1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (C) 2000-2001 Qualcomm Incorporated 4 5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License version 2 as 9 published by the Free Software Foundation; 10 11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 22 SOFTWARE IS DISCLAIMED. 23 */ 24 25 /* Bluetooth HCI sockets. */ 26 #include <linux/compat.h> 27 #include <linux/export.h> 28 #include <linux/utsname.h> 29 #include <linux/sched.h> 30 #include <asm/unaligned.h> 31 32 #include <net/bluetooth/bluetooth.h> 33 #include <net/bluetooth/hci_core.h> 34 #include <net/bluetooth/hci_mon.h> 35 #include <net/bluetooth/mgmt.h> 36 37 #include "mgmt_util.h" 38 39 static LIST_HEAD(mgmt_chan_list); 40 static DEFINE_MUTEX(mgmt_chan_list_lock); 41 42 static DEFINE_IDA(sock_cookie_ida); 43 44 static atomic_t monitor_promisc = ATOMIC_INIT(0); 45 46 /* ----- HCI socket interface ----- */ 47 48 /* Socket info */ 49 #define hci_pi(sk) ((struct hci_pinfo *) sk) 50 51 struct hci_pinfo { 52 struct bt_sock bt; 53 struct hci_dev *hdev; 54 struct hci_filter filter; 55 __u8 cmsg_mask; 56 unsigned short channel; 57 unsigned long flags; 58 __u32 cookie; 59 char comm[TASK_COMM_LEN]; 60 __u16 mtu; 61 }; 62 63 static struct hci_dev *hci_hdev_from_sock(struct sock *sk) 64 { 65 struct hci_dev *hdev = hci_pi(sk)->hdev; 66 67 if (!hdev) 68 return ERR_PTR(-EBADFD); 69 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) 70 return ERR_PTR(-EPIPE); 71 return hdev; 72 } 73 74 void hci_sock_set_flag(struct sock *sk, int nr) 75 { 76 set_bit(nr, &hci_pi(sk)->flags); 77 } 78 79 void hci_sock_clear_flag(struct sock *sk, int nr) 80 { 81 clear_bit(nr, &hci_pi(sk)->flags); 82 } 83 84 int hci_sock_test_flag(struct sock *sk, int nr) 85 { 86 return test_bit(nr, &hci_pi(sk)->flags); 87 } 88 89 unsigned short hci_sock_get_channel(struct sock *sk) 90 { 91 return hci_pi(sk)->channel; 92 } 93 94 u32 hci_sock_get_cookie(struct sock *sk) 95 { 96 return hci_pi(sk)->cookie; 97 } 98 99 static bool hci_sock_gen_cookie(struct sock *sk) 100 { 101 int id = hci_pi(sk)->cookie; 102 103 if (!id) { 104 id = ida_simple_get(&sock_cookie_ida, 1, 0, GFP_KERNEL); 105 if (id < 0) 106 id = 0xffffffff; 107 108 hci_pi(sk)->cookie = id; 109 get_task_comm(hci_pi(sk)->comm, current); 110 return true; 111 } 112 113 return false; 114 } 115 116 static void hci_sock_free_cookie(struct sock *sk) 117 { 118 int id = hci_pi(sk)->cookie; 119 120 if (id) { 121 hci_pi(sk)->cookie = 0xffffffff; 122 ida_simple_remove(&sock_cookie_ida, id); 123 } 124 } 125 126 static inline int hci_test_bit(int nr, const void *addr) 127 { 128 return *((const __u32 *) addr + (nr >> 5)) & ((__u32) 1 << (nr & 31)); 129 } 130 131 /* Security filter */ 132 #define HCI_SFLT_MAX_OGF 5 133 134 struct hci_sec_filter { 135 __u32 type_mask; 136 __u32 event_mask[2]; 137 __u32 ocf_mask[HCI_SFLT_MAX_OGF + 1][4]; 138 }; 139 140 static const struct hci_sec_filter hci_sec_filter = { 141 /* Packet types */ 142 0x10, 143 /* Events */ 144 { 0x1000d9fe, 0x0000b00c }, 145 /* Commands */ 146 { 147 { 0x0 }, 148 /* OGF_LINK_CTL */ 149 { 0xbe000006, 0x00000001, 0x00000000, 0x00 }, 150 /* OGF_LINK_POLICY */ 151 { 0x00005200, 0x00000000, 0x00000000, 0x00 }, 152 /* OGF_HOST_CTL */ 153 { 0xaab00200, 0x2b402aaa, 0x05220154, 0x00 }, 154 /* OGF_INFO_PARAM */ 155 { 0x000002be, 0x00000000, 0x00000000, 0x00 }, 156 /* OGF_STATUS_PARAM */ 157 { 0x000000ea, 0x00000000, 0x00000000, 0x00 } 158 } 159 }; 160 161 static struct bt_sock_list hci_sk_list = { 162 .lock = __RW_LOCK_UNLOCKED(hci_sk_list.lock) 163 }; 164 165 static bool is_filtered_packet(struct sock *sk, struct sk_buff *skb) 166 { 167 struct hci_filter *flt; 168 int flt_type, flt_event; 169 170 /* Apply filter */ 171 flt = &hci_pi(sk)->filter; 172 173 flt_type = hci_skb_pkt_type(skb) & HCI_FLT_TYPE_BITS; 174 175 if (!test_bit(flt_type, &flt->type_mask)) 176 return true; 177 178 /* Extra filter for event packets only */ 179 if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT) 180 return false; 181 182 flt_event = (*(__u8 *)skb->data & HCI_FLT_EVENT_BITS); 183 184 if (!hci_test_bit(flt_event, &flt->event_mask)) 185 return true; 186 187 /* Check filter only when opcode is set */ 188 if (!flt->opcode) 189 return false; 190 191 if (flt_event == HCI_EV_CMD_COMPLETE && 192 flt->opcode != get_unaligned((__le16 *)(skb->data + 3))) 193 return true; 194 195 if (flt_event == HCI_EV_CMD_STATUS && 196 flt->opcode != get_unaligned((__le16 *)(skb->data + 4))) 197 return true; 198 199 return false; 200 } 201 202 /* Send frame to RAW socket */ 203 void hci_send_to_sock(struct hci_dev *hdev, struct sk_buff *skb) 204 { 205 struct sock *sk; 206 struct sk_buff *skb_copy = NULL; 207 208 BT_DBG("hdev %p len %d", hdev, skb->len); 209 210 read_lock(&hci_sk_list.lock); 211 212 sk_for_each(sk, &hci_sk_list.head) { 213 struct sk_buff *nskb; 214 215 if (sk->sk_state != BT_BOUND || hci_pi(sk)->hdev != hdev) 216 continue; 217 218 /* Don't send frame to the socket it came from */ 219 if (skb->sk == sk) 220 continue; 221 222 if (hci_pi(sk)->channel == HCI_CHANNEL_RAW) { 223 if (hci_skb_pkt_type(skb) != HCI_COMMAND_PKT && 224 hci_skb_pkt_type(skb) != HCI_EVENT_PKT && 225 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT && 226 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT && 227 hci_skb_pkt_type(skb) != HCI_ISODATA_PKT) 228 continue; 229 if (is_filtered_packet(sk, skb)) 230 continue; 231 } else if (hci_pi(sk)->channel == HCI_CHANNEL_USER) { 232 if (!bt_cb(skb)->incoming) 233 continue; 234 if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT && 235 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT && 236 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT && 237 hci_skb_pkt_type(skb) != HCI_ISODATA_PKT) 238 continue; 239 } else { 240 /* Don't send frame to other channel types */ 241 continue; 242 } 243 244 if (!skb_copy) { 245 /* Create a private copy with headroom */ 246 skb_copy = __pskb_copy_fclone(skb, 1, GFP_ATOMIC, true); 247 if (!skb_copy) 248 continue; 249 250 /* Put type byte before the data */ 251 memcpy(skb_push(skb_copy, 1), &hci_skb_pkt_type(skb), 1); 252 } 253 254 nskb = skb_clone(skb_copy, GFP_ATOMIC); 255 if (!nskb) 256 continue; 257 258 if (sock_queue_rcv_skb(sk, nskb)) 259 kfree_skb(nskb); 260 } 261 262 read_unlock(&hci_sk_list.lock); 263 264 kfree_skb(skb_copy); 265 } 266 267 /* Send frame to sockets with specific channel */ 268 static void __hci_send_to_channel(unsigned short channel, struct sk_buff *skb, 269 int flag, struct sock *skip_sk) 270 { 271 struct sock *sk; 272 273 BT_DBG("channel %u len %d", channel, skb->len); 274 275 sk_for_each(sk, &hci_sk_list.head) { 276 struct sk_buff *nskb; 277 278 /* Ignore socket without the flag set */ 279 if (!hci_sock_test_flag(sk, flag)) 280 continue; 281 282 /* Skip the original socket */ 283 if (sk == skip_sk) 284 continue; 285 286 if (sk->sk_state != BT_BOUND) 287 continue; 288 289 if (hci_pi(sk)->channel != channel) 290 continue; 291 292 nskb = skb_clone(skb, GFP_ATOMIC); 293 if (!nskb) 294 continue; 295 296 if (sock_queue_rcv_skb(sk, nskb)) 297 kfree_skb(nskb); 298 } 299 300 } 301 302 void hci_send_to_channel(unsigned short channel, struct sk_buff *skb, 303 int flag, struct sock *skip_sk) 304 { 305 read_lock(&hci_sk_list.lock); 306 __hci_send_to_channel(channel, skb, flag, skip_sk); 307 read_unlock(&hci_sk_list.lock); 308 } 309 310 /* Send frame to monitor socket */ 311 void hci_send_to_monitor(struct hci_dev *hdev, struct sk_buff *skb) 312 { 313 struct sk_buff *skb_copy = NULL; 314 struct hci_mon_hdr *hdr; 315 __le16 opcode; 316 317 if (!atomic_read(&monitor_promisc)) 318 return; 319 320 BT_DBG("hdev %p len %d", hdev, skb->len); 321 322 switch (hci_skb_pkt_type(skb)) { 323 case HCI_COMMAND_PKT: 324 opcode = cpu_to_le16(HCI_MON_COMMAND_PKT); 325 break; 326 case HCI_EVENT_PKT: 327 opcode = cpu_to_le16(HCI_MON_EVENT_PKT); 328 break; 329 case HCI_ACLDATA_PKT: 330 if (bt_cb(skb)->incoming) 331 opcode = cpu_to_le16(HCI_MON_ACL_RX_PKT); 332 else 333 opcode = cpu_to_le16(HCI_MON_ACL_TX_PKT); 334 break; 335 case HCI_SCODATA_PKT: 336 if (bt_cb(skb)->incoming) 337 opcode = cpu_to_le16(HCI_MON_SCO_RX_PKT); 338 else 339 opcode = cpu_to_le16(HCI_MON_SCO_TX_PKT); 340 break; 341 case HCI_ISODATA_PKT: 342 if (bt_cb(skb)->incoming) 343 opcode = cpu_to_le16(HCI_MON_ISO_RX_PKT); 344 else 345 opcode = cpu_to_le16(HCI_MON_ISO_TX_PKT); 346 break; 347 case HCI_DIAG_PKT: 348 opcode = cpu_to_le16(HCI_MON_VENDOR_DIAG); 349 break; 350 default: 351 return; 352 } 353 354 /* Create a private copy with headroom */ 355 skb_copy = __pskb_copy_fclone(skb, HCI_MON_HDR_SIZE, GFP_ATOMIC, true); 356 if (!skb_copy) 357 return; 358 359 /* Put header before the data */ 360 hdr = skb_push(skb_copy, HCI_MON_HDR_SIZE); 361 hdr->opcode = opcode; 362 hdr->index = cpu_to_le16(hdev->id); 363 hdr->len = cpu_to_le16(skb->len); 364 365 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb_copy, 366 HCI_SOCK_TRUSTED, NULL); 367 kfree_skb(skb_copy); 368 } 369 370 void hci_send_monitor_ctrl_event(struct hci_dev *hdev, u16 event, 371 void *data, u16 data_len, ktime_t tstamp, 372 int flag, struct sock *skip_sk) 373 { 374 struct sock *sk; 375 __le16 index; 376 377 if (hdev) 378 index = cpu_to_le16(hdev->id); 379 else 380 index = cpu_to_le16(MGMT_INDEX_NONE); 381 382 read_lock(&hci_sk_list.lock); 383 384 sk_for_each(sk, &hci_sk_list.head) { 385 struct hci_mon_hdr *hdr; 386 struct sk_buff *skb; 387 388 if (hci_pi(sk)->channel != HCI_CHANNEL_CONTROL) 389 continue; 390 391 /* Ignore socket without the flag set */ 392 if (!hci_sock_test_flag(sk, flag)) 393 continue; 394 395 /* Skip the original socket */ 396 if (sk == skip_sk) 397 continue; 398 399 skb = bt_skb_alloc(6 + data_len, GFP_ATOMIC); 400 if (!skb) 401 continue; 402 403 put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4)); 404 put_unaligned_le16(event, skb_put(skb, 2)); 405 406 if (data) 407 skb_put_data(skb, data, data_len); 408 409 skb->tstamp = tstamp; 410 411 hdr = skb_push(skb, HCI_MON_HDR_SIZE); 412 hdr->opcode = cpu_to_le16(HCI_MON_CTRL_EVENT); 413 hdr->index = index; 414 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE); 415 416 __hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 417 HCI_SOCK_TRUSTED, NULL); 418 kfree_skb(skb); 419 } 420 421 read_unlock(&hci_sk_list.lock); 422 } 423 424 static struct sk_buff *create_monitor_event(struct hci_dev *hdev, int event) 425 { 426 struct hci_mon_hdr *hdr; 427 struct hci_mon_new_index *ni; 428 struct hci_mon_index_info *ii; 429 struct sk_buff *skb; 430 __le16 opcode; 431 432 switch (event) { 433 case HCI_DEV_REG: 434 skb = bt_skb_alloc(HCI_MON_NEW_INDEX_SIZE, GFP_ATOMIC); 435 if (!skb) 436 return NULL; 437 438 ni = skb_put(skb, HCI_MON_NEW_INDEX_SIZE); 439 ni->type = hdev->dev_type; 440 ni->bus = hdev->bus; 441 bacpy(&ni->bdaddr, &hdev->bdaddr); 442 memcpy(ni->name, hdev->name, 8); 443 444 opcode = cpu_to_le16(HCI_MON_NEW_INDEX); 445 break; 446 447 case HCI_DEV_UNREG: 448 skb = bt_skb_alloc(0, GFP_ATOMIC); 449 if (!skb) 450 return NULL; 451 452 opcode = cpu_to_le16(HCI_MON_DEL_INDEX); 453 break; 454 455 case HCI_DEV_SETUP: 456 if (hdev->manufacturer == 0xffff) 457 return NULL; 458 fallthrough; 459 460 case HCI_DEV_UP: 461 skb = bt_skb_alloc(HCI_MON_INDEX_INFO_SIZE, GFP_ATOMIC); 462 if (!skb) 463 return NULL; 464 465 ii = skb_put(skb, HCI_MON_INDEX_INFO_SIZE); 466 bacpy(&ii->bdaddr, &hdev->bdaddr); 467 ii->manufacturer = cpu_to_le16(hdev->manufacturer); 468 469 opcode = cpu_to_le16(HCI_MON_INDEX_INFO); 470 break; 471 472 case HCI_DEV_OPEN: 473 skb = bt_skb_alloc(0, GFP_ATOMIC); 474 if (!skb) 475 return NULL; 476 477 opcode = cpu_to_le16(HCI_MON_OPEN_INDEX); 478 break; 479 480 case HCI_DEV_CLOSE: 481 skb = bt_skb_alloc(0, GFP_ATOMIC); 482 if (!skb) 483 return NULL; 484 485 opcode = cpu_to_le16(HCI_MON_CLOSE_INDEX); 486 break; 487 488 default: 489 return NULL; 490 } 491 492 __net_timestamp(skb); 493 494 hdr = skb_push(skb, HCI_MON_HDR_SIZE); 495 hdr->opcode = opcode; 496 hdr->index = cpu_to_le16(hdev->id); 497 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE); 498 499 return skb; 500 } 501 502 static struct sk_buff *create_monitor_ctrl_open(struct sock *sk) 503 { 504 struct hci_mon_hdr *hdr; 505 struct sk_buff *skb; 506 u16 format; 507 u8 ver[3]; 508 u32 flags; 509 510 /* No message needed when cookie is not present */ 511 if (!hci_pi(sk)->cookie) 512 return NULL; 513 514 switch (hci_pi(sk)->channel) { 515 case HCI_CHANNEL_RAW: 516 format = 0x0000; 517 ver[0] = BT_SUBSYS_VERSION; 518 put_unaligned_le16(BT_SUBSYS_REVISION, ver + 1); 519 break; 520 case HCI_CHANNEL_USER: 521 format = 0x0001; 522 ver[0] = BT_SUBSYS_VERSION; 523 put_unaligned_le16(BT_SUBSYS_REVISION, ver + 1); 524 break; 525 case HCI_CHANNEL_CONTROL: 526 format = 0x0002; 527 mgmt_fill_version_info(ver); 528 break; 529 default: 530 /* No message for unsupported format */ 531 return NULL; 532 } 533 534 skb = bt_skb_alloc(14 + TASK_COMM_LEN , GFP_ATOMIC); 535 if (!skb) 536 return NULL; 537 538 flags = hci_sock_test_flag(sk, HCI_SOCK_TRUSTED) ? 