1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * BlueZ - Bluetooth protocol stack for Linux 4 * 5 * Copyright (C) 2021 Intel Corporation 6 * Copyright 2023 NXP 7 */ 8 9 #include <linux/property.h> 10 11 #include <net/bluetooth/bluetooth.h> 12 #include <net/bluetooth/hci_core.h> 13 #include <net/bluetooth/mgmt.h> 14 15 #include "hci_codec.h" 16 #include "hci_debugfs.h" 17 #include "smp.h" 18 #include "eir.h" 19 #include "msft.h" 20 #include "aosp.h" 21 #include "leds.h" 22 23 static void hci_cmd_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode, 24 struct sk_buff *skb) 25 { 26 bt_dev_dbg(hdev, "result 0x%2.2x", result); 27 28 if (hdev->req_status != HCI_REQ_PEND) 29 return; 30 31 hdev->req_result = result; 32 hdev->req_status = HCI_REQ_DONE; 33 34 /* Free the request command so it is not used as response */ 35 kfree_skb(hdev->req_skb); 36 hdev->req_skb = NULL; 37 38 if (skb) { 39 struct sock *sk = hci_skb_sk(skb); 40 41 /* Drop sk reference if set */ 42 if (sk) 43 sock_put(sk); 44 45 hdev->req_rsp = skb_get(skb); 46 } 47 48 wake_up_interruptible(&hdev->req_wait_q); 49 } 50 51 struct sk_buff *hci_cmd_sync_alloc(struct hci_dev *hdev, u16 opcode, u32 plen, 52 const void *param, struct sock *sk) 53 { 54 int len = HCI_COMMAND_HDR_SIZE + plen; 55 struct hci_command_hdr *hdr; 56 struct sk_buff *skb; 57 58 skb = bt_skb_alloc(len, GFP_ATOMIC); 59 if (!skb) 60 return NULL; 61 62 hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE); 63 hdr->opcode = cpu_to_le16(opcode); 64 hdr->plen = plen; 65 66 if (plen) 67 skb_put_data(skb, param, plen); 68 69 bt_dev_dbg(hdev, "skb len %d", skb->len); 70 71 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; 72 hci_skb_opcode(skb) = opcode; 73 74 /* Grab a reference if command needs to be associated with a sock (e.g. 75 * likely mgmt socket that initiated the command). 76 */ 77 if (sk) { 78 hci_skb_sk(skb) = sk; 79 sock_hold(sk); 80 } 81 82 return skb; 83 } 84 85 static void hci_cmd_sync_add(struct hci_request *req, u16 opcode, u32 plen, 86 const void *param, u8 event, struct sock *sk) 87 { 88 struct hci_dev *hdev = req->hdev; 89 struct sk_buff *skb; 90 91 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); 92 93 /* If an error occurred during request building, there is no point in 94 * queueing the HCI command. We can simply return. 95 */ 96 if (req->err) 97 return; 98 99 skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, sk); 100 if (!skb) { 101 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)", 102 opcode); 103 req->err = -ENOMEM; 104 return; 105 } 106 107 if (skb_queue_empty(&req->cmd_q)) 108 bt_cb(skb)->hci.req_flags |= HCI_REQ_START; 109 110 hci_skb_event(skb) = event; 111 112 skb_queue_tail(&req->cmd_q, skb); 113 } 114 115 static int hci_req_sync_run(struct hci_request *req) 116 { 117 struct hci_dev *hdev = req->hdev; 118 struct sk_buff *skb; 119 unsigned long flags; 120 121 bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q)); 122 123 /* If an error occurred during request building, remove all HCI 124 * commands queued on the HCI request queue. 125 */ 126 if (req->err) { 127 skb_queue_purge(&req->cmd_q); 128 return req->err; 129 } 130 131 /* Do not allow empty requests */ 132 if (skb_queue_empty(&req->cmd_q)) 133 return -ENODATA; 134 135 skb = skb_peek_tail(&req->cmd_q); 136 bt_cb(skb)->hci.req_complete_skb = hci_cmd_sync_complete; 137 bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB; 138 139 spin_lock_irqsave(&hdev->cmd_q.lock, flags); 140 skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q); 141 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); 142 143 queue_work(hdev->workqueue, &hdev->cmd_work); 144 145 return 0; 146 } 147 148 static void hci_request_init(struct hci_request *req, struct hci_dev *hdev) 149 { 150 skb_queue_head_init(&req->cmd_q); 151 req->hdev = hdev; 152 req->err = 0; 153 } 154 155 /* This function requires the caller holds hdev->req_lock. */ 156 struct sk_buff *__hci_cmd_sync_sk(struct hci_dev *hdev, u16 opcode, u32 plen, 157 const void *param, u8 event, u32 timeout, 158 struct sock *sk) 159 { 160 struct hci_request req; 161 struct sk_buff *skb; 162 int err = 0; 163 164 bt_dev_dbg(hdev, "Opcode 0x%4.4x", opcode); 165 166 hci_request_init(&req, hdev); 167 168 hci_cmd_sync_add(&req, opcode, plen, param, event, sk); 169 170 hdev->req_status = HCI_REQ_PEND; 171 172 err = hci_req_sync_run(&req); 173 if (err < 0) 174 return ERR_PTR(err); 175 176 err = wait_event_interruptible_timeout(hdev->req_wait_q, 177 hdev->req_status != HCI_REQ_PEND, 178 timeout); 179 180 if (err == -ERESTARTSYS) 181 return ERR_PTR(-EINTR); 182 183 switch (hdev->req_status) { 184 case HCI_REQ_DONE: 185 err = -bt_to_errno(hdev->req_result); 186 break; 187 188 case HCI_REQ_CANCELED: 189 err = -hdev->req_result; 190 break; 191 192 default: 193 err = -ETIMEDOUT; 194 break; 195 } 196 197 hdev->req_status = 0; 198 hdev->req_result = 0; 199 skb = hdev->req_rsp; 200 hdev->req_rsp = NULL; 201 202 bt_dev_dbg(hdev, "end: err %d", err); 203 204 if (err < 0) { 205 kfree_skb(skb); 206 return ERR_PTR(err); 207 } 208 209 /* If command return a status event skb will be set to NULL as there are 210 * no parameters. 211 */ 212 if (!skb) 213 return ERR_PTR(-ENODATA); 214 215 return skb; 216 } 217 EXPORT_SYMBOL(__hci_cmd_sync_sk); 218 219 /* This function requires the caller holds hdev->req_lock. */ 220 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 221 const void *param, u32 timeout) 222 { 223 return __hci_cmd_sync_sk(hdev, opcode, plen, param, 0, timeout, NULL); 224 } 225 EXPORT_SYMBOL(__hci_cmd_sync); 226 227 /* Send HCI command and wait for command complete event */ 228 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 229 const void *param, u32 timeout) 230 { 231 struct sk_buff *skb; 232 233 if (!test_bit(HCI_UP, &hdev->flags)) 234 return ERR_PTR(-ENETDOWN); 235 236 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); 237 238 hci_req_sync_lock(hdev); 239 skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout); 240 hci_req_sync_unlock(hdev); 241 242 return skb; 243 } 244 EXPORT_SYMBOL(hci_cmd_sync); 245 246 /* This function requires the caller holds hdev->req_lock. */ 247 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen, 248 const void *param, u8 event, u32 timeout) 249 { 250 return __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, 251 NULL); 252 } 253 EXPORT_SYMBOL(__hci_cmd_sync_ev); 254 255 /* This function requires the caller holds hdev->req_lock. */ 256 int __hci_cmd_sync_status_sk(struct hci_dev *hdev, u16 opcode, u32 plen, 257 const void *param, u8 event, u32 timeout, 258 struct sock *sk) 259 { 260 struct sk_buff *skb; 261 u8 status; 262 263 skb = __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, sk); 264 265 /* If command return a status event, skb will be set to -ENODATA */ 266 if (skb == ERR_PTR(-ENODATA)) 267 return 0; 268 269 if (IS_ERR(skb)) { 270 if (!event) 271 bt_dev_err(hdev, "Opcode 0x%4.4x failed: %ld", opcode, 272 PTR_ERR(skb)); 273 return PTR_ERR(skb); 274 } 275 276 status = skb->data[0]; 277 278 kfree_skb(skb); 279 280 return status; 281 } 282 EXPORT_SYMBOL(__hci_cmd_sync_status_sk); 283 284 int __hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen, 285 const void *param, u32 timeout) 286 { 287 return __hci_cmd_sync_status_sk(hdev, opcode, plen, param, 0, timeout, 288 NULL); 289 } 290 EXPORT_SYMBOL(__hci_cmd_sync_status); 291 292 int hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen, 293 const void *param, u32 timeout) 294 { 295 int err; 296 297 hci_req_sync_lock(hdev); 298 err = __hci_cmd_sync_status(hdev, opcode, plen, param, timeout); 299 hci_req_sync_unlock(hdev); 300 301 return err; 302 } 303 EXPORT_SYMBOL(hci_cmd_sync_status); 304 305 static void hci_cmd_sync_work(struct work_struct *work) 306 { 307 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_work); 308 309 bt_dev_dbg(hdev, ""); 310 311 /* Dequeue all entries and run them */ 312 while (1) { 313 struct hci_cmd_sync_work_entry *entry; 314 315 mutex_lock(&hdev->cmd_sync_work_lock); 316 entry = list_first_entry_or_null(&hdev->cmd_sync_work_list, 317 struct hci_cmd_sync_work_entry, 318 list); 319 if (entry) 320 list_del(&entry->list); 321 mutex_unlock(&hdev->cmd_sync_work_lock); 322 323 if (!entry) 324 break; 325 326 bt_dev_dbg(hdev, "entry %p", entry); 327 328 if (entry->func) { 329 int err; 330 331 hci_req_sync_lock(hdev); 332 err = entry->func(hdev, entry->data); 333 if (entry->destroy) 334 entry->destroy(hdev, entry->data, err); 335 hci_req_sync_unlock(hdev); 336 } 337 338 kfree(entry); 339 } 340 } 341 342 static void hci_cmd_sync_cancel_work(struct work_struct *work) 343 { 344 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_cancel_work); 345 346 cancel_delayed_work_sync(&hdev->cmd_timer); 347 cancel_delayed_work_sync(&hdev->ncmd_timer); 348 atomic_set(&hdev->cmd_cnt, 1); 349 350 wake_up_interruptible(&hdev->req_wait_q); 351 } 352 353 static int hci_scan_disable_sync(struct hci_dev *hdev); 354 static int scan_disable_sync(struct hci_dev *hdev, void *data) 355 { 356 return hci_scan_disable_sync(hdev); 357 } 358 359 static int interleaved_inquiry_sync(struct hci_dev *hdev, void *data) 360 { 361 return hci_inquiry_sync(hdev, DISCOV_INTERLEAVED_INQUIRY_LEN, 0); 362 } 363 364 static void le_scan_disable(struct work_struct *work) 365 { 366 struct hci_dev *hdev = container_of(work, struct hci_dev, 367 le_scan_disable.work); 368 int status; 369 370 bt_dev_dbg(hdev, ""); 371 hci_dev_lock(hdev); 372 373 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 374 goto _return; 375 376 status = hci_cmd_sync_queue(hdev, scan_disable_sync, NULL, NULL); 377 if (status) { 378 bt_dev_err(hdev, "failed to disable LE scan: %d", status); 379 goto _return; 380 } 381 382 /* If we were running LE only scan, change discovery state. If 383 * we were running both LE and BR/EDR inquiry simultaneously, 384 * and BR/EDR inquiry is already finished, stop discovery, 385 * otherwise BR/EDR inquiry will stop discovery when finished. 386 * If we will resolve remote device name, do not change 387 * discovery state. 388 */ 389 390 if (hdev->discovery.type == DISCOV_TYPE_LE) 391 goto discov_stopped; 392 393 if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED) 394 goto _return; 395 396 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) { 397 if (!test_bit(HCI_INQUIRY, &hdev->flags) && 398 hdev->discovery.state != DISCOVERY_RESOLVING) 399 goto discov_stopped; 400 401 goto _return; 402 } 403 404 status = hci_cmd_sync_queue(hdev, interleaved_inquiry_sync, NULL, NULL); 405 if (status) { 406 bt_dev_err(hdev, "inquiry failed: status %d", status); 407 goto discov_stopped; 408 } 409 410 goto _return; 411 412 discov_stopped: 413 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 414 415 _return: 416 hci_dev_unlock(hdev); 417 } 418 419 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val, 420 u8 filter_dup); 421 422 static int reenable_adv_sync(struct hci_dev *hdev, void *data) 423 { 424 bt_dev_dbg(hdev, ""); 425 426 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) && 427 list_empty(&hdev->adv_instances)) 428 return 0; 429 430 if (hdev->cur_adv_instance) { 431 return hci_schedule_adv_instance_sync(hdev, 432 hdev->cur_adv_instance, 433 true); 434 } else { 435 if (ext_adv_capable(hdev)) { 436 hci_start_ext_adv_sync(hdev, 0x00); 437 } else { 438 hci_update_adv_data_sync(hdev, 0x00); 439 hci_update_scan_rsp_data_sync(hdev, 0x00); 440 hci_enable_advertising_sync(hdev); 441 } 442 } 443 444 return 0; 445 } 446 447 static void reenable_adv(struct work_struct *work) 448 { 449 struct hci_dev *hdev = container_of(work, struct hci_dev, 450 reenable_adv_work); 451 int status; 452 453 bt_dev_dbg(hdev, ""); 454 455 hci_dev_lock(hdev); 456 457 status = hci_cmd_sync_queue(hdev, reenable_adv_sync, NULL, NULL); 458 if (status) 459 bt_dev_err(hdev, "failed to reenable ADV: %d", status); 460 461 hci_dev_unlock(hdev); 462 } 463 464 static void cancel_adv_timeout(struct hci_dev *hdev) 465 { 466 if (hdev->adv_instance_timeout) { 467 hdev->adv_instance_timeout = 0; 468 cancel_delayed_work(&hdev->adv_instance_expire); 469 } 470 } 471 472 /* For a single instance: 473 * - force == true: The instance will be removed even when its remaining 474 * lifetime is not zero. 475 * - force == false: the instance will be deactivated but kept stored unless 476 * the remaining lifetime is zero. 477 * 478 * For instance == 0x00: 479 * - force == true: All instances will be removed regardless of their timeout 480 * setting. 481 * - force == false: Only instances that have a timeout will be removed. 482 */ 483 int hci_clear_adv_instance_sync(struct hci_dev *hdev, struct sock *sk, 484 u8 instance, bool force) 485 { 486 struct adv_info *adv_instance, *n, *next_instance = NULL; 487 int err; 488 u8 rem_inst; 489 490 /* Cancel any timeout concerning the removed instance(s). */ 491 if (!instance || hdev->cur_adv_instance == instance) 492 cancel_adv_timeout(hdev); 493 494 /* Get the next instance to advertise BEFORE we remove 495 * the current one. This can be the same instance again 496 * if there is only one instance. 497 */ 498 if (instance && hdev->cur_adv_instance == instance) 499 next_instance = hci_get_next_instance(hdev, instance); 500 501 if (instance == 0x00) { 502 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, 503 list) { 504 if (!(force || adv_instance->timeout)) 505 continue; 506 507 rem_inst = adv_instance->instance; 508 err = hci_remove_adv_instance(hdev, rem_inst); 509 if (!err) 510 mgmt_advertising_removed(sk, hdev, rem_inst); 511 } 512 } else { 513 adv_instance = hci_find_adv_instance(hdev, instance); 514 515 if (force || (adv_instance && adv_instance->timeout && 516 !adv_instance->remaining_time)) { 517 /* Don't advertise a removed instance. */ 518 if (next_instance && 519 next_instance->instance == instance) 520 next_instance = NULL; 521 522 err = hci_remove_adv_instance(hdev, instance); 523 if (!err) 524 mgmt_advertising_removed(sk, hdev, instance); 525 } 526 } 527 528 if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING)) 529 return 0; 530 531 if (next_instance && !ext_adv_capable(hdev)) 532 return hci_schedule_adv_instance_sync(hdev, 533 next_instance->instance, 534 false); 535 536 return 0; 537 } 538 539 static int adv_timeout_expire_sync(struct hci_dev *hdev, void *data) 540 { 541 u8 instance = *(u8 *)data; 542 543 kfree(data); 544 545 hci_clear_adv_instance_sync(hdev, NULL, instance, false); 546 547 if (list_empty(&hdev->adv_instances)) 548 return hci_disable_advertising_sync(hdev); 549 550 return 0; 551 } 552 553 static void adv_timeout_expire(struct work_struct *work) 554 { 555 u8 *inst_ptr; 556 struct hci_dev *hdev = container_of(work, struct hci_dev, 557 adv_instance_expire.work); 558 559 bt_dev_dbg(hdev, ""); 560 561 hci_dev_lock(hdev); 562 563 hdev->adv_instance_timeout = 0; 564 565 if (hdev->cur_adv_instance == 0x00) 566 goto unlock; 567 568 inst_ptr = kmalloc(1, GFP_KERNEL); 569 if (!inst_ptr) 570 goto unlock; 571 572 *inst_ptr = hdev->cur_adv_instance; 573 hci_cmd_sync_queue(hdev, adv_timeout_expire_sync, inst_ptr, NULL); 574 575 unlock: 576 hci_dev_unlock(hdev); 577 } 578 579 static bool is_interleave_scanning(struct hci_dev *hdev) 580 { 581 return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE; 582 } 583 584 static int hci_passive_scan_sync(struct hci_dev *hdev); 585 586 static void interleave_scan_work(struct work_struct *work) 587 { 588 struct hci_dev *hdev = container_of(work, struct hci_dev, 589 interleave_scan.work); 590 unsigned long timeout; 591 592 if (hdev->interleave_scan_state == INTERLEAVE_SCAN_ALLOWLIST) { 593 timeout = msecs_to_jiffies(hdev->advmon_allowlist_duration); 594 } else if (hdev->interleave_scan_state == INTERLEAVE_SCAN_NO_FILTER) { 595 timeout = msecs_to_jiffies(hdev->advmon_no_filter_duration); 596 } else { 597 bt_dev_err(hdev, "unexpected error"); 598 return; 599 } 600 601 hci_passive_scan_sync(hdev); 602 603 hci_dev_lock(hdev); 604 605 switch (hdev->interleave_scan_state) { 606 case INTERLEAVE_SCAN_ALLOWLIST: 607 bt_dev_dbg(hdev, "next state: allowlist"); 608 hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER; 609 break; 610 case INTERLEAVE_SCAN_NO_FILTER: 611 bt_dev_dbg(hdev, "next state: no filter"); 612 hdev->interleave_scan_state = INTERLEAVE_SCAN_ALLOWLIST; 613 break; 614 case INTERLEAVE_SCAN_NONE: 615 bt_dev_err(hdev, "unexpected error"); 616 } 617 618 hci_dev_unlock(hdev); 619 620 /* Don't continue interleaving if it was canceled */ 621 if (is_interleave_scanning(hdev)) 622 queue_delayed_work(hdev->req_workqueue, 623 &hdev->interleave_scan, timeout); 624 } 625 626 void hci_cmd_sync_init(struct hci_dev *hdev) 627 { 628 INIT_WORK(&hdev->cmd_sync_work, hci_cmd_sync_work); 629 INIT_LIST_HEAD(&hdev->cmd_sync_work_list); 630 mutex_init(&hdev->cmd_sync_work_lock); 631 mutex_init(&hdev->unregister_lock); 632 633 INIT_WORK(&hdev->cmd_sync_cancel_work, hci_cmd_sync_cancel_work); 634 INIT_WORK(&hdev->reenable_adv_work, reenable_adv); 635 INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable); 636 INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire); 637 INIT_DELAYED_WORK(&hdev->interleave_scan, interleave_scan_work); 638 } 639 640 static void _hci_cmd_sync_cancel_entry(struct hci_dev *hdev, 641 struct hci_cmd_sync_work_entry *entry, 642 int err) 643 { 644 if (entry->destroy) 645 entry->destroy(hdev, entry->data, err); 646 647 list_del(&entry->list); 648 kfree(entry); 649 } 650 651 void hci_cmd_sync_clear(struct hci_dev *hdev) 652 { 653 struct hci_cmd_sync_work_entry *entry, *tmp; 654 655 cancel_work_sync(&hdev->cmd_sync_work); 656 cancel_work_sync(&hdev->reenable_adv_work); 657 658 mutex_lock(&hdev->cmd_sync_work_lock); 659 list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) 660 _hci_cmd_sync_cancel_entry(hdev, entry, -ECANCELED); 661 mutex_unlock(&hdev->cmd_sync_work_lock); 662 } 663 664 void hci_cmd_sync_cancel(struct hci_dev *hdev, int err) 665 { 666 bt_dev_dbg(hdev, "err 0x%2.2x", err); 667 668 if (hdev->req_status == HCI_REQ_PEND) { 669 hdev->req_result = err; 670 hdev->req_status = HCI_REQ_CANCELED; 671 672 queue_work(hdev->workqueue, &hdev->cmd_sync_cancel_work); 673 } 674 } 675 EXPORT_SYMBOL(hci_cmd_sync_cancel); 676 677 /* Cancel ongoing command request synchronously: 678 * 679 * - Set result and mark status to HCI_REQ_CANCELED 680 * - Wakeup command sync thread 681 */ 682 void hci_cmd_sync_cancel_sync(struct hci_dev *hdev, int err) 683 { 684 bt_dev_dbg(hdev, "err 0x%2.2x", err); 685 686 if (hdev->req_status == HCI_REQ_PEND) { 687 /* req_result is __u32 so error must be positive to be properly 688 * propagated. 689 */ 690 hdev->req_result = err < 0 ? -err : err; 691 hdev->req_status = HCI_REQ_CANCELED; 692 693 wake_up_interruptible(&hdev->req_wait_q); 694 } 695 } 696 EXPORT_SYMBOL(hci_cmd_sync_cancel_sync); 697 698 /* Submit HCI command to be run in as cmd_sync_work: 699 * 700 * - hdev must _not_ be unregistered 701 */ 702 int hci_cmd_sync_submit(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 703 void *data, hci_cmd_sync_work_destroy_t destroy) 704 { 705 struct hci_cmd_sync_work_entry *entry; 706 int err = 0; 707 708 mutex_lock(&hdev->unregister_lock); 709 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 710 err = -ENODEV; 711 goto unlock; 712 } 713 714 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 715 if (!entry) { 716 err = -ENOMEM; 717 goto unlock; 718 } 719 entry->func = func; 720 entry->data = data; 721 entry->destroy = destroy; 722 723 mutex_lock(&hdev->cmd_sync_work_lock); 724 list_add_tail(&entry->list, &hdev->cmd_sync_work_list); 725 mutex_unlock(&hdev->cmd_sync_work_lock); 726 727 queue_work(hdev->req_workqueue, &hdev->cmd_sync_work); 728 729 unlock: 730 mutex_unlock(&hdev->unregister_lock); 731 return err; 732 } 733 EXPORT_SYMBOL(hci_cmd_sync_submit); 734 735 /* Queue HCI command: 736 * 737 * - hdev must be running 738 */ 739 int hci_cmd_sync_queue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 740 void *data, hci_cmd_sync_work_destroy_t destroy) 741 { 742 /* Only queue command if hdev is running which means it had been opened 743 * and is either on init phase or is already up. 744 */ 745 if (!test_bit(HCI_RUNNING, &hdev->flags)) 746 return -ENETDOWN; 747 748 return hci_cmd_sync_submit(hdev, func, data, destroy); 749 } 750 EXPORT_SYMBOL(hci_cmd_sync_queue); 751 752 static struct hci_cmd_sync_work_entry * 753 _hci_cmd_sync_lookup_entry(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 754 void *data, hci_cmd_sync_work_destroy_t destroy) 755 { 756 struct hci_cmd_sync_work_entry *entry, *tmp; 757 758 list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) { 759 if (func && entry->func != func) 760 continue; 761 762 if (data && entry->data != data) 763 continue; 764 765 if (destroy && entry->destroy != destroy) 766 continue; 767 768 return entry; 769 } 770 771 return NULL; 772 } 773 774 /* Queue HCI command entry once: 775 * 776 * - Lookup if an entry already exist and only if it doesn't creates a new entry 777 * and queue it. 778 */ 779 int hci_cmd_sync_queue_once(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 780 void *data, hci_cmd_sync_work_destroy_t destroy) 781 { 782 if (hci_cmd_sync_lookup_entry(hdev, func, data, destroy)) 783 return 0; 784 785 return hci_cmd_sync_queue(hdev, func, data, destroy); 786 } 787 EXPORT_SYMBOL(hci_cmd_sync_queue_once); 788 789 /* Run HCI command: 790 * 791 * - hdev must be running 792 * - if on cmd_sync_work then run immediately otherwise queue 793 */ 794 int hci_cmd_sync_run(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 795 void *data, hci_cmd_sync_work_destroy_t destroy) 796 { 797 /* Only queue command if hdev is running which means it had been opened 798 * and is either on init phase or is already up. 799 */ 800 if (!test_bit(HCI_RUNNING, &hdev->flags)) 801 return -ENETDOWN; 802 803 /* If on cmd_sync_work then run immediately otherwise queue */ 804 if (current_work() == &hdev->cmd_sync_work) 805 return func(hdev, data); 806 807 return hci_cmd_sync_submit(hdev, func, data, destroy); 808 } 809 EXPORT_SYMBOL(hci_cmd_sync_run); 810 811 /* Run HCI command entry once: 812 * 813 * - Lookup if an entry already exist and only if it doesn't creates a new entry 814 * and run it. 815 * - if on cmd_sync_work then run immediately otherwise queue 816 */ 817 int hci_cmd_sync_run_once(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 818 void *data, hci_cmd_sync_work_destroy_t destroy) 819 { 820 if (hci_cmd_sync_lookup_entry(hdev, func, data, destroy)) 821 return 0; 822 823 return hci_cmd_sync_run(hdev, func, data, destroy); 824 } 825 EXPORT_SYMBOL(hci_cmd_sync_run_once); 826 827 /* Lookup HCI command entry: 828 * 829 * - Return first entry that matches by function callback or data or 830 * destroy callback. 831 */ 832 struct hci_cmd_sync_work_entry * 833 hci_cmd_sync_lookup_entry(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 834 void *data, hci_cmd_sync_work_destroy_t destroy) 835 { 836 struct hci_cmd_sync_work_entry *entry; 837 838 mutex_lock(&hdev->cmd_sync_work_lock); 839 entry = _hci_cmd_sync_lookup_entry(hdev, func, data, destroy); 840 mutex_unlock(&hdev->cmd_sync_work_lock); 841 842 return entry; 843 } 844 EXPORT_SYMBOL(hci_cmd_sync_lookup_entry); 845 846 /* Cancel HCI command entry */ 847 void hci_cmd_sync_cancel_entry(struct hci_dev *hdev, 848 struct hci_cmd_sync_work_entry *entry) 849 { 850 mutex_lock(&hdev->cmd_sync_work_lock); 851 _hci_cmd_sync_cancel_entry(hdev, entry, -ECANCELED); 852 mutex_unlock(&hdev->cmd_sync_work_lock); 853 } 854 EXPORT_SYMBOL(hci_cmd_sync_cancel_entry); 855 856 /* Dequeue one HCI command entry: 857 * 858 * - Lookup and cancel first entry that matches. 859 */ 860 bool hci_cmd_sync_dequeue_once(struct hci_dev *hdev, 861 hci_cmd_sync_work_func_t func, 862 void *data, hci_cmd_sync_work_destroy_t destroy) 863 { 864 struct hci_cmd_sync_work_entry *entry; 865 866 entry = hci_cmd_sync_lookup_entry(hdev, func, data, destroy); 867 if (!entry) 868 return false; 869 870 hci_cmd_sync_cancel_entry(hdev, entry); 871 872 return true; 873 } 874 EXPORT_SYMBOL(hci_cmd_sync_dequeue_once); 875 876 /* Dequeue HCI command entry: 877 * 878 * - Lookup and cancel any entry that matches by function callback or data or 879 * destroy callback. 880 */ 881 bool hci_cmd_sync_dequeue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func, 882 void *data, hci_cmd_sync_work_destroy_t destroy) 883 { 884 struct hci_cmd_sync_work_entry *entry; 885 bool ret = false; 886 887 mutex_lock(&hdev->cmd_sync_work_lock); 888 while ((entry = _hci_cmd_sync_lookup_entry(hdev, func, data, 889 destroy))) { 890 _hci_cmd_sync_cancel_entry(hdev, entry, -ECANCELED); 891 ret = true; 892 } 893 mutex_unlock(&hdev->cmd_sync_work_lock); 894 895 return ret; 896 } 897 EXPORT_SYMBOL(hci_cmd_sync_dequeue); 898 899 int hci_update_eir_sync(struct hci_dev *hdev) 900 { 901 struct hci_cp_write_eir cp; 902 903 bt_dev_dbg(hdev, ""); 904 905 if (!hdev_is_powered(hdev)) 906 return 0; 907 908 if (!lmp_ext_inq_capable(hdev)) 909 return 0; 910 911 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 912 return 0; 913 914 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 915 return 0; 916 917 memset(&cp, 0, sizeof(cp)); 918 919 eir_create(hdev, cp.data); 920 921 if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0) 922 return 0; 923 924 memcpy(hdev->eir, cp.data, sizeof(cp.data)); 925 926 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp, 927 HCI_CMD_TIMEOUT); 928 } 929 930 static u8 get_service_classes(struct hci_dev *hdev) 931 { 932 struct bt_uuid *uuid; 933 u8 val = 0; 934 935 list_for_each_entry(uuid, &hdev->uuids, list) 936 val |= uuid->svc_hint; 937 938 return val; 939 } 940 941 int hci_update_class_sync(struct hci_dev *hdev) 942 { 943 u8 cod[3]; 944 945 bt_dev_dbg(hdev, ""); 946 947 if (!hdev_is_powered(hdev)) 948 return 0; 949 950 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 951 return 0; 952 953 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 954 return 0; 955 956 cod[0] = hdev->minor_class; 957 cod[1] = hdev->major_class; 958 cod[2] = get_service_classes(hdev); 959 960 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) 961 cod[1] |= 0x20; 962 963 if (memcmp(cod, hdev->dev_class, 3) == 0) 964 return 0; 965 966 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CLASS_OF_DEV, 967 sizeof(cod), cod, HCI_CMD_TIMEOUT); 968 } 969 970 static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable) 971 { 972 /* If there is no connection we are OK to advertise. */ 973 if (hci_conn_num(hdev, LE_LINK) == 0) 974 return true; 975 976 /* Check le_states if there is any connection in peripheral role. */ 977 if (hdev->conn_hash.le_num_peripheral > 0) { 978 /* Peripheral connection state and non connectable mode 979 * bit 20. 