1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (C) 2000-2001 Qualcomm Incorporated 4 5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License version 2 as 9 published by the Free Software Foundation; 10 11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 22 SOFTWARE IS DISCLAIMED. 23 */ 24 25 /* Bluetooth HCI sockets. */ 26 27 #include <linux/export.h> 28 #include <linux/utsname.h> 29 #include <linux/sched.h> 30 #include <asm/unaligned.h> 31 32 #include <net/bluetooth/bluetooth.h> 33 #include <net/bluetooth/hci_core.h> 34 #include <net/bluetooth/hci_mon.h> 35 #include <net/bluetooth/mgmt.h> 36 37 #include "mgmt_util.h" 38 39 static LIST_HEAD(mgmt_chan_list); 40 static DEFINE_MUTEX(mgmt_chan_list_lock); 41 42 static DEFINE_IDA(sock_cookie_ida); 43 44 static atomic_t monitor_promisc = ATOMIC_INIT(0); 45 46 /* ----- HCI socket interface ----- */ 47 48 /* Socket info */ 49 #define hci_pi(sk) ((struct hci_pinfo *) sk) 50 51 struct hci_pinfo { 52 struct bt_sock bt; 53 struct hci_dev *hdev; 54 struct hci_filter filter; 55 __u32 cmsg_mask; 56 unsigned short channel; 57 unsigned long flags; 58 __u32 cookie; 59 char comm[TASK_COMM_LEN]; 60 }; 61 62 void hci_sock_set_flag(struct sock *sk, int nr) 63 { 64 set_bit(nr, &hci_pi(sk)->flags); 65 } 66 67 void hci_sock_clear_flag(struct sock *sk, int nr) 68 { 69 clear_bit(nr, &hci_pi(sk)->flags); 70 } 71 72 int hci_sock_test_flag(struct sock *sk, int nr) 73 { 74 return test_bit(nr, &hci_pi(sk)->flags); 75 } 76 77 unsigned short hci_sock_get_channel(struct sock *sk) 78 { 79 return hci_pi(sk)->channel; 80 } 81 82 u32 hci_sock_get_cookie(struct sock *sk) 83 { 84 return hci_pi(sk)->cookie; 85 } 86 87 static bool hci_sock_gen_cookie(struct sock *sk) 88 { 89 int id = hci_pi(sk)->cookie; 90 91 if (!id) { 92 id = ida_simple_get(&sock_cookie_ida, 1, 0, GFP_KERNEL); 93 if (id < 0) 94 id = 0xffffffff; 95 96 hci_pi(sk)->cookie = id; 97 get_task_comm(hci_pi(sk)->comm, current); 98 return true; 99 } 100 101 return false; 102 } 103 104 static void hci_sock_free_cookie(struct sock *sk) 105 { 106 int id = hci_pi(sk)->cookie; 107 108 if (id) { 109 hci_pi(sk)->cookie = 0xffffffff; 110 ida_simple_remove(&sock_cookie_ida, id); 111 } 112 } 113 114 static inline int hci_test_bit(int nr, const void *addr) 115 { 116 return *((const __u32 *) addr + (nr >> 5)) & ((__u32) 1 << (nr & 31)); 117 } 118 119 /* Security filter */ 120 #define HCI_SFLT_MAX_OGF 5 121 122 struct hci_sec_filter { 123 __u32 type_mask; 124 __u32 event_mask[2]; 125 __u32 ocf_mask[HCI_SFLT_MAX_OGF + 1][4]; 126 }; 127 128 static const struct hci_sec_filter hci_sec_filter = { 129 /* Packet types */ 130 0x10, 131 /* Events */ 132 { 0x1000d9fe, 0x0000b00c }, 133 /* Commands */ 134 { 135 { 0x0 }, 136 /* OGF_LINK_CTL */ 137 { 0xbe000006, 0x00000001, 0x00000000, 0x00 }, 138 /* OGF_LINK_POLICY */ 139 { 0x00005200, 0x00000000, 0x00000000, 0x00 }, 140 /* OGF_HOST_CTL */ 141 { 0xaab00200, 0x2b402aaa, 0x05220154, 0x00 }, 142 /* OGF_INFO_PARAM */ 143 { 0x000002be, 0x00000000, 0x00000000, 0x00 }, 144 /* OGF_STATUS_PARAM */ 145 { 0x000000ea, 0x00000000, 0x00000000, 0x00 } 146 } 147 }; 148 149 static struct bt_sock_list hci_sk_list = { 150 .lock = __RW_LOCK_UNLOCKED(hci_sk_list.lock) 151 }; 152 153 static bool is_filtered_packet(struct sock *sk, struct sk_buff *skb) 154 { 155 struct hci_filter *flt; 156 int flt_type, flt_event; 157 158 /* Apply filter */ 159 flt = &hci_pi(sk)->filter; 160 161 flt_type = hci_skb_pkt_type(skb) & HCI_FLT_TYPE_BITS; 162 163 if (!test_bit(flt_type, &flt->type_mask)) 164 return true; 165 166 /* Extra filter for event packets only */ 167 if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT) 168 return false; 169 170 flt_event = (*(__u8 *)skb->data & HCI_FLT_EVENT_BITS); 171 172 if (!hci_test_bit(flt_event, &flt->event_mask)) 173 return true; 174 175 /* Check filter only when opcode is set */ 176 if (!flt->opcode) 177 return false; 178 179 if (flt_event == HCI_EV_CMD_COMPLETE && 180 flt->opcode != get_unaligned((__le16 *)(skb->data + 3))) 181 return true; 182 183 if (flt_event == HCI_EV_CMD_STATUS && 184 flt->opcode != get_unaligned((__le16 *)(skb->data + 4))) 185 return true; 186 187 return false; 188 } 189 190 /* Send frame to RAW socket */ 191 void hci_send_to_sock(struct hci_dev *hdev, struct sk_buff *skb) 192 { 193 struct sock *sk; 194 struct sk_buff *skb_copy = NULL; 195 196 BT_DBG("hdev %p len %d", hdev, skb->len); 197 198 read_lock(&hci_sk_list.lock); 199 200 sk_for_each(sk, &hci_sk_list.head) { 201 struct sk_buff *nskb; 202 203 if (sk->sk_state != BT_BOUND || hci_pi(sk)->hdev != hdev) 204 continue; 205 206 /* Don't send frame to the socket it came from */ 207 if (skb->sk == sk) 208 continue; 209 210 if (hci_pi(sk)->channel == HCI_CHANNEL_RAW) { 211 if (hci_skb_pkt_type(skb) != HCI_COMMAND_PKT && 212 hci_skb_pkt_type(skb) != HCI_EVENT_PKT && 213 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT && 214 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) 215 continue; 216 if (is_filtered_packet(sk, skb)) 217 continue; 218 } else if (hci_pi(sk)->channel == HCI_CHANNEL_USER) { 219 if (!bt_cb(skb)->incoming) 220 continue; 221 if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT && 222 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT && 223 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) 224 continue; 225 } else { 226 /* Don't send frame to other channel types */ 227 continue; 228 } 229 230 if (!skb_copy) { 231 /* Create a private copy with headroom */ 232 skb_copy = __pskb_copy_fclone(skb, 1, GFP_ATOMIC, true); 233 if (!skb_copy) 234 continue; 235 236 /* Put type byte before the data */ 237 memcpy(skb_push(skb_copy, 1), &hci_skb_pkt_type(skb), 1); 238 } 239 240 nskb = skb_clone(skb_copy, GFP_ATOMIC); 241 if (!nskb) 242 continue; 243 244 if (sock_queue_rcv_skb(sk, nskb)) 245 kfree_skb(nskb); 246 } 247 248 read_unlock(&hci_sk_list.lock); 249 250 kfree_skb(skb_copy); 251 } 252 253 /* Send frame to sockets with specific channel */ 254 static void __hci_send_to_channel(unsigned short channel, struct sk_buff *skb, 255 int flag, struct sock *skip_sk) 256 { 257 struct sock *sk; 258 259 BT_DBG("channel %u len %d", channel, skb->len); 260 261 sk_for_each(sk, &hci_sk_list.head) { 262 struct sk_buff *nskb; 263 264 /* Ignore socket without the flag set */ 265 if (!hci_sock_test_flag(sk, flag)) 