1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved. 4 Copyright 2023 NXP 5 6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 7 8 This program is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License version 2 as 10 published by the Free Software Foundation; 11 12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 20 21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 23 SOFTWARE IS DISCLAIMED. 24 */ 25 26 /* Bluetooth HCI event handling. */ 27 28 #include <asm/unaligned.h> 29 #include <linux/crypto.h> 30 #include <crypto/algapi.h> 31 32 #include <net/bluetooth/bluetooth.h> 33 #include <net/bluetooth/hci_core.h> 34 #include <net/bluetooth/mgmt.h> 35 36 #include "hci_request.h" 37 #include "hci_debugfs.h" 38 #include "hci_codec.h" 39 #include "smp.h" 40 #include "msft.h" 41 #include "eir.h" 42 43 #define ZERO_KEY "\x00\x00\x00\x00\x00\x00\x00\x00" \ 44 "\x00\x00\x00\x00\x00\x00\x00\x00" 45 46 #define secs_to_jiffies(_secs) msecs_to_jiffies((_secs) * 1000) 47 48 /* Handle HCI Event packets */ 49 50 static void *hci_ev_skb_pull(struct hci_dev *hdev, struct sk_buff *skb, 51 u8 ev, size_t len) 52 { 53 void *data; 54 55 data = skb_pull_data(skb, len); 56 if (!data) 57 bt_dev_err(hdev, "Malformed Event: 0x%2.2x", ev); 58 59 return data; 60 } 61 62 static void *hci_cc_skb_pull(struct hci_dev *hdev, struct sk_buff *skb, 63 u16 op, size_t len) 64 { 65 void *data; 66 67 data = skb_pull_data(skb, len); 68 if (!data) 69 bt_dev_err(hdev, "Malformed Command Complete: 0x%4.4x", op); 70 71 return data; 72 } 73 74 static void *hci_le_ev_skb_pull(struct hci_dev *hdev, struct sk_buff *skb, 75 u8 ev, size_t len) 76 { 77 void *data; 78 79 data = skb_pull_data(skb, len); 80 if (!data) 81 bt_dev_err(hdev, "Malformed LE Event: 0x%2.2x", ev); 82 83 return data; 84 } 85 86 static u8 hci_cc_inquiry_cancel(struct hci_dev *hdev, void *data, 87 struct sk_buff *skb) 88 { 89 struct hci_ev_status *rp = data; 90 91 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 92 93 /* It is possible that we receive Inquiry Complete event right 94 * before we receive Inquiry Cancel Command Complete event, in 95 * which case the latter event should have status of Command 96 * Disallowed. This should not be treated as error, since 97 * we actually achieve what Inquiry Cancel wants to achieve, 98 * which is to end the last Inquiry session. 99 */ 100 if (rp->status == HCI_ERROR_COMMAND_DISALLOWED && !test_bit(HCI_INQUIRY, &hdev->flags)) { 101 bt_dev_warn(hdev, "Ignoring error of Inquiry Cancel command"); 102 rp->status = 0x00; 103 } 104 105 if (rp->status) 106 return rp->status; 107 108 clear_bit(HCI_INQUIRY, &hdev->flags); 109 smp_mb__after_atomic(); /* wake_up_bit advises about this barrier */ 110 wake_up_bit(&hdev->flags, HCI_INQUIRY); 111 112 hci_dev_lock(hdev); 113 /* Set discovery state to stopped if we're not doing LE active 114 * scanning. 115 */ 116 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN) || 117 hdev->le_scan_type != LE_SCAN_ACTIVE) 118 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 119 hci_dev_unlock(hdev); 120 121 return rp->status; 122 } 123 124 static u8 hci_cc_periodic_inq(struct hci_dev *hdev, void *data, 125 struct sk_buff *skb) 126 { 127 struct hci_ev_status *rp = data; 128 129 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 130 131 if (rp->status) 132 return rp->status; 133 134 hci_dev_set_flag(hdev, HCI_PERIODIC_INQ); 135 136 return rp->status; 137 } 138 139 static u8 hci_cc_exit_periodic_inq(struct hci_dev *hdev, void *data, 140 struct sk_buff *skb) 141 { 142 struct hci_ev_status *rp = data; 143 144 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 145 146 if (rp->status) 147 return rp->status; 148 149 hci_dev_clear_flag(hdev, HCI_PERIODIC_INQ); 150 151 return rp->status; 152 } 153 154 static u8 hci_cc_remote_name_req_cancel(struct hci_dev *hdev, void *data, 155 struct sk_buff *skb) 156 { 157 struct hci_ev_status *rp = data; 158 159 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 160 161 return rp->status; 162 } 163 164 static u8 hci_cc_role_discovery(struct hci_dev *hdev, void *data, 165 struct sk_buff *skb) 166 { 167 struct hci_rp_role_discovery *rp = data; 168 struct hci_conn *conn; 169 170 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 171 172 if (rp->status) 173 return rp->status; 174 175 hci_dev_lock(hdev); 176 177 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(rp->handle)); 178 if (conn) 179 conn->role = rp->role; 180 181 hci_dev_unlock(hdev); 182 183 return rp->status; 184 } 185 186 static u8 hci_cc_read_link_policy(struct hci_dev *hdev, void *data, 187 struct sk_buff *skb) 188 { 189 struct hci_rp_read_link_policy *rp = data; 190 struct hci_conn *conn; 191 192 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 193 194 if (rp->status) 195 return rp->status; 196 197 hci_dev_lock(hdev); 198 199 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(rp->handle)); 200 if (conn) 201 conn->link_policy = __le16_to_cpu(rp->policy); 202 203 hci_dev_unlock(hdev); 204 205 return rp->status; 206 } 207 208 static u8 hci_cc_write_link_policy(struct hci_dev *hdev, void *data, 209 struct sk_buff *skb) 210 { 211 struct hci_rp_write_link_policy *rp = data; 212 struct hci_conn *conn; 213 void *sent; 214 215 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 216 217 if (rp->status) 218 return rp->status; 219 220 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_LINK_POLICY); 221 if (!sent) 222 return rp->status; 223 224 hci_dev_lock(hdev); 225 226 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(rp->handle)); 227 if (conn) 228 conn->link_policy = get_unaligned_le16(sent + 2); 229 230 hci_dev_unlock(hdev); 231 232 return rp->status; 233 } 234 235 static u8 hci_cc_read_def_link_policy(struct hci_dev *hdev, void *data, 236 struct sk_buff *skb) 237 { 238 struct hci_rp_read_def_link_policy *rp = data; 239 240 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 241 242 if (rp->status) 243 return rp->status; 244 245 hdev->link_policy = __le16_to_cpu(rp->policy); 246 247 return rp->status; 248 } 249 250 static u8 hci_cc_write_def_link_policy(struct hci_dev *hdev, void *data, 251 struct sk_buff *skb) 252 { 253 struct hci_ev_status *rp = data; 254 void *sent; 255 256 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 257 258 if (rp->status) 259 return rp->status; 260 261 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_DEF_LINK_POLICY); 262 if (!sent) 263 return rp->status; 264 265 hdev->link_policy = get_unaligned_le16(sent); 266 267 return rp->status; 268 } 269 270 static u8 hci_cc_reset(struct hci_dev *hdev, void *data, struct sk_buff *skb) 271 { 272 struct hci_ev_status *rp = data; 273 274 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 275 276 clear_bit(HCI_RESET, &hdev->flags); 277 278 if (rp->status) 279 return rp->status; 280 281 /* Reset all non-persistent flags */ 282 hci_dev_clear_volatile_flags(hdev); 283 284 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 285 286 hdev->inq_tx_power = HCI_TX_POWER_INVALID; 287 hdev->adv_tx_power = HCI_TX_POWER_INVALID; 288 289 memset(hdev->adv_data, 0, sizeof(hdev->adv_data)); 290 hdev->adv_data_len = 0; 291 292 memset(hdev->scan_rsp_data, 0, sizeof(hdev->scan_rsp_data)); 293 hdev->scan_rsp_data_len = 0; 294 295 hdev->le_scan_type = LE_SCAN_PASSIVE; 296 297 hdev->ssp_debug_mode = 0; 298 299 hci_bdaddr_list_clear(&hdev->le_accept_list); 300 hci_bdaddr_list_clear(&hdev->le_resolv_list); 301 302 return rp->status; 303 } 304 305 static u8 hci_cc_read_stored_link_key(struct hci_dev *hdev, void *data, 306 struct sk_buff *skb) 307 { 308 struct hci_rp_read_stored_link_key *rp = data; 309 struct hci_cp_read_stored_link_key *sent; 310 311 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 312 313 sent = hci_sent_cmd_data(hdev, HCI_OP_READ_STORED_LINK_KEY); 314 if (!sent) 315 return rp->status; 316 317 if (!rp->status && sent->read_all == 0x01) { 318 hdev->stored_max_keys = le16_to_cpu(rp->max_keys); 319 hdev->stored_num_keys = le16_to_cpu(rp->num_keys); 320 } 321 322 return rp->status; 323 } 324 325 static u8 hci_cc_delete_stored_link_key(struct hci_dev *hdev, void *data, 326 struct sk_buff *skb) 327 { 328 struct hci_rp_delete_stored_link_key *rp = data; 329 u16 num_keys; 330 331 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 332 333 if (rp->status) 334 return rp->status; 335 336 num_keys = le16_to_cpu(rp->num_keys); 337 338 if (num_keys <= hdev->stored_num_keys) 339 hdev->stored_num_keys -= num_keys; 340 else 341 hdev->stored_num_keys = 0; 342 343 return rp->status; 344 } 345 346 static u8 hci_cc_write_local_name(struct hci_dev *hdev, void *data, 347 struct sk_buff *skb) 348 { 349 struct hci_ev_status *rp = data; 350 void *sent; 351 352 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 353 354 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_LOCAL_NAME); 355 if (!sent) 356 return rp->status; 357 358 hci_dev_lock(hdev); 359 360 if (hci_dev_test_flag(hdev, HCI_MGMT)) 361 mgmt_set_local_name_complete(hdev, sent, rp->status); 362 else if (!rp->status) 363 memcpy(hdev->dev_name, sent, HCI_MAX_NAME_LENGTH); 364 365 hci_dev_unlock(hdev); 366 367 return rp->status; 368 } 369 370 static u8 hci_cc_read_local_name(struct hci_dev *hdev, void *data, 371 struct sk_buff *skb) 372 { 373 struct hci_rp_read_local_name *rp = data; 374 375 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 376 377 if (rp->status) 378 return rp->status; 379 380 if (hci_dev_test_flag(hdev, HCI_SETUP) || 381 hci_dev_test_flag(hdev, HCI_CONFIG)) 382 memcpy(hdev->dev_name, rp->name, HCI_MAX_NAME_LENGTH); 383 384 return rp->status; 385 } 386 387 static u8 hci_cc_write_auth_enable(struct hci_dev *hdev, void *data, 388 struct sk_buff *skb) 389 { 390 struct hci_ev_status *rp = data; 391 void *sent; 392 393 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 394 395 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_AUTH_ENABLE); 396 if (!sent) 397 return rp->status; 398 399 hci_dev_lock(hdev); 400 401 if (!rp->status) { 402 __u8 param = *((__u8 *) sent); 403 404 if (param == AUTH_ENABLED) 405 set_bit(HCI_AUTH, &hdev->flags); 406 else 407 clear_bit(HCI_AUTH, &hdev->flags); 408 } 409 410 if (hci_dev_test_flag(hdev, HCI_MGMT)) 411 mgmt_auth_enable_complete(hdev, rp->status); 412 413 hci_dev_unlock(hdev); 414 415 return rp->status; 416 } 417 418 static u8 hci_cc_write_encrypt_mode(struct hci_dev *hdev, void *data, 419 struct sk_buff *skb) 420 { 421 struct hci_ev_status *rp = data; 422 __u8 param; 423 void *sent; 424 425 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 426 427 if (rp->status) 428 return rp->status; 429 430 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_ENCRYPT_MODE); 431 if (!sent) 432 return rp->status; 433 434 param = *((__u8 *) sent); 435 436 if (param) 437 set_bit(HCI_ENCRYPT, &hdev->flags); 438 else 439 clear_bit(HCI_ENCRYPT, &hdev->flags); 440 441 return rp->status; 442 } 443 444 static u8 hci_cc_write_scan_enable(struct hci_dev *hdev, void *data, 445 struct sk_buff *skb) 446 { 447 struct hci_ev_status *rp = data; 448 __u8 param; 449 void *sent; 450 451 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 452 453 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_SCAN_ENABLE); 454 if (!sent) 455 return rp->status; 456 457 param = *((__u8 *) sent); 458 459 hci_dev_lock(hdev); 460 461 if (rp->status) { 462 hdev->discov_timeout = 0; 463 goto done; 464 } 465 466 if (param & SCAN_INQUIRY) 467 set_bit(HCI_ISCAN, &hdev->flags); 468 else 469 clear_bit(HCI_ISCAN, &hdev->flags); 470 471 if (param & SCAN_PAGE) 472 set_bit(HCI_PSCAN, &hdev->flags); 473 else 474 clear_bit(HCI_PSCAN, &hdev->flags); 475 476 done: 477 hci_dev_unlock(hdev); 478 479 return rp->status; 480 } 481 482 static u8 hci_cc_set_event_filter(struct hci_dev *hdev, void *data, 483 struct sk_buff *skb) 484 { 485 struct hci_ev_status *rp = data; 486 struct hci_cp_set_event_filter *cp; 487 void *sent; 488 489 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 490 491 if (rp->status) 492 return rp->status; 493 494 sent = hci_sent_cmd_data(hdev, HCI_OP_SET_EVENT_FLT); 495 if (!sent) 496 return rp->status; 497 498 cp = (struct hci_cp_set_event_filter *)sent; 499 500 if (cp->flt_type == HCI_FLT_CLEAR_ALL) 501 hci_dev_clear_flag(hdev, HCI_EVENT_FILTER_CONFIGURED); 502 else 503 hci_dev_set_flag(hdev, HCI_EVENT_FILTER_CONFIGURED); 504 505 return rp->status; 506 } 507 508 static u8 hci_cc_read_class_of_dev(struct hci_dev *hdev, void *data, 509 struct sk_buff *skb) 510 { 511 struct hci_rp_read_class_of_dev *rp = data; 512 513 if (WARN_ON(!hdev)) 514 return HCI_ERROR_UNSPECIFIED; 515 516 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 517 518 if (rp->status) 519 return rp->status; 520 521 memcpy(hdev->dev_class, rp->dev_class, 3); 522 523 bt_dev_dbg(hdev, "class 0x%.2x%.2x%.2x", hdev->dev_class[2], 524 hdev->dev_class[1], hdev->dev_class[0]); 525 526 return rp->status; 527 } 528 529 static u8 hci_cc_write_class_of_dev(struct hci_dev *hdev, void *data, 530 struct sk_buff *skb) 531 { 532 struct hci_ev_status *rp = data; 533 void *sent; 534 535 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 536 537 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_CLASS_OF_DEV); 538 if (!sent) 539 return rp->status; 540 541 hci_dev_lock(hdev); 542 543 if (!rp->status) 544 memcpy(hdev->dev_class, sent, 3); 545 546 if (hci_dev_test_flag(hdev, HCI_MGMT)) 547 mgmt_set_class_of_dev_complete(hdev, sent, rp->status); 548 549 hci_dev_unlock(hdev); 550 551 return rp->status; 552 } 553 554 static u8 hci_cc_read_voice_setting(struct hci_dev *hdev, void *data, 555 struct sk_buff *skb) 556 { 557 struct hci_rp_read_voice_setting *rp = data; 558 __u16 setting; 559 560 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 561 562 if (rp->status) 563 return rp->status; 564 565 setting = __le16_to_cpu(rp->voice_setting); 566 567 if (hdev->voice_setting == setting) 568 return rp->status; 569 570 hdev->voice_setting = setting; 571 572 bt_dev_dbg(hdev, "voice setting 0x%4.4x", setting); 573 574 if (hdev->notify) 575 hdev->notify(hdev, HCI_NOTIFY_VOICE_SETTING); 576 577 return rp->status; 578 } 579 580 static u8 hci_cc_write_voice_setting(struct hci_dev *hdev, void *data, 581 struct sk_buff *skb) 582 { 583 struct hci_ev_status *rp = data; 584 __u16 setting; 585 void *sent; 586 587 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 588 589 if (rp->status) 590 return rp->status; 591 592 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_VOICE_SETTING); 593 if (!sent) 594 return rp->status; 595 596 setting = get_unaligned_le16(sent); 597 598 if (hdev->voice_setting == setting) 599 return rp->status; 600 601 hdev->voice_setting = setting; 602 603 bt_dev_dbg(hdev, "voice setting 0x%4.4x", setting); 604 605 if (hdev->notify) 606 hdev->notify(hdev, HCI_NOTIFY_VOICE_SETTING); 607 608 return rp->status; 609 } 610 611 static u8 hci_cc_read_num_supported_iac(struct hci_dev *hdev, void *data, 612 struct sk_buff *skb) 613 { 614 struct hci_rp_read_num_supported_iac *rp = data; 615 616 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 617 618 if (rp->status) 619 return rp->status; 620 621 hdev->num_iac = rp->num_iac; 622 623 bt_dev_dbg(hdev, "num iac %d", hdev->num_iac); 624 625 return rp->status; 626 } 627 628 static u8 hci_cc_write_ssp_mode(struct hci_dev *hdev, void *data, 629 struct sk_buff *skb) 630 { 631 struct hci_ev_status *rp = data; 632 struct hci_cp_write_ssp_mode *sent; 633 634 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 635 636 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_SSP_MODE); 637 if (!sent) 638 return rp->status; 639 640 hci_dev_lock(hdev); 641 642 if (!rp->status) { 643 if (sent->mode) 644 hdev->features[1][0] |= LMP_HOST_SSP; 645 else 646 hdev->features[1][0] &= ~LMP_HOST_SSP; 647 } 648 649 if (!rp->status) { 650 if (sent->mode) 651 hci_dev_set_flag(hdev, HCI_SSP_ENABLED); 652 else 653 hci_dev_clear_flag(hdev, HCI_SSP_ENABLED); 654 } 655 656 hci_dev_unlock(hdev); 657 658 return rp->status; 659 } 660 661 static u8 hci_cc_write_sc_support(struct hci_dev *hdev, void *data, 662 struct sk_buff *skb) 663 { 664 struct hci_ev_status *rp = data; 665 struct hci_cp_write_sc_support *sent; 666 667 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 668 669 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_SC_SUPPORT); 670 if (!sent) 671 return rp->status; 672 673 hci_dev_lock(hdev); 674 675 if (!rp->status) { 676 if (sent->support) 677 hdev->features[1][0] |= LMP_HOST_SC; 678 else 679 hdev->features[1][0] &= ~LMP_HOST_SC; 680 } 681 682 if (!hci_dev_test_flag(hdev, HCI_MGMT) && !rp->status) { 683 if (sent->support) 684 hci_dev_set_flag(hdev, HCI_SC_ENABLED); 685 else 686 hci_dev_clear_flag(hdev, HCI_SC_ENABLED); 687 } 688 689 hci_dev_unlock(hdev); 690 691 return rp->status; 692 } 693 694 static u8 hci_cc_read_local_version(struct hci_dev *hdev, void *data, 695 struct sk_buff *skb) 696 { 697 struct hci_rp_read_local_version *rp = data; 698 699 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 700 701 if (rp->status) 702 return rp->status; 703 704 if (hci_dev_test_flag(hdev, HCI_SETUP) || 705 hci_dev_test_flag(hdev, HCI_CONFIG)) { 706 hdev->hci_ver = rp->hci_ver; 707 hdev->hci_rev = __le16_to_cpu(rp->hci_rev); 708 hdev->lmp_ver = rp->lmp_ver; 709 hdev->manufacturer = __le16_to_cpu(rp->manufacturer); 710 hdev->lmp_subver = __le16_to_cpu(rp->lmp_subver); 711 } 712 713 return rp->status; 714 } 715 716 static u8 hci_cc_read_enc_key_size(struct hci_dev *hdev, void *data, 717 struct sk_buff *skb) 718 { 719 struct hci_rp_read_enc_key_size *rp = data; 720 struct hci_conn *conn; 721 u16 handle; 722 u8 status = rp->status; 723 724 bt_dev_dbg(hdev, "status 0x%2.2x", status); 725 726 handle = le16_to_cpu(rp->handle); 727 728 hci_dev_lock(hdev); 729 730 conn = hci_conn_hash_lookup_handle(hdev, handle); 731 if (!conn) { 732 status = 0xFF; 733 goto done; 734 } 735 736 /* While unexpected, the read_enc_key_size command may fail. The most 737 * secure approach is to then assume the key size is 0 to force a 738 * disconnection. 739 */ 740 if (status) { 741 bt_dev_err(hdev, "failed to read key size for handle %u", 742 handle); 743 conn->enc_key_size = 0; 744 } else { 745 conn->enc_key_size = rp->key_size; 746 status = 0; 747 748 if (conn->enc_key_size < hdev->min_enc_key_size) { 749 /* As slave role, the conn->state has been set to 750 * BT_CONNECTED and l2cap conn req might not be received 751 * yet, at this moment the l2cap layer almost does 752 * nothing with the non-zero status. 753 * So we also clear encrypt related bits, and then the 754 * handler of l2cap conn req will get the right secure 755 * state at a later time. 756 */ 757 status = HCI_ERROR_AUTH_FAILURE; 758 clear_bit(HCI_CONN_ENCRYPT, &conn->flags); 759 clear_bit(HCI_CONN_AES_CCM, &conn->flags); 760 } 761 } 762 763 hci_encrypt_cfm(conn, status); 764 765 done: 766 hci_dev_unlock(hdev); 767 768 return status; 769 } 770 771 static u8 hci_cc_read_local_commands(struct hci_dev *hdev, void *data, 772 struct sk_buff *skb) 773 { 774 struct hci_rp_read_local_commands *rp = data; 775 776 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 777 778 if (rp->status) 779 return rp->status; 780 781 if (hci_dev_test_flag(hdev, HCI_SETUP) || 782 hci_dev_test_flag(hdev, HCI_CONFIG)) 783 memcpy(hdev->commands, rp->commands, sizeof(hdev->commands)); 784 785 return rp->status; 786 } 787 788 static u8 hci_cc_read_auth_payload_timeout(struct hci_dev *hdev, void *data, 789 struct sk_buff *skb) 790 { 791 struct hci_rp_read_auth_payload_to *rp = data; 792 struct hci_conn *conn; 793 794 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 795 796 if (rp->status) 797 return rp->status; 798 799 hci_dev_lock(hdev); 800 801 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(rp->handle)); 802 if (conn) 803 conn->auth_payload_timeout = __le16_to_cpu(rp->timeout); 804 805 hci_dev_unlock(hdev); 806 807 return rp->status; 808 } 809 810 static u8 hci_cc_write_auth_payload_timeout(struct hci_dev *hdev, void *data, 811 struct sk_buff *skb) 812 { 813 struct hci_rp_write_auth_payload_to *rp = data; 814 struct hci_conn *conn; 815 void *sent; 816 817 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 818 819 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_AUTH_PAYLOAD_TO); 820 if (!sent) 821 return rp->status; 822 823 hci_dev_lock(hdev); 824 825 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(rp->handle)); 826 if (!conn) { 827 rp->status = 0xff; 828 goto unlock; 829 } 830 831 if (!rp->status) 832 conn->auth_payload_timeout = get_unaligned_le16(sent + 2); 833 834 unlock: 835 hci_dev_unlock(hdev); 836 837 return rp->status; 838 } 839 840 static u8 hci_cc_read_local_features(struct hci_dev *hdev, void *data, 841 struct sk_buff *skb) 842 { 843 struct hci_rp_read_local_features *rp = data; 844 845 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 846 847 if (rp->status) 848 return rp->status; 849 850 memcpy(hdev->features, rp->features, 8); 851 852 /* Adjust default settings according to features 853 * supported by device. */ 854 855 if (hdev->features[0][0] & LMP_3SLOT) 856 hdev->pkt_type |= (HCI_DM3 | HCI_DH3); 857 858 if (hdev->features[0][0] & LMP_5SLOT) 859 hdev->pkt_type |= (HCI_DM5 | HCI_DH5); 860 861 if (hdev->features[0][1] & LMP_HV2) { 862 hdev->pkt_type |= (HCI_HV2); 863 hdev->esco_type |= (ESCO_HV2); 864 } 865 866 if (hdev->features[0][1] & LMP_HV3) { 867 hdev->pkt_type |= (HCI_HV3); 868 hdev->esco_type |= (ESCO_HV3); 869 } 870 871 if (lmp_esco_capable(hdev)) 872 hdev->esco_type |= (ESCO_EV3); 873 874 if (hdev->features[0][4] & LMP_EV4) 875 hdev->esco_type |= (ESCO_EV4); 876 877 if (hdev->features[0][4] & LMP_EV5) 878 hdev->esco_type |= (ESCO_EV5); 879 880 if (hdev->features[0][5] & LMP_EDR_ESCO_2M) 881 hdev->esco_type |= (ESCO_2EV3); 882 883 if (hdev->features[0][5] & LMP_EDR_ESCO_3M) 884 hdev->esco_type |= (ESCO_3EV3); 885 886 if (hdev->features[0][5] & LMP_EDR_3S_ESCO) 887 hdev->esco_type |= (ESCO_2EV5 | ESCO_3EV5); 888 889 return rp->status; 890 } 891 892 static u8 hci_cc_read_local_ext_features(struct hci_dev *hdev, void *data, 893 struct sk_buff *skb) 894 { 895 struct hci_rp_read_local_ext_features *rp = data; 896 897 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 898 899 if (rp->status) 900 return rp->status; 901 902 if (hdev->max_page < rp->max_page) { 903 if (test_bit(HCI_QUIRK_BROKEN_LOCAL_EXT_FEATURES_PAGE_2, 904 &hdev->quirks)) 905 bt_dev_warn(hdev, "broken local ext features page 2"); 906 else 907 hdev->max_page = rp->max_page; 908 } 909 910 if (rp->page < HCI_MAX_PAGES) 911 memcpy(hdev->features[rp->page], rp->features, 8); 912 913 return rp->status; 914 } 915 916 static u8 hci_cc_read_flow_control_mode(struct hci_dev *hdev, void *data, 917 struct sk_buff *skb) 918 { 919 struct hci_rp_read_flow_control_mode *rp = data; 920 921 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 922 923 if (rp->status) 924 return rp->status; 925 926 hdev->flow_ctl_mode = rp->mode; 927 928 return rp->status; 929 } 930 931 static u8 hci_cc_read_buffer_size(struct hci_dev *hdev, void *data, 932 struct sk_buff *skb) 933 { 934 struct hci_rp_read_buffer_size *rp = data; 935 936 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 937 938 if (rp->status) 939 return rp->status; 940 941 hdev->acl_mtu = __le16_to_cpu(rp->acl_mtu); 942 hdev->sco_mtu = rp->sco_mtu; 943 hdev->acl_pkts = __le16_to_cpu(rp->acl_max_pkt); 944 hdev->sco_pkts = __le16_to_cpu(rp->sco_max_pkt); 945 946 if (test_bit(HCI_QUIRK_FIXUP_BUFFER_SIZE, &hdev->quirks)) { 947 hdev->sco_mtu = 64; 948 hdev->sco_pkts = 8; 949 } 950 951 hdev->acl_cnt = hdev->acl_pkts; 952 hdev->sco_cnt = hdev->sco_pkts; 953 954 BT_DBG("%s acl mtu %d:%d sco mtu %d:%d", hdev->name, hdev->acl_mtu, 955 hdev->acl_pkts, hdev->sco_mtu, hdev->sco_pkts); 956 957 return rp->status; 958 } 959 960 static u8 hci_cc_read_bd_addr(struct hci_dev *hdev, void *data, 961 struct sk_buff *skb) 962 { 963 struct hci_rp_read_bd_addr *rp = data; 964 965 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 966 967 if (rp->status) 968 return rp->status; 969 970 if (test_bit(HCI_INIT, &hdev->flags)) 971 bacpy(&hdev->bdaddr, &rp->bdaddr); 972 973 if (hci_dev_test_flag(hdev, HCI_SETUP)) 974 bacpy(&hdev->setup_addr, &rp->bdaddr); 975 976 return rp->status; 977 } 978 979 static u8 hci_cc_read_local_pairing_opts(struct hci_dev *hdev, void *data, 980 struct sk_buff *skb) 981 { 982 struct hci_rp_read_local_pairing_opts *rp = data; 983 984 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 985 986 if (rp->status) 987 return rp->status; 988 989 if (hci_dev_test_flag(hdev, HCI_SETUP) || 990 hci_dev_test_flag(hdev, HCI_CONFIG)) { 991 hdev->pairing_opts = rp->pairing_opts; 992 hdev->max_enc_key_size = rp->max_key_size; 993 } 994 995 return rp->status; 996 } 997 998 static u8 hci_cc_read_page_scan_activity(struct hci_dev *hdev, void *data, 999 struct sk_buff *skb) 1000 { 1001 struct hci_rp_read_page_scan_activity *rp = data; 1002 1003 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1004 1005 if (rp->status) 1006 return rp->status; 1007 1008 if (test_bit(HCI_INIT, &hdev->flags)) { 1009 hdev->page_scan_interval = __le16_to_cpu(rp->interval); 1010 hdev->page_scan_window = __le16_to_cpu(rp->window); 1011 } 1012 1013 return rp->status; 1014 } 1015 1016 static u8 hci_cc_write_page_scan_activity(struct hci_dev *hdev, void *data, 1017 struct sk_buff *skb) 1018 { 1019 struct hci_ev_status *rp = data; 1020 struct hci_cp_write_page_scan_activity *sent; 1021 1022 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1023 1024 if (rp->status) 1025 return rp->status; 1026 1027 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_PAGE_SCAN_ACTIVITY); 1028 if (!sent) 1029 return rp->status; 1030 1031 hdev->page_scan_interval = __le16_to_cpu(sent->interval); 1032 hdev->page_scan_window = __le16_to_cpu(sent->window); 1033 1034 return rp->status; 1035 } 1036 1037 static u8 hci_cc_read_page_scan_type(struct hci_dev *hdev, void *data, 1038 struct sk_buff *skb) 1039 { 1040 struct hci_rp_read_page_scan_type *rp = data; 1041 1042 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1043 1044 if (rp->status) 1045 return rp->status; 1046 1047 if (test_bit(HCI_INIT, &hdev->flags)) 1048 hdev->page_scan_type = rp->type; 1049 1050 return rp->status; 1051 } 1052 1053 static u8 hci_cc_write_page_scan_type(struct hci_dev *hdev, void *data, 1054 struct sk_buff *skb) 1055 { 1056 struct hci_ev_status *rp = data; 1057 u8 *type; 1058 1059 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1060 1061 if (rp->status) 1062 return rp->status; 1063 1064 type = hci_sent_cmd_data(hdev, HCI_OP_WRITE_PAGE_SCAN_TYPE); 1065 if (type) 1066 hdev->page_scan_type = *type; 1067 1068 return rp->status; 1069 } 1070 1071 static u8 hci_cc_read_data_block_size(struct hci_dev *hdev, void *data, 1072 struct sk_buff *skb) 1073 { 1074 struct hci_rp_read_data_block_size *rp = data; 1075 1076 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1077 1078 if (rp->status) 1079 return rp->status; 1080 1081 hdev->block_mtu = __le16_to_cpu(rp->max_acl_len); 1082 hdev->block_len = __le16_to_cpu(rp->block_len); 1083 hdev->num_blocks = __le16_to_cpu(rp->num_blocks); 1084 1085 hdev->block_cnt = hdev->num_blocks; 1086 1087 BT_DBG("%s blk mtu %d cnt %d len %d", hdev->name, hdev->block_mtu, 1088 hdev->block_cnt, hdev->block_len); 1089 1090 return rp->status; 1091 } 1092 1093 static u8 hci_cc_read_clock(struct hci_dev *hdev, void *data, 1094 struct sk_buff *skb) 1095 { 1096 struct hci_rp_read_clock *rp = data; 1097 struct hci_cp_read_clock *cp; 1098 struct hci_conn *conn; 1099 1100 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1101 1102 if (rp->status) 1103 return rp->status; 1104 1105 hci_dev_lock(hdev); 1106 1107 cp = hci_sent_cmd_data(hdev, HCI_OP_READ_CLOCK); 1108 if (!cp) 1109 goto unlock; 1110 1111 if (cp->which == 0x00) { 1112 hdev->clock = le32_to_cpu(rp->clock); 1113 goto unlock; 1114 } 1115 1116 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(rp->handle)); 1117 if (conn) { 1118 conn->clock = le32_to_cpu(rp->clock); 1119 conn->clock_accuracy = le16_to_cpu(rp->accuracy); 1120 } 1121 1122 unlock: 1123 hci_dev_unlock(hdev); 1124 return rp->status; 1125 } 1126 1127 static u8 hci_cc_read_local_amp_info(struct hci_dev *hdev, void *data, 1128 struct sk_buff *skb) 1129 { 1130 struct hci_rp_read_local_amp_info *rp = data; 1131 1132 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1133 1134 if (rp->status) 1135 return rp->status; 1136 1137 hdev->amp_status = rp->amp_status; 1138 hdev->amp_total_bw = __le32_to_cpu(rp->total_bw); 1139 hdev->amp_max_bw = __le32_to_cpu(rp->max_bw); 1140 hdev->amp_min_latency = __le32_to_cpu(rp->min_latency); 1141 hdev->amp_max_pdu = __le32_to_cpu(rp->max_pdu); 1142 hdev->amp_type = rp->amp_type; 1143 hdev->amp_pal_cap = __le16_to_cpu(rp->pal_cap); 1144 hdev->amp_assoc_size = __le16_to_cpu(rp->max_assoc_size); 1145 hdev->amp_be_flush_to = __le32_to_cpu(rp->be_flush_to); 1146 hdev->amp_max_flush_to = __le32_to_cpu(rp->max_flush_to); 1147 1148 return rp->status; 1149 } 1150 1151 static u8 hci_cc_read_inq_rsp_tx_power(struct hci_dev *hdev, void *data, 1152 struct sk_buff *skb) 1153 { 1154 struct hci_rp_read_inq_rsp_tx_power *rp = data; 1155 1156 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1157 1158 if (rp->status) 1159 return rp->status; 1160 1161 hdev->inq_tx_power = rp->tx_power; 1162 1163 return rp->status; 1164 } 1165 1166 static u8 hci_cc_read_def_err_data_reporting(struct hci_dev *hdev, void *data, 1167 struct sk_buff *skb) 1168 { 1169 struct hci_rp_read_def_err_data_reporting *rp = data; 1170 1171 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1172 1173 if (rp->status) 1174 return rp->status; 1175 1176 hdev->err_data_reporting = rp->err_data_reporting; 1177 1178 return rp->status; 1179 } 1180 1181 static u8 hci_cc_write_def_err_data_reporting(struct hci_dev *hdev, void *data, 1182 struct sk_buff *skb) 1183 { 1184 struct hci_ev_status *rp = data; 1185 struct hci_cp_write_def_err_data_reporting *cp; 1186 1187 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1188 1189 if (rp->status) 1190 return rp->status; 1191 1192 cp = hci_sent_cmd_data(hdev, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING); 1193 if (!cp) 1194 return rp->status; 1195 1196 hdev->err_data_reporting = cp->err_data_reporting; 1197 1198 return rp->status; 1199 } 1200 1201 static u8 hci_cc_pin_code_reply(struct hci_dev *hdev, void *data, 1202 struct sk_buff *skb) 1203 { 1204 struct hci_rp_pin_code_reply *rp = data; 1205 struct hci_cp_pin_code_reply *cp; 1206 struct hci_conn *conn; 1207 1208 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1209 1210 hci_dev_lock(hdev); 1211 1212 if (hci_dev_test_flag(hdev, HCI_MGMT)) 1213 mgmt_pin_code_reply_complete(hdev, &rp->bdaddr, rp->status); 1214 1215 if (rp->status) 1216 goto unlock; 1217 1218 cp = hci_sent_cmd_data(hdev, HCI_OP_PIN_CODE_REPLY); 1219 if (!cp) 1220 goto unlock; 1221 1222 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &cp->bdaddr); 1223 if (conn) 1224 conn->pin_length = cp->pin_len; 1225 1226 unlock: 1227 hci_dev_unlock(hdev); 1228 return rp->status; 1229 } 1230 1231 static u8 hci_cc_pin_code_neg_reply(struct hci_dev *hdev, void *data, 1232 struct sk_buff *skb) 1233 { 1234 struct hci_rp_pin_code_neg_reply *rp = data; 1235 1236 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1237 1238 hci_dev_lock(hdev); 1239 1240 if (hci_dev_test_flag(hdev, HCI_MGMT)) 1241 mgmt_pin_code_neg_reply_complete(hdev, &rp->bdaddr, 1242 rp->status); 1243 1244 hci_dev_unlock(hdev); 1245 1246 return rp->status; 1247 } 1248 1249 static u8 hci_cc_le_read_buffer_size(struct hci_dev *hdev, void *data, 1250 struct sk_buff *skb) 1251 { 1252 struct hci_rp_le_read_buffer_size *rp = data; 1253 1254 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1255 1256 if (rp->status) 1257 return rp->status; 1258 1259 hdev->le_mtu = __le16_to_cpu(rp->le_mtu); 1260 hdev->le_pkts = rp->le_max_pkt; 1261 1262 hdev->le_cnt = hdev->le_pkts; 1263 1264 BT_DBG("%s le mtu %d:%d", hdev->name, hdev->le_mtu, hdev->le_pkts); 1265 1266 return rp->status; 1267 } 1268 1269 static u8 hci_cc_le_read_local_features(struct hci_dev *hdev, void *data, 1270 struct sk_buff *skb) 1271 { 1272 struct hci_rp_le_read_local_features *rp = data; 1273 1274 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status); 1275 1276 if (rp->status) 1277 return rp->status; 1278 1279 memcpy(hdev->le_features, rp->features, 8); 1280 1281 return rp->status; 1282 } 1283 1284 static u8 hci_cc_le_read_adv_tx_power(struct hci_dev *hdev, void *data, 1285 struct sk_buff *skb) 1286 { 1287 struct hci_rp_le_read_adv_tx_power *rp = data; 1288 1289 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1290 1291 if (rp->status) 1292 return rp->status; 1293 1294 hdev->adv_tx_power = rp->tx_power; 1295 1296 return rp->status; 1297 } 1298 1299 static u8 hci_cc_user_confirm_reply(struct hci_dev *hdev, void *data, 1300 struct sk_buff *skb) 1301 { 1302 struct hci_rp_user_confirm_reply *rp = data; 1303 1304 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1305 1306 hci_dev_lock(hdev); 1307 1308 if (hci_dev_test_flag(hdev, HCI_MGMT)) 1309 mgmt_user_confirm_reply_complete(hdev, &rp->bdaddr, ACL_LINK, 0, 1310 rp->status); 1311 1312 hci_dev_unlock(hdev); 1313 1314 return rp->status; 1315 } 1316 1317 static u8 hci_cc_user_confirm_neg_reply(struct hci_dev *hdev, void *data, 1318 struct sk_buff *skb) 1319 { 1320 struct hci_rp_user_confirm_reply *rp = data; 1321 1322 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1323 1324 hci_dev_lock(hdev); 1325 1326 if (hci_dev_test_flag(hdev, HCI_MGMT)) 1327 mgmt_user_confirm_neg_reply_complete(hdev, &rp->bdaddr, 1328 ACL_LINK, 0, rp->status); 1329 1330 hci_dev_unlock(hdev); 1331 1332 return rp->status; 1333 } 1334 1335 static u8 hci_cc_user_passkey_reply(struct hci_dev *hdev, void *data, 1336 struct sk_buff *skb) 1337 { 1338 struct hci_rp_user_confirm_reply *rp = data; 1339 1340 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1341 1342 hci_dev_lock(hdev); 1343 1344 if (hci_dev_test_flag(hdev, HCI_MGMT)) 1345 mgmt_user_passkey_reply_complete(hdev, &rp->bdaddr, ACL_LINK, 1346 0, rp->status); 1347 1348 hci_dev_unlock(hdev); 1349 1350 return rp->status; 1351 } 1352 1353 static u8 hci_cc_user_passkey_neg_reply(struct hci_dev *hdev, void *data, 1354 struct sk_buff *skb) 1355 { 1356 struct hci_rp_user_confirm_reply *rp = data; 1357 1358 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1359 1360 hci_dev_lock(hdev); 1361 1362 if (hci_dev_test_flag(hdev, HCI_MGMT)) 1363 mgmt_user_passkey_neg_reply_complete(hdev, &rp->bdaddr, 1364 ACL_LINK, 0, rp->status); 1365 1366 hci_dev_unlock(hdev); 1367 1368 return rp->status; 1369 } 1370 1371 static u8 hci_cc_read_local_oob_data(struct hci_dev *hdev, void *data, 1372 struct sk_buff *skb) 1373 { 1374 struct hci_rp_read_local_oob_data *rp = data; 1375 1376 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1377 1378 return rp->status; 1379 } 1380 1381 static u8 hci_cc_read_local_oob_ext_data(struct hci_dev *hdev, void *data, 1382 struct sk_buff *skb) 1383 { 1384 struct hci_rp_read_local_oob_ext_data *rp = data; 1385 1386 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1387 1388 return rp->status; 1389 } 1390 1391 static u8 hci_cc_le_set_random_addr(struct hci_dev *hdev, void *data, 1392 struct sk_buff *skb) 1393 { 1394 struct hci_ev_status *rp = data; 1395 bdaddr_t *sent; 1396 1397 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1398 1399 if (rp->status) 1400 return rp->status; 1401 1402 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_RANDOM_ADDR); 1403 if (!sent) 1404 return rp->status; 1405 1406 hci_dev_lock(hdev); 1407 1408 bacpy(&hdev->random_addr, sent); 1409 1410 if (!bacmp(&hdev->rpa, sent)) { 1411 hci_dev_clear_flag(hdev, HCI_RPA_EXPIRED); 1412 queue_delayed_work(hdev->workqueue, &hdev->rpa_expired, 1413 secs_to_jiffies(hdev->rpa_timeout)); 1414 } 1415 1416 hci_dev_unlock(hdev); 1417 1418 return rp->status; 1419 } 1420 1421 static u8 hci_cc_le_set_default_phy(struct hci_dev *hdev, void *data, 1422 struct sk_buff *skb) 1423 { 1424 struct hci_ev_status *rp = data; 1425 struct hci_cp_le_set_default_phy *cp; 1426 1427 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1428 1429 if (rp->status) 1430 return rp->status; 1431 1432 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_DEFAULT_PHY); 1433 if (!cp) 1434 return rp->status; 1435 1436 hci_dev_lock(hdev); 1437 1438 hdev->le_tx_def_phys = cp->tx_phys; 1439 hdev->le_rx_def_phys = cp->rx_phys; 1440 1441 hci_dev_unlock(hdev); 1442 1443 return rp->status; 1444 } 1445 1446 static u8 hci_cc_le_set_adv_set_random_addr(struct hci_dev *hdev, void *data, 1447 struct sk_buff *skb) 1448 { 1449 struct hci_ev_status *rp = data; 1450 struct hci_cp_le_set_adv_set_rand_addr *cp; 1451 struct adv_info *adv; 1452 1453 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1454 1455 if (rp->status) 1456 return rp->status; 1457 1458 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_ADV_SET_RAND_ADDR); 1459 /* Update only in case the adv instance since handle 0x00 shall be using 1460 * HCI_OP_LE_SET_RANDOM_ADDR since that allows both extended and 1461 * non-extended adverting. 1462 */ 1463 if (!cp || !cp->handle) 1464 return rp->status; 1465 1466 hci_dev_lock(hdev); 1467 1468 adv = hci_find_adv_instance(hdev, cp->handle); 1469 if (adv) { 1470 bacpy(&adv->random_addr, &cp->bdaddr); 1471 if (!bacmp(&hdev->rpa, &cp->bdaddr)) { 1472 adv->rpa_expired = false; 1473 queue_delayed_work(hdev->workqueue, 1474 &adv->rpa_expired_cb, 1475 secs_to_jiffies(hdev->rpa_timeout)); 1476 } 1477 } 1478 1479 hci_dev_unlock(hdev); 1480 1481 return rp->status; 1482 } 1483 1484 static u8 hci_cc_le_remove_adv_set(struct hci_dev *hdev, void *data, 1485 struct sk_buff *skb) 1486 { 1487 struct hci_ev_status *rp = data; 1488 u8 *instance; 1489 int err; 1490 1491 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1492 1493 if (rp->status) 1494 return rp->status; 1495 1496 instance = hci_sent_cmd_data(hdev, HCI_OP_LE_REMOVE_ADV_SET); 1497 if (!instance) 1498 return rp->status; 1499 1500 hci_dev_lock(hdev); 1501 1502 err = hci_remove_adv_instance(hdev, *instance); 1503 if (!err) 1504 mgmt_advertising_removed(hci_skb_sk(hdev->sent_cmd), hdev, 1505 *instance); 1506 1507 hci_dev_unlock(hdev); 1508 1509 return rp->status; 1510 } 1511 1512 static u8 hci_cc_le_clear_adv_sets(struct hci_dev *hdev, void *data, 1513 struct sk_buff *skb) 1514 { 1515 struct hci_ev_status *rp = data; 1516 struct adv_info *adv, *n; 1517 int err; 1518 1519 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1520 1521 if (rp->status) 1522 return rp->status; 1523 1524 if (!hci_sent_cmd_data(hdev, HCI_OP_LE_CLEAR_ADV_SETS)) 1525 return rp->status; 1526 1527 hci_dev_lock(hdev); 1528 1529 list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) { 1530 u8 instance = adv->instance; 1531 1532 err = hci_remove_adv_instance(hdev, instance); 1533 if (!err) 1534 mgmt_advertising_removed(hci_skb_sk(hdev->sent_cmd), 1535 hdev, instance); 1536 } 1537 1538 hci_dev_unlock(hdev); 1539 1540 return rp->status; 1541 } 1542 1543 static u8 hci_cc_le_read_transmit_power(struct hci_dev *hdev, void *data, 1544 struct sk_buff *skb) 1545 { 1546 struct hci_rp_le_read_transmit_power *rp = data; 1547 1548 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1549 1550 if (rp->status) 1551 return rp->status; 1552 1553 hdev->min_le_tx_power = rp->min_le_tx_power; 1554 hdev->max_le_tx_power = rp->max_le_tx_power; 1555 1556 return rp->status; 1557 } 1558 1559 static u8 hci_cc_le_set_privacy_mode(struct hci_dev *hdev, void *data, 1560 struct sk_buff *skb) 1561 { 1562 struct hci_ev_status *rp = data; 1563 struct hci_cp_le_set_privacy_mode *cp; 1564 struct hci_conn_params *params; 1565 1566 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1567 1568 if (rp->status) 1569 return rp->status; 1570 1571 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_PRIVACY_MODE); 1572 if (!cp) 1573 return rp->status; 1574 1575 hci_dev_lock(hdev); 1576 1577 params = hci_conn_params_lookup(hdev, &cp->bdaddr, cp->bdaddr_type); 1578 if (params) 1579 WRITE_ONCE(params->privacy_mode, cp->mode); 1580 1581 hci_dev_unlock(hdev); 1582 1583 return rp->status; 1584 } 1585 1586 static u8 hci_cc_le_set_adv_enable(struct hci_dev *hdev, void *data, 1587 struct sk_buff *skb) 1588 { 1589 struct hci_ev_status *rp = data; 1590 __u8 *sent; 1591 1592 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1593 1594 if (rp->status) 1595 return rp->status; 1596 1597 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_ADV_ENABLE); 1598 if (!sent) 1599 return rp->status; 1600 1601 hci_dev_lock(hdev); 1602 1603 /* If we're doing connection initiation as peripheral. Set a 1604 * timeout in case something goes wrong. 1605 */ 1606 if (*sent) { 1607 struct hci_conn *conn; 1608 1609 hci_dev_set_flag(hdev, HCI_LE_ADV); 1610 1611 conn = hci_lookup_le_connect(hdev); 1612 if (conn) 1613 queue_delayed_work(hdev->workqueue, 1614 &conn->le_conn_timeout, 1615 conn->conn_timeout); 1616 } else { 1617 hci_dev_clear_flag(hdev, HCI_LE_ADV); 1618 } 1619 1620 hci_dev_unlock(hdev); 1621 1622 return rp->status; 1623 } 1624 1625 static u8 hci_cc_le_set_ext_adv_enable(struct hci_dev *hdev, void *data, 1626 struct sk_buff *skb) 1627 { 1628 struct hci_cp_le_set_ext_adv_enable *cp; 1629 struct hci_cp_ext_adv_set *set; 1630 struct adv_info *adv = NULL, *n; 1631 struct hci_ev_status *rp = data; 1632 1633 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1634 1635 if (rp->status) 1636 return rp->status; 1637 1638 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE); 1639 if (!cp) 1640 return rp->status; 1641 1642 set = (void *)cp->data; 1643 1644 hci_dev_lock(hdev); 1645 1646 if (cp->num_of_sets) 1647 adv = hci_find_adv_instance(hdev, set->handle); 1648 1649 if (cp->enable) { 1650 struct hci_conn *conn; 1651 1652 hci_dev_set_flag(hdev, HCI_LE_ADV); 1653 1654 if (adv && !adv->periodic) 1655 adv->enabled = true; 1656 1657 conn = hci_lookup_le_connect(hdev); 1658 if (conn) 1659 queue_delayed_work(hdev->workqueue, 1660 &conn->le_conn_timeout, 1661 conn->conn_timeout); 1662 } else { 1663 if (cp->num_of_sets) { 1664 if (adv) 1665 adv->enabled = false; 1666 1667 /* If just one instance was disabled check if there are 1668 * any other instance enabled before clearing HCI_LE_ADV 1669 */ 1670 list_for_each_entry_safe(adv, n, &hdev->adv_instances, 1671 list) { 1672 if (adv->enabled) 1673 goto unlock; 1674 } 1675 } else { 1676 /* All instances shall be considered disabled */ 1677 list_for_each_entry_safe(adv, n, &hdev->adv_instances, 1678 list) 1679 adv->enabled = false; 1680 } 1681 1682 hci_dev_clear_flag(hdev, HCI_LE_ADV); 1683 } 1684 1685 unlock: 1686 hci_dev_unlock(hdev); 1687 return rp->status; 1688 } 1689 1690 static u8 hci_cc_le_set_scan_param(struct hci_dev *hdev, void *data, 1691 struct sk_buff *skb) 1692 { 1693 struct hci_cp_le_set_scan_param *cp; 1694 struct hci_ev_status *rp = data; 1695 1696 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1697 1698 if (rp->status) 1699 return rp->status; 1700 1701 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_SCAN_PARAM); 1702 if (!cp) 1703 return rp->status; 1704 1705 hci_dev_lock(hdev); 1706 1707 hdev->le_scan_type = cp->type; 1708 1709 hci_dev_unlock(hdev); 1710 1711 return rp->status; 1712 } 1713 1714 static u8 hci_cc_le_set_ext_scan_param(struct hci_dev *hdev, void *data, 1715 struct sk_buff *skb) 1716 { 1717 struct hci_cp_le_set_ext_scan_params *cp; 1718 struct hci_ev_status *rp = data; 1719 struct hci_cp_le_scan_phy_params *phy_param; 1720 1721 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1722 1723 if (rp->status) 1724 return rp->status; 1725 1726 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_EXT_SCAN_PARAMS); 1727 if (!cp) 1728 return rp->status; 1729 1730 phy_param = (void *)cp->data; 1731 1732 hci_dev_lock(hdev); 1733 1734 hdev->le_scan_type = phy_param->type; 1735 1736 hci_dev_unlock(hdev); 1737 1738 return rp->status; 1739 } 1740 1741 static bool has_pending_adv_report(struct hci_dev *hdev) 1742 { 1743 struct discovery_state *d = &hdev->discovery; 1744 1745 return bacmp(&d->last_adv_addr, BDADDR_ANY); 1746 } 1747 1748 static void clear_pending_adv_report(struct hci_dev *hdev) 1749 { 1750 struct discovery_state *d = &hdev->discovery; 1751 1752 bacpy(&d->last_adv_addr, BDADDR_ANY); 1753 d->last_adv_data_len = 0; 1754 } 1755 1756 static void store_pending_adv_report(struct hci_dev *hdev, bdaddr_t *bdaddr, 1757 u8 bdaddr_type, s8 rssi, u32 flags, 1758 u8 *data, u8 len) 1759 { 1760 struct discovery_state *d = &hdev->discovery; 1761 1762 if (len > max_adv_len(hdev)) 1763 return; 1764 1765 bacpy(&d->last_adv_addr, bdaddr); 1766 d->last_adv_addr_type = bdaddr_type; 1767 d->last_adv_rssi = rssi; 1768 d->last_adv_flags = flags; 1769 memcpy(d->last_adv_data, data, len); 1770 d->last_adv_data_len = len; 1771 } 1772 1773 static void le_set_scan_enable_complete(struct hci_dev *hdev, u8 enable) 1774 { 1775 hci_dev_lock(hdev); 1776 1777 switch (enable) { 1778 case LE_SCAN_ENABLE: 1779 hci_dev_set_flag(hdev, HCI_LE_SCAN); 1780 if (hdev->le_scan_type == LE_SCAN_ACTIVE) 1781 clear_pending_adv_report(hdev); 1782 if (hci_dev_test_flag(hdev, HCI_MESH)) 1783 hci_discovery_set_state(hdev, DISCOVERY_FINDING); 1784 break; 1785 1786 case LE_SCAN_DISABLE: 1787 /* We do this here instead of when setting DISCOVERY_STOPPED 1788 * since the latter would potentially require waiting for 1789 * inquiry to stop too. 1790 */ 1791 if (has_pending_adv_report(hdev)) { 1792 struct discovery_state *d = &hdev->discovery; 1793 1794 mgmt_device_found(hdev, &d->last_adv_addr, LE_LINK, 1795 d->last_adv_addr_type, NULL, 1796 d->last_adv_rssi, d->last_adv_flags, 1797 d->last_adv_data, 1798 d->last_adv_data_len, NULL, 0, 0); 1799 } 1800 1801 /* Cancel this timer so that we don't try to disable scanning 1802 * when it's already disabled. 1803 */ 1804 cancel_delayed_work(&hdev->le_scan_disable); 1805 1806 hci_dev_clear_flag(hdev, HCI_LE_SCAN); 1807 1808 /* The HCI_LE_SCAN_INTERRUPTED flag indicates that we 1809 * interrupted scanning due to a connect request. Mark 1810 * therefore discovery as stopped. 1811 */ 1812 if (hci_dev_test_and_clear_flag(hdev, HCI_LE_SCAN_INTERRUPTED)) 1813 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 1814 else if (!hci_dev_test_flag(hdev, HCI_LE_ADV) && 1815 hdev->discovery.state == DISCOVERY_FINDING) 1816 queue_work(hdev->workqueue, &hdev->reenable_adv_work); 1817 1818 break; 1819 1820 default: 1821 bt_dev_err(hdev, "use of reserved LE_Scan_Enable param %d", 1822 enable); 1823 break; 1824 } 1825 1826 hci_dev_unlock(hdev); 1827 } 1828 1829 static u8 hci_cc_le_set_scan_enable(struct hci_dev *hdev, void *data, 1830 struct sk_buff *skb) 1831 { 1832 struct hci_cp_le_set_scan_enable *cp; 1833 struct hci_ev_status *rp = data; 1834 1835 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1836 1837 if (rp->status) 1838 return rp->status; 1839 1840 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_SCAN_ENABLE); 1841 if (!cp) 1842 return rp->status; 1843 1844 le_set_scan_enable_complete(hdev, cp->enable); 1845 1846 return rp->status; 1847 } 1848 1849 static u8 hci_cc_le_set_ext_scan_enable(struct hci_dev *hdev, void *data, 1850 struct sk_buff *skb) 1851 { 1852 struct hci_cp_le_set_ext_scan_enable *cp; 1853 struct hci_ev_status *rp = data; 1854 1855 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1856 1857 if (rp->status) 1858 return rp->status; 1859 1860 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_EXT_SCAN_ENABLE); 1861 if (!cp) 1862 return rp->status; 1863 1864 le_set_scan_enable_complete(hdev, cp->enable); 1865 1866 return rp->status; 1867 } 1868 1869 static u8 hci_cc_le_read_num_adv_sets(struct hci_dev *hdev, void *data, 1870 struct sk_buff *skb) 1871 { 1872 struct hci_rp_le_read_num_supported_adv_sets *rp = data; 1873 1874 bt_dev_dbg(hdev, "status 0x%2.2x No of Adv sets %u", rp->status, 1875 rp->num_of_sets); 1876 1877 if (rp->status) 1878 return rp->status; 1879 1880 hdev->le_num_of_adv_sets = rp->num_of_sets; 1881 1882 return rp->status; 1883 } 1884 1885 static u8 hci_cc_le_read_accept_list_size(struct hci_dev *hdev, void *data, 1886 struct sk_buff *skb) 1887 { 1888 struct hci_rp_le_read_accept_list_size *rp = data; 1889 1890 bt_dev_dbg(hdev, "status 0x%2.2x size %u", rp->status, rp->size); 1891 1892 if (rp->status) 1893 return rp->status; 1894 1895 hdev->le_accept_list_size = rp->size; 1896 1897 return rp->status; 1898 } 1899 1900 static u8 hci_cc_le_clear_accept_list(struct hci_dev *hdev, void *data, 1901 struct sk_buff *skb) 1902 { 1903 struct hci_ev_status *rp = data; 1904 1905 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1906 1907 if (rp->status) 1908 return rp->status; 1909 1910 hci_dev_lock(hdev); 1911 hci_bdaddr_list_clear(&hdev->le_accept_list); 1912 hci_dev_unlock(hdev); 1913 1914 return rp->status; 1915 } 1916 1917 static u8 hci_cc_le_add_to_accept_list(struct hci_dev *hdev, void *data, 1918 struct sk_buff *skb) 1919 { 1920 struct hci_cp_le_add_to_accept_list *sent; 1921 struct hci_ev_status *rp = data; 1922 1923 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1924 1925 if (rp->status) 1926 return rp->status; 1927 1928 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST); 1929 if (!sent) 1930 return rp->status; 1931 1932 hci_dev_lock(hdev); 1933 hci_bdaddr_list_add(&hdev->le_accept_list, &sent->bdaddr, 1934 sent->bdaddr_type); 1935 hci_dev_unlock(hdev); 1936 1937 return rp->status; 1938 } 1939 1940 static u8 hci_cc_le_del_from_accept_list(struct hci_dev *hdev, void *data, 1941 struct sk_buff *skb) 1942 { 1943 struct hci_cp_le_del_from_accept_list *sent; 1944 struct hci_ev_status *rp = data; 1945 1946 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1947 1948 if (rp->status) 1949 return rp->status; 1950 1951 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_DEL_FROM_ACCEPT_LIST); 1952 if (!sent) 1953 return rp->status; 1954 1955 hci_dev_lock(hdev); 1956 hci_bdaddr_list_del(&hdev->le_accept_list, &sent->bdaddr, 1957 sent->bdaddr_type); 1958 hci_dev_unlock(hdev); 1959 1960 return rp->status; 1961 } 1962 1963 static u8 hci_cc_le_read_supported_states(struct hci_dev *hdev, void *data, 1964 struct sk_buff *skb) 1965 { 1966 struct hci_rp_le_read_supported_states *rp = data; 1967 1968 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1969 1970 if (rp->status) 1971 return rp->status; 1972 1973 memcpy(hdev->le_states, rp->le_states, 8); 1974 1975 return rp->status; 1976 } 1977 1978 static u8 hci_cc_le_read_def_data_len(struct hci_dev *hdev, void *data, 1979 struct sk_buff *skb) 1980 { 1981 struct hci_rp_le_read_def_data_len *rp = data; 1982 1983 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1984 1985 if (rp->status) 1986 return rp->status; 1987 1988 hdev->le_def_tx_len = le16_to_cpu(rp->tx_len); 1989 hdev->le_def_tx_time = le16_to_cpu(rp->tx_time); 1990 1991 return rp->status; 1992 } 1993 1994 static u8 hci_cc_le_write_def_data_len(struct hci_dev *hdev, void *data, 1995 struct sk_buff *skb) 1996 { 1997 struct hci_cp_le_write_def_data_len *sent; 1998 struct hci_ev_status *rp = data; 1999 2000 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 2001 2002 if (rp->status) 2003 return rp->status; 2004 2005 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_WRITE_DEF_DATA_LEN); 2006 if (!sent) 2007 return rp->status; 2008 2009 hdev->le_def_tx_len = le16_to_cpu(sent->tx_len); 2010 hdev->le_def_tx_time = le16_to_cpu(sent->tx_time); 2011 2012 return rp->status; 2013 } 2014 2015 static u8 hci_cc_le_add_to_resolv_list(struct hci_dev *hdev, void *data, 2016 struct sk_buff *skb) 2017 { 2018 struct hci_cp_le_add_to_resolv_list *sent; 2019 struct hci_ev_status *rp = data; 2020 2021 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 2022 2023 if (rp->status) 2024 return rp->status; 2025 2026 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_ADD_TO_RESOLV_LIST); 2027 if (!sent) 2028 return rp->status; 2029 2030 hci_dev_lock(hdev); 2031 hci_bdaddr_list_add_with_irk(&hdev->le_resolv_list, &sent->bdaddr, 2032 sent->bdaddr_type, sent->peer_irk, 2033 sent->local_irk); 2034 hci_dev_unlock(hdev); 2035 2036 return rp->status; 2037 } 2038 2039 static u8 hci_cc_le_del_from_resolv_list(struct hci_dev *hdev, void *data, 2040 struct sk_buff *skb) 2041 { 2042 struct hci_cp_le_del_from_resolv_list *sent; 2043 struct hci_ev_status *rp = data; 2044 2045 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 2046 2047 if (rp->status) 2048 return rp->status; 2049 2050 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_DEL_FROM_RESOLV_LIST); 2051 if (!sent) 2052 return rp->status; 2053 2054 hci_dev_lock(hdev); 2055 hci_bdaddr_list_del_with_irk(&hdev->le_resolv_list, &sent->bdaddr, 2056 sent->bdaddr_type); 2057 hci_dev_unlock(hdev); 2058 2059 return rp->status; 2060 } 2061 2062 static u8 hci_cc_le_clear_resolv_list(struct hci_dev *hdev, void *data, 2063 struct sk_buff *skb) 2064 { 2065 struct hci_ev_status *rp = data; 2066 2067 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 2068 2069 if (rp->status) 2070 return rp->status; 2071 2072 hci_dev_lock(hdev); 2073 hci_bdaddr_list_clear(&hdev->le_resolv_list); 2074 hci_dev_unlock(hdev); 2075 2076 return rp->status; 2077 } 2078 2079 static u8 hci_cc_le_read_resolv_list_size(struct hci_dev *hdev, void *data, 2080 struct sk_buff *skb) 2081 { 2082 struct hci_rp_le_read_resolv_list_size *rp = data; 2083 2084 bt_dev_dbg(hdev, "status 0x%2.2x size %u", rp->status, rp->size); 2085 2086 if (rp->status) 2087 return rp->status; 2088 2089 hdev->le_resolv_list_size = rp->size; 2090 2091 return rp->status; 2092 } 2093 2094 static u8 hci_cc_le_set_addr_resolution_enable(struct hci_dev *hdev, void *data, 2095 struct sk_buff *skb) 2096 { 2097 struct hci_ev_status *rp = data; 2098 __u8 *sent; 2099 2100 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 2101 2102 if (rp->status) 2103 return rp->status; 2104 2105 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE); 2106 if (!sent) 2107 return rp->status; 2108 2109 hci_dev_lock(hdev); 2110 2111 if (*sent) 2112 hci_dev_set_flag(hdev, HCI_LL_RPA_RESOLUTION); 2113 else 2114 hci_dev_clear_flag(hdev, HCI_LL_RPA_RESOLUTION); 2115 2116 hci_dev_unlock(hdev); 2117 2118 return rp->status; 2119 } 2120 2121 static u8 hci_cc_le_read_max_data_len(struct hci_dev *hdev, void *data, 2122 struct sk_buff *skb) 2123 { 2124 struct hci_rp_le_read_max_data_len *rp = data; 2125 2126 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 2127 2128 if (rp->status) 2129 return rp->status; 2130 2131 hdev->le_max_tx_len = le16_to_cpu(rp->tx_len); 2132 hdev->le_max_tx_time = le16_to_cpu(rp->tx_time); 2133 hdev->le_max_rx_len = le16_to_cpu(rp->rx_len); 2134 hdev->le_max_rx_time = le16_to_cpu(rp->rx_time); 2135 2136 return rp->status; 2137 } 2138 2139 static u8 hci_cc_write_le_host_supported(struct hci_dev *hdev, void *data, 2140 struct sk_buff *skb) 2141 { 2142 struct hci_cp_write_le_host_supported *sent; 2143 struct hci_ev_status *rp = data; 2144 2145 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 2146 2147 if (rp->status) 2148 return rp->status; 2149 2150 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED); 2151 if (!sent) 2152 return rp->status; 2153 2154 hci_dev_lock(hdev); 2155 2156 if (sent->le) { 2157 hdev->features[1][0] |= LMP_HOST_LE; 2158 hci_dev_set_flag(hdev, HCI_LE_ENABLED); 2159 } else { 2160 hdev->features[1][0] &= ~LMP_HOST_LE; 2161 hci_dev_clear_flag(hdev, HCI_LE_ENABLED); 2162 hci_dev_clear_flag(hdev, HCI_ADVERTISING); 2163 } 2164 2165 if (sent->simul) 2166 hdev->features[1][0] |= LMP_HOST_LE_BREDR; 2167 else 2168 