xref: /linux/net/bluetooth/hci_sock.c (revision 32d7e03d26fd93187c87ed0fbf59ec7023a61404)
1 /*
2    BlueZ - Bluetooth protocol stack for Linux
3    Copyright (C) 2000-2001 Qualcomm Incorporated
4 
5    Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License version 2 as
9    published by the Free Software Foundation;
10 
11    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
12    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
13    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
14    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
15    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
16    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 
20    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
21    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
22    SOFTWARE IS DISCLAIMED.
23 */
24 
25 /* Bluetooth HCI sockets. */
26 #include <linux/compat.h>
27 #include <linux/export.h>
28 #include <linux/utsname.h>
29 #include <linux/sched.h>
30 #include <asm/unaligned.h>
31 
32 #include <net/bluetooth/bluetooth.h>
33 #include <net/bluetooth/hci_core.h>
34 #include <net/bluetooth/hci_mon.h>
35 #include <net/bluetooth/mgmt.h>
36 
37 #include "mgmt_util.h"
38 
39 static LIST_HEAD(mgmt_chan_list);
40 static DEFINE_MUTEX(mgmt_chan_list_lock);
41 
42 static DEFINE_IDA(sock_cookie_ida);
43 
44 static atomic_t monitor_promisc = ATOMIC_INIT(0);
45 
46 /* ----- HCI socket interface ----- */
47 
48 /* Socket info */
49 #define hci_pi(sk) ((struct hci_pinfo *) sk)
50 
51 struct hci_pinfo {
52 	struct bt_sock    bt;
53 	struct hci_dev    *hdev;
54 	struct hci_filter filter;
55 	__u8              cmsg_mask;
56 	unsigned short    channel;
57 	unsigned long     flags;
58 	__u32             cookie;
59 	char              comm[TASK_COMM_LEN];
60 	__u16             mtu;
61 };
62 
63 static struct hci_dev *hci_hdev_from_sock(struct sock *sk)
64 {
65 	struct hci_dev *hdev = hci_pi(sk)->hdev;
66 
67 	if (!hdev)
68 		return ERR_PTR(-EBADFD);
69 	if (hci_dev_test_flag(hdev, HCI_UNREGISTER))
70 		return ERR_PTR(-EPIPE);
71 	return hdev;
72 }
73 
74 void hci_sock_set_flag(struct sock *sk, int nr)
75 {
76 	set_bit(nr, &hci_pi(sk)->flags);
77 }
78 
79 void hci_sock_clear_flag(struct sock *sk, int nr)
80 {
81 	clear_bit(nr, &hci_pi(sk)->flags);
82 }
83 
84 int hci_sock_test_flag(struct sock *sk, int nr)
85 {
86 	return test_bit(nr, &hci_pi(sk)->flags);
87 }
88 
89 unsigned short hci_sock_get_channel(struct sock *sk)
90 {
91 	return hci_pi(sk)->channel;
92 }
93 
94 u32 hci_sock_get_cookie(struct sock *sk)
95 {
96 	return hci_pi(sk)->cookie;
97 }
98 
99 static bool hci_sock_gen_cookie(struct sock *sk)
100 {
101 	int id = hci_pi(sk)->cookie;
102 
103 	if (!id) {
104 		id = ida_simple_get(&sock_cookie_ida, 1, 0, GFP_KERNEL);
105 		if (id < 0)
106 			id = 0xffffffff;
107 
108 		hci_pi(sk)->cookie = id;
109 		get_task_comm(hci_pi(sk)->comm, current);
110 		return true;
111 	}
112 
113 	return false;
114 }
115 
116 static void hci_sock_free_cookie(struct sock *sk)
117 {
118 	int id = hci_pi(sk)->cookie;
119 
120 	if (id) {
121 		hci_pi(sk)->cookie = 0xffffffff;
122 		ida_simple_remove(&sock_cookie_ida, id);
123 	}
124 }
125 
126 static inline int hci_test_bit(int nr, const void *addr)
127 {
128 	return *((const __u32 *) addr + (nr >> 5)) & ((__u32) 1 << (nr & 31));
129 }
130 
131 /* Security filter */
132 #define HCI_SFLT_MAX_OGF  5
133 
134 struct hci_sec_filter {
135 	__u32 type_mask;
136 	__u32 event_mask[2];
137 	__u32 ocf_mask[HCI_SFLT_MAX_OGF + 1][4];
138 };
139 
140 static const struct hci_sec_filter hci_sec_filter = {
141 	/* Packet types */
142 	0x10,
143 	/* Events */
144 	{ 0x1000d9fe, 0x0000b00c },
145 	/* Commands */
146 	{
147 		{ 0x0 },
148 		/* OGF_LINK_CTL */
149 		{ 0xbe000006, 0x00000001, 0x00000000, 0x00 },
150 		/* OGF_LINK_POLICY */
151 		{ 0x00005200, 0x00000000, 0x00000000, 0x00 },
152 		/* OGF_HOST_CTL */
153 		{ 0xaab00200, 0x2b402aaa, 0x05220154, 0x00 },
154 		/* OGF_INFO_PARAM */
155 		{ 0x000002be, 0x00000000, 0x00000000, 0x00 },
156 		/* OGF_STATUS_PARAM */
157 		{ 0x000000ea, 0x00000000, 0x00000000, 0x00 }
158 	}
159 };
160 
161 static struct bt_sock_list hci_sk_list = {
162 	.lock = __RW_LOCK_UNLOCKED(hci_sk_list.lock)
163 };
164 
165 static bool is_filtered_packet(struct sock *sk, struct sk_buff *skb)
166 {
167 	struct hci_filter *flt;
168 	int flt_type, flt_event;
169 
170 	/* Apply filter */
171 	flt = &hci_pi(sk)->filter;
172 
173 	flt_type = hci_skb_pkt_type(skb) & HCI_FLT_TYPE_BITS;
174 
175 	if (!test_bit(flt_type, &flt->type_mask))
176 		return true;
177 
178 	/* Extra filter for event packets only */
179 	if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT)
180 		return false;
181 
182 	flt_event = (*(__u8 *)skb->data & HCI_FLT_EVENT_BITS);
183 
184 	if (!hci_test_bit(flt_event, &flt->event_mask))
185 		return true;
186 
187 	/* Check filter only when opcode is set */
188 	if (!flt->opcode)
189 		return false;
190 
191 	if (flt_event == HCI_EV_CMD_COMPLETE &&
192 	    flt->opcode != get_unaligned((__le16 *)(skb->data + 3)))
193 		return true;
194 
195 	if (flt_event == HCI_EV_CMD_STATUS &&
196 	    flt->opcode != get_unaligned((__le16 *)(skb->data + 4)))
197 		return true;
198 
199 	return false;
200 }
201 
202 /* Send frame to RAW socket */
203 void hci_send_to_sock(struct hci_dev *hdev, struct sk_buff *skb)
204 {
205 	struct sock *sk;
206 	struct sk_buff *skb_copy = NULL;
207 
208 	BT_DBG("hdev %p len %d", hdev, skb->len);
209 
210 	read_lock(&hci_sk_list.lock);
211 
212 	sk_for_each(sk, &hci_sk_list.head) {
213 		struct sk_buff *nskb;
214 
215 		if (sk->sk_state != BT_BOUND || hci_pi(sk)->hdev != hdev)
216 			continue;
217 
218 		/* Don't send frame to the socket it came from */
219 		if (skb->sk == sk)
220 			continue;
221 
222 		if (hci_pi(sk)->channel == HCI_CHANNEL_RAW) {
223 			if (hci_skb_pkt_type(skb) != HCI_COMMAND_PKT &&
224 			    hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
225 			    hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
226 			    hci_skb_pkt_type(skb) != HCI_SCODATA_PKT &&
227 			    hci_skb_pkt_type(skb) != HCI_ISODATA_PKT)
228 				continue;
229 			if (is_filtered_packet(sk, skb))
230 				continue;
231 		} else if (hci_pi(sk)->channel == HCI_CHANNEL_USER) {
232 			if (!bt_cb(skb)->incoming)
233 				continue;
234 			if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
235 			    hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
236 			    hci_skb_pkt_type(skb) != HCI_SCODATA_PKT &&
237 			    hci_skb_pkt_type(skb) != HCI_ISODATA_PKT)
238 				continue;
239 		} else {
240 			/* Don't send frame to other channel types */
241 			continue;
242 		}
243 
244 		if (!skb_copy) {
245 			/* Create a private copy with headroom */
246 			skb_copy = __pskb_copy_fclone(skb, 1, GFP_ATOMIC, true);
247 			if (!skb_copy)
248 				continue;
249 
250 			/* Put type byte before the data */
251 			memcpy(skb_push(skb_copy, 1), &hci_skb_pkt_type(skb), 1);
252 		}
253 
254 		nskb = skb_clone(skb_copy, GFP_ATOMIC);
255 		if (!nskb)
256 			continue;
257 
258 		if (sock_queue_rcv_skb(sk, nskb))
259 			kfree_skb(nskb);
260 	}
261 
262 	read_unlock(&hci_sk_list.lock);
263 
264 	kfree_skb(skb_copy);
265 }
266 
267 /* Send frame to sockets with specific channel */
268 static void __hci_send_to_channel(unsigned short channel, struct sk_buff *skb,
269 				  int flag, struct sock *skip_sk)
270 {
271 	struct sock *sk;
272 
273 	BT_DBG("channel %u len %d", channel, skb->len);
274 
275 	sk_for_each(sk, &hci_sk_list.head) {
276 		struct sk_buff *nskb;
277 
278 		/* Ignore socket without the flag set */
279 		if (!hci_sock_test_flag(sk, flag))
280 			continue;
281 
282 		/* Skip the original socket */
283 		if (sk == skip_sk)
284 			continue;
285 
286 		if (sk->sk_state != BT_BOUND)
287 			continue;
288 
289 		if (hci_pi(sk)->channel != channel)
290 			continue;
291 
292 		nskb = skb_clone(skb, GFP_ATOMIC);
293 		if (!nskb)
294 			continue;
295 
296 		if (sock_queue_rcv_skb(sk, nskb))
297 			kfree_skb(nskb);
298 	}
299 
300 }
301 
302 void hci_send_to_channel(unsigned short channel, struct sk_buff *skb,
303 			 int flag, struct sock *skip_sk)
304 {
305 	read_lock(&hci_sk_list.lock);
306 	__hci_send_to_channel(channel, skb, flag, skip_sk);
307 	read_unlock(&hci_sk_list.lock);
308 }
309 
310 /* Send frame to monitor socket */
311 void hci_send_to_monitor(struct hci_dev *hdev, struct sk_buff *skb)
