1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved. 4 Copyright 2023 NXP 5 6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 7 8 This program is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License version 2 as 10 published by the Free Software Foundation; 11 12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 20 21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 23 SOFTWARE IS DISCLAIMED. 24 */ 25 26 /* Bluetooth HCI event handling. */ 27 28 #include <asm/unaligned.h> 29 #include <linux/crypto.h> 30 #include <crypto/algapi.h> 31 32 #include <net/bluetooth/bluetooth.h> 33 #include <net/bluetooth/hci_core.h> 34 #include <net/bluetooth/mgmt.h> 35 36 #include "hci_request.h" 37 #include "hci_debugfs.h" 38 #include "hci_codec.h" 39 #include "smp.h" 40 #include "msft.h" 41 #include "eir.h" 42 43 #define ZERO_KEY "\x00\x00\x00\x00\x00\x00\x00\x00" \ 44 "\x00\x00\x00\x00\x00\x00\x00\x00" 45 46 #define secs_to_jiffies(_secs) msecs_to_jiffies((_secs) * 1000) 47 48 /* Handle HCI Event packets */ 49 50 static void *hci_ev_skb_pull(struct hci_dev *hdev, struct sk_buff *skb, 51 u8 ev, size_t len) 52 { 53 void *data; 54 55 data = skb_pull_data(skb, len); 56 if (!data) 57 bt_dev_err(hdev, "Malformed Event: 0x%2.2x", ev); 58 59 return data; 60 } 61 62 static void *hci_cc_skb_pull(struct hci_dev *hdev, struct sk_buff *skb, 63 u16 op, size_t len) 64 { 65 void *data; 66 67 data = skb_pull_data(skb, len); 68 if (!data) 69 bt_dev_err(hdev, "Malformed Command Complete: 0x%4.4x", op); 70 71 return data; 72 } 73 74 static void *hci_le_ev_skb_pull(struct hci_dev *hdev, struct sk_buff *skb, 75 u8 ev, size_t len) 76 { 77 void *data; 78 79 data = skb_pull_data(skb, len); 80 if (!data) 81 bt_dev_err(hdev, "Malformed LE Event: 0x%2.2x", ev); 82 83 return data; 84 } 85 86 static u8 hci_cc_inquiry_cancel(struct hci_dev *hdev, void *data, 87 struct sk_buff *skb) 88 { 89 struct hci_ev_status *rp = data; 90 91 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 92 93 /* It is possible that we receive Inquiry Complete event right 94 * before we receive Inquiry Cancel Command Complete event, in 95 * which case the latter event should have status of Command 96 * Disallowed. This should not be treated as error, since 97 * we actually achieve what Inquiry Cancel wants to achieve, 98 * which is to end the last Inquiry session. 99 */ 100 if (rp->status == HCI_ERROR_COMMAND_DISALLOWED && !test_bit(HCI_INQUIRY, &hdev->flags)) { 101 bt_dev_warn(hdev, "Ignoring error of Inquiry Cancel command"); 102 rp->status = 0x00; 103 } 104 105 if (rp->status) 106 return rp->status; 107 108 clear_bit(HCI_INQUIRY, &hdev->flags); 109 smp_mb__after_atomic(); /* wake_up_bit advises about this barrier */ 110 wake_up_bit(&hdev->flags, HCI_INQUIRY); 111 112 hci_dev_lock(hdev); 113 /* Set discovery state to stopped if we're not doing LE active 114 * scanning. 115 */ 116 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN) || 117 hdev->le_scan_type != LE_SCAN_ACTIVE) 118 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 119 hci_dev_unlock(hdev); 120 121 return rp->status; 122 } 123 124 static u8 hci_cc_periodic_inq(struct hci_dev *hdev, void *data, 125 struct sk_buff *skb) 126 { 127 struct hci_ev_status *rp = data; 128 129 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 130 131 if (rp->status) 132 return rp->status; 133 134 hci_dev_set_flag(hdev, HCI_PERIODIC_INQ); 135 136 return rp->status; 137 } 138 139 static u8 hci_cc_exit_periodic_inq(struct hci_dev *hdev, void *data, 140 struct sk_buff *skb) 141 { 142 struct hci_ev_status *rp = data; 143 144 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 145 146 if (rp->status) 147 return rp->status; 148 149 hci_dev_clear_flag(hdev, HCI_PERIODIC_INQ); 150 151 return rp->status; 152 } 153 154 static u8 hci_cc_remote_name_req_cancel(struct hci_dev *hdev, void *data, 155 struct sk_buff *skb) 156 { 157 struct hci_ev_status *rp = data; 158 159 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 160 161 return rp->status; 162 } 163 164 static u8 hci_cc_role_discovery(struct hci_dev *hdev, void *data, 165 struct sk_buff *skb) 166 { 167 struct hci_rp_role_discovery *rp = data; 168 struct hci_conn *conn; 169 170 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 171 172 if (rp->status) 173 return rp->status; 174 175 hci_dev_lock(hdev); 176 177 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(rp->handle)); 178 if (conn) 179 conn->role = rp->role; 180 181 hci_dev_unlock(hdev); 182 183 return rp->status; 184 } 185 186 static u8 hci_cc_read_link_policy(struct hci_dev *hdev, void *data, 187 struct sk_buff *skb) 188 { 189 struct hci_rp_read_link_policy *rp = data; 190 struct hci_conn *conn; 191 192 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 193 194 if (rp->status) 195 return rp->status; 196 197 hci_dev_lock(hdev); 198 199 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(rp->handle)); 200 if (conn) 201 conn->link_policy = __le16_to_cpu(rp->policy); 202 203 hci_dev_unlock(hdev); 204 205 return rp->status; 206 } 207 208 static u8 hci_cc_write_link_policy(struct hci_dev *hdev, void *data, 209 struct sk_buff *skb) 210 { 211 struct hci_rp_write_link_policy *rp = data; 212 struct hci_conn *conn; 213 void *sent; 214 215 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 216 217 if (rp->status) 218 return rp->status; 219 220 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_LINK_POLICY); 221 if (!sent) 222 return rp->status; 223 224 hci_dev_lock(hdev); 225 226 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(rp->handle)); 227 if (conn) 228 conn->link_policy = get_unaligned_le16(sent + 2); 229 230 hci_dev_unlock(hdev); 231 232 return rp->status; 233 } 234 235 static u8 hci_cc_read_def_link_policy(struct hci_dev *hdev, void *data, 236 struct sk_buff *skb) 237 { 238 struct hci_rp_read_def_link_policy *rp = data; 239 240 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 241 242 if (rp->status) 243 return rp->status; 244 245 hdev->link_policy = __le16_to_cpu(rp->policy); 246 247 return rp->status; 248 } 249 250 static u8 hci_cc_write_def_link_policy(struct hci_dev *hdev, void *data, 251 struct sk_buff *skb) 252 { 253 struct hci_ev_status *rp = data; 254 void *sent; 255 256 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 257 258 if (rp->status) 259 return rp->status; 260 261 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_DEF_LINK_POLICY); 262 if (!sent) 263 return rp->status; 264 265 hdev->link_policy = get_unaligned_le16(sent); 266 267 return rp->status; 268 } 269 270 static u8 hci_cc_reset(struct hci_dev *hdev, void *data, struct sk_buff *skb) 271 { 272 struct hci_ev_status *rp = data; 273 274 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 275 276 clear_bit(HCI_RESET, &hdev->flags); 277 278 if (rp->status) 279 return rp->status; 280 281 /* Reset all non-persistent flags */ 282 hci_dev_clear_volatile_flags(hdev); 283 284 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 285 286 hdev->inq_tx_power = HCI_TX_POWER_INVALID; 287 hdev->adv_tx_power = HCI_TX_POWER_INVALID; 288 289 memset(hdev->adv_data, 0, sizeof(hdev->adv_data)); 290 hdev->adv_data_len = 0; 291 292 memset(hdev->scan_rsp_data, 0, sizeof(hdev->scan_rsp_data)); 293 hdev->scan_rsp_data_len = 0; 294 295 hdev->le_scan_type = LE_SCAN_PASSIVE; 296 297 hdev->ssp_debug_mode = 0; 298 299 hci_bdaddr_list_clear(&hdev->le_accept_list); 300 hci_bdaddr_list_clear(&hdev->le_resolv_list); 301 302 return rp->status; 303 } 304 305 static u8 hci_cc_read_stored_link_key(struct hci_dev *hdev, void *data, 306 struct sk_buff *skb) 307 { 308 struct hci_rp_read_stored_link_key *rp = data; 309 struct hci_cp_read_stored_link_key *sent; 310 311 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 312 313 sent = hci_sent_cmd_data(hdev, HCI_OP_READ_STORED_LINK_KEY); 314 if (!sent) 315 return rp->status; 316 317 if (!rp->status && sent->read_all == 0x01) { 318 hdev->stored_max_keys = le16_to_cpu(rp->max_keys); 319 hdev->stored_num_keys = le16_to_cpu(rp->num_keys); 320 } 321 322 return rp->status; 323 } 324 325 static u8 hci_cc_delete_stored_link_key(struct hci_dev *hdev, void *data, 326 struct sk_buff *skb) 327 { 328 struct hci_rp_delete_stored_link_key *rp = data; 329 u16 num_keys; 330 331 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 332 333 if (rp->status) 334 return rp->status; 335 336 num_keys = le16_to_cpu(rp->num_keys); 337 338 if (num_keys <= hdev->stored_num_keys) 339 hdev->stored_num_keys -= num_keys; 340 else 341 hdev->stored_num_keys = 0; 342 343 return rp->status; 344 } 345 346 static u8 hci_cc_write_local_name(struct hci_dev *hdev, void *data, 347 struct sk_buff *skb) 348 { 349 struct hci_ev_status *rp = data; 350 void *sent; 351 352 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 353 354 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_LOCAL_NAME); 355 if (!sent) 356 return rp->status; 357 358 hci_dev_lock(hdev); 359 360 if (hci_dev_test_flag(hdev, HCI_MGMT)) 361 mgmt_set_local_name_complete(hdev, sent, rp->status); 362 else if (!rp->status) 363 memcpy(hdev->dev_name, sent, HCI_MAX_NAME_LENGTH); 364 365 hci_dev_unlock(hdev); 366 367 return rp->status; 368 } 369 370 static u8 hci_cc_read_local_name(struct hci_dev *hdev, void *data, 371 struct sk_buff *skb) 372 { 373 struct hci_rp_read_local_name *rp = data; 374 375 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 376 377 if (rp->status) 378 return rp->status; 379 380 if (hci_dev_test_flag(hdev, HCI_SETUP) || 381 hci_dev_test_flag(hdev, HCI_CONFIG)) 382 memcpy(hdev->dev_name, rp->name, HCI_MAX_NAME_LENGTH); 383 384 return rp->status; 385 } 386 387 static u8 hci_cc_write_auth_enable(struct hci_dev *hdev, void *data, 388 struct sk_buff *skb) 389 { 390 struct hci_ev_status *rp = data; 391 void *sent; 392 393 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 394 395 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_AUTH_ENABLE); 396 if (!sent) 397 return rp->status; 398 399 hci_dev_lock(hdev); 400 401 if (!rp->status) { 402 __u8 param = *((__u8 *) sent); 403 404 if (param == AUTH_ENABLED) 405 set_bit(HCI_AUTH, &hdev->flags); 406 else 407 clear_bit(HCI_AUTH, &hdev->flags); 408 } 409 410 if (hci_dev_test_flag(hdev, HCI_MGMT)) 411 mgmt_auth_enable_complete(hdev, rp->status); 412 413 hci_dev_unlock(hdev); 414 415 return rp->status; 416 } 417 418 static u8 hci_cc_write_encrypt_mode(struct hci_dev *hdev, void *data, 419 struct sk_buff *skb) 420 { 421 struct hci_ev_status *rp = data; 422 __u8 param; 423 void *sent; 424 425 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 426 427 if (rp->status) 428 return rp->status; 429 430 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_ENCRYPT_MODE); 431 if (!sent) 432 return rp->status; 433 434 param = *((__u8 *) sent); 435 436 if (param) 437 set_bit(HCI_ENCRYPT, &hdev->flags); 438 else 439 clear_bit(HCI_ENCRYPT, &hdev->flags); 440 441 return rp->status; 442 } 443 444 static u8 hci_cc_write_scan_enable(struct hci_dev *hdev, void *data, 445 struct sk_buff *skb) 446 { 447 struct hci_ev_status *rp = data; 448 __u8 param; 449 void *sent; 450 451 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 452 453 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_SCAN_ENABLE); 454 if (!sent) 455 return rp->status; 456 457 param = *((__u8 *) sent); 458 459 hci_dev_lock(hdev); 460 461 if (rp->status) { 462 hdev->discov_timeout = 0; 463 goto done; 464 } 465 466 if (param & SCAN_INQUIRY) 467 set_bit(HCI_ISCAN, &hdev->flags); 468 else 469 clear_bit(HCI_ISCAN, &hdev->flags); 470 471 if (param & SCAN_PAGE) 472 set_bit(HCI_PSCAN, &hdev->flags); 473 else 474 clear_bit(HCI_PSCAN, &hdev->flags); 475 476 done: 477 hci_dev_unlock(hdev); 478 479 return rp->status; 480 } 481 482 static u8 hci_cc_set_event_filter(struct hci_dev *hdev, void *data, 483 struct sk_buff *skb) 484 { 485 struct hci_ev_status *rp = data; 486 struct hci_cp_set_event_filter *cp; 487 void *sent; 488 489 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 490 491 if (rp->status) 492 return rp->status; 493 494 sent = hci_sent_cmd_data(hdev, HCI_OP_SET_EVENT_FLT); 495 if (!sent) 496 return rp->status; 497 498 cp = (struct hci_cp_set_event_filter *)sent; 499 500 if (cp->flt_type == HCI_FLT_CLEAR_ALL) 501 hci_dev_clear_flag(hdev, HCI_EVENT_FILTER_CONFIGURED); 502 else 503 hci_dev_set_flag(hdev, HCI_EVENT_FILTER_CONFIGURED); 504 505 return rp->status; 506 } 507 508 static u8 hci_cc_read_class_of_dev(struct hci_dev *hdev, void *data, 509 struct sk_buff *skb) 510 { 511 struct hci_rp_read_class_of_dev *rp = data; 512 513 if (WARN_ON(!hdev)) 514 return HCI_ERROR_UNSPECIFIED; 515 516 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 517 518 if (rp->status) 519 return rp->status; 520 521 memcpy(hdev->dev_class, rp->dev_class, 3); 522 523 bt_dev_dbg(hdev, "class 0x%.2x%.2x%.2x", hdev->dev_class[2], 524 hdev->dev_class[1], hdev->dev_class[0]); 525 526 return rp->status; 527 } 528 529 static u8 hci_cc_write_class_of_dev(struct hci_dev *hdev, void *data, 530 struct sk_buff *skb) 531 { 532 struct hci_ev_status *rp = data; 533 void *sent; 534 535 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 536 537 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_CLASS_OF_DEV); 538 if (!sent) 539 return rp->status; 540 541 hci_dev_lock(hdev); 542 543 if (!rp->status) 544 memcpy(hdev->dev_class, sent, 3); 545 546 if (hci_dev_test_flag(hdev, HCI_MGMT)) 547 mgmt_set_class_of_dev_complete(hdev, sent, rp->status); 548 549 hci_dev_unlock(hdev); 550 551 return rp->status; 552 } 553 554 static u8 hci_cc_read_voice_setting(struct hci_dev *hdev, void *data, 555 struct sk_buff *skb) 556 { 557 struct hci_rp_read_voice_setting *rp = data; 558 __u16 setting; 559 560 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 561 562 if (rp->status) 563 return rp->status; 564 565 setting = __le16_to_cpu(rp->voice_setting); 566 567 if (hdev->voice_setting == setting) 568 return rp->status; 569 570 hdev->voice_setting = setting; 571 572 bt_dev_dbg(hdev, "voice setting 0x%4.4x", setting); 573 574 if (hdev->notify) 575 hdev->notify(hdev, HCI_NOTIFY_VOICE_SETTING); 576 577 return rp->status; 578 } 579 580 static u8 hci_cc_write_voice_setting(struct hci_dev *hdev, void *data, 581 struct sk_buff *skb) 582 { 583 struct hci_ev_status *rp = data; 584 __u16 setting; 585 void *sent; 586 587 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 588 589 if (rp->status) 590 return rp->status; 591 592 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_VOICE_SETTING); 593 if (!sent) 594 return rp->status; 595 596 setting = get_unaligned_le16(sent); 597 598 if (hdev->voice_setting == setting) 599 return rp->status; 600 601 hdev->voice_setting = setting; 602 603 bt_dev_dbg(hdev, "voice setting 0x%4.4x", setting); 604 605 if (hdev->notify) 606 hdev->notify(hdev, HCI_NOTIFY_VOICE_SETTING); 607 608 return rp->status; 609 } 610 611 static u8 hci_cc_read_num_supported_iac(struct hci_dev *hdev, void *data, 612 struct sk_buff *skb) 613 { 614 struct hci_rp_read_num_supported_iac *rp = data; 615 616 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 617 618 if (rp->status) 619 return rp->status; 620 621 hdev->num_iac = rp->num_iac; 622 623 bt_dev_dbg(hdev, "num iac %d", hdev->num_iac); 624 625 return rp->status; 626 } 627 628 static u8 hci_cc_write_ssp_mode(struct hci_dev *hdev, void *data, 629 struct sk_buff *skb) 630 { 631 struct hci_ev_status *rp = data; 632 struct hci_cp_write_ssp_mode *sent; 633 634 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 635 636 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_SSP_MODE); 637 if (!sent) 638 return rp->status; 639 640 hci_dev_lock(hdev); 641 642 if (!rp->status) { 643 if (sent->mode) 644 hdev->features[1][0] |= LMP_HOST_SSP; 645 else 646 hdev->features[1][0] &= ~LMP_HOST_SSP; 647 } 648 649 if (!rp->status) { 650 if (sent->mode) 651 hci_dev_set_flag(hdev, HCI_SSP_ENABLED); 652 else 653 hci_dev_clear_flag(hdev, HCI_SSP_ENABLED); 654 } 655 656 hci_dev_unlock(hdev); 657 658 return rp->status; 659 } 660 661 static u8 hci_cc_write_sc_support(struct hci_dev *hdev, void *data, 662 struct sk_buff *skb) 663 { 664 struct hci_ev_status *rp = data; 665 struct hci_cp_write_sc_support *sent; 666 667 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 668 669 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_SC_SUPPORT); 670 if (!sent) 671 return rp->status; 672 673 hci_dev_lock(hdev); 674 675 if (!rp->status) { 676 if (sent->support) 677 hdev->features[1][0] |= LMP_HOST_SC; 678 else 679 hdev->features[1][0] &= ~LMP_HOST_SC; 680 } 681 682 if (!hci_dev_test_flag(hdev, HCI_MGMT) && !rp->status) { 683 if (sent->support) 684 hci_dev_set_flag(hdev, HCI_SC_ENABLED); 685 else 686 hci_dev_clear_flag(hdev, HCI_SC_ENABLED); 687 } 688 689 hci_dev_unlock(hdev); 690 691 return rp->status; 692 } 693 694 static u8 hci_cc_read_local_version(struct hci_dev *hdev, void *data, 695 struct sk_buff *skb) 696 { 697 struct hci_rp_read_local_version *rp = data; 698 699 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 700 701 if (rp->status) 702 return rp->status; 703 704 if (hci_dev_test_flag(hdev, HCI_SETUP) || 705 hci_dev_test_flag(hdev, HCI_CONFIG)) { 706 hdev->hci_ver = rp->hci_ver; 707 hdev->hci_rev = __le16_to_cpu(rp->hci_rev); 708 hdev->lmp_ver = rp->lmp_ver; 709 hdev->manufacturer = __le16_to_cpu(rp->manufacturer); 710 hdev->lmp_subver = __le16_to_cpu(rp->lmp_subver); 711 } 712 713 return rp->status; 714 } 715 716 static u8 hci_cc_read_enc_key_size(struct hci_dev *hdev, void *data, 717 struct sk_buff *skb) 718 { 719 struct hci_rp_read_enc_key_size *rp = data; 720 struct hci_conn *conn; 721 u16 handle; 722 u8 status = rp->status; 723 724 bt_dev_dbg(hdev, "status 0x%2.2x", status); 725 726 handle = le16_to_cpu(rp->handle); 727 728 hci_dev_lock(hdev); 729 730 conn = hci_conn_hash_lookup_handle(hdev, handle); 731 if (!conn) { 732 status = 0xFF; 733 goto done; 734 } 735 736 /* While unexpected, the read_enc_key_size command may fail. The most 737 * secure approach is to then assume the key size is 0 to force a 738 * disconnection. 739 */ 740 if (status) { 741 bt_dev_err(hdev, "failed to read key size for handle %u", 742 handle); 743 conn->enc_key_size = 0; 744 } else { 745 conn->enc_key_size = rp->key_size; 746 status = 0; 747 748 if (conn->enc_key_size < hdev->min_enc_key_size) { 749 /* As slave role, the conn->state has been set to 750 * BT_CONNECTED and l2cap conn req might not be received 751 * yet, at this moment the l2cap layer almost does 752 * nothing with the non-zero status. 753 * So we also clear encrypt related bits, and then the 754 * handler of l2cap conn req will get the right secure 755 * state at a later time. 756 */ 757 status = HCI_ERROR_AUTH_FAILURE; 758 clear_bit(HCI_CONN_ENCRYPT, &conn->flags); 759 clear_bit(HCI_CONN_AES_CCM, &conn->flags); 760 } 761 } 762 763 hci_encrypt_cfm(conn, status); 764 765 done: 766 hci_dev_unlock(hdev); 767 768 return status; 769 } 770 771 static u8 hci_cc_read_local_commands(struct hci_dev *hdev, void *data, 772 struct sk_buff *skb) 773 { 774 struct hci_rp_read_local_commands *rp = data; 775 776 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 777 778 if (rp->status) 779 return rp->status; 780 781 if (hci_dev_test_flag(hdev, HCI_SETUP) || 782 hci_dev_test_flag(hdev, HCI_CONFIG)) 783 memcpy(hdev->commands, rp->commands, sizeof(hdev->commands)); 784 785 return rp->status; 786 } 787 788 static u8 hci_cc_read_auth_payload_timeout(struct hci_dev *hdev, void *data, 789 struct sk_buff *skb) 790 { 791 struct hci_rp_read_auth_payload_to *rp = data; 792 struct hci_conn *conn; 793 794 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 795 796 if (rp->status) 797 return rp->status; 798 799 hci_dev_lock(hdev); 800 801 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(rp->handle)); 802 if (conn) 803 conn->auth_payload_timeout = __le16_to_cpu(rp->timeout); 804 805 hci_dev_unlock(hdev); 806 807 return rp->status; 808 } 809 810 static u8 hci_cc_write_auth_payload_timeout(struct hci_dev *hdev, void *data, 811 struct sk_buff *skb) 812 { 813 struct hci_rp_write_auth_payload_to *rp = data; 814 struct hci_conn *conn; 815 void *sent; 816 817 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 818 819 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_AUTH_PAYLOAD_TO); 820 if (!sent) 821 return rp->status; 822 823 hci_dev_lock(hdev); 824 825 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(rp->handle)); 826 if (!conn) { 827 rp->status = 0xff; 828 goto unlock; 829 } 830 831 if (!rp->status) 832 conn->auth_payload_timeout = get_unaligned_le16(sent + 2); 833 834 unlock: 835 hci_dev_unlock(hdev); 836 837 return rp->status; 838 } 839 840 static u8 hci_cc_read_local_features(struct hci_dev *hdev, void *data, 841 struct sk_buff *skb) 842 { 843 struct hci_rp_read_local_features *rp = data; 844 845 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 846 847 if (rp->status) 848 return rp->status; 849 850 memcpy(hdev->features, rp->features, 8); 851 852 /* Adjust default settings according to features 853 * supported by device. */ 854 855 if (hdev->features[0][0] & LMP_3SLOT) 856 hdev->pkt_type |= (HCI_DM3 | HCI_DH3); 857 858 if (hdev->features[0][0] & LMP_5SLOT) 859 hdev->pkt_type |= (HCI_DM5 | HCI_DH5); 860 861 if (hdev->features[0][1] & LMP_HV2) { 862 hdev->pkt_type |= (HCI_HV2); 863 hdev->esco_type |= (ESCO_HV2); 864 } 865 866 if (hdev->features[0][1] & LMP_HV3) { 867 hdev->pkt_type |= (HCI_HV3); 868 hdev->esco_type |= (ESCO_HV3); 869 } 870 871 if (lmp_esco_capable(hdev)) 872 hdev->esco_type |= (ESCO_EV3); 873 874 if (hdev->features[0][4] & LMP_EV4) 875 hdev->esco_type |= (ESCO_EV4); 876 877 if (hdev->features[0][4] & LMP_EV5) 878 hdev->esco_type |= (ESCO_EV5); 879 880 if (hdev->features[0][5] & LMP_EDR_ESCO_2M) 881 hdev->esco_type |= (ESCO_2EV3); 882 883 if (hdev->features[0][5] & LMP_EDR_ESCO_3M) 884 hdev->esco_type |= (ESCO_3EV3); 885 886 if (hdev->features[0][5] & LMP_EDR_3S_ESCO) 887 hdev->esco_type |= (ESCO_2EV5 | ESCO_3EV5); 888 889 return rp->status; 890 } 891 892 static u8 hci_cc_read_local_ext_features(struct hci_dev *hdev, void *data, 893 struct sk_buff *skb) 894 { 895 struct hci_rp_read_local_ext_features *rp = data; 896 897 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 898 899 if (rp->status) 900 return rp->status; 901 902 if (hdev->max_page < rp->max_page) { 903 if (test_bit(HCI_QUIRK_BROKEN_LOCAL_EXT_FEATURES_PAGE_2, 904 &hdev->quirks)) 905 bt_dev_warn(hdev, "broken local ext features page 2"); 906 else 907 hdev->max_page = rp->max_page; 908 } 909 910 if (rp->page < HCI_MAX_PAGES) 911 memcpy(hdev->features[rp->page], rp->features, 8); 912 913 return rp->status; 914 } 915 916 static u8 hci_cc_read_flow_control_mode(struct hci_dev *hdev, void *data, 917 struct sk_buff *skb) 918 { 919 struct hci_rp_read_flow_control_mode *rp = data; 920 921 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 922 923 if (rp->status) 924 return rp->status; 925 926 hdev->flow_ctl_mode = rp->mode; 927 928 return rp->status; 929 } 930 931 static u8 hci_cc_read_buffer_size(struct hci_dev *hdev, void *data, 932 struct sk_buff *skb) 933 { 934 struct hci_rp_read_buffer_size *rp = data; 935 936 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 937 938 if (rp->status) 939 return rp->status; 940 941 hdev->acl_mtu = __le16_to_cpu(rp->acl_mtu); 942 hdev->sco_mtu = rp->sco_mtu; 943 hdev->acl_pkts = __le16_to_cpu(rp->acl_max_pkt); 944 hdev->sco_pkts = __le16_to_cpu(rp->sco_max_pkt); 945 946 if (test_bit(HCI_QUIRK_FIXUP_BUFFER_SIZE, &hdev->quirks)) { 947 hdev->sco_mtu = 64; 948 hdev->sco_pkts = 8; 949 } 950 951 hdev->acl_cnt = hdev->acl_pkts; 952 hdev->sco_cnt = hdev->sco_pkts; 953 954 BT_DBG("%s acl mtu %d:%d sco mtu %d:%d", hdev->name, hdev->acl_mtu, 955 hdev->acl_pkts, hdev->sco_mtu, hdev->sco_pkts); 956 957 return rp->status; 958 } 959 960 static u8 hci_cc_read_bd_addr(struct hci_dev *hdev, void *data, 961 struct sk_buff *skb) 962 { 963 struct hci_rp_read_bd_addr *rp = data; 964 965 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 966 967 if (rp->status) 968 return rp->status; 969 970 if (test_bit(HCI_INIT, &hdev->flags)) 971 bacpy(&hdev->bdaddr, &rp->bdaddr); 972 973 if (hci_dev_test_flag(hdev, HCI_SETUP)) 974 bacpy(&hdev->setup_addr, &rp->bdaddr); 975 976 return rp->status; 977 } 978 979 static u8 hci_cc_read_local_pairing_opts(struct hci_dev *hdev, void *data, 980 struct sk_buff *skb) 981 { 982 struct hci_rp_read_local_pairing_opts *rp = data; 983 984 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 985 986 if (rp->status) 987 return rp->status; 988 989 if (hci_dev_test_flag(hdev, HCI_SETUP) || 990 hci_dev_test_flag(hdev, HCI_CONFIG)) { 991 hdev->pairing_opts = rp->pairing_opts; 992 hdev->max_enc_key_size = rp->max_key_size; 993 } 994 995 return rp->status; 996 } 997 998 static u8 hci_cc_read_page_scan_activity(struct hci_dev *hdev, void *data, 999 struct sk_buff *skb) 1000 { 1001 struct hci_rp_read_page_scan_activity *rp = data; 1002 1003 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1004 1005 if (rp->status) 1006 return rp->status; 1007 1008 if (test_bit(HCI_INIT, &hdev->flags)) { 1009 hdev->page_scan_interval = __le16_to_cpu(rp->interval); 1010 hdev->page_scan_window = __le16_to_cpu(rp->window); 1011 } 1012 1013 return rp->status; 1014 } 1015 1016 static u8 hci_cc_write_page_scan_activity(struct hci_dev *hdev, void *data, 1017 struct sk_buff *skb) 1018 { 1019 struct hci_ev_status *rp = data; 1020 struct hci_cp_write_page_scan_activity *sent; 1021 1022 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1023 1024 if (rp->status) 1025 return rp->status; 1026 1027 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_PAGE_SCAN_ACTIVITY); 1028 if (!sent) 1029 return rp->status; 1030 1031 hdev->page_scan_interval = __le16_to_cpu(sent->interval); 1032 hdev->page_scan_window = __le16_to_cpu(sent->window); 1033 1034 return rp->status; 1035 } 1036 1037 static u8 hci_cc_read_page_scan_type(struct hci_dev *hdev, void *data, 1038 struct sk_buff *skb) 1039 { 1040 struct hci_rp_read_page_scan_type *rp = data; 1041 1042 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1043 1044 if (rp->status) 1045 return rp->status; 1046 1047 if (test_bit(HCI_INIT, &hdev->flags)) 1048 hdev->page_scan_type = rp->type; 1049 1050 return rp->status; 1051 } 1052 1053 static u8 hci_cc_write_page_scan_type(struct hci_dev *hdev, void *data, 1054 struct sk_buff *skb) 1055 { 1056 struct hci_ev_status *rp = data; 1057 u8 *type; 1058 1059 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1060 1061 if (rp->status) 1062 return rp->status; 1063 1064 type = hci_sent_cmd_data(hdev, HCI_OP_WRITE_PAGE_SCAN_TYPE); 1065 if (type) 1066 hdev->page_scan_type = *type; 1067 1068 return rp->status; 1069 } 1070 1071 static u8 hci_cc_read_data_block_size(struct hci_dev *hdev, void *data, 1072 struct sk_buff *skb) 1073 { 1074 struct hci_rp_read_data_block_size *rp = data; 1075 1076 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1077 1078 if (rp->status) 1079 return rp->status; 1080 1081 hdev->block_mtu = __le16_to_cpu(rp->max_acl_len); 1082 hdev->block_len = __le16_to_cpu(rp->block_len); 1083 hdev->num_blocks = __le16_to_cpu(rp->num_blocks); 1084 1085 hdev->block_cnt = hdev->num_blocks; 1086 1087 BT_DBG("%s blk mtu %d cnt %d len %d", hdev->name, hdev->block_mtu, 1088 hdev->block_cnt, hdev->block_len); 1089 1090 return rp->status; 1091 } 1092 1093 static u8 hci_cc_read_clock(struct hci_dev *hdev, void *data, 1094 struct sk_buff *skb) 1095 { 1096 struct hci_rp_read_clock *rp = data; 1097 struct hci_cp_read_clock *cp; 1098 struct hci_conn *conn; 1099 1100 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1101 1102 if (rp->status) 1103 return rp->status; 1104 1105 hci_dev_lock(hdev); 1106 1107 cp = hci_sent_cmd_data(hdev, HCI_OP_READ_CLOCK); 1108 if (!cp) 1109 goto unlock; 1110 1111 if (cp->which == 0x00) { 1112 