266 continue; 267 268 /* Skip the original socket */ 269 if (sk == skip_sk) 270 continue; 271 272 if (sk->sk_state != BT_BOUND) 273 continue; 274 275 if (hci_pi(sk)->channel != channel) 276 continue; 277 278 nskb = skb_clone(skb, GFP_ATOMIC); 279 if (!nskb) 280 continue; 281 282 if (sock_queue_rcv_skb(sk, nskb)) 283 kfree_skb(nskb); 284 } 285 286 } 287 288 void hci_send_to_channel(unsigned short channel, struct sk_buff *skb, 289 int flag, struct sock *skip_sk) 290 { 291 read_lock(&hci_sk_list.lock); 292 __hci_send_to_channel(channel, skb, flag, skip_sk); 293 read_unlock(&hci_sk_list.lock); 294 } 295 296 /* Send frame to monitor socket */ 297 void hci_send_to_monitor(struct hci_dev *hdev, struct sk_buff *skb) 298 { 299 struct sk_buff *skb_copy = NULL; 300 struct hci_mon_hdr *hdr; 301 __le16 opcode; 302 303 if (!atomic_read(&monitor_promisc)) 304 return; 305 306 BT_DBG("hdev %p len %d", hdev, skb->len); 307 308 switch (hci_skb_pkt_type(skb)) { 309 case HCI_COMMAND_PKT: 310 opcode = cpu_to_le16(HCI_MON_COMMAND_PKT); 311 break; 312 case HCI_EVENT_PKT: 313 opcode = cpu_to_le16(HCI_MON_EVENT_PKT); 314 break; 315 case HCI_ACLDATA_PKT: 316 if (bt_cb(skb)->incoming) 317 opcode = cpu_to_le16(HCI_MON_ACL_RX_PKT); 318 else 319 opcode = cpu_to_le16(HCI_MON_ACL_TX_PKT); 320 break; 321 case HCI_SCODATA_PKT: 322 if (bt_cb(skb)->incoming) 323 opcode = cpu_to_le16(HCI_MON_SCO_RX_PKT); 324 else 325 opcode = cpu_to_le16(HCI_MON_SCO_TX_PKT); 326 break; 327 case HCI_DIAG_PKT: 328 opcode = cpu_to_le16(HCI_MON_VENDOR_DIAG); 329 break; 330 default: 331 return; 332 } 333 334 /* Create a private copy with headroom */ 335 skb_copy = __pskb_copy_fclone(skb, HCI_MON_HDR_SIZE, GFP_ATOMIC, true); 336 if (!skb_copy) 337 return; 338 339 /* Put header before the data */ 340 hdr = skb_push(skb_copy, HCI_MON_HDR_SIZE); 341 hdr->opcode = opcode; 342 hdr->index = cpu_to_le16(hdev->id); 343 hdr->len = cpu_to_le16(skb->len); 344 345 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb_copy, 346 HCI_SOCK_TRUSTED, NULL); 347 kfree_skb(skb_copy); 348 } 349 350 void hci_send_monitor_ctrl_event(struct hci_dev *hdev, u16 event, 351 void *data, u16 data_len, ktime_t tstamp, 352 int flag, struct sock *skip_sk) 353 { 354 struct sock *sk; 355 __le16 index; 356 357 if (hdev) 358 index = cpu_to_le16(hdev->id); 359 else 360 index = cpu_to_le16(MGMT_INDEX_NONE); 361 362 read_lock(&hci_sk_list.lock); 363 364 sk_for_each(sk, &hci_sk_list.head) { 365 struct hci_mon_hdr *hdr; 366 struct sk_buff *skb; 367 368 if (hci_pi(sk)->channel != HCI_CHANNEL_CONTROL) 369 continue; 370 371 /* Ignore socket without the flag set */ 372 if (!hci_sock_test_flag(sk, flag)) 373 continue; 374 375 /* Skip the original socket */ 376 if (sk == skip_sk) 377 continue; 378 379 skb = bt_skb_alloc(6 + data_len, GFP_ATOMIC); 380 if (!skb) 381 continue; 382 383 put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4)); 384 put_unaligned_le16(event, skb_put(skb, 2)); 385 386 if (data) 387 skb_put_data(skb, data, data_len); 388 389 skb->tstamp = tstamp; 390 391 hdr = skb_push(skb, HCI_MON_HDR_SIZE); 392 hdr->opcode = cpu_to_le16(HCI_MON_CTRL_EVENT); 393 hdr->index = index; 394 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE); 395 396 __hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 397 HCI_SOCK_TRUSTED, NULL); 398 kfree_skb(skb); 399 } 400 401 read_unlock(&hci_sk_list.lock); 402 } 403 404 static struct sk_buff *create_monitor_event(struct hci_dev *hdev, int event) 405 { 406 struct hci_mon_hdr *hdr; 407 struct hci_mon_new_index *ni; 408 struct hci_mon_index_info *ii; 409 struct sk_buff *skb; 410 __le16 opcode; 411 412 switch (event) { 413 case HCI_DEV_REG: 414 skb = bt_skb_alloc(HCI_MON_NEW_INDEX_SIZE, GFP_ATOMIC); 415 if (!skb) 416 return NULL; 417 418 ni = skb_put(skb, HCI_MON_NEW_INDEX_SIZE); 419 ni->type = hdev->dev_type; 420 ni->bus = hdev->bus; 421 bacpy(&ni->bdaddr, &hdev->bdaddr); 422 memcpy(ni->name, hdev->name, 8); 423 424 opcode = cpu_to_le16(HCI_MON_NEW_INDEX); 425 break; 426 427 case HCI_DEV_UNREG: 428 skb = bt_skb_alloc(0, GFP_ATOMIC); 429 if (!skb) 430 return NULL; 431 432 opcode = cpu_to_le16(HCI_MON_DEL_INDEX); 433 break; 434 435 case HCI_DEV_SETUP: 436 if (hdev->manufacturer == 0xffff) 437 return NULL; 438 439 /* fall through */ 440 441 case HCI_DEV_UP: 442 skb = bt_skb_alloc(HCI_MON_INDEX_INFO_SIZE, GFP_ATOMIC); 443 if (!skb) 444 return NULL; 445 446 ii = skb_put(skb, HCI_MON_INDEX_INFO_SIZE); 447 bacpy(&ii->bdaddr, &hdev->bdaddr); 448 ii->manufacturer = cpu_to_le16(hdev->manufacturer); 449 450 opcode = cpu_to_le16(HCI_MON_INDEX_INFO); 451 break; 452 453 case HCI_DEV_OPEN: 454 skb = bt_skb_alloc(0, GFP_ATOMIC); 455 if (!skb) 456 return NULL; 457 458 opcode = cpu_to_le16(HCI_MON_OPEN_INDEX); 459 break; 460 461 case HCI_DEV_CLOSE: 462 skb = bt_skb_alloc(0, GFP_ATOMIC); 463 if (!skb) 464 return NULL; 465 466 opcode = cpu_to_le16(HCI_MON_CLOSE_INDEX); 467 break; 468 469 default: 470 return NULL; 471 } 472 473 __net_timestamp(skb); 474 475 hdr = skb_push(skb, HCI_MON_HDR_SIZE); 476 hdr->opcode = opcode; 477 hdr->index = cpu_to_le16(hdev->id); 478 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE); 479 480 return skb; 481 } 482 483 static struct sk_buff *create_monitor_ctrl_open(struct sock *sk) 484 { 485 struct hci_mon_hdr *hdr; 486 struct sk_buff *skb; 487 u16 format; 488 u8 ver[3]; 489 u32 flags; 490 491 /* No message needed when cookie is not present */ 492 if (!hci_pi(sk)->cookie) 493 return NULL; 494 495 switch (hci_pi(sk)->channel) { 496 case HCI_CHANNEL_RAW: 497 format = 0x0000; 498 ver[0] = BT_SUBSYS_VERSION; 499 put_unaligned_le16(BT_SUBSYS_REVISION, ver + 1); 500 break; 501 case HCI_CHANNEL_USER: 502 format = 0x0001; 503 ver[0] = BT_SUBSYS_VERSION; 504 put_unaligned_le16(BT_SUBSYS_REVISION, ver + 1); 505 break; 506 case HCI_CHANNEL_CONTROL: 507 format = 0x0002; 508 mgmt_fill_version_info(ver); 509 break; 510 default: 511 /* No message for unsupported format */ 512 return NULL; 513 } 514 515 skb = bt_skb_alloc(14 + TASK_COMM_LEN , GFP_ATOMIC); 516 if (!skb) 517 return NULL; 518 519 flags = hci_sock_test_flag(sk, HCI_SOCK_TRUSTED) ? 