312 {
313 	struct sk_buff *skb_copy = NULL;
314 	struct hci_mon_hdr *hdr;
315 	__le16 opcode;
316 
317 	if (!atomic_read(&monitor_promisc))
318 		return;
319 
320 	BT_DBG("hdev %p len %d", hdev, skb->len);
321 
322 	switch (hci_skb_pkt_type(skb)) {
323 	case HCI_COMMAND_PKT:
324 		opcode = cpu_to_le16(HCI_MON_COMMAND_PKT);
325 		break;
326 	case HCI_EVENT_PKT:
327 		opcode = cpu_to_le16(HCI_MON_EVENT_PKT);
328 		break;
329 	case HCI_ACLDATA_PKT:
330 		if (bt_cb(skb)->incoming)
331 			opcode = cpu_to_le16(HCI_MON_ACL_RX_PKT);
332 		else
333 			opcode = cpu_to_le16(HCI_MON_ACL_TX_PKT);
334 		break;
335 	case HCI_SCODATA_PKT:
336 		if (bt_cb(skb)->incoming)
337 			opcode = cpu_to_le16(HCI_MON_SCO_RX_PKT);
338 		else
339 			opcode = cpu_to_le16(HCI_MON_SCO_TX_PKT);
340 		break;
341 	case HCI_ISODATA_PKT:
342 		if (bt_cb(skb)->incoming)
343 			opcode = cpu_to_le16(HCI_MON_ISO_RX_PKT);
344 		else
345 			opcode = cpu_to_le16(HCI_MON_ISO_TX_PKT);
346 		break;
347 	case HCI_DIAG_PKT:
348 		opcode = cpu_to_le16(HCI_MON_VENDOR_DIAG);
349 		break;
350 	default:
351 		return;
352 	}
353 
354 	/* Create a private copy with headroom */
355 	skb_copy = __pskb_copy_fclone(skb, HCI_MON_HDR_SIZE, GFP_ATOMIC, true);
356 	if (!skb_copy)
357 		return;
358 
359 	/* Put header before the data */
360 	hdr = skb_push(skb_copy, HCI_MON_HDR_SIZE);
361 	hdr->opcode = opcode;
362 	hdr->index = cpu_to_le16(hdev->id);
363 	hdr->len = cpu_to_le16(skb->len);
364 
365 	hci_send_to_channel(HCI_CHANNEL_MONITOR, skb_copy,
366 			    HCI_SOCK_TRUSTED, NULL);
367 	kfree_skb(skb_copy);
368 }
369 
370 void hci_send_monitor_ctrl_event(struct hci_dev *hdev, u16 event,
371 				 void *data, u16 data_len, ktime_t tstamp,
372 				 int flag, struct sock *skip_sk)
373 {
374 	struct sock *sk;
375 	__le16 index;
376 
377 	if (hdev)
378 		index = cpu_to_le16(hdev->id);
379 	else
380 		index = cpu_to_le16(MGMT_INDEX_NONE);
381 
382 	read_lock(&hci_sk_list.lock);
383 
384 	sk_for_each(sk, &hci_sk_list.head) {
385 		struct hci_mon_hdr *hdr;
386 		struct sk_buff *skb;
387 
388 		if (hci_pi(sk)->channel != HCI_CHANNEL_CONTROL)
389 			continue;
390 
391 		/* Ignore socket without the flag set */
392 		if (!hci_sock_test_flag(sk, flag))
393 			continue;
394 
395 		/* Skip the original socket */
396 		if (sk == skip_sk)
397 			continue;
398 
399 		skb = bt_skb_alloc(6 + data_len, GFP_ATOMIC);
400 		if (!skb)
401 			continue;
402 
403 		put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4));
404 		put_unaligned_le16(event, skb_put(skb, 2));
405 
406 		if (data)
407 			skb_put_data(skb, data, data_len);
408 
409 		skb->tstamp = tstamp;
410 
411 		hdr = skb_push(skb, HCI_MON_HDR_SIZE);
412 		hdr->opcode = cpu_to_le16(HCI_MON_CTRL_EVENT);
413 		hdr->index = index;
414 		hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE);
415 
416 		__hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
417 				      HCI_SOCK_TRUSTED, NULL);
418 		kfree_skb(skb);
419 	}
420 
421 	read_unlock(&hci_sk_list.lock);
422 }
423 
424 static struct sk_buff *create_monitor_event(struct hci_dev *hdev, int event)
425 {
426 	struct hci_mon_hdr *hdr;
427 	struct hci_mon_new_index *ni;
428 	struct hci_mon_index_info *ii;
429 	struct sk_buff *skb;
430 	__le16 opcode;
431 
432 	switch (event) {
433 	case HCI_DEV_REG:
434 		skb = bt_skb_alloc(HCI_MON_NEW_INDEX_SIZE, GFP_ATOMIC);
435 		if (!skb)
436 			return NULL;
437 
438 		ni = skb_put(skb, HCI_MON_NEW_INDEX_SIZE);
439 		ni->type = hdev->dev_type;
440 		ni->bus = hdev->bus;
441 		bacpy(&ni->bdaddr, &hdev->bdaddr);
442 		memcpy(ni->name, hdev->name, 8);
443 
444 		opcode = cpu_to_le16(HCI_MON_NEW_INDEX);
445 		break;
446 
447 	case HCI_DEV_UNREG:
448 		skb = bt_skb_alloc(0, GFP_ATOMIC);
449 		if (!skb)
450 			return NULL;
451 
452 		opcode = cpu_to_le16(HCI_MON_DEL_INDEX);
453 		break;
454 
455 	case HCI_DEV_SETUP:
456 		if (hdev->manufacturer == 0xffff)
457 			return NULL;
458 		fallthrough;
459 
460 	case HCI_DEV_UP:
461 		skb = bt_skb_alloc(HCI_MON_INDEX_INFO_SIZE, GFP_ATOMIC);
462 		if (!skb)
463 			return NULL;
464 
465 		ii = skb_put(skb, HCI_MON_INDEX_INFO_SIZE);
466 		bacpy(&ii->bdaddr, &hdev->bdaddr);
467 		ii->manufacturer = cpu_to_le16(hdev->manufacturer);
468 
469 		opcode = cpu_to_le16(HCI_MON_INDEX_INFO);
470 		break;
471 
472 	case HCI_DEV_OPEN:
473 		skb = bt_skb_alloc(0, GFP_ATOMIC);
474 		if (!skb)
475 			return NULL;
476 
477 		opcode = cpu_to_le16(HCI_MON_OPEN_INDEX);
478 		break;
479 
480 	case HCI_DEV_CLOSE:
481 		skb = bt_skb_alloc(0, GFP_ATOMIC);
482 		if (!skb)
483 			return NULL;
484 
485 		opcode = cpu_to_le16(HCI_MON_CLOSE_INDEX);
486 		break;
487 
488 	default:
489 		return NULL;
490 	}
491 
492 	__net_timestamp(skb);
493 
494 	hdr = skb_push(skb, HCI_MON_HDR_SIZE);
495 	hdr->opcode = opcode;
496 	hdr->index = cpu_to_le16(hdev->id);
497 	hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE);
498 
499 	return skb;
500 }
501 
502 static struct sk_buff *create_monitor_ctrl_open(struct sock *sk)
503 {
504 	struct hci_mon_hdr *hdr;
505 	struct sk_buff *skb;
506 	u16 format;
507 	u8 ver[3];
508 	u32 flags;
509 
510 	/* No message needed when cookie is not present */
511 	if (!hci_pi(sk)->cookie)
512 		return NULL;
513 
514 	switch (hci_pi(sk)->channel) {
515 	case HCI_CHANNEL_RAW:
516 		format = 0x0000;
517 		ver[0] = BT_SUBSYS_VERSION;
518 		put_unaligned_le16(BT_SUBSYS_REVISION, ver + 1);
519 		break;
520 	case HCI_CHANNEL_USER:
521 		format = 0x0001;
522 		ver[0] = BT_SUBSYS_VERSION;
523 		put_unaligned_le16(BT_SUBSYS_REVISION, ver + 1);
524 		break;
525 	case HCI_CHANNEL_CONTROL:
526 		format = 0x0002;
527 		mgmt_fill_version_info(ver);
528 		break;
529 	default:
530 		/* No message for unsupported format */
531 		return NULL;
532 	}
533 
534 	skb = bt_skb_alloc(14 + TASK_COMM_LEN , GFP_ATOMIC);
535 	if (!skb)
536 		return NULL;
537 
538 	flags = hci_sock_test_flag(sk, HCI_SOCK_TRUSTED) ? 0x1 : 0x0;
539 
540 	put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4));
541 	put_unaligned_le16(format, skb_put(skb, 2));
542 	skb_put_data(skb, ver, sizeof(ver));
543 	put_unaligned_le32(flags, skb_put(skb, 4));
544 	skb_put_u8(skb, TASK_COMM_LEN);
545 	skb_put_data(skb, hci_pi(sk)->comm, TASK_COMM_LEN);
546 
547 	__net_timestamp(skb);
548 
549 	hdr = skb_push(skb, HCI_MON_HDR_SIZE);
550 	hdr->opcode = cpu_to_le16(HCI_MON_CTRL_OPEN);
551 	if (hci_pi(sk)->hdev)
552 		hdr->index = cpu_to_le16(hci_pi(sk)->hdev->id);
553 	else
554 		hdr->index = cpu_to_le16(HCI_DEV_NONE);
555 	hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE);
556 
557 	return skb;
558 }
559 
560 static struct sk_buff *create_monitor_ctrl_close(struct sock *sk)
561 {
562 	struct hci_mon_hdr *hdr;
563 	struct sk_buff *skb;
564 
565 	/* No message needed when cookie is not present */
566 	if (!hci_pi(sk)->cookie)
567 		return NULL;
568 
569 	switch (hci_pi(sk)->channel) {
570 	case HCI_CHANNEL_RAW:
571 	case HCI_CHANNEL_USER:
572 	case HCI_CHANNEL_CONTROL:
573 		break;
574 	default:
575 		/* No message for unsupported format */
576 		return NULL;
577 	}
578 
579 	skb = bt_skb_alloc(4, GFP_ATOMIC);
580 	if (!skb)
581 		return NULL;
582 
583 	put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4));
584 
585 	__net_timestamp(skb);
586 
587 	hdr = skb_push(skb, HCI_MON_HDR_SIZE);
588 	hdr->opcode = cpu_to_le16(HCI_MON_CTRL_CLOSE);
589 	if (hci_pi(sk)->hdev)
590 		hdr->index = cpu_to_le16(hci_pi(sk)->hdev->id);
591 	else
592 		hdr->index = cpu_to_le16(HCI_DEV_NONE);
593 	hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE);
594 
595 	return skb;
596 }
597 
598 static struct sk_buff *create_monitor_ctrl_command(struct sock *sk, u16 index,
599 						   u16 opcode, u16 len,
600 						   const void *buf)
601 {
602 	struct hci_mon_hdr *hdr;
603 	struct sk_buff *skb;
604 
605 	skb = bt_skb_alloc(6 + len, GFP_ATOMIC);
606 	if (!skb)
607 		return NULL;
608 
609 	put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4));
610 	put_unaligned_le16(opcode, skb_put(skb, 2));
611 
612 	if (buf)
613 		skb_put_data(skb, buf, len);
614 
615 	__net_timestamp(skb);
616 
617 	hdr = skb_push(skb, HCI_MON_HDR_SIZE);
618 	hdr->opcode = cpu_to_le16(HCI_MON_CTRL_COMMAND);
619 	hdr->index = cpu_to_le16(index);
620 	hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE);
621 
622 	return skb;
623 }
624 
625 static void __printf(2, 3)
626 send_monitor_note(struct sock *sk, const char *fmt, ...)