hdev->clock = le32_to_cpu(rp->clock); 1113 goto unlock; 1114 } 1115 1116 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(rp->handle)); 1117 if (conn) { 1118 conn->clock = le32_to_cpu(rp->clock); 1119 conn->clock_accuracy = le16_to_cpu(rp->accuracy); 1120 } 1121 1122 unlock: 1123 hci_dev_unlock(hdev); 1124 return rp->status; 1125 } 1126 1127 static u8 hci_cc_read_local_amp_info(struct hci_dev *hdev, void *data, 1128 struct sk_buff *skb) 1129 { 1130 struct hci_rp_read_local_amp_info *rp = data; 1131 1132 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1133 1134 if (rp->status) 1135 return rp->status; 1136 1137 hdev->amp_status = rp->amp_status; 1138 hdev->amp_total_bw = __le32_to_cpu(rp->total_bw); 1139 hdev->amp_max_bw = __le32_to_cpu(rp->max_bw); 1140 hdev->amp_min_latency = __le32_to_cpu(rp->min_latency); 1141 hdev->amp_max_pdu = __le32_to_cpu(rp->max_pdu); 1142 hdev->amp_type = rp->amp_type; 1143 hdev->amp_pal_cap = __le16_to_cpu(rp->pal_cap); 1144 hdev->amp_assoc_size = __le16_to_cpu(rp->max_assoc_size); 1145 hdev->amp_be_flush_to = __le32_to_cpu(rp->be_flush_to); 1146 hdev->amp_max_flush_to = __le32_to_cpu(rp->max_flush_to); 1147 1148 return rp->status; 1149 } 1150 1151 static u8 hci_cc_read_inq_rsp_tx_power(struct hci_dev *hdev, void *data, 1152 struct sk_buff *skb) 1153 { 1154 struct hci_rp_read_inq_rsp_tx_power *rp = data; 1155 1156 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1157 1158 if (rp->status) 1159 return rp->status; 1160 1161 hdev->inq_tx_power = rp->tx_power; 1162 1163 return rp->status; 1164 } 1165 1166 static u8 hci_cc_read_def_err_data_reporting(struct hci_dev *hdev, void *data, 1167 struct sk_buff *skb) 1168 { 1169 struct hci_rp_read_def_err_data_reporting *rp = data; 1170 1171 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1172 1173 if (rp->status) 1174 return rp->status; 1175 1176 hdev->err_data_reporting = rp->err_data_reporting; 1177 1178 return rp->status; 1179 } 1180 1181 static u8 hci_cc_write_def_err_data_reporting(struct hci_dev *hdev, void *data, 1182 struct sk_buff *skb) 1183 { 1184 struct hci_ev_status *rp = data; 1185 struct hci_cp_write_def_err_data_reporting *cp; 1186 1187 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1188 1189 if (rp->status) 1190 return rp->status; 1191 1192 cp = hci_sent_cmd_data(hdev, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING); 1193 if (!cp) 1194 return rp->status; 1195 1196 hdev->err_data_reporting = cp->err_data_reporting; 1197 1198 return rp->status; 1199 } 1200 1201 static u8 hci_cc_pin_code_reply(struct hci_dev *hdev, void *data, 1202 struct sk_buff *skb) 1203 { 1204 struct hci_rp_pin_code_reply *rp = data; 1205 struct hci_cp_pin_code_reply *cp; 1206 struct hci_conn *conn; 1207 1208 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1209 1210 hci_dev_lock(hdev); 1211 1212 if (hci_dev_test_flag(hdev, HCI_MGMT)) 1213 mgmt_pin_code_reply_complete(hdev, &rp->bdaddr, rp->status); 1214 1215 if (rp->status) 1216 goto unlock; 1217 1218 cp = hci_sent_cmd_data(hdev, HCI_OP_PIN_CODE_REPLY); 1219 if (!cp) 1220 goto unlock; 1221 1222 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &cp->bdaddr); 1223 if (conn) 1224 conn->pin_length = cp->pin_len; 1225 1226 unlock: 1227 hci_dev_unlock(hdev); 1228 return rp->status; 1229 } 1230 1231 static u8 hci_cc_pin_code_neg_reply(struct hci_dev *hdev, void *data, 1232 struct sk_buff *skb) 1233 { 1234 struct hci_rp_pin_code_neg_reply *rp = data; 1235 1236 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1237 1238 hci_dev_lock(hdev); 1239 1240 if (hci_dev_test_flag(hdev, HCI_MGMT)) 1241 mgmt_pin_code_neg_reply_complete(hdev, &rp->bdaddr, 1242 rp->status); 1243 1244 hci_dev_unlock(hdev); 1245 1246 return rp->status; 1247 } 1248 1249 static u8 hci_cc_le_read_buffer_size(struct hci_dev *hdev, void *data, 1250 struct sk_buff *skb) 1251 { 1252 struct hci_rp_le_read_buffer_size *rp = data; 1253 1254 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1255 1256 if (rp->status) 1257 return rp->status; 1258 1259 hdev->le_mtu = __le16_to_cpu(rp->le_mtu); 1260 hdev->le_pkts = rp->le_max_pkt; 1261 1262 hdev->le_cnt = hdev->le_pkts; 1263 1264 BT_DBG("%s le mtu %d:%d", hdev->name, hdev->le_mtu, hdev->le_pkts); 1265 1266 return rp->status; 1267 } 1268 1269 static u8 hci_cc_le_read_local_features(struct hci_dev *hdev, void *data, 1270 struct sk_buff *skb) 1271 { 1272 struct hci_rp_le_read_local_features *rp = data; 1273 1274 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status); 1275 1276 if (rp->status) 1277 return rp->status; 1278 1279 memcpy(hdev->le_features, rp->features, 8); 1280 1281 return rp->status; 1282 } 1283 1284 static u8 hci_cc_le_read_adv_tx_power(struct hci_dev *hdev, void *data, 1285 struct sk_buff *skb) 1286 { 1287 struct hci_rp_le_read_adv_tx_power *rp = data; 1288 1289 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1290 1291 if (rp->status) 1292 return rp->status; 1293 1294 hdev->adv_tx_power = rp->tx_power; 1295 1296 return rp->status; 1297 } 1298 1299 static u8 hci_cc_user_confirm_reply(struct hci_dev *hdev, void *data, 1300 struct sk_buff *skb) 1301 { 1302 struct hci_rp_user_confirm_reply *rp = data; 1303 1304 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1305 1306 hci_dev_lock(hdev); 1307 1308 if (hci_dev_test_flag(hdev, HCI_MGMT)) 1309 mgmt_user_confirm_reply_complete(hdev, &rp->bdaddr, ACL_LINK, 0, 1310 rp->status); 1311 1312 hci_dev_unlock(hdev); 1313 1314 return rp->status; 1315 } 1316 1317 static u8 hci_cc_user_confirm_neg_reply(struct hci_dev *hdev, void *data, 1318 struct sk_buff *skb) 1319 { 1320 struct hci_rp_user_confirm_reply *rp = data; 1321 1322 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1323 1324 hci_dev_lock(hdev); 1325 1326 if (hci_dev_test_flag(hdev, HCI_MGMT)) 1327 mgmt_user_confirm_neg_reply_complete(hdev, &rp->bdaddr, 1328 ACL_LINK, 0, rp->status); 1329 1330 hci_dev_unlock(hdev); 1331 1332 return rp->status; 1333 } 1334 1335 static u8 hci_cc_user_passkey_reply(struct hci_dev *hdev, void *data, 1336 struct sk_buff *skb) 1337 { 1338 struct hci_rp_user_confirm_reply *rp = data; 1339 1340 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1341 1342 hci_dev_lock(hdev); 1343 1344 if (hci_dev_test_flag(hdev, HCI_MGMT)) 1345 mgmt_user_passkey_reply_complete(hdev, &rp->bdaddr, ACL_LINK, 1346 0, rp->status); 1347 1348 hci_dev_unlock(hdev); 1349 1350 return rp->status; 1351 } 1352 1353 static u8 hci_cc_user_passkey_neg_reply(struct hci_dev *hdev, void *data, 1354 struct sk_buff *skb) 1355 { 1356 struct hci_rp_user_confirm_reply *rp = data; 1357 1358 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1359 1360 hci_dev_lock(hdev); 1361 1362 if (hci_dev_test_flag(hdev, HCI_MGMT)) 1363 mgmt_user_passkey_neg_reply_complete(hdev, &rp->bdaddr, 1364 ACL_LINK, 0, rp->status); 1365 1366 hci_dev_unlock(hdev); 1367 1368 return rp->status; 1369 } 1370 1371 static u8 hci_cc_read_local_oob_data(struct hci_dev *hdev, void *data, 1372 struct sk_buff *skb) 1373 { 1374 struct hci_rp_read_local_oob_data *rp = data; 1375 1376 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1377 1378 return rp->status; 1379 } 1380 1381 static u8 hci_cc_read_local_oob_ext_data(struct hci_dev *hdev, void *data, 1382 struct sk_buff *skb) 1383 { 1384 struct hci_rp_read_local_oob_ext_data *rp = data; 1385 1386 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1387 1388 return rp->status; 1389 } 1390 1391 static u8 hci_cc_le_set_random_addr(struct hci_dev *hdev, void *data, 1392 struct sk_buff *skb) 1393 { 1394 struct hci_ev_status *rp = data; 1395 bdaddr_t *sent; 1396 1397 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1398 1399 if (rp->status) 1400 return rp->status; 1401 1402 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_RANDOM_ADDR); 1403 if (!sent) 1404 return rp->status; 1405 1406 hci_dev_lock(hdev); 1407 1408 bacpy(&hdev->random_addr, sent); 1409 1410 if (!bacmp(&hdev->rpa, sent)) { 1411 hci_dev_clear_flag(hdev, HCI_RPA_EXPIRED); 1412 queue_delayed_work(hdev->workqueue, &hdev->rpa_expired, 1413 secs_to_jiffies(hdev->rpa_timeout)); 1414 } 1415 1416 hci_dev_unlock(hdev); 1417 1418 return rp->status; 1419 } 1420 1421 static u8 hci_cc_le_set_default_phy(struct hci_dev *hdev, void *data, 1422 struct sk_buff *skb) 1423 { 1424 struct hci_ev_status *rp = data; 1425 struct hci_cp_le_set_default_phy *cp; 1426 1427 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1428 1429 if (rp->status) 1430 return rp->status; 1431 1432 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_DEFAULT_PHY); 1433 if (!cp) 1434 return rp->status; 1435 1436 hci_dev_lock(hdev); 1437 1438 hdev->le_tx_def_phys = cp->tx_phys; 1439 hdev->le_rx_def_phys = cp->rx_phys; 1440 1441 hci_dev_unlock(hdev); 1442 1443 return rp->status; 1444 } 1445 1446 static u8 hci_cc_le_set_adv_set_random_addr(struct hci_dev *hdev, void *data, 1447 struct sk_buff *skb) 1448 { 1449 struct hci_ev_status *rp = data; 1450 struct hci_cp_le_set_adv_set_rand_addr *cp; 1451 struct adv_info *adv; 1452 1453 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1454 1455 if (rp->status) 1456 return rp->status; 1457 1458 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_ADV_SET_RAND_ADDR); 1459 /* Update only in case the adv instance since handle 0x00 shall be using 1460 * HCI_OP_LE_SET_RANDOM_ADDR since that allows both extended and 1461 * non-extended adverting. 1462 */ 1463 if (!cp || !cp->handle) 1464 return rp->status; 1465 1466 hci_dev_lock(hdev); 1467 1468 adv = hci_find_adv_instance(hdev, cp->handle); 1469 if (adv) { 1470 bacpy(&adv->random_addr, &cp->bdaddr); 1471 if (!bacmp(&hdev->rpa, &cp->bdaddr)) { 1472 adv->rpa_expired = false; 1473 queue_delayed_work(hdev->workqueue, 1474 &adv->rpa_expired_cb, 1475 secs_to_jiffies(hdev->rpa_timeout)); 1476 } 1477 } 1478 1479 hci_dev_unlock(hdev); 1480 1481 return rp->status; 1482 } 1483 1484 static u8 hci_cc_le_remove_adv_set(struct hci_dev *hdev, void *data, 1485 struct sk_buff *skb) 1486 { 1487 struct hci_ev_status *rp = data; 1488 u8 *instance; 1489 int err; 1490 1491 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1492 1493 if (rp->status) 1494 return rp->status; 1495 1496 instance = hci_sent_cmd_data(hdev, HCI_OP_LE_REMOVE_ADV_SET); 1497 if (!instance) 1498 return rp->status; 1499 1500 hci_dev_lock(hdev); 1501 1502 err = hci_remove_adv_instance(hdev, *instance); 1503 if (!err) 1504 mgmt_advertising_removed(hci_skb_sk(hdev->sent_cmd), hdev, 1505 *instance); 1506 1507 hci_dev_unlock(hdev); 1508 1509 return rp->status; 1510 } 1511 1512 static u8 hci_cc_le_clear_adv_sets(struct hci_dev *hdev, void *data, 1513 struct sk_buff *skb) 1514 { 1515 struct hci_ev_status *rp = data; 1516 struct adv_info *adv, *n; 1517 int err; 1518 1519 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1520 1521 if (rp->status) 1522 return rp->status; 1523 1524 if (!hci_sent_cmd_data(hdev, HCI_OP_LE_CLEAR_ADV_SETS)) 1525 return rp->status; 1526 1527 hci_dev_lock(hdev); 1528 1529 list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) { 1530 u8 instance = adv->instance; 1531 1532 err = hci_remove_adv_instance(hdev, instance); 1533 if (!err) 1534 mgmt_advertising_removed(hci_skb_sk(hdev->sent_cmd), 1535 hdev, instance); 1536 } 1537 1538 hci_dev_unlock(hdev); 1539 1540 return rp->status; 1541 } 1542 1543 static u8 hci_cc_le_read_transmit_power(struct hci_dev *hdev, void *data, 1544 struct sk_buff *skb) 1545 { 1546 struct hci_rp_le_read_transmit_power *rp = data; 1547 1548 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1549 1550 if (rp->status) 1551 return rp->status; 1552 1553 hdev->min_le_tx_power = rp->min_le_tx_power; 1554 hdev->max_le_tx_power = rp->max_le_tx_power; 1555 1556 return rp->status; 1557 } 1558 1559 static u8 hci_cc_le_set_privacy_mode(struct hci_dev *hdev, void *data, 1560 struct sk_buff *skb) 1561 { 1562 struct hci_ev_status *rp = data; 1563 struct hci_cp_le_set_privacy_mode *cp; 1564 struct hci_conn_params *params; 1565 1566 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1567 1568 if (rp->status) 1569 return rp->status; 1570 1571 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_PRIVACY_MODE); 1572 if (!cp) 1573 return rp->status; 1574 1575 hci_dev_lock(hdev); 1576 1577 params = hci_conn_params_lookup(hdev, &cp->bdaddr, cp->bdaddr_type); 1578 if (params) 1579 WRITE_ONCE(params->privacy_mode, cp->mode); 1580 1581 hci_dev_unlock(hdev); 1582 1583 return rp->status; 1584 } 1585 1586 static u8 hci_cc_le_set_adv_enable(struct hci_dev *hdev, void *data, 1587 struct sk_buff *skb) 1588 { 1589 struct hci_ev_status *rp = data; 1590 __u8 *sent; 1591 1592 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1593 1594 if (rp->status) 1595 return rp->status; 1596 1597 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_ADV_ENABLE); 1598 if (!sent) 1599 return rp->status; 1600 1601 hci_dev_lock(hdev); 1602 1603 /* If we're doing connection initiation as peripheral. Set a 1604 * timeout in case something goes wrong. 1605 */ 1606 if (*sent) { 1607 struct hci_conn *conn; 1608 1609 hci_dev_set_flag(hdev, HCI_LE_ADV); 1610 1611 conn = hci_lookup_le_connect(hdev); 1612 if (conn) 1613 queue_delayed_work(hdev->workqueue, 1614 &conn->le_conn_timeout, 1615 conn->conn_timeout); 1616 } else { 1617 hci_dev_clear_flag(hdev, HCI_LE_ADV); 1618 } 1619 1620 hci_dev_unlock(hdev); 1621 1622 return rp->status; 1623 } 1624 1625 static u8 hci_cc_le_set_ext_adv_enable(struct hci_dev *hdev, void *data, 1626 struct sk_buff *skb) 1627 { 1628 struct hci_cp_le_set_ext_adv_enable *cp; 1629 struct hci_cp_ext_adv_set *set; 1630 struct adv_info *adv = NULL, *n; 1631 struct hci_ev_status *rp = data; 1632 1633 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1634 1635 if (rp->status) 1636 return rp->status; 1637 1638 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE); 1639 if (!cp) 1640 return rp->status; 1641 1642 set = (void *)cp->data; 1643 1644 hci_dev_lock(hdev); 1645 1646 if (cp->num_of_sets) 1647 adv = hci_find_adv_instance(hdev, set->handle); 1648 1649 if (cp->enable) { 1650 struct hci_conn *conn; 1651 1652 hci_dev_set_flag(hdev, HCI_LE_ADV); 1653 1654 if (adv && !adv->periodic) 1655 adv->enabled = true; 1656 1657 conn = hci_lookup_le_connect(hdev); 1658 if (conn) 1659 queue_delayed_work(hdev->workqueue, 1660 &conn->le_conn_timeout, 1661 conn->conn_timeout); 1662 } else { 1663 if (cp->num_of_sets) { 1664 if (adv) 1665 adv->enabled = false; 1666 1667 /* If just one instance was disabled check if there are 1668 * any other instance enabled before clearing HCI_LE_ADV 1669 */ 1670 list_for_each_entry_safe(adv, n, &hdev->adv_instances, 1671 list) { 1672 if (adv->enabled) 1673 goto unlock; 1674 } 1675 } else { 1676 /* All instances shall be considered disabled */ 1677 list_for_each_entry_safe(adv, n, &hdev->adv_instances, 1678 list) 1679 adv->enabled = false; 1680 } 1681 1682 hci_dev_clear_flag(hdev, HCI_LE_ADV); 1683 } 1684 1685 unlock: 1686 hci_dev_unlock(hdev); 1687 return rp->status; 1688 } 1689 1690 static u8 hci_cc_le_set_scan_param(struct hci_dev *hdev, void *data, 1691 struct sk_buff *skb) 1692 { 1693 struct hci_cp_le_set_scan_param *cp; 1694 struct hci_ev_status *rp = data; 1695 1696 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1697 1698 if (rp->status) 1699 return rp->status; 1700 1701 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_SCAN_PARAM); 1702 if (!cp) 1703 return rp->status; 1704 1705 hci_dev_lock(hdev); 1706 1707 hdev->le_scan_type = cp->type; 1708 1709 hci_dev_unlock(hdev); 1710 1711 return rp->status; 1712 } 1713 1714 static u8 hci_cc_le_set_ext_scan_param(struct hci_dev *hdev, void *data, 1715 struct sk_buff *skb) 1716 { 1717 struct hci_cp_le_set_ext_scan_params *cp; 1718 struct hci_ev_status *rp = data; 1719 struct hci_cp_le_scan_phy_params *phy_param; 1720 1721 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1722 1723 if (rp->status) 1724 return rp->status; 1725 1726 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_EXT_SCAN_PARAMS); 1727 if (!cp) 1728 return rp->status; 1729 1730 phy_param = (void *)cp->data; 1731 1732 hci_dev_lock(hdev); 1733 1734 hdev->le_scan_type = phy_param->type; 1735 1736 hci_dev_unlock(hdev); 1737 1738 return rp->status; 1739 } 1740 1741 static bool has_pending_adv_report(struct hci_dev *hdev) 1742 { 1743 struct discovery_state *d = &hdev->discovery; 1744 1745 return bacmp(&d->last_adv_addr, BDADDR_ANY); 1746 } 1747 1748 static void clear_pending_adv_report(struct hci_dev *hdev) 1749 { 1750 struct discovery_state *d = &hdev->discovery; 1751 1752 bacpy(&d->last_adv_addr, BDADDR_ANY); 1753 d->last_adv_data_len = 0; 1754 } 1755 1756 static void store_pending_adv_report(struct hci_dev *hdev, bdaddr_t *bdaddr, 1757 u8 bdaddr_type, s8 rssi, u32 flags, 1758 u8 *data, u8 len) 1759 { 1760 struct discovery_state *d = &hdev->discovery; 1761 1762 if (len > max_adv_len(hdev)) 1763 return; 1764 1765 bacpy(&d->last_adv_addr, bdaddr); 1766 d->last_adv_addr_type = bdaddr_type; 1767 d->last_adv_rssi = rssi; 1768 d->last_adv_flags = flags; 1769 memcpy(d->last_adv_data, data, len); 1770 d->last_adv_data_len = len; 1771 } 1772 1773 static void le_set_scan_enable_complete(struct hci_dev *hdev, u8 enable) 1774 { 1775 hci_dev_lock(hdev); 1776 1777 switch (enable) { 1778 case LE_SCAN_ENABLE: 1779 hci_dev_set_flag(hdev, HCI_LE_SCAN); 1780 if (hdev->le_scan_type == LE_SCAN_ACTIVE) 1781 clear_pending_adv_report(hdev); 1782 if (hci_dev_test_flag(hdev, HCI_MESH)) 1783 hci_discovery_set_state(hdev, DISCOVERY_FINDING); 1784 break; 1785 1786 case LE_SCAN_DISABLE: 1787 /* We do this here instead of when setting DISCOVERY_STOPPED 1788 * since the latter would potentially require waiting for 1789 * inquiry to stop too. 1790 */ 1791 if (has_pending_adv_report(hdev)) { 1792 struct discovery_state *d = &hdev->discovery; 1793 1794 mgmt_device_found(hdev, &d->last_adv_addr, LE_LINK, 1795 d->last_adv_addr_type, NULL, 1796 d->last_adv_rssi, d->last_adv_flags, 1797 d->last_adv_data, 1798 d->last_adv_data_len, NULL, 0, 0); 1799 } 1800 1801 /* Cancel this timer so that we don't try to disable scanning 1802 * when it's already disabled. 1803 */ 1804 cancel_delayed_work(&hdev->le_scan_disable); 1805 1806 hci_dev_clear_flag(hdev, HCI_LE_SCAN); 1807 1808 /* The HCI_LE_SCAN_INTERRUPTED flag indicates that we 1809 * interrupted scanning due to a connect request. Mark 1810 * therefore discovery as stopped. 1811 */ 1812 if (hci_dev_test_and_clear_flag(hdev, HCI_LE_SCAN_INTERRUPTED)) 1813 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 1814 else if (!hci_dev_test_flag(hdev, HCI_LE_ADV) && 1815 hdev->discovery.state == DISCOVERY_FINDING) 1816 queue_work(hdev->workqueue, &hdev->reenable_adv_work); 1817 1818 break; 1819 1820 default: 1821 bt_dev_err(hdev, "use of reserved LE_Scan_Enable param %d", 1822 enable); 1823 break; 1824 } 1825 1826 hci_dev_unlock(hdev); 1827 } 1828 1829 static u8 hci_cc_le_set_scan_enable(struct hci_dev *hdev, void *data, 1830 struct sk_buff *skb) 1831 { 1832 struct hci_cp_le_set_scan_enable *cp; 1833 struct hci_ev_status *rp = data; 1834 1835 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1836 1837 if (rp->status) 1838 return rp->status; 1839 1840 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_SCAN_ENABLE); 1841 if (!cp) 1842 return rp->status; 1843 1844 le_set_scan_enable_complete(hdev, cp->enable); 1845 1846 return rp->status; 1847 } 1848 1849 static u8 hci_cc_le_set_ext_scan_enable(struct hci_dev *hdev, void *data, 1850 struct sk_buff *skb) 1851 { 1852 struct hci_cp_le_set_ext_scan_enable *cp; 1853 struct hci_ev_status *rp = data; 1854 1855 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1856 1857 if (rp->status) 1858 return rp->status; 1859 1860 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_EXT_SCAN_ENABLE); 1861 if (!cp) 1862 return rp->status; 1863 1864 le_set_scan_enable_complete(hdev, cp->enable); 1865 1866 return rp->status; 1867 } 1868 1869 static u8 hci_cc_le_read_num_adv_sets(struct hci_dev *hdev, void *data, 1870 struct sk_buff *skb) 1871 { 1872 struct hci_rp_le_read_num_supported_adv_sets *rp = data; 1873 1874 bt_dev_dbg(hdev, "status 0x%2.2x No of Adv sets %u", rp->status, 1875 rp->num_of_sets); 1876 1877 if (rp->status) 1878 return rp->status; 1879 1880 hdev->le_num_of_adv_sets = rp->num_of_sets; 1881 1882 return rp->status; 1883 } 1884 1885 static u8 hci_cc_le_read_accept_list_size(struct hci_dev *hdev, void *data, 1886 struct sk_buff *skb) 1887 { 1888 struct hci_rp_le_read_accept_list_size *rp = data; 1889 1890 bt_dev_dbg(hdev, "status 0x%2.2x size %u", rp->status, rp->size); 1891 1892 if (rp->status) 1893 return rp->status; 1894 1895 hdev->le_accept_list_size = rp->size; 1896 1897 return rp->status; 1898 } 1899 1900 static u8 hci_cc_le_clear_accept_list(struct hci_dev *hdev, void *data, 1901 struct sk_buff *skb) 1902 { 1903 struct hci_ev_status *rp = data; 1904 1905 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1906 1907 if (rp->status) 1908 return rp->status; 1909 1910 hci_dev_lock(hdev); 1911 hci_bdaddr_list_clear(&hdev->le_accept_list); 1912 hci_dev_unlock(hdev); 1913 1914 return rp->status; 1915 } 1916 1917 static u8 hci_cc_le_add_to_accept_list(struct hci_dev *hdev, void *data, 1918 struct sk_buff *skb) 1919 { 1920 struct hci_cp_le_add_to_accept_list *sent; 1921 struct hci_ev_status *rp = data; 1922 1923 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1924 1925 if (rp->status) 1926 return rp->status; 1927 1928 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST); 1929 if (!sent) 1930 return rp->status; 1931 1932 hci_dev_lock(hdev); 1933 hci_bdaddr_list_add(&hdev->le_accept_list, &sent->bdaddr, 1934 sent->bdaddr_type); 1935 hci_dev_unlock(hdev); 1936 1937 return rp->status; 1938 } 1939 1940 static u8 hci_cc_le_del_from_accept_list(struct hci_dev *hdev, void *data, 1941 struct sk_buff *skb) 1942 { 1943 struct hci_cp_le_del_from_accept_list *sent; 1944 struct hci_ev_status *rp = data; 1945 1946 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1947 1948 if (rp->status) 1949 return rp->status; 1950 1951 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_DEL_FROM_ACCEPT_LIST); 1952 if (!sent) 1953 return rp->status; 1954 1955 hci_dev_lock(hdev); 1956 hci_bdaddr_list_del(&hdev->le_accept_list, &sent->bdaddr, 1957 sent->bdaddr_type); 1958 hci_dev_unlock(hdev); 1959 1960 return rp->status; 1961 } 1962 1963 static u8 hci_cc_le_read_supported_states(struct hci_dev *hdev, void *data, 1964 struct sk_buff *skb) 1965 { 1966 struct hci_rp_le_read_supported_states *rp = data; 1967 1968 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1969 1970 if (rp->status) 1971 return rp->status; 1972 1973 memcpy(hdev->le_states, rp->le_states, 8); 1974 1975 return rp->status; 1976 } 1977 1978 static u8 hci_cc_le_read_def_data_len(struct hci_dev *hdev, void *data, 1979 struct sk_buff *skb) 1980 { 1981 struct hci_rp_le_read_def_data_len *rp = data; 1982 1983 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1984 1985 if (rp->status) 1986 return rp->status; 1987 1988 hdev->le_def_tx_len = le16_to_cpu(rp->tx_len); 1989 hdev->le_def_tx_time = le16_to_cpu(rp->tx_time); 1990 1991 return rp->status; 1992 } 1993 1994 static u8 hci_cc_le_write_def_data_len(struct hci_dev *hdev, void *data, 1995 struct sk_buff *skb) 1996 { 1997 struct hci_cp_le_write_def_data_len *sent; 1998 struct hci_ev_status *rp = data; 1999 2000 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 2001 2002 if (rp->status) 2003 return rp->status; 2004 2005 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_WRITE_DEF_DATA_LEN); 2006 if (!sent) 2007 return rp->status; 2008 2009 hdev->le_def_tx_len = le16_to_cpu(sent->tx_len); 2010 hdev->le_def_tx_time = le16_to_cpu(sent->tx_time); 2011 2012 return rp->status; 2013 } 2014 2015 static u8 hci_cc_le_add_to_resolv_list(struct hci_dev *hdev, void *data, 2016 struct sk_buff *skb) 2017 { 2018 struct hci_cp_le_add_to_resolv_list *sent; 2019 struct hci_ev_status *rp = data; 2020 2021 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 2022 2023 if (rp->status) 2024 return rp->status; 2025 2026 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_ADD_TO_RESOLV_LIST); 2027 if (!sent) 2028 return rp->status; 2029 2030 hci_dev_lock(hdev); 2031 hci_bdaddr_list_add_with_irk(&hdev->le_resolv_list, &sent->bdaddr, 2032 sent->bdaddr_type, sent->peer_irk, 2033 sent->local_irk); 2034 hci_dev_unlock(hdev); 2035 2036 return rp->status; 2037 } 2038 2039 static u8 hci_cc_le_del_from_resolv_list(struct hci_dev *hdev, void *data, 2040 struct sk_buff *skb) 2041 { 2042 struct hci_cp_le_del_from_resolv_list *sent; 2043 struct hci_ev_status *rp = data; 2044 2045 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 2046 2047 if (rp->status) 2048 return rp->status; 2049 2050 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_DEL_FROM_RESOLV_LIST); 2051 if (!sent) 2052 return rp->status; 2053 2054 hci_dev_lock(hdev); 2055 hci_bdaddr_list_del_with_irk(&hdev->le_resolv_list, &sent->bdaddr, 2056 sent->bdaddr_type); 2057 hci_dev_unlock(hdev); 2058 2059 return rp->status; 2060 } 2061 2062 static u8 hci_cc_le_clear_resolv_list(struct hci_dev *hdev, void *data, 2063 struct sk_buff *skb) 2064 { 2065 struct hci_ev_status *rp = data; 2066 2067 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 2068 2069 if (rp->status) 2070 return rp->status; 2071 2072 hci_dev_lock(hdev); 2073 hci_bdaddr_list_clear(&hdev->le_resolv_list); 2074 hci_dev_unlock(hdev); 2075 2076 return rp->status; 2077 } 2078 2079 static u8 hci_cc_le_read_resolv_list_size(struct hci_dev *hdev, void *data, 2080 struct sk_buff *skb) 2081 { 2082 struct hci_rp_le_read_resolv_list_size *rp = data; 2083 2084 bt_dev_dbg(hdev, "status 0x%2.2x size %u", rp->status, rp->size); 2085 2086 if (rp->status) 2087 return rp->status; 2088 2089 hdev->le_resolv_list_size = rp->size; 2090 2091 return rp->status; 2092 } 2093 2094 static u8 hci_cc_le_set_addr_resolution_enable(struct hci_dev *hdev, void *data, 2095 struct sk_buff *skb) 2096 { 2097 struct hci_ev_status *rp = data; 2098 __u8 *sent; 2099 2100 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 2101 2102 if (rp->status) 2103 return rp->status; 2104 2105 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE); 2106 if (!sent) 2107 return rp->status; 2108 2109 hci_dev_lock(hdev); 2110 2111 if (*sent) 2112 hci_dev_set_flag(hdev, HCI_LL_RPA_RESOLUTION); 2113 else 2114 hci_dev_clear_flag(hdev, HCI_LL_RPA_RESOLUTION); 2115 2116 hci_dev_unlock(hdev); 2117 2118 return rp->status; 2119 } 2120 2121 static u8 hci_cc_le_read_max_data_len(struct hci_dev *hdev, void *data, 2122 struct sk_buff *skb) 2123 { 2124 struct hci_rp_le_read_max_data_len *rp = data; 2125 2126 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 2127 2128 if (rp->status) 2129 return rp->status; 2130 2131 hdev->le_max_tx_len = le16_to_cpu(rp->tx_len); 2132 hdev->le_max_tx_time = le16_to_cpu(rp->tx_time); 2133 hdev->le_max_rx_len = le16_to_cpu(rp->rx_len); 2134 hdev->le_max_rx_time = le16_to_cpu(rp->rx_time); 2135 2136 return rp->status; 2137 } 2138 2139 static u8 hci_cc_write_le_host_supported(struct hci_dev *hdev, void *data, 2140 struct sk_buff *skb) 2141 { 2142 struct hci_cp_write_le_host_supported *sent; 2143 struct hci_ev_status *rp = data; 2144 2145 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 2146 2147 if (rp->status) 2148 return rp->status; 2149 2150 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED); 2151 if (!sent) 2152 return rp->status; 2153 2154 hci_dev_lock(hdev); 2155 2156 if (sent->le) { 2157 hdev->features[1][0] |= LMP_HOST_LE; 2158 hci_dev_set_flag(hdev, HCI_LE_ENABLED); 2159 } else { 2160 hdev->features[1][0] &= ~LMP_HOST_LE; 2161 hci_dev_clear_flag(hdev, HCI_LE_ENABLED); 2162 hci_dev_clear_flag(hdev, HCI_ADVERTISING); 2163 } 2164 2165 if (sent->simul) 2166 hdev->features[1][0] |= LMP_HOST_LE_BREDR; 2167 else 2168 hdev->features[1][0] &= ~LMP_HOST_LE_BREDR; 