xref: /linux/net/bluetooth/hci_sock.c (revision 6a02124c87f0b61dcaaeb65e7fd406d8afb40fd4)
1 /*
2    BlueZ - Bluetooth protocol stack for Linux
3    Copyright (C) 2000-2001 Qualcomm Incorporated
4 
5    Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License version 2 as
9    published by the Free Software Foundation;
10 
11    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
12    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
13    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
14    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
15    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
16    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 
20    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
21    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
22    SOFTWARE IS DISCLAIMED.
23 */
24 
25 /* Bluetooth HCI sockets. */
26 #include <linux/compat.h>
27 #include <linux/export.h>
28 #include <linux/utsname.h>
29 #include <linux/sched.h>
30 #include <asm/unaligned.h>
31 
32 #include <net/bluetooth/bluetooth.h>
33 #include <net/bluetooth/hci_core.h>
34 #include <net/bluetooth/hci_mon.h>
35 #include <net/bluetooth/mgmt.h>
36 
37 #include "mgmt_util.h"
38 
39 static LIST_HEAD(mgmt_chan_list);
40 static DEFINE_MUTEX(mgmt_chan_list_lock);
41 
42 static DEFINE_IDA(sock_cookie_ida);
43 
44 static atomic_t monitor_promisc = ATOMIC_INIT(0);
45 
46 /* ----- HCI socket interface ----- */
47 
48 /* Socket info */
49 #define hci_pi(sk) ((struct hci_pinfo *) sk)
50 
51 struct hci_pinfo {
52 	struct bt_sock    bt;
53 	struct hci_dev    *hdev;
54 	struct hci_filter filter;
55 	__u8              cmsg_mask;
56 	unsigned short    channel;
57 	unsigned long     flags;
58 	__u32             cookie;
59 	char              comm[TASK_COMM_LEN];
60 	__u16             mtu;
61 };
62 
63 static struct hci_dev *hci_hdev_from_sock(struct sock *sk)
64 {
65 	struct hci_dev *hdev = hci_pi(sk)->hdev;
66 
67 	if (!hdev)
68 		return ERR_PTR(-EBADFD);
69 	if (hci_dev_test_flag(hdev, HCI_UNREGISTER))
70 		return ERR_PTR(-EPIPE);
71 	return hdev;
72 }
73 
74 void hci_sock_set_flag(struct sock *sk, int nr)
75 {
76 	set_bit(nr, &hci_pi(sk)->flags);
77 }
78 
79 void hci_sock_clear_flag(struct sock *sk, int nr)
80 {
81 	clear_bit(nr, &hci_pi(sk)->flags);
82 }
83 
84 int hci_sock_test_flag(struct sock *sk, int nr)
85 {
86 	return test_bit(nr, &hci_pi(sk)->flags);
87 }
88 
89 unsigned short hci_sock_get_channel(struct sock *sk)
90 {
91 	return hci_pi(sk)->channel;
92 }
93 
94 u32 hci_sock_get_cookie(struct sock *sk)
95 {
96 	return hci_pi(sk)->cookie;
97 }
98 
99 static bool hci_sock_gen_cookie(struct sock *sk)
100 {
101 	int id = hci_pi(sk)->cookie;
102 
103 	if (!id) {
104 		id = ida_simple_get(&sock_cookie_ida, 1, 0, GFP_KERNEL);
105 		if (id < 0)
106 			id = 0xffffffff;
107 
108 		hci_pi(sk)->cookie = id;
109 		get_task_comm(hci_pi(sk)->comm, current);
110 		return true;
111 	}
112 
113 	return false;
114 }
115 
116 static void hci_sock_free_cookie(struct sock *sk)
117 {
118 	int id = hci_pi(sk)->cookie;
119 
120 	if (id) {
121 		hci_pi(sk)->cookie = 0xffffffff;
122 		ida_simple_remove(&sock_cookie_ida, id);
123 	}
124 }
125 
126 static inline int hci_test_bit(int nr, const void *addr)
127 {
128 	return *((const __u32 *) addr + (nr >> 5)) & ((__u32) 1 << (nr & 31));
129 }
130 
131 /* Security filter */
132 #define HCI_SFLT_MAX_OGF  5
133 
134 struct hci_sec_filter {
135 	__u32 type_mask;
136 	__u32 event_mask[2];
137 	__u32 ocf_mask[HCI_SFLT_MAX_OGF + 1][4];
138 };
139 
140 static const struct hci_sec_filter hci_sec_filter = {
141 	/* Packet types */
142 	0x10,
143 	/* Events */
144 	{ 0x1000d9fe, 0x0000b00c },
145 	/* Commands */
146 	{
147 		{ 0x0 },
148 		/* OGF_LINK_CTL */
149 		{ 0xbe000006, 0x00000001, 0x00000000, 0x00 },
150 		/* OGF_LINK_POLICY */
151 		{ 0x00005200, 0x00000000, 0x00000000, 0x00 },
152 		/* OGF_HOST_CTL */
153 		{ 0xaab00200, 0x2b402aaa, 0x05220154, 0x00 },
154 		/* OGF_INFO_PARAM */
155 		{ 0x000002be, 0x00000000, 0x00000000, 0x00 },
156 		/* OGF_STATUS_PARAM */
157 		{ 0x000000ea, 0x00000000, 0x00000000, 0x00 }
158 	}
159 };
160 
161 static struct bt_sock_list hci_sk_list = {
162 	.lock = __RW_LOCK_UNLOCKED(hci_sk_list.lock)
163 };
164 
165 static bool is_filtered_packet(struct sock *sk, struct sk_buff *skb)
166 {
167 	struct hci_filter *flt;
168 	int flt_type, flt_event;
169 
170 	/* Apply filter */
171 	flt = &hci_pi(sk)->filter;
172 
173 	flt_type = hci_skb_pkt_type(skb) & HCI_FLT_TYPE_BITS;
174 
175 	if (!test_bit(flt_type, &flt->type_mask))
176 		return true;
177 
178 	/* Extra filter for event packets only */
179 	if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT)
180 		return false;
181 
182 	flt_event = (*(__u8 *)skb->data & HCI_FLT_EVENT_BITS);
183 
184 	if (!hci_test_bit(flt_event, &flt->event_mask))
185 		return true;
186 
187 	/* Check filter only when opcode is set */
188 	if (!flt->opcode)
189 		return false;
190 
191 	if (flt_event == HCI_EV_CMD_COMPLETE &&
192 	    flt->opcode != get_unaligned((__le16 *)(skb->data + 3)))
193 		return true;
194 
195 	if (flt_event == HCI_EV_CMD_STATUS &&
196 	    flt->opcode != get_unaligned((__le16 *)(skb->data + 4)))
197 		return true;
198 
199 	return false;
200 }
201 
202 /* Send frame to RAW socket */
203 void hci_send_to_sock(struct hci_dev *hdev, struct sk_buff *skb)
204 {
205 	struct sock *sk;
206 	struct sk_buff *skb_copy = NULL;
207 
208 	BT_DBG("hdev %p len %d", hdev, skb->len);
209 
210 	read_lock(&hci_sk_list.lock);
211 
212 	sk_for_each(sk, &hci_sk_list.head) {
213 		struct sk_buff *nskb;
214 
215 		if (sk->sk_state != BT_BOUND || hci_pi(sk)->hdev != hdev)
216 			continue;
217 
218 		/* Don't send frame to the socket it came from */
219 		if (skb->sk == sk)
220 			continue;
221 
222 		if (hci_pi(sk)->channel == HCI_CHANNEL_RAW) {
223 			if (hci_skb_pkt_type(skb) != HCI_COMMAND_PKT &&
224 			    hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
225 			    hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
226 			    hci_skb_pkt_type(skb) != HCI_SCODATA_PKT &&
227 			    hci_skb_pkt_type(skb) != HCI_ISODATA_PKT)
228 				continue;
229 			if (is_filtered_packet(sk, skb))
230 				continue;
231 		} else if (hci_pi(sk)->channel == HCI_CHANNEL_USER) {
232 			if (!bt_cb(skb)->incoming)
233 				continue;
234 			if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
235 			    hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
236 			    hci_skb_pkt_type(skb) != HCI_SCODATA_PKT &&
237 			    hci_skb_pkt_type(skb) != HCI_ISODATA_PKT)
238 				continue;
239 		} else {
240 			/* Don't send frame to other channel types */
241 			continue;
242 		}
243 
244 		if (!skb_copy) {
245 			/* Create a private copy with headroom */
246 			skb_copy = __pskb_copy_fclone(skb, 1, GFP_ATOMIC, true);
247 			if (!skb_copy)
248 				continue;
249 
250 			/* Put type byte before the data */
251 			memcpy(skb_push(skb_copy, 1), &hci_skb_pkt_type(skb), 1);
252 		}
253 
254 		nskb = skb_clone(skb_copy, GFP_ATOMIC);
255 		if (!nskb)
256 			continue;
257 
258 		if (sock_queue_rcv_skb(sk, nskb))
259 			kfree_skb(nskb);
260 	}
261 
262 	read_unlock(&hci_sk_list.lock);
263 
264 	kfree_skb(skb_copy);
265 }
266 
267 /* Send frame to sockets with specific channel */
268 static void __hci_send_to_channel(unsigned short channel, struct sk_buff *skb,
269 				  int flag, struct sock *skip_sk)
270 {
271 	struct sock *sk;
272 
273 	BT_DBG("channel %u len %d", channel, skb->len);
274 
275 	sk_for_each(sk, &hci_sk_list.head) {
276 		struct sk_buff *nskb;
277 
278 		/* Ignore socket without the flag set */
279 		if (!hci_sock_test_flag(sk, flag))
280 			continue;
281 
282 		/* Skip the original socket */
283 		if (sk == skip_sk)
284 			continue;
285 
286 		if (sk->sk_state != BT_BOUND)
287 			continue;
288 
289 		if (hci_pi(sk)->channel != channel)
290 			continue;
291 
292 		nskb = skb_clone(skb, GFP_ATOMIC);
293 		if (!nskb)
294 			continue;
295 
296 		if (sock_queue_rcv_skb(sk, nskb))
297 			kfree_skb(nskb);
298 	}
299 
300 }
301 
302 void hci_send_to_channel(unsigned short channel, struct sk_buff *skb,
303 			 int flag, struct sock *skip_sk)
304 {
305 	read_lock(&hci_sk_list.lock);
306 	__hci_send_to_channel(channel, skb, flag, skip_sk);
307 	read_unlock(&hci_sk_list.lock);
308 }
309 
310 /* Send frame to monitor socket */
311 void hci_send_to_monitor(struct hci_dev *hdev, struct sk_buff *skb)