627 {
628 	size_t len;
629 	struct hci_mon_hdr *hdr;
630 	struct sk_buff *skb;
631 	va_list args;
632 
633 	va_start(args, fmt);
634 	len = vsnprintf(NULL, 0, fmt, args);
635 	va_end(args);
636 
637 	skb = bt_skb_alloc(len + 1, GFP_ATOMIC);
638 	if (!skb)
639 		return;
640 
641 	va_start(args, fmt);
642 	vsprintf(skb_put(skb, len), fmt, args);
643 	*(u8 *)skb_put(skb, 1) = 0;
644 	va_end(args);
645 
646 	__net_timestamp(skb);
647 
648 	hdr = (void *)skb_push(skb, HCI_MON_HDR_SIZE);
649 	hdr->opcode = cpu_to_le16(HCI_MON_SYSTEM_NOTE);
650 	hdr->index = cpu_to_le16(HCI_DEV_NONE);
651 	hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE);
652 
653 	if (sock_queue_rcv_skb(sk, skb))
654 		kfree_skb(skb);
655 }
656 
657 static void send_monitor_replay(struct sock *sk)
658 {
659 	struct hci_dev *hdev;
660 
661 	read_lock(&hci_dev_list_lock);
662 
663 	list_for_each_entry(hdev, &hci_dev_list, list) {
664 		struct sk_buff *skb;
665 
666 		skb = create_monitor_event(hdev, HCI_DEV_REG);
667 		if (!skb)
668 			continue;
669 
670 		if (sock_queue_rcv_skb(sk, skb))
671 			kfree_skb(skb);
672 
673 		if (!test_bit(HCI_RUNNING, &hdev->flags))
674 			continue;
675 
676 		skb = create_monitor_event(hdev, HCI_DEV_OPEN);
677 		if (!skb)
678 			continue;
679 
680 		if (sock_queue_rcv_skb(sk, skb))
681 			kfree_skb(skb);
682 
683 		if (test_bit(HCI_UP, &hdev->flags))
684 			skb = create_monitor_event(hdev, HCI_DEV_UP);
685 		else if (hci_dev_test_flag(hdev, HCI_SETUP))
686 			skb = create_monitor_event(hdev, HCI_DEV_SETUP);
687 		else
688 			skb = NULL;
689 
690 		if (skb) {
691 			if (sock_queue_rcv_skb(sk, skb))
692 				kfree_skb(skb);
693 		}
694 	}
695 
696 	read_unlock(&hci_dev_list_lock);
697 }
698 
699 static void send_monitor_control_replay(struct sock *mon_sk)
700 {
701 	struct sock *sk;
702 
703 	read_lock(&hci_sk_list.lock);
704 
705 	sk_for_each(sk, &hci_sk_list.head) {
706 		struct sk_buff *skb;
707 
708 		skb = create_monitor_ctrl_open(sk);
709 		if (!skb)
710 			continue;
711 
712 		if (sock_queue_rcv_skb(mon_sk, skb))
713 			kfree_skb(skb);
714 	}
715 
716 	read_unlock(&hci_sk_list.lock);
717 }
718 
719 /* Generate internal stack event */
720 static void hci_si_event(struct hci_dev *hdev, int type, int dlen, void *data)
721 {
722 	struct hci_event_hdr *hdr;
723 	struct hci_ev_stack_internal *ev;
724 	struct sk_buff *skb;
725 
726 	skb = bt_skb_alloc(HCI_EVENT_HDR_SIZE + sizeof(*ev) + dlen, GFP_ATOMIC);
727 	if (!skb)
728 		return;
729 
730 	hdr = skb_put(skb, HCI_EVENT_HDR_SIZE);
731 	hdr->evt  = HCI_EV_STACK_INTERNAL;
732 	hdr->plen = sizeof(*ev) + dlen;
733 
734 	ev = skb_put(skb, sizeof(*ev) + dlen);
735 	ev->type = type;
736 	memcpy(ev->data, data, dlen);
737 
738 	bt_cb(skb)->incoming = 1;
739 	__net_timestamp(skb);
740 
741 	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
742 	hci_send_to_sock(hdev, skb);
743 	kfree_skb(skb);
744 }
745 
746 void hci_sock_dev_event(struct hci_dev *hdev, int event)
747 {
748 	BT_DBG("hdev %s event %d", hdev->name, event);
749 
750 	if (atomic_read(&monitor_promisc)) {
751 		struct sk_buff *skb;
752 
753 		/* Send event to monitor */
754 		skb = create_monitor_event(hdev, event);
755 		if (skb) {
756 			hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
757 					    HCI_SOCK_TRUSTED, NULL);
758 			kfree_skb(skb);
759 		}
760 	}
761 
762 	if (event <= HCI_DEV_DOWN) {
763 		struct hci_ev_si_device ev;
764 
765 		/* Send event to sockets */
766 		ev.event  = event;
767 		ev.dev_id = hdev->id;
768 		hci_si_event(NULL, HCI_EV_SI_DEVICE, sizeof(ev), &ev);
769 	}
770 
771 	if (event == HCI_DEV_UNREG) {
772 		struct sock *sk;
773 
774 		/* Wake up sockets using this dead device */
775 		read_lock(&hci_sk_list.lock);
776 		sk_for_each(sk, &hci_sk_list.head) {
777 			if (hci_pi(sk)->hdev == hdev) {
778 				sk->sk_err = EPIPE;
779 				sk->sk_state_change(sk);
780 			}
781 		}
782 		read_unlock(&hci_sk_list.lock);
783 	}
784 }
785 
786 static struct hci_mgmt_chan *__hci_mgmt_chan_find(unsigned short channel)
787 {
788 	struct hci_mgmt_chan *c;
789 
790 	list_for_each_entry(c, &mgmt_chan_list, list) {
791 		if (c->channel == channel)
792 			return c;
793 	}
794 
795 	return NULL;
796 }
797 
798 static struct hci_mgmt_chan *hci_mgmt_chan_find(unsigned short channel)
799 {
800 	struct hci_mgmt_chan *c;
801 
802 	mutex_lock(&mgmt_chan_list_lock);
803 	c = __hci_mgmt_chan_find(channel);
804 	mutex_unlock(&mgmt_chan_list_lock);
805 
806 	return c;
807 }
808 
809 int hci_mgmt_chan_register(struct hci_mgmt_chan *c)
810 {
811 	if (c->channel < HCI_CHANNEL_CONTROL)
812 		return -EINVAL;
813 
814 	mutex_lock(&mgmt_chan_list_lock);
815 	if (__hci_mgmt_chan_find(c->channel)) {
816 		mutex_unlock(&mgmt_chan_list_lock);
817 		return -EALREADY;
818 	}
819 
820 	list_add_tail(&c->list, &mgmt_chan_list);
821 
822 	mutex_unlock(&mgmt_chan_list_lock);
823 
824 	return 0;
825 }
826 EXPORT_SYMBOL(hci_mgmt_chan_register);
827 
828 void hci_mgmt_chan_unregister(struct hci_mgmt_chan *c)
829 {
830 	mutex_lock(&mgmt_chan_list_lock);
831 	list_del(&c->list);
832 	mutex_unlock(&mgmt_chan_list_lock);
833 }
834 EXPORT_SYMBOL(hci_mgmt_chan_unregister);
835 
836 static int hci_sock_release(struct socket *sock)
837 {
838 	struct sock *sk = sock->sk;
839 	struct hci_dev *hdev;
840 	struct sk_buff *skb;
841 
842 	BT_DBG("sock %p sk %p", sock, sk);
843 
844 	if (!sk)
845 		return 0;
846 
847 	lock_sock(sk);
848 
849 	switch (hci_pi(sk)->channel) {
850 	case HCI_CHANNEL_MONITOR:
851 		atomic_dec(&monitor_promisc);
852 		break;
853 	case HCI_CHANNEL_RAW:
854 	case HCI_CHANNEL_USER:
855 	case HCI_CHANNEL_CONTROL:
856 		/* Send event to monitor */
857 		skb = create_monitor_ctrl_close(sk);
858 		if (skb) {
859 			hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
860 					    HCI_SOCK_TRUSTED, NULL);
861 			kfree_skb(skb);
862 		}
863 
864 		hci_sock_free_cookie(sk);
865 		break;
866 	}
867 
868 	bt_sock_unlink(&hci_sk_list, sk);
869 
870 	hdev = hci_pi(sk)->hdev;
871 	if (hdev) {
872 		if (hci_pi(sk)->channel == HCI_CHANNEL_USER) {
873 			/* When releasing a user channel exclusive access,
874 			 * call hci_dev_do_close directly instead of calling
875 			 * hci_dev_close to ensure the exclusive access will
876 			 * be released and the controller brought back down.