2169 2170 hci_dev_unlock(hdev); 2171 2172 return rp->status; 2173 } 2174 2175 static u8 hci_cc_set_adv_param(struct hci_dev *hdev, void *data, 2176 struct sk_buff *skb) 2177 { 2178 struct hci_cp_le_set_adv_param *cp; 2179 struct hci_ev_status *rp = data; 2180 2181 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 2182 2183 if (rp->status) 2184 return rp->status; 2185 2186 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_ADV_PARAM); 2187 if (!cp) 2188 return rp->status; 2189 2190 hci_dev_lock(hdev); 2191 hdev->adv_addr_type = cp->own_address_type; 2192 hci_dev_unlock(hdev); 2193 2194 return rp->status; 2195 } 2196 2197 static u8 hci_cc_set_ext_adv_param(struct hci_dev *hdev, void *data, 2198 struct sk_buff *skb) 2199 { 2200 struct hci_rp_le_set_ext_adv_params *rp = data; 2201 struct hci_cp_le_set_ext_adv_params *cp; 2202 struct adv_info *adv_instance; 2203 2204 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 2205 2206 if (rp->status) 2207 return rp->status; 2208 2209 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS); 2210 if (!cp) 2211 return rp->status; 2212 2213 hci_dev_lock(hdev); 2214 hdev->adv_addr_type = cp->own_addr_type; 2215 if (!cp->handle) { 2216 /* Store in hdev for instance 0 */ 2217 hdev->adv_tx_power = rp->tx_power; 2218 } else { 2219 adv_instance = hci_find_adv_instance(hdev, cp->handle); 2220 if (adv_instance) 2221 adv_instance->tx_power = rp->tx_power; 2222 } 2223 /* Update adv data as tx power is known now */ 2224 hci_update_adv_data(hdev, cp->handle); 2225 2226 hci_dev_unlock(hdev); 2227 2228 return rp->status; 2229 } 2230 2231 static u8 hci_cc_read_rssi(struct hci_dev *hdev, void *data, 2232 struct sk_buff *skb) 2233 { 2234 struct hci_rp_read_rssi *rp = data; 2235 struct hci_conn *conn; 2236 2237 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 2238 2239 if (rp->status) 2240 return rp->status; 2241 2242 hci_dev_lock(hdev); 2243 2244 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(rp->handle)); 2245 if (conn) 2246 conn->rssi = rp->rssi; 2247 2248 hci_dev_unlock(hdev); 2249 2250 return rp->status; 2251 } 2252 2253 static u8 hci_cc_read_tx_power(struct hci_dev *hdev, void *data, 2254 struct sk_buff *skb) 2255 { 2256 struct hci_cp_read_tx_power *sent; 2257 struct hci_rp_read_tx_power *rp = data; 2258 struct hci_conn *conn; 2259 2260 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 2261 2262 if (rp->status) 2263 return rp->status; 2264 2265 sent = hci_sent_cmd_data(hdev, HCI_OP_READ_TX_POWER); 2266 if (!sent) 2267 return rp->status; 2268 2269 hci_dev_lock(hdev); 2270 2271 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(rp->handle)); 2272 if (!conn) 2273 goto unlock; 2274 2275 switch (sent->type) { 2276 case 0x00: 2277 conn->tx_power = rp->tx_power; 2278 break; 2279 case 0x01: 2280 conn->max_tx_power = rp->tx_power; 2281 break; 2282 } 2283 2284 unlock: 2285 hci_dev_unlock(hdev); 2286 return rp->status; 2287 } 2288 2289 static u8 hci_cc_write_ssp_debug_mode(struct hci_dev *hdev, void *data, 2290 struct sk_buff *skb) 2291 { 2292 struct hci_ev_status *rp = data; 2293 u8 *mode; 2294 2295 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 2296 2297 if (rp->status) 2298 return rp->status; 2299 2300 mode = hci_sent_cmd_data(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE); 2301 if (mode) 2302 hdev->ssp_debug_mode = *mode; 2303 2304 return rp->status; 2305 } 2306 2307 static void hci_cs_inquiry(struct hci_dev *hdev, __u8 status) 2308 { 2309 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2310 2311 if (status) 2312 return; 2313 2314 if (hci_sent_cmd_data(hdev, HCI_OP_INQUIRY)) 2315 set_bit(HCI_INQUIRY, &hdev->flags); 2316 } 2317 2318 static void hci_cs_create_conn(struct hci_dev *hdev, __u8 status) 2319 { 2320 struct hci_cp_create_conn *cp; 2321 struct hci_conn *conn; 2322 2323 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2324 2325 cp = hci_sent_cmd_data(hdev, HCI_OP_CREATE_CONN); 2326 if (!cp) 2327 return; 2328 2329 hci_dev_lock(hdev); 2330 2331 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &cp->bdaddr); 2332 2333 bt_dev_dbg(hdev, "bdaddr %pMR hcon %p", &cp->bdaddr, conn); 2334 2335 if (status) { 2336 if (conn && conn->state == BT_CONNECT) { 2337 conn->state = BT_CLOSED; 2338 hci_connect_cfm(conn, status); 2339 hci_conn_del(conn); 2340 } 2341 } else { 2342 if (!conn) { 2343 conn = hci_conn_add_unset(hdev, ACL_LINK, &cp->bdaddr, 2344 HCI_ROLE_MASTER); 2345 if (!conn) 2346 bt_dev_err(hdev, "no memory for new connection"); 2347 } 2348 } 2349 2350 hci_dev_unlock(hdev); 2351 } 2352 2353 static void hci_cs_add_sco(struct hci_dev *hdev, __u8 status) 2354 { 2355 struct hci_cp_add_sco *cp; 2356 struct hci_conn *acl; 2357 struct hci_link *link; 2358 __u16 handle; 2359 2360 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2361 2362 if (!status) 2363 return; 2364 2365 cp = hci_sent_cmd_data(hdev, HCI_OP_ADD_SCO); 2366 if (!cp) 2367 return; 2368 2369 handle = __le16_to_cpu(cp->handle); 2370 2371 bt_dev_dbg(hdev, "handle 0x%4.4x", handle); 2372 2373 hci_dev_lock(hdev); 2374 2375 acl = hci_conn_hash_lookup_handle(hdev, handle); 2376 if (acl) { 2377 link = list_first_entry_or_null(&acl->link_list, 2378 struct hci_link, list); 2379 if (link && link->conn) { 2380 link->conn->state = BT_CLOSED; 2381 2382 hci_connect_cfm(link->conn, status); 2383 hci_conn_del(link->conn); 2384 } 2385 } 2386 2387 hci_dev_unlock(hdev); 2388 } 2389 2390 static void hci_cs_auth_requested(struct hci_dev *hdev, __u8 status) 2391 { 2392 struct hci_cp_auth_requested *cp; 2393 struct hci_conn *conn; 2394 2395 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2396 2397 if (!status) 2398 return; 2399 2400 cp = hci_sent_cmd_data(hdev, HCI_OP_AUTH_REQUESTED); 2401 if (!cp) 2402 return; 2403 2404 hci_dev_lock(hdev); 2405 2406 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle)); 2407 if (conn) { 2408 if (conn->state == BT_CONFIG) { 2409 hci_connect_cfm(conn, status); 2410 hci_conn_drop(conn); 2411 } 2412 } 2413 2414 hci_dev_unlock(hdev); 2415 } 2416 2417 static void hci_cs_set_conn_encrypt(struct hci_dev *hdev, __u8 status) 2418 { 2419 struct hci_cp_set_conn_encrypt *cp; 2420 struct hci_conn *conn; 2421 2422 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2423 2424 if (!status) 2425 return; 2426 2427 cp = hci_sent_cmd_data(hdev, HCI_OP_SET_CONN_ENCRYPT); 2428 if (!cp) 2429 return; 2430 2431 hci_dev_lock(hdev); 2432 2433 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle)); 2434 if (conn) { 2435 if (conn->state == BT_CONFIG) { 2436 hci_connect_cfm(conn, status); 2437 hci_conn_drop(conn); 2438 } 2439 } 2440 2441 hci_dev_unlock(hdev); 2442 } 2443 2444 static int hci_outgoing_auth_needed(struct hci_dev *hdev, 2445 struct hci_conn *conn) 2446 { 2447 if (conn->state != BT_CONFIG || !conn->out) 2448 return 0; 2449 2450 if (conn->pending_sec_level == BT_SECURITY_SDP) 2451 return 0; 2452 2453 /* Only request authentication for SSP connections or non-SSP 2454 * devices with sec_level MEDIUM or HIGH or if MITM protection 2455 * is requested. 2456 */ 2457 if (!hci_conn_ssp_enabled(conn) && !(conn->auth_type & 0x01) && 2458 conn->pending_sec_level != BT_SECURITY_FIPS && 2459 conn->pending_sec_level != BT_SECURITY_HIGH && 2460 conn->pending_sec_level != BT_SECURITY_MEDIUM) 2461 return 0; 2462 2463 return 1; 2464 } 2465 2466 static int hci_resolve_name(struct hci_dev *hdev, 2467 struct inquiry_entry *e) 2468 { 2469 struct hci_cp_remote_name_req cp; 2470 2471 memset(&cp, 0, sizeof(cp)); 2472 2473 bacpy(&cp.bdaddr, &e->data.bdaddr); 2474 cp.pscan_rep_mode = e->data.pscan_rep_mode; 2475 cp.pscan_mode = e->data.pscan_mode; 2476 cp.clock_offset = e->data.clock_offset; 2477 2478 return hci_send_cmd(hdev, HCI_OP_REMOTE_NAME_REQ, sizeof(cp), &cp); 2479 } 2480 2481 static bool hci_resolve_next_name(struct hci_dev *hdev) 2482 { 2483 struct discovery_state *discov = &hdev->discovery; 2484 struct inquiry_entry *e; 2485 2486 if (list_empty(&discov->resolve)) 2487 return false; 2488 2489 /* We should stop if we already spent too much time resolving names. */ 2490 if (time_after(jiffies, discov->name_resolve_timeout)) { 2491 bt_dev_warn_ratelimited(hdev, "Name resolve takes too long."); 2492 return false; 2493 } 2494 2495 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY, NAME_NEEDED); 2496 if (!e) 2497 return false; 2498 2499 if (hci_resolve_name(hdev, e) == 0) { 2500 e->name_state = NAME_PENDING; 2501 return true; 2502 } 2503 2504 return false; 2505 } 2506 2507 static void hci_check_pending_name(struct hci_dev *hdev, struct hci_conn *conn, 2508 bdaddr_t *bdaddr, u8 *name, u8 name_len) 2509 { 2510 struct discovery_state *discov = &hdev->discovery; 2511 struct inquiry_entry *e; 2512 2513 /* Update the mgmt connected state if necessary. Be careful with 2514 * conn objects that exist but are not (yet) connected however. 2515 * Only those in BT_CONFIG or BT_CONNECTED states can be 2516 * considered connected. 2517 */ 2518 if (conn && (conn->state == BT_CONFIG || conn->state == BT_CONNECTED)) 2519 mgmt_device_connected(hdev, conn, name, name_len); 2520 2521 if (discov->state == DISCOVERY_STOPPED) 2522 return; 2523 2524 if (discov->state == DISCOVERY_STOPPING) 2525 goto discov_complete; 2526 2527 if (discov->state != DISCOVERY_RESOLVING) 2528 return; 2529 2530 e = hci_inquiry_cache_lookup_resolve(hdev, bdaddr, NAME_PENDING); 2531 /* If the device was not found in a list of found devices names of which 2532 * are pending. there is no need to continue resolving a next name as it 2533 * will be done upon receiving another Remote Name Request Complete 2534 * Event */ 2535 if (!e) 2536 return; 2537 2538 list_del(&e->list); 2539 2540 e->name_state = name ? NAME_KNOWN : NAME_NOT_KNOWN; 2541 mgmt_remote_name(hdev, bdaddr, ACL_LINK, 0x00, e->data.rssi, 2542 name, name_len); 2543 2544 if (hci_resolve_next_name(hdev)) 2545 return; 2546 2547 discov_complete: 2548 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 2549 } 2550 2551 static void hci_cs_remote_name_req(struct hci_dev *hdev, __u8 status) 2552 { 2553 struct hci_cp_remote_name_req *cp; 2554 struct hci_conn *conn; 2555 2556 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2557 2558 /* If successful wait for the name req complete event before 2559 * checking for the need to do authentication */ 2560 if (!status) 2561 return; 2562 2563 cp = hci_sent_cmd_data(hdev, HCI_OP_REMOTE_NAME_REQ); 2564 if (!cp) 2565 return; 2566 2567 hci_dev_lock(hdev); 2568 2569 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &cp->bdaddr); 2570 2571 if (hci_dev_test_flag(hdev, HCI_MGMT)) 2572 hci_check_pending_name(hdev, conn, &cp->bdaddr, NULL, 0); 2573 2574 if (!conn) 2575 goto unlock; 2576 2577 if (!hci_outgoing_auth_needed(hdev, conn)) 2578 goto unlock; 2579 2580 if (!test_and_set_bit(HCI_CONN_AUTH_PEND, &conn->flags)) { 2581 struct hci_cp_auth_requested auth_cp; 2582 2583 set_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags); 2584 2585 auth_cp.handle = __cpu_to_le16(conn->handle); 2586 hci_send_cmd(hdev, HCI_OP_AUTH_REQUESTED, 2587 sizeof(auth_cp), &auth_cp); 2588 } 2589 2590 unlock: 2591 hci_dev_unlock(hdev); 2592 } 2593 2594 static void hci_cs_read_remote_features(struct hci_dev *hdev, __u8 status) 2595 { 2596 struct hci_cp_read_remote_features *cp; 2597 struct hci_conn *conn; 2598 2599 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2600 2601 if (!status) 2602 return; 2603 2604 cp = hci_sent_cmd_data(hdev, HCI_OP_READ_REMOTE_FEATURES); 2605 if (!cp) 2606 return; 2607 2608 hci_dev_lock(hdev); 2609 2610 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle)); 2611 if (conn) { 2612 if (conn->state == BT_CONFIG) { 2613 hci_connect_cfm(conn, status); 2614 hci_conn_drop(conn); 2615 } 2616 } 2617 2618 hci_dev_unlock(hdev); 2619 } 2620 2621 static void hci_cs_read_remote_ext_features(struct hci_dev *hdev, __u8 status) 2622 { 2623 struct hci_cp_read_remote_ext_features *cp; 2624 struct hci_conn *conn; 2625 2626 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2627 2628 if (!status) 2629 return; 2630 2631 cp = hci_sent_cmd_data(hdev, HCI_OP_READ_REMOTE_EXT_FEATURES); 2632 if (!cp) 2633 return; 2634 2635 hci_dev_lock(hdev); 2636 2637 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle)); 2638 if (conn) { 2639 if (conn->state == BT_CONFIG) { 2640 hci_connect_cfm(conn, status); 2641 hci_conn_drop(conn); 2642 } 2643 } 2644 2645 hci_dev_unlock(hdev); 2646 } 2647 2648 static void hci_setup_sync_conn_status(struct hci_dev *hdev, __u16 handle, 2649 __u8 status) 2650 { 2651 struct hci_conn *acl; 2652 struct hci_link *link; 2653 2654 bt_dev_dbg(hdev, "handle 0x%4.4x status 0x%2.2x", handle, status); 2655 2656 hci_dev_lock(hdev); 2657 2658 acl = hci_conn_hash_lookup_handle(hdev, handle); 2659 if (acl) { 2660 link = list_first_entry_or_null(&acl->link_list, 2661 struct hci_link, list); 2662 if (link && link->conn) { 2663 link->conn->state = BT_CLOSED; 2664 2665 hci_connect_cfm(link->conn, status); 2666 hci_conn_del(link->conn); 2667 } 2668 } 2669 2670 hci_dev_unlock(hdev); 2671 } 2672 2673 static void hci_cs_setup_sync_conn(struct hci_dev *hdev, __u8 status) 2674 { 2675 struct hci_cp_setup_sync_conn *cp; 2676 2677 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2678 2679 if (!status) 2680 return; 2681 2682 cp = hci_sent_cmd_data(hdev, HCI_OP_SETUP_SYNC_CONN); 2683 if (!cp) 2684 return; 2685 2686 hci_setup_sync_conn_status(hdev, __le16_to_cpu(cp->handle), status); 2687 } 2688 2689 static void hci_cs_enhanced_setup_sync_conn(struct hci_dev *hdev, __u8 status) 2690 { 2691 struct hci_cp_enhanced_setup_sync_conn *cp; 2692 2693 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2694 2695 if (!status) 2696 return; 2697 2698 cp = hci_sent_cmd_data(hdev, HCI_OP_ENHANCED_SETUP_SYNC_CONN); 2699 if (!cp) 2700 return; 2701 2702 hci_setup_sync_conn_status(hdev, __le16_to_cpu(cp->handle), status); 2703 } 2704 2705 static void hci_cs_sniff_mode(struct hci_dev *hdev, __u8 status) 2706 { 2707 struct hci_cp_sniff_mode *cp; 2708 struct hci_conn *conn; 2709 2710 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2711 2712 if (!status) 2713 return; 2714 2715 cp = hci_sent_cmd_data(hdev, HCI_OP_SNIFF_MODE); 2716 if (!cp) 2717 return; 2718 2719 hci_dev_lock(hdev); 2720 2721 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle)); 2722 if (conn) { 2723 clear_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags); 2724 2725 if (test_and_clear_bit(HCI_CONN_SCO_SETUP_PEND, &conn->flags)) 2726 hci_sco_setup(conn, status); 2727 } 2728 2729 hci_dev_unlock(hdev); 2730 } 2731 2732 static void hci_cs_exit_sniff_mode(struct hci_dev *hdev, __u8 status) 2733 { 2734 struct hci_cp_exit_sniff_mode *cp; 2735 struct hci_conn *conn; 2736 2737 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2738 2739 if (!status) 2740 return; 2741 2742 cp = hci_sent_cmd_data(hdev, HCI_OP_EXIT_SNIFF_MODE); 2743 if (!cp) 2744 return; 2745 2746 hci_dev_lock(hdev); 2747 2748 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle)); 2749 if (conn) { 2750 clear_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags); 2751 2752 if (test_and_clear_bit(HCI_CONN_SCO_SETUP_PEND, &conn->flags)) 2753 hci_sco_setup(conn, status); 2754 } 2755 2756 hci_dev_unlock(hdev); 2757 } 2758 2759 static void hci_cs_disconnect(struct hci_dev *hdev, u8 status) 2760 { 2761 struct hci_cp_disconnect *cp; 2762 struct hci_conn_params *params; 2763 struct hci_conn *conn; 2764 bool mgmt_conn; 2765 2766 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2767 2768 /* Wait for HCI_EV_DISCONN_COMPLETE if status 0x00 and not suspended 2769 * otherwise cleanup the connection immediately. 2770 */ 2771 if (!status && !hdev->suspended) 2772 return; 2773 2774 cp = hci_sent_cmd_data(hdev, HCI_OP_DISCONNECT); 2775 if (!cp) 2776 return; 2777 2778 hci_dev_lock(hdev); 2779 2780 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle)); 2781 if (!conn) 2782 goto unlock; 2783 2784 if (status) { 2785 mgmt_disconnect_failed(hdev, &conn->dst, conn->type, 2786 conn->dst_type, status); 2787 2788 if (conn->type == LE_LINK && conn->role == HCI_ROLE_SLAVE) { 2789 hdev->cur_adv_instance = conn->adv_instance; 2790 hci_enable_advertising(hdev); 2791 } 2792 2793 /* Inform sockets conn is gone before we delete it */ 2794 hci_disconn_cfm(conn, HCI_ERROR_UNSPECIFIED); 2795 2796 goto done; 2797 } 2798 2799 mgmt_conn = test_and_clear_bit(HCI_CONN_MGMT_CONNECTED, &conn->flags); 2800 2801 if (conn->type == ACL_LINK) { 2802 if (test_and_clear_bit(HCI_CONN_FLUSH_KEY, &conn->flags)) 2803 hci_remove_link_key(hdev, &conn->dst); 2804 } 2805 2806 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); 2807 if (params) { 2808 switch (params->auto_connect) { 2809 case HCI_AUTO_CONN_LINK_LOSS: 2810 if (cp->reason != HCI_ERROR_CONNECTION_TIMEOUT) 2811 break; 2812 fallthrough; 2813 2814 case HCI_AUTO_CONN_DIRECT: 2815 case HCI_AUTO_CONN_ALWAYS: 2816 hci_pend_le_list_del_init(params); 2817 hci_pend_le_list_add(params, &hdev->pend_le_conns); 2818 break; 2819 2820 default: 2821 break; 2822 } 2823 } 2824 2825 mgmt_device_disconnected(hdev, &conn->dst, conn->type, conn->dst_type, 2826 cp->reason, mgmt_conn); 2827 2828 hci_disconn_cfm(conn, cp->reason); 2829 2830 done: 2831 /* If the disconnection failed for any reason, the upper layer 2832 * does not retry to disconnect in current implementation. 2833 * Hence, we need to do some basic cleanup here and re-enable 2834 * advertising if necessary. 2835 */ 2836 hci_conn_del(conn); 2837 unlock: 2838 hci_dev_unlock(hdev); 2839 } 2840 2841 static u8 ev_bdaddr_type(struct hci_dev *hdev, u8 type, bool *resolved) 2842 { 2843 /* When using controller based address resolution, then the new 2844 * address types 0x02 and 0x03 are used. These types need to be 2845 * converted back into either public address or random address type 2846 */ 2847 switch (type) { 2848 case ADDR_LE_DEV_PUBLIC_RESOLVED: 2849 if (resolved) 2850 *resolved = true; 2851 return ADDR_LE_DEV_PUBLIC; 2852 case ADDR_LE_DEV_RANDOM_RESOLVED: 2853 if (resolved) 2854 *resolved = true; 2855 return ADDR_LE_DEV_RANDOM; 2856 } 2857 2858 if (resolved) 2859 *resolved = false; 2860 return type; 2861 } 2862 2863 static void cs_le_create_conn(struct hci_dev *hdev, bdaddr_t *peer_addr, 2864 u8 peer_addr_type, u8 own_address_type, 2865 u8 filter_policy) 2866 { 2867 struct hci_conn *conn; 2868 2869 conn = hci_conn_hash_lookup_le(hdev, peer_addr, 2870 peer_addr_type); 2871 if (!conn) 2872 return; 2873 2874 own_address_type = ev_bdaddr_type(hdev, own_address_type, NULL); 2875 2876 /* Store the initiator and responder address information which 2877 * is needed for SMP. These values will not change during the 2878 * lifetime of the connection. 2879 */ 2880 conn->init_addr_type = own_address_type; 2881 if (own_address_type == ADDR_LE_DEV_RANDOM) 2882 bacpy(&conn->init_addr, &hdev->random_addr); 2883 else 2884 bacpy(&conn->init_addr, &hdev->bdaddr); 2885 2886 conn->resp_addr_type = peer_addr_type; 2887 bacpy(&conn->resp_addr, peer_addr); 2888 } 2889 2890 static void hci_cs_le_create_conn(struct hci_dev *hdev, u8 status) 2891 { 2892 struct hci_cp_le_create_conn *cp; 2893 2894 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2895 2896 /* All connection failure handling is taken care of by the 2897 * hci_conn_failed function which is triggered by the HCI 2898 * request completion callbacks used for connecting. 2899 */ 2900 if (status) 2901 return; 2902 2903 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_CREATE_CONN); 2904 if (!cp) 2905 return; 2906 2907 hci_dev_lock(hdev); 2908 2909 cs_le_create_conn(hdev, &cp->peer_addr, cp->peer_addr_type, 2910 cp->own_address_type, cp->filter_policy); 2911 2912 hci_dev_unlock(hdev); 2913 } 2914 2915 static void hci_cs_le_ext_create_conn(struct hci_dev *hdev, u8 status) 2916 { 2917 struct hci_cp_le_ext_create_conn *cp; 2918 2919 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2920 2921 /* All connection failure handling is taken care of by the 2922 * hci_conn_failed function which is triggered by the HCI 2923 * request completion callbacks used for connecting. 2924 */ 2925 if (status) 2926 return; 2927 2928 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_EXT_CREATE_CONN); 2929 if (!cp) 2930 return; 2931 2932 hci_dev_lock(hdev); 2933 2934 cs_le_create_conn(hdev, &cp->peer_addr, cp->peer_addr_type, 2935 cp->own_addr_type, cp->filter_policy); 2936 2937 hci_dev_unlock(hdev); 2938 } 2939 2940 static void hci_cs_le_read_remote_features(struct hci_dev *hdev, u8 status) 2941 { 2942 struct hci_cp_le_read_remote_features *cp; 2943 struct hci_conn *conn; 2944 2945 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2946 2947 if (!status) 2948 return; 2949 2950 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_READ_REMOTE_FEATURES); 2951 if (!cp) 2952 return; 2953 2954 hci_dev_lock(hdev); 2955 2956 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle)); 2957 if (conn) { 2958 if (conn->state == BT_CONFIG) { 2959 hci_connect_cfm(conn, status); 2960 hci_conn_drop(conn); 2961 } 2962 } 2963 2964 hci_dev_unlock(hdev); 2965 } 2966 2967 static void hci_cs_le_start_enc(struct hci_dev *hdev, u8 status) 2968 { 2969 struct hci_cp_le_start_enc *cp; 2970 struct hci_conn *conn; 2971 2972 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2973 2974 if (!status) 2975 return; 2976 2977 hci_dev_lock(hdev); 2978 2979 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_START_ENC); 2980 if (!cp) 2981 goto unlock; 2982 2983 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle)); 2984 if (!conn) 2985 goto unlock; 2986 2987 if (conn->state != BT_CONNECTED) 2988 goto unlock; 2989 2990 hci_disconnect(conn, HCI_ERROR_AUTH_FAILURE); 2991 hci_conn_drop(conn); 2992 2993 unlock: 2994 hci_dev_unlock(hdev); 2995 } 2996 2997 static void hci_cs_switch_role(struct hci_dev *hdev, u8 status) 2998 { 2999 struct hci_cp_switch_role *cp; 3000 struct hci_conn *conn; 3001 3002 BT_DBG("%s status 0x%2.2x", hdev->name, status); 3003 3004 if (!status) 3005 return; 3006 3007 cp = hci_sent_cmd_data(hdev, HCI_OP_SWITCH_ROLE); 3008 if (!cp) 3009 return; 3010 3011 hci_dev_lock(hdev); 3012 3013 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &cp->bdaddr); 3014 if (conn) 3015 clear_bit(HCI_CONN_RSWITCH_PEND, &conn->flags); 3016 3017 hci_dev_unlock(hdev); 3018 } 3019 3020 static void hci_inquiry_complete_evt(struct hci_dev *hdev, void *data, 3021 struct sk_buff *skb) 3022 { 3023 struct hci_ev_status *ev = data; 3024 struct discovery_state *discov = &hdev->discovery; 3025 struct inquiry_entry *e; 3026 3027 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 3028 3029 if (!test_and_clear_bit(HCI_INQUIRY, &hdev->flags)) 3030 return; 3031 3032 smp_mb__after_atomic(); /* wake_up_bit advises about this barrier */ 3033 wake_up_bit(&hdev->flags, HCI_INQUIRY); 3034 3035 if (!hci_dev_test_flag(hdev, HCI_MGMT)) 3036 return; 3037 3038 hci_dev_lock(hdev); 3039 3040 if (discov->state != DISCOVERY_FINDING) 3041 goto unlock; 3042 3043 if (list_empty(&discov->resolve)) { 3044 /* When BR/EDR inquiry is active and no LE scanning is in 3045 * progress, then change discovery state to indicate completion. 3046 * 3047 * When running LE scanning and BR/EDR inquiry simultaneously 3048 * and the LE scan already finished, then change the discovery 3049 * state to indicate completion. 3050 */ 3051 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN) || 3052 !test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) 3053 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 3054 goto unlock; 3055 } 3056 3057 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY, NAME_NEEDED); 3058 if (e && hci_resolve_name(hdev, e) == 0) { 3059 e->name_state = NAME_PENDING; 3060 hci_discovery_set_state(hdev, DISCOVERY_RESOLVING); 3061 discov->name_resolve_timeout = jiffies + NAME_RESOLVE_DURATION; 3062 } else { 3063 /* When BR/EDR inquiry is active and no LE scanning is in 3064 * progress, then change discovery state to indicate completion. 3065 * 3066 * When running LE scanning and BR/EDR inquiry simultaneously 3067 * and the LE scan already finished, then change the discovery 3068 * state to indicate completion. 3069 */ 3070 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN) || 3071 !test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) 3072 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 3073 } 3074 3075 unlock: 3076 hci_dev_unlock(hdev); 3077 } 3078 3079 static void hci_inquiry_result_evt(struct hci_dev *hdev, void *edata, 3080 struct sk_buff *skb) 3081 { 3082 struct hci_ev_inquiry_result *ev = edata; 3083 struct inquiry_data data; 3084 int i; 3085 3086 if (!hci_ev_skb_pull(hdev, skb, HCI_EV_INQUIRY_RESULT, 3087 flex_array_size(ev, info, ev->num))) 3088 return; 3089 3090 bt_dev_dbg(hdev, "num %d", ev->num); 3091 3092 if (!ev->num) 3093 return; 3094 3095 if (hci_dev_test_flag(hdev, HCI_PERIODIC_INQ)) 3096 return; 3097 3098 hci_dev_lock(hdev); 3099 3100 for (i = 0; i < ev->num; i++) { 3101 struct inquiry_info *info = &ev->info[i]; 3102 u32 flags; 3103 3104 bacpy(&data.bdaddr, &info->bdaddr); 3105 data.pscan_rep_mode = info->pscan_rep_mode; 3106 data.pscan_period_mode = info->pscan_period_mode; 3107 data.pscan_mode = info->pscan_mode; 3108 memcpy(data.dev_class, info->dev_class, 3); 3109 data.clock_offset = info->clock_offset; 3110 data.rssi = HCI_RSSI_INVALID; 3111 data.ssp_mode = 0x00; 3112 3113 flags = hci_inquiry_cache_update(hdev, &data, false); 3114 3115 mgmt_device_found(hdev, &info->bdaddr, ACL_LINK, 0x00, 3116 info->dev_class, HCI_RSSI_INVALID, 3117 flags, NULL, 0, NULL, 0, 0); 3118 } 3119 3120 hci_dev_unlock(hdev); 3121 } 3122 3123 static void hci_conn_complete_evt(struct hci_dev *hdev, void *data, 3124 struct sk_buff *skb) 3125 { 3126 struct hci_ev_conn_complete *ev = data; 3127 struct hci_conn *conn; 3128 u8 status = ev->status; 3129 3130 bt_dev_dbg(hdev, "status 0x%2.2x", status); 3131 3132 hci_dev_lock(hdev); 3133 3134 conn = hci_conn_hash_lookup_ba(hdev, ev->link_type, &ev->bdaddr); 3135 if (!conn) { 3136 /* In case of error status and there is no connection pending 3137 * just unlock as there is nothing to cleanup. 3138 */ 3139 if (ev->status) 3140 goto unlock; 3141 3142 /* Connection may not exist if auto-connected. Check the bredr 3143 * allowlist to see if this device is allowed to auto connect. 3144 * If link is an ACL type, create a connection class 3145 * automatically. 3146 * 3147 * Auto-connect will only occur if the event filter is 3148 * programmed with a given address. Right now, event filter is 3149 * only used during suspend. 3150 */ 3151 if (ev->link_type == ACL_LINK && 3152 hci_bdaddr_list_lookup_with_flags(&hdev->accept_list, 3153 &ev->bdaddr, 3154 BDADDR_BREDR)) { 3155 conn = hci_conn_add_unset(hdev, ev->link_type, 3156 &ev->bdaddr, HCI_ROLE_SLAVE); 3157 if (!conn) { 3158 bt_dev_err(hdev, "no memory for new conn"); 3159 goto unlock; 3160 } 3161 } else { 3162 if (ev->link_type != SCO_LINK) 3163 goto unlock; 3164 3165 conn = hci_conn_hash_lookup_ba(hdev, ESCO_LINK, 3166 &ev->bdaddr); 3167 if (!conn) 3168 goto unlock; 3169 3170 conn->type = SCO_LINK; 3171 } 3172 } 3173 3174 /* The HCI_Connection_Complete event is only sent once per connection. 3175 * Processing it more than once per connection can corrupt kernel memory. 