312 {
313 	struct sk_buff *skb_copy = NULL;
314 	struct hci_mon_hdr *hdr;
315 	__le16 opcode;
316 
317 	if (!atomic_read(&monitor_promisc))
318 		return;
319 
320 	BT_DBG("hdev %p len %d", hdev, skb->len);
321 
322 	switch (hci_skb_pkt_type(skb)) {
323 	case HCI_COMMAND_PKT:
324 		opcode = cpu_to_le16(HCI_MON_COMMAND_PKT);
325 		break;
326 	case HCI_EVENT_PKT:
327 		opcode = cpu_to_le16(HCI_MON_EVENT_PKT);
328 		break;
329 	case HCI_ACLDATA_PKT:
330 		if (bt_cb(skb)->incoming)
331 			opcode = cpu_to_le16(HCI_MON_ACL_RX_PKT);
332 		else
333 			opcode = cpu_to_le16(HCI_MON_ACL_TX_PKT);
334 		break;
335 	case HCI_SCODATA_PKT:
336 		if (bt_cb(skb)->incoming)
337 			opcode = cpu_to_le16(HCI_MON_SCO_RX_PKT);
338 		else
339 			opcode = cpu_to_le16(HCI_MON_SCO_TX_PKT);
340 		break;
341 	case HCI_ISODATA_PKT:
342 		if (bt_cb(skb)->incoming)
343 			opcode = cpu_to_le16(HCI_MON_ISO_RX_PKT);
344 		else
345 			opcode = cpu_to_le16(HCI_MON_ISO_TX_PKT);
346 		break;
347 	case HCI_DIAG_PKT:
348 		opcode = cpu_to_le16(HCI_MON_VENDOR_DIAG);
349 		break;
350 	default:
351 		return;
352 	}
353 
354 	/* Create a private copy with headroom */
355 	skb_copy = __pskb_copy_fclone(skb, HCI_MON_HDR_SIZE, GFP_ATOMIC, true);
356 	if (!skb_copy)
357 		return;
358 
359 	/* Put header before the data */
360 	hdr = skb_push(skb_copy, HCI_MON_HDR_SIZE);
361 	hdr->opcode = opcode;
362 	hdr->index = cpu_to_le16(hdev->id);
363 	hdr->len = cpu_to_le16(skb->len);
364 
365 	hci_send_to_channel(HCI_CHANNEL_MONITOR, skb_copy,
366 			    HCI_SOCK_TRUSTED, NULL);
367 	kfree_skb(skb_copy);
368 }
369 
370 void hci_send_monitor_ctrl_event(struct hci_dev *hdev, u16 event,
371 				 void *data, u16 data_len, ktime_t tstamp,
372 				 int flag, struct sock *skip_sk)
373 {
374 	struct sock *sk;
375 	__le16 index;
376 
377 	if (hdev)
378 		index = cpu_to_le16(hdev->id);
379 	else
380 		index = cpu_to_le16(MGMT_INDEX_NONE);
381 
382 	read_lock(&hci_sk_list.lock);
383 
384 	sk_for_each(sk, &hci_sk_list.head) {
385 		struct hci_mon_hdr *hdr;
386 		struct sk_buff *skb;
387 
388 		if (hci_pi(sk)->channel != HCI_CHANNEL_CONTROL)
389 			continue;
390 
391 		/* Ignore socket without the flag set */
392 		if (!hci_sock_test_flag(sk, flag))
393 			continue;
394 
395 		/* Skip the original socket */
396 		if (sk == skip_sk)
397 			continue;
398 
399 		skb = bt_skb_alloc(6 + data_len, GFP_ATOMIC);
400 		if (!skb)
401 			continue;
402 
403 		put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4));
404 		put_unaligned_le16(event, skb_put(skb, 2));
405 
406 		if (data)
407 			skb_put_data(skb, data, data_len);
408 
409 		skb->tstamp = tstamp;
410 
411 		hdr = skb_push(skb, HCI_MON_HDR_SIZE);
412 		hdr->opcode = cpu_to_le16(HCI_MON_CTRL_EVENT);
413 		hdr->index = index;
414 		hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE);
415 
416 		__hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
417 				      HCI_SOCK_TRUSTED, NULL);
418 		kfree_skb(skb);
419 	}
420 
421 	read_unlock(&hci_sk_list.lock);
422 }
423 
424 static struct sk_buff *create_monitor_event(struct hci_dev *hdev, int event)
425 {
426 	struct hci_mon_hdr *hdr;
427 	struct hci_mon_new_index *ni;
428 	struct hci_mon_index_info *ii;
429 	struct sk_buff *skb;
430 	__le16 opcode;
431 
432 	switch (event) {
433 	case HCI_DEV_REG:
434 		skb = bt_skb_alloc(HCI_MON_NEW_INDEX_SIZE, GFP_ATOMIC);
435 		if (!skb)
436 			return NULL;
437 
438 		ni = skb_put(skb, HCI_MON_NEW_INDEX_SIZE);
439 		ni->type = hdev->dev_type;
440 		ni->bus = hdev->bus;
441 		bacpy(&ni->bdaddr, &hdev->bdaddr);
442 		memcpy(ni->name, hdev->name, 8);
443 
444 		opcode = cpu_to_le16(HCI_MON_NEW_INDEX);
445 		break;
446 
447 	case HCI_DEV_UNREG:
448 		skb = bt_skb_alloc(0, GFP_ATOMIC);
449 		if (!skb)
450 			return NULL;
451 
452 		opcode = cpu_to_le16(HCI_MON_DEL_INDEX);
453 		break;
454 
455 	case HCI_DEV_SETUP:
456 		if (hdev->manufacturer == 0xffff)
457 			return NULL;
458 		fallthrough;
459 
460 	case HCI_DEV_UP:
461 		skb = bt_skb_alloc(HCI_MON_INDEX_INFO_SIZE, GFP_ATOMIC);
462 		if (!skb)
463 			return NULL;
464 
465 		ii = skb_put(skb, HCI_MON_INDEX_INFO_SIZE);
466 		bacpy(&ii->bdaddr, &hdev->bdaddr);
467 		ii->manufacturer = cpu_to_le16(hdev->manufacturer);
468 
469 		opcode = cpu_to_le16(HCI_MON_INDEX_INFO);
470 		break;
471 
472 	case HCI_DEV_OPEN:
473 		skb = bt_skb_alloc(0, GFP_ATOMIC);
474 		if (!skb)
475 			return NULL;
476 
477 		opcode = cpu_to_le16(HCI_MON_OPEN_INDEX);
478 		break;
479 
480 	case HCI_DEV_CLOSE:
481 		skb = bt_skb_alloc(0, GFP_ATOMIC);
482 		if (!skb)
483 			return NULL;
484 
485 		opcode = cpu_to_le16(HCI_MON_CLOSE_INDEX);
486 		break;
487 
488 	default:
489 		return NULL;
490 	}
491 
492 	__net_timestamp(skb);
493 
494 	hdr = skb_push(skb, HCI_MON_HDR_SIZE);
495 	hdr->opcode = opcode;
496 	hdr->index = cpu_to_le16(hdev->id);
497 	hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE);
498 
499 	return skb;
500 }
501 
502 static struct sk_buff *create_monitor_ctrl_open(struct sock *sk)
503 {
504 	struct hci_mon_hdr *hdr;
505 	struct sk_buff *skb;
506 	u16 format;
507 	u8 ver[3];
508 	u32 flags;
509 
510 	/* No message needed when cookie is not present */
511 	if (!hci_pi(sk)->cookie)
512 		return NULL;
513 
514 	switch (hci_pi(sk)->channel) {
515 	case HCI_CHANNEL_RAW:
516 		format = 0x0000;
517 		ver[0] = BT_SUBSYS_VERSION;
518 		put_unaligned_le16(BT_SUBSYS_REVISION, ver + 1);
519 		break;
520 	case HCI_CHANNEL_USER:
521 		format = 0x0001;
522 		ver[0] = BT_SUBSYS_VERSION;
523 		put_unaligned_le16(BT_SUBSYS_REVISION, ver + 1);
524 		break;
525 	case HCI_CHANNEL_CONTROL:
526 		format = 0x0002;
527 		mgmt_fill_version_info(ver);
528 		break;
529 	default:
530 		/* No message for unsupported format */
531 		return NULL;
532 	}
533 
534 	skb = bt_skb_alloc(14 + TASK_COMM_LEN , GFP_ATOMIC);
535 	if (!skb)
536 		return NULL;
537 
538 	flags = hci_sock_test_flag(sk, HCI_SOCK_TRUSTED) ? 0x1 : 0x0;
539 
540 	put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4));
541 	put_unaligned_le16(format, skb_put(skb, 2));
542 	skb_put_data(skb, ver, sizeof(ver));
543 	put_unaligned_le32(flags, skb_put(skb, 4));
544 	skb_put_u8(skb, TASK_COMM_LEN);
545 	skb_put_data(skb, hci_pi(sk)->comm, TASK_COMM_LEN);
546 
547 	__net_timestamp(skb);
548 
549 	hdr = skb_push(skb, HCI_MON_HDR_SIZE);
550 	hdr->opcode = cpu_to_le16(HCI_MON_CTRL_OPEN);
551 	if (hci_pi(sk)->hdev)
552 		hdr->index = cpu_to_le16(hci_pi(sk)->hdev->id);
553 	else
554 		hdr->index = cpu_to_le16(HCI_DEV_NONE);
555 	hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE);
556 
557 	return skb;
558 }
559 
560 static struct sk_buff *create_monitor_ctrl_close(struct sock *sk)
561 {
562 	struct hci_mon_hdr *hdr;
563 	struct sk_buff *skb;
564 
565 	/* No message needed when cookie is not present */
566 	if (!hci_pi(sk)->cookie)
567 		return NULL;
568 
569 	switch (hci_pi(sk)->channel) {
570 	case HCI_CHANNEL_RAW:
571 	case HCI_CHANNEL_USER:
572 	case HCI_CHANNEL_CONTROL:
573 		break;
574 	default:
575 		/* No message for unsupported format */
576 		return NULL;
577 	}
578 
579 	skb = bt_skb_alloc(4, GFP_ATOMIC);
580 	if (!skb)
581 		return NULL;
582 
583 	put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4));
584 
585 	__net_timestamp(skb);
586 
587 	hdr = skb_push(skb, HCI_MON_HDR_SIZE);
588 	hdr->opcode = cpu_to_le16(HCI_MON_CTRL_CLOSE);
589 	if (hci_pi(sk)->hdev)
590 		hdr->index = cpu_to_le16(hci_pi(sk)->hdev->id);
591 	else
592 		hdr->index = cpu_to_le16(HCI_DEV_NONE);
593 	hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE);
594 
595 	return skb;
596 }
597 
598 static struct sk_buff *create_monitor_ctrl_command(struct sock *sk, u16 index,
599 						   u16 opcode, u16 len,
600 						   const void *buf)
601 {
602 	struct hci_mon_hdr *hdr;
603 	struct sk_buff *skb;
604 
605 	skb = bt_skb_alloc(6 + len, GFP_ATOMIC);
606 	if (!skb)
607 		return NULL;
608 
609 	put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4));
610 	put_unaligned_le16(opcode, skb_put(skb, 2));
611 
612 	if (buf)
613 		skb_put_data(skb, buf, len);
614 
615 	__net_timestamp(skb);
616 
617 	hdr = skb_push(skb, HCI_MON_HDR_SIZE);
618 	hdr->opcode = cpu_to_le16(HCI_MON_CTRL_COMMAND);
619 	hdr->index = cpu_to_le16(index);
620 	hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE);
621 
622 	return skb;
623 }
624 
625 static void __printf(2, 3)
626 send_monitor_note(struct sock *sk, const char *fmt, ...)