0x1 : 0x0; 539 540 put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4)); 541 put_unaligned_le16(format, skb_put(skb, 2)); 542 skb_put_data(skb, ver, sizeof(ver)); 543 put_unaligned_le32(flags, skb_put(skb, 4)); 544 skb_put_u8(skb, TASK_COMM_LEN); 545 skb_put_data(skb, hci_pi(sk)->comm, TASK_COMM_LEN); 546 547 __net_timestamp(skb); 548 549 hdr = skb_push(skb, HCI_MON_HDR_SIZE); 550 hdr->opcode = cpu_to_le16(HCI_MON_CTRL_OPEN); 551 if (hci_pi(sk)->hdev) 552 hdr->index = cpu_to_le16(hci_pi(sk)->hdev->id); 553 else 554 hdr->index = cpu_to_le16(HCI_DEV_NONE); 555 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE); 556 557 return skb; 558 } 559 560 static struct sk_buff *create_monitor_ctrl_close(struct sock *sk) 561 { 562 struct hci_mon_hdr *hdr; 563 struct sk_buff *skb; 564 565 /* No message needed when cookie is not present */ 566 if (!hci_pi(sk)->cookie) 567 return NULL; 568 569 switch (hci_pi(sk)->channel) { 570 case HCI_CHANNEL_RAW: 571 case HCI_CHANNEL_USER: 572 case HCI_CHANNEL_CONTROL: 573 break; 574 default: 575 /* No message for unsupported format */ 576 return NULL; 577 } 578 579 skb = bt_skb_alloc(4, GFP_ATOMIC); 580 if (!skb) 581 return NULL; 582 583 put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4)); 584 585 __net_timestamp(skb); 586 587 hdr = skb_push(skb, HCI_MON_HDR_SIZE); 588 hdr->opcode = cpu_to_le16(HCI_MON_CTRL_CLOSE); 589 if (hci_pi(sk)->hdev) 590 hdr->index = cpu_to_le16(hci_pi(sk)->hdev->id); 591 else 592 hdr->index = cpu_to_le16(HCI_DEV_NONE); 593 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE); 594 595 return skb; 596 } 597 598 static struct sk_buff *create_monitor_ctrl_command(struct sock *sk, u16 index, 599 u16 opcode, u16 len, 600 const void *buf) 601 { 602 struct hci_mon_hdr *hdr; 603 struct sk_buff *skb; 604 605 skb = bt_skb_alloc(6 + len, GFP_ATOMIC); 606 if (!skb) 607 return NULL; 608 609 put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4)); 610 put_unaligned_le16(opcode, skb_put(skb, 2)); 611 612 if (buf) 613 skb_put_data(skb, buf, len); 614 615 __net_timestamp(skb); 616 617 hdr = skb_push(skb, HCI_MON_HDR_SIZE); 618 hdr->opcode = cpu_to_le16(HCI_MON_CTRL_COMMAND); 619 hdr->index = cpu_to_le16(index); 620 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE); 621 622 return skb; 623 } 624 625 static void __printf(2, 3) 626 send_monitor_note(struct sock *sk, const char *fmt, ...) 627 { 628 size_t len; 629 struct hci_mon_hdr *hdr; 630 struct sk_buff *skb; 631 va_list args; 632 633 va_start(args, fmt); 634 len = vsnprintf(NULL, 0, fmt, args); 635 va_end(args); 636 637 skb = bt_skb_alloc(len + 1, GFP_ATOMIC); 638 if (!skb) 639 return; 640 641 va_start(args, fmt); 642 vsprintf(skb_put(skb, len), fmt, args); 643 *(u8 *)skb_put(skb, 1) = 0; 644 va_end(args); 645 646 __net_timestamp(skb); 647 648 hdr = (void *)skb_push(skb, HCI_MON_HDR_SIZE); 649 hdr->opcode = cpu_to_le16(HCI_MON_SYSTEM_NOTE); 650 hdr->index = cpu_to_le16(HCI_DEV_NONE); 651 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE); 652 653 if (sock_queue_rcv_skb(sk, skb)) 654 kfree_skb(skb); 655 } 656 657 static void send_monitor_replay(struct sock *sk) 658 { 659 struct hci_dev *hdev; 660 661 read_lock(&hci_dev_list_lock); 662 663 list_for_each_entry(hdev, &hci_dev_list, list) { 664 struct sk_buff *skb; 665 666 skb = create_monitor_event(hdev, HCI_DEV_REG); 667 if (!skb) 668 continue; 669 670 if (sock_queue_rcv_skb(sk, skb)) 671 kfree_skb(skb); 672 673 if (!test_bit(HCI_RUNNING, &hdev->flags)) 674 continue; 675 676 skb = create_monitor_event(hdev, HCI_DEV_OPEN); 677 if (!skb) 678 continue; 679 680 if (sock_queue_rcv_skb(sk, skb)) 681 kfree_skb(skb); 682 683 if (test_bit(HCI_UP, &hdev->flags)) 684 skb = create_monitor_event(hdev, HCI_DEV_UP); 685 else if (hci_dev_test_flag(hdev, HCI_SETUP)) 686 skb = create_monitor_event(hdev, HCI_DEV_SETUP); 687 else 688 skb = NULL; 689 690 if (skb) { 691 if (sock_queue_rcv_skb(sk, skb)) 692 kfree_skb(skb); 693 } 694 } 695 696 read_unlock(&hci_dev_list_lock); 697 } 698 699 static void send_monitor_control_replay(struct sock *mon_sk) 700 { 701 struct sock *sk; 702 703 read_lock(&hci_sk_list.lock); 704 705 sk_for_each(sk, &hci_sk_list.head) { 706 struct sk_buff *skb; 707 708 skb = create_monitor_ctrl_open(sk); 709 if (!skb) 710 continue; 711 712 if (sock_queue_rcv_skb(mon_sk, skb)) 713 kfree_skb(skb); 714 } 715 716 read_unlock(&hci_sk_list.lock); 717 } 718 719 /* Generate internal stack event */ 720 static void hci_si_event(struct hci_dev *hdev, int type, int dlen, void *data) 721 { 722 struct hci_event_hdr *hdr; 723 struct hci_ev_stack_internal *ev; 724 struct sk_buff *skb; 725 726 skb = bt_skb_alloc(HCI_EVENT_HDR_SIZE + sizeof(*ev) + dlen, GFP_ATOMIC); 727 if (!skb) 728 return; 729 730 hdr = skb_put(skb, HCI_EVENT_HDR_SIZE); 731 hdr->evt = HCI_EV_STACK_INTERNAL; 732 hdr->plen = sizeof(*ev) + dlen; 733 734 ev = skb_put(skb, sizeof(*ev) + dlen); 735 ev->type = type; 736 memcpy(ev->data, data, dlen); 737 738 bt_cb(skb)->incoming = 1; 739 __net_timestamp(skb); 740 741 hci_skb_pkt_type(skb) = HCI_EVENT_PKT; 742 hci_send_to_sock(hdev, skb); 743 kfree_skb(skb); 744 } 745 746 void hci_sock_dev_event(struct hci_dev *hdev, int event) 747 { 748 BT_DBG("hdev %s event %d", hdev->name, event); 749 750 if (atomic_read(&monitor_promisc)) { 751 struct sk_buff *skb; 752 753 /* Send event to monitor */ 754 skb = create_monitor_event(hdev, event); 755 if (skb) { 756 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 757 HCI_SOCK_TRUSTED, NULL); 758 kfree_skb(skb); 759 } 760 } 761 762 if (event <= HCI_DEV_DOWN) { 763 struct hci_ev_si_device ev; 764 765 /* Send event to sockets */ 766 ev.event = event; 767 ev.dev_id = hdev->id; 768 hci_si_event(NULL, HCI_EV_SI_DEVICE, sizeof(ev), &ev); 769 } 770 771 if (event == HCI_DEV_UNREG) { 772 struct sock *sk; 773 774 /* Wake up sockets using this dead device */ 775 read_lock(&hci_sk_list.lock); 776 sk_for_each(sk, &hci_sk_list.head) { 777 if (hci_pi(sk)->hdev == hdev) { 778 sk->sk_err = EPIPE; 779 sk->sk_state_change(sk); 780 } 781 } 782 read_unlock(&hci_sk_list.lock); 783 } 784 } 785 786 static struct hci_mgmt_chan *__hci_mgmt_chan_find(unsigned short channel) 787 { 788 struct hci_mgmt_chan *c; 789 790 list_for_each_entry(c, &mgmt_chan_list, list) { 791 if (c->channel == channel) 792 return c; 793 } 794 795 return NULL; 796 } 797 798 static struct hci_mgmt_chan *hci_mgmt_chan_find(unsigned short channel) 799 { 800 struct hci_mgmt_chan *c; 801 802 mutex_lock(&mgmt_chan_list_lock); 803 c = __hci_mgmt_chan_find(channel); 804 mutex_unlock(&mgmt_chan_list_lock); 805 806 return c; 807 } 808 809 int hci_mgmt_chan_register(struct hci_mgmt_chan *c) 810 { 811 if (c->channel < HCI_CHANNEL_CONTROL) 812 return -EINVAL; 813 814 mutex_lock(&mgmt_chan_list_lock); 815 if (__hci_mgmt_chan_find(c->channel)) { 816 mutex_unlock(&mgmt_chan_list_lock); 817 return -EALREADY; 818 } 819 820 list_add_tail(&c->list, &mgmt_chan_list); 821 822 mutex_unlock(&mgmt_chan_list_lock); 823 824 return 0; 825 } 826 EXPORT_SYMBOL(hci_mgmt_chan_register); 827 828 void hci_mgmt_chan_unregister(struct hci_mgmt_chan *c) 829 { 830 mutex_lock(&mgmt_chan_list_lock); 831 list_del(&c->list); 832 mutex_unlock(&mgmt_chan_list_lock); 833 } 834 EXPORT_SYMBOL(hci_mgmt_chan_unregister); 835 836 static int hci_sock_release(struct socket *sock) 837 { 838 struct sock *sk = sock->sk; 839 struct hci_dev *hdev; 840 struct sk_buff *skb; 841 842 BT_DBG("sock %p sk %p", sock, sk); 843 844 if (!sk) 845 return 0; 846 847 lock_sock(sk); 848 849 switch (hci_pi(sk)->channel) { 850 case HCI_CHANNEL_MONITOR: 851 atomic_dec(&monitor_promisc); 852 break; 853 case HCI_CHANNEL_RAW: 854 case HCI_CHANNEL_USER: 855 case HCI_CHANNEL_CONTROL: 856 /* Send event to monitor */ 857 skb = create_monitor_ctrl_close(sk); 858 if (skb) { 859 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 860 HCI_SOCK_TRUSTED, NULL); 861 kfree_skb(skb); 862 } 863 864 hci_sock_free_cookie(sk); 865 break; 866 } 867 868 bt_sock_unlink(&hci_sk_list, sk); 869 870 hdev = hci_pi(sk)->hdev; 871 if (hdev) { 872 if (hci_pi(sk)->channel == HCI_CHANNEL_USER && 873 !hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 874 /* When releasing a user channel exclusive access, 875 * call hci_dev_do_close directly instead of calling 876 * hci_dev_close to ensure the exclusive access will 877 * be released and the controller brought back down. 878 * 879 * The checking of HCI_AUTO_OFF is not needed in this 880 * case since it will have been cleared already when 881 * opening the user channel. 