980 */ 981 if (!connectable && !(hdev->le_states[2] & 0x10)) 982 return false; 983 984 /* Peripheral connection state and connectable mode bit 38 985 * and scannable bit 21. 986 */ 987 if (connectable && (!(hdev->le_states[4] & 0x40) || 988 !(hdev->le_states[2] & 0x20))) 989 return false; 990 } 991 992 /* Check le_states if there is any connection in central role. */ 993 if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) { 994 /* Central connection state and non connectable mode bit 18. */ 995 if (!connectable && !(hdev->le_states[2] & 0x02)) 996 return false; 997 998 /* Central connection state and connectable mode bit 35 and 999 * scannable 19. 1000 */ 1001 if (connectable && (!(hdev->le_states[4] & 0x08) || 1002 !(hdev->le_states[2] & 0x08))) 1003 return false; 1004 } 1005 1006 return true; 1007 } 1008 1009 static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags) 1010 { 1011 /* If privacy is not enabled don't use RPA */ 1012 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 1013 return false; 1014 1015 /* If basic privacy mode is enabled use RPA */ 1016 if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) 1017 return true; 1018 1019 /* If limited privacy mode is enabled don't use RPA if we're 1020 * both discoverable and bondable. 1021 */ 1022 if ((flags & MGMT_ADV_FLAG_DISCOV) && 1023 hci_dev_test_flag(hdev, HCI_BONDABLE)) 1024 return false; 1025 1026 /* We're neither bondable nor discoverable in the limited 1027 * privacy mode, therefore use RPA. 1028 */ 1029 return true; 1030 } 1031 1032 static int hci_set_random_addr_sync(struct hci_dev *hdev, bdaddr_t *rpa) 1033 { 1034 /* If a random_addr has been set we're advertising or initiating an LE 1035 * connection we can't go ahead and change the random address at this 1036 * time. This is because the eventual initiator address used for the 1037 * subsequently created connection will be undefined (some 1038 * controllers use the new address and others the one we had 1039 * when the operation started). 1040 * 1041 * In this kind of scenario skip the update and let the random 1042 * address be updated at the next cycle. 1043 */ 1044 if (bacmp(&hdev->random_addr, BDADDR_ANY) && 1045 (hci_dev_test_flag(hdev, HCI_LE_ADV) || 1046 hci_lookup_le_connect(hdev))) { 1047 bt_dev_dbg(hdev, "Deferring random address update"); 1048 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 1049 return 0; 1050 } 1051 1052 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RANDOM_ADDR, 1053 6, rpa, HCI_CMD_TIMEOUT); 1054 } 1055 1056 int hci_update_random_address_sync(struct hci_dev *hdev, bool require_privacy, 1057 bool rpa, u8 *own_addr_type) 1058 { 1059 int err; 1060 1061 /* If privacy is enabled use a resolvable private address. If 1062 * current RPA has expired or there is something else than 1063 * the current RPA in use, then generate a new one. 1064 */ 1065 if (rpa) { 1066 /* If Controller supports LL Privacy use own address type is 1067 * 0x03 1068 */ 1069 if (use_ll_privacy(hdev)) 1070 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED; 1071 else 1072 *own_addr_type = ADDR_LE_DEV_RANDOM; 1073 1074 /* Check if RPA is valid */ 1075 if (rpa_valid(hdev)) 1076 return 0; 1077 1078 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); 1079 if (err < 0) { 1080 bt_dev_err(hdev, "failed to generate new RPA"); 1081 return err; 1082 } 1083 1084 err = hci_set_random_addr_sync(hdev, &hdev->rpa); 1085 if (err) 1086 return err; 1087 1088 return 0; 1089 } 1090 1091 /* In case of required privacy without resolvable private address, 1092 * use an non-resolvable private address. This is useful for active 1093 * scanning and non-connectable advertising. 1094 */ 1095 if (require_privacy) { 1096 bdaddr_t nrpa; 1097 1098 while (true) { 1099 /* The non-resolvable private address is generated 1100 * from random six bytes with the two most significant 1101 * bits cleared. 1102 */ 1103 get_random_bytes(&nrpa, 6); 1104 nrpa.b[5] &= 0x3f; 1105 1106 /* The non-resolvable private address shall not be 1107 * equal to the public address. 1108 */ 1109 if (bacmp(&hdev->bdaddr, &nrpa)) 1110 break; 1111 } 1112 1113 *own_addr_type = ADDR_LE_DEV_RANDOM; 1114 1115 return hci_set_random_addr_sync(hdev, &nrpa); 1116 } 1117 1118 /* If forcing static address is in use or there is no public 1119 * address use the static address as random address (but skip 1120 * the HCI command if the current random address is already the 1121 * static one. 1122 * 1123 * In case BR/EDR has been disabled on a dual-mode controller 1124 * and a static address has been configured, then use that 1125 * address instead of the public BR/EDR address. 1126 */ 1127 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 1128 !bacmp(&hdev->bdaddr, BDADDR_ANY) || 1129 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && 1130 bacmp(&hdev->static_addr, BDADDR_ANY))) { 1131 *own_addr_type = ADDR_LE_DEV_RANDOM; 1132 if (bacmp(&hdev->static_addr, &hdev->random_addr)) 1133 return hci_set_random_addr_sync(hdev, 1134 &hdev->static_addr); 1135 return 0; 1136 } 1137 1138 /* Neither privacy nor static address is being used so use a 1139 * public address. 1140 */ 1141 *own_addr_type = ADDR_LE_DEV_PUBLIC; 1142 1143 return 0; 1144 } 1145 1146 static int hci_disable_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance) 1147 { 1148 struct hci_cp_le_set_ext_adv_enable *cp; 1149 struct hci_cp_ext_adv_set *set; 1150 u8 data[sizeof(*cp) + sizeof(*set) * 1]; 1151 u8 size; 1152 struct adv_info *adv = NULL; 1153 1154 /* If request specifies an instance that doesn't exist, fail */ 1155 if (instance > 0) { 1156 adv = hci_find_adv_instance(hdev, instance); 1157 if (!adv) 1158 return -EINVAL; 1159 1160 /* If not enabled there is nothing to do */ 1161 if (!adv->enabled) 1162 return 0; 1163 } 1164 1165 memset(data, 0, sizeof(data)); 1166 1167 cp = (void *)data; 1168 set = (void *)cp->data; 1169 1170 /* Instance 0x00 indicates all advertising instances will be disabled */ 1171 cp->num_of_sets = !!instance; 1172 cp->enable = 0x00; 1173 1174 set->handle = adv ? adv->handle : instance; 1175 1176 size = sizeof(*cp) + sizeof(*set) * cp->num_of_sets; 1177 1178 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, 1179 size, data, HCI_CMD_TIMEOUT); 1180 } 1181 1182 static int hci_set_adv_set_random_addr_sync(struct hci_dev *hdev, u8 instance, 1183 bdaddr_t *random_addr) 1184 { 1185 struct hci_cp_le_set_adv_set_rand_addr cp; 1186 int err; 1187 1188 if (!instance) { 1189 /* Instance 0x00 doesn't have an adv_info, instead it uses 1190 * hdev->random_addr to track its address so whenever it needs 1191 * to be updated this also set the random address since 1192 * hdev->random_addr is shared with scan state machine. 1193 */ 1194 err = hci_set_random_addr_sync(hdev, random_addr); 1195 if (err) 1196 return err; 1197 } 1198 1199 memset(&cp, 0, sizeof(cp)); 1200 1201 cp.handle = instance; 1202 bacpy(&cp.bdaddr, random_addr); 1203 1204 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_SET_RAND_ADDR, 1205 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1206 } 1207 1208 int hci_setup_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance) 1209 { 1210 struct hci_cp_le_set_ext_adv_params cp; 1211 bool connectable; 1212 u32 flags; 1213 bdaddr_t random_addr; 1214 u8 own_addr_type; 1215 int err; 1216 struct adv_info *adv; 1217 bool secondary_adv; 1218 1219 if (instance > 0) { 1220 adv = hci_find_adv_instance(hdev, instance); 1221 if (!adv) 1222 return -EINVAL; 1223 } else { 1224 adv = NULL; 1225 } 1226 1227 /* Updating parameters of an active instance will return a 1228 * Command Disallowed error, so we must first disable the 1229 * instance if it is active. 1230 */ 1231 if (adv && !adv->pending) { 1232 err = hci_disable_ext_adv_instance_sync(hdev, instance); 1233 if (err) 1234 return err; 1235 } 1236 1237 flags = hci_adv_instance_flags(hdev, instance); 1238 1239 /* If the "connectable" instance flag was not set, then choose between 1240 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. 1241 */ 1242 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || 1243 mgmt_get_connectable(hdev); 1244 1245 if (!is_advertising_allowed(hdev, connectable)) 1246 return -EPERM; 1247 1248 /* Set require_privacy to true only when non-connectable 1249 * advertising is used. In that case it is fine to use a 1250 * non-resolvable private address. 1251 */ 1252 err = hci_get_random_address(hdev, !connectable, 1253 adv_use_rpa(hdev, flags), adv, 1254 &own_addr_type, &random_addr); 1255 if (err < 0) 1256 return err; 1257 1258 memset(&cp, 0, sizeof(cp)); 1259 1260 if (adv) { 1261 hci_cpu_to_le24(adv->min_interval, cp.min_interval); 1262 hci_cpu_to_le24(adv->max_interval, cp.max_interval); 1263 cp.tx_power = adv->tx_power; 1264 } else { 1265 hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval); 1266 hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval); 1267 cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE; 1268 } 1269 1270 secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK); 1271 1272 if (connectable) { 1273 if (secondary_adv) 1274 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND); 1275 else 1276 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND); 1277 } else if (hci_adv_instance_is_scannable(hdev, instance) || 1278 (flags & MGMT_ADV_PARAM_SCAN_RSP)) { 1279 if (secondary_adv) 1280 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND); 1281 else 1282 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND); 1283 } else { 1284 if (secondary_adv) 1285 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND); 1286 else 1287 cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND); 1288 } 1289 1290 /* If Own_Address_Type equals 0x02 or 0x03, the Peer_Address parameter 1291 * contains the peer’s Identity Address and the Peer_Address_Type 1292 * parameter contains the peer’s Identity Type (i.e., 0x00 or 0x01). 1293 * These parameters are used to locate the corresponding local IRK in 1294 * the resolving list; this IRK is used to generate their own address 1295 * used in the advertisement. 1296 */ 1297 if (own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) 1298 hci_copy_identity_address(hdev, &cp.peer_addr, 1299 &cp.peer_addr_type); 1300 1301 cp.own_addr_type = own_addr_type; 1302 cp.channel_map = hdev->le_adv_channel_map; 1303 cp.handle = adv ? adv->handle : instance; 1304 1305 if (flags & MGMT_ADV_FLAG_SEC_2M) { 1306 cp.primary_phy = HCI_ADV_PHY_1M; 1307 cp.secondary_phy = HCI_ADV_PHY_2M; 1308 } else if (flags & MGMT_ADV_FLAG_SEC_CODED) { 1309 cp.primary_phy = HCI_ADV_PHY_CODED; 1310 cp.secondary_phy = HCI_ADV_PHY_CODED; 1311 } else { 1312 /* In all other cases use 1M */ 1313 cp.primary_phy = HCI_ADV_PHY_1M; 1314 cp.secondary_phy = HCI_ADV_PHY_1M; 1315 } 1316 1317 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS, 1318 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1319 if (err) 1320 return err; 1321 1322 if ((own_addr_type == ADDR_LE_DEV_RANDOM || 1323 own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) && 1324 bacmp(&random_addr, BDADDR_ANY)) { 1325 /* Check if random address need to be updated */ 1326 if (adv) { 1327 if (!bacmp(&random_addr, &adv->random_addr)) 1328 return 0; 1329 } else { 1330 if (!bacmp(&random_addr, &hdev->random_addr)) 1331 return 0; 1332 } 1333 1334 return hci_set_adv_set_random_addr_sync(hdev, instance, 1335 &random_addr); 1336 } 1337 1338 return 0; 1339 } 1340 1341 static int hci_set_ext_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 1342 { 1343 DEFINE_FLEX(struct hci_cp_le_set_ext_scan_rsp_data, pdu, data, length, 1344 HCI_MAX_EXT_AD_LENGTH); 1345 u8 len; 1346 struct adv_info *adv = NULL; 1347 int err; 1348 1349 if (instance) { 1350 adv = hci_find_adv_instance(hdev, instance); 1351 if (!adv || !adv->scan_rsp_changed) 1352 return 0; 1353 } 1354 1355 len = eir_create_scan_rsp(hdev, instance, pdu->data); 1356 1357 pdu->handle = adv ? adv->handle : instance; 1358 pdu->length = len; 1359 pdu->operation = LE_SET_ADV_DATA_OP_COMPLETE; 1360 pdu->frag_pref = LE_SET_ADV_DATA_NO_FRAG; 1361 1362 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA, 1363 struct_size(pdu, data, len), pdu, 1364 HCI_CMD_TIMEOUT); 1365 if (err) 1366 return err; 1367 1368 if (adv) { 1369 adv->scan_rsp_changed = false; 1370 } else { 1371 memcpy(hdev->scan_rsp_data, pdu->data, len); 1372 hdev->scan_rsp_data_len = len; 1373 } 1374 1375 return 0; 1376 } 1377 1378 static int __hci_set_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 1379 { 1380 struct hci_cp_le_set_scan_rsp_data cp; 1381 u8 len; 1382 1383 memset(&cp, 0, sizeof(cp)); 1384 1385 len = eir_create_scan_rsp(hdev, instance, cp.data); 1386 1387 if (hdev->scan_rsp_data_len == len && 1388 !memcmp(cp.data, hdev->scan_rsp_data, len)) 1389 return 0; 1390 1391 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data)); 1392 hdev->scan_rsp_data_len = len; 1393 1394 cp.length = len; 1395 1396 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_RSP_DATA, 1397 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1398 } 1399 1400 int hci_update_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance) 1401 { 1402 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1403 return 0; 1404 1405 if (ext_adv_capable(hdev)) 1406 return hci_set_ext_scan_rsp_data_sync(hdev, instance); 1407 1408 return __hci_set_scan_rsp_data_sync(hdev, instance); 1409 } 1410 1411 int hci_enable_ext_advertising_sync(struct hci_dev *hdev, u8 instance) 1412 { 1413 struct hci_cp_le_set_ext_adv_enable *cp; 1414 struct hci_cp_ext_adv_set *set; 1415 u8 data[sizeof(*cp) + sizeof(*set) * 1]; 1416 struct adv_info *adv; 1417 1418 if (instance > 0) { 1419 adv = hci_find_adv_instance(hdev, instance); 1420 if (!adv) 1421 return -EINVAL; 1422 /* If already enabled there is nothing to do */ 1423 if (adv->enabled) 1424 return 0; 1425 } else { 1426 adv = NULL; 1427 } 1428 1429 cp = (void *)data; 1430 set = (void *)cp->data; 1431 1432 memset(cp, 0, sizeof(*cp)); 1433 1434 cp->enable = 0x01; 1435 cp->num_of_sets = 0x01; 1436 1437 memset(set, 0, sizeof(*set)); 1438 1439 set->handle = adv ? adv->handle : instance; 1440 1441 /* Set duration per instance since controller is responsible for 1442 * scheduling it. 1443 */ 1444 if (adv && adv->timeout) { 1445 u16 duration = adv->timeout * MSEC_PER_SEC; 1446 1447 /* Time = N * 10 ms */ 1448 set->duration = cpu_to_le16(duration / 10); 1449 } 1450 1451 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, 1452 sizeof(*cp) + 1453 sizeof(*set) * cp->num_of_sets, 1454 data, HCI_CMD_TIMEOUT); 1455 } 1456 1457 int hci_start_ext_adv_sync(struct hci_dev *hdev, u8 instance) 1458 { 1459 int err; 1460 1461 err = hci_setup_ext_adv_instance_sync(hdev, instance); 1462 if (err) 1463 return err; 1464 1465 err = hci_set_ext_scan_rsp_data_sync(hdev, instance); 1466 if (err) 1467 return err; 1468 1469 return hci_enable_ext_advertising_sync(hdev, instance); 1470 } 1471 1472 int hci_disable_per_advertising_sync(struct hci_dev *hdev, u8 instance) 1473 { 1474 struct hci_cp_le_set_per_adv_enable cp; 1475 struct adv_info *adv = NULL; 1476 1477 /* If periodic advertising already disabled there is nothing to do. */ 1478 adv = hci_find_adv_instance(hdev, instance); 1479 if (!adv || !adv->periodic || !adv->enabled) 1480 return 0; 1481 1482 memset(&cp, 0, sizeof(cp)); 1483 1484 cp.enable = 0x00; 1485 cp.handle = instance; 1486 1487 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE, 1488 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1489 } 1490 1491 static int hci_set_per_adv_params_sync(struct hci_dev *hdev, u8 instance, 1492 u16 min_interval, u16 max_interval) 1493 { 1494 struct hci_cp_le_set_per_adv_params cp; 1495 1496 memset(&cp, 0, sizeof(cp)); 1497 1498 if (!min_interval) 1499 min_interval = DISCOV_LE_PER_ADV_INT_MIN; 1500 1501 if (!max_interval) 1502 max_interval = DISCOV_LE_PER_ADV_INT_MAX; 1503 1504 cp.handle = instance; 1505 cp.min_interval = cpu_to_le16(min_interval); 1506 cp.max_interval = cpu_to_le16(max_interval); 1507 cp.periodic_properties = 0x0000; 1508 1509 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_PARAMS, 1510 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1511 } 1512 1513 static int hci_set_per_adv_data_sync(struct hci_dev *hdev, u8 instance) 1514 { 1515 DEFINE_FLEX(struct hci_cp_le_set_per_adv_data, pdu, data, length, 1516 HCI_MAX_PER_AD_LENGTH); 1517 u8 len; 1518 struct adv_info *adv = NULL; 1519 1520 if (instance) { 1521 adv = hci_find_adv_instance(hdev, instance); 1522 if (!adv || !adv->periodic) 1523 return 0; 1524 } 1525 1526 len = eir_create_per_adv_data(hdev, instance, pdu->data); 1527 1528 pdu->length = len; 1529 pdu->handle = adv ? adv->handle : instance; 1530 pdu->operation = LE_SET_ADV_DATA_OP_COMPLETE; 1531 1532 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_DATA, 1533 struct_size(pdu, data, len), pdu, 1534 HCI_CMD_TIMEOUT); 1535 } 1536 1537 static int hci_enable_per_advertising_sync(struct hci_dev *hdev, u8 instance) 1538 { 1539 struct hci_cp_le_set_per_adv_enable cp; 1540 struct adv_info *adv = NULL; 1541 1542 /* If periodic advertising already enabled there is nothing to do. */ 1543 adv = hci_find_adv_instance(hdev, instance); 1544 if (adv && adv->periodic && adv->enabled) 1545 return 0; 1546 1547 memset(&cp, 0, sizeof(cp)); 1548 1549 cp.enable = 0x01; 1550 cp.handle = instance; 1551 1552 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE, 1553 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1554 } 1555 1556 /* Checks if periodic advertising data contains a Basic Announcement and if it 1557 * does generates a Broadcast ID and add Broadcast Announcement. 1558 */ 1559 static int hci_adv_bcast_annoucement(struct hci_dev *hdev, struct adv_info *adv) 1560 { 1561 u8 bid[3]; 1562 u8 ad[4 + 3]; 1563 1564 /* Skip if NULL adv as instance 0x00 is used for general purpose 1565 * advertising so it cannot used for the likes of Broadcast Announcement 1566 * as it can be overwritten at any point. 1567 */ 1568 if (!adv) 1569 return 0; 1570 1571 /* Check if PA data doesn't contains a Basic Audio Announcement then 1572 * there is nothing to do. 1573 */ 1574 if (!eir_get_service_data(adv->per_adv_data, adv->per_adv_data_len, 1575 0x1851, NULL)) 1576 return 0; 1577 1578 /* Check if advertising data already has a Broadcast Announcement since 1579 * the process may want to control the Broadcast ID directly and in that 1580 * case the kernel shall no interfere. 1581 */ 1582 if (eir_get_service_data(adv->adv_data, adv->adv_data_len, 0x1852, 1583 NULL)) 1584 return 0; 1585 1586 /* Generate Broadcast ID */ 1587 get_random_bytes(bid, sizeof(bid)); 1588 eir_append_service_data(ad, 0, 0x1852, bid, sizeof(bid)); 1589 hci_set_adv_instance_data(hdev, adv->instance, sizeof(ad), ad, 0, NULL); 1590 1591 return hci_update_adv_data_sync(hdev, adv->instance); 1592 } 1593 1594 int hci_start_per_adv_sync(struct hci_dev *hdev, u8 instance, u8 data_len, 1595 u8 *data, u32 flags, u16 min_interval, 1596 u16 max_interval, u16 sync_interval) 1597 { 1598 struct adv_info *adv = NULL; 1599 int err; 1600 bool added = false; 1601 1602 hci_disable_per_advertising_sync(hdev, instance); 1603 1604 if (instance) { 1605 adv = hci_find_adv_instance(hdev, instance); 1606 /* Create an instance if that could not be found */ 1607 if (!adv) { 1608 adv = hci_add_per_instance(hdev, instance, flags, 1609 data_len, data, 1610 sync_interval, 1611 sync_interval); 1612 if (IS_ERR(adv)) 1613 return PTR_ERR(adv); 1614 adv->pending = false; 1615 added = true; 1616 } 1617 } 1618 1619 /* Start advertising */ 1620 err = hci_start_ext_adv_sync(hdev, instance); 1621 if (err < 0) 1622 goto fail; 1623 1624 err = hci_adv_bcast_annoucement(hdev, adv); 1625 if (err < 0) 1626 goto fail; 1627 1628 err = hci_set_per_adv_params_sync(hdev, instance, min_interval, 1629 max_interval); 1630 if (err < 0) 1631 goto fail; 1632 1633 err = hci_set_per_adv_data_sync(hdev, instance); 1634 if (err < 0) 1635 goto fail; 1636 1637 err = hci_enable_per_advertising_sync(hdev, instance); 1638 if (err < 0) 1639 goto fail; 1640 1641 return 0; 1642 1643 fail: 1644 if (added) 1645 hci_remove_adv_instance(hdev, instance); 1646 1647 return err; 1648 } 1649 1650 static int hci_start_adv_sync(struct hci_dev *hdev, u8 instance) 1651 { 1652 int err; 1653 1654 if (ext_adv_capable(hdev)) 1655 return hci_start_ext_adv_sync(hdev, instance); 1656 1657 err = hci_update_adv_data_sync(hdev, instance); 1658 if (err) 1659 return err; 1660 1661 err = hci_update_scan_rsp_data_sync(hdev, instance); 1662 if (err) 1663 return err; 1664 1665 return hci_enable_advertising_sync(hdev); 1666 } 1667 1668 int hci_enable_advertising_sync(struct hci_dev *hdev) 1669 { 1670 struct adv_info *adv_instance; 1671 struct hci_cp_le_set_adv_param cp; 1672 u8 own_addr_type, enable = 0x01; 1673 bool connectable; 1674 u16 adv_min_interval, adv_max_interval; 1675 u32 flags; 1676 u8 status; 1677 1678 if (ext_adv_capable(hdev)) 1679 return hci_enable_ext_advertising_sync(hdev, 1680 hdev->cur_adv_instance); 1681 1682 flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance); 1683 adv_instance = hci_find_adv_instance(hdev, hdev->cur_adv_instance); 1684 1685 /* If the "connectable" instance flag was not set, then choose between 1686 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. 1687 */ 1688 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || 1689 mgmt_get_connectable(hdev); 1690 1691 if (!is_advertising_allowed(hdev, connectable)) 1692 return -EINVAL; 1693 1694 status = hci_disable_advertising_sync(hdev); 1695 if (status) 1696 return status; 1697 1698 /* Clear the HCI_LE_ADV bit temporarily so that the 1699 * hci_update_random_address knows that it's safe to go ahead 1700 * and write a new random address. The flag will be set back on 1701 * as soon as the SET_ADV_ENABLE HCI command completes. 1702 */ 1703 hci_dev_clear_flag(hdev, HCI_LE_ADV); 1704 1705 /* Set require_privacy to true only when non-connectable 1706 * advertising is used. In that case it is fine to use a 1707 * non-resolvable private address. 