssp_capable(hdev)) {
3115 		events[6] |= 0x01;	/* IO Capability Request */
3116 		events[6] |= 0x02;	/* IO Capability Response */
3117 		events[6] |= 0x04;	/* User Confirmation Request */
3118 		events[6] |= 0x08;	/* User Passkey Request */
3119 		events[6] |= 0x10;	/* Remote OOB Data Request */
3120 		events[6] |= 0x20;	/* Simple Pairing Complete */
3121 		events[7] |= 0x04;	/* User Passkey Notification */
3122 		events[7] |= 0x08;	/* Keypress Notification */
3123 		events[7] |= 0x10;	/* Remote Host Supported
3124 					 * Features Notification
3125 					 */
3126 	}
3127 
3128 	if (lmp_le_capable(hdev))
3129 		events[7] |= 0x20;	/* LE Meta-Event */
3130 
3131 	return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK,
3132 				     sizeof(events), events, HCI_CMD_TIMEOUT);
3133 }
3134 
3135 static int hci_read_stored_link_key_sync(struct hci_dev *hdev)
3136 {
3137 	struct hci_cp_read_stored_link_key cp;
3138 
3139 	if (!(hdev->commands[6] & 0x20) ||
3140 	    test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks))
3141 		return 0;
3142 
3143 	memset(&cp, 0, sizeof(cp));
3144 	bacpy(&cp.bdaddr, BDADDR_ANY);
3145 	cp.read_all = 0x01;
3146 
3147 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_STORED_LINK_KEY,
3148 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3149 }
3150 
3151 static int hci_setup_link_policy_sync(struct hci_dev *hdev)
3152 {
3153 	struct hci_cp_write_def_link_policy cp;
3154 	u16 link_policy = 0;
3155 
3156 	if (!(hdev->commands[5] & 0x10))
3157 		return 0;
3158 
3159 	memset(&cp, 0, sizeof(cp));
3160 
3161 	if (lmp_rswitch_capable(hdev))
3162 		link_policy |= HCI_LP_RSWITCH;
3163 	if (lmp_hold_capable(hdev))
3164 		link_policy |= HCI_LP_HOLD;
3165 	if (lmp_sniff_capable(hdev))
3166 		link_policy |= HCI_LP_SNIFF;
3167 	if (lmp_park_capable(hdev))
3168 		link_policy |= HCI_LP_PARK;
3169 
3170 	cp.policy = cpu_to_le16(link_policy);
3171 
3172 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY,
3173 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3174 }
3175 
3176 static int hci_read_page_scan_activity_sync(struct hci_dev *hdev)
3177 {
3178 	if (!(hdev->commands[8] & 0x01))
3179 		return 0;
3180 
3181 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_ACTIVITY,
3182 				     0, NULL, HCI_CMD_TIMEOUT);
3183 }
3184 
3185 static int hci_read_def_err_data_reporting_sync(struct hci_dev *hdev)
3186 {
3187 	if (!(hdev->commands[18] & 0x04) ||
3188 	    test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks))
3189 		return 0;
3190 
3191 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_DEF_ERR_DATA_REPORTING,
3192 				     0, NULL, HCI_CMD_TIMEOUT);
3193 }
3194 
3195 static int hci_read_page_scan_type_sync(struct hci_dev *hdev)
3196 {
3197 	/* Some older Broadcom based Bluetooth 1.2 controllers do not
3198 	 * support the Read Page Scan Type command. Check support for
3199 	 * this command in the bit mask of supported commands.
3200 	 */
3201 	if (!(hdev->commands[13] & 0x01))
3202 		return 0;
3203 
3204 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_TYPE,
3205 				     0, NULL, HCI_CMD_TIMEOUT);
3206 }
3207 
3208 /* Read features beyond page 1 if available */
3209 static int hci_read_local_ext_features_all_sync(struct hci_dev *hdev)
3210 {
3211 	u8 page;
3212 	int err;
3213 
3214 	if (!lmp_ext_feat_capable(hdev))
3215 		return 0;
3216 
3217 	for (page = 2; page < HCI_MAX_PAGES && page <= hdev->max_page;
3218 	     page++) {
3219 		err = hci_read_local_ext_features_sync(hdev, page);
3220 		if (err)
3221 			return err;
3222 	}
3223 
3224 	return 0;
3225 }
3226 
3227 /* HCI Controller init stage 3 command sequence */
3228 static const struct hci_init_stage hci_init3[] = {
3229 	/* HCI_OP_SET_EVENT_MASK */
3230 	HCI_INIT(hci_set_event_mask_sync),
3231 	/* HCI_OP_READ_STORED_LINK_KEY */
3232 	HCI_INIT(hci_read_stored_link_key_sync),
3233 	/* HCI_OP_WRITE_DEF_LINK_POLICY */
3234 	HCI_INIT(hci_setup_link_policy_sync),
3235 	/* HCI_OP_READ_PAGE_SCAN_ACTIVITY */
3236 	HCI_INIT(hci_read_page_scan_activity_sync),
3237 	/* HCI_OP_READ_DEF_ERR_DATA_REPORTING */
3238 	HCI_INIT(hci_read_def_err_data_reporting_sync),
3239 	/* HCI_OP_READ_PAGE_SCAN_TYPE */
3240 	HCI_INIT(hci_read_page_scan_type_sync),
3241 	/* HCI_OP_READ_LOCAL_EXT_FEATURES */
3242 	HCI_INIT(hci_read_local_ext_features_all_sync),
3243 	{}
3244 };
3245 
3246 static int hci_le_set_event_mask_sync(struct hci_dev *hdev)
3247 {
3248 	u8 events[8];
3249 
3250 	if (!lmp_le_capable(hdev))
3251 		return 0;
3252 
3253 	memset(events, 0, sizeof(events));
3254 
3255 	if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
3256 		events[0] |= 0x10;	/* LE Long Term Key Request */
3257 
3258 	/* If controller supports the Connection Parameters Request
3259 	 * Link Layer Procedure, enable the corresponding event.
3260 	 */
3261 	if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
3262 		/* LE Remote Connection Parameter Request */
3263 		events[0] |= 0x20;
3264 
3265 	/* If the controller supports the Data Length Extension
3266 	 * feature, enable the corresponding event.
3267 	 */
3268 	if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
3269 		events[0] |= 0x40;	/* LE Data Length Change */
3270 
3271 	/* If the controller supports LL Privacy feature or LE Extended Adv,
3272 	 * enable the corresponding event.
3273 	 */
3274 	if (use_enhanced_conn_complete(hdev))
3275 		events[1] |= 0x02;	/* LE Enhanced Connection Complete */
3276 
3277 	/* If the controller supports Extended Scanner Filter
3278 	 * Policies, enable the corresponding event.
3279 	 */
3280 	if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
3281 		events[1] |= 0x04;	/* LE Direct Advertising Report */
3282 
3283 	/* If the controller supports Channel Selection Algorithm #2
3284 	 * feature, enable the corresponding event.
3285 	 */
3286 	if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
3287 		events[2] |= 0x08;	/* LE Channel Selection Algorithm */
3288 
3289 	/* If the controller supports the LE Set Scan Enable command,
3290 	 * enable the corresponding advertising report event.
3291 	 */
3292 	if (hdev->commands[26] & 0x08)
3293 		events[0] |= 0x02;	/* LE Advertising Report */
3294 
3295 	/* If the controller supports the LE Create Connection
3296 	 * command, enable the corresponding event.
3297 	 */
3298 	if (hdev->commands[26] & 0x10)
3299 		events[0] |= 0x01;	/* LE Connection Complete */
3300 
3301 	/* If the controller supports the LE Connection Update
3302 	 * command, enable the corresponding event.
3303 	 */
3304 	if (hdev->commands[27] & 0x04)
3305 		events[0] |= 0x04;	/* LE Connection Update Complete */
3306 
3307 	/* If the controller supports the LE Read Remote Used Features
3308 	 * command, enable the corresponding event.
3309 	 */
3310 	if (hdev->commands[27] & 0x20)
3311 		/* LE Read Remote Used Features Complete */
3312 		events[0] |= 0x08;
3313 
3314 	/* If the controller supports the LE Read Local P-256
3315 	 * Public Key command, enable the corresponding event.
3316 	 */
3317 	if (hdev->commands[34] & 0x02)
3318 		/* LE Read Local P-256 Public Key Complete */
3319 		events[0] |= 0x80;
3320 
3321 	/* If the controller supports the LE Generate DHKey
3322 	 * command, enable the corresponding event.
3323 	 */
3324 	if (hdev->commands[34] & 0x04)
3325 		events[1] |= 0x01;	/* LE Generate DHKey Complete */
3326 
3327 	/* If the controller supports the LE Set Default PHY or
3328 	 * LE Set PHY commands, enable the corresponding event.
3329 	 */
3330 	if (hdev->commands[35] & (0x20 | 0x40))
3331 		events[1] |= 0x08;        /* LE PHY Update Complete */
3332 
3333 	/* If the controller supports LE Set Extended Scan Parameters
3334 	 * and LE Set Extended Scan Enable commands, enable the
3335 	 * corresponding event.
3336 	 */
3337 	if (use_ext_scan(hdev))
3338 		events[1] |= 0x10;	/* LE Extended Advertising Report */
3339 
3340 	/* If the controller supports the LE Extended Advertising
3341 	 * command, enable the corresponding event.
3342 	 */
3343 	if (ext_adv_capable(hdev))
3344 		events[2] |= 0x02;	/* LE Advertising Set Terminated */
3345 
3346 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EVENT_MASK,
3347 				     sizeof(events), events, HCI_CMD_TIMEOUT);
3348 }
3349 
3350 /* Read LE Advertising Channel TX Power */
3351 static int hci_le_read_adv_tx_power_sync(struct hci_dev *hdev)
3352 {
3353 	if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) {
3354 		/* HCI TS spec forbids mixing of legacy and extended
3355 		 * advertising commands wherein READ_ADV_TX_POWER is
3356 		 * also included. So do not call it if extended adv
3357 		 * is supported otherwise controller will return
3358 		 * COMMAND_DISALLOWED for extended commands.