0x1 : 0x0; 520 521 put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4)); 522 put_unaligned_le16(format, skb_put(skb, 2)); 523 skb_put_data(skb, ver, sizeof(ver)); 524 put_unaligned_le32(flags, skb_put(skb, 4)); 525 skb_put_u8(skb, TASK_COMM_LEN); 526 skb_put_data(skb, hci_pi(sk)->comm, TASK_COMM_LEN); 527 528 __net_timestamp(skb); 529 530 hdr = skb_push(skb, HCI_MON_HDR_SIZE); 531 hdr->opcode = cpu_to_le16(HCI_MON_CTRL_OPEN); 532 if (hci_pi(sk)->hdev) 533 hdr->index = cpu_to_le16(hci_pi(sk)->hdev->id); 534 else 535 hdr->index = cpu_to_le16(HCI_DEV_NONE); 536 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE); 537 538 return skb; 539 } 540 541 static struct sk_buff *create_monitor_ctrl_close(struct sock *sk) 542 { 543 struct hci_mon_hdr *hdr; 544 struct sk_buff *skb; 545 546 /* No message needed when cookie is not present */ 547 if (!hci_pi(sk)->cookie) 548 return NULL; 549 550 switch (hci_pi(sk)->channel) { 551 case HCI_CHANNEL_RAW: 552 case HCI_CHANNEL_USER: 553 case HCI_CHANNEL_CONTROL: 554 break; 555 default: 556 /* No message for unsupported format */ 557 return NULL; 558 } 559 560 skb = bt_skb_alloc(4, GFP_ATOMIC); 561 if (!skb) 562 return NULL; 563 564 put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4)); 565 566 __net_timestamp(skb); 567 568 hdr = skb_push(skb, HCI_MON_HDR_SIZE); 569 hdr->opcode = cpu_to_le16(HCI_MON_CTRL_CLOSE); 570 if (hci_pi(sk)->hdev) 571 hdr->index = cpu_to_le16(hci_pi(sk)->hdev->id); 572 else 573 hdr->index = cpu_to_le16(HCI_DEV_NONE); 574 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE); 575 576 return skb; 577 } 578 579 static struct sk_buff *create_monitor_ctrl_command(struct sock *sk, u16 index, 580 u16 opcode, u16 len, 581 const void *buf) 582 { 583 struct hci_mon_hdr *hdr; 584 struct sk_buff *skb; 585 586 skb = bt_skb_alloc(6 + len, GFP_ATOMIC); 587 if (!skb) 588 return NULL; 589 590 put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4)); 591 put_unaligned_le16(opcode, skb_put(skb, 2)); 592 593 if (buf) 594 skb_put_data(skb, buf, len); 595 596 __net_timestamp(skb); 597 598 hdr = skb_push(skb, HCI_MON_HDR_SIZE); 599 hdr->opcode = cpu_to_le16(HCI_MON_CTRL_COMMAND); 600 hdr->index = cpu_to_le16(index); 601 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE); 602 603 return skb; 604 } 605 606 static void __printf(2, 3) 607 send_monitor_note(struct sock *sk, const char *fmt, ...) 608 { 609 size_t len; 610 struct hci_mon_hdr *hdr; 611 struct sk_buff *skb; 612 va_list args; 613 614 va_start(args, fmt); 615 len = vsnprintf(NULL, 0, fmt, args); 616 va_end(args); 617 618 skb = bt_skb_alloc(len + 1, GFP_ATOMIC); 619 if (!skb) 620 return; 621 622 va_start(args, fmt); 623 vsprintf(skb_put(skb, len), fmt, args); 624 *(u8 *)skb_put(skb, 1) = 0; 625 va_end(args); 626 627 __net_timestamp(skb); 628 629 hdr = (void *)skb_push(skb, HCI_MON_HDR_SIZE); 630 hdr->opcode = cpu_to_le16(HCI_MON_SYSTEM_NOTE); 631 hdr->index = cpu_to_le16(HCI_DEV_NONE); 632 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE); 633 634 if (sock_queue_rcv_skb(sk, skb)) 635 kfree_skb(skb); 636 } 637 638 static void send_monitor_replay(struct sock *sk) 639 { 640 struct hci_dev *hdev; 641 642 read_lock(&hci_dev_list_lock); 643 644 list_for_each_entry(hdev, &hci_dev_list, list) { 645 struct sk_buff *skb; 646 647 skb = create_monitor_event(hdev, HCI_DEV_REG); 648 if (!skb) 649 continue; 650 651 if (sock_queue_rcv_skb(sk, skb)) 652 kfree_skb(skb); 653 654 if (!test_bit(HCI_RUNNING, &hdev->flags)) 655 continue; 656 657 skb = create_monitor_event(hdev, HCI_DEV_OPEN); 658 if (!skb) 659 continue; 660 661 if (sock_queue_rcv_skb(sk, skb)) 662 kfree_skb(skb); 663 664 if (test_bit(HCI_UP, &hdev->flags)) 665 skb = create_monitor_event(hdev, HCI_DEV_UP); 666 else if (hci_dev_test_flag(hdev, HCI_SETUP)) 667 skb = create_monitor_event(hdev, HCI_DEV_SETUP); 668 else 669 skb = NULL; 670 671 if (skb) { 672 if (sock_queue_rcv_skb(sk, skb)) 673 kfree_skb(skb); 674 } 675 } 676 677 read_unlock(&hci_dev_list_lock); 678 } 679 680 static void send_monitor_control_replay(struct sock *mon_sk) 681 { 682 struct sock *sk; 683 684 read_lock(&hci_sk_list.lock); 685 686 sk_for_each(sk, &hci_sk_list.head) { 687 struct sk_buff *skb; 688 689 skb = create_monitor_ctrl_open(sk); 690 if (!skb) 691 continue; 692 693 if (sock_queue_rcv_skb(mon_sk, skb)) 694 kfree_skb(skb); 695 } 696 697 read_unlock(&hci_sk_list.lock); 698 } 699 700 /* Generate internal stack event */ 701 static void hci_si_event(struct hci_dev *hdev, int type, int dlen, void *data) 702 { 703 struct hci_event_hdr *hdr; 704 struct hci_ev_stack_internal *ev; 705 struct sk_buff *skb; 706 707 skb = bt_skb_alloc(HCI_EVENT_HDR_SIZE + sizeof(*ev) + dlen, GFP_ATOMIC); 708 if (!skb) 709 return; 710 711 hdr = skb_put(skb, HCI_EVENT_HDR_SIZE); 712 hdr->evt = HCI_EV_STACK_INTERNAL; 713 hdr->plen = sizeof(*ev) + dlen; 714 715 ev = skb_put(skb, sizeof(*ev) + dlen); 716 ev->type = type; 717 memcpy(ev->data, data, dlen); 718 719 bt_cb(skb)->incoming = 1; 720 __net_timestamp(skb); 721 722 hci_skb_pkt_type(skb) = HCI_EVENT_PKT; 723 hci_send_to_sock(hdev, skb); 724 kfree_skb(skb); 725 } 726 727 void hci_sock_dev_event(struct hci_dev *hdev, int event) 728 { 729 BT_DBG("hdev %s event %d", hdev->name, event); 730 731 if (atomic_read(&monitor_promisc)) { 732 struct sk_buff *skb; 733 734 /* Send event to monitor */ 735 skb = create_monitor_event(hdev, event); 736 if (skb) { 737 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 738 HCI_SOCK_TRUSTED, NULL); 739 kfree_skb(skb); 740 } 741 } 742 743 if (event <= HCI_DEV_DOWN) { 744 struct hci_ev_si_device ev; 745 746 /* Send event to sockets */ 747 ev.event = event; 748 ev.dev_id = hdev->id; 749 hci_si_event(NULL, HCI_EV_SI_DEVICE, sizeof(ev), &ev); 750 } 751 752 if (event == HCI_DEV_UNREG) { 753 struct sock *sk; 754 755 /* Detach sockets from device */ 756 read_lock(&hci_sk_list.lock); 757 sk_for_each(sk, &hci_sk_list.head) { 758 bh_lock_sock_nested(sk); 759 if (hci_pi(sk)->hdev == hdev) { 760 hci_pi(sk)->hdev = NULL; 761 sk->sk_err = EPIPE; 762 sk->sk_state = BT_OPEN; 763 sk->sk_state_change(sk); 764 765 hci_dev_put(hdev); 766 } 767 bh_unlock_sock(sk); 768 } 769 read_unlock(&hci_sk_list.lock); 770 } 771 } 772 773 static struct hci_mgmt_chan *__hci_mgmt_chan_find(unsigned short channel) 774 { 775 struct hci_mgmt_chan *c; 776 777 list_for_each_entry(c, &mgmt_chan_list, list) { 778 if (c->channel == channel) 779 return c; 780 } 781 782 return NULL; 783 } 784 785 static struct hci_mgmt_chan *hci_mgmt_chan_find(unsigned short channel) 786 { 787 