1708 */ 1709 status = hci_update_random_address_sync(hdev, !connectable, 1710 adv_use_rpa(hdev, flags), 1711 &own_addr_type); 1712 if (status) 1713 return status; 1714 1715 memset(&cp, 0, sizeof(cp)); 1716 1717 if (adv_instance) { 1718 adv_min_interval = adv_instance->min_interval; 1719 adv_max_interval = adv_instance->max_interval; 1720 } else { 1721 adv_min_interval = hdev->le_adv_min_interval; 1722 adv_max_interval = hdev->le_adv_max_interval; 1723 } 1724 1725 if (connectable) { 1726 cp.type = LE_ADV_IND; 1727 } else { 1728 if (hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance)) 1729 cp.type = LE_ADV_SCAN_IND; 1730 else 1731 cp.type = LE_ADV_NONCONN_IND; 1732 1733 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) || 1734 hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { 1735 adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN; 1736 adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX; 1737 } 1738 } 1739 1740 cp.min_interval = cpu_to_le16(adv_min_interval); 1741 cp.max_interval = cpu_to_le16(adv_max_interval); 1742 cp.own_address_type = own_addr_type; 1743 cp.channel_map = hdev->le_adv_channel_map; 1744 1745 status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM, 1746 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1747 if (status) 1748 return status; 1749 1750 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 1751 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 1752 } 1753 1754 static int enable_advertising_sync(struct hci_dev *hdev, void *data) 1755 { 1756 return hci_enable_advertising_sync(hdev); 1757 } 1758 1759 int hci_enable_advertising(struct hci_dev *hdev) 1760 { 1761 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) && 1762 list_empty(&hdev->adv_instances)) 1763 return 0; 1764 1765 return hci_cmd_sync_queue(hdev, enable_advertising_sync, NULL, NULL); 1766 } 1767 1768 int hci_remove_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance, 1769 struct sock *sk) 1770 { 1771 int err; 1772 1773 if (!ext_adv_capable(hdev)) 1774 return 0; 1775 1776 err = hci_disable_ext_adv_instance_sync(hdev, instance); 1777 if (err) 1778 return err; 1779 1780 /* If request specifies an instance that doesn't exist, fail */ 1781 if (instance > 0 && !hci_find_adv_instance(hdev, instance)) 1782 return -EINVAL; 1783 1784 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_REMOVE_ADV_SET, 1785 sizeof(instance), &instance, 0, 1786 HCI_CMD_TIMEOUT, sk); 1787 } 1788 1789 static int remove_ext_adv_sync(struct hci_dev *hdev, void *data) 1790 { 1791 struct adv_info *adv = data; 1792 u8 instance = 0; 1793 1794 if (adv) 1795 instance = adv->instance; 1796 1797 return hci_remove_ext_adv_instance_sync(hdev, instance, NULL); 1798 } 1799 1800 int hci_remove_ext_adv_instance(struct hci_dev *hdev, u8 instance) 1801 { 1802 struct adv_info *adv = NULL; 1803 1804 if (instance) { 1805 adv = hci_find_adv_instance(hdev, instance); 1806 if (!adv) 1807 return -EINVAL; 1808 } 1809 1810 return hci_cmd_sync_queue(hdev, remove_ext_adv_sync, adv, NULL); 1811 } 1812 1813 int hci_le_terminate_big_sync(struct hci_dev *hdev, u8 handle, u8 reason) 1814 { 1815 struct hci_cp_le_term_big cp; 1816 1817 memset(&cp, 0, sizeof(cp)); 1818 cp.handle = handle; 1819 cp.reason = reason; 1820 1821 return __hci_cmd_sync_status(hdev, HCI_OP_LE_TERM_BIG, 1822 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1823 } 1824 1825 static int hci_set_ext_adv_data_sync(struct hci_dev *hdev, u8 instance) 1826 { 1827 DEFINE_FLEX(struct hci_cp_le_set_ext_adv_data, pdu, data, length, 1828 HCI_MAX_EXT_AD_LENGTH); 1829 u8 len; 1830 struct adv_info *adv = NULL; 1831 int err; 1832 1833 if (instance) { 1834 adv = hci_find_adv_instance(hdev, instance); 1835 if (!adv || !adv->adv_data_changed) 1836 return 0; 1837 } 1838 1839 len = eir_create_adv_data(hdev, instance, pdu->data); 1840 1841 pdu->length = len; 1842 pdu->handle = adv ? adv->handle : instance; 1843 pdu->operation = LE_SET_ADV_DATA_OP_COMPLETE; 1844 pdu->frag_pref = LE_SET_ADV_DATA_NO_FRAG; 1845 1846 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_DATA, 1847 struct_size(pdu, data, len), pdu, 1848 HCI_CMD_TIMEOUT); 1849 if (err) 1850 return err; 1851 1852 /* Update data if the command succeed */ 1853 if (adv) { 1854 adv->adv_data_changed = false; 1855 } else { 1856 memcpy(hdev->adv_data, pdu->data, len); 1857 hdev->adv_data_len = len; 1858 } 1859 1860 return 0; 1861 } 1862 1863 static int hci_set_adv_data_sync(struct hci_dev *hdev, u8 instance) 1864 { 1865 struct hci_cp_le_set_adv_data cp; 1866 u8 len; 1867 1868 memset(&cp, 0, sizeof(cp)); 1869 1870 len = eir_create_adv_data(hdev, instance, cp.data); 1871 1872 /* There's nothing to do if the data hasn't changed */ 1873 if (hdev->adv_data_len == len && 1874 memcmp(cp.data, hdev->adv_data, len) == 0) 1875 return 0; 1876 1877 memcpy(hdev->adv_data, cp.data, sizeof(cp.data)); 1878 hdev->adv_data_len = len; 1879 1880 cp.length = len; 1881 1882 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_DATA, 1883 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 1884 } 1885 1886 int hci_update_adv_data_sync(struct hci_dev *hdev, u8 instance) 1887 { 1888 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1889 return 0; 1890 1891 if (ext_adv_capable(hdev)) 1892 return hci_set_ext_adv_data_sync(hdev, instance); 1893 1894 return hci_set_adv_data_sync(hdev, instance); 1895 } 1896 1897 int hci_schedule_adv_instance_sync(struct hci_dev *hdev, u8 instance, 1898 bool force) 1899 { 1900 struct adv_info *adv = NULL; 1901 u16 timeout; 1902 1903 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) && !ext_adv_capable(hdev)) 1904 return -EPERM; 1905 1906 if (hdev->adv_instance_timeout) 1907 return -EBUSY; 1908 1909 adv = hci_find_adv_instance(hdev, instance); 1910 if (!adv) 1911 return -ENOENT; 1912 1913 /* A zero timeout means unlimited advertising. As long as there is 1914 * only one instance, duration should be ignored. We still set a timeout 1915 * in case further instances are being added later on. 1916 * 1917 * If the remaining lifetime of the instance is more than the duration 1918 * then the timeout corresponds to the duration, otherwise it will be 1919 * reduced to the remaining instance lifetime. 1920 */ 1921 if (adv->timeout == 0 || adv->duration <= adv->remaining_time) 1922 timeout = adv->duration; 1923 else 1924 timeout = adv->remaining_time; 1925 1926 /* The remaining time is being reduced unless the instance is being 1927 * advertised without time limit. 1928 */ 1929 if (adv->timeout) 1930 adv->remaining_time = adv->remaining_time - timeout; 1931 1932 /* Only use work for scheduling instances with legacy advertising */ 1933 if (!ext_adv_capable(hdev)) { 1934 hdev->adv_instance_timeout = timeout; 1935 queue_delayed_work(hdev->req_workqueue, 1936 &hdev->adv_instance_expire, 1937 msecs_to_jiffies(timeout * 1000)); 1938 } 1939 1940 /* If we're just re-scheduling the same instance again then do not 1941 * execute any HCI commands. This happens when a single instance is 1942 * being advertised. 1943 */ 1944 if (!force && hdev->cur_adv_instance == instance && 1945 hci_dev_test_flag(hdev, HCI_LE_ADV)) 1946 return 0; 1947 1948 hdev->cur_adv_instance = instance; 1949 1950 return hci_start_adv_sync(hdev, instance); 1951 } 1952 1953 static int hci_clear_adv_sets_sync(struct hci_dev *hdev, struct sock *sk) 1954 { 1955 int err; 1956 1957 if (!ext_adv_capable(hdev)) 1958 return 0; 1959 1960 /* Disable instance 0x00 to disable all instances */ 1961 err = hci_disable_ext_adv_instance_sync(hdev, 0x00); 1962 if (err) 1963 return err; 1964 1965 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CLEAR_ADV_SETS, 1966 0, NULL, 0, HCI_CMD_TIMEOUT, sk); 1967 } 1968 1969 static int hci_clear_adv_sync(struct hci_dev *hdev, struct sock *sk, bool force) 1970 { 1971 struct adv_info *adv, *n; 1972 int err = 0; 1973 1974 if (ext_adv_capable(hdev)) 1975 /* Remove all existing sets */ 1976 err = hci_clear_adv_sets_sync(hdev, sk); 1977 if (ext_adv_capable(hdev)) 1978 return err; 1979 1980 /* This is safe as long as there is no command send while the lock is 1981 * held. 1982 */ 1983 hci_dev_lock(hdev); 1984 1985 /* Cleanup non-ext instances */ 1986 list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) { 1987 u8 instance = adv->instance; 1988 int err; 1989 1990 if (!(force || adv->timeout)) 1991 continue; 1992 1993 err = hci_remove_adv_instance(hdev, instance); 1994 if (!err) 1995 mgmt_advertising_removed(sk, hdev, instance); 1996 } 1997 1998 hci_dev_unlock(hdev); 1999 2000 return 0; 2001 } 2002 2003 static int hci_remove_adv_sync(struct hci_dev *hdev, u8 instance, 2004 struct sock *sk) 2005 { 2006 int err = 0; 2007 2008 /* If we use extended advertising, instance has to be removed first. */ 2009 if (ext_adv_capable(hdev)) 2010 err = hci_remove_ext_adv_instance_sync(hdev, instance, sk); 2011 if (ext_adv_capable(hdev)) 2012 return err; 2013 2014 /* This is safe as long as there is no command send while the lock is 2015 * held. 2016 */ 2017 hci_dev_lock(hdev); 2018 2019 err = hci_remove_adv_instance(hdev, instance); 2020 if (!err) 2021 mgmt_advertising_removed(sk, hdev, instance); 2022 2023 hci_dev_unlock(hdev); 2024 2025 return err; 2026 } 2027 2028 /* For a single instance: 2029 * - force == true: The instance will be removed even when its remaining 2030 * lifetime is not zero. 2031 * - force == false: the instance will be deactivated but kept stored unless 2032 * the remaining lifetime is zero. 2033 * 2034 * For instance == 0x00: 2035 * - force == true: All instances will be removed regardless of their timeout 2036 * setting. 2037 * - force == false: Only instances that have a timeout will be removed. 2038 */ 2039 int hci_remove_advertising_sync(struct hci_dev *hdev, struct sock *sk, 2040 u8 instance, bool force) 2041 { 2042 struct adv_info *next = NULL; 2043 int err; 2044 2045 /* Cancel any timeout concerning the removed instance(s). */ 2046 if (!instance || hdev->cur_adv_instance == instance) 2047 cancel_adv_timeout(hdev); 2048 2049 /* Get the next instance to advertise BEFORE we remove 2050 * the current one. This can be the same instance again 2051 * if there is only one instance. 2052 */ 2053 if (hdev->cur_adv_instance == instance) 2054 next = hci_get_next_instance(hdev, instance); 2055 2056 if (!instance) { 2057 err = hci_clear_adv_sync(hdev, sk, force); 2058 if (err) 2059 return err; 2060 } else { 2061 struct adv_info *adv = hci_find_adv_instance(hdev, instance); 2062 2063 if (force || (adv && adv->timeout && !adv->remaining_time)) { 2064 /* Don't advertise a removed instance. */ 2065 if (next && next->instance == instance) 2066 next = NULL; 2067 2068 err = hci_remove_adv_sync(hdev, instance, sk); 2069 if (err) 2070 return err; 2071 } 2072 } 2073 2074 if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING)) 2075 return 0; 2076 2077 if (next && !ext_adv_capable(hdev)) 2078 hci_schedule_adv_instance_sync(hdev, next->instance, false); 2079 2080 return 0; 2081 } 2082 2083 int hci_read_rssi_sync(struct hci_dev *hdev, __le16 handle) 2084 { 2085 struct hci_cp_read_rssi cp; 2086 2087 cp.handle = handle; 2088 return __hci_cmd_sync_status(hdev, HCI_OP_READ_RSSI, 2089 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2090 } 2091 2092 int hci_read_clock_sync(struct hci_dev *hdev, struct hci_cp_read_clock *cp) 2093 { 2094 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLOCK, 2095 sizeof(*cp), cp, HCI_CMD_TIMEOUT); 2096 } 2097 2098 int hci_read_tx_power_sync(struct hci_dev *hdev, __le16 handle, u8 type) 2099 { 2100 struct hci_cp_read_tx_power cp; 2101 2102 cp.handle = handle; 2103 cp.type = type; 2104 return __hci_cmd_sync_status(hdev, HCI_OP_READ_TX_POWER, 2105 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2106 } 2107 2108 int hci_disable_advertising_sync(struct hci_dev *hdev) 2109 { 2110 u8 enable = 0x00; 2111 int err = 0; 2112 2113 /* If controller is not advertising we are done. */ 2114 if (!hci_dev_test_flag(hdev, HCI_LE_ADV)) 2115 return 0; 2116 2117 if (ext_adv_capable(hdev)) 2118 err = hci_disable_ext_adv_instance_sync(hdev, 0x00); 2119 if (ext_adv_capable(hdev)) 2120 return err; 2121 2122 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 2123 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 2124 } 2125 2126 static int hci_le_set_ext_scan_enable_sync(struct hci_dev *hdev, u8 val, 2127 u8 filter_dup) 2128 { 2129 struct hci_cp_le_set_ext_scan_enable cp; 2130 2131 memset(&cp, 0, sizeof(cp)); 2132 cp.enable = val; 2133 2134 if (hci_dev_test_flag(hdev, HCI_MESH)) 2135 cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 2136 else 2137 cp.filter_dup = filter_dup; 2138 2139 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_ENABLE, 2140 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2141 } 2142 2143 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val, 2144 u8 filter_dup) 2145 { 2146 struct hci_cp_le_set_scan_enable cp; 2147 2148 if (use_ext_scan(hdev)) 2149 return hci_le_set_ext_scan_enable_sync(hdev, val, filter_dup); 2150 2151 memset(&cp, 0, sizeof(cp)); 2152 cp.enable = val; 2153 2154 if (val && hci_dev_test_flag(hdev, HCI_MESH)) 2155 cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 2156 else 2157 cp.filter_dup = filter_dup; 2158 2159 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_ENABLE, 2160 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2161 } 2162 2163 static int hci_le_set_addr_resolution_enable_sync(struct hci_dev *hdev, u8 val) 2164 { 2165 if (!use_ll_privacy(hdev)) 2166 return 0; 2167 2168 /* If controller is not/already resolving we are done. */ 2169 if (val == hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) 2170 return 0; 2171 2172 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 2173 sizeof(val), &val, HCI_CMD_TIMEOUT); 2174 } 2175 2176 static int hci_scan_disable_sync(struct hci_dev *hdev) 2177 { 2178 int err; 2179 2180 /* If controller is not scanning we are done. */ 2181 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 2182 return 0; 2183 2184 if (hdev->scanning_paused) { 2185 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2186 return 0; 2187 } 2188 2189 err = hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00); 2190 if (err) { 2191 bt_dev_err(hdev, "Unable to disable scanning: %d", err); 2192 return err; 2193 } 2194 2195 return err; 2196 } 2197 2198 static bool scan_use_rpa(struct hci_dev *hdev) 2199 { 2200 return hci_dev_test_flag(hdev, HCI_PRIVACY); 2201 } 2202 2203 static void hci_start_interleave_scan(struct hci_dev *hdev) 2204 { 2205 hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER; 2206 queue_delayed_work(hdev->req_workqueue, 2207 &hdev->interleave_scan, 0); 2208 } 2209 2210 static void cancel_interleave_scan(struct hci_dev *hdev) 2211 { 2212 bt_dev_dbg(hdev, "cancelling interleave scan"); 2213 2214 cancel_delayed_work_sync(&hdev->interleave_scan); 2215 2216 hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE; 2217 } 2218 2219 /* Return true if interleave_scan wasn't started until exiting this function, 2220 * otherwise, return false 2221 */ 2222 static bool hci_update_interleaved_scan_sync(struct hci_dev *hdev) 2223 { 2224 /* Do interleaved scan only if all of the following are true: 2225 * - There is at least one ADV monitor 2226 * - At least one pending LE connection or one device to be scanned for 2227 * - Monitor offloading is not supported 2228 * If so, we should alternate between allowlist scan and one without 2229 * any filters to save power. 2230 */ 2231 bool use_interleaving = hci_is_adv_monitoring(hdev) && 2232 !(list_empty(&hdev->pend_le_conns) && 2233 list_empty(&hdev->pend_le_reports)) && 2234 hci_get_adv_monitor_offload_ext(hdev) == 2235 HCI_ADV_MONITOR_EXT_NONE; 2236 bool is_interleaving = is_interleave_scanning(hdev); 2237 2238 if (use_interleaving && !is_interleaving) { 2239 hci_start_interleave_scan(hdev); 2240 bt_dev_dbg(hdev, "starting interleave scan"); 2241 return true; 2242 } 2243 2244 if (!use_interleaving && is_interleaving) 2245 cancel_interleave_scan(hdev); 2246 2247 return false; 2248 } 2249 2250 /* Removes connection to resolve list if needed.*/ 2251 static int hci_le_del_resolve_list_sync(struct hci_dev *hdev, 2252 bdaddr_t *bdaddr, u8 bdaddr_type) 2253 { 2254 struct hci_cp_le_del_from_resolv_list cp; 2255 struct bdaddr_list_with_irk *entry; 2256 2257 if (!use_ll_privacy(hdev)) 2258 return 0; 2259 2260 /* Check if the IRK has been programmed */ 2261 entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, bdaddr, 2262 bdaddr_type); 2263 if (!entry) 2264 return 0; 2265 2266 cp.bdaddr_type = bdaddr_type; 2267 bacpy(&cp.bdaddr, bdaddr); 2268 2269 return __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_RESOLV_LIST, 2270 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2271 } 2272 2273 static int hci_le_del_accept_list_sync(struct hci_dev *hdev, 2274 bdaddr_t *bdaddr, u8 bdaddr_type) 2275 { 2276 struct hci_cp_le_del_from_accept_list cp; 2277 int err; 2278 2279 /* Check if device is on accept list before removing it */ 2280 if (!hci_bdaddr_list_lookup(&hdev->le_accept_list, bdaddr, bdaddr_type)) 2281 return 0; 2282 2283 cp.bdaddr_type = bdaddr_type; 2284 bacpy(&cp.bdaddr, bdaddr); 2285 2286 /* Ignore errors when removing from resolving list as that is likely 2287 * that the device was never added. 2288 */ 2289 hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type); 2290 2291 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_ACCEPT_LIST, 2292 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2293 if (err) { 2294 bt_dev_err(hdev, "Unable to remove from allow list: %d", err); 2295 return err; 2296 } 2297 2298 bt_dev_dbg(hdev, "Remove %pMR (0x%x) from allow list", &cp.bdaddr, 2299 cp.bdaddr_type); 2300 2301 return 0; 2302 } 2303 2304 struct conn_params { 2305 bdaddr_t addr; 2306 u8 addr_type; 2307 hci_conn_flags_t flags; 2308 u8 privacy_mode; 2309 }; 2310 2311 /* Adds connection to resolve list if needed. 2312 * Setting params to NULL programs local hdev->irk 2313 */ 2314 static int hci_le_add_resolve_list_sync(struct hci_dev *hdev, 2315 struct conn_params *params) 2316 { 2317 struct hci_cp_le_add_to_resolv_list cp; 2318 struct smp_irk *irk; 2319 struct bdaddr_list_with_irk *entry; 2320 struct hci_conn_params *p; 2321 2322 if (!use_ll_privacy(hdev)) 2323 return 0; 2324 2325 /* Attempt to program local identity address, type and irk if params is 2326 * NULL. 2327 */ 2328 if (!params) { 2329 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 2330 return 0; 2331 2332 hci_copy_identity_address(hdev, &cp.bdaddr, &cp.bdaddr_type); 2333 memcpy(cp.peer_irk, hdev->irk, 16); 2334 goto done; 2335 } 2336 2337 irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type); 2338 if (!irk) 2339 return 0; 2340 2341 /* Check if the IK has _not_ been programmed yet. */ 2342 entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, 2343 ¶ms->addr, 2344 params->addr_type); 2345 if (entry) 2346 return 0; 2347 2348 cp.bdaddr_type = params->addr_type; 2349 bacpy(&cp.bdaddr, ¶ms->addr); 2350 memcpy(cp.peer_irk, irk->val, 16); 2351 2352 /* Default privacy mode is always Network */ 2353 params->privacy_mode = HCI_NETWORK_PRIVACY; 2354 2355 rcu_read_lock(); 2356 p = hci_pend_le_action_lookup(&hdev->pend_le_conns, 2357 ¶ms->addr, params->addr_type); 2358 if (!p) 2359 p = hci_pend_le_action_lookup(&hdev->pend_le_reports, 2360 ¶ms->addr, params->addr_type); 2361 if (p) 2362 WRITE_ONCE(p->privacy_mode, HCI_NETWORK_PRIVACY); 2363 rcu_read_unlock(); 2364 2365 done: 2366 if (hci_dev_test_flag(hdev, HCI_PRIVACY)) 2367 memcpy(cp.local_irk, hdev->irk, 16); 2368 else 2369 memset(cp.local_irk, 0, 16); 2370 2371 return __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_RESOLV_LIST, 2372 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2373 } 2374 2375 /* Set Device Privacy Mode. */ 2376 static int hci_le_set_privacy_mode_sync(struct hci_dev *hdev, 2377 struct conn_params *params) 2378 { 2379 struct hci_cp_le_set_privacy_mode cp; 2380 struct smp_irk *irk; 2381 2382 /* If device privacy mode has already been set there is nothing to do */ 2383 if (params->privacy_mode == HCI_DEVICE_PRIVACY) 2384 return 0; 2385 2386 /* Check if HCI_CONN_FLAG_DEVICE_PRIVACY has been set as it also 2387 * indicates that LL Privacy has been enabled and 2388 * HCI_OP_LE_SET_PRIVACY_MODE is supported. 2389 */ 2390 if (!(params->flags & HCI_CONN_FLAG_DEVICE_PRIVACY)) 2391 return 0; 2392 2393 irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type); 2394 if (!irk) 2395 return 0; 2396 2397 memset(&cp, 0, sizeof(cp)); 2398 cp.bdaddr_type = irk->addr_type; 2399 bacpy(&cp.bdaddr, &irk->bdaddr); 2400 cp.mode = HCI_DEVICE_PRIVACY; 2401 2402 /* Note: params->privacy_mode is not updated since it is a copy */ 2403 2404 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PRIVACY_MODE, 2405 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2406 } 2407 2408 /* Adds connection to allow list if needed, if the device uses RPA (has IRK) 2409 * this attempts to program the device in the resolving list as well and 2410 * properly set the privacy mode. 2411 */ 2412 static int hci_le_add_accept_list_sync(struct hci_dev *hdev, 2413 struct conn_params *params, 2414 u8 *num_entries) 2415 { 2416 struct hci_cp_le_add_to_accept_list cp; 2417 int err; 2418 2419 /* During suspend, only wakeable devices can be in acceptlist */ 2420 if (hdev->suspended && 2421 !(params->flags & HCI_CONN_FLAG_REMOTE_WAKEUP)) { 2422 hci_le_del_accept_list_sync(hdev, ¶ms->addr, 2423 params->addr_type); 2424 return 0; 2425 } 2426 2427 /* Select filter policy to accept all advertising */ 2428 if (*num_entries >= hdev->le_accept_list_size) 2429 return -ENOSPC; 2430 2431 /* Accept list can not be used with RPAs */ 2432 if (!use_ll_privacy(hdev) && 2433 hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type)) 2434 return -EINVAL; 2435 2436 /* Attempt to program the device in the resolving list first to avoid 2437 * having to rollback in case it fails since the resolving list is 2438 * dynamic it can probably be smaller than the accept list. 2439 */ 2440 err = hci_le_add_resolve_list_sync(hdev, params); 2441 if (err) { 2442 bt_dev_err(hdev, "Unable to add to resolve list: %d", err); 2443 return err; 2444 } 2445 2446 /* Set Privacy Mode */ 2447 err = hci_le_set_privacy_mode_sync(hdev, params); 2448 if (err) { 2449 bt_dev_err(hdev, "Unable to set privacy mode: %d", err); 2450 return err; 2451 } 2452 2453 /* Check if already in accept list */ 2454 if (hci_bdaddr_list_lookup(&hdev->le_accept_list, ¶ms->addr, 2455 params->addr_type)) 2456 return 0; 2457 2458 *num_entries += 1; 2459 cp.bdaddr_type = params->addr_type; 2460 bacpy(&cp.bdaddr, ¶ms->addr); 2461 2462 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST, 2463 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2464 if (err) { 2465 bt_dev_err(hdev, "Unable to add to allow list: %d", err); 2466 /* Rollback the device from the resolving list */ 2467 hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type); 2468 return err; 2469 } 2470 2471 bt_dev_dbg(hdev, "Add %pMR (0x%x) to allow list", &cp.bdaddr, 2472 cp.bdaddr_type); 2473 2474 return 0; 2475 } 2476 2477 /* This function disables/pause all advertising instances */ 2478 static int hci_pause_advertising_sync(struct hci_dev *hdev) 2479 { 2480 int err; 2481 int old_state; 2482 2483 /* If already been paused there is nothing to do. */ 2484 if (hdev->advertising_paused) 2485 return 0; 2486 2487 bt_dev_dbg(hdev, "Pausing directed advertising"); 2488 2489 /* Stop directed advertising */ 2490 old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING); 2491 if (old_state) { 2492 /* When discoverable timeout triggers, then just make sure 2493 * the limited discoverable flag is cleared. Even in the case 2494 * of a timeout triggered from general discoverable, it is 2495 * safe to unconditionally clear the flag. 2496 */ 2497 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 2498 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 2499 hdev->discov_timeout = 0; 2500 } 2501 2502 bt_dev_dbg(hdev, "Pausing advertising instances"); 2503 2504 /* Call to disable any advertisements active on the controller. 2505 * This will succeed even if no advertisements are configured. 2506 */ 2507 err = hci_disable_advertising_sync(hdev); 2508 if (err) 2509 return err; 2510 2511 /* If we are using software rotation, pause the loop */ 2512 if (!ext_adv_capable(hdev)) 2513 cancel_adv_timeout(hdev); 2514 2515 hdev->advertising_paused = true; 2516 hdev->advertising_old_state = old_state; 2517 2518 return 0; 2519 } 2520 2521 /* This function enables all user advertising instances */ 2522 static int hci_resume_advertising_sync(struct hci_dev *hdev) 2523 { 2524 struct adv_info *adv, *tmp; 2525 int err; 2526 2527 /* If advertising has not been paused there is nothing to do. */ 2528 if (!hdev->advertising_paused) 2529 return 0; 2530 2531 /* Resume directed advertising */ 2532 hdev->advertising_paused = false; 2533 if (hdev->advertising_old_state) { 2534 hci_dev_set_flag(hdev, HCI_ADVERTISING); 2535 hdev->advertising_old_state = 0; 2536 } 2537 2538 bt_dev_dbg(hdev, "Resuming advertising instances"); 2539 2540 if (ext_adv_capable(hdev)) { 2541 /* Call for each tracked instance to be re-enabled */ 2542 list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) { 2543 err = hci_enable_ext_advertising_sync(hdev, 2544 adv->instance); 2545 if (!err) 2546 continue; 2547 2548 /* If the instance cannot be resumed remove it */ 2549 hci_remove_ext_adv_instance_sync(hdev, adv->instance, 2550 NULL); 2551 } 2552 } else { 2553 /* Schedule for most recent instance to be restarted and begin 2554 * the software rotation loop 2555 */ 2556 err = hci_schedule_adv_instance_sync(hdev, 2557 hdev->cur_adv_instance, 2558 true); 2559 } 2560 2561 hdev->advertising_paused = false; 2562 2563 return err; 2564 } 2565 2566 static int hci_pause_addr_resolution(struct hci_dev *hdev) 2567 { 2568 int err; 2569 2570 if (!use_ll_privacy(hdev)) 2571 return 0; 2572 2573 if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) 2574 return 0; 2575 2576 /* Cannot disable addr resolution if scanning is enabled or 2577 * when initiating an LE connection. 2578 */ 2579 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) || 2580 hci_lookup_le_connect(hdev)) { 2581 bt_dev_err(hdev, "Command not allowed when scan/LE connect"); 2582 return -EPERM; 2583 } 2584 2585 /* Cannot disable addr resolution if advertising is enabled. */ 2586 err = hci_pause_advertising_sync(hdev); 2587 if (err) { 2588 bt_dev_err(hdev, "Pause advertising failed: %d", err); 2589 return err; 2590 } 2591 2592 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00); 2593 if (err) 2594 bt_dev_err(hdev, "Unable to disable Address Resolution: %d", 2595 err); 2596 2597 /* Return if address resolution is disabled and RPA is not used. */ 2598 if (!err && scan_use_rpa(hdev)) 2599 return 0; 2600 2601 hci_resume_advertising_sync(hdev); 2602 return err; 2603 } 2604 2605 struct sk_buff *hci_read_local_oob_data_sync(struct hci_dev *hdev, 2606 bool extended, struct sock *sk) 2607 { 2608 u16 opcode = extended ? HCI_OP_READ_LOCAL_OOB_EXT_DATA : 2609 HCI_OP_READ_LOCAL_OOB_DATA; 2610 2611 return __hci_cmd_sync_sk(hdev, opcode, 0, NULL, 0, HCI_CMD_TIMEOUT, sk); 2612 } 2613 2614 static struct conn_params *conn_params_copy(struct list_head *list, size_t *n) 2615 { 2616 struct hci_conn_params *params; 2617 struct conn_params *p; 2618 size_t i; 2619 2620 rcu_read_lock(); 2621 2622 i = 0; 2623 list_for_each_entry_rcu(params, list, action) 2624 ++i; 2625 *n = i; 2626 2627 rcu_read_unlock(); 2628 2629 p = kvcalloc(*n, sizeof(struct conn_params), GFP_KERNEL); 2630 if (!p) 2631 return NULL; 2632 2633 rcu_read_lock(); 2634 2635 i = 0; 2636 list_for_each_entry_rcu(params, list, action) { 2637 /* Racing adds are handled in next scan update */ 2638 if (i >= *n) 2639 break; 2640 2641 /* No hdev->lock, but: addr, addr_type are immutable. 2642 * privacy_mode is only written by us or in 2643 * hci_cc_le_set_privacy_mode that we wait for. 2644 * We should be idempotent so MGMT updating flags 2645 * while we are processing is OK. 2646 */ 2647 bacpy(&p[i].addr, ¶ms->addr); 2648 p[i].addr_type = params->addr_type; 2649 p[i].flags = READ_ONCE(params->flags); 2650 p[i].privacy_mode = READ_ONCE(params->privacy_mode); 2651 ++i; 2652 } 2653 2654 rcu_read_unlock(); 2655 2656 *n = i; 2657 return p; 2658 } 2659 2660 /* Clear LE Accept List */ 2661 static int hci_le_clear_accept_list_sync(struct hci_dev *hdev) 2662 { 2663 if (!