627 {
628 	size_t len;
629 	struct hci_mon_hdr *hdr;
630 	struct sk_buff *skb;
631 	va_list args;
632 
633 	va_start(args, fmt);
634 	len = vsnprintf(NULL, 0, fmt, args);
635 	va_end(args);
636 
637 	skb = bt_skb_alloc(len + 1, GFP_ATOMIC);
638 	if (!skb)
639 		return;
640 
641 	va_start(args, fmt);
642 	vsprintf(skb_put(skb, len), fmt, args);
643 	*(u8 *)skb_put(skb, 1) = 0;
644 	va_end(args);
645 
646 	__net_timestamp(skb);
647 
648 	hdr = (void *)skb_push(skb, HCI_MON_HDR_SIZE);
649 	hdr->opcode = cpu_to_le16(HCI_MON_SYSTEM_NOTE);
650 	hdr->index = cpu_to_le16(HCI_DEV_NONE);
651 	hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE);
652 
653 	if (sock_queue_rcv_skb(sk, skb))
654 		kfree_skb(skb);
655 }
656 
657 static void send_monitor_replay(struct sock *sk)
658 {
659 	struct hci_dev *hdev;
660 
661 	read_lock(&hci_dev_list_lock);
662 
663 	list_for_each_entry(hdev, &hci_dev_list, list) {
664 		struct sk_buff *skb;
665 
666 		skb = create_monitor_event(hdev, HCI_DEV_REG);
667 		if (!skb)
668 			continue;
669 
670 		if (sock_queue_rcv_skb(sk, skb))
671 			kfree_skb(skb);
672 
673 		if (!test_bit(HCI_RUNNING, &hdev->flags))
674 			continue;
675 
676 		skb = create_monitor_event(hdev, HCI_DEV_OPEN);
677 		if (!skb)
678 			continue;
679 
680 		if (sock_queue_rcv_skb(sk, skb))
681 			kfree_skb(skb);
682 
683 		if (test_bit(HCI_UP, &hdev->flags))
684 			skb = create_monitor_event(hdev, HCI_DEV_UP);
685 		else if (hci_dev_test_flag(hdev, HCI_SETUP))
686 			skb = create_monitor_event(hdev, HCI_DEV_SETUP);
687 		else
688 			skb = NULL;
689 
690 		if (skb) {
691 			if (sock_queue_rcv_skb(sk, skb))
692 				kfree_skb(skb);
693 		}
694 	}
695 
696 	read_unlock(&hci_dev_list_lock);
697 }
698 
699 static void send_monitor_control_replay(struct sock *mon_sk)
700 {
701 	struct sock *sk;
702 
703 	read_lock(&hci_sk_list.lock);
704 
705 	sk_for_each(sk, &hci_sk_list.head) {
706 		struct sk_buff *skb;
707 
708 		skb = create_monitor_ctrl_open(sk);
709 		if (!skb)
710 			continue;
711 
712 		if (sock_queue_rcv_skb(mon_sk, skb))
713 			kfree_skb(skb);
714 	}
715 
716 	read_unlock(&hci_sk_list.lock);
717 }
718 
719 /* Generate internal stack event */
720 static void hci_si_event(struct hci_dev *hdev, int type, int dlen, void *data)
721 {
722 	struct hci_event_hdr *hdr;
723 	struct hci_ev_stack_internal *ev;
724 	struct sk_buff *skb;
725 
726 	skb = bt_skb_alloc(HCI_EVENT_HDR_SIZE + sizeof(*ev) + dlen, GFP_ATOMIC);
727 	if (!skb)
728 		return;
729 
730 	hdr = skb_put(skb, HCI_EVENT_HDR_SIZE);
731 	hdr->evt  = HCI_EV_STACK_INTERNAL;
732 	hdr->plen = sizeof(*ev) + dlen;
733 
734 	ev = skb_put(skb, sizeof(*ev) + dlen);
735 	ev->type = type;
736 	memcpy(ev->data, data, dlen);
737 
738 	bt_cb(skb)->incoming = 1;
739 	__net_timestamp(skb);
740 
741 	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
742 	hci_send_to_sock(hdev, skb);
743 	kfree_skb(skb);
744 }
745 
746 void hci_sock_dev_event(struct hci_dev *hdev, int event)
747 {
748 	BT_DBG("hdev %s event %d", hdev->name, event);
749 
750 	if (atomic_read(&monitor_promisc)) {
751 		struct sk_buff *skb;
752 
753 		/* Send event to monitor */
754 		skb = create_monitor_event(hdev, event);
755 		if (skb) {
756 			hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
757 					    HCI_SOCK_TRUSTED, NULL);
758 			kfree_skb(skb);
759 		}
760 	}
761 
762 	if (event <= HCI_DEV_DOWN) {
763 		struct hci_ev_si_device ev;
764 
765 		/* Send event to sockets */
766 		ev.event  = event;
767 		ev.dev_id = hdev->id;
768 		hci_si_event(NULL, HCI_EV_SI_DEVICE, sizeof(ev), &ev);
769 	}
770 
771 	if (event == HCI_DEV_UNREG) {
772 		struct sock *sk;
773 
774 		/* Wake up sockets using this dead device */
775 		read_lock(&hci_sk_list.lock);
776 		sk_for_each(sk, &hci_sk_list.head) {
777 			if (hci_pi(sk)->hdev == hdev) {
778 				sk->sk_err = EPIPE;
779 				sk->sk_state_change(sk);
780 			}
781 		}
782 		read_unlock(&hci_sk_list.lock);
783 	}
784 }
785 
786 static struct hci_mgmt_chan *__hci_mgmt_chan_find(unsigned short channel)
787 {
788 	struct hci_mgmt_chan *c;
789 
790 	list_for_each_entry(c, &mgmt_chan_list, list) {
791 		if (c->channel == channel)
792 			return c;
793 	}
794 
795 	return NULL;
796 }
797 
798 static struct hci_mgmt_chan *hci_mgmt_chan_find(unsigned short channel)
799 {
800 	struct hci_mgmt_chan *c;
801 
802 	mutex_lock(&mgmt_chan_list_lock);
803 	c = __hci_mgmt_chan_find(channel);
804 	mutex_unlock(&mgmt_chan_list_lock);
805 
806 	return c;
807 }
808 
809 int hci_mgmt_chan_register(struct hci_mgmt_chan *c)
810 {
811 	if (c->channel < HCI_CHANNEL_CONTROL)
812 		return -EINVAL;
813 
814 	mutex_lock(&mgmt_chan_list_lock);
815 	if (__hci_mgmt_chan_find(c->channel)) {
816 		mutex_unlock(&mgmt_chan_list_lock);
817 		return -EALREADY;
818 	}
819 
820 	list_add_tail(&c->list, &mgmt_chan_list);
821 
822 	mutex_unlock(&mgmt_chan_list_lock);
823 
824 	return 0;
825 }
826 EXPORT_SYMBOL(hci_mgmt_chan_register);
827 
828 void hci_mgmt_chan_unregister(struct hci_mgmt_chan *c)
829 {
830 	mutex_lock(&mgmt_chan_list_lock);
831 	list_del(&c->list);
832 	mutex_unlock(&mgmt_chan_list_lock);
833 }
834 EXPORT_SYMBOL(hci_mgmt_chan_unregister);
835 
836 static int hci_sock_release(struct socket *sock)
837 {
838 	struct sock *sk = sock->sk;
839 	struct hci_dev *hdev;
840 	struct sk_buff *skb;
841 
842 	BT_DBG("sock %p sk %p", sock, sk);
843 
844 	if (!sk)
845 		return 0;
846 
847 	lock_sock(sk);
848 
849 	switch (hci_pi(sk)->channel) {
850 	case HCI_CHANNEL_MONITOR:
851 		atomic_dec(&monitor_promisc);
852 		break;
853 	case HCI_CHANNEL_RAW:
854 	case HCI_CHANNEL_USER:
855 	case HCI_CHANNEL_CONTROL:
856 		/* Send event to monitor */
857 		skb = create_monitor_ctrl_close(sk);
858 		if (skb) {
859 			hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
860 					    HCI_SOCK_TRUSTED, NULL);
861 			kfree_skb(skb);
862 		}
863 
864 		hci_sock_free_cookie(sk);
865 		break;
866 	}
867 
868 	bt_sock_unlink(&hci_sk_list, sk);
869 
870 	hdev = hci_pi(sk)->hdev;
871 	if (hdev) {
872 		if (hci_pi(sk)->channel == HCI_CHANNEL_USER &&
873 		    !hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
874 			/* When releasing a user channel exclusive access,
875 			 * call hci_dev_do_close directly instead of calling
876 			 * hci_dev_close to ensure the exclusive access will
877 			 * be released and the controller brought back down.