3176 * 3177 * As the connection handle is set here for the first time, it indicates 3178 * whether the connection is already set up. 3179 */ 3180 if (!HCI_CONN_HANDLE_UNSET(conn->handle)) { 3181 bt_dev_err(hdev, "Ignoring HCI_Connection_Complete for existing connection"); 3182 goto unlock; 3183 } 3184 3185 if (!status) { 3186 status = hci_conn_set_handle(conn, __le16_to_cpu(ev->handle)); 3187 if (status) 3188 goto done; 3189 3190 if (conn->type == ACL_LINK) { 3191 conn->state = BT_CONFIG; 3192 hci_conn_hold(conn); 3193 3194 if (!conn->out && !hci_conn_ssp_enabled(conn) && 3195 !hci_find_link_key(hdev, &ev->bdaddr)) 3196 conn->disc_timeout = HCI_PAIRING_TIMEOUT; 3197 else 3198 conn->disc_timeout = HCI_DISCONN_TIMEOUT; 3199 } else 3200 conn->state = BT_CONNECTED; 3201 3202 hci_debugfs_create_conn(conn); 3203 hci_conn_add_sysfs(conn); 3204 3205 if (test_bit(HCI_AUTH, &hdev->flags)) 3206 set_bit(HCI_CONN_AUTH, &conn->flags); 3207 3208 if (test_bit(HCI_ENCRYPT, &hdev->flags)) 3209 set_bit(HCI_CONN_ENCRYPT, &conn->flags); 3210 3211 /* "Link key request" completed ahead of "connect request" completes */ 3212 if (ev->encr_mode == 1 && !test_bit(HCI_CONN_ENCRYPT, &conn->flags) && 3213 ev->link_type == ACL_LINK) { 3214 struct link_key *key; 3215 struct hci_cp_read_enc_key_size cp; 3216 3217 key = hci_find_link_key(hdev, &ev->bdaddr); 3218 if (key) { 3219 set_bit(HCI_CONN_ENCRYPT, &conn->flags); 3220 3221 if (!read_key_size_capable(hdev)) { 3222 conn->enc_key_size = HCI_LINK_KEY_SIZE; 3223 } else { 3224 cp.handle = cpu_to_le16(conn->handle); 3225 if (hci_send_cmd(hdev, HCI_OP_READ_ENC_KEY_SIZE, 3226 sizeof(cp), &cp)) { 3227 bt_dev_err(hdev, "sending read key size failed"); 3228 conn->enc_key_size = HCI_LINK_KEY_SIZE; 3229 } 3230 } 3231 3232 hci_encrypt_cfm(conn, ev->status); 3233 } 3234 } 3235 3236 /* Get remote features */ 3237 if (conn->type == ACL_LINK) { 3238 struct hci_cp_read_remote_features cp; 3239 cp.handle = ev->handle; 3240 hci_send_cmd(hdev, HCI_OP_READ_REMOTE_FEATURES, 3241 sizeof(cp), &cp); 3242 3243 hci_update_scan(hdev); 3244 } 3245 3246 /* Set packet type for incoming connection */ 3247 if (!conn->out && hdev->hci_ver < BLUETOOTH_VER_2_0) { 3248 struct hci_cp_change_conn_ptype cp; 3249 cp.handle = ev->handle; 3250 cp.pkt_type = cpu_to_le16(conn->pkt_type); 3251 hci_send_cmd(hdev, HCI_OP_CHANGE_CONN_PTYPE, sizeof(cp), 3252 &cp); 3253 } 3254 } 3255 3256 if (conn->type == ACL_LINK) 3257 hci_sco_setup(conn, ev->status); 3258 3259 done: 3260 if (status) { 3261 hci_conn_failed(conn, status); 3262 } else if (ev->link_type == SCO_LINK) { 3263 switch (conn->setting & SCO_AIRMODE_MASK) { 3264 case SCO_AIRMODE_CVSD: 3265 if (hdev->notify) 3266 hdev->notify(hdev, HCI_NOTIFY_ENABLE_SCO_CVSD); 3267 break; 3268 } 3269 3270 hci_connect_cfm(conn, status); 3271 } 3272 3273 unlock: 3274 hci_dev_unlock(hdev); 3275 } 3276 3277 static void hci_reject_conn(struct hci_dev *hdev, bdaddr_t *bdaddr) 3278 { 3279 struct hci_cp_reject_conn_req cp; 3280 3281 bacpy(&cp.bdaddr, bdaddr); 3282 cp.reason = HCI_ERROR_REJ_BAD_ADDR; 3283 hci_send_cmd(hdev, HCI_OP_REJECT_CONN_REQ, sizeof(cp), &cp); 3284 } 3285 3286 static void hci_conn_request_evt(struct hci_dev *hdev, void *data, 3287 struct sk_buff *skb) 3288 { 3289 struct hci_ev_conn_request *ev = data; 3290 int mask = hdev->link_mode; 3291 struct inquiry_entry *ie; 3292 struct hci_conn *conn; 3293 __u8 flags = 0; 3294 3295 bt_dev_dbg(hdev, "bdaddr %pMR type 0x%x", &ev->bdaddr, ev->link_type); 3296 3297 /* Reject incoming connection from device with same BD ADDR against 3298 * CVE-2020-26555 3299 */ 3300 if (hdev && !bacmp(&hdev->bdaddr, &ev->bdaddr)) { 3301 bt_dev_dbg(hdev, "Reject connection with same BD_ADDR %pMR\n", 3302 &ev->bdaddr); 3303 hci_reject_conn(hdev, &ev->bdaddr); 3304 return; 3305 } 3306 3307 mask |= hci_proto_connect_ind(hdev, &ev->bdaddr, ev->link_type, 3308 &flags); 3309 3310 if (!(mask & HCI_LM_ACCEPT)) { 3311 hci_reject_conn(hdev, &ev->bdaddr); 3312 return; 3313 } 3314 3315 hci_dev_lock(hdev); 3316 3317 if (hci_bdaddr_list_lookup(&hdev->reject_list, &ev->bdaddr, 3318 BDADDR_BREDR)) { 3319 hci_reject_conn(hdev, &ev->bdaddr); 3320 goto unlock; 3321 } 3322 3323 /* Require HCI_CONNECTABLE or an accept list entry to accept the 3324 * connection. These features are only touched through mgmt so 3325 * only do the checks if HCI_MGMT is set. 3326 */ 3327 if (hci_dev_test_flag(hdev, HCI_MGMT) && 3328 !hci_dev_test_flag(hdev, HCI_CONNECTABLE) && 3329 !hci_bdaddr_list_lookup_with_flags(&hdev->accept_list, &ev->bdaddr, 3330 BDADDR_BREDR)) { 3331 hci_reject_conn(hdev, &ev->bdaddr); 3332 goto unlock; 3333 } 3334 3335 /* Connection accepted */ 3336 3337 ie = hci_inquiry_cache_lookup(hdev, &ev->bdaddr); 3338 if (ie) 3339 memcpy(ie->data.dev_class, ev->dev_class, 3); 3340 3341 conn = hci_conn_hash_lookup_ba(hdev, ev->link_type, 3342 &ev->bdaddr); 3343 if (!conn) { 3344 conn = hci_conn_add_unset(hdev, ev->link_type, &ev->bdaddr, 3345 HCI_ROLE_SLAVE); 3346 if (!conn) { 3347 bt_dev_err(hdev, "no memory for new connection"); 3348 goto unlock; 3349 } 3350 } 3351 3352 memcpy(conn->dev_class, ev->dev_class, 3); 3353 3354 hci_dev_unlock(hdev); 3355 3356 if (ev->link_type == ACL_LINK || 3357 (!(flags & HCI_PROTO_DEFER) && !lmp_esco_capable(hdev))) { 3358 struct hci_cp_accept_conn_req cp; 3359 conn->state = BT_CONNECT; 3360 3361 bacpy(&cp.bdaddr, &ev->bdaddr); 3362 3363 if (lmp_rswitch_capable(hdev) && (mask & HCI_LM_MASTER)) 3364 cp.role = 0x00; /* Become central */ 3365 else 3366 cp.role = 0x01; /* Remain peripheral */ 3367 3368 hci_send_cmd(hdev, HCI_OP_ACCEPT_CONN_REQ, sizeof(cp), &cp); 3369 } else if (!(flags & HCI_PROTO_DEFER)) { 3370 struct hci_cp_accept_sync_conn_req cp; 3371 conn->state = BT_CONNECT; 3372 3373 bacpy(&cp.bdaddr, &ev->bdaddr); 3374 cp.pkt_type = cpu_to_le16(conn->pkt_type); 3375 3376 cp.tx_bandwidth = cpu_to_le32(0x00001f40); 3377 cp.rx_bandwidth = cpu_to_le32(0x00001f40); 3378 cp.max_latency = cpu_to_le16(0xffff); 3379 cp.content_format = cpu_to_le16(hdev->voice_setting); 3380 cp.retrans_effort = 0xff; 3381 3382 hci_send_cmd(hdev, HCI_OP_ACCEPT_SYNC_CONN_REQ, sizeof(cp), 3383 &cp); 3384 } else { 3385 conn->state = BT_CONNECT2; 3386 hci_connect_cfm(conn, 0); 3387 } 3388 3389 return; 3390 unlock: 3391 hci_dev_unlock(hdev); 3392 } 3393 3394 static u8 hci_to_mgmt_reason(u8 err) 3395 { 3396 switch (err) { 3397 case HCI_ERROR_CONNECTION_TIMEOUT: 3398 return MGMT_DEV_DISCONN_TIMEOUT; 3399 case HCI_ERROR_REMOTE_USER_TERM: 3400 case HCI_ERROR_REMOTE_LOW_RESOURCES: 3401 case HCI_ERROR_REMOTE_POWER_OFF: 3402 return MGMT_DEV_DISCONN_REMOTE; 3403 case HCI_ERROR_LOCAL_HOST_TERM: 3404 return MGMT_DEV_DISCONN_LOCAL_HOST; 3405 default: 3406 return MGMT_DEV_DISCONN_UNKNOWN; 3407 } 3408 } 3409 3410 static void hci_disconn_complete_evt(struct hci_dev *hdev, void *data, 3411 struct sk_buff *skb) 3412 { 3413 struct hci_ev_disconn_complete *ev = data; 3414 u8 reason; 3415 struct hci_conn_params *params; 3416 struct hci_conn *conn; 3417 bool mgmt_connected; 3418 3419 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 3420 3421 hci_dev_lock(hdev); 3422 3423 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 3424 if (!conn) 3425 goto unlock; 3426 3427 if (ev->status) { 3428 mgmt_disconnect_failed(hdev, &conn->dst, conn->type, 3429 conn->dst_type, ev->status); 3430 goto unlock; 3431 } 3432 3433 conn->state = BT_CLOSED; 3434 3435 mgmt_connected = test_and_clear_bit(HCI_CONN_MGMT_CONNECTED, &conn->flags); 3436 3437 if (test_bit(HCI_CONN_AUTH_FAILURE, &conn->flags)) 3438 reason = MGMT_DEV_DISCONN_AUTH_FAILURE; 3439 else 3440 reason = hci_to_mgmt_reason(ev->reason); 3441 3442 mgmt_device_disconnected(hdev, &conn->dst, conn->type, conn->dst_type, 3443 reason, mgmt_connected); 3444 3445 if (conn->type == ACL_LINK) { 3446 if (test_and_clear_bit(HCI_CONN_FLUSH_KEY, &conn->flags)) 3447 hci_remove_link_key(hdev, &conn->dst); 3448 3449 hci_update_scan(hdev); 3450 } 3451 3452 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); 3453 if (params) { 3454 switch (params->auto_connect) { 3455 case HCI_AUTO_CONN_LINK_LOSS: 3456 if (ev->reason != HCI_ERROR_CONNECTION_TIMEOUT) 3457 break; 3458 fallthrough; 3459 3460 case HCI_AUTO_CONN_DIRECT: 3461 case HCI_AUTO_CONN_ALWAYS: 3462 hci_pend_le_list_del_init(params); 3463 hci_pend_le_list_add(params, &hdev->pend_le_conns); 3464 hci_update_passive_scan(hdev); 3465 break; 3466 3467 default: 3468 break; 3469 } 3470 } 3471 3472 hci_disconn_cfm(conn, ev->reason); 3473 3474 /* Re-enable advertising if necessary, since it might 3475 * have been disabled by the connection. From the 3476 * HCI_LE_Set_Advertise_Enable command description in 3477 * the core specification (v4.0): 3478 * "The Controller shall continue advertising until the Host 3479 * issues an LE_Set_Advertise_Enable command with 3480 * Advertising_Enable set to 0x00 (Advertising is disabled) 3481 * or until a connection is created or until the Advertising 3482 * is timed out due to Directed Advertising." 3483 */ 3484 if (conn->type == LE_LINK && conn->role == HCI_ROLE_SLAVE) { 3485 hdev->cur_adv_instance = conn->adv_instance; 3486 hci_enable_advertising(hdev); 3487 } 3488 3489 hci_conn_del(conn); 3490 3491 unlock: 3492 hci_dev_unlock(hdev); 3493 } 3494 3495 static void hci_auth_complete_evt(struct hci_dev *hdev, void *data, 3496 struct sk_buff *skb) 3497 { 3498 struct hci_ev_auth_complete *ev = data; 3499 struct hci_conn *conn; 3500 3501 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 3502 3503 hci_dev_lock(hdev); 3504 3505 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 3506 if (!conn) 3507 goto unlock; 3508 3509 if (!ev->status) { 3510 clear_bit(HCI_CONN_AUTH_FAILURE, &conn->flags); 3511 set_bit(HCI_CONN_AUTH, &conn->flags); 3512 conn->sec_level = conn->pending_sec_level; 3513 } else { 3514 if (ev->status == HCI_ERROR_PIN_OR_KEY_MISSING) 3515 set_bit(HCI_CONN_AUTH_FAILURE, &conn->flags); 3516 3517 mgmt_auth_failed(conn, ev->status); 3518 } 3519 3520 clear_bit(HCI_CONN_AUTH_PEND, &conn->flags); 3521 3522 if (conn->state == BT_CONFIG) { 3523 if (!ev->status && hci_conn_ssp_enabled(conn)) { 3524 struct hci_cp_set_conn_encrypt cp; 3525 cp.handle = ev->handle; 3526 cp.encrypt = 0x01; 3527 hci_send_cmd(hdev, HCI_OP_SET_CONN_ENCRYPT, sizeof(cp), 3528 &cp); 3529 } else { 3530 conn->state = BT_CONNECTED; 3531 hci_connect_cfm(conn, ev->status); 3532 hci_conn_drop(conn); 3533 } 3534 } else { 3535 hci_auth_cfm(conn, ev->status); 3536 3537 hci_conn_hold(conn); 3538 conn->disc_timeout = HCI_DISCONN_TIMEOUT; 3539 hci_conn_drop(conn); 3540 } 3541 3542 if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) { 3543 if (!ev->status) { 3544 struct hci_cp_set_conn_encrypt cp; 3545 cp.handle = ev->handle; 3546 cp.encrypt = 0x01; 3547 hci_send_cmd(hdev, HCI_OP_SET_CONN_ENCRYPT, sizeof(cp), 3548 &cp); 3549 } else { 3550 clear_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags); 3551 hci_encrypt_cfm(conn, ev->status); 3552 } 3553 } 3554 3555 unlock: 3556 hci_dev_unlock(hdev); 3557 } 3558 3559 static void hci_remote_name_evt(struct hci_dev *hdev, void *data, 3560 struct sk_buff *skb) 3561 { 3562 struct hci_ev_remote_name *ev = data; 3563 struct hci_conn *conn; 3564 3565 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 3566 3567 hci_dev_lock(hdev); 3568 3569 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 3570 3571 if (!hci_dev_test_flag(hdev, HCI_MGMT)) 3572 goto check_auth; 3573 3574 if (ev->status == 0) 3575 hci_check_pending_name(hdev, conn, &ev->bdaddr, ev->name, 3576 strnlen(ev->name, HCI_MAX_NAME_LENGTH)); 3577 else 3578 hci_check_pending_name(hdev, conn, &ev->bdaddr, NULL, 0); 3579 3580 check_auth: 3581 if (!conn) 3582 goto unlock; 3583 3584 if (!hci_outgoing_auth_needed(hdev, conn)) 3585 goto unlock; 3586 3587 if (!test_and_set_bit(HCI_CONN_AUTH_PEND, &conn->flags)) { 3588 struct hci_cp_auth_requested cp; 3589 3590 set_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags); 3591 3592 cp.handle = __cpu_to_le16(conn->handle); 3593 hci_send_cmd(hdev, HCI_OP_AUTH_REQUESTED, sizeof(cp), &cp); 3594 } 3595 3596 unlock: 3597 hci_dev_unlock(hdev); 3598 } 3599 3600 static void hci_encrypt_change_evt(struct hci_dev *hdev, void *data, 3601 struct sk_buff *skb) 3602 { 3603 struct hci_ev_encrypt_change *ev = data; 3604 struct hci_conn *conn; 3605 3606 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 3607 3608 hci_dev_lock(hdev); 3609 3610 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 3611 if (!conn) 3612 goto unlock; 3613 3614 if (!ev->status) { 3615 if (ev->encrypt) { 3616 /* Encryption implies authentication */ 3617 set_bit(HCI_CONN_AUTH, &conn->flags); 3618 set_bit(HCI_CONN_ENCRYPT, &conn->flags); 3619 conn->sec_level = conn->pending_sec_level; 3620 3621 /* P-256 authentication key implies FIPS */ 3622 if (conn->key_type == HCI_LK_AUTH_COMBINATION_P256) 3623 set_bit(HCI_CONN_FIPS, &conn->flags); 3624 3625 if ((conn->type == ACL_LINK && ev->encrypt == 0x02) || 3626 conn->type == LE_LINK) 3627 set_bit(HCI_CONN_AES_CCM, &conn->flags); 3628 } else { 3629 clear_bit(HCI_CONN_ENCRYPT, &conn->flags); 3630 clear_bit(HCI_CONN_AES_CCM, &conn->flags); 3631 } 3632 } 3633 3634 /* We should disregard the current RPA and generate a new one 3635 * whenever the encryption procedure fails. 3636 */ 3637 if (ev->status && conn->type == LE_LINK) { 3638 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 3639 hci_adv_instances_set_rpa_expired(hdev, true); 3640 } 3641 3642 clear_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags); 3643 3644 /* Check link security requirements are met */ 3645 if (!hci_conn_check_link_mode(conn)) 3646 ev->status = HCI_ERROR_AUTH_FAILURE; 3647 3648 if (ev->status && conn->state == BT_CONNECTED) { 3649 if (ev->status == HCI_ERROR_PIN_OR_KEY_MISSING) 3650 set_bit(HCI_CONN_AUTH_FAILURE, &conn->flags); 3651 3652 /* Notify upper layers so they can cleanup before 3653 * disconnecting. 3654 */ 3655 hci_encrypt_cfm(conn, ev->status); 3656 hci_disconnect(conn, HCI_ERROR_AUTH_FAILURE); 3657 hci_conn_drop(conn); 3658 goto unlock; 3659 } 3660 3661 /* Try reading the encryption key size for encrypted ACL links */ 3662 if (!ev->status && ev->encrypt && conn->type == ACL_LINK) { 3663 struct hci_cp_read_enc_key_size cp; 3664 3665 /* Only send HCI_Read_Encryption_Key_Size if the 3666 * controller really supports it. If it doesn't, assume 3667 * the default size (16). 3668 */ 3669 if (!read_key_size_capable(hdev)) { 3670 conn->enc_key_size = HCI_LINK_KEY_SIZE; 3671 goto notify; 3672 } 3673 3674 cp.handle = cpu_to_le16(conn->handle); 3675 if (hci_send_cmd(hdev, HCI_OP_READ_ENC_KEY_SIZE, 3676 sizeof(cp), &cp)) { 3677 bt_dev_err(hdev, "sending read key size failed"); 3678 conn->enc_key_size = HCI_LINK_KEY_SIZE; 3679 goto notify; 3680 } 3681 3682 goto unlock; 3683 } 3684 3685 /* Set the default Authenticated Payload Timeout after 3686 * an LE Link is established. As per Core Spec v5.0, Vol 2, Part B 3687 * Section 3.3, the HCI command WRITE_AUTH_PAYLOAD_TIMEOUT should be 3688 * sent when the link is active and Encryption is enabled, the conn 3689 * type can be either LE or ACL and controller must support LMP Ping. 3690 * Ensure for AES-CCM encryption as well. 3691 */ 3692 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags) && 3693 test_bit(HCI_CONN_AES_CCM, &conn->flags) && 3694 ((conn->type == ACL_LINK && lmp_ping_capable(hdev)) || 3695 (conn->type == LE_LINK && (hdev->le_features[0] & HCI_LE_PING)))) { 3696 struct hci_cp_write_auth_payload_to cp; 3697 3698 cp.handle = cpu_to_le16(conn->handle); 3699 cp.timeout = cpu_to_le16(hdev->auth_payload_timeout); 3700 if (hci_send_cmd(conn->hdev, HCI_OP_WRITE_AUTH_PAYLOAD_TO, 3701 sizeof(cp), &cp)) 3702 bt_dev_err(hdev, "write auth payload timeout failed"); 3703 } 3704 3705 notify: 3706 hci_encrypt_cfm(conn, ev->status); 3707 3708 unlock: 3709 hci_dev_unlock(hdev); 3710 } 3711 3712 static void hci_change_link_key_complete_evt(struct hci_dev *hdev, void *data, 3713 struct sk_buff *skb) 3714 { 3715 struct hci_ev_change_link_key_complete *ev = data; 3716 struct hci_conn *conn; 3717 3718 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 3719 3720 hci_dev_lock(hdev); 3721 3722 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 3723 if (conn) { 3724 if (!ev->status) 3725 set_bit(HCI_CONN_SECURE, &conn->flags); 3726 3727 clear_bit(HCI_CONN_AUTH_PEND, &conn->flags); 3728 3729 hci_key_change_cfm(conn, ev->status); 3730 } 3731 3732 hci_dev_unlock(hdev); 3733 } 3734 3735 static void hci_remote_features_evt(struct hci_dev *hdev, void *data, 3736 struct sk_buff *skb) 3737 { 3738 struct hci_ev_remote_features *ev = data; 3739 struct hci_conn *conn; 3740 3741 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 3742 3743 hci_dev_lock(hdev); 3744 3745 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 3746 if (!conn) 3747 goto unlock; 3748 3749 if (!ev->status) 3750 memcpy(conn->features[0], ev->features, 8); 3751 3752 if (conn->state != BT_CONFIG) 3753 goto unlock; 3754 3755 if (!ev->status && lmp_ext_feat_capable(hdev) && 3756 lmp_ext_feat_capable(conn)) { 3757 struct hci_cp_read_remote_ext_features cp; 3758 cp.handle = ev->handle; 3759 cp.page = 0x01; 3760 hci_send_cmd(hdev, HCI_OP_READ_REMOTE_EXT_FEATURES, 3761 sizeof(cp), &cp); 3762 goto unlock; 3763 } 3764 3765 if (!ev->status && !test_bit(HCI_CONN_MGMT_CONNECTED, &conn->flags)) { 3766 struct hci_cp_remote_name_req cp; 3767 memset(&cp, 0, sizeof(cp)); 3768 bacpy(&cp.bdaddr, &conn->dst); 3769 cp.pscan_rep_mode = 0x02; 3770 hci_send_cmd(hdev, HCI_OP_REMOTE_NAME_REQ, sizeof(cp), &cp); 3771 } else { 3772 mgmt_device_connected(hdev, conn, NULL, 0); 3773 } 3774 3775 if (!hci_outgoing_auth_needed(hdev, conn)) { 3776 conn->state = BT_CONNECTED; 3777 hci_connect_cfm(conn, ev->status); 3778 hci_conn_drop(conn); 3779 } 3780 3781 unlock: 3782 hci_dev_unlock(hdev); 3783 } 3784 3785 static inline void handle_cmd_cnt_and_timer(struct hci_dev *hdev, u8 ncmd) 3786 { 3787 cancel_delayed_work(&hdev->cmd_timer); 3788 3789 rcu_read_lock(); 3790 if (!test_bit(HCI_RESET, &hdev->flags)) { 3791 if (ncmd) { 3792 cancel_delayed_work(&hdev->ncmd_timer); 3793 atomic_set(&hdev->cmd_cnt, 1); 3794 } else { 3795 if (!hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE)) 3796 queue_delayed_work(hdev->workqueue, &hdev->ncmd_timer, 3797 HCI_NCMD_TIMEOUT); 3798 } 3799 } 3800 rcu_read_unlock(); 3801 } 3802 3803 static u8 hci_cc_le_read_buffer_size_v2(struct hci_dev *hdev, void *data, 3804 struct sk_buff *skb) 3805 { 3806 struct hci_rp_le_read_buffer_size_v2 *rp = data; 3807 3808 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 3809 3810 if (rp->status) 3811 return rp->status; 3812 3813 hdev->le_mtu = __le16_to_cpu(rp->acl_mtu); 3814 hdev->le_pkts = rp->acl_max_pkt; 3815 hdev->iso_mtu = __le16_to_cpu(rp->iso_mtu); 3816 hdev->iso_pkts = rp->iso_max_pkt; 3817 3818 hdev->le_cnt = hdev->le_pkts; 3819 hdev->iso_cnt = hdev->iso_pkts; 3820 3821 BT_DBG("%s acl mtu %d:%d iso mtu %d:%d", hdev->name, hdev->acl_mtu, 3822 hdev->acl_pkts, hdev->iso_mtu, hdev->iso_pkts); 3823 3824 return rp->status; 3825 } 3826 3827 static void hci_unbound_cis_failed(struct hci_dev *hdev, u8 cig, u8 status) 3828 { 3829 struct hci_conn *conn, *tmp; 3830 3831 lockdep_assert_held(&hdev->lock); 3832 3833 list_for_each_entry_safe(conn, tmp, &hdev->conn_hash.list, list) { 3834 if (conn->type != ISO_LINK || !bacmp(&conn->dst, BDADDR_ANY) || 3835 conn->state == BT_OPEN || conn->iso_qos.ucast.cig != cig) 3836 continue; 3837 3838 if (HCI_CONN_HANDLE_UNSET(conn->handle)) 3839 hci_conn_failed(conn, status); 3840 } 3841 } 3842 3843 static u8 hci_cc_le_set_cig_params(struct hci_dev *hdev, void *data, 3844 struct sk_buff *skb) 3845 { 3846 struct hci_rp_le_set_cig_params *rp = data; 3847 struct hci_cp_le_set_cig_params *cp; 3848 struct hci_conn *conn; 3849 u8 status = rp->status; 3850 bool pending = false; 3851 int i; 3852 3853 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 3854 3855 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_CIG_PARAMS); 3856 if (!rp->status && (!cp || rp->num_handles != cp->num_cis || 3857 rp->cig_id != cp->cig_id)) { 3858 bt_dev_err(hdev, "unexpected Set CIG Parameters response data"); 3859 status = HCI_ERROR_UNSPECIFIED; 3860 } 3861 3862 hci_dev_lock(hdev); 3863 3864 /* BLUETOOTH CORE SPECIFICATION Version 5.4 | Vol 4, Part E page 2554 3865 * 3866 * If the Status return parameter is non-zero, then the state of the CIG 3867 * and its CIS configurations shall not be changed by the command. If 3868 * the CIG did not already exist, it shall not be created. 3869 */ 3870 if (status) { 3871 /* Keep current configuration, fail only the unbound CIS */ 3872 hci_unbound_cis_failed(hdev, rp->cig_id, status); 3873 goto unlock; 3874 } 3875 3876 /* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E page 2553 3877 * 3878 * If the Status return parameter is zero, then the Controller shall 3879 * set the Connection_Handle arrayed return parameter to the connection 3880 * handle(s) corresponding to the CIS configurations specified in 3881 * the CIS_IDs command parameter, in the same order. 3882 */ 3883 for (i = 0; i < rp->num_handles; ++i) { 3884 conn = hci_conn_hash_lookup_cis(hdev, NULL, 0, rp->cig_id, 3885 cp->cis[i].cis_id); 3886 if (!conn || !bacmp(&conn->dst, BDADDR_ANY)) 3887 continue; 3888 3889 if (conn->state != BT_BOUND && conn->state != BT_CONNECT) 3890 continue; 3891 3892 if (hci_conn_set_handle(conn, __le16_to_cpu(rp->handle[i]))) 3893 continue; 3894 3895 if (conn->state == BT_CONNECT) 3896 pending = true; 3897 } 3898 3899 unlock: 3900 if (pending) 3901 hci_le_create_cis_pending(hdev); 3902 3903 hci_dev_unlock(hdev); 3904 3905 return rp->status; 3906 } 3907 3908 static u8 hci_cc_le_setup_iso_path(struct hci_dev *hdev, void *data, 3909 struct sk_buff *skb) 3910 { 3911 struct hci_rp_le_setup_iso_path *rp = data; 3912 struct hci_cp_le_setup_iso_path *cp; 3913 struct hci_conn *conn; 3914 3915 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 3916 3917 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SETUP_ISO_PATH); 3918 if (!cp) 3919 return rp->status; 3920 3921 hci_dev_lock(hdev); 3922 3923 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle)); 3924 if (!conn) 3925 goto unlock; 3926 3927 if (rp->status) { 3928 hci_connect_cfm(conn, rp->status); 3929 hci_conn_del(conn); 3930 goto unlock; 3931 } 3932 3933 switch (cp->direction) { 3934 /* Input (Host to Controller) */ 3935 case 0x00: 3936 /* Only confirm connection if output only */ 3937 if (conn->iso_qos.ucast.out.sdu && !conn->iso_qos.ucast.in.sdu) 3938 hci_connect_cfm(conn, rp->status); 3939 break; 3940 /* Output (Controller to Host) */ 3941 case 0x01: 3942 /* Confirm connection since conn->iso_qos is always configured 3943 * last. 3944 */ 3945 hci_connect_cfm(conn, rp->status); 3946 3947 /* Notify device connected in case it is a BIG Sync */ 3948 if (!rp->status && test_bit(HCI_CONN_BIG_SYNC, &conn->flags)) 3949 mgmt_device_connected(hdev, conn, NULL, 0); 3950 3951 break; 3952 } 3953 3954 unlock: 3955 hci_dev_unlock(hdev); 3956 return rp->status; 3957 } 3958 3959 static void hci_cs_le_create_big(struct hci_dev *hdev, u8 status) 3960 { 3961 bt_dev_dbg(hdev, "status 0x%2.2x", status); 3962 } 3963 3964 static u8 hci_cc_set_per_adv_param(struct hci_dev *hdev, void *data, 3965 struct sk_buff *skb) 3966 { 3967 struct hci_ev_status *rp = data; 3968 struct hci_cp_le_set_per_adv_params *cp; 3969 3970 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 3971 3972 if (rp->status) 3973 return rp->status; 3974 3975 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_PER_ADV_PARAMS); 3976 if (!cp) 3977 return rp->status; 3978 3979 /* TODO: set the conn state */ 3980 return rp->status; 3981 } 3982 3983 static u8 hci_cc_le_set_per_adv_enable(struct hci_dev *hdev, void *data, 3984 struct sk_buff *skb) 3985 { 3986 struct hci_ev_status *rp = data; 3987 struct hci_cp_le_set_per_adv_enable *cp; 3988 struct adv_info *adv = NULL, *n; 3989 u8 per_adv_cnt = 0; 3990 3991 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 3992 3993 if (rp->status) 3994 return rp->status; 3995 3996 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE); 3997 if (!cp) 3998 return rp->status; 3999 4000 hci_dev_lock(hdev); 4001 4002 adv = hci_find_adv_instance(hdev, cp->handle); 4003 4004 if (cp->enable) { 4005 hci_dev_set_flag(hdev, HCI_LE_PER_ADV); 4006 4007 if (adv) 4008 adv->enabled = true; 4009 } else { 4010 /* If just one instance was disabled check if there are 4011 * any other instance enabled before clearing HCI_LE_PER_ADV. 4012 * The current periodic adv instance will be marked as 4013 * disabled once extended advertising is also disabled. 