hdev->features[1][0] &= ~LMP_HOST_LE_BREDR; 2169 2170 hci_dev_unlock(hdev); 2171 2172 return rp->status; 2173 } 2174 2175 static u8 hci_cc_set_adv_param(struct hci_dev *hdev, void *data, 2176 struct sk_buff *skb) 2177 { 2178 struct hci_cp_le_set_adv_param *cp; 2179 struct hci_ev_status *rp = data; 2180 2181 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 2182 2183 if (rp->status) 2184 return rp->status; 2185 2186 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_ADV_PARAM); 2187 if (!cp) 2188 return rp->status; 2189 2190 hci_dev_lock(hdev); 2191 hdev->adv_addr_type = cp->own_address_type; 2192 hci_dev_unlock(hdev); 2193 2194 return rp->status; 2195 } 2196 2197 static u8 hci_cc_set_ext_adv_param(struct hci_dev *hdev, void *data, 2198 struct sk_buff *skb) 2199 { 2200 struct hci_rp_le_set_ext_adv_params *rp = data; 2201 struct hci_cp_le_set_ext_adv_params *cp; 2202 struct adv_info *adv_instance; 2203 2204 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 2205 2206 if (rp->status) 2207 return rp->status; 2208 2209 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS); 2210 if (!cp) 2211 return rp->status; 2212 2213 hci_dev_lock(hdev); 2214 hdev->adv_addr_type = cp->own_addr_type; 2215 if (!cp->handle) { 2216 /* Store in hdev for instance 0 */ 2217 hdev->adv_tx_power = rp->tx_power; 2218 } else { 2219 adv_instance = hci_find_adv_instance(hdev, cp->handle); 2220 if (adv_instance) 2221 adv_instance->tx_power = rp->tx_power; 2222 } 2223 /* Update adv data as tx power is known now */ 2224 hci_update_adv_data(hdev, cp->handle); 2225 2226 hci_dev_unlock(hdev); 2227 2228 return rp->status; 2229 } 2230 2231 static u8 hci_cc_read_rssi(struct hci_dev *hdev, void *data, 2232 struct sk_buff *skb) 2233 { 2234 struct hci_rp_read_rssi *rp = data; 2235 struct hci_conn *conn; 2236 2237 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 2238 2239 if (rp->status) 2240 return rp->status; 2241 2242 hci_dev_lock(hdev); 2243 2244 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(rp->handle)); 2245 if (conn) 2246 conn->rssi = rp->rssi; 2247 2248 hci_dev_unlock(hdev); 2249 2250 return rp->status; 2251 } 2252 2253 static u8 hci_cc_read_tx_power(struct hci_dev *hdev, void *data, 2254 struct sk_buff *skb) 2255 { 2256 struct hci_cp_read_tx_power *sent; 2257 struct hci_rp_read_tx_power *rp = data; 2258 struct hci_conn *conn; 2259 2260 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 2261 2262 if (rp->status) 2263 return rp->status; 2264 2265 sent = hci_sent_cmd_data(hdev, HCI_OP_READ_TX_POWER); 2266 if (!sent) 2267 return rp->status; 2268 2269 hci_dev_lock(hdev); 2270 2271 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(rp->handle)); 2272 if (!conn) 2273 goto unlock; 2274 2275 switch (sent->type) { 2276 case 0x00: 2277 conn->tx_power = rp->tx_power; 2278 break; 2279 case 0x01: 2280 conn->max_tx_power = rp->tx_power; 2281 break; 2282 } 2283 2284 unlock: 2285 hci_dev_unlock(hdev); 2286 return rp->status; 2287 } 2288 2289 static u8 hci_cc_write_ssp_debug_mode(struct hci_dev *hdev, void *data, 2290 struct sk_buff *skb) 2291 { 2292 struct hci_ev_status *rp = data; 2293 u8 *mode; 2294 2295 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 2296 2297 if (rp->status) 2298 return rp->status; 2299 2300 mode = hci_sent_cmd_data(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE); 2301 if (mode) 2302 hdev->ssp_debug_mode = *mode; 2303 2304 return rp->status; 2305 } 2306 2307 static void hci_cs_inquiry(struct hci_dev *hdev, __u8 status) 2308 { 2309 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2310 2311 if (status) 2312 return; 2313 2314 if (hci_sent_cmd_data(hdev, HCI_OP_INQUIRY)) 2315 set_bit(HCI_INQUIRY, &hdev->flags); 2316 } 2317 2318 static void hci_cs_create_conn(struct hci_dev *hdev, __u8 status) 2319 { 2320 struct hci_cp_create_conn *cp; 2321 struct hci_conn *conn; 2322 2323 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2324 2325 cp = hci_sent_cmd_data(hdev, HCI_OP_CREATE_CONN); 2326 if (!cp) 2327 return; 2328 2329 hci_dev_lock(hdev); 2330 2331 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &cp->bdaddr); 2332 2333 bt_dev_dbg(hdev, "bdaddr %pMR hcon %p", &cp->bdaddr, conn); 2334 2335 if (status) { 2336 if (conn && conn->state == BT_CONNECT) { 2337 conn->state = BT_CLOSED; 2338 hci_connect_cfm(conn, status); 2339 hci_conn_del(conn); 2340 } 2341 } else { 2342 if (!conn) { 2343 conn = hci_conn_add_unset(hdev, ACL_LINK, &cp->bdaddr, 2344 HCI_ROLE_MASTER); 2345 if (!conn) 2346 bt_dev_err(hdev, "no memory for new connection"); 2347 } 2348 } 2349 2350 hci_dev_unlock(hdev); 2351 } 2352 2353 static void hci_cs_add_sco(struct hci_dev *hdev, __u8 status) 2354 { 2355 struct hci_cp_add_sco *cp; 2356 struct hci_conn *acl; 2357 struct hci_link *link; 2358 __u16 handle; 2359 2360 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2361 2362 if (!status) 2363 return; 2364 2365 cp = hci_sent_cmd_data(hdev, HCI_OP_ADD_SCO); 2366 if (!cp) 2367 return; 2368 2369 handle = __le16_to_cpu(cp->handle); 2370 2371 bt_dev_dbg(hdev, "handle 0x%4.4x", handle); 2372 2373 hci_dev_lock(hdev); 2374 2375 acl = hci_conn_hash_lookup_handle(hdev, handle); 2376 if (acl) { 2377 link = list_first_entry_or_null(&acl->link_list, 2378 struct hci_link, list); 2379 if (link && link->conn) { 2380 link->conn->state = BT_CLOSED; 2381 2382 hci_connect_cfm(link->conn, status); 2383 hci_conn_del(link->conn); 2384 } 2385 } 2386 2387 hci_dev_unlock(hdev); 2388 } 2389 2390 static void hci_cs_auth_requested(struct hci_dev *hdev, __u8 status) 2391 { 2392 struct hci_cp_auth_requested *cp; 2393 struct hci_conn *conn; 2394 2395 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2396 2397 if (!status) 2398 return; 2399 2400 cp = hci_sent_cmd_data(hdev, HCI_OP_AUTH_REQUESTED); 2401 if (!cp) 2402 return; 2403 2404 hci_dev_lock(hdev); 2405 2406 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle)); 2407 if (conn) { 2408 if (conn->state == BT_CONFIG) { 2409 hci_connect_cfm(conn, status); 2410 hci_conn_drop(conn); 2411 } 2412 } 2413 2414 hci_dev_unlock(hdev); 2415 } 2416 2417 static void hci_cs_set_conn_encrypt(struct hci_dev *hdev, __u8 status) 2418 { 2419 struct hci_cp_set_conn_encrypt *cp; 2420 struct hci_conn *conn; 2421 2422 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2423 2424 if (!status) 2425 return; 2426 2427 cp = hci_sent_cmd_data(hdev, HCI_OP_SET_CONN_ENCRYPT); 2428 if (!cp) 2429 return; 2430 2431 hci_dev_lock(hdev); 2432 2433 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle)); 2434 if (conn) { 2435 if (conn->state == BT_CONFIG) { 2436 hci_connect_cfm(conn, status); 2437 hci_conn_drop(conn); 2438 } 2439 } 2440 2441 hci_dev_unlock(hdev); 2442 } 2443 2444 static int hci_outgoing_auth_needed(struct hci_dev *hdev, 2445 struct hci_conn *conn) 2446 { 2447 if (conn->state != BT_CONFIG || !conn->out) 2448 return 0; 2449 2450 if (conn->pending_sec_level == BT_SECURITY_SDP) 2451 return 0; 2452 2453 /* Only request authentication for SSP connections or non-SSP 2454 * devices with sec_level MEDIUM or HIGH or if MITM protection 2455 * is requested. 2456 */ 2457 if (!hci_conn_ssp_enabled(conn) && !(conn->auth_type & 0x01) && 2458 conn->pending_sec_level != BT_SECURITY_FIPS && 2459 conn->pending_sec_level != BT_SECURITY_HIGH && 2460 conn->pending_sec_level != BT_SECURITY_MEDIUM) 2461 return 0; 2462 2463 return 1; 2464 } 2465 2466 static int hci_resolve_name(struct hci_dev *hdev, 2467 struct inquiry_entry *e) 2468 { 2469 struct hci_cp_remote_name_req cp; 2470 2471 memset(&cp, 0, sizeof(cp)); 2472 2473 bacpy(&cp.bdaddr, &e->data.bdaddr); 2474 cp.pscan_rep_mode = e->data.pscan_rep_mode; 2475 cp.pscan_mode = e->data.pscan_mode; 2476 cp.clock_offset = e->data.clock_offset; 2477 2478 return hci_send_cmd(hdev, HCI_OP_REMOTE_NAME_REQ, sizeof(cp), &cp); 2479 } 2480 2481 static bool hci_resolve_next_name(struct hci_dev *hdev) 2482 { 2483 struct discovery_state *discov = &hdev->discovery; 2484 struct inquiry_entry *e; 2485 2486 if (list_empty(&discov->resolve)) 2487 return false; 2488 2489 /* We should stop if we already spent too much time resolving names. */ 2490 if (time_after(jiffies, discov->name_resolve_timeout)) { 2491 bt_dev_warn_ratelimited(hdev, "Name resolve takes too long."); 2492 return false; 2493 } 2494 2495 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY, NAME_NEEDED); 2496 if (!e) 2497 return false; 2498 2499 if (hci_resolve_name(hdev, e) == 0) { 2500 e->name_state = NAME_PENDING; 2501 return true; 2502 } 2503 2504 return false; 2505 } 2506 2507 static void hci_check_pending_name(struct hci_dev *hdev, struct hci_conn *conn, 2508 bdaddr_t *bdaddr, u8 *name, u8 name_len) 2509 { 2510 struct discovery_state *discov = &hdev->discovery; 2511 struct inquiry_entry *e; 2512 2513 /* Update the mgmt connected state if necessary. Be careful with 2514 * conn objects that exist but are not (yet) connected however. 2515 * Only those in BT_CONFIG or BT_CONNECTED states can be 2516 * considered connected. 2517 */ 2518 if (conn && (conn->state == BT_CONFIG || conn->state == BT_CONNECTED)) 2519 mgmt_device_connected(hdev, conn, name, name_len); 2520 2521 if (discov->state == DISCOVERY_STOPPED) 2522 return; 2523 2524 if (discov->state == DISCOVERY_STOPPING) 2525 goto discov_complete; 2526 2527 if (discov->state != DISCOVERY_RESOLVING) 2528 return; 2529 2530 e = hci_inquiry_cache_lookup_resolve(hdev, bdaddr, NAME_PENDING); 2531 /* If the device was not found in a list of found devices names of which 2532 * are pending. there is no need to continue resolving a next name as it 2533 * will be done upon receiving another Remote Name Request Complete 2534 * Event */ 2535 if (!e) 2536 return; 2537 2538 list_del(&e->list); 2539 2540 e->name_state = name ? NAME_KNOWN : NAME_NOT_KNOWN; 2541 mgmt_remote_name(hdev, bdaddr, ACL_LINK, 0x00, e->data.rssi, 2542 name, name_len); 2543 2544 if (hci_resolve_next_name(hdev)) 2545 return; 2546 2547 discov_complete: 2548 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 2549 } 2550 2551 static void hci_cs_remote_name_req(struct hci_dev *hdev, __u8 status) 2552 { 2553 struct hci_cp_remote_name_req *cp; 2554 struct hci_conn *conn; 2555 2556 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2557 2558 /* If successful wait for the name req complete event before 2559 * checking for the need to do authentication */ 2560 if (!status) 2561 return; 2562 2563 cp = hci_sent_cmd_data(hdev, HCI_OP_REMOTE_NAME_REQ); 2564 if (!cp) 2565 return; 2566 2567 hci_dev_lock(hdev); 2568 2569 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &cp->bdaddr); 2570 2571 if (hci_dev_test_flag(hdev, HCI_MGMT)) 2572 hci_check_pending_name(hdev, conn, &cp->bdaddr, NULL, 0); 2573 2574 if (!conn) 2575 goto unlock; 2576 2577 if (!hci_outgoing_auth_needed(hdev, conn)) 2578 goto unlock; 2579 2580 if (!test_and_set_bit(HCI_CONN_AUTH_PEND, &conn->flags)) { 2581 struct hci_cp_auth_requested auth_cp; 2582 2583 set_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags); 2584 2585 auth_cp.handle = __cpu_to_le16(conn->handle); 2586 hci_send_cmd(hdev, HCI_OP_AUTH_REQUESTED, 2587 sizeof(auth_cp), &auth_cp); 2588 } 2589 2590 unlock: 2591 hci_dev_unlock(hdev); 2592 } 2593 2594 static void hci_cs_read_remote_features(struct hci_dev *hdev, __u8 status) 2595 { 2596 struct hci_cp_read_remote_features *cp; 2597 struct hci_conn *conn; 2598 2599 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2600 2601 if (!status) 2602 return; 2603 2604 cp = hci_sent_cmd_data(hdev, HCI_OP_READ_REMOTE_FEATURES); 2605 if (!cp) 2606 return; 2607 2608 hci_dev_lock(hdev); 2609 2610 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle)); 2611 if (conn) { 2612 if (conn->state == BT_CONFIG) { 2613 hci_connect_cfm(conn, status); 2614 hci_conn_drop(conn); 2615 } 2616 } 2617 2618 hci_dev_unlock(hdev); 2619 } 2620 2621 static void hci_cs_read_remote_ext_features(struct hci_dev *hdev, __u8 status) 2622 { 2623 struct hci_cp_read_remote_ext_features *cp; 2624 struct hci_conn *conn; 2625 2626 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2627 2628 if (!status) 2629 return; 2630 2631 cp = hci_sent_cmd_data(hdev, HCI_OP_READ_REMOTE_EXT_FEATURES); 2632 if (!cp) 2633 return; 2634 2635 hci_dev_lock(hdev); 2636 2637 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle)); 2638 if (conn) { 2639 if (conn->state == BT_CONFIG) { 2640 hci_connect_cfm(conn, status); 2641 hci_conn_drop(conn); 2642 } 2643 } 2644 2645 hci_dev_unlock(hdev); 2646 } 2647 2648 static void hci_setup_sync_conn_status(struct hci_dev *hdev, __u16 handle, 2649 __u8 status) 2650 { 2651 struct hci_conn *acl; 2652 struct hci_link *link; 2653 2654 bt_dev_dbg(hdev, "handle 0x%4.4x status 0x%2.2x", handle, status); 2655 2656 hci_dev_lock(hdev); 2657 2658 acl = hci_conn_hash_lookup_handle(hdev, handle); 2659 if (acl) { 2660 link = list_first_entry_or_null(&acl->link_list, 2661 struct hci_link, list); 2662 if (link && link->conn) { 2663 link->conn->state = BT_CLOSED; 2664 2665 hci_connect_cfm(link->conn, status); 2666 hci_conn_del(link->conn); 2667 } 2668 } 2669 2670 hci_dev_unlock(hdev); 2671 } 2672 2673 static void hci_cs_setup_sync_conn(struct hci_dev *hdev, __u8 status) 2674 { 2675 struct hci_cp_setup_sync_conn *cp; 2676 2677 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2678 2679 if (!status) 2680 return; 2681 2682 cp = hci_sent_cmd_data(hdev, HCI_OP_SETUP_SYNC_CONN); 2683 if (!cp) 2684 return; 2685 2686 hci_setup_sync_conn_status(hdev, __le16_to_cpu(cp->handle), status); 2687 } 2688 2689 static void hci_cs_enhanced_setup_sync_conn(struct hci_dev *hdev, __u8 status) 2690 { 2691 struct hci_cp_enhanced_setup_sync_conn *cp; 2692 2693 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2694 2695 if (!status) 2696 return; 2697 2698 cp = hci_sent_cmd_data(hdev, HCI_OP_ENHANCED_SETUP_SYNC_CONN); 2699 if (!cp) 2700 return; 2701 2702 hci_setup_sync_conn_status(hdev, __le16_to_cpu(cp->handle), status); 2703 } 2704 2705 static void hci_cs_sniff_mode(struct hci_dev *hdev, __u8 status) 2706 { 2707 struct hci_cp_sniff_mode *cp; 2708 struct hci_conn *conn; 2709 2710 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2711 2712 if (!status) 2713 return; 2714 2715 cp = hci_sent_cmd_data(hdev, HCI_OP_SNIFF_MODE); 2716 if (!cp) 2717 return; 2718 2719 hci_dev_lock(hdev); 2720 2721 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle)); 2722 if (conn) { 2723 clear_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags); 2724 2725 if (test_and_clear_bit(HCI_CONN_SCO_SETUP_PEND, &conn->flags)) 2726 hci_sco_setup(conn, status); 2727 } 2728 2729 hci_dev_unlock(hdev); 2730 } 2731 2732 static void hci_cs_exit_sniff_mode(struct hci_dev *hdev, __u8 status) 2733 { 2734 struct hci_cp_exit_sniff_mode *cp; 2735 struct hci_conn *conn; 2736 2737 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2738 2739 if (!status) 2740 return; 2741 2742 cp = hci_sent_cmd_data(hdev, HCI_OP_EXIT_SNIFF_MODE); 2743 if (!cp) 2744 return; 2745 2746 hci_dev_lock(hdev); 2747 2748 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle)); 2749 if (conn) { 2750 clear_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags); 2751 2752 if (test_and_clear_bit(HCI_CONN_SCO_SETUP_PEND, &conn->flags)) 2753 hci_sco_setup(conn, status); 2754 } 2755 2756 hci_dev_unlock(hdev); 2757 } 2758 2759 static void hci_cs_disconnect(struct hci_dev *hdev, u8 status) 2760 { 2761 struct hci_cp_disconnect *cp; 2762 struct hci_conn_params *params; 2763 struct hci_conn *conn; 2764 bool mgmt_conn; 2765 2766 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2767 2768 /* Wait for HCI_EV_DISCONN_COMPLETE if status 0x00 and not suspended 2769 * otherwise cleanup the connection immediately. 2770 */ 2771 if (!status && !hdev->suspended) 2772 return; 2773 2774 cp = hci_sent_cmd_data(hdev, HCI_OP_DISCONNECT); 2775 if (!cp) 2776 return; 2777 2778 hci_dev_lock(hdev); 2779 2780 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle)); 2781 if (!conn) 2782 goto unlock; 2783 2784 if (status) { 2785 mgmt_disconnect_failed(hdev, &conn->dst, conn->type, 2786 conn->dst_type, status); 2787 2788 if (conn->type == LE_LINK && conn->role == HCI_ROLE_SLAVE) { 2789 hdev->cur_adv_instance = conn->adv_instance; 2790 hci_enable_advertising(hdev); 2791 } 2792 2793 /* Inform sockets conn is gone before we delete it */ 2794 hci_disconn_cfm(conn, HCI_ERROR_UNSPECIFIED); 2795 2796 goto done; 2797 } 2798 2799 mgmt_conn = test_and_clear_bit(HCI_CONN_MGMT_CONNECTED, &conn->flags); 2800 2801 if (conn->type == ACL_LINK) { 2802 if (test_and_clear_bit(HCI_CONN_FLUSH_KEY, &conn->flags)) 2803 hci_remove_link_key(hdev, &conn->dst); 2804 } 2805 2806 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); 2807 if (params) { 2808 switch (params->auto_connect) { 2809 case HCI_AUTO_CONN_LINK_LOSS: 2810 if (cp->reason != HCI_ERROR_CONNECTION_TIMEOUT) 2811 break; 2812 fallthrough; 2813 2814 case HCI_AUTO_CONN_DIRECT: 2815 case HCI_AUTO_CONN_ALWAYS: 2816 hci_pend_le_list_del_init(params); 2817 hci_pend_le_list_add(params, &hdev->pend_le_conns); 2818 break; 2819 2820 default: 2821 break; 2822 } 2823 } 2824 2825 mgmt_device_disconnected(hdev, &conn->dst, conn->type, conn->dst_type, 2826 cp->reason, mgmt_conn); 2827 2828 hci_disconn_cfm(conn, cp->reason); 2829 2830 done: 2831 /* If the disconnection failed for any reason, the upper layer 2832 * does not retry to disconnect in current implementation. 2833 * Hence, we need to do some basic cleanup here and re-enable 2834 * advertising if necessary. 2835 */ 2836 hci_conn_del(conn); 2837 unlock: 2838 hci_dev_unlock(hdev); 2839 } 2840 2841 static u8 ev_bdaddr_type(struct hci_dev *hdev, u8 type, bool *resolved) 2842 { 2843 /* When using controller based address resolution, then the new 2844 * address types 0x02 and 0x03 are used. These types need to be 2845 * converted back into either public address or random address type 2846 */ 2847 switch (type) { 2848 case ADDR_LE_DEV_PUBLIC_RESOLVED: 2849 if (resolved) 2850 *resolved = true; 2851 return ADDR_LE_DEV_PUBLIC; 2852 case ADDR_LE_DEV_RANDOM_RESOLVED: 2853 if (resolved) 2854 *resolved = true; 2855 return ADDR_LE_DEV_RANDOM; 2856 } 2857 2858 if (resolved) 2859 *resolved = false; 2860 return type; 2861 } 2862 2863 static void cs_le_create_conn(struct hci_dev *hdev, bdaddr_t *peer_addr, 2864 u8 peer_addr_type, u8 own_address_type, 2865 u8 filter_policy) 2866 { 2867 struct hci_conn *conn; 2868 2869 conn = hci_conn_hash_lookup_le(hdev, peer_addr, 2870 peer_addr_type); 2871 if (!conn) 2872 return; 2873 2874 own_address_type = ev_bdaddr_type(hdev, own_address_type, NULL); 2875 2876 /* Store the initiator and responder address information which 2877 * is needed for SMP. These values will not change during the 2878 * lifetime of the connection. 2879 */ 2880 conn->init_addr_type = own_address_type; 2881 if (own_address_type == ADDR_LE_DEV_RANDOM) 2882 bacpy(&conn->init_addr, &hdev->random_addr); 2883 else 2884 bacpy(&conn->init_addr, &hdev->bdaddr); 2885 2886 conn->resp_addr_type = peer_addr_type; 2887 bacpy(&conn->resp_addr, peer_addr); 2888 } 2889 2890 static void hci_cs_le_create_conn(struct hci_dev *hdev, u8 status) 2891 { 2892 struct hci_cp_le_create_conn *cp; 2893 2894 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2895 2896 /* All connection failure handling is taken care of by the 2897 * hci_conn_failed function which is triggered by the HCI 2898 * request completion callbacks used for connecting. 2899 */ 2900 if (status) 2901 return; 2902 2903 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_CREATE_CONN); 2904 if (!cp) 2905 return; 2906 2907 hci_dev_lock(hdev); 2908 2909 cs_le_create_conn(hdev, &cp->peer_addr, cp->peer_addr_type, 2910 cp->own_address_type, cp->filter_policy); 2911 2912 hci_dev_unlock(hdev); 2913 } 2914 2915 static void hci_cs_le_ext_create_conn(struct hci_dev *hdev, u8 status) 2916 { 2917 struct hci_cp_le_ext_create_conn *cp; 2918 2919 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2920 2921 /* All connection failure handling is taken care of by the 2922 * hci_conn_failed function which is triggered by the HCI 2923 * request completion callbacks used for connecting. 2924 */ 2925 if (status) 2926 return; 2927 2928 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_EXT_CREATE_CONN); 2929 if (!cp) 2930 return; 2931 2932 hci_dev_lock(hdev); 2933 2934 cs_le_create_conn(hdev, &cp->peer_addr, cp->peer_addr_type, 2935 cp->own_addr_type, cp->filter_policy); 2936 2937 hci_dev_unlock(hdev); 2938 } 2939 2940 static void hci_cs_le_read_remote_features(struct hci_dev *hdev, u8 status) 2941 { 2942 struct hci_cp_le_read_remote_features *cp; 2943 struct hci_conn *conn; 2944 2945 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2946 2947 if (!status) 2948 return; 2949 2950 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_READ_REMOTE_FEATURES); 2951 if (!cp) 2952 return; 2953 2954 hci_dev_lock(hdev); 2955 2956 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle)); 2957 if (conn) { 2958 if (conn->state == BT_CONFIG) { 2959 hci_connect_cfm(conn, status); 2960 hci_conn_drop(conn); 2961 } 2962 } 2963 2964 hci_dev_unlock(hdev); 2965 } 2966 2967 static void hci_cs_le_start_enc(struct hci_dev *hdev, u8 status) 2968 { 2969 struct hci_cp_le_start_enc *cp; 2970 struct hci_conn *conn; 2971 2972 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2973 2974 if (!status) 2975 return; 2976 2977 hci_dev_lock(hdev); 2978 2979 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_START_ENC); 2980 if (!cp) 2981 goto unlock; 2982 2983 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle)); 2984 if (!conn) 2985 goto unlock; 2986 2987 if (conn->state != BT_CONNECTED) 2988 goto unlock; 2989 2990 hci_disconnect(conn, HCI_ERROR_AUTH_FAILURE); 2991 hci_conn_drop(conn); 2992 2993 unlock: 2994 hci_dev_unlock(hdev); 2995 } 2996 2997 static void hci_cs_switch_role(struct hci_dev *hdev, u8 status) 2998 { 2999 struct hci_cp_switch_role *cp; 3000 struct hci_conn *conn; 3001 3002 BT_DBG("%s status 0x%2.2x", hdev->name, status); 3003 3004 if (!status) 3005 return; 3006 3007 cp = hci_sent_cmd_data(hdev, HCI_OP_SWITCH_ROLE); 3008 if (!cp) 3009 return; 3010 3011 hci_dev_lock(hdev); 3012 3013 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &cp->bdaddr); 3014 if (conn) 3015 clear_bit(HCI_CONN_RSWITCH_PEND, &conn->flags); 3016 3017 hci_dev_unlock(hdev); 3018 } 3019 3020 static void hci_inquiry_complete_evt(struct hci_dev *hdev, void *data, 3021 struct sk_buff *skb) 3022 { 3023 struct hci_ev_status *ev = data; 3024 struct discovery_state *discov = &hdev->discovery; 3025 struct inquiry_entry *e; 3026 3027 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 3028 3029 if (!test_and_clear_bit(HCI_INQUIRY, &hdev->flags)) 3030 return; 3031 3032 smp_mb__after_atomic(); /* wake_up_bit advises about this barrier */ 3033 wake_up_bit(&hdev->flags, HCI_INQUIRY); 3034 3035 if (!hci_dev_test_flag(hdev, HCI_MGMT)) 3036 return; 3037 3038 hci_dev_lock(hdev); 3039 3040 if (discov->state != DISCOVERY_FINDING) 3041 goto unlock; 3042 3043 if (list_empty(&discov->resolve)) { 3044 /* When BR/EDR inquiry is active and no LE scanning is in 3045 * progress, then change discovery state to indicate completion. 3046 * 3047 * When running LE scanning and BR/EDR inquiry simultaneously 3048 * and the LE scan already finished, then change the discovery 3049 * state to indicate completion. 3050 */ 3051 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN) || 3052 !test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) 3053 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 3054 goto unlock; 3055 } 3056 3057 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY, NAME_NEEDED); 3058 if (e && hci_resolve_name(hdev, e) == 0) { 3059 e->name_state = NAME_PENDING; 3060 hci_discovery_set_state(hdev, DISCOVERY_RESOLVING); 3061 discov->name_resolve_timeout = jiffies + NAME_RESOLVE_DURATION; 3062 } else { 3063 /* When BR/EDR inquiry is active and no LE scanning is in 3064 * progress, then change discovery state to indicate completion. 3065 * 3066 * When running LE scanning and BR/EDR inquiry simultaneously 3067 * and the LE scan already finished, then change the discovery 3068 * state to indicate completion. 3069 */ 3070 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN) || 3071 !test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) 3072 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 3073 } 3074 3075 unlock: 3076 hci_dev_unlock(hdev); 3077 } 3078 3079 static void hci_inquiry_result_evt(struct hci_dev *hdev, void *edata, 3080 struct sk_buff *skb) 3081 { 3082 struct hci_ev_inquiry_result *ev = edata; 3083 struct inquiry_data data; 3084 int i; 3085 3086 if (!hci_ev_skb_pull(hdev, skb, HCI_EV_INQUIRY_RESULT, 3087 flex_array_size(ev, info, ev->num))) 3088 return; 3089 3090 bt_dev_dbg(hdev, "num %d", ev->num); 3091 3092 if (!ev->num) 3093 return; 3094 3095 if (hci_dev_test_flag(hdev, HCI_PERIODIC_INQ)) 3096 return; 3097 3098 hci_dev_lock(hdev); 3099 3100 for (i = 0; i < ev->num; i++) { 3101 struct inquiry_info *info = &ev->info[i]; 3102 u32 flags; 3103 3104 bacpy(&data.bdaddr, &info->bdaddr); 3105 data.pscan_rep_mode = info->pscan_rep_mode; 3106 data.pscan_period_mode = info->pscan_period_mode; 3107 data.pscan_mode = info->pscan_mode; 3108 memcpy(data.dev_class, info->dev_class, 3); 3109 data.clock_offset = info->clock_offset; 3110 data.rssi = HCI_RSSI_INVALID; 3111 data.ssp_mode = 0x00; 3112 3113 flags = hci_inquiry_cache_update(hdev, &data, false); 3114 3115 mgmt_device_found(hdev, &info->bdaddr, ACL_LINK, 0x00, 3116 info->dev_class, HCI_RSSI_INVALID, 3117 flags, NULL, 0, NULL, 0, 0); 3118 } 3119 3120 hci_dev_unlock(hdev); 3121 } 3122 3123 static void hci_conn_complete_evt(struct hci_dev *hdev, void *data, 3124 struct sk_buff *skb) 3125 { 3126 struct hci_ev_conn_complete *ev = data; 3127 struct hci_conn *conn; 3128 u8 status = ev->status; 3129 3130 bt_dev_dbg(hdev, "status 0x%2.2x", status); 3131 3132 hci_dev_lock(hdev); 3133 3134 conn = hci_conn_hash_lookup_ba(hdev, ev->link_type, &ev->bdaddr); 3135 if (!conn) { 3136 /* In case of error status and there is no connection pending 3137 * just unlock as there is nothing to cleanup. 3138 */ 3139 if (ev->status) 3140 goto unlock; 3141 3142 /* Connection may not exist if auto-connected. Check the bredr 3143 * allowlist to see if this device is allowed to auto connect. 3144 * If link is an ACL type, create a connection class 3145 * automatically. 3146 * 3147 * Auto-connect will only occur if the event filter is 3148 * programmed with a given address. Right now, event filter is 3149 * only used during suspend. 3150 */ 3151 if (ev->link_type == ACL_LINK && 3152 hci_bdaddr_list_lookup_with_flags(&hdev->accept_list, 3153 &ev->bdaddr, 3154 BDADDR_BREDR)) { 3155 conn = hci_conn_add_unset(hdev, ev->link_type, 3156 &ev->bdaddr, HCI_ROLE_SLAVE); 3157 if (!conn) { 3158 bt_dev_err(hdev, "no memory for new conn"); 3159 goto unlock; 3160 } 3161 } else { 3162 if (ev->link_type != SCO_LINK) 3163 goto unlock; 3164 3165 conn = hci_conn_hash_lookup_ba(hdev, ESCO_LINK, 3166 &ev->bdaddr); 3167 if (!conn) 3168 goto unlock; 3169 3170 conn->type = SCO_LINK; 3171 } 3172 } 3173 3174 /* The HCI_Connection_Complete event is only sent once per connection. 3175 * Processing it more than once per connection can corrupt kernel memory. 