878 			 *
879 			 * The checking of HCI_AUTO_OFF is not needed in this
880 			 * case since it will have been cleared already when
881 			 * opening the user channel.
882 			 *
883 			 * Make sure to also check that we haven't already
884 			 * unregistered since all the cleanup will have already
885 			 * been complete and hdev will get released when we put
886 			 * below.
887 			 */
888 			hci_dev_do_close(hdev);
889 			hci_dev_clear_flag(hdev, HCI_USER_CHANNEL);
890 			hci_register_suspend_notifier(hdev);
891 			mgmt_index_added(hdev);
892 		}
893 
894 		atomic_dec(&hdev->promisc);
895 		hci_dev_put(hdev);
896 	}
897 
898 	sock_orphan(sk);
899 	release_sock(sk);
900 	sock_put(sk);
901 	return 0;
902 }
903 
904 static int hci_sock_reject_list_add(struct hci_dev *hdev, void __user *arg)
905 {
906 	bdaddr_t bdaddr;
907 	int err;
908 
909 	if (copy_from_user(&bdaddr, arg, sizeof(bdaddr)))
910 		return -EFAULT;
911 
912 	hci_dev_lock(hdev);
913 
914 	err = hci_bdaddr_list_add(&hdev->reject_list, &bdaddr, BDADDR_BREDR);
915 
916 	hci_dev_unlock(hdev);
917 
918 	return err;
919 }
920 
921 static int hci_sock_reject_list_del(struct hci_dev *hdev, void __user *arg)
922 {
923 	bdaddr_t bdaddr;
924 	int err;
925 
926 	if (copy_from_user(&bdaddr, arg, sizeof(bdaddr)))
927 		return -EFAULT;
928 
929 	hci_dev_lock(hdev);
930 
931 	err = hci_bdaddr_list_del(&hdev->reject_list, &bdaddr, BDADDR_BREDR);
932 
933 	hci_dev_unlock(hdev);
934 
935 	return err;
936 }
937 
938 /* Ioctls that require bound socket */
939 static int hci_sock_bound_ioctl(struct sock *sk, unsigned int cmd,
940 				unsigned long arg)
941 {
942 	struct hci_dev *hdev = hci_hdev_from_sock(sk);
943 
944 	if (IS_ERR(hdev))
945 		return PTR_ERR(hdev);
946 
947 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
948 		return -EBUSY;
949 
950 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
951 		return -EOPNOTSUPP;
952 
953 	if (hdev->dev_type != HCI_PRIMARY)
954 		return -EOPNOTSUPP;
955 
956 	switch (cmd) {
957 	case HCISETRAW:
958 		if (!capable(CAP_NET_ADMIN))
959 			return -EPERM;
960 		return -EOPNOTSUPP;
961 
962 	case HCIGETCONNINFO:
963 		return hci_get_conn_info(hdev, (void __user *)arg);
964 
965 	case HCIGETAUTHINFO:
966 		return hci_get_auth_info(hdev, (void __user *)arg);
967 
968 	case HCIBLOCKADDR:
969 		if (!capable(CAP_NET_ADMIN))
970 			return -EPERM;
971 		return hci_sock_reject_list_add(hdev, (void __user *)arg);
972 
973 	case HCIUNBLOCKADDR:
974 		if (!capable(CAP_NET_ADMIN))
975 			return -EPERM;
976 		return hci_sock_reject_list_del(hdev, (void __user *)arg);
977 	}
978 
979 	return -ENOIOCTLCMD;
980 }
981 
982 static int hci_sock_ioctl(struct socket *sock, unsigned int cmd,
983 			  unsigned long arg)
984 {
985 	void __user *argp = (void __user *)arg;
986 	struct sock *sk = sock->sk;
987 	int err;
988 
989 	BT_DBG("cmd %x arg %lx", cmd, arg);
990 
991 	lock_sock(sk);
992 
993 	if (hci_pi(sk)->channel != HCI_CHANNEL_RAW) {
994 		err = -EBADFD;
995 		goto done;
996 	}
997 
998 	/* When calling an ioctl on an unbound raw socket, then ensure
999 	 * that the monitor gets informed. Ensure that the resulting event
1000 	 * is only send once by checking if the cookie exists or not. The
1001 	 * socket cookie will be only ever generated once for the lifetime
1002 	 * of a given socket.
1003 	 */
1004 	if (hci_sock_gen_cookie(sk)) {
1005 		struct sk_buff *skb;
1006 
1007 		if (capable(CAP_NET_ADMIN))
1008 			hci_sock_set_flag(sk, HCI_SOCK_TRUSTED);
1009 
1010 		/* Send event to monitor */
1011 		skb = create_monitor_ctrl_open(sk);
1012 		if (skb) {
1013 			hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1014 					    HCI_SOCK_TRUSTED, NULL);
1015 			kfree_skb(skb);
1016 		}
1017 	}
1018 
1019 	release_sock(sk);
1020 
1021 	switch (cmd) {
1022 	case HCIGETDEVLIST:
1023 		return hci_get_dev_list(argp);
1024 
1025 	case HCIGETDEVINFO:
1026 		return hci_get_dev_info(argp);
1027 
1028 	case HCIGETCONNLIST:
1029 		return hci_get_conn_list(argp);
1030 
1031 	case HCIDEVUP:
1032 		if (!capable(CAP_NET_ADMIN))
1033 			return -EPERM;
1034 		return hci_dev_open(arg);
1035 
1036 	case HCIDEVDOWN:
1037 		if (!capable(CAP_NET_ADMIN))
1038 			return -EPERM;
1039 		return hci_dev_close(arg);
1040 
1041 	case HCIDEVRESET:
1042 		if (!capable(CAP_NET_ADMIN))
1043 			return -EPERM;
1044 		return hci_dev_reset(arg);
1045 
1046 	case HCIDEVRESTAT:
1047 		if (!capable(CAP_NET_ADMIN))
1048 			return -EPERM;
1049 		return hci_dev_reset_stat(arg);
1050 
1051 	case HCISETSCAN:
1052 	case HCISETAUTH:
1053 	case HCISETENCRYPT:
1054 	case HCISETPTYPE:
1055 	case HCISETLINKPOL:
1056 	case HCISETLINKMODE:
1057 	case HCISETACLMTU:
1058 	case HCISETSCOMTU:
1059 		if (!capable(CAP_NET_ADMIN))
1060 			return -EPERM;
1061 		return hci_dev_cmd(cmd, argp);
1062 
1063 	case HCIINQUIRY:
1064 		return hci_inquiry(argp);
1065 	}
1066 
1067 	lock_sock(sk);
1068 
1069 	err = hci_sock_bound_ioctl(sk, cmd, arg);
1070 
1071 done:
1072 	release_sock(sk);
1073 	return err;
1074 }
1075 
1076 #ifdef CONFIG_COMPAT
1077 static int hci_sock_compat_ioctl(struct socket *sock, unsigned int cmd,
1078 				 unsigned long arg)
1079 {
1080 	switch (cmd) {
1081 	case HCIDEVUP:
1082 	case HCIDEVDOWN:
1083 	case HCIDEVRESET:
1084 	case HCIDEVRESTAT:
1085 		return hci_sock_ioctl(sock, cmd, arg);
1086 	}
1087 
1088 	return hci_sock_ioctl(sock, cmd, (unsigned long)compat_ptr(arg));
1089 }
1090 #endif
1091 
1092 static int hci_sock_bind(struct socket *sock, struct sockaddr *addr,
1093 			 int addr_len)
1094 {
1095 	struct sockaddr_hci haddr;
1096 	struct sock *sk = sock->sk;
1097 	struct hci_dev *hdev = NULL;
1098 	struct sk_buff *skb;
1099 	int len, err = 0;
1100 
1101 	BT_DBG("sock %p sk %p", sock, sk);
1102 
1103 	if (!addr)
1104 		return -EINVAL;
1105 
1106 	memset(&haddr, 0, sizeof(haddr));
1107 	len = min_t(unsigned int, sizeof(haddr), addr_len);
1108 	memcpy(&haddr, addr, len);
1109 
1110 	if (haddr.hci_family != AF_BLUETOOTH)
1111 		return -EINVAL;
1112 
1113 	lock_sock(sk);
1114 
1115 	/* Allow detaching from dead device and attaching to alive device, if
1116 	 * the caller wants to re-bind (instead of close) this socket in
1117 	 * response to hci_sock_dev_event(HCI_DEV_UNREG) notification.
