1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (C) 2000-2001 Qualcomm Incorporated 4 5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License version 2 as 9 published by the Free Software Foundation; 10 11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 22 SOFTWARE IS DISCLAIMED. 23 */ 24 25 /* Bluetooth HCI sockets. */ 26 #include <linux/compat.h> 27 #include <linux/export.h> 28 #include <linux/utsname.h> 29 #include <linux/sched.h> 30 #include <asm/unaligned.h> 31 32 #include <net/bluetooth/bluetooth.h> 33 #include <net/bluetooth/hci_core.h> 34 #include <net/bluetooth/hci_mon.h> 35 #include <net/bluetooth/mgmt.h> 36 37 #include "mgmt_util.h" 38 39 static LIST_HEAD(mgmt_chan_list); 40 static DEFINE_MUTEX(mgmt_chan_list_lock); 41 42 static DEFINE_IDA(sock_cookie_ida); 43 44 static atomic_t monitor_promisc = ATOMIC_INIT(0); 45 46 /* ----- HCI socket interface ----- */ 47 48 /* Socket info */ 49 #define hci_pi(sk) ((struct hci_pinfo *) sk) 50 51 struct hci_pinfo { 52 struct bt_sock bt; 53 struct hci_dev *hdev; 54 struct hci_filter filter; 55 __u8 cmsg_mask; 56 unsigned short channel; 57 unsigned long flags; 58 __u32 cookie; 59 char comm[TASK_COMM_LEN]; 60 __u16 mtu; 61 }; 62 63 static struct hci_dev *hci_hdev_from_sock(struct sock *sk) 64 { 65 struct hci_dev *hdev = hci_pi(sk)->hdev; 66 67 if (!hdev) 68 return ERR_PTR(-EBADFD); 69 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) 70 return ERR_PTR(-EPIPE); 71 return hdev; 72 } 73 74 void hci_sock_set_flag(struct sock *sk, int nr) 75 { 76 set_bit(nr, &hci_pi(sk)->flags); 77 } 78 79 void hci_sock_clear_flag(struct sock *sk, int nr) 80 { 81 clear_bit(nr, &hci_pi(sk)->flags); 82 } 83 84 int hci_sock_test_flag(struct sock *sk, int nr) 85 { 86 return test_bit(nr, &hci_pi(sk)->flags); 87 } 88 89 unsigned short hci_sock_get_channel(struct sock *sk) 90 { 91 return hci_pi(sk)->channel; 92 } 93 94 u32 hci_sock_get_cookie(struct sock *sk) 95 { 96 return hci_pi(sk)->cookie; 97 } 98 99 static bool hci_sock_gen_cookie(struct sock *sk) 100 { 101 int id = hci_pi(sk)->cookie; 102 103 if (!id) { 104 id = ida_alloc_min(&sock_cookie_ida, 1, GFP_KERNEL); 105 if (id < 0) 106 id = 0xffffffff; 107 108 hci_pi(sk)->cookie = id; 109 get_task_comm(hci_pi(sk)->comm, current); 110 return true; 111 } 112 113 return false; 114 } 115 116 static void hci_sock_free_cookie(struct sock *sk) 117 { 118 int id = hci_pi(sk)->cookie; 119 120 if (id) { 121 hci_pi(sk)->cookie = 0xffffffff; 122 ida_free(&sock_cookie_ida, id); 123 } 124 } 125 126 static inline int hci_test_bit(int nr, const void *addr) 127 { 128 return *((const __u32 *) addr + (nr >> 5)) & ((__u32) 1 << (nr & 31)); 129 } 130 131 /* Security filter */ 132 #define HCI_SFLT_MAX_OGF 5 133 134 struct hci_sec_filter { 135 __u32 type_mask; 136 __u32 event_mask[2]; 137 __u32 ocf_mask[HCI_SFLT_MAX_OGF + 1][4]; 138 }; 139 140 static const struct hci_sec_filter hci_sec_filter = { 141 /* Packet types */ 142 0x10, 143 /* Events */ 144 { 0x1000d9fe, 0x0000b00c }, 145 /* Commands */ 146 { 147 { 0x0 }, 148 /* OGF_LINK_CTL */ 149 { 0xbe000006, 0x00000001, 0x00000000, 0x00 }, 150 /* OGF_LINK_POLICY */ 151 { 0x00005200, 0x00000000, 0x00000000, 0x00 }, 152 /* OGF_HOST_CTL */ 153 { 0xaab00200, 0x2b402aaa, 0x05220154, 0x00 }, 154 /* OGF_INFO_PARAM */ 155 { 0x000002be, 0x00000000, 0x00000000, 0x00 }, 156 /* OGF_STATUS_PARAM */ 157 { 0x000000ea, 0x00000000, 0x00000000, 0x00 } 158 } 159 }; 160 161 static struct bt_sock_list hci_sk_list = { 162 .lock = __RW_LOCK_UNLOCKED(hci_sk_list.lock) 163 }; 164 165 static bool is_filtered_packet(struct sock *sk, struct sk_buff *skb) 166 { 167 struct hci_filter *flt; 168 int flt_type, flt_event; 169 170 /* Apply filter */ 171 flt = &hci_pi(sk)->filter; 172 173 flt_type = hci_skb_pkt_type(skb) & HCI_FLT_TYPE_BITS; 174 175 if (!test_bit(flt_type, &flt->type_mask)) 176 return true; 177 178 /* Extra filter for event packets only */ 179 if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT) 180 return false; 181 182 flt_event = (*(__u8 *)skb->data & HCI_FLT_EVENT_BITS); 183 184 if (!hci_test_bit(flt_event, &flt->event_mask)) 185 return true; 186 187 /* Check filter only when opcode is set */ 188 if (!flt->opcode) 189 return false; 190 191 if (flt_event == HCI_EV_CMD_COMPLETE && 192 flt->opcode != get_unaligned((__le16 *)(skb->data + 3))) 193 return true; 194 195 if (flt_event == HCI_EV_CMD_STATUS && 196 flt->opcode != get_unaligned((__le16 *)(skb->data + 4))) 197 return true; 198 199 return false; 200 } 201 202 /* Send frame to RAW socket */ 203 void hci_send_to_sock(struct hci_dev *hdev, struct sk_buff *skb) 204 { 205 struct sock *sk; 206 struct sk_buff *skb_copy = NULL; 207 208 BT_DBG("hdev %p len %d", hdev, skb->len); 209 210 read_lock(&hci_sk_list.lock); 211 212 sk_for_each(sk, &hci_sk_list.head) { 213 struct sk_buff *nskb; 214 215 if (sk->sk_state != BT_BOUND || hci_pi(sk)->hdev != hdev) 216 continue; 217 218 /* Don't send frame to the socket it came from */ 219 if (skb->sk == sk) 220 continue; 221 222 if (hci_pi(sk)->channel == HCI_CHANNEL_RAW) { 223 if (hci_skb_pkt_type(skb) != HCI_COMMAND_PKT && 224 hci_skb_pkt_type(skb) != HCI_EVENT_PKT && 225 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT && 226 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT && 227 hci_skb_pkt_type(skb) != HCI_ISODATA_PKT) 228 continue; 229 if (is_filtered_packet(sk, skb)) 230 continue; 231 } else if (hci_pi(sk)->channel == HCI_CHANNEL_USER) { 232 if (!bt_cb(skb)->incoming) 233 continue; 234 if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT && 235 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT && 236 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT && 237 hci_skb_pkt_type(skb) != HCI_ISODATA_PKT) 238 continue; 239 } else { 240 /* Don't send frame to other channel types */ 241 continue; 242 } 243 244 if (!skb_copy) { 245 /* Create a private copy with headroom */ 246 skb_copy = __pskb_copy_fclone(skb, 1, GFP_ATOMIC, true); 247 if (!skb_copy) 248 continue; 249 250 /* Put type byte before the data */ 251 memcpy(skb_push(skb_copy, 1), &hci_skb_pkt_type(skb), 1); 252 } 253 254 nskb = skb_clone(skb_copy, GFP_ATOMIC); 255 if (!nskb) 256 continue; 257 258 if (sock_queue_rcv_skb(sk, nskb)) 259 kfree_skb(nskb); 260 } 261 262 read_unlock(&hci_sk_list.lock); 263 264 kfree_skb(skb_copy); 265 } 266 267 static void hci_sock_copy_creds(struct sock *sk, struct sk_buff *skb) 268 { 269 struct scm_creds *creds; 270 271 if (!sk || WARN_ON(!skb)) 272 return; 273 274 creds = &bt_cb(skb)->creds; 275 276 /* Check if peer credentials is set */ 277 if (!sk->sk_peer_pid) { 278 /* Check if parent peer credentials is set */ 279 if (bt_sk(sk)->parent && bt_sk(sk)->parent->sk_peer_pid) 280 sk = bt_sk(sk)->parent; 281 else 282 return; 283 } 284 285 /* Check if scm_creds already set */ 286 if (creds->pid == pid_vnr(sk->sk_peer_pid)) 287 return; 288 289 memset(creds, 0, sizeof(*creds)); 290 291 creds->pid = pid_vnr(sk->sk_peer_pid); 292 if (sk->sk_peer_cred) { 293 creds->uid = sk->sk_peer_cred->uid; 294 