(hdev->commands[26] & 0x80)) 2664 return 0; 2665 2666 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL, 2667 HCI_CMD_TIMEOUT); 2668 } 2669 2670 /* Device must not be scanning when updating the accept list. 2671 * 2672 * Update is done using the following sequence: 2673 * 2674 * use_ll_privacy((Disable Advertising) -> Disable Resolving List) -> 2675 * Remove Devices From Accept List -> 2676 * (has IRK && use_ll_privacy(Remove Devices From Resolving List))-> 2677 * Add Devices to Accept List -> 2678 * (has IRK && use_ll_privacy(Remove Devices From Resolving List)) -> 2679 * use_ll_privacy(Enable Resolving List -> (Enable Advertising)) -> 2680 * Enable Scanning 2681 * 2682 * In case of failure advertising shall be restored to its original state and 2683 * return would disable accept list since either accept or resolving list could 2684 * not be programmed. 2685 * 2686 */ 2687 static u8 hci_update_accept_list_sync(struct hci_dev *hdev) 2688 { 2689 struct conn_params *params; 2690 struct bdaddr_list *b, *t; 2691 u8 num_entries = 0; 2692 bool pend_conn, pend_report; 2693 u8 filter_policy; 2694 size_t i, n; 2695 int err; 2696 2697 /* Pause advertising if resolving list can be used as controllers 2698 * cannot accept resolving list modifications while advertising. 2699 */ 2700 if (use_ll_privacy(hdev)) { 2701 err = hci_pause_advertising_sync(hdev); 2702 if (err) { 2703 bt_dev_err(hdev, "pause advertising failed: %d", err); 2704 return 0x00; 2705 } 2706 } 2707 2708 /* Disable address resolution while reprogramming accept list since 2709 * devices that do have an IRK will be programmed in the resolving list 2710 * when LL Privacy is enabled. 2711 */ 2712 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00); 2713 if (err) { 2714 bt_dev_err(hdev, "Unable to disable LL privacy: %d", err); 2715 goto done; 2716 } 2717 2718 /* Force address filtering if PA Sync is in progress */ 2719 if (hci_dev_test_flag(hdev, HCI_PA_SYNC)) { 2720 struct hci_cp_le_pa_create_sync *sent; 2721 2722 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_PA_CREATE_SYNC); 2723 if (sent) { 2724 struct conn_params pa; 2725 2726 memset(&pa, 0, sizeof(pa)); 2727 2728 bacpy(&pa.addr, &sent->addr); 2729 pa.addr_type = sent->addr_type; 2730 2731 /* Clear first since there could be addresses left 2732 * behind. 2733 */ 2734 hci_le_clear_accept_list_sync(hdev); 2735 2736 num_entries = 1; 2737 err = hci_le_add_accept_list_sync(hdev, &pa, 2738 &num_entries); 2739 goto done; 2740 } 2741 } 2742 2743 /* Go through the current accept list programmed into the 2744 * controller one by one and check if that address is connected or is 2745 * still in the list of pending connections or list of devices to 2746 * report. If not present in either list, then remove it from 2747 * the controller. 2748 */ 2749 list_for_each_entry_safe(b, t, &hdev->le_accept_list, list) { 2750 if (hci_conn_hash_lookup_le(hdev, &b->bdaddr, b->bdaddr_type)) 2751 continue; 2752 2753 /* Pointers not dereferenced, no locks needed */ 2754 pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns, 2755 &b->bdaddr, 2756 b->bdaddr_type); 2757 pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports, 2758 &b->bdaddr, 2759 b->bdaddr_type); 2760 2761 /* If the device is not likely to connect or report, 2762 * remove it from the acceptlist. 2763 */ 2764 if (!pend_conn && !pend_report) { 2765 hci_le_del_accept_list_sync(hdev, &b->bdaddr, 2766 b->bdaddr_type); 2767 continue; 2768 } 2769 2770 num_entries++; 2771 } 2772 2773 /* Since all no longer valid accept list entries have been 2774 * removed, walk through the list of pending connections 2775 * and ensure that any new device gets programmed into 2776 * the controller. 2777 * 2778 * If the list of the devices is larger than the list of 2779 * available accept list entries in the controller, then 2780 * just abort and return filer policy value to not use the 2781 * accept list. 2782 * 2783 * The list and params may be mutated while we wait for events, 2784 * so make a copy and iterate it. 2785 */ 2786 2787 params = conn_params_copy(&hdev->pend_le_conns, &n); 2788 if (!params) { 2789 err = -ENOMEM; 2790 goto done; 2791 } 2792 2793 for (i = 0; i < n; ++i) { 2794 err = hci_le_add_accept_list_sync(hdev, ¶ms[i], 2795 &num_entries); 2796 if (err) { 2797 kvfree(params); 2798 goto done; 2799 } 2800 } 2801 2802 kvfree(params); 2803 2804 /* After adding all new pending connections, walk through 2805 * the list of pending reports and also add these to the 2806 * accept list if there is still space. Abort if space runs out. 2807 */ 2808 2809 params = conn_params_copy(&hdev->pend_le_reports, &n); 2810 if (!params) { 2811 err = -ENOMEM; 2812 goto done; 2813 } 2814 2815 for (i = 0; i < n; ++i) { 2816 err = hci_le_add_accept_list_sync(hdev, ¶ms[i], 2817 &num_entries); 2818 if (err) { 2819 kvfree(params); 2820 goto done; 2821 } 2822 } 2823 2824 kvfree(params); 2825 2826 /* Use the allowlist unless the following conditions are all true: 2827 * - We are not currently suspending 2828 * - There are 1 or more ADV monitors registered and it's not offloaded 2829 * - Interleaved scanning is not currently using the allowlist 2830 */ 2831 if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended && 2832 hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE && 2833 hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST) 2834 err = -EINVAL; 2835 2836 done: 2837 filter_policy = err ? 0x00 : 0x01; 2838 2839 /* Enable address resolution when LL Privacy is enabled. */ 2840 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x01); 2841 if (err) 2842 bt_dev_err(hdev, "Unable to enable LL privacy: %d", err); 2843 2844 /* Resume advertising if it was paused */ 2845 if (use_ll_privacy(hdev)) 2846 hci_resume_advertising_sync(hdev); 2847 2848 /* Select filter policy to use accept list */ 2849 return filter_policy; 2850 } 2851 2852 static void hci_le_scan_phy_params(struct hci_cp_le_scan_phy_params *cp, 2853 u8 type, u16 interval, u16 window) 2854 { 2855 cp->type = type; 2856 cp->interval = cpu_to_le16(interval); 2857 cp->window = cpu_to_le16(window); 2858 } 2859 2860 static int hci_le_set_ext_scan_param_sync(struct hci_dev *hdev, u8 type, 2861 u16 interval, u16 window, 2862 u8 own_addr_type, u8 filter_policy) 2863 { 2864 struct hci_cp_le_set_ext_scan_params *cp; 2865 struct hci_cp_le_scan_phy_params *phy; 2866 u8 data[sizeof(*cp) + sizeof(*phy) * 2]; 2867 u8 num_phy = 0x00; 2868 2869 cp = (void *)data; 2870 phy = (void *)cp->data; 2871 2872 memset(data, 0, sizeof(data)); 2873 2874 cp->own_addr_type = own_addr_type; 2875 cp->filter_policy = filter_policy; 2876 2877 /* Check if PA Sync is in progress then select the PHY based on the 2878 * hci_conn.iso_qos. 2879 */ 2880 if (hci_dev_test_flag(hdev, HCI_PA_SYNC)) { 2881 struct hci_cp_le_add_to_accept_list *sent; 2882 2883 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST); 2884 if (sent) { 2885 struct hci_conn *conn; 2886 2887 conn = hci_conn_hash_lookup_ba(hdev, ISO_LINK, 2888 &sent->bdaddr); 2889 if (conn) { 2890 struct bt_iso_qos *qos = &conn->iso_qos; 2891 2892 if (qos->bcast.in.phy & BT_ISO_PHY_1M || 2893 qos->bcast.in.phy & BT_ISO_PHY_2M) { 2894 cp->scanning_phys |= LE_SCAN_PHY_1M; 2895 hci_le_scan_phy_params(phy, type, 2896 interval, 2897 window); 2898 num_phy++; 2899 phy++; 2900 } 2901 2902 if (qos->bcast.in.phy & BT_ISO_PHY_CODED) { 2903 cp->scanning_phys |= LE_SCAN_PHY_CODED; 2904 hci_le_scan_phy_params(phy, type, 2905 interval * 3, 2906 window * 3); 2907 num_phy++; 2908 phy++; 2909 } 2910 2911 if (num_phy) 2912 goto done; 2913 } 2914 } 2915 } 2916 2917 if (scan_1m(hdev) || scan_2m(hdev)) { 2918 cp->scanning_phys |= LE_SCAN_PHY_1M; 2919 hci_le_scan_phy_params(phy, type, interval, window); 2920 num_phy++; 2921 phy++; 2922 } 2923 2924 if (scan_coded(hdev)) { 2925 cp->scanning_phys |= LE_SCAN_PHY_CODED; 2926 hci_le_scan_phy_params(phy, type, interval * 3, window * 3); 2927 num_phy++; 2928 phy++; 2929 } 2930 2931 done: 2932 if (!num_phy) 2933 return -EINVAL; 2934 2935 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_PARAMS, 2936 sizeof(*cp) + sizeof(*phy) * num_phy, 2937 data, HCI_CMD_TIMEOUT); 2938 } 2939 2940 static int hci_le_set_scan_param_sync(struct hci_dev *hdev, u8 type, 2941 u16 interval, u16 window, 2942 u8 own_addr_type, u8 filter_policy) 2943 { 2944 struct hci_cp_le_set_scan_param cp; 2945 2946 if (use_ext_scan(hdev)) 2947 return hci_le_set_ext_scan_param_sync(hdev, type, interval, 2948 window, own_addr_type, 2949 filter_policy); 2950 2951 memset(&cp, 0, sizeof(cp)); 2952 cp.type = type; 2953 cp.interval = cpu_to_le16(interval); 2954 cp.window = cpu_to_le16(window); 2955 cp.own_address_type = own_addr_type; 2956 cp.filter_policy = filter_policy; 2957 2958 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_PARAM, 2959 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 2960 } 2961 2962 static int hci_start_scan_sync(struct hci_dev *hdev, u8 type, u16 interval, 2963 u16 window, u8 own_addr_type, u8 filter_policy, 2964 u8 filter_dup) 2965 { 2966 int err; 2967 2968 if (hdev->scanning_paused) { 2969 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2970 return 0; 2971 } 2972 2973 err = hci_le_set_scan_param_sync(hdev, type, interval, window, 2974 own_addr_type, filter_policy); 2975 if (err) 2976 return err; 2977 2978 return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, filter_dup); 2979 } 2980 2981 static int hci_passive_scan_sync(struct hci_dev *hdev) 2982 { 2983 u8 own_addr_type; 2984 u8 filter_policy; 2985 u16 window, interval; 2986 u8 filter_dups = LE_SCAN_FILTER_DUP_ENABLE; 2987 int err; 2988 2989 if (hdev->scanning_paused) { 2990 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2991 return 0; 2992 } 2993 2994 err = hci_scan_disable_sync(hdev); 2995 if (err) { 2996 bt_dev_err(hdev, "disable scanning failed: %d", err); 2997 return err; 2998 } 2999 3000 /* Set require_privacy to false since no SCAN_REQ are send 3001 * during passive scanning. Not using an non-resolvable address 3002 * here is important so that peer devices using direct 3003 * advertising with our address will be correctly reported 3004 * by the controller. 3005 */ 3006 if (hci_update_random_address_sync(hdev, false, scan_use_rpa(hdev), 3007 &own_addr_type)) 3008 return 0; 3009 3010 if (hdev->enable_advmon_interleave_scan && 3011 hci_update_interleaved_scan_sync(hdev)) 3012 return 0; 3013 3014 bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state); 3015 3016 /* Adding or removing entries from the accept list must 3017 * happen before enabling scanning. The controller does 3018 * not allow accept list modification while scanning. 3019 */ 3020 filter_policy = hci_update_accept_list_sync(hdev); 3021 3022 /* If suspended and filter_policy set to 0x00 (no acceptlist) then 3023 * passive scanning cannot be started since that would require the host 3024 * to be woken up to process the reports. 3025 */ 3026 if (hdev->suspended && !filter_policy) { 3027 /* Check if accept list is empty then there is no need to scan 3028 * while suspended. 3029 */ 3030 if (list_empty(&hdev->le_accept_list)) 3031 return 0; 3032 3033 /* If there are devices is the accept_list that means some 3034 * devices could not be programmed which in non-suspended case 3035 * means filter_policy needs to be set to 0x00 so the host needs 3036 * to filter, but since this is treating suspended case we 3037 * can ignore device needing host to filter to allow devices in 3038 * the acceptlist to be able to wakeup the system. 3039 */ 3040 filter_policy = 0x01; 3041 } 3042 3043 /* When the controller is using random resolvable addresses and 3044 * with that having LE privacy enabled, then controllers with 3045 * Extended Scanner Filter Policies support can now enable support 3046 * for handling directed advertising. 3047 * 3048 * So instead of using filter polices 0x00 (no acceptlist) 3049 * and 0x01 (acceptlist enabled) use the new filter policies 3050 * 0x02 (no acceptlist) and 0x03 (acceptlist enabled). 3051 */ 3052 if (hci_dev_test_flag(hdev, HCI_PRIVACY) && 3053 (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)) 3054 filter_policy |= 0x02; 3055 3056 if (hdev->suspended) { 3057 window = hdev->le_scan_window_suspend; 3058 interval = hdev->le_scan_int_suspend; 3059 } else if (hci_is_le_conn_scanning(hdev)) { 3060 window = hdev->le_scan_window_connect; 3061 interval = hdev->le_scan_int_connect; 3062 } else if (hci_is_adv_monitoring(hdev)) { 3063 window = hdev->le_scan_window_adv_monitor; 3064 interval = hdev->le_scan_int_adv_monitor; 3065 3066 /* Disable duplicates filter when scanning for advertisement 3067 * monitor for the following reasons. 3068 * 3069 * For HW pattern filtering (ex. MSFT), Realtek and Qualcomm 3070 * controllers ignore RSSI_Sampling_Period when the duplicates 3071 * filter is enabled. 3072 * 3073 * For SW pattern filtering, when we're not doing interleaved 3074 * scanning, it is necessary to disable duplicates filter, 3075 * otherwise hosts can only receive one advertisement and it's 3076 * impossible to know if a peer is still in range. 3077 */ 3078 filter_dups = LE_SCAN_FILTER_DUP_DISABLE; 3079 } else { 3080 window = hdev->le_scan_window; 3081 interval = hdev->le_scan_interval; 3082 } 3083 3084 /* Disable all filtering for Mesh */ 3085 if (hci_dev_test_flag(hdev, HCI_MESH)) { 3086 filter_policy = 0; 3087 filter_dups = LE_SCAN_FILTER_DUP_DISABLE; 3088 } 3089 3090 bt_dev_dbg(hdev, "LE passive scan with acceptlist = %d", filter_policy); 3091 3092 return hci_start_scan_sync(hdev, LE_SCAN_PASSIVE, interval, window, 3093 own_addr_type, filter_policy, filter_dups); 3094 } 3095 3096 /* This function controls the passive scanning based on hdev->pend_le_conns 3097 * list. If there are pending LE connection we start the background scanning, 3098 * otherwise we stop it in the following sequence: 3099 * 3100 * If there are devices to scan: 3101 * 3102 * Disable Scanning -> Update Accept List -> 3103 * use_ll_privacy((Disable Advertising) -> Disable Resolving List -> 3104 * Update Resolving List -> Enable Resolving List -> (Enable Advertising)) -> 3105 * Enable Scanning 3106 * 3107 * Otherwise: 3108 * 3109 * Disable Scanning 3110 */ 3111 int hci_update_passive_scan_sync(struct hci_dev *hdev) 3112 { 3113 int err; 3114 3115 if (!test_bit(HCI_UP, &hdev->flags) || 3116 test_bit(HCI_INIT, &hdev->flags) || 3117 hci_dev_test_flag(hdev, HCI_SETUP) || 3118 hci_dev_test_flag(hdev, HCI_CONFIG) || 3119 hci_dev_test_flag(hdev, HCI_AUTO_OFF) || 3120 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 3121 return 0; 3122 3123 /* No point in doing scanning if LE support hasn't been enabled */ 3124 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 3125 return 0; 3126 3127 /* If discovery is active don't interfere with it */ 3128 if (hdev->discovery.state != DISCOVERY_STOPPED) 3129 return 0; 3130 3131 /* Reset RSSI and UUID filters when starting background scanning 3132 * since these filters are meant for service discovery only. 3133 * 3134 * The Start Discovery and Start Service Discovery operations 3135 * ensure to set proper values for RSSI threshold and UUID 3136 * filter list. So it is safe to just reset them here. 3137 */ 3138 hci_discovery_filter_clear(hdev); 3139 3140 bt_dev_dbg(hdev, "ADV monitoring is %s", 3141 hci_is_adv_monitoring(hdev) ? "on" : "off"); 3142 3143 if (!hci_dev_test_flag(hdev, HCI_MESH) && 3144 list_empty(&hdev->pend_le_conns) && 3145 list_empty(&hdev->pend_le_reports) && 3146 !hci_is_adv_monitoring(hdev) && 3147 !hci_dev_test_flag(hdev, HCI_PA_SYNC)) { 3148 /* If there is no pending LE connections or devices 3149 * to be scanned for or no ADV monitors, we should stop the 3150 * background scanning. 3151 */ 3152 3153 bt_dev_dbg(hdev, "stopping background scanning"); 3154 3155 err = hci_scan_disable_sync(hdev); 3156 if (err) 3157 bt_dev_err(hdev, "stop background scanning failed: %d", 3158 err); 3159 } else { 3160 /* If there is at least one pending LE connection, we should 3161 * keep the background scan running. 3162 */ 3163 3164 /* If controller is connecting, we should not start scanning 3165 * since some controllers are not able to scan and connect at 3166 * the same time. 3167 */ 3168 if (hci_lookup_le_connect(hdev)) 3169 return 0; 3170 3171 bt_dev_dbg(hdev, "start background scanning"); 3172 3173 err = hci_passive_scan_sync(hdev); 3174 if (err) 3175 bt_dev_err(hdev, "start background scanning failed: %d", 3176 err); 3177 } 3178 3179 return err; 3180 } 3181 3182 static int update_scan_sync(struct hci_dev *hdev, void *data) 3183 { 3184 return hci_update_scan_sync(hdev); 3185 } 3186 3187 int hci_update_scan(struct hci_dev *hdev) 3188 { 3189 return hci_cmd_sync_queue(hdev, update_scan_sync, NULL, NULL); 3190 } 3191 3192 static int update_passive_scan_sync(struct hci_dev *hdev, void *data) 3193 { 3194 return hci_update_passive_scan_sync(hdev); 3195 } 3196 3197 int hci_update_passive_scan(struct hci_dev *hdev) 3198 { 3199 /* Only queue if it would have any effect */ 3200 if (!test_bit(HCI_UP, &hdev->flags) || 3201 test_bit(HCI_INIT, &hdev->flags) || 3202 hci_dev_test_flag(hdev, HCI_SETUP) || 3203 hci_dev_test_flag(hdev, HCI_CONFIG) || 3204 hci_dev_test_flag(hdev, HCI_AUTO_OFF) || 3205 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 3206 return 0; 3207 3208 return hci_cmd_sync_queue_once(hdev, update_passive_scan_sync, NULL, 3209 NULL); 3210 } 3211 3212 int hci_write_sc_support_sync(struct hci_dev *hdev, u8 val) 3213 { 3214 int err; 3215 3216 if (!bredr_sc_enabled(hdev) || lmp_host_sc_capable(hdev)) 3217 return 0; 3218 3219 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT, 3220 sizeof(val), &val, HCI_CMD_TIMEOUT); 3221 3222 if (!err) { 3223 if (val) { 3224 hdev->features[1][0] |= LMP_HOST_SC; 3225 hci_dev_set_flag(hdev, HCI_SC_ENABLED); 3226 } else { 3227 hdev->features[1][0] &= ~LMP_HOST_SC; 3228 hci_dev_clear_flag(hdev, HCI_SC_ENABLED); 3229 } 3230 } 3231 3232 return err; 3233 } 3234 3235 int hci_write_ssp_mode_sync(struct hci_dev *hdev, u8 mode) 3236 { 3237 int err; 3238 3239 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) || 3240 lmp_host_ssp_capable(hdev)) 3241 return 0; 3242 3243 if (!mode && hci_dev_test_flag(hdev, HCI_USE_DEBUG_KEYS)) { 3244 __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE, 3245 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3246 } 3247 3248 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE, 3249 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3250 if (err) 3251 return err; 3252 3253 return hci_write_sc_support_sync(hdev, 0x01); 3254 } 3255 3256 int hci_write_le_host_supported_sync(struct hci_dev *hdev, u8 le, u8 simul) 3257 { 3258 struct hci_cp_write_le_host_supported cp; 3259 3260 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED) || 3261 !lmp_bredr_capable(hdev)) 3262 return 0; 3263 3264 /* Check first if we already have the right host state 3265 * (host features set) 3266 */ 3267 if (le == lmp_host_le_capable(hdev) && 3268 simul == lmp_host_le_br_capable(hdev)) 3269 return 0; 3270 3271 memset(&cp, 0, sizeof(cp)); 3272 3273 cp.le = le; 3274 cp.simul = simul; 3275 3276 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED, 3277 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3278 } 3279 3280 static int hci_powered_update_adv_sync(struct hci_dev *hdev) 3281 { 3282 struct adv_info *adv, *tmp; 3283 int err; 3284 3285 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 3286 return 0; 3287 3288 /* If RPA Resolution has not been enable yet it means the 3289 * resolving list is empty and we should attempt to program the 3290 * local IRK in order to support using own_addr_type 3291 * ADDR_LE_DEV_RANDOM_RESOLVED (0x03). 3292 */ 3293 if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) { 3294 hci_le_add_resolve_list_sync(hdev, NULL); 3295 hci_le_set_addr_resolution_enable_sync(hdev, 0x01); 3296 } 3297 3298 /* Make sure the controller has a good default for 3299 * advertising data. This also applies to the case 3300 * where BR/EDR was toggled during the AUTO_OFF phase. 3301 */ 3302 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 3303 list_empty(&hdev->adv_instances)) { 3304 if (ext_adv_capable(hdev)) { 3305 err = hci_setup_ext_adv_instance_sync(hdev, 0x00); 3306 if (!err) 3307 hci_update_scan_rsp_data_sync(hdev, 0x00); 3308 } else { 3309 err = hci_update_adv_data_sync(hdev, 0x00); 3310 if (!err) 3311 hci_update_scan_rsp_data_sync(hdev, 0x00); 3312 } 3313 3314 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) 3315 hci_enable_advertising_sync(hdev); 3316 } 3317 3318 /* Call for each tracked instance to be scheduled */ 3319 list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) 3320 hci_schedule_adv_instance_sync(hdev, adv->instance, true); 3321 3322 return 0; 3323 } 3324 3325 static int hci_write_auth_enable_sync(struct hci_dev *hdev) 3326 { 3327 u8 link_sec; 3328 3329 link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY); 3330 if (link_sec == test_bit(HCI_AUTH, &hdev->flags)) 3331 return 0; 3332 3333 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE, 3334 sizeof(link_sec), &link_sec, 3335 HCI_CMD_TIMEOUT); 3336 } 3337 3338 int hci_write_fast_connectable_sync(struct hci_dev *hdev, bool enable) 3339 { 3340 struct hci_cp_write_page_scan_activity cp; 3341 u8 type; 3342 int err = 0; 3343 3344 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 3345 return 0; 3346 3347 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 3348 return 0; 3349 3350 memset(&cp, 0, sizeof(cp)); 3351 3352 if (enable) { 3353 type = PAGE_SCAN_TYPE_INTERLACED; 3354 3355 /* 160 msec page scan interval */ 3356 cp.interval = cpu_to_le16(0x0100); 3357 } else { 3358 type = hdev->def_page_scan_type; 3359 cp.interval = cpu_to_le16(hdev->def_page_scan_int); 3360 } 3361 3362 cp.window = cpu_to_le16(hdev->def_page_scan_window); 3363 3364 if (__cpu_to_le16(hdev->page_scan_interval) != cp.interval || 3365 __cpu_to_le16(hdev->page_scan_window) != cp.window) { 3366 err = __hci_cmd_sync_status(hdev, 3367 HCI_OP_WRITE_PAGE_SCAN_ACTIVITY, 3368 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3369 if (err) 3370 return err; 3371 } 3372 3373 if (hdev->page_scan_type != type) 3374 err = __hci_cmd_sync_status(hdev, 3375 HCI_OP_WRITE_PAGE_SCAN_TYPE, 3376 sizeof(type), &type, 3377 HCI_CMD_TIMEOUT); 3378 3379 return err; 3380 } 3381 3382 static bool disconnected_accept_list_entries(struct hci_dev *hdev) 3383 { 3384 struct bdaddr_list *b; 3385 3386 list_for_each_entry(b, &hdev->accept_list, list) { 3387 struct hci_conn *conn; 3388 3389 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr); 3390 if (!conn) 3391 return true; 3392 3393 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 3394 return true; 3395 } 3396 3397 return false; 3398 } 3399 3400 static int hci_write_scan_enable_sync(struct hci_dev *hdev, u8 val) 3401 { 3402 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE, 3403 sizeof(val), &val, 3404 HCI_CMD_TIMEOUT); 3405 } 3406 3407 int hci_update_scan_sync(struct hci_dev *hdev) 3408 { 3409 u8 scan; 3410 3411 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 3412 return 0; 3413 3414 if (!hdev_is_powered(hdev)) 3415 return 0; 3416 3417 if (mgmt_powering_down(hdev)) 3418 return 0; 3419 3420 if (hdev->scanning_paused) 3421 return 0; 3422 3423 if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) || 3424 disconnected_accept_list_entries(hdev)) 3425 scan = SCAN_PAGE; 3426 else 3427 scan = SCAN_DISABLED; 3428 3429 if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 3430 scan |= SCAN_INQUIRY; 3431 3432 if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) && 3433 test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY)) 3434 return 0; 3435 3436 return hci_write_scan_enable_sync(hdev, scan); 3437 } 3438 3439 int hci_update_name_sync(struct hci_dev *hdev) 3440 { 3441 struct hci_cp_write_local_name cp; 3442 3443 memset(&cp, 0, sizeof(cp)); 3444 3445 memcpy(cp.name, hdev->dev_name, sizeof(cp.name)); 3446 3447 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LOCAL_NAME, 3448 sizeof(cp), &cp, 3449 HCI_CMD_TIMEOUT); 3450 } 3451 3452 /* This function perform powered update HCI command sequence after the HCI init 3453 * sequence which end up resetting all states, the sequence is as follows: 3454 * 3455 * HCI_SSP_ENABLED(Enable SSP) 3456 * HCI_LE_ENABLED(Enable LE) 3457 * HCI_LE_ENABLED(use_ll_privacy(Add local IRK to Resolving List) -> 3458 * Update adv data) 3459 * Enable Authentication 3460 * lmp_bredr_capable(Set Fast Connectable -> Set Scan Type -> Set Class -> 3461 * Set Name -> Set EIR) 3462 * HCI_FORCE_STATIC_ADDR | BDADDR_ANY && !HCI_BREDR_ENABLED (Set Static Address) 3463 */ 3464 int hci_powered_update_sync(struct hci_dev *hdev) 3465 { 3466 int err; 3467 3468 /* Register the available SMP channels (BR/EDR and LE) only when 3469 * successfully powering on the controller. This late 3470 * registration is required so that LE SMP can clearly decide if 3471 * the public address or static address is used. 3472 */ 3473 smp_register(hdev); 3474 3475 err = hci_write_ssp_mode_sync(hdev, 0x01); 3476 if (err) 3477 return err; 3478 3479 err = hci_write_le_host_supported_sync(hdev, 0x01, 0x00); 3480 if (err) 3481 return err; 3482 3483 err = hci_powered_update_adv_sync(hdev); 3484 if (err) 3485 return err; 3486 3487 err = hci_write_auth_enable_sync(hdev); 3488 if (err) 3489 return err; 3490 3491 if (lmp_bredr_capable(hdev)) { 3492 if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE)) 3493 hci_write_fast_connectable_sync(hdev, true); 3494 else 3495 hci_write_fast_connectable_sync(hdev, false); 3496 hci_update_scan_sync(hdev); 3497 hci_update_class_sync(hdev); 3498 hci_update_name_sync(hdev); 3499 hci_update_eir_sync(hdev); 3500 } 3501 3502 /* If forcing static address is in use or there is no public 3503 * address use the static address as random address (but skip 3504 * the HCI command if the current random address is already the 3505 * static one. 3506 * 3507 * In case BR/EDR has been disabled on a dual-mode controller 3508 * and a static address has been configured, then use that 3509 * address instead of the public BR/EDR address. 