1118 	 */
1119 	hdev = hci_pi(sk)->hdev;
1120 	if (hdev && hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1121 		hci_pi(sk)->hdev = NULL;
1122 		sk->sk_state = BT_OPEN;
1123 		hci_dev_put(hdev);
1124 	}
1125 	hdev = NULL;
1126 
1127 	if (sk->sk_state == BT_BOUND) {
1128 		err = -EALREADY;
1129 		goto done;
1130 	}
1131 
1132 	switch (haddr.hci_channel) {
1133 	case HCI_CHANNEL_RAW:
1134 		if (hci_pi(sk)->hdev) {
1135 			err = -EALREADY;
1136 			goto done;
1137 		}
1138 
1139 		if (haddr.hci_dev != HCI_DEV_NONE) {
1140 			hdev = hci_dev_get(haddr.hci_dev);
1141 			if (!hdev) {
1142 				err = -ENODEV;
1143 				goto done;
1144 			}
1145 
1146 			atomic_inc(&hdev->promisc);
1147 		}
1148 
1149 		hci_pi(sk)->channel = haddr.hci_channel;
1150 
1151 		if (!hci_sock_gen_cookie(sk)) {
1152 			/* In the case when a cookie has already been assigned,
1153 			 * then there has been already an ioctl issued against
1154 			 * an unbound socket and with that triggered an open
1155 			 * notification. Send a close notification first to
1156 			 * allow the state transition to bounded.
1157 			 */
1158 			skb = create_monitor_ctrl_close(sk);
1159 			if (skb) {
1160 				hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1161 						    HCI_SOCK_TRUSTED, NULL);
1162 				kfree_skb(skb);
1163 			}
1164 		}
1165 
1166 		if (capable(CAP_NET_ADMIN))
1167 			hci_sock_set_flag(sk, HCI_SOCK_TRUSTED);
1168 
1169 		hci_pi(sk)->hdev = hdev;
1170 
1171 		/* Send event to monitor */
1172 		skb = create_monitor_ctrl_open(sk);
1173 		if (skb) {
1174 			hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1175 					    HCI_SOCK_TRUSTED, NULL);
1176 			kfree_skb(skb);
1177 		}
1178 		break;
1179 
1180 	case HCI_CHANNEL_USER:
1181 		if (hci_pi(sk)->hdev) {
1182 			err = -EALREADY;
1183 			goto done;
1184 		}
1185 
1186 		if (haddr.hci_dev == HCI_DEV_NONE) {
1187 			err = -EINVAL;
1188 			goto done;
1189 		}
1190 
1191 		if (!capable(CAP_NET_ADMIN)) {
1192 			err = -EPERM;
1193 			goto done;
1194 		}
1195 
1196 		hdev = hci_dev_get(haddr.hci_dev);
1197 		if (!hdev) {
1198 			err = -ENODEV;
1199 			goto done;
1200 		}
1201 
1202 		if (test_bit(HCI_INIT, &hdev->flags) ||
1203 		    hci_dev_test_flag(hdev, HCI_SETUP) ||
1204 		    hci_dev_test_flag(hdev, HCI_CONFIG) ||
1205 		    (!hci_dev_test_flag(hdev, HCI_AUTO_OFF) &&
1206 		     test_bit(HCI_UP, &hdev->flags))) {
1207 			err = -EBUSY;
1208 			hci_dev_put(hdev);
1209 			goto done;
1210 		}
1211 
1212 		if (hci_dev_test_and_set_flag(hdev, HCI_USER_CHANNEL)) {
1213 			err = -EUSERS;
1214 			hci_dev_put(hdev);
1215 			goto done;
1216 		}
1217 
1218 		mgmt_index_removed(hdev);
1219 		hci_unregister_suspend_notifier(hdev);
1220 
1221 		err = hci_dev_open(hdev->id);
1222 		if (err) {
1223 			if (err == -EALREADY) {
1224 				/* In case the transport is already up and
1225 				 * running, clear the error here.
1226 				 *
1227 				 * This can happen when opening a user
1228 				 * channel and HCI_AUTO_OFF grace period
1229 				 * is still active.
1230 				 */
1231 				err = 0;
1232 			} else {
1233 				hci_dev_clear_flag(hdev, HCI_USER_CHANNEL);
1234 				hci_register_suspend_notifier(hdev);
1235 				mgmt_index_added(hdev);
1236 				hci_dev_put(hdev);
1237 				goto done;
1238 			}
1239 		}
1240 
1241 		hci_pi(sk)->channel = haddr.hci_channel;
1242 
1243 		if (!hci_sock_gen_cookie(sk)) {
1244 			/* In the case when a cookie has already been assigned,
1245 			 * this socket will transition from a raw socket into
1246 			 * a user channel socket. For a clean transition, send
1247 			 * the close notification first.
1248 			 */
1249 			skb = create_monitor_ctrl_close(sk);
1250 			if (skb) {
1251 				hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1252 						    HCI_SOCK_TRUSTED, NULL);
1253 				kfree_skb(skb);
1254 			}
1255 		}
1256 
1257 		/* The user channel is restricted to CAP_NET_ADMIN
1258 		 * capabilities and with that implicitly trusted.
1259 		 */
1260 		hci_sock_set_flag(sk, HCI_SOCK_TRUSTED);
1261 
1262 		hci_pi(sk)->hdev = hdev;
1263 
1264 		/* Send event to monitor */
1265 		skb = create_monitor_ctrl_open(sk);
1266 		if (skb) {
1267 			hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1268 					    HCI_SOCK_TRUSTED, NULL);
1269 			kfree_skb(skb);
1270 		}
1271 
1272 		atomic_inc(&hdev->promisc);
1273 		break;
1274 
1275 	case HCI_CHANNEL_MONITOR:
1276 		if (haddr.hci_dev != HCI_DEV_NONE) {
1277 			err = -EINVAL;
1278 			goto done;
1279 		}
1280 
1281 		if (!capable(CAP_NET_RAW)) {
1282 			err = -EPERM;
1283 			goto done;
1284 		}
1285 
1286 		hci_pi(sk)->channel = haddr.hci_channel;
1287 
1288 		/* The monitor interface is restricted to CAP_NET_RAW
1289 		 * capabilities and with that implicitly trusted.
1290 		 */
1291 		hci_sock_set_flag(sk, HCI_SOCK_TRUSTED);
1292 
1293 		send_monitor_note(sk, "Linux version %s (%s)",
1294 				  init_utsname()->release,
1295 				  init_utsname()->machine);
1296 		send_monitor_note(sk, "Bluetooth subsystem version %u.%u",
1297 				  BT_SUBSYS_VERSION, BT_SUBSYS_REVISION);
1298 		send_monitor_replay(sk);
1299 		send_monitor_control_replay(sk);
1300 
1301 		atomic_inc(&monitor_promisc);
1302 		break;
1303 
1304 	case HCI_CHANNEL_LOGGING:
1305 		if (haddr.hci_dev != HCI_DEV_NONE) {
1306 			err = -EINVAL;
1307 			goto done;
1308 		}
1309 
1310 		if (!capable(CAP_NET_ADMIN)) {
1311 			err = -EPERM;
1312 			goto done;
1313 		}
1314 
1315 		hci_pi(sk)->channel = haddr.hci_channel;
1316 		break;
1317 
1318 	default:
1319 		if (!hci_mgmt_chan_find(haddr.hci_channel)) {
1320 			err = -EINVAL;
1321 			goto done;
1322 		}
1323 
1324 		if (haddr.hci_dev != HCI_DEV_NONE) {
1325 			err = -EINVAL;
1326 			goto done;
1327 		}
1328 
1329 		/* Users with CAP_NET_ADMIN capabilities are allowed
1330 		 * access to all management commands and events. For
1331 		 * untrusted users the interface is restricted and
1332 		 * also only untrusted events are sent.
1333 		 */
1334 		if (capable(CAP_NET_ADMIN))
1335 			hci_sock_set_flag(sk, HCI_SOCK_TRUSTED);
1336 
1337 		hci_pi(sk)->channel = haddr.hci_channel;
1338 
1339 		/* At the moment the index and unconfigured index events
1340 		 * are enabled unconditionally. Setting them on each
1341 		 * socket when binding keeps this functionality. They
1342 		 * however might be cleared later and then sending of these
1343 		 * events will be disabled, but that is then intentional.
1344 		 *
1345 		 * This also enables generic events that are safe to be
1346 		 * received by untrusted users. Example for such events
1347 		 * are changes to settings, class of device, name etc.
1348 		 */
1349 		if (hci_pi(sk)->channel == HCI_CHANNEL_CONTROL) {
1350 			if (!hci_sock_gen_cookie(sk)) {
1351 				/* In the case when a cookie has already been
1352 				 * assigned, this socket will transition from
1353 				 * a raw socket into a control socket. To
1354 				 * allow for a clean transition, send the
1355 				 * close notification first.