3359 		 */
3360 		return __hci_cmd_sync_status(hdev,
3361 					       HCI_OP_LE_READ_ADV_TX_POWER,
3362 					       0, NULL, HCI_CMD_TIMEOUT);
3363 	}
3364 
3365 	return 0;
3366 }
3367 
3368 /* Read LE Min/Max Tx Power*/
3369 static int hci_le_read_tx_power_sync(struct hci_dev *hdev)
3370 {
3371 	if (!(hdev->commands[38] & 0x80) ||
3372 	    test_bit(HCI_QUIRK_BROKEN_READ_TRANSMIT_POWER, &hdev->quirks))
3373 		return 0;
3374 
3375 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_TRANSMIT_POWER,
3376 				     0, NULL, HCI_CMD_TIMEOUT);
3377 }
3378 
3379 /* Read LE Accept List Size */
3380 static int hci_le_read_accept_list_size_sync(struct hci_dev *hdev)
3381 {
3382 	if (!(hdev->commands[26] & 0x40))
3383 		return 0;
3384 
3385 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_ACCEPT_LIST_SIZE,
3386 				     0, NULL, HCI_CMD_TIMEOUT);
3387 }
3388 
3389 /* Clear LE Accept List */
3390 static int hci_le_clear_accept_list_sync(struct hci_dev *hdev)
3391 {
3392 	if (!(hdev->commands[26] & 0x80))
3393 		return 0;
3394 
3395 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL,
3396 				     HCI_CMD_TIMEOUT);
3397 }
3398 
3399 /* Read LE Resolving List Size */
3400 static int hci_le_read_resolv_list_size_sync(struct hci_dev *hdev)
3401 {
3402 	if (!(hdev->commands[34] & 0x40))
3403 		return 0;
3404 
3405 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_RESOLV_LIST_SIZE,
3406 				     0, NULL, HCI_CMD_TIMEOUT);
3407 }
3408 
3409 /* Clear LE Resolving List */
3410 static int hci_le_clear_resolv_list_sync(struct hci_dev *hdev)
3411 {
3412 	if (!(hdev->commands[34] & 0x20))
3413 		return 0;
3414 
3415 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL,
3416 				     HCI_CMD_TIMEOUT);
3417 }
3418 
3419 /* Set RPA timeout */
3420 static int hci_le_set_rpa_timeout_sync(struct hci_dev *hdev)
3421 {
3422 	__le16 timeout = cpu_to_le16(hdev->rpa_timeout);
3423 
3424 	if (!(hdev->commands[35] & 0x04))
3425 		return 0;
3426 
3427 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RPA_TIMEOUT,
3428 				     sizeof(timeout), &timeout,
3429 				     HCI_CMD_TIMEOUT);
3430 }
3431 
3432 /* Read LE Maximum Data Length */
3433 static int hci_le_read_max_data_len_sync(struct hci_dev *hdev)
3434 {
3435 	if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
3436 		return 0;
3437 
3438 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL,
3439 				     HCI_CMD_TIMEOUT);
3440 }
3441 
3442 /* Read LE Suggested Default Data Length */
3443 static int hci_le_read_def_data_len_sync(struct hci_dev *hdev)
3444 {
3445 	if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
3446 		return 0;
3447 
3448 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL,
3449 				     HCI_CMD_TIMEOUT);
3450 }
3451 
3452 /* Read LE Number of Supported Advertising Sets */
3453 static int hci_le_read_num_support_adv_sets_sync(struct hci_dev *hdev)
3454 {
3455 	if (!ext_adv_capable(hdev))
3456 		return 0;
3457 
3458 	return __hci_cmd_sync_status(hdev,
3459 				     HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS,
3460 				     0, NULL, HCI_CMD_TIMEOUT);
3461 }
3462 
3463 /* Write LE Host Supported */
3464 static int hci_set_le_support_sync(struct hci_dev *hdev)
3465 {
3466 	struct hci_cp_write_le_host_supported cp;
3467 
3468 	/* LE-only devices do not support explicit enablement */
3469 	if (!lmp_bredr_capable(hdev))
3470 		return 0;
3471 
3472 	memset(&cp, 0, sizeof(cp));
3473 
3474 	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
3475 		cp.le = 0x01;
3476 		cp.simul = 0x00;
3477 	}
3478 
3479 	if (cp.le == lmp_host_le_capable(hdev))
3480 		return 0;
3481 
3482 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED,
3483 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3484 }
3485 
3486 /* LE Controller init stage 3 command sequence */
3487 static const struct hci_init_stage le_init3[] = {
3488 	/* HCI_OP_LE_SET_EVENT_MASK */
3489 	HCI_INIT(hci_le_set_event_mask_sync),
3490 	/* HCI_OP_LE_READ_ADV_TX_POWER */
3491 	HCI_INIT(hci_le_read_adv_tx_power_sync),
3492 	/* HCI_OP_LE_READ_TRANSMIT_POWER */
3493 	HCI_INIT(hci_le_read_tx_power_sync),
3494 	/* HCI_OP_LE_READ_ACCEPT_LIST_SIZE */
3495 	HCI_INIT(hci_le_read_accept_list_size_sync),
3496 	/* HCI_OP_LE_CLEAR_ACCEPT_LIST */
3497 	HCI_INIT(hci_le_clear_accept_list_sync),
3498 	/* HCI_OP_LE_READ_RESOLV_LIST_SIZE */
3499 	HCI_INIT(hci_le_read_resolv_list_size_sync),
3500 	/* HCI_OP_LE_CLEAR_RESOLV_LIST */
3501 	HCI_INIT(hci_le_clear_resolv_list_sync),
3502 	/* HCI_OP_LE_SET_RPA_TIMEOUT */
3503 	HCI_INIT(hci_le_set_rpa_timeout_sync),
3504 	/* HCI_OP_LE_READ_MAX_DATA_LEN */
3505 	HCI_INIT(hci_le_read_max_data_len_sync),
3506 	/* HCI_OP_LE_READ_DEF_DATA_LEN */
3507 	HCI_INIT(hci_le_read_def_data_len_sync),
3508 	/* HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS */
3509 	HCI_INIT(hci_le_read_num_support_adv_sets_sync),
3510 	/* HCI_OP_WRITE_LE_HOST_SUPPORTED */
3511 	HCI_INIT(hci_set_le_support_sync),
3512 	{}
3513 };
3514 
3515 static int hci_init3_sync(struct hci_dev *hdev)
3516 {
3517 	int err;
3518 
3519 	bt_dev_dbg(hdev, "");
3520 
3521 	err = hci_init_stage_sync(hdev, hci_init3);
3522 	if (err)
3523 		return err;
3524 
3525 	if (lmp_le_capable(hdev))
3526 		return hci_init_stage_sync(hdev, le_init3);
3527 
3528 	return 0;
3529 }
3530 
3531 static int hci_delete_stored_link_key_sync(struct hci_dev *hdev)
3532 {
3533 	struct hci_cp_delete_stored_link_key cp;
3534 
3535 	/* Some Broadcom based Bluetooth controllers do not support the
3536 	 * Delete Stored Link Key command. They are clearly indicating its
3537 	 * absence in the bit mask of supported commands.
3538 	 *
3539 	 * Check the supported commands and only if the command is marked
3540 	 * as supported send it. If not supported assume that the controller
3541 	 * does not have actual support for stored link keys which makes this
3542 	 * command redundant anyway.
3543 	 *
3544 	 * Some controllers indicate that they support handling deleting
3545 	 * stored link keys, but they don't. The quirk lets a driver
3546 	 * just disable this command.
3547 	 */
3548 	if (!(hdev->commands[6] & 0x80) ||
3549 	    test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks))
3550 		return 0;
3551 
3552 	memset(&cp, 0, sizeof(cp));
3553 	bacpy(&cp.bdaddr, BDADDR_ANY);
3554 	cp.delete_all = 0x01;
3555 
3556 	return __hci_cmd_sync_status(hdev, HCI_OP_DELETE_STORED_LINK_KEY,
3557 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3558 }
3559 
3560 static int hci_set_event_mask_page_2_sync(struct hci_dev *hdev)
3561 {
3562 	u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
3563 	bool changed = false;
3564 
3565 	/* Set event mask page 2 if the HCI command for it is supported */
3566 	if (!(hdev->commands[22] & 0x04))
3567 		return 0;
3568 
3569 	/* If Connectionless Peripheral Broadcast central role is supported
3570 	 * enable all necessary events for it.
3571 	 */
3572 	if (lmp_cpb_central_capable(hdev)) {
3573 		events[1] |= 0x40;	/* Triggered Clock Capture */
3574 		events[1] |= 0x80;	/* Synchronization Train Complete */
3575 		events[2] |= 0x10;	/* Peripheral Page Response Timeout */
3576 		events[2] |= 0x20;	/* CPB Channel Map Change */
3577 		changed = true;
3578 	}
3579 
3580 	/* If Connectionless Peripheral Broadcast peripheral role is supported
3581 	 * enable all necessary events for it.
3582 	 */
3583 	if (lmp_cpb_peripheral_capable(hdev)) {
3584 		events[2] |= 0x01;	/* Synchronization Train Received */
3585 		events[2] |= 0x02;	/* CPB Receive */
3586 		events[2] |= 0x04;	/* CPB Timeout */
3587 		events[2] |= 0x08;	/* Truncated Page Complete */
3588 		changed = true;
3589 	}
3590 
3591 	/* Enable Authenticated Payload Timeout Expired event if supported */
3592 	if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
3593 		events[2] |= 0x80;
3594 		changed = true;
3595 	}
3596 
3597 	/* Some Broadcom based controllers indicate support for Set Event
3598 	 * Mask Page 2 command, but then actually do not support it. Since
3599 	 * the default value is all bits set to zero, the command is only
3600 	 * required if the event mask has to be changed. In case no change
3601 	 * to the event mask is needed, skip this command.