struct hci_mgmt_chan *c; 788 789 mutex_lock(&mgmt_chan_list_lock); 790 c = __hci_mgmt_chan_find(channel); 791 mutex_unlock(&mgmt_chan_list_lock); 792 793 return c; 794 } 795 796 int hci_mgmt_chan_register(struct hci_mgmt_chan *c) 797 { 798 if (c->channel < HCI_CHANNEL_CONTROL) 799 return -EINVAL; 800 801 mutex_lock(&mgmt_chan_list_lock); 802 if (__hci_mgmt_chan_find(c->channel)) { 803 mutex_unlock(&mgmt_chan_list_lock); 804 return -EALREADY; 805 } 806 807 list_add_tail(&c->list, &mgmt_chan_list); 808 809 mutex_unlock(&mgmt_chan_list_lock); 810 811 return 0; 812 } 813 EXPORT_SYMBOL(hci_mgmt_chan_register); 814 815 void hci_mgmt_chan_unregister(struct hci_mgmt_chan *c) 816 { 817 mutex_lock(&mgmt_chan_list_lock); 818 list_del(&c->list); 819 mutex_unlock(&mgmt_chan_list_lock); 820 } 821 EXPORT_SYMBOL(hci_mgmt_chan_unregister); 822 823 static int hci_sock_release(struct socket *sock) 824 { 825 struct sock *sk = sock->sk; 826 struct hci_dev *hdev; 827 struct sk_buff *skb; 828 829 BT_DBG("sock %p sk %p", sock, sk); 830 831 if (!sk) 832 return 0; 833 834 hdev = hci_pi(sk)->hdev; 835 836 switch (hci_pi(sk)->channel) { 837 case HCI_CHANNEL_MONITOR: 838 atomic_dec(&monitor_promisc); 839 break; 840 case HCI_CHANNEL_RAW: 841 case HCI_CHANNEL_USER: 842 case HCI_CHANNEL_CONTROL: 843 /* Send event to monitor */ 844 skb = create_monitor_ctrl_close(sk); 845 if (skb) { 846 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 847 HCI_SOCK_TRUSTED, NULL); 848 kfree_skb(skb); 849 } 850 851 hci_sock_free_cookie(sk); 852 break; 853 } 854 855 bt_sock_unlink(&hci_sk_list, sk); 856 857 if (hdev) { 858 if (hci_pi(sk)->channel == HCI_CHANNEL_USER) { 859 /* When releasing a user channel exclusive access, 860 * call hci_dev_do_close directly instead of calling 861 * hci_dev_close to ensure the exclusive access will 862 * be released and the controller brought back down. 863 * 864 * The checking of HCI_AUTO_OFF is not needed in this 865 * case since it will have been cleared already when 866 * opening the user channel. 867 */ 868 hci_dev_do_close(hdev); 869 hci_dev_clear_flag(hdev, HCI_USER_CHANNEL); 870 mgmt_index_added(hdev); 871 } 872 873 atomic_dec(&hdev->promisc); 874 hci_dev_put(hdev); 875 } 876 877 sock_orphan(sk); 878 879 skb_queue_purge(&sk->sk_receive_queue); 880 skb_queue_purge(&sk->sk_write_queue); 881 882 sock_put(sk); 883 return 0; 884 } 885 886 static int hci_sock_blacklist_add(struct hci_dev *hdev, void __user *arg) 887 { 888 bdaddr_t bdaddr; 889 int err; 890 891 if (copy_from_user(&bdaddr, arg, sizeof(bdaddr))) 892 return -EFAULT; 893 894 hci_dev_lock(hdev); 895 896 err = hci_bdaddr_list_add(&hdev->blacklist, &bdaddr, BDADDR_BREDR); 897 898 hci_dev_unlock(hdev); 899 900 return err; 901 } 902 903 static int hci_sock_blacklist_del(struct hci_dev *hdev, void __user *arg) 904 { 905 bdaddr_t bdaddr; 906 int err; 907 908 if (copy_from_user(&bdaddr, arg, sizeof(bdaddr))) 909 return -EFAULT; 910 911 hci_dev_lock(hdev); 912 913 err = hci_bdaddr_list_del(&hdev->blacklist, &bdaddr, BDADDR_BREDR); 914 915 hci_dev_unlock(hdev); 916 917 return err; 918 } 919 920 /* Ioctls that require bound socket */ 921 static int hci_sock_bound_ioctl(struct sock *sk, unsigned int cmd, 922 unsigned long arg) 923 { 924 struct hci_dev *hdev = hci_pi(sk)->hdev; 925 926 if (!hdev) 927 return -EBADFD; 928 929 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) 930 return -EBUSY; 931 932 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 933 return -EOPNOTSUPP; 934 935 if (hdev->dev_type != HCI_PRIMARY) 936 return -EOPNOTSUPP; 937 938 switch (cmd) { 939 case HCISETRAW: 940 if (!capable(CAP_NET_ADMIN)) 941 return -EPERM; 942 return -EOPNOTSUPP; 943 944 case HCIGETCONNINFO: 945 return hci_get_conn_info(hdev, (void __user *)arg); 946 947 case HCIGETAUTHINFO: 948 return hci_get_auth_info(hdev, (void __user *)arg); 949 950 case HCIBLOCKADDR: 951 if (!capable(CAP_NET_ADMIN)) 952 return -EPERM; 953 return hci_sock_blacklist_add(hdev, (void __user *)arg); 954 955 case HCIUNBLOCKADDR: 956 if (!capable(CAP_NET_ADMIN)) 957 return -EPERM; 958 return hci_sock_blacklist_del(hdev, (void __user *)arg); 959 } 960 961 return -ENOIOCTLCMD; 962 } 963 964 static int hci_sock_ioctl(struct socket *sock, unsigned int cmd, 965 unsigned long arg) 966 { 967 void __user *argp = (void __user *)arg; 968 struct sock *sk = sock->sk; 969 int err; 970 971 BT_DBG("cmd %x arg %lx", cmd, arg); 972 973 lock_sock(sk); 974 975 if (hci_pi(sk)->channel != HCI_CHANNEL_RAW) { 976 err = -EBADFD; 977 goto done; 978 } 979 980 /* When calling an ioctl on an unbound raw socket, then ensure 981 * that the monitor gets informed. Ensure that the resulting event 982 * is only send once by checking if the cookie exists or not. The 983 * socket cookie will be only ever generated once for the lifetime 984 * of a given socket. 985 */ 986 if (hci_sock_gen_cookie(sk)) { 987 struct sk_buff *skb; 988 989 if (capable(CAP_NET_ADMIN)) 990 hci_sock_set_flag(sk, HCI_SOCK_TRUSTED); 991 992 /* Send event to monitor */ 993 skb = create_monitor_ctrl_open(sk); 994 if (skb) { 995 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 996 HCI_SOCK_TRUSTED, NULL); 997 kfree_skb(skb); 998 } 999 } 1000 1001 release_sock(sk); 1002 1003 switch (cmd) { 1004 case HCIGETDEVLIST: 1005 return hci_get_dev_list(argp); 1006 1007 case HCIGETDEVINFO: 1008 return hci_get_dev_info(argp); 1009 1010 case HCIGETCONNLIST: 1011 return hci_get_conn_list(argp); 1012 1013 case HCIDEVUP: 1014 if (!capable(CAP_NET_ADMIN)) 1015 return -EPERM; 1016 return hci_dev_open(arg); 1017 1018 case HCIDEVDOWN: 1019 if (!capable(CAP_NET_ADMIN)) 1020 return -EPERM; 1021 return hci_dev_close(arg); 1022 1023 case HCIDEVRESET: 1024 if (!capable(CAP_NET_ADMIN)) 1025 return -EPERM; 1026 return hci_dev_reset(arg); 1027 1028 case HCIDEVRESTAT: 1029 if (!capable(CAP_NET_ADMIN)) 1030 return -EPERM; 1031 return hci_dev_reset_stat(arg); 1032 1033 case HCISETSCAN: 1034 case HCISETAUTH: 1035 case HCISETENCRYPT: 1036 case HCISETPTYPE: 1037 case HCISETLINKPOL: 1038 case HCISETLINKMODE: 1039 case HCISETACLMTU: 1040 case HCISETSCOMTU: 1041 if (!capable(CAP_NET_ADMIN)) 1042 return -EPERM; 1043 return hci_dev_cmd(cmd, argp); 1044 1045 case HCIINQUIRY: 1046 return hci_inquiry(argp); 1047 } 1048 1049 lock_sock(sk); 1050 1051 err = hci_sock_bound_ioctl(sk, cmd, arg); 1052 1053 done: 