882 * 883 * Make sure to also check that we haven't already 884 * unregistered since all the cleanup will have already 885 * been complete and hdev will get released when we put 886 * below. 887 */ 888 hci_dev_do_close(hdev); 889 hci_dev_clear_flag(hdev, HCI_USER_CHANNEL); 890 mgmt_index_added(hdev); 891 } 892 893 atomic_dec(&hdev->promisc); 894 hci_dev_put(hdev); 895 } 896 897 sock_orphan(sk); 898 release_sock(sk); 899 sock_put(sk); 900 return 0; 901 } 902 903 static int hci_sock_reject_list_add(struct hci_dev *hdev, void __user *arg) 904 { 905 bdaddr_t bdaddr; 906 int err; 907 908 if (copy_from_user(&bdaddr, arg, sizeof(bdaddr))) 909 return -EFAULT; 910 911 hci_dev_lock(hdev); 912 913 err = hci_bdaddr_list_add(&hdev->reject_list, &bdaddr, BDADDR_BREDR); 914 915 hci_dev_unlock(hdev); 916 917 return err; 918 } 919 920 static int hci_sock_reject_list_del(struct hci_dev *hdev, void __user *arg) 921 { 922 bdaddr_t bdaddr; 923 int err; 924 925 if (copy_from_user(&bdaddr, arg, sizeof(bdaddr))) 926 return -EFAULT; 927 928 hci_dev_lock(hdev); 929 930 err = hci_bdaddr_list_del(&hdev->reject_list, &bdaddr, BDADDR_BREDR); 931 932 hci_dev_unlock(hdev); 933 934 return err; 935 } 936 937 /* Ioctls that require bound socket */ 938 static int hci_sock_bound_ioctl(struct sock *sk, unsigned int cmd, 939 unsigned long arg) 940 { 941 struct hci_dev *hdev = hci_hdev_from_sock(sk); 942 943 if (IS_ERR(hdev)) 944 return PTR_ERR(hdev); 945 946 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) 947 return -EBUSY; 948 949 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 950 return -EOPNOTSUPP; 951 952 if (hdev->dev_type != HCI_PRIMARY) 953 return -EOPNOTSUPP; 954 955 switch (cmd) { 956 case HCISETRAW: 957 if (!capable(CAP_NET_ADMIN)) 958 return -EPERM; 959 return -EOPNOTSUPP; 960 961 case HCIGETCONNINFO: 962 return hci_get_conn_info(hdev, (void __user *)arg); 963 964 case HCIGETAUTHINFO: 965 return hci_get_auth_info(hdev, (void __user *)arg); 966 967 case HCIBLOCKADDR: 968 if (!capable(CAP_NET_ADMIN)) 969 return -EPERM; 970 return hci_sock_reject_list_add(hdev, (void __user *)arg); 971 972 case HCIUNBLOCKADDR: 973 if (!capable(CAP_NET_ADMIN)) 974 return -EPERM; 975 return hci_sock_reject_list_del(hdev, (void __user *)arg); 976 } 977 978 return -ENOIOCTLCMD; 979 } 980 981 static int hci_sock_ioctl(struct socket *sock, unsigned int cmd, 982 unsigned long arg) 983 { 984 void __user *argp = (void __user *)arg; 985 struct sock *sk = sock->sk; 986 int err; 987 988 BT_DBG("cmd %x arg %lx", cmd, arg); 989 990 /* Make sure the cmd is valid before doing anything */ 991 switch (cmd) { 992 case HCIGETDEVLIST: 993 case HCIGETDEVINFO: 994 case HCIGETCONNLIST: 995 case HCIDEVUP: 996 case HCIDEVDOWN: 997 case HCIDEVRESET: 998 case HCIDEVRESTAT: 999 case HCISETSCAN: 1000 case HCISETAUTH: 1001 case HCISETENCRYPT: 1002 case HCISETPTYPE: 1003 case HCISETLINKPOL: 1004 case HCISETLINKMODE: 1005 case HCISETACLMTU: 1006 case HCISETSCOMTU: 1007 case HCIINQUIRY: 1008 case HCISETRAW: 1009 case HCIGETCONNINFO: 1010 case HCIGETAUTHINFO: 1011 case HCIBLOCKADDR: 1012 case HCIUNBLOCKADDR: 1013 break; 1014 default: 1015 return -ENOIOCTLCMD; 1016 } 1017 1018 lock_sock(sk); 1019 1020 if (hci_pi(sk)->channel != HCI_CHANNEL_RAW) { 1021 err = -EBADFD; 1022 goto done; 1023 } 1024 1025 /* When calling an ioctl on an unbound raw socket, then ensure 1026 * that the monitor gets informed. Ensure that the resulting event 1027 * is only send once by checking if the cookie exists or not. The 1028 * socket cookie will be only ever generated once for the lifetime 1029 * of a given socket. 1030 */ 1031 if (hci_sock_gen_cookie(sk)) { 1032 struct sk_buff *skb; 1033 1034 /* Perform careful checks before setting the HCI_SOCK_TRUSTED 1035 * flag. Make sure that not only the current task but also 1036 * the socket opener has the required capability, since 1037 * privileged programs can be tricked into making ioctl calls 1038 * on HCI sockets, and the socket should not be marked as 1039 * trusted simply because the ioctl caller is privileged. 1040 */ 1041 if (sk_capable(sk, CAP_NET_ADMIN)) 1042 hci_sock_set_flag(sk, HCI_SOCK_TRUSTED); 1043 1044 /* Send event to monitor */ 1045 skb = create_monitor_ctrl_open(sk); 1046 if (skb) { 1047 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 1048 HCI_SOCK_TRUSTED, NULL); 1049 kfree_skb(skb); 1050 } 1051 } 1052 1053 release_sock(sk); 1054 1055 switch (cmd) { 1056 case HCIGETDEVLIST: 1057 return hci_get_dev_list(argp); 1058 1059 case HCIGETDEVINFO: 1060 return hci_get_dev_info(argp); 1061 1062 case HCIGETCONNLIST: 1063 return hci_get_conn_list(argp); 1064 1065 case HCIDEVUP: 1066 if (!capable(CAP_NET_ADMIN)) 1067 return -EPERM; 1068 return hci_dev_open(arg); 1069 1070 case HCIDEVDOWN: 1071 if (!capable(CAP_NET_ADMIN)) 1072 return -EPERM; 1073 return hci_dev_close(arg); 1074 1075 case HCIDEVRESET: 1076 if (!capable(CAP_NET_ADMIN)) 1077 return -EPERM; 1078 return hci_dev_reset(arg); 1079 1080 case HCIDEVRESTAT: 1081 if (!capable(CAP_NET_ADMIN)) 1082 return -EPERM; 1083 return hci_dev_reset_stat(arg); 1084 1085 case HCISETSCAN: 1086 case HCISETAUTH: 1087 case HCISETENCRYPT: 1088 case HCISETPTYPE: 1089 case HCISETLINKPOL: 1090 case HCISETLINKMODE: 1091 case HCISETACLMTU: 1092 case HCISETSCOMTU: 1093 if (!capable(CAP_NET_ADMIN)) 1094 return -EPERM; 1095 return hci_dev_cmd(cmd, argp); 1096 1097 case HCIINQUIRY: 1098 return hci_inquiry(argp); 1099 } 1100 1101 lock_sock(sk); 1102 1103 err = hci_sock_bound_ioctl(sk, cmd, arg); 1104 1105 done: 1106 release_sock(sk); 1107 return err; 1108 } 1109 1110 #ifdef CONFIG_COMPAT 1111 static int hci_sock_compat_ioctl(struct socket *sock, unsigned int cmd, 1112 unsigned long arg) 1113 { 1114 switch (cmd) { 1115 case HCIDEVUP: 1116 case HCIDEVDOWN: 1117 case HCIDEVRESET: 1118 case HCIDEVRESTAT: 1119 return hci_sock_ioctl(sock, cmd, arg); 1120 } 1121 1122 return hci_sock_ioctl(sock, cmd, (unsigned long)compat_ptr(arg)); 1123 } 1124 #endif 1125 1126 static int hci_sock_bind(struct socket *sock, struct sockaddr *addr, 1127 int addr_len) 1128 { 1129 struct sockaddr_hci haddr; 1130 struct sock *sk = sock->sk; 1131 struct hci_dev *hdev = NULL; 1132 struct sk_buff *skb; 1133 int len, err = 0; 1134 1135 BT_DBG("sock %p sk %p", sock, sk); 1136 1137 if (!addr) 1138 return -EINVAL; 1139 1140 memset(&haddr, 0, sizeof(haddr)); 1141 len = min_t(unsigned int, sizeof(haddr), addr_len); 1142 memcpy(&haddr, addr, len); 1143 1144 if (haddr.hci_family != AF_BLUETOOTH) 1145 return -EINVAL; 1146 1147 lock_sock(sk); 1148 1149 /* Allow detaching from dead device and attaching to alive device, if 1150 * the caller wants to re-bind (instead of close) this socket in 1151 * response to hci_sock_dev_event(HCI_DEV_UNREG) notification. 