877 			 *
878 			 * The checking of HCI_AUTO_OFF is not needed in this
879 			 * case since it will have been cleared already when
880 			 * opening the user channel.
881 			 */
882 			hci_dev_do_close(hdev);
883 			hci_dev_clear_flag(hdev, HCI_USER_CHANNEL);
884 			mgmt_index_added(hdev);
885 		}
886 
887 		atomic_dec(&hdev->promisc);
888 		hci_dev_put(hdev);
889 	}
890 
891 	sock_orphan(sk);
892 
893 	skb_queue_purge(&sk->sk_receive_queue);
894 	skb_queue_purge(&sk->sk_write_queue);
895 
896 	release_sock(sk);
897 	sock_put(sk);
898 	return 0;
899 }
900 
901 static int hci_sock_reject_list_add(struct hci_dev *hdev, void __user *arg)
902 {
903 	bdaddr_t bdaddr;
904 	int err;
905 
906 	if (copy_from_user(&bdaddr, arg, sizeof(bdaddr)))
907 		return -EFAULT;
908 
909 	hci_dev_lock(hdev);
910 
911 	err = hci_bdaddr_list_add(&hdev->reject_list, &bdaddr, BDADDR_BREDR);
912 
913 	hci_dev_unlock(hdev);
914 
915 	return err;
916 }
917 
918 static int hci_sock_reject_list_del(struct hci_dev *hdev, void __user *arg)
919 {
920 	bdaddr_t bdaddr;
921 	int err;
922 
923 	if (copy_from_user(&bdaddr, arg, sizeof(bdaddr)))
924 		return -EFAULT;
925 
926 	hci_dev_lock(hdev);
927 
928 	err = hci_bdaddr_list_del(&hdev->reject_list, &bdaddr, BDADDR_BREDR);
929 
930 	hci_dev_unlock(hdev);
931 
932 	return err;
933 }
934 
935 /* Ioctls that require bound socket */
936 static int hci_sock_bound_ioctl(struct sock *sk, unsigned int cmd,
937 				unsigned long arg)
938 {
939 	struct hci_dev *hdev = hci_hdev_from_sock(sk);
940 
941 	if (IS_ERR(hdev))
942 		return PTR_ERR(hdev);
943 
944 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
945 		return -EBUSY;
946 
947 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
948 		return -EOPNOTSUPP;
949 
950 	if (hdev->dev_type != HCI_PRIMARY)
951 		return -EOPNOTSUPP;
952 
953 	switch (cmd) {
954 	case HCISETRAW:
955 		if (!capable(CAP_NET_ADMIN))
956 			return -EPERM;
957 		return -EOPNOTSUPP;
958 
959 	case HCIGETCONNINFO:
960 		return hci_get_conn_info(hdev, (void __user *)arg);
961 
962 	case HCIGETAUTHINFO:
963 		return hci_get_auth_info(hdev, (void __user *)arg);
964 
965 	case HCIBLOCKADDR:
966 		if (!capable(CAP_NET_ADMIN))
967 			return -EPERM;
968 		return hci_sock_reject_list_add(hdev, (void __user *)arg);
969 
970 	case HCIUNBLOCKADDR:
971 		if (!capable(CAP_NET_ADMIN))
972 			return -EPERM;
973 		return hci_sock_reject_list_del(hdev, (void __user *)arg);
974 	}
975 
976 	return -ENOIOCTLCMD;
977 }
978 
979 static int hci_sock_ioctl(struct socket *sock, unsigned int cmd,
980 			  unsigned long arg)
981 {
982 	void __user *argp = (void __user *)arg;
983 	struct sock *sk = sock->sk;
984 	int err;
985 
986 	BT_DBG("cmd %x arg %lx", cmd, arg);
987 
988 	lock_sock(sk);
989 
990 	if (hci_pi(sk)->channel != HCI_CHANNEL_RAW) {
991 		err = -EBADFD;
992 		goto done;
993 	}
994 
995 	/* When calling an ioctl on an unbound raw socket, then ensure
996 	 * that the monitor gets informed. Ensure that the resulting event
997 	 * is only send once by checking if the cookie exists or not. The
998 	 * socket cookie will be only ever generated once for the lifetime
999 	 * of a given socket.
1000 	 */
1001 	if (hci_sock_gen_cookie(sk)) {
1002 		struct sk_buff *skb;
1003 
1004 		if (capable(CAP_NET_ADMIN))
1005 			hci_sock_set_flag(sk, HCI_SOCK_TRUSTED);
1006 
1007 		/* Send event to monitor */
1008 		skb = create_monitor_ctrl_open(sk);
1009 		if (skb) {
1010 			hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1011 					    HCI_SOCK_TRUSTED, NULL);
1012 			kfree_skb(skb);
1013 		}
1014 	}
1015 
1016 	release_sock(sk);
1017 
1018 	switch (cmd) {
1019 	case HCIGETDEVLIST:
1020 		return hci_get_dev_list(argp);
1021 
1022 	case HCIGETDEVINFO:
1023 		return hci_get_dev_info(argp);
1024 
1025 	case HCIGETCONNLIST:
1026 		return hci_get_conn_list(argp);
1027 
1028 	case HCIDEVUP:
1029 		if (!capable(CAP_NET_ADMIN))
1030 			return -EPERM;
1031 		return hci_dev_open(arg);
1032 
1033 	case HCIDEVDOWN:
1034 		if (!capable(CAP_NET_ADMIN))
1035 			return -EPERM;
1036 		return hci_dev_close(arg);
1037 
1038 	case HCIDEVRESET:
1039 		if (!capable(CAP_NET_ADMIN))
1040 			return -EPERM;
1041 		return hci_dev_reset(arg);
1042 
1043 	case HCIDEVRESTAT:
1044 		if (!capable(CAP_NET_ADMIN))
1045 			return -EPERM;
1046 		return hci_dev_reset_stat(arg);
1047 
1048 	case HCISETSCAN:
1049 	case HCISETAUTH:
1050 	case HCISETENCRYPT:
1051 	case HCISETPTYPE:
1052 	case HCISETLINKPOL:
1053 	case HCISETLINKMODE:
1054 	case HCISETACLMTU:
1055 	case HCISETSCOMTU:
1056 		if (!capable(CAP_NET_ADMIN))
1057 			return -EPERM;
1058 		return hci_dev_cmd(cmd, argp);
1059 
1060 	case HCIINQUIRY:
1061 		return hci_inquiry(argp);
1062 	}
1063 
1064 	lock_sock(sk);
1065 
1066 	err = hci_sock_bound_ioctl(sk, cmd, arg);
1067 
1068 done:
1069 	release_sock(sk);
1070 	return err;
1071 }
1072 
1073 #ifdef CONFIG_COMPAT
1074 static int hci_sock_compat_ioctl(struct socket *sock, unsigned int cmd,
1075 				 unsigned long arg)
1076 {
1077 	switch (cmd) {
1078 	case HCIDEVUP:
1079 	case HCIDEVDOWN:
1080 	case HCIDEVRESET:
1081 	case HCIDEVRESTAT:
1082 		return hci_sock_ioctl(sock, cmd, arg);
1083 	}
1084 
1085 	return hci_sock_ioctl(sock, cmd, (unsigned long)compat_ptr(arg));
1086 }
1087 #endif
1088 
1089 static int hci_sock_bind(struct socket *sock, struct sockaddr *addr,
1090 			 int addr_len)
1091 {
1092 	struct sockaddr_hci haddr;
1093 	struct sock *sk = sock->sk;
1094 	struct hci_dev *hdev = NULL;
1095 	struct sk_buff *skb;
1096 	int len, err = 0;
1097 
1098 	BT_DBG("sock %p sk %p", sock, sk);
1099 
1100 	if (!addr)
1101 		return -EINVAL;
1102 
1103 	memset(&haddr, 0, sizeof(haddr));
1104 	len = min_t(unsigned int, sizeof(haddr), addr_len);
1105 	memcpy(&haddr, addr, len);
1106 
1107 	if (haddr.hci_family != AF_BLUETOOTH)
1108 		return -EINVAL;
1109 
1110 	lock_sock(sk);
1111 
1112 	/* Allow detaching from dead device and attaching to alive device, if
1113 	 * the caller wants to re-bind (instead of close) this socket in
1114 	 * response to hci_sock_dev_event(HCI_DEV_UNREG) notification.