1054 release_sock(sk); 1055 return err; 1056 } 1057 1058 static int hci_sock_bind(struct socket *sock, struct sockaddr *addr, 1059 int addr_len) 1060 { 1061 struct sockaddr_hci haddr; 1062 struct sock *sk = sock->sk; 1063 struct hci_dev *hdev = NULL; 1064 struct sk_buff *skb; 1065 int len, err = 0; 1066 1067 BT_DBG("sock %p sk %p", sock, sk); 1068 1069 if (!addr) 1070 return -EINVAL; 1071 1072 memset(&haddr, 0, sizeof(haddr)); 1073 len = min_t(unsigned int, sizeof(haddr), addr_len); 1074 memcpy(&haddr, addr, len); 1075 1076 if (haddr.hci_family != AF_BLUETOOTH) 1077 return -EINVAL; 1078 1079 lock_sock(sk); 1080 1081 if (sk->sk_state == BT_BOUND) { 1082 err = -EALREADY; 1083 goto done; 1084 } 1085 1086 switch (haddr.hci_channel) { 1087 case HCI_CHANNEL_RAW: 1088 if (hci_pi(sk)->hdev) { 1089 err = -EALREADY; 1090 goto done; 1091 } 1092 1093 if (haddr.hci_dev != HCI_DEV_NONE) { 1094 hdev = hci_dev_get(haddr.hci_dev); 1095 if (!hdev) { 1096 err = -ENODEV; 1097 goto done; 1098 } 1099 1100 atomic_inc(&hdev->promisc); 1101 } 1102 1103 hci_pi(sk)->channel = haddr.hci_channel; 1104 1105 if (!hci_sock_gen_cookie(sk)) { 1106 /* In the case when a cookie has already been assigned, 1107 * then there has been already an ioctl issued against 1108 * an unbound socket and with that triggerd an open 1109 * notification. Send a close notification first to 1110 * allow the state transition to bounded. 1111 */ 1112 skb = create_monitor_ctrl_close(sk); 1113 if (skb) { 1114 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 1115 HCI_SOCK_TRUSTED, NULL); 1116 kfree_skb(skb); 1117 } 1118 } 1119 1120 if (capable(CAP_NET_ADMIN)) 1121 hci_sock_set_flag(sk, HCI_SOCK_TRUSTED); 1122 1123 hci_pi(sk)->hdev = hdev; 1124 1125 /* Send event to monitor */ 1126 skb = create_monitor_ctrl_open(sk); 1127 if (skb) { 1128 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 1129 HCI_SOCK_TRUSTED, NULL); 1130 kfree_skb(skb); 1131 } 1132 break; 1133 1134 case HCI_CHANNEL_USER: 1135 if (hci_pi(sk)->hdev) { 1136 err = -EALREADY; 1137 goto done; 1138 } 1139 1140 if (haddr.hci_dev == HCI_DEV_NONE) { 1141 err = -EINVAL; 1142 goto done; 1143 } 1144 1145 if (!capable(CAP_NET_ADMIN)) { 1146 err = -EPERM; 1147 goto done; 1148 } 1149 1150 hdev = hci_dev_get(haddr.hci_dev); 1151 if (!hdev) { 1152 err = -ENODEV; 1153 goto done; 1154 } 1155 1156 if (test_bit(HCI_INIT, &hdev->flags) || 1157 hci_dev_test_flag(hdev, HCI_SETUP) || 1158 hci_dev_test_flag(hdev, HCI_CONFIG) || 1159 (!hci_dev_test_flag(hdev, HCI_AUTO_OFF) && 1160 test_bit(HCI_UP, &hdev->flags))) { 1161 err = -EBUSY; 1162 hci_dev_put(hdev); 1163 goto done; 1164 } 1165 1166 if (hci_dev_test_and_set_flag(hdev, HCI_USER_CHANNEL)) { 1167 err = -EUSERS; 1168 hci_dev_put(hdev); 1169 goto done; 1170 } 1171 1172 mgmt_index_removed(hdev); 1173 1174 err = hci_dev_open(hdev->id); 1175 if (err) { 1176 if (err == -EALREADY) { 1177 /* In case the transport is already up and 1178 * running, clear the error here. 1179 * 1180 * This can happen when opening a user 1181 * channel and HCI_AUTO_OFF grace period 1182 * is still active. 1183 */ 1184 err = 0; 1185 } else { 1186 hci_dev_clear_flag(hdev, HCI_USER_CHANNEL); 1187 mgmt_index_added(hdev); 1188 hci_dev_put(hdev); 1189 goto done; 1190 } 1191 } 1192 1193 hci_pi(sk)->channel = haddr.hci_channel; 1194 1195 if (!hci_sock_gen_cookie(sk)) { 1196 /* In the case when a cookie has already been assigned, 1197 * this socket will transition from a raw socket into 1198 * a user channel socket. For a clean transition, send 1199 * the close notification first. 1200 */ 1201 skb = create_monitor_ctrl_close(sk); 1202 if (skb) { 1203 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 1204 HCI_SOCK_TRUSTED, NULL); 1205 kfree_skb(skb); 1206 } 1207 } 1208 1209 /* The user channel is restricted to CAP_NET_ADMIN 1210 * capabilities and with that implicitly trusted. 1211 */ 1212 hci_sock_set_flag(sk, HCI_SOCK_TRUSTED); 1213 1214 hci_pi(sk)->hdev = hdev; 1215 1216 /* Send event to monitor */ 1217 skb = create_monitor_ctrl_open(sk); 1218 if (skb) { 1219 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 1220 HCI_SOCK_TRUSTED, NULL); 1221 kfree_skb(skb); 1222 } 1223 1224 atomic_inc(&hdev->promisc); 1225 break; 1226 1227 case HCI_CHANNEL_MONITOR: 1228 if (haddr.hci_dev != HCI_DEV_NONE) { 1229 err = -EINVAL; 1230 goto done; 1231 } 1232 1233 if (!capable(CAP_NET_RAW)) { 1234 err = -EPERM; 1235 goto done; 1236 } 1237 1238 hci_pi(sk)->channel = haddr.hci_channel; 1239 1240 /* The monitor interface is restricted to CAP_NET_RAW 1241 * capabilities and with that implicitly trusted. 1242 */ 1243 hci_sock_set_flag(sk, HCI_SOCK_TRUSTED); 1244 1245 send_monitor_note(sk, "Linux version %s (%s)", 1246 init_utsname()->release, 1247 init_utsname()->machine); 1248 send_monitor_note(sk, "Bluetooth subsystem version %u.%u", 1249 BT_SUBSYS_VERSION, BT_SUBSYS_REVISION); 1250 send_monitor_replay(sk); 1251 send_monitor_control_replay(sk); 1252 1253 atomic_inc(&monitor_promisc); 1254 break; 1255 1256 case HCI_CHANNEL_LOGGING: 1257 if (haddr.hci_dev != HCI_DEV_NONE) { 1258 err = -EINVAL; 1259 goto done; 1260 } 1261 1262 if (!capable(CAP_NET_ADMIN)) { 1263 err = -EPERM; 1264 goto done; 1265 } 1266 1267 hci_pi(sk)->channel = haddr.hci_channel; 1268 break; 1269 1270 default: 1271 if (!hci_mgmt_chan_find(haddr.hci_channel)) { 1272 err = -EINVAL; 1273 goto done; 1274 } 1275 1276 if (haddr.hci_dev != HCI_DEV_NONE) { 1277 err = -EINVAL; 1278 goto done; 1279 } 1280 1281 /* Users with CAP_NET_ADMIN capabilities are allowed 1282 * access to all management commands and events. For 1283 * untrusted users the interface is restricted and 1284 * also only untrusted events are sent. 1285 */ 1286 if (capable(CAP_NET_ADMIN)) 1287 hci_sock_set_flag(sk, HCI_SOCK_TRUSTED); 1288 1289 hci_pi(sk)->channel = haddr.hci_channel; 1290 1291 /* At the moment the index and unconfigured index events 1292 * are enabled unconditionally. Setting them on each 1293 * socket when binding keeps this functionality. They 1294 * however might be cleared later and then sending of these 1295 * events will be disabled, but that is then intentional. 