creds->gid = sk->sk_peer_cred->gid; 295 } 296 } 297 298 static struct sk_buff *hci_skb_clone(struct sk_buff *skb) 299 { 300 struct sk_buff *nskb; 301 302 if (!skb) 303 return NULL; 304 305 nskb = skb_clone(skb, GFP_ATOMIC); 306 if (!nskb) 307 return NULL; 308 309 hci_sock_copy_creds(skb->sk, nskb); 310 311 return nskb; 312 } 313 314 /* Send frame to sockets with specific channel */ 315 static void __hci_send_to_channel(unsigned short channel, struct sk_buff *skb, 316 int flag, struct sock *skip_sk) 317 { 318 struct sock *sk; 319 320 BT_DBG("channel %u len %d", channel, skb->len); 321 322 sk_for_each(sk, &hci_sk_list.head) { 323 struct sk_buff *nskb; 324 325 /* Ignore socket without the flag set */ 326 if (!hci_sock_test_flag(sk, flag)) 327 continue; 328 329 /* Skip the original socket */ 330 if (sk == skip_sk) 331 continue; 332 333 if (sk->sk_state != BT_BOUND) 334 continue; 335 336 if (hci_pi(sk)->channel != channel) 337 continue; 338 339 nskb = hci_skb_clone(skb); 340 if (!nskb) 341 continue; 342 343 if (sock_queue_rcv_skb(sk, nskb)) 344 kfree_skb(nskb); 345 } 346 347 } 348 349 void hci_send_to_channel(unsigned short channel, struct sk_buff *skb, 350 int flag, struct sock *skip_sk) 351 { 352 read_lock(&hci_sk_list.lock); 353 __hci_send_to_channel(channel, skb, flag, skip_sk); 354 read_unlock(&hci_sk_list.lock); 355 } 356 357 /* Send frame to monitor socket */ 358 void hci_send_to_monitor(struct hci_dev *hdev, struct sk_buff *skb) 359 { 360 struct sk_buff *skb_copy = NULL; 361 struct hci_mon_hdr *hdr; 362 __le16 opcode; 363 364 if (!atomic_read(&monitor_promisc)) 365 return; 366 367 BT_DBG("hdev %p len %d", hdev, skb->len); 368 369 switch (hci_skb_pkt_type(skb)) { 370 case HCI_COMMAND_PKT: 371 opcode = cpu_to_le16(HCI_MON_COMMAND_PKT); 372 break; 373 case HCI_EVENT_PKT: 374 opcode = cpu_to_le16(HCI_MON_EVENT_PKT); 375 break; 376 case HCI_ACLDATA_PKT: 377 if (bt_cb(skb)->incoming) 378 opcode = cpu_to_le16(HCI_MON_ACL_RX_PKT); 379 else 380 opcode = cpu_to_le16(HCI_MON_ACL_TX_PKT); 381 break; 382 case HCI_SCODATA_PKT: 383 if (bt_cb(skb)->incoming) 384 opcode = cpu_to_le16(HCI_MON_SCO_RX_PKT); 385 else 386 opcode = cpu_to_le16(HCI_MON_SCO_TX_PKT); 387 break; 388 case HCI_ISODATA_PKT: 389 if (bt_cb(skb)->incoming) 390 opcode = cpu_to_le16(HCI_MON_ISO_RX_PKT); 391 else 392 opcode = cpu_to_le16(HCI_MON_ISO_TX_PKT); 393 break; 394 case HCI_DIAG_PKT: 395 opcode = cpu_to_le16(HCI_MON_VENDOR_DIAG); 396 break; 397 default: 398 return; 399 } 400 401 /* Create a private copy with headroom */ 402 skb_copy = __pskb_copy_fclone(skb, HCI_MON_HDR_SIZE, GFP_ATOMIC, true); 403 if (!skb_copy) 404 return; 405 406 hci_sock_copy_creds(skb->sk, skb_copy); 407 408 /* Put header before the data */ 409 hdr = skb_push(skb_copy, HCI_MON_HDR_SIZE); 410 hdr->opcode = opcode; 411 hdr->index = cpu_to_le16(hdev->id); 412 hdr->len = cpu_to_le16(skb->len); 413 414 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb_copy, 415 HCI_SOCK_TRUSTED, NULL); 416 kfree_skb(skb_copy); 417 } 418 419 void hci_send_monitor_ctrl_event(struct hci_dev *hdev, u16 event, 420 void *data, u16 data_len, ktime_t tstamp, 421 int flag, struct sock *skip_sk) 422 { 423 struct sock *sk; 424 __le16 index; 425 426 if (hdev) 427 index = cpu_to_le16(hdev->id); 428 else 429 index = cpu_to_le16(MGMT_INDEX_NONE); 430 431 read_lock(&hci_sk_list.lock); 432 433 sk_for_each(sk, &hci_sk_list.head) { 434 struct hci_mon_hdr *hdr; 435 struct sk_buff *skb; 436 437 if (hci_pi(sk)->channel != HCI_CHANNEL_CONTROL) 438 continue; 439 440 /* Ignore socket without the flag set */ 441 if (!hci_sock_test_flag(sk, flag)) 442 continue; 443 444 /* Skip the original socket */ 445 if (sk == skip_sk) 446 continue; 447 448 skb = bt_skb_alloc(6 + data_len, GFP_ATOMIC); 449 if (!skb) 450 continue; 451 452 put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4)); 453 put_unaligned_le16(event, skb_put(skb, 2)); 454 455 if (data) 456 skb_put_data(skb, data, data_len); 457 458 skb->tstamp = tstamp; 459 460 hdr = skb_push(skb, HCI_MON_HDR_SIZE); 461 hdr->opcode = cpu_to_le16(HCI_MON_CTRL_EVENT); 462 hdr->index = index; 463 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE); 464 465 __hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 466 HCI_SOCK_TRUSTED, NULL); 467 kfree_skb(skb); 468 } 469 470 read_unlock(&hci_sk_list.lock); 471 } 472 473 static struct sk_buff *create_monitor_event(struct hci_dev *hdev, int event) 474 { 475 struct hci_mon_hdr *hdr; 476 struct hci_mon_new_index *ni; 477 struct hci_mon_index_info *ii; 478 struct sk_buff *skb; 479 __le16 opcode; 480 481 switch (event) { 482 case HCI_DEV_REG: 483 skb = bt_skb_alloc(HCI_MON_NEW_INDEX_SIZE, GFP_ATOMIC); 484 if (!skb) 485 return NULL; 486 487 ni = skb_put(skb, HCI_MON_NEW_INDEX_SIZE); 488 ni->type = hdev->dev_type; 489 ni->bus = hdev->bus; 490 bacpy(&ni->bdaddr, &hdev->bdaddr); 491 memcpy_and_pad(ni->name, sizeof(ni->name), hdev->name, 492 strnlen(hdev->name, sizeof(ni->name)), '\0'); 493 494 opcode = cpu_to_le16(HCI_MON_NEW_INDEX); 495 break; 496 497 case HCI_DEV_UNREG: 498 skb = bt_skb_alloc(0, GFP_ATOMIC); 499 if (!skb) 500 return NULL; 501 502 opcode = cpu_to_le16(HCI_MON_DEL_INDEX); 503 break; 504 505 case HCI_DEV_SETUP: 506 if (hdev->manufacturer == 0xffff) 507 return NULL; 508 fallthrough; 509 510 case HCI_DEV_UP: 511 skb = bt_skb_alloc(HCI_MON_INDEX_INFO_SIZE, GFP_ATOMIC); 512 if (!skb) 513 return NULL; 514 515 ii = skb_put(skb, HCI_MON_INDEX_INFO_SIZE); 516 bacpy(&ii->bdaddr, &hdev->bdaddr); 517 ii->manufacturer = cpu_to_le16(hdev->manufacturer); 518 519 opcode = cpu_to_le16(HCI_MON_INDEX_INFO); 520 break; 521 522 case HCI_DEV_OPEN: 523 skb = bt_skb_alloc(0, GFP_ATOMIC); 524 if (!skb) 525 return NULL; 526 527 opcode = cpu_to_le16(HCI_MON_OPEN_INDEX); 528 break; 529 530 case HCI_DEV_CLOSE: 531 skb = bt_skb_alloc(0, GFP_ATOMIC); 532 if (!skb) 533 return NULL; 534 535 opcode = cpu_to_le16(HCI_MON_CLOSE_INDEX); 536 break; 537 538 default: 539 return NULL; 540 } 541 542 __net_timestamp(skb); 543 544 hdr = skb_push(skb, HCI_MON_HDR_SIZE); 545 hdr->opcode = opcode; 546 hdr->index = cpu_to_le16(hdev->id); 547 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE); 548 549 return skb; 550 } 551 552 static struct sk_buff *create_monitor_ctrl_open(struct sock *sk) 553 { 554 struct hci_mon_hdr *hdr; 555 struct sk_buff *skb; 556 u16 format; 557 u8 ver[3]; 558 u32 flags; 559 560 /* No message needed when cookie is not present */ 561 if (!hci_pi(sk)->cookie) 562 return NULL; 563 564 switch (hci_pi(sk)->channel) { 565 case HCI_CHANNEL_RAW: 566 format = 0x0000; 567 ver[0] = BT_SUBSYS_VERSION; 568 put_unaligned_le16(BT_SUBSYS_REVISION, ver + 1); 569 break; 570 case HCI_CHANNEL_USER: 571 format = 0x0001; 572 ver[0] = BT_SUBSYS_VERSION; 573 put_unaligned_le16(BT_SUBSYS_REVISION, ver + 1); 574 break; 575 case HCI_CHANNEL_CONTROL: 576 format = 0x0002; 577 mgmt_fill_version_info(ver); 578 break; 579 default: 580 /* No message for unsupported format */ 581 return NULL; 582 } 583 584 skb = bt_skb_alloc(14 + TASK_COMM_LEN, GFP_ATOMIC); 585 if (!skb) 586 return NULL; 587 588 hci_sock_copy_creds(sk, skb); 589 590 flags = hci_sock_test_flag(sk, HCI_SOCK_TRUSTED) ? 