3602 	 */
3603 	if (!changed)
3604 		return 0;
3605 
3606 	return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK_PAGE_2,
3607 				     sizeof(events), events, HCI_CMD_TIMEOUT);
3608 }
3609 
3610 /* Read local codec list if the HCI command is supported */
3611 static int hci_read_local_codecs_sync(struct hci_dev *hdev)
3612 {
3613 	if (!(hdev->commands[29] & 0x20))
3614 		return 0;
3615 
3616 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_CODECS, 0, NULL,
3617 				     HCI_CMD_TIMEOUT);
3618 }
3619 
3620 /* Read local pairing options if the HCI command is supported */
3621 static int hci_read_local_pairing_opts_sync(struct hci_dev *hdev)
3622 {
3623 	if (!(hdev->commands[41] & 0x08))
3624 		return 0;
3625 
3626 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_PAIRING_OPTS,
3627 				     0, NULL, HCI_CMD_TIMEOUT);
3628 }
3629 
3630 /* Get MWS transport configuration if the HCI command is supported */
3631 static int hci_get_mws_transport_config_sync(struct hci_dev *hdev)
3632 {
3633 	if (!(hdev->commands[30] & 0x08))
3634 		return 0;
3635 
3636 	return __hci_cmd_sync_status(hdev, HCI_OP_GET_MWS_TRANSPORT_CONFIG,
3637 				     0, NULL, HCI_CMD_TIMEOUT);
3638 }
3639 
3640 /* Check for Synchronization Train support */
3641 static int hci_read_sync_train_params_sync(struct hci_dev *hdev)
3642 {
3643 	if (!lmp_sync_train_capable(hdev))
3644 		return 0;
3645 
3646 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_SYNC_TRAIN_PARAMS,
3647 				     0, NULL, HCI_CMD_TIMEOUT);
3648 }
3649 
3650 /* Enable Secure Connections if supported and configured */
3651 static int hci_write_sc_support_1_sync(struct hci_dev *hdev)
3652 {
3653 	u8 support = 0x01;
3654 
3655 	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) ||
3656 	    !bredr_sc_enabled(hdev))
3657 		return 0;
3658 
3659 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT,
3660 				     sizeof(support), &support,
3661 				     HCI_CMD_TIMEOUT);
3662 }
3663 
3664 /* Set erroneous data reporting if supported to the wideband speech
3665  * setting value
3666  */
3667 static int hci_set_err_data_report_sync(struct hci_dev *hdev)
3668 {
3669 	struct hci_cp_write_def_err_data_reporting cp;
3670 	bool enabled = hci_dev_test_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED);
3671 
3672 	if (!(hdev->commands[18] & 0x08) ||
3673 	    test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks))
3674 		return 0;
3675 
3676 	if (enabled == hdev->err_data_reporting)
3677 		return 0;
3678 
3679 	memset(&cp, 0, sizeof(cp));
3680 	cp.err_data_reporting = enabled ? ERR_DATA_REPORTING_ENABLED :
3681 				ERR_DATA_REPORTING_DISABLED;
3682 
3683 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING,
3684 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3685 }
3686 
3687 static const struct hci_init_stage hci_init4[] = {
3688 	 /* HCI_OP_DELETE_STORED_LINK_KEY */
3689 	HCI_INIT(hci_delete_stored_link_key_sync),
3690 	/* HCI_OP_SET_EVENT_MASK_PAGE_2 */
3691 	HCI_INIT(hci_set_event_mask_page_2_sync),
3692 	/* HCI_OP_READ_LOCAL_CODECS */
3693 	HCI_INIT(hci_read_local_codecs_sync),
3694 	 /* HCI_OP_READ_LOCAL_PAIRING_OPTS */
3695 	HCI_INIT(hci_read_local_pairing_opts_sync),
3696 	 /* HCI_OP_GET_MWS_TRANSPORT_CONFIG */
3697 	HCI_INIT(hci_get_mws_transport_config_sync),
3698 	 /* HCI_OP_READ_SYNC_TRAIN_PARAMS */
3699 	HCI_INIT(hci_read_sync_train_params_sync),
3700 	/* HCI_OP_WRITE_SC_SUPPORT */
3701 	HCI_INIT(hci_write_sc_support_1_sync),
3702 	/* HCI_OP_WRITE_DEF_ERR_DATA_REPORTING */
3703 	HCI_INIT(hci_set_err_data_report_sync),
3704 	{}
3705 };
3706 
3707 /* Set Suggested Default Data Length to maximum if supported */
3708 static int hci_le_set_write_def_data_len_sync(struct hci_dev *hdev)
3709 {
3710 	struct hci_cp_le_write_def_data_len cp;
3711 
3712 	if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
3713 		return 0;
3714 
3715 	memset(&cp, 0, sizeof(cp));
3716 	cp.tx_len = cpu_to_le16(hdev->le_max_tx_len);
3717 	cp.tx_time = cpu_to_le16(hdev->le_max_tx_time);
3718 
3719 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_WRITE_DEF_DATA_LEN,
3720 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3721 }
3722 
3723 /* Set Default PHY parameters if command is supported */
3724 static int hci_le_set_default_phy_sync(struct hci_dev *hdev)
3725 {
3726 	struct hci_cp_le_set_default_phy cp;
3727 
3728 	if (!(hdev->commands[35] & 0x20))
3729 		return 0;
3730 
3731 	memset(&cp, 0, sizeof(cp));
3732 	cp.all_phys = 0x00;
3733 	cp.tx_phys = hdev->le_tx_def_phys;
3734 	cp.rx_phys = hdev->le_rx_def_phys;
3735 
3736 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_DEFAULT_PHY,
3737 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3738 }
3739 
3740 static const struct hci_init_stage le_init4[] = {
3741 	/* HCI_OP_LE_WRITE_DEF_DATA_LEN */
3742 	HCI_INIT(hci_le_set_write_def_data_len_sync),
3743 	/* HCI_OP_LE_SET_DEFAULT_PHY */
3744 	HCI_INIT(hci_le_set_default_phy_sync),
3745 	{}
3746 };
3747 
3748 static int hci_init4_sync(struct hci_dev *hdev)
3749 {
3750 	int err;
3751 
3752 	bt_dev_dbg(hdev, "");
3753 
3754 	err = hci_init_stage_sync(hdev, hci_init4);
3755 	if (err)
3756 		return err;
3757 
3758 	if (lmp_le_capable(hdev))
3759 		return hci_init_stage_sync(hdev, le_init4);
3760 
3761 	return 0;
3762 }
3763 
3764 static int hci_init_sync(struct hci_dev *hdev)
3765 {
3766 	int err;
3767 
3768 	err = hci_init1_sync(hdev);
3769 	if (err < 0)
3770 		return err;
3771 
3772 	if (hci_dev_test_flag(hdev, HCI_SETUP))
3773 		hci_debugfs_create_basic(hdev);
3774 
3775 	err = hci_init2_sync(hdev);
3776 	if (err < 0)
3777 		return err;
3778 
3779 	/* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
3780 	 * BR/EDR/LE type controllers. AMP controllers only need the
3781 	 * first two stages of init.
3782 	 */
3783 	if (hdev->dev_type != HCI_PRIMARY)
3784 		return 0;
3785 
3786 	err = hci_init3_sync(hdev);
3787 	if (err < 0)
3788 		return err;
3789 
3790 	err = hci_init4_sync(hdev);
3791 	if (err < 0)
3792 		return err;
3793 
3794 	/* This function is only called when the controller is actually in
3795 	 * configured state. When the controller is marked as unconfigured,
3796 	 * this initialization procedure is not run.
3797 	 *
3798 	 * It means that it is possible that a controller runs through its
3799 	 * setup phase and then discovers missing settings. If that is the
3800 	 * case, then this function will not be called. It then will only
3801 	 * be called during the config phase.
3802 	 *
3803 	 * So only when in setup phase or config phase, create the debugfs
3804 	 * entries and register the SMP channels.
3805 	 */
3806 	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
3807 	    !hci_dev_test_flag(hdev, HCI_CONFIG))
3808 		return 0;
3809 
3810 	hci_debugfs_create_common(hdev);
3811 
3812 	if (lmp_bredr_capable(hdev))
3813 		hci_debugfs_create_bredr(hdev);
3814 
3815 	if (lmp_le_capable(hdev))
3816 		hci_debugfs_create_le(hdev);
3817 
3818 	return 0;
3819 }
3820 
3821 int hci_dev_open_sync(struct hci_dev *hdev)
3822 {
3823 	int ret = 0;
3824 
3825 	bt_dev_dbg(hdev, "");
3826 
3827 	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
3828 		ret = -ENODEV;
3829 		goto done;
3830 	}
3831 
3832 	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
3833 	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3834 		/* Check for rfkill but allow the HCI setup stage to
3835 		 * proceed (which in itself doesn't cause any RF activity).
3836 		 */
3837 		if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
3838 			ret = -ERFKILL;
3839 			goto done;
3840 		}
3841 
3842 		/* Check for valid public address or a configured static
3843 		 * random address, but let the HCI setup proceed to
3844 		 * be able to determine if there is a public address
3845 		 * or not.
3846 		 *
3847 		 * In case of user channel usage, it is not important
3848 		 * if a public address or static random address is
3849 		 * available.
3850 		 *
3851 		 * This check is only valid for BR/EDR controllers
3852 		 * since AMP controllers do not have an address.
3853 		 */
3854 		if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
3855 		    hdev->dev_type == HCI_PRIMARY &&
3856 		    !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
3857 		    !bacmp(&hdev->static_addr, BDADDR_ANY)) {
3858 			ret = -EADDRNOTAVAIL;
3859 			goto done;
3860 		}
3861 	}
3862 
3863 	if (test_bit(HCI_UP, &hdev->flags)) {
3864 		ret = -EALREADY;
3865 		goto done;
3866 	}
3867 
3868 	if (hdev->open(hdev)) {
3869 		ret = -EIO;
3870 		goto done;
3871 	}
3872 
3873 	set_bit(HCI_RUNNING, &hdev->flags);
3874 	hci_sock_dev_event(hdev, HCI_DEV_OPEN);
3875 
3876 	atomic_set(&hdev->cmd_cnt, 1);
3877 	set_bit(HCI_INIT, &hdev->flags);
3878 
3879 	if (hci_dev_test_flag(hdev, HCI_SETUP) ||
3880 	    test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) {
3881 		bool invalid_bdaddr;
3882 
3883 		hci_sock_dev_event(hdev, HCI_DEV_SETUP);
3884 
3885 		if (hdev->setup)
3886 			ret = hdev->setup(hdev);
3887 
3888 		/* The transport driver can set the quirk to mark the
3889 		 * BD_ADDR invalid before creating the HCI device or in
3890 		 * its setup callback.