1356 				 */
1357 				skb = create_monitor_ctrl_close(sk);
1358 				if (skb) {
1359 					hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1360 							    HCI_SOCK_TRUSTED, NULL);
1361 					kfree_skb(skb);
1362 				}
1363 			}
1364 
1365 			/* Send event to monitor */
1366 			skb = create_monitor_ctrl_open(sk);
1367 			if (skb) {
1368 				hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1369 						    HCI_SOCK_TRUSTED, NULL);
1370 				kfree_skb(skb);
1371 			}
1372 
1373 			hci_sock_set_flag(sk, HCI_MGMT_INDEX_EVENTS);
1374 			hci_sock_set_flag(sk, HCI_MGMT_UNCONF_INDEX_EVENTS);
1375 			hci_sock_set_flag(sk, HCI_MGMT_OPTION_EVENTS);
1376 			hci_sock_set_flag(sk, HCI_MGMT_SETTING_EVENTS);
1377 			hci_sock_set_flag(sk, HCI_MGMT_DEV_CLASS_EVENTS);
1378 			hci_sock_set_flag(sk, HCI_MGMT_LOCAL_NAME_EVENTS);
1379 		}
1380 		break;
1381 	}
1382 
1383 	/* Default MTU to HCI_MAX_FRAME_SIZE if not set */
1384 	if (!hci_pi(sk)->mtu)
1385 		hci_pi(sk)->mtu = HCI_MAX_FRAME_SIZE;
1386 
1387 	sk->sk_state = BT_BOUND;
1388 
1389 done:
1390 	release_sock(sk);
1391 	return err;
1392 }
1393 
1394 static int hci_sock_getname(struct socket *sock, struct sockaddr *addr,
1395 			    int peer)
1396 {
1397 	struct sockaddr_hci *haddr = (struct sockaddr_hci *)addr;
1398 	struct sock *sk = sock->sk;
1399 	struct hci_dev *hdev;
1400 	int err = 0;
1401 
1402 	BT_DBG("sock %p sk %p", sock, sk);
1403 
1404 	if (peer)
1405 		return -EOPNOTSUPP;
1406 
1407 	lock_sock(sk);
1408 
1409 	hdev = hci_hdev_from_sock(sk);
1410 	if (IS_ERR(hdev)) {
1411 		err = PTR_ERR(hdev);
1412 		goto done;
1413 	}
1414 
1415 	haddr->hci_family = AF_BLUETOOTH;
1416 	haddr->hci_dev    = hdev->id;
1417 	haddr->hci_channel= hci_pi(sk)->channel;
1418 	err = sizeof(*haddr);
1419 
1420 done:
1421 	release_sock(sk);
1422 	return err;
1423 }
1424 
1425 static void hci_sock_cmsg(struct sock *sk, struct msghdr *msg,
1426 			  struct sk_buff *skb)
1427 {
1428 	__u8 mask = hci_pi(sk)->cmsg_mask;
1429 
1430 	if (mask & HCI_CMSG_DIR) {
1431 		int incoming = bt_cb(skb)->incoming;
1432 		put_cmsg(msg, SOL_HCI, HCI_CMSG_DIR, sizeof(incoming),
1433 			 &incoming);
1434 	}
1435 
1436 	if (mask & HCI_CMSG_TSTAMP) {
1437 #ifdef CONFIG_COMPAT
1438 		struct old_timeval32 ctv;
1439 #endif
1440 		struct __kernel_old_timeval tv;
1441 		void *data;
1442 		int len;
1443 
1444 		skb_get_timestamp(skb, &tv);
1445 
1446 		data = &tv;
1447 		len = sizeof(tv);
1448 #ifdef CONFIG_COMPAT
1449 		if (!COMPAT_USE_64BIT_TIME &&
1450 		    (msg->msg_flags & MSG_CMSG_COMPAT)) {
1451 			ctv.tv_sec = tv.tv_sec;
1452 			ctv.tv_usec = tv.tv_usec;
1453 			data = &ctv;
1454 			len = sizeof(ctv);
1455 		}
1456 #endif
1457 
1458 		put_cmsg(msg, SOL_HCI, HCI_CMSG_TSTAMP, len, data);
1459 	}
1460 }
1461 
1462 static int hci_sock_recvmsg(struct socket *sock, struct msghdr *msg,
1463 			    size_t len, int flags)
1464 {
1465 	struct sock *sk = sock->sk;
1466 	struct sk_buff *skb;
1467 	int copied, err;
1468 	unsigned int skblen;
1469 
1470 	BT_DBG("sock %p, sk %p", sock, sk);
1471 
1472 	if (flags & MSG_OOB)
1473 		return -EOPNOTSUPP;
1474 
1475 	if (hci_pi(sk)->channel == HCI_CHANNEL_LOGGING)
1476 		return -EOPNOTSUPP;
1477 
1478 	if (sk->sk_state == BT_CLOSED)
1479 		return 0;
1480 
1481 	skb = skb_recv_datagram(sk, flags, &err);
1482 	if (!skb)
1483 		return err;
1484 
1485 	skblen = skb->len;
1486 	copied = skb->len;
1487 	if (len < copied) {
1488 		msg->msg_flags |= MSG_TRUNC;
1489 		copied = len;
1490 	}
1491 
1492 	skb_reset_transport_header(skb);
1493 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
1494 
1495 	switch (hci_pi(sk)->channel) {
1496 	case HCI_CHANNEL_RAW:
1497 		hci_sock_cmsg(sk, msg, skb);
1498 		break;
1499 	case HCI_CHANNEL_USER:
1500 	case HCI_CHANNEL_MONITOR:
1501 		sock_recv_timestamp(msg, sk, skb);
1502 		break;
1503 	default:
1504 		if (hci_mgmt_chan_find(hci_pi(sk)->channel))
1505 			sock_recv_timestamp(msg, sk, skb);
1506 		break;
1507 	}
1508 
1509 	skb_free_datagram(sk, skb);
1510 
1511 	if (flags & MSG_TRUNC)
1512 		copied = skblen;
1513 
1514 	return err ? : copied;
1515 }
1516 
1517 static int hci_mgmt_cmd(struct hci_mgmt_chan *chan, struct sock *sk,
1518 			struct sk_buff *skb)
1519 {
1520 	u8 *cp;
1521 	struct mgmt_hdr *hdr;
1522 	u16 opcode, index, len;
1523 	struct hci_dev *hdev = NULL;
1524 	const struct hci_mgmt_handler *handler;
1525 	bool var_len, no_hdev;
1526 	int err;
1527 
1528 	BT_DBG("got %d bytes", skb->len);
1529 
1530 	if (skb->len < sizeof(*hdr))
1531 		return -EINVAL;
1532 
1533 	hdr = (void *)skb->data;
1534 	opcode = __le16_to_cpu(hdr->opcode);
1535 	index = __le16_to_cpu(hdr->index);
1536 	len = __le16_to_cpu(hdr->len);
1537 
1538 	if (len != skb->len - sizeof(*hdr)) {
1539 		err = -EINVAL;
1540 		goto done;
1541 	}
1542 
1543 	if (chan->channel == HCI_CHANNEL_CONTROL) {
1544 		struct sk_buff *cmd;
1545 
1546 		/* Send event to monitor */
1547 		cmd = create_monitor_ctrl_command(sk, index, opcode, len,
1548 						  skb->data + sizeof(*hdr));
1549 		if (cmd) {
1550 			hci_send_to_channel(HCI_CHANNEL_MONITOR, cmd,
1551 					    HCI_SOCK_TRUSTED, NULL);
1552 			kfree_skb(cmd);
1553 		}
1554 	}
1555 
1556 	if (opcode >= chan->handler_count ||
1557 	    chan->handlers[opcode].func == NULL) {
1558 		BT_DBG("Unknown op %u", opcode);
1559 		err = mgmt_cmd_status(sk, index, opcode,
1560 				      MGMT_STATUS_UNKNOWN_COMMAND);
1561 		goto done;
1562 	}
1563 
1564 	handler = &chan->handlers[opcode];
1565 
1566 	if (!hci_sock_test_flag(sk, HCI_SOCK_TRUSTED) &&
1567 	    !(handler->flags & HCI_MGMT_UNTRUSTED)) {
1568 		err = mgmt_cmd_status(sk, index, opcode,
1569 				      MGMT_STATUS_PERMISSION_DENIED);
1570 		goto done;
1571 	}
1572 
1573 	if (index != MGMT_INDEX_NONE) {
1574 		hdev = hci_dev_get(index);
1575 		if (!hdev) {
1576 			err = mgmt_cmd_status(sk, index, opcode,
1577 					      MGMT_STATUS_INVALID_INDEX);
1578 			goto done;
1579 		}
1580 
1581 		if (hci_dev_test_flag(hdev, HCI_SETUP) ||
1582 		    hci_dev_test_flag(hdev, HCI_CONFIG) ||
1583 		    hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1584 			err = mgmt_cmd_status(sk, index, opcode,
1585 					      MGMT_STATUS_INVALID_INDEX);
1586 			goto done;
1587 		}
1588 
1589 		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1590 		    !(handler->flags & HCI_MGMT_UNCONFIGURED)) {
1591 			err = mgmt_cmd_status(sk, index, opcode,
1592 					      MGMT_STATUS_INVALID_INDEX);
1593 			goto done;
1594 		}
1595 	}
1596 
1597 	if (!(handler->flags & HCI_MGMT_HDEV_OPTIONAL)) {
1598 		no_hdev = (handler->flags & HCI_MGMT_NO_HDEV);
1599 		if (no_hdev != !hdev) {
1600 			err = mgmt_cmd_status(sk, index, opcode,
1601 					      MGMT_STATUS_INVALID_INDEX);
1602 			goto done;
1603 		}
1604 	}
1605 
1606 	var_len = (handler->flags & HCI_MGMT_VAR_LEN);
1607 	if ((var_len && len < handler->data_len) ||
1608 	    (!var_len && len != handler->data_len)) {
1609 		err = mgmt_cmd_status(sk, index, opcode,
1610 				      MGMT_STATUS_INVALID_PARAMS);
1611 		goto done;
1612 	}
1613 
1614 	if (hdev && chan->hdev_init)
1615 		chan->hdev_init(sk, hdev);
1616 
1617 	cp = skb->data + sizeof(*hdr);
1618 
1619 	err = handler->func(sk, hdev, cp, len);
1620 	if (err < 0)
1621 		goto done;
1622 
1623 	err = skb->len;
1624 
1625 done:
1626 	if (hdev)
1627 		hci_dev_put(hdev);
1628 
1629 	return err;
1630 }
1631 
1632 static int hci_logging_frame(struct sock *sk, struct sk_buff *skb,
1633 			     unsigned int flags)
1634 {
1635 	struct hci_mon_hdr *hdr;
1636 	struct hci_dev *hdev;
1637 	u16 index;
1638 	int err;
1639 
1640 	/* The logging frame consists at minimum of the standard header,
1641 	 * the priority byte, the ident length byte and at least one string
1642 	 * terminator NUL byte. Anything shorter are invalid packets.