1152 */ 1153 hdev = hci_pi(sk)->hdev; 1154 if (hdev && hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 1155 hci_pi(sk)->hdev = NULL; 1156 sk->sk_state = BT_OPEN; 1157 hci_dev_put(hdev); 1158 } 1159 hdev = NULL; 1160 1161 if (sk->sk_state == BT_BOUND) { 1162 err = -EALREADY; 1163 goto done; 1164 } 1165 1166 switch (haddr.hci_channel) { 1167 case HCI_CHANNEL_RAW: 1168 if (hci_pi(sk)->hdev) { 1169 err = -EALREADY; 1170 goto done; 1171 } 1172 1173 if (haddr.hci_dev != HCI_DEV_NONE) { 1174 hdev = hci_dev_get(haddr.hci_dev); 1175 if (!hdev) { 1176 err = -ENODEV; 1177 goto done; 1178 } 1179 1180 atomic_inc(&hdev->promisc); 1181 } 1182 1183 hci_pi(sk)->channel = haddr.hci_channel; 1184 1185 if (!hci_sock_gen_cookie(sk)) { 1186 /* In the case when a cookie has already been assigned, 1187 * then there has been already an ioctl issued against 1188 * an unbound socket and with that triggered an open 1189 * notification. Send a close notification first to 1190 * allow the state transition to bounded. 1191 */ 1192 skb = create_monitor_ctrl_close(sk); 1193 if (skb) { 1194 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 1195 HCI_SOCK_TRUSTED, NULL); 1196 kfree_skb(skb); 1197 } 1198 } 1199 1200 if (capable(CAP_NET_ADMIN)) 1201 hci_sock_set_flag(sk, HCI_SOCK_TRUSTED); 1202 1203 hci_pi(sk)->hdev = hdev; 1204 1205 /* Send event to monitor */ 1206 skb = create_monitor_ctrl_open(sk); 1207 if (skb) { 1208 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 1209 HCI_SOCK_TRUSTED, NULL); 1210 kfree_skb(skb); 1211 } 1212 break; 1213 1214 case HCI_CHANNEL_USER: 1215 if (hci_pi(sk)->hdev) { 1216 err = -EALREADY; 1217 goto done; 1218 } 1219 1220 if (haddr.hci_dev == HCI_DEV_NONE) { 1221 err = -EINVAL; 1222 goto done; 1223 } 1224 1225 if (!capable(CAP_NET_ADMIN)) { 1226 err = -EPERM; 1227 goto done; 1228 } 1229 1230 hdev = hci_dev_get(haddr.hci_dev); 1231 if (!hdev) { 1232 err = -ENODEV; 1233 goto done; 1234 } 1235 1236 if (test_bit(HCI_INIT, &hdev->flags) || 1237 hci_dev_test_flag(hdev, HCI_SETUP) || 1238 hci_dev_test_flag(hdev, HCI_CONFIG) || 1239 (!hci_dev_test_flag(hdev, HCI_AUTO_OFF) && 1240 test_bit(HCI_UP, &hdev->flags))) { 1241 err = -EBUSY; 1242 hci_dev_put(hdev); 1243 goto done; 1244 } 1245 1246 if (hci_dev_test_and_set_flag(hdev, HCI_USER_CHANNEL)) { 1247 err = -EUSERS; 1248 hci_dev_put(hdev); 1249 goto done; 1250 } 1251 1252 mgmt_index_removed(hdev); 1253 1254 err = hci_dev_open(hdev->id); 1255 if (err) { 1256 if (err == -EALREADY) { 1257 /* In case the transport is already up and 1258 * running, clear the error here. 1259 * 1260 * This can happen when opening a user 1261 * channel and HCI_AUTO_OFF grace period 1262 * is still active. 1263 */ 1264 err = 0; 1265 } else { 1266 hci_dev_clear_flag(hdev, HCI_USER_CHANNEL); 1267 mgmt_index_added(hdev); 1268 hci_dev_put(hdev); 1269 goto done; 1270 } 1271 } 1272 1273 hci_pi(sk)->channel = haddr.hci_channel; 1274 1275 if (!hci_sock_gen_cookie(sk)) { 1276 /* In the case when a cookie has already been assigned, 1277 * this socket will transition from a raw socket into 1278 * a user channel socket. For a clean transition, send 1279 * the close notification first. 1280 */ 1281 skb = create_monitor_ctrl_close(sk); 1282 if (skb) { 1283 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 1284 HCI_SOCK_TRUSTED, NULL); 1285 kfree_skb(skb); 1286 } 1287 } 1288 1289 /* The user channel is restricted to CAP_NET_ADMIN 1290 * capabilities and with that implicitly trusted. 1291 */ 1292 hci_sock_set_flag(sk, HCI_SOCK_TRUSTED); 1293 1294 hci_pi(sk)->hdev = hdev; 1295 1296 /* Send event to monitor */ 1297 skb = create_monitor_ctrl_open(sk); 1298 if (skb) { 1299 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 1300 HCI_SOCK_TRUSTED, NULL); 1301 kfree_skb(skb); 1302 } 1303 1304 atomic_inc(&hdev->promisc); 1305 break; 1306 1307 case HCI_CHANNEL_MONITOR: 1308 if (haddr.hci_dev != HCI_DEV_NONE) { 1309 err = -EINVAL; 1310 goto done; 1311 } 1312 1313 if (!capable(CAP_NET_RAW)) { 1314 err = -EPERM; 1315 goto done; 1316 } 1317 1318 hci_pi(sk)->channel = haddr.hci_channel; 1319 1320 /* The monitor interface is restricted to CAP_NET_RAW 1321 * capabilities and with that implicitly trusted. 1322 */ 1323 hci_sock_set_flag(sk, HCI_SOCK_TRUSTED); 1324 1325 send_monitor_note(sk, "Linux version %s (%s)", 1326 init_utsname()->release, 1327 init_utsname()->machine); 1328 send_monitor_note(sk, "Bluetooth subsystem version %u.%u", 1329 BT_SUBSYS_VERSION, BT_SUBSYS_REVISION); 1330 send_monitor_replay(sk); 1331 send_monitor_control_replay(sk); 1332 1333 atomic_inc(&monitor_promisc); 1334 break; 1335 1336 case HCI_CHANNEL_LOGGING: 1337 if (haddr.hci_dev != HCI_DEV_NONE) { 1338 err = -EINVAL; 1339 goto done; 1340 } 1341 1342 if (!capable(CAP_NET_ADMIN)) { 1343 err = -EPERM; 1344 goto done; 1345 } 1346 1347 hci_pi(sk)->channel = haddr.hci_channel; 1348 break; 1349 1350 default: 1351 if (!hci_mgmt_chan_find(haddr.hci_channel)) { 1352 err = -EINVAL; 1353 goto done; 1354 } 1355 1356 if (haddr.hci_dev != HCI_DEV_NONE) { 1357 err = -EINVAL; 1358 goto done; 1359 } 1360 1361 /* Users with CAP_NET_ADMIN capabilities are allowed 1362 * access to all management commands and events. For 1363 * untrusted users the interface is restricted and 1364 * also only untrusted events are sent. 1365 */ 1366 if (capable(CAP_NET_ADMIN)) 1367 hci_sock_set_flag(sk, HCI_SOCK_TRUSTED); 1368 1369 hci_pi(sk)->channel = haddr.hci_channel; 1370 1371 /* At the moment the index and unconfigured index events 1372 * are enabled unconditionally. Setting them on each 1373 * socket when binding keeps this functionality. They 1374 * however might be cleared later and then sending of these 1375 * events will be disabled, but that is then intentional. 1376 * 1377 * This also enables generic events that are safe to be 1378 * received by untrusted users. Example for such events 1379 * are changes to settings, class of device, name etc. 1380 */ 1381 if (hci_pi(sk)->channel == HCI_CHANNEL_CONTROL) { 1382 if (!hci_sock_gen_cookie(sk)) { 1383 /* In the case when a cookie has already been 1384 * assigned, this socket will transition from 1385 * a raw socket into a control socket. To 1386 * allow for a clean transition, send the 1387 * close notification first. 