3176 * 3177 * As the connection handle is set here for the first time, it indicates 3178 * whether the connection is already set up. 3179 */ 3180 if (!HCI_CONN_HANDLE_UNSET(conn->handle)) { 3181 bt_dev_err(hdev, "Ignoring HCI_Connection_Complete for existing connection"); 3182 goto unlock; 3183 } 3184 3185 if (!status) { 3186 status = hci_conn_set_handle(conn, __le16_to_cpu(ev->handle)); 3187 if (status) 3188 goto done; 3189 3190 if (conn->type == ACL_LINK) { 3191 conn->state = BT_CONFIG; 3192 hci_conn_hold(conn); 3193 3194 if (!conn->out && !hci_conn_ssp_enabled(conn) && 3195 !hci_find_link_key(hdev, &ev->bdaddr)) 3196 conn->disc_timeout = HCI_PAIRING_TIMEOUT; 3197 else 3198 conn->disc_timeout = HCI_DISCONN_TIMEOUT; 3199 } else 3200 conn->state = BT_CONNECTED; 3201 3202 hci_debugfs_create_conn(conn); 3203 hci_conn_add_sysfs(conn); 3204 3205 if (test_bit(HCI_AUTH, &hdev->flags)) 3206 set_bit(HCI_CONN_AUTH, &conn->flags); 3207 3208 if (test_bit(HCI_ENCRYPT, &hdev->flags)) 3209 set_bit(HCI_CONN_ENCRYPT, &conn->flags); 3210 3211 /* "Link key request" completed ahead of "connect request" completes */ 3212 if (ev->encr_mode == 1 && !test_bit(HCI_CONN_ENCRYPT, &conn->flags) && 3213 ev->link_type == ACL_LINK) { 3214 struct link_key *key; 3215 struct hci_cp_read_enc_key_size cp; 3216 3217 key = hci_find_link_key(hdev, &ev->bdaddr); 3218 if (key) { 3219 set_bit(HCI_CONN_ENCRYPT, &conn->flags); 3220 3221 if (!(hdev->commands[20] & 0x10)) { 3222 conn->enc_key_size = HCI_LINK_KEY_SIZE; 3223 } else { 3224 cp.handle = cpu_to_le16(conn->handle); 3225 if (hci_send_cmd(hdev, HCI_OP_READ_ENC_KEY_SIZE, 3226 sizeof(cp), &cp)) { 3227 bt_dev_err(hdev, "sending read key size failed"); 3228 conn->enc_key_size = HCI_LINK_KEY_SIZE; 3229 } 3230 } 3231 3232 hci_encrypt_cfm(conn, ev->status); 3233 } 3234 } 3235 3236 /* Get remote features */ 3237 if (conn->type == ACL_LINK) { 3238 struct hci_cp_read_remote_features cp; 3239 cp.handle = ev->handle; 3240 hci_send_cmd(hdev, HCI_OP_READ_REMOTE_FEATURES, 3241 sizeof(cp), &cp); 3242 3243 hci_update_scan(hdev); 3244 } 3245 3246 /* Set packet type for incoming connection */ 3247 if (!conn->out && hdev->hci_ver < BLUETOOTH_VER_2_0) { 3248 struct hci_cp_change_conn_ptype cp; 3249 cp.handle = ev->handle; 3250 cp.pkt_type = cpu_to_le16(conn->pkt_type); 3251 hci_send_cmd(hdev, HCI_OP_CHANGE_CONN_PTYPE, sizeof(cp), 3252 &cp); 3253 } 3254 } 3255 3256 if (conn->type == ACL_LINK) 3257 hci_sco_setup(conn, ev->status); 3258 3259 done: 3260 if (status) { 3261 hci_conn_failed(conn, status); 3262 } else if (ev->link_type == SCO_LINK) { 3263 switch (conn->setting & SCO_AIRMODE_MASK) { 3264 case SCO_AIRMODE_CVSD: 3265 if (hdev->notify) 3266 hdev->notify(hdev, HCI_NOTIFY_ENABLE_SCO_CVSD); 3267 break; 3268 } 3269 3270 hci_connect_cfm(conn, status); 3271 } 3272 3273 unlock: 3274 hci_dev_unlock(hdev); 3275 } 3276 3277 static void hci_reject_conn(struct hci_dev *hdev, bdaddr_t *bdaddr) 3278 { 3279 struct hci_cp_reject_conn_req cp; 3280 3281 bacpy(&cp.bdaddr, bdaddr); 3282 cp.reason = HCI_ERROR_REJ_BAD_ADDR; 3283 hci_send_cmd(hdev, HCI_OP_REJECT_CONN_REQ, sizeof(cp), &cp); 3284 } 3285 3286 static void hci_conn_request_evt(struct hci_dev *hdev, void *data, 3287 struct sk_buff *skb) 3288 { 3289 struct hci_ev_conn_request *ev = data; 3290 int mask = hdev->link_mode; 3291 struct inquiry_entry *ie; 3292 struct hci_conn *conn; 3293 __u8 flags = 0; 3294 3295 bt_dev_dbg(hdev, "bdaddr %pMR type 0x%x", &ev->bdaddr, ev->link_type); 3296 3297 /* Reject incoming connection from device with same BD ADDR against 3298 * CVE-2020-26555 3299 */ 3300 if (hdev && !bacmp(&hdev->bdaddr, &ev->bdaddr)) { 3301 bt_dev_dbg(hdev, "Reject connection with same BD_ADDR %pMR\n", 3302 &ev->bdaddr); 3303 hci_reject_conn(hdev, &ev->bdaddr); 3304 return; 3305 } 3306 3307 mask |= hci_proto_connect_ind(hdev, &ev->bdaddr, ev->link_type, 3308 &flags); 3309 3310 if (!(mask & HCI_LM_ACCEPT)) { 3311 hci_reject_conn(hdev, &ev->bdaddr); 3312 return; 3313 } 3314 3315 hci_dev_lock(hdev); 3316 3317 if (hci_bdaddr_list_lookup(&hdev->reject_list, &ev->bdaddr, 3318 BDADDR_BREDR)) { 3319 hci_reject_conn(hdev, &ev->bdaddr); 3320 goto unlock; 3321 } 3322 3323 /* Require HCI_CONNECTABLE or an accept list entry to accept the 3324 * connection. These features are only touched through mgmt so 3325 * only do the checks if HCI_MGMT is set. 3326 */ 3327 if (hci_dev_test_flag(hdev, HCI_MGMT) && 3328 !hci_dev_test_flag(hdev, HCI_CONNECTABLE) && 3329 !hci_bdaddr_list_lookup_with_flags(&hdev->accept_list, &ev->bdaddr, 3330 BDADDR_BREDR)) { 3331 hci_reject_conn(hdev, &ev->bdaddr); 3332 goto unlock; 3333 } 3334 3335 /* Connection accepted */ 3336 3337 ie = hci_inquiry_cache_lookup(hdev, &ev->bdaddr); 3338 if (ie) 3339 memcpy(ie->data.dev_class, ev->dev_class, 3); 3340 3341 conn = hci_conn_hash_lookup_ba(hdev, ev->link_type, 3342 &ev->bdaddr); 3343 if (!conn) { 3344 conn = hci_conn_add_unset(hdev, ev->link_type, &ev->bdaddr, 3345 HCI_ROLE_SLAVE); 3346 if (!conn) { 3347 bt_dev_err(hdev, "no memory for new connection"); 3348 goto unlock; 3349 } 3350 } 3351 3352 memcpy(conn->dev_class, ev->dev_class, 3); 3353 3354 hci_dev_unlock(hdev); 3355 3356 if (ev->link_type == ACL_LINK || 3357 (!(flags & HCI_PROTO_DEFER) && !lmp_esco_capable(hdev))) { 3358 struct hci_cp_accept_conn_req cp; 3359 conn->state = BT_CONNECT; 3360 3361 bacpy(&cp.bdaddr, &ev->bdaddr); 3362 3363 if (lmp_rswitch_capable(hdev) && (mask & HCI_LM_MASTER)) 3364 cp.role = 0x00; /* Become central */ 3365 else 3366 cp.role = 0x01; /* Remain peripheral */ 3367 3368 hci_send_cmd(hdev, HCI_OP_ACCEPT_CONN_REQ, sizeof(cp), &cp); 3369 } else if (!(flags & HCI_PROTO_DEFER)) { 3370 struct hci_cp_accept_sync_conn_req cp; 3371 conn->state = BT_CONNECT; 3372 3373 bacpy(&cp.bdaddr, &ev->bdaddr); 3374 cp.pkt_type = cpu_to_le16(conn->pkt_type); 3375 3376 cp.tx_bandwidth = cpu_to_le32(0x00001f40); 3377 cp.rx_bandwidth = cpu_to_le32(0x00001f40); 3378 cp.max_latency = cpu_to_le16(0xffff); 3379 cp.content_format = cpu_to_le16(hdev->voice_setting); 3380 cp.retrans_effort = 0xff; 3381 3382 hci_send_cmd(hdev, HCI_OP_ACCEPT_SYNC_CONN_REQ, sizeof(cp), 3383 &cp); 3384 } else { 3385 conn->state = BT_CONNECT2; 3386 hci_connect_cfm(conn, 0); 3387 } 3388 3389 return; 3390 unlock: 3391 hci_dev_unlock(hdev); 3392 } 3393 3394 static u8 hci_to_mgmt_reason(u8 err) 3395 { 3396 switch (err) { 3397 case HCI_ERROR_CONNECTION_TIMEOUT: 3398 return MGMT_DEV_DISCONN_TIMEOUT; 3399 case HCI_ERROR_REMOTE_USER_TERM: 3400 case HCI_ERROR_REMOTE_LOW_RESOURCES: 3401 case HCI_ERROR_REMOTE_POWER_OFF: 3402 return MGMT_DEV_DISCONN_REMOTE; 3403 case HCI_ERROR_LOCAL_HOST_TERM: 3404 return MGMT_DEV_DISCONN_LOCAL_HOST; 3405 default: 3406 return MGMT_DEV_DISCONN_UNKNOWN; 3407 } 3408 } 3409 3410 static void hci_disconn_complete_evt(struct hci_dev *hdev, void *data, 3411 struct sk_buff *skb) 3412 { 3413 struct hci_ev_disconn_complete *ev = data; 3414 u8 reason; 3415 struct hci_conn_params *params; 3416 struct hci_conn *conn; 3417 bool mgmt_connected; 3418 3419 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 3420 3421 hci_dev_lock(hdev); 3422 3423 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 3424 if (!conn) 3425 goto unlock; 3426 3427 if (ev->status) { 3428 mgmt_disconnect_failed(hdev, &conn->dst, conn->type, 3429 conn->dst_type, ev->status); 3430 goto unlock; 3431 } 3432 3433 conn->state = BT_CLOSED; 3434 3435 mgmt_connected = test_and_clear_bit(HCI_CONN_MGMT_CONNECTED, &conn->flags); 3436 3437 if (test_bit(HCI_CONN_AUTH_FAILURE, &conn->flags)) 3438 reason = MGMT_DEV_DISCONN_AUTH_FAILURE; 3439 else 3440 reason = hci_to_mgmt_reason(ev->reason); 3441 3442 mgmt_device_disconnected(hdev, &conn->dst, conn->type, conn->dst_type, 3443 reason, mgmt_connected); 3444 3445 if (conn->type == ACL_LINK) { 3446 if (test_and_clear_bit(HCI_CONN_FLUSH_KEY, &conn->flags)) 3447 hci_remove_link_key(hdev, &conn->dst); 3448 3449 hci_update_scan(hdev); 3450 } 3451 3452 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); 3453 if (params) { 3454 switch (params->auto_connect) { 3455 case HCI_AUTO_CONN_LINK_LOSS: 3456 if (ev->reason != HCI_ERROR_CONNECTION_TIMEOUT) 3457 break; 3458 fallthrough; 3459 3460 case HCI_AUTO_CONN_DIRECT: 3461 case HCI_AUTO_CONN_ALWAYS: 3462 hci_pend_le_list_del_init(params); 3463 hci_pend_le_list_add(params, &hdev->pend_le_conns); 3464 hci_update_passive_scan(hdev); 3465 break; 3466 3467 default: 3468 break; 3469 } 3470 } 3471 3472 hci_disconn_cfm(conn, ev->reason); 3473 3474 /* Re-enable advertising if necessary, since it might 3475 * have been disabled by the connection. From the 3476 * HCI_LE_Set_Advertise_Enable command description in 3477 * the core specification (v4.0): 3478 * "The Controller shall continue advertising until the Host 3479 * issues an LE_Set_Advertise_Enable command with 3480 * Advertising_Enable set to 0x00 (Advertising is disabled) 3481 * or until a connection is created or until the Advertising 3482 * is timed out due to Directed Advertising." 3483 */ 3484 if (conn->type == LE_LINK && conn->role == HCI_ROLE_SLAVE) { 3485 hdev->cur_adv_instance = conn->adv_instance; 3486 hci_enable_advertising(hdev); 3487 } 3488 3489 hci_conn_del(conn); 3490 3491 unlock: 3492 hci_dev_unlock(hdev); 3493 } 3494 3495 static void hci_auth_complete_evt(struct hci_dev *hdev, void *data, 3496 struct sk_buff *skb) 3497 { 3498 struct hci_ev_auth_complete *ev = data; 3499 struct hci_conn *conn; 3500 3501 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 3502 3503 hci_dev_lock(hdev); 3504 3505 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 3506 if (!conn) 3507 goto unlock; 3508 3509 if (!ev->status) { 3510 clear_bit(HCI_CONN_AUTH_FAILURE, &conn->flags); 3511 set_bit(HCI_CONN_AUTH, &conn->flags); 3512 conn->sec_level = conn->pending_sec_level; 3513 } else { 3514 if (ev->status == HCI_ERROR_PIN_OR_KEY_MISSING) 3515 set_bit(HCI_CONN_AUTH_FAILURE, &conn->flags); 3516 3517 mgmt_auth_failed(conn, ev->status); 3518 } 3519 3520 clear_bit(HCI_CONN_AUTH_PEND, &conn->flags); 3521 3522 if (conn->state == BT_CONFIG) { 3523 if (!ev->status && hci_conn_ssp_enabled(conn)) { 3524 struct hci_cp_set_conn_encrypt cp; 3525 cp.handle = ev->handle; 3526 cp.encrypt = 0x01; 3527 hci_send_cmd(hdev, HCI_OP_SET_CONN_ENCRYPT, sizeof(cp), 3528 &cp); 3529 } else { 3530 conn->state = BT_CONNECTED; 3531 hci_connect_cfm(conn, ev->status); 3532 hci_conn_drop(conn); 3533 } 3534 } else { 3535 hci_auth_cfm(conn, ev->status); 3536 3537 hci_conn_hold(conn); 3538 conn->disc_timeout = HCI_DISCONN_TIMEOUT; 3539 hci_conn_drop(conn); 3540 } 3541 3542 if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) { 3543 if (!ev->status) { 3544 struct hci_cp_set_conn_encrypt cp; 3545 cp.handle = ev->handle; 3546 cp.encrypt = 0x01; 3547 hci_send_cmd(hdev, HCI_OP_SET_CONN_ENCRYPT, sizeof(cp), 3548 &cp); 3549 } else { 3550 clear_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags); 3551 hci_encrypt_cfm(conn, ev->status); 3552 } 3553 } 3554 3555 unlock: 3556 hci_dev_unlock(hdev); 3557 } 3558 3559 static void hci_remote_name_evt(struct hci_dev *hdev, void *data, 3560 struct sk_buff *skb) 3561 { 3562 struct hci_ev_remote_name *ev = data; 3563 struct hci_conn *conn; 3564 3565 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 3566 3567 hci_dev_lock(hdev); 3568 3569 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 3570 3571 if (!hci_dev_test_flag(hdev, HCI_MGMT)) 3572 goto check_auth; 3573 3574 if (ev->status == 0) 3575 hci_check_pending_name(hdev, conn, &ev->bdaddr, ev->name, 3576 strnlen(ev->name, HCI_MAX_NAME_LENGTH)); 3577 else 3578 hci_check_pending_name(hdev, conn, &ev->bdaddr, NULL, 0); 3579 3580 check_auth: 3581 if (!conn) 3582 goto unlock; 3583 3584 if (!hci_outgoing_auth_needed(hdev, conn)) 3585 goto unlock; 3586 3587 if (!test_and_set_bit(HCI_CONN_AUTH_PEND, &conn->flags)) { 3588 struct hci_cp_auth_requested cp; 3589 3590 set_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags); 3591 3592 cp.handle = __cpu_to_le16(conn->handle); 3593 hci_send_cmd(hdev, HCI_OP_AUTH_REQUESTED, sizeof(cp), &cp); 3594 } 3595 3596 unlock: 3597 hci_dev_unlock(hdev); 3598 } 3599 3600 static void hci_encrypt_change_evt(struct hci_dev *hdev, void *data, 3601 struct sk_buff *skb) 3602 { 3603 struct hci_ev_encrypt_change *ev = data; 3604 struct hci_conn *conn; 3605 3606 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 3607 3608 hci_dev_lock(hdev); 3609 3610 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 3611 if (!conn) 3612 goto unlock; 3613 3614 if (!ev->status) { 3615 if (ev->encrypt) { 3616 /* Encryption implies authentication */ 3617 set_bit(HCI_CONN_AUTH, &conn->flags); 3618 set_bit(HCI_CONN_ENCRYPT, &conn->flags); 3619 conn->sec_level = conn->pending_sec_level; 3620 3621 /* P-256 authentication key implies FIPS */ 3622 if (conn->key_type == HCI_LK_AUTH_COMBINATION_P256) 3623 set_bit(HCI_CONN_FIPS, &conn->flags); 3624 3625 if ((conn->type == ACL_LINK && ev->encrypt == 0x02) || 3626 conn->type == LE_LINK) 3627 set_bit(HCI_CONN_AES_CCM, &conn->flags); 3628 } else { 3629 clear_bit(HCI_CONN_ENCRYPT, &conn->flags); 3630 clear_bit(HCI_CONN_AES_CCM, &conn->flags); 3631 } 3632 } 3633 3634 /* We should disregard the current RPA and generate a new one 3635 * whenever the encryption procedure fails. 3636 */ 3637 if (ev->status && conn->type == LE_LINK) { 3638 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 3639 hci_adv_instances_set_rpa_expired(hdev, true); 3640 } 3641 3642 clear_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags); 3643 3644 /* Check link security requirements are met */ 3645 if (!hci_conn_check_link_mode(conn)) 3646 ev->status = HCI_ERROR_AUTH_FAILURE; 3647 3648 if (ev->status && conn->state == BT_CONNECTED) { 3649 if (ev->status == HCI_ERROR_PIN_OR_KEY_MISSING) 3650 set_bit(HCI_CONN_AUTH_FAILURE, &conn->flags); 3651 3652 /* Notify upper layers so they can cleanup before 3653 * disconnecting. 3654 */ 3655 hci_encrypt_cfm(conn, ev->status); 3656 hci_disconnect(conn, HCI_ERROR_AUTH_FAILURE); 3657 hci_conn_drop(conn); 3658 goto unlock; 3659 } 3660 3661 /* Try reading the encryption key size for encrypted ACL links */ 3662 if (!ev->status && ev->encrypt && conn->type == ACL_LINK) { 3663 struct hci_cp_read_enc_key_size cp; 3664 3665 /* Only send HCI_Read_Encryption_Key_Size if the 3666 * controller really supports it. If it doesn't, assume 3667 * the default size (16). 3668 */ 3669 if (!(hdev->commands[20] & 0x10) || 3670 test_bit(HCI_QUIRK_BROKEN_READ_ENC_KEY_SIZE, &hdev->quirks)) { 3671 conn->enc_key_size = HCI_LINK_KEY_SIZE; 3672 goto notify; 3673 } 3674 3675 cp.handle = cpu_to_le16(conn->handle); 3676 if (hci_send_cmd(hdev, HCI_OP_READ_ENC_KEY_SIZE, 3677 sizeof(cp), &cp)) { 3678 bt_dev_err(hdev, "sending read key size failed"); 3679 conn->enc_key_size = HCI_LINK_KEY_SIZE; 3680 goto notify; 3681 } 3682 3683 goto unlock; 3684 } 3685 3686 /* Set the default Authenticated Payload Timeout after 3687 * an LE Link is established. As per Core Spec v5.0, Vol 2, Part B 3688 * Section 3.3, the HCI command WRITE_AUTH_PAYLOAD_TIMEOUT should be 3689 * sent when the link is active and Encryption is enabled, the conn 3690 * type can be either LE or ACL and controller must support LMP Ping. 3691 * Ensure for AES-CCM encryption as well. 3692 */ 3693 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags) && 3694 test_bit(HCI_CONN_AES_CCM, &conn->flags) && 3695 ((conn->type == ACL_LINK && lmp_ping_capable(hdev)) || 3696 (conn->type == LE_LINK && (hdev->le_features[0] & HCI_LE_PING)))) { 3697 struct hci_cp_write_auth_payload_to cp; 3698 3699 cp.handle = cpu_to_le16(conn->handle); 3700 cp.timeout = cpu_to_le16(hdev->auth_payload_timeout); 3701 if (hci_send_cmd(conn->hdev, HCI_OP_WRITE_AUTH_PAYLOAD_TO, 3702 sizeof(cp), &cp)) 3703 bt_dev_err(hdev, "write auth payload timeout failed"); 3704 } 3705 3706 notify: 3707 hci_encrypt_cfm(conn, ev->status); 3708 3709 unlock: 3710 hci_dev_unlock(hdev); 3711 } 3712 3713 static void hci_change_link_key_complete_evt(struct hci_dev *hdev, void *data, 3714 struct sk_buff *skb) 3715 { 3716 struct hci_ev_change_link_key_complete *ev = data; 3717 struct hci_conn *conn; 3718 3719 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 3720 3721 hci_dev_lock(hdev); 3722 3723 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 3724 if (conn) { 3725 if (!ev->status) 3726 set_bit(HCI_CONN_SECURE, &conn->flags); 3727 3728 clear_bit(HCI_CONN_AUTH_PEND, &conn->flags); 3729 3730 hci_key_change_cfm(conn, ev->status); 3731 } 3732 3733 hci_dev_unlock(hdev); 3734 } 3735 3736 static void hci_remote_features_evt(struct hci_dev *hdev, void *data, 3737 struct sk_buff *skb) 3738 { 3739 struct hci_ev_remote_features *ev = data; 3740 struct hci_conn *conn; 3741 3742 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 3743 3744 hci_dev_lock(hdev); 3745 3746 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 3747 if (!conn) 3748 goto unlock; 3749 3750 if (!ev->status) 3751 memcpy(conn->features[0], ev->features, 8); 3752 3753 if (conn->state != BT_CONFIG) 3754 goto unlock; 3755 3756 if (!ev->status && lmp_ext_feat_capable(hdev) && 3757 lmp_ext_feat_capable(conn)) { 3758 struct hci_cp_read_remote_ext_features cp; 3759 cp.handle = ev->handle; 3760 cp.page = 0x01; 3761 hci_send_cmd(hdev, HCI_OP_READ_REMOTE_EXT_FEATURES, 3762 sizeof(cp), &cp); 3763 goto unlock; 3764 } 3765 3766 if (!ev->status && !test_bit(HCI_CONN_MGMT_CONNECTED, &conn->flags)) { 3767 struct hci_cp_remote_name_req cp; 3768 memset(&cp, 0, sizeof(cp)); 3769 bacpy(&cp.bdaddr, &conn->dst); 3770 cp.pscan_rep_mode = 0x02; 3771 hci_send_cmd(hdev, HCI_OP_REMOTE_NAME_REQ, sizeof(cp), &cp); 3772 } else { 3773 mgmt_device_connected(hdev, conn, NULL, 0); 3774 } 3775 3776 if (!hci_outgoing_auth_needed(hdev, conn)) { 3777 conn->state = BT_CONNECTED; 3778 hci_connect_cfm(conn, ev->status); 3779 hci_conn_drop(conn); 3780 } 3781 3782 unlock: 3783 hci_dev_unlock(hdev); 3784 } 3785 3786 static inline void handle_cmd_cnt_and_timer(struct hci_dev *hdev, u8 ncmd) 3787 { 3788 cancel_delayed_work(&hdev->cmd_timer); 3789 3790 rcu_read_lock(); 3791 if (!test_bit(HCI_RESET, &hdev->flags)) { 3792 if (ncmd) { 3793 cancel_delayed_work(&hdev->ncmd_timer); 3794 atomic_set(&hdev->cmd_cnt, 1); 3795 } else { 3796 if (!hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE)) 3797 queue_delayed_work(hdev->workqueue, &hdev->ncmd_timer, 3798 HCI_NCMD_TIMEOUT); 3799 } 3800 } 3801 rcu_read_unlock(); 3802 } 3803 3804 static u8 hci_cc_le_read_buffer_size_v2(struct hci_dev *hdev, void *data, 3805 struct sk_buff *skb) 3806 { 3807 struct hci_rp_le_read_buffer_size_v2 *rp = data; 3808 3809 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 3810 3811 if (rp->status) 3812 return rp->status; 3813 3814 hdev->le_mtu = __le16_to_cpu(rp->acl_mtu); 3815 hdev->le_pkts = rp->acl_max_pkt; 3816 hdev->iso_mtu = __le16_to_cpu(rp->iso_mtu); 3817 hdev->iso_pkts = rp->iso_max_pkt; 3818 3819 hdev->le_cnt = hdev->le_pkts; 3820 hdev->iso_cnt = hdev->iso_pkts; 3821 3822 BT_DBG("%s acl mtu %d:%d iso mtu %d:%d", hdev->name, hdev->acl_mtu, 3823 hdev->acl_pkts, hdev->iso_mtu, hdev->iso_pkts); 3824 3825 return rp->status; 3826 } 3827 3828 static void hci_unbound_cis_failed(struct hci_dev *hdev, u8 cig, u8 status) 3829 { 3830 struct hci_conn *conn, *tmp; 3831 3832 lockdep_assert_held(&hdev->lock); 3833 3834 list_for_each_entry_safe(conn, tmp, &hdev->conn_hash.list, list) { 3835 if (conn->type != ISO_LINK || !bacmp(&conn->dst, BDADDR_ANY) || 3836 conn->state == BT_OPEN || conn->iso_qos.ucast.cig != cig) 3837 continue; 3838 3839 if (HCI_CONN_HANDLE_UNSET(conn->handle)) 3840 hci_conn_failed(conn, status); 3841 } 3842 } 3843 3844 static u8 hci_cc_le_set_cig_params(struct hci_dev *hdev, void *data, 3845 struct sk_buff *skb) 3846 { 3847 struct hci_rp_le_set_cig_params *rp = data; 3848 struct hci_cp_le_set_cig_params *cp; 3849 struct hci_conn *conn; 3850 u8 status = rp->status; 3851 bool pending = false; 3852 int i; 3853 3854 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 3855 3856 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_CIG_PARAMS); 3857 if (!rp->status && (!cp || rp->num_handles != cp->num_cis || 3858 rp->cig_id != cp->cig_id)) { 3859 bt_dev_err(hdev, "unexpected Set CIG Parameters response data"); 3860 status = HCI_ERROR_UNSPECIFIED; 3861 } 3862 3863 hci_dev_lock(hdev); 3864 3865 /* BLUETOOTH CORE SPECIFICATION Version 5.4 | Vol 4, Part E page 2554 3866 * 3867 * If the Status return parameter is non-zero, then the state of the CIG 3868 * and its CIS configurations shall not be changed by the command. If 3869 * the CIG did not already exist, it shall not be created. 3870 */ 3871 if (status) { 3872 /* Keep current configuration, fail only the unbound CIS */ 3873 hci_unbound_cis_failed(hdev, rp->cig_id, status); 3874 goto unlock; 3875 } 3876 3877 /* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E page 2553 3878 * 3879 * If the Status return parameter is zero, then the Controller shall 3880 * set the Connection_Handle arrayed return parameter to the connection 3881 * handle(s) corresponding to the CIS configurations specified in 3882 * the CIS_IDs command parameter, in the same order. 3883 */ 3884 for (i = 0; i < rp->num_handles; ++i) { 3885 conn = hci_conn_hash_lookup_cis(hdev, NULL, 0, rp->cig_id, 3886 cp->cis[i].cis_id); 3887 if (!conn || !bacmp(&conn->dst, BDADDR_ANY)) 3888 continue; 3889 3890 if (conn->state != BT_BOUND && conn->state != BT_CONNECT) 3891 continue; 3892 3893 if (hci_conn_set_handle(conn, __le16_to_cpu(rp->handle[i]))) 3894 continue; 3895 3896 if (conn->state == BT_CONNECT) 3897 pending = true; 3898 } 3899 3900 unlock: 3901 if (pending) 3902 hci_le_create_cis_pending(hdev); 3903 3904 hci_dev_unlock(hdev); 3905 3906 return rp->status; 3907 } 3908 3909 static u8 hci_cc_le_setup_iso_path(struct hci_dev *hdev, void *data, 3910 struct sk_buff *skb) 3911 { 3912 struct hci_rp_le_setup_iso_path *rp = data; 3913 struct hci_cp_le_setup_iso_path *cp; 3914 struct hci_conn *conn; 3915 3916 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 3917 3918 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SETUP_ISO_PATH); 3919 if (!cp) 3920 return rp->status; 3921 3922 hci_dev_lock(hdev); 3923 3924 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle)); 3925 if (!conn) 3926 goto unlock; 3927 3928 if (rp->status) { 3929 hci_connect_cfm(conn, rp->status); 3930 hci_conn_del(conn); 3931 goto unlock; 3932 } 3933 3934 switch (cp->direction) { 3935 /* Input (Host to Controller) */ 3936 case 0x00: 3937 /* Only confirm connection if output only */ 3938 if (conn->iso_qos.ucast.out.sdu && !conn->iso_qos.ucast.in.sdu) 3939 hci_connect_cfm(conn, rp->status); 3940 break; 3941 /* Output (Controller to Host) */ 3942 case 0x01: 3943 /* Confirm connection since conn->iso_qos is always configured 3944 * last. 3945 */ 3946 hci_connect_cfm(conn, rp->status); 3947 3948 /* Notify device connected in case it is a BIG Sync */ 3949 if (!rp->status && test_bit(HCI_CONN_BIG_SYNC, &conn->flags)) 3950 mgmt_device_connected(hdev, conn, NULL, 0); 3951 3952 break; 3953 } 3954 3955 unlock: 3956 hci_dev_unlock(hdev); 3957 return rp->status; 3958 } 3959 3960 static void hci_cs_le_create_big(struct hci_dev *hdev, u8 status) 3961 { 3962 bt_dev_dbg(hdev, "status 0x%2.2x", status); 3963 } 3964 3965 static u8 hci_cc_set_per_adv_param(struct hci_dev *hdev, void *data, 3966 struct sk_buff *skb) 3967 { 3968 struct hci_ev_status *rp = data; 3969 struct hci_cp_le_set_per_adv_params *cp; 3970 3971 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 3972 3973 if (rp->status) 3974 return rp->status; 3975 3976 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_PER_ADV_PARAMS); 3977 if (!cp) 3978 return rp->status; 3979 3980 /* TODO: set the conn state */ 3981 return rp->status; 3982 } 3983 3984 static u8 hci_cc_le_set_per_adv_enable(struct hci_dev *hdev, void *data, 3985 struct sk_buff *skb) 3986 { 3987 struct hci_ev_status *rp = data; 3988 struct hci_cp_le_set_per_adv_enable *cp; 3989 struct adv_info *adv = NULL, *n; 3990 u8 per_adv_cnt = 0; 3991 3992 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 3993 3994 if (rp->status) 3995 return rp->status; 3996 3997 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE); 3998 if (!cp) 3999 return rp->status; 4000 4001 hci_dev_lock(hdev); 4002 4003 adv = hci_find_adv_instance(hdev, cp->handle); 4004 4005 if (cp->enable) { 4006 hci_dev_set_flag(hdev, HCI_LE_PER_ADV); 4007 4008 if (adv) 4009 adv->enabled = true; 4010 } else { 4011 /* If just one instance was disabled check if there are 4012 * any other instance enabled before clearing HCI_LE_PER_ADV. 4013 * The current periodic adv instance will be marked as 4014 * disabled once extended advertising is also disabled. 