0x1 : 0x0; 591 592 put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4)); 593 put_unaligned_le16(format, skb_put(skb, 2)); 594 skb_put_data(skb, ver, sizeof(ver)); 595 put_unaligned_le32(flags, skb_put(skb, 4)); 596 skb_put_u8(skb, TASK_COMM_LEN); 597 skb_put_data(skb, hci_pi(sk)->comm, TASK_COMM_LEN); 598 599 __net_timestamp(skb); 600 601 hdr = skb_push(skb, HCI_MON_HDR_SIZE); 602 hdr->opcode = cpu_to_le16(HCI_MON_CTRL_OPEN); 603 if (hci_pi(sk)->hdev) 604 hdr->index = cpu_to_le16(hci_pi(sk)->hdev->id); 605 else 606 hdr->index = cpu_to_le16(HCI_DEV_NONE); 607 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE); 608 609 return skb; 610 } 611 612 static struct sk_buff *create_monitor_ctrl_close(struct sock *sk) 613 { 614 struct hci_mon_hdr *hdr; 615 struct sk_buff *skb; 616 617 /* No message needed when cookie is not present */ 618 if (!hci_pi(sk)->cookie) 619 return NULL; 620 621 switch (hci_pi(sk)->channel) { 622 case HCI_CHANNEL_RAW: 623 case HCI_CHANNEL_USER: 624 case HCI_CHANNEL_CONTROL: 625 break; 626 default: 627 /* No message for unsupported format */ 628 return NULL; 629 } 630 631 skb = bt_skb_alloc(4, GFP_ATOMIC); 632 if (!skb) 633 return NULL; 634 635 hci_sock_copy_creds(sk, skb); 636 637 put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4)); 638 639 __net_timestamp(skb); 640 641 hdr = skb_push(skb, HCI_MON_HDR_SIZE); 642 hdr->opcode = cpu_to_le16(HCI_MON_CTRL_CLOSE); 643 if (hci_pi(sk)->hdev) 644 hdr->index = cpu_to_le16(hci_pi(sk)->hdev->id); 645 else 646 hdr->index = cpu_to_le16(HCI_DEV_NONE); 647 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE); 648 649 return skb; 650 } 651 652 static struct sk_buff *create_monitor_ctrl_command(struct sock *sk, u16 index, 653 u16 opcode, u16 len, 654 const void *buf) 655 { 656 struct hci_mon_hdr *hdr; 657 struct sk_buff *skb; 658 659 skb = bt_skb_alloc(6 + len, GFP_ATOMIC); 660 if (!skb) 661 return NULL; 662 663 hci_sock_copy_creds(sk, skb); 664 665 put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4)); 666 put_unaligned_le16(opcode, skb_put(skb, 2)); 667 668 if (buf) 669 skb_put_data(skb, buf, len); 670 671 __net_timestamp(skb); 672 673 hdr = skb_push(skb, HCI_MON_HDR_SIZE); 674 hdr->opcode = cpu_to_le16(HCI_MON_CTRL_COMMAND); 675 hdr->index = cpu_to_le16(index); 676 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE); 677 678 return skb; 679 } 680 681 static void __printf(2, 3) 682 send_monitor_note(struct sock *sk, const char *fmt, ...) 683 { 684 size_t len; 685 struct hci_mon_hdr *hdr; 686 struct sk_buff *skb; 687 va_list args; 688 689 va_start(args, fmt); 690 len = vsnprintf(NULL, 0, fmt, args); 691 va_end(args); 692 693 skb = bt_skb_alloc(len + 1, GFP_ATOMIC); 694 if (!skb) 695 return; 696 697 hci_sock_copy_creds(sk, skb); 698 699 va_start(args, fmt); 700 vsprintf(skb_put(skb, len), fmt, args); 701 *(u8 *)skb_put(skb, 1) = 0; 702 va_end(args); 703 704 __net_timestamp(skb); 705 706 hdr = (void *)skb_push(skb, HCI_MON_HDR_SIZE); 707 hdr->opcode = cpu_to_le16(HCI_MON_SYSTEM_NOTE); 708 hdr->index = cpu_to_le16(HCI_DEV_NONE); 709 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE); 710 711 if (sock_queue_rcv_skb(sk, skb)) 712 kfree_skb(skb); 713 } 714 715 static void send_monitor_replay(struct sock *sk) 716 { 717 struct hci_dev *hdev; 718 719 read_lock(&hci_dev_list_lock); 720 721 list_for_each_entry(hdev, &hci_dev_list, list) { 722 struct sk_buff *skb; 723 724 skb = create_monitor_event(hdev, HCI_DEV_REG); 725 if (!skb) 726 continue; 727 728 if (sock_queue_rcv_skb(sk, skb)) 729 kfree_skb(skb); 730 731 if (!test_bit(HCI_RUNNING, &hdev->flags)) 732 continue; 733 734 skb = create_monitor_event(hdev, HCI_DEV_OPEN); 735 if (!skb) 736 continue; 737 738 if (sock_queue_rcv_skb(sk, skb)) 739 kfree_skb(skb); 740 741 if (test_bit(HCI_UP, &hdev->flags)) 742 skb = create_monitor_event(hdev, HCI_DEV_UP); 743 else if (hci_dev_test_flag(hdev, HCI_SETUP)) 744 skb = create_monitor_event(hdev, HCI_DEV_SETUP); 745 else 746 skb = NULL; 747 748 if (skb) { 749 if (sock_queue_rcv_skb(sk, skb)) 750 kfree_skb(skb); 751 } 752 } 753 754 read_unlock(&hci_dev_list_lock); 755 } 756 757 static void send_monitor_control_replay(struct sock *mon_sk) 758 { 759 struct sock *sk; 760 761 read_lock(&hci_sk_list.lock); 762 763 sk_for_each(sk, &hci_sk_list.head) { 764 struct sk_buff *skb; 765 766 skb = create_monitor_ctrl_open(sk); 767 if (!skb) 768 continue; 769 770 if (sock_queue_rcv_skb(mon_sk, skb)) 771 kfree_skb(skb); 772 } 773 774 read_unlock(&hci_sk_list.lock); 775 } 776 777 /* Generate internal stack event */ 778 static void hci_si_event(struct hci_dev *hdev, int type, int dlen, void *data) 779 { 780 struct hci_event_hdr *hdr; 781 struct hci_ev_stack_internal *ev; 782 struct sk_buff *skb; 783 784 skb = bt_skb_alloc(HCI_EVENT_HDR_SIZE + sizeof(*ev) + dlen, GFP_ATOMIC); 785 if (!skb) 786 return; 787 788 hdr = skb_put(skb, HCI_EVENT_HDR_SIZE); 789 hdr->evt = HCI_EV_STACK_INTERNAL; 790 hdr->plen = sizeof(*ev) + dlen; 791 792 ev = skb_put(skb, sizeof(*ev) + dlen); 793 ev->type = type; 794 memcpy(ev->data, data, dlen); 795 796 bt_cb(skb)->incoming = 1; 797 __net_timestamp(skb); 798 799 hci_skb_pkt_type(skb) = HCI_EVENT_PKT; 800 hci_send_to_sock(hdev, skb); 801 kfree_skb(skb); 802 } 803 804 void hci_sock_dev_event(struct hci_dev *hdev, int event) 805 { 806 BT_DBG("hdev %s event %d", hdev->name, event); 807 808 if (atomic_read(&monitor_promisc)) { 809 struct sk_buff *skb; 810 811 /* Send event to monitor */ 812 skb = create_monitor_event(hdev, event); 813 if (skb) { 814 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 815 HCI_SOCK_TRUSTED, NULL); 816 kfree_skb(skb); 817 } 818 } 819 820 if (event <= HCI_DEV_DOWN) { 821 struct hci_ev_si_device ev; 822 823 /* Send event to sockets */ 824 ev.event = event; 825 ev.dev_id = hdev->id; 826 hci_si_event(NULL, HCI_EV_SI_DEVICE, sizeof(ev), &ev); 827 } 828 829 if (event == HCI_DEV_UNREG) { 830 struct sock *sk; 831 832 /* Wake up sockets using this dead device */ 833 read_lock(&hci_sk_list.lock); 834 sk_for_each(sk, &hci_sk_list.head) { 835 if (hci_pi(sk)->hdev == hdev) { 836 sk->sk_err = EPIPE; 837 sk->sk_state_change(sk); 838 } 839 } 840 read_unlock(&hci_sk_list.lock); 841 } 842 } 843 844 static struct hci_mgmt_chan *__hci_mgmt_chan_find(unsigned short channel) 845 { 846 struct hci_mgmt_chan *c; 847 848 list_for_each_entry(c, &mgmt_chan_list, list) { 849 if (c->channel == channel) 850 return c; 851 } 852 853 return NULL; 854 } 855 856 static struct hci_mgmt_chan *hci_mgmt_chan_find(unsigned short channel) 857 { 858 struct hci_mgmt_chan *c; 859 860 mutex_lock(&mgmt_chan_list_lock); 861 c = __hci_mgmt_chan_find(channel); 862 mutex_unlock(&mgmt_chan_list_lock); 863 864 return c; 865 } 866 867 int hci_mgmt_chan_register(struct hci_mgmt_chan *c) 868 { 869 if (c->channel < HCI_CHANNEL_CONTROL) 870 return -EINVAL; 871 872 mutex_lock(&mgmt_chan_list_lock); 873 if (__hci_mgmt_chan_find(c->channel)) { 874 mutex_unlock(&mgmt_chan_list_lock); 875 return -EALREADY; 876 } 877 878 list_add_tail(&c->list, &mgmt_chan_list); 879 880 mutex_unlock(&mgmt_chan_list_lock); 881 882 return 0; 883 } 884 EXPORT_SYMBOL(hci_mgmt_chan_register); 885 886 void hci_mgmt_chan_unregister(struct hci_mgmt_chan *c) 887 { 888 mutex_lock(&mgmt_chan_list_lock); 889 list_del(&c->list); 890 mutex_unlock(&mgmt_chan_list_lock); 891 } 892 EXPORT_SYMBOL(hci_mgmt_chan_unregister); 893 894 static int hci_sock_release(struct socket *sock) 895 { 896 struct sock *sk = sock->sk; 897 struct hci_dev *hdev; 898 struct sk_buff *skb; 899 900 BT_DBG("sock %p sk %p", sock, sk); 901 902 if (!sk) 903 return 0; 904 905 lock_sock(sk); 906 907 switch (hci_pi(sk)->channel) { 908 case HCI_CHANNEL_MONITOR: 909 atomic_dec(&monitor_promisc); 910 break; 911 case HCI_CHANNEL_RAW: 912 case HCI_CHANNEL_USER: 913 case HCI_CHANNEL_CONTROL: 914 /* Send event to monitor */ 915 skb = create_monitor_ctrl_close(sk); 916 if (skb) { 917 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 918 HCI_SOCK_TRUSTED, NULL); 919 kfree_skb(skb); 920 } 921 922 hci_sock_free_cookie(sk); 923 break; 924 } 925 926 bt_sock_unlink(&hci_sk_list, sk); 927 928 hdev = hci_pi(sk)->hdev; 929 if (hdev) { 930 if (hci_pi(sk)->channel == HCI_CHANNEL_USER && 931 !hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 932 /* When releasing a user channel exclusive access, 933 * call hci_dev_do_close directly instead of calling 934 * hci_dev_close to ensure the exclusive access will 935 * be released and the controller brought back down. 936 * 937 * The checking of HCI_AUTO_OFF is not needed in this 938 * case since it will have been cleared already when 939 * opening the user channel. 940 * 941 * Make sure to also check that we haven't already 942 * unregistered since all the cleanup will have already 943 * been complete and hdev will get released when we put 944 * below. 945 */ 946 hci_dev_do_close(hdev); 947 hci_dev_clear_flag(hdev, HCI_USER_CHANNEL); 948 mgmt_index_added(hdev); 949 } 950 951 atomic_dec(&hdev->promisc); 952 hci_dev_put(hdev); 953 } 954 955 sock_orphan(sk); 956 release_sock(sk); 957 sock_put(sk); 958 return 0; 959 } 960 961 static int hci_sock_reject_list_add(struct hci_dev *hdev, void __user *arg) 962 { 963 bdaddr_t bdaddr; 964 int err; 965 966 if (copy_from_user(&bdaddr, arg, sizeof(bdaddr))) 967 return -EFAULT; 968 969 hci_dev_lock(hdev); 970 971 err = hci_bdaddr_list_add(&hdev->reject_list, &bdaddr, BDADDR_BREDR); 972 973 hci_dev_unlock(hdev); 974 975 return err; 976 } 977 978 static int hci_sock_reject_list_del(struct hci_dev *hdev, void __user *arg) 979 { 980 bdaddr_t bdaddr; 981 int err; 982 983 if (copy_from_user(&bdaddr, arg, sizeof(bdaddr))) 984 return -EFAULT; 985 986 hci_dev_lock(hdev); 987 988 err = hci_bdaddr_list_del(&hdev->reject_list, &bdaddr, BDADDR_BREDR); 989 990 hci_dev_unlock(hdev); 991 992 return err; 993 } 994 995 /* Ioctls that require bound socket */ 996 static int hci_sock_bound_ioctl(struct sock *sk, unsigned int cmd, 997 unsigned long arg) 998 { 999 struct hci_dev *hdev = hci_hdev_from_sock(sk); 1000 1001 if (IS_ERR(hdev)) 1002 return PTR_ERR(hdev); 1003 1004 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) 1005 return -EBUSY; 1006 1007 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 1008 return -EOPNOTSUPP; 1009 1010 if (hdev->dev_type != HCI_PRIMARY) 1011 return -EOPNOTSUPP; 1012 1013 switch (cmd) { 1014 case HCISETRAW: 1015 if (!capable(CAP_NET_ADMIN)) 1016 return -EPERM; 1017 return -EOPNOTSUPP; 1018 1019 case HCIGETCONNINFO: 1020 return hci_get_conn_info(hdev, (void __user *)arg); 1021 1022 case HCIGETAUTHINFO: 1023 return hci_get_auth_info(hdev, (void __user *)arg); 1024 1025 case HCIBLOCKADDR: 1026 if (!capable(CAP_NET_ADMIN)) 1027 return -EPERM; 1028 return hci_sock_reject_list_add(hdev, (void __user *)arg); 1029 1030 case HCIUNBLOCKADDR: 1031 if (!capable(CAP_NET_ADMIN)) 1032 return -EPERM; 1033 return hci_sock_reject_list_del(hdev, (void __user *)arg); 1034 } 1035 1036 return -ENOIOCTLCMD; 1037 } 1038 1039 static int hci_sock_ioctl(struct socket *sock, unsigned int cmd, 1040 unsigned long arg) 1041 { 1042 void __user *argp = (void __user *)arg; 1043 struct sock *sk = sock->sk; 1044 int err; 1045 1046 BT_DBG("cmd %x arg %lx", cmd, arg); 1047 1048 /* Make sure the cmd is valid before doing anything */ 1049 switch (cmd) { 1050 case HCIGETDEVLIST: 1051 case HCIGETDEVINFO: 1052 case HCIGETCONNLIST: 1053 case HCIDEVUP: 1054 case HCIDEVDOWN: 1055 case HCIDEVRESET: 1056 case HCIDEVRESTAT: 1057 case HCISETSCAN: 1058 case HCISETAUTH: 1059 case HCISETENCRYPT: 1060 case HCISETPTYPE: 1061 case HCISETLINKPOL: 1062 case HCISETLINKMODE: 1063 case HCISETACLMTU: 1064 case HCISETSCOMTU: 1065 case HCIINQUIRY: 1066 case HCISETRAW: 1067 case HCIGETCONNINFO: 1068 case HCIGETAUTHINFO: 1069 case HCIBLOCKADDR: 1070 case HCIUNBLOCKADDR: 1071 break; 1072 default: 1073 return -ENOIOCTLCMD; 1074 } 1075 1076 lock_sock(sk); 1077 1078 if (hci_pi(sk)->channel != HCI_CHANNEL_RAW) { 1079 err = -EBADFD; 1080 goto done; 1081 } 1082 1083 /* When calling an ioctl on an unbound raw socket, then ensure 1084 * that the monitor gets informed. Ensure that the resulting event 1085 * is only send once by checking if the cookie exists or not. The 1086 * socket cookie will be only ever generated once for the lifetime 1087 * of a given socket. 1088 */ 1089 if (hci_sock_gen_cookie(sk)) { 1090 struct sk_buff *skb; 1091 1092 /* Perform careful checks before setting the HCI_SOCK_TRUSTED 1093 * flag. Make sure that not only the current task but also 1094 * the socket opener has the required capability, since 1095 * privileged programs can be tricked into making ioctl calls 1096 * on HCI sockets, and the socket should not be marked as 1097 * trusted simply because the ioctl caller is privileged. 1098 */ 1099 if (sk_capable(sk, CAP_NET_ADMIN)) 1100 hci_sock_set_flag(sk, HCI_SOCK_TRUSTED); 1101 1102 /* Send event to monitor */ 1103 skb = create_monitor_ctrl_open(sk); 1104 if (skb) { 1105 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 1106 HCI_SOCK_TRUSTED, NULL); 1107 kfree_skb(skb); 1108 } 1109 } 1110 1111 release_sock(sk); 1112 1113 switch (cmd) { 1114 case HCIGETDEVLIST: 1115 return hci_get_dev_list(argp); 1116 1117 case HCIGETDEVINFO: 1118 return hci_get_dev_info(argp); 1119 1120 case HCIGETCONNLIST: 1121 return hci_get_conn_list(argp); 1122 1123 case HCIDEVUP: 1124 if (!capable(CAP_NET_ADMIN)) 1125 return -EPERM; 1126 return hci_dev_open(arg); 1127 1128 case HCIDEVDOWN: 1129 if (!capable(CAP_NET_ADMIN)) 1130 return -EPERM; 1131 return hci_dev_close(arg); 1132 1133 case HCIDEVRESET: 1134 if (!capable(CAP_NET_ADMIN)) 1135 return -EPERM; 1136 return hci_dev_reset(arg); 1137 1138 case HCIDEVRESTAT: 1139 if (!capable(CAP_NET_ADMIN)) 1140 return -EPERM; 1141 return hci_dev_reset_stat(arg); 1142 1143 case HCISETSCAN: 1144 case HCISETAUTH: 1145 case HCISETENCRYPT: 1146 case HCISETPTYPE: 1147 case HCISETLINKPOL: 1148 case HCISETLINKMODE: 