1388 */ 1389 skb = create_monitor_ctrl_close(sk); 1390 if (skb) { 1391 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 1392 HCI_SOCK_TRUSTED, NULL); 1393 kfree_skb(skb); 1394 } 1395 } 1396 1397 /* Send event to monitor */ 1398 skb = create_monitor_ctrl_open(sk); 1399 if (skb) { 1400 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 1401 HCI_SOCK_TRUSTED, NULL); 1402 kfree_skb(skb); 1403 } 1404 1405 hci_sock_set_flag(sk, HCI_MGMT_INDEX_EVENTS); 1406 hci_sock_set_flag(sk, HCI_MGMT_UNCONF_INDEX_EVENTS); 1407 hci_sock_set_flag(sk, HCI_MGMT_OPTION_EVENTS); 1408 hci_sock_set_flag(sk, HCI_MGMT_SETTING_EVENTS); 1409 hci_sock_set_flag(sk, HCI_MGMT_DEV_CLASS_EVENTS); 1410 hci_sock_set_flag(sk, HCI_MGMT_LOCAL_NAME_EVENTS); 1411 } 1412 break; 1413 } 1414 1415 /* Default MTU to HCI_MAX_FRAME_SIZE if not set */ 1416 if (!hci_pi(sk)->mtu) 1417 hci_pi(sk)->mtu = HCI_MAX_FRAME_SIZE; 1418 1419 sk->sk_state = BT_BOUND; 1420 1421 done: 1422 release_sock(sk); 1423 return err; 1424 } 1425 1426 static int hci_sock_getname(struct socket *sock, struct sockaddr *addr, 1427 int peer) 1428 { 1429 struct sockaddr_hci *haddr = (struct sockaddr_hci *)addr; 1430 struct sock *sk = sock->sk; 1431 struct hci_dev *hdev; 1432 int err = 0; 1433 1434 BT_DBG("sock %p sk %p", sock, sk); 1435 1436 if (peer) 1437 return -EOPNOTSUPP; 1438 1439 lock_sock(sk); 1440 1441 hdev = hci_hdev_from_sock(sk); 1442 if (IS_ERR(hdev)) { 1443 err = PTR_ERR(hdev); 1444 goto done; 1445 } 1446 1447 haddr->hci_family = AF_BLUETOOTH; 1448 haddr->hci_dev = hdev->id; 1449 haddr->hci_channel= hci_pi(sk)->channel; 1450 err = sizeof(*haddr); 1451 1452 done: 1453 release_sock(sk); 1454 return err; 1455 } 1456 1457 static void hci_sock_cmsg(struct sock *sk, struct msghdr *msg, 1458 struct sk_buff *skb) 1459 { 1460 __u8 mask = hci_pi(sk)->cmsg_mask; 1461 1462 if (mask & HCI_CMSG_DIR) { 1463 int incoming = bt_cb(skb)->incoming; 1464 put_cmsg(msg, SOL_HCI, HCI_CMSG_DIR, sizeof(incoming), 1465 &incoming); 1466 } 1467 1468 if (mask & HCI_CMSG_TSTAMP) { 1469 #ifdef CONFIG_COMPAT 1470 struct old_timeval32 ctv; 1471 #endif 1472 struct __kernel_old_timeval tv; 1473 void *data; 1474 int len; 1475 1476 skb_get_timestamp(skb, &tv); 1477 1478 data = &tv; 1479 len = sizeof(tv); 1480 #ifdef CONFIG_COMPAT 1481 if (!COMPAT_USE_64BIT_TIME && 1482 (msg->msg_flags & MSG_CMSG_COMPAT)) { 1483 ctv.tv_sec = tv.tv_sec; 1484 ctv.tv_usec = tv.tv_usec; 1485 data = &ctv; 1486 len = sizeof(ctv); 1487 } 1488 #endif 1489 1490 put_cmsg(msg, SOL_HCI, HCI_CMSG_TSTAMP, len, data); 1491 } 1492 } 1493 1494 static int hci_sock_recvmsg(struct socket *sock, struct msghdr *msg, 1495 size_t len, int flags) 1496 { 1497 struct sock *sk = sock->sk; 1498 struct sk_buff *skb; 1499 int copied, err; 1500 unsigned int skblen; 1501 1502 BT_DBG("sock %p, sk %p", sock, sk); 1503 1504 if (flags & MSG_OOB) 1505 return -EOPNOTSUPP; 1506 1507 if (hci_pi(sk)->channel == HCI_CHANNEL_LOGGING) 1508 return -EOPNOTSUPP; 1509 1510 if (sk->sk_state == BT_CLOSED) 1511 return 0; 1512 1513 skb = skb_recv_datagram(sk, flags, &err); 1514 if (!skb) 1515 return err; 1516 1517 skblen = skb->len; 1518 copied = skb->len; 1519 if (len < copied) { 1520 msg->msg_flags |= MSG_TRUNC; 1521 copied = len; 1522 } 1523 1524 skb_reset_transport_header(skb); 1525 err = skb_copy_datagram_msg(skb, 0, msg, copied); 1526 1527 switch (hci_pi(sk)->channel) { 1528 case HCI_CHANNEL_RAW: 1529 hci_sock_cmsg(sk, msg, skb); 1530 break; 1531 case HCI_CHANNEL_USER: 1532 case HCI_CHANNEL_MONITOR: 1533 sock_recv_timestamp(msg, sk, skb); 1534 break; 1535 default: 1536 if (hci_mgmt_chan_find(hci_pi(sk)->channel)) 1537 sock_recv_timestamp(msg, sk, skb); 1538 break; 1539 } 1540 1541 skb_free_datagram(sk, skb); 1542 1543 if (flags & MSG_TRUNC) 1544 copied = skblen; 1545 1546 return err ? : copied; 1547 } 1548 1549 static int hci_mgmt_cmd(struct hci_mgmt_chan *chan, struct sock *sk, 1550 struct sk_buff *skb) 1551 { 1552 u8 *cp; 1553 struct mgmt_hdr *hdr; 1554 u16 opcode, index, len; 1555 struct hci_dev *hdev = NULL; 1556 const struct hci_mgmt_handler *handler; 1557 bool var_len, no_hdev; 1558 int err; 1559 1560 BT_DBG("got %d bytes", skb->len); 1561 1562 if (skb->len < sizeof(*hdr)) 1563 return -EINVAL; 1564 1565 hdr = (void *)skb->data; 1566 opcode = __le16_to_cpu(hdr->opcode); 1567 index = __le16_to_cpu(hdr->index); 1568 len = __le16_to_cpu(hdr->len); 1569 1570 if (len != skb->len - sizeof(*hdr)) { 1571 err = -EINVAL; 1572 goto done; 1573 } 1574 1575 if (chan->channel == HCI_CHANNEL_CONTROL) { 1576 struct sk_buff *cmd; 1577 1578 /* Send event to monitor */ 1579 cmd = create_monitor_ctrl_command(sk, index, opcode, len, 1580 skb->data + sizeof(*hdr)); 1581 if (cmd) { 1582 hci_send_to_channel(HCI_CHANNEL_MONITOR, cmd, 1583 HCI_SOCK_TRUSTED, NULL); 1584 kfree_skb(cmd); 1585 } 1586 } 1587 1588 if (opcode >= chan->handler_count || 1589 chan->handlers[opcode].func == NULL) { 1590 BT_DBG("Unknown op %u", opcode); 1591 err = mgmt_cmd_status(sk, index, opcode, 1592 MGMT_STATUS_UNKNOWN_COMMAND); 1593 goto done; 1594 } 1595 1596 handler = &chan->handlers[opcode]; 1597 1598 if (!hci_sock_test_flag(sk, HCI_SOCK_TRUSTED) && 1599 !(handler->flags & HCI_MGMT_UNTRUSTED)) { 1600 err = mgmt_cmd_status(sk, index, opcode, 1601 MGMT_STATUS_PERMISSION_DENIED); 1602 goto done; 1603 } 1604 1605 if (index != MGMT_INDEX_NONE) { 1606 hdev = hci_dev_get(index); 1607 if (!hdev) { 1608 err = mgmt_cmd_status(sk, index, opcode, 1609 MGMT_STATUS_INVALID_INDEX); 1610 goto done; 1611 } 1612 1613 if (hci_dev_test_flag(hdev, HCI_SETUP) || 1614 hci_dev_test_flag(hdev, HCI_CONFIG) || 1615 hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1616 err = mgmt_cmd_status(sk, index, opcode, 1617 MGMT_STATUS_INVALID_INDEX); 1618 goto done; 1619 } 1620 1621 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 1622 !(handler->flags & HCI_MGMT_UNCONFIGURED)) { 1623 err = mgmt_cmd_status(sk, index, opcode, 1624 MGMT_STATUS_INVALID_INDEX); 1625 goto done; 1626 } 1627 } 1628 1629 if (!(handler->flags & HCI_MGMT_HDEV_OPTIONAL)) { 1630 no_hdev = (handler->flags & HCI_MGMT_NO_HDEV); 1631 if (no_hdev != !hdev) { 1632 err = mgmt_cmd_status(sk, index, opcode, 1633 MGMT_STATUS_INVALID_INDEX); 1634 goto done; 1635 } 1636 } 1637 1638 var_len = (handler->flags & HCI_MGMT_VAR_LEN); 1639 if ((var_len && len < handler->data_len) || 1640 (!var_len && len != handler->data_len)) { 1641 err = mgmt_cmd_status(sk, index, opcode, 1642 MGMT_STATUS_INVALID_PARAMS); 1643 goto done; 1644 } 1645 1646 if (hdev && chan->hdev_init) 1647 chan->hdev_init(sk, hdev); 1648 1649 cp = skb->data + sizeof(*hdr); 1650 1651 err = handler->func(sk, hdev, cp, len); 1652 if (err < 0) 1653 goto done; 1654 1655 err = skb->len; 1656 1657 done: 1658 if (hdev) 1659 hci_dev_put(hdev); 1660 1661 return err; 1662 } 1663 1664 static int hci_logging_frame(struct sock *sk, struct sk_buff *skb, 1665 unsigned int flags) 1666 { 1667 struct hci_mon_hdr *hdr; 1668 struct hci_dev *hdev; 1669 u16 index; 1670 int err; 1671 1672 /* The logging frame consists at minimum of the standard header, 1673 * the priority byte, the ident length byte and at least one string 1674 * terminator NUL byte. Anything shorter are invalid packets. 