4015 */ 4016 list_for_each_entry_safe(adv, n, &hdev->adv_instances, 4017 list) { 4018 if (adv->periodic && adv->enabled) 4019 per_adv_cnt++; 4020 } 4021 4022 if (per_adv_cnt > 1) 4023 goto unlock; 4024 4025 hci_dev_clear_flag(hdev, HCI_LE_PER_ADV); 4026 } 4027 4028 unlock: 4029 hci_dev_unlock(hdev); 4030 4031 return rp->status; 4032 } 4033 4034 #define HCI_CC_VL(_op, _func, _min, _max) \ 4035 { \ 4036 .op = _op, \ 4037 .func = _func, \ 4038 .min_len = _min, \ 4039 .max_len = _max, \ 4040 } 4041 4042 #define HCI_CC(_op, _func, _len) \ 4043 HCI_CC_VL(_op, _func, _len, _len) 4044 4045 #define HCI_CC_STATUS(_op, _func) \ 4046 HCI_CC(_op, _func, sizeof(struct hci_ev_status)) 4047 4048 static const struct hci_cc { 4049 u16 op; 4050 u8 (*func)(struct hci_dev *hdev, void *data, struct sk_buff *skb); 4051 u16 min_len; 4052 u16 max_len; 4053 } hci_cc_table[] = { 4054 HCI_CC_STATUS(HCI_OP_INQUIRY_CANCEL, hci_cc_inquiry_cancel), 4055 HCI_CC_STATUS(HCI_OP_PERIODIC_INQ, hci_cc_periodic_inq), 4056 HCI_CC_STATUS(HCI_OP_EXIT_PERIODIC_INQ, hci_cc_exit_periodic_inq), 4057 HCI_CC_STATUS(HCI_OP_REMOTE_NAME_REQ_CANCEL, 4058 hci_cc_remote_name_req_cancel), 4059 HCI_CC(HCI_OP_ROLE_DISCOVERY, hci_cc_role_discovery, 4060 sizeof(struct hci_rp_role_discovery)), 4061 HCI_CC(HCI_OP_READ_LINK_POLICY, hci_cc_read_link_policy, 4062 sizeof(struct hci_rp_read_link_policy)), 4063 HCI_CC(HCI_OP_WRITE_LINK_POLICY, hci_cc_write_link_policy, 4064 sizeof(struct hci_rp_write_link_policy)), 4065 HCI_CC(HCI_OP_READ_DEF_LINK_POLICY, hci_cc_read_def_link_policy, 4066 sizeof(struct hci_rp_read_def_link_policy)), 4067 HCI_CC_STATUS(HCI_OP_WRITE_DEF_LINK_POLICY, 4068 hci_cc_write_def_link_policy), 4069 HCI_CC_STATUS(HCI_OP_RESET, hci_cc_reset), 4070 HCI_CC(HCI_OP_READ_STORED_LINK_KEY, hci_cc_read_stored_link_key, 4071 sizeof(struct hci_rp_read_stored_link_key)), 4072 HCI_CC(HCI_OP_DELETE_STORED_LINK_KEY, hci_cc_delete_stored_link_key, 4073 sizeof(struct hci_rp_delete_stored_link_key)), 4074 HCI_CC_STATUS(HCI_OP_WRITE_LOCAL_NAME, hci_cc_write_local_name), 4075 HCI_CC(HCI_OP_READ_LOCAL_NAME, hci_cc_read_local_name, 4076 sizeof(struct hci_rp_read_local_name)), 4077 HCI_CC_STATUS(HCI_OP_WRITE_AUTH_ENABLE, hci_cc_write_auth_enable), 4078 HCI_CC_STATUS(HCI_OP_WRITE_ENCRYPT_MODE, hci_cc_write_encrypt_mode), 4079 HCI_CC_STATUS(HCI_OP_WRITE_SCAN_ENABLE, hci_cc_write_scan_enable), 4080 HCI_CC_STATUS(HCI_OP_SET_EVENT_FLT, hci_cc_set_event_filter), 4081 HCI_CC(HCI_OP_READ_CLASS_OF_DEV, hci_cc_read_class_of_dev, 4082 sizeof(struct hci_rp_read_class_of_dev)), 4083 HCI_CC_STATUS(HCI_OP_WRITE_CLASS_OF_DEV, hci_cc_write_class_of_dev), 4084 HCI_CC(HCI_OP_READ_VOICE_SETTING, hci_cc_read_voice_setting, 4085 sizeof(struct hci_rp_read_voice_setting)), 4086 HCI_CC_STATUS(HCI_OP_WRITE_VOICE_SETTING, hci_cc_write_voice_setting), 4087 HCI_CC(HCI_OP_READ_NUM_SUPPORTED_IAC, hci_cc_read_num_supported_iac, 4088 sizeof(struct hci_rp_read_num_supported_iac)), 4089 HCI_CC_STATUS(HCI_OP_WRITE_SSP_MODE, hci_cc_write_ssp_mode), 4090 HCI_CC_STATUS(HCI_OP_WRITE_SC_SUPPORT, hci_cc_write_sc_support), 4091 HCI_CC(HCI_OP_READ_AUTH_PAYLOAD_TO, hci_cc_read_auth_payload_timeout, 4092 sizeof(struct hci_rp_read_auth_payload_to)), 4093 HCI_CC(HCI_OP_WRITE_AUTH_PAYLOAD_TO, hci_cc_write_auth_payload_timeout, 4094 sizeof(struct hci_rp_write_auth_payload_to)), 4095 HCI_CC(HCI_OP_READ_LOCAL_VERSION, hci_cc_read_local_version, 4096 sizeof(struct hci_rp_read_local_version)), 4097 HCI_CC(HCI_OP_READ_LOCAL_COMMANDS, hci_cc_read_local_commands, 4098 sizeof(struct hci_rp_read_local_commands)), 4099 HCI_CC(HCI_OP_READ_LOCAL_FEATURES, hci_cc_read_local_features, 4100 sizeof(struct hci_rp_read_local_features)), 4101 HCI_CC(HCI_OP_READ_LOCAL_EXT_FEATURES, hci_cc_read_local_ext_features, 4102 sizeof(struct hci_rp_read_local_ext_features)), 4103 HCI_CC(HCI_OP_READ_BUFFER_SIZE, hci_cc_read_buffer_size, 4104 sizeof(struct hci_rp_read_buffer_size)), 4105 HCI_CC(HCI_OP_READ_BD_ADDR, hci_cc_read_bd_addr, 4106 sizeof(struct hci_rp_read_bd_addr)), 4107 HCI_CC(HCI_OP_READ_LOCAL_PAIRING_OPTS, hci_cc_read_local_pairing_opts, 4108 sizeof(struct hci_rp_read_local_pairing_opts)), 4109 HCI_CC(HCI_OP_READ_PAGE_SCAN_ACTIVITY, hci_cc_read_page_scan_activity, 4110 sizeof(struct hci_rp_read_page_scan_activity)), 4111 HCI_CC_STATUS(HCI_OP_WRITE_PAGE_SCAN_ACTIVITY, 4112 hci_cc_write_page_scan_activity), 4113 HCI_CC(HCI_OP_READ_PAGE_SCAN_TYPE, hci_cc_read_page_scan_type, 4114 sizeof(struct hci_rp_read_page_scan_type)), 4115 HCI_CC_STATUS(HCI_OP_WRITE_PAGE_SCAN_TYPE, hci_cc_write_page_scan_type), 4116 HCI_CC(HCI_OP_READ_DATA_BLOCK_SIZE, hci_cc_read_data_block_size, 4117 sizeof(struct hci_rp_read_data_block_size)), 4118 HCI_CC(HCI_OP_READ_FLOW_CONTROL_MODE, hci_cc_read_flow_control_mode, 4119 sizeof(struct hci_rp_read_flow_control_mode)), 4120 HCI_CC(HCI_OP_READ_LOCAL_AMP_INFO, hci_cc_read_local_amp_info, 4121 sizeof(struct hci_rp_read_local_amp_info)), 4122 HCI_CC(HCI_OP_READ_CLOCK, hci_cc_read_clock, 4123 sizeof(struct hci_rp_read_clock)), 4124 HCI_CC(HCI_OP_READ_ENC_KEY_SIZE, hci_cc_read_enc_key_size, 4125 sizeof(struct hci_rp_read_enc_key_size)), 4126 HCI_CC(HCI_OP_READ_INQ_RSP_TX_POWER, hci_cc_read_inq_rsp_tx_power, 4127 sizeof(struct hci_rp_read_inq_rsp_tx_power)), 4128 HCI_CC(HCI_OP_READ_DEF_ERR_DATA_REPORTING, 4129 hci_cc_read_def_err_data_reporting, 4130 sizeof(struct hci_rp_read_def_err_data_reporting)), 4131 HCI_CC_STATUS(HCI_OP_WRITE_DEF_ERR_DATA_REPORTING, 4132 hci_cc_write_def_err_data_reporting), 4133 HCI_CC(HCI_OP_PIN_CODE_REPLY, hci_cc_pin_code_reply, 4134 sizeof(struct hci_rp_pin_code_reply)), 4135 HCI_CC(HCI_OP_PIN_CODE_NEG_REPLY, hci_cc_pin_code_neg_reply, 4136 sizeof(struct hci_rp_pin_code_neg_reply)), 4137 HCI_CC(HCI_OP_READ_LOCAL_OOB_DATA, hci_cc_read_local_oob_data, 4138 sizeof(struct hci_rp_read_local_oob_data)), 4139 HCI_CC(HCI_OP_READ_LOCAL_OOB_EXT_DATA, hci_cc_read_local_oob_ext_data, 4140 sizeof(struct hci_rp_read_local_oob_ext_data)), 4141 HCI_CC(HCI_OP_LE_READ_BUFFER_SIZE, hci_cc_le_read_buffer_size, 4142 sizeof(struct hci_rp_le_read_buffer_size)), 4143 HCI_CC(HCI_OP_LE_READ_LOCAL_FEATURES, hci_cc_le_read_local_features, 4144 sizeof(struct hci_rp_le_read_local_features)), 4145 HCI_CC(HCI_OP_LE_READ_ADV_TX_POWER, hci_cc_le_read_adv_tx_power, 4146 sizeof(struct hci_rp_le_read_adv_tx_power)), 4147 HCI_CC(HCI_OP_USER_CONFIRM_REPLY, hci_cc_user_confirm_reply, 4148 sizeof(struct hci_rp_user_confirm_reply)), 4149 HCI_CC(HCI_OP_USER_CONFIRM_NEG_REPLY, hci_cc_user_confirm_neg_reply, 4150 sizeof(struct hci_rp_user_confirm_reply)), 4151 HCI_CC(HCI_OP_USER_PASSKEY_REPLY, hci_cc_user_passkey_reply, 4152 sizeof(struct hci_rp_user_confirm_reply)), 4153 HCI_CC(HCI_OP_USER_PASSKEY_NEG_REPLY, hci_cc_user_passkey_neg_reply, 4154 sizeof(struct hci_rp_user_confirm_reply)), 4155 HCI_CC_STATUS(HCI_OP_LE_SET_RANDOM_ADDR, hci_cc_le_set_random_addr), 4156 HCI_CC_STATUS(HCI_OP_LE_SET_ADV_ENABLE, hci_cc_le_set_adv_enable), 4157 HCI_CC_STATUS(HCI_OP_LE_SET_SCAN_PARAM, hci_cc_le_set_scan_param), 4158 HCI_CC_STATUS(HCI_OP_LE_SET_SCAN_ENABLE, hci_cc_le_set_scan_enable), 4159 HCI_CC(HCI_OP_LE_READ_ACCEPT_LIST_SIZE, 4160 hci_cc_le_read_accept_list_size, 4161 sizeof(struct hci_rp_le_read_accept_list_size)), 4162 HCI_CC_STATUS(HCI_OP_LE_CLEAR_ACCEPT_LIST, hci_cc_le_clear_accept_list), 4163 HCI_CC_STATUS(HCI_OP_LE_ADD_TO_ACCEPT_LIST, 4164 hci_cc_le_add_to_accept_list), 4165 HCI_CC_STATUS(HCI_OP_LE_DEL_FROM_ACCEPT_LIST, 4166 hci_cc_le_del_from_accept_list), 4167 HCI_CC(HCI_OP_LE_READ_SUPPORTED_STATES, hci_cc_le_read_supported_states, 4168 sizeof(struct hci_rp_le_read_supported_states)), 4169 HCI_CC(HCI_OP_LE_READ_DEF_DATA_LEN, hci_cc_le_read_def_data_len, 4170 sizeof(struct hci_rp_le_read_def_data_len)), 4171 HCI_CC_STATUS(HCI_OP_LE_WRITE_DEF_DATA_LEN, 4172 hci_cc_le_write_def_data_len), 4173 HCI_CC_STATUS(HCI_OP_LE_ADD_TO_RESOLV_LIST, 4174 hci_cc_le_add_to_resolv_list), 4175 HCI_CC_STATUS(HCI_OP_LE_DEL_FROM_RESOLV_LIST, 4176 hci_cc_le_del_from_resolv_list), 4177 HCI_CC_STATUS(HCI_OP_LE_CLEAR_RESOLV_LIST, 4178 hci_cc_le_clear_resolv_list), 4179 HCI_CC(HCI_OP_LE_READ_RESOLV_LIST_SIZE, hci_cc_le_read_resolv_list_size, 4180 sizeof(struct hci_rp_le_read_resolv_list_size)), 4181 HCI_CC_STATUS(HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 4182 hci_cc_le_set_addr_resolution_enable), 4183 HCI_CC(HCI_OP_LE_READ_MAX_DATA_LEN, hci_cc_le_read_max_data_len, 4184 sizeof(struct hci_rp_le_read_max_data_len)), 4185 HCI_CC_STATUS(HCI_OP_WRITE_LE_HOST_SUPPORTED, 4186 hci_cc_write_le_host_supported), 4187 HCI_CC_STATUS(HCI_OP_LE_SET_ADV_PARAM, hci_cc_set_adv_param), 4188 HCI_CC(HCI_OP_READ_RSSI, hci_cc_read_rssi, 4189 sizeof(struct hci_rp_read_rssi)), 4190 HCI_CC(HCI_OP_READ_TX_POWER, hci_cc_read_tx_power, 4191 sizeof(struct hci_rp_read_tx_power)), 4192 HCI_CC_STATUS(HCI_OP_WRITE_SSP_DEBUG_MODE, hci_cc_write_ssp_debug_mode), 4193 HCI_CC_STATUS(HCI_OP_LE_SET_EXT_SCAN_PARAMS, 4194 hci_cc_le_set_ext_scan_param), 4195 HCI_CC_STATUS(HCI_OP_LE_SET_EXT_SCAN_ENABLE, 4196 hci_cc_le_set_ext_scan_enable), 4197 HCI_CC_STATUS(HCI_OP_LE_SET_DEFAULT_PHY, hci_cc_le_set_default_phy), 4198 HCI_CC(HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS, 4199 hci_cc_le_read_num_adv_sets, 4200 sizeof(struct hci_rp_le_read_num_supported_adv_sets)), 4201 HCI_CC(HCI_OP_LE_SET_EXT_ADV_PARAMS, hci_cc_set_ext_adv_param, 4202 sizeof(struct hci_rp_le_set_ext_adv_params)), 4203 HCI_CC_STATUS(HCI_OP_LE_SET_EXT_ADV_ENABLE, 4204 hci_cc_le_set_ext_adv_enable), 4205 HCI_CC_STATUS(HCI_OP_LE_SET_ADV_SET_RAND_ADDR, 4206 hci_cc_le_set_adv_set_random_addr), 4207 HCI_CC_STATUS(HCI_OP_LE_REMOVE_ADV_SET, hci_cc_le_remove_adv_set), 4208 HCI_CC_STATUS(HCI_OP_LE_CLEAR_ADV_SETS, hci_cc_le_clear_adv_sets), 4209 HCI_CC_STATUS(HCI_OP_LE_SET_PER_ADV_PARAMS, hci_cc_set_per_adv_param), 4210 HCI_CC_STATUS(HCI_OP_LE_SET_PER_ADV_ENABLE, 4211 hci_cc_le_set_per_adv_enable), 4212 HCI_CC(HCI_OP_LE_READ_TRANSMIT_POWER, hci_cc_le_read_transmit_power, 4213 sizeof(struct hci_rp_le_read_transmit_power)), 4214 HCI_CC_STATUS(HCI_OP_LE_SET_PRIVACY_MODE, hci_cc_le_set_privacy_mode), 4215 HCI_CC(HCI_OP_LE_READ_BUFFER_SIZE_V2, hci_cc_le_read_buffer_size_v2, 4216 sizeof(struct hci_rp_le_read_buffer_size_v2)), 4217 HCI_CC_VL(HCI_OP_LE_SET_CIG_PARAMS, hci_cc_le_set_cig_params, 4218 sizeof(struct hci_rp_le_set_cig_params), HCI_MAX_EVENT_SIZE), 4219 HCI_CC(HCI_OP_LE_SETUP_ISO_PATH, hci_cc_le_setup_iso_path, 4220 sizeof(struct hci_rp_le_setup_iso_path)), 4221 }; 4222 4223 static u8 hci_cc_func(struct hci_dev *hdev, const struct hci_cc *cc, 4224 struct sk_buff *skb) 4225 { 4226 void *data; 4227 4228 if (skb->len < cc->min_len) { 4229 bt_dev_err(hdev, "unexpected cc 0x%4.4x length: %u < %u", 4230 cc->op, skb->len, cc->min_len); 4231 return HCI_ERROR_UNSPECIFIED; 4232 } 4233 4234 /* Just warn if the length is over max_len size it still be possible to 4235 * partially parse the cc so leave to callback to decide if that is 4236 * acceptable. 4237 */ 4238 if (skb->len > cc->max_len) 4239 bt_dev_warn(hdev, "unexpected cc 0x%4.4x length: %u > %u", 4240 cc->op, skb->len, cc->max_len); 4241 4242 data = hci_cc_skb_pull(hdev, skb, cc->op, cc->min_len); 4243 if (!data) 4244 return HCI_ERROR_UNSPECIFIED; 4245 4246 return cc->func(hdev, data, skb); 4247 } 4248 4249 static void hci_cmd_complete_evt(struct hci_dev *hdev, void *data, 4250 struct sk_buff *skb, u16 *opcode, u8 *status, 4251 hci_req_complete_t *req_complete, 4252 hci_req_complete_skb_t *req_complete_skb) 4253 { 4254 struct hci_ev_cmd_complete *ev = data; 4255 int i; 4256 4257 *opcode = __le16_to_cpu(ev->opcode); 4258 4259 bt_dev_dbg(hdev, "opcode 0x%4.4x", *opcode); 4260 4261 for (i = 0; i < ARRAY_SIZE(hci_cc_table); i++) { 4262 if (hci_cc_table[i].op == *opcode) { 4263 *status = hci_cc_func(hdev, &hci_cc_table[i], skb); 4264 break; 4265 } 4266 } 4267 4268 if (i == ARRAY_SIZE(hci_cc_table)) { 4269 /* Unknown opcode, assume byte 0 contains the status, so 4270 * that e.g. __hci_cmd_sync() properly returns errors 4271 * for vendor specific commands send by HCI drivers. 4272 * If a vendor doesn't actually follow this convention we may 4273 * need to introduce a vendor CC table in order to properly set 4274 * the status. 4275 */ 4276 *status = skb->data[0]; 4277 } 4278 4279 handle_cmd_cnt_and_timer(hdev, ev->ncmd); 4280 4281 hci_req_cmd_complete(hdev, *opcode, *status, req_complete, 4282 req_complete_skb); 4283 4284 if (hci_dev_test_flag(hdev, HCI_CMD_PENDING)) { 4285 bt_dev_err(hdev, 4286 "unexpected event for opcode 0x%4.4x", *opcode); 4287 return; 4288 } 4289 4290 if (atomic_read(&hdev->cmd_cnt) && !skb_queue_empty(&hdev->cmd_q)) 4291 queue_work(hdev->workqueue, &hdev->cmd_work); 4292 } 4293 4294 static void hci_cs_le_create_cis(struct hci_dev *hdev, u8 status) 4295 { 4296 struct hci_cp_le_create_cis *cp; 4297 bool pending = false; 4298 int i; 4299 4300 bt_dev_dbg(hdev, "status 0x%2.2x", status); 4301 4302 if (!status) 4303 return; 4304 4305 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_CREATE_CIS); 4306 if (!cp) 4307 return; 4308 4309 hci_dev_lock(hdev); 4310 4311 /* Remove connection if command failed */ 4312 for (i = 0; cp->num_cis; cp->num_cis--, i++) { 4313 struct hci_conn *conn; 4314 u16 handle; 4315 4316 handle = __le16_to_cpu(cp->cis[i].cis_handle); 4317 4318 conn = hci_conn_hash_lookup_handle(hdev, handle); 4319 if (conn) { 4320 if (test_and_clear_bit(HCI_CONN_CREATE_CIS, 4321 &conn->flags)) 4322 pending = true; 4323 conn->state = BT_CLOSED; 4324 hci_connect_cfm(conn, status); 4325 hci_conn_del(conn); 4326 } 4327 } 4328 4329 if (pending) 4330 hci_le_create_cis_pending(hdev); 4331 4332 hci_dev_unlock(hdev); 4333 } 4334 4335 #define HCI_CS(_op, _func) \ 4336 { \ 4337 .op = _op, \ 4338 .func = _func, \ 4339 } 4340 4341 static const struct hci_cs { 4342 u16 op; 4343 void (*func)(struct hci_dev *hdev, __u8 status); 4344 } hci_cs_table[] = { 4345 HCI_CS(HCI_OP_INQUIRY, hci_cs_inquiry), 4346 HCI_CS(HCI_OP_CREATE_CONN, hci_cs_create_conn), 4347 HCI_CS(HCI_OP_DISCONNECT, hci_cs_disconnect), 4348 HCI_CS(HCI_OP_ADD_SCO, hci_cs_add_sco), 4349 HCI_CS(HCI_OP_AUTH_REQUESTED, hci_cs_auth_requested), 4350 HCI_CS(HCI_OP_SET_CONN_ENCRYPT, hci_cs_set_conn_encrypt), 4351 HCI_CS(HCI_OP_REMOTE_NAME_REQ, hci_cs_remote_name_req), 4352 HCI_CS(HCI_OP_READ_REMOTE_FEATURES, hci_cs_read_remote_features), 4353 HCI_CS(HCI_OP_READ_REMOTE_EXT_FEATURES, 4354 hci_cs_read_remote_ext_features), 4355 HCI_CS(HCI_OP_SETUP_SYNC_CONN, hci_cs_setup_sync_conn), 4356 HCI_CS(HCI_OP_ENHANCED_SETUP_SYNC_CONN, 4357 hci_cs_enhanced_setup_sync_conn), 4358 HCI_CS(HCI_OP_SNIFF_MODE, hci_cs_sniff_mode), 4359 HCI_CS(HCI_OP_EXIT_SNIFF_MODE, hci_cs_exit_sniff_mode), 4360 HCI_CS(HCI_OP_SWITCH_ROLE, hci_cs_switch_role), 4361 HCI_CS(HCI_OP_LE_CREATE_CONN, hci_cs_le_create_conn), 4362 HCI_CS(HCI_OP_LE_READ_REMOTE_FEATURES, hci_cs_le_read_remote_features), 4363 HCI_CS(HCI_OP_LE_START_ENC, hci_cs_le_start_enc), 4364 HCI_CS(HCI_OP_LE_EXT_CREATE_CONN, hci_cs_le_ext_create_conn), 4365 HCI_CS(HCI_OP_LE_CREATE_CIS, hci_cs_le_create_cis), 4366 HCI_CS(HCI_OP_LE_CREATE_BIG, hci_cs_le_create_big), 4367 }; 4368 4369 static void hci_cmd_status_evt(struct hci_dev *hdev, void *data, 4370 struct sk_buff *skb, u16 *opcode, u8 *status, 4371 hci_req_complete_t *req_complete, 4372 hci_req_complete_skb_t *req_complete_skb) 4373 { 4374 struct hci_ev_cmd_status *ev = data; 4375 int i; 4376 4377 *opcode = __le16_to_cpu(ev->opcode); 4378 *status = ev->status; 4379 4380 bt_dev_dbg(hdev, "opcode 0x%4.4x", *opcode); 4381 4382 for (i = 0; i < ARRAY_SIZE(hci_cs_table); i++) { 4383 if (hci_cs_table[i].op == *opcode) { 4384 hci_cs_table[i].func(hdev, ev->status); 4385 break; 4386 } 4387 } 4388 4389 handle_cmd_cnt_and_timer(hdev, ev->ncmd); 4390 4391 /* Indicate request completion if the command failed. Also, if 4392 * we're not waiting for a special event and we get a success 4393 * command status we should try to flag the request as completed 4394 * (since for this kind of commands there will not be a command 4395 * complete event). 4396 */ 4397 if (ev->status || (hdev->req_skb && !hci_skb_event(hdev->req_skb))) { 4398 hci_req_cmd_complete(hdev, *opcode, ev->status, req_complete, 4399 req_complete_skb); 4400 if (hci_dev_test_flag(hdev, HCI_CMD_PENDING)) { 4401 bt_dev_err(hdev, "unexpected event for opcode 0x%4.4x", 4402 *opcode); 4403 return; 4404 } 4405 } 4406 4407 if (atomic_read(&hdev->cmd_cnt) && !skb_queue_empty(&hdev->cmd_q)) 4408 queue_work(hdev->workqueue, &hdev->cmd_work); 4409 } 4410 4411 static void hci_hardware_error_evt(struct hci_dev *hdev, void *data, 4412 struct sk_buff *skb) 4413 { 4414 struct hci_ev_hardware_error *ev = data; 4415 4416 bt_dev_dbg(hdev, "code 0x%2.2x", ev->code); 4417 4418 hdev->hw_error_code = ev->code; 4419 4420 queue_work(hdev->req_workqueue, &hdev->error_reset); 4421 } 4422 4423 static void hci_role_change_evt(struct hci_dev *hdev, void *data, 4424 struct sk_buff *skb) 4425 { 4426 struct hci_ev_role_change *ev = data; 4427 struct hci_conn *conn; 4428 4429 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 4430 4431 hci_dev_lock(hdev); 4432 4433 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 4434 if (conn) { 4435 if (!ev->status) 4436 conn->role = ev->role; 4437 4438 clear_bit(HCI_CONN_RSWITCH_PEND, &conn->flags); 4439 4440 hci_role_switch_cfm(conn, ev->status, ev->role); 4441 } 4442 4443 hci_dev_unlock(hdev); 4444 } 4445 4446 static void hci_num_comp_pkts_evt(struct hci_dev *hdev, void *data, 4447 struct sk_buff *skb) 4448 { 4449 struct hci_ev_num_comp_pkts *ev = data; 4450 int i; 4451 4452 if (!hci_ev_skb_pull(hdev, skb, HCI_EV_NUM_COMP_PKTS, 4453 flex_array_size(ev, handles, ev->num))) 4454 return; 4455 4456 if (hdev->flow_ctl_mode != HCI_FLOW_CTL_MODE_PACKET_BASED) { 4457 bt_dev_err(hdev, "wrong event for mode %d", hdev->flow_ctl_mode); 4458 return; 4459 } 4460 4461 bt_dev_dbg(hdev, "num %d", ev->num); 4462 4463 for (i = 0; i < ev->num; i++) { 4464 struct hci_comp_pkts_info *info = &ev->handles[i]; 4465 struct hci_conn *conn; 4466 __u16 handle, count; 4467 4468 handle = __le16_to_cpu(info->handle); 4469 count = __le16_to_cpu(info->count); 4470 4471 conn = hci_conn_hash_lookup_handle(hdev, handle); 4472 if (!conn) 4473 continue; 4474 4475 conn->sent -= count; 4476 4477 switch (conn->type) { 4478 case ACL_LINK: 4479 hdev->acl_cnt += count; 4480 if (hdev->acl_cnt > hdev->acl_pkts) 4481 hdev->acl_cnt = hdev->acl_pkts; 4482 break; 4483 4484 case LE_LINK: 4485 if (hdev->le_pkts) { 4486 hdev->le_cnt += count; 4487 if (hdev->le_cnt > hdev->le_pkts) 4488 hdev->le_cnt = hdev->le_pkts; 4489 } else { 4490 hdev->acl_cnt += count; 4491 if (hdev->acl_cnt > hdev->acl_pkts) 4492 hdev->acl_cnt = hdev->acl_pkts; 4493 } 4494 break; 4495 4496 case SCO_LINK: 4497 hdev->sco_cnt += count; 4498 if (hdev->sco_cnt > hdev->sco_pkts) 4499 hdev->sco_cnt = hdev->sco_pkts; 4500 break; 4501 4502 case ISO_LINK: 4503 if (hdev->iso_pkts) { 4504 hdev->iso_cnt += count; 4505 if (hdev->iso_cnt > hdev->iso_pkts) 4506 hdev->iso_cnt = hdev->iso_pkts; 4507 } else if (hdev->le_pkts) { 4508 hdev->le_cnt += count; 4509 if (hdev->le_cnt > hdev->le_pkts) 4510 hdev->le_cnt = hdev->le_pkts; 4511 } else { 4512 hdev->acl_cnt += count; 4513 if (hdev->acl_cnt > hdev->acl_pkts) 4514 hdev->acl_cnt = hdev->acl_pkts; 4515 } 4516 break; 4517 4518 default: 4519 bt_dev_err(hdev, "unknown type %d conn %p", 4520 conn->type, conn); 4521 break; 4522 } 4523 } 4524 4525 queue_work(hdev->workqueue, &hdev->tx_work); 4526 } 4527 4528 static struct hci_conn *__hci_conn_lookup_handle(struct hci_dev *hdev, 4529 __u16 handle) 4530 { 4531 struct hci_chan *chan; 4532 4533 switch (hdev->dev_type) { 4534 case HCI_PRIMARY: 4535 return hci_conn_hash_lookup_handle(hdev, handle); 4536 case HCI_AMP: 4537 chan = hci_chan_lookup_handle(hdev, handle); 4538 if (chan) 4539 return chan->conn; 4540 break; 4541 default: 4542 bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type); 4543 break; 4544 } 4545 4546 return NULL; 4547 } 4548 4549 static void hci_num_comp_blocks_evt(struct hci_dev *hdev, void *data, 4550 struct sk_buff *skb) 4551 { 4552 struct hci_ev_num_comp_blocks *ev = data; 4553 int i; 4554 4555 if (!hci_ev_skb_pull(hdev, skb, HCI_EV_NUM_COMP_BLOCKS, 4556 flex_array_size(ev, handles, ev->num_hndl))) 4557 return; 4558 4559 if (hdev->flow_ctl_mode != HCI_FLOW_CTL_MODE_BLOCK_BASED) { 4560 bt_dev_err(hdev, "wrong event for mode %d", 4561 hdev->flow_ctl_mode); 4562 return; 4563 } 4564 4565 bt_dev_dbg(hdev, "num_blocks %d num_hndl %d", ev->num_blocks, 4566 ev->num_hndl); 4567 4568 for (i = 0; i < ev->num_hndl; i++) { 4569 struct hci_comp_blocks_info *info = &ev->handles[i]; 4570 struct hci_conn *conn = NULL; 4571 __u16 handle, block_count; 4572 4573 handle = __le16_to_cpu(info->handle); 4574 block_count = __le16_to_cpu(info->blocks); 4575 4576 conn = __hci_conn_lookup_handle(hdev, handle); 4577 if (!conn) 4578 continue; 4579 4580 conn->sent -= block_count; 4581 4582 switch (conn->type) { 4583 case ACL_LINK: 4584 case AMP_LINK: 4585 hdev->block_cnt += block_count; 4586 if (hdev->block_cnt > hdev->num_blocks) 4587 hdev->block_cnt = hdev->num_blocks; 4588 break; 4589 4590 default: 4591 bt_dev_err(hdev, "unknown type %d conn %p", 4592 conn->type, conn); 4593 break; 4594 } 4595 } 4596 4597 queue_work(hdev->workqueue, &hdev->tx_work); 4598 } 4599 4600 static void hci_mode_change_evt(struct hci_dev *hdev, void *data, 4601 struct sk_buff *skb) 4602 { 4603 struct hci_ev_mode_change *ev = data; 4604 struct hci_conn *conn; 4605 4606 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 4607 4608 hci_dev_lock(hdev); 4609 4610 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 4611 if (conn) { 4612 conn->mode = ev->mode; 4613 4614 if (!test_and_clear_bit(HCI_CONN_MODE_CHANGE_PEND, 4615 &conn->flags)) { 4616 if (conn->mode == HCI_CM_ACTIVE) 4617 set_bit(HCI_CONN_POWER_SAVE, &conn->flags); 4618 else 4619 clear_bit(HCI_CONN_POWER_SAVE, &conn->flags); 4620 } 4621 4622 if (test_and_clear_bit(HCI_CONN_SCO_SETUP_PEND, &conn->flags)) 4623 hci_sco_setup(conn, ev->status); 4624 } 4625 4626 hci_dev_unlock(hdev); 4627 } 4628 4629 static void hci_pin_code_request_evt(struct hci_dev *hdev, void *data, 4630 struct sk_buff *skb) 4631 { 4632 struct hci_ev_pin_code_req *ev = data; 4633 struct hci_conn *conn; 4634 4635 bt_dev_dbg(hdev, ""); 4636 4637 hci_dev_lock(hdev); 4638 4639 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 4640 if (!conn) 4641 goto unlock; 4642 4643 if (conn->state == BT_CONNECTED) { 4644 hci_conn_hold(conn); 4645 conn->disc_timeout = HCI_PAIRING_TIMEOUT; 4646 hci_conn_drop(conn); 4647 } 4648 4649 if (!hci_dev_test_flag(hdev, HCI_BONDABLE) && 4650 !test_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags)) { 4651 hci_send_cmd(hdev, HCI_OP_PIN_CODE_NEG_REPLY, 4652 sizeof(ev->bdaddr), &ev->bdaddr); 4653 } else if (hci_dev_test_flag(hdev, HCI_MGMT)) { 4654 u8 secure; 4655 4656 if (conn->pending_sec_level == BT_SECURITY_HIGH) 4657 secure = 1; 4658 else 4659 secure = 0; 4660 4661 mgmt_pin_code_request(hdev, &ev->bdaddr, secure); 4662 } 4663 4664 unlock: 4665 hci_dev_unlock(hdev); 4666 } 4667 4668 static void conn_set_key(struct hci_conn *conn, u8 key_type, u8 pin_len) 4669 { 4670 if (key_type == HCI_LK_CHANGED_COMBINATION) 4671 return; 4672 4673 conn->pin_length = pin_len; 4674 conn->key_type = key_type; 4675 4676 switch (key_type) { 4677 case HCI_LK_LOCAL_UNIT: 4678 case HCI_LK_REMOTE_UNIT: 4679 case HCI_LK_DEBUG_COMBINATION: 4680 return; 4681 case HCI_LK_COMBINATION: 4682 if (pin_len == 16) 4683 conn->pending_sec_level = BT_SECURITY_HIGH; 4684 else 4685 conn->pending_sec_level = BT_SECURITY_MEDIUM; 4686 break; 4687 case HCI_LK_UNAUTH_COMBINATION_P192: 4688 case HCI_LK_UNAUTH_COMBINATION_P256: 4689 conn->pending_sec_level = BT_SECURITY_MEDIUM; 4690 break; 4691 case HCI_LK_AUTH_COMBINATION_P192: 4692 conn->pending_sec_level = BT_SECURITY_HIGH; 4693 break; 4694 case HCI_LK_AUTH_COMBINATION_P256: 4695 conn->pending_sec_level = BT_SECURITY_FIPS; 4696 break; 4697 } 4698 } 4699 4700 static void hci_link_key_request_evt(struct hci_dev *hdev, void *data, 4701 struct sk_buff *skb) 4702 { 4703 struct hci_ev_link_key_req *ev = data; 4704 struct hci_cp_link_key_reply cp; 4705 struct hci_conn *conn; 4706 struct link_key *key; 4707 4708 bt_dev_dbg(hdev, ""); 4709 4710 if (!hci_dev_test_flag(hdev, HCI_MGMT)) 4711 return; 4712 4713 hci_dev_lock(hdev); 4714 4715 key = hci_find_link_key(hdev, &ev->bdaddr); 4716 if (!key) { 4717 bt_dev_dbg(hdev, "link key not found for %pMR", &ev->bdaddr); 4718 goto not_found; 4719 } 4720 4721 bt_dev_dbg(hdev, "found key type %u for %pMR", key->type, &ev->bdaddr); 4722 4723 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 4724 if (conn) { 4725 clear_bit(HCI_CONN_NEW_LINK_KEY, &conn->flags); 4726 4727 if ((key->type == HCI_LK_UNAUTH_COMBINATION_P192 || 4728 key->type == HCI_LK_UNAUTH_COMBINATION_P256) && 4729 conn->auth_type != 0xff && (conn->auth_type & 0x01)) { 4730 bt_dev_dbg(hdev, "ignoring unauthenticated key"); 4731 goto not_found; 4732 } 4733 4734 if (key->type == HCI_LK_COMBINATION && key->pin_len < 16 && 4735 (conn->pending_sec_level == BT_SECURITY_HIGH || 4736 conn->pending_sec_level == BT_SECURITY_FIPS)) { 4737 bt_dev_dbg(hdev, "ignoring key unauthenticated for high security"); 4738 goto not_found; 4739 } 4740 4741 conn_set_key(conn, key->type, key->pin_len); 4742 } 4743 4744 bacpy(&cp.bdaddr, &ev->bdaddr); 4745 memcpy(cp.link_key, key->val, HCI_LINK_KEY_SIZE); 4746 4747 hci_send_cmd(hdev, HCI_OP_LINK_KEY_REPLY, sizeof(cp), &cp); 4748 4749 hci_dev_unlock(hdev); 4750 4751 return; 4752 4753 not_found: 4754 hci_send_cmd(hdev, HCI_OP_LINK_KEY_NEG_REPLY, 6, &ev->bdaddr); 4755 hci_dev_unlock(hdev); 4756 } 4757 4758 static void hci_link_key_notify_evt(struct hci_dev *hdev, void *data, 4759 struct sk_buff *skb) 4760 { 4761 struct hci_ev_link_key_notify *ev = data; 4762 struct hci_conn *conn; 4763 struct link_key *key; 4764 bool persistent; 4765 u8 pin_len = 0; 4766 4767 bt_dev_dbg(hdev, ""); 4768 4769 hci_dev_lock(hdev); 4770 4771 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 4772 if (!conn) 4773 goto unlock; 4774 4775 /* Ignore NULL link key against CVE-2020-26555 */ 4776 if (!crypto_memneq(ev->link_key, ZERO_KEY, HCI_LINK_KEY_SIZE)) { 4777 bt_dev_dbg(hdev, "Ignore NULL link key (ZERO KEY) for %pMR", 4778 &ev->bdaddr); 4779 hci_disconnect(conn, HCI_ERROR_AUTH_FAILURE); 4780 hci_conn_drop(conn); 4781 goto unlock; 4782 } 4783 4784 hci_conn_hold(conn); 4785 conn->disc_timeout = HCI_DISCONN_TIMEOUT; 4786 hci_conn_drop(conn); 4787 4788 set_bit(HCI_CONN_NEW_LINK_KEY, &conn->flags); 4789 conn_set_key(conn, ev->key_type, conn->pin_length); 4790 4791 if (!hci_dev_test_flag(hdev, HCI_MGMT)) 4792 goto unlock; 4793 4794 key = hci_add_link_key(hdev, conn, &ev->bdaddr, ev->link_key, 4795 ev->key_type, pin_len, &persistent); 4796 if (!key) 4797 goto unlock; 4798 4799 /* Update connection information since adding the key will have 4800 * fixed up the type in the case of changed combination keys. 4801 */ 4802 if (ev->key_type == HCI_LK_CHANGED_COMBINATION) 4803 conn_set_key(conn, key->type, key->pin_len); 4804 4805 mgmt_new_link_key(hdev, key, persistent); 4806 4807 /* Keep debug keys around only if the HCI_KEEP_DEBUG_KEYS flag 4808 * is set. If it's not set simply remove the key from the kernel 4809 * list (we've still notified user space about it but with 4810 * store_hint being 0). 4811 */ 4812 if (key->type == HCI_LK_DEBUG_COMBINATION && 4813 !hci_dev_test_flag(hdev, HCI_KEEP_DEBUG_KEYS)) { 4814 list_del_rcu(&key->list); 4815 kfree_rcu(key, rcu); 4816 goto unlock; 4817 } 4818 4819 if (persistent) 4820 clear_bit(HCI_CONN_FLUSH_KEY, &conn->flags); 4821 else 4822 set_bit(HCI_CONN_FLUSH_KEY, &conn->flags); 4823 4824 unlock: 4825 hci_dev_unlock(hdev); 4826 } 4827 4828 static void hci_clock_offset_evt(struct hci_dev *hdev, void *data, 4829 struct sk_buff *skb) 4830 { 4831 struct hci_ev_clock_offset *ev = data; 4832 struct hci_conn *conn; 4833 4834 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 4835 4836 hci_dev_lock(hdev); 4837 4838 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 4839 if (conn && !ev->status) { 4840 struct inquiry_entry *ie; 4841 4842 ie = hci_inquiry_cache_lookup(hdev, &conn->dst); 4843 if (ie) { 4844 ie->data.clock_offset = ev->clock_offset; 4845 ie->timestamp = jiffies; 4846 } 4847 } 4848 4849 hci_dev_unlock(hdev); 4850 } 4851 4852 static void hci_pkt_type_change_evt(struct hci_dev *hdev, void *data, 4853 struct sk_buff *skb) 4854 { 4855 struct hci_ev_pkt_type_change *ev = data; 4856 struct hci_conn *conn; 4857 4858 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 4859 4860 hci_dev_lock(hdev); 4861 4862 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 4863 if (conn && !ev->status) 4864 conn->pkt_type = __le16_to_cpu(ev->pkt_type); 4865 4866 hci_dev_unlock(hdev); 4867 } 4868 4869 static void hci_pscan_rep_mode_evt(struct hci_dev *hdev, void *data, 4870 struct sk_buff *skb) 4871 { 4872 struct hci_ev_pscan_rep_mode *ev = data; 4873 struct inquiry_entry *ie; 4874 4875 bt_dev_dbg(hdev, ""); 4876 4877 hci_dev_lock(hdev); 4878 4879 ie = hci_inquiry_cache_lookup(hdev, &ev->bdaddr); 4880 if (ie) { 4881 ie->data.pscan_rep_mode = ev->pscan_rep_mode; 4882 ie->timestamp = jiffies; 4883 } 4884 4885 hci_dev_unlock(hdev); 4886 } 4887 4888 static void hci_inquiry_result_with_rssi_evt(struct hci_dev *hdev, void *edata, 4889 struct sk_buff *skb) 4890 { 4891 struct hci_ev_inquiry_result_rssi *ev = edata; 4892 struct inquiry_data data; 4893 int i; 4894 4895 bt_dev_dbg(hdev, "num_rsp %d", ev->num); 4896 4897 if (!ev->num) 4898 return; 4899 4900 if (hci_dev_test_flag(hdev, HCI_PERIODIC_INQ)) 4901 return; 4902 4903 hci_dev_lock(hdev); 4904 4905 if (skb->len == array_size(ev->num, 4906 sizeof(struct inquiry_info_rssi_pscan))) { 4907 struct inquiry_info_rssi_pscan *info; 4908 4909 for (i = 0; i < ev->num; i++) { 4910 u32 flags; 4911 4912 info = hci_ev_skb_pull(hdev, skb, 4913 HCI_EV_INQUIRY_RESULT_WITH_RSSI, 4914 sizeof(*info)); 4915 if (!info) { 4916 bt_dev_err(hdev, "Malformed HCI Event: 0x%2.2x", 4917 HCI_EV_INQUIRY_RESULT_WITH_RSSI); 4918 goto unlock; 4919 } 4920 4921 bacpy(&data.bdaddr, &info->bdaddr); 4922 data.pscan_rep_mode = info->pscan_rep_mode; 4923 data.pscan_period_mode = info->pscan_period_mode; 4924 data.pscan_mode = info->pscan_mode; 4925 memcpy(data.dev_class, info->dev_class, 3); 4926 data.clock_offset = info->clock_offset; 4927 data.rssi = info->rssi; 4928 data.ssp_mode = 0x00; 4929 4930 flags = hci_inquiry_cache_update(hdev, &data, false); 4931 4932 mgmt_device_found(hdev, &info->bdaddr, ACL_LINK, 0x00, 4933 info->dev_class, info->rssi, 4934 flags, NULL, 0, NULL, 0, 0); 4935 } 4936 } else if (skb->len == array_size(ev->num, 4937 sizeof(struct inquiry_info_rssi))) { 4938 struct inquiry_info_rssi *info; 4939 4940 for (i = 0; i < ev->num; i++) { 4941 u32 flags; 4942 4943 info = hci_ev_skb_pull(hdev, skb, 4944 HCI_EV_INQUIRY_RESULT_WITH_RSSI, 4945 sizeof(*info)); 4946 if (!info) { 4947 bt_dev_err(hdev, "Malformed HCI Event: 0x%2.2x", 4948 HCI_EV_INQUIRY_RESULT_WITH_RSSI); 4949 goto unlock; 4950 } 4951 4952 bacpy(&data.bdaddr, &info->bdaddr); 4953 data.pscan_rep_mode = info->pscan_rep_mode; 4954 data.pscan_period_mode = info->pscan_period_mode; 4955 data.pscan_mode = 0x00; 4956 memcpy(data.dev_class, info->dev_class, 3); 4957 data.clock_offset = info->clock_offset; 4958 data.rssi = info->rssi; 4959 data.ssp_mode = 0x00; 4960 4961 flags = hci_inquiry_cache_update(hdev, &data, false); 4962 4963 mgmt_device_found(hdev, &info->bdaddr, ACL_LINK, 0x00, 4964 info->dev_class, info->rssi, 4965 flags, NULL, 0, NULL, 0, 0); 4966 } 4967 } else { 4968 bt_dev_err(hdev, "Malformed HCI Event: 0x%2.2x", 4969 HCI_EV_INQUIRY_RESULT_WITH_RSSI); 4970 } 4971 unlock: 4972 hci_dev_unlock(hdev); 4973 } 4974 4975 static void hci_remote_ext_features_evt(struct hci_dev *hdev, void *data, 4976 struct sk_buff *skb) 4977 { 4978 struct hci_ev_remote_ext_features *ev = data; 4979 struct hci_conn *conn; 4980 4981 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 4982 4983 hci_dev_lock(hdev); 4984 4985 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 4986 if (!conn) 4987 goto unlock; 4988 4989 if (ev->page < HCI_MAX_PAGES) 4990 memcpy(conn->features[ev->page], ev->features, 8); 4991 4992 if (!ev->status && ev->page == 0x01) { 4993 struct inquiry_entry *ie; 4994 4995 ie = hci_inquiry_cache_lookup(hdev, &conn->dst); 4996 if (ie) 4997 ie->data.ssp_mode = (ev->features[0] & LMP_HOST_SSP); 4998 4999 if (ev->features[0] & LMP_HOST_SSP) { 5000 set_bit(HCI_CONN_SSP_ENABLED, &conn->flags); 5001 } else { 5002 /* It is mandatory by the Bluetooth specification that 5003 * Extended Inquiry Results are only used when Secure 5004 * Simple Pairing is enabled, but some devices violate 5005 * this. 5006 * 5007 * To make these devices work, the internal SSP 5008 * enabled flag needs to be cleared if the remote host 5009 * features do not indicate SSP support */ 5010 clear_bit(HCI_CONN_SSP_ENABLED, &conn->flags); 5011 } 5012 5013 if (ev->features[0] & LMP_HOST_SC) 5014 set_bit(HCI_CONN_SC_ENABLED, &conn->flags); 5015 } 5016 5017 if (conn->state != BT_CONFIG) 5018 goto unlock; 5019 5020 if (!ev->status && !test_bit(HCI_CONN_MGMT_CONNECTED, &conn->flags)) { 5021 struct hci_cp_remote_name_req cp; 5022 memset(&cp, 0, sizeof(cp)); 5023 bacpy(&cp.bdaddr, &conn->dst); 5024 cp.pscan_rep_mode = 0x02; 5025 hci_send_cmd(hdev, HCI_OP_REMOTE_NAME_REQ, sizeof(cp), &cp); 5026 } else { 5027 mgmt_device_connected(hdev, conn, NULL, 0); 5028 } 5029 5030 if (!hci_outgoing_auth_needed(hdev, conn)) { 5031 conn->state = BT_CONNECTED; 5032 hci_connect_cfm(conn, ev->status); 5033 hci_conn_drop(conn); 5034 } 5035 5036 unlock: 5037 hci_dev_unlock(hdev); 5038 } 5039 5040 static void hci_sync_conn_complete_evt(struct hci_dev *hdev, void *data, 5041 struct sk_buff *skb) 5042 { 5043 struct hci_ev_sync_conn_complete *ev = data; 5044 struct hci_conn *conn; 5045 u8 status = ev->status; 5046 5047 switch (ev->link_type) { 5048 case SCO_LINK: 5049 case ESCO_LINK: 5050 break; 5051 default: 5052 /* As per Core 5.3 Vol 4 Part E 7.7.35 (p.2219), Link_Type 5053 * for HCI_Synchronous_Connection_Complete is limited to 5054 * either SCO or eSCO 5055 */ 5056 bt_dev_err(hdev, "Ignoring connect complete event for invalid link type"); 5057 return; 5058 } 5059 5060 bt_dev_dbg(hdev, "status 0x%2.2x", status); 5061 5062 hci_dev_lock(hdev); 5063 5064 conn = hci_conn_hash_lookup_ba(hdev, ev->link_type, &ev->bdaddr); 5065 if (!conn) { 5066 if (ev->link_type == ESCO_LINK) 5067 goto unlock; 5068 5069 /* When the link type in the event indicates SCO connection 5070 * and lookup of the connection object fails, then check 5071 * if an eSCO connection object exists. 