4014 */ 4015 list_for_each_entry_safe(adv, n, &hdev->adv_instances, 4016 list) { 4017 if (adv->periodic && adv->enabled) 4018 per_adv_cnt++; 4019 } 4020 4021 if (per_adv_cnt > 1) 4022 goto unlock; 4023 4024 hci_dev_clear_flag(hdev, HCI_LE_PER_ADV); 4025 } 4026 4027 unlock: 4028 hci_dev_unlock(hdev); 4029 4030 return rp->status; 4031 } 4032 4033 #define HCI_CC_VL(_op, _func, _min, _max) \ 4034 { \ 4035 .op = _op, \ 4036 .func = _func, \ 4037 .min_len = _min, \ 4038 .max_len = _max, \ 4039 } 4040 4041 #define HCI_CC(_op, _func, _len) \ 4042 HCI_CC_VL(_op, _func, _len, _len) 4043 4044 #define HCI_CC_STATUS(_op, _func) \ 4045 HCI_CC(_op, _func, sizeof(struct hci_ev_status)) 4046 4047 static const struct hci_cc { 4048 u16 op; 4049 u8 (*func)(struct hci_dev *hdev, void *data, struct sk_buff *skb); 4050 u16 min_len; 4051 u16 max_len; 4052 } hci_cc_table[] = { 4053 HCI_CC_STATUS(HCI_OP_INQUIRY_CANCEL, hci_cc_inquiry_cancel), 4054 HCI_CC_STATUS(HCI_OP_PERIODIC_INQ, hci_cc_periodic_inq), 4055 HCI_CC_STATUS(HCI_OP_EXIT_PERIODIC_INQ, hci_cc_exit_periodic_inq), 4056 HCI_CC_STATUS(HCI_OP_REMOTE_NAME_REQ_CANCEL, 4057 hci_cc_remote_name_req_cancel), 4058 HCI_CC(HCI_OP_ROLE_DISCOVERY, hci_cc_role_discovery, 4059 sizeof(struct hci_rp_role_discovery)), 4060 HCI_CC(HCI_OP_READ_LINK_POLICY, hci_cc_read_link_policy, 4061 sizeof(struct hci_rp_read_link_policy)), 4062 HCI_CC(HCI_OP_WRITE_LINK_POLICY, hci_cc_write_link_policy, 4063 sizeof(struct hci_rp_write_link_policy)), 4064 HCI_CC(HCI_OP_READ_DEF_LINK_POLICY, hci_cc_read_def_link_policy, 4065 sizeof(struct hci_rp_read_def_link_policy)), 4066 HCI_CC_STATUS(HCI_OP_WRITE_DEF_LINK_POLICY, 4067 hci_cc_write_def_link_policy), 4068 HCI_CC_STATUS(HCI_OP_RESET, hci_cc_reset), 4069 HCI_CC(HCI_OP_READ_STORED_LINK_KEY, hci_cc_read_stored_link_key, 4070 sizeof(struct hci_rp_read_stored_link_key)), 4071 HCI_CC(HCI_OP_DELETE_STORED_LINK_KEY, hci_cc_delete_stored_link_key, 4072 sizeof(struct hci_rp_delete_stored_link_key)), 4073 HCI_CC_STATUS(HCI_OP_WRITE_LOCAL_NAME, hci_cc_write_local_name), 4074 HCI_CC(HCI_OP_READ_LOCAL_NAME, hci_cc_read_local_name, 4075 sizeof(struct hci_rp_read_local_name)), 4076 HCI_CC_STATUS(HCI_OP_WRITE_AUTH_ENABLE, hci_cc_write_auth_enable), 4077 HCI_CC_STATUS(HCI_OP_WRITE_ENCRYPT_MODE, hci_cc_write_encrypt_mode), 4078 HCI_CC_STATUS(HCI_OP_WRITE_SCAN_ENABLE, hci_cc_write_scan_enable), 4079 HCI_CC_STATUS(HCI_OP_SET_EVENT_FLT, hci_cc_set_event_filter), 4080 HCI_CC(HCI_OP_READ_CLASS_OF_DEV, hci_cc_read_class_of_dev, 4081 sizeof(struct hci_rp_read_class_of_dev)), 4082 HCI_CC_STATUS(HCI_OP_WRITE_CLASS_OF_DEV, hci_cc_write_class_of_dev), 4083 HCI_CC(HCI_OP_READ_VOICE_SETTING, hci_cc_read_voice_setting, 4084 sizeof(struct hci_rp_read_voice_setting)), 4085 HCI_CC_STATUS(HCI_OP_WRITE_VOICE_SETTING, hci_cc_write_voice_setting), 4086 HCI_CC(HCI_OP_READ_NUM_SUPPORTED_IAC, hci_cc_read_num_supported_iac, 4087 sizeof(struct hci_rp_read_num_supported_iac)), 4088 HCI_CC_STATUS(HCI_OP_WRITE_SSP_MODE, hci_cc_write_ssp_mode), 4089 HCI_CC_STATUS(HCI_OP_WRITE_SC_SUPPORT, hci_cc_write_sc_support), 4090 HCI_CC(HCI_OP_READ_AUTH_PAYLOAD_TO, hci_cc_read_auth_payload_timeout, 4091 sizeof(struct hci_rp_read_auth_payload_to)), 4092 HCI_CC(HCI_OP_WRITE_AUTH_PAYLOAD_TO, hci_cc_write_auth_payload_timeout, 4093 sizeof(struct hci_rp_write_auth_payload_to)), 4094 HCI_CC(HCI_OP_READ_LOCAL_VERSION, hci_cc_read_local_version, 4095 sizeof(struct hci_rp_read_local_version)), 4096 HCI_CC(HCI_OP_READ_LOCAL_COMMANDS, hci_cc_read_local_commands, 4097 sizeof(struct hci_rp_read_local_commands)), 4098 HCI_CC(HCI_OP_READ_LOCAL_FEATURES, hci_cc_read_local_features, 4099 sizeof(struct hci_rp_read_local_features)), 4100 HCI_CC(HCI_OP_READ_LOCAL_EXT_FEATURES, hci_cc_read_local_ext_features, 4101 sizeof(struct hci_rp_read_local_ext_features)), 4102 HCI_CC(HCI_OP_READ_BUFFER_SIZE, hci_cc_read_buffer_size, 4103 sizeof(struct hci_rp_read_buffer_size)), 4104 HCI_CC(HCI_OP_READ_BD_ADDR, hci_cc_read_bd_addr, 4105 sizeof(struct hci_rp_read_bd_addr)), 4106 HCI_CC(HCI_OP_READ_LOCAL_PAIRING_OPTS, hci_cc_read_local_pairing_opts, 4107 sizeof(struct hci_rp_read_local_pairing_opts)), 4108 HCI_CC(HCI_OP_READ_PAGE_SCAN_ACTIVITY, hci_cc_read_page_scan_activity, 4109 sizeof(struct hci_rp_read_page_scan_activity)), 4110 HCI_CC_STATUS(HCI_OP_WRITE_PAGE_SCAN_ACTIVITY, 4111 hci_cc_write_page_scan_activity), 4112 HCI_CC(HCI_OP_READ_PAGE_SCAN_TYPE, hci_cc_read_page_scan_type, 4113 sizeof(struct hci_rp_read_page_scan_type)), 4114 HCI_CC_STATUS(HCI_OP_WRITE_PAGE_SCAN_TYPE, hci_cc_write_page_scan_type), 4115 HCI_CC(HCI_OP_READ_DATA_BLOCK_SIZE, hci_cc_read_data_block_size, 4116 sizeof(struct hci_rp_read_data_block_size)), 4117 HCI_CC(HCI_OP_READ_FLOW_CONTROL_MODE, hci_cc_read_flow_control_mode, 4118 sizeof(struct hci_rp_read_flow_control_mode)), 4119 HCI_CC(HCI_OP_READ_LOCAL_AMP_INFO, hci_cc_read_local_amp_info, 4120 sizeof(struct hci_rp_read_local_amp_info)), 4121 HCI_CC(HCI_OP_READ_CLOCK, hci_cc_read_clock, 4122 sizeof(struct hci_rp_read_clock)), 4123 HCI_CC(HCI_OP_READ_ENC_KEY_SIZE, hci_cc_read_enc_key_size, 4124 sizeof(struct hci_rp_read_enc_key_size)), 4125 HCI_CC(HCI_OP_READ_INQ_RSP_TX_POWER, hci_cc_read_inq_rsp_tx_power, 4126 sizeof(struct hci_rp_read_inq_rsp_tx_power)), 4127 HCI_CC(HCI_OP_READ_DEF_ERR_DATA_REPORTING, 4128 hci_cc_read_def_err_data_reporting, 4129 sizeof(struct hci_rp_read_def_err_data_reporting)), 4130 HCI_CC_STATUS(HCI_OP_WRITE_DEF_ERR_DATA_REPORTING, 4131 hci_cc_write_def_err_data_reporting), 4132 HCI_CC(HCI_OP_PIN_CODE_REPLY, hci_cc_pin_code_reply, 4133 sizeof(struct hci_rp_pin_code_reply)), 4134 HCI_CC(HCI_OP_PIN_CODE_NEG_REPLY, hci_cc_pin_code_neg_reply, 4135 sizeof(struct hci_rp_pin_code_neg_reply)), 4136 HCI_CC(HCI_OP_READ_LOCAL_OOB_DATA, hci_cc_read_local_oob_data, 4137 sizeof(struct hci_rp_read_local_oob_data)), 4138 HCI_CC(HCI_OP_READ_LOCAL_OOB_EXT_DATA, hci_cc_read_local_oob_ext_data, 4139 sizeof(struct hci_rp_read_local_oob_ext_data)), 4140 HCI_CC(HCI_OP_LE_READ_BUFFER_SIZE, hci_cc_le_read_buffer_size, 4141 sizeof(struct hci_rp_le_read_buffer_size)), 4142 HCI_CC(HCI_OP_LE_READ_LOCAL_FEATURES, hci_cc_le_read_local_features, 4143 sizeof(struct hci_rp_le_read_local_features)), 4144 HCI_CC(HCI_OP_LE_READ_ADV_TX_POWER, hci_cc_le_read_adv_tx_power, 4145 sizeof(struct hci_rp_le_read_adv_tx_power)), 4146 HCI_CC(HCI_OP_USER_CONFIRM_REPLY, hci_cc_user_confirm_reply, 4147 sizeof(struct hci_rp_user_confirm_reply)), 4148 HCI_CC(HCI_OP_USER_CONFIRM_NEG_REPLY, hci_cc_user_confirm_neg_reply, 4149 sizeof(struct hci_rp_user_confirm_reply)), 4150 HCI_CC(HCI_OP_USER_PASSKEY_REPLY, hci_cc_user_passkey_reply, 4151 sizeof(struct hci_rp_user_confirm_reply)), 4152 HCI_CC(HCI_OP_USER_PASSKEY_NEG_REPLY, hci_cc_user_passkey_neg_reply, 4153 sizeof(struct hci_rp_user_confirm_reply)), 4154 HCI_CC_STATUS(HCI_OP_LE_SET_RANDOM_ADDR, hci_cc_le_set_random_addr), 4155 HCI_CC_STATUS(HCI_OP_LE_SET_ADV_ENABLE, hci_cc_le_set_adv_enable), 4156 HCI_CC_STATUS(HCI_OP_LE_SET_SCAN_PARAM, hci_cc_le_set_scan_param), 4157 HCI_CC_STATUS(HCI_OP_LE_SET_SCAN_ENABLE, hci_cc_le_set_scan_enable), 4158 HCI_CC(HCI_OP_LE_READ_ACCEPT_LIST_SIZE, 4159 hci_cc_le_read_accept_list_size, 4160 sizeof(struct hci_rp_le_read_accept_list_size)), 4161 HCI_CC_STATUS(HCI_OP_LE_CLEAR_ACCEPT_LIST, hci_cc_le_clear_accept_list), 4162 HCI_CC_STATUS(HCI_OP_LE_ADD_TO_ACCEPT_LIST, 4163 hci_cc_le_add_to_accept_list), 4164 HCI_CC_STATUS(HCI_OP_LE_DEL_FROM_ACCEPT_LIST, 4165 hci_cc_le_del_from_accept_list), 4166 HCI_CC(HCI_OP_LE_READ_SUPPORTED_STATES, hci_cc_le_read_supported_states, 4167 sizeof(struct hci_rp_le_read_supported_states)), 4168 HCI_CC(HCI_OP_LE_READ_DEF_DATA_LEN, hci_cc_le_read_def_data_len, 4169 sizeof(struct hci_rp_le_read_def_data_len)), 4170 HCI_CC_STATUS(HCI_OP_LE_WRITE_DEF_DATA_LEN, 4171 hci_cc_le_write_def_data_len), 4172 HCI_CC_STATUS(HCI_OP_LE_ADD_TO_RESOLV_LIST, 4173 hci_cc_le_add_to_resolv_list), 4174 HCI_CC_STATUS(HCI_OP_LE_DEL_FROM_RESOLV_LIST, 4175 hci_cc_le_del_from_resolv_list), 4176 HCI_CC_STATUS(HCI_OP_LE_CLEAR_RESOLV_LIST, 4177 hci_cc_le_clear_resolv_list), 4178 HCI_CC(HCI_OP_LE_READ_RESOLV_LIST_SIZE, hci_cc_le_read_resolv_list_size, 4179 sizeof(struct hci_rp_le_read_resolv_list_size)), 4180 HCI_CC_STATUS(HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 4181 hci_cc_le_set_addr_resolution_enable), 4182 HCI_CC(HCI_OP_LE_READ_MAX_DATA_LEN, hci_cc_le_read_max_data_len, 4183 sizeof(struct hci_rp_le_read_max_data_len)), 4184 HCI_CC_STATUS(HCI_OP_WRITE_LE_HOST_SUPPORTED, 4185 hci_cc_write_le_host_supported), 4186 HCI_CC_STATUS(HCI_OP_LE_SET_ADV_PARAM, hci_cc_set_adv_param), 4187 HCI_CC(HCI_OP_READ_RSSI, hci_cc_read_rssi, 4188 sizeof(struct hci_rp_read_rssi)), 4189 HCI_CC(HCI_OP_READ_TX_POWER, hci_cc_read_tx_power, 4190 sizeof(struct hci_rp_read_tx_power)), 4191 HCI_CC_STATUS(HCI_OP_WRITE_SSP_DEBUG_MODE, hci_cc_write_ssp_debug_mode), 4192 HCI_CC_STATUS(HCI_OP_LE_SET_EXT_SCAN_PARAMS, 4193 hci_cc_le_set_ext_scan_param), 4194 HCI_CC_STATUS(HCI_OP_LE_SET_EXT_SCAN_ENABLE, 4195 hci_cc_le_set_ext_scan_enable), 4196 HCI_CC_STATUS(HCI_OP_LE_SET_DEFAULT_PHY, hci_cc_le_set_default_phy), 4197 HCI_CC(HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS, 4198 hci_cc_le_read_num_adv_sets, 4199 sizeof(struct hci_rp_le_read_num_supported_adv_sets)), 4200 HCI_CC(HCI_OP_LE_SET_EXT_ADV_PARAMS, hci_cc_set_ext_adv_param, 4201 sizeof(struct hci_rp_le_set_ext_adv_params)), 4202 HCI_CC_STATUS(HCI_OP_LE_SET_EXT_ADV_ENABLE, 4203 hci_cc_le_set_ext_adv_enable), 4204 HCI_CC_STATUS(HCI_OP_LE_SET_ADV_SET_RAND_ADDR, 4205 hci_cc_le_set_adv_set_random_addr), 4206 HCI_CC_STATUS(HCI_OP_LE_REMOVE_ADV_SET, hci_cc_le_remove_adv_set), 4207 HCI_CC_STATUS(HCI_OP_LE_CLEAR_ADV_SETS, hci_cc_le_clear_adv_sets), 4208 HCI_CC_STATUS(HCI_OP_LE_SET_PER_ADV_PARAMS, hci_cc_set_per_adv_param), 4209 HCI_CC_STATUS(HCI_OP_LE_SET_PER_ADV_ENABLE, 4210 hci_cc_le_set_per_adv_enable), 4211 HCI_CC(HCI_OP_LE_READ_TRANSMIT_POWER, hci_cc_le_read_transmit_power, 4212 sizeof(struct hci_rp_le_read_transmit_power)), 4213 HCI_CC_STATUS(HCI_OP_LE_SET_PRIVACY_MODE, hci_cc_le_set_privacy_mode), 4214 HCI_CC(HCI_OP_LE_READ_BUFFER_SIZE_V2, hci_cc_le_read_buffer_size_v2, 4215 sizeof(struct hci_rp_le_read_buffer_size_v2)), 4216 HCI_CC_VL(HCI_OP_LE_SET_CIG_PARAMS, hci_cc_le_set_cig_params, 4217 sizeof(struct hci_rp_le_set_cig_params), HCI_MAX_EVENT_SIZE), 4218 HCI_CC(HCI_OP_LE_SETUP_ISO_PATH, hci_cc_le_setup_iso_path, 4219 sizeof(struct hci_rp_le_setup_iso_path)), 4220 }; 4221 4222 static u8 hci_cc_func(struct hci_dev *hdev, const struct hci_cc *cc, 4223 struct sk_buff *skb) 4224 { 4225 void *data; 4226 4227 if (skb->len < cc->min_len) { 4228 bt_dev_err(hdev, "unexpected cc 0x%4.4x length: %u < %u", 4229 cc->op, skb->len, cc->min_len); 4230 return HCI_ERROR_UNSPECIFIED; 4231 } 4232 4233 /* Just warn if the length is over max_len size it still be possible to 4234 * partially parse the cc so leave to callback to decide if that is 4235 * acceptable. 4236 */ 4237 if (skb->len > cc->max_len) 4238 bt_dev_warn(hdev, "unexpected cc 0x%4.4x length: %u > %u", 4239 cc->op, skb->len, cc->max_len); 4240 4241 data = hci_cc_skb_pull(hdev, skb, cc->op, cc->min_len); 4242 if (!data) 4243 return HCI_ERROR_UNSPECIFIED; 4244 4245 return cc->func(hdev, data, skb); 4246 } 4247 4248 static void hci_cmd_complete_evt(struct hci_dev *hdev, void *data, 4249 struct sk_buff *skb, u16 *opcode, u8 *status, 4250 hci_req_complete_t *req_complete, 4251 hci_req_complete_skb_t *req_complete_skb) 4252 { 4253 struct hci_ev_cmd_complete *ev = data; 4254 int i; 4255 4256 *opcode = __le16_to_cpu(ev->opcode); 4257 4258 bt_dev_dbg(hdev, "opcode 0x%4.4x", *opcode); 4259 4260 for (i = 0; i < ARRAY_SIZE(hci_cc_table); i++) { 4261 if (hci_cc_table[i].op == *opcode) { 4262 *status = hci_cc_func(hdev, &hci_cc_table[i], skb); 4263 break; 4264 } 4265 } 4266 4267 if (i == ARRAY_SIZE(hci_cc_table)) { 4268 /* Unknown opcode, assume byte 0 contains the status, so 4269 * that e.g. __hci_cmd_sync() properly returns errors 4270 * for vendor specific commands send by HCI drivers. 4271 * If a vendor doesn't actually follow this convention we may 4272 * need to introduce a vendor CC table in order to properly set 4273 * the status. 4274 */ 4275 *status = skb->data[0]; 4276 } 4277 4278 handle_cmd_cnt_and_timer(hdev, ev->ncmd); 4279 4280 hci_req_cmd_complete(hdev, *opcode, *status, req_complete, 4281 req_complete_skb); 4282 4283 if (hci_dev_test_flag(hdev, HCI_CMD_PENDING)) { 4284 bt_dev_err(hdev, 4285 "unexpected event for opcode 0x%4.4x", *opcode); 4286 return; 4287 } 4288 4289 if (atomic_read(&hdev->cmd_cnt) && !skb_queue_empty(&hdev->cmd_q)) 4290 queue_work(hdev->workqueue, &hdev->cmd_work); 4291 } 4292 4293 static void hci_cs_le_create_cis(struct hci_dev *hdev, u8 status) 4294 { 4295 struct hci_cp_le_create_cis *cp; 4296 bool pending = false; 4297 int i; 4298 4299 bt_dev_dbg(hdev, "status 0x%2.2x", status); 4300 4301 if (!status) 4302 return; 4303 4304 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_CREATE_CIS); 4305 if (!cp) 4306 return; 4307 4308 hci_dev_lock(hdev); 4309 4310 /* Remove connection if command failed */ 4311 for (i = 0; cp->num_cis; cp->num_cis--, i++) { 4312 struct hci_conn *conn; 4313 u16 handle; 4314 4315 handle = __le16_to_cpu(cp->cis[i].cis_handle); 4316 4317 conn = hci_conn_hash_lookup_handle(hdev, handle); 4318 if (conn) { 4319 if (test_and_clear_bit(HCI_CONN_CREATE_CIS, 4320 &conn->flags)) 4321 pending = true; 4322 conn->state = BT_CLOSED; 4323 hci_connect_cfm(conn, status); 4324 hci_conn_del(conn); 4325 } 4326 } 4327 4328 if (pending) 4329 hci_le_create_cis_pending(hdev); 4330 4331 hci_dev_unlock(hdev); 4332 } 4333 4334 #define HCI_CS(_op, _func) \ 4335 { \ 4336 .op = _op, \ 4337 .func = _func, \ 4338 } 4339 4340 static const struct hci_cs { 4341 u16 op; 4342 void (*func)(struct hci_dev *hdev, __u8 status); 4343 } hci_cs_table[] = { 4344 HCI_CS(HCI_OP_INQUIRY, hci_cs_inquiry), 4345 HCI_CS(HCI_OP_CREATE_CONN, hci_cs_create_conn), 4346 HCI_CS(HCI_OP_DISCONNECT, hci_cs_disconnect), 4347 HCI_CS(HCI_OP_ADD_SCO, hci_cs_add_sco), 4348 HCI_CS(HCI_OP_AUTH_REQUESTED, hci_cs_auth_requested), 4349 HCI_CS(HCI_OP_SET_CONN_ENCRYPT, hci_cs_set_conn_encrypt), 4350 HCI_CS(HCI_OP_REMOTE_NAME_REQ, hci_cs_remote_name_req), 4351 HCI_CS(HCI_OP_READ_REMOTE_FEATURES, hci_cs_read_remote_features), 4352 HCI_CS(HCI_OP_READ_REMOTE_EXT_FEATURES, 4353 hci_cs_read_remote_ext_features), 4354 HCI_CS(HCI_OP_SETUP_SYNC_CONN, hci_cs_setup_sync_conn), 4355 HCI_CS(HCI_OP_ENHANCED_SETUP_SYNC_CONN, 4356 hci_cs_enhanced_setup_sync_conn), 4357 HCI_CS(HCI_OP_SNIFF_MODE, hci_cs_sniff_mode), 4358 HCI_CS(HCI_OP_EXIT_SNIFF_MODE, hci_cs_exit_sniff_mode), 4359 HCI_CS(HCI_OP_SWITCH_ROLE, hci_cs_switch_role), 4360 HCI_CS(HCI_OP_LE_CREATE_CONN, hci_cs_le_create_conn), 4361 HCI_CS(HCI_OP_LE_READ_REMOTE_FEATURES, hci_cs_le_read_remote_features), 4362 HCI_CS(HCI_OP_LE_START_ENC, hci_cs_le_start_enc), 4363 HCI_CS(HCI_OP_LE_EXT_CREATE_CONN, hci_cs_le_ext_create_conn), 4364 HCI_CS(HCI_OP_LE_CREATE_CIS, hci_cs_le_create_cis), 4365 HCI_CS(HCI_OP_LE_CREATE_BIG, hci_cs_le_create_big), 4366 }; 4367 4368 static void hci_cmd_status_evt(struct hci_dev *hdev, void *data, 4369 struct sk_buff *skb, u16 *opcode, u8 *status, 4370 hci_req_complete_t *req_complete, 4371 hci_req_complete_skb_t *req_complete_skb) 4372 { 4373 struct hci_ev_cmd_status *ev = data; 4374 int i; 4375 4376 *opcode = __le16_to_cpu(ev->opcode); 4377 *status = ev->status; 4378 4379 bt_dev_dbg(hdev, "opcode 0x%4.4x", *opcode); 4380 4381 for (i = 0; i < ARRAY_SIZE(hci_cs_table); i++) { 4382 if (hci_cs_table[i].op == *opcode) { 4383 hci_cs_table[i].func(hdev, ev->status); 4384 break; 4385 } 4386 } 4387 4388 handle_cmd_cnt_and_timer(hdev, ev->ncmd); 4389 4390 /* Indicate request completion if the command failed. Also, if 4391 * we're not waiting for a special event and we get a success 4392 * command status we should try to flag the request as completed 4393 * (since for this kind of commands there will not be a command 4394 * complete event). 4395 */ 4396 if (ev->status || (hdev->req_skb && !hci_skb_event(hdev->req_skb))) { 4397 hci_req_cmd_complete(hdev, *opcode, ev->status, req_complete, 4398 req_complete_skb); 4399 if (hci_dev_test_flag(hdev, HCI_CMD_PENDING)) { 4400 bt_dev_err(hdev, "unexpected event for opcode 0x%4.4x", 4401 *opcode); 4402 return; 4403 } 4404 } 4405 4406 if (atomic_read(&hdev->cmd_cnt) && !skb_queue_empty(&hdev->cmd_q)) 4407 queue_work(hdev->workqueue, &hdev->cmd_work); 4408 } 4409 4410 static void hci_hardware_error_evt(struct hci_dev *hdev, void *data, 4411 struct sk_buff *skb) 4412 { 4413 struct hci_ev_hardware_error *ev = data; 4414 4415 bt_dev_dbg(hdev, "code 0x%2.2x", ev->code); 4416 4417 hdev->hw_error_code = ev->code; 4418 4419 queue_work(hdev->req_workqueue, &hdev->error_reset); 4420 } 4421 4422 static void hci_role_change_evt(struct hci_dev *hdev, void *data, 4423 struct sk_buff *skb) 4424 { 4425 struct hci_ev_role_change *ev = data; 4426 struct hci_conn *conn; 4427 4428 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 4429 4430 hci_dev_lock(hdev); 4431 4432 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 4433 if (conn) { 4434 if (!ev->status) 4435 conn->role = ev->role; 4436 4437 clear_bit(HCI_CONN_RSWITCH_PEND, &conn->flags); 4438 4439 hci_role_switch_cfm(conn, ev->status, ev->role); 4440 } 4441 4442 hci_dev_unlock(hdev); 4443 } 4444 4445 static void hci_num_comp_pkts_evt(struct hci_dev *hdev, void *data, 4446 struct sk_buff *skb) 4447 { 4448 struct hci_ev_num_comp_pkts *ev = data; 4449 int i; 4450 4451 if (!hci_ev_skb_pull(hdev, skb, HCI_EV_NUM_COMP_PKTS, 4452 flex_array_size(ev, handles, ev->num))) 4453 return; 4454 4455 if (hdev->flow_ctl_mode != HCI_FLOW_CTL_MODE_PACKET_BASED) { 4456 bt_dev_err(hdev, "wrong event for mode %d", hdev->flow_ctl_mode); 4457 return; 4458 } 4459 4460 bt_dev_dbg(hdev, "num %d", ev->num); 4461 4462 for (i = 0; i < ev->num; i++) { 4463 struct hci_comp_pkts_info *info = &ev->handles[i]; 4464 struct hci_conn *conn; 4465 __u16 handle, count; 4466 4467 handle = __le16_to_cpu(info->handle); 4468 count = __le16_to_cpu(info->count); 4469 4470 conn = hci_conn_hash_lookup_handle(hdev, handle); 4471 if (!conn) 4472 continue; 4473 4474 conn->sent -= count; 4475 4476 switch (conn->type) { 4477 case ACL_LINK: 4478 hdev->acl_cnt += count; 4479 if (hdev->acl_cnt > hdev->acl_pkts) 4480 hdev->acl_cnt = hdev->acl_pkts; 4481 break; 4482 4483 case LE_LINK: 4484 if (hdev->le_pkts) { 4485 hdev->le_cnt += count; 4486 if (hdev->le_cnt > hdev->le_pkts) 4487 hdev->le_cnt = hdev->le_pkts; 4488 } else { 4489 hdev->acl_cnt += count; 4490 if (hdev->acl_cnt > hdev->acl_pkts) 4491 hdev->acl_cnt = hdev->acl_pkts; 4492 } 4493 break; 4494 4495 case SCO_LINK: 4496 hdev->sco_cnt += count; 4497 if (hdev->sco_cnt > hdev->sco_pkts) 4498 hdev->sco_cnt = hdev->sco_pkts; 4499 break; 4500 4501 case ISO_LINK: 4502 if (hdev->iso_pkts) { 4503 hdev->iso_cnt += count; 4504 if (hdev->iso_cnt > hdev->iso_pkts) 4505 hdev->iso_cnt = hdev->iso_pkts; 4506 } else if (hdev->le_pkts) { 4507 hdev->le_cnt += count; 4508 if (hdev->le_cnt > hdev->le_pkts) 4509 hdev->le_cnt = hdev->le_pkts; 4510 } else { 4511 hdev->acl_cnt += count; 4512 if (hdev->acl_cnt > hdev->acl_pkts) 4513 hdev->acl_cnt = hdev->acl_pkts; 4514 } 4515 break; 4516 4517 default: 4518 bt_dev_err(hdev, "unknown type %d conn %p", 4519 conn->type, conn); 4520 break; 4521 } 4522 } 4523 4524 queue_work(hdev->workqueue, &hdev->tx_work); 4525 } 4526 4527 static struct hci_conn *__hci_conn_lookup_handle(struct hci_dev *hdev, 4528 __u16 handle) 4529 { 4530 struct hci_chan *chan; 4531 4532 switch (hdev->dev_type) { 4533 case HCI_PRIMARY: 4534 return hci_conn_hash_lookup_handle(hdev, handle); 4535 case HCI_AMP: 4536 chan = hci_chan_lookup_handle(hdev, handle); 4537 if (chan) 4538 return chan->conn; 4539 break; 4540 default: 4541 bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type); 4542 break; 4543 } 4544 4545 return NULL; 4546 } 4547 4548 static void hci_num_comp_blocks_evt(struct hci_dev *hdev, void *data, 4549 struct sk_buff *skb) 4550 { 4551 struct hci_ev_num_comp_blocks *ev = data; 4552 int i; 4553 4554 if (!hci_ev_skb_pull(hdev, skb, HCI_EV_NUM_COMP_BLOCKS, 4555 flex_array_size(ev, handles, ev->num_hndl))) 4556 return; 4557 4558 if (hdev->flow_ctl_mode != HCI_FLOW_CTL_MODE_BLOCK_BASED) { 4559 bt_dev_err(hdev, "wrong event for mode %d", 4560 hdev->flow_ctl_mode); 4561 return; 4562 } 4563 4564 bt_dev_dbg(hdev, "num_blocks %d num_hndl %d", ev->num_blocks, 4565 ev->num_hndl); 4566 4567 for (i = 0; i < ev->num_hndl; i++) { 4568 struct hci_comp_blocks_info *info = &ev->handles[i]; 4569 struct hci_conn *conn = NULL; 4570 __u16 handle, block_count; 4571 4572 handle = __le16_to_cpu(info->handle); 4573 block_count = __le16_to_cpu(info->blocks); 4574 4575 conn = __hci_conn_lookup_handle(hdev, handle); 4576 if (!conn) 4577 continue; 4578 4579 conn->sent -= block_count; 4580 4581 switch (conn->type) { 4582 case ACL_LINK: 4583 case AMP_LINK: 4584 hdev->block_cnt += block_count; 4585 if (hdev->block_cnt > hdev->num_blocks) 4586 hdev->block_cnt = hdev->num_blocks; 4587 break; 4588 4589 default: 4590 bt_dev_err(hdev, "unknown type %d conn %p", 4591 conn->type, conn); 4592 break; 4593 } 4594 } 4595 4596 queue_work(hdev->workqueue, &hdev->tx_work); 4597 } 4598 4599 static void hci_mode_change_evt(struct hci_dev *hdev, void *data, 4600 struct sk_buff *skb) 4601 { 4602 struct hci_ev_mode_change *ev = data; 4603 struct hci_conn *conn; 4604 4605 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 4606 4607 hci_dev_lock(hdev); 4608 4609 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 4610 if (conn) { 4611 conn->mode = ev->mode; 4612 4613 if (!test_and_clear_bit(HCI_CONN_MODE_CHANGE_PEND, 4614 &conn->flags)) { 4615 if (conn->mode == HCI_CM_ACTIVE) 4616 set_bit(HCI_CONN_POWER_SAVE, &conn->flags); 4617 else 4618 clear_bit(HCI_CONN_POWER_SAVE, &conn->flags); 4619 } 4620 4621 if (test_and_clear_bit(HCI_CONN_SCO_SETUP_PEND, &conn->flags)) 4622 hci_sco_setup(conn, ev->status); 4623 } 4624 4625 hci_dev_unlock(hdev); 4626 } 4627 4628 static void hci_pin_code_request_evt(struct hci_dev *hdev, void *data, 4629 struct sk_buff *skb) 4630 { 4631 struct hci_ev_pin_code_req *ev = data; 4632 struct hci_conn *conn; 4633 4634 bt_dev_dbg(hdev, ""); 4635 4636 hci_dev_lock(hdev); 4637 4638 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 4639 if (!conn) 4640 goto unlock; 4641 4642 if (conn->state == BT_CONNECTED) { 4643 hci_conn_hold(conn); 4644 conn->disc_timeout = HCI_PAIRING_TIMEOUT; 4645 hci_conn_drop(conn); 4646 } 4647 4648 if (!hci_dev_test_flag(hdev, HCI_BONDABLE) && 4649 !test_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags)) { 4650 hci_send_cmd(hdev, HCI_OP_PIN_CODE_NEG_REPLY, 4651 sizeof(ev->bdaddr), &ev->bdaddr); 4652 } else if (hci_dev_test_flag(hdev, HCI_MGMT)) { 4653 u8 secure; 4654 4655 if (conn->pending_sec_level == BT_SECURITY_HIGH) 4656 secure = 1; 4657 else 4658 secure = 0; 4659 4660 mgmt_pin_code_request(hdev, &ev->bdaddr, secure); 4661 } 4662 4663 unlock: 4664 hci_dev_unlock(hdev); 4665 } 4666 4667 static void conn_set_key(struct hci_conn *conn, u8 key_type, u8 pin_len) 4668 { 4669 if (key_type == HCI_LK_CHANGED_COMBINATION) 4670 return; 4671 4672 conn->pin_length = pin_len; 4673 conn->key_type = key_type; 4674 4675 switch (key_type) { 4676 case HCI_LK_LOCAL_UNIT: 4677 case HCI_LK_REMOTE_UNIT: 4678 case HCI_LK_DEBUG_COMBINATION: 4679 return; 4680 case HCI_LK_COMBINATION: 4681 if (pin_len == 16) 4682 conn->pending_sec_level = BT_SECURITY_HIGH; 4683 else 4684 conn->pending_sec_level = BT_SECURITY_MEDIUM; 4685 break; 4686 case HCI_LK_UNAUTH_COMBINATION_P192: 4687 case HCI_LK_UNAUTH_COMBINATION_P256: 4688 conn->pending_sec_level = BT_SECURITY_MEDIUM; 4689 break; 4690 case HCI_LK_AUTH_COMBINATION_P192: 4691 conn->pending_sec_level = BT_SECURITY_HIGH; 4692 break; 4693 case HCI_LK_AUTH_COMBINATION_P256: 4694 conn->pending_sec_level = BT_SECURITY_FIPS; 4695 break; 4696 } 4697 } 4698 4699 static void hci_link_key_request_evt(struct hci_dev *hdev, void *data, 4700 struct sk_buff *skb) 4701 { 4702 struct hci_ev_link_key_req *ev = data; 4703 struct hci_cp_link_key_reply cp; 4704 struct hci_conn *conn; 4705 struct link_key *key; 4706 4707 bt_dev_dbg(hdev, ""); 4708 4709 if (!hci_dev_test_flag(hdev, HCI_MGMT)) 4710 return; 4711 4712 hci_dev_lock(hdev); 4713 4714 key = hci_find_link_key(hdev, &ev->bdaddr); 4715 if (!key) { 4716 bt_dev_dbg(hdev, "link key not found for %pMR", &ev->bdaddr); 4717 goto not_found; 4718 } 4719 4720 bt_dev_dbg(hdev, "found key type %u for %pMR", key->type, &ev->bdaddr); 4721 4722 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 4723 if (conn) { 4724 clear_bit(HCI_CONN_NEW_LINK_KEY, &conn->flags); 4725 4726 if ((key->type == HCI_LK_UNAUTH_COMBINATION_P192 || 4727 key->type == HCI_LK_UNAUTH_COMBINATION_P256) && 4728 conn->auth_type != 0xff && (conn->auth_type & 0x01)) { 4729 bt_dev_dbg(hdev, "ignoring unauthenticated key"); 4730 goto not_found; 4731 } 4732 4733 if (key->type == HCI_LK_COMBINATION && key->pin_len < 16 && 4734 (conn->pending_sec_level == BT_SECURITY_HIGH || 4735 conn->pending_sec_level == BT_SECURITY_FIPS)) { 4736 bt_dev_dbg(hdev, "ignoring key unauthenticated for high security"); 4737 goto not_found; 4738 } 4739 4740 conn_set_key(conn, key->type, key->pin_len); 4741 } 4742 4743 bacpy(&cp.bdaddr, &ev->bdaddr); 4744 memcpy(cp.link_key, key->val, HCI_LINK_KEY_SIZE); 4745 4746 hci_send_cmd(hdev, HCI_OP_LINK_KEY_REPLY, sizeof(cp), &cp); 4747 4748 hci_dev_unlock(hdev); 4749 4750 return; 4751 4752 not_found: 4753 hci_send_cmd(hdev, HCI_OP_LINK_KEY_NEG_REPLY, 6, &ev->bdaddr); 4754 hci_dev_unlock(hdev); 4755 } 4756 4757 static void hci_link_key_notify_evt(struct hci_dev *hdev, void *data, 4758 struct sk_buff *skb) 4759 { 4760 struct hci_ev_link_key_notify *ev = data; 4761 struct hci_conn *conn; 4762 struct link_key *key; 4763 bool persistent; 4764 u8 pin_len = 0; 4765 4766 bt_dev_dbg(hdev, ""); 4767 4768 hci_dev_lock(hdev); 4769 4770 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 4771 if (!conn) 4772 goto unlock; 4773 4774 /* Ignore NULL link key against CVE-2020-26555 */ 4775 if (!crypto_memneq(ev->link_key, ZERO_KEY, HCI_LINK_KEY_SIZE)) { 4776 bt_dev_dbg(hdev, "Ignore NULL link key (ZERO KEY) for %pMR", 4777 &ev->bdaddr); 4778 hci_disconnect(conn, HCI_ERROR_AUTH_FAILURE); 4779 hci_conn_drop(conn); 4780 goto unlock; 4781 } 4782 4783 hci_conn_hold(conn); 4784 conn->disc_timeout = HCI_DISCONN_TIMEOUT; 4785 hci_conn_drop(conn); 4786 4787 set_bit(HCI_CONN_NEW_LINK_KEY, &conn->flags); 4788 conn_set_key(conn, ev->key_type, conn->pin_length); 4789 4790 if (!hci_dev_test_flag(hdev, HCI_MGMT)) 4791 goto unlock; 4792 4793 key = hci_add_link_key(hdev, conn, &ev->bdaddr, ev->link_key, 4794 ev->key_type, pin_len, &persistent); 4795 if (!key) 4796 goto unlock; 4797 4798 /* Update connection information since adding the key will have 4799 * fixed up the type in the case of changed combination keys. 4800 */ 4801 if (ev->key_type == HCI_LK_CHANGED_COMBINATION) 4802 conn_set_key(conn, key->type, key->pin_len); 4803 4804 mgmt_new_link_key(hdev, key, persistent); 4805 4806 /* Keep debug keys around only if the HCI_KEEP_DEBUG_KEYS flag 4807 * is set. If it's not set simply remove the key from the kernel 4808 * list (we've still notified user space about it but with 4809 * store_hint being 0). 4810 */ 4811 if (key->type == HCI_LK_DEBUG_COMBINATION && 4812 !hci_dev_test_flag(hdev, HCI_KEEP_DEBUG_KEYS)) { 4813 list_del_rcu(&key->list); 4814 kfree_rcu(key, rcu); 4815 goto unlock; 4816 } 4817 4818 if (persistent) 4819 clear_bit(HCI_CONN_FLUSH_KEY, &conn->flags); 4820 else 4821 set_bit(HCI_CONN_FLUSH_KEY, &conn->flags); 4822 4823 unlock: 4824 hci_dev_unlock(hdev); 4825 } 4826 4827 static void hci_clock_offset_evt(struct hci_dev *hdev, void *data, 4828 struct sk_buff *skb) 4829 { 4830 struct hci_ev_clock_offset *ev = data; 4831 struct hci_conn *conn; 4832 4833 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 4834 4835 hci_dev_lock(hdev); 4836 4837 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 4838 if (conn && !ev->status) { 4839 struct inquiry_entry *ie; 4840 4841 ie = hci_inquiry_cache_lookup(hdev, &conn->dst); 4842 if (ie) { 4843 ie->data.clock_offset = ev->clock_offset; 4844 ie->timestamp = jiffies; 4845 } 4846 } 4847 4848 hci_dev_unlock(hdev); 4849 } 4850 4851 static void hci_pkt_type_change_evt(struct hci_dev *hdev, void *data, 4852 struct sk_buff *skb) 4853 { 4854 struct hci_ev_pkt_type_change *ev = data; 4855 struct hci_conn *conn; 4856 4857 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 4858 4859 hci_dev_lock(hdev); 4860 4861 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 4862 if (conn && !ev->status) 4863 conn->pkt_type = __le16_to_cpu(ev->pkt_type); 4864 4865 hci_dev_unlock(hdev); 4866 } 4867 4868 static void hci_pscan_rep_mode_evt(struct hci_dev *hdev, void *data, 4869 struct sk_buff *skb) 4870 { 4871 struct hci_ev_pscan_rep_mode *ev = data; 4872 struct inquiry_entry *ie; 4873 4874 bt_dev_dbg(hdev, ""); 4875 4876 hci_dev_lock(hdev); 4877 4878 ie = hci_inquiry_cache_lookup(hdev, &ev->bdaddr); 4879 if (ie) { 4880 ie->data.pscan_rep_mode = ev->pscan_rep_mode; 4881 ie->timestamp = jiffies; 4882 } 4883 4884 hci_dev_unlock(hdev); 4885 } 4886 4887 static void hci_inquiry_result_with_rssi_evt(struct hci_dev *hdev, void *edata, 4888 struct sk_buff *skb) 4889 { 4890 struct hci_ev_inquiry_result_rssi *ev = edata; 4891 struct inquiry_data data; 4892 int i; 4893 4894 bt_dev_dbg(hdev, "num_rsp %d", ev->num); 4895 4896 if (!ev->num) 4897 return; 4898 4899 if (hci_dev_test_flag(hdev, HCI_PERIODIC_INQ)) 4900 return; 4901 4902 hci_dev_lock(hdev); 4903 4904 if (skb->len == array_size(ev->num, 4905 sizeof(struct inquiry_info_rssi_pscan))) { 4906 struct inquiry_info_rssi_pscan *info; 4907 4908 for (i = 0; i < ev->num; i++) { 4909 u32 flags; 4910 4911 info = hci_ev_skb_pull(hdev, skb, 4912 HCI_EV_INQUIRY_RESULT_WITH_RSSI, 4913 sizeof(*info)); 4914 if (!info) { 4915 bt_dev_err(hdev, "Malformed HCI Event: 0x%2.2x", 4916 HCI_EV_INQUIRY_RESULT_WITH_RSSI); 4917 goto unlock; 4918 } 4919 4920 bacpy(&data.bdaddr, &info->bdaddr); 4921 data.pscan_rep_mode = info->pscan_rep_mode; 4922 data.pscan_period_mode = info->pscan_period_mode; 4923 data.pscan_mode = info->pscan_mode; 4924 memcpy(data.dev_class, info->dev_class, 3); 4925 data.clock_offset = info->clock_offset; 4926 data.rssi = info->rssi; 4927 data.ssp_mode = 0x00; 4928 4929 flags = hci_inquiry_cache_update(hdev, &data, false); 4930 4931 mgmt_device_found(hdev, &info->bdaddr, ACL_LINK, 0x00, 4932 info->dev_class, info->rssi, 4933 flags, NULL, 0, NULL, 0, 0); 4934 } 4935 } else if (skb->len == array_size(ev->num, 4936 sizeof(struct inquiry_info_rssi))) { 4937 struct inquiry_info_rssi *info; 4938 4939 for (i = 0; i < ev->num; i++) { 4940 u32 flags; 4941 4942 info = hci_ev_skb_pull(hdev, skb, 4943 HCI_EV_INQUIRY_RESULT_WITH_RSSI, 4944 sizeof(*info)); 4945 if (!info) { 4946 bt_dev_err(hdev, "Malformed HCI Event: 0x%2.2x", 4947 HCI_EV_INQUIRY_RESULT_WITH_RSSI); 4948 goto unlock; 4949 } 4950 4951 bacpy(&data.bdaddr, &info->bdaddr); 4952 data.pscan_rep_mode = info->pscan_rep_mode; 4953 data.pscan_period_mode = info->pscan_period_mode; 4954 data.pscan_mode = 0x00; 4955 memcpy(data.dev_class, info->dev_class, 3); 4956 data.clock_offset = info->clock_offset; 4957 data.rssi = info->rssi; 4958 data.ssp_mode = 0x00; 4959 4960 flags = hci_inquiry_cache_update(hdev, &data, false); 4961 4962 mgmt_device_found(hdev, &info->bdaddr, ACL_LINK, 0x00, 4963 info->dev_class, info->rssi, 4964 flags, NULL, 0, NULL, 0, 0); 4965 } 4966 } else { 4967 bt_dev_err(hdev, "Malformed HCI Event: 0x%2.2x", 4968 HCI_EV_INQUIRY_RESULT_WITH_RSSI); 4969 } 4970 unlock: 4971 hci_dev_unlock(hdev); 4972 } 4973 4974 static void hci_remote_ext_features_evt(struct hci_dev *hdev, void *data, 4975 struct sk_buff *skb) 4976 { 4977 struct hci_ev_remote_ext_features *ev = data; 4978 struct hci_conn *conn; 4979 4980 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 4981 4982 hci_dev_lock(hdev); 4983 4984 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 4985 if (!conn) 4986 goto unlock; 4987 4988 if (ev->page < HCI_MAX_PAGES) 4989 memcpy(conn->features[ev->page], ev->features, 8); 4990 4991 if (!ev->status && ev->page == 0x01) { 4992 struct inquiry_entry *ie; 4993 4994 ie = hci_inquiry_cache_lookup(hdev, &conn->dst); 4995 if (ie) 4996 ie->data.ssp_mode = (ev->features[0] & LMP_HOST_SSP); 4997 4998 if (ev->features[0] & LMP_HOST_SSP) { 4999 set_bit(HCI_CONN_SSP_ENABLED, &conn->flags); 5000 } else { 5001 /* It is mandatory by the Bluetooth specification that 5002 * Extended Inquiry Results are only used when Secure 5003 * Simple Pairing is enabled, but some devices violate 5004 * this. 5005 * 5006 * To make these devices work, the internal SSP 5007 * enabled flag needs to be cleared if the remote host 5008 * features do not indicate SSP support */ 5009 clear_bit(HCI_CONN_SSP_ENABLED, &conn->flags); 5010 } 5011 5012 if (ev->features[0] & LMP_HOST_SC) 5013 set_bit(HCI_CONN_SC_ENABLED, &conn->flags); 5014 } 5015 5016 if (conn->state != BT_CONFIG) 5017 goto unlock; 5018 5019 if (!ev->status && !test_bit(HCI_CONN_MGMT_CONNECTED, &conn->flags)) { 5020 struct hci_cp_remote_name_req cp; 5021 memset(&cp, 0, sizeof(cp)); 5022 bacpy(&cp.bdaddr, &conn->dst); 5023 cp.pscan_rep_mode = 0x02; 5024 hci_send_cmd(hdev, HCI_OP_REMOTE_NAME_REQ, sizeof(cp), &cp); 5025 } else { 5026 mgmt_device_connected(hdev, conn, NULL, 0); 5027 } 5028 5029 if (!hci_outgoing_auth_needed(hdev, conn)) { 5030 conn->state = BT_CONNECTED; 5031 hci_connect_cfm(conn, ev->status); 5032 hci_conn_drop(conn); 5033 } 5034 5035 unlock: 5036 hci_dev_unlock(hdev); 5037 } 5038 5039 static void hci_sync_conn_complete_evt(struct hci_dev *hdev, void *data, 5040 struct sk_buff *skb) 5041 { 5042 struct hci_ev_sync_conn_complete *ev = data; 5043 struct hci_conn *conn; 5044 u8 status = ev->status; 5045 5046 switch (ev->link_type) { 5047 case SCO_LINK: 5048 case ESCO_LINK: 5049 break; 5050 default: 5051 /* As per Core 5.3 Vol 4 Part E 7.7.35 (p.2219), Link_Type 5052 * for HCI_Synchronous_Connection_Complete is limited to 5053 * either SCO or eSCO 5054 */ 5055 bt_dev_err(hdev, "Ignoring connect complete event for invalid link type"); 5056 return; 5057 } 5058 5059 bt_dev_dbg(hdev, "status 0x%2.2x", status); 5060 5061 hci_dev_lock(hdev); 5062 5063 conn = hci_conn_hash_lookup_ba(hdev, ev->link_type, &ev->bdaddr); 5064 if (!conn) { 5065 if (ev->link_type == ESCO_LINK) 5066 goto unlock; 5067 5068 /* When the link type in the event indicates SCO connection 5069 * and lookup of the connection object fails, then check 5070 * if an eSCO connection object exists. 