1296 * 1297 * This also enables generic events that are safe to be 1298 * received by untrusted users. Example for such events 1299 * are changes to settings, class of device, name etc. 1300 */ 1301 if (hci_pi(sk)->channel == HCI_CHANNEL_CONTROL) { 1302 if (!hci_sock_gen_cookie(sk)) { 1303 /* In the case when a cookie has already been 1304 * assigned, this socket will transtion from 1305 * a raw socket into a control socket. To 1306 * allow for a clean transtion, send the 1307 * close notification first. 1308 */ 1309 skb = create_monitor_ctrl_close(sk); 1310 if (skb) { 1311 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 1312 HCI_SOCK_TRUSTED, NULL); 1313 kfree_skb(skb); 1314 } 1315 } 1316 1317 /* Send event to monitor */ 1318 skb = create_monitor_ctrl_open(sk); 1319 if (skb) { 1320 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 1321 HCI_SOCK_TRUSTED, NULL); 1322 kfree_skb(skb); 1323 } 1324 1325 hci_sock_set_flag(sk, HCI_MGMT_INDEX_EVENTS); 1326 hci_sock_set_flag(sk, HCI_MGMT_UNCONF_INDEX_EVENTS); 1327 hci_sock_set_flag(sk, HCI_MGMT_OPTION_EVENTS); 1328 hci_sock_set_flag(sk, HCI_MGMT_SETTING_EVENTS); 1329 hci_sock_set_flag(sk, HCI_MGMT_DEV_CLASS_EVENTS); 1330 hci_sock_set_flag(sk, HCI_MGMT_LOCAL_NAME_EVENTS); 1331 } 1332 break; 1333 } 1334 1335 sk->sk_state = BT_BOUND; 1336 1337 done: 1338 release_sock(sk); 1339 return err; 1340 } 1341 1342 static int hci_sock_getname(struct socket *sock, struct sockaddr *addr, 1343 int peer) 1344 { 1345 struct sockaddr_hci *haddr = (struct sockaddr_hci *)addr; 1346 struct sock *sk = sock->sk; 1347 struct hci_dev *hdev; 1348 int err = 0; 1349 1350 BT_DBG("sock %p sk %p", sock, sk); 1351 1352 if (peer) 1353 return -EOPNOTSUPP; 1354 1355 lock_sock(sk); 1356 1357 hdev = hci_pi(sk)->hdev; 1358 if (!hdev) { 1359 err = -EBADFD; 1360 goto done; 1361 } 1362 1363 haddr->hci_family = AF_BLUETOOTH; 1364 haddr->hci_dev = hdev->id; 1365 haddr->hci_channel= hci_pi(sk)->channel; 1366 err = sizeof(*haddr); 1367 1368 done: 1369 release_sock(sk); 1370 return err; 1371 } 1372 1373 static void hci_sock_cmsg(struct sock *sk, struct msghdr *msg, 1374 struct sk_buff *skb) 1375 { 1376 __u32 mask = hci_pi(sk)->cmsg_mask; 1377 1378 if (mask & HCI_CMSG_DIR) { 1379 int incoming = bt_cb(skb)->incoming; 1380 put_cmsg(msg, SOL_HCI, HCI_CMSG_DIR, sizeof(incoming), 1381 &incoming); 1382 } 1383 1384 if (mask & HCI_CMSG_TSTAMP) { 1385 #ifdef CONFIG_COMPAT 1386 struct compat_timeval ctv; 1387 #endif 1388 struct timeval tv; 1389 void *data; 1390 int len; 1391 1392 skb_get_timestamp(skb, &tv); 1393 1394 data = &tv; 1395 len = sizeof(tv); 1396 #ifdef CONFIG_COMPAT 1397 if (!COMPAT_USE_64BIT_TIME && 1398 (msg->msg_flags & MSG_CMSG_COMPAT)) { 1399 ctv.tv_sec = tv.tv_sec; 1400 ctv.tv_usec = tv.tv_usec; 1401 data = &ctv; 1402 len = sizeof(ctv); 1403 } 1404 #endif 1405 1406 put_cmsg(msg, SOL_HCI, HCI_CMSG_TSTAMP, len, data); 1407 } 1408 } 1409 1410 static int hci_sock_recvmsg(struct socket *sock, struct msghdr *msg, 1411 size_t len, int flags) 1412 { 1413 int noblock = flags & MSG_DONTWAIT; 1414 struct sock *sk = sock->sk; 1415 struct sk_buff *skb; 1416 int copied, err; 1417 unsigned int skblen; 1418 1419 BT_DBG("sock %p, sk %p", sock, sk); 1420 1421 if (flags & MSG_OOB) 1422 return -EOPNOTSUPP; 1423 1424 if (hci_pi(sk)->channel == HCI_CHANNEL_LOGGING) 1425 return -EOPNOTSUPP; 1426 1427 if (sk->sk_state == BT_CLOSED) 1428 return 0; 1429 1430 skb = skb_recv_datagram(sk, flags, noblock, &err); 1431 if (!skb) 1432 return err; 1433 1434 skblen = skb->len; 1435 copied = skb->len; 1436 if (len < copied) { 1437 msg->msg_flags |= MSG_TRUNC; 1438 copied = len; 1439 } 1440 1441 skb_reset_transport_header(skb); 1442 err = skb_copy_datagram_msg(skb, 0, msg, copied); 1443 1444 switch (hci_pi(sk)->channel) { 1445 case HCI_CHANNEL_RAW: 1446 hci_sock_cmsg(sk, msg, skb); 1447 break; 1448 case HCI_CHANNEL_USER: 1449 case HCI_CHANNEL_MONITOR: 1450 sock_recv_timestamp(msg, sk, skb); 1451 break; 1452 default: 1453 if (hci_mgmt_chan_find(hci_pi(sk)->channel)) 1454 sock_recv_timestamp(msg, sk, skb); 1455 break; 1456 } 1457 1458 skb_free_datagram(sk, skb); 1459 1460 if (flags & MSG_TRUNC) 1461 copied = skblen; 1462 1463 return err ? : copied; 1464 } 1465 1466 static int hci_mgmt_cmd(struct hci_mgmt_chan *chan, struct sock *sk, 1467 struct msghdr *msg, size_t msglen) 1468 { 1469 void *buf; 1470 u8 *cp; 1471 struct mgmt_hdr *hdr; 1472 u16 opcode, index, len; 1473 struct hci_dev *hdev = NULL; 1474 const struct hci_mgmt_handler *handler; 1475 bool var_len, no_hdev; 1476 int err; 1477 1478 BT_DBG("got %zu bytes", msglen); 1479 1480 if (msglen < sizeof(*hdr)) 1481 return -EINVAL; 1482 1483 buf = kmalloc(msglen, GFP_KERNEL); 1484 if (!buf) 1485 return -ENOMEM; 1486 1487 if (memcpy_from_msg(buf, msg, msglen)) { 1488 err = -EFAULT; 1489 goto done; 1490 } 1491 1492 hdr = buf; 1493 opcode = __le16_to_cpu(hdr->opcode); 1494 index = __le16_to_cpu(hdr->index); 1495 len = __le16_to_cpu(hdr->len); 1496 1497 if (len != msglen - sizeof(*hdr)) { 1498 err = -EINVAL; 1499 goto done; 1500 } 1501 1502 if (chan->channel == HCI_CHANNEL_CONTROL) { 1503 struct sk_buff *skb; 1504 1505 /* Send event to monitor */ 1506 skb = create_monitor_ctrl_command(sk, index, opcode, len, 1507 buf + sizeof(*hdr)); 1508 if (skb) { 1509 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 1510 HCI_SOCK_TRUSTED, NULL); 1511 kfree_skb(skb); 1512 } 1513 } 1514 1515 if (opcode >= chan->handler_count || 1516 chan->handlers[opcode].func == NULL) { 1517 BT_DBG("Unknown op %u", opcode); 1518 err = mgmt_cmd_status(sk, index, opcode, 1519 MGMT_STATUS_UNKNOWN_COMMAND); 1520 goto done; 1521 } 1522 1523 handler = &chan->handlers[opcode]; 1524 1525 if (!hci_sock_test_flag(sk, HCI_SOCK_TRUSTED) && 1526 !(handler->flags & HCI_MGMT_UNTRUSTED)) { 1527 err = mgmt_cmd_status(sk, index, opcode, 1528 MGMT_STATUS_PERMISSION_DENIED); 1529 goto done; 1530 } 1531 1532 if (index != MGMT_INDEX_NONE) { 1533 hdev = hci_dev_get(index); 1534 if (!hdev) { 1535 err = mgmt_cmd_status(sk, index, opcode, 1536 MGMT_STATUS_INVALID_INDEX); 1537 goto done; 1538 } 1539 1540 if (hci_dev_test_flag(hdev, HCI_SETUP) || 1541 hci_dev_test_flag(hdev, HCI_CONFIG) || 1542 hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1543 err = mgmt_cmd_status(sk, index, opcode, 1544 MGMT_STATUS_INVALID_INDEX); 1545 goto done; 1546 } 1547 1548 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 1549 !