5072 * 5073 * The core limits the synchronous connections to either 5074 * SCO or eSCO. The eSCO connection is preferred and tried 5075 * to be setup first and until successfully established, 5076 * the link type will be hinted as eSCO. 5077 */ 5078 conn = hci_conn_hash_lookup_ba(hdev, ESCO_LINK, &ev->bdaddr); 5079 if (!conn) 5080 goto unlock; 5081 } 5082 5083 /* The HCI_Synchronous_Connection_Complete event is only sent once per connection. 5084 * Processing it more than once per connection can corrupt kernel memory. 5085 * 5086 * As the connection handle is set here for the first time, it indicates 5087 * whether the connection is already set up. 5088 */ 5089 if (!HCI_CONN_HANDLE_UNSET(conn->handle)) { 5090 bt_dev_err(hdev, "Ignoring HCI_Sync_Conn_Complete event for existing connection"); 5091 goto unlock; 5092 } 5093 5094 switch (status) { 5095 case 0x00: 5096 status = hci_conn_set_handle(conn, __le16_to_cpu(ev->handle)); 5097 if (status) { 5098 conn->state = BT_CLOSED; 5099 break; 5100 } 5101 5102 conn->state = BT_CONNECTED; 5103 conn->type = ev->link_type; 5104 5105 hci_debugfs_create_conn(conn); 5106 hci_conn_add_sysfs(conn); 5107 break; 5108 5109 case 0x10: /* Connection Accept Timeout */ 5110 case 0x0d: /* Connection Rejected due to Limited Resources */ 5111 case 0x11: /* Unsupported Feature or Parameter Value */ 5112 case 0x1c: /* SCO interval rejected */ 5113 case 0x1a: /* Unsupported Remote Feature */ 5114 case 0x1e: /* Invalid LMP Parameters */ 5115 case 0x1f: /* Unspecified error */ 5116 case 0x20: /* Unsupported LMP Parameter value */ 5117 if (conn->out) { 5118 conn->pkt_type = (hdev->esco_type & SCO_ESCO_MASK) | 5119 (hdev->esco_type & EDR_ESCO_MASK); 5120 if (hci_setup_sync(conn, conn->parent->handle)) 5121 goto unlock; 5122 } 5123 fallthrough; 5124 5125 default: 5126 conn->state = BT_CLOSED; 5127 break; 5128 } 5129 5130 bt_dev_dbg(hdev, "SCO connected with air mode: %02x", ev->air_mode); 5131 /* Notify only in case of SCO over HCI transport data path which 5132 * is zero and non-zero value shall be non-HCI transport data path 5133 */ 5134 if (conn->codec.data_path == 0 && hdev->notify) { 5135 switch (ev->air_mode) { 5136 case 0x02: 5137 hdev->notify(hdev, HCI_NOTIFY_ENABLE_SCO_CVSD); 5138 break; 5139 case 0x03: 5140 hdev->notify(hdev, HCI_NOTIFY_ENABLE_SCO_TRANSP); 5141 break; 5142 } 5143 } 5144 5145 hci_connect_cfm(conn, status); 5146 if (status) 5147 hci_conn_del(conn); 5148 5149 unlock: 5150 hci_dev_unlock(hdev); 5151 } 5152 5153 static inline size_t eir_get_length(u8 *eir, size_t eir_len) 5154 { 5155 size_t parsed = 0; 5156 5157 while (parsed < eir_len) { 5158 u8 field_len = eir[0]; 5159 5160 if (field_len == 0) 5161 return parsed; 5162 5163 parsed += field_len + 1; 5164 eir += field_len + 1; 5165 } 5166 5167 return eir_len; 5168 } 5169 5170 static void hci_extended_inquiry_result_evt(struct hci_dev *hdev, void *edata, 5171 struct sk_buff *skb) 5172 { 5173 struct hci_ev_ext_inquiry_result *ev = edata; 5174 struct inquiry_data data; 5175 size_t eir_len; 5176 int i; 5177 5178 if (!hci_ev_skb_pull(hdev, skb, HCI_EV_EXTENDED_INQUIRY_RESULT, 5179 flex_array_size(ev, info, ev->num))) 5180 return; 5181 5182 bt_dev_dbg(hdev, "num %d", ev->num); 5183 5184 if (!ev->num) 5185 return; 5186 5187 if (hci_dev_test_flag(hdev, HCI_PERIODIC_INQ)) 5188 return; 5189 5190 hci_dev_lock(hdev); 5191 5192 for (i = 0; i < ev->num; i++) { 5193 struct extended_inquiry_info *info = &ev->info[i]; 5194 u32 flags; 5195 bool name_known; 5196 5197 bacpy(&data.bdaddr, &info->bdaddr); 5198 data.pscan_rep_mode = info->pscan_rep_mode; 5199 data.pscan_period_mode = info->pscan_period_mode; 5200 data.pscan_mode = 0x00; 5201 memcpy(data.dev_class, info->dev_class, 3); 5202 data.clock_offset = info->clock_offset; 5203 data.rssi = info->rssi; 5204 data.ssp_mode = 0x01; 5205 5206 if (hci_dev_test_flag(hdev, HCI_MGMT)) 5207 name_known = eir_get_data(info->data, 5208 sizeof(info->data), 5209 EIR_NAME_COMPLETE, NULL); 5210 else 5211 name_known = true; 5212 5213 flags = hci_inquiry_cache_update(hdev, &data, name_known); 5214 5215 eir_len = eir_get_length(info->data, sizeof(info->data)); 5216 5217 mgmt_device_found(hdev, &info->bdaddr, ACL_LINK, 0x00, 5218 info->dev_class, info->rssi, 5219 flags, info->data, eir_len, NULL, 0, 0); 5220 } 5221 5222 hci_dev_unlock(hdev); 5223 } 5224 5225 static void hci_key_refresh_complete_evt(struct hci_dev *hdev, void *data, 5226 struct sk_buff *skb) 5227 { 5228 struct hci_ev_key_refresh_complete *ev = data; 5229 struct hci_conn *conn; 5230 5231 bt_dev_dbg(hdev, "status 0x%2.2x handle 0x%4.4x", ev->status, 5232 __le16_to_cpu(ev->handle)); 5233 5234 hci_dev_lock(hdev); 5235 5236 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 5237 if (!conn) 5238 goto unlock; 5239 5240 /* For BR/EDR the necessary steps are taken through the 5241 * auth_complete event. 5242 */ 5243 if (conn->type != LE_LINK) 5244 goto unlock; 5245 5246 if (!ev->status) 5247 conn->sec_level = conn->pending_sec_level; 5248 5249 clear_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags); 5250 5251 if (ev->status && conn->state == BT_CONNECTED) { 5252 hci_disconnect(conn, HCI_ERROR_AUTH_FAILURE); 5253 hci_conn_drop(conn); 5254 goto unlock; 5255 } 5256 5257 if (conn->state == BT_CONFIG) { 5258 if (!ev->status) 5259 conn->state = BT_CONNECTED; 5260 5261 hci_connect_cfm(conn, ev->status); 5262 hci_conn_drop(conn); 5263 } else { 5264 hci_auth_cfm(conn, ev->status); 5265 5266 hci_conn_hold(conn); 5267 conn->disc_timeout = HCI_DISCONN_TIMEOUT; 5268 hci_conn_drop(conn); 5269 } 5270 5271 unlock: 5272 hci_dev_unlock(hdev); 5273 } 5274 5275 static u8 hci_get_auth_req(struct hci_conn *conn) 5276 { 5277 /* If remote requests no-bonding follow that lead */ 5278 if (conn->remote_auth == HCI_AT_NO_BONDING || 5279 conn->remote_auth == HCI_AT_NO_BONDING_MITM) 5280 return conn->remote_auth | (conn->auth_type & 0x01); 5281 5282 /* If both remote and local have enough IO capabilities, require 5283 * MITM protection 5284 */ 5285 if (conn->remote_cap != HCI_IO_NO_INPUT_OUTPUT && 5286 conn->io_capability != HCI_IO_NO_INPUT_OUTPUT) 5287 return conn->remote_auth | 0x01; 5288 5289 /* No MITM protection possible so ignore remote requirement */ 5290 return (conn->remote_auth & ~0x01) | (conn->auth_type & 0x01); 5291 } 5292 5293 static u8 bredr_oob_data_present(struct hci_conn *conn) 5294 { 5295 struct hci_dev *hdev = conn->hdev; 5296 struct oob_data *data; 5297 5298 data = hci_find_remote_oob_data(hdev, &conn->dst, BDADDR_BREDR); 5299 if (!data) 5300 return 0x00; 5301 5302 if (bredr_sc_enabled(hdev)) { 5303 /* When Secure Connections is enabled, then just 5304 * return the present value stored with the OOB 5305 * data. The stored value contains the right present 5306 * information. However it can only be trusted when 5307 * not in Secure Connection Only mode. 5308 */ 5309 if (!hci_dev_test_flag(hdev, HCI_SC_ONLY)) 5310 return data->present; 5311 5312 /* When Secure Connections Only mode is enabled, then 5313 * the P-256 values are required. If they are not 5314 * available, then do not declare that OOB data is 5315 * present. 5316 */ 5317 if (!crypto_memneq(data->rand256, ZERO_KEY, 16) || 5318 !crypto_memneq(data->hash256, ZERO_KEY, 16)) 5319 return 0x00; 5320 5321 return 0x02; 5322 } 5323 5324 /* When Secure Connections is not enabled or actually 5325 * not supported by the hardware, then check that if 5326 * P-192 data values are present. 5327 */ 5328 if (!crypto_memneq(data->rand192, ZERO_KEY, 16) || 5329 !crypto_memneq(data->hash192, ZERO_KEY, 16)) 5330 return 0x00; 5331 5332 return 0x01; 5333 } 5334 5335 static void hci_io_capa_request_evt(struct hci_dev *hdev, void *data, 5336 struct sk_buff *skb) 5337 { 5338 struct hci_ev_io_capa_request *ev = data; 5339 struct hci_conn *conn; 5340 5341 bt_dev_dbg(hdev, ""); 5342 5343 hci_dev_lock(hdev); 5344 5345 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 5346 if (!conn || !hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 5347 goto unlock; 5348 5349 /* Assume remote supports SSP since it has triggered this event */ 5350 set_bit(HCI_CONN_SSP_ENABLED, &conn->flags); 5351 5352 hci_conn_hold(conn); 5353 5354 if (!hci_dev_test_flag(hdev, HCI_MGMT)) 5355 goto unlock; 5356 5357 /* Allow pairing if we're pairable, the initiators of the 5358 * pairing or if the remote is not requesting bonding. 5359 */ 5360 if (hci_dev_test_flag(hdev, HCI_BONDABLE) || 5361 test_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags) || 5362 (conn->remote_auth & ~0x01) == HCI_AT_NO_BONDING) { 5363 struct hci_cp_io_capability_reply cp; 5364 5365 bacpy(&cp.bdaddr, &ev->bdaddr); 5366 /* Change the IO capability from KeyboardDisplay 5367 * to DisplayYesNo as it is not supported by BT spec. */ 5368 cp.capability = (conn->io_capability == 0x04) ? 5369 HCI_IO_DISPLAY_YESNO : conn->io_capability; 5370 5371 /* If we are initiators, there is no remote information yet */ 5372 if (conn->remote_auth == 0xff) { 5373 /* Request MITM protection if our IO caps allow it 5374 * except for the no-bonding case. 5375 */ 5376 if (conn->io_capability != HCI_IO_NO_INPUT_OUTPUT && 5377 conn->auth_type != HCI_AT_NO_BONDING) 5378 conn->auth_type |= 0x01; 5379 } else { 5380 conn->auth_type = hci_get_auth_req(conn); 5381 } 5382 5383 /* If we're not bondable, force one of the non-bondable 5384 * authentication requirement values. 5385 */ 5386 if (!hci_dev_test_flag(hdev, HCI_BONDABLE)) 5387 conn->auth_type &= HCI_AT_NO_BONDING_MITM; 5388 5389 cp.authentication = conn->auth_type; 5390 cp.oob_data = bredr_oob_data_present(conn); 5391 5392 hci_send_cmd(hdev, HCI_OP_IO_CAPABILITY_REPLY, 5393 sizeof(cp), &cp); 5394 } else { 5395 struct hci_cp_io_capability_neg_reply cp; 5396 5397 bacpy(&cp.bdaddr, &ev->bdaddr); 5398 cp.reason = HCI_ERROR_PAIRING_NOT_ALLOWED; 5399 5400 hci_send_cmd(hdev, HCI_OP_IO_CAPABILITY_NEG_REPLY, 5401 sizeof(cp), &cp); 5402 } 5403 5404 unlock: 5405 hci_dev_unlock(hdev); 5406 } 5407 5408 static void hci_io_capa_reply_evt(struct hci_dev *hdev, void *data, 5409 struct sk_buff *skb) 5410 { 5411 struct hci_ev_io_capa_reply *ev = data; 5412 struct hci_conn *conn; 5413 5414 bt_dev_dbg(hdev, ""); 5415 5416 hci_dev_lock(hdev); 5417 5418 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 5419 if (!conn) 5420 goto unlock; 5421 5422 conn->remote_cap = ev->capability; 5423 conn->remote_auth = ev->authentication; 5424 5425 unlock: 5426 hci_dev_unlock(hdev); 5427 } 5428 5429 static void hci_user_confirm_request_evt(struct hci_dev *hdev, void *data, 5430 struct sk_buff *skb) 5431 { 5432 struct hci_ev_user_confirm_req *ev = data; 5433 int loc_mitm, rem_mitm, confirm_hint = 0; 5434 struct hci_conn *conn; 5435 5436 bt_dev_dbg(hdev, ""); 5437 5438 hci_dev_lock(hdev); 5439 5440 if (!hci_dev_test_flag(hdev, HCI_MGMT)) 5441 goto unlock; 5442 5443 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 5444 if (!conn) 5445 goto unlock; 5446 5447 loc_mitm = (conn->auth_type & 0x01); 5448 rem_mitm = (conn->remote_auth & 0x01); 5449 5450 /* If we require MITM but the remote device can't provide that 5451 * (it has NoInputNoOutput) then reject the confirmation 5452 * request. We check the security level here since it doesn't 5453 * necessarily match conn->auth_type. 5454 */ 5455 if (conn->pending_sec_level > BT_SECURITY_MEDIUM && 5456 conn->remote_cap == HCI_IO_NO_INPUT_OUTPUT) { 5457 bt_dev_dbg(hdev, "Rejecting request: remote device can't provide MITM"); 5458 hci_send_cmd(hdev, HCI_OP_USER_CONFIRM_NEG_REPLY, 5459 sizeof(ev->bdaddr), &ev->bdaddr); 5460 goto unlock; 5461 } 5462 5463 /* If no side requires MITM protection; auto-accept */ 5464 if ((!loc_mitm || conn->remote_cap == HCI_IO_NO_INPUT_OUTPUT) && 5465 (!rem_mitm || conn->io_capability == HCI_IO_NO_INPUT_OUTPUT)) { 5466 5467 /* If we're not the initiators request authorization to 5468 * proceed from user space (mgmt_user_confirm with 5469 * confirm_hint set to 1). The exception is if neither 5470 * side had MITM or if the local IO capability is 5471 * NoInputNoOutput, in which case we do auto-accept 5472 */ 5473 if (!test_bit(HCI_CONN_AUTH_PEND, &conn->flags) && 5474 conn->io_capability != HCI_IO_NO_INPUT_OUTPUT && 5475 (loc_mitm || rem_mitm)) { 5476 bt_dev_dbg(hdev, "Confirming auto-accept as acceptor"); 5477 confirm_hint = 1; 5478 goto confirm; 5479 } 5480 5481 /* If there already exists link key in local host, leave the 5482 * decision to user space since the remote device could be 5483 * legitimate or malicious. 5484 */ 5485 if (hci_find_link_key(hdev, &ev->bdaddr)) { 5486 bt_dev_dbg(hdev, "Local host already has link key"); 5487 confirm_hint = 1; 5488 goto confirm; 5489 } 5490 5491 BT_DBG("Auto-accept of user confirmation with %ums delay", 5492 hdev->auto_accept_delay); 5493 5494 if (hdev->auto_accept_delay > 0) { 5495 int delay = msecs_to_jiffies(hdev->auto_accept_delay); 5496 queue_delayed_work(conn->hdev->workqueue, 5497 &conn->auto_accept_work, delay); 5498 goto unlock; 5499 } 5500 5501 hci_send_cmd(hdev, HCI_OP_USER_CONFIRM_REPLY, 5502 sizeof(ev->bdaddr), &ev->bdaddr); 5503 goto unlock; 5504 } 5505 5506 confirm: 5507 mgmt_user_confirm_request(hdev, &ev->bdaddr, ACL_LINK, 0, 5508 le32_to_cpu(ev->passkey), confirm_hint); 5509 5510 unlock: 5511 hci_dev_unlock(hdev); 5512 } 5513 5514 static void hci_user_passkey_request_evt(struct hci_dev *hdev, void *data, 5515 struct sk_buff *skb) 5516 { 5517 struct hci_ev_user_passkey_req *ev = data; 5518 5519 bt_dev_dbg(hdev, ""); 5520 5521 if (hci_dev_test_flag(hdev, HCI_MGMT)) 5522 mgmt_user_passkey_request(hdev, &ev->bdaddr, ACL_LINK, 0); 5523 } 5524 5525 static void hci_user_passkey_notify_evt(struct hci_dev *hdev, void *data, 5526 struct sk_buff *skb) 5527 { 5528 struct hci_ev_user_passkey_notify *ev = data; 5529 struct hci_conn *conn; 5530 5531 bt_dev_dbg(hdev, ""); 5532 5533 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 5534 if (!conn) 5535 return; 5536 5537 conn->passkey_notify = __le32_to_cpu(ev->passkey); 5538 conn->passkey_entered = 0; 5539 5540 if (hci_dev_test_flag(hdev, HCI_MGMT)) 5541 mgmt_user_passkey_notify(hdev, &conn->dst, conn->type, 5542 conn->dst_type, conn->passkey_notify, 5543 conn->passkey_entered); 5544 } 5545 5546 static void hci_keypress_notify_evt(struct hci_dev *hdev, void *data, 5547 struct sk_buff *skb) 5548 { 5549 struct hci_ev_keypress_notify *ev = data; 5550 struct hci_conn *conn; 5551 5552 bt_dev_dbg(hdev, ""); 5553 5554 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 5555 if (!conn) 5556 return; 5557 5558 switch (ev->type) { 5559 case HCI_KEYPRESS_STARTED: 5560 conn->passkey_entered = 0; 5561 return; 5562 5563 case HCI_KEYPRESS_ENTERED: 5564 conn->passkey_entered++; 5565 break; 5566 5567 case HCI_KEYPRESS_ERASED: 5568 conn->passkey_entered--; 5569 break; 5570 5571 case HCI_KEYPRESS_CLEARED: 5572 conn->passkey_entered = 0; 5573 break; 5574 5575 case HCI_KEYPRESS_COMPLETED: 5576 return; 5577 } 5578 5579 if (hci_dev_test_flag(hdev, HCI_MGMT)) 5580 mgmt_user_passkey_notify(hdev, &conn->dst, conn->type, 5581 conn->dst_type, conn->passkey_notify, 5582 conn->passkey_entered); 5583 } 5584 5585 static void hci_simple_pair_complete_evt(struct hci_dev *hdev, void *data, 5586 struct sk_buff *skb) 5587 { 5588 struct hci_ev_simple_pair_complete *ev = data; 5589 struct hci_conn *conn; 5590 5591 bt_dev_dbg(hdev, ""); 5592 5593 hci_dev_lock(hdev); 5594 5595 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 5596 if (!conn || !hci_conn_ssp_enabled(conn)) 5597 goto unlock; 5598 5599 /* Reset the authentication requirement to unknown */ 5600 conn->remote_auth = 0xff; 5601 5602 /* To avoid duplicate auth_failed events to user space we check 5603 * the HCI_CONN_AUTH_PEND flag which will be set if we 5604 * initiated the authentication. A traditional auth_complete 5605 * event gets always produced as initiator and is also mapped to 5606 * the mgmt_auth_failed event */ 5607 if (!test_bit(HCI_CONN_AUTH_PEND, &conn->flags) && ev->status) 5608 mgmt_auth_failed(conn, ev->status); 5609 5610 hci_conn_drop(conn); 5611 5612 unlock: 5613 hci_dev_unlock(hdev); 5614 } 5615 5616 static void hci_remote_host_features_evt(struct hci_dev *hdev, void *data, 5617 struct sk_buff *skb) 5618 { 5619 struct hci_ev_remote_host_features *ev = data; 5620 struct inquiry_entry *ie; 5621 struct hci_conn *conn; 5622 5623 bt_dev_dbg(hdev, ""); 5624 5625 hci_dev_lock(hdev); 5626 5627 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 5628 if (conn) 5629 memcpy(conn->features[1], ev->features, 8); 5630 5631 ie = hci_inquiry_cache_lookup(hdev, &ev->bdaddr); 5632 if (ie) 5633 ie->data.ssp_mode = (ev->features[0] & LMP_HOST_SSP); 5634 5635 hci_dev_unlock(hdev); 5636 } 5637 5638 static void hci_remote_oob_data_request_evt(struct hci_dev *hdev, void *edata, 5639 struct sk_buff *skb) 5640 { 5641 struct hci_ev_remote_oob_data_request *ev = edata; 5642 struct oob_data *data; 5643 5644 bt_dev_dbg(hdev, ""); 5645 5646 hci_dev_lock(hdev); 5647 5648 if (!hci_dev_test_flag(hdev, HCI_MGMT)) 5649 goto unlock; 5650 5651 data = hci_find_remote_oob_data(hdev, &ev->bdaddr, BDADDR_BREDR); 5652 if (!data) { 5653 struct hci_cp_remote_oob_data_neg_reply cp; 5654 5655 bacpy(&cp.bdaddr, &ev->bdaddr); 5656 hci_send_cmd(hdev, HCI_OP_REMOTE_OOB_DATA_NEG_REPLY, 5657 sizeof(cp), &cp); 5658 goto unlock; 5659 } 5660 5661 if (bredr_sc_enabled(hdev)) { 5662 struct hci_cp_remote_oob_ext_data_reply cp; 5663 5664 bacpy(&cp.bdaddr, &ev->bdaddr); 5665 if (hci_dev_test_flag(hdev, HCI_SC_ONLY)) { 5666 memset(cp.hash192, 0, sizeof(cp.hash192)); 5667 memset(cp.rand192, 0, sizeof(cp.rand192)); 5668 } else { 5669 memcpy(cp.hash192, data->hash192, sizeof(cp.hash192)); 5670 memcpy(cp.rand192, data->rand192, sizeof(cp.rand192)); 5671 } 5672 memcpy(cp.hash256, data->hash256, sizeof(cp.hash256)); 5673 memcpy(cp.rand256, data->rand256, sizeof(cp.rand256)); 5674 5675 hci_send_cmd(hdev, HCI_OP_REMOTE_OOB_EXT_DATA_REPLY, 5676 sizeof(cp), &cp); 5677 } else { 5678 struct hci_cp_remote_oob_data_reply cp; 5679 5680 bacpy(&cp.bdaddr, &ev->bdaddr); 5681 memcpy(cp.hash, data->hash192, sizeof(cp.hash)); 5682 memcpy(cp.rand, data->rand192, sizeof(cp.rand)); 5683 5684 hci_send_cmd(hdev, HCI_OP_REMOTE_OOB_DATA_REPLY, 5685 sizeof(cp), &cp); 5686 } 5687 5688 unlock: 5689 hci_dev_unlock(hdev); 5690 } 5691 5692 static void le_conn_update_addr(struct hci_conn *conn, bdaddr_t *bdaddr, 5693 u8 bdaddr_type, bdaddr_t *local_rpa) 5694 { 5695 if (conn->out) { 5696 conn->dst_type = bdaddr_type; 5697 conn->resp_addr_type = bdaddr_type; 5698 bacpy(&conn->resp_addr, bdaddr); 5699 5700 /* Check if the controller has set a Local RPA then it must be 5701 * used instead or hdev->rpa. 5702 */ 5703 if (local_rpa && bacmp(local_rpa, BDADDR_ANY)) { 5704 conn->init_addr_type = ADDR_LE_DEV_RANDOM; 5705 bacpy(&conn->init_addr, local_rpa); 5706 } else if (hci_dev_test_flag(conn->hdev, HCI_PRIVACY)) { 5707 conn->init_addr_type = ADDR_LE_DEV_RANDOM; 5708 bacpy(&conn->init_addr, &conn->hdev->rpa); 5709 } else { 5710 hci_copy_identity_address(conn->hdev, &conn->init_addr, 5711 &conn->init_addr_type); 5712 } 5713 } else { 5714 conn->resp_addr_type = conn->hdev->adv_addr_type; 5715 /* Check if the controller has set a Local RPA then it must be 5716 * used instead or hdev->rpa. 5717 */ 5718 if (local_rpa && bacmp(local_rpa, BDADDR_ANY)) { 5719 conn->resp_addr_type = ADDR_LE_DEV_RANDOM; 5720 bacpy(&conn->resp_addr, local_rpa); 5721 } else if (conn->hdev->adv_addr_type == ADDR_LE_DEV_RANDOM) { 5722 /* In case of ext adv, resp_addr will be updated in 5723 * Adv Terminated event. 5724 */ 5725 if (!ext_adv_capable(conn->hdev)) 5726 bacpy(&conn->resp_addr, 5727 &conn->hdev->random_addr); 5728 } else { 5729 bacpy(&conn->resp_addr, &conn->hdev->bdaddr); 5730 } 5731 5732 conn->init_addr_type = bdaddr_type; 5733 bacpy(&conn->init_addr, bdaddr); 5734 5735 /* For incoming connections, set the default minimum 5736 * and maximum connection interval. They will be used 5737 * to check if the parameters are in range and if not 5738 * trigger the connection update procedure. 5739 */ 5740 conn->le_conn_min_interval = conn->hdev->le_conn_min_interval; 5741 conn->le_conn_max_interval = conn->hdev->le_conn_max_interval; 5742 } 5743 } 5744 5745 static void le_conn_complete_evt(struct hci_dev *hdev, u8 status, 5746 bdaddr_t *bdaddr, u8 bdaddr_type, 5747 bdaddr_t *local_rpa, u8 role, u16 handle, 5748 u16 interval, u16 latency, 5749 u16 supervision_timeout) 5750 { 5751 struct hci_conn_params *params; 5752 struct hci_conn *conn; 5753 struct smp_irk *irk; 5754 u8 addr_type; 5755 5756 hci_dev_lock(hdev); 5757 5758 /* All controllers implicitly stop advertising in the event of a 5759 * connection, so ensure that the state bit is cleared. 5760 */ 5761 hci_dev_clear_flag(hdev, HCI_LE_ADV); 5762 5763 conn = hci_conn_hash_lookup_ba(hdev, LE_LINK, bdaddr); 5764 if (!conn) { 5765 /* In case of error status and there is no connection pending 5766 * just unlock as there is nothing to cleanup. 5767 */ 5768 if (status) 5769 goto unlock; 5770 5771 conn = hci_conn_add_unset(hdev, LE_LINK, bdaddr, role); 5772 if (!conn) { 5773 bt_dev_err(hdev, "no memory for new connection"); 5774 goto unlock; 5775 } 5776 5777 conn->dst_type = bdaddr_type; 5778 5779 /* If we didn't have a hci_conn object previously 5780 * but we're in central role this must be something 5781 * initiated using an accept list. Since accept list based 5782 * connections are not "first class citizens" we don't 5783 * have full tracking of them. Therefore, we go ahead 5784 * with a "best effort" approach of determining the 5785 * initiator address based on the HCI_PRIVACY flag. 5786 */ 5787 if (conn->out) { 5788 conn->resp_addr_type = bdaddr_type; 5789 bacpy(&conn->resp_addr, bdaddr); 5790 if (hci_dev_test_flag(hdev, HCI_PRIVACY)) { 5791 conn->init_addr_type = ADDR_LE_DEV_RANDOM; 5792 bacpy(&conn->init_addr, &hdev->rpa); 5793 } else { 5794 hci_copy_identity_address(hdev, 5795 &conn->init_addr, 5796 &conn->init_addr_type); 5797 } 5798 } 5799 } else { 5800 cancel_delayed_work(&conn->le_conn_timeout); 5801 } 5802 5803 /* The HCI_LE_Connection_Complete event is only sent once per connection. 5804 * Processing it more than once per connection can corrupt kernel memory. 5805 * 5806 * As the connection handle is set here for the first time, it indicates 5807 * whether the connection is already set up. 5808 */ 5809 if (!HCI_CONN_HANDLE_UNSET(conn->handle)) { 5810 bt_dev_err(hdev, "Ignoring HCI_Connection_Complete for existing connection"); 5811 goto unlock; 5812 } 5813 5814 le_conn_update_addr(conn, bdaddr, bdaddr_type, local_rpa); 5815 5816 /* Lookup the identity address from the stored connection 5817 * address and address type. 5818 * 5819 * When establishing connections to an identity address, the 5820 * connection procedure will store the resolvable random 5821 * address first. Now if it can be converted back into the 5822 * identity address, start using the identity address from 5823 * now on. 5824 */ 5825 irk = hci_get_irk(hdev, &conn->dst, conn->dst_type); 5826 if (irk) { 5827 bacpy(&conn->dst, &irk->bdaddr); 5828 conn->dst_type = irk->addr_type; 5829 } 5830 5831 conn->dst_type = ev_bdaddr_type(hdev, conn->dst_type, NULL); 5832 5833 /* All connection failure handling is taken care of by the 5834 * hci_conn_failed function which is triggered by the HCI 5835 * request completion callbacks used for connecting. 5836 */ 5837 if (status || hci_conn_set_handle(conn, handle)) 5838 goto unlock; 5839 5840 /* Drop the connection if it has been aborted */ 5841 if (test_bit(HCI_CONN_CANCEL, &conn->flags)) { 5842 hci_conn_drop(conn); 5843 goto unlock; 5844 } 5845 5846 if (conn->dst_type == ADDR_LE_DEV_PUBLIC) 5847 addr_type = BDADDR_LE_PUBLIC; 5848 else 5849 addr_type = BDADDR_LE_RANDOM; 5850 5851 /* Drop the connection if the device is blocked */ 5852 if (hci_bdaddr_list_lookup(&hdev->reject_list, &conn->dst, addr_type)) { 5853 hci_conn_drop(conn); 5854 goto unlock; 5855 } 5856 5857 mgmt_device_connected(hdev, conn, NULL, 0); 5858 5859 conn->sec_level = BT_SECURITY_LOW; 5860 conn->state = BT_CONFIG; 5861 5862 /* Store current advertising instance as connection advertising instance 5863 * when sotfware rotation is in use so it can be re-enabled when 5864 * disconnected. 5865 */ 5866 if (!ext_adv_capable(hdev)) 5867 conn->adv_instance = hdev->cur_adv_instance; 5868 5869 conn->le_conn_interval = interval; 5870 conn->le_conn_latency = latency; 5871 conn->le_supv_timeout = supervision_timeout; 5872 5873 hci_debugfs_create_conn(conn); 5874 hci_conn_add_sysfs(conn); 5875 5876 /* The remote features procedure is defined for central 5877 * role only. So only in case of an initiated connection 5878 * request the remote features. 