5071 * 5072 * The core limits the synchronous connections to either 5073 * SCO or eSCO. The eSCO connection is preferred and tried 5074 * to be setup first and until successfully established, 5075 * the link type will be hinted as eSCO. 5076 */ 5077 conn = hci_conn_hash_lookup_ba(hdev, ESCO_LINK, &ev->bdaddr); 5078 if (!conn) 5079 goto unlock; 5080 } 5081 5082 /* The HCI_Synchronous_Connection_Complete event is only sent once per connection. 5083 * Processing it more than once per connection can corrupt kernel memory. 5084 * 5085 * As the connection handle is set here for the first time, it indicates 5086 * whether the connection is already set up. 5087 */ 5088 if (!HCI_CONN_HANDLE_UNSET(conn->handle)) { 5089 bt_dev_err(hdev, "Ignoring HCI_Sync_Conn_Complete event for existing connection"); 5090 goto unlock; 5091 } 5092 5093 switch (status) { 5094 case 0x00: 5095 status = hci_conn_set_handle(conn, __le16_to_cpu(ev->handle)); 5096 if (status) { 5097 conn->state = BT_CLOSED; 5098 break; 5099 } 5100 5101 conn->state = BT_CONNECTED; 5102 conn->type = ev->link_type; 5103 5104 hci_debugfs_create_conn(conn); 5105 hci_conn_add_sysfs(conn); 5106 break; 5107 5108 case 0x10: /* Connection Accept Timeout */ 5109 case 0x0d: /* Connection Rejected due to Limited Resources */ 5110 case 0x11: /* Unsupported Feature or Parameter Value */ 5111 case 0x1c: /* SCO interval rejected */ 5112 case 0x1a: /* Unsupported Remote Feature */ 5113 case 0x1e: /* Invalid LMP Parameters */ 5114 case 0x1f: /* Unspecified error */ 5115 case 0x20: /* Unsupported LMP Parameter value */ 5116 if (conn->out) { 5117 conn->pkt_type = (hdev->esco_type & SCO_ESCO_MASK) | 5118 (hdev->esco_type & EDR_ESCO_MASK); 5119 if (hci_setup_sync(conn, conn->parent->handle)) 5120 goto unlock; 5121 } 5122 fallthrough; 5123 5124 default: 5125 conn->state = BT_CLOSED; 5126 break; 5127 } 5128 5129 bt_dev_dbg(hdev, "SCO connected with air mode: %02x", ev->air_mode); 5130 /* Notify only in case of SCO over HCI transport data path which 5131 * is zero and non-zero value shall be non-HCI transport data path 5132 */ 5133 if (conn->codec.data_path == 0 && hdev->notify) { 5134 switch (ev->air_mode) { 5135 case 0x02: 5136 hdev->notify(hdev, HCI_NOTIFY_ENABLE_SCO_CVSD); 5137 break; 5138 case 0x03: 5139 hdev->notify(hdev, HCI_NOTIFY_ENABLE_SCO_TRANSP); 5140 break; 5141 } 5142 } 5143 5144 hci_connect_cfm(conn, status); 5145 if (status) 5146 hci_conn_del(conn); 5147 5148 unlock: 5149 hci_dev_unlock(hdev); 5150 } 5151 5152 static inline size_t eir_get_length(u8 *eir, size_t eir_len) 5153 { 5154 size_t parsed = 0; 5155 5156 while (parsed < eir_len) { 5157 u8 field_len = eir[0]; 5158 5159 if (field_len == 0) 5160 return parsed; 5161 5162 parsed += field_len + 1; 5163 eir += field_len + 1; 5164 } 5165 5166 return eir_len; 5167 } 5168 5169 static void hci_extended_inquiry_result_evt(struct hci_dev *hdev, void *edata, 5170 struct sk_buff *skb) 5171 { 5172 struct hci_ev_ext_inquiry_result *ev = edata; 5173 struct inquiry_data data; 5174 size_t eir_len; 5175 int i; 5176 5177 if (!hci_ev_skb_pull(hdev, skb, HCI_EV_EXTENDED_INQUIRY_RESULT, 5178 flex_array_size(ev, info, ev->num))) 5179 return; 5180 5181 bt_dev_dbg(hdev, "num %d", ev->num); 5182 5183 if (!ev->num) 5184 return; 5185 5186 if (hci_dev_test_flag(hdev, HCI_PERIODIC_INQ)) 5187 return; 5188 5189 hci_dev_lock(hdev); 5190 5191 for (i = 0; i < ev->num; i++) { 5192 struct extended_inquiry_info *info = &ev->info[i]; 5193 u32 flags; 5194 bool name_known; 5195 5196 bacpy(&data.bdaddr, &info->bdaddr); 5197 data.pscan_rep_mode = info->pscan_rep_mode; 5198 data.pscan_period_mode = info->pscan_period_mode; 5199 data.pscan_mode = 0x00; 5200 memcpy(data.dev_class, info->dev_class, 3); 5201 data.clock_offset = info->clock_offset; 5202 data.rssi = info->rssi; 5203 data.ssp_mode = 0x01; 5204 5205 if (hci_dev_test_flag(hdev, HCI_MGMT)) 5206 name_known = eir_get_data(info->data, 5207 sizeof(info->data), 5208 EIR_NAME_COMPLETE, NULL); 5209 else 5210 name_known = true; 5211 5212 flags = hci_inquiry_cache_update(hdev, &data, name_known); 5213 5214 eir_len = eir_get_length(info->data, sizeof(info->data)); 5215 5216 mgmt_device_found(hdev, &info->bdaddr, ACL_LINK, 0x00, 5217 info->dev_class, info->rssi, 5218 flags, info->data, eir_len, NULL, 0, 0); 5219 } 5220 5221 hci_dev_unlock(hdev); 5222 } 5223 5224 static void hci_key_refresh_complete_evt(struct hci_dev *hdev, void *data, 5225 struct sk_buff *skb) 5226 { 5227 struct hci_ev_key_refresh_complete *ev = data; 5228 struct hci_conn *conn; 5229 5230 bt_dev_dbg(hdev, "status 0x%2.2x handle 0x%4.4x", ev->status, 5231 __le16_to_cpu(ev->handle)); 5232 5233 hci_dev_lock(hdev); 5234 5235 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 5236 if (!conn) 5237 goto unlock; 5238 5239 /* For BR/EDR the necessary steps are taken through the 5240 * auth_complete event. 5241 */ 5242 if (conn->type != LE_LINK) 5243 goto unlock; 5244 5245 if (!ev->status) 5246 conn->sec_level = conn->pending_sec_level; 5247 5248 clear_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags); 5249 5250 if (ev->status && conn->state == BT_CONNECTED) { 5251 hci_disconnect(conn, HCI_ERROR_AUTH_FAILURE); 5252 hci_conn_drop(conn); 5253 goto unlock; 5254 } 5255 5256 if (conn->state == BT_CONFIG) { 5257 if (!ev->status) 5258 conn->state = BT_CONNECTED; 5259 5260 hci_connect_cfm(conn, ev->status); 5261 hci_conn_drop(conn); 5262 } else { 5263 hci_auth_cfm(conn, ev->status); 5264 5265 hci_conn_hold(conn); 5266 conn->disc_timeout = HCI_DISCONN_TIMEOUT; 5267 hci_conn_drop(conn); 5268 } 5269 5270 unlock: 5271 hci_dev_unlock(hdev); 5272 } 5273 5274 static u8 hci_get_auth_req(struct hci_conn *conn) 5275 { 5276 /* If remote requests no-bonding follow that lead */ 5277 if (conn->remote_auth == HCI_AT_NO_BONDING || 5278 conn->remote_auth == HCI_AT_NO_BONDING_MITM) 5279 return conn->remote_auth | (conn->auth_type & 0x01); 5280 5281 /* If both remote and local have enough IO capabilities, require 5282 * MITM protection 5283 */ 5284 if (conn->remote_cap != HCI_IO_NO_INPUT_OUTPUT && 5285 conn->io_capability != HCI_IO_NO_INPUT_OUTPUT) 5286 return conn->remote_auth | 0x01; 5287 5288 /* No MITM protection possible so ignore remote requirement */ 5289 return (conn->remote_auth & ~0x01) | (conn->auth_type & 0x01); 5290 } 5291 5292 static u8 bredr_oob_data_present(struct hci_conn *conn) 5293 { 5294 struct hci_dev *hdev = conn->hdev; 5295 struct oob_data *data; 5296 5297 data = hci_find_remote_oob_data(hdev, &conn->dst, BDADDR_BREDR); 5298 if (!data) 5299 return 0x00; 5300 5301 if (bredr_sc_enabled(hdev)) { 5302 /* When Secure Connections is enabled, then just 5303 * return the present value stored with the OOB 5304 * data. The stored value contains the right present 5305 * information. However it can only be trusted when 5306 * not in Secure Connection Only mode. 5307 */ 5308 if (!hci_dev_test_flag(hdev, HCI_SC_ONLY)) 5309 return data->present; 5310 5311 /* When Secure Connections Only mode is enabled, then 5312 * the P-256 values are required. If they are not 5313 * available, then do not declare that OOB data is 5314 * present. 5315 */ 5316 if (!crypto_memneq(data->rand256, ZERO_KEY, 16) || 5317 !crypto_memneq(data->hash256, ZERO_KEY, 16)) 5318 return 0x00; 5319 5320 return 0x02; 5321 } 5322 5323 /* When Secure Connections is not enabled or actually 5324 * not supported by the hardware, then check that if 5325 * P-192 data values are present. 5326 */ 5327 if (!crypto_memneq(data->rand192, ZERO_KEY, 16) || 5328 !crypto_memneq(data->hash192, ZERO_KEY, 16)) 5329 return 0x00; 5330 5331 return 0x01; 5332 } 5333 5334 static void hci_io_capa_request_evt(struct hci_dev *hdev, void *data, 5335 struct sk_buff *skb) 5336 { 5337 struct hci_ev_io_capa_request *ev = data; 5338 struct hci_conn *conn; 5339 5340 bt_dev_dbg(hdev, ""); 5341 5342 hci_dev_lock(hdev); 5343 5344 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 5345 if (!conn || !hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 5346 goto unlock; 5347 5348 /* Assume remote supports SSP since it has triggered this event */ 5349 set_bit(HCI_CONN_SSP_ENABLED, &conn->flags); 5350 5351 hci_conn_hold(conn); 5352 5353 if (!hci_dev_test_flag(hdev, HCI_MGMT)) 5354 goto unlock; 5355 5356 /* Allow pairing if we're pairable, the initiators of the 5357 * pairing or if the remote is not requesting bonding. 5358 */ 5359 if (hci_dev_test_flag(hdev, HCI_BONDABLE) || 5360 test_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags) || 5361 (conn->remote_auth & ~0x01) == HCI_AT_NO_BONDING) { 5362 struct hci_cp_io_capability_reply cp; 5363 5364 bacpy(&cp.bdaddr, &ev->bdaddr); 5365 /* Change the IO capability from KeyboardDisplay 5366 * to DisplayYesNo as it is not supported by BT spec. */ 5367 cp.capability = (conn->io_capability == 0x04) ? 5368 HCI_IO_DISPLAY_YESNO : conn->io_capability; 5369 5370 /* If we are initiators, there is no remote information yet */ 5371 if (conn->remote_auth == 0xff) { 5372 /* Request MITM protection if our IO caps allow it 5373 * except for the no-bonding case. 5374 */ 5375 if (conn->io_capability != HCI_IO_NO_INPUT_OUTPUT && 5376 conn->auth_type != HCI_AT_NO_BONDING) 5377 conn->auth_type |= 0x01; 5378 } else { 5379 conn->auth_type = hci_get_auth_req(conn); 5380 } 5381 5382 /* If we're not bondable, force one of the non-bondable 5383 * authentication requirement values. 5384 */ 5385 if (!hci_dev_test_flag(hdev, HCI_BONDABLE)) 5386 conn->auth_type &= HCI_AT_NO_BONDING_MITM; 5387 5388 cp.authentication = conn->auth_type; 5389 cp.oob_data = bredr_oob_data_present(conn); 5390 5391 hci_send_cmd(hdev, HCI_OP_IO_CAPABILITY_REPLY, 5392 sizeof(cp), &cp); 5393 } else { 5394 struct hci_cp_io_capability_neg_reply cp; 5395 5396 bacpy(&cp.bdaddr, &ev->bdaddr); 5397 cp.reason = HCI_ERROR_PAIRING_NOT_ALLOWED; 5398 5399 hci_send_cmd(hdev, HCI_OP_IO_CAPABILITY_NEG_REPLY, 5400 sizeof(cp), &cp); 5401 } 5402 5403 unlock: 5404 hci_dev_unlock(hdev); 5405 } 5406 5407 static void hci_io_capa_reply_evt(struct hci_dev *hdev, void *data, 5408 struct sk_buff *skb) 5409 { 5410 struct hci_ev_io_capa_reply *ev = data; 5411 struct hci_conn *conn; 5412 5413 bt_dev_dbg(hdev, ""); 5414 5415 hci_dev_lock(hdev); 5416 5417 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 5418 if (!conn) 5419 goto unlock; 5420 5421 conn->remote_cap = ev->capability; 5422 conn->remote_auth = ev->authentication; 5423 5424 unlock: 5425 hci_dev_unlock(hdev); 5426 } 5427 5428 static void hci_user_confirm_request_evt(struct hci_dev *hdev, void *data, 5429 struct sk_buff *skb) 5430 { 5431 struct hci_ev_user_confirm_req *ev = data; 5432 int loc_mitm, rem_mitm, confirm_hint = 0; 5433 struct hci_conn *conn; 5434 5435 bt_dev_dbg(hdev, ""); 5436 5437 hci_dev_lock(hdev); 5438 5439 if (!hci_dev_test_flag(hdev, HCI_MGMT)) 5440 goto unlock; 5441 5442 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 5443 if (!conn) 5444 goto unlock; 5445 5446 loc_mitm = (conn->auth_type & 0x01); 5447 rem_mitm = (conn->remote_auth & 0x01); 5448 5449 /* If we require MITM but the remote device can't provide that 5450 * (it has NoInputNoOutput) then reject the confirmation 5451 * request. We check the security level here since it doesn't 5452 * necessarily match conn->auth_type. 5453 */ 5454 if (conn->pending_sec_level > BT_SECURITY_MEDIUM && 5455 conn->remote_cap == HCI_IO_NO_INPUT_OUTPUT) { 5456 bt_dev_dbg(hdev, "Rejecting request: remote device can't provide MITM"); 5457 hci_send_cmd(hdev, HCI_OP_USER_CONFIRM_NEG_REPLY, 5458 sizeof(ev->bdaddr), &ev->bdaddr); 5459 goto unlock; 5460 } 5461 5462 /* If no side requires MITM protection; auto-accept */ 5463 if ((!loc_mitm || conn->remote_cap == HCI_IO_NO_INPUT_OUTPUT) && 5464 (!rem_mitm || conn->io_capability == HCI_IO_NO_INPUT_OUTPUT)) { 5465 5466 /* If we're not the initiators request authorization to 5467 * proceed from user space (mgmt_user_confirm with 5468 * confirm_hint set to 1). The exception is if neither 5469 * side had MITM or if the local IO capability is 5470 * NoInputNoOutput, in which case we do auto-accept 5471 */ 5472 if (!test_bit(HCI_CONN_AUTH_PEND, &conn->flags) && 5473 conn->io_capability != HCI_IO_NO_INPUT_OUTPUT && 5474 (loc_mitm || rem_mitm)) { 5475 bt_dev_dbg(hdev, "Confirming auto-accept as acceptor"); 5476 confirm_hint = 1; 5477 goto confirm; 5478 } 5479 5480 /* If there already exists link key in local host, leave the 5481 * decision to user space since the remote device could be 5482 * legitimate or malicious. 5483 */ 5484 if (hci_find_link_key(hdev, &ev->bdaddr)) { 5485 bt_dev_dbg(hdev, "Local host already has link key"); 5486 confirm_hint = 1; 5487 goto confirm; 5488 } 5489 5490 BT_DBG("Auto-accept of user confirmation with %ums delay", 5491 hdev->auto_accept_delay); 5492 5493 if (hdev->auto_accept_delay > 0) { 5494 int delay = msecs_to_jiffies(hdev->auto_accept_delay); 5495 queue_delayed_work(conn->hdev->workqueue, 5496 &conn->auto_accept_work, delay); 5497 goto unlock; 5498 } 5499 5500 hci_send_cmd(hdev, HCI_OP_USER_CONFIRM_REPLY, 5501 sizeof(ev->bdaddr), &ev->bdaddr); 5502 goto unlock; 5503 } 5504 5505 confirm: 5506 mgmt_user_confirm_request(hdev, &ev->bdaddr, ACL_LINK, 0, 5507 le32_to_cpu(ev->passkey), confirm_hint); 5508 5509 unlock: 5510 hci_dev_unlock(hdev); 5511 } 5512 5513 static void hci_user_passkey_request_evt(struct hci_dev *hdev, void *data, 5514 struct sk_buff *skb) 5515 { 5516 struct hci_ev_user_passkey_req *ev = data; 5517 5518 bt_dev_dbg(hdev, ""); 5519 5520 if (hci_dev_test_flag(hdev, HCI_MGMT)) 5521 mgmt_user_passkey_request(hdev, &ev->bdaddr, ACL_LINK, 0); 5522 } 5523 5524 static void hci_user_passkey_notify_evt(struct hci_dev *hdev, void *data, 5525 struct sk_buff *skb) 5526 { 5527 struct hci_ev_user_passkey_notify *ev = data; 5528 struct hci_conn *conn; 5529 5530 bt_dev_dbg(hdev, ""); 5531 5532 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 5533 if (!conn) 5534 return; 5535 5536 conn->passkey_notify = __le32_to_cpu(ev->passkey); 5537 conn->passkey_entered = 0; 5538 5539 if (hci_dev_test_flag(hdev, HCI_MGMT)) 5540 mgmt_user_passkey_notify(hdev, &conn->dst, conn->type, 5541 conn->dst_type, conn->passkey_notify, 5542 conn->passkey_entered); 5543 } 5544 5545 static void hci_keypress_notify_evt(struct hci_dev *hdev, void *data, 5546 struct sk_buff *skb) 5547 { 5548 struct hci_ev_keypress_notify *ev = data; 5549 struct hci_conn *conn; 5550 5551 bt_dev_dbg(hdev, ""); 5552 5553 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 5554 if (!conn) 5555 return; 5556 5557 switch (ev->type) { 5558 case HCI_KEYPRESS_STARTED: 5559 conn->passkey_entered = 0; 5560 return; 5561 5562 case HCI_KEYPRESS_ENTERED: 5563 conn->passkey_entered++; 5564 break; 5565 5566 case HCI_KEYPRESS_ERASED: 5567 conn->passkey_entered--; 5568 break; 5569 5570 case HCI_KEYPRESS_CLEARED: 5571 conn->passkey_entered = 0; 5572 break; 5573 5574 case HCI_KEYPRESS_COMPLETED: 5575 return; 5576 } 5577 5578 if (hci_dev_test_flag(hdev, HCI_MGMT)) 5579 mgmt_user_passkey_notify(hdev, &conn->dst, conn->type, 5580 conn->dst_type, conn->passkey_notify, 5581 conn->passkey_entered); 5582 } 5583 5584 static void hci_simple_pair_complete_evt(struct hci_dev *hdev, void *data, 5585 struct sk_buff *skb) 5586 { 5587 struct hci_ev_simple_pair_complete *ev = data; 5588 struct hci_conn *conn; 5589 5590 bt_dev_dbg(hdev, ""); 5591 5592 hci_dev_lock(hdev); 5593 5594 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 5595 if (!conn || !hci_conn_ssp_enabled(conn)) 5596 goto unlock; 5597 5598 /* Reset the authentication requirement to unknown */ 5599 conn->remote_auth = 0xff; 5600 5601 /* To avoid duplicate auth_failed events to user space we check 5602 * the HCI_CONN_AUTH_PEND flag which will be set if we 5603 * initiated the authentication. A traditional auth_complete 5604 * event gets always produced as initiator and is also mapped to 5605 * the mgmt_auth_failed event */ 5606 if (!test_bit(HCI_CONN_AUTH_PEND, &conn->flags) && ev->status) 5607 mgmt_auth_failed(conn, ev->status); 5608 5609 hci_conn_drop(conn); 5610 5611 unlock: 5612 hci_dev_unlock(hdev); 5613 } 5614 5615 static void hci_remote_host_features_evt(struct hci_dev *hdev, void *data, 5616 struct sk_buff *skb) 5617 { 5618 struct hci_ev_remote_host_features *ev = data; 5619 struct inquiry_entry *ie; 5620 struct hci_conn *conn; 5621 5622 bt_dev_dbg(hdev, ""); 5623 5624 hci_dev_lock(hdev); 5625 5626 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 5627 if (conn) 5628 memcpy(conn->features[1], ev->features, 8); 5629 5630 ie = hci_inquiry_cache_lookup(hdev, &ev->bdaddr); 5631 if (ie) 5632 ie->data.ssp_mode = (ev->features[0] & LMP_HOST_SSP); 5633 5634 hci_dev_unlock(hdev); 5635 } 5636 5637 static void hci_remote_oob_data_request_evt(struct hci_dev *hdev, void *edata, 5638 struct sk_buff *skb) 5639 { 5640 struct hci_ev_remote_oob_data_request *ev = edata; 5641 struct oob_data *data; 5642 5643 bt_dev_dbg(hdev, ""); 5644 5645 hci_dev_lock(hdev); 5646 5647 if (!hci_dev_test_flag(hdev, HCI_MGMT)) 5648 goto unlock; 5649 5650 data = hci_find_remote_oob_data(hdev, &ev->bdaddr, BDADDR_BREDR); 5651 if (!data) { 5652 struct hci_cp_remote_oob_data_neg_reply cp; 5653 5654 bacpy(&cp.bdaddr, &ev->bdaddr); 5655 hci_send_cmd(hdev, HCI_OP_REMOTE_OOB_DATA_NEG_REPLY, 5656 sizeof(cp), &cp); 5657 goto unlock; 5658 } 5659 5660 if (bredr_sc_enabled(hdev)) { 5661 struct hci_cp_remote_oob_ext_data_reply cp; 5662 5663 bacpy(&cp.bdaddr, &ev->bdaddr); 5664 if (hci_dev_test_flag(hdev, HCI_SC_ONLY)) { 5665 memset(cp.hash192, 0, sizeof(cp.hash192)); 5666 memset(cp.rand192, 0, sizeof(cp.rand192)); 5667 } else { 5668 memcpy(cp.hash192, data->hash192, sizeof(cp.hash192)); 5669 memcpy(cp.rand192, data->rand192, sizeof(cp.rand192)); 5670 } 5671 memcpy(cp.hash256, data->hash256, sizeof(cp.hash256)); 5672 memcpy(cp.rand256, data->rand256, sizeof(cp.rand256)); 5673 5674 hci_send_cmd(hdev, HCI_OP_REMOTE_OOB_EXT_DATA_REPLY, 5675 sizeof(cp), &cp); 5676 } else { 5677 struct hci_cp_remote_oob_data_reply cp; 5678 5679 bacpy(&cp.bdaddr, &ev->bdaddr); 5680 memcpy(cp.hash, data->hash192, sizeof(cp.hash)); 5681 memcpy(cp.rand, data->rand192, sizeof(cp.rand)); 5682 5683 hci_send_cmd(hdev, HCI_OP_REMOTE_OOB_DATA_REPLY, 5684 sizeof(cp), &cp); 5685 } 5686 5687 unlock: 5688 hci_dev_unlock(hdev); 5689 } 5690 5691 static void le_conn_update_addr(struct hci_conn *conn, bdaddr_t *bdaddr, 5692 u8 bdaddr_type, bdaddr_t *local_rpa) 5693 { 5694 if (conn->out) { 5695 conn->dst_type = bdaddr_type; 5696 conn->resp_addr_type = bdaddr_type; 5697 bacpy(&conn->resp_addr, bdaddr); 5698 5699 /* Check if the controller has set a Local RPA then it must be 5700 * used instead or hdev->rpa. 5701 */ 5702 if (local_rpa && bacmp(local_rpa, BDADDR_ANY)) { 5703 conn->init_addr_type = ADDR_LE_DEV_RANDOM; 5704 bacpy(&conn->init_addr, local_rpa); 5705 } else if (hci_dev_test_flag(conn->hdev, HCI_PRIVACY)) { 5706 conn->init_addr_type = ADDR_LE_DEV_RANDOM; 5707 bacpy(&conn->init_addr, &conn->hdev->rpa); 5708 } else { 5709 hci_copy_identity_address(conn->hdev, &conn->init_addr, 5710 &conn->init_addr_type); 5711 } 5712 } else { 5713 conn->resp_addr_type = conn->hdev->adv_addr_type; 5714 /* Check if the controller has set a Local RPA then it must be 5715 * used instead or hdev->rpa. 5716 */ 5717 if (local_rpa && bacmp(local_rpa, BDADDR_ANY)) { 5718 conn->resp_addr_type = ADDR_LE_DEV_RANDOM; 5719 bacpy(&conn->resp_addr, local_rpa); 5720 } else if (conn->hdev->adv_addr_type == ADDR_LE_DEV_RANDOM) { 5721 /* In case of ext adv, resp_addr will be updated in 5722 * Adv Terminated event. 5723 */ 5724 if (!ext_adv_capable(conn->hdev)) 5725 bacpy(&conn->resp_addr, 5726 &conn->hdev->random_addr); 5727 } else { 5728 bacpy(&conn->resp_addr, &conn->hdev->bdaddr); 5729 } 5730 5731 conn->init_addr_type = bdaddr_type; 5732 bacpy(&conn->init_addr, bdaddr); 5733 5734 /* For incoming connections, set the default minimum 5735 * and maximum connection interval. They will be used 5736 * to check if the parameters are in range and if not 5737 * trigger the connection update procedure. 5738 */ 5739 conn->le_conn_min_interval = conn->hdev->le_conn_min_interval; 5740 conn->le_conn_max_interval = conn->hdev->le_conn_max_interval; 5741 } 5742 } 5743 5744 static void le_conn_complete_evt(struct hci_dev *hdev, u8 status, 5745 bdaddr_t *bdaddr, u8 bdaddr_type, 5746 bdaddr_t *local_rpa, u8 role, u16 handle, 5747 u16 interval, u16 latency, 5748 u16 supervision_timeout) 5749 { 5750 struct hci_conn_params *params; 5751 struct hci_conn *conn; 5752 struct smp_irk *irk; 5753 u8 addr_type; 5754 5755 hci_dev_lock(hdev); 5756 5757 /* All controllers implicitly stop advertising in the event of a 5758 * connection, so ensure that the state bit is cleared. 5759 */ 5760 hci_dev_clear_flag(hdev, HCI_LE_ADV); 5761 5762 conn = hci_conn_hash_lookup_ba(hdev, LE_LINK, bdaddr); 5763 if (!conn) { 5764 /* In case of error status and there is no connection pending 5765 * just unlock as there is nothing to cleanup. 5766 */ 5767 if (status) 5768 goto unlock; 5769 5770 conn = hci_conn_add_unset(hdev, LE_LINK, bdaddr, role); 5771 if (!conn) { 5772 bt_dev_err(hdev, "no memory for new connection"); 5773 goto unlock; 5774 } 5775 5776 conn->dst_type = bdaddr_type; 5777 5778 /* If we didn't have a hci_conn object previously 5779 * but we're in central role this must be something 5780 * initiated using an accept list. Since accept list based 5781 * connections are not "first class citizens" we don't 5782 * have full tracking of them. Therefore, we go ahead 5783 * with a "best effort" approach of determining the 5784 * initiator address based on the HCI_PRIVACY flag. 5785 */ 5786 if (conn->out) { 5787 conn->resp_addr_type = bdaddr_type; 5788 bacpy(&conn->resp_addr, bdaddr); 5789 if (hci_dev_test_flag(hdev, HCI_PRIVACY)) { 5790 conn->init_addr_type = ADDR_LE_DEV_RANDOM; 5791 bacpy(&conn->init_addr, &hdev->rpa); 5792 } else { 5793 hci_copy_identity_address(hdev, 5794 &conn->init_addr, 5795 &conn->init_addr_type); 5796 } 5797 } 5798 } else { 5799 cancel_delayed_work(&conn->le_conn_timeout); 5800 } 5801 5802 /* The HCI_LE_Connection_Complete event is only sent once per connection. 5803 * Processing it more than once per connection can corrupt kernel memory. 5804 * 5805 * As the connection handle is set here for the first time, it indicates 5806 * whether the connection is already set up. 5807 */ 5808 if (!HCI_CONN_HANDLE_UNSET(conn->handle)) { 5809 bt_dev_err(hdev, "Ignoring HCI_Connection_Complete for existing connection"); 5810 goto unlock; 5811 } 5812 5813 le_conn_update_addr(conn, bdaddr, bdaddr_type, local_rpa); 5814 5815 /* Lookup the identity address from the stored connection 5816 * address and address type. 5817 * 5818 * When establishing connections to an identity address, the 5819 * connection procedure will store the resolvable random 5820 * address first. Now if it can be converted back into the 5821 * identity address, start using the identity address from 5822 * now on. 5823 */ 5824 irk = hci_get_irk(hdev, &conn->dst, conn->dst_type); 5825 if (irk) { 5826 bacpy(&conn->dst, &irk->bdaddr); 5827 conn->dst_type = irk->addr_type; 5828 } 5829 5830 conn->dst_type = ev_bdaddr_type(hdev, conn->dst_type, NULL); 5831 5832 /* All connection failure handling is taken care of by the 5833 * hci_conn_failed function which is triggered by the HCI 5834 * request completion callbacks used for connecting. 5835 */ 5836 if (status || hci_conn_set_handle(conn, handle)) 5837 goto unlock; 5838 5839 /* Drop the connection if it has been aborted */ 5840 if (test_bit(HCI_CONN_CANCEL, &conn->flags)) { 5841 hci_conn_drop(conn); 5842 goto unlock; 5843 } 5844 5845 if (conn->dst_type == ADDR_LE_DEV_PUBLIC) 5846 addr_type = BDADDR_LE_PUBLIC; 5847 else 5848 addr_type = BDADDR_LE_RANDOM; 5849 5850 /* Drop the connection if the device is blocked */ 5851 if (hci_bdaddr_list_lookup(&hdev->reject_list, &conn->dst, addr_type)) { 5852 hci_conn_drop(conn); 5853 goto unlock; 5854 } 5855 5856 mgmt_device_connected(hdev, conn, NULL, 0); 5857 5858 conn->sec_level = BT_SECURITY_LOW; 5859 conn->state = BT_CONFIG; 5860 5861 /* Store current advertising instance as connection advertising instance 5862 * when sotfware rotation is in use so it can be re-enabled when 5863 * disconnected. 5864 */ 5865 if (!ext_adv_capable(hdev)) 5866 conn->adv_instance = hdev->cur_adv_instance; 5867 5868 conn->le_conn_interval = interval; 5869 conn->le_conn_latency = latency; 5870 conn->le_supv_timeout = supervision_timeout; 5871 5872 hci_debugfs_create_conn(conn); 5873 hci_conn_add_sysfs(conn); 5874 5875 /* The remote features procedure is defined for central 5876 * role only. So only in case of an initiated connection 5877 * request the remote features. 