(handler->flags & HCI_MGMT_UNCONFIGURED)) { 1550 err = mgmt_cmd_status(sk, index, opcode, 1551 MGMT_STATUS_INVALID_INDEX); 1552 goto done; 1553 } 1554 } 1555 1556 no_hdev = (handler->flags & HCI_MGMT_NO_HDEV); 1557 if (no_hdev != !hdev) { 1558 err = mgmt_cmd_status(sk, index, opcode, 1559 MGMT_STATUS_INVALID_INDEX); 1560 goto done; 1561 } 1562 1563 var_len = (handler->flags & HCI_MGMT_VAR_LEN); 1564 if ((var_len && len < handler->data_len) || 1565 (!var_len && len != handler->data_len)) { 1566 err = mgmt_cmd_status(sk, index, opcode, 1567 MGMT_STATUS_INVALID_PARAMS); 1568 goto done; 1569 } 1570 1571 if (hdev && chan->hdev_init) 1572 chan->hdev_init(sk, hdev); 1573 1574 cp = buf + sizeof(*hdr); 1575 1576 err = handler->func(sk, hdev, cp, len); 1577 if (err < 0) 1578 goto done; 1579 1580 err = msglen; 1581 1582 done: 1583 if (hdev) 1584 hci_dev_put(hdev); 1585 1586 kfree(buf); 1587 return err; 1588 } 1589 1590 static int hci_logging_frame(struct sock *sk, struct msghdr *msg, int len) 1591 { 1592 struct hci_mon_hdr *hdr; 1593 struct sk_buff *skb; 1594 struct hci_dev *hdev; 1595 u16 index; 1596 int err; 1597 1598 /* The logging frame consists at minimum of the standard header, 1599 * the priority byte, the ident length byte and at least one string 1600 * terminator NUL byte. Anything shorter are invalid packets. 1601 */ 1602 if (len < sizeof(*hdr) + 3) 1603 return -EINVAL; 1604 1605 skb = bt_skb_send_alloc(sk, len, msg->msg_flags & MSG_DONTWAIT, &err); 1606 if (!skb) 1607 return err; 1608 1609 if (memcpy_from_msg(skb_put(skb, len), msg, len)) { 1610 err = -EFAULT; 1611 goto drop; 1612 } 1613 1614 hdr = (void *)skb->data; 1615 1616 if (__le16_to_cpu(hdr->len) != len - sizeof(*hdr)) { 1617 err = -EINVAL; 1618 goto drop; 1619 } 1620 1621 if (__le16_to_cpu(hdr->opcode) == 0x0000) { 1622 __u8 priority = skb->data[sizeof(*hdr)]; 1623 __u8 ident_len = skb->data[sizeof(*hdr) + 1]; 1624 1625 /* Only the priorities 0-7 are valid and with that any other 1626 * value results in an invalid packet. 1627 * 1628 * The priority byte is followed by an ident length byte and 1629 * the NUL terminated ident string. Check that the ident 1630 * length is not overflowing the packet and also that the 1631 * ident string itself is NUL terminated. In case the ident 1632 * length is zero, the length value actually doubles as NUL 1633 * terminator identifier. 1634 * 1635 * The message follows the ident string (if present) and 1636 * must be NUL terminated. Otherwise it is not a valid packet. 1637 */ 1638 if (priority > 7 || skb->data[len - 1] != 0x00 || 1639 ident_len > len - sizeof(*hdr) - 3 || 1640 skb->data[sizeof(*hdr) + ident_len + 1] != 0x00) { 1641 err = -EINVAL; 1642 goto drop; 1643 } 1644 } else { 1645 err = -EINVAL; 1646 goto drop; 1647 } 1648 1649 index = __le16_to_cpu(hdr->index); 1650 1651 if (index != MGMT_INDEX_NONE) { 1652 hdev = hci_dev_get(index); 1653 if (!hdev) { 1654 err = -ENODEV; 1655 goto drop; 1656 } 1657 } else { 1658 hdev = NULL; 1659 } 1660 1661 hdr->opcode = cpu_to_le16(HCI_MON_USER_LOGGING); 1662 1663 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, HCI_SOCK_TRUSTED, NULL); 1664 err = len; 1665 1666 if (hdev) 1667 hci_dev_put(hdev); 1668 1669 drop: 1670 kfree_skb(skb); 1671 return err; 1672 } 1673 1674 static int hci_sock_sendmsg(struct socket *sock, struct msghdr *msg, 1675 size_t len) 1676 { 1677 struct sock *sk = sock->sk; 1678 struct hci_mgmt_chan *chan; 1679 struct hci_dev *hdev; 1680 struct sk_buff *skb; 1681 int err; 1682 1683 BT_DBG("sock %p sk %p", sock, sk); 1684 1685 if (msg->msg_flags & MSG_OOB) 1686 return -EOPNOTSUPP; 1687 1688 if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_NOSIGNAL|MSG_ERRQUEUE| 1689 MSG_CMSG_COMPAT)) 1690 return -EINVAL; 1691 1692 if (len < 4 || len > HCI_MAX_FRAME_SIZE) 1693 return -EINVAL; 1694 1695 lock_sock(sk); 1696 1697 switch (hci_pi(sk)->channel) { 1698 case HCI_CHANNEL_RAW: 1699 case HCI_CHANNEL_USER: 1700 break; 1701 case HCI_CHANNEL_MONITOR: 1702 err = -EOPNOTSUPP; 1703 goto done; 1704 case HCI_CHANNEL_LOGGING: 1705 err = hci_logging_frame(sk, msg, len); 1706 goto done; 1707 default: 1708 mutex_lock(&mgmt_chan_list_lock); 1709 chan = __hci_mgmt_chan_find(hci_pi(sk)->channel); 1710 if (chan) 1711 err = hci_mgmt_cmd(chan, sk, msg, len); 1712 else 1713 err = -EINVAL; 1714 1715 mutex_unlock(&mgmt_chan_list_lock); 1716 goto done; 1717 } 1718 1719 hdev = hci_pi(sk)->hdev; 1720 if (!hdev) { 1721 err = -EBADFD; 1722 goto done; 1723 } 1724 1725 if (!test_bit(HCI_UP, &hdev->flags)) { 1726 err = -ENETDOWN; 1727 goto done; 1728 } 1729 1730 skb = bt_skb_send_alloc(sk, len, msg->msg_flags & MSG_DONTWAIT, &err); 1731 if (!skb) 1732 goto done; 1733 1734 if (memcpy_from_msg(skb_put(skb, len), msg, len)) { 1735 err = -EFAULT; 1736 goto drop; 1737 } 1738 1739 hci_skb_pkt_type(skb) = skb->data[0]; 1740 skb_pull(skb, 1); 1741 1742 if (hci_pi(sk)->channel == HCI_CHANNEL_USER) { 1743 /* No permission check is needed for user channel 1744 * since that gets enforced when binding the socket. 1745 * 1746 * However check that the packet type is valid. 1747 */ 1748 if (hci_skb_pkt_type(skb) != HCI_COMMAND_PKT && 1749 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT && 1750 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) { 1751 err = -EINVAL; 1752 goto drop; 1753 } 1754 1755 skb_queue_tail(&hdev->raw_q, skb); 1756 queue_work(hdev->workqueue, &hdev->tx_work); 1757 } else if (hci_skb_pkt_type(skb) == HCI_COMMAND_PKT) { 1758 u16 opcode = get_unaligned_le16(skb->data); 1759 u16 ogf = hci_opcode_ogf(opcode); 1760 u16 ocf = hci_opcode_ocf(opcode); 1761 1762 if (((ogf > HCI_SFLT_MAX_OGF) || 1763 !hci_test_bit(ocf & HCI_FLT_OCF_BITS, 1764 &hci_sec_filter.ocf_mask[ogf])) && 1765 !capable(CAP_NET_RAW)) { 1766 err = -EPERM; 1767 goto drop; 1768 } 1769 1770 /* Since the opcode has already been extracted here, store 1771 * a copy of the value for later use by the drivers. 1772 */ 1773 hci_skb_opcode(skb) = opcode; 1774 1775 if (ogf == 0x3f) { 1776 skb_queue_tail(&hdev->raw_q, skb); 1777 queue_work(hdev->workqueue, &hdev->tx_work); 1778 } else { 1779 /* Stand-alone HCI commands must be flagged as 1780 * single-command requests. 