1149 case HCISETACLMTU: 1150 case HCISETSCOMTU: 1151 if (!capable(CAP_NET_ADMIN)) 1152 return -EPERM; 1153 return hci_dev_cmd(cmd, argp); 1154 1155 case HCIINQUIRY: 1156 return hci_inquiry(argp); 1157 } 1158 1159 lock_sock(sk); 1160 1161 err = hci_sock_bound_ioctl(sk, cmd, arg); 1162 1163 done: 1164 release_sock(sk); 1165 return err; 1166 } 1167 1168 #ifdef CONFIG_COMPAT 1169 static int hci_sock_compat_ioctl(struct socket *sock, unsigned int cmd, 1170 unsigned long arg) 1171 { 1172 switch (cmd) { 1173 case HCIDEVUP: 1174 case HCIDEVDOWN: 1175 case HCIDEVRESET: 1176 case HCIDEVRESTAT: 1177 return hci_sock_ioctl(sock, cmd, arg); 1178 } 1179 1180 return hci_sock_ioctl(sock, cmd, (unsigned long)compat_ptr(arg)); 1181 } 1182 #endif 1183 1184 static int hci_sock_bind(struct socket *sock, struct sockaddr *addr, 1185 int addr_len) 1186 { 1187 struct sockaddr_hci haddr; 1188 struct sock *sk = sock->sk; 1189 struct hci_dev *hdev = NULL; 1190 struct sk_buff *skb; 1191 int len, err = 0; 1192 1193 BT_DBG("sock %p sk %p", sock, sk); 1194 1195 if (!addr) 1196 return -EINVAL; 1197 1198 memset(&haddr, 0, sizeof(haddr)); 1199 len = min_t(unsigned int, sizeof(haddr), addr_len); 1200 memcpy(&haddr, addr, len); 1201 1202 if (haddr.hci_family != AF_BLUETOOTH) 1203 return -EINVAL; 1204 1205 lock_sock(sk); 1206 1207 /* Allow detaching from dead device and attaching to alive device, if 1208 * the caller wants to re-bind (instead of close) this socket in 1209 * response to hci_sock_dev_event(HCI_DEV_UNREG) notification. 1210 */ 1211 hdev = hci_pi(sk)->hdev; 1212 if (hdev && hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 1213 hci_pi(sk)->hdev = NULL; 1214 sk->sk_state = BT_OPEN; 1215 hci_dev_put(hdev); 1216 } 1217 hdev = NULL; 1218 1219 if (sk->sk_state == BT_BOUND) { 1220 err = -EALREADY; 1221 goto done; 1222 } 1223 1224 switch (haddr.hci_channel) { 1225 case HCI_CHANNEL_RAW: 1226 if (hci_pi(sk)->hdev) { 1227 err = -EALREADY; 1228 goto done; 1229 } 1230 1231 if (haddr.hci_dev != HCI_DEV_NONE) { 1232 hdev = hci_dev_get(haddr.hci_dev); 1233 if (!hdev) { 1234 err = -ENODEV; 1235 goto done; 1236 } 1237 1238 atomic_inc(&hdev->promisc); 1239 } 1240 1241 hci_pi(sk)->channel = haddr.hci_channel; 1242 1243 if (!hci_sock_gen_cookie(sk)) { 1244 /* In the case when a cookie has already been assigned, 1245 * then there has been already an ioctl issued against 1246 * an unbound socket and with that triggered an open 1247 * notification. Send a close notification first to 1248 * allow the state transition to bounded. 1249 */ 1250 skb = create_monitor_ctrl_close(sk); 1251 if (skb) { 1252 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 1253 HCI_SOCK_TRUSTED, NULL); 1254 kfree_skb(skb); 1255 } 1256 } 1257 1258 if (capable(CAP_NET_ADMIN)) 1259 hci_sock_set_flag(sk, HCI_SOCK_TRUSTED); 1260 1261 hci_pi(sk)->hdev = hdev; 1262 1263 /* Send event to monitor */ 1264 skb = create_monitor_ctrl_open(sk); 1265 if (skb) { 1266 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 1267 HCI_SOCK_TRUSTED, NULL); 1268 kfree_skb(skb); 1269 } 1270 break; 1271 1272 case HCI_CHANNEL_USER: 1273 if (hci_pi(sk)->hdev) { 1274 err = -EALREADY; 1275 goto done; 1276 } 1277 1278 if (haddr.hci_dev == HCI_DEV_NONE) { 1279 err = -EINVAL; 1280 goto done; 1281 } 1282 1283 if (!capable(CAP_NET_ADMIN)) { 1284 err = -EPERM; 1285 goto done; 1286 } 1287 1288 hdev = hci_dev_get(haddr.hci_dev); 1289 if (!hdev) { 1290 err = -ENODEV; 1291 goto done; 1292 } 1293 1294 if (test_bit(HCI_INIT, &hdev->flags) || 1295 hci_dev_test_flag(hdev, HCI_SETUP) || 1296 hci_dev_test_flag(hdev, HCI_CONFIG) || 1297 (!hci_dev_test_flag(hdev, HCI_AUTO_OFF) && 1298 test_bit(HCI_UP, &hdev->flags))) { 1299 err = -EBUSY; 1300 hci_dev_put(hdev); 1301 goto done; 1302 } 1303 1304 if (hci_dev_test_and_set_flag(hdev, HCI_USER_CHANNEL)) { 1305 err = -EUSERS; 1306 hci_dev_put(hdev); 1307 goto done; 1308 } 1309 1310 mgmt_index_removed(hdev); 1311 1312 err = hci_dev_open(hdev->id); 1313 if (err) { 1314 if (err == -EALREADY) { 1315 /* In case the transport is already up and 1316 * running, clear the error here. 1317 * 1318 * This can happen when opening a user 1319 * channel and HCI_AUTO_OFF grace period 1320 * is still active. 1321 */ 1322 err = 0; 1323 } else { 1324 hci_dev_clear_flag(hdev, HCI_USER_CHANNEL); 1325 mgmt_index_added(hdev); 1326 hci_dev_put(hdev); 1327 goto done; 1328 } 1329 } 1330 1331 hci_pi(sk)->channel = haddr.hci_channel; 1332 1333 if (!hci_sock_gen_cookie(sk)) { 1334 /* In the case when a cookie has already been assigned, 1335 * this socket will transition from a raw socket into 1336 * a user channel socket. For a clean transition, send 1337 * the close notification first. 1338 */ 1339 skb = create_monitor_ctrl_close(sk); 1340 if (skb) { 1341 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 1342 HCI_SOCK_TRUSTED, NULL); 1343 kfree_skb(skb); 1344 } 1345 } 1346 1347 /* The user channel is restricted to CAP_NET_ADMIN 1348 * capabilities and with that implicitly trusted. 1349 */ 1350 hci_sock_set_flag(sk, HCI_SOCK_TRUSTED); 1351 1352 hci_pi(sk)->hdev = hdev; 1353 1354 /* Send event to monitor */ 1355 skb = create_monitor_ctrl_open(sk); 1356 if (skb) { 1357 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 1358 HCI_SOCK_TRUSTED, NULL); 1359 kfree_skb(skb); 1360 } 1361 1362 atomic_inc(&hdev->promisc); 1363 break; 1364 1365 case HCI_CHANNEL_MONITOR: 1366 if (haddr.hci_dev != HCI_DEV_NONE) { 1367 err = -EINVAL; 1368 goto done; 1369 } 1370 1371 if (!capable(CAP_NET_RAW)) { 1372 err = -EPERM; 1373 goto done; 1374 } 1375 1376 hci_pi(sk)->channel = haddr.hci_channel; 1377 1378 /* The monitor interface is restricted to CAP_NET_RAW 1379 * capabilities and with that implicitly trusted. 1380 */ 1381 hci_sock_set_flag(sk, HCI_SOCK_TRUSTED); 1382 1383 send_monitor_note(sk, "Linux version %s (%s)", 1384 init_utsname()->release, 1385 init_utsname()->machine); 1386 send_monitor_note(sk, "Bluetooth subsystem version %u.%u", 1387 BT_SUBSYS_VERSION, BT_SUBSYS_REVISION); 1388 send_monitor_replay(sk); 1389 send_monitor_control_replay(sk); 1390 1391 atomic_inc(&monitor_promisc); 1392 break; 1393 1394 case HCI_CHANNEL_LOGGING: 1395 if (haddr.hci_dev != HCI_DEV_NONE) { 1396 err = -EINVAL; 1397 goto done; 1398 } 1399 1400 if (!capable(CAP_NET_ADMIN)) { 1401 err = -EPERM; 1402 goto done; 1403 } 1404 1405 hci_pi(sk)->channel = haddr.hci_channel; 1406 break; 1407 1408 default: 1409 if (!hci_mgmt_chan_find(haddr.hci_channel)) { 1410 err = -EINVAL; 1411 goto done; 1412 } 1413 1414 if (haddr.hci_dev != HCI_DEV_NONE) { 1415 err = -EINVAL; 1416 goto done; 1417 } 1418 1419 /* Users with CAP_NET_ADMIN capabilities are allowed 1420 * access to all management commands and events. For 1421 * untrusted users the interface is restricted and 1422 * also only untrusted events are sent. 1423 */ 1424 if (capable(CAP_NET_ADMIN)) 1425 hci_sock_set_flag(sk, HCI_SOCK_TRUSTED); 1426 1427 hci_pi(sk)->channel = haddr.hci_channel; 1428 1429 /* At the moment the index and unconfigured index events 1430 * are enabled unconditionally. Setting them on each 1431 * socket when binding keeps this functionality. They 1432 * however might be cleared later and then sending of these 1433 * events will be disabled, but that is then intentional. 