1115 	 */
1116 	hdev = hci_pi(sk)->hdev;
1117 	if (hdev && hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1118 		hci_pi(sk)->hdev = NULL;
1119 		sk->sk_state = BT_OPEN;
1120 		hci_dev_put(hdev);
1121 	}
1122 	hdev = NULL;
1123 
1124 	if (sk->sk_state == BT_BOUND) {
1125 		err = -EALREADY;
1126 		goto done;
1127 	}
1128 
1129 	switch (haddr.hci_channel) {
1130 	case HCI_CHANNEL_RAW:
1131 		if (hci_pi(sk)->hdev) {
1132 			err = -EALREADY;
1133 			goto done;
1134 		}
1135 
1136 		if (haddr.hci_dev != HCI_DEV_NONE) {
1137 			hdev = hci_dev_get(haddr.hci_dev);
1138 			if (!hdev) {
1139 				err = -ENODEV;
1140 				goto done;
1141 			}
1142 
1143 			atomic_inc(&hdev->promisc);
1144 		}
1145 
1146 		hci_pi(sk)->channel = haddr.hci_channel;
1147 
1148 		if (!hci_sock_gen_cookie(sk)) {
1149 			/* In the case when a cookie has already been assigned,
1150 			 * then there has been already an ioctl issued against
1151 			 * an unbound socket and with that triggered an open
1152 			 * notification. Send a close notification first to
1153 			 * allow the state transition to bounded.
1154 			 */
1155 			skb = create_monitor_ctrl_close(sk);
1156 			if (skb) {
1157 				hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1158 						    HCI_SOCK_TRUSTED, NULL);
1159 				kfree_skb(skb);
1160 			}
1161 		}
1162 
1163 		if (capable(CAP_NET_ADMIN))
1164 			hci_sock_set_flag(sk, HCI_SOCK_TRUSTED);
1165 
1166 		hci_pi(sk)->hdev = hdev;
1167 
1168 		/* Send event to monitor */
1169 		skb = create_monitor_ctrl_open(sk);
1170 		if (skb) {
1171 			hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1172 					    HCI_SOCK_TRUSTED, NULL);
1173 			kfree_skb(skb);
1174 		}
1175 		break;
1176 
1177 	case HCI_CHANNEL_USER:
1178 		if (hci_pi(sk)->hdev) {
1179 			err = -EALREADY;
1180 			goto done;
1181 		}
1182 
1183 		if (haddr.hci_dev == HCI_DEV_NONE) {
1184 			err = -EINVAL;
1185 			goto done;
1186 		}
1187 
1188 		if (!capable(CAP_NET_ADMIN)) {
1189 			err = -EPERM;
1190 			goto done;
1191 		}
1192 
1193 		hdev = hci_dev_get(haddr.hci_dev);
1194 		if (!hdev) {
1195 			err = -ENODEV;
1196 			goto done;
1197 		}
1198 
1199 		if (test_bit(HCI_INIT, &hdev->flags) ||
1200 		    hci_dev_test_flag(hdev, HCI_SETUP) ||
1201 		    hci_dev_test_flag(hdev, HCI_CONFIG) ||
1202 		    (!hci_dev_test_flag(hdev, HCI_AUTO_OFF) &&
1203 		     test_bit(HCI_UP, &hdev->flags))) {
1204 			err = -EBUSY;
1205 			hci_dev_put(hdev);
1206 			goto done;
1207 		}
1208 
1209 		if (hci_dev_test_and_set_flag(hdev, HCI_USER_CHANNEL)) {
1210 			err = -EUSERS;
1211 			hci_dev_put(hdev);
1212 			goto done;
1213 		}
1214 
1215 		mgmt_index_removed(hdev);
1216 
1217 		err = hci_dev_open(hdev->id);
1218 		if (err) {
1219 			if (err == -EALREADY) {
1220 				/* In case the transport is already up and
1221 				 * running, clear the error here.
1222 				 *
1223 				 * This can happen when opening a user
1224 				 * channel and HCI_AUTO_OFF grace period
1225 				 * is still active.
1226 				 */
1227 				err = 0;
1228 			} else {
1229 				hci_dev_clear_flag(hdev, HCI_USER_CHANNEL);
1230 				mgmt_index_added(hdev);
1231 				hci_dev_put(hdev);
1232 				goto done;
1233 			}
1234 		}
1235 
1236 		hci_pi(sk)->channel = haddr.hci_channel;
1237 
1238 		if (!hci_sock_gen_cookie(sk)) {
1239 			/* In the case when a cookie has already been assigned,
1240 			 * this socket will transition from a raw socket into
1241 			 * a user channel socket. For a clean transition, send
1242 			 * the close notification first.
1243 			 */
1244 			skb = create_monitor_ctrl_close(sk);
1245 			if (skb) {
1246 				hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1247 						    HCI_SOCK_TRUSTED, NULL);
1248 				kfree_skb(skb);
1249 			}
1250 		}
1251 
1252 		/* The user channel is restricted to CAP_NET_ADMIN
1253 		 * capabilities and with that implicitly trusted.
1254 		 */
1255 		hci_sock_set_flag(sk, HCI_SOCK_TRUSTED);
1256 
1257 		hci_pi(sk)->hdev = hdev;
1258 
1259 		/* Send event to monitor */
1260 		skb = create_monitor_ctrl_open(sk);
1261 		if (skb) {
1262 			hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1263 					    HCI_SOCK_TRUSTED, NULL);
1264 			kfree_skb(skb);
1265 		}
1266 
1267 		atomic_inc(&hdev->promisc);
1268 		break;
1269 
1270 	case HCI_CHANNEL_MONITOR:
1271 		if (haddr.hci_dev != HCI_DEV_NONE) {
1272 			err = -EINVAL;
1273 			goto done;
1274 		}
1275 
1276 		if (!capable(CAP_NET_RAW)) {
1277 			err = -EPERM;
1278 			goto done;
1279 		}
1280 
1281 		hci_pi(sk)->channel = haddr.hci_channel;
1282 
1283 		/* The monitor interface is restricted to CAP_NET_RAW
1284 		 * capabilities and with that implicitly trusted.
1285 		 */
1286 		hci_sock_set_flag(sk, HCI_SOCK_TRUSTED);
1287 
1288 		send_monitor_note(sk, "Linux version %s (%s)",
1289 				  init_utsname()->release,
1290 				  init_utsname()->machine);
1291 		send_monitor_note(sk, "Bluetooth subsystem version %u.%u",
1292 				  BT_SUBSYS_VERSION, BT_SUBSYS_REVISION);
1293 		send_monitor_replay(sk);
1294 		send_monitor_control_replay(sk);
1295 
1296 		atomic_inc(&monitor_promisc);
1297 		break;
1298 
1299 	case HCI_CHANNEL_LOGGING:
1300 		if (haddr.hci_dev != HCI_DEV_NONE) {
1301 			err = -EINVAL;
1302 			goto done;
1303 		}
1304 
1305 		if (!capable(CAP_NET_ADMIN)) {
1306 			err = -EPERM;
1307 			goto done;
1308 		}
1309 
1310 		hci_pi(sk)->channel = haddr.hci_channel;
1311 		break;
1312 
1313 	default:
1314 		if (!hci_mgmt_chan_find(haddr.hci_channel)) {
1315 			err = -EINVAL;
1316 			goto done;
1317 		}
1318 
1319 		if (haddr.hci_dev != HCI_DEV_NONE) {
1320 			err = -EINVAL;
1321 			goto done;
1322 		}
1323 
1324 		/* Users with CAP_NET_ADMIN capabilities are allowed
1325 		 * access to all management commands and events. For
1326 		 * untrusted users the interface is restricted and
1327 		 * also only untrusted events are sent.
1328 		 */
1329 		if (capable(CAP_NET_ADMIN))
1330 			hci_sock_set_flag(sk, HCI_SOCK_TRUSTED);
1331 
1332 		hci_pi(sk)->channel = haddr.hci_channel;
1333 
1334 		/* At the moment the index and unconfigured index events
1335 		 * are enabled unconditionally. Setting them on each
1336 		 * socket when binding keeps this functionality. They
1337 		 * however might be cleared later and then sending of these
1338 		 * events will be disabled, but that is then intentional.
1339 		 *
1340 		 * This also enables generic events that are safe to be
1341 		 * received by untrusted users. Example for such events
1342 		 * are changes to settings, class of device, name etc.
1343 		 */
1344 		if (hci_pi(sk)->channel == HCI_CHANNEL_CONTROL) {
1345 			if (!hci_sock_gen_cookie(sk)) {
1346 				/* In the case when a cookie has already been
1347 				 * assigned, this socket will transition from
1348 				 * a raw socket into a control socket. To
1349 				 * allow for a clean transition, send the
1350 				 * close notification first.