5879 * 5880 * If the local controller supports peripheral-initiated features 5881 * exchange, then requesting the remote features in peripheral 5882 * role is possible. Otherwise just transition into the 5883 * connected state without requesting the remote features. 5884 */ 5885 if (conn->out || 5886 (hdev->le_features[0] & HCI_LE_PERIPHERAL_FEATURES)) { 5887 struct hci_cp_le_read_remote_features cp; 5888 5889 cp.handle = __cpu_to_le16(conn->handle); 5890 5891 hci_send_cmd(hdev, HCI_OP_LE_READ_REMOTE_FEATURES, 5892 sizeof(cp), &cp); 5893 5894 hci_conn_hold(conn); 5895 } else { 5896 conn->state = BT_CONNECTED; 5897 hci_connect_cfm(conn, status); 5898 } 5899 5900 params = hci_pend_le_action_lookup(&hdev->pend_le_conns, &conn->dst, 5901 conn->dst_type); 5902 if (params) { 5903 hci_pend_le_list_del_init(params); 5904 if (params->conn) { 5905 hci_conn_drop(params->conn); 5906 hci_conn_put(params->conn); 5907 params->conn = NULL; 5908 } 5909 } 5910 5911 unlock: 5912 hci_update_passive_scan(hdev); 5913 hci_dev_unlock(hdev); 5914 } 5915 5916 static void hci_le_conn_complete_evt(struct hci_dev *hdev, void *data, 5917 struct sk_buff *skb) 5918 { 5919 struct hci_ev_le_conn_complete *ev = data; 5920 5921 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 5922 5923 le_conn_complete_evt(hdev, ev->status, &ev->bdaddr, ev->bdaddr_type, 5924 NULL, ev->role, le16_to_cpu(ev->handle), 5925 le16_to_cpu(ev->interval), 5926 le16_to_cpu(ev->latency), 5927 le16_to_cpu(ev->supervision_timeout)); 5928 } 5929 5930 static void hci_le_enh_conn_complete_evt(struct hci_dev *hdev, void *data, 5931 struct sk_buff *skb) 5932 { 5933 struct hci_ev_le_enh_conn_complete *ev = data; 5934 5935 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 5936 5937 le_conn_complete_evt(hdev, ev->status, &ev->bdaddr, ev->bdaddr_type, 5938 &ev->local_rpa, ev->role, le16_to_cpu(ev->handle), 5939 le16_to_cpu(ev->interval), 5940 le16_to_cpu(ev->latency), 5941 le16_to_cpu(ev->supervision_timeout)); 5942 } 5943 5944 static void hci_le_ext_adv_term_evt(struct hci_dev *hdev, void *data, 5945 struct sk_buff *skb) 5946 { 5947 struct hci_evt_le_ext_adv_set_term *ev = data; 5948 struct hci_conn *conn; 5949 struct adv_info *adv, *n; 5950 5951 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 5952 5953 /* The Bluetooth Core 5.3 specification clearly states that this event 5954 * shall not be sent when the Host disables the advertising set. So in 5955 * case of HCI_ERROR_CANCELLED_BY_HOST, just ignore the event. 5956 * 5957 * When the Host disables an advertising set, all cleanup is done via 5958 * its command callback and not needed to be duplicated here. 5959 */ 5960 if (ev->status == HCI_ERROR_CANCELLED_BY_HOST) { 5961 bt_dev_warn_ratelimited(hdev, "Unexpected advertising set terminated event"); 5962 return; 5963 } 5964 5965 hci_dev_lock(hdev); 5966 5967 adv = hci_find_adv_instance(hdev, ev->handle); 5968 5969 if (ev->status) { 5970 if (!adv) 5971 goto unlock; 5972 5973 /* Remove advertising as it has been terminated */ 5974 hci_remove_adv_instance(hdev, ev->handle); 5975 mgmt_advertising_removed(NULL, hdev, ev->handle); 5976 5977 list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) { 5978 if (adv->enabled) 5979 goto unlock; 5980 } 5981 5982 /* We are no longer advertising, clear HCI_LE_ADV */ 5983 hci_dev_clear_flag(hdev, HCI_LE_ADV); 5984 goto unlock; 5985 } 5986 5987 if (adv) 5988 adv->enabled = false; 5989 5990 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->conn_handle)); 5991 if (conn) { 5992 /* Store handle in the connection so the correct advertising 5993 * instance can be re-enabled when disconnected. 5994 */ 5995 conn->adv_instance = ev->handle; 5996 5997 if (hdev->adv_addr_type != ADDR_LE_DEV_RANDOM || 5998 bacmp(&conn->resp_addr, BDADDR_ANY)) 5999 goto unlock; 6000 6001 if (!ev->handle) { 6002 bacpy(&conn->resp_addr, &hdev->random_addr); 6003 goto unlock; 6004 } 6005 6006 if (adv) 6007 bacpy(&conn->resp_addr, &adv->random_addr); 6008 } 6009 6010 unlock: 6011 hci_dev_unlock(hdev); 6012 } 6013 6014 static void hci_le_conn_update_complete_evt(struct hci_dev *hdev, void *data, 6015 struct sk_buff *skb) 6016 { 6017 struct hci_ev_le_conn_update_complete *ev = data; 6018 struct hci_conn *conn; 6019 6020 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 6021 6022 if (ev->status) 6023 return; 6024 6025 hci_dev_lock(hdev); 6026 6027 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 6028 if (conn) { 6029 conn->le_conn_interval = le16_to_cpu(ev->interval); 6030 conn->le_conn_latency = le16_to_cpu(ev->latency); 6031 conn->le_supv_timeout = le16_to_cpu(ev->supervision_timeout); 6032 } 6033 6034 hci_dev_unlock(hdev); 6035 } 6036 6037 /* This function requires the caller holds hdev->lock */ 6038 static struct hci_conn *check_pending_le_conn(struct hci_dev *hdev, 6039 bdaddr_t *addr, 6040 u8 addr_type, bool addr_resolved, 6041 u8 adv_type) 6042 { 6043 struct hci_conn *conn; 6044 struct hci_conn_params *params; 6045 6046 /* If the event is not connectable don't proceed further */ 6047 if (adv_type != LE_ADV_IND && adv_type != LE_ADV_DIRECT_IND) 6048 return NULL; 6049 6050 /* Ignore if the device is blocked or hdev is suspended */ 6051 if (hci_bdaddr_list_lookup(&hdev->reject_list, addr, addr_type) || 6052 hdev->suspended) 6053 return NULL; 6054 6055 /* Most controller will fail if we try to create new connections 6056 * while we have an existing one in peripheral role. 6057 */ 6058 if (hdev->conn_hash.le_num_peripheral > 0 && 6059 (!test_bit(HCI_QUIRK_VALID_LE_STATES, &hdev->quirks) || 6060 !(hdev->le_states[3] & 0x10))) 6061 return NULL; 6062 6063 /* If we're not connectable only connect devices that we have in 6064 * our pend_le_conns list. 6065 */ 6066 params = hci_pend_le_action_lookup(&hdev->pend_le_conns, addr, 6067 addr_type); 6068 if (!params) 6069 return NULL; 6070 6071 if (!params->explicit_connect) { 6072 switch (params->auto_connect) { 6073 case HCI_AUTO_CONN_DIRECT: 6074 /* Only devices advertising with ADV_DIRECT_IND are 6075 * triggering a connection attempt. This is allowing 6076 * incoming connections from peripheral devices. 6077 */ 6078 if (adv_type != LE_ADV_DIRECT_IND) 6079 return NULL; 6080 break; 6081 case HCI_AUTO_CONN_ALWAYS: 6082 /* Devices advertising with ADV_IND or ADV_DIRECT_IND 6083 * are triggering a connection attempt. This means 6084 * that incoming connections from peripheral device are 6085 * accepted and also outgoing connections to peripheral 6086 * devices are established when found. 6087 */ 6088 break; 6089 default: 6090 return NULL; 6091 } 6092 } 6093 6094 conn = hci_connect_le(hdev, addr, addr_type, addr_resolved, 6095 BT_SECURITY_LOW, hdev->def_le_autoconnect_timeout, 6096 HCI_ROLE_MASTER); 6097 if (!IS_ERR(conn)) { 6098 /* If HCI_AUTO_CONN_EXPLICIT is set, conn is already owned 6099 * by higher layer that tried to connect, if no then 6100 * store the pointer since we don't really have any 6101 * other owner of the object besides the params that 6102 * triggered it. This way we can abort the connection if 6103 * the parameters get removed and keep the reference 6104 * count consistent once the connection is established. 6105 */ 6106 6107 if (!params->explicit_connect) 6108 params->conn = hci_conn_get(conn); 6109 6110 return conn; 6111 } 6112 6113 switch (PTR_ERR(conn)) { 6114 case -EBUSY: 6115 /* If hci_connect() returns -EBUSY it means there is already 6116 * an LE connection attempt going on. Since controllers don't 6117 * support more than one connection attempt at the time, we 6118 * don't consider this an error case. 6119 */ 6120 break; 6121 default: 6122 BT_DBG("Failed to connect: err %ld", PTR_ERR(conn)); 6123 return NULL; 6124 } 6125 6126 return NULL; 6127 } 6128 6129 static void process_adv_report(struct hci_dev *hdev, u8 type, bdaddr_t *bdaddr, 6130 u8 bdaddr_type, bdaddr_t *direct_addr, 6131 u8 direct_addr_type, s8 rssi, u8 *data, u8 len, 6132 bool ext_adv, bool ctl_time, u64 instant) 6133 { 6134 struct discovery_state *d = &hdev->discovery; 6135 struct smp_irk *irk; 6136 struct hci_conn *conn; 6137 bool match, bdaddr_resolved; 6138 u32 flags; 6139 u8 *ptr; 6140 6141 switch (type) { 6142 case LE_ADV_IND: 6143 case LE_ADV_DIRECT_IND: 6144 case LE_ADV_SCAN_IND: 6145 case LE_ADV_NONCONN_IND: 6146 case LE_ADV_SCAN_RSP: 6147 break; 6148 default: 6149 bt_dev_err_ratelimited(hdev, "unknown advertising packet " 6150 "type: 0x%02x", type); 6151 return; 6152 } 6153 6154 if (len > max_adv_len(hdev)) { 6155 bt_dev_err_ratelimited(hdev, 6156 "adv larger than maximum supported"); 6157 return; 6158 } 6159 6160 /* Find the end of the data in case the report contains padded zero 6161 * bytes at the end causing an invalid length value. 6162 * 6163 * When data is NULL, len is 0 so there is no need for extra ptr 6164 * check as 'ptr < data + 0' is already false in such case. 6165 */ 6166 for (ptr = data; ptr < data + len && *ptr; ptr += *ptr + 1) { 6167 if (ptr + 1 + *ptr > data + len) 6168 break; 6169 } 6170 6171 /* Adjust for actual length. This handles the case when remote 6172 * device is advertising with incorrect data length. 6173 */ 6174 len = ptr - data; 6175 6176 /* If the direct address is present, then this report is from 6177 * a LE Direct Advertising Report event. In that case it is 6178 * important to see if the address is matching the local 6179 * controller address. 6180 */ 6181 if (!hci_dev_test_flag(hdev, HCI_MESH) && direct_addr) { 6182 direct_addr_type = ev_bdaddr_type(hdev, direct_addr_type, 6183 &bdaddr_resolved); 6184 6185 /* Only resolvable random addresses are valid for these 6186 * kind of reports and others can be ignored. 6187 */ 6188 if (!hci_bdaddr_is_rpa(direct_addr, direct_addr_type)) 6189 return; 6190 6191 /* If the controller is not using resolvable random 6192 * addresses, then this report can be ignored. 6193 */ 6194 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 6195 return; 6196 6197 /* If the local IRK of the controller does not match 6198 * with the resolvable random address provided, then 6199 * this report can be ignored. 6200 */ 6201 if (!smp_irk_matches(hdev, hdev->irk, direct_addr)) 6202 return; 6203 } 6204 6205 /* Check if we need to convert to identity address */ 6206 irk = hci_get_irk(hdev, bdaddr, bdaddr_type); 6207 if (irk) { 6208 bdaddr = &irk->bdaddr; 6209 bdaddr_type = irk->addr_type; 6210 } 6211 6212 bdaddr_type = ev_bdaddr_type(hdev, bdaddr_type, &bdaddr_resolved); 6213 6214 /* Check if we have been requested to connect to this device. 6215 * 6216 * direct_addr is set only for directed advertising reports (it is NULL 6217 * for advertising reports) and is already verified to be RPA above. 6218 */ 6219 conn = check_pending_le_conn(hdev, bdaddr, bdaddr_type, bdaddr_resolved, 6220 type); 6221 if (!ext_adv && conn && type == LE_ADV_IND && 6222 len <= max_adv_len(hdev)) { 6223 /* Store report for later inclusion by 6224 * mgmt_device_connected 6225 */ 6226 memcpy(conn->le_adv_data, data, len); 6227 conn->le_adv_data_len = len; 6228 } 6229 6230 if (type == LE_ADV_NONCONN_IND || type == LE_ADV_SCAN_IND) 6231 flags = MGMT_DEV_FOUND_NOT_CONNECTABLE; 6232 else 6233 flags = 0; 6234 6235 /* All scan results should be sent up for Mesh systems */ 6236 if (hci_dev_test_flag(hdev, HCI_MESH)) { 6237 mgmt_device_found(hdev, bdaddr, LE_LINK, bdaddr_type, NULL, 6238 rssi, flags, data, len, NULL, 0, instant); 6239 return; 6240 } 6241 6242 /* Passive scanning shouldn't trigger any device found events, 6243 * except for devices marked as CONN_REPORT for which we do send 6244 * device found events, or advertisement monitoring requested. 6245 */ 6246 if (hdev->le_scan_type == LE_SCAN_PASSIVE) { 6247 if (type == LE_ADV_DIRECT_IND) 6248 return; 6249 6250 if (!hci_pend_le_action_lookup(&hdev->pend_le_reports, 6251 bdaddr, bdaddr_type) && 6252 idr_is_empty(&hdev->adv_monitors_idr)) 6253 return; 6254 6255 mgmt_device_found(hdev, bdaddr, LE_LINK, bdaddr_type, NULL, 6256 rssi, flags, data, len, NULL, 0, 0); 6257 return; 6258 } 6259 6260 /* When receiving a scan response, then there is no way to 6261 * know if the remote device is connectable or not. However 6262 * since scan responses are merged with a previously seen 6263 * advertising report, the flags field from that report 6264 * will be used. 6265 * 6266 * In the unlikely case that a controller just sends a scan 6267 * response event that doesn't match the pending report, then 6268 * it is marked as a standalone SCAN_RSP. 6269 */ 6270 if (type == LE_ADV_SCAN_RSP) 6271 flags = MGMT_DEV_FOUND_SCAN_RSP; 6272 6273 /* If there's nothing pending either store the data from this 6274 * event or send an immediate device found event if the data 6275 * should not be stored for later. 6276 */ 6277 if (!ext_adv && !has_pending_adv_report(hdev)) { 6278 /* If the report will trigger a SCAN_REQ store it for 6279 * later merging. 6280 */ 6281 if (type == LE_ADV_IND || type == LE_ADV_SCAN_IND) { 6282 store_pending_adv_report(hdev, bdaddr, bdaddr_type, 6283 rssi, flags, data, len); 6284 return; 6285 } 6286 6287 mgmt_device_found(hdev, bdaddr, LE_LINK, bdaddr_type, NULL, 6288 rssi, flags, data, len, NULL, 0, 0); 6289 return; 6290 } 6291 6292 /* Check if the pending report is for the same device as the new one */ 6293 match = (!bacmp(bdaddr, &d->last_adv_addr) && 6294 bdaddr_type == d->last_adv_addr_type); 6295 6296 /* If the pending data doesn't match this report or this isn't a 6297 * scan response (e.g. we got a duplicate ADV_IND) then force 6298 * sending of the pending data. 6299 */ 6300 if (type != LE_ADV_SCAN_RSP || !match) { 6301 /* Send out whatever is in the cache, but skip duplicates */ 6302 if (!match) 6303 mgmt_device_found(hdev, &d->last_adv_addr, LE_LINK, 6304 d->last_adv_addr_type, NULL, 6305 d->last_adv_rssi, d->last_adv_flags, 6306 d->last_adv_data, 6307 d->last_adv_data_len, NULL, 0, 0); 6308 6309 /* If the new report will trigger a SCAN_REQ store it for 6310 * later merging. 6311 */ 6312 if (!ext_adv && (type == LE_ADV_IND || 6313 type == LE_ADV_SCAN_IND)) { 6314 store_pending_adv_report(hdev, bdaddr, bdaddr_type, 6315 rssi, flags, data, len); 6316 return; 6317 } 6318 6319 /* The advertising reports cannot be merged, so clear 6320 * the pending report and send out a device found event. 6321 */ 6322 clear_pending_adv_report(hdev); 6323 mgmt_device_found(hdev, bdaddr, LE_LINK, bdaddr_type, NULL, 6324 rssi, flags, data, len, NULL, 0, 0); 6325 return; 6326 } 6327 6328 /* If we get here we've got a pending ADV_IND or ADV_SCAN_IND and 6329 * the new event is a SCAN_RSP. We can therefore proceed with 6330 * sending a merged device found event. 6331 */ 6332 mgmt_device_found(hdev, &d->last_adv_addr, LE_LINK, 6333 d->last_adv_addr_type, NULL, rssi, d->last_adv_flags, 6334 d->last_adv_data, d->last_adv_data_len, data, len, 0); 6335 clear_pending_adv_report(hdev); 6336 } 6337 6338 static void hci_le_adv_report_evt(struct hci_dev *hdev, void *data, 6339 struct sk_buff *skb) 6340 { 6341 struct hci_ev_le_advertising_report *ev = data; 6342 u64 instant = jiffies; 6343 6344 if (!ev->num) 6345 return; 6346 6347 hci_dev_lock(hdev); 6348 6349 while (ev->num--) { 6350 struct hci_ev_le_advertising_info *info; 6351 s8 rssi; 6352 6353 info = hci_le_ev_skb_pull(hdev, skb, 6354 HCI_EV_LE_ADVERTISING_REPORT, 6355 sizeof(*info)); 6356 if (!info) 6357 break; 6358 6359 if (!hci_le_ev_skb_pull(hdev, skb, HCI_EV_LE_ADVERTISING_REPORT, 6360 info->length + 1)) 6361 break; 6362 6363 if (info->length <= max_adv_len(hdev)) { 6364 rssi = info->data[info->length]; 6365 process_adv_report(hdev, info->type, &info->bdaddr, 6366 info->bdaddr_type, NULL, 0, rssi, 6367 info->data, info->length, false, 6368 false, instant); 6369 } else { 6370 bt_dev_err(hdev, "Dropping invalid advertising data"); 6371 } 6372 } 6373 6374 hci_dev_unlock(hdev); 6375 } 6376 6377 static u8 ext_evt_type_to_legacy(struct hci_dev *hdev, u16 evt_type) 6378 { 6379 if (evt_type & LE_EXT_ADV_LEGACY_PDU) { 6380 switch (evt_type) { 6381 case LE_LEGACY_ADV_IND: 6382 return LE_ADV_IND; 6383 case LE_LEGACY_ADV_DIRECT_IND: 6384 return LE_ADV_DIRECT_IND; 6385 case LE_LEGACY_ADV_SCAN_IND: 6386 return LE_ADV_SCAN_IND; 6387 case LE_LEGACY_NONCONN_IND: 6388 return LE_ADV_NONCONN_IND; 6389 case LE_LEGACY_SCAN_RSP_ADV: 6390 case LE_LEGACY_SCAN_RSP_ADV_SCAN: 6391 return LE_ADV_SCAN_RSP; 6392 } 6393 6394 goto invalid; 6395 } 6396 6397 if (evt_type & LE_EXT_ADV_CONN_IND) { 6398 if (evt_type & LE_EXT_ADV_DIRECT_IND) 6399 return LE_ADV_DIRECT_IND; 6400 6401 return LE_ADV_IND; 6402 } 6403 6404 if (evt_type & LE_EXT_ADV_SCAN_RSP) 6405 return LE_ADV_SCAN_RSP; 6406 6407 if (evt_type & LE_EXT_ADV_SCAN_IND) 6408 return LE_ADV_SCAN_IND; 6409 6410 if (evt_type == LE_EXT_ADV_NON_CONN_IND || 6411 evt_type & LE_EXT_ADV_DIRECT_IND) 6412 return LE_ADV_NONCONN_IND; 6413 6414 invalid: 6415 bt_dev_err_ratelimited(hdev, "Unknown advertising packet type: 0x%02x", 6416 evt_type); 6417 6418 return LE_ADV_INVALID; 6419 } 6420 6421 static void hci_le_ext_adv_report_evt(struct hci_dev *hdev, void *data, 6422 struct sk_buff *skb) 6423 { 6424 struct hci_ev_le_ext_adv_report *ev = data; 6425 u64 instant = jiffies; 6426 6427 if (!ev->num) 6428 return; 6429 6430 hci_dev_lock(hdev); 6431 6432 while (ev->num--) { 6433 struct hci_ev_le_ext_adv_info *info; 6434 u8 legacy_evt_type; 6435 u16 evt_type; 6436 6437 info = hci_le_ev_skb_pull(hdev, skb, HCI_EV_LE_EXT_ADV_REPORT, 6438 sizeof(*info)); 6439 if (!info) 6440 break; 6441 6442 if (!hci_le_ev_skb_pull(hdev, skb, HCI_EV_LE_EXT_ADV_REPORT, 6443 info->length)) 6444 break; 6445 6446 evt_type = __le16_to_cpu(info->type) & LE_EXT_ADV_EVT_TYPE_MASK; 6447 legacy_evt_type = ext_evt_type_to_legacy(hdev, evt_type); 6448 if (legacy_evt_type != LE_ADV_INVALID) { 6449 process_adv_report(hdev, legacy_evt_type, &info->bdaddr, 6450 info->bdaddr_type, NULL, 0, 6451 info->rssi, info->data, info->length, 6452 !(evt_type & LE_EXT_ADV_LEGACY_PDU), 6453 false, instant); 6454 } 6455 } 6456 6457 hci_dev_unlock(hdev); 6458 } 6459 6460 static int hci_le_pa_term_sync(struct hci_dev *hdev, __le16 handle) 6461 { 6462 struct hci_cp_le_pa_term_sync cp; 6463 6464 memset(&cp, 0, sizeof(cp)); 6465 cp.handle = handle; 6466 6467 return hci_send_cmd(hdev, HCI_OP_LE_PA_TERM_SYNC, sizeof(cp), &cp); 6468 } 6469 6470 static void hci_le_pa_sync_estabilished_evt(struct hci_dev *hdev, void *data, 6471 struct sk_buff *skb) 6472 { 6473 struct hci_ev_le_pa_sync_established *ev = data; 6474 int mask = hdev->link_mode; 6475 __u8 flags = 0; 6476 struct hci_conn *pa_sync; 6477 6478 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 6479 6480 hci_dev_lock(hdev); 6481 6482 hci_dev_clear_flag(hdev, HCI_PA_SYNC); 6483 6484 mask |= hci_proto_connect_ind(hdev, &ev->bdaddr, ISO_LINK, &flags); 6485 if (!(mask & HCI_LM_ACCEPT)) { 6486 hci_le_pa_term_sync(hdev, ev->handle); 6487 goto unlock; 6488 } 6489 6490 if (!(flags & HCI_PROTO_DEFER)) 6491 goto unlock; 6492 6493 if (ev->status) { 6494 /* Add connection to indicate the failed PA sync event */ 6495 pa_sync = hci_conn_add_unset(hdev, ISO_LINK, BDADDR_ANY, 6496 HCI_ROLE_SLAVE); 6497 6498 if (!pa_sync) 6499 goto unlock; 6500 6501 set_bit(HCI_CONN_PA_SYNC_FAILED, &pa_sync->flags); 6502 6503 /* Notify iso layer */ 6504 hci_connect_cfm(pa_sync, ev->status); 6505 } 6506 6507 unlock: 6508 hci_dev_unlock(hdev); 6509 } 6510 6511 static void hci_le_per_adv_report_evt(struct hci_dev *hdev, void *data, 6512 struct sk_buff *skb) 6513 { 6514 struct hci_ev_le_per_adv_report *ev = data; 6515 int mask = hdev->link_mode; 6516 __u8 flags = 0; 6517 6518 bt_dev_dbg(hdev, "sync_handle 0x%4.4x", le16_to_cpu(ev->sync_handle)); 6519 6520 hci_dev_lock(hdev); 6521 6522 mask |= hci_proto_connect_ind(hdev, BDADDR_ANY, ISO_LINK, &flags); 6523 if (!(mask & HCI_LM_ACCEPT)) 6524 hci_le_pa_term_sync(hdev, ev->sync_handle); 6525 6526 hci_dev_unlock(hdev); 6527 } 6528 6529 static void hci_le_remote_feat_complete_evt(struct hci_dev *hdev, void *data, 6530 struct sk_buff *skb) 6531 { 6532 struct hci_ev_le_remote_feat_complete *ev = data; 6533 struct hci_conn *conn; 6534 6535 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 6536 6537 hci_dev_lock(hdev); 6538 6539 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 6540 if (conn) { 6541 if (!ev->status) 6542 memcpy(conn->features[0], ev->features, 8); 6543 6544 if (conn->state == BT_CONFIG) { 6545 __u8 status; 6546 6547 /* If the local controller supports peripheral-initiated 6548 * features exchange, but the remote controller does 6549 * not, then it is possible that the error code 0x1a 6550 * for unsupported remote feature gets returned. 6551 * 6552 * In this specific case, allow the connection to 6553 * transition into connected state and mark it as 6554 * successful. 6555 */ 6556 if (!conn->out && ev->status == HCI_ERROR_UNSUPPORTED_REMOTE_FEATURE && 6557 (hdev->le_features[0] & HCI_LE_PERIPHERAL_FEATURES)) 6558 status = 0x00; 6559 else 6560 status = ev->status; 6561 6562 conn->state = BT_CONNECTED; 6563 hci_connect_cfm(conn, status); 6564 hci_conn_drop(conn); 6565 } 6566 } 6567 6568 hci_dev_unlock(hdev); 6569 } 6570 6571 static void hci_le_ltk_request_evt(struct hci_dev *hdev, void *data, 6572 struct sk_buff *skb) 6573 { 6574 struct hci_ev_le_ltk_req *ev = data; 6575 struct hci_cp_le_ltk_reply cp; 6576 struct hci_cp_le_ltk_neg_reply neg; 6577 struct hci_conn *conn; 6578 struct smp_ltk *ltk; 6579 6580 bt_dev_dbg(hdev, "handle 0x%4.4x", __le16_to_cpu(ev->handle)); 6581 6582 hci_dev_lock(hdev); 6583 6584 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 6585 if (conn == NULL) 6586 goto not_found; 6587 6588 ltk = hci_find_ltk(hdev, &conn->dst, conn->dst_type, conn->role); 6589 if (!ltk) 6590 goto not_found; 6591 6592 if (smp_ltk_is_sc(ltk)) { 6593 /* With SC both EDiv and Rand are set to zero */ 6594 if (ev->ediv || ev->rand) 6595 goto not_found; 6596 } else { 6597 /* For non-SC keys check that EDiv and Rand match */ 6598 if (ev->ediv != ltk->ediv || ev->rand != ltk->rand) 6599 goto not_found; 6600 } 6601 6602 memcpy(cp.ltk, ltk->val, ltk->enc_size); 6603 memset(cp.ltk + ltk->enc_size, 0, sizeof(cp.ltk) - ltk->enc_size); 6604 cp.handle = cpu_to_le16(conn->handle); 6605 6606 conn->pending_sec_level = smp_ltk_sec_level(ltk); 6607 6608 conn->enc_key_size = ltk->enc_size; 6609 6610 hci_send_cmd(hdev, HCI_OP_LE_LTK_REPLY, sizeof(cp), &cp); 6611 6612 /* Ref. Bluetooth Core SPEC pages 1975 and 2004. STK is a 6613 * temporary key used to encrypt a connection following 6614 * pairing. It is used during the Encrypted Session Setup to 6615 * distribute the keys. Later, security can be re-established 6616 * using a distributed LTK. 6617 */ 6618 if (ltk->type == SMP_STK) { 6619 set_bit(HCI_CONN_STK_ENCRYPT, &conn->flags); 6620 list_del_rcu(<k->list); 6621 kfree_rcu(ltk, rcu); 6622 } else { 6623 clear_bit(HCI_CONN_STK_ENCRYPT, &conn->flags); 6624 } 6625 6626 hci_dev_unlock(hdev); 6627 6628 return; 6629 6630 not_found: 6631 neg.handle = ev->handle; 6632 hci_send_cmd(hdev, HCI_OP_LE_LTK_NEG_REPLY, sizeof(neg), &neg); 6633 hci_dev_unlock(hdev); 6634 } 6635 6636 static void send_conn_param_neg_reply(struct hci_dev *hdev, u16 handle, 6637 u8 reason) 6638 { 6639 struct hci_cp_le_conn_param_req_neg_reply cp; 6640 6641 cp.handle = cpu_to_le16(handle); 6642 cp.reason = reason; 6643 6644 hci_send_cmd(hdev, HCI_OP_LE_CONN_PARAM_REQ_NEG_REPLY, sizeof(cp), 6645 &cp); 6646 } 6647 6648 static void hci_le_remote_conn_param_req_evt(struct hci_dev *hdev, void *data, 6649 struct sk_buff *skb) 6650 { 6651 struct hci_ev_le_remote_conn_param_req *ev = data; 6652 struct hci_cp_le_conn_param_req_reply cp; 6653 struct hci_conn *hcon; 6654 u16 handle, min, max, latency, timeout; 6655 6656 bt_dev_dbg(hdev, "handle 0x%4.4x", __le16_to_cpu(ev->handle)); 6657 6658 handle = le16_to_cpu(ev->handle); 6659 min = le16_to_cpu(ev->interval_min); 6660 max = le16_to_cpu(ev->interval_max); 6661 latency = le16_to_cpu(ev->latency); 6662 timeout = le16_to_cpu(ev->timeout); 6663 6664 hcon = hci_conn_hash_lookup_handle(hdev, handle); 6665 if (!hcon || hcon->state != BT_CONNECTED) 6666 return send_conn_param_neg_reply(hdev, handle, 6667 HCI_ERROR_UNKNOWN_CONN_ID); 6668 6669 if (max > hcon->le_conn_max_interval) 6670 return send_conn_param_neg_reply(hdev, handle, 6671 HCI_ERROR_INVALID_LL_PARAMS); 6672 6673 if (hci_check_conn_params(min, max, latency, timeout)) 6674 return send_conn_param_neg_reply(hdev, handle, 6675 HCI_ERROR_INVALID_LL_PARAMS); 6676 6677 if (hcon->role == HCI_ROLE_MASTER) { 6678 struct hci_conn_params *params; 6679 u8 store_hint; 6680 6681 hci_dev_lock(hdev); 6682 6683 params = hci_conn_params_lookup(hdev, &hcon->dst, 6684 hcon->dst_type); 6685 if (params) { 6686 params->conn_min_interval = min; 6687 params->conn_max_interval = max; 6688 params->conn_latency = latency; 6689 params->supervision_timeout = timeout; 6690 store_hint = 0x01; 6691 } else { 6692 store_hint = 0x00; 6693 } 6694 6695 hci_dev_unlock(hdev); 6696 6697 mgmt_new_conn_param(hdev, &hcon->dst, hcon->dst_type, 6698 store_hint, min, max, latency, timeout); 6699 } 6700 6701 cp.handle = ev->handle; 6702 cp.interval_min = ev->interval_min; 6703 cp.interval_max = ev->interval_max; 6704 cp.latency = ev->latency; 6705 cp.timeout = ev->timeout; 6706 cp.min_ce_len = 0; 6707 cp.max_ce_len = 0; 6708 6709 hci_send_cmd(hdev, HCI_OP_LE_CONN_PARAM_REQ_REPLY, sizeof(cp), &cp); 6710 } 6711 6712 static void hci_le_direct_adv_report_evt(struct hci_dev *hdev, void *data, 6713 struct sk_buff *skb) 6714 { 6715 struct hci_ev_le_direct_adv_report *ev = data; 6716 u64 instant = jiffies; 6717 int i; 6718 6719 if (!hci_le_ev_skb_pull(hdev, skb, HCI_EV_LE_DIRECT_ADV_REPORT, 6720 flex_array_size(ev, info, ev->num))) 6721 return; 6722 6723 if (!ev->num) 6724 return; 6725 6726 hci_dev_lock(hdev); 6727 6728 for (i = 0; i < ev->num; i++) { 6729 struct hci_ev_le_direct_adv_info *info = &ev->info[i]; 6730 6731 process_adv_report(hdev, info->type, &info->bdaddr, 6732 info->bdaddr_type, &info->direct_addr, 6733 info->direct_addr_type, info->rssi, NULL, 0, 6734 false, false, instant); 6735 } 6736 6737 hci_dev_unlock(hdev); 6738 } 6739 6740 static void hci_le_phy_update_evt(struct hci_dev *hdev, void *data, 6741 struct sk_buff *skb) 6742 { 6743 struct hci_ev_le_phy_update_complete *ev = data; 6744 struct hci_conn *conn; 6745 6746 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 6747 6748 if (ev->status) 6749 return; 6750 6751 hci_dev_lock(hdev); 6752 6753 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 6754 if (!conn) 6755 goto unlock; 6756 6757 conn->le_tx_phy = ev->tx_phy; 6758 conn->le_rx_phy = ev->rx_phy; 6759 6760 unlock: 6761 hci_dev_unlock(hdev); 6762 } 6763 6764 static void hci_le_cis_estabilished_evt(struct hci_dev *hdev, void *data, 6765 struct sk_buff *skb) 6766 { 6767 struct hci_evt_le_cis_established *ev = data; 6768 struct hci_conn *conn; 6769 struct bt_iso_qos *qos; 6770 bool pending = false; 6771 u16 handle = __le16_to_cpu(ev->handle); 6772 6773 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 6774 6775 hci_dev_lock(hdev); 6776 6777 conn = hci_conn_hash_lookup_handle(hdev, handle); 6778 if (!conn) { 6779 bt_dev_err(hdev, 6780 "Unable to find connection with handle 0x%4.4x", 6781 handle); 6782 goto unlock; 6783 } 6784 6785 if (conn->type != ISO_LINK) { 6786 bt_dev_err(hdev, 6787 "Invalid connection link type handle 0x%4.4x", 6788 handle); 6789 goto unlock; 6790 } 6791 6792 qos = &conn->iso_qos; 6793 6794 pending = test_and_clear_bit(HCI_CONN_CREATE_CIS, &conn->flags); 6795 6796 /* Convert ISO Interval (1.25 ms slots) to SDU Interval (us) */ 6797 qos->ucast.in.interval = le16_to_cpu(ev->interval) * 1250; 6798 qos->ucast.out.interval = qos->ucast.in.interval; 6799 6800 switch (conn->role) { 6801 case HCI_ROLE_SLAVE: 6802 /* Convert Transport Latency (us) to Latency (msec) */ 6803 qos->ucast.in.latency = 6804 DIV_ROUND_CLOSEST(get_unaligned_le24(ev->c_latency), 6805 1000); 6806 qos->ucast.out.latency = 6807 DIV_ROUND_CLOSEST(get_unaligned_le24(ev->p_latency), 6808 1000); 6809 qos->ucast.in.sdu = le16_to_cpu(ev->c_mtu); 6810 qos->ucast.out.sdu = le16_to_cpu(ev->p_mtu); 6811 qos->ucast.in.phy = ev->c_phy; 6812 qos->ucast.out.phy = ev->p_phy; 6813 break; 6814 case HCI_ROLE_MASTER: 6815 /* Convert Transport Latency (us) to Latency (msec) */ 6816 qos->ucast.out.latency = 6817 DIV_ROUND_CLOSEST(get_unaligned_le24(ev->c_latency), 6818 1000); 6819 qos->ucast.in.latency = 6820 DIV_ROUND_CLOSEST(get_unaligned_le24(ev->p_latency), 6821 1000); 6822 qos->ucast.out.sdu = le16_to_cpu(ev->c_mtu); 6823 qos->ucast.in.sdu = le16_to_cpu(ev->p_mtu); 6824 qos->ucast.out.phy = ev->c_phy; 6825 qos->ucast.in.phy = ev->p_phy; 6826 break; 6827 } 6828 6829 if (!ev->status) { 6830 conn->state = BT_CONNECTED; 6831 hci_debugfs_create_conn(conn); 6832 hci_conn_add_sysfs(conn); 6833 hci_iso_setup_path(conn); 6834 goto unlock; 6835 } 6836 6837 conn->state = BT_CLOSED; 6838 hci_connect_cfm(conn, ev->status); 6839 hci_conn_del(conn); 6840 6841 unlock: 6842 if (pending) 6843 hci_le_create_cis_pending(hdev); 6844 6845 hci_dev_unlock(hdev); 6846 } 6847 6848 static void hci_le_reject_cis(struct hci_dev *hdev, __le16 handle) 6849 { 6850 struct hci_cp_le_reject_cis cp; 6851 6852 memset(&cp, 0, sizeof(cp)); 6853 cp.handle = handle; 6854 cp.reason = HCI_ERROR_REJ_BAD_ADDR; 6855 hci_send_cmd(hdev, HCI_OP_LE_REJECT_CIS, sizeof(cp), &cp); 6856 } 6857 6858 static void hci_le_accept_cis(struct hci_dev *hdev, __le16 handle) 6859 { 6860 struct hci_cp_le_accept_cis cp; 6861 6862 memset(&cp, 0, sizeof(cp)); 6863 cp.handle = handle; 6864 hci_send_cmd(hdev, HCI_OP_LE_ACCEPT_CIS, sizeof(cp), &cp); 6865 } 6866 6867 static void hci_le_cis_req_evt(struct hci_dev *hdev, void *data, 6868 struct sk_buff *skb) 6869 { 6870 struct hci_evt_le_cis_req *ev = data; 6871 u16 acl_handle, cis_handle; 6872 struct hci_conn *acl, *cis; 6873 int mask; 6874 __u8 flags = 0; 6875 6876 acl_handle = __le16_to_cpu(ev->acl_handle); 6877 cis_handle = __le16_to_cpu(ev->cis_handle); 6878 6879 bt_dev_dbg(hdev, "acl 0x%4.4x handle 0x%4.4x cig 0x%2.2x cis 0x%2.2x", 6880 acl_handle, cis_handle, ev->cig_id, ev->cis_id); 6881 6882 hci_dev_lock(hdev); 6883 6884 acl = hci_conn_hash_lookup_handle(hdev, acl_handle); 6885 if (!acl) 6886 goto unlock; 6887 6888 mask = hci_proto_connect_ind(hdev, &acl->dst, ISO_LINK, &flags); 6889 if (!