5878 * 5879 * If the local controller supports peripheral-initiated features 5880 * exchange, then requesting the remote features in peripheral 5881 * role is possible. Otherwise just transition into the 5882 * connected state without requesting the remote features. 5883 */ 5884 if (conn->out || 5885 (hdev->le_features[0] & HCI_LE_PERIPHERAL_FEATURES)) { 5886 struct hci_cp_le_read_remote_features cp; 5887 5888 cp.handle = __cpu_to_le16(conn->handle); 5889 5890 hci_send_cmd(hdev, HCI_OP_LE_READ_REMOTE_FEATURES, 5891 sizeof(cp), &cp); 5892 5893 hci_conn_hold(conn); 5894 } else { 5895 conn->state = BT_CONNECTED; 5896 hci_connect_cfm(conn, status); 5897 } 5898 5899 params = hci_pend_le_action_lookup(&hdev->pend_le_conns, &conn->dst, 5900 conn->dst_type); 5901 if (params) { 5902 hci_pend_le_list_del_init(params); 5903 if (params->conn) { 5904 hci_conn_drop(params->conn); 5905 hci_conn_put(params->conn); 5906 params->conn = NULL; 5907 } 5908 } 5909 5910 unlock: 5911 hci_update_passive_scan(hdev); 5912 hci_dev_unlock(hdev); 5913 } 5914 5915 static void hci_le_conn_complete_evt(struct hci_dev *hdev, void *data, 5916 struct sk_buff *skb) 5917 { 5918 struct hci_ev_le_conn_complete *ev = data; 5919 5920 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 5921 5922 le_conn_complete_evt(hdev, ev->status, &ev->bdaddr, ev->bdaddr_type, 5923 NULL, ev->role, le16_to_cpu(ev->handle), 5924 le16_to_cpu(ev->interval), 5925 le16_to_cpu(ev->latency), 5926 le16_to_cpu(ev->supervision_timeout)); 5927 } 5928 5929 static void hci_le_enh_conn_complete_evt(struct hci_dev *hdev, void *data, 5930 struct sk_buff *skb) 5931 { 5932 struct hci_ev_le_enh_conn_complete *ev = data; 5933 5934 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 5935 5936 le_conn_complete_evt(hdev, ev->status, &ev->bdaddr, ev->bdaddr_type, 5937 &ev->local_rpa, ev->role, le16_to_cpu(ev->handle), 5938 le16_to_cpu(ev->interval), 5939 le16_to_cpu(ev->latency), 5940 le16_to_cpu(ev->supervision_timeout)); 5941 } 5942 5943 static void hci_le_ext_adv_term_evt(struct hci_dev *hdev, void *data, 5944 struct sk_buff *skb) 5945 { 5946 struct hci_evt_le_ext_adv_set_term *ev = data; 5947 struct hci_conn *conn; 5948 struct adv_info *adv, *n; 5949 5950 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 5951 5952 /* The Bluetooth Core 5.3 specification clearly states that this event 5953 * shall not be sent when the Host disables the advertising set. So in 5954 * case of HCI_ERROR_CANCELLED_BY_HOST, just ignore the event. 5955 * 5956 * When the Host disables an advertising set, all cleanup is done via 5957 * its command callback and not needed to be duplicated here. 5958 */ 5959 if (ev->status == HCI_ERROR_CANCELLED_BY_HOST) { 5960 bt_dev_warn_ratelimited(hdev, "Unexpected advertising set terminated event"); 5961 return; 5962 } 5963 5964 hci_dev_lock(hdev); 5965 5966 adv = hci_find_adv_instance(hdev, ev->handle); 5967 5968 if (ev->status) { 5969 if (!adv) 5970 goto unlock; 5971 5972 /* Remove advertising as it has been terminated */ 5973 hci_remove_adv_instance(hdev, ev->handle); 5974 mgmt_advertising_removed(NULL, hdev, ev->handle); 5975 5976 list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) { 5977 if (adv->enabled) 5978 goto unlock; 5979 } 5980 5981 /* We are no longer advertising, clear HCI_LE_ADV */ 5982 hci_dev_clear_flag(hdev, HCI_LE_ADV); 5983 goto unlock; 5984 } 5985 5986 if (adv) 5987 adv->enabled = false; 5988 5989 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->conn_handle)); 5990 if (conn) { 5991 /* Store handle in the connection so the correct advertising 5992 * instance can be re-enabled when disconnected. 5993 */ 5994 conn->adv_instance = ev->handle; 5995 5996 if (hdev->adv_addr_type != ADDR_LE_DEV_RANDOM || 5997 bacmp(&conn->resp_addr, BDADDR_ANY)) 5998 goto unlock; 5999 6000 if (!ev->handle) { 6001 bacpy(&conn->resp_addr, &hdev->random_addr); 6002 goto unlock; 6003 } 6004 6005 if (adv) 6006 bacpy(&conn->resp_addr, &adv->random_addr); 6007 } 6008 6009 unlock: 6010 hci_dev_unlock(hdev); 6011 } 6012 6013 static void hci_le_conn_update_complete_evt(struct hci_dev *hdev, void *data, 6014 struct sk_buff *skb) 6015 { 6016 struct hci_ev_le_conn_update_complete *ev = data; 6017 struct hci_conn *conn; 6018 6019 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 6020 6021 if (ev->status) 6022 return; 6023 6024 hci_dev_lock(hdev); 6025 6026 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 6027 if (conn) { 6028 conn->le_conn_interval = le16_to_cpu(ev->interval); 6029 conn->le_conn_latency = le16_to_cpu(ev->latency); 6030 conn->le_supv_timeout = le16_to_cpu(ev->supervision_timeout); 6031 } 6032 6033 hci_dev_unlock(hdev); 6034 } 6035 6036 /* This function requires the caller holds hdev->lock */ 6037 static struct hci_conn *check_pending_le_conn(struct hci_dev *hdev, 6038 bdaddr_t *addr, 6039 u8 addr_type, bool addr_resolved, 6040 u8 adv_type, u8 phy, u8 sec_phy) 6041 { 6042 struct hci_conn *conn; 6043 struct hci_conn_params *params; 6044 6045 /* If the event is not connectable don't proceed further */ 6046 if (adv_type != LE_ADV_IND && adv_type != LE_ADV_DIRECT_IND) 6047 return NULL; 6048 6049 /* Ignore if the device is blocked or hdev is suspended */ 6050 if (hci_bdaddr_list_lookup(&hdev->reject_list, addr, addr_type) || 6051 hdev->suspended) 6052 return NULL; 6053 6054 /* Most controller will fail if we try to create new connections 6055 * while we have an existing one in peripheral role. 6056 */ 6057 if (hdev->conn_hash.le_num_peripheral > 0 && 6058 (!test_bit(HCI_QUIRK_VALID_LE_STATES, &hdev->quirks) || 6059 !(hdev->le_states[3] & 0x10))) 6060 return NULL; 6061 6062 /* If we're not connectable only connect devices that we have in 6063 * our pend_le_conns list. 6064 */ 6065 params = hci_pend_le_action_lookup(&hdev->pend_le_conns, addr, 6066 addr_type); 6067 if (!params) 6068 return NULL; 6069 6070 if (!params->explicit_connect) { 6071 switch (params->auto_connect) { 6072 case HCI_AUTO_CONN_DIRECT: 6073 /* Only devices advertising with ADV_DIRECT_IND are 6074 * triggering a connection attempt. This is allowing 6075 * incoming connections from peripheral devices. 6076 */ 6077 if (adv_type != LE_ADV_DIRECT_IND) 6078 return NULL; 6079 break; 6080 case HCI_AUTO_CONN_ALWAYS: 6081 /* Devices advertising with ADV_IND or ADV_DIRECT_IND 6082 * are triggering a connection attempt. This means 6083 * that incoming connections from peripheral device are 6084 * accepted and also outgoing connections to peripheral 6085 * devices are established when found. 6086 */ 6087 break; 6088 default: 6089 return NULL; 6090 } 6091 } 6092 6093 conn = hci_connect_le(hdev, addr, addr_type, addr_resolved, 6094 BT_SECURITY_LOW, hdev->def_le_autoconnect_timeout, 6095 HCI_ROLE_MASTER, phy, sec_phy); 6096 if (!IS_ERR(conn)) { 6097 /* If HCI_AUTO_CONN_EXPLICIT is set, conn is already owned 6098 * by higher layer that tried to connect, if no then 6099 * store the pointer since we don't really have any 6100 * other owner of the object besides the params that 6101 * triggered it. This way we can abort the connection if 6102 * the parameters get removed and keep the reference 6103 * count consistent once the connection is established. 6104 */ 6105 6106 if (!params->explicit_connect) 6107 params->conn = hci_conn_get(conn); 6108 6109 return conn; 6110 } 6111 6112 switch (PTR_ERR(conn)) { 6113 case -EBUSY: 6114 /* If hci_connect() returns -EBUSY it means there is already 6115 * an LE connection attempt going on. Since controllers don't 6116 * support more than one connection attempt at the time, we 6117 * don't consider this an error case. 6118 */ 6119 break; 6120 default: 6121 BT_DBG("Failed to connect: err %ld", PTR_ERR(conn)); 6122 return NULL; 6123 } 6124 6125 return NULL; 6126 } 6127 6128 static void process_adv_report(struct hci_dev *hdev, u8 type, bdaddr_t *bdaddr, 6129 u8 bdaddr_type, bdaddr_t *direct_addr, 6130 u8 direct_addr_type, u8 phy, u8 sec_phy, s8 rssi, 6131 u8 *data, u8 len, bool ext_adv, bool ctl_time, 6132 u64 instant) 6133 { 6134 struct discovery_state *d = &hdev->discovery; 6135 struct smp_irk *irk; 6136 struct hci_conn *conn; 6137 bool match, bdaddr_resolved; 6138 u32 flags; 6139 u8 *ptr; 6140 6141 switch (type) { 6142 case LE_ADV_IND: 6143 case LE_ADV_DIRECT_IND: 6144 case LE_ADV_SCAN_IND: 6145 case LE_ADV_NONCONN_IND: 6146 case LE_ADV_SCAN_RSP: 6147 break; 6148 default: 6149 bt_dev_err_ratelimited(hdev, "unknown advertising packet " 6150 "type: 0x%02x", type); 6151 return; 6152 } 6153 6154 if (len > max_adv_len(hdev)) { 6155 bt_dev_err_ratelimited(hdev, 6156 "adv larger than maximum supported"); 6157 return; 6158 } 6159 6160 /* Find the end of the data in case the report contains padded zero 6161 * bytes at the end causing an invalid length value. 6162 * 6163 * When data is NULL, len is 0 so there is no need for extra ptr 6164 * check as 'ptr < data + 0' is already false in such case. 6165 */ 6166 for (ptr = data; ptr < data + len && *ptr; ptr += *ptr + 1) { 6167 if (ptr + 1 + *ptr > data + len) 6168 break; 6169 } 6170 6171 /* Adjust for actual length. This handles the case when remote 6172 * device is advertising with incorrect data length. 6173 */ 6174 len = ptr - data; 6175 6176 /* If the direct address is present, then this report is from 6177 * a LE Direct Advertising Report event. In that case it is 6178 * important to see if the address is matching the local 6179 * controller address. 6180 */ 6181 if (!hci_dev_test_flag(hdev, HCI_MESH) && direct_addr) { 6182 direct_addr_type = ev_bdaddr_type(hdev, direct_addr_type, 6183 &bdaddr_resolved); 6184 6185 /* Only resolvable random addresses are valid for these 6186 * kind of reports and others can be ignored. 6187 */ 6188 if (!hci_bdaddr_is_rpa(direct_addr, direct_addr_type)) 6189 return; 6190 6191 /* If the controller is not using resolvable random 6192 * addresses, then this report can be ignored. 6193 */ 6194 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 6195 return; 6196 6197 /* If the local IRK of the controller does not match 6198 * with the resolvable random address provided, then 6199 * this report can be ignored. 6200 */ 6201 if (!smp_irk_matches(hdev, hdev->irk, direct_addr)) 6202 return; 6203 } 6204 6205 /* Check if we need to convert to identity address */ 6206 irk = hci_get_irk(hdev, bdaddr, bdaddr_type); 6207 if (irk) { 6208 bdaddr = &irk->bdaddr; 6209 bdaddr_type = irk->addr_type; 6210 } 6211 6212 bdaddr_type = ev_bdaddr_type(hdev, bdaddr_type, &bdaddr_resolved); 6213 6214 /* Check if we have been requested to connect to this device. 6215 * 6216 * direct_addr is set only for directed advertising reports (it is NULL 6217 * for advertising reports) and is already verified to be RPA above. 6218 */ 6219 conn = check_pending_le_conn(hdev, bdaddr, bdaddr_type, bdaddr_resolved, 6220 type, phy, sec_phy); 6221 if (!ext_adv && conn && type == LE_ADV_IND && 6222 len <= max_adv_len(hdev)) { 6223 /* Store report for later inclusion by 6224 * mgmt_device_connected 6225 */ 6226 memcpy(conn->le_adv_data, data, len); 6227 conn->le_adv_data_len = len; 6228 } 6229 6230 if (type == LE_ADV_NONCONN_IND || type == LE_ADV_SCAN_IND) 6231 flags = MGMT_DEV_FOUND_NOT_CONNECTABLE; 6232 else 6233 flags = 0; 6234 6235 /* All scan results should be sent up for Mesh systems */ 6236 if (hci_dev_test_flag(hdev, HCI_MESH)) { 6237 mgmt_device_found(hdev, bdaddr, LE_LINK, bdaddr_type, NULL, 6238 rssi, flags, data, len, NULL, 0, instant); 6239 return; 6240 } 6241 6242 /* Passive scanning shouldn't trigger any device found events, 6243 * except for devices marked as CONN_REPORT for which we do send 6244 * device found events, or advertisement monitoring requested. 6245 */ 6246 if (hdev->le_scan_type == LE_SCAN_PASSIVE) { 6247 if (type == LE_ADV_DIRECT_IND) 6248 return; 6249 6250 if (!hci_pend_le_action_lookup(&hdev->pend_le_reports, 6251 bdaddr, bdaddr_type) && 6252 idr_is_empty(&hdev->adv_monitors_idr)) 6253 return; 6254 6255 mgmt_device_found(hdev, bdaddr, LE_LINK, bdaddr_type, NULL, 6256 rssi, flags, data, len, NULL, 0, 0); 6257 return; 6258 } 6259 6260 /* When receiving a scan response, then there is no way to 6261 * know if the remote device is connectable or not. However 6262 * since scan responses are merged with a previously seen 6263 * advertising report, the flags field from that report 6264 * will be used. 6265 * 6266 * In the unlikely case that a controller just sends a scan 6267 * response event that doesn't match the pending report, then 6268 * it is marked as a standalone SCAN_RSP. 6269 */ 6270 if (type == LE_ADV_SCAN_RSP) 6271 flags = MGMT_DEV_FOUND_SCAN_RSP; 6272 6273 /* If there's nothing pending either store the data from this 6274 * event or send an immediate device found event if the data 6275 * should not be stored for later. 6276 */ 6277 if (!ext_adv && !has_pending_adv_report(hdev)) { 6278 /* If the report will trigger a SCAN_REQ store it for 6279 * later merging. 6280 */ 6281 if (type == LE_ADV_IND || type == LE_ADV_SCAN_IND) { 6282 store_pending_adv_report(hdev, bdaddr, bdaddr_type, 6283 rssi, flags, data, len); 6284 return; 6285 } 6286 6287 mgmt_device_found(hdev, bdaddr, LE_LINK, bdaddr_type, NULL, 6288 rssi, flags, data, len, NULL, 0, 0); 6289 return; 6290 } 6291 6292 /* Check if the pending report is for the same device as the new one */ 6293 match = (!bacmp(bdaddr, &d->last_adv_addr) && 6294 bdaddr_type == d->last_adv_addr_type); 6295 6296 /* If the pending data doesn't match this report or this isn't a 6297 * scan response (e.g. we got a duplicate ADV_IND) then force 6298 * sending of the pending data. 6299 */ 6300 if (type != LE_ADV_SCAN_RSP || !match) { 6301 /* Send out whatever is in the cache, but skip duplicates */ 6302 if (!match) 6303 mgmt_device_found(hdev, &d->last_adv_addr, LE_LINK, 6304 d->last_adv_addr_type, NULL, 6305 d->last_adv_rssi, d->last_adv_flags, 6306 d->last_adv_data, 6307 d->last_adv_data_len, NULL, 0, 0); 6308 6309 /* If the new report will trigger a SCAN_REQ store it for 6310 * later merging. 6311 */ 6312 if (!ext_adv && (type == LE_ADV_IND || 6313 type == LE_ADV_SCAN_IND)) { 6314 store_pending_adv_report(hdev, bdaddr, bdaddr_type, 6315 rssi, flags, data, len); 6316 return; 6317 } 6318 6319 /* The advertising reports cannot be merged, so clear 6320 * the pending report and send out a device found event. 6321 */ 6322 clear_pending_adv_report(hdev); 6323 mgmt_device_found(hdev, bdaddr, LE_LINK, bdaddr_type, NULL, 6324 rssi, flags, data, len, NULL, 0, 0); 6325 return; 6326 } 6327 6328 /* If we get here we've got a pending ADV_IND or ADV_SCAN_IND and 6329 * the new event is a SCAN_RSP. We can therefore proceed with 6330 * sending a merged device found event. 6331 */ 6332 mgmt_device_found(hdev, &d->last_adv_addr, LE_LINK, 6333 d->last_adv_addr_type, NULL, rssi, d->last_adv_flags, 6334 d->last_adv_data, d->last_adv_data_len, data, len, 0); 6335 clear_pending_adv_report(hdev); 6336 } 6337 6338 static void hci_le_adv_report_evt(struct hci_dev *hdev, void *data, 6339 struct sk_buff *skb) 6340 { 6341 struct hci_ev_le_advertising_report *ev = data; 6342 u64 instant = jiffies; 6343 6344 if (!ev->num) 6345 return; 6346 6347 hci_dev_lock(hdev); 6348 6349 while (ev->num--) { 6350 struct hci_ev_le_advertising_info *info; 6351 s8 rssi; 6352 6353 info = hci_le_ev_skb_pull(hdev, skb, 6354 HCI_EV_LE_ADVERTISING_REPORT, 6355 sizeof(*info)); 6356 if (!info) 6357 break; 6358 6359 if (!hci_le_ev_skb_pull(hdev, skb, HCI_EV_LE_ADVERTISING_REPORT, 6360 info->length + 1)) 6361 break; 6362 6363 if (info->length <= max_adv_len(hdev)) { 6364 rssi = info->data[info->length]; 6365 process_adv_report(hdev, info->type, &info->bdaddr, 6366 info->bdaddr_type, NULL, 0, 6367 HCI_ADV_PHY_1M, 0, rssi, 6368 info->data, info->length, false, 6369 false, instant); 6370 } else { 6371 bt_dev_err(hdev, "Dropping invalid advertising data"); 6372 } 6373 } 6374 6375 hci_dev_unlock(hdev); 6376 } 6377 6378 static u8 ext_evt_type_to_legacy(struct hci_dev *hdev, u16 evt_type) 6379 { 6380 if (evt_type & LE_EXT_ADV_LEGACY_PDU) { 6381 switch (evt_type) { 6382 case LE_LEGACY_ADV_IND: 6383 return LE_ADV_IND; 6384 case LE_LEGACY_ADV_DIRECT_IND: 6385 return LE_ADV_DIRECT_IND; 6386 case LE_LEGACY_ADV_SCAN_IND: 6387 return LE_ADV_SCAN_IND; 6388 case LE_LEGACY_NONCONN_IND: 6389 return LE_ADV_NONCONN_IND; 6390 case LE_LEGACY_SCAN_RSP_ADV: 6391 case LE_LEGACY_SCAN_RSP_ADV_SCAN: 6392 return LE_ADV_SCAN_RSP; 6393 } 6394 6395 goto invalid; 6396 } 6397 6398 if (evt_type & LE_EXT_ADV_CONN_IND) { 6399 if (evt_type & LE_EXT_ADV_DIRECT_IND) 6400 return LE_ADV_DIRECT_IND; 6401 6402 return LE_ADV_IND; 6403 } 6404 6405 if (evt_type & LE_EXT_ADV_SCAN_RSP) 6406 return LE_ADV_SCAN_RSP; 6407 6408 if (evt_type & LE_EXT_ADV_SCAN_IND) 6409 return LE_ADV_SCAN_IND; 6410 6411 if (evt_type == LE_EXT_ADV_NON_CONN_IND || 6412 evt_type & LE_EXT_ADV_DIRECT_IND) 6413 return LE_ADV_NONCONN_IND; 6414 6415 invalid: 6416 bt_dev_err_ratelimited(hdev, "Unknown advertising packet type: 0x%02x", 6417 evt_type); 6418 6419 return LE_ADV_INVALID; 6420 } 6421 6422 static void hci_le_ext_adv_report_evt(struct hci_dev *hdev, void *data, 6423 struct sk_buff *skb) 6424 { 6425 struct hci_ev_le_ext_adv_report *ev = data; 6426 u64 instant = jiffies; 6427 6428 if (!ev->num) 6429 return; 6430 6431 hci_dev_lock(hdev); 6432 6433 while (ev->num--) { 6434 struct hci_ev_le_ext_adv_info *info; 6435 u8 legacy_evt_type; 6436 u16 evt_type; 6437 6438 info = hci_le_ev_skb_pull(hdev, skb, HCI_EV_LE_EXT_ADV_REPORT, 6439 sizeof(*info)); 6440 if (!info) 6441 break; 6442 6443 if (!hci_le_ev_skb_pull(hdev, skb, HCI_EV_LE_EXT_ADV_REPORT, 6444 info->length)) 6445 break; 6446 6447 evt_type = __le16_to_cpu(info->type) & LE_EXT_ADV_EVT_TYPE_MASK; 6448 legacy_evt_type = ext_evt_type_to_legacy(hdev, evt_type); 6449 if (legacy_evt_type != LE_ADV_INVALID) { 6450 process_adv_report(hdev, legacy_evt_type, &info->bdaddr, 6451 info->bdaddr_type, NULL, 0, 6452 info->primary_phy, 6453 info->secondary_phy, 6454 info->rssi, info->data, info->length, 6455 !(evt_type & LE_EXT_ADV_LEGACY_PDU), 6456 false, instant); 6457 } 6458 } 6459 6460 hci_dev_unlock(hdev); 6461 } 6462 6463 static int hci_le_pa_term_sync(struct hci_dev *hdev, __le16 handle) 6464 { 6465 struct hci_cp_le_pa_term_sync cp; 6466 6467 memset(&cp, 0, sizeof(cp)); 6468 cp.handle = handle; 6469 6470 return hci_send_cmd(hdev, HCI_OP_LE_PA_TERM_SYNC, sizeof(cp), &cp); 6471 } 6472 6473 static void hci_le_pa_sync_estabilished_evt(struct hci_dev *hdev, void *data, 6474 struct sk_buff *skb) 6475 { 6476 struct hci_ev_le_pa_sync_established *ev = data; 6477 int mask = hdev->link_mode; 6478 __u8 flags = 0; 6479 struct hci_conn *pa_sync; 6480 6481 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 6482 6483 hci_dev_lock(hdev); 6484 6485 hci_dev_clear_flag(hdev, HCI_PA_SYNC); 6486 6487 mask |= hci_proto_connect_ind(hdev, &ev->bdaddr, ISO_LINK, &flags); 6488 if (!(mask & HCI_LM_ACCEPT)) { 6489 hci_le_pa_term_sync(hdev, ev->handle); 6490 goto unlock; 6491 } 6492 6493 if (!(flags & HCI_PROTO_DEFER)) 6494 goto unlock; 6495 6496 if (ev->status) { 6497 /* Add connection to indicate the failed PA sync event */ 6498 pa_sync = hci_conn_add_unset(hdev, ISO_LINK, BDADDR_ANY, 6499 HCI_ROLE_SLAVE); 6500 6501 if (!pa_sync) 6502 goto unlock; 6503 6504 set_bit(HCI_CONN_PA_SYNC_FAILED, &pa_sync->flags); 6505 6506 /* Notify iso layer */ 6507 hci_connect_cfm(pa_sync, ev->status); 6508 } 6509 6510 unlock: 6511 hci_dev_unlock(hdev); 6512 } 6513 6514 static void hci_le_per_adv_report_evt(struct hci_dev *hdev, void *data, 6515 struct sk_buff *skb) 6516 { 6517 struct hci_ev_le_per_adv_report *ev = data; 6518 int mask = hdev->link_mode; 6519 __u8 flags = 0; 6520 6521 bt_dev_dbg(hdev, "sync_handle 0x%4.4x", le16_to_cpu(ev->sync_handle)); 6522 6523 hci_dev_lock(hdev); 6524 6525 mask |= hci_proto_connect_ind(hdev, BDADDR_ANY, ISO_LINK, &flags); 6526 if (!(mask & HCI_LM_ACCEPT)) 6527 hci_le_pa_term_sync(hdev, ev->sync_handle); 6528 6529 hci_dev_unlock(hdev); 6530 } 6531 6532 static void hci_le_remote_feat_complete_evt(struct hci_dev *hdev, void *data, 6533 struct sk_buff *skb) 6534 { 6535 struct hci_ev_le_remote_feat_complete *ev = data; 6536 struct hci_conn *conn; 6537 6538 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 6539 6540 hci_dev_lock(hdev); 6541 6542 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 6543 if (conn) { 6544 if (!ev->status) 6545 memcpy(conn->features[0], ev->features, 8); 6546 6547 if (conn->state == BT_CONFIG) { 6548 __u8 status; 6549 6550 /* If the local controller supports peripheral-initiated 6551 * features exchange, but the remote controller does 6552 * not, then it is possible that the error code 0x1a 6553 * for unsupported remote feature gets returned. 6554 * 6555 * In this specific case, allow the connection to 6556 * transition into connected state and mark it as 6557 * successful. 6558 */ 6559 if (!conn->out && ev->status == HCI_ERROR_UNSUPPORTED_REMOTE_FEATURE && 6560 (hdev->le_features[0] & HCI_LE_PERIPHERAL_FEATURES)) 6561 status = 0x00; 6562 else 6563 status = ev->status; 6564 6565 conn->state = BT_CONNECTED; 6566 hci_connect_cfm(conn, status); 6567 hci_conn_drop(conn); 6568 } 6569 } 6570 6571 hci_dev_unlock(hdev); 6572 } 6573 6574 static void hci_le_ltk_request_evt(struct hci_dev *hdev, void *data, 6575 struct sk_buff *skb) 6576 { 6577 struct hci_ev_le_ltk_req *ev = data; 6578 struct hci_cp_le_ltk_reply cp; 6579 struct hci_cp_le_ltk_neg_reply neg; 6580 struct hci_conn *conn; 6581 struct smp_ltk *ltk; 6582 6583 bt_dev_dbg(hdev, "handle 0x%4.4x", __le16_to_cpu(ev->handle)); 6584 6585 hci_dev_lock(hdev); 6586 6587 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 6588 if (conn == NULL) 6589 goto not_found; 6590 6591 ltk = hci_find_ltk(hdev, &conn->dst, conn->dst_type, conn->role); 6592 if (!ltk) 6593 goto not_found; 6594 6595 if (smp_ltk_is_sc(ltk)) { 6596 /* With SC both EDiv and Rand are set to zero */ 6597 if (ev->ediv || ev->rand) 6598 goto not_found; 6599 } else { 6600 /* For non-SC keys check that EDiv and Rand match */ 6601 if (ev->ediv != ltk->ediv || ev->rand != ltk->rand) 6602 goto not_found; 6603 } 6604 6605 memcpy(cp.ltk, ltk->val, ltk->enc_size); 6606 memset(cp.ltk + ltk->enc_size, 0, sizeof(cp.ltk) - ltk->enc_size); 6607 cp.handle = cpu_to_le16(conn->handle); 6608 6609 conn->pending_sec_level = smp_ltk_sec_level(ltk); 6610 6611 conn->enc_key_size = ltk->enc_size; 6612 6613 hci_send_cmd(hdev, HCI_OP_LE_LTK_REPLY, sizeof(cp), &cp); 6614 6615 /* Ref. Bluetooth Core SPEC pages 1975 and 2004. STK is a 6616 * temporary key used to encrypt a connection following 6617 * pairing. It is used during the Encrypted Session Setup to 6618 * distribute the keys. Later, security can be re-established 6619 * using a distributed LTK. 6620 */ 6621 if (ltk->type == SMP_STK) { 6622 set_bit(HCI_CONN_STK_ENCRYPT, &conn->flags); 6623 list_del_rcu(<k->list); 6624 kfree_rcu(ltk, rcu); 6625 } else { 6626 clear_bit(HCI_CONN_STK_ENCRYPT, &conn->flags); 6627 } 6628 6629 hci_dev_unlock(hdev); 6630 6631 return; 6632 6633 not_found: 6634 neg.handle = ev->handle; 6635 hci_send_cmd(hdev, HCI_OP_LE_LTK_NEG_REPLY, sizeof(neg), &neg); 6636 hci_dev_unlock(hdev); 6637 } 6638 6639 static void send_conn_param_neg_reply(struct hci_dev *hdev, u16 handle, 6640 u8 reason) 6641 { 6642 struct hci_cp_le_conn_param_req_neg_reply cp; 6643 6644 cp.handle = cpu_to_le16(handle); 6645 cp.reason = reason; 6646 6647 hci_send_cmd(hdev, HCI_OP_LE_CONN_PARAM_REQ_NEG_REPLY, sizeof(cp), 6648 &cp); 6649 } 6650 6651 static void hci_le_remote_conn_param_req_evt(struct hci_dev *hdev, void *data, 6652 struct sk_buff *skb) 6653 { 6654 struct hci_ev_le_remote_conn_param_req *ev = data; 6655 struct hci_cp_le_conn_param_req_reply cp; 6656 struct hci_conn *hcon; 6657 u16 handle, min, max, latency, timeout; 6658 6659 bt_dev_dbg(hdev, "handle 0x%4.4x", __le16_to_cpu(ev->handle)); 6660 6661 handle = le16_to_cpu(ev->handle); 6662 min = le16_to_cpu(ev->interval_min); 6663 max = le16_to_cpu(ev->interval_max); 6664 latency = le16_to_cpu(ev->latency); 6665 timeout = le16_to_cpu(ev->timeout); 6666 6667 hcon = hci_conn_hash_lookup_handle(hdev, handle); 6668 if (!hcon || hcon->state != BT_CONNECTED) 6669 return send_conn_param_neg_reply(hdev, handle, 6670 HCI_ERROR_UNKNOWN_CONN_ID); 6671 6672 if (max > hcon->le_conn_max_interval) 6673 return send_conn_param_neg_reply(hdev, handle, 6674 HCI_ERROR_INVALID_LL_PARAMS); 6675 6676 if (hci_check_conn_params(min, max, latency, timeout)) 6677 return send_conn_param_neg_reply(hdev, handle, 6678 HCI_ERROR_INVALID_LL_PARAMS); 6679 6680 if (hcon->role == HCI_ROLE_MASTER) { 6681 struct hci_conn_params *params; 6682 u8 store_hint; 6683 6684 hci_dev_lock(hdev); 6685 6686 params = hci_conn_params_lookup(hdev, &hcon->dst, 6687 hcon->dst_type); 6688 if (params) { 6689 params->conn_min_interval = min; 6690 params->conn_max_interval = max; 6691 params->conn_latency = latency; 6692 params->supervision_timeout = timeout; 6693 store_hint = 0x01; 6694 } else { 6695 store_hint = 0x00; 6696 } 6697 6698 hci_dev_unlock(hdev); 6699 6700 mgmt_new_conn_param(hdev, &hcon->dst, hcon->dst_type, 6701 store_hint, min, max, latency, timeout); 6702 } 6703 6704 cp.handle = ev->handle; 6705 cp.interval_min = ev->interval_min; 6706 cp.interval_max = ev->interval_max; 6707 cp.latency = ev->latency; 6708 cp.timeout = ev->timeout; 6709 cp.min_ce_len = 0; 6710 cp.max_ce_len = 0; 6711 6712 hci_send_cmd(hdev, HCI_OP_LE_CONN_PARAM_REQ_REPLY, sizeof(cp), &cp); 6713 } 6714 6715 static void hci_le_direct_adv_report_evt(struct hci_dev *hdev, void *data, 6716 struct sk_buff *skb) 6717 { 6718 struct hci_ev_le_direct_adv_report *ev = data; 6719 u64 instant = jiffies; 6720 int i; 6721 6722 if (!hci_le_ev_skb_pull(hdev, skb, HCI_EV_LE_DIRECT_ADV_REPORT, 6723 flex_array_size(ev, info, ev->num))) 6724 return; 6725 6726 if (!ev->num) 6727 return; 6728 6729 hci_dev_lock(hdev); 6730 6731 for (i = 0; i < ev->num; i++) { 6732 struct hci_ev_le_direct_adv_info *info = &ev->info[i]; 6733 6734 process_adv_report(hdev, info->type, &info->bdaddr, 6735 info->bdaddr_type, &info->direct_addr, 6736 info->direct_addr_type, HCI_ADV_PHY_1M, 0, 6737 info->rssi, NULL, 0, false, false, instant); 6738 } 6739 6740 hci_dev_unlock(hdev); 6741 } 6742 6743 static void hci_le_phy_update_evt(struct hci_dev *hdev, void *data, 6744 struct sk_buff *skb) 6745 { 6746 struct hci_ev_le_phy_update_complete *ev = data; 6747 struct hci_conn *conn; 6748 6749 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 6750 6751 if (ev->status) 6752 return; 6753 6754 hci_dev_lock(hdev); 6755 6756 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 6757 if (!conn) 6758 goto unlock; 6759 6760 conn->le_tx_phy = ev->tx_phy; 6761 conn->le_rx_phy = ev->rx_phy; 6762 6763 unlock: 6764 hci_dev_unlock(hdev); 6765 } 6766 6767 static void hci_le_cis_estabilished_evt(struct hci_dev *hdev, void *data, 6768 struct sk_buff *skb) 6769 { 6770 struct hci_evt_le_cis_established *ev = data; 6771 struct hci_conn *conn; 6772 struct bt_iso_qos *qos; 6773 bool pending = false; 6774 u16 handle = __le16_to_cpu(ev->handle); 6775 6776 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 6777 6778 hci_dev_lock(hdev); 6779 6780 conn = hci_conn_hash_lookup_handle(hdev, handle); 6781 if (!conn) { 6782 bt_dev_err(hdev, 6783 "Unable to find connection with handle 0x%4.4x", 6784 handle); 6785 goto unlock; 6786 } 6787 6788 if (conn->type != ISO_LINK) { 6789 bt_dev_err(hdev, 6790 "Invalid connection link type handle 0x%4.4x", 6791 handle); 6792 goto unlock; 6793 } 6794 6795 qos = &conn->iso_qos; 6796 6797 pending = test_and_clear_bit(HCI_CONN_CREATE_CIS, &conn->flags); 6798 6799 /* Convert ISO Interval (1.25 ms slots) to SDU Interval (us) */ 6800 qos->ucast.in.interval = le16_to_cpu(ev->interval) * 1250; 6801 qos->ucast.out.interval = qos->ucast.in.interval; 6802 6803 switch (conn->role) { 6804 case HCI_ROLE_SLAVE: 6805 /* Convert Transport Latency (us) to Latency (msec) */ 6806 qos->ucast.in.latency = 6807 DIV_ROUND_CLOSEST(get_unaligned_le24(ev->c_latency), 6808 1000); 6809 qos->ucast.out.latency = 6810 DIV_ROUND_CLOSEST(get_unaligned_le24(ev->p_latency), 6811 1000); 6812 qos->ucast.in.sdu = le16_to_cpu(ev->c_mtu); 6813 qos->ucast.out.sdu = le16_to_cpu(ev->p_mtu); 6814 qos->ucast.in.phy = ev->c_phy; 6815 qos->ucast.out.phy = ev->p_phy; 6816 break; 6817 case HCI_ROLE_MASTER: 6818 /* Convert Transport Latency (us) to Latency (msec) */ 6819 qos->ucast.out.latency = 6820 DIV_ROUND_CLOSEST(get_unaligned_le24(ev->c_latency), 6821 1000); 6822 qos->ucast.in.latency = 6823 DIV_ROUND_CLOSEST(get_unaligned_le24(ev->p_latency), 6824 1000); 6825 qos->ucast.out.sdu = le16_to_cpu(ev->c_mtu); 6826 qos->ucast.in.sdu = le16_to_cpu(ev->p_mtu); 6827 qos->ucast.out.phy = ev->c_phy; 6828 qos->ucast.in.phy = ev->p_phy; 6829 break; 6830 } 6831 6832 if (!ev->status) { 6833 conn->state = BT_CONNECTED; 6834 hci_debugfs_create_conn(conn); 6835 hci_conn_add_sysfs(conn); 6836 hci_iso_setup_path(conn); 6837 goto unlock; 6838 } 6839 6840 conn->state = BT_CLOSED; 6841 hci_connect_cfm(conn, ev->status); 6842 hci_conn_del(conn); 6843 6844 unlock: 6845 if (pending) 6846 hci_le_create_cis_pending(hdev); 6847 6848 hci_dev_unlock(hdev); 6849 } 6850 6851 static void hci_le_reject_cis(struct hci_dev *hdev, __le16 handle) 6852 { 6853 struct hci_cp_le_reject_cis cp; 6854 6855 memset(&cp, 0, sizeof(cp)); 6856 cp.handle = handle; 6857 cp.reason = HCI_ERROR_REJ_BAD_ADDR; 6858 hci_send_cmd(hdev, HCI_OP_LE_REJECT_CIS, sizeof(cp), &cp); 6859 } 6860 6861 static void hci_le_accept_cis(struct hci_dev *hdev, __le16 handle) 6862 { 6863 struct hci_cp_le_accept_cis cp; 6864 6865 memset(&cp, 0, sizeof(cp)); 6866 cp.handle = handle; 6867 hci_send_cmd(hdev, HCI_OP_LE_ACCEPT_CIS, sizeof(cp), &cp); 6868 } 6869 6870 static void hci_le_cis_req_evt(struct hci_dev *hdev, void *data, 6871 struct sk_buff *skb) 6872 { 6873 struct hci_evt_le_cis_req *ev = data; 6874 u16 acl_handle, cis_handle; 6875 struct hci_conn *acl, *cis; 6876 int mask; 6877 __u8 flags = 0; 6878 6879 acl_handle = __le16_to_cpu(ev->acl_handle); 6880 cis_handle = __le16_to_cpu(ev->cis_handle); 6881 6882 bt_dev_dbg(hdev, "acl 0x%4.4x handle 0x%4.4x cig 0x%2.2x cis 0x%2.2x", 6883 acl_handle, cis_handle, ev->cig_id, ev->cis_id); 6884 6885 hci_dev_lock(hdev); 6886 6887 acl = hci_conn_hash_lookup_handle(hdev, acl_handle); 6888 if (!acl) 6889 goto unlock; 6890 6891 mask = hci_proto_connect_ind(hdev, &acl->dst, ISO_LINK, &flags); 6892 if (!