1351 				 */
1352 				skb = create_monitor_ctrl_close(sk);
1353 				if (skb) {
1354 					hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1355 							    HCI_SOCK_TRUSTED, NULL);
1356 					kfree_skb(skb);
1357 				}
1358 			}
1359 
1360 			/* Send event to monitor */
1361 			skb = create_monitor_ctrl_open(sk);
1362 			if (skb) {
1363 				hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1364 						    HCI_SOCK_TRUSTED, NULL);
1365 				kfree_skb(skb);
1366 			}
1367 
1368 			hci_sock_set_flag(sk, HCI_MGMT_INDEX_EVENTS);
1369 			hci_sock_set_flag(sk, HCI_MGMT_UNCONF_INDEX_EVENTS);
1370 			hci_sock_set_flag(sk, HCI_MGMT_OPTION_EVENTS);
1371 			hci_sock_set_flag(sk, HCI_MGMT_SETTING_EVENTS);
1372 			hci_sock_set_flag(sk, HCI_MGMT_DEV_CLASS_EVENTS);
1373 			hci_sock_set_flag(sk, HCI_MGMT_LOCAL_NAME_EVENTS);
1374 		}
1375 		break;
1376 	}
1377 
1378 	/* Default MTU to HCI_MAX_FRAME_SIZE if not set */
1379 	if (!hci_pi(sk)->mtu)
1380 		hci_pi(sk)->mtu = HCI_MAX_FRAME_SIZE;
1381 
1382 	sk->sk_state = BT_BOUND;
1383 
1384 done:
1385 	release_sock(sk);
1386 	return err;
1387 }
1388 
1389 static int hci_sock_getname(struct socket *sock, struct sockaddr *addr,
1390 			    int peer)
1391 {
1392 	struct sockaddr_hci *haddr = (struct sockaddr_hci *)addr;
1393 	struct sock *sk = sock->sk;
1394 	struct hci_dev *hdev;
1395 	int err = 0;
1396 
1397 	BT_DBG("sock %p sk %p", sock, sk);
1398 
1399 	if (peer)
1400 		return -EOPNOTSUPP;
1401 
1402 	lock_sock(sk);
1403 
1404 	hdev = hci_hdev_from_sock(sk);
1405 	if (IS_ERR(hdev)) {
1406 		err = PTR_ERR(hdev);
1407 		goto done;
1408 	}
1409 
1410 	haddr->hci_family = AF_BLUETOOTH;
1411 	haddr->hci_dev    = hdev->id;
1412 	haddr->hci_channel= hci_pi(sk)->channel;
1413 	err = sizeof(*haddr);
1414 
1415 done:
1416 	release_sock(sk);
1417 	return err;
1418 }
1419 
1420 static void hci_sock_cmsg(struct sock *sk, struct msghdr *msg,
1421 			  struct sk_buff *skb)
1422 {
1423 	__u8 mask = hci_pi(sk)->cmsg_mask;
1424 
1425 	if (mask & HCI_CMSG_DIR) {
1426 		int incoming = bt_cb(skb)->incoming;
1427 		put_cmsg(msg, SOL_HCI, HCI_CMSG_DIR, sizeof(incoming),
1428 			 &incoming);
1429 	}
1430 
1431 	if (mask & HCI_CMSG_TSTAMP) {
1432 #ifdef CONFIG_COMPAT
1433 		struct old_timeval32 ctv;
1434 #endif
1435 		struct __kernel_old_timeval tv;
1436 		void *data;
1437 		int len;
1438 
1439 		skb_get_timestamp(skb, &tv);
1440 
1441 		data = &tv;
1442 		len = sizeof(tv);
1443 #ifdef CONFIG_COMPAT
1444 		if (!COMPAT_USE_64BIT_TIME &&
1445 		    (msg->msg_flags & MSG_CMSG_COMPAT)) {
1446 			ctv.tv_sec = tv.tv_sec;
1447 			ctv.tv_usec = tv.tv_usec;
1448 			data = &ctv;
1449 			len = sizeof(ctv);
1450 		}
1451 #endif
1452 
1453 		put_cmsg(msg, SOL_HCI, HCI_CMSG_TSTAMP, len, data);
1454 	}
1455 }
1456 
1457 static int hci_sock_recvmsg(struct socket *sock, struct msghdr *msg,
1458 			    size_t len, int flags)
1459 {
1460 	int noblock = flags & MSG_DONTWAIT;
1461 	struct sock *sk = sock->sk;
1462 	struct sk_buff *skb;
1463 	int copied, err;
1464 	unsigned int skblen;
1465 
1466 	BT_DBG("sock %p, sk %p", sock, sk);
1467 
1468 	if (flags & MSG_OOB)
1469 		return -EOPNOTSUPP;
1470 
1471 	if (hci_pi(sk)->channel == HCI_CHANNEL_LOGGING)
1472 		return -EOPNOTSUPP;
1473 
1474 	if (sk->sk_state == BT_CLOSED)
1475 		return 0;
1476 
1477 	skb = skb_recv_datagram(sk, flags, noblock, &err);
1478 	if (!skb)
1479 		return err;
1480 
1481 	skblen = skb->len;
1482 	copied = skb->len;
1483 	if (len < copied) {
1484 		msg->msg_flags |= MSG_TRUNC;
1485 		copied = len;
1486 	}
1487 
1488 	skb_reset_transport_header(skb);
1489 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
1490 
1491 	switch (hci_pi(sk)->channel) {
1492 	case HCI_CHANNEL_RAW:
1493 		hci_sock_cmsg(sk, msg, skb);
1494 		break;
1495 	case HCI_CHANNEL_USER:
1496 	case HCI_CHANNEL_MONITOR:
1497 		sock_recv_timestamp(msg, sk, skb);
1498 		break;
1499 	default:
1500 		if (hci_mgmt_chan_find(hci_pi(sk)->channel))
1501 			sock_recv_timestamp(msg, sk, skb);
1502 		break;
1503 	}
1504 
1505 	skb_free_datagram(sk, skb);
1506 
1507 	if (flags & MSG_TRUNC)
1508 		copied = skblen;
1509 
1510 	return err ? : copied;
1511 }
1512 
1513 static int hci_mgmt_cmd(struct hci_mgmt_chan *chan, struct sock *sk,
1514 			struct sk_buff *skb)
1515 {
1516 	u8 *cp;
1517 	struct mgmt_hdr *hdr;
1518 	u16 opcode, index, len;
1519 	struct hci_dev *hdev = NULL;
1520 	const struct hci_mgmt_handler *handler;
1521 	bool var_len, no_hdev;
1522 	int err;
1523 
1524 	BT_DBG("got %d bytes", skb->len);
1525 
1526 	if (skb->len < sizeof(*hdr))
1527 		return -EINVAL;
1528 
1529 	hdr = (void *)skb->data;
1530 	opcode = __le16_to_cpu(hdr->opcode);
1531 	index = __le16_to_cpu(hdr->index);
1532 	len = __le16_to_cpu(hdr->len);
1533 
1534 	if (len != skb->len - sizeof(*hdr)) {
1535 		err = -EINVAL;
1536 		goto done;
1537 	}
1538 
1539 	if (chan->channel == HCI_CHANNEL_CONTROL) {
1540 		struct sk_buff *cmd;
1541 
1542 		/* Send event to monitor */
1543 		cmd = create_monitor_ctrl_command(sk, index, opcode, len,
1544 						  skb->data + sizeof(*hdr));
1545 		if (cmd) {
1546 			hci_send_to_channel(HCI_CHANNEL_MONITOR, cmd,
1547 					    HCI_SOCK_TRUSTED, NULL);
1548 			kfree_skb(cmd);
1549 		}
1550 	}
1551 
1552 	if (opcode >= chan->handler_count ||
1553 	    chan->handlers[opcode].func == NULL) {
1554 		BT_DBG("Unknown op %u", opcode);
1555 		err = mgmt_cmd_status(sk, index, opcode,
1556 				      MGMT_STATUS_UNKNOWN_COMMAND);
1557 		goto done;
1558 	}
1559 
1560 	handler = &chan->handlers[opcode];
1561 
1562 	if (!hci_sock_test_flag(sk, HCI_SOCK_TRUSTED) &&
1563 	    !(handler->flags & HCI_MGMT_UNTRUSTED)) {
1564 		err = mgmt_cmd_status(sk, index, opcode,
1565 				      MGMT_STATUS_PERMISSION_DENIED);
1566 		goto done;
1567 	}
1568 
1569 	if (index != MGMT_INDEX_NONE) {
1570 		hdev = hci_dev_get(index);
1571 		if (!hdev) {
1572 			err = mgmt_cmd_status(sk, index, opcode,
1573 					      MGMT_STATUS_INVALID_INDEX);
1574 			goto done;
1575 		}
1576 
1577 		if (hci_dev_test_flag(hdev, HCI_SETUP) ||
1578 		    hci_dev_test_flag(hdev, HCI_CONFIG) ||
1579 		    hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1580 			err = mgmt_cmd_status(sk, index, opcode,
1581 					      MGMT_STATUS_INVALID_INDEX);
1582 			goto done;
1583 		}
1584 
1585 		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1586 		    !(handler->flags & HCI_MGMT_UNCONFIGURED)) {
1587 			err = mgmt_cmd_status(sk, index, opcode,
1588 					      MGMT_STATUS_INVALID_INDEX);
1589 			goto done;
1590 		}
1591 	}
1592 
1593 	if (!(handler->flags & HCI_MGMT_HDEV_OPTIONAL)) {
1594 		no_hdev = (handler->flags & HCI_MGMT_NO_HDEV);
1595 		if (no_hdev != !hdev) {
1596 			err = mgmt_cmd_status(sk, index, opcode,
1597 					      MGMT_STATUS_INVALID_INDEX);
1598 			goto done;
1599 		}
1600 	}
1601 
1602 	var_len = (handler->flags & HCI_MGMT_VAR_LEN);
1603 	if ((var_len && len < handler->data_len) ||
1604 	    (!var_len && len != handler->data_len)) {
1605 		err = mgmt_cmd_status(sk, index, opcode,
1606 				      MGMT_STATUS_INVALID_PARAMS);
1607 		goto done;
1608 	}
1609 
1610 	if (hdev && chan->hdev_init)
1611 		chan->hdev_init(sk, hdev);
1612 
1613 	cp = skb->data + sizeof(*hdr);
1614 
1615 	err = handler->func(sk, hdev, cp, len);
1616 	if (err < 0)
1617 		goto done;
1618 
1619 	err = skb->len;
1620 
1621 done:
1622 	if (hdev)
1623 		hci_dev_put(hdev);
1624 
1625 	return err;
1626 }
1627 
1628 static int hci_logging_frame(struct sock *sk, struct sk_buff *skb,
1629 			     unsigned int flags)
1630 {
1631 	struct hci_mon_hdr *hdr;
1632 	struct hci_dev *hdev;
1633 	u16 index;
1634 	int err;
1635 
1636 	/* The logging frame consists at minimum of the standard header,
1637 	 * the priority byte, the ident length byte and at least one string
1638 	 * terminator NUL byte. Anything shorter are invalid packets.