1434 * 1435 * This also enables generic events that are safe to be 1436 * received by untrusted users. Example for such events 1437 * are changes to settings, class of device, name etc. 1438 */ 1439 if (hci_pi(sk)->channel == HCI_CHANNEL_CONTROL) { 1440 if (!hci_sock_gen_cookie(sk)) { 1441 /* In the case when a cookie has already been 1442 * assigned, this socket will transition from 1443 * a raw socket into a control socket. To 1444 * allow for a clean transition, send the 1445 * close notification first. 1446 */ 1447 skb = create_monitor_ctrl_close(sk); 1448 if (skb) { 1449 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 1450 HCI_SOCK_TRUSTED, NULL); 1451 kfree_skb(skb); 1452 } 1453 } 1454 1455 /* Send event to monitor */ 1456 skb = create_monitor_ctrl_open(sk); 1457 if (skb) { 1458 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 1459 HCI_SOCK_TRUSTED, NULL); 1460 kfree_skb(skb); 1461 } 1462 1463 hci_sock_set_flag(sk, HCI_MGMT_INDEX_EVENTS); 1464 hci_sock_set_flag(sk, HCI_MGMT_UNCONF_INDEX_EVENTS); 1465 hci_sock_set_flag(sk, HCI_MGMT_OPTION_EVENTS); 1466 hci_sock_set_flag(sk, HCI_MGMT_SETTING_EVENTS); 1467 hci_sock_set_flag(sk, HCI_MGMT_DEV_CLASS_EVENTS); 1468 hci_sock_set_flag(sk, HCI_MGMT_LOCAL_NAME_EVENTS); 1469 } 1470 break; 1471 } 1472 1473 /* Default MTU to HCI_MAX_FRAME_SIZE if not set */ 1474 if (!hci_pi(sk)->mtu) 1475 hci_pi(sk)->mtu = HCI_MAX_FRAME_SIZE; 1476 1477 sk->sk_state = BT_BOUND; 1478 1479 done: 1480 release_sock(sk); 1481 return err; 1482 } 1483 1484 static int hci_sock_getname(struct socket *sock, struct sockaddr *addr, 1485 int peer) 1486 { 1487 struct sockaddr_hci *haddr = (struct sockaddr_hci *)addr; 1488 struct sock *sk = sock->sk; 1489 struct hci_dev *hdev; 1490 int err = 0; 1491 1492 BT_DBG("sock %p sk %p", sock, sk); 1493 1494 if (peer) 1495 return -EOPNOTSUPP; 1496 1497 lock_sock(sk); 1498 1499 hdev = hci_hdev_from_sock(sk); 1500 if (IS_ERR(hdev)) { 1501 err = PTR_ERR(hdev); 1502 goto done; 1503 } 1504 1505 haddr->hci_family = AF_BLUETOOTH; 1506 haddr->hci_dev = hdev->id; 1507 haddr->hci_channel= hci_pi(sk)->channel; 1508 err = sizeof(*haddr); 1509 1510 done: 1511 release_sock(sk); 1512 return err; 1513 } 1514 1515 static void hci_sock_cmsg(struct sock *sk, struct msghdr *msg, 1516 struct sk_buff *skb) 1517 { 1518 __u8 mask = hci_pi(sk)->cmsg_mask; 1519 1520 if (mask & HCI_CMSG_DIR) { 1521 int incoming = bt_cb(skb)->incoming; 1522 put_cmsg(msg, SOL_HCI, HCI_CMSG_DIR, sizeof(incoming), 1523 &incoming); 1524 } 1525 1526 if (mask & HCI_CMSG_TSTAMP) { 1527 #ifdef CONFIG_COMPAT 1528 struct old_timeval32 ctv; 1529 #endif 1530 struct __kernel_old_timeval tv; 1531 void *data; 1532 int len; 1533 1534 skb_get_timestamp(skb, &tv); 1535 1536 data = &tv; 1537 len = sizeof(tv); 1538 #ifdef CONFIG_COMPAT 1539 if (!COMPAT_USE_64BIT_TIME && 1540 (msg->msg_flags & MSG_CMSG_COMPAT)) { 1541 ctv.tv_sec = tv.tv_sec; 1542 ctv.tv_usec = tv.tv_usec; 1543 data = &ctv; 1544 len = sizeof(ctv); 1545 } 1546 #endif 1547 1548 put_cmsg(msg, SOL_HCI, HCI_CMSG_TSTAMP, len, data); 1549 } 1550 } 1551 1552 static int hci_sock_recvmsg(struct socket *sock, struct msghdr *msg, 1553 size_t len, int flags) 1554 { 1555 struct scm_cookie scm; 1556 struct sock *sk = sock->sk; 1557 struct sk_buff *skb; 1558 int copied, err; 1559 unsigned int skblen; 1560 1561 BT_DBG("sock %p, sk %p", sock, sk); 1562 1563 if (flags & MSG_OOB) 1564 return -EOPNOTSUPP; 1565 1566 if (hci_pi(sk)->channel == HCI_CHANNEL_LOGGING) 1567 return -EOPNOTSUPP; 1568 1569 if (sk->sk_state == BT_CLOSED) 1570 return 0; 1571 1572 skb = skb_recv_datagram(sk, flags, &err); 1573 if (!skb) 1574 return err; 1575 1576 skblen = skb->len; 1577 copied = skb->len; 1578 if (len < copied) { 1579 msg->msg_flags |= MSG_TRUNC; 1580 copied = len; 1581 } 1582 1583 skb_reset_transport_header(skb); 1584 err = skb_copy_datagram_msg(skb, 0, msg, copied); 1585 1586 switch (hci_pi(sk)->channel) { 1587 case HCI_CHANNEL_RAW: 1588 hci_sock_cmsg(sk, msg, skb); 1589 break; 1590 case HCI_CHANNEL_USER: 1591 case HCI_CHANNEL_MONITOR: 1592 sock_recv_timestamp(msg, sk, skb); 1593 break; 1594 default: 1595 if (hci_mgmt_chan_find(hci_pi(sk)->channel)) 1596 sock_recv_timestamp(msg, sk, skb); 1597 break; 1598 } 1599 1600 memset(&scm, 0, sizeof(scm)); 1601 scm.creds = bt_cb(skb)->creds; 1602 1603 skb_free_datagram(sk, skb); 1604 1605 if (flags & MSG_TRUNC) 1606 copied = skblen; 1607 1608 scm_recv(sock, msg, &scm, flags); 1609 1610 return err ? : copied; 1611 } 1612 1613 static int hci_mgmt_cmd(struct hci_mgmt_chan *chan, struct sock *sk, 1614 struct sk_buff *skb) 1615 { 1616 u8 *cp; 1617 struct mgmt_hdr *hdr; 1618 u16 opcode, index, len; 1619 struct hci_dev *hdev = NULL; 1620 const struct hci_mgmt_handler *handler; 1621 bool var_len, no_hdev; 1622 int err; 1623 1624 BT_DBG("got %d bytes", skb->len); 1625 1626 if (skb->len < sizeof(*hdr)) 1627 return -EINVAL; 1628 1629 hdr = (void *)skb->data; 1630 opcode = __le16_to_cpu(hdr->opcode); 1631 index = __le16_to_cpu(hdr->index); 1632 len = __le16_to_cpu(hdr->len); 1633 1634 if (len != skb->len - sizeof(*hdr)) { 1635 err = -EINVAL; 1636 goto done; 1637 } 1638 1639 if (chan->channel == HCI_CHANNEL_CONTROL) { 1640 struct sk_buff *cmd; 1641 1642 /* Send event to monitor */ 1643 cmd = create_monitor_ctrl_command(sk, index, opcode, len, 1644 skb->data + sizeof(*hdr)); 1645 if (cmd) { 1646 hci_send_to_channel(HCI_CHANNEL_MONITOR, cmd, 1647 HCI_SOCK_TRUSTED, NULL); 1648 kfree_skb(cmd); 1649 } 1650 } 1651 1652 if (opcode >= chan->handler_count || 1653 chan->handlers[opcode].func == NULL) { 1654 BT_DBG("Unknown op %u", opcode); 1655 err = mgmt_cmd_status(sk, index, opcode, 1656 MGMT_STATUS_UNKNOWN_COMMAND); 1657 goto done; 1658 } 1659 1660 handler = &chan->handlers[opcode]; 1661 1662 if (!hci_sock_test_flag(sk, HCI_SOCK_TRUSTED) && 1663 !(handler->flags & HCI_MGMT_UNTRUSTED)) { 1664 err = mgmt_cmd_status(sk, index, opcode, 1665 MGMT_STATUS_PERMISSION_DENIED); 1666 goto done; 1667 } 1668 1669 if (index != MGMT_INDEX_NONE) { 1670 hdev = hci_dev_get(index); 1671 if (!hdev) { 1672 err = mgmt_cmd_status(sk, index, opcode, 1673 MGMT_STATUS_INVALID_INDEX); 1674 goto done; 1675 } 1676 1677 if (hci_dev_test_flag(hdev, HCI_SETUP) || 1678 hci_dev_test_flag(hdev, HCI_CONFIG) || 1679 hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1680 err = mgmt_cmd_status(sk, index, opcode, 1681 MGMT_STATUS_INVALID_INDEX); 1682 goto done; 1683 } 1684 1685 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 1686 !(handler->flags & HCI_MGMT_UNCONFIGURED)) { 1687 err = mgmt_cmd_status(sk, index, opcode, 1688 MGMT_STATUS_INVALID_INDEX); 1689 goto done; 1690 } 1691 } 1692 1693 if (!