3510 */ 3511 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 3512 (!bacmp(&hdev->bdaddr, BDADDR_ANY) && 3513 !hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))) { 3514 if (bacmp(&hdev->static_addr, BDADDR_ANY)) 3515 return hci_set_random_addr_sync(hdev, 3516 &hdev->static_addr); 3517 } 3518 3519 return 0; 3520 } 3521 3522 /** 3523 * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address 3524 * (BD_ADDR) for a HCI device from 3525 * a firmware node property. 3526 * @hdev: The HCI device 3527 * 3528 * Search the firmware node for 'local-bd-address'. 3529 * 3530 * All-zero BD addresses are rejected, because those could be properties 3531 * that exist in the firmware tables, but were not updated by the firmware. For 3532 * example, the DTS could define 'local-bd-address', with zero BD addresses. 3533 */ 3534 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev) 3535 { 3536 struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent); 3537 bdaddr_t ba; 3538 int ret; 3539 3540 ret = fwnode_property_read_u8_array(fwnode, "local-bd-address", 3541 (u8 *)&ba, sizeof(ba)); 3542 if (ret < 0 || !bacmp(&ba, BDADDR_ANY)) 3543 return; 3544 3545 if (test_bit(HCI_QUIRK_BDADDR_PROPERTY_BROKEN, &hdev->quirks)) 3546 baswap(&hdev->public_addr, &ba); 3547 else 3548 bacpy(&hdev->public_addr, &ba); 3549 } 3550 3551 struct hci_init_stage { 3552 int (*func)(struct hci_dev *hdev); 3553 }; 3554 3555 /* Run init stage NULL terminated function table */ 3556 static int hci_init_stage_sync(struct hci_dev *hdev, 3557 const struct hci_init_stage *stage) 3558 { 3559 size_t i; 3560 3561 for (i = 0; stage[i].func; i++) { 3562 int err; 3563 3564 err = stage[i].func(hdev); 3565 if (err) 3566 return err; 3567 } 3568 3569 return 0; 3570 } 3571 3572 /* Read Local Version */ 3573 static int hci_read_local_version_sync(struct hci_dev *hdev) 3574 { 3575 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_VERSION, 3576 0, NULL, HCI_CMD_TIMEOUT); 3577 } 3578 3579 /* Read BD Address */ 3580 static int hci_read_bd_addr_sync(struct hci_dev *hdev) 3581 { 3582 return __hci_cmd_sync_status(hdev, HCI_OP_READ_BD_ADDR, 3583 0, NULL, HCI_CMD_TIMEOUT); 3584 } 3585 3586 #define HCI_INIT(_func) \ 3587 { \ 3588 .func = _func, \ 3589 } 3590 3591 static const struct hci_init_stage hci_init0[] = { 3592 /* HCI_OP_READ_LOCAL_VERSION */ 3593 HCI_INIT(hci_read_local_version_sync), 3594 /* HCI_OP_READ_BD_ADDR */ 3595 HCI_INIT(hci_read_bd_addr_sync), 3596 {} 3597 }; 3598 3599 int hci_reset_sync(struct hci_dev *hdev) 3600 { 3601 int err; 3602 3603 set_bit(HCI_RESET, &hdev->flags); 3604 3605 err = __hci_cmd_sync_status(hdev, HCI_OP_RESET, 0, NULL, 3606 HCI_CMD_TIMEOUT); 3607 if (err) 3608 return err; 3609 3610 return 0; 3611 } 3612 3613 static int hci_init0_sync(struct hci_dev *hdev) 3614 { 3615 int err; 3616 3617 bt_dev_dbg(hdev, ""); 3618 3619 /* Reset */ 3620 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) { 3621 err = hci_reset_sync(hdev); 3622 if (err) 3623 return err; 3624 } 3625 3626 return hci_init_stage_sync(hdev, hci_init0); 3627 } 3628 3629 static int hci_unconf_init_sync(struct hci_dev *hdev) 3630 { 3631 int err; 3632 3633 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) 3634 return 0; 3635 3636 err = hci_init0_sync(hdev); 3637 if (err < 0) 3638 return err; 3639 3640 if (hci_dev_test_flag(hdev, HCI_SETUP)) 3641 hci_debugfs_create_basic(hdev); 3642 3643 return 0; 3644 } 3645 3646 /* Read Local Supported Features. */ 3647 static int hci_read_local_features_sync(struct hci_dev *hdev) 3648 { 3649 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_FEATURES, 3650 0, NULL, HCI_CMD_TIMEOUT); 3651 } 3652 3653 /* BR Controller init stage 1 command sequence */ 3654 static const struct hci_init_stage br_init1[] = { 3655 /* HCI_OP_READ_LOCAL_FEATURES */ 3656 HCI_INIT(hci_read_local_features_sync), 3657 /* HCI_OP_READ_LOCAL_VERSION */ 3658 HCI_INIT(hci_read_local_version_sync), 3659 /* HCI_OP_READ_BD_ADDR */ 3660 HCI_INIT(hci_read_bd_addr_sync), 3661 {} 3662 }; 3663 3664 /* Read Local Commands */ 3665 static int hci_read_local_cmds_sync(struct hci_dev *hdev) 3666 { 3667 /* All Bluetooth 1.2 and later controllers should support the 3668 * HCI command for reading the local supported commands. 3669 * 3670 * Unfortunately some controllers indicate Bluetooth 1.2 support, 3671 * but do not have support for this command. If that is the case, 3672 * the driver can quirk the behavior and skip reading the local 3673 * supported commands. 3674 */ 3675 if (hdev->hci_ver > BLUETOOTH_VER_1_1 && 3676 !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks)) 3677 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_COMMANDS, 3678 0, NULL, HCI_CMD_TIMEOUT); 3679 3680 return 0; 3681 } 3682 3683 static int hci_init1_sync(struct hci_dev *hdev) 3684 { 3685 int err; 3686 3687 bt_dev_dbg(hdev, ""); 3688 3689 /* Reset */ 3690 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) { 3691 err = hci_reset_sync(hdev); 3692 if (err) 3693 return err; 3694 } 3695 3696 return hci_init_stage_sync(hdev, br_init1); 3697 } 3698 3699 /* Read Buffer Size (ACL mtu, max pkt, etc.) */ 3700 static int hci_read_buffer_size_sync(struct hci_dev *hdev) 3701 { 3702 return __hci_cmd_sync_status(hdev, HCI_OP_READ_BUFFER_SIZE, 3703 0, NULL, HCI_CMD_TIMEOUT); 3704 } 3705 3706 /* Read Class of Device */ 3707 static int hci_read_dev_class_sync(struct hci_dev *hdev) 3708 { 3709 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLASS_OF_DEV, 3710 0, NULL, HCI_CMD_TIMEOUT); 3711 } 3712 3713 /* Read Local Name */ 3714 static int hci_read_local_name_sync(struct hci_dev *hdev) 3715 { 3716 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_NAME, 3717 0, NULL, HCI_CMD_TIMEOUT); 3718 } 3719 3720 /* Read Voice Setting */ 3721 static int hci_read_voice_setting_sync(struct hci_dev *hdev) 3722 { 3723 return __hci_cmd_sync_status(hdev, HCI_OP_READ_VOICE_SETTING, 3724 0, NULL, HCI_CMD_TIMEOUT); 3725 } 3726 3727 /* Read Number of Supported IAC */ 3728 static int hci_read_num_supported_iac_sync(struct hci_dev *hdev) 3729 { 3730 return __hci_cmd_sync_status(hdev, HCI_OP_READ_NUM_SUPPORTED_IAC, 3731 0, NULL, HCI_CMD_TIMEOUT); 3732 } 3733 3734 /* Read Current IAC LAP */ 3735 static int hci_read_current_iac_lap_sync(struct hci_dev *hdev) 3736 { 3737 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CURRENT_IAC_LAP, 3738 0, NULL, HCI_CMD_TIMEOUT); 3739 } 3740 3741 static int hci_set_event_filter_sync(struct hci_dev *hdev, u8 flt_type, 3742 u8 cond_type, bdaddr_t *bdaddr, 3743 u8 auto_accept) 3744 { 3745 struct hci_cp_set_event_filter cp; 3746 3747 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 3748 return 0; 3749 3750 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 3751 return 0; 3752 3753 memset(&cp, 0, sizeof(cp)); 3754 cp.flt_type = flt_type; 3755 3756 if (flt_type != HCI_FLT_CLEAR_ALL) { 3757 cp.cond_type = cond_type; 3758 bacpy(&cp.addr_conn_flt.bdaddr, bdaddr); 3759 cp.addr_conn_flt.auto_accept = auto_accept; 3760 } 3761 3762 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_FLT, 3763 flt_type == HCI_FLT_CLEAR_ALL ? 3764 sizeof(cp.flt_type) : sizeof(cp), &cp, 3765 HCI_CMD_TIMEOUT); 3766 } 3767 3768 static int hci_clear_event_filter_sync(struct hci_dev *hdev) 3769 { 3770 if (!hci_dev_test_flag(hdev, HCI_EVENT_FILTER_CONFIGURED)) 3771 return 0; 3772 3773 /* In theory the state machine should not reach here unless 3774 * a hci_set_event_filter_sync() call succeeds, but we do 3775 * the check both for parity and as a future reminder. 3776 */ 3777 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 3778 return 0; 3779 3780 return hci_set_event_filter_sync(hdev, HCI_FLT_CLEAR_ALL, 0x00, 3781 BDADDR_ANY, 0x00); 3782 } 3783 3784 /* Connection accept timeout ~20 secs */ 3785 static int hci_write_ca_timeout_sync(struct hci_dev *hdev) 3786 { 3787 __le16 param = cpu_to_le16(0x7d00); 3788 3789 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CA_TIMEOUT, 3790 sizeof(param), ¶m, HCI_CMD_TIMEOUT); 3791 } 3792 3793 /* BR Controller init stage 2 command sequence */ 3794 static const struct hci_init_stage br_init2[] = { 3795 /* HCI_OP_READ_BUFFER_SIZE */ 3796 HCI_INIT(hci_read_buffer_size_sync), 3797 /* HCI_OP_READ_CLASS_OF_DEV */ 3798 HCI_INIT(hci_read_dev_class_sync), 3799 /* HCI_OP_READ_LOCAL_NAME */ 3800 HCI_INIT(hci_read_local_name_sync), 3801 /* HCI_OP_READ_VOICE_SETTING */ 3802 HCI_INIT(hci_read_voice_setting_sync), 3803 /* HCI_OP_READ_NUM_SUPPORTED_IAC */ 3804 HCI_INIT(hci_read_num_supported_iac_sync), 3805 /* HCI_OP_READ_CURRENT_IAC_LAP */ 3806 HCI_INIT(hci_read_current_iac_lap_sync), 3807 /* HCI_OP_SET_EVENT_FLT */ 3808 HCI_INIT(hci_clear_event_filter_sync), 3809 /* HCI_OP_WRITE_CA_TIMEOUT */ 3810 HCI_INIT(hci_write_ca_timeout_sync), 3811 {} 3812 }; 3813 3814 static int hci_write_ssp_mode_1_sync(struct hci_dev *hdev) 3815 { 3816 u8 mode = 0x01; 3817 3818 if (!lmp_ssp_capable(hdev) || !hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 3819 return 0; 3820 3821 /* When SSP is available, then the host features page 3822 * should also be available as well. However some 3823 * controllers list the max_page as 0 as long as SSP 3824 * has not been enabled. To achieve proper debugging 3825 * output, force the minimum max_page to 1 at least. 3826 */ 3827 hdev->max_page = 0x01; 3828 3829 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE, 3830 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3831 } 3832 3833 static int hci_write_eir_sync(struct hci_dev *hdev) 3834 { 3835 struct hci_cp_write_eir cp; 3836 3837 if (!lmp_ssp_capable(hdev) || hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 3838 return 0; 3839 3840 memset(hdev->eir, 0, sizeof(hdev->eir)); 3841 memset(&cp, 0, sizeof(cp)); 3842 3843 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp, 3844 HCI_CMD_TIMEOUT); 3845 } 3846 3847 static int hci_write_inquiry_mode_sync(struct hci_dev *hdev) 3848 { 3849 u8 mode; 3850 3851 if (!lmp_inq_rssi_capable(hdev) && 3852 !test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) 3853 return 0; 3854 3855 /* If Extended Inquiry Result events are supported, then 3856 * they are clearly preferred over Inquiry Result with RSSI 3857 * events. 3858 */ 3859 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01; 3860 3861 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_INQUIRY_MODE, 3862 sizeof(mode), &mode, HCI_CMD_TIMEOUT); 3863 } 3864 3865 static int hci_read_inq_rsp_tx_power_sync(struct hci_dev *hdev) 3866 { 3867 if (!lmp_inq_tx_pwr_capable(hdev)) 3868 return 0; 3869 3870 return __hci_cmd_sync_status(hdev, HCI_OP_READ_INQ_RSP_TX_POWER, 3871 0, NULL, HCI_CMD_TIMEOUT); 3872 } 3873 3874 static int hci_read_local_ext_features_sync(struct hci_dev *hdev, u8 page) 3875 { 3876 struct hci_cp_read_local_ext_features cp; 3877 3878 if (!lmp_ext_feat_capable(hdev)) 3879 return 0; 3880 3881 memset(&cp, 0, sizeof(cp)); 3882 cp.page = page; 3883 3884 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_EXT_FEATURES, 3885 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 3886 } 3887 3888 static int hci_read_local_ext_features_1_sync(struct hci_dev *hdev) 3889 { 3890 return hci_read_local_ext_features_sync(hdev, 0x01); 3891 } 3892 3893 /* HCI Controller init stage 2 command sequence */ 3894 static const struct hci_init_stage hci_init2[] = { 3895 /* HCI_OP_READ_LOCAL_COMMANDS */ 3896 HCI_INIT(hci_read_local_cmds_sync), 3897 /* HCI_OP_WRITE_SSP_MODE */ 3898 HCI_INIT(hci_write_ssp_mode_1_sync), 3899 /* HCI_OP_WRITE_EIR */ 3900 HCI_INIT(hci_write_eir_sync), 3901 /* HCI_OP_WRITE_INQUIRY_MODE */ 3902 HCI_INIT(hci_write_inquiry_mode_sync), 3903 /* HCI_OP_READ_INQ_RSP_TX_POWER */ 3904 HCI_INIT(hci_read_inq_rsp_tx_power_sync), 3905 /* HCI_OP_READ_LOCAL_EXT_FEATURES */ 3906 HCI_INIT(hci_read_local_ext_features_1_sync), 3907 /* HCI_OP_WRITE_AUTH_ENABLE */ 3908 HCI_INIT(hci_write_auth_enable_sync), 3909 {} 3910 }; 3911 3912 /* Read LE Buffer Size */ 3913 static int hci_le_read_buffer_size_sync(struct hci_dev *hdev) 3914 { 3915 /* Use Read LE Buffer Size V2 if supported */ 3916 if (iso_capable(hdev) && hdev->commands[41] & 0x20) 3917 return __hci_cmd_sync_status(hdev, 3918 HCI_OP_LE_READ_BUFFER_SIZE_V2, 3919 0, NULL, HCI_CMD_TIMEOUT); 3920 3921 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_BUFFER_SIZE, 3922 0, NULL, HCI_CMD_TIMEOUT); 3923 } 3924 3925 /* Read LE Local Supported Features */ 3926 static int hci_le_read_local_features_sync(struct hci_dev *hdev) 3927 { 3928 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_LOCAL_FEATURES, 3929 0, NULL, HCI_CMD_TIMEOUT); 3930 } 3931 3932 /* Read LE Supported States */ 3933 static int hci_le_read_supported_states_sync(struct hci_dev *hdev) 3934 { 3935 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_SUPPORTED_STATES, 3936 0, NULL, HCI_CMD_TIMEOUT); 3937 } 3938 3939 /* LE Controller init stage 2 command sequence */ 3940 static const struct hci_init_stage le_init2[] = { 3941 /* HCI_OP_LE_READ_LOCAL_FEATURES */ 3942 HCI_INIT(hci_le_read_local_features_sync), 3943 /* HCI_OP_LE_READ_BUFFER_SIZE */ 3944 HCI_INIT(hci_le_read_buffer_size_sync), 3945 /* HCI_OP_LE_READ_SUPPORTED_STATES */ 3946 HCI_INIT(hci_le_read_supported_states_sync), 3947 {} 3948 }; 3949 3950 static int hci_init2_sync(struct hci_dev *hdev) 3951 { 3952 int err; 3953 3954 bt_dev_dbg(hdev, ""); 3955 3956 err = hci_init_stage_sync(hdev, hci_init2); 3957 if (err) 3958 return err; 3959 3960 if (lmp_bredr_capable(hdev)) { 3961 err = hci_init_stage_sync(hdev, br_init2); 3962 if (err) 3963 return err; 3964 } else { 3965 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED); 3966 } 3967 3968 if (lmp_le_capable(hdev)) { 3969 err = hci_init_stage_sync(hdev, le_init2); 3970 if (err) 3971 return err; 3972 /* LE-only controllers have LE implicitly enabled */ 3973 if (!lmp_bredr_capable(hdev)) 3974 hci_dev_set_flag(hdev, HCI_LE_ENABLED); 3975 } 3976 3977 return 0; 3978 } 3979 3980 static int hci_set_event_mask_sync(struct hci_dev *hdev) 3981 { 3982 /* The second byte is 0xff instead of 0x9f (two reserved bits 3983 * disabled) since a Broadcom 1.2 dongle doesn't respond to the 3984 * command otherwise. 3985 */ 3986 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 }; 3987 3988 /* CSR 1.1 dongles does not accept any bitfield so don't try to set 3989 * any event mask for pre 1.2 devices. 3990 */ 3991 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 3992 return 0; 3993 3994 if (lmp_bredr_capable(hdev)) { 3995 events[4] |= 0x01; /* Flow Specification Complete */ 3996 3997 /* Don't set Disconnect Complete and mode change when 3998 * suspended as that would wakeup the host when disconnecting 3999 * due to suspend. 4000 */ 4001 if (hdev->suspended) { 4002 events[0] &= 0xef; 4003 events[2] &= 0xf7; 4004 } 4005 } else { 4006 /* Use a different default for LE-only devices */ 4007 memset(events, 0, sizeof(events)); 4008 events[1] |= 0x20; /* Command Complete */ 4009 events[1] |= 0x40; /* Command Status */ 4010 events[1] |= 0x80; /* Hardware Error */ 4011 4012 /* If the controller supports the Disconnect command, enable 4013 * the corresponding event. In addition enable packet flow 4014 * control related events. 4015 */ 4016 if (hdev->commands[0] & 0x20) { 4017 /* Don't set Disconnect Complete when suspended as that 4018 * would wakeup the host when disconnecting due to 4019 * suspend. 4020 */ 4021 if (!hdev->suspended) 4022 events[0] |= 0x10; /* Disconnection Complete */ 4023 events[2] |= 0x04; /* Number of Completed Packets */ 4024 events[3] |= 0x02; /* Data Buffer Overflow */ 4025 } 4026 4027 /* If the controller supports the Read Remote Version 4028 * Information command, enable the corresponding event. 4029 */ 4030 if (hdev->commands[2] & 0x80) 4031 events[1] |= 0x08; /* Read Remote Version Information 4032 * Complete 4033 */ 4034 4035 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) { 4036 events[0] |= 0x80; /* Encryption Change */ 4037 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 4038 } 4039 } 4040 4041 if (lmp_inq_rssi_capable(hdev) || 4042 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) 4043 events[4] |= 0x02; /* Inquiry Result with RSSI */ 4044 4045 if (lmp_ext_feat_capable(hdev)) 4046 events[4] |= 0x04; /* Read Remote Extended Features Complete */ 4047 4048 if (lmp_esco_capable(hdev)) { 4049 events[5] |= 0x08; /* Synchronous Connection Complete */ 4050 events[5] |= 0x10; /* Synchronous Connection Changed */ 4051 } 4052 4053 if (lmp_sniffsubr_capable(hdev)) 4054 events[5] |= 0x20; /* Sniff Subrating */ 4055 4056 if (lmp_pause_enc_capable(hdev)) 4057 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 4058 4059 if (lmp_ext_inq_capable(hdev)) 4060 events[5] |= 0x40; /* Extended Inquiry Result */ 4061 4062 if (lmp_no_flush_capable(hdev)) 4063 events[7] |= 0x01; /* Enhanced Flush Complete */ 4064 4065 if (lmp_lsto_capable(hdev)) 4066 events[6] |= 0x80; /* Link Supervision Timeout Changed */ 4067 4068 if (lmp_ssp_capable(hdev)) { 4069 events[6] |= 0x01; /* IO Capability Request */ 4070 events[6] |= 0x02; /* IO Capability Response */ 4071 events[6] |= 0x04; /* User Confirmation Request */ 4072 events[6] |= 0x08; /* User Passkey Request */ 4073 events[6] |= 0x10; /* Remote OOB Data Request */ 4074 events[6] |= 0x20; /* Simple Pairing Complete */ 4075 events[7] |= 0x04; /* User Passkey Notification */ 4076 events[7] |= 0x08; /* Keypress Notification */ 4077 events[7] |= 0x10; /* Remote Host Supported 4078 * Features Notification 4079 */ 4080 } 4081 4082 if (lmp_le_capable(hdev)) 4083 events[7] |= 0x20; /* LE Meta-Event */ 4084 4085 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK, 4086 sizeof(events), events, HCI_CMD_TIMEOUT); 4087 } 4088 4089 static int hci_read_stored_link_key_sync(struct hci_dev *hdev) 4090 { 4091 struct hci_cp_read_stored_link_key cp; 4092 4093 if (!(hdev->commands[6] & 0x20) || 4094 test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) 4095 return 0; 4096 4097 memset(&cp, 0, sizeof(cp)); 4098 bacpy(&cp.bdaddr, BDADDR_ANY); 4099 cp.read_all = 0x01; 4100 4101 return __hci_cmd_sync_status(hdev, HCI_OP_READ_STORED_LINK_KEY, 4102 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4103 } 4104 4105 static int hci_setup_link_policy_sync(struct hci_dev *hdev) 4106 { 4107 struct hci_cp_write_def_link_policy cp; 4108 u16 link_policy = 0; 4109 4110 if (!(hdev->commands[5] & 0x10)) 4111 return 0; 4112 4113 memset(&cp, 0, sizeof(cp)); 4114 4115 if (lmp_rswitch_capable(hdev)) 4116 link_policy |= HCI_LP_RSWITCH; 4117 if (lmp_hold_capable(hdev)) 4118 link_policy |= HCI_LP_HOLD; 4119 if (lmp_sniff_capable(hdev)) 4120 link_policy |= HCI_LP_SNIFF; 4121 if (lmp_park_capable(hdev)) 4122 link_policy |= HCI_LP_PARK; 4123 4124 cp.policy = cpu_to_le16(link_policy); 4125 4126 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY, 4127 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4128 } 4129 4130 static int hci_read_page_scan_activity_sync(struct hci_dev *hdev) 4131 { 4132 if (!(hdev->commands[8] & 0x01)) 4133 return 0; 4134 4135 return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 4136 0, NULL, HCI_CMD_TIMEOUT); 4137 } 4138 4139 static int hci_read_def_err_data_reporting_sync(struct hci_dev *hdev) 4140 { 4141 if (!(hdev->commands[18] & 0x04) || 4142 !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) || 4143 test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) 4144 return 0; 4145 4146 return __hci_cmd_sync_status(hdev, HCI_OP_READ_DEF_ERR_DATA_REPORTING, 4147 0, NULL, HCI_CMD_TIMEOUT); 4148 } 4149 4150 static int hci_read_page_scan_type_sync(struct hci_dev *hdev) 4151 { 4152 /* Some older Broadcom based Bluetooth 1.2 controllers do not 4153 * support the Read Page Scan Type command. Check support for 4154 * this command in the bit mask of supported commands. 4155 */ 4156 if (!(hdev->commands[13] & 0x01)) 4157 return 0; 4158 4159 return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_TYPE, 4160 0, NULL, HCI_CMD_TIMEOUT); 4161 } 4162 4163 /* Read features beyond page 1 if available */ 4164 static int hci_read_local_ext_features_all_sync(struct hci_dev *hdev) 4165 { 4166 u8 page; 4167 int err; 4168 4169 if (!lmp_ext_feat_capable(hdev)) 4170 return 0; 4171 4172 for (page = 2; page < HCI_MAX_PAGES && page <= hdev->max_page; 4173 page++) { 4174 err = hci_read_local_ext_features_sync(hdev, page); 4175 if (err) 4176 return err; 4177 } 4178 4179 return 0; 4180 } 4181 4182 /* HCI Controller init stage 3 command sequence */ 4183 static const struct hci_init_stage hci_init3[] = { 4184 /* HCI_OP_SET_EVENT_MASK */ 4185 HCI_INIT(hci_set_event_mask_sync), 4186 /* HCI_OP_READ_STORED_LINK_KEY */ 4187 HCI_INIT(hci_read_stored_link_key_sync), 4188 /* HCI_OP_WRITE_DEF_LINK_POLICY */ 4189 HCI_INIT(hci_setup_link_policy_sync), 4190 /* HCI_OP_READ_PAGE_SCAN_ACTIVITY */ 4191 HCI_INIT(hci_read_page_scan_activity_sync), 4192 /* HCI_OP_READ_DEF_ERR_DATA_REPORTING */ 4193 HCI_INIT(hci_read_def_err_data_reporting_sync), 4194 /* HCI_OP_READ_PAGE_SCAN_TYPE */ 4195 HCI_INIT(hci_read_page_scan_type_sync), 4196 /* HCI_OP_READ_LOCAL_EXT_FEATURES */ 4197 HCI_INIT(hci_read_local_ext_features_all_sync), 4198 {} 4199 }; 4200 4201 static int hci_le_set_event_mask_sync(struct hci_dev *hdev) 4202 { 4203 u8 events[8]; 4204 4205 if (!lmp_le_capable(hdev)) 4206 return 0; 4207 4208 memset(events, 0, sizeof(events)); 4209 4210 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) 4211 events[0] |= 0x10; /* LE Long Term Key Request */ 4212 4213 /* If controller supports the Connection Parameters Request 4214 * Link Layer Procedure, enable the corresponding event. 4215 */ 4216 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC) 4217 /* LE Remote Connection Parameter Request */ 4218 events[0] |= 0x20; 4219 4220 /* If the controller supports the Data Length Extension 4221 * feature, enable the corresponding event. 4222 */ 4223 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) 4224 events[0] |= 0x40; /* LE Data Length Change */ 4225 4226 /* If the controller supports LL Privacy feature or LE Extended Adv, 4227 * enable the corresponding event. 4228 */ 4229 if (use_enhanced_conn_complete(hdev)) 4230 events[1] |= 0x02; /* LE Enhanced Connection Complete */ 4231 4232 /* If the controller supports Extended Scanner Filter 4233 * Policies, enable the corresponding event. 4234 */ 4235 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY) 4236 events[1] |= 0x04; /* LE Direct Advertising Report */ 4237 4238 /* If the controller supports Channel Selection Algorithm #2 4239 * feature, enable the corresponding event. 4240 */ 4241 if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2) 4242 events[2] |= 0x08; /* LE Channel Selection Algorithm */ 4243 4244 /* If the controller supports the LE Set Scan Enable command, 4245 * enable the corresponding advertising report event. 4246 */ 4247 if (hdev->commands[26] & 0x08) 4248 events[0] |= 0x02; /* LE Advertising Report */ 4249 4250 /* If the controller supports the LE Create Connection 4251 * command, enable the corresponding event. 4252 */ 4253 if (hdev->commands[26] & 0x10) 4254 events[0] |= 0x01; /* LE Connection Complete */ 4255 4256 /* If the controller supports the LE Connection Update 4257 * command, enable the corresponding event. 4258 */ 4259 if (hdev->commands[27] & 0x04) 4260 events[0] |= 0x04; /* LE Connection Update Complete */ 4261 4262 /* If the controller supports the LE Read Remote Used Features 4263 * command, enable the corresponding event. 4264 */ 4265 if (hdev->commands[27] & 0x20) 4266 /* LE Read Remote Used Features Complete */ 4267 events[0] |= 0x08; 4268 4269 /* If the controller supports the LE Read Local P-256 4270 * Public Key command, enable the corresponding event. 4271 */ 4272 if (hdev->commands[34] & 0x02) 4273 /* LE Read Local P-256 Public Key Complete */ 4274 events[0] |= 0x80; 4275 4276 /* If the controller supports the LE Generate DHKey 4277 * command, enable the corresponding event. 4278 */ 4279 if (hdev->commands[34] & 0x04) 4280 events[1] |= 0x01; /* LE Generate DHKey Complete */ 4281 4282 /* If the controller supports the LE Set Default PHY or 4283 * LE Set PHY commands, enable the corresponding event. 4284 */ 4285 if (hdev->commands[35] & (0x20 | 0x40)) 4286 events[1] |= 0x08; /* LE PHY Update Complete */ 4287 4288 /* If the controller supports LE Set Extended Scan Parameters 4289 * and LE Set Extended Scan Enable commands, enable the 4290 * corresponding event. 4291 */ 4292 if (use_ext_scan(hdev)) 4293 events[1] |= 0x10; /* LE Extended Advertising Report */ 4294 4295 /* If the controller supports the LE Extended Advertising 4296 * command, enable the corresponding event. 4297 */ 4298 if (ext_adv_capable(hdev)) 4299 events[2] |= 0x02; /* LE Advertising Set Terminated */ 4300 4301 if (cis_capable(hdev)) { 4302 events[3] |= 0x01; /* LE CIS Established */ 4303 if (cis_peripheral_capable(hdev)) 4304 events[3] |= 0x02; /* LE CIS Request */ 4305 } 4306 4307 if (bis_capable(hdev)) { 4308 events[1] |= 0x20; /* LE PA Report */ 4309 events[1] |= 0x40; /* LE PA Sync Established */ 4310 events[3] |= 0x04; /* LE Create BIG Complete */ 4311 events[3] |= 0x08; /* LE Terminate BIG Complete */ 4312 events[3] |= 0x10; /* LE BIG Sync Established */ 4313 events[3] |= 0x20; /* LE BIG Sync Loss */ 4314 events[4] |= 0x02; /* LE BIG Info Advertising Report */ 4315 } 4316 4317 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EVENT_MASK, 4318 sizeof(events), events, HCI_CMD_TIMEOUT); 4319 } 4320 4321 /* Read LE Advertising Channel TX Power */ 4322 static int hci_le_read_adv_tx_power_sync(struct hci_dev *hdev) 4323 { 4324 if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) { 4325 /* HCI TS spec forbids mixing of legacy and extended 4326 * advertising commands wherein READ_ADV_TX_POWER is 4327 * also included. So do not call it if extended adv 4328 * is supported otherwise controller will return 4329 * COMMAND_DISALLOWED for extended commands. 4330 */ 4331 return __hci_cmd_sync_status(hdev, 4332 HCI_OP_LE_READ_ADV_TX_POWER, 4333 0, NULL, HCI_CMD_TIMEOUT); 4334 } 4335 4336 return 0; 4337 } 4338 4339 /* Read LE Min/Max Tx Power*/ 4340 static int hci_le_read_tx_power_sync(struct hci_dev *hdev) 4341 { 4342 if (!