(mask & HCI_LM_ACCEPT)) { 6893 hci_le_reject_cis(hdev, ev->cis_handle); 6894 goto unlock; 6895 } 6896 6897 cis = hci_conn_hash_lookup_handle(hdev, cis_handle); 6898 if (!cis) { 6899 cis = hci_conn_add(hdev, ISO_LINK, &acl->dst, HCI_ROLE_SLAVE, 6900 cis_handle); 6901 if (!cis) { 6902 hci_le_reject_cis(hdev, ev->cis_handle); 6903 goto unlock; 6904 } 6905 } 6906 6907 cis->iso_qos.ucast.cig = ev->cig_id; 6908 cis->iso_qos.ucast.cis = ev->cis_id; 6909 6910 if (!(flags & HCI_PROTO_DEFER)) { 6911 hci_le_accept_cis(hdev, ev->cis_handle); 6912 } else { 6913 cis->state = BT_CONNECT2; 6914 hci_connect_cfm(cis, 0); 6915 } 6916 6917 unlock: 6918 hci_dev_unlock(hdev); 6919 } 6920 6921 static int hci_iso_term_big_sync(struct hci_dev *hdev, void *data) 6922 { 6923 u8 handle = PTR_UINT(data); 6924 6925 return hci_le_terminate_big_sync(hdev, handle, 6926 HCI_ERROR_LOCAL_HOST_TERM); 6927 } 6928 6929 static void hci_le_create_big_complete_evt(struct hci_dev *hdev, void *data, 6930 struct sk_buff *skb) 6931 { 6932 struct hci_evt_le_create_big_complete *ev = data; 6933 struct hci_conn *conn; 6934 __u8 i = 0; 6935 6936 BT_DBG("%s status 0x%2.2x", hdev->name, ev->status); 6937 6938 if (!hci_le_ev_skb_pull(hdev, skb, HCI_EVT_LE_CREATE_BIG_COMPLETE, 6939 flex_array_size(ev, bis_handle, ev->num_bis))) 6940 return; 6941 6942 hci_dev_lock(hdev); 6943 rcu_read_lock(); 6944 6945 /* Connect all BISes that are bound to the BIG */ 6946 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) { 6947 if (bacmp(&conn->dst, BDADDR_ANY) || 6948 conn->type != ISO_LINK || 6949 conn->iso_qos.bcast.big != ev->handle) 6950 continue; 6951 6952 if (hci_conn_set_handle(conn, 6953 __le16_to_cpu(ev->bis_handle[i++]))) 6954 continue; 6955 6956 if (!ev->status) { 6957 conn->state = BT_CONNECTED; 6958 set_bit(HCI_CONN_BIG_CREATED, &conn->flags); 6959 rcu_read_unlock(); 6960 hci_debugfs_create_conn(conn); 6961 hci_conn_add_sysfs(conn); 6962 hci_iso_setup_path(conn); 6963 rcu_read_lock(); 6964 continue; 6965 } 6966 6967 hci_connect_cfm(conn, ev->status); 6968 rcu_read_unlock(); 6969 hci_conn_del(conn); 6970 rcu_read_lock(); 6971 } 6972 6973 rcu_read_unlock(); 6974 6975 if (!ev->status && !i) 6976 /* If no BISes have been connected for the BIG, 6977 * terminate. This is in case all bound connections 6978 * have been closed before the BIG creation 6979 * has completed. 6980 */ 6981 hci_cmd_sync_queue(hdev, hci_iso_term_big_sync, 6982 UINT_PTR(ev->handle), NULL); 6983 6984 hci_dev_unlock(hdev); 6985 } 6986 6987 static void hci_le_big_sync_established_evt(struct hci_dev *hdev, void *data, 6988 struct sk_buff *skb) 6989 { 6990 struct hci_evt_le_big_sync_estabilished *ev = data; 6991 struct hci_conn *bis; 6992 int i; 6993 6994 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 6995 6996 if (!hci_le_ev_skb_pull(hdev, skb, HCI_EVT_LE_BIG_SYNC_ESTABILISHED, 6997 flex_array_size(ev, bis, ev->num_bis))) 6998 return; 6999 7000 hci_dev_lock(hdev); 7001 7002 for (i = 0; i < ev->num_bis; i++) { 7003 u16 handle = le16_to_cpu(ev->bis[i]); 7004 __le32 interval; 7005 7006 bis = hci_conn_hash_lookup_handle(hdev, handle); 7007 if (!bis) { 7008 bis = hci_conn_add(hdev, ISO_LINK, BDADDR_ANY, 7009 HCI_ROLE_SLAVE, handle); 7010 if (!bis) 7011 continue; 7012 } 7013 7014 if (ev->status != 0x42) 7015 /* Mark PA sync as established */ 7016 set_bit(HCI_CONN_PA_SYNC, &bis->flags); 7017 7018 bis->iso_qos.bcast.big = ev->handle; 7019 memset(&interval, 0, sizeof(interval)); 7020 memcpy(&interval, ev->latency, sizeof(ev->latency)); 7021 bis->iso_qos.bcast.in.interval = le32_to_cpu(interval); 7022 /* Convert ISO Interval (1.25 ms slots) to latency (ms) */ 7023 bis->iso_qos.bcast.in.latency = le16_to_cpu(ev->interval) * 125 / 100; 7024 bis->iso_qos.bcast.in.sdu = le16_to_cpu(ev->max_pdu); 7025 7026 if (!ev->status) { 7027 set_bit(HCI_CONN_BIG_SYNC, &bis->flags); 7028 hci_iso_setup_path(bis); 7029 } 7030 } 7031 7032 /* In case BIG sync failed, notify each failed connection to 7033 * the user after all hci connections have been added 7034 */ 7035 if (ev->status) 7036 for (i = 0; i < ev->num_bis; i++) { 7037 u16 handle = le16_to_cpu(ev->bis[i]); 7038 7039 bis = hci_conn_hash_lookup_handle(hdev, handle); 7040 if (!bis) 7041 continue; 7042 7043 set_bit(HCI_CONN_BIG_SYNC_FAILED, &bis->flags); 7044 hci_connect_cfm(bis, ev->status); 7045 } 7046 7047 hci_dev_unlock(hdev); 7048 } 7049 7050 static void hci_le_big_info_adv_report_evt(struct hci_dev *hdev, void *data, 7051 struct sk_buff *skb) 7052 { 7053 struct hci_evt_le_big_info_adv_report *ev = data; 7054 int mask = hdev->link_mode; 7055 __u8 flags = 0; 7056 struct hci_conn *pa_sync; 7057 7058 bt_dev_dbg(hdev, "sync_handle 0x%4.4x", le16_to_cpu(ev->sync_handle)); 7059 7060 hci_dev_lock(hdev); 7061 7062 mask |= hci_proto_connect_ind(hdev, BDADDR_ANY, ISO_LINK, &flags); 7063 if (!(mask & HCI_LM_ACCEPT)) { 7064 hci_le_pa_term_sync(hdev, ev->sync_handle); 7065 goto unlock; 7066 } 7067 7068 if (!(flags & HCI_PROTO_DEFER)) 7069 goto unlock; 7070 7071 pa_sync = hci_conn_hash_lookup_pa_sync_handle 7072 (hdev, 7073 le16_to_cpu(ev->sync_handle)); 7074 7075 if (pa_sync) 7076 goto unlock; 7077 7078 /* Add connection to indicate the PA sync event */ 7079 pa_sync = hci_conn_add_unset(hdev, ISO_LINK, BDADDR_ANY, 7080 HCI_ROLE_SLAVE); 7081 7082 if (!pa_sync) 7083 goto unlock; 7084 7085 pa_sync->sync_handle = le16_to_cpu(ev->sync_handle); 7086 set_bit(HCI_CONN_PA_SYNC, &pa_sync->flags); 7087 7088 /* Notify iso layer */ 7089 hci_connect_cfm(pa_sync, 0x00); 7090 7091 /* Notify MGMT layer */ 7092 mgmt_device_connected(hdev, pa_sync, NULL, 0); 7093 7094 unlock: 7095 hci_dev_unlock(hdev); 7096 } 7097 7098 #define HCI_LE_EV_VL(_op, _func, _min_len, _max_len) \ 7099 [_op] = { \ 7100 .func = _func, \ 7101 .min_len = _min_len, \ 7102 .max_len = _max_len, \ 7103 } 7104 7105 #define HCI_LE_EV(_op, _func, _len) \ 7106 HCI_LE_EV_VL(_op, _func, _len, _len) 7107 7108 #define HCI_LE_EV_STATUS(_op, _func) \ 7109 HCI_LE_EV(_op, _func, sizeof(struct hci_ev_status)) 7110 7111 /* Entries in this table shall have their position according to the subevent 7112 * opcode they handle so the use of the macros above is recommend since it does 7113 * attempt to initialize at its proper index using Designated Initializers that 7114 * way events without a callback function can be ommited. 7115 */ 7116 static const struct hci_le_ev { 7117 void (*func)(struct hci_dev *hdev, void *data, struct sk_buff *skb); 7118 u16 min_len; 7119 u16 max_len; 7120 } hci_le_ev_table[U8_MAX + 1] = { 7121 /* [0x01 = HCI_EV_LE_CONN_COMPLETE] */ 7122 HCI_LE_EV(HCI_EV_LE_CONN_COMPLETE, hci_le_conn_complete_evt, 7123 sizeof(struct hci_ev_le_conn_complete)), 7124 /* [0x02 = HCI_EV_LE_ADVERTISING_REPORT] */ 7125 HCI_LE_EV_VL(HCI_EV_LE_ADVERTISING_REPORT, hci_le_adv_report_evt, 7126 sizeof(struct hci_ev_le_advertising_report), 7127 HCI_MAX_EVENT_SIZE), 7128 /* [0x03 = HCI_EV_LE_CONN_UPDATE_COMPLETE] */ 7129 HCI_LE_EV(HCI_EV_LE_CONN_UPDATE_COMPLETE, 7130 hci_le_conn_update_complete_evt, 7131 sizeof(struct hci_ev_le_conn_update_complete)), 7132 /* [0x04 = HCI_EV_LE_REMOTE_FEAT_COMPLETE] */ 7133 HCI_LE_EV(HCI_EV_LE_REMOTE_FEAT_COMPLETE, 7134 hci_le_remote_feat_complete_evt, 7135 sizeof(struct hci_ev_le_remote_feat_complete)), 7136 /* [0x05 = HCI_EV_LE_LTK_REQ] */ 7137 HCI_LE_EV(HCI_EV_LE_LTK_REQ, hci_le_ltk_request_evt, 7138 sizeof(struct hci_ev_le_ltk_req)), 7139 /* [0x06 = HCI_EV_LE_REMOTE_CONN_PARAM_REQ] */ 7140 HCI_LE_EV(HCI_EV_LE_REMOTE_CONN_PARAM_REQ, 7141 hci_le_remote_conn_param_req_evt, 7142 sizeof(struct hci_ev_le_remote_conn_param_req)), 7143 /* [0x0a = HCI_EV_LE_ENHANCED_CONN_COMPLETE] */ 7144 HCI_LE_EV(HCI_EV_LE_ENHANCED_CONN_COMPLETE, 7145 hci_le_enh_conn_complete_evt, 7146 sizeof(struct hci_ev_le_enh_conn_complete)), 7147 /* [0x0b = HCI_EV_LE_DIRECT_ADV_REPORT] */ 7148 HCI_LE_EV_VL(HCI_EV_LE_DIRECT_ADV_REPORT, hci_le_direct_adv_report_evt, 7149 sizeof(struct hci_ev_le_direct_adv_report), 7150 HCI_MAX_EVENT_SIZE), 7151 /* [0x0c = HCI_EV_LE_PHY_UPDATE_COMPLETE] */ 7152 HCI_LE_EV(HCI_EV_LE_PHY_UPDATE_COMPLETE, hci_le_phy_update_evt, 7153 sizeof(struct hci_ev_le_phy_update_complete)), 7154 /* [0x0d = HCI_EV_LE_EXT_ADV_REPORT] */ 7155 HCI_LE_EV_VL(HCI_EV_LE_EXT_ADV_REPORT, hci_le_ext_adv_report_evt, 7156 sizeof(struct hci_ev_le_ext_adv_report), 7157 HCI_MAX_EVENT_SIZE), 7158 /* [0x0e = HCI_EV_LE_PA_SYNC_ESTABLISHED] */ 7159 HCI_LE_EV(HCI_EV_LE_PA_SYNC_ESTABLISHED, 7160 hci_le_pa_sync_estabilished_evt, 7161 sizeof(struct hci_ev_le_pa_sync_established)), 7162 /* [0x0f = HCI_EV_LE_PER_ADV_REPORT] */ 7163 HCI_LE_EV_VL(HCI_EV_LE_PER_ADV_REPORT, 7164 hci_le_per_adv_report_evt, 7165 sizeof(struct hci_ev_le_per_adv_report), 7166 HCI_MAX_EVENT_SIZE), 7167 /* [0x12 = HCI_EV_LE_EXT_ADV_SET_TERM] */ 7168 HCI_LE_EV(HCI_EV_LE_EXT_ADV_SET_TERM, hci_le_ext_adv_term_evt, 7169 sizeof(struct hci_evt_le_ext_adv_set_term)), 7170 /* [0x19 = HCI_EVT_LE_CIS_ESTABLISHED] */ 7171 HCI_LE_EV(HCI_EVT_LE_CIS_ESTABLISHED, hci_le_cis_estabilished_evt, 7172 sizeof(struct hci_evt_le_cis_established)), 7173 /* [0x1a = HCI_EVT_LE_CIS_REQ] */ 7174 HCI_LE_EV(HCI_EVT_LE_CIS_REQ, hci_le_cis_req_evt, 7175 sizeof(struct hci_evt_le_cis_req)), 7176 /* [0x1b = HCI_EVT_LE_CREATE_BIG_COMPLETE] */ 7177 HCI_LE_EV_VL(HCI_EVT_LE_CREATE_BIG_COMPLETE, 7178 hci_le_create_big_complete_evt, 7179 sizeof(struct hci_evt_le_create_big_complete), 7180 HCI_MAX_EVENT_SIZE), 7181 /* [0x1d = HCI_EV_LE_BIG_SYNC_ESTABILISHED] */ 7182 HCI_LE_EV_VL(HCI_EVT_LE_BIG_SYNC_ESTABILISHED, 7183 hci_le_big_sync_established_evt, 7184 sizeof(struct hci_evt_le_big_sync_estabilished), 7185 HCI_MAX_EVENT_SIZE), 7186 /* [0x22 = HCI_EVT_LE_BIG_INFO_ADV_REPORT] */ 7187 HCI_LE_EV_VL(HCI_EVT_LE_BIG_INFO_ADV_REPORT, 7188 hci_le_big_info_adv_report_evt, 7189 sizeof(struct hci_evt_le_big_info_adv_report), 7190 HCI_MAX_EVENT_SIZE), 7191 }; 7192 7193 static void hci_le_meta_evt(struct hci_dev *hdev, void *data, 7194 struct sk_buff *skb, u16 *opcode, u8 *status, 7195 hci_req_complete_t *req_complete, 7196 hci_req_complete_skb_t *req_complete_skb) 7197 { 7198 struct hci_ev_le_meta *ev = data; 7199 const struct hci_le_ev *subev; 7200 7201 bt_dev_dbg(hdev, "subevent 0x%2.2x", ev->subevent); 7202 7203 /* Only match event if command OGF is for LE */ 7204 if (hdev->req_skb && 7205 hci_opcode_ogf(hci_skb_opcode(hdev->req_skb)) == 0x08 && 7206 hci_skb_event(hdev->req_skb) == ev->subevent) { 7207 *opcode = hci_skb_opcode(hdev->req_skb); 7208 hci_req_cmd_complete(hdev, *opcode, 0x00, req_complete, 7209 req_complete_skb); 7210 } 7211 7212 subev = &hci_le_ev_table[ev->subevent]; 7213 if (!subev->func) 7214 return; 7215 7216 if (skb->len < subev->min_len) { 7217 bt_dev_err(hdev, "unexpected subevent 0x%2.2x length: %u < %u", 7218 ev->subevent, skb->len, subev->min_len); 7219 return; 7220 } 7221 7222 /* Just warn if the length is over max_len size it still be 7223 * possible to partially parse the event so leave to callback to 7224 * decide if that is acceptable. 7225 */ 7226 if (skb->len > subev->max_len) 7227 bt_dev_warn(hdev, "unexpected subevent 0x%2.2x length: %u > %u", 7228 ev->subevent, skb->len, subev->max_len); 7229 data = hci_le_ev_skb_pull(hdev, skb, ev->subevent, subev->min_len); 7230 if (!data) 7231 return; 7232 7233 subev->func(hdev, data, skb); 7234 } 7235 7236 static bool hci_get_cmd_complete(struct hci_dev *hdev, u16 opcode, 7237 u8 event, struct sk_buff *skb) 7238 { 7239 struct hci_ev_cmd_complete *ev; 7240 struct hci_event_hdr *hdr; 7241 7242 if (!skb) 7243 return false; 7244 7245 hdr = hci_ev_skb_pull(hdev, skb, event, sizeof(*hdr)); 7246 if (!hdr) 7247 return false; 7248 7249 if (event) { 7250 if (hdr->evt != event) 7251 return false; 7252 return true; 7253 } 7254 7255 /* Check if request ended in Command Status - no way to retrieve 7256 * any extra parameters in this case. 7257 */ 7258 if (hdr->evt == HCI_EV_CMD_STATUS) 7259 return false; 7260 7261 if (hdr->evt != HCI_EV_CMD_COMPLETE) { 7262 bt_dev_err(hdev, "last event is not cmd complete (0x%2.2x)", 7263 hdr->evt); 7264 return false; 7265 } 7266 7267 ev = hci_cc_skb_pull(hdev, skb, opcode, sizeof(*ev)); 7268 if (!ev) 7269 return false; 7270 7271 if (opcode != __le16_to_cpu(ev->opcode)) { 7272 BT_DBG("opcode doesn't match (0x%2.2x != 0x%2.2x)", opcode, 7273 __le16_to_cpu(ev->opcode)); 7274 return false; 7275 } 7276 7277 return true; 7278 } 7279 7280 static void hci_store_wake_reason(struct hci_dev *hdev, u8 event, 7281 struct sk_buff *skb) 7282 { 7283 struct hci_ev_le_advertising_info *adv; 7284 struct hci_ev_le_direct_adv_info *direct_adv; 7285 struct hci_ev_le_ext_adv_info *ext_adv; 7286 const struct hci_ev_conn_complete *conn_complete = (void *)skb->data; 7287 const struct hci_ev_conn_request *conn_request = (void *)skb->data; 7288 7289 hci_dev_lock(hdev); 7290 7291 /* If we are currently suspended and this is the first BT event seen, 7292 * save the wake reason associated with the event. 7293 */ 7294 if (!hdev->suspended || hdev->wake_reason) 7295 goto unlock; 7296 7297 /* Default to remote wake. Values for wake_reason are documented in the 7298 * Bluez mgmt api docs. 7299 */ 7300 hdev->wake_reason = MGMT_WAKE_REASON_REMOTE_WAKE; 7301 7302 /* Once configured for remote wakeup, we should only wake up for 7303 * reconnections. It's useful to see which device is waking us up so 7304 * keep track of the bdaddr of the connection event that woke us up. 7305 */ 7306 if (event == HCI_EV_CONN_REQUEST) { 7307 bacpy(&hdev->wake_addr, &conn_request->bdaddr); 7308 hdev->wake_addr_type = BDADDR_BREDR; 7309 } else if (event == HCI_EV_CONN_COMPLETE) { 7310 bacpy(&hdev->wake_addr, &conn_complete->bdaddr); 7311 hdev->wake_addr_type = BDADDR_BREDR; 7312 } else if (event == HCI_EV_LE_META) { 7313 struct hci_ev_le_meta *le_ev = (void *)skb->data; 7314 u8 subevent = le_ev->subevent; 7315 u8 *ptr = &skb->data[sizeof(*le_ev)]; 7316 u8 num_reports = *ptr; 7317 7318 if ((subevent == HCI_EV_LE_ADVERTISING_REPORT || 7319 subevent == HCI_EV_LE_DIRECT_ADV_REPORT || 7320 subevent == HCI_EV_LE_EXT_ADV_REPORT) && 7321 num_reports) { 7322 adv = (void *)(ptr + 1); 7323 direct_adv = (void *)(ptr + 1); 7324 ext_adv = (void *)(ptr + 1); 7325 7326 switch (subevent) { 7327 case HCI_EV_LE_ADVERTISING_REPORT: 7328 bacpy(&hdev->wake_addr, &adv->bdaddr); 7329 hdev->wake_addr_type = adv->bdaddr_type; 7330 break; 7331 case HCI_EV_LE_DIRECT_ADV_REPORT: 7332 bacpy(&hdev->wake_addr, &direct_adv->bdaddr); 7333 hdev->wake_addr_type = direct_adv->bdaddr_type; 7334 break; 7335 case HCI_EV_LE_EXT_ADV_REPORT: 7336 bacpy(&hdev->wake_addr, &ext_adv->bdaddr); 7337 hdev->wake_addr_type = ext_adv->bdaddr_type; 7338 break; 7339 } 7340 } 7341 } else { 7342 hdev->wake_reason = MGMT_WAKE_REASON_UNEXPECTED; 7343 } 7344 7345 unlock: 7346 hci_dev_unlock(hdev); 7347 } 7348 7349 #define HCI_EV_VL(_op, _func, _min_len, _max_len) \ 7350 [_op] = { \ 7351 .req = false, \ 7352 .func = _func, \ 7353 .min_len = _min_len, \ 7354 .max_len = _max_len, \ 7355 } 7356 7357 #define HCI_EV(_op, _func, _len) \ 7358 HCI_EV_VL(_op, _func, _len, _len) 7359 7360 #define HCI_EV_STATUS(_op, _func) \ 7361 HCI_EV(_op, _func, sizeof(struct hci_ev_status)) 7362 7363 #define HCI_EV_REQ_VL(_op, _func, _min_len, _max_len) \ 7364 [_op] = { \ 7365 .req = true, \ 7366 .func_req = _func, \ 7367 .min_len = _min_len, \ 7368 .max_len = _max_len, \ 7369 } 7370 7371 #define HCI_EV_REQ(_op, _func, _len) \ 7372 HCI_EV_REQ_VL(_op, _func, _len, _len) 7373 7374 /* Entries in this table shall have their position according to the event opcode 7375 * they handle so the use of the macros above is recommend since it does attempt 7376 * to initialize at its proper index using Designated Initializers that way 7377 * events without a callback function don't have entered. 7378 */ 7379 static const struct hci_ev { 7380 bool req; 7381 union { 7382 void (*func)(struct hci_dev *hdev, void *data, 7383 struct sk_buff *skb); 7384 void (*func_req)(struct hci_dev *hdev, void *data, 7385 struct sk_buff *skb, u16 *opcode, u8 *status, 7386 hci_req_complete_t *req_complete, 7387 hci_req_complete_skb_t *req_complete_skb); 7388 }; 7389 u16 min_len; 7390 u16 max_len; 7391 } hci_ev_table[U8_MAX + 1] = { 7392 /* [0x01 = HCI_EV_INQUIRY_COMPLETE] */ 7393 HCI_EV_STATUS(HCI_EV_INQUIRY_COMPLETE, hci_inquiry_complete_evt), 7394 /* [0x02 = HCI_EV_INQUIRY_RESULT] */ 7395 HCI_EV_VL(HCI_EV_INQUIRY_RESULT, hci_inquiry_result_evt, 7396 sizeof(struct hci_ev_inquiry_result), HCI_MAX_EVENT_SIZE), 7397 /* [0x03 = HCI_EV_CONN_COMPLETE] */ 7398 HCI_EV(HCI_EV_CONN_COMPLETE, hci_conn_complete_evt, 7399 sizeof(struct hci_ev_conn_complete)), 7400 /* [0x04 = HCI_EV_CONN_REQUEST] */ 7401 HCI_EV(HCI_EV_CONN_REQUEST, hci_conn_request_evt, 7402 sizeof(struct hci_ev_conn_request)), 7403 /* [0x05 = HCI_EV_DISCONN_COMPLETE] */ 7404 HCI_EV(HCI_EV_DISCONN_COMPLETE, hci_disconn_complete_evt, 7405 sizeof(struct hci_ev_disconn_complete)), 7406 /* [0x06 = HCI_EV_AUTH_COMPLETE] */ 7407 HCI_EV(HCI_EV_AUTH_COMPLETE, hci_auth_complete_evt, 7408 sizeof(struct hci_ev_auth_complete)), 7409 /* [0x07 = HCI_EV_REMOTE_NAME] */ 7410 HCI_EV(HCI_EV_REMOTE_NAME, hci_remote_name_evt, 7411 sizeof(struct hci_ev_remote_name)), 7412 /* [0x08 = HCI_EV_ENCRYPT_CHANGE] */ 7413 HCI_EV(HCI_EV_ENCRYPT_CHANGE, hci_encrypt_change_evt, 7414 sizeof(struct hci_ev_encrypt_change)), 7415 /* [0x09 = HCI_EV_CHANGE_LINK_KEY_COMPLETE] */ 7416 HCI_EV(HCI_EV_CHANGE_LINK_KEY_COMPLETE, 7417 hci_change_link_key_complete_evt, 7418 sizeof(struct hci_ev_change_link_key_complete)), 7419 /* [0x0b = HCI_EV_REMOTE_FEATURES] */ 7420 HCI_EV(HCI_EV_REMOTE_FEATURES, hci_remote_features_evt, 7421 sizeof(struct hci_ev_remote_features)), 7422 /* [0x0e = HCI_EV_CMD_COMPLETE] */ 7423 HCI_EV_REQ_VL(HCI_EV_CMD_COMPLETE, hci_cmd_complete_evt, 7424 sizeof(struct hci_ev_cmd_complete), HCI_MAX_EVENT_SIZE), 7425 /* [0x0f = HCI_EV_CMD_STATUS] */ 7426 HCI_EV_REQ(HCI_EV_CMD_STATUS, hci_cmd_status_evt, 7427 sizeof(struct hci_ev_cmd_status)), 7428 /* [0x10 = HCI_EV_CMD_STATUS] */ 7429 HCI_EV(HCI_EV_HARDWARE_ERROR, hci_hardware_error_evt, 7430 sizeof(struct hci_ev_hardware_error)), 7431 /* [0x12 = HCI_EV_ROLE_CHANGE] */ 7432 HCI_EV(HCI_EV_ROLE_CHANGE, hci_role_change_evt, 7433 sizeof(struct hci_ev_role_change)), 7434 /* [0x13 = HCI_EV_NUM_COMP_PKTS] */ 7435 HCI_EV_VL(HCI_EV_NUM_COMP_PKTS, hci_num_comp_pkts_evt, 7436 sizeof(struct hci_ev_num_comp_pkts), HCI_MAX_EVENT_SIZE), 7437 /* [0x14 = HCI_EV_MODE_CHANGE] */ 7438 HCI_EV(HCI_EV_MODE_CHANGE, hci_mode_change_evt, 7439 sizeof(struct hci_ev_mode_change)), 7440 /* [0x16 = HCI_EV_PIN_CODE_REQ] */ 7441 HCI_EV(HCI_EV_PIN_CODE_REQ, hci_pin_code_request_evt, 7442 sizeof(struct hci_ev_pin_code_req)), 7443 /* [0x17 = HCI_EV_LINK_KEY_REQ] */ 7444 HCI_EV(HCI_EV_LINK_KEY_REQ, hci_link_key_request_evt, 7445 sizeof(struct hci_ev_link_key_req)), 7446 /* [0x18 = HCI_EV_LINK_KEY_NOTIFY] */ 7447 HCI_EV(HCI_EV_LINK_KEY_NOTIFY, hci_link_key_notify_evt, 7448 sizeof(struct hci_ev_link_key_notify)), 7449 /* [0x1c = HCI_EV_CLOCK_OFFSET] */ 7450 HCI_EV(HCI_EV_CLOCK_OFFSET, hci_clock_offset_evt, 7451 sizeof(struct hci_ev_clock_offset)), 7452 /* [0x1d = HCI_EV_PKT_TYPE_CHANGE] */ 7453 HCI_EV(HCI_EV_PKT_TYPE_CHANGE, hci_pkt_type_change_evt, 7454 sizeof(struct hci_ev_pkt_type_change)), 7455 /* [0x20 = HCI_EV_PSCAN_REP_MODE] */ 7456 HCI_EV(HCI_EV_PSCAN_REP_MODE, hci_pscan_rep_mode_evt, 7457 sizeof(struct hci_ev_pscan_rep_mode)), 7458 /* [0x22 = HCI_EV_INQUIRY_RESULT_WITH_RSSI] */ 7459 HCI_EV_VL(HCI_EV_INQUIRY_RESULT_WITH_RSSI, 7460 hci_inquiry_result_with_rssi_evt, 7461 sizeof(struct hci_ev_inquiry_result_rssi), 7462 HCI_MAX_EVENT_SIZE), 7463 /* [0x23 = HCI_EV_REMOTE_EXT_FEATURES] */ 7464 HCI_EV(HCI_EV_REMOTE_EXT_FEATURES, hci_remote_ext_features_evt, 7465 sizeof(struct hci_ev_remote_ext_features)), 7466 /* [0x2c = HCI_EV_SYNC_CONN_COMPLETE] */ 7467 HCI_EV(HCI_EV_SYNC_CONN_COMPLETE, hci_sync_conn_complete_evt, 7468 sizeof(struct hci_ev_sync_conn_complete)), 7469 /* [0x2d = HCI_EV_EXTENDED_INQUIRY_RESULT] */ 7470 HCI_EV_VL(HCI_EV_EXTENDED_INQUIRY_RESULT, 7471 hci_extended_inquiry_result_evt, 7472 sizeof(struct hci_ev_ext_inquiry_result), HCI_MAX_EVENT_SIZE), 7473 /* [0x30 = HCI_EV_KEY_REFRESH_COMPLETE] */ 7474 HCI_EV(HCI_EV_KEY_REFRESH_COMPLETE, hci_key_refresh_complete_evt, 7475 sizeof(struct hci_ev_key_refresh_complete)), 7476 /* [0x31 = HCI_EV_IO_CAPA_REQUEST] */ 7477 HCI_EV(HCI_EV_IO_CAPA_REQUEST, hci_io_capa_request_evt, 7478 sizeof(struct hci_ev_io_capa_request)), 7479 /* [0x32 = HCI_EV_IO_CAPA_REPLY] */ 7480 HCI_EV(HCI_EV_IO_CAPA_REPLY, hci_io_capa_reply_evt, 7481 sizeof(struct hci_ev_io_capa_reply)), 7482 /* [0x33 = HCI_EV_USER_CONFIRM_REQUEST] */ 7483 HCI_EV(HCI_EV_USER_CONFIRM_REQUEST, hci_user_confirm_request_evt, 7484 sizeof(struct hci_ev_user_confirm_req)), 7485 /* [0x34 = HCI_EV_USER_PASSKEY_REQUEST] */ 7486 HCI_EV(HCI_EV_USER_PASSKEY_REQUEST, hci_user_passkey_request_evt, 7487 sizeof(struct hci_ev_user_passkey_req)), 7488 /* [0x35 = HCI_EV_REMOTE_OOB_DATA_REQUEST] */ 7489 HCI_EV(HCI_EV_REMOTE_OOB_DATA_REQUEST, hci_remote_oob_data_request_evt, 7490 sizeof(struct hci_ev_remote_oob_data_request)), 7491 /* [0x36 = HCI_EV_SIMPLE_PAIR_COMPLETE] */ 7492 HCI_EV(HCI_EV_SIMPLE_PAIR_COMPLETE, hci_simple_pair_complete_evt, 7493 sizeof(struct hci_ev_simple_pair_complete)), 7494 /* [0x3b = HCI_EV_USER_PASSKEY_NOTIFY] */ 7495 HCI_EV(HCI_EV_USER_PASSKEY_NOTIFY, hci_user_passkey_notify_evt, 7496 sizeof(struct hci_ev_user_passkey_notify)), 7497 /* [0x3c = HCI_EV_KEYPRESS_NOTIFY] */ 7498 HCI_EV(HCI_EV_KEYPRESS_NOTIFY, hci_keypress_notify_evt, 7499 sizeof(struct hci_ev_keypress_notify)), 7500 /* [0x3d = HCI_EV_REMOTE_HOST_FEATURES] */ 7501 HCI_EV(HCI_EV_REMOTE_HOST_FEATURES, hci_remote_host_features_evt, 7502 sizeof(struct hci_ev_remote_host_features)), 7503 /* [0x3e = HCI_EV_LE_META] */ 7504 HCI_EV_REQ_VL(HCI_EV_LE_META, hci_le_meta_evt, 7505 sizeof(struct hci_ev_le_meta), HCI_MAX_EVENT_SIZE), 7506 /* [0x48 = HCI_EV_NUM_COMP_BLOCKS] */ 7507 HCI_EV(HCI_EV_NUM_COMP_BLOCKS, hci_num_comp_blocks_evt, 7508 sizeof(struct hci_ev_num_comp_blocks)), 7509 /* [0xff = HCI_EV_VENDOR] */ 7510 HCI_EV_VL(HCI_EV_VENDOR, msft_vendor_evt, 0, HCI_MAX_EVENT_SIZE), 7511 }; 7512 7513 static void hci_event_func(struct hci_dev *hdev, u8 event, struct sk_buff *skb, 7514 u16 *opcode, u8 *status, 7515 hci_req_complete_t *req_complete, 7516 hci_req_complete_skb_t *req_complete_skb) 7517 { 7518 const struct hci_ev *ev = &hci_ev_table[event]; 7519 void *data; 7520 7521 if (!ev->func) 7522 return; 7523 7524 if (skb->len < ev->min_len) { 7525 bt_dev_err(hdev, "unexpected event 0x%2.2x length: %u < %u", 7526 event, skb->len, ev->min_len); 7527 return; 7528 } 7529 7530 /* Just warn if the length is over max_len size it still be 7531 * possible to partially parse the event so leave to callback to 7532 * decide if that is acceptable. 7533 */ 7534 if (skb->len > ev->max_len) 7535 bt_dev_warn_ratelimited(hdev, 7536 "unexpected event 0x%2.2x length: %u > %u", 7537 event, skb->len, ev->max_len); 7538 7539 data = hci_ev_skb_pull(hdev, skb, event, ev->min_len); 7540 if (!data) 7541 return; 7542 7543 if (ev->req) 7544 ev->func_req(hdev, data, skb, opcode, status, req_complete, 7545 req_complete_skb); 7546 else 7547 ev->func(hdev, data, skb); 7548 } 7549 7550 void hci_event_packet(struct hci_dev *hdev, struct sk_buff *skb) 7551 { 7552 struct hci_event_hdr *hdr = (void *) skb->data; 7553 hci_req_complete_t req_complete = NULL; 7554 hci_req_complete_skb_t req_complete_skb = NULL; 7555 struct sk_buff *orig_skb = NULL; 7556 u8 status = 0, event, req_evt = 0; 7557 u16 opcode = HCI_OP_NOP; 7558 7559 if (skb->len < sizeof(*hdr)) { 7560 bt_dev_err(hdev, "Malformed HCI Event"); 7561 goto done; 7562 } 7563 7564 kfree_skb(hdev->recv_event); 7565 hdev->recv_event = skb_clone(skb, GFP_KERNEL); 7566 7567 event = hdr->evt; 7568 if (!event) { 7569 bt_dev_warn(hdev, "Received unexpected HCI Event 0x%2.2x", 7570 event); 7571 goto done; 7572 } 7573 7574 /* Only match event if command OGF is not for LE */ 7575 if (hdev->req_skb && 7576 hci_opcode_ogf(hci_skb_opcode(hdev->req_skb)) != 0x08 && 7577 hci_skb_event(hdev->req_skb) == event) { 7578 hci_req_cmd_complete(hdev, hci_skb_opcode(hdev->req_skb), 7579 status, &req_complete, &req_complete_skb); 7580 req_evt = event; 7581 } 7582 7583 /* If it looks like we might end up having to call 7584 * req_complete_skb, store a pristine copy of the skb since the 7585 * various handlers may modify the original one through 7586 * skb_pull() calls, etc. 7587 */ 7588 if (req_complete_skb || event == HCI_EV_CMD_STATUS || 7589 event == HCI_EV_CMD_COMPLETE) 7590 orig_skb = skb_clone(skb, GFP_KERNEL); 7591 7592 skb_pull(skb, HCI_EVENT_HDR_SIZE); 7593 7594 /* Store wake reason if we're suspended */ 7595 hci_store_wake_reason(hdev, event, skb); 7596 7597 bt_dev_dbg(hdev, "event 0x%2.2x", event); 7598 7599 hci_event_func(hdev, event, skb, &opcode, &status, &req_complete, 7600 &req_complete_skb); 7601 7602 if (req_complete) { 7603 req_complete(hdev, status, opcode); 7604 } else if (req_complete_skb) { 7605 if (!hci_get_cmd_complete(hdev, opcode, req_evt, orig_skb)) { 7606 kfree_skb(orig_skb); 7607 orig_skb = NULL; 7608 } 7609 req_complete_skb(hdev, status, opcode, orig_skb); 7610 } 7611 7612 done: 7613 kfree_skb(orig_skb); 7614 kfree_skb(skb); 7615 hdev->stat.evt_rx++; 7616 } 7617