1675 */ 1676 if (skb->len < sizeof(*hdr) + 3) 1677 return -EINVAL; 1678 1679 hdr = (void *)skb->data; 1680 1681 if (__le16_to_cpu(hdr->len) != skb->len - sizeof(*hdr)) 1682 return -EINVAL; 1683 1684 if (__le16_to_cpu(hdr->opcode) == 0x0000) { 1685 __u8 priority = skb->data[sizeof(*hdr)]; 1686 __u8 ident_len = skb->data[sizeof(*hdr) + 1]; 1687 1688 /* Only the priorities 0-7 are valid and with that any other 1689 * value results in an invalid packet. 1690 * 1691 * The priority byte is followed by an ident length byte and 1692 * the NUL terminated ident string. Check that the ident 1693 * length is not overflowing the packet and also that the 1694 * ident string itself is NUL terminated. In case the ident 1695 * length is zero, the length value actually doubles as NUL 1696 * terminator identifier. 1697 * 1698 * The message follows the ident string (if present) and 1699 * must be NUL terminated. Otherwise it is not a valid packet. 1700 */ 1701 if (priority > 7 || skb->data[skb->len - 1] != 0x00 || 1702 ident_len > skb->len - sizeof(*hdr) - 3 || 1703 skb->data[sizeof(*hdr) + ident_len + 1] != 0x00) 1704 return -EINVAL; 1705 } else { 1706 return -EINVAL; 1707 } 1708 1709 index = __le16_to_cpu(hdr->index); 1710 1711 if (index != MGMT_INDEX_NONE) { 1712 hdev = hci_dev_get(index); 1713 if (!hdev) 1714 return -ENODEV; 1715 } else { 1716 hdev = NULL; 1717 } 1718 1719 hdr->opcode = cpu_to_le16(HCI_MON_USER_LOGGING); 1720 1721 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, HCI_SOCK_TRUSTED, NULL); 1722 err = skb->len; 1723 1724 if (hdev) 1725 hci_dev_put(hdev); 1726 1727 return err; 1728 } 1729 1730 static int hci_sock_sendmsg(struct socket *sock, struct msghdr *msg, 1731 size_t len) 1732 { 1733 struct sock *sk = sock->sk; 1734 struct hci_mgmt_chan *chan; 1735 struct hci_dev *hdev; 1736 struct sk_buff *skb; 1737 int err; 1738 const unsigned int flags = msg->msg_flags; 1739 1740 BT_DBG("sock %p sk %p", sock, sk); 1741 1742 if (flags & MSG_OOB) 1743 return -EOPNOTSUPP; 1744 1745 if (flags & ~(MSG_DONTWAIT | MSG_NOSIGNAL | MSG_ERRQUEUE | MSG_CMSG_COMPAT)) 1746 return -EINVAL; 1747 1748 if (len < 4 || len > hci_pi(sk)->mtu) 1749 return -EINVAL; 1750 1751 skb = bt_skb_sendmsg(sk, msg, len, len, 0, 0); 1752 if (IS_ERR(skb)) 1753 return PTR_ERR(skb); 1754 1755 lock_sock(sk); 1756 1757 switch (hci_pi(sk)->channel) { 1758 case HCI_CHANNEL_RAW: 1759 case HCI_CHANNEL_USER: 1760 break; 1761 case HCI_CHANNEL_MONITOR: 1762 err = -EOPNOTSUPP; 1763 goto drop; 1764 case HCI_CHANNEL_LOGGING: 1765 err = hci_logging_frame(sk, skb, flags); 1766 goto drop; 1767 default: 1768 mutex_lock(&mgmt_chan_list_lock); 1769 chan = __hci_mgmt_chan_find(hci_pi(sk)->channel); 1770 if (chan) 1771 err = hci_mgmt_cmd(chan, sk, skb); 1772 else 1773 err = -EINVAL; 1774 1775 mutex_unlock(&mgmt_chan_list_lock); 1776 goto drop; 1777 } 1778 1779 hdev = hci_hdev_from_sock(sk); 1780 if (IS_ERR(hdev)) { 1781 err = PTR_ERR(hdev); 1782 goto drop; 1783 } 1784 1785 if (!test_bit(HCI_UP, &hdev->flags)) { 1786 err = -ENETDOWN; 1787 goto drop; 1788 } 1789 1790 hci_skb_pkt_type(skb) = skb->data[0]; 1791 skb_pull(skb, 1); 1792 1793 if (hci_pi(sk)->channel == HCI_CHANNEL_USER) { 1794 /* No permission check is needed for user channel 1795 * since that gets enforced when binding the socket. 1796 * 1797 * However check that the packet type is valid. 1798 */ 1799 if (hci_skb_pkt_type(skb) != HCI_COMMAND_PKT && 1800 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT && 1801 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT && 1802 hci_skb_pkt_type(skb) != HCI_ISODATA_PKT) { 1803 err = -EINVAL; 1804 goto drop; 1805 } 1806 1807 skb_queue_tail(&hdev->raw_q, skb); 1808 queue_work(hdev->workqueue, &hdev->tx_work); 1809 } else if (hci_skb_pkt_type(skb) == HCI_COMMAND_PKT) { 1810 u16 opcode = get_unaligned_le16(skb->data); 1811 u16 ogf = hci_opcode_ogf(opcode); 1812 u16 ocf = hci_opcode_ocf(opcode); 1813 1814 if (((ogf > HCI_SFLT_MAX_OGF) || 1815 !hci_test_bit(ocf & HCI_FLT_OCF_BITS, 1816 &hci_sec_filter.ocf_mask[ogf])) && 1817 !capable(CAP_NET_RAW)) { 1818 err = -EPERM; 1819 goto drop; 1820 } 1821 1822 /* Since the opcode has already been extracted here, store 1823 * a copy of the value for later use by the drivers. 1824 */ 1825 hci_skb_opcode(skb) = opcode; 1826 1827 if (ogf == 0x3f) { 1828 skb_queue_tail(&hdev->raw_q, skb); 1829 queue_work(hdev->workqueue, &hdev->tx_work); 1830 } else { 1831 /* Stand-alone HCI commands must be flagged as 1832 * single-command requests. 1833 */ 1834 bt_cb(skb)->hci.req_flags |= HCI_REQ_START; 1835 1836 skb_queue_tail(&hdev->cmd_q, skb); 1837 queue_work(hdev->workqueue, &hdev->cmd_work); 1838 } 1839 } else { 1840 if (!capable(CAP_NET_RAW)) { 1841 err = -EPERM; 1842 goto drop; 1843 } 1844 1845 if (hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT && 1846 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT && 1847 hci_skb_pkt_type(skb) != HCI_ISODATA_PKT) { 1848 err = -EINVAL; 1849 goto drop; 1850 } 1851 1852 skb_queue_tail(&hdev->raw_q, skb); 1853 queue_work(hdev->workqueue, &hdev->tx_work); 1854 } 1855 1856 err = len; 1857 1858 done: 1859 release_sock(sk); 1860 return err; 1861 1862 drop: 1863 kfree_skb(skb); 1864 goto done; 1865 } 1866 1867 static int hci_sock_setsockopt_old(struct socket *sock, int level, int optname, 1868 sockptr_t optval, unsigned int len) 1869 { 1870 struct hci_ufilter uf = { .opcode = 0 }; 1871 struct sock *sk = sock->sk; 1872 int err = 0, opt = 0; 1873 1874 BT_DBG("sk %p, opt %d", sk, optname); 1875 1876 lock_sock(sk); 1877 1878 if (hci_pi(sk)->channel != HCI_CHANNEL_RAW) { 1879 err = -EBADFD; 1880 goto done; 1881 } 1882 1883 switch (optname) { 1884 case HCI_DATA_DIR: 1885 if (copy_from_sockptr(&opt, optval, sizeof(opt))) { 1886 err = -EFAULT; 1887 break; 1888 } 1889 1890 if (opt) 1891 hci_pi(sk)->cmsg_mask |= HCI_CMSG_DIR; 1892 else 1893 hci_pi(sk)->cmsg_mask &= ~HCI_CMSG_DIR; 1894 break; 1895 1896 case HCI_TIME_STAMP: 1897 if (copy_from_sockptr(&opt, optval, sizeof(opt))) { 1898 err = -EFAULT; 1899 break; 1900 } 1901 1902 if (opt) 1903 hci_pi(sk)->cmsg_mask |= HCI_CMSG_TSTAMP; 1904 else 1905 hci_pi(sk)->cmsg_mask &= ~HCI_CMSG_TSTAMP; 1906 break; 1907 1908 case HCI_FILTER: 1909 { 1910 struct hci_filter *f = &hci_pi(sk)->filter; 1911 1912 