(hdev->commands[38] & 0x80) || 4343 test_bit(HCI_QUIRK_BROKEN_READ_TRANSMIT_POWER, &hdev->quirks)) 4344 return 0; 4345 4346 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_TRANSMIT_POWER, 4347 0, NULL, HCI_CMD_TIMEOUT); 4348 } 4349 4350 /* Read LE Accept List Size */ 4351 static int hci_le_read_accept_list_size_sync(struct hci_dev *hdev) 4352 { 4353 if (!(hdev->commands[26] & 0x40)) 4354 return 0; 4355 4356 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_ACCEPT_LIST_SIZE, 4357 0, NULL, HCI_CMD_TIMEOUT); 4358 } 4359 4360 /* Read LE Resolving List Size */ 4361 static int hci_le_read_resolv_list_size_sync(struct hci_dev *hdev) 4362 { 4363 if (!(hdev->commands[34] & 0x40)) 4364 return 0; 4365 4366 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_RESOLV_LIST_SIZE, 4367 0, NULL, HCI_CMD_TIMEOUT); 4368 } 4369 4370 /* Clear LE Resolving List */ 4371 static int hci_le_clear_resolv_list_sync(struct hci_dev *hdev) 4372 { 4373 if (!(hdev->commands[34] & 0x20)) 4374 return 0; 4375 4376 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL, 4377 HCI_CMD_TIMEOUT); 4378 } 4379 4380 /* Set RPA timeout */ 4381 static int hci_le_set_rpa_timeout_sync(struct hci_dev *hdev) 4382 { 4383 __le16 timeout = cpu_to_le16(hdev->rpa_timeout); 4384 4385 if (!(hdev->commands[35] & 0x04) || 4386 test_bit(HCI_QUIRK_BROKEN_SET_RPA_TIMEOUT, &hdev->quirks)) 4387 return 0; 4388 4389 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RPA_TIMEOUT, 4390 sizeof(timeout), &timeout, 4391 HCI_CMD_TIMEOUT); 4392 } 4393 4394 /* Read LE Maximum Data Length */ 4395 static int hci_le_read_max_data_len_sync(struct hci_dev *hdev) 4396 { 4397 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 4398 return 0; 4399 4400 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL, 4401 HCI_CMD_TIMEOUT); 4402 } 4403 4404 /* Read LE Suggested Default Data Length */ 4405 static int hci_le_read_def_data_len_sync(struct hci_dev *hdev) 4406 { 4407 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 4408 return 0; 4409 4410 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL, 4411 HCI_CMD_TIMEOUT); 4412 } 4413 4414 /* Read LE Number of Supported Advertising Sets */ 4415 static int hci_le_read_num_support_adv_sets_sync(struct hci_dev *hdev) 4416 { 4417 if (!ext_adv_capable(hdev)) 4418 return 0; 4419 4420 return __hci_cmd_sync_status(hdev, 4421 HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS, 4422 0, NULL, HCI_CMD_TIMEOUT); 4423 } 4424 4425 /* Write LE Host Supported */ 4426 static int hci_set_le_support_sync(struct hci_dev *hdev) 4427 { 4428 struct hci_cp_write_le_host_supported cp; 4429 4430 /* LE-only devices do not support explicit enablement */ 4431 if (!lmp_bredr_capable(hdev)) 4432 return 0; 4433 4434 memset(&cp, 0, sizeof(cp)); 4435 4436 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 4437 cp.le = 0x01; 4438 cp.simul = 0x00; 4439 } 4440 4441 if (cp.le == lmp_host_le_capable(hdev)) 4442 return 0; 4443 4444 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED, 4445 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4446 } 4447 4448 /* LE Set Host Feature */ 4449 static int hci_le_set_host_feature_sync(struct hci_dev *hdev) 4450 { 4451 struct hci_cp_le_set_host_feature cp; 4452 4453 if (!cis_capable(hdev)) 4454 return 0; 4455 4456 memset(&cp, 0, sizeof(cp)); 4457 4458 /* Connected Isochronous Channels (Host Support) */ 4459 cp.bit_number = 32; 4460 cp.bit_value = 1; 4461 4462 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_HOST_FEATURE, 4463 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4464 } 4465 4466 /* LE Controller init stage 3 command sequence */ 4467 static const struct hci_init_stage le_init3[] = { 4468 /* HCI_OP_LE_SET_EVENT_MASK */ 4469 HCI_INIT(hci_le_set_event_mask_sync), 4470 /* HCI_OP_LE_READ_ADV_TX_POWER */ 4471 HCI_INIT(hci_le_read_adv_tx_power_sync), 4472 /* HCI_OP_LE_READ_TRANSMIT_POWER */ 4473 HCI_INIT(hci_le_read_tx_power_sync), 4474 /* HCI_OP_LE_READ_ACCEPT_LIST_SIZE */ 4475 HCI_INIT(hci_le_read_accept_list_size_sync), 4476 /* HCI_OP_LE_CLEAR_ACCEPT_LIST */ 4477 HCI_INIT(hci_le_clear_accept_list_sync), 4478 /* HCI_OP_LE_READ_RESOLV_LIST_SIZE */ 4479 HCI_INIT(hci_le_read_resolv_list_size_sync), 4480 /* HCI_OP_LE_CLEAR_RESOLV_LIST */ 4481 HCI_INIT(hci_le_clear_resolv_list_sync), 4482 /* HCI_OP_LE_SET_RPA_TIMEOUT */ 4483 HCI_INIT(hci_le_set_rpa_timeout_sync), 4484 /* HCI_OP_LE_READ_MAX_DATA_LEN */ 4485 HCI_INIT(hci_le_read_max_data_len_sync), 4486 /* HCI_OP_LE_READ_DEF_DATA_LEN */ 4487 HCI_INIT(hci_le_read_def_data_len_sync), 4488 /* HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS */ 4489 HCI_INIT(hci_le_read_num_support_adv_sets_sync), 4490 /* HCI_OP_WRITE_LE_HOST_SUPPORTED */ 4491 HCI_INIT(hci_set_le_support_sync), 4492 /* HCI_OP_LE_SET_HOST_FEATURE */ 4493 HCI_INIT(hci_le_set_host_feature_sync), 4494 {} 4495 }; 4496 4497 static int hci_init3_sync(struct hci_dev *hdev) 4498 { 4499 int err; 4500 4501 bt_dev_dbg(hdev, ""); 4502 4503 err = hci_init_stage_sync(hdev, hci_init3); 4504 if (err) 4505 return err; 4506 4507 if (lmp_le_capable(hdev)) 4508 return hci_init_stage_sync(hdev, le_init3); 4509 4510 return 0; 4511 } 4512 4513 static int hci_delete_stored_link_key_sync(struct hci_dev *hdev) 4514 { 4515 struct hci_cp_delete_stored_link_key cp; 4516 4517 /* Some Broadcom based Bluetooth controllers do not support the 4518 * Delete Stored Link Key command. They are clearly indicating its 4519 * absence in the bit mask of supported commands. 4520 * 4521 * Check the supported commands and only if the command is marked 4522 * as supported send it. If not supported assume that the controller 4523 * does not have actual support for stored link keys which makes this 4524 * command redundant anyway. 4525 * 4526 * Some controllers indicate that they support handling deleting 4527 * stored link keys, but they don't. The quirk lets a driver 4528 * just disable this command. 4529 */ 4530 if (!(hdev->commands[6] & 0x80) || 4531 test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) 4532 return 0; 4533 4534 memset(&cp, 0, sizeof(cp)); 4535 bacpy(&cp.bdaddr, BDADDR_ANY); 4536 cp.delete_all = 0x01; 4537 4538 return __hci_cmd_sync_status(hdev, HCI_OP_DELETE_STORED_LINK_KEY, 4539 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4540 } 4541 4542 static int hci_set_event_mask_page_2_sync(struct hci_dev *hdev) 4543 { 4544 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 4545 bool changed = false; 4546 4547 /* Set event mask page 2 if the HCI command for it is supported */ 4548 if (!(hdev->commands[22] & 0x04)) 4549 return 0; 4550 4551 /* If Connectionless Peripheral Broadcast central role is supported 4552 * enable all necessary events for it. 4553 */ 4554 if (lmp_cpb_central_capable(hdev)) { 4555 events[1] |= 0x40; /* Triggered Clock Capture */ 4556 events[1] |= 0x80; /* Synchronization Train Complete */ 4557 events[2] |= 0x08; /* Truncated Page Complete */ 4558 events[2] |= 0x20; /* CPB Channel Map Change */ 4559 changed = true; 4560 } 4561 4562 /* If Connectionless Peripheral Broadcast peripheral role is supported 4563 * enable all necessary events for it. 4564 */ 4565 if (lmp_cpb_peripheral_capable(hdev)) { 4566 events[2] |= 0x01; /* Synchronization Train Received */ 4567 events[2] |= 0x02; /* CPB Receive */ 4568 events[2] |= 0x04; /* CPB Timeout */ 4569 events[2] |= 0x10; /* Peripheral Page Response Timeout */ 4570 changed = true; 4571 } 4572 4573 /* Enable Authenticated Payload Timeout Expired event if supported */ 4574 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) { 4575 events[2] |= 0x80; 4576 changed = true; 4577 } 4578 4579 /* Some Broadcom based controllers indicate support for Set Event 4580 * Mask Page 2 command, but then actually do not support it. Since 4581 * the default value is all bits set to zero, the command is only 4582 * required if the event mask has to be changed. In case no change 4583 * to the event mask is needed, skip this command. 4584 */ 4585 if (!changed) 4586 return 0; 4587 4588 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK_PAGE_2, 4589 sizeof(events), events, HCI_CMD_TIMEOUT); 4590 } 4591 4592 /* Read local codec list if the HCI command is supported */ 4593 static int hci_read_local_codecs_sync(struct hci_dev *hdev) 4594 { 4595 if (hdev->commands[45] & 0x04) 4596 hci_read_supported_codecs_v2(hdev); 4597 else if (hdev->commands[29] & 0x20) 4598 hci_read_supported_codecs(hdev); 4599 4600 return 0; 4601 } 4602 4603 /* Read local pairing options if the HCI command is supported */ 4604 static int hci_read_local_pairing_opts_sync(struct hci_dev *hdev) 4605 { 4606 if (!(hdev->commands[41] & 0x08)) 4607 return 0; 4608 4609 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_PAIRING_OPTS, 4610 0, NULL, HCI_CMD_TIMEOUT); 4611 } 4612 4613 /* Get MWS transport configuration if the HCI command is supported */ 4614 static int hci_get_mws_transport_config_sync(struct hci_dev *hdev) 4615 { 4616 if (!mws_transport_config_capable(hdev)) 4617 return 0; 4618 4619 return __hci_cmd_sync_status(hdev, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 4620 0, NULL, HCI_CMD_TIMEOUT); 4621 } 4622 4623 /* Check for Synchronization Train support */ 4624 static int hci_read_sync_train_params_sync(struct hci_dev *hdev) 4625 { 4626 if (!lmp_sync_train_capable(hdev)) 4627 return 0; 4628 4629 return __hci_cmd_sync_status(hdev, HCI_OP_READ_SYNC_TRAIN_PARAMS, 4630 0, NULL, HCI_CMD_TIMEOUT); 4631 } 4632 4633 /* Enable Secure Connections if supported and configured */ 4634 static int hci_write_sc_support_1_sync(struct hci_dev *hdev) 4635 { 4636 u8 support = 0x01; 4637 4638 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) || 4639 !bredr_sc_enabled(hdev)) 4640 return 0; 4641 4642 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT, 4643 sizeof(support), &support, 4644 HCI_CMD_TIMEOUT); 4645 } 4646 4647 /* Set erroneous data reporting if supported to the wideband speech 4648 * setting value 4649 */ 4650 static int hci_set_err_data_report_sync(struct hci_dev *hdev) 4651 { 4652 struct hci_cp_write_def_err_data_reporting cp; 4653 bool enabled = hci_dev_test_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED); 4654 4655 if (!(hdev->commands[18] & 0x08) || 4656 !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) || 4657 test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) 4658 return 0; 4659 4660 if (enabled == hdev->err_data_reporting) 4661 return 0; 4662 4663 memset(&cp, 0, sizeof(cp)); 4664 cp.err_data_reporting = enabled ? ERR_DATA_REPORTING_ENABLED : 4665 ERR_DATA_REPORTING_DISABLED; 4666 4667 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING, 4668 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4669 } 4670 4671 static const struct hci_init_stage hci_init4[] = { 4672 /* HCI_OP_DELETE_STORED_LINK_KEY */ 4673 HCI_INIT(hci_delete_stored_link_key_sync), 4674 /* HCI_OP_SET_EVENT_MASK_PAGE_2 */ 4675 HCI_INIT(hci_set_event_mask_page_2_sync), 4676 /* HCI_OP_READ_LOCAL_CODECS */ 4677 HCI_INIT(hci_read_local_codecs_sync), 4678 /* HCI_OP_READ_LOCAL_PAIRING_OPTS */ 4679 HCI_INIT(hci_read_local_pairing_opts_sync), 4680 /* HCI_OP_GET_MWS_TRANSPORT_CONFIG */ 4681 HCI_INIT(hci_get_mws_transport_config_sync), 4682 /* HCI_OP_READ_SYNC_TRAIN_PARAMS */ 4683 HCI_INIT(hci_read_sync_train_params_sync), 4684 /* HCI_OP_WRITE_SC_SUPPORT */ 4685 HCI_INIT(hci_write_sc_support_1_sync), 4686 /* HCI_OP_WRITE_DEF_ERR_DATA_REPORTING */ 4687 HCI_INIT(hci_set_err_data_report_sync), 4688 {} 4689 }; 4690 4691 /* Set Suggested Default Data Length to maximum if supported */ 4692 static int hci_le_set_write_def_data_len_sync(struct hci_dev *hdev) 4693 { 4694 struct hci_cp_le_write_def_data_len cp; 4695 4696 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)) 4697 return 0; 4698 4699 memset(&cp, 0, sizeof(cp)); 4700 cp.tx_len = cpu_to_le16(hdev->le_max_tx_len); 4701 cp.tx_time = cpu_to_le16(hdev->le_max_tx_time); 4702 4703 return __hci_cmd_sync_status(hdev, HCI_OP_LE_WRITE_DEF_DATA_LEN, 4704 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4705 } 4706 4707 /* Set Default PHY parameters if command is supported, enables all supported 4708 * PHYs according to the LE Features bits. 4709 */ 4710 static int hci_le_set_default_phy_sync(struct hci_dev *hdev) 4711 { 4712 struct hci_cp_le_set_default_phy cp; 4713 4714 if (!(hdev->commands[35] & 0x20)) { 4715 /* If the command is not supported it means only 1M PHY is 4716 * supported. 4717 */ 4718 hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M; 4719 hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M; 4720 return 0; 4721 } 4722 4723 memset(&cp, 0, sizeof(cp)); 4724 cp.all_phys = 0x00; 4725 cp.tx_phys = HCI_LE_SET_PHY_1M; 4726 cp.rx_phys = HCI_LE_SET_PHY_1M; 4727 4728 /* Enables 2M PHY if supported */ 4729 if (le_2m_capable(hdev)) { 4730 cp.tx_phys |= HCI_LE_SET_PHY_2M; 4731 cp.rx_phys |= HCI_LE_SET_PHY_2M; 4732 } 4733 4734 /* Enables Coded PHY if supported */ 4735 if (le_coded_capable(hdev)) { 4736 cp.tx_phys |= HCI_LE_SET_PHY_CODED; 4737 cp.rx_phys |= HCI_LE_SET_PHY_CODED; 4738 } 4739 4740 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_DEFAULT_PHY, 4741 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 4742 } 4743 4744 static const struct hci_init_stage le_init4[] = { 4745 /* HCI_OP_LE_WRITE_DEF_DATA_LEN */ 4746 HCI_INIT(hci_le_set_write_def_data_len_sync), 4747 /* HCI_OP_LE_SET_DEFAULT_PHY */ 4748 HCI_INIT(hci_le_set_default_phy_sync), 4749 {} 4750 }; 4751 4752 static int hci_init4_sync(struct hci_dev *hdev) 4753 { 4754 int err; 4755 4756 bt_dev_dbg(hdev, ""); 4757 4758 err = hci_init_stage_sync(hdev, hci_init4); 4759 if (err) 4760 return err; 4761 4762 if (lmp_le_capable(hdev)) 4763 return hci_init_stage_sync(hdev, le_init4); 4764 4765 return 0; 4766 } 4767 4768 static int hci_init_sync(struct hci_dev *hdev) 4769 { 4770 int err; 4771 4772 err = hci_init1_sync(hdev); 4773 if (err < 0) 4774 return err; 4775 4776 if (hci_dev_test_flag(hdev, HCI_SETUP)) 4777 hci_debugfs_create_basic(hdev); 4778 4779 err = hci_init2_sync(hdev); 4780 if (err < 0) 4781 return err; 4782 4783 err = hci_init3_sync(hdev); 4784 if (err < 0) 4785 return err; 4786 4787 err = hci_init4_sync(hdev); 4788 if (err < 0) 4789 return err; 4790 4791 /* This function is only called when the controller is actually in 4792 * configured state. When the controller is marked as unconfigured, 4793 * this initialization procedure is not run. 4794 * 4795 * It means that it is possible that a controller runs through its 4796 * setup phase and then discovers missing settings. If that is the 4797 * case, then this function will not be called. It then will only 4798 * be called during the config phase. 4799 * 4800 * So only when in setup phase or config phase, create the debugfs 4801 * entries and register the SMP channels. 4802 */ 4803 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4804 !hci_dev_test_flag(hdev, HCI_CONFIG)) 4805 return 0; 4806 4807 if (hci_dev_test_and_set_flag(hdev, HCI_DEBUGFS_CREATED)) 4808 return 0; 4809 4810 hci_debugfs_create_common(hdev); 4811 4812 if (lmp_bredr_capable(hdev)) 4813 hci_debugfs_create_bredr(hdev); 4814 4815 if (lmp_le_capable(hdev)) 4816 hci_debugfs_create_le(hdev); 4817 4818 return 0; 4819 } 4820 4821 #define HCI_QUIRK_BROKEN(_quirk, _desc) { HCI_QUIRK_BROKEN_##_quirk, _desc } 4822 4823 static const struct { 4824 unsigned long quirk; 4825 const char *desc; 4826 } hci_broken_table[] = { 4827 HCI_QUIRK_BROKEN(LOCAL_COMMANDS, 4828 "HCI Read Local Supported Commands not supported"), 4829 HCI_QUIRK_BROKEN(STORED_LINK_KEY, 4830 "HCI Delete Stored Link Key command is advertised, " 4831 "but not supported."), 4832 HCI_QUIRK_BROKEN(ERR_DATA_REPORTING, 4833 "HCI Read Default Erroneous Data Reporting command is " 4834 "advertised, but not supported."), 4835 HCI_QUIRK_BROKEN(READ_TRANSMIT_POWER, 4836 "HCI Read Transmit Power Level command is advertised, " 4837 "but not supported."), 4838 HCI_QUIRK_BROKEN(FILTER_CLEAR_ALL, 4839 "HCI Set Event Filter command not supported."), 4840 HCI_QUIRK_BROKEN(ENHANCED_SETUP_SYNC_CONN, 4841 "HCI Enhanced Setup Synchronous Connection command is " 4842 "advertised, but not supported."), 4843 HCI_QUIRK_BROKEN(SET_RPA_TIMEOUT, 4844 "HCI LE Set Random Private Address Timeout command is " 4845 "advertised, but not supported."), 4846 HCI_QUIRK_BROKEN(EXT_CREATE_CONN, 4847 "HCI LE Extended Create Connection command is " 4848 "advertised, but not supported."), 4849 HCI_QUIRK_BROKEN(WRITE_AUTH_PAYLOAD_TIMEOUT, 4850 "HCI WRITE AUTH PAYLOAD TIMEOUT command leads " 4851 "to unexpected SMP errors when pairing " 4852 "and will not be used."), 4853 HCI_QUIRK_BROKEN(LE_CODED, 4854 "HCI LE Coded PHY feature bit is set, " 4855 "but its usage is not supported.") 4856 }; 4857 4858 /* This function handles hdev setup stage: 4859 * 4860 * Calls hdev->setup 4861 * Setup address if HCI_QUIRK_USE_BDADDR_PROPERTY is set. 4862 */ 4863 static int hci_dev_setup_sync(struct hci_dev *hdev) 4864 { 4865 int ret = 0; 4866 bool invalid_bdaddr; 4867 size_t i; 4868 4869 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 4870 !test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) 4871 return 0; 4872 4873 bt_dev_dbg(hdev, ""); 4874 4875 hci_sock_dev_event(hdev, HCI_DEV_SETUP); 4876 4877 if (hdev->setup) 4878 ret = hdev->setup(hdev); 4879 4880 for (i = 0; i < ARRAY_SIZE(hci_broken_table); i++) { 4881 if (test_bit(hci_broken_table[i].quirk, &hdev->quirks)) 4882 bt_dev_warn(hdev, "%s", hci_broken_table[i].desc); 4883 } 4884 4885 /* The transport driver can set the quirk to mark the 4886 * BD_ADDR invalid before creating the HCI device or in 4887 * its setup callback. 4888 */ 4889 invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks) || 4890 test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks); 4891 if (!ret) { 4892 if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks) && 4893 !bacmp(&hdev->public_addr, BDADDR_ANY)) 4894 hci_dev_get_bd_addr_from_property(hdev); 4895 4896 if (invalid_bdaddr && bacmp(&hdev->public_addr, BDADDR_ANY) && 4897 hdev->set_bdaddr) { 4898 ret = hdev->set_bdaddr(hdev, &hdev->public_addr); 4899 if (!ret) 4900 invalid_bdaddr = false; 4901 } 4902 } 4903 4904 /* The transport driver can set these quirks before 4905 * creating the HCI device or in its setup callback. 4906 * 4907 * For the invalid BD_ADDR quirk it is possible that 4908 * it becomes a valid address if the bootloader does 4909 * provide it (see above). 4910 * 4911 * In case any of them is set, the controller has to 4912 * start up as unconfigured. 4913 */ 4914 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) || 4915 invalid_bdaddr) 4916 hci_dev_set_flag(hdev, HCI_UNCONFIGURED); 4917 4918 /* For an unconfigured controller it is required to 4919 * read at least the version information provided by 4920 * the Read Local Version Information command. 4921 * 4922 * If the set_bdaddr driver callback is provided, then 4923 * also the original Bluetooth public device address 4924 * will be read using the Read BD Address command. 4925 */ 4926 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 4927 return hci_unconf_init_sync(hdev); 4928 4929 return ret; 4930 } 4931 4932 /* This function handles hdev init stage: 4933 * 4934 * Calls hci_dev_setup_sync to perform setup stage 4935 * Calls hci_init_sync to perform HCI command init sequence 4936 */ 4937 static int hci_dev_init_sync(struct hci_dev *hdev) 4938 { 4939 int ret; 4940 4941 bt_dev_dbg(hdev, ""); 4942 4943 atomic_set(&hdev->cmd_cnt, 1); 4944 set_bit(HCI_INIT, &hdev->flags); 4945 4946 ret = hci_dev_setup_sync(hdev); 4947 4948 if (hci_dev_test_flag(hdev, HCI_CONFIG)) { 4949 /* If public address change is configured, ensure that 4950 * the address gets programmed. If the driver does not 4951 * support changing the public address, fail the power 4952 * on procedure. 4953 */ 4954 if (bacmp(&hdev->public_addr, BDADDR_ANY) && 4955 hdev->set_bdaddr) 4956 ret = hdev->set_bdaddr(hdev, &hdev->public_addr); 4957 else 4958 ret = -EADDRNOTAVAIL; 4959 } 4960 4961 if (!ret) { 4962 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 4963 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4964 ret = hci_init_sync(hdev); 4965 if (!ret && hdev->post_init) 4966 ret = hdev->post_init(hdev); 4967 } 4968 } 4969 4970 /* If the HCI Reset command is clearing all diagnostic settings, 4971 * then they need to be reprogrammed after the init procedure 4972 * completed. 4973 */ 4974 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) && 4975 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4976 hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag) 4977 ret = hdev->set_diag(hdev, true); 4978 4979 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4980 msft_do_open(hdev); 4981 aosp_do_open(hdev); 4982 } 4983 4984 clear_bit(HCI_INIT, &hdev->flags); 4985 4986 return ret; 4987 } 4988 4989 int hci_dev_open_sync(struct hci_dev *hdev) 4990 { 4991 int ret; 4992 4993 bt_dev_dbg(hdev, ""); 4994 4995 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 4996 ret = -ENODEV; 4997 goto done; 4998 } 4999 5000 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 5001 !hci_dev_test_flag(hdev, HCI_CONFIG)) { 5002 /* Check for rfkill but allow the HCI setup stage to 5003 * proceed (which in itself doesn't cause any RF activity). 5004 */ 5005 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) { 5006 ret = -ERFKILL; 5007 goto done; 5008 } 5009 5010 /* Check for valid public address or a configured static 5011 * random address, but let the HCI setup proceed to 5012 * be able to determine if there is a public address 5013 * or not. 5014 * 5015 * In case of user channel usage, it is not important 5016 * if a public address or static random address is 5017 * available. 5018 */ 5019 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 5020 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 5021 !bacmp(&hdev->static_addr, BDADDR_ANY)) { 5022 ret = -EADDRNOTAVAIL; 5023 goto done; 5024 } 5025 } 5026 5027 if (test_bit(HCI_UP, &hdev->flags)) { 5028 ret = -EALREADY; 5029 goto done; 5030 } 5031 5032 if (hdev->open(hdev)) { 5033 ret = -EIO; 5034 goto done; 5035 } 5036 5037 hci_devcd_reset(hdev); 5038 5039 set_bit(HCI_RUNNING, &hdev->flags); 5040 hci_sock_dev_event(hdev, HCI_DEV_OPEN); 5041 5042 ret = hci_dev_init_sync(hdev); 5043 if (!ret) { 5044 hci_dev_hold(hdev); 5045 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 5046 hci_adv_instances_set_rpa_expired(hdev, true); 5047 set_bit(HCI_UP, &hdev->flags); 5048 hci_sock_dev_event(hdev, HCI_DEV_UP); 5049 hci_leds_update_powered(hdev, true); 5050 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 5051 !hci_dev_test_flag(hdev, HCI_CONFIG) && 5052 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 5053 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 5054 hci_dev_test_flag(hdev, HCI_MGMT)) { 5055 ret = hci_powered_update_sync(hdev); 5056 mgmt_power_on(hdev, ret); 5057 } 5058 } else { 5059 /* Init failed, cleanup */ 5060 flush_work(&hdev->tx_work); 5061 5062 /* Since hci_rx_work() is possible to awake new cmd_work 5063 * it should be flushed first to avoid unexpected call of 5064 * hci_cmd_work() 5065 */ 5066 flush_work(&hdev->rx_work); 5067 flush_work(&hdev->cmd_work); 5068 5069 skb_queue_purge(&hdev->cmd_q); 5070 skb_queue_purge(&hdev->rx_q); 5071 5072 if (hdev->flush) 5073 hdev->flush(hdev); 5074 5075 if (hdev->sent_cmd) { 5076 cancel_delayed_work_sync(&hdev->cmd_timer); 5077 kfree_skb(hdev->sent_cmd); 5078 hdev->sent_cmd = NULL; 5079 } 5080 5081 if (hdev->req_skb) { 5082 kfree_skb(hdev->req_skb); 5083 hdev->req_skb = NULL; 5084 } 5085 5086 clear_bit(HCI_RUNNING, &hdev->flags); 5087 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 5088 5089 hdev->close(hdev); 5090 hdev->flags &= BIT(HCI_RAW); 5091 } 5092 5093 done: 5094 return ret; 5095 } 5096 5097 /* This function requires the caller holds hdev->lock */ 5098 static void hci_pend_le_actions_clear(struct hci_dev *hdev) 5099 { 5100 struct hci_conn_params *p; 5101 5102 list_for_each_entry(p, &hdev->le_conn_params, list) { 5103 hci_pend_le_list_del_init(p); 5104 if (p->conn) { 5105 hci_conn_drop(p->conn); 5106 hci_conn_put(p->conn); 5107 p->conn = NULL; 5108 } 5109 } 5110 5111 BT_DBG("All LE pending actions cleared"); 5112 } 5113 5114 static int hci_dev_shutdown(struct hci_dev *hdev) 5115 { 5116 int err = 0; 5117 /* Similar to how we first do setup and then set the exclusive access 5118 * bit for userspace, we must first unset userchannel and then clean up. 5119 * Otherwise, the kernel can't properly use the hci channel to clean up 5120 * the controller (some shutdown routines require sending additional 5121 * commands to the controller for example). 5122 */ 5123 bool was_userchannel = 5124 hci_dev_test_and_clear_flag(hdev, HCI_USER_CHANNEL); 5125 5126 if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) && 5127 test_bit(HCI_UP, &hdev->flags)) { 5128 /* Execute vendor specific shutdown routine */ 5129 if (hdev->shutdown) 5130 err = hdev->shutdown(hdev); 5131 } 5132 5133 if (was_userchannel) 5134 hci_dev_set_flag(hdev, HCI_USER_CHANNEL); 5135 5136 return err; 5137 } 5138 5139 int hci_dev_close_sync(struct hci_dev *hdev) 5140 { 5141 bool auto_off; 5142 int err = 0; 5143 5144 bt_dev_dbg(hdev, ""); 5145 5146 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 5147 disable_delayed_work(&hdev->power_off); 5148 disable_delayed_work(&hdev->ncmd_timer); 5149 disable_delayed_work(&hdev->le_scan_disable); 5150 } else { 5151 cancel_delayed_work(&hdev->power_off); 5152 cancel_delayed_work(&hdev->ncmd_timer); 5153 cancel_delayed_work(&hdev->le_scan_disable); 5154 } 5155 5156 hci_cmd_sync_cancel_sync(hdev, ENODEV); 5157 5158 cancel_interleave_scan(hdev); 5159 5160 if (hdev->adv_instance_timeout) { 5161 cancel_delayed_work_sync(&hdev->adv_instance_expire); 5162 hdev->adv_instance_timeout = 0; 5163 } 5164 5165 err = hci_dev_shutdown(hdev); 5166 5167 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) { 5168 cancel_delayed_work_sync(&hdev->cmd_timer); 5169 return err; 5170 } 5171 5172 hci_leds_update_powered(hdev, false); 5173 5174 /* Flush RX and TX works */ 5175 flush_work(&hdev->tx_work); 5176 flush_work(&hdev->rx_work); 5177 5178 if (hdev->discov_timeout > 0) { 5179 hdev->discov_timeout = 0; 5180 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 5181 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 5182 } 5183 5184 if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE)) 5185 cancel_delayed_work(&hdev->service_cache); 5186 5187 if (hci_dev_test_flag(hdev, HCI_MGMT)) { 5188 struct adv_info *adv_instance; 5189 5190 cancel_delayed_work_sync(&hdev->rpa_expired); 5191 5192 list_for_each_entry(adv_instance, &hdev->adv_instances, list) 5193 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb); 5194 } 5195 5196 /* Avoid potential lockdep warnings from the *_flush() calls by 5197 * ensuring the workqueue is empty up front. 