3891 		 */
3892 		invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR,
3893 					  &hdev->quirks);
3894 
3895 		if (ret)
3896 			goto setup_failed;
3897 
3898 		if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) {
3899 			if (!bacmp(&hdev->public_addr, BDADDR_ANY))
3900 				hci_dev_get_bd_addr_from_property(hdev);
3901 
3902 			if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
3903 			    hdev->set_bdaddr) {
3904 				ret = hdev->set_bdaddr(hdev,
3905 						       &hdev->public_addr);
3906 
3907 				/* If setting of the BD_ADDR from the device
3908 				 * property succeeds, then treat the address
3909 				 * as valid even if the invalid BD_ADDR
3910 				 * quirk indicates otherwise.
3911 				 */
3912 				if (!ret)
3913 					invalid_bdaddr = false;
3914 			}
3915 		}
3916 
3917 setup_failed:
3918 		/* The transport driver can set these quirks before
3919 		 * creating the HCI device or in its setup callback.
3920 		 *
3921 		 * For the invalid BD_ADDR quirk it is possible that
3922 		 * it becomes a valid address if the bootloader does
3923 		 * provide it (see above).
3924 		 *
3925 		 * In case any of them is set, the controller has to
3926 		 * start up as unconfigured.
3927 		 */
3928 		if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
3929 		    invalid_bdaddr)
3930 			hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3931 
3932 		/* For an unconfigured controller it is required to
3933 		 * read at least the version information provided by
3934 		 * the Read Local Version Information command.
3935 		 *
3936 		 * If the set_bdaddr driver callback is provided, then
3937 		 * also the original Bluetooth public device address
3938 		 * will be read using the Read BD Address command.
3939 		 */
3940 		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
3941 			ret = hci_unconf_init_sync(hdev);
3942 	}
3943 
3944 	if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
3945 		/* If public address change is configured, ensure that
3946 		 * the address gets programmed. If the driver does not
3947 		 * support changing the public address, fail the power
3948 		 * on procedure.
3949 		 */
3950 		if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
3951 		    hdev->set_bdaddr)
3952 			ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
3953 		else
3954 			ret = -EADDRNOTAVAIL;
3955 	}
3956 
3957 	if (!ret) {
3958 		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
3959 		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3960 			ret = hci_init_sync(hdev);
3961 			if (!ret && hdev->post_init)
3962 				ret = hdev->post_init(hdev);
3963 		}
3964 	}
3965 
3966 	/* If the HCI Reset command is clearing all diagnostic settings,
3967 	 * then they need to be reprogrammed after the init procedure
3968 	 * completed.
3969 	 */
3970 	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
3971 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
3972 	    hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
3973 		ret = hdev->set_diag(hdev, true);
3974 
3975 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3976 		msft_do_open(hdev);
3977 		aosp_do_open(hdev);
3978 	}
3979 
3980 	clear_bit(HCI_INIT, &hdev->flags);
3981 
3982 	if (!ret) {
3983 		hci_dev_hold(hdev);
3984 		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
3985 		hci_adv_instances_set_rpa_expired(hdev, true);
3986 		set_bit(HCI_UP, &hdev->flags);
3987 		hci_sock_dev_event(hdev, HCI_DEV_UP);
3988 		hci_leds_update_powered(hdev, true);
3989 		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
3990 		    !hci_dev_test_flag(hdev, HCI_CONFIG) &&
3991 		    !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
3992 		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
3993 		    hci_dev_test_flag(hdev, HCI_MGMT) &&
3994 		    hdev->dev_type == HCI_PRIMARY) {
3995 			ret = hci_powered_update_sync(hdev);
3996 		}
3997 	} else {
3998 		/* Init failed, cleanup */
3999 		flush_work(&hdev->tx_work);
4000 
4001 		/* Since hci_rx_work() is possible to awake new cmd_work
4002 		 * it should be flushed first to avoid unexpected call of
4003 		 * hci_cmd_work()
4004 		 */
4005 		flush_work(&hdev->rx_work);
4006 		flush_work(&hdev->cmd_work);
4007 
4008 		skb_queue_purge(&hdev->cmd_q);
4009 		skb_queue_purge(&hdev->rx_q);
4010 
4011 		if (hdev->flush)
4012 			hdev->flush(hdev);
4013 
4014 		if (hdev->sent_cmd) {
4015 			kfree_skb(hdev->sent_cmd);
4016 			hdev->sent_cmd = NULL;
4017 		}
4018 
4019 		clear_bit(HCI_RUNNING, &hdev->flags);
4020 		hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
4021 
4022 		hdev->close(hdev);
4023 		hdev->flags &= BIT(HCI_RAW);
4024 	}
4025 
4026 done:
4027 	return ret;
4028 }
4029 
4030 /* This function requires the caller holds hdev->lock */
4031 static void hci_pend_le_actions_clear(struct hci_dev *hdev)
4032 {
4033 	struct hci_conn_params *p;
4034 
4035 	list_for_each_entry(p, &hdev->le_conn_params, list) {
4036 		if (p->conn) {
4037 			hci_conn_drop(p->conn);
4038 			hci_conn_put(p->conn);
4039 			p->conn = NULL;
4040 		}
4041 		list_del_init(&p->action);
4042 	}
4043 
4044 	BT_DBG("All LE pending actions cleared");
4045 }
4046 
4047 int hci_dev_close_sync(struct hci_dev *hdev)
4048 {
4049 	bool auto_off;
4050 	int err = 0;
4051 
4052 	bt_dev_dbg(hdev, "");
4053 
4054 	cancel_delayed_work(&hdev->power_off);
4055 	cancel_delayed_work(&hdev->ncmd_timer);
4056 
4057 	hci_request_cancel_all(hdev);
4058 
4059 	if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
4060 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4061 	    test_bit(HCI_UP, &hdev->flags)) {
4062 		/* Execute vendor specific shutdown routine */
4063 		if (hdev->shutdown)
4064 			err = hdev->shutdown(hdev);
4065 	}
4066 
4067 	if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
4068 		cancel_delayed_work_sync(&hdev->cmd_timer);
4069 		return err;
4070 	}
4071 
4072 	hci_leds_update_powered(hdev, false);
4073 
4074 	/* Flush RX and TX works */
4075 	flush_work(&hdev->tx_work);
4076 	flush_work(&hdev->rx_work);
4077 
4078 	if (hdev->discov_timeout > 0) {
4079 		hdev->discov_timeout = 0;
4080 		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
4081 		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
4082 	}
4083 
4084 	if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
4085 		cancel_delayed_work(&hdev->service_cache);
4086 
4087 	if (hci_dev_test_flag(hdev, HCI_MGMT)) {
4088 		struct adv_info *adv_instance;
4089 
4090 		cancel_delayed_work_sync(&hdev->rpa_expired);
4091 
4092 		list_for_each_entry(adv_instance, &hdev->adv_instances, list)
4093 			cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
4094 	}
4095 
4096 	/* Avoid potential lockdep warnings from the *_flush() calls by
4097 	 * ensuring the workqueue is empty up front.
4098 	 */
4099 	drain_workqueue(hdev->workqueue);
4100 
4101 	hci_dev_lock(hdev);
4102 
4103 	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
4104 
4105 	auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
4106 
4107 	if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
4108 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4109 	    hci_dev_test_flag(hdev, HCI_MGMT))
4110 		__mgmt_power_off(hdev);
4111 
4112 	hci_inquiry_cache_flush(hdev);
4113 	hci_pend_le_actions_clear(hdev);
4114 	hci_conn_hash_flush(hdev);
4115 	/* Prevent data races on hdev->smp_data or hdev->smp_bredr_data */
4116 	smp_unregister(hdev);
4117 	hci_dev_unlock(hdev);
4118 
4119 	hci_sock_dev_event(hdev, HCI_DEV_DOWN);
4120 
4121 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4122 		aosp_do_close(hdev);
4123 		msft_do_close(hdev);
4124 	}
4125 
4126 	if (hdev->flush)
4127 		hdev->flush(hdev);
4128 
4129 	/* Reset device */
4130 	skb_queue_purge(&hdev->cmd_q);
4131 	atomic_set(&hdev->cmd_cnt, 1);
4132 	if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
4133 	    !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
4134 		set_bit(HCI_INIT, &hdev->flags);
4135 		hci_reset_sync(hdev);
4136 		clear_bit(HCI_INIT, &hdev->flags);
4137 	}
4138 
4139 	/* flush cmd  work */
4140 	flush_work(&hdev->cmd_work);
4141 
4142 	/* Drop queues */
4143 	skb_queue_purge(&hdev->rx_q);
4144 	skb_queue_purge(&hdev->cmd_q);
4145 	skb_queue_purge(&hdev->raw_q);
4146 
4147 	/* Drop last sent command */
4148 	if (hdev->sent_cmd) {
4149 		cancel_delayed_work_sync(&hdev->cmd_timer);
4150 		kfree_skb(hdev->sent_cmd);
4151 		hdev->sent_cmd = NULL;
4152 	}
4153 
4154 	clear_bit(HCI_RUNNING, &hdev->flags);
4155 	hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
4156 
4157 	/* After this point our queues are empty and no tasks are scheduled. */
4158 	hdev->close(hdev);
4159 
4160 	/* Clear flags */
4161 	hdev->flags &= BIT(HCI_RAW);
4162 	hci_dev_clear_volatile_flags(hdev);
4163 
4164 	/* Controller radio is available but is currently powered down */
4165 	hdev->amp_status = AMP_STATUS_POWERED_DOWN;
4166 
4167 	memset(hdev->eir, 0, sizeof(hdev->eir));
4168 	memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
4169 	bacpy(&hdev->random_addr, BDADDR_ANY);
4170 
4171 	hci_dev_put(hdev);
4172 	return err;
4173 }
4174 
4175 /* This function perform power on HCI command sequence as follows:
4176  *
4177  * If controller is already up (HCI_UP) performs hci_powered_update_sync
4178  * sequence otherwise run hci_dev_open_sync which will follow with
4179  * hci_powered_update_sync after the init sequence is completed.