1781 */ 1782 bt_cb(skb)->hci.req_flags |= HCI_REQ_START; 1783 1784 skb_queue_tail(&hdev->cmd_q, skb); 1785 queue_work(hdev->workqueue, &hdev->cmd_work); 1786 } 1787 } else { 1788 if (!capable(CAP_NET_RAW)) { 1789 err = -EPERM; 1790 goto drop; 1791 } 1792 1793 if (hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT && 1794 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) { 1795 err = -EINVAL; 1796 goto drop; 1797 } 1798 1799 skb_queue_tail(&hdev->raw_q, skb); 1800 queue_work(hdev->workqueue, &hdev->tx_work); 1801 } 1802 1803 err = len; 1804 1805 done: 1806 release_sock(sk); 1807 return err; 1808 1809 drop: 1810 kfree_skb(skb); 1811 goto done; 1812 } 1813 1814 static int hci_sock_setsockopt(struct socket *sock, int level, int optname, 1815 char __user *optval, unsigned int len) 1816 { 1817 struct hci_ufilter uf = { .opcode = 0 }; 1818 struct sock *sk = sock->sk; 1819 int err = 0, opt = 0; 1820 1821 BT_DBG("sk %p, opt %d", sk, optname); 1822 1823 if (level != SOL_HCI) 1824 return -ENOPROTOOPT; 1825 1826 lock_sock(sk); 1827 1828 if (hci_pi(sk)->channel != HCI_CHANNEL_RAW) { 1829 err = -EBADFD; 1830 goto done; 1831 } 1832 1833 switch (optname) { 1834 case HCI_DATA_DIR: 1835 if (get_user(opt, (int __user *)optval)) { 1836 err = -EFAULT; 1837 break; 1838 } 1839 1840 if (opt) 1841 hci_pi(sk)->cmsg_mask |= HCI_CMSG_DIR; 1842 else 1843 hci_pi(sk)->cmsg_mask &= ~HCI_CMSG_DIR; 1844 break; 1845 1846 case HCI_TIME_STAMP: 1847 if (get_user(opt, (int __user *)optval)) { 1848 err = -EFAULT; 1849 break; 1850 } 1851 1852 if (opt) 1853 hci_pi(sk)->cmsg_mask |= HCI_CMSG_TSTAMP; 1854 else 1855 hci_pi(sk)->cmsg_mask &= ~HCI_CMSG_TSTAMP; 1856 break; 1857 1858 case HCI_FILTER: 1859 { 1860 struct hci_filter *f = &hci_pi(sk)->filter; 1861 1862 uf.type_mask = f->type_mask; 1863 uf.opcode = f->opcode; 1864 uf.event_mask[0] = *((u32 *) f->event_mask + 0); 1865 uf.event_mask[1] = *((u32 *) f->event_mask + 1); 1866 } 1867 1868 len = min_t(unsigned int, len, sizeof(uf)); 1869 if (copy_from_user(&uf, optval, len)) { 1870 err = -EFAULT; 1871 break; 1872 } 1873 1874 if (!capable(CAP_NET_RAW)) { 1875 uf.type_mask &= hci_sec_filter.type_mask; 1876 uf.event_mask[0] &= *((u32 *) hci_sec_filter.event_mask + 0); 1877 uf.event_mask[1] &= *((u32 *) hci_sec_filter.event_mask + 1); 1878 } 1879 1880 { 1881 struct hci_filter *f = &hci_pi(sk)->filter; 1882 1883 f->type_mask = uf.type_mask; 1884 f->opcode = uf.opcode; 1885 *((u32 *) f->event_mask + 0) = uf.event_mask[0]; 1886 *((u32 *) f->event_mask + 1) = uf.event_mask[1]; 1887 } 1888 break; 1889 1890 default: 1891 err = -ENOPROTOOPT; 1892 break; 1893 } 1894 1895 done: 1896 release_sock(sk); 1897 return err; 1898 } 1899 1900 static int hci_sock_getsockopt(struct socket *sock, int level, int optname, 1901 char __user *optval, int __user *optlen) 1902 { 1903 struct hci_ufilter uf; 1904 struct sock *sk = sock->sk; 1905 int len, opt, err = 0; 1906 1907 BT_DBG("sk %p, opt %d", sk, optname); 1908 1909 if (level != SOL_HCI) 1910 return -ENOPROTOOPT; 1911 1912 if (get_user(len, optlen)) 1913 return -EFAULT; 1914 1915 lock_sock(sk); 1916 1917 if (hci_pi(sk)->channel != HCI_CHANNEL_RAW) { 1918 err = -EBADFD; 1919 goto done; 1920 } 1921 1922 switch (optname) { 1923 case HCI_DATA_DIR: 1924 if (hci_pi(sk)->cmsg_mask & HCI_CMSG_DIR) 1925 opt = 1; 1926 else 1927 opt = 0; 1928 1929 if (put_user(opt, optval)) 1930 err = -EFAULT; 1931 break; 1932 1933 case HCI_TIME_STAMP: 1934 if (hci_pi(sk)->cmsg_mask & HCI_CMSG_TSTAMP) 1935 opt = 1; 1936 else 1937 opt = 0; 1938 1939 if (put_user(opt, optval)) 1940 err = -EFAULT; 1941 break; 1942 1943 case HCI_FILTER: 1944 { 1945 struct hci_filter *f = &hci_pi(sk)->filter; 1946 1947 memset(&uf, 0, sizeof(uf)); 1948 uf.type_mask = f->type_mask; 1949 uf.opcode = f->opcode; 1950 uf.event_mask[0] = *((u32 *) f->event_mask + 0); 1951 uf.event_mask[1] = *((u32 *) f->event_mask + 1); 1952 } 1953 1954 len = min_t(unsigned int, len, sizeof(uf)); 1955 if (copy_to_user(optval, &uf, len)) 1956 err = -EFAULT; 1957 break; 1958 1959 default: 1960 err = -ENOPROTOOPT; 1961 break; 1962 } 1963 1964 done: 1965 release_sock(sk); 1966 return err; 1967 } 1968 1969 static const struct proto_ops hci_sock_ops = { 1970 .family = PF_BLUETOOTH, 1971 .owner = THIS_MODULE, 1972 .release = hci_sock_release, 1973 .bind = hci_sock_bind, 1974 .getname = hci_sock_getname, 1975 .sendmsg = hci_sock_sendmsg, 1976 .recvmsg = hci_sock_recvmsg, 1977 .ioctl = hci_sock_ioctl, 1978 .poll = datagram_poll, 1979 .listen = sock_no_listen, 1980 .shutdown = sock_no_shutdown, 1981 .setsockopt = hci_sock_setsockopt, 1982 .getsockopt = hci_sock_getsockopt, 1983 .connect = sock_no_connect, 1984 .socketpair = sock_no_socketpair, 1985 .accept = sock_no_accept, 1986 .mmap = sock_no_mmap 1987 }; 1988 1989 static struct proto hci_sk_proto = { 1990 .name = "HCI", 1991 .owner = THIS_MODULE, 1992 .obj_size = sizeof(struct hci_pinfo) 1993 }; 1994 1995 static int hci_sock_create(struct net *net, struct socket *sock, int protocol, 1996 int kern) 1997 { 1998 struct sock *sk; 1999 2000 BT_DBG("sock %p", sock); 2001 2002 if (sock->type != SOCK_RAW) 2003 return -ESOCKTNOSUPPORT; 2004 2005 sock->ops = &hci_sock_ops; 2006 2007 sk = sk_alloc(net, PF_BLUETOOTH, GFP_ATOMIC, &hci_sk_proto, kern); 2008 if (!sk) 2009 return -ENOMEM; 2010 2011 sock_init_data(sock, sk); 2012 2013 sock_reset_flag(sk, SOCK_ZAPPED); 2014 2015 sk->sk_protocol = protocol; 2016 2017 sock->state = SS_UNCONNECTED; 2018 sk->sk_state = BT_OPEN; 2019 2020 bt_sock_link(&hci_sk_list, sk); 2021 return 0; 2022 } 2023 2024 static const struct net_proto_family hci_sock_family_ops = { 2025 .family = PF_BLUETOOTH, 2026 .owner = THIS_MODULE, 2027 .create = hci_sock_create, 2028 }; 2029 2030 int __init hci_sock_init(void) 2031 { 2032 int err; 2033 2034 BUILD_BUG_ON(sizeof(struct sockaddr_hci) > sizeof(struct sockaddr)); 2035 2036 err = proto_register(&hci_sk_proto, 0); 2037 if (err < 0) 2038 return err; 2039 2040 err = bt_sock_register(BTPROTO_HCI, &hci_sock_family_ops); 2041 if (err < 0) { 2042 BT_ERR("HCI socket registration failed"); 2043 goto error; 2044 } 2045 2046 err = bt_procfs_init(&init_net, "hci", &hci_sk_list, NULL); 2047 if (err < 0) { 2048 BT_ERR("Failed to create HCI proc file"); 2049 bt_sock_unregister(BTPROTO_HCI); 2050 goto error; 2051 } 2052 2053 BT_INFO("HCI socket layer initialized"); 2054 2055 return 0; 2056 2057 error: 2058 proto_unregister(&hci_sk_proto); 2059 return err; 2060 } 2061 2062 void hci_sock_cleanup(void) 2063 { 2064 bt_procfs_cleanup(&init_net, "hci"); 2065 bt_sock_unregister(BTPROTO_HCI); 2066 proto_unregister(&hci_sk_proto); 2067 } 2068