5198 */ 5199 drain_workqueue(hdev->workqueue); 5200 5201 hci_dev_lock(hdev); 5202 5203 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 5204 5205 auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF); 5206 5207 if (!auto_off && !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 5208 hci_dev_test_flag(hdev, HCI_MGMT)) 5209 __mgmt_power_off(hdev); 5210 5211 hci_inquiry_cache_flush(hdev); 5212 hci_pend_le_actions_clear(hdev); 5213 hci_conn_hash_flush(hdev); 5214 /* Prevent data races on hdev->smp_data or hdev->smp_bredr_data */ 5215 smp_unregister(hdev); 5216 hci_dev_unlock(hdev); 5217 5218 hci_sock_dev_event(hdev, HCI_DEV_DOWN); 5219 5220 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 5221 aosp_do_close(hdev); 5222 msft_do_close(hdev); 5223 } 5224 5225 if (hdev->flush) 5226 hdev->flush(hdev); 5227 5228 /* Reset device */ 5229 skb_queue_purge(&hdev->cmd_q); 5230 atomic_set(&hdev->cmd_cnt, 1); 5231 if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) && 5232 !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 5233 set_bit(HCI_INIT, &hdev->flags); 5234 hci_reset_sync(hdev); 5235 clear_bit(HCI_INIT, &hdev->flags); 5236 } 5237 5238 /* flush cmd work */ 5239 flush_work(&hdev->cmd_work); 5240 5241 /* Drop queues */ 5242 skb_queue_purge(&hdev->rx_q); 5243 skb_queue_purge(&hdev->cmd_q); 5244 skb_queue_purge(&hdev->raw_q); 5245 5246 /* Drop last sent command */ 5247 if (hdev->sent_cmd) { 5248 cancel_delayed_work_sync(&hdev->cmd_timer); 5249 kfree_skb(hdev->sent_cmd); 5250 hdev->sent_cmd = NULL; 5251 } 5252 5253 /* Drop last request */ 5254 if (hdev->req_skb) { 5255 kfree_skb(hdev->req_skb); 5256 hdev->req_skb = NULL; 5257 } 5258 5259 clear_bit(HCI_RUNNING, &hdev->flags); 5260 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 5261 5262 /* After this point our queues are empty and no tasks are scheduled. */ 5263 hdev->close(hdev); 5264 5265 /* Clear flags */ 5266 hdev->flags &= BIT(HCI_RAW); 5267 hci_dev_clear_volatile_flags(hdev); 5268 5269 memset(hdev->eir, 0, sizeof(hdev->eir)); 5270 memset(hdev->dev_class, 0, sizeof(hdev->dev_class)); 5271 bacpy(&hdev->random_addr, BDADDR_ANY); 5272 hci_codec_list_clear(&hdev->local_codecs); 5273 5274 hci_dev_put(hdev); 5275 return err; 5276 } 5277 5278 /* This function perform power on HCI command sequence as follows: 5279 * 5280 * If controller is already up (HCI_UP) performs hci_powered_update_sync 5281 * sequence otherwise run hci_dev_open_sync which will follow with 5282 * hci_powered_update_sync after the init sequence is completed. 5283 */ 5284 static int hci_power_on_sync(struct hci_dev *hdev) 5285 { 5286 int err; 5287 5288 if (test_bit(HCI_UP, &hdev->flags) && 5289 hci_dev_test_flag(hdev, HCI_MGMT) && 5290 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) { 5291 cancel_delayed_work(&hdev->power_off); 5292 return hci_powered_update_sync(hdev); 5293 } 5294 5295 err = hci_dev_open_sync(hdev); 5296 if (err < 0) 5297 return err; 5298 5299 /* During the HCI setup phase, a few error conditions are 5300 * ignored and they need to be checked now. If they are still 5301 * valid, it is important to return the device back off. 5302 */ 5303 if (hci_dev_test_flag(hdev, HCI_RFKILLED) || 5304 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) || 5305 (!bacmp(&hdev->bdaddr, BDADDR_ANY) && 5306 !bacmp(&hdev->static_addr, BDADDR_ANY))) { 5307 hci_dev_clear_flag(hdev, HCI_AUTO_OFF); 5308 hci_dev_close_sync(hdev); 5309 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) { 5310 queue_delayed_work(hdev->req_workqueue, &hdev->power_off, 5311 HCI_AUTO_OFF_TIMEOUT); 5312 } 5313 5314 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) { 5315 /* For unconfigured devices, set the HCI_RAW flag 5316 * so that userspace can easily identify them. 5317 */ 5318 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 5319 set_bit(HCI_RAW, &hdev->flags); 5320 5321 /* For fully configured devices, this will send 5322 * the Index Added event. For unconfigured devices, 5323 * it will send Unconfigued Index Added event. 5324 * 5325 * Devices with HCI_QUIRK_RAW_DEVICE are ignored 5326 * and no event will be send. 5327 */ 5328 mgmt_index_added(hdev); 5329 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) { 5330 /* When the controller is now configured, then it 5331 * is important to clear the HCI_RAW flag. 5332 */ 5333 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 5334 clear_bit(HCI_RAW, &hdev->flags); 5335 5336 /* Powering on the controller with HCI_CONFIG set only 5337 * happens with the transition from unconfigured to 5338 * configured. This will send the Index Added event. 5339 */ 5340 mgmt_index_added(hdev); 5341 } 5342 5343 return 0; 5344 } 5345 5346 static int hci_remote_name_cancel_sync(struct hci_dev *hdev, bdaddr_t *addr) 5347 { 5348 struct hci_cp_remote_name_req_cancel cp; 5349 5350 memset(&cp, 0, sizeof(cp)); 5351 bacpy(&cp.bdaddr, addr); 5352 5353 return __hci_cmd_sync_status(hdev, HCI_OP_REMOTE_NAME_REQ_CANCEL, 5354 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5355 } 5356 5357 int hci_stop_discovery_sync(struct hci_dev *hdev) 5358 { 5359 struct discovery_state *d = &hdev->discovery; 5360 struct inquiry_entry *e; 5361 int err; 5362 5363 bt_dev_dbg(hdev, "state %u", hdev->discovery.state); 5364 5365 if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) { 5366 if (test_bit(HCI_INQUIRY, &hdev->flags)) { 5367 err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL, 5368 0, NULL, HCI_CMD_TIMEOUT); 5369 if (err) 5370 return err; 5371 } 5372 5373 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 5374 cancel_delayed_work(&hdev->le_scan_disable); 5375 5376 err = hci_scan_disable_sync(hdev); 5377 if (err) 5378 return err; 5379 } 5380 5381 } else { 5382 err = hci_scan_disable_sync(hdev); 5383 if (err) 5384 return err; 5385 } 5386 5387 /* Resume advertising if it was paused */ 5388 if (use_ll_privacy(hdev)) 5389 hci_resume_advertising_sync(hdev); 5390 5391 /* No further actions needed for LE-only discovery */ 5392 if (d->type == DISCOV_TYPE_LE) 5393 return 0; 5394 5395 if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) { 5396 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY, 5397 NAME_PENDING); 5398 if (!e) 5399 return 0; 5400 5401 /* Ignore cancel errors since it should interfere with stopping 5402 * of the discovery. 5403 */ 5404 hci_remote_name_cancel_sync(hdev, &e->data.bdaddr); 5405 } 5406 5407 return 0; 5408 } 5409 5410 static int hci_disconnect_sync(struct hci_dev *hdev, struct hci_conn *conn, 5411 u8 reason) 5412 { 5413 struct hci_cp_disconnect cp; 5414 5415 if (test_bit(HCI_CONN_BIG_CREATED, &conn->flags)) { 5416 /* This is a BIS connection, hci_conn_del will 5417 * do the necessary cleanup. 5418 */ 5419 hci_dev_lock(hdev); 5420 hci_conn_failed(conn, reason); 5421 hci_dev_unlock(hdev); 5422 5423 return 0; 5424 } 5425 5426 memset(&cp, 0, sizeof(cp)); 5427 cp.handle = cpu_to_le16(conn->handle); 5428 cp.reason = reason; 5429 5430 /* Wait for HCI_EV_DISCONN_COMPLETE, not HCI_EV_CMD_STATUS, when the 5431 * reason is anything but HCI_ERROR_REMOTE_POWER_OFF. This reason is 5432 * used when suspending or powering off, where we don't want to wait 5433 * for the peer's response. 5434 */ 5435 if (reason != HCI_ERROR_REMOTE_POWER_OFF) 5436 return __hci_cmd_sync_status_sk(hdev, HCI_OP_DISCONNECT, 5437 sizeof(cp), &cp, 5438 HCI_EV_DISCONN_COMPLETE, 5439 HCI_CMD_TIMEOUT, NULL); 5440 5441 return __hci_cmd_sync_status(hdev, HCI_OP_DISCONNECT, sizeof(cp), &cp, 5442 HCI_CMD_TIMEOUT); 5443 } 5444 5445 static int hci_le_connect_cancel_sync(struct hci_dev *hdev, 5446 struct hci_conn *conn, u8 reason) 5447 { 5448 /* Return reason if scanning since the connection shall probably be 5449 * cleanup directly. 5450 */ 5451 if (test_bit(HCI_CONN_SCANNING, &conn->flags)) 5452 return reason; 5453 5454 if (conn->role == HCI_ROLE_SLAVE || 5455 test_and_set_bit(HCI_CONN_CANCEL, &conn->flags)) 5456 return 0; 5457 5458 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CREATE_CONN_CANCEL, 5459 0, NULL, HCI_CMD_TIMEOUT); 5460 } 5461 5462 static int hci_connect_cancel_sync(struct hci_dev *hdev, struct hci_conn *conn, 5463 u8 reason) 5464 { 5465 if (conn->type == LE_LINK) 5466 return hci_le_connect_cancel_sync(hdev, conn, reason); 5467 5468 if (conn->type == ISO_LINK) { 5469 /* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E 5470 * page 1857: 5471 * 5472 * If this command is issued for a CIS on the Central and the 5473 * CIS is successfully terminated before being established, 5474 * then an HCI_LE_CIS_Established event shall also be sent for 5475 * this CIS with the Status Operation Cancelled by Host (0x44). 5476 */ 5477 if (test_bit(HCI_CONN_CREATE_CIS, &conn->flags)) 5478 return hci_disconnect_sync(hdev, conn, reason); 5479 5480 /* CIS with no Create CIS sent have nothing to cancel */ 5481 if (bacmp(&conn->dst, BDADDR_ANY)) 5482 return HCI_ERROR_LOCAL_HOST_TERM; 5483 5484 /* There is no way to cancel a BIS without terminating the BIG 5485 * which is done later on connection cleanup. 5486 */ 5487 return 0; 5488 } 5489 5490 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 5491 return 0; 5492 5493 /* Wait for HCI_EV_CONN_COMPLETE, not HCI_EV_CMD_STATUS, when the 5494 * reason is anything but HCI_ERROR_REMOTE_POWER_OFF. This reason is 5495 * used when suspending or powering off, where we don't want to wait 5496 * for the peer's response. 5497 */ 5498 if (reason != HCI_ERROR_REMOTE_POWER_OFF) 5499 return __hci_cmd_sync_status_sk(hdev, HCI_OP_CREATE_CONN_CANCEL, 5500 6, &conn->dst, 5501 HCI_EV_CONN_COMPLETE, 5502 HCI_CMD_TIMEOUT, NULL); 5503 5504 return __hci_cmd_sync_status(hdev, HCI_OP_CREATE_CONN_CANCEL, 5505 6, &conn->dst, HCI_CMD_TIMEOUT); 5506 } 5507 5508 static int hci_reject_sco_sync(struct hci_dev *hdev, struct hci_conn *conn, 5509 u8 reason) 5510 { 5511 struct hci_cp_reject_sync_conn_req cp; 5512 5513 memset(&cp, 0, sizeof(cp)); 5514 bacpy(&cp.bdaddr, &conn->dst); 5515 cp.reason = reason; 5516 5517 /* SCO rejection has its own limited set of 5518 * allowed error values (0x0D-0x0F). 5519 */ 5520 if (reason < 0x0d || reason > 0x0f) 5521 cp.reason = HCI_ERROR_REJ_LIMITED_RESOURCES; 5522 5523 return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_SYNC_CONN_REQ, 5524 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5525 } 5526 5527 static int hci_le_reject_cis_sync(struct hci_dev *hdev, struct hci_conn *conn, 5528 u8 reason) 5529 { 5530 struct hci_cp_le_reject_cis cp; 5531 5532 memset(&cp, 0, sizeof(cp)); 5533 cp.handle = cpu_to_le16(conn->handle); 5534 cp.reason = reason; 5535 5536 return __hci_cmd_sync_status(hdev, HCI_OP_LE_REJECT_CIS, 5537 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5538 } 5539 5540 static int hci_reject_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, 5541 u8 reason) 5542 { 5543 struct hci_cp_reject_conn_req cp; 5544 5545 if (conn->type == ISO_LINK) 5546 return hci_le_reject_cis_sync(hdev, conn, reason); 5547 5548 if (conn->type == SCO_LINK || conn->type == ESCO_LINK) 5549 return hci_reject_sco_sync(hdev, conn, reason); 5550 5551 memset(&cp, 0, sizeof(cp)); 5552 bacpy(&cp.bdaddr, &conn->dst); 5553 cp.reason = reason; 5554 5555 return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_CONN_REQ, 5556 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5557 } 5558 5559 int hci_abort_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, u8 reason) 5560 { 5561 int err = 0; 5562 u16 handle = conn->handle; 5563 bool disconnect = false; 5564 struct hci_conn *c; 5565 5566 switch (conn->state) { 5567 case BT_CONNECTED: 5568 case BT_CONFIG: 5569 err = hci_disconnect_sync(hdev, conn, reason); 5570 break; 5571 case BT_CONNECT: 5572 err = hci_connect_cancel_sync(hdev, conn, reason); 5573 break; 5574 case BT_CONNECT2: 5575 err = hci_reject_conn_sync(hdev, conn, reason); 5576 break; 5577 case BT_OPEN: 5578 case BT_BOUND: 5579 break; 5580 default: 5581 disconnect = true; 5582 break; 5583 } 5584 5585 hci_dev_lock(hdev); 5586 5587 /* Check if the connection has been cleaned up concurrently */ 5588 c = hci_conn_hash_lookup_handle(hdev, handle); 5589 if (!c || c != conn) { 5590 err = 0; 5591 goto unlock; 5592 } 5593 5594 /* Cleanup hci_conn object if it cannot be cancelled as it 5595 * likelly means the controller and host stack are out of sync 5596 * or in case of LE it was still scanning so it can be cleanup 5597 * safely. 5598 */ 5599 if (disconnect) { 5600 conn->state = BT_CLOSED; 5601 hci_disconn_cfm(conn, reason); 5602 hci_conn_del(conn); 5603 } else { 5604 hci_conn_failed(conn, reason); 5605 } 5606 5607 unlock: 5608 hci_dev_unlock(hdev); 5609 return err; 5610 } 5611 5612 static int hci_disconnect_all_sync(struct hci_dev *hdev, u8 reason) 5613 { 5614 struct list_head *head = &hdev->conn_hash.list; 5615 struct hci_conn *conn; 5616 5617 rcu_read_lock(); 5618 while ((conn = list_first_or_null_rcu(head, struct hci_conn, list))) { 5619 /* Make sure the connection is not freed while unlocking */ 5620 conn = hci_conn_get(conn); 5621 rcu_read_unlock(); 5622 /* Disregard possible errors since hci_conn_del shall have been 5623 * called even in case of errors had occurred since it would 5624 * then cause hci_conn_failed to be called which calls 5625 * hci_conn_del internally. 5626 */ 5627 hci_abort_conn_sync(hdev, conn, reason); 5628 hci_conn_put(conn); 5629 rcu_read_lock(); 5630 } 5631 rcu_read_unlock(); 5632 5633 return 0; 5634 } 5635 5636 /* This function perform power off HCI command sequence as follows: 5637 * 5638 * Clear Advertising 5639 * Stop Discovery 5640 * Disconnect all connections 5641 * hci_dev_close_sync 5642 */ 5643 static int hci_power_off_sync(struct hci_dev *hdev) 5644 { 5645 int err; 5646 5647 /* If controller is already down there is nothing to do */ 5648 if (!test_bit(HCI_UP, &hdev->flags)) 5649 return 0; 5650 5651 hci_dev_set_flag(hdev, HCI_POWERING_DOWN); 5652 5653 if (test_bit(HCI_ISCAN, &hdev->flags) || 5654 test_bit(HCI_PSCAN, &hdev->flags)) { 5655 err = hci_write_scan_enable_sync(hdev, 0x00); 5656 if (err) 5657 goto out; 5658 } 5659 5660 err = hci_clear_adv_sync(hdev, NULL, false); 5661 if (err) 5662 goto out; 5663 5664 err = hci_stop_discovery_sync(hdev); 5665 if (err) 5666 goto out; 5667 5668 /* Terminated due to Power Off */ 5669 err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF); 5670 if (err) 5671 goto out; 5672 5673 err = hci_dev_close_sync(hdev); 5674 5675 out: 5676 hci_dev_clear_flag(hdev, HCI_POWERING_DOWN); 5677 return err; 5678 } 5679 5680 int hci_set_powered_sync(struct hci_dev *hdev, u8 val) 5681 { 5682 if (val) 5683 return hci_power_on_sync(hdev); 5684 5685 return hci_power_off_sync(hdev); 5686 } 5687 5688 static int hci_write_iac_sync(struct hci_dev *hdev) 5689 { 5690 struct hci_cp_write_current_iac_lap cp; 5691 5692 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 5693 return 0; 5694 5695 memset(&cp, 0, sizeof(cp)); 5696 5697 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { 5698 /* Limited discoverable mode */ 5699 cp.num_iac = min_t(u8, hdev->num_iac, 2); 5700 cp.iac_lap[0] = 0x00; /* LIAC */ 5701 cp.iac_lap[1] = 0x8b; 5702 cp.iac_lap[2] = 0x9e; 5703 cp.iac_lap[3] = 0x33; /* GIAC */ 5704 cp.iac_lap[4] = 0x8b; 5705 cp.iac_lap[5] = 0x9e; 5706 } else { 5707 /* General discoverable mode */ 5708 cp.num_iac = 1; 5709 cp.iac_lap[0] = 0x33; /* GIAC */ 5710 cp.iac_lap[1] = 0x8b; 5711 cp.iac_lap[2] = 0x9e; 5712 } 5713 5714 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CURRENT_IAC_LAP, 5715 (cp.num_iac * 3) + 1, &cp, 5716 HCI_CMD_TIMEOUT); 5717 } 5718 5719 int hci_update_discoverable_sync(struct hci_dev *hdev) 5720 { 5721 int err = 0; 5722 5723 if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 5724 err = hci_write_iac_sync(hdev); 5725 if (err) 5726 return err; 5727 5728 err = hci_update_scan_sync(hdev); 5729 if (err) 5730 return err; 5731 5732 err = hci_update_class_sync(hdev); 5733 if (err) 5734 return err; 5735 } 5736 5737 /* Advertising instances don't use the global discoverable setting, so 5738 * only update AD if advertising was enabled using Set Advertising. 5739 */ 5740 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) { 5741 err = hci_update_adv_data_sync(hdev, 0x00); 5742 if (err) 5743 return err; 5744 5745 /* Discoverable mode affects the local advertising 5746 * address in limited privacy mode. 5747 */ 5748 if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) { 5749 if (ext_adv_capable(hdev)) 5750 err = hci_start_ext_adv_sync(hdev, 0x00); 5751 else 5752 err = hci_enable_advertising_sync(hdev); 5753 } 5754 } 5755 5756 return err; 5757 } 5758 5759 static int update_discoverable_sync(struct hci_dev *hdev, void *data) 5760 { 5761 return hci_update_discoverable_sync(hdev); 5762 } 5763 5764 int hci_update_discoverable(struct hci_dev *hdev) 5765 { 5766 /* Only queue if it would have any effect */ 5767 if (hdev_is_powered(hdev) && 5768 hci_dev_test_flag(hdev, HCI_ADVERTISING) && 5769 hci_dev_test_flag(hdev, HCI_DISCOVERABLE) && 5770 hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) 5771 return hci_cmd_sync_queue(hdev, update_discoverable_sync, NULL, 5772 NULL); 5773 5774 return 0; 5775 } 5776 5777 int hci_update_connectable_sync(struct hci_dev *hdev) 5778 { 5779 int err; 5780 5781 err = hci_update_scan_sync(hdev); 5782 if (err) 5783 return err; 5784 5785 /* If BR/EDR is not enabled and we disable advertising as a 5786 * by-product of disabling connectable, we need to update the 5787 * advertising flags. 5788 */ 5789 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 5790 err = hci_update_adv_data_sync(hdev, hdev->cur_adv_instance); 5791 5792 /* Update the advertising parameters if necessary */ 5793 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 5794 !list_empty(&hdev->adv_instances)) { 5795 if (ext_adv_capable(hdev)) 5796 err = hci_start_ext_adv_sync(hdev, 5797 hdev->cur_adv_instance); 5798 else 5799 err = hci_enable_advertising_sync(hdev); 5800 5801 if (err) 5802 return err; 5803 } 5804 5805 return hci_update_passive_scan_sync(hdev); 5806 } 5807 5808 int hci_inquiry_sync(struct hci_dev *hdev, u8 length, u8 num_rsp) 5809 { 5810 const u8 giac[3] = { 0x33, 0x8b, 0x9e }; 5811 const u8 liac[3] = { 0x00, 0x8b, 0x9e }; 5812 struct hci_cp_inquiry cp; 5813 5814 bt_dev_dbg(hdev, ""); 5815 5816 if (test_bit(HCI_INQUIRY, &hdev->flags)) 5817 return 0; 5818 5819 hci_dev_lock(hdev); 5820 hci_inquiry_cache_flush(hdev); 5821 hci_dev_unlock(hdev); 5822 5823 memset(&cp, 0, sizeof(cp)); 5824 5825 if (hdev->discovery.limited) 5826 memcpy(&cp.lap, liac, sizeof(cp.lap)); 5827 else 5828 memcpy(&cp.lap, giac, sizeof(cp.lap)); 5829 5830 cp.length = length; 5831 cp.num_rsp = num_rsp; 5832 5833 return __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY, 5834 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 5835 } 5836 5837 static int hci_active_scan_sync(struct hci_dev *hdev, uint16_t interval) 5838 { 5839 u8 own_addr_type; 5840 /* Accept list is not used for discovery */ 5841 u8 filter_policy = 0x00; 5842 /* Default is to enable duplicates filter */ 5843 u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE; 5844 int err; 5845 5846 bt_dev_dbg(hdev, ""); 5847 5848 /* If controller is scanning, it means the passive scanning is 5849 * running. Thus, we should temporarily stop it in order to set the 5850 * discovery scanning parameters. 5851 */ 5852 err = hci_scan_disable_sync(hdev); 5853 if (err) { 5854 bt_dev_err(hdev, "Unable to disable scanning: %d", err); 5855 return err; 5856 } 5857 5858 cancel_interleave_scan(hdev); 5859 5860 /* Pause address resolution for active scan and stop advertising if 5861 * privacy is enabled. 5862 */ 5863 err = hci_pause_addr_resolution(hdev); 5864 if (err) 5865 goto failed; 5866 5867 /* All active scans will be done with either a resolvable private 5868 * address (when privacy feature has been enabled) or non-resolvable 5869 * private address. 5870 */ 5871 err = hci_update_random_address_sync(hdev, true, scan_use_rpa(hdev), 5872 &own_addr_type); 5873 if (err < 0) 5874 own_addr_type = ADDR_LE_DEV_PUBLIC; 5875 5876 if (hci_is_adv_monitoring(hdev) || 5877 (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) && 5878 hdev->discovery.result_filtering)) { 5879 /* Duplicate filter should be disabled when some advertisement 5880 * monitor is activated, otherwise AdvMon can only receive one 5881 * advertisement for one peer(*) during active scanning, and 5882 * might report loss to these peers. 5883 * 5884 * If controller does strict duplicate filtering and the 5885 * discovery requires result filtering disables controller based 5886 * filtering since that can cause reports that would match the 5887 * host filter to not be reported. 5888 */ 5889 filter_dup = LE_SCAN_FILTER_DUP_DISABLE; 5890 } 5891 5892 err = hci_start_scan_sync(hdev, LE_SCAN_ACTIVE, interval, 5893 hdev->le_scan_window_discovery, 5894 own_addr_type, filter_policy, filter_dup); 5895 if (!err) 5896 return err; 5897 5898 failed: 5899 /* Resume advertising if it was paused */ 5900 if (use_ll_privacy(hdev)) 5901 hci_resume_advertising_sync(hdev); 5902 5903 /* Resume passive scanning */ 5904 hci_update_passive_scan_sync(hdev); 5905 return err; 5906 } 5907 5908 static int hci_start_interleaved_discovery_sync(struct hci_dev *hdev) 5909 { 5910 int err; 5911 5912 bt_dev_dbg(hdev, ""); 5913 5914 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery * 2); 5915 if (err) 5916 return err; 5917 5918 return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN, 0); 5919 } 5920 5921 int hci_start_discovery_sync(struct hci_dev *hdev) 5922 { 5923 unsigned long timeout; 5924 int err; 5925 5926 bt_dev_dbg(hdev, "type %u", hdev->discovery.type); 5927 5928 switch (hdev->discovery.type) { 5929 case DISCOV_TYPE_BREDR: 5930 return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN, 0); 5931 case DISCOV_TYPE_INTERLEAVED: 5932 /* When running simultaneous discovery, the LE scanning time 5933 * should occupy the whole discovery time sine BR/EDR inquiry 5934 * and LE scanning are scheduled by the controller. 5935 * 5936 * For interleaving discovery in comparison, BR/EDR inquiry 5937 * and LE scanning are done sequentially with separate 5938 * timeouts. 5939 */ 5940 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, 5941 &hdev->quirks)) { 5942 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 5943 /* During simultaneous discovery, we double LE scan 5944 * interval. We must leave some time for the controller 5945 * to do BR/EDR inquiry. 5946 */ 5947 err = hci_start_interleaved_discovery_sync(hdev); 5948 break; 5949 } 5950 5951 timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout); 5952 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery); 5953 break; 5954 case DISCOV_TYPE_LE: 5955 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 5956 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery); 5957 break; 5958 default: 5959 return -EINVAL; 5960 } 5961 5962 if (err) 5963 return err; 5964 5965 bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout)); 5966 5967 queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable, 5968 timeout); 5969 return 0; 5970 } 5971 5972 static void hci_suspend_monitor_sync(struct hci_dev *hdev) 5973 { 5974 switch (hci_get_adv_monitor_offload_ext(hdev)) { 5975 case HCI_ADV_MONITOR_EXT_MSFT: 5976 msft_suspend_sync(hdev); 5977 break; 5978 default: 5979 return; 5980 } 5981 } 5982 5983 /* This function disables discovery and mark it as paused */ 5984 static int hci_pause_discovery_sync(struct hci_dev *hdev) 5985 { 5986 int old_state = hdev->discovery.state; 5987 int err; 5988 5989 /* If discovery already stopped/stopping/paused there nothing to do */ 5990 if (old_state == DISCOVERY_STOPPED || old_state == DISCOVERY_STOPPING || 5991 hdev->discovery_paused) 5992 return 0; 5993 5994 hci_discovery_set_state(hdev, DISCOVERY_STOPPING); 5995 err = hci_stop_discovery_sync(hdev); 5996 if (err) 5997 return err; 5998 5999 hdev->discovery_paused = true; 6000 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 6001 6002 return 0; 6003 } 6004 6005 static int hci_update_event_filter_sync(struct hci_dev *hdev) 6006 { 6007 struct bdaddr_list_with_flags *b; 6008 u8 scan = SCAN_DISABLED; 6009 bool scanning = test_bit(HCI_PSCAN, &hdev->flags); 6010 int err; 6011 6012 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 6013 return 0; 6014 6015 /* Some fake CSR controllers lock up after setting this type of 6016 * filter, so avoid sending the request altogether. 6017 */ 6018 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks)) 6019 return 0; 6020 6021 /* Always clear event filter when starting */ 6022 hci_clear_event_filter_sync(hdev); 6023 6024 list_for_each_entry(b, &hdev->accept_list, list) { 6025 if (!