4180  */
4181 static int hci_power_on_sync(struct hci_dev *hdev)
4182 {
4183 	int err;
4184 
4185 	if (test_bit(HCI_UP, &hdev->flags) &&
4186 	    hci_dev_test_flag(hdev, HCI_MGMT) &&
4187 	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
4188 		cancel_delayed_work(&hdev->power_off);
4189 		return hci_powered_update_sync(hdev);
4190 	}
4191 
4192 	err = hci_dev_open_sync(hdev);
4193 	if (err < 0)
4194 		return err;
4195 
4196 	/* During the HCI setup phase, a few error conditions are
4197 	 * ignored and they need to be checked now. If they are still
4198 	 * valid, it is important to return the device back off.
4199 	 */
4200 	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
4201 	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
4202 	    (hdev->dev_type == HCI_PRIMARY &&
4203 	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
4204 	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
4205 		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
4206 		hci_dev_close_sync(hdev);
4207 	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
4208 		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
4209 				   HCI_AUTO_OFF_TIMEOUT);
4210 	}
4211 
4212 	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
4213 		/* For unconfigured devices, set the HCI_RAW flag
4214 		 * so that userspace can easily identify them.
4215 		 */
4216 		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
4217 			set_bit(HCI_RAW, &hdev->flags);
4218 
4219 		/* For fully configured devices, this will send
4220 		 * the Index Added event. For unconfigured devices,
4221 		 * it will send Unconfigued Index Added event.
4222 		 *
4223 		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
4224 		 * and no event will be send.
4225 		 */
4226 		mgmt_index_added(hdev);
4227 	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
4228 		/* When the controller is now configured, then it
4229 		 * is important to clear the HCI_RAW flag.
4230 		 */
4231 		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
4232 			clear_bit(HCI_RAW, &hdev->flags);
4233 
4234 		/* Powering on the controller with HCI_CONFIG set only
4235 		 * happens with the transition from unconfigured to
4236 		 * configured. This will send the Index Added event.
4237 		 */
4238 		mgmt_index_added(hdev);
4239 	}
4240 
4241 	return 0;
4242 }
4243 
4244 static int hci_remote_name_cancel_sync(struct hci_dev *hdev, bdaddr_t *addr)
4245 {
4246 	struct hci_cp_remote_name_req_cancel cp;
4247 
4248 	memset(&cp, 0, sizeof(cp));
4249 	bacpy(&cp.bdaddr, addr);
4250 
4251 	return __hci_cmd_sync_status(hdev, HCI_OP_REMOTE_NAME_REQ_CANCEL,
4252 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4253 }
4254 
4255 int hci_stop_discovery_sync(struct hci_dev *hdev)
4256 {
4257 	struct discovery_state *d = &hdev->discovery;
4258 	struct inquiry_entry *e;
4259 	int err;
4260 
4261 	bt_dev_dbg(hdev, "state %u", hdev->discovery.state);
4262 
4263 	if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
4264 		if (test_bit(HCI_INQUIRY, &hdev->flags)) {
4265 			err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL,
4266 						    0, NULL, HCI_CMD_TIMEOUT);
4267 			if (err)
4268 				return err;
4269 		}
4270 
4271 		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
4272 			cancel_delayed_work(&hdev->le_scan_disable);
4273 			cancel_delayed_work(&hdev->le_scan_restart);
4274 
4275 			err = hci_scan_disable_sync(hdev);
4276 			if (err)
4277 				return err;
4278 		}
4279 
4280 	} else {
4281 		err = hci_scan_disable_sync(hdev);
4282 		if (err)
4283 			return err;
4284 	}
4285 
4286 	/* Resume advertising if it was paused */
4287 	if (use_ll_privacy(hdev))
4288 		hci_resume_advertising_sync(hdev);
4289 
4290 	/* No further actions needed for LE-only discovery */
4291 	if (d->type == DISCOV_TYPE_LE)
4292 		return 0;
4293 
4294 	if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
4295 		e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
4296 						     NAME_PENDING);
4297 		if (!e)
4298 			return 0;
4299 
4300 		return hci_remote_name_cancel_sync(hdev, &e->data.bdaddr);
4301 	}
4302 
4303 	return 0;
4304 }
4305 
4306 static int hci_disconnect_phy_link_sync(struct hci_dev *hdev, u16 handle,
4307 					u8 reason)
4308 {
4309 	struct hci_cp_disconn_phy_link cp;
4310 
4311 	memset(&cp, 0, sizeof(cp));
4312 	cp.phy_handle = HCI_PHY_HANDLE(handle);
4313 	cp.reason = reason;
4314 
4315 	return __hci_cmd_sync_status(hdev, HCI_OP_DISCONN_PHY_LINK,
4316 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4317 }
4318 
4319 static int hci_disconnect_sync(struct hci_dev *hdev, struct hci_conn *conn,
4320 			       u8 reason)
4321 {
4322 	struct hci_cp_disconnect cp;
4323 
4324 	if (conn->type == AMP_LINK)
4325 		return hci_disconnect_phy_link_sync(hdev, conn->handle, reason);
4326 
4327 	memset(&cp, 0, sizeof(cp));
4328 	cp.handle = cpu_to_le16(conn->handle);
4329 	cp.reason = reason;
4330 
4331 	/* Wait for HCI_EV_DISCONN_COMPLETE not HCI_EV_CMD_STATUS when not
4332 	 * suspending.
4333 	 */
4334 	if (!hdev->suspended)
4335 		return __hci_cmd_sync_status_sk(hdev, HCI_OP_DISCONNECT,
4336 						sizeof(cp), &cp,
4337 						HCI_EV_DISCONN_COMPLETE,
4338 						HCI_CMD_TIMEOUT, NULL);
4339 
4340 	return __hci_cmd_sync_status(hdev, HCI_OP_DISCONNECT, sizeof(cp), &cp,
4341 				     HCI_CMD_TIMEOUT);
4342 }
4343 
4344 static int hci_le_connect_cancel_sync(struct hci_dev *hdev,
4345 				      struct hci_conn *conn)
4346 {
4347 	if (test_bit(HCI_CONN_SCANNING, &conn->flags))
4348 		return 0;
4349 
4350 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_CREATE_CONN_CANCEL,
4351 				     6, &conn->dst, HCI_CMD_TIMEOUT);
4352 }
4353 
4354 static int hci_connect_cancel_sync(struct hci_dev *hdev, struct hci_conn *conn)
4355 {
4356 	if (conn->type == LE_LINK)
4357 		return hci_le_connect_cancel_sync(hdev, conn);
4358 
4359 	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
4360 		return 0;
4361 
4362 	return __hci_cmd_sync_status(hdev, HCI_OP_CREATE_CONN_CANCEL,
4363 				     6, &conn->dst, HCI_CMD_TIMEOUT);
4364 }
4365 
4366 static int hci_reject_sco_sync(struct hci_dev *hdev, struct hci_conn *conn,
4367 			       u8 reason)
4368 {
4369 	struct hci_cp_reject_sync_conn_req cp;
4370 
4371 	memset(&cp, 0, sizeof(cp));
4372 	bacpy(&cp.bdaddr, &conn->dst);
4373 	cp.reason = reason;
4374 
4375 	/* SCO rejection has its own limited set of
4376 	 * allowed error values (0x0D-0x0F).
4377 	 */
4378 	if (reason < 0x0d || reason > 0x0f)
4379 		cp.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
4380 
4381 	return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_SYNC_CONN_REQ,
4382 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4383 }
4384 
4385 static int hci_reject_conn_sync(struct hci_dev *hdev, struct hci_conn *conn,
4386 				u8 reason)
4387 {
4388 	struct hci_cp_reject_conn_req cp;
4389 
4390 	if (conn->type == SCO_LINK || conn->type == ESCO_LINK)
4391 		return hci_reject_sco_sync(hdev, conn, reason);
4392 
4393 	memset(&cp, 0, sizeof(cp));
4394 	bacpy(&cp.bdaddr, &conn->dst);
4395 	cp.reason = reason;
4396 
4397 	return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_CONN_REQ,
4398 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4399 }
4400 
4401 static int hci_abort_conn_sync(struct hci_dev *hdev, struct hci_conn *conn,
4402 			       u8 reason)
4403 {
4404 	switch (conn->state) {
4405 	case BT_CONNECTED:
4406 	case BT_CONFIG:
4407 		return hci_disconnect_sync(hdev, conn, reason);
4408 	case BT_CONNECT:
4409 		return hci_connect_cancel_sync(hdev, conn);
4410 	case BT_CONNECT2:
4411 		return hci_reject_conn_sync(hdev, conn, reason);
4412 	default:
4413 		conn->state = BT_CLOSED;
4414 		break;
4415 	}
4416 
4417 	return 0;
4418 }
4419 
4420 static int hci_disconnect_all_sync(struct hci_dev *hdev, u8 reason)
4421 {
4422 	struct hci_conn *conn, *tmp;
4423 	int err;
4424 
4425 	list_for_each_entry_safe(conn, tmp, &hdev->conn_hash.list, list) {
4426 		err = hci_abort_conn_sync(hdev, conn, reason);
4427 		if (err)
4428 			return err;
4429 	}
4430 
4431 	return 0;
4432 }
4433 
4434 /* This function perform power off HCI command sequence as follows:
4435  *
4436  * Clear Advertising
4437  * Stop Discovery
4438  * Disconnect all connections
4439  * hci_dev_close_sync
4440  */
4441 static int hci_power_off_sync(struct hci_dev *hdev)
4442 {
4443 	int err;
4444 
4445 	/* If controller is already down there is nothing to do */
4446 	if (!test_bit(HCI_UP, &hdev->flags))
4447 		return 0;
4448 
4449 	if (test_bit(HCI_ISCAN, &hdev->flags) ||
4450 	    test_bit(HCI_PSCAN, &hdev->flags)) {
4451 		err = hci_write_scan_enable_sync(hdev, 0x00);
4452 		if (err)
4453 			return err;
4454 	}
4455 
4456 	err = hci_clear_adv_sync(hdev, NULL, false);
4457 	if (err)
4458 		return err;
4459 
4460 	err = hci_stop_discovery_sync(hdev);
4461 	if (err)
4462 		return err;
4463 
4464 	/* Terminated due to Power Off */
4465 	err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF);
4466 	if (err)
4467 		return err;
4468 
4469 	return hci_dev_close_sync(hdev);
4470 }
4471 
4472 int hci_set_powered_sync(struct hci_dev *hdev, u8 val)
4473 {
4474 	if (val)
4475 		return hci_power_on_sync(hdev);
4476 
4477 	return hci_power_off_sync(hdev);
4478 }
4479 
4480 static int hci_write_iac_sync(struct hci_dev *hdev)
4481 {
4482 	struct hci_cp_write_current_iac_lap cp;
4483 
4484 	if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
4485 		return 0;
4486 
4487 	memset(&cp, 0, sizeof(cp));
4488 
4489 	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
4490 		/* Limited discoverable mode */
4491 		cp.num_iac = min_t(u8, hdev->num_iac, 2);
4492 		cp.iac_lap[0] = 0x00;	/* LIAC */
4493 		cp.iac_lap[1] = 0x8b;
4494 		cp.iac_lap[2] = 0x9e;
4495 		cp.iac_lap[3] = 0x33;	/* GIAC */
4496 		cp.iac_lap[4] = 0x8b;
4497 		cp.iac_lap[5] = 0x9e;
4498 	} else {
4499 		/* General discoverable mode */
4500 		cp.num_iac = 1;
4501 		cp.iac_lap[0] = 0x33;	/* GIAC */
4502 		cp.iac_lap[1] = 0x8b;
4503 		cp.iac_lap[2] = 0x9e;
4504 	}
4505 
4506 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CURRENT_IAC_LAP,
4507 				     (cp.num_iac * 3) + 1, &cp,
4508 				     HCI_CMD_TIMEOUT);
4509 }
4510 
4511 int hci_update_discoverable_sync(struct hci_dev *hdev)
4512 {
4513 	int err = 0;
4514 
4515 	if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
4516 		err = hci_write_iac_sync(hdev);
4517 		if (err)
4518 			return err;
4519 
4520 		err = hci_update_scan_sync(hdev);
4521 		if (err)
4522 			return err;
4523 
4524 		err = hci_update_class_sync(hdev);
4525 		if (err)
4526 			return err;
4527 	}
4528 
4529 	/* Advertising instances don't use the global discoverable setting, so
4530 	 * only update AD if advertising was enabled using Set Advertising.