1639 	 */
1640 	if (skb->len < sizeof(*hdr) + 3)
1641 		return -EINVAL;
1642 
1643 	hdr = (void *)skb->data;
1644 
1645 	if (__le16_to_cpu(hdr->len) != skb->len - sizeof(*hdr))
1646 		return -EINVAL;
1647 
1648 	if (__le16_to_cpu(hdr->opcode) == 0x0000) {
1649 		__u8 priority = skb->data[sizeof(*hdr)];
1650 		__u8 ident_len = skb->data[sizeof(*hdr) + 1];
1651 
1652 		/* Only the priorities 0-7 are valid and with that any other
1653 		 * value results in an invalid packet.
1654 		 *
1655 		 * The priority byte is followed by an ident length byte and
1656 		 * the NUL terminated ident string. Check that the ident
1657 		 * length is not overflowing the packet and also that the
1658 		 * ident string itself is NUL terminated. In case the ident
1659 		 * length is zero, the length value actually doubles as NUL
1660 		 * terminator identifier.
1661 		 *
1662 		 * The message follows the ident string (if present) and
1663 		 * must be NUL terminated. Otherwise it is not a valid packet.
1664 		 */
1665 		if (priority > 7 || skb->data[skb->len - 1] != 0x00 ||
1666 		    ident_len > skb->len - sizeof(*hdr) - 3 ||
1667 		    skb->data[sizeof(*hdr) + ident_len + 1] != 0x00)
1668 			return -EINVAL;
1669 	} else {
1670 		return -EINVAL;
1671 	}
1672 
1673 	index = __le16_to_cpu(hdr->index);
1674 
1675 	if (index != MGMT_INDEX_NONE) {
1676 		hdev = hci_dev_get(index);
1677 		if (!hdev)
1678 			return -ENODEV;
1679 	} else {
1680 		hdev = NULL;
1681 	}
1682 
1683 	hdr->opcode = cpu_to_le16(HCI_MON_USER_LOGGING);
1684 
1685 	hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, HCI_SOCK_TRUSTED, NULL);
1686 	err = skb->len;
1687 
1688 	if (hdev)
1689 		hci_dev_put(hdev);
1690 
1691 	return err;
1692 }
1693 
1694 static int hci_sock_sendmsg(struct socket *sock, struct msghdr *msg,
1695 			    size_t len)
1696 {
1697 	struct sock *sk = sock->sk;
1698 	struct hci_mgmt_chan *chan;
1699 	struct hci_dev *hdev;
1700 	struct sk_buff *skb;
1701 	int err;
1702 	const unsigned int flags = msg->msg_flags;
1703 
1704 	BT_DBG("sock %p sk %p", sock, sk);
1705 
1706 	if (flags & MSG_OOB)
1707 		return -EOPNOTSUPP;
1708 
1709 	if (flags & ~(MSG_DONTWAIT | MSG_NOSIGNAL | MSG_ERRQUEUE | MSG_CMSG_COMPAT))
1710 		return -EINVAL;
1711 
1712 	if (len < 4 || len > hci_pi(sk)->mtu)
1713 		return -EINVAL;
1714 
1715 	skb = bt_skb_sendmsg(sk, msg, len, len, 0, 0);
1716 	if (IS_ERR(skb))
1717 		return PTR_ERR(skb);
1718 
1719 	lock_sock(sk);
1720 
1721 	switch (hci_pi(sk)->channel) {
1722 	case HCI_CHANNEL_RAW:
1723 	case HCI_CHANNEL_USER:
1724 		break;
1725 	case HCI_CHANNEL_MONITOR:
1726 		err = -EOPNOTSUPP;
1727 		goto drop;
1728 	case HCI_CHANNEL_LOGGING:
1729 		err = hci_logging_frame(sk, skb, flags);
1730 		goto drop;
1731 	default:
1732 		mutex_lock(&mgmt_chan_list_lock);
1733 		chan = __hci_mgmt_chan_find(hci_pi(sk)->channel);
1734 		if (chan)
1735 			err = hci_mgmt_cmd(chan, sk, skb);
1736 		else
1737 			err = -EINVAL;
1738 
1739 		mutex_unlock(&mgmt_chan_list_lock);
1740 		goto drop;
1741 	}
1742 
1743 	hdev = hci_hdev_from_sock(sk);
1744 	if (IS_ERR(hdev)) {
1745 		err = PTR_ERR(hdev);
1746 		goto drop;
1747 	}
1748 
1749 	if (!test_bit(HCI_UP, &hdev->flags)) {
1750 		err = -ENETDOWN;
1751 		goto drop;
1752 	}
1753 
1754 	hci_skb_pkt_type(skb) = skb->data[0];
1755 	skb_pull(skb, 1);
1756 
1757 	if (hci_pi(sk)->channel == HCI_CHANNEL_USER) {
1758 		/* No permission check is needed for user channel
1759 		 * since that gets enforced when binding the socket.
1760 		 *
1761 		 * However check that the packet type is valid.
1762 		 */
1763 		if (hci_skb_pkt_type(skb) != HCI_COMMAND_PKT &&
1764 		    hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
1765 		    hci_skb_pkt_type(skb) != HCI_SCODATA_PKT &&
1766 		    hci_skb_pkt_type(skb) != HCI_ISODATA_PKT) {
1767 			err = -EINVAL;
1768 			goto drop;
1769 		}
1770 
1771 		skb_queue_tail(&hdev->raw_q, skb);
1772 		queue_work(hdev->workqueue, &hdev->tx_work);
1773 	} else if (hci_skb_pkt_type(skb) == HCI_COMMAND_PKT) {
1774 		u16 opcode = get_unaligned_le16(skb->data);
1775 		u16 ogf = hci_opcode_ogf(opcode);
1776 		u16 ocf = hci_opcode_ocf(opcode);
1777 
1778 		if (((ogf > HCI_SFLT_MAX_OGF) ||
1779 		     !hci_test_bit(ocf & HCI_FLT_OCF_BITS,
1780 				   &hci_sec_filter.ocf_mask[ogf])) &&
1781 		    !capable(CAP_NET_RAW)) {
1782 			err = -EPERM;
1783 			goto drop;
1784 		}
1785 
1786 		/* Since the opcode has already been extracted here, store
1787 		 * a copy of the value for later use by the drivers.
1788 		 */
1789 		hci_skb_opcode(skb) = opcode;
1790 
1791 		if (ogf == 0x3f) {
1792 			skb_queue_tail(&hdev->raw_q, skb);
1793 			queue_work(hdev->workqueue, &hdev->tx_work);
1794 		} else {
1795 			/* Stand-alone HCI commands must be flagged as
1796 			 * single-command requests.
1797 			 */
1798 			bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
1799 
1800 			skb_queue_tail(&hdev->cmd_q, skb);
1801 			queue_work(hdev->workqueue, &hdev->cmd_work);
1802 		}
1803 	} else {
1804 		if (!capable(CAP_NET_RAW)) {
1805 			err = -EPERM;
1806 			goto drop;
1807 		}
1808 
1809 		if (hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
1810 		    hci_skb_pkt_type(skb) != HCI_SCODATA_PKT &&
1811 		    hci_skb_pkt_type(skb) != HCI_ISODATA_PKT) {
1812 			err = -EINVAL;
1813 			goto drop;
1814 		}
1815 
1816 		skb_queue_tail(&hdev->raw_q, skb);
1817 		queue_work(hdev->workqueue, &hdev->tx_work);
1818 	}
1819 
1820 	err = len;
1821 
1822 done:
1823 	release_sock(sk);
1824 	return err;
1825 
1826 drop:
1827 	kfree_skb(skb);
1828 	goto done;
1829 }
1830 
1831 static int hci_sock_setsockopt_old(struct socket *sock, int level, int optname,
1832 				   sockptr_t optval, unsigned int len)
1833 {
1834 	struct hci_ufilter uf = { .opcode = 0 };
1835 	struct sock *sk = sock->sk;
1836 	int err = 0, opt = 0;
1837 
1838 	BT_DBG("sk %p, opt %d", sk, optname);
1839 
1840 	lock_sock(sk);
1841 
1842 	if (hci_pi(sk)->channel != HCI_CHANNEL_RAW) {
1843 		err = -EBADFD;
1844 		goto done;
1845 	}
1846 
1847 	switch (optname) {
1848 	case HCI_DATA_DIR:
1849 		if (copy_from_sockptr(&opt, optval, sizeof(opt))) {
1850 			err = -EFAULT;
1851 			break;
1852 		}
1853 
1854 		if (opt)
1855 			hci_pi(sk)->cmsg_mask |= HCI_CMSG_DIR;
1856 		else
1857 			hci_pi(sk)->cmsg_mask &= ~HCI_CMSG_DIR;
1858 		break;
1859 
1860 	case HCI_TIME_STAMP:
1861 		if (copy_from_sockptr(&opt, optval, sizeof(opt))) {
1862 			err = -EFAULT;
1863 			break;
1864 		}
1865 
1866 		if (opt)
1867 			hci_pi(sk)->cmsg_mask |= HCI_CMSG_TSTAMP;
1868 		else
1869 			hci_pi(sk)->cmsg_mask &= ~HCI_CMSG_TSTAMP;
1870 		break;
1871 
1872 	case HCI_FILTER:
1873 		{
1874 			struct hci_filter *f = &hci_pi(sk)->filter;
1875 
1876 			uf.type_mask = f->type_mask;
1877 			uf.opcode    = f->opcode;
1878 			uf.event_mask[0] = *((u32 *) f->event_mask + 0);
1879 			uf.event_mask[1] = *((u32 *) f->event_mask + 1);
1880 		}
1881 
1882 		len = min_t(unsigned int, len, sizeof(uf));
1883 		if (copy_from_sockptr(&uf, optval, len)) {
1884 			err = -EFAULT;
1885 			break;
1886 		}
1887 
1888 		if (!capable(CAP_NET_RAW)) {
1889 			uf.type_mask &= hci_sec_filter.type_mask;
1890 			uf.event_mask[0] &= *((u32 *) hci_sec_filter.event_mask + 0);
1891 			uf.event_mask[1] &= *((u32 *) hci_sec_filter.event_mask + 1);
1892 		}
1893 
1894 		{
1895 			struct hci_filter *f = &hci_pi(sk)->filter;
1896 
1897 			f->type_mask = uf.type_mask;
1898 			f->opcode    = uf.opcode;
1899 			*((u32 *) f->event_mask + 0) = uf.event_mask[0];
1900 			*((u32 *) f->event_mask + 1) = uf.event_mask[1];
1901 		}
1902 		break;
1903 
1904 	default:
1905 		err = -ENOPROTOOPT;
1906 		break;
1907 	}
1908 
1909 done:
1910 	release_sock(sk);
1911 	return err;
1912 }
1913 
1914 static int hci_sock_setsockopt(struct socket *sock, int level, int optname,
1915 			       sockptr_t optval, unsigned int len)
1916 {
1917 	struct sock *sk = sock->sk;
1918 	int err = 0, opt = 0;
1919 
1920 	BT_DBG("sk %p, opt %d", sk, optname);
1921 
1922 	if (level == SOL_HCI)
1923 		return hci_sock_setsockopt_old(sock, level, optname, optval,
1924 					       len);
1925 
1926 	if (level != SOL_BLUETOOTH)
1927 		return -ENOPROTOOPT;
1928 
1929 	lock_sock(sk);
1930 
1931 	switch (optname) {
1932 	case BT_SNDMTU:
1933 	case BT_RCVMTU:
1934 		switch (hci_pi(sk)->channel) {
1935 		/* Don't allow changing MTU for channels that are meant for HCI
1936 		 * traffic only.