(mask & HCI_LM_ACCEPT)) { 6890 hci_le_reject_cis(hdev, ev->cis_handle); 6891 goto unlock; 6892 } 6893 6894 cis = hci_conn_hash_lookup_handle(hdev, cis_handle); 6895 if (!cis) { 6896 cis = hci_conn_add(hdev, ISO_LINK, &acl->dst, HCI_ROLE_SLAVE, 6897 cis_handle); 6898 if (!cis) { 6899 hci_le_reject_cis(hdev, ev->cis_handle); 6900 goto unlock; 6901 } 6902 } 6903 6904 cis->iso_qos.ucast.cig = ev->cig_id; 6905 cis->iso_qos.ucast.cis = ev->cis_id; 6906 6907 if (!(flags & HCI_PROTO_DEFER)) { 6908 hci_le_accept_cis(hdev, ev->cis_handle); 6909 } else { 6910 cis->state = BT_CONNECT2; 6911 hci_connect_cfm(cis, 0); 6912 } 6913 6914 unlock: 6915 hci_dev_unlock(hdev); 6916 } 6917 6918 static int hci_iso_term_big_sync(struct hci_dev *hdev, void *data) 6919 { 6920 u8 handle = PTR_UINT(data); 6921 6922 return hci_le_terminate_big_sync(hdev, handle, 6923 HCI_ERROR_LOCAL_HOST_TERM); 6924 } 6925 6926 static void hci_le_create_big_complete_evt(struct hci_dev *hdev, void *data, 6927 struct sk_buff *skb) 6928 { 6929 struct hci_evt_le_create_big_complete *ev = data; 6930 struct hci_conn *conn; 6931 __u8 i = 0; 6932 6933 BT_DBG("%s status 0x%2.2x", hdev->name, ev->status); 6934 6935 if (!hci_le_ev_skb_pull(hdev, skb, HCI_EVT_LE_CREATE_BIG_COMPLETE, 6936 flex_array_size(ev, bis_handle, ev->num_bis))) 6937 return; 6938 6939 hci_dev_lock(hdev); 6940 rcu_read_lock(); 6941 6942 /* Connect all BISes that are bound to the BIG */ 6943 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) { 6944 if (bacmp(&conn->dst, BDADDR_ANY) || 6945 conn->type != ISO_LINK || 6946 conn->iso_qos.bcast.big != ev->handle) 6947 continue; 6948 6949 if (hci_conn_set_handle(conn, 6950 __le16_to_cpu(ev->bis_handle[i++]))) 6951 continue; 6952 6953 if (!ev->status) { 6954 conn->state = BT_CONNECTED; 6955 set_bit(HCI_CONN_BIG_CREATED, &conn->flags); 6956 rcu_read_unlock(); 6957 hci_debugfs_create_conn(conn); 6958 hci_conn_add_sysfs(conn); 6959 hci_iso_setup_path(conn); 6960 rcu_read_lock(); 6961 continue; 6962 } 6963 6964 hci_connect_cfm(conn, ev->status); 6965 rcu_read_unlock(); 6966 hci_conn_del(conn); 6967 rcu_read_lock(); 6968 } 6969 6970 rcu_read_unlock(); 6971 6972 if (!ev->status && !i) 6973 /* If no BISes have been connected for the BIG, 6974 * terminate. This is in case all bound connections 6975 * have been closed before the BIG creation 6976 * has completed. 6977 */ 6978 hci_cmd_sync_queue(hdev, hci_iso_term_big_sync, 6979 UINT_PTR(ev->handle), NULL); 6980 6981 hci_dev_unlock(hdev); 6982 } 6983 6984 static void hci_le_big_sync_established_evt(struct hci_dev *hdev, void *data, 6985 struct sk_buff *skb) 6986 { 6987 struct hci_evt_le_big_sync_estabilished *ev = data; 6988 struct hci_conn *bis; 6989 int i; 6990 6991 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 6992 6993 if (!hci_le_ev_skb_pull(hdev, skb, HCI_EVT_LE_BIG_SYNC_ESTABILISHED, 6994 flex_array_size(ev, bis, ev->num_bis))) 6995 return; 6996 6997 hci_dev_lock(hdev); 6998 6999 for (i = 0; i < ev->num_bis; i++) { 7000 u16 handle = le16_to_cpu(ev->bis[i]); 7001 __le32 interval; 7002 7003 bis = hci_conn_hash_lookup_handle(hdev, handle); 7004 if (!bis) { 7005 bis = hci_conn_add(hdev, ISO_LINK, BDADDR_ANY, 7006 HCI_ROLE_SLAVE, handle); 7007 if (!bis) 7008 continue; 7009 } 7010 7011 if (ev->status != 0x42) 7012 /* Mark PA sync as established */ 7013 set_bit(HCI_CONN_PA_SYNC, &bis->flags); 7014 7015 bis->iso_qos.bcast.big = ev->handle; 7016 memset(&interval, 0, sizeof(interval)); 7017 memcpy(&interval, ev->latency, sizeof(ev->latency)); 7018 bis->iso_qos.bcast.in.interval = le32_to_cpu(interval); 7019 /* Convert ISO Interval (1.25 ms slots) to latency (ms) */ 7020 bis->iso_qos.bcast.in.latency = le16_to_cpu(ev->interval) * 125 / 100; 7021 bis->iso_qos.bcast.in.sdu = le16_to_cpu(ev->max_pdu); 7022 7023 if (!ev->status) { 7024 set_bit(HCI_CONN_BIG_SYNC, &bis->flags); 7025 hci_iso_setup_path(bis); 7026 } 7027 } 7028 7029 /* In case BIG sync failed, notify each failed connection to 7030 * the user after all hci connections have been added 7031 */ 7032 if (ev->status) 7033 for (i = 0; i < ev->num_bis; i++) { 7034 u16 handle = le16_to_cpu(ev->bis[i]); 7035 7036 bis = hci_conn_hash_lookup_handle(hdev, handle); 7037 7038 set_bit(HCI_CONN_BIG_SYNC_FAILED, &bis->flags); 7039 hci_connect_cfm(bis, ev->status); 7040 } 7041 7042 hci_dev_unlock(hdev); 7043 } 7044 7045 static void hci_le_big_info_adv_report_evt(struct hci_dev *hdev, void *data, 7046 struct sk_buff *skb) 7047 { 7048 struct hci_evt_le_big_info_adv_report *ev = data; 7049 int mask = hdev->link_mode; 7050 __u8 flags = 0; 7051 struct hci_conn *pa_sync; 7052 7053 bt_dev_dbg(hdev, "sync_handle 0x%4.4x", le16_to_cpu(ev->sync_handle)); 7054 7055 hci_dev_lock(hdev); 7056 7057 mask |= hci_proto_connect_ind(hdev, BDADDR_ANY, ISO_LINK, &flags); 7058 if (!(mask & HCI_LM_ACCEPT)) { 7059 hci_le_pa_term_sync(hdev, ev->sync_handle); 7060 goto unlock; 7061 } 7062 7063 if (!(flags & HCI_PROTO_DEFER)) 7064 goto unlock; 7065 7066 pa_sync = hci_conn_hash_lookup_pa_sync_handle 7067 (hdev, 7068 le16_to_cpu(ev->sync_handle)); 7069 7070 if (pa_sync) 7071 goto unlock; 7072 7073 /* Add connection to indicate the PA sync event */ 7074 pa_sync = hci_conn_add_unset(hdev, ISO_LINK, BDADDR_ANY, 7075 HCI_ROLE_SLAVE); 7076 7077 if (!pa_sync) 7078 goto unlock; 7079 7080 pa_sync->sync_handle = le16_to_cpu(ev->sync_handle); 7081 set_bit(HCI_CONN_PA_SYNC, &pa_sync->flags); 7082 7083 /* Notify iso layer */ 7084 hci_connect_cfm(pa_sync, 0x00); 7085 7086 /* Notify MGMT layer */ 7087 mgmt_device_connected(hdev, pa_sync, NULL, 0); 7088 7089 unlock: 7090 hci_dev_unlock(hdev); 7091 } 7092 7093 #define HCI_LE_EV_VL(_op, _func, _min_len, _max_len) \ 7094 [_op] = { \ 7095 .func = _func, \ 7096 .min_len = _min_len, \ 7097 .max_len = _max_len, \ 7098 } 7099 7100 #define HCI_LE_EV(_op, _func, _len) \ 7101 HCI_LE_EV_VL(_op, _func, _len, _len) 7102 7103 #define HCI_LE_EV_STATUS(_op, _func) \ 7104 HCI_LE_EV(_op, _func, sizeof(struct hci_ev_status)) 7105 7106 /* Entries in this table shall have their position according to the subevent 7107 * opcode they handle so the use of the macros above is recommend since it does 7108 * attempt to initialize at its proper index using Designated Initializers that 7109 * way events without a callback function can be ommited. 7110 */ 7111 static const struct hci_le_ev { 7112 void (*func)(struct hci_dev *hdev, void *data, struct sk_buff *skb); 7113 u16 min_len; 7114 u16 max_len; 7115 } hci_le_ev_table[U8_MAX + 1] = { 7116 /* [0x01 = HCI_EV_LE_CONN_COMPLETE] */ 7117 HCI_LE_EV(HCI_EV_LE_CONN_COMPLETE, hci_le_conn_complete_evt, 7118 sizeof(struct hci_ev_le_conn_complete)), 7119 /* [0x02 = HCI_EV_LE_ADVERTISING_REPORT] */ 7120 HCI_LE_EV_VL(HCI_EV_LE_ADVERTISING_REPORT, hci_le_adv_report_evt, 7121 sizeof(struct hci_ev_le_advertising_report), 7122 HCI_MAX_EVENT_SIZE), 7123 /* [0x03 = HCI_EV_LE_CONN_UPDATE_COMPLETE] */ 7124 HCI_LE_EV(HCI_EV_LE_CONN_UPDATE_COMPLETE, 7125 hci_le_conn_update_complete_evt, 7126 sizeof(struct hci_ev_le_conn_update_complete)), 7127 /* [0x04 = HCI_EV_LE_REMOTE_FEAT_COMPLETE] */ 7128 HCI_LE_EV(HCI_EV_LE_REMOTE_FEAT_COMPLETE, 7129 hci_le_remote_feat_complete_evt, 7130 sizeof(struct hci_ev_le_remote_feat_complete)), 7131 /* [0x05 = HCI_EV_LE_LTK_REQ] */ 7132 HCI_LE_EV(HCI_EV_LE_LTK_REQ, hci_le_ltk_request_evt, 7133 sizeof(struct hci_ev_le_ltk_req)), 7134 /* [0x06 = HCI_EV_LE_REMOTE_CONN_PARAM_REQ] */ 7135 HCI_LE_EV(HCI_EV_LE_REMOTE_CONN_PARAM_REQ, 7136 hci_le_remote_conn_param_req_evt, 7137 sizeof(struct hci_ev_le_remote_conn_param_req)), 7138 /* [0x0a = HCI_EV_LE_ENHANCED_CONN_COMPLETE] */ 7139 HCI_LE_EV(HCI_EV_LE_ENHANCED_CONN_COMPLETE, 7140 hci_le_enh_conn_complete_evt, 7141 sizeof(struct hci_ev_le_enh_conn_complete)), 7142 /* [0x0b = HCI_EV_LE_DIRECT_ADV_REPORT] */ 7143 HCI_LE_EV_VL(HCI_EV_LE_DIRECT_ADV_REPORT, hci_le_direct_adv_report_evt, 7144 sizeof(struct hci_ev_le_direct_adv_report), 7145 HCI_MAX_EVENT_SIZE), 7146 /* [0x0c = HCI_EV_LE_PHY_UPDATE_COMPLETE] */ 7147 HCI_LE_EV(HCI_EV_LE_PHY_UPDATE_COMPLETE, hci_le_phy_update_evt, 7148 sizeof(struct hci_ev_le_phy_update_complete)), 7149 /* [0x0d = HCI_EV_LE_EXT_ADV_REPORT] */ 7150 HCI_LE_EV_VL(HCI_EV_LE_EXT_ADV_REPORT, hci_le_ext_adv_report_evt, 7151 sizeof(struct hci_ev_le_ext_adv_report), 7152 HCI_MAX_EVENT_SIZE), 7153 /* [0x0e = HCI_EV_LE_PA_SYNC_ESTABLISHED] */ 7154 HCI_LE_EV(HCI_EV_LE_PA_SYNC_ESTABLISHED, 7155 hci_le_pa_sync_estabilished_evt, 7156 sizeof(struct hci_ev_le_pa_sync_established)), 7157 /* [0x0f = HCI_EV_LE_PER_ADV_REPORT] */ 7158 HCI_LE_EV_VL(HCI_EV_LE_PER_ADV_REPORT, 7159 hci_le_per_adv_report_evt, 7160 sizeof(struct hci_ev_le_per_adv_report), 7161 HCI_MAX_EVENT_SIZE), 7162 /* [0x12 = HCI_EV_LE_EXT_ADV_SET_TERM] */ 7163 HCI_LE_EV(HCI_EV_LE_EXT_ADV_SET_TERM, hci_le_ext_adv_term_evt, 7164 sizeof(struct hci_evt_le_ext_adv_set_term)), 7165 /* [0x19 = HCI_EVT_LE_CIS_ESTABLISHED] */ 7166 HCI_LE_EV(HCI_EVT_LE_CIS_ESTABLISHED, hci_le_cis_estabilished_evt, 7167 sizeof(struct hci_evt_le_cis_established)), 7168 /* [0x1a = HCI_EVT_LE_CIS_REQ] */ 7169 HCI_LE_EV(HCI_EVT_LE_CIS_REQ, hci_le_cis_req_evt, 7170 sizeof(struct hci_evt_le_cis_req)), 7171 /* [0x1b = HCI_EVT_LE_CREATE_BIG_COMPLETE] */ 7172 HCI_LE_EV_VL(HCI_EVT_LE_CREATE_BIG_COMPLETE, 7173 hci_le_create_big_complete_evt, 7174 sizeof(struct hci_evt_le_create_big_complete), 7175 HCI_MAX_EVENT_SIZE), 7176 /* [0x1d = HCI_EV_LE_BIG_SYNC_ESTABILISHED] */ 7177 HCI_LE_EV_VL(HCI_EVT_LE_BIG_SYNC_ESTABILISHED, 7178 hci_le_big_sync_established_evt, 7179 sizeof(struct hci_evt_le_big_sync_estabilished), 7180 HCI_MAX_EVENT_SIZE), 7181 /* [0x22 = HCI_EVT_LE_BIG_INFO_ADV_REPORT] */ 7182 HCI_LE_EV_VL(HCI_EVT_LE_BIG_INFO_ADV_REPORT, 7183 hci_le_big_info_adv_report_evt, 7184 sizeof(struct hci_evt_le_big_info_adv_report), 7185 HCI_MAX_EVENT_SIZE), 7186 }; 7187 7188 static void hci_le_meta_evt(struct hci_dev *hdev, void *data, 7189 struct sk_buff *skb, u16 *opcode, u8 *status, 7190 hci_req_complete_t *req_complete, 7191 hci_req_complete_skb_t *req_complete_skb) 7192 { 7193 struct hci_ev_le_meta *ev = data; 7194 const struct hci_le_ev *subev; 7195 7196 bt_dev_dbg(hdev, "subevent 0x%2.2x", ev->subevent); 7197 7198 /* Only match event if command OGF is for LE */ 7199 if (hdev->req_skb && 7200 hci_opcode_ogf(hci_skb_opcode(hdev->req_skb)) == 0x08 && 7201 hci_skb_event(hdev->req_skb) == ev->subevent) { 7202 *opcode = hci_skb_opcode(hdev->req_skb); 7203 hci_req_cmd_complete(hdev, *opcode, 0x00, req_complete, 7204 req_complete_skb); 7205 } 7206 7207 subev = &hci_le_ev_table[ev->subevent]; 7208 if (!subev->func) 7209 return; 7210 7211 if (skb->len < subev->min_len) { 7212 bt_dev_err(hdev, "unexpected subevent 0x%2.2x length: %u < %u", 7213 ev->subevent, skb->len, subev->min_len); 7214 return; 7215 } 7216 7217 /* Just warn if the length is over max_len size it still be 7218 * possible to partially parse the event so leave to callback to 7219 * decide if that is acceptable. 7220 */ 7221 if (skb->len > subev->max_len) 7222 bt_dev_warn(hdev, "unexpected subevent 0x%2.2x length: %u > %u", 7223 ev->subevent, skb->len, subev->max_len); 7224 data = hci_le_ev_skb_pull(hdev, skb, ev->subevent, subev->min_len); 7225 if (!data) 7226 return; 7227 7228 subev->func(hdev, data, skb); 7229 } 7230 7231 static bool hci_get_cmd_complete(struct hci_dev *hdev, u16 opcode, 7232 u8 event, struct sk_buff *skb) 7233 { 7234 struct hci_ev_cmd_complete *ev; 7235 struct hci_event_hdr *hdr; 7236 7237 if (!skb) 7238 return false; 7239 7240 hdr = hci_ev_skb_pull(hdev, skb, event, sizeof(*hdr)); 7241 if (!hdr) 7242 return false; 7243 7244 if (event) { 7245 if (hdr->evt != event) 7246 return false; 7247 return true; 7248 } 7249 7250 /* Check if request ended in Command Status - no way to retrieve 7251 * any extra parameters in this case. 7252 */ 7253 if (hdr->evt == HCI_EV_CMD_STATUS) 7254 return false; 7255 7256 if (hdr->evt != HCI_EV_CMD_COMPLETE) { 7257 bt_dev_err(hdev, "last event is not cmd complete (0x%2.2x)", 7258 hdr->evt); 7259 return false; 7260 } 7261 7262 ev = hci_cc_skb_pull(hdev, skb, opcode, sizeof(*ev)); 7263 if (!ev) 7264 return false; 7265 7266 if (opcode != __le16_to_cpu(ev->opcode)) { 7267 BT_DBG("opcode doesn't match (0x%2.2x != 0x%2.2x)", opcode, 7268 __le16_to_cpu(ev->opcode)); 7269 return false; 7270 } 7271 7272 return true; 7273 } 7274 7275 static void hci_store_wake_reason(struct hci_dev *hdev, u8 event, 7276 struct sk_buff *skb) 7277 { 7278 struct hci_ev_le_advertising_info *adv; 7279 struct hci_ev_le_direct_adv_info *direct_adv; 7280 struct hci_ev_le_ext_adv_info *ext_adv; 7281 const struct hci_ev_conn_complete *conn_complete = (void *)skb->data; 7282 const struct hci_ev_conn_request *conn_request = (void *)skb->data; 7283 7284 hci_dev_lock(hdev); 7285 7286 /* If we are currently suspended and this is the first BT event seen, 7287 * save the wake reason associated with the event. 7288 */ 7289 if (!hdev->suspended || hdev->wake_reason) 7290 goto unlock; 7291 7292 /* Default to remote wake. Values for wake_reason are documented in the 7293 * Bluez mgmt api docs. 7294 */ 7295 hdev->wake_reason = MGMT_WAKE_REASON_REMOTE_WAKE; 7296 7297 /* Once configured for remote wakeup, we should only wake up for 7298 * reconnections. It's useful to see which device is waking us up so 7299 * keep track of the bdaddr of the connection event that woke us up. 7300 */ 7301 if (event == HCI_EV_CONN_REQUEST) { 7302 bacpy(&hdev->wake_addr, &conn_request->bdaddr); 7303 hdev->wake_addr_type = BDADDR_BREDR; 7304 } else if (event == HCI_EV_CONN_COMPLETE) { 7305 bacpy(&hdev->wake_addr, &conn_complete->bdaddr); 7306 hdev->wake_addr_type = BDADDR_BREDR; 7307 } else if (event == HCI_EV_LE_META) { 7308 struct hci_ev_le_meta *le_ev = (void *)skb->data; 7309 u8 subevent = le_ev->subevent; 7310 u8 *ptr = &skb->data[sizeof(*le_ev)]; 7311 u8 num_reports = *ptr; 7312 7313 if ((subevent == HCI_EV_LE_ADVERTISING_REPORT || 7314 subevent == HCI_EV_LE_DIRECT_ADV_REPORT || 7315 subevent == HCI_EV_LE_EXT_ADV_REPORT) && 7316 num_reports) { 7317 adv = (void *)(ptr + 1); 7318 direct_adv = (void *)(ptr + 1); 7319 ext_adv = (void *)(ptr + 1); 7320 7321 switch (subevent) { 7322 case HCI_EV_LE_ADVERTISING_REPORT: 7323 bacpy(&hdev->wake_addr, &adv->bdaddr); 7324 hdev->wake_addr_type = adv->bdaddr_type; 7325 break; 7326 case HCI_EV_LE_DIRECT_ADV_REPORT: 7327 bacpy(&hdev->wake_addr, &direct_adv->bdaddr); 7328 hdev->wake_addr_type = direct_adv->bdaddr_type; 7329 break; 7330 case HCI_EV_LE_EXT_ADV_REPORT: 7331 bacpy(&hdev->wake_addr, &ext_adv->bdaddr); 7332 hdev->wake_addr_type = ext_adv->bdaddr_type; 7333 break; 7334 } 7335 } 7336 } else { 7337 hdev->wake_reason = MGMT_WAKE_REASON_UNEXPECTED; 7338 } 7339 7340 unlock: 7341 hci_dev_unlock(hdev); 7342 } 7343 7344 #define HCI_EV_VL(_op, _func, _min_len, _max_len) \ 7345 [_op] = { \ 7346 .req = false, \ 7347 .func = _func, \ 7348 .min_len = _min_len, \ 7349 .max_len = _max_len, \ 7350 } 7351 7352 #define HCI_EV(_op, _func, _len) \ 7353 HCI_EV_VL(_op, _func, _len, _len) 7354 7355 #define HCI_EV_STATUS(_op, _func) \ 7356 HCI_EV(_op, _func, sizeof(struct hci_ev_status)) 7357 7358 #define HCI_EV_REQ_VL(_op, _func, _min_len, _max_len) \ 7359 [_op] = { \ 7360 .req = true, \ 7361 .func_req = _func, \ 7362 .min_len = _min_len, \ 7363 .max_len = _max_len, \ 7364 } 7365 7366 #define HCI_EV_REQ(_op, _func, _len) \ 7367 HCI_EV_REQ_VL(_op, _func, _len, _len) 7368 7369 /* Entries in this table shall have their position according to the event opcode 7370 * they handle so the use of the macros above is recommend since it does attempt 7371 * to initialize at its proper index using Designated Initializers that way 7372 * events without a callback function don't have entered. 7373 */ 7374 static const struct hci_ev { 7375 bool req; 7376 union { 7377 void (*func)(struct hci_dev *hdev, void *data, 7378 struct sk_buff *skb); 7379 void (*func_req)(struct hci_dev *hdev, void *data, 7380 struct sk_buff *skb, u16 *opcode, u8 *status, 7381 hci_req_complete_t *req_complete, 7382 hci_req_complete_skb_t *req_complete_skb); 7383 }; 7384 u16 min_len; 7385 u16 max_len; 7386 } hci_ev_table[U8_MAX + 1] = { 7387 /* [0x01 = HCI_EV_INQUIRY_COMPLETE] */ 7388 HCI_EV_STATUS(HCI_EV_INQUIRY_COMPLETE, hci_inquiry_complete_evt), 7389 /* [0x02 = HCI_EV_INQUIRY_RESULT] */ 7390 HCI_EV_VL(HCI_EV_INQUIRY_RESULT, hci_inquiry_result_evt, 7391 sizeof(struct hci_ev_inquiry_result), HCI_MAX_EVENT_SIZE), 7392 /* [0x03 = HCI_EV_CONN_COMPLETE] */ 7393 HCI_EV(HCI_EV_CONN_COMPLETE, hci_conn_complete_evt, 7394 sizeof(struct hci_ev_conn_complete)), 7395 /* [0x04 = HCI_EV_CONN_REQUEST] */ 7396 HCI_EV(HCI_EV_CONN_REQUEST, hci_conn_request_evt, 7397 sizeof(struct hci_ev_conn_request)), 7398 /* [0x05 = HCI_EV_DISCONN_COMPLETE] */ 7399 HCI_EV(HCI_EV_DISCONN_COMPLETE, hci_disconn_complete_evt, 7400 sizeof(struct hci_ev_disconn_complete)), 7401 /* [0x06 = HCI_EV_AUTH_COMPLETE] */ 7402 HCI_EV(HCI_EV_AUTH_COMPLETE, hci_auth_complete_evt, 7403 sizeof(struct hci_ev_auth_complete)), 7404 /* [0x07 = HCI_EV_REMOTE_NAME] */ 7405 HCI_EV(HCI_EV_REMOTE_NAME, hci_remote_name_evt, 7406 sizeof(struct hci_ev_remote_name)), 7407 /* [0x08 = HCI_EV_ENCRYPT_CHANGE] */ 7408 HCI_EV(HCI_EV_ENCRYPT_CHANGE, hci_encrypt_change_evt, 7409 sizeof(struct hci_ev_encrypt_change)), 7410 /* [0x09 = HCI_EV_CHANGE_LINK_KEY_COMPLETE] */ 7411 HCI_EV(HCI_EV_CHANGE_LINK_KEY_COMPLETE, 7412 hci_change_link_key_complete_evt, 7413 sizeof(struct hci_ev_change_link_key_complete)), 7414 /* [0x0b = HCI_EV_REMOTE_FEATURES] */ 7415 HCI_EV(HCI_EV_REMOTE_FEATURES, hci_remote_features_evt, 7416 sizeof(struct hci_ev_remote_features)), 7417 /* [0x0e = HCI_EV_CMD_COMPLETE] */ 7418 HCI_EV_REQ_VL(HCI_EV_CMD_COMPLETE, hci_cmd_complete_evt, 7419 sizeof(struct hci_ev_cmd_complete), HCI_MAX_EVENT_SIZE), 7420 /* [0x0f = HCI_EV_CMD_STATUS] */ 7421 HCI_EV_REQ(HCI_EV_CMD_STATUS, hci_cmd_status_evt, 7422 sizeof(struct hci_ev_cmd_status)), 7423 /* [0x10 = HCI_EV_CMD_STATUS] */ 7424 HCI_EV(HCI_EV_HARDWARE_ERROR, hci_hardware_error_evt, 7425 sizeof(struct hci_ev_hardware_error)), 7426 /* [0x12 = HCI_EV_ROLE_CHANGE] */ 7427 HCI_EV(HCI_EV_ROLE_CHANGE, hci_role_change_evt, 7428 sizeof(struct hci_ev_role_change)), 7429 /* [0x13 = HCI_EV_NUM_COMP_PKTS] */ 7430 HCI_EV_VL(HCI_EV_NUM_COMP_PKTS, hci_num_comp_pkts_evt, 7431 sizeof(struct hci_ev_num_comp_pkts), HCI_MAX_EVENT_SIZE), 7432 /* [0x14 = HCI_EV_MODE_CHANGE] */ 7433 HCI_EV(HCI_EV_MODE_CHANGE, hci_mode_change_evt, 7434 sizeof(struct hci_ev_mode_change)), 7435 /* [0x16 = HCI_EV_PIN_CODE_REQ] */ 7436 HCI_EV(HCI_EV_PIN_CODE_REQ, hci_pin_code_request_evt, 7437 sizeof(struct hci_ev_pin_code_req)), 7438 /* [0x17 = HCI_EV_LINK_KEY_REQ] */ 7439 HCI_EV(HCI_EV_LINK_KEY_REQ, hci_link_key_request_evt, 7440 sizeof(struct hci_ev_link_key_req)), 7441 /* [0x18 = HCI_EV_LINK_KEY_NOTIFY] */ 7442 HCI_EV(HCI_EV_LINK_KEY_NOTIFY, hci_link_key_notify_evt, 7443 sizeof(struct hci_ev_link_key_notify)), 7444 /* [0x1c = HCI_EV_CLOCK_OFFSET] */ 7445 HCI_EV(HCI_EV_CLOCK_OFFSET, hci_clock_offset_evt, 7446 sizeof(struct hci_ev_clock_offset)), 7447 /* [0x1d = HCI_EV_PKT_TYPE_CHANGE] */ 7448 HCI_EV(HCI_EV_PKT_TYPE_CHANGE, hci_pkt_type_change_evt, 7449 sizeof(struct hci_ev_pkt_type_change)), 7450 /* [0x20 = HCI_EV_PSCAN_REP_MODE] */ 7451 HCI_EV(HCI_EV_PSCAN_REP_MODE, hci_pscan_rep_mode_evt, 7452 sizeof(struct hci_ev_pscan_rep_mode)), 7453 /* [0x22 = HCI_EV_INQUIRY_RESULT_WITH_RSSI] */ 7454 HCI_EV_VL(HCI_EV_INQUIRY_RESULT_WITH_RSSI, 7455 hci_inquiry_result_with_rssi_evt, 7456 sizeof(struct hci_ev_inquiry_result_rssi), 7457 HCI_MAX_EVENT_SIZE), 7458 /* [0x23 = HCI_EV_REMOTE_EXT_FEATURES] */ 7459 HCI_EV(HCI_EV_REMOTE_EXT_FEATURES, hci_remote_ext_features_evt, 7460 sizeof(struct hci_ev_remote_ext_features)), 7461 /* [0x2c = HCI_EV_SYNC_CONN_COMPLETE] */ 7462 HCI_EV(HCI_EV_SYNC_CONN_COMPLETE, hci_sync_conn_complete_evt, 7463 sizeof(struct hci_ev_sync_conn_complete)), 7464 /* [0x2d = HCI_EV_EXTENDED_INQUIRY_RESULT] */ 7465 HCI_EV_VL(HCI_EV_EXTENDED_INQUIRY_RESULT, 7466 hci_extended_inquiry_result_evt, 7467 sizeof(struct hci_ev_ext_inquiry_result), HCI_MAX_EVENT_SIZE), 7468 /* [0x30 = HCI_EV_KEY_REFRESH_COMPLETE] */ 7469 HCI_EV(HCI_EV_KEY_REFRESH_COMPLETE, hci_key_refresh_complete_evt, 7470 sizeof(struct hci_ev_key_refresh_complete)), 7471 /* [0x31 = HCI_EV_IO_CAPA_REQUEST] */ 7472 HCI_EV(HCI_EV_IO_CAPA_REQUEST, hci_io_capa_request_evt, 7473 sizeof(struct hci_ev_io_capa_request)), 7474 /* [0x32 = HCI_EV_IO_CAPA_REPLY] */ 7475 HCI_EV(HCI_EV_IO_CAPA_REPLY, hci_io_capa_reply_evt, 7476 sizeof(struct hci_ev_io_capa_reply)), 7477 /* [0x33 = HCI_EV_USER_CONFIRM_REQUEST] */ 7478 HCI_EV(HCI_EV_USER_CONFIRM_REQUEST, hci_user_confirm_request_evt, 7479 sizeof(struct hci_ev_user_confirm_req)), 7480 /* [0x34 = HCI_EV_USER_PASSKEY_REQUEST] */ 7481 HCI_EV(HCI_EV_USER_PASSKEY_REQUEST, hci_user_passkey_request_evt, 7482 sizeof(struct hci_ev_user_passkey_req)), 7483 /* [0x35 = HCI_EV_REMOTE_OOB_DATA_REQUEST] */ 7484 HCI_EV(HCI_EV_REMOTE_OOB_DATA_REQUEST, hci_remote_oob_data_request_evt, 7485 sizeof(struct hci_ev_remote_oob_data_request)), 7486 /* [0x36 = HCI_EV_SIMPLE_PAIR_COMPLETE] */ 7487 HCI_EV(HCI_EV_SIMPLE_PAIR_COMPLETE, hci_simple_pair_complete_evt, 7488 sizeof(struct hci_ev_simple_pair_complete)), 7489 /* [0x3b = HCI_EV_USER_PASSKEY_NOTIFY] */ 7490 HCI_EV(HCI_EV_USER_PASSKEY_NOTIFY, hci_user_passkey_notify_evt, 7491 sizeof(struct hci_ev_user_passkey_notify)), 7492 /* [0x3c = HCI_EV_KEYPRESS_NOTIFY] */ 7493 HCI_EV(HCI_EV_KEYPRESS_NOTIFY, hci_keypress_notify_evt, 7494 sizeof(struct hci_ev_keypress_notify)), 7495 /* [0x3d = HCI_EV_REMOTE_HOST_FEATURES] */ 7496 HCI_EV(HCI_EV_REMOTE_HOST_FEATURES, hci_remote_host_features_evt, 7497 sizeof(struct hci_ev_remote_host_features)), 7498 /* [0x3e = HCI_EV_LE_META] */ 7499 HCI_EV_REQ_VL(HCI_EV_LE_META, hci_le_meta_evt, 7500 sizeof(struct hci_ev_le_meta), HCI_MAX_EVENT_SIZE), 7501 /* [0x48 = HCI_EV_NUM_COMP_BLOCKS] */ 7502 HCI_EV(HCI_EV_NUM_COMP_BLOCKS, hci_num_comp_blocks_evt, 7503 sizeof(struct hci_ev_num_comp_blocks)), 7504 /* [0xff = HCI_EV_VENDOR] */ 7505 HCI_EV_VL(HCI_EV_VENDOR, msft_vendor_evt, 0, HCI_MAX_EVENT_SIZE), 7506 }; 7507 7508 static void hci_event_func(struct hci_dev *hdev, u8 event, struct sk_buff *skb, 7509 u16 *opcode, u8 *status, 7510 hci_req_complete_t *req_complete, 7511 hci_req_complete_skb_t *req_complete_skb) 7512 { 7513 const struct hci_ev *ev = &hci_ev_table[event]; 7514 void *data; 7515 7516 if (!ev->func) 7517 return; 7518 7519 if (skb->len < ev->min_len) { 7520 bt_dev_err(hdev, "unexpected event 0x%2.2x length: %u < %u", 7521 event, skb->len, ev->min_len); 7522 return; 7523 } 7524 7525 /* Just warn if the length is over max_len size it still be 7526 * possible to partially parse the event so leave to callback to 7527 * decide if that is acceptable. 7528 */ 7529 if (skb->len > ev->max_len) 7530 bt_dev_warn_ratelimited(hdev, 7531 "unexpected event 0x%2.2x length: %u > %u", 7532 event, skb->len, ev->max_len); 7533 7534 data = hci_ev_skb_pull(hdev, skb, event, ev->min_len); 7535 if (!data) 7536 return; 7537 7538 if (ev->req) 7539 ev->func_req(hdev, data, skb, opcode, status, req_complete, 7540 req_complete_skb); 7541 else 7542 ev->func(hdev, data, skb); 7543 } 7544 7545 void hci_event_packet(struct hci_dev *hdev, struct sk_buff *skb) 7546 { 7547 struct hci_event_hdr *hdr = (void *) skb->data; 7548 hci_req_complete_t req_complete = NULL; 7549 hci_req_complete_skb_t req_complete_skb = NULL; 7550 struct sk_buff *orig_skb = NULL; 7551 u8 status = 0, event, req_evt = 0; 7552 u16 opcode = HCI_OP_NOP; 7553 7554 if (skb->len < sizeof(*hdr)) { 7555 bt_dev_err(hdev, "Malformed HCI Event"); 7556 goto done; 7557 } 7558 7559 kfree_skb(hdev->recv_event); 7560 hdev->recv_event = skb_clone(skb, GFP_KERNEL); 7561 7562 event = hdr->evt; 7563 if (!event) { 7564 bt_dev_warn(hdev, "Received unexpected HCI Event 0x%2.2x", 7565 event); 7566 goto done; 7567 } 7568 7569 /* Only match event if command OGF is not for LE */ 7570 if (hdev->req_skb && 7571 hci_opcode_ogf(hci_skb_opcode(hdev->req_skb)) != 0x08 && 7572 hci_skb_event(hdev->req_skb) == event) { 7573 hci_req_cmd_complete(hdev, hci_skb_opcode(hdev->req_skb), 7574 status, &req_complete, &req_complete_skb); 7575 req_evt = event; 7576 } 7577 7578 /* If it looks like we might end up having to call 7579 * req_complete_skb, store a pristine copy of the skb since the 7580 * various handlers may modify the original one through 7581 * skb_pull() calls, etc. 7582 */ 7583 if (req_complete_skb || event == HCI_EV_CMD_STATUS || 7584 event == HCI_EV_CMD_COMPLETE) 7585 orig_skb = skb_clone(skb, GFP_KERNEL); 7586 7587 skb_pull(skb, HCI_EVENT_HDR_SIZE); 7588 7589 /* Store wake reason if we're suspended */ 7590 hci_store_wake_reason(hdev, event, skb); 7591 7592 bt_dev_dbg(hdev, "event 0x%2.2x", event); 7593 7594 hci_event_func(hdev, event, skb, &opcode, &status, &req_complete, 7595 &req_complete_skb); 7596 7597 if (req_complete) { 7598 req_complete(hdev, status, opcode); 7599 } else if (req_complete_skb) { 7600 if (!hci_get_cmd_complete(hdev, opcode, req_evt, orig_skb)) { 7601 kfree_skb(orig_skb); 7602 orig_skb = NULL; 7603 } 7604 req_complete_skb(hdev, status, opcode, orig_skb); 7605 } 7606 7607 done: 7608 kfree_skb(orig_skb); 7609 kfree_skb(skb); 7610 hdev->stat.evt_rx++; 7611 } 7612