4531 	 */
4532 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
4533 		err = hci_update_adv_data_sync(hdev, 0x00);
4534 		if (err)
4535 			return err;
4536 
4537 		/* Discoverable mode affects the local advertising
4538 		 * address in limited privacy mode.
4539 		 */
4540 		if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) {
4541 			if (ext_adv_capable(hdev))
4542 				err = hci_start_ext_adv_sync(hdev, 0x00);
4543 			else
4544 				err = hci_enable_advertising_sync(hdev);
4545 		}
4546 	}
4547 
4548 	return err;
4549 }
4550 
4551 static int update_discoverable_sync(struct hci_dev *hdev, void *data)
4552 {
4553 	return hci_update_discoverable_sync(hdev);
4554 }
4555 
4556 int hci_update_discoverable(struct hci_dev *hdev)
4557 {
4558 	/* Only queue if it would have any effect */
4559 	if (hdev_is_powered(hdev) &&
4560 	    hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
4561 	    hci_dev_test_flag(hdev, HCI_DISCOVERABLE) &&
4562 	    hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
4563 		return hci_cmd_sync_queue(hdev, update_discoverable_sync, NULL,
4564 					  NULL);
4565 
4566 	return 0;
4567 }
4568 
4569 int hci_update_connectable_sync(struct hci_dev *hdev)
4570 {
4571 	int err;
4572 
4573 	err = hci_update_scan_sync(hdev);
4574 	if (err)
4575 		return err;
4576 
4577 	/* If BR/EDR is not enabled and we disable advertising as a
4578 	 * by-product of disabling connectable, we need to update the
4579 	 * advertising flags.
4580 	 */
4581 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
4582 		err = hci_update_adv_data_sync(hdev, hdev->cur_adv_instance);
4583 
4584 	/* Update the advertising parameters if necessary */
4585 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
4586 	    !list_empty(&hdev->adv_instances)) {
4587 		if (ext_adv_capable(hdev))
4588 			err = hci_start_ext_adv_sync(hdev,
4589 						     hdev->cur_adv_instance);
4590 		else
4591 			err = hci_enable_advertising_sync(hdev);
4592 
4593 		if (err)
4594 			return err;
4595 	}
4596 
4597 	return hci_update_passive_scan_sync(hdev);
4598 }
4599 
4600 static int hci_inquiry_sync(struct hci_dev *hdev, u8 length)
4601 {
4602 	const u8 giac[3] = { 0x33, 0x8b, 0x9e };
4603 	const u8 liac[3] = { 0x00, 0x8b, 0x9e };
4604 	struct hci_cp_inquiry cp;
4605 
4606 	bt_dev_dbg(hdev, "");
4607 
4608 	if (hci_dev_test_flag(hdev, HCI_INQUIRY))
4609 		return 0;
4610 
4611 	hci_dev_lock(hdev);
4612 	hci_inquiry_cache_flush(hdev);
4613 	hci_dev_unlock(hdev);
4614 
4615 	memset(&cp, 0, sizeof(cp));
4616 
4617 	if (hdev->discovery.limited)
4618 		memcpy(&cp.lap, liac, sizeof(cp.lap));
4619 	else
4620 		memcpy(&cp.lap, giac, sizeof(cp.lap));
4621 
4622 	cp.length = length;
4623 
4624 	return __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY,
4625 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4626 }
4627 
4628 static int hci_active_scan_sync(struct hci_dev *hdev, uint16_t interval)
4629 {
4630 	u8 own_addr_type;
4631 	/* Accept list is not used for discovery */
4632 	u8 filter_policy = 0x00;
4633 	/* Default is to enable duplicates filter */
4634 	u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
4635 	int err;
4636 
4637 	bt_dev_dbg(hdev, "");
4638 
4639 	/* If controller is scanning, it means the passive scanning is
4640 	 * running. Thus, we should temporarily stop it in order to set the
4641 	 * discovery scanning parameters.
4642 	 */
4643 	err = hci_scan_disable_sync(hdev);
4644 	if (err) {
4645 		bt_dev_err(hdev, "Unable to disable scanning: %d", err);
4646 		return err;
4647 	}
4648 
4649 	cancel_interleave_scan(hdev);
4650 
4651 	/* Pause advertising since active scanning disables address resolution
4652 	 * which advertising depend on in order to generate its RPAs.
4653 	 */
4654 	if (use_ll_privacy(hdev)) {
4655 		err = hci_pause_advertising_sync(hdev);
4656 		if (err) {
4657 			bt_dev_err(hdev, "pause advertising failed: %d", err);
4658 			goto failed;
4659 		}
4660 	}
4661 
4662 	/* Disable address resolution while doing active scanning since the
4663 	 * accept list shall not be used and all reports shall reach the host
4664 	 * anyway.
4665 	 */
4666 	err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00);
4667 	if (err) {
4668 		bt_dev_err(hdev, "Unable to disable Address Resolution: %d",
4669 			   err);
4670 		goto failed;
4671 	}
4672 
4673 	/* All active scans will be done with either a resolvable private
4674 	 * address (when privacy feature has been enabled) or non-resolvable
4675 	 * private address.
4676 	 */
4677 	err = hci_update_random_address_sync(hdev, true, scan_use_rpa(hdev),
4678 					     &own_addr_type);
4679 	if (err < 0)
4680 		own_addr_type = ADDR_LE_DEV_PUBLIC;
4681 
4682 	if (hci_is_adv_monitoring(hdev)) {
4683 		/* Duplicate filter should be disabled when some advertisement
4684 		 * monitor is activated, otherwise AdvMon can only receive one
4685 		 * advertisement for one peer(*) during active scanning, and
4686 		 * might report loss to these peers.
4687 		 *
4688 		 * Note that different controllers have different meanings of
4689 		 * |duplicate|. Some of them consider packets with the same
4690 		 * address as duplicate, and others consider packets with the
4691 		 * same address and the same RSSI as duplicate. Although in the
4692 		 * latter case we don't need to disable duplicate filter, but
4693 		 * it is common to have active scanning for a short period of
4694 		 * time, the power impact should be neglectable.
4695 		 */
4696 		filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
4697 	}
4698 
4699 	err = hci_start_scan_sync(hdev, LE_SCAN_ACTIVE, interval,
4700 				  hdev->le_scan_window_discovery,
4701 				  own_addr_type, filter_policy, filter_dup);
4702 	if (!err)
4703 		return err;
4704 
4705 failed:
4706 	/* Resume advertising if it was paused */
4707 	if (use_ll_privacy(hdev))
4708 		hci_resume_advertising_sync(hdev);
4709 
4710 	/* Resume passive scanning */
4711 	hci_update_passive_scan_sync(hdev);
4712 	return err;
4713 }
4714 
4715 static int hci_start_interleaved_discovery_sync(struct hci_dev *hdev)
4716 {
4717 	int err;
4718 
4719 	bt_dev_dbg(hdev, "");
4720 
4721 	err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery * 2);
4722 	if (err)
4723 		return err;
4724 
4725 	return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN);
4726 }
4727 
4728 int hci_start_discovery_sync(struct hci_dev *hdev)
4729 {
4730 	unsigned long timeout;
4731 	int err;
4732 
4733 	bt_dev_dbg(hdev, "type %u", hdev->discovery.type);
4734 
4735 	switch (hdev->discovery.type) {
4736 	case DISCOV_TYPE_BREDR:
4737 		return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN);
4738 	case DISCOV_TYPE_INTERLEAVED:
4739 		/* When running simultaneous discovery, the LE scanning time
4740 		 * should occupy the whole discovery time sine BR/EDR inquiry
4741 		 * and LE scanning are scheduled by the controller.
4742 		 *
4743 		 * For interleaving discovery in comparison, BR/EDR inquiry
4744 		 * and LE scanning are done sequentially with separate
4745 		 * timeouts.
4746 		 */
4747 		if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
4748 			     &hdev->quirks)) {
4749 			timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
4750 			/* During simultaneous discovery, we double LE scan
4751 			 * interval. We must leave some time for the controller
4752 			 * to do BR/EDR inquiry.