(handler->flags & HCI_MGMT_HDEV_OPTIONAL)) { 1694 no_hdev = (handler->flags & HCI_MGMT_NO_HDEV); 1695 if (no_hdev != !hdev) { 1696 err = mgmt_cmd_status(sk, index, opcode, 1697 MGMT_STATUS_INVALID_INDEX); 1698 goto done; 1699 } 1700 } 1701 1702 var_len = (handler->flags & HCI_MGMT_VAR_LEN); 1703 if ((var_len && len < handler->data_len) || 1704 (!var_len && len != handler->data_len)) { 1705 err = mgmt_cmd_status(sk, index, opcode, 1706 MGMT_STATUS_INVALID_PARAMS); 1707 goto done; 1708 } 1709 1710 if (hdev && chan->hdev_init) 1711 chan->hdev_init(sk, hdev); 1712 1713 cp = skb->data + sizeof(*hdr); 1714 1715 err = handler->func(sk, hdev, cp, len); 1716 if (err < 0) 1717 goto done; 1718 1719 err = skb->len; 1720 1721 done: 1722 if (hdev) 1723 hci_dev_put(hdev); 1724 1725 return err; 1726 } 1727 1728 static int hci_logging_frame(struct sock *sk, struct sk_buff *skb, 1729 unsigned int flags) 1730 { 1731 struct hci_mon_hdr *hdr; 1732 struct hci_dev *hdev; 1733 u16 index; 1734 int err; 1735 1736 /* The logging frame consists at minimum of the standard header, 1737 * the priority byte, the ident length byte and at least one string 1738 * terminator NUL byte. Anything shorter are invalid packets. 1739 */ 1740 if (skb->len < sizeof(*hdr) + 3) 1741 return -EINVAL; 1742 1743 hdr = (void *)skb->data; 1744 1745 if (__le16_to_cpu(hdr->len) != skb->len - sizeof(*hdr)) 1746 return -EINVAL; 1747 1748 if (__le16_to_cpu(hdr->opcode) == 0x0000) { 1749 __u8 priority = skb->data[sizeof(*hdr)]; 1750 __u8 ident_len = skb->data[sizeof(*hdr) + 1]; 1751 1752 /* Only the priorities 0-7 are valid and with that any other 1753 * value results in an invalid packet. 1754 * 1755 * The priority byte is followed by an ident length byte and 1756 * the NUL terminated ident string. Check that the ident 1757 * length is not overflowing the packet and also that the 1758 * ident string itself is NUL terminated. In case the ident 1759 * length is zero, the length value actually doubles as NUL 1760 * terminator identifier. 1761 * 1762 * The message follows the ident string (if present) and 1763 * must be NUL terminated. Otherwise it is not a valid packet. 1764 */ 1765 if (priority > 7 || skb->data[skb->len - 1] != 0x00 || 1766 ident_len > skb->len - sizeof(*hdr) - 3 || 1767 skb->data[sizeof(*hdr) + ident_len + 1] != 0x00) 1768 return -EINVAL; 1769 } else { 1770 return -EINVAL; 1771 } 1772 1773 index = __le16_to_cpu(hdr->index); 1774 1775 if (index != MGMT_INDEX_NONE) { 1776 hdev = hci_dev_get(index); 1777 if (!hdev) 1778 return -ENODEV; 1779 } else { 1780 hdev = NULL; 1781 } 1782 1783 hdr->opcode = cpu_to_le16(HCI_MON_USER_LOGGING); 1784 1785 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, HCI_SOCK_TRUSTED, NULL); 1786 err = skb->len; 1787 1788 if (hdev) 1789 hci_dev_put(hdev); 1790 1791 return err; 1792 } 1793 1794 static int hci_sock_sendmsg(struct socket *sock, struct msghdr *msg, 1795 size_t len) 1796 { 1797 struct sock *sk = sock->sk; 1798 struct hci_mgmt_chan *chan; 1799 struct hci_dev *hdev; 1800 struct sk_buff *skb; 1801 int err; 1802 const unsigned int flags = msg->msg_flags; 1803 1804 BT_DBG("sock %p sk %p", sock, sk); 1805 1806 if (flags & MSG_OOB) 1807 return -EOPNOTSUPP; 1808 1809 if (flags & ~(MSG_DONTWAIT | MSG_NOSIGNAL | MSG_ERRQUEUE | MSG_CMSG_COMPAT)) 1810 return -EINVAL; 1811 1812 if (len < 4 || len > hci_pi(sk)->mtu) 1813 return -EINVAL; 1814 1815 skb = bt_skb_sendmsg(sk, msg, len, len, 0, 0); 1816 if (IS_ERR(skb)) 1817 return PTR_ERR(skb); 1818 1819 lock_sock(sk); 1820 1821 switch (hci_pi(sk)->channel) { 1822 case HCI_CHANNEL_RAW: 1823 case HCI_CHANNEL_USER: 1824 break; 1825 case HCI_CHANNEL_MONITOR: 1826 err = -EOPNOTSUPP; 1827 goto drop; 1828 case HCI_CHANNEL_LOGGING: 1829 err = hci_logging_frame(sk, skb, flags); 1830 goto drop; 1831 default: 1832 mutex_lock(&mgmt_chan_list_lock); 1833 chan = __hci_mgmt_chan_find(hci_pi(sk)->channel); 1834 if (chan) 1835 err = hci_mgmt_cmd(chan, sk, skb); 1836 else 1837 err = -EINVAL; 1838 1839 mutex_unlock(&mgmt_chan_list_lock); 1840 goto drop; 1841 } 1842 1843 hdev = hci_hdev_from_sock(sk); 1844 if (IS_ERR(hdev)) { 1845 err = PTR_ERR(hdev); 1846 goto drop; 1847 } 1848 1849 if (!test_bit(HCI_UP, &hdev->flags)) { 1850 err = -ENETDOWN; 1851 goto drop; 1852 } 1853 1854 hci_skb_pkt_type(skb) = skb->data[0]; 1855 skb_pull(skb, 1); 1856 1857 if (hci_pi(sk)->channel == HCI_CHANNEL_USER) { 1858 /* No permission check is needed for user channel 1859 * since that gets enforced when binding the socket. 1860 * 1861 * However check that the packet type is valid. 1862 */ 1863 if (hci_skb_pkt_type(skb) != HCI_COMMAND_PKT && 1864 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT && 1865 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT && 1866 hci_skb_pkt_type(skb) != HCI_ISODATA_PKT) { 1867 err = -EINVAL; 1868 goto drop; 1869 } 1870 1871 skb_queue_tail(&hdev->raw_q, skb); 1872 queue_work(hdev->workqueue, &hdev->tx_work); 1873 } else if (hci_skb_pkt_type(skb) == HCI_COMMAND_PKT) { 1874 u16 opcode = get_unaligned_le16(skb->data); 1875 u16 ogf = hci_opcode_ogf(opcode); 1876 u16 ocf = hci_opcode_ocf(opcode); 1877 1878 if (((ogf > HCI_SFLT_MAX_OGF) || 1879 !hci_test_bit(ocf & HCI_FLT_OCF_BITS, 1880 &hci_sec_filter.ocf_mask[ogf])) && 1881 !capable(CAP_NET_RAW)) { 1882 err = -EPERM; 1883 goto drop; 1884 } 1885 1886 /* Since the opcode has already been extracted here, store 1887 * a copy of the value for later use by the drivers. 1888 */ 1889 hci_skb_opcode(skb) = opcode; 1890 1891 if (ogf == 0x3f) { 1892 skb_queue_tail(&hdev->raw_q, skb); 1893 queue_work(hdev->workqueue, &hdev->tx_work); 1894 } else { 1895 /* Stand-alone HCI commands must be flagged as 1896 * single-command requests. 1897 */ 1898 bt_cb(skb)->hci.req_flags |= HCI_REQ_START; 1899 1900 skb_queue_tail(&hdev->cmd_q, skb); 1901 queue_work(hdev->workqueue, &hdev->cmd_work); 1902 } 1903 } else { 1904 if (!capable(CAP_NET_RAW)) { 1905 err = -EPERM; 1906 goto drop; 1907 } 1908 1909 if (hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT && 1910 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT && 1911 hci_skb_pkt_type(skb) != HCI_ISODATA_PKT) { 1912 err = -EINVAL; 1913 goto drop; 1914 } 1915 1916 skb_queue_tail(&hdev->raw_q, skb); 1917 queue_work(hdev->workqueue, &hdev->tx_work); 1918 } 1919 1920 err = len; 1921 1922 done: 1923 release_sock(sk); 1924 return err; 1925 1926 drop: 1927 kfree_skb(skb); 1928 goto done; 1929 } 1930 1931 static int hci_sock_setsockopt_old(struct socket *sock, int level, int optname, 1932 sockptr_t optval, unsigned int len) 1933 { 1934 struct hci_ufilter uf = { .opcode = 0 }; 1935 struct sock *sk = sock->sk; 1936 int err = 0, opt = 0; 1937 1938 BT_DBG("sk %p, opt %d", sk, optname); 1939 1940 lock_sock(sk); 1941 1942 if (hci_pi(sk)->channel != HCI_CHANNEL_RAW) { 1943 err = -EBADFD; 1944 goto done; 1945 } 1946 1947 switch (optname) { 1948 case HCI_DATA_DIR: 1949 if (copy_from_sockptr(&opt, optval, sizeof(opt))) { 1950 err = -EFAULT; 1951 break; 1952 } 1953 1954 if (opt) 1955 hci_pi(sk)->cmsg_mask |= HCI_CMSG_DIR; 1956 else 1957 hci_pi(sk)->cmsg_mask &= ~HCI_CMSG_DIR; 1958 break; 1959 1960 case HCI_TIME_STAMP: 1961 if (copy_from_sockptr(&opt, optval, sizeof(opt))) { 1962 err = -EFAULT; 1963 break; 1964 } 1965 1966 if (opt) 1967 hci_pi(sk)->cmsg_mask |= HCI_CMSG_TSTAMP; 1968 else 1969 hci_pi(sk)->cmsg_mask &= ~HCI_CMSG_TSTAMP; 1970 break; 1971 1972 case HCI_FILTER: 1973 { 1974 struct hci_filter *f = &hci_pi(sk)->filter; 1975 1976 uf.type_mask = f->type_mask; 1977 uf.opcode = f->opcode; 1978 uf.event_mask[0] = *((u32 *) f->event_mask + 0); 1979 uf.event_mask[1] = *((u32 *) f->event_mask + 1); 1980 } 1981 1982 len = min_t(unsigned int, len, sizeof(uf)); 1983 if (copy_from_sockptr(&uf, optval, len)) { 1984 err = -EFAULT; 1985 break; 1986 } 1987 1988 if (!capable(CAP_NET_RAW)) { 1989 uf.type_mask &= hci_sec_filter.type_mask; 1990 uf.event_mask[0] &= *((u32 *) hci_sec_filter.event_mask + 0); 1991 uf.event_mask[1] &= *((u32 *) hci_sec_filter.event_mask + 1); 1992 } 1993 1994 { 1995 struct hci_filter *f = &hci_pi(sk)->filter; 1996 1997 f->type_mask = uf.type_mask; 1998 f->opcode = uf.opcode; 1999 *((u32 *) f->event_mask + 0) = uf.event_mask[0]; 2000 *((u32 *) f->event_mask + 1) = uf.event_mask[1]; 2001 } 2002 break; 2003 2004 default: 2005 err = -ENOPROTOOPT; 2006 break; 2007 } 2008 2009 done: 2010 release_sock(sk); 2011 return err; 2012 } 2013 2014 static int hci_sock_setsockopt(struct socket *sock, int level, int optname, 2015 sockptr_t optval, unsigned int len) 2016 { 2017 struct sock *sk = sock->sk; 2018 int err = 0; 2019 u16 opt; 2020 2021 BT_DBG("sk %p, opt %d", sk, optname); 2022 2023 if (level == SOL_HCI) 2024 return hci_sock_setsockopt_old(sock, level, optname, optval, 2025 len); 2026 2027 if (level != SOL_BLUETOOTH) 2028 return -ENOPROTOOPT; 2029 2030 lock_sock(sk); 2031 2032 switch (optname) { 2033 case BT_SNDMTU: 2034 case BT_RCVMTU: 2035 switch (hci_pi(sk)->channel) { 2036 /* Don't allow changing MTU for channels that are meant for HCI 2037 * traffic only. 2038 */ 2039 case HCI_CHANNEL_RAW: 2040 case HCI_CHANNEL_USER: 2041 err = -ENOPROTOOPT; 2042 goto done; 2043 } 2044 2045 if (copy_from_sockptr(&opt, optval, sizeof(opt))) { 2046 err = -EFAULT; 2047 break; 2048 } 2049 2050 hci_pi(sk)->mtu = opt; 2051 break; 2052 2053 default: 2054 err = -ENOPROTOOPT; 2055 break; 2056 } 2057 2058 done: 2059 release_sock(sk); 2060 return err; 2061 } 2062 2063 static int hci_sock_getsockopt_old(struct socket *sock, int level, int optname, 2064 char __user *optval, int __user *optlen) 2065 { 2066 struct hci_ufilter uf; 2067 struct sock *sk = sock->sk; 2068 int len, opt, err = 0; 2069 2070 BT_DBG("sk %p, opt %d", sk, optname); 2071 2072 if (get_user(len, optlen)) 2073 return -EFAULT; 2074 2075 lock_sock(sk); 2076 2077 if (hci_pi(sk)->channel != HCI_CHANNEL_RAW) { 2078 err = -EBADFD; 2079 goto done; 2080 } 2081 2082 switch (optname) { 2083 case HCI_DATA_DIR: 2084 if (hci_pi(sk)->cmsg_mask & HCI_CMSG_DIR) 2085 opt = 1; 2086 else 2087 opt = 0; 2088 2089 if (put_user(opt, optval)) 2090 err = -EFAULT; 2091 break; 2092 2093 case HCI_TIME_STAMP: 2094 if (hci_pi(sk)->cmsg_mask & HCI_CMSG_TSTAMP) 2095 opt = 1; 2096 else 2097 opt = 0; 2098 2099 if (put_user(opt, optval)) 2100 err = -EFAULT; 2101 break; 2102 2103 case HCI_FILTER: 2104 { 2105 struct hci_filter *f = &hci_pi(sk)->filter; 2106 2107 memset(&uf, 0, sizeof(uf)); 2108 uf.type_mask = f->type_mask; 2109 uf.opcode = f->opcode; 2110 uf.event_mask[0] = *((u32 *) f->event_mask + 0); 2111 uf.event_mask[1] = *((u32 *) f->event_mask + 1); 2112 } 2113 2114 len = min_t(unsigned int, len, sizeof(uf)); 2115 if (copy_to_user(optval, &uf, len)) 2116 err = -EFAULT; 2117 break; 2118 2119 default: 2120 err = -ENOPROTOOPT; 2121 break; 2122 } 2123 2124 done: 2125 release_sock(sk); 2126 return err; 2127 } 2128 2129 static int hci_sock_getsockopt(struct socket *sock, int level, int optname, 2130 char __user *optval, int __user *optlen) 2131 { 2132 struct sock *sk = sock->sk; 2133 int err = 0; 2134 2135 BT_DBG("sk %p, opt %d", sk, optname); 2136 2137 if (level == SOL_HCI) 2138 return hci_sock_getsockopt_old(sock, level, optname, optval, 2139 optlen); 2140 2141 if (level != SOL_BLUETOOTH) 2142 return -ENOPROTOOPT; 2143 2144 lock_sock(sk); 2145 2146 switch (optname) { 2147 case BT_SNDMTU: 2148 case BT_RCVMTU: 2149 if (put_user(hci_pi(sk)->mtu, (u16 __user *)optval)) 2150 err = -EFAULT; 2151 break; 2152 2153 default: 2154 err = -ENOPROTOOPT; 2155 break; 2156 } 2157 2158 release_sock(sk); 2159 return err; 2160 } 2161 2162 static void hci_sock_destruct(struct sock *sk) 2163 { 2164 mgmt_cleanup(sk); 2165 skb_queue_purge(&sk->sk_receive_queue); 2166 skb_queue_purge(&sk->sk_write_queue); 2167 } 2168 2169 static const struct proto_ops hci_sock_ops = { 2170 .family = PF_BLUETOOTH, 2171 .owner = THIS_MODULE, 2172 .release = hci_sock_release, 2173 .bind = hci_sock_bind, 2174 .getname = hci_sock_getname, 2175 .sendmsg = hci_sock_sendmsg, 2176 .recvmsg = hci_sock_recvmsg, 2177 .ioctl = hci_sock_ioctl, 2178 #ifdef CONFIG_COMPAT 2179 .compat_ioctl = hci_sock_compat_ioctl, 2180 #endif 2181 .poll = datagram_poll, 2182 .listen = sock_no_listen, 2183 .shutdown = sock_no_shutdown, 2184 .setsockopt = hci_sock_setsockopt, 2185 .getsockopt = hci_sock_getsockopt, 2186 .connect = sock_no_connect, 2187 .socketpair = sock_no_socketpair, 2188 .accept = sock_no_accept, 2189 .mmap = sock_no_mmap 2190 }; 2191 2192 static struct proto hci_sk_proto = { 2193 .name = "HCI", 2194 .owner = THIS_MODULE, 2195 .obj_size = sizeof(struct hci_pinfo) 2196 }; 2197 2198 static int hci_sock_create(struct net *net, struct socket *sock, int protocol, 2199 int kern) 2200 { 2201 struct sock *sk; 2202 2203 BT_DBG("sock %p", sock); 2204 2205 if (sock->type != SOCK_RAW) 2206 return -ESOCKTNOSUPPORT; 2207 2208 sock->ops = &hci_sock_ops; 2209 2210 sk = bt_sock_alloc(net, sock, &hci_sk_proto, protocol, GFP_ATOMIC, 2211 kern); 2212 if (!sk) 2213 return -ENOMEM; 2214 2215 sock->state = SS_UNCONNECTED; 2216 sk->sk_destruct = hci_sock_destruct; 2217 2218 bt_sock_link(&hci_sk_list, sk); 2219 return 0; 2220 } 2221 2222 static const struct net_proto_family hci_sock_family_ops = { 2223 .family = PF_BLUETOOTH, 2224 .owner = THIS_MODULE, 2225 .create = hci_sock_create, 2226 }; 2227 2228 int __init hci_sock_init(void) 2229 { 2230 int err; 2231 2232 BUILD_BUG_ON(sizeof(struct sockaddr_hci) > sizeof(struct sockaddr)); 2233 2234 err = proto_register(&hci_sk_proto, 0); 2235 if (err < 0) 2236 return err; 2237 2238 err = bt_sock_register(BTPROTO_HCI, &hci_sock_family_ops); 2239 if (err < 0) { 2240 BT_ERR("HCI socket registration failed"); 2241 goto error; 2242 } 2243 2244 err = bt_procfs_init(&init_net, "hci", &hci_sk_list, NULL); 2245 if (err < 0) { 2246 BT_ERR("Failed to create HCI proc file"); 2247 bt_sock_unregister(BTPROTO_HCI); 2248 goto error; 2249 } 2250 2251 BT_INFO("HCI socket layer initialized"); 2252 2253 return 0; 2254 2255 error: 2256 proto_unregister(&hci_sk_proto); 2257 return err; 2258 } 2259 2260 void hci_sock_cleanup(void) 2261 { 2262 bt_procfs_cleanup(&init_net, "hci"); 2263 bt_sock_unregister(BTPROTO_HCI); 2264 proto_unregister(&hci_sk_proto); 2265 } 2266