(b->flags & HCI_CONN_FLAG_REMOTE_WAKEUP)) 6026 continue; 6027 6028 bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr); 6029 6030 err = hci_set_event_filter_sync(hdev, HCI_FLT_CONN_SETUP, 6031 HCI_CONN_SETUP_ALLOW_BDADDR, 6032 &b->bdaddr, 6033 HCI_CONN_SETUP_AUTO_ON); 6034 if (err) 6035 bt_dev_dbg(hdev, "Failed to set event filter for %pMR", 6036 &b->bdaddr); 6037 else 6038 scan = SCAN_PAGE; 6039 } 6040 6041 if (scan && !scanning) 6042 hci_write_scan_enable_sync(hdev, scan); 6043 else if (!scan && scanning) 6044 hci_write_scan_enable_sync(hdev, scan); 6045 6046 return 0; 6047 } 6048 6049 /* This function disables scan (BR and LE) and mark it as paused */ 6050 static int hci_pause_scan_sync(struct hci_dev *hdev) 6051 { 6052 if (hdev->scanning_paused) 6053 return 0; 6054 6055 /* Disable page scan if enabled */ 6056 if (test_bit(HCI_PSCAN, &hdev->flags)) 6057 hci_write_scan_enable_sync(hdev, SCAN_DISABLED); 6058 6059 hci_scan_disable_sync(hdev); 6060 6061 hdev->scanning_paused = true; 6062 6063 return 0; 6064 } 6065 6066 /* This function performs the HCI suspend procedures in the follow order: 6067 * 6068 * Pause discovery (active scanning/inquiry) 6069 * Pause Directed Advertising/Advertising 6070 * Pause Scanning (passive scanning in case discovery was not active) 6071 * Disconnect all connections 6072 * Set suspend_status to BT_SUSPEND_DISCONNECT if hdev cannot wakeup 6073 * otherwise: 6074 * Update event mask (only set events that are allowed to wake up the host) 6075 * Update event filter (with devices marked with HCI_CONN_FLAG_REMOTE_WAKEUP) 6076 * Update passive scanning (lower duty cycle) 6077 * Set suspend_status to BT_SUSPEND_CONFIGURE_WAKE 6078 */ 6079 int hci_suspend_sync(struct hci_dev *hdev) 6080 { 6081 int err; 6082 6083 /* If marked as suspended there nothing to do */ 6084 if (hdev->suspended) 6085 return 0; 6086 6087 /* Mark device as suspended */ 6088 hdev->suspended = true; 6089 6090 /* Pause discovery if not already stopped */ 6091 hci_pause_discovery_sync(hdev); 6092 6093 /* Pause other advertisements */ 6094 hci_pause_advertising_sync(hdev); 6095 6096 /* Suspend monitor filters */ 6097 hci_suspend_monitor_sync(hdev); 6098 6099 /* Prevent disconnects from causing scanning to be re-enabled */ 6100 hci_pause_scan_sync(hdev); 6101 6102 if (hci_conn_count(hdev)) { 6103 /* Soft disconnect everything (power off) */ 6104 err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF); 6105 if (err) { 6106 /* Set state to BT_RUNNING so resume doesn't notify */ 6107 hdev->suspend_state = BT_RUNNING; 6108 hci_resume_sync(hdev); 6109 return err; 6110 } 6111 6112 /* Update event mask so only the allowed event can wakeup the 6113 * host. 6114 */ 6115 hci_set_event_mask_sync(hdev); 6116 } 6117 6118 /* Only configure accept list if disconnect succeeded and wake 6119 * isn't being prevented. 6120 */ 6121 if (!hdev->wakeup || !hdev->wakeup(hdev)) { 6122 hdev->suspend_state = BT_SUSPEND_DISCONNECT; 6123 return 0; 6124 } 6125 6126 /* Unpause to take care of updating scanning params */ 6127 hdev->scanning_paused = false; 6128 6129 /* Enable event filter for paired devices */ 6130 hci_update_event_filter_sync(hdev); 6131 6132 /* Update LE passive scan if enabled */ 6133 hci_update_passive_scan_sync(hdev); 6134 6135 /* Pause scan changes again. */ 6136 hdev->scanning_paused = true; 6137 6138 hdev->suspend_state = BT_SUSPEND_CONFIGURE_WAKE; 6139 6140 return 0; 6141 } 6142 6143 /* This function resumes discovery */ 6144 static int hci_resume_discovery_sync(struct hci_dev *hdev) 6145 { 6146 int err; 6147 6148 /* If discovery not paused there nothing to do */ 6149 if (!hdev->discovery_paused) 6150 return 0; 6151 6152 hdev->discovery_paused = false; 6153 6154 hci_discovery_set_state(hdev, DISCOVERY_STARTING); 6155 6156 err = hci_start_discovery_sync(hdev); 6157 6158 hci_discovery_set_state(hdev, err ? DISCOVERY_STOPPED : 6159 DISCOVERY_FINDING); 6160 6161 return err; 6162 } 6163 6164 static void hci_resume_monitor_sync(struct hci_dev *hdev) 6165 { 6166 switch (hci_get_adv_monitor_offload_ext(hdev)) { 6167 case HCI_ADV_MONITOR_EXT_MSFT: 6168 msft_resume_sync(hdev); 6169 break; 6170 default: 6171 return; 6172 } 6173 } 6174 6175 /* This function resume scan and reset paused flag */ 6176 static int hci_resume_scan_sync(struct hci_dev *hdev) 6177 { 6178 if (!hdev->scanning_paused) 6179 return 0; 6180 6181 hdev->scanning_paused = false; 6182 6183 hci_update_scan_sync(hdev); 6184 6185 /* Reset passive scanning to normal */ 6186 hci_update_passive_scan_sync(hdev); 6187 6188 return 0; 6189 } 6190 6191 /* This function performs the HCI suspend procedures in the follow order: 6192 * 6193 * Restore event mask 6194 * Clear event filter 6195 * Update passive scanning (normal duty cycle) 6196 * Resume Directed Advertising/Advertising 6197 * Resume discovery (active scanning/inquiry) 6198 */ 6199 int hci_resume_sync(struct hci_dev *hdev) 6200 { 6201 /* If not marked as suspended there nothing to do */ 6202 if (!hdev->suspended) 6203 return 0; 6204 6205 hdev->suspended = false; 6206 6207 /* Restore event mask */ 6208 hci_set_event_mask_sync(hdev); 6209 6210 /* Clear any event filters and restore scan state */ 6211 hci_clear_event_filter_sync(hdev); 6212 6213 /* Resume scanning */ 6214 hci_resume_scan_sync(hdev); 6215 6216 /* Resume monitor filters */ 6217 hci_resume_monitor_sync(hdev); 6218 6219 /* Resume other advertisements */ 6220 hci_resume_advertising_sync(hdev); 6221 6222 /* Resume discovery */ 6223 hci_resume_discovery_sync(hdev); 6224 6225 return 0; 6226 } 6227 6228 static bool conn_use_rpa(struct hci_conn *conn) 6229 { 6230 struct hci_dev *hdev = conn->hdev; 6231 6232 return hci_dev_test_flag(hdev, HCI_PRIVACY); 6233 } 6234 6235 static int hci_le_ext_directed_advertising_sync(struct hci_dev *hdev, 6236 struct hci_conn *conn) 6237 { 6238 struct hci_cp_le_set_ext_adv_params cp; 6239 int err; 6240 bdaddr_t random_addr; 6241 u8 own_addr_type; 6242 6243 err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 6244 &own_addr_type); 6245 if (err) 6246 return err; 6247 6248 /* Set require_privacy to false so that the remote device has a 6249 * chance of identifying us. 6250 */ 6251 err = hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL, 6252 &own_addr_type, &random_addr); 6253 if (err) 6254 return err; 6255 6256 memset(&cp, 0, sizeof(cp)); 6257 6258 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND); 6259 cp.channel_map = hdev->le_adv_channel_map; 6260 cp.tx_power = HCI_TX_POWER_INVALID; 6261 cp.primary_phy = HCI_ADV_PHY_1M; 6262 cp.secondary_phy = HCI_ADV_PHY_1M; 6263 cp.handle = 0x00; /* Use instance 0 for directed adv */ 6264 cp.own_addr_type = own_addr_type; 6265 cp.peer_addr_type = conn->dst_type; 6266 bacpy(&cp.peer_addr, &conn->dst); 6267 6268 /* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for 6269 * advertising_event_property LE_LEGACY_ADV_DIRECT_IND 6270 * does not supports advertising data when the advertising set already 6271 * contains some, the controller shall return erroc code 'Invalid 6272 * HCI Command Parameters(0x12). 6273 * So it is required to remove adv set for handle 0x00. since we use 6274 * instance 0 for directed adv. 6275 */ 6276 err = hci_remove_ext_adv_instance_sync(hdev, cp.handle, NULL); 6277 if (err) 6278 return err; 6279 6280 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS, 6281 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6282 if (err) 6283 return err; 6284 6285 /* Check if random address need to be updated */ 6286 if (own_addr_type == ADDR_LE_DEV_RANDOM && 6287 bacmp(&random_addr, BDADDR_ANY) && 6288 bacmp(&random_addr, &hdev->random_addr)) { 6289 err = hci_set_adv_set_random_addr_sync(hdev, 0x00, 6290 &random_addr); 6291 if (err) 6292 return err; 6293 } 6294 6295 return hci_enable_ext_advertising_sync(hdev, 0x00); 6296 } 6297 6298 static int hci_le_directed_advertising_sync(struct hci_dev *hdev, 6299 struct hci_conn *conn) 6300 { 6301 struct hci_cp_le_set_adv_param cp; 6302 u8 status; 6303 u8 own_addr_type; 6304 u8 enable; 6305 6306 if (ext_adv_capable(hdev)) 6307 return hci_le_ext_directed_advertising_sync(hdev, conn); 6308 6309 /* Clear the HCI_LE_ADV bit temporarily so that the 6310 * hci_update_random_address knows that it's safe to go ahead 6311 * and write a new random address. The flag will be set back on 6312 * as soon as the SET_ADV_ENABLE HCI command completes. 6313 */ 6314 hci_dev_clear_flag(hdev, HCI_LE_ADV); 6315 6316 /* Set require_privacy to false so that the remote device has a 6317 * chance of identifying us. 6318 */ 6319 status = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 6320 &own_addr_type); 6321 if (status) 6322 return status; 6323 6324 memset(&cp, 0, sizeof(cp)); 6325 6326 /* Some controllers might reject command if intervals are not 6327 * within range for undirected advertising. 6328 * BCM20702A0 is known to be affected by this. 6329 */ 6330 cp.min_interval = cpu_to_le16(0x0020); 6331 cp.max_interval = cpu_to_le16(0x0020); 6332 6333 cp.type = LE_ADV_DIRECT_IND; 6334 cp.own_address_type = own_addr_type; 6335 cp.direct_addr_type = conn->dst_type; 6336 bacpy(&cp.direct_addr, &conn->dst); 6337 cp.channel_map = hdev->le_adv_channel_map; 6338 6339 status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM, 6340 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6341 if (status) 6342 return status; 6343 6344 enable = 0x01; 6345 6346 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE, 6347 sizeof(enable), &enable, HCI_CMD_TIMEOUT); 6348 } 6349 6350 static void set_ext_conn_params(struct hci_conn *conn, 6351 struct hci_cp_le_ext_conn_param *p) 6352 { 6353 struct hci_dev *hdev = conn->hdev; 6354 6355 memset(p, 0, sizeof(*p)); 6356 6357 p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect); 6358 p->scan_window = cpu_to_le16(hdev->le_scan_window_connect); 6359 p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 6360 p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 6361 p->conn_latency = cpu_to_le16(conn->le_conn_latency); 6362 p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 6363 p->min_ce_len = cpu_to_le16(0x0000); 6364 p->max_ce_len = cpu_to_le16(0x0000); 6365 } 6366 6367 static int hci_le_ext_create_conn_sync(struct hci_dev *hdev, 6368 struct hci_conn *conn, u8 own_addr_type) 6369 { 6370 struct hci_cp_le_ext_create_conn *cp; 6371 struct hci_cp_le_ext_conn_param *p; 6372 u8 data[sizeof(*cp) + sizeof(*p) * 3]; 6373 u32 plen; 6374 6375 cp = (void *)data; 6376 p = (void *)cp->data; 6377 6378 memset(cp, 0, sizeof(*cp)); 6379 6380 bacpy(&cp->peer_addr, &conn->dst); 6381 cp->peer_addr_type = conn->dst_type; 6382 cp->own_addr_type = own_addr_type; 6383 6384 plen = sizeof(*cp); 6385 6386 if (scan_1m(hdev) && (conn->le_adv_phy == HCI_ADV_PHY_1M || 6387 conn->le_adv_sec_phy == HCI_ADV_PHY_1M)) { 6388 cp->phys |= LE_SCAN_PHY_1M; 6389 set_ext_conn_params(conn, p); 6390 6391 p++; 6392 plen += sizeof(*p); 6393 } 6394 6395 if (scan_2m(hdev) && (conn->le_adv_phy == HCI_ADV_PHY_2M || 6396 conn->le_adv_sec_phy == HCI_ADV_PHY_2M)) { 6397 cp->phys |= LE_SCAN_PHY_2M; 6398 set_ext_conn_params(conn, p); 6399 6400 p++; 6401 plen += sizeof(*p); 6402 } 6403 6404 if (scan_coded(hdev) && (conn->le_adv_phy == HCI_ADV_PHY_CODED || 6405 conn->le_adv_sec_phy == HCI_ADV_PHY_CODED)) { 6406 cp->phys |= LE_SCAN_PHY_CODED; 6407 set_ext_conn_params(conn, p); 6408 6409 plen += sizeof(*p); 6410 } 6411 6412 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_EXT_CREATE_CONN, 6413 plen, data, 6414 HCI_EV_LE_ENHANCED_CONN_COMPLETE, 6415 conn->conn_timeout, NULL); 6416 } 6417 6418 static int hci_le_create_conn_sync(struct hci_dev *hdev, void *data) 6419 { 6420 struct hci_cp_le_create_conn cp; 6421 struct hci_conn_params *params; 6422 u8 own_addr_type; 6423 int err; 6424 struct hci_conn *conn = data; 6425 6426 if (!hci_conn_valid(hdev, conn)) 6427 return -ECANCELED; 6428 6429 bt_dev_dbg(hdev, "conn %p", conn); 6430 6431 clear_bit(HCI_CONN_SCANNING, &conn->flags); 6432 conn->state = BT_CONNECT; 6433 6434 /* If requested to connect as peripheral use directed advertising */ 6435 if (conn->role == HCI_ROLE_SLAVE) { 6436 /* If we're active scanning and simultaneous roles is not 6437 * enabled simply reject the attempt. 6438 */ 6439 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) && 6440 hdev->le_scan_type == LE_SCAN_ACTIVE && 6441 !hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) { 6442 hci_conn_del(conn); 6443 return -EBUSY; 6444 } 6445 6446 /* Pause advertising while doing directed advertising. */ 6447 hci_pause_advertising_sync(hdev); 6448 6449 err = hci_le_directed_advertising_sync(hdev, conn); 6450 goto done; 6451 } 6452 6453 /* Disable advertising if simultaneous roles is not in use. */ 6454 if (!hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) 6455 hci_pause_advertising_sync(hdev); 6456 6457 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); 6458 if (params) { 6459 conn->le_conn_min_interval = params->conn_min_interval; 6460 conn->le_conn_max_interval = params->conn_max_interval; 6461 conn->le_conn_latency = params->conn_latency; 6462 conn->le_supv_timeout = params->supervision_timeout; 6463 } else { 6464 conn->le_conn_min_interval = hdev->le_conn_min_interval; 6465 conn->le_conn_max_interval = hdev->le_conn_max_interval; 6466 conn->le_conn_latency = hdev->le_conn_latency; 6467 conn->le_supv_timeout = hdev->le_supv_timeout; 6468 } 6469 6470 /* If controller is scanning, we stop it since some controllers are 6471 * not able to scan and connect at the same time. Also set the 6472 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete 6473 * handler for scan disabling knows to set the correct discovery 6474 * state. 6475 */ 6476 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 6477 hci_scan_disable_sync(hdev); 6478 hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED); 6479 } 6480 6481 /* Update random address, but set require_privacy to false so 6482 * that we never connect with an non-resolvable address. 6483 */ 6484 err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn), 6485 &own_addr_type); 6486 if (err) 6487 goto done; 6488 /* Send command LE Extended Create Connection if supported */ 6489 if (use_ext_conn(hdev)) { 6490 err = hci_le_ext_create_conn_sync(hdev, conn, own_addr_type); 6491 goto done; 6492 } 6493 6494 memset(&cp, 0, sizeof(cp)); 6495 6496 cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect); 6497 cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect); 6498 6499 bacpy(&cp.peer_addr, &conn->dst); 6500 cp.peer_addr_type = conn->dst_type; 6501 cp.own_address_type = own_addr_type; 6502 cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 6503 cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 6504 cp.conn_latency = cpu_to_le16(conn->le_conn_latency); 6505 cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 6506 cp.min_ce_len = cpu_to_le16(0x0000); 6507 cp.max_ce_len = cpu_to_le16(0x0000); 6508 6509 /* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E page 2261: 6510 * 6511 * If this event is unmasked and the HCI_LE_Connection_Complete event 6512 * is unmasked, only the HCI_LE_Enhanced_Connection_Complete event is 6513 * sent when a new connection has been created. 6514 */ 6515 err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CONN, 6516 sizeof(cp), &cp, 6517 use_enhanced_conn_complete(hdev) ? 6518 HCI_EV_LE_ENHANCED_CONN_COMPLETE : 6519 HCI_EV_LE_CONN_COMPLETE, 6520 conn->conn_timeout, NULL); 6521 6522 done: 6523 if (err == -ETIMEDOUT) 6524 hci_le_connect_cancel_sync(hdev, conn, 0x00); 6525 6526 /* Re-enable advertising after the connection attempt is finished. */ 6527 hci_resume_advertising_sync(hdev); 6528 return err; 6529 } 6530 6531 int hci_le_create_cis_sync(struct hci_dev *hdev) 6532 { 6533 DEFINE_FLEX(struct hci_cp_le_create_cis, cmd, cis, num_cis, 0x1f); 6534 size_t aux_num_cis = 0; 6535 struct hci_conn *conn; 6536 u8 cig = BT_ISO_QOS_CIG_UNSET; 6537 6538 /* The spec allows only one pending LE Create CIS command at a time. If 6539 * the command is pending now, don't do anything. We check for pending 6540 * connections after each CIS Established event. 6541 * 6542 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E 6543 * page 2566: 6544 * 6545 * If the Host issues this command before all the 6546 * HCI_LE_CIS_Established events from the previous use of the 6547 * command have been generated, the Controller shall return the 6548 * error code Command Disallowed (0x0C). 6549 * 6550 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E 6551 * page 2567: 6552 * 6553 * When the Controller receives the HCI_LE_Create_CIS command, the 6554 * Controller sends the HCI_Command_Status event to the Host. An 6555 * HCI_LE_CIS_Established event will be generated for each CIS when it 6556 * is established or if it is disconnected or considered lost before 6557 * being established; until all the events are generated, the command 6558 * remains pending. 6559 */ 6560 6561 hci_dev_lock(hdev); 6562 6563 rcu_read_lock(); 6564 6565 /* Wait until previous Create CIS has completed */ 6566 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) { 6567 if (test_bit(HCI_CONN_CREATE_CIS, &conn->flags)) 6568 goto done; 6569 } 6570 6571 /* Find CIG with all CIS ready */ 6572 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) { 6573 struct hci_conn *link; 6574 6575 if (hci_conn_check_create_cis(conn)) 6576 continue; 6577 6578 cig = conn->iso_qos.ucast.cig; 6579 6580 list_for_each_entry_rcu(link, &hdev->conn_hash.list, list) { 6581 if (hci_conn_check_create_cis(link) > 0 && 6582 link->iso_qos.ucast.cig == cig && 6583 link->state != BT_CONNECTED) { 6584 cig = BT_ISO_QOS_CIG_UNSET; 6585 break; 6586 } 6587 } 6588 6589 if (cig != BT_ISO_QOS_CIG_UNSET) 6590 break; 6591 } 6592 6593 if (cig == BT_ISO_QOS_CIG_UNSET) 6594 goto done; 6595 6596 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) { 6597 struct hci_cis *cis = &cmd->cis[aux_num_cis]; 6598 6599 if (hci_conn_check_create_cis(conn) || 6600 conn->iso_qos.ucast.cig != cig) 6601 continue; 6602 6603 set_bit(HCI_CONN_CREATE_CIS, &conn->flags); 6604 cis->acl_handle = cpu_to_le16(conn->parent->handle); 6605 cis->cis_handle = cpu_to_le16(conn->handle); 6606 aux_num_cis++; 6607 6608 if (aux_num_cis >= cmd->num_cis) 6609 break; 6610 } 6611 cmd->num_cis = aux_num_cis; 6612 6613 done: 6614 rcu_read_unlock(); 6615 6616 hci_dev_unlock(hdev); 6617 6618 if (!aux_num_cis) 6619 return 0; 6620 6621 /* Wait for HCI_LE_CIS_Established */ 6622 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CIS, 6623 struct_size(cmd, cis, cmd->num_cis), 6624 cmd, HCI_EVT_LE_CIS_ESTABLISHED, 6625 conn->conn_timeout, NULL); 6626 } 6627 6628 int hci_le_remove_cig_sync(struct hci_dev *hdev, u8 handle) 6629 { 6630 struct hci_cp_le_remove_cig cp; 6631 6632 memset(&cp, 0, sizeof(cp)); 6633 cp.cig_id = handle; 6634 6635 return __hci_cmd_sync_status(hdev, HCI_OP_LE_REMOVE_CIG, sizeof(cp), 6636 &cp, HCI_CMD_TIMEOUT); 6637 } 6638 6639 int hci_le_big_terminate_sync(struct hci_dev *hdev, u8 handle) 6640 { 6641 struct hci_cp_le_big_term_sync cp; 6642 6643 memset(&cp, 0, sizeof(cp)); 6644 cp.handle = handle; 6645 6646 return __hci_cmd_sync_status(hdev, HCI_OP_LE_BIG_TERM_SYNC, 6647 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6648 } 6649 6650 int hci_le_pa_terminate_sync(struct hci_dev *hdev, u16 handle) 6651 { 6652 struct hci_cp_le_pa_term_sync cp; 6653 6654 memset(&cp, 0, sizeof(cp)); 6655 cp.handle = cpu_to_le16(handle); 6656 6657 return __hci_cmd_sync_status(hdev, HCI_OP_LE_PA_TERM_SYNC, 6658 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6659 } 6660 6661 int hci_get_random_address(struct hci_dev *hdev, bool require_privacy, 6662 bool use_rpa, struct adv_info *adv_instance, 6663 u8 *own_addr_type, bdaddr_t *rand_addr) 6664 { 6665 int err; 6666 6667 bacpy(rand_addr, BDADDR_ANY); 6668 6669 /* If privacy is enabled use a resolvable private address. If 6670 * current RPA has expired then generate a new one. 6671 */ 6672 if (use_rpa) { 6673 /* If Controller supports LL Privacy use own address type is 6674 * 0x03 6675 */ 6676 if (use_ll_privacy(hdev)) 6677 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED; 6678 else 6679 *own_addr_type = ADDR_LE_DEV_RANDOM; 6680 6681 if (adv_instance) { 6682 if (adv_rpa_valid(adv_instance)) 6683 return 0; 6684 } else { 6685 if (rpa_valid(hdev)) 6686 return 0; 6687 } 6688 6689 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); 6690 if (err < 0) { 6691 bt_dev_err(hdev, "failed to generate new RPA"); 6692 return err; 6693 } 6694 6695 bacpy(rand_addr, &hdev->rpa); 6696 6697 return 0; 6698 } 6699 6700 /* In case of required privacy without resolvable private address, 6701 * use an non-resolvable private address. This is useful for 6702 * non-connectable advertising. 6703 */ 6704 if (require_privacy) { 6705 bdaddr_t nrpa; 6706 6707 while (true) { 6708 /* The non-resolvable private address is generated 6709 * from random six bytes with the two most significant 6710 * bits cleared. 6711 */ 6712 get_random_bytes(&nrpa, 6); 6713 nrpa.b[5] &= 0x3f; 6714 6715 /* The non-resolvable private address shall not be 6716 * equal to the public address. 6717 */ 6718 if (bacmp(&hdev->bdaddr, &nrpa)) 6719 break; 6720 } 6721 6722 *own_addr_type = ADDR_LE_DEV_RANDOM; 6723 bacpy(rand_addr, &nrpa); 6724 6725 return 0; 6726 } 6727 6728 /* No privacy so use a public address. */ 6729 *own_addr_type = ADDR_LE_DEV_PUBLIC; 6730 6731 return 0; 6732 } 6733 6734 static int _update_adv_data_sync(struct hci_dev *hdev, void *data) 6735 { 6736 u8 instance = PTR_UINT(data); 6737 6738 return hci_update_adv_data_sync(hdev, instance); 6739 } 6740 6741 int hci_update_adv_data(struct hci_dev *hdev, u8 instance) 6742 { 6743 return hci_cmd_sync_queue(hdev, _update_adv_data_sync, 6744 UINT_PTR(instance), NULL); 6745 } 6746 6747 static int hci_acl_create_conn_sync(struct hci_dev *hdev, void *data) 6748 { 6749 struct hci_conn *conn = data; 6750 struct inquiry_entry *ie; 6751 struct hci_cp_create_conn cp; 6752 int err; 6753 6754 if (!hci_conn_valid(hdev, conn)) 6755 return -ECANCELED; 6756 6757 /* Many controllers disallow HCI Create Connection while it is doing 6758 * HCI Inquiry. So we cancel the Inquiry first before issuing HCI Create 6759 * Connection. This may cause the MGMT discovering state to become false 6760 * without user space's request but it is okay since the MGMT Discovery 6761 * APIs do not promise that discovery should be done forever. Instead, 6762 * the user space monitors the status of MGMT discovering and it may 6763 * request for discovery again when this flag becomes false. 6764 */ 6765 if (test_bit(HCI_INQUIRY, &hdev->flags)) { 6766 err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL, 0, 6767 NULL, HCI_CMD_TIMEOUT); 6768 if (err) 6769 bt_dev_warn(hdev, "Failed to cancel inquiry %d", err); 6770 } 6771 6772 conn->state = BT_CONNECT; 6773 conn->out = true; 6774 conn->role = HCI_ROLE_MASTER; 6775 6776 conn->attempt++; 6777 6778 conn->link_policy = hdev->link_policy; 6779 6780 memset(&cp, 0, sizeof(cp)); 6781 bacpy(&cp.bdaddr, &conn->dst); 6782 cp.pscan_rep_mode = 0x02; 6783 6784 ie = hci_inquiry_cache_lookup(hdev, &conn->dst); 6785 if (ie) { 6786 if (inquiry_entry_age(ie) <= INQUIRY_ENTRY_AGE_MAX) { 6787 cp.pscan_rep_mode = ie->data.pscan_rep_mode; 6788 cp.pscan_mode = ie->data.pscan_mode; 6789 cp.clock_offset = ie->data.clock_offset | 6790 cpu_to_le16(0x8000); 6791 } 6792 6793 memcpy(conn->dev_class, ie->data.dev_class, 3); 6794 } 6795 6796 cp.pkt_type = cpu_to_le16(conn->pkt_type); 6797 if (lmp_rswitch_capable(hdev) && !(hdev->link_mode & HCI_LM_MASTER)) 6798 cp.role_switch = 0x01; 6799 else 6800 cp.role_switch = 0x00; 6801 6802 return __hci_cmd_sync_status_sk(hdev, HCI_OP_CREATE_CONN, 6803 sizeof(cp), &cp, 6804 HCI_EV_CONN_COMPLETE, 6805 conn->conn_timeout, NULL); 6806 } 6807 6808 int hci_connect_acl_sync(struct hci_dev *hdev, struct hci_conn *conn) 6809 { 6810 return hci_cmd_sync_queue_once(hdev, hci_acl_create_conn_sync, conn, 6811 NULL); 6812 } 6813 6814 static void create_le_conn_complete(struct hci_dev *hdev, void *data, int err) 6815 { 6816 struct hci_conn *conn = data; 6817 6818 bt_dev_dbg(hdev, "err %d", err); 6819 6820 if (err == -ECANCELED) 6821 return; 6822 6823 hci_dev_lock(hdev); 6824 6825 if (!hci_conn_valid(hdev, conn)) 6826 goto done; 6827 6828 if (!err) { 6829 hci_connect_le_scan_cleanup(conn, 0x00); 6830 goto done; 6831 } 6832 6833 /* Check if connection is still pending */ 6834 if (conn != hci_lookup_le_connect(hdev)) 6835 goto done; 6836 6837 /* Flush to make sure we send create conn cancel command if needed */ 6838 flush_delayed_work(&conn->le_conn_timeout); 6839 hci_conn_failed(conn, bt_status(err)); 6840 6841 done: 6842 hci_dev_unlock(hdev); 6843 } 6844 6845 int hci_connect_le_sync(struct hci_dev *hdev, struct hci_conn *conn) 6846 { 6847 return hci_cmd_sync_queue_once(hdev, hci_le_create_conn_sync, conn, 6848 create_le_conn_complete); 6849 } 6850 6851 int hci_cancel_connect_sync(struct hci_dev *hdev, struct hci_conn *conn) 6852 { 6853 if (conn->state != BT_OPEN) 6854 return -EINVAL; 6855 6856 switch (conn->type) { 6857 case ACL_LINK: 6858 return !hci_cmd_sync_dequeue_once(hdev, 6859 hci_acl_create_conn_sync, 6860 conn, NULL); 6861 case LE_LINK: 6862 return !hci_cmd_sync_dequeue_once(hdev, hci_le_create_conn_sync, 6863 conn, create_le_conn_complete); 6864 } 6865 6866 return -ENOENT; 6867 } 6868 6869 int hci_le_conn_update_sync(struct hci_dev *hdev, struct hci_conn *conn, 6870 struct hci_conn_params *params) 6871 { 6872 struct hci_cp_le_conn_update cp; 6873 6874 memset(&cp, 0, sizeof(cp)); 6875 cp.handle = cpu_to_le16(conn->handle); 6876 cp.conn_interval_min = cpu_to_le16(params->conn_min_interval); 6877 cp.conn_interval_max = cpu_to_le16(params->conn_max_interval); 6878 cp.conn_latency = cpu_to_le16(params->conn_latency); 6879 cp.supervision_timeout = cpu_to_le16(params->supervision_timeout); 6880 cp.min_ce_len = cpu_to_le16(0x0000); 6881 cp.max_ce_len = cpu_to_le16(0x0000); 6882 6883 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CONN_UPDATE, 6884 sizeof(cp), &cp, HCI_CMD_TIMEOUT); 6885 } 6886