4753 			 */
4754 			err = hci_start_interleaved_discovery_sync(hdev);
4755 			break;
4756 		}
4757 
4758 		timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
4759 		err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery);
4760 		break;
4761 	case DISCOV_TYPE_LE:
4762 		timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
4763 		err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery);
4764 		break;
4765 	default:
4766 		return -EINVAL;
4767 	}
4768 
4769 	if (err)
4770 		return err;
4771 
4772 	bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout));
4773 
4774 	/* When service discovery is used and the controller has a
4775 	 * strict duplicate filter, it is important to remember the
4776 	 * start and duration of the scan. This is required for
4777 	 * restarting scanning during the discovery phase.
4778 	 */
4779 	if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
4780 	    hdev->discovery.result_filtering) {
4781 		hdev->discovery.scan_start = jiffies;
4782 		hdev->discovery.scan_duration = timeout;
4783 	}
4784 
4785 	queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
4786 			   timeout);
4787 	return 0;
4788 }
4789 
4790 static void hci_suspend_monitor_sync(struct hci_dev *hdev)
4791 {
4792 	switch (hci_get_adv_monitor_offload_ext(hdev)) {
4793 	case HCI_ADV_MONITOR_EXT_MSFT:
4794 		msft_suspend_sync(hdev);
4795 		break;
4796 	default:
4797 		return;
4798 	}
4799 }
4800 
4801 /* This function disables discovery and mark it as paused */
4802 static int hci_pause_discovery_sync(struct hci_dev *hdev)
4803 {
4804 	int old_state = hdev->discovery.state;
4805 	int err;
4806 
4807 	/* If discovery already stopped/stopping/paused there nothing to do */
4808 	if (old_state == DISCOVERY_STOPPED || old_state == DISCOVERY_STOPPING ||
4809 	    hdev->discovery_paused)
4810 		return 0;
4811 
4812 	hci_discovery_set_state(hdev, DISCOVERY_STOPPING);
4813 	err = hci_stop_discovery_sync(hdev);
4814 	if (err)
4815 		return err;
4816 
4817 	hdev->discovery_paused = true;
4818 	hdev->discovery_old_state = old_state;
4819 	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
4820 
4821 	return 0;
4822 }
4823 
4824 static int hci_update_event_filter_sync(struct hci_dev *hdev)
4825 {
4826 	struct bdaddr_list_with_flags *b;
4827 	u8 scan = SCAN_DISABLED;
4828 	bool scanning = test_bit(HCI_PSCAN, &hdev->flags);
4829 	int err;
4830 
4831 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
4832 		return 0;
4833 
4834 	/* Always clear event filter when starting */
4835 	hci_clear_event_filter_sync(hdev);
4836 
4837 	list_for_each_entry(b, &hdev->accept_list, list) {
4838 		if (!test_bit(HCI_CONN_FLAG_REMOTE_WAKEUP, b->flags))
4839 			continue;
4840 
4841 		bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr);
4842 
4843 		err =  hci_set_event_filter_sync(hdev, HCI_FLT_CONN_SETUP,
4844 						 HCI_CONN_SETUP_ALLOW_BDADDR,
4845 						 &b->bdaddr,
4846 						 HCI_CONN_SETUP_AUTO_ON);
4847 		if (err)
4848 			bt_dev_dbg(hdev, "Failed to set event filter for %pMR",
4849 				   &b->bdaddr);
4850 		else
4851 			scan = SCAN_PAGE;
4852 	}
4853 
4854 	if (scan && !scanning)
4855 		hci_write_scan_enable_sync(hdev, scan);
4856 	else if (!scan && scanning)
4857 		hci_write_scan_enable_sync(hdev, scan);
4858 
4859 	return 0;
4860 }
4861 
4862 /* This function performs the HCI suspend procedures in the follow order:
4863  *
4864  * Pause discovery (active scanning/inquiry)
4865  * Pause Directed Advertising/Advertising
4866  * Disconnect all connections
4867  * Set suspend_status to BT_SUSPEND_DISCONNECT if hdev cannot wakeup
4868  * otherwise:
4869  * Update event mask (only set events that are allowed to wake up the host)
4870  * Update event filter (with devices marked with HCI_CONN_FLAG_REMOTE_WAKEUP)
4871  * Update passive scanning (lower duty cycle)
4872  * Set suspend_status to BT_SUSPEND_CONFIGURE_WAKE
4873  */
4874 int hci_suspend_sync(struct hci_dev *hdev)
4875 {
4876 	int err;
4877 
4878 	/* If marked as suspended there nothing to do */
4879 	if (hdev->suspended)
4880 		return 0;
4881 
4882 	/* Mark device as suspended */
4883 	hdev->suspended = true;
4884 
4885 	/* Pause discovery if not already stopped */
4886 	hci_pause_discovery_sync(hdev);
4887 
4888 	/* Pause other advertisements */
4889 	hci_pause_advertising_sync(hdev);
4890 
4891 	/* Disable page scan if enabled */
4892 	if (test_bit(HCI_PSCAN, &hdev->flags))
4893 		hci_write_scan_enable_sync(hdev, SCAN_DISABLED);
4894 
4895 	/* Suspend monitor filters */
4896 	hci_suspend_monitor_sync(hdev);
4897 
4898 	/* Prevent disconnects from causing scanning to be re-enabled */
4899 	hdev->scanning_paused = true;
4900 
4901 	/* Soft disconnect everything (power off) */
4902 	err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF);
4903 	if (err) {
4904 		/* Set state to BT_RUNNING so resume doesn't notify */
4905 		hdev->suspend_state = BT_RUNNING;
4906 		hci_resume_sync(hdev);
4907 		return err;
4908 	}
4909 
4910 	/* Only configure accept list if disconnect succeeded and wake
4911 	 * isn't being prevented.
4912 	 */
4913 	if (!hdev->wakeup || !hdev->wakeup(hdev)) {
4914 		hdev->suspend_state = BT_SUSPEND_DISCONNECT;
4915 		return 0;
4916 	}
4917 
4918 	/* Unpause to take care of updating scanning params */
4919 	hdev->scanning_paused = false;
4920 
4921 	/* Update event mask so only the allowed event can wakeup the host */
4922 	hci_set_event_mask_sync(hdev);
4923 
4924 	/* Enable event filter for paired devices */
4925 	hci_update_event_filter_sync(hdev);
4926 
4927 	/* Update LE passive scan if enabled */
4928 	hci_update_passive_scan_sync(hdev);
4929 
4930 	/* Pause scan changes again. */
4931 	hdev->scanning_paused = true;
4932 
4933 	hdev->suspend_state = BT_SUSPEND_CONFIGURE_WAKE;
4934 
4935 	return 0;
4936 }
4937 
4938 /* This function resumes discovery */
4939 static int hci_resume_discovery_sync(struct hci_dev *hdev)
4940 {
4941 	int err;
4942 
4943 	/* If discovery not paused there nothing to do */
4944 	if (!hdev->discovery_paused)
4945 		return 0;
4946 
4947 	hdev->discovery_paused = false;
4948 
4949 	hci_discovery_set_state(hdev, DISCOVERY_STARTING);
4950 
4951 	err = hci_start_discovery_sync(hdev);
4952 
4953 	hci_discovery_set_state(hdev, err ? DISCOVERY_STOPPED :
4954 				DISCOVERY_FINDING);
4955 
4956 	return err;
4957 }
4958 
4959 static void hci_resume_monitor_sync(struct hci_dev *hdev)
4960 {
4961 	switch (hci_get_adv_monitor_offload_ext(hdev)) {
4962 	case HCI_ADV_MONITOR_EXT_MSFT:
4963 		msft_resume_sync(hdev);
4964 		break;
4965 	default:
4966 		return;
4967 	}
4968 }
4969 
4970 /* This function performs the HCI suspend procedures in the follow order:
4971  *
4972  * Restore event mask
4973  * Clear event filter
4974  * Update passive scanning (normal duty cycle)
4975  * Resume Directed Advertising/Advertising
4976  * Resume discovery (active scanning/inquiry)
4977  */
4978 int hci_resume_sync(struct hci_dev *hdev)
4979 {
4980 	/* If not marked as suspended there nothing to do */
4981 	if (!hdev->suspended)
4982 		return 0;
4983 
4984 	hdev->suspended = false;
4985 	hdev->scanning_paused = false;
4986 
4987 	/* Restore event mask */
4988 	hci_set_event_mask_sync(hdev);
4989 
4990 	/* Clear any event filters and restore scan state */
4991 	hci_clear_event_filter_sync(hdev);
4992 	hci_update_scan_sync(hdev);
4993 
4994 	/* Reset passive scanning to normal */
4995 	hci_update_passive_scan_sync(hdev);
4996 
4997 	/* Resume monitor filters */
4998 	hci_resume_monitor_sync(hdev);
4999 
5000 	/* Resume other advertisements */
5001 	hci_resume_advertising_sync(hdev);
5002 
5003 	/* Resume discovery */
5004 	hci_resume_discovery_sync(hdev);
5005 
5006 	return 0;
5007 }
5008 
5009 static bool conn_use_rpa(struct hci_conn *conn)
5010 {
5011 	struct hci_dev *hdev = conn->hdev;
5012 
5013 	return hci_dev_test_flag(hdev, HCI_PRIVACY);
5014 }
5015 
5016 static int hci_le_ext_directed_advertising_sync(struct hci_dev *hdev,
5017 						struct hci_conn *conn)
5018 {
5019 	struct hci_cp_le_set_ext_adv_params cp;
5020 	int err;
5021 	bdaddr_t random_addr;
5022 	u8 own_addr_type;
5023 
5024 	err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
5025 					     &own_addr_type);
5026 	if (err)
5027 		return err;
5028 
5029 	/* Set require_privacy to false so that the remote device has a
5030 	 * chance of identifying us.