uf.type_mask = f->type_mask; 1913 uf.opcode = f->opcode; 1914 uf.event_mask[0] = *((u32 *) f->event_mask + 0); 1915 uf.event_mask[1] = *((u32 *) f->event_mask + 1); 1916 } 1917 1918 len = min_t(unsigned int, len, sizeof(uf)); 1919 if (copy_from_sockptr(&uf, optval, len)) { 1920 err = -EFAULT; 1921 break; 1922 } 1923 1924 if (!capable(CAP_NET_RAW)) { 1925 uf.type_mask &= hci_sec_filter.type_mask; 1926 uf.event_mask[0] &= *((u32 *) hci_sec_filter.event_mask + 0); 1927 uf.event_mask[1] &= *((u32 *) hci_sec_filter.event_mask + 1); 1928 } 1929 1930 { 1931 struct hci_filter *f = &hci_pi(sk)->filter; 1932 1933 f->type_mask = uf.type_mask; 1934 f->opcode = uf.opcode; 1935 *((u32 *) f->event_mask + 0) = uf.event_mask[0]; 1936 *((u32 *) f->event_mask + 1) = uf.event_mask[1]; 1937 } 1938 break; 1939 1940 default: 1941 err = -ENOPROTOOPT; 1942 break; 1943 } 1944 1945 done: 1946 release_sock(sk); 1947 return err; 1948 } 1949 1950 static int hci_sock_setsockopt(struct socket *sock, int level, int optname, 1951 sockptr_t optval, unsigned int len) 1952 { 1953 struct sock *sk = sock->sk; 1954 int err = 0; 1955 u16 opt; 1956 1957 BT_DBG("sk %p, opt %d", sk, optname); 1958 1959 if (level == SOL_HCI) 1960 return hci_sock_setsockopt_old(sock, level, optname, optval, 1961 len); 1962 1963 if (level != SOL_BLUETOOTH) 1964 return -ENOPROTOOPT; 1965 1966 lock_sock(sk); 1967 1968 switch (optname) { 1969 case BT_SNDMTU: 1970 case BT_RCVMTU: 1971 switch (hci_pi(sk)->channel) { 1972 /* Don't allow changing MTU for channels that are meant for HCI 1973 * traffic only. 1974 */ 1975 case HCI_CHANNEL_RAW: 1976 case HCI_CHANNEL_USER: 1977 err = -ENOPROTOOPT; 1978 goto done; 1979 } 1980 1981 if (copy_from_sockptr(&opt, optval, sizeof(opt))) { 1982 err = -EFAULT; 1983 break; 1984 } 1985 1986 hci_pi(sk)->mtu = opt; 1987 break; 1988 1989 default: 1990 err = -ENOPROTOOPT; 1991 break; 1992 } 1993 1994 done: 1995 release_sock(sk); 1996 return err; 1997 } 1998 1999 static int hci_sock_getsockopt_old(struct socket *sock, int level, int optname, 2000 char __user *optval, int __user *optlen) 2001 { 2002 struct hci_ufilter uf; 2003 struct sock *sk = sock->sk; 2004 int len, opt, err = 0; 2005 2006 BT_DBG("sk %p, opt %d", sk, optname); 2007 2008 if (get_user(len, optlen)) 2009 return -EFAULT; 2010 2011 lock_sock(sk); 2012 2013 if (hci_pi(sk)->channel != HCI_CHANNEL_RAW) { 2014 err = -EBADFD; 2015 goto done; 2016 } 2017 2018 switch (optname) { 2019 case HCI_DATA_DIR: 2020 if (hci_pi(sk)->cmsg_mask & HCI_CMSG_DIR) 2021 opt = 1; 2022 else 2023 opt = 0; 2024 2025 if (put_user(opt, optval)) 2026 err = -EFAULT; 2027 break; 2028 2029 case HCI_TIME_STAMP: 2030 if (hci_pi(sk)->cmsg_mask & HCI_CMSG_TSTAMP) 2031 opt = 1; 2032 else 2033 opt = 0; 2034 2035 if (put_user(opt, optval)) 2036 err = -EFAULT; 2037 break; 2038 2039 case HCI_FILTER: 2040 { 2041 struct hci_filter *f = &hci_pi(sk)->filter; 2042 2043 memset(&uf, 0, sizeof(uf)); 2044 uf.type_mask = f->type_mask; 2045 uf.opcode = f->opcode; 2046 uf.event_mask[0] = *((u32 *) f->event_mask + 0); 2047 uf.event_mask[1] = *((u32 *) f->event_mask + 1); 2048 } 2049 2050 len = min_t(unsigned int, len, sizeof(uf)); 2051 if (copy_to_user(optval, &uf, len)) 2052 err = -EFAULT; 2053 break; 2054 2055 default: 2056 err = -ENOPROTOOPT; 2057 break; 2058 } 2059 2060 done: 2061 release_sock(sk); 2062 return err; 2063 } 2064 2065 static int hci_sock_getsockopt(struct socket *sock, int level, int optname, 2066 char __user *optval, int __user *optlen) 2067 { 2068 struct sock *sk = sock->sk; 2069 int err = 0; 2070 2071 BT_DBG("sk %p, opt %d", sk, optname); 2072 2073 if (level == SOL_HCI) 2074 return hci_sock_getsockopt_old(sock, level, optname, optval, 2075 optlen); 2076 2077 if (level != SOL_BLUETOOTH) 2078 return -ENOPROTOOPT; 2079 2080 lock_sock(sk); 2081 2082 switch (optname) { 2083 case BT_SNDMTU: 2084 case BT_RCVMTU: 2085 if (put_user(hci_pi(sk)->mtu, (u16 __user *)optval)) 2086 err = -EFAULT; 2087 break; 2088 2089 default: 2090 err = -ENOPROTOOPT; 2091 break; 2092 } 2093 2094 release_sock(sk); 2095 return err; 2096 } 2097 2098 static void hci_sock_destruct(struct sock *sk) 2099 { 2100 mgmt_cleanup(sk); 2101 skb_queue_purge(&sk->sk_receive_queue); 2102 skb_queue_purge(&sk->sk_write_queue); 2103 } 2104 2105 static const struct proto_ops hci_sock_ops = { 2106 .family = PF_BLUETOOTH, 2107 .owner = THIS_MODULE, 2108 .release = hci_sock_release, 2109 .bind = hci_sock_bind, 2110 .getname = hci_sock_getname, 2111 .sendmsg = hci_sock_sendmsg, 2112 .recvmsg = hci_sock_recvmsg, 2113 .ioctl = hci_sock_ioctl, 2114 #ifdef CONFIG_COMPAT 2115 .compat_ioctl = hci_sock_compat_ioctl, 2116 #endif 2117 .poll = datagram_poll, 2118 .listen = sock_no_listen, 2119 .shutdown = sock_no_shutdown, 2120 .setsockopt = hci_sock_setsockopt, 2121 .getsockopt = hci_sock_getsockopt, 2122 .connect = sock_no_connect, 2123 .socketpair = sock_no_socketpair, 2124 .accept = sock_no_accept, 2125 .mmap = sock_no_mmap 2126 }; 2127 2128 static struct proto hci_sk_proto = { 2129 .name = "HCI", 2130 .owner = THIS_MODULE, 2131 .obj_size = sizeof(struct hci_pinfo) 2132 }; 2133 2134 static int hci_sock_create(struct net *net, struct socket *sock, int protocol, 2135 int kern) 2136 { 2137 struct sock *sk; 2138 2139 BT_DBG("sock %p", sock); 2140 2141 if (sock->type != SOCK_RAW) 2142 return -ESOCKTNOSUPPORT; 2143 2144 sock->ops = &hci_sock_ops; 2145 2146 sk = sk_alloc(net, PF_BLUETOOTH, GFP_ATOMIC, &hci_sk_proto, kern); 2147 if (!sk) 2148 return -ENOMEM; 2149 2150 sock_init_data(sock, sk); 2151 2152 sock_reset_flag(sk, SOCK_ZAPPED); 2153 2154 sk->sk_protocol = protocol; 2155 2156 sock->state = SS_UNCONNECTED; 2157 sk->sk_state = BT_OPEN; 2158 sk->sk_destruct = hci_sock_destruct; 2159 2160 bt_sock_link(&hci_sk_list, sk); 2161 return 0; 2162 } 2163 2164 static const struct net_proto_family hci_sock_family_ops = { 2165 .family = PF_BLUETOOTH, 2166 .owner = THIS_MODULE, 2167 .create = hci_sock_create, 2168 }; 2169 2170 int __init hci_sock_init(void) 2171 { 2172 int err; 2173 2174 BUILD_BUG_ON(sizeof(struct sockaddr_hci) > sizeof(struct sockaddr)); 2175 2176 err = proto_register(&hci_sk_proto, 0); 2177 if (err < 0) 2178 return err; 2179 2180 err = bt_sock_register(BTPROTO_HCI, &hci_sock_family_ops); 2181 if (err < 0) { 2182 BT_ERR("HCI socket registration failed"); 2183 goto error; 2184 } 2185 2186 err = bt_procfs_init(&init_net, "hci", &hci_sk_list, NULL); 2187 if (err < 0) { 2188 BT_ERR("Failed to create HCI proc file"); 2189 bt_sock_unregister(BTPROTO_HCI); 2190 goto error; 2191 } 2192 2193 BT_INFO("HCI socket layer initialized"); 2194 2195 return 0; 2196 2197 error: 2198 proto_unregister(&hci_sk_proto); 2199 return err; 2200 } 2201 2202 void hci_sock_cleanup(void) 2203 { 2204 bt_procfs_cleanup(&init_net, "hci"); 2205 bt_sock_unregister(BTPROTO_HCI); 2206 proto_unregister(&hci_sk_proto); 2207 } 2208