1937 		 */
1938 		case HCI_CHANNEL_RAW:
1939 		case HCI_CHANNEL_USER:
1940 			err = -ENOPROTOOPT;
1941 			goto done;
1942 		}
1943 
1944 		if (copy_from_sockptr(&opt, optval, sizeof(u16))) {
1945 			err = -EFAULT;
1946 			break;
1947 		}
1948 
1949 		hci_pi(sk)->mtu = opt;
1950 		break;
1951 
1952 	default:
1953 		err = -ENOPROTOOPT;
1954 		break;
1955 	}
1956 
1957 done:
1958 	release_sock(sk);
1959 	return err;
1960 }
1961 
1962 static int hci_sock_getsockopt_old(struct socket *sock, int level, int optname,
1963 				   char __user *optval, int __user *optlen)
1964 {
1965 	struct hci_ufilter uf;
1966 	struct sock *sk = sock->sk;
1967 	int len, opt, err = 0;
1968 
1969 	BT_DBG("sk %p, opt %d", sk, optname);
1970 
1971 	if (get_user(len, optlen))
1972 		return -EFAULT;
1973 
1974 	lock_sock(sk);
1975 
1976 	if (hci_pi(sk)->channel != HCI_CHANNEL_RAW) {
1977 		err = -EBADFD;
1978 		goto done;
1979 	}
1980 
1981 	switch (optname) {
1982 	case HCI_DATA_DIR:
1983 		if (hci_pi(sk)->cmsg_mask & HCI_CMSG_DIR)
1984 			opt = 1;
1985 		else
1986 			opt = 0;
1987 
1988 		if (put_user(opt, optval))
1989 			err = -EFAULT;
1990 		break;
1991 
1992 	case HCI_TIME_STAMP:
1993 		if (hci_pi(sk)->cmsg_mask & HCI_CMSG_TSTAMP)
1994 			opt = 1;
1995 		else
1996 			opt = 0;
1997 
1998 		if (put_user(opt, optval))
1999 			err = -EFAULT;
2000 		break;
2001 
2002 	case HCI_FILTER:
2003 		{
2004 			struct hci_filter *f = &hci_pi(sk)->filter;
2005 
2006 			memset(&uf, 0, sizeof(uf));
2007 			uf.type_mask = f->type_mask;
2008 			uf.opcode    = f->opcode;
2009 			uf.event_mask[0] = *((u32 *) f->event_mask + 0);
2010 			uf.event_mask[1] = *((u32 *) f->event_mask + 1);
2011 		}
2012 
2013 		len = min_t(unsigned int, len, sizeof(uf));
2014 		if (copy_to_user(optval, &uf, len))
2015 			err = -EFAULT;
2016 		break;
2017 
2018 	default:
2019 		err = -ENOPROTOOPT;
2020 		break;
2021 	}
2022 
2023 done:
2024 	release_sock(sk);
2025 	return err;
2026 }
2027 
2028 static int hci_sock_getsockopt(struct socket *sock, int level, int optname,
2029 			       char __user *optval, int __user *optlen)
2030 {
2031 	struct sock *sk = sock->sk;
2032 	int err = 0;
2033 
2034 	BT_DBG("sk %p, opt %d", sk, optname);
2035 
2036 	if (level == SOL_HCI)
2037 		return hci_sock_getsockopt_old(sock, level, optname, optval,
2038 					       optlen);
2039 
2040 	if (level != SOL_BLUETOOTH)
2041 		return -ENOPROTOOPT;
2042 
2043 	lock_sock(sk);
2044 
2045 	switch (optname) {
2046 	case BT_SNDMTU:
2047 	case BT_RCVMTU:
2048 		if (put_user(hci_pi(sk)->mtu, (u16 __user *)optval))
2049 			err = -EFAULT;
2050 		break;
2051 
2052 	default:
2053 		err = -ENOPROTOOPT;
2054 		break;
2055 	}
2056 
2057 	release_sock(sk);
2058 	return err;
2059 }
2060 
2061 static const struct proto_ops hci_sock_ops = {
2062 	.family		= PF_BLUETOOTH,
2063 	.owner		= THIS_MODULE,
2064 	.release	= hci_sock_release,
2065 	.bind		= hci_sock_bind,
2066 	.getname	= hci_sock_getname,
2067 	.sendmsg	= hci_sock_sendmsg,
2068 	.recvmsg	= hci_sock_recvmsg,
2069 	.ioctl		= hci_sock_ioctl,
2070 #ifdef CONFIG_COMPAT
2071 	.compat_ioctl	= hci_sock_compat_ioctl,
2072 #endif
2073 	.poll		= datagram_poll,
2074 	.listen		= sock_no_listen,
2075 	.shutdown	= sock_no_shutdown,
2076 	.setsockopt	= hci_sock_setsockopt,
2077 	.getsockopt	= hci_sock_getsockopt,
2078 	.connect	= sock_no_connect,
2079 	.socketpair	= sock_no_socketpair,
2080 	.accept		= sock_no_accept,
2081 	.mmap		= sock_no_mmap
2082 };
2083 
2084 static struct proto hci_sk_proto = {
2085 	.name		= "HCI",
2086 	.owner		= THIS_MODULE,
2087 	.obj_size	= sizeof(struct hci_pinfo)
2088 };
2089 
2090 static int hci_sock_create(struct net *net, struct socket *sock, int protocol,
2091 			   int kern)
2092 {
2093 	struct sock *sk;
2094 
2095 	BT_DBG("sock %p", sock);
2096 
2097 	if (sock->type != SOCK_RAW)
2098 		return -ESOCKTNOSUPPORT;
2099 
2100 	sock->ops = &hci_sock_ops;
2101 
2102 	sk = sk_alloc(net, PF_BLUETOOTH, GFP_ATOMIC, &hci_sk_proto, kern);
2103 	if (!sk)
2104 		return -ENOMEM;
2105 
2106 	sock_init_data(sock, sk);
2107 
2108 	sock_reset_flag(sk, SOCK_ZAPPED);
2109 
2110 	sk->sk_protocol = protocol;
2111 
2112 	sock->state = SS_UNCONNECTED;
2113 	sk->sk_state = BT_OPEN;
2114 
2115 	bt_sock_link(&hci_sk_list, sk);
2116 	return 0;
2117 }
2118 
2119 static const struct net_proto_family hci_sock_family_ops = {
2120 	.family	= PF_BLUETOOTH,
2121 	.owner	= THIS_MODULE,
2122 	.create	= hci_sock_create,
2123 };
2124 
2125 int __init hci_sock_init(void)
2126 {
2127 	int err;
2128 
2129 	BUILD_BUG_ON(sizeof(struct sockaddr_hci) > sizeof(struct sockaddr));
2130 
2131 	err = proto_register(&hci_sk_proto, 0);
2132 	if (err < 0)
2133 		return err;
2134 
2135 	err = bt_sock_register(BTPROTO_HCI, &hci_sock_family_ops);
2136 	if (err < 0) {
2137 		BT_ERR("HCI socket registration failed");
2138 		goto error;
2139 	}
2140 
2141 	err = bt_procfs_init(&init_net, "hci", &hci_sk_list, NULL);
2142 	if (err < 0) {
2143 		BT_ERR("Failed to create HCI proc file");
2144 		bt_sock_unregister(BTPROTO_HCI);
2145 		goto error;
2146 	}
2147 
2148 	BT_INFO("HCI socket layer initialized");
2149 
2150 	return 0;
2151 
2152 error:
2153 	proto_unregister(&hci_sk_proto);
2154 	return err;
2155 }
2156 
2157 void hci_sock_cleanup(void)
2158 {
2159 	bt_procfs_cleanup(&init_net, "hci");
2160 	bt_sock_unregister(BTPROTO_HCI);
2161 	proto_unregister(&hci_sk_proto);
2162 }
2163