5031 	 */
5032 	err = hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL,
5033 				     &own_addr_type, &random_addr);
5034 	if (err)
5035 		return err;
5036 
5037 	memset(&cp, 0, sizeof(cp));
5038 
5039 	cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND);
5040 	cp.own_addr_type = own_addr_type;
5041 	cp.channel_map = hdev->le_adv_channel_map;
5042 	cp.tx_power = HCI_TX_POWER_INVALID;
5043 	cp.primary_phy = HCI_ADV_PHY_1M;
5044 	cp.secondary_phy = HCI_ADV_PHY_1M;
5045 	cp.handle = 0x00; /* Use instance 0 for directed adv */
5046 	cp.own_addr_type = own_addr_type;
5047 	cp.peer_addr_type = conn->dst_type;
5048 	bacpy(&cp.peer_addr, &conn->dst);
5049 
5050 	/* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for
5051 	 * advertising_event_property LE_LEGACY_ADV_DIRECT_IND
5052 	 * does not supports advertising data when the advertising set already
5053 	 * contains some, the controller shall return erroc code 'Invalid
5054 	 * HCI Command Parameters(0x12).
5055 	 * So it is required to remove adv set for handle 0x00. since we use
5056 	 * instance 0 for directed adv.
5057 	 */
5058 	err = hci_remove_ext_adv_instance_sync(hdev, cp.handle, NULL);
5059 	if (err)
5060 		return err;
5061 
5062 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS,
5063 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5064 	if (err)
5065 		return err;
5066 
5067 	/* Check if random address need to be updated */
5068 	if (own_addr_type == ADDR_LE_DEV_RANDOM &&
5069 	    bacmp(&random_addr, BDADDR_ANY) &&
5070 	    bacmp(&random_addr, &hdev->random_addr)) {
5071 		err = hci_set_adv_set_random_addr_sync(hdev, 0x00,
5072 						       &random_addr);
5073 		if (err)
5074 			return err;
5075 	}
5076 
5077 	return hci_enable_ext_advertising_sync(hdev, 0x00);
5078 }
5079 
5080 static int hci_le_directed_advertising_sync(struct hci_dev *hdev,
5081 					    struct hci_conn *conn)
5082 {
5083 	struct hci_cp_le_set_adv_param cp;
5084 	u8 status;
5085 	u8 own_addr_type;
5086 	u8 enable;
5087 
5088 	if (ext_adv_capable(hdev))
5089 		return hci_le_ext_directed_advertising_sync(hdev, conn);
5090 
5091 	/* Clear the HCI_LE_ADV bit temporarily so that the
5092 	 * hci_update_random_address knows that it's safe to go ahead
5093 	 * and write a new random address. The flag will be set back on
5094 	 * as soon as the SET_ADV_ENABLE HCI command completes.
5095 	 */
5096 	hci_dev_clear_flag(hdev, HCI_LE_ADV);
5097 
5098 	/* Set require_privacy to false so that the remote device has a
5099 	 * chance of identifying us.
5100 	 */
5101 	status = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
5102 						&own_addr_type);
5103 	if (status)
5104 		return status;
5105 
5106 	memset(&cp, 0, sizeof(cp));
5107 
5108 	/* Some controllers might reject command if intervals are not
5109 	 * within range for undirected advertising.
5110 	 * BCM20702A0 is known to be affected by this.
5111 	 */
5112 	cp.min_interval = cpu_to_le16(0x0020);
5113 	cp.max_interval = cpu_to_le16(0x0020);
5114 
5115 	cp.type = LE_ADV_DIRECT_IND;
5116 	cp.own_address_type = own_addr_type;
5117 	cp.direct_addr_type = conn->dst_type;
5118 	bacpy(&cp.direct_addr, &conn->dst);
5119 	cp.channel_map = hdev->le_adv_channel_map;
5120 
5121 	status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM,
5122 				       sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5123 	if (status)
5124 		return status;
5125 
5126 	enable = 0x01;
5127 
5128 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
5129 				     sizeof(enable), &enable, HCI_CMD_TIMEOUT);
5130 }
5131 
5132 static void set_ext_conn_params(struct hci_conn *conn,
5133 				struct hci_cp_le_ext_conn_param *p)
5134 {
5135 	struct hci_dev *hdev = conn->hdev;
5136 
5137 	memset(p, 0, sizeof(*p));
5138 
5139 	p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
5140 	p->scan_window = cpu_to_le16(hdev->le_scan_window_connect);
5141 	p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
5142 	p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
5143 	p->conn_latency = cpu_to_le16(conn->le_conn_latency);
5144 	p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
5145 	p->min_ce_len = cpu_to_le16(0x0000);
5146 	p->max_ce_len = cpu_to_le16(0x0000);
5147 }
5148 
5149 static int hci_le_ext_create_conn_sync(struct hci_dev *hdev,
5150 				       struct hci_conn *conn, u8 own_addr_type)
5151 {
5152 	struct hci_cp_le_ext_create_conn *cp;
5153 	struct hci_cp_le_ext_conn_param *p;
5154 	u8 data[sizeof(*cp) + sizeof(*p) * 3];
5155 	u32 plen;
5156 
5157 	cp = (void *)data;
5158 	p = (void *)cp->data;
5159 
5160 	memset(cp, 0, sizeof(*cp));
5161 
5162 	bacpy(&cp->peer_addr, &conn->dst);
5163 	cp->peer_addr_type = conn->dst_type;
5164 	cp->own_addr_type = own_addr_type;
5165 
5166 	plen = sizeof(*cp);
5167 
5168 	if (scan_1m(hdev)) {
5169 		cp->phys |= LE_SCAN_PHY_1M;
5170 		set_ext_conn_params(conn, p);
5171 
5172 		p++;
5173 		plen += sizeof(*p);
5174 	}
5175 
5176 	if (scan_2m(hdev)) {
5177 		cp->phys |= LE_SCAN_PHY_2M;
5178 		set_ext_conn_params(conn, p);
5179 
5180 		p++;
5181 		plen += sizeof(*p);
5182 	}
5183 
5184 	if (scan_coded(hdev)) {
5185 		cp->phys |= LE_SCAN_PHY_CODED;
5186 		set_ext_conn_params(conn, p);
5187 
5188 		plen += sizeof(*p);
5189 	}
5190 
5191 	return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_EXT_CREATE_CONN,
5192 					plen, data,
5193 					HCI_EV_LE_ENHANCED_CONN_COMPLETE,
5194 					conn->conn_timeout, NULL);
5195 }
5196 
5197 int hci_le_create_conn_sync(struct hci_dev *hdev, struct hci_conn *conn)
5198 {
5199 	struct hci_cp_le_create_conn cp;
5200 	struct hci_conn_params *params;
5201 	u8 own_addr_type;
5202 	int err;
5203 
5204 	/* If requested to connect as peripheral use directed advertising */
5205 	if (conn->role == HCI_ROLE_SLAVE) {
5206 		/* If we're active scanning and simultaneous roles is not
5207 		 * enabled simply reject the attempt.
5208 		 */
5209 		if (hci_dev_test_flag(hdev, HCI_LE_SCAN) &&
5210 		    hdev->le_scan_type == LE_SCAN_ACTIVE &&
5211 		    !hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) {
5212 			hci_conn_del(conn);
5213 			return -EBUSY;
5214 		}
5215 
5216 		/* Pause advertising while doing directed advertising. */
5217 		hci_pause_advertising_sync(hdev);
5218 
5219 		err = hci_le_directed_advertising_sync(hdev, conn);
5220 		goto done;
5221 	}
5222 
5223 	/* Disable advertising if simultaneous roles is not in use. */
5224 	if (!hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES))
5225 		hci_pause_advertising_sync(hdev);
5226 
5227 	params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
5228 	if (params) {
5229 		conn->le_conn_min_interval = params->conn_min_interval;
5230 		conn->le_conn_max_interval = params->conn_max_interval;
5231 		conn->le_conn_latency = params->conn_latency;
5232 		conn->le_supv_timeout = params->supervision_timeout;
5233 	} else {
5234 		conn->le_conn_min_interval = hdev->le_conn_min_interval;
5235 		conn->le_conn_max_interval = hdev->le_conn_max_interval;
5236 		conn->le_conn_latency = hdev->le_conn_latency;
5237 		conn->le_supv_timeout = hdev->le_supv_timeout;
5238 	}
5239 
5240 	/* If controller is scanning, we stop it since some controllers are
5241 	 * not able to scan and connect at the same time. Also set the
5242 	 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete
5243 	 * handler for scan disabling knows to set the correct discovery
5244 	 * state.
5245 	 */
5246 	if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
5247 		hci_scan_disable_sync(hdev);
5248 		hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED);
5249 	}
5250 
5251 	/* Update random address, but set require_privacy to false so
5252 	 * that we never connect with an non-resolvable address.
5253 	 */
5254 	err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
5255 					     &own_addr_type);
5256 	if (err)
5257 		goto done;
5258 
5259 	if (use_ext_conn(hdev)) {
5260 		err = hci_le_ext_create_conn_sync(hdev, conn, own_addr_type);
5261 		goto done;
5262 	}
5263 
5264 	memset(&cp, 0, sizeof(cp));
5265 
5266 	cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
5267 	cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect);
5268 
5269 	bacpy(&cp.peer_addr, &conn->dst);
5270 	cp.peer_addr_type = conn->dst_type;
5271 	cp.own_address_type = own_addr_type;
5272 	cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
5273 	cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
5274 	cp.conn_latency = cpu_to_le16(conn->le_conn_latency);
5275 	cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
5276 	cp.min_ce_len = cpu_to_le16(0x0000);
5277 	cp.max_ce_len = cpu_to_le16(0x0000);
5278 
5279 	/* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E page 2261:
5280 	 *
5281 	 * If this event is unmasked and the HCI_LE_Connection_Complete event
5282 	 * is unmasked, only the HCI_LE_Enhanced_Connection_Complete event is
5283 	 * sent when a new connection has been created.
5284 	 */
5285 	err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CONN,
5286 				       sizeof(cp), &cp,
5287 				       use_enhanced_conn_complete(hdev) ?
5288 				       HCI_EV_LE_ENHANCED_CONN_COMPLETE :
5289 				       HCI_EV_LE_CONN_COMPLETE,
5290 				       conn->conn_timeout, NULL);
5291 
5292 done:
5293 	/* Re-enable advertising after the connection attempt is finished. */
5294 	hci_resume_advertising_sync(hdev);
5295 	return err;
5296 }
5297