1643 	 */
1644 	if (skb->len < sizeof(*hdr) + 3)
1645 		return -EINVAL;
1646 
1647 	hdr = (void *)skb->data;
1648 
1649 	if (__le16_to_cpu(hdr->len) != skb->len - sizeof(*hdr))
1650 		return -EINVAL;
1651 
1652 	if (__le16_to_cpu(hdr->opcode) == 0x0000) {
1653 		__u8 priority = skb->data[sizeof(*hdr)];
1654 		__u8 ident_len = skb->data[sizeof(*hdr) + 1];
1655 
1656 		/* Only the priorities 0-7 are valid and with that any other
1657 		 * value results in an invalid packet.
1658 		 *
1659 		 * The priority byte is followed by an ident length byte and
1660 		 * the NUL terminated ident string. Check that the ident
1661 		 * length is not overflowing the packet and also that the
1662 		 * ident string itself is NUL terminated. In case the ident
1663 		 * length is zero, the length value actually doubles as NUL
1664 		 * terminator identifier.
1665 		 *
1666 		 * The message follows the ident string (if present) and
1667 		 * must be NUL terminated. Otherwise it is not a valid packet.
1668 		 */
1669 		if (priority > 7 || skb->data[skb->len - 1] != 0x00 ||
1670 		    ident_len > skb->len - sizeof(*hdr) - 3 ||
1671 		    skb->data[sizeof(*hdr) + ident_len + 1] != 0x00)
1672 			return -EINVAL;
1673 	} else {
1674 		return -EINVAL;
1675 	}
1676 
1677 	index = __le16_to_cpu(hdr->index);
1678 
1679 	if (index != MGMT_INDEX_NONE) {
1680 		hdev = hci_dev_get(index);
1681 		if (!hdev)
1682 			return -ENODEV;
1683 	} else {
1684 		hdev = NULL;
1685 	}
1686 
1687 	hdr->opcode = cpu_to_le16(HCI_MON_USER_LOGGING);
1688 
1689 	hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, HCI_SOCK_TRUSTED, NULL);
1690 	err = skb->len;
1691 
1692 	if (hdev)
1693 		hci_dev_put(hdev);
1694 
1695 	return err;
1696 }
1697 
1698 static int hci_sock_sendmsg(struct socket *sock, struct msghdr *msg,
1699 			    size_t len)
1700 {
1701 	struct sock *sk = sock->sk;
1702 	struct hci_mgmt_chan *chan;
1703 	struct hci_dev *hdev;
1704 	struct sk_buff *skb;
1705 	int err;
1706 	const unsigned int flags = msg->msg_flags;
1707 
1708 	BT_DBG("sock %p sk %p", sock, sk);
1709 
1710 	if (flags & MSG_OOB)
1711 		return -EOPNOTSUPP;
1712 
1713 	if (flags & ~(MSG_DONTWAIT | MSG_NOSIGNAL | MSG_ERRQUEUE | MSG_CMSG_COMPAT))
1714 		return -EINVAL;
1715 
1716 	if (len < 4 || len > hci_pi(sk)->mtu)
1717 		return -EINVAL;
1718 
1719 	skb = bt_skb_sendmsg(sk, msg, len, len, 0, 0);
1720 	if (IS_ERR(skb))
1721 		return PTR_ERR(skb);
1722 
1723 	lock_sock(sk);
1724 
1725 	switch (hci_pi(sk)->channel) {
1726 	case HCI_CHANNEL_RAW:
1727 	case HCI_CHANNEL_USER:
1728 		break;
1729 	case HCI_CHANNEL_MONITOR:
1730 		err = -EOPNOTSUPP;
1731 		goto drop;
1732 	case HCI_CHANNEL_LOGGING:
1733 		err = hci_logging_frame(sk, skb, flags);
1734 		goto drop;
1735 	default:
1736 		mutex_lock(&mgmt_chan_list_lock);
1737 		chan = __hci_mgmt_chan_find(hci_pi(sk)->channel);
1738 		if (chan)
1739 			err = hci_mgmt_cmd(chan, sk, skb);
1740 		else
1741 			err = -EINVAL;
1742 
1743 		mutex_unlock(&mgmt_chan_list_lock);
1744 		goto drop;
1745 	}
1746 
1747 	hdev = hci_hdev_from_sock(sk);
1748 	if (IS_ERR(hdev)) {
1749 		err = PTR_ERR(hdev);
1750 		goto drop;
1751 	}
1752 
1753 	if (!test_bit(HCI_UP, &hdev->flags)) {
1754 		err = -ENETDOWN;
1755 		goto drop;
1756 	}
1757 
1758 	hci_skb_pkt_type(skb) = skb->data[0];
1759 	skb_pull(skb, 1);
1760 
1761 	if (hci_pi(sk)->channel == HCI_CHANNEL_USER) {
1762 		/* No permission check is needed for user channel
1763 		 * since that gets enforced when binding the socket.
1764 		 *
1765 		 * However check that the packet type is valid.
1766 		 */
1767 		if (hci_skb_pkt_type(skb) != HCI_COMMAND_PKT &&
1768 		    hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
1769 		    hci_skb_pkt_type(skb) != HCI_SCODATA_PKT &&
1770 		    hci_skb_pkt_type(skb) != HCI_ISODATA_PKT) {
1771 			err = -EINVAL;
1772 			goto drop;
1773 		}
1774 
1775 		skb_queue_tail(&hdev->raw_q, skb);
1776 		queue_work(hdev->workqueue, &hdev->tx_work);
1777 	} else if (hci_skb_pkt_type(skb) == HCI_COMMAND_PKT) {
1778 		u16 opcode = get_unaligned_le16(skb->data);
1779 		u16 ogf = hci_opcode_ogf(opcode);
1780 		u16 ocf = hci_opcode_ocf(opcode);
1781 
1782 		if (((ogf > HCI_SFLT_MAX_OGF) ||
1783 		     !hci_test_bit(ocf & HCI_FLT_OCF_BITS,
1784 				   &hci_sec_filter.ocf_mask[ogf])) &&
1785 		    !capable(CAP_NET_RAW)) {
1786 			err = -EPERM;
1787 			goto drop;
1788 		}
1789 
1790 		/* Since the opcode has already been extracted here, store
1791 		 * a copy of the value for later use by the drivers.
1792 		 */
1793 		hci_skb_opcode(skb) = opcode;
1794 
1795 		if (ogf == 0x3f) {
1796 			skb_queue_tail(&hdev->raw_q, skb);
1797 			queue_work(hdev->workqueue, &hdev->tx_work);
1798 		} else {
1799 			/* Stand-alone HCI commands must be flagged as
1800 			 * single-command requests.
1801 			 */
1802 			bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
1803 
1804 			skb_queue_tail(&hdev->cmd_q, skb);
1805 			queue_work(hdev->workqueue, &hdev->cmd_work);
1806 		}
1807 	} else {
1808 		if (!capable(CAP_NET_RAW)) {
1809 			err = -EPERM;
1810 			goto drop;
1811 		}
1812 
1813 		if (hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
1814 		    hci_skb_pkt_type(skb) != HCI_SCODATA_PKT &&
1815 		    hci_skb_pkt_type(skb) != HCI_ISODATA_PKT) {
1816 			err = -EINVAL;
1817 			goto drop;
1818 		}
1819 
1820 		skb_queue_tail(&hdev->raw_q, skb);
1821 		queue_work(hdev->workqueue, &hdev->tx_work);
1822 	}
1823 
1824 	err = len;
1825 
1826 done:
1827 	release_sock(sk);
1828 	return err;
1829 
1830 drop:
1831 	kfree_skb(skb);
1832 	goto done;
1833 }
1834 
1835 static int hci_sock_setsockopt_old(struct socket *sock, int level, int optname,
1836 				   sockptr_t optval, unsigned int len)
1837 {
1838 	struct hci_ufilter uf = { .opcode = 0 };
1839 	struct sock *sk = sock->sk;
1840 	int err = 0, opt = 0;
1841 
1842 	BT_DBG("sk %p, opt %d", sk, optname);
1843 
1844 	lock_sock(sk);
1845 
1846 	if (hci_pi(sk)->channel != HCI_CHANNEL_RAW) {
1847 		err = -EBADFD;
1848 		goto done;
1849 	}
1850 
1851 	switch (optname) {
1852 	case HCI_DATA_DIR:
1853 		if (copy_from_sockptr(&opt, optval, sizeof(opt))) {
1854 			err = -EFAULT;
1855 			break;
1856 		}
1857 
1858 		if (opt)
1859 			hci_pi(sk)->cmsg_mask |= HCI_CMSG_DIR;
1860 		else
1861 			hci_pi(sk)->cmsg_mask &= ~HCI_CMSG_DIR;
1862 		break;
1863 
1864 	case HCI_TIME_STAMP:
1865 		if (copy_from_sockptr(&opt, optval, sizeof(opt))) {
1866 			err = -EFAULT;
1867 			break;
1868 		}
1869 
1870 		if (opt)
1871 			hci_pi(sk)->cmsg_mask |= HCI_CMSG_TSTAMP;
1872 		else
1873 			hci_pi(sk)->cmsg_mask &= ~HCI_CMSG_TSTAMP;
1874 		break;
1875 
1876 	case HCI_FILTER:
1877 		{
1878 			struct hci_filter *f = &hci_pi(sk)->filter;
1879 
1880 			uf.type_mask = f->type_mask;
1881 			uf.opcode    = f->opcode;
1882 			uf.event_mask[0] = *((u32 *) f->event_mask + 0);
1883 			uf.event_mask[1] = *((u32 *) f->event_mask + 1);
1884 		}
1885 
1886 		len = min_t(unsigned int, len, sizeof(uf));
1887 		if (copy_from_sockptr(&uf, optval, len)) {
1888 			err = -EFAULT;
1889 			break;
1890 		}
1891 
1892 		if (!capable(CAP_NET_RAW)) {
1893 			uf.type_mask &= hci_sec_filter.type_mask;
1894 			uf.event_mask[0] &= *((u32 *) hci_sec_filter.event_mask + 0);
1895 			uf.event_mask[1] &= *((u32 *) hci_sec_filter.event_mask + 1);
1896 		}
1897 
1898 		{
1899 			struct hci_filter *f = &hci_pi(sk)->filter;
1900 
1901 			f->type_mask = uf.type_mask;
1902 			f->opcode    = uf.opcode;
1903 			*((u32 *) f->event_mask + 0) = uf.event_mask[0];
1904 			*((u32 *) f->event_mask + 1) = uf.event_mask[1];
1905 		}
1906 		break;
1907 
1908 	default:
1909 		err = -ENOPROTOOPT;
1910 		break;
1911 	}
1912 
1913 done:
1914 	release_sock(sk);
1915 	return err;
1916 }
1917 
1918 static int hci_sock_setsockopt(struct socket *sock, int level, int optname,
1919 			       sockptr_t optval, unsigned int len)
1920 {
1921 	struct sock *sk = sock->sk;
1922 	int err = 0;
1923 	u16 opt;
1924 
1925 	BT_DBG("sk %p, opt %d", sk, optname);
1926 
1927 	if (level == SOL_HCI)
1928 		return hci_sock_setsockopt_old(sock, level, optname, optval,
1929 					       len);
1930 
1931 	if (level != SOL_BLUETOOTH)
1932 		return -ENOPROTOOPT;
1933 
1934 	lock_sock(sk);
1935 
1936 	switch (optname) {
1937 	case BT_SNDMTU:
1938 	case BT_RCVMTU:
1939 		switch (hci_pi(sk)->channel) {
1940 		/* Don't allow changing MTU for channels that are meant for HCI
1941 		 * traffic only.
1942 		 */
1943 		case HCI_CHANNEL_RAW:
1944 		case HCI_CHANNEL_USER:
1945 			err = -ENOPROTOOPT;
1946 			goto done;
1947 		}
1948 
1949 		if (copy_from_sockptr(&opt, optval, sizeof(opt))) {
1950 			err = -EFAULT;
1951 			break;
1952 		}
1953 
1954 		hci_pi(sk)->mtu = opt;
1955 		break;
1956 
1957 	default:
1958 		err = -ENOPROTOOPT;
1959 		break;
1960 	}
1961 
1962 done:
1963 	release_sock(sk);
1964 	return err;
1965 }
1966 
1967 static int hci_sock_getsockopt_old(struct socket *sock, int level, int optname,
1968 				   char __user *optval, int __user *optlen)
1969 {
1970 	struct hci_ufilter uf;
1971 	struct sock *sk = sock->sk;
1972 	int len, opt, err = 0;
1973 
1974 	BT_DBG("sk %p, opt %d", sk, optname);
1975 
1976 	if (get_user(len, optlen))
1977 		return -EFAULT;
1978 
1979 	lock_sock(sk);
1980 
1981 	if (hci_pi(sk)->channel != HCI_CHANNEL_RAW) {
1982 		err = -EBADFD;
1983 		goto done;
1984 	}
1985 
1986 	switch (optname) {
1987 	case HCI_DATA_DIR:
1988 		if (hci_pi(sk)->cmsg_mask & HCI_CMSG_DIR)
1989 			opt = 1;
1990 		else
1991 			opt = 0;
1992 
1993 		if (put_user(opt, optval))
1994 			err = -EFAULT;
1995 		break;
1996 
1997 	case HCI_TIME_STAMP:
1998 		if (hci_pi(sk)->cmsg_mask & HCI_CMSG_TSTAMP)
1999 			opt = 1;
2000 		else
2001 			opt = 0;
2002 
2003 		if (put_user(opt, optval))
2004 			err = -EFAULT;
2005 		break;
2006 
2007 	case HCI_FILTER:
2008 		{
2009 			struct hci_filter *f = &hci_pi(sk)->filter;
2010 
2011 			memset(&uf, 0, sizeof(uf));
2012 			uf.type_mask = f->type_mask;
2013 			uf.opcode    = f->opcode;
2014 			uf.event_mask[0] = *((u32 *) f->event_mask + 0);
2015 			uf.event_mask[1] = *((u32 *) f->event_mask + 1);
2016 		}
2017 
2018 		len = min_t(unsigned int, len, sizeof(uf));
2019 		if (copy_to_user(optval, &uf, len))
2020 			err = -EFAULT;
2021 		break;
2022 
2023 	default:
2024 		err = -ENOPROTOOPT;
2025 		break;
2026 	}
2027 
2028 done:
2029 	release_sock(sk);
2030 	return err;
2031 }
2032 
2033 static int hci_sock_getsockopt(struct socket *sock, int level, int optname,
2034 			       char __user *optval, int __user *optlen)
2035 {
2036 	struct sock *sk = sock->sk;
2037 	int err = 0;
2038 
2039 	BT_DBG("sk %p, opt %d", sk, optname);
2040 
2041 	if (level == SOL_HCI)
2042 		return hci_sock_getsockopt_old(sock, level, optname, optval,
2043 					       optlen);
2044 
2045 	if (level != SOL_BLUETOOTH)
2046 		return -ENOPROTOOPT;
2047 
2048 	lock_sock(sk);
2049 
2050 	switch (optname) {
2051 	case BT_SNDMTU:
2052 	case BT_RCVMTU:
2053 		if (put_user(hci_pi(sk)->mtu, (u16 __user *)optval))
2054 			err = -EFAULT;
2055 		break;
2056 
2057 	default:
2058 		err = -ENOPROTOOPT;
2059 		break;
2060 	}
2061 
2062 	release_sock(sk);
2063 	return err;
2064 }
2065 
2066 static void hci_sock_destruct(struct sock *sk)
2067 {
2068 	skb_queue_purge(&sk->sk_receive_queue);
2069 	skb_queue_purge(&sk->sk_write_queue);
2070 }
2071 
2072 static const struct proto_ops hci_sock_ops = {
2073 	.family		= PF_BLUETOOTH,
2074 	.owner		= THIS_MODULE,
2075 	.release	= hci_sock_release,
2076 	.bind		= hci_sock_bind,
2077 	.getname	= hci_sock_getname,
2078 	.sendmsg	= hci_sock_sendmsg,
2079 	.recvmsg	= hci_sock_recvmsg,
2080 	.ioctl		= hci_sock_ioctl,
2081 #ifdef CONFIG_COMPAT
2082 	.compat_ioctl	= hci_sock_compat_ioctl,
2083 #endif
2084 	.poll		= datagram_poll,
2085 	.listen		= sock_no_listen,
2086 	.shutdown	= sock_no_shutdown,
2087 	.setsockopt	= hci_sock_setsockopt,
2088 	.getsockopt	= hci_sock_getsockopt,
2089 	.connect	= sock_no_connect,
2090 	.socketpair	= sock_no_socketpair,
2091 	.accept		= sock_no_accept,
2092 	.mmap		= sock_no_mmap
2093 };
2094 
2095 static struct proto hci_sk_proto = {
2096 	.name		= "HCI",
2097 	.owner		= THIS_MODULE,
2098 	.obj_size	= sizeof(struct hci_pinfo)
2099 };
2100 
2101 static int hci_sock_create(struct net *net, struct socket *sock, int protocol,
2102 			   int kern)
2103 {
2104 	struct sock *sk;
2105 
2106 	BT_DBG("sock %p", sock);
2107 
2108 	if (sock->type != SOCK_RAW)
2109 		return -ESOCKTNOSUPPORT;
2110 
2111 	sock->ops = &hci_sock_ops;
2112 
2113 	sk = sk_alloc(net, PF_BLUETOOTH, GFP_ATOMIC, &hci_sk_proto, kern);
2114 	if (!sk)
2115 		return -ENOMEM;
2116 
2117 	sock_init_data(sock, sk);
2118 
2119 	sock_reset_flag(sk, SOCK_ZAPPED);
2120 
2121 	sk->sk_protocol = protocol;
2122 
2123 	sock->state = SS_UNCONNECTED;
2124 	sk->sk_state = BT_OPEN;
2125 	sk->sk_destruct = hci_sock_destruct;
2126 
2127 	bt_sock_link(&hci_sk_list, sk);
2128 	return 0;
2129 }
2130 
2131 static const struct net_proto_family hci_sock_family_ops = {
2132 	.family	= PF_BLUETOOTH,
2133 	.owner	= THIS_MODULE,
2134 	.create	= hci_sock_create,
2135 };
2136 
2137 int __init hci_sock_init(void)
2138 {
2139 	int err;
2140 
2141 	BUILD_BUG_ON(sizeof(struct sockaddr_hci) > sizeof(struct sockaddr));
2142 
2143 	err = proto_register(&hci_sk_proto, 0);
2144 	if (err < 0)
2145 		return err;
2146 
2147 	err = bt_sock_register(BTPROTO_HCI, &hci_sock_family_ops);
2148 	if (err < 0) {
2149 		BT_ERR("HCI socket registration failed");
2150 		goto error;
2151 	}
2152 
2153 	err = bt_procfs_init(&init_net, "hci", &hci_sk_list, NULL);
2154 	if (err < 0) {
2155 		BT_ERR("Failed to create HCI proc file");
2156 		bt_sock_unregister(BTPROTO_HCI);
2157 		goto error;
2158 	}
2159 
2160 	BT_INFO("HCI socket layer initialized");
2161 
2162 	return 0;
2163 
2164 error:
2165 	proto_unregister(&hci_sk_proto);
2166 	return err;
2167 }
2168 
2169 void hci_sock_cleanup(void)
2170 {
2171 	bt_procfs_cleanup(&init_net, "hci");
2172 	bt_sock_unregister(BTPROTO_HCI);
2173 	proto_unregister(&hci_sk_proto);
2174 }
2175