xref: /linux/net/bluetooth/hci_core.c (revision e814f3fd16acfb7f9966773953de8f740a1e3202)
1 /*
2    BlueZ - Bluetooth protocol stack for Linux
3    Copyright (C) 2000-2001 Qualcomm Incorporated
4    Copyright (C) 2011 ProFUSION Embedded Systems
5 
6    Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License version 2 as
10    published by the Free Software Foundation;
11 
12    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 
21    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23    SOFTWARE IS DISCLAIMED.
24 */
25 
26 /* Bluetooth HCI core. */
27 
28 #include <linux/export.h>
29 #include <linux/rfkill.h>
30 #include <linux/debugfs.h>
31 #include <linux/crypto.h>
32 #include <linux/kcov.h>
33 #include <linux/property.h>
34 #include <linux/suspend.h>
35 #include <linux/wait.h>
36 #include <linux/unaligned.h>
37 
38 #include <net/bluetooth/bluetooth.h>
39 #include <net/bluetooth/hci_core.h>
40 #include <net/bluetooth/l2cap.h>
41 #include <net/bluetooth/mgmt.h>
42 
43 #include "hci_debugfs.h"
44 #include "smp.h"
45 #include "leds.h"
46 #include "msft.h"
47 #include "aosp.h"
48 #include "hci_codec.h"
49 
50 static void hci_rx_work(struct work_struct *work);
51 static void hci_cmd_work(struct work_struct *work);
52 static void hci_tx_work(struct work_struct *work);
53 
54 /* HCI device list */
55 LIST_HEAD(hci_dev_list);
56 DEFINE_RWLOCK(hci_dev_list_lock);
57 
58 /* HCI callback list */
59 LIST_HEAD(hci_cb_list);
60 
61 /* HCI ID Numbering */
62 static DEFINE_IDA(hci_index_ida);
63 
64 /* Get HCI device by index.
65  * Device is held on return. */
66 struct hci_dev *hci_dev_get(int index)
67 {
68 	struct hci_dev *hdev = NULL, *d;
69 
70 	BT_DBG("%d", index);
71 
72 	if (index < 0)
73 		return NULL;
74 
75 	read_lock(&hci_dev_list_lock);
76 	list_for_each_entry(d, &hci_dev_list, list) {
77 		if (d->id == index) {
78 			hdev = hci_dev_hold(d);
79 			break;
80 		}
81 	}
82 	read_unlock(&hci_dev_list_lock);
83 	return hdev;
84 }
85 
86 /* ---- Inquiry support ---- */
87 
88 bool hci_discovery_active(struct hci_dev *hdev)
89 {
90 	struct discovery_state *discov = &hdev->discovery;
91 
92 	switch (discov->state) {
93 	case DISCOVERY_FINDING:
94 	case DISCOVERY_RESOLVING:
95 		return true;
96 
97 	default:
98 		return false;
99 	}
100 }
101 
102 void hci_discovery_set_state(struct hci_dev *hdev, int state)
103 {
104 	int old_state = hdev->discovery.state;
105 
106 	if (old_state == state)
107 		return;
108 
109 	hdev->discovery.state = state;
110 
111 	switch (state) {
112 	case DISCOVERY_STOPPED:
113 		hci_update_passive_scan(hdev);
114 
115 		if (old_state != DISCOVERY_STARTING)
116 			mgmt_discovering(hdev, 0);
117 		break;
118 	case DISCOVERY_STARTING:
119 		break;
120 	case DISCOVERY_FINDING:
121 		mgmt_discovering(hdev, 1);
122 		break;
123 	case DISCOVERY_RESOLVING:
124 		break;
125 	case DISCOVERY_STOPPING:
126 		break;
127 	}
128 
129 	bt_dev_dbg(hdev, "state %u -> %u", old_state, state);
130 }
131 
132 void hci_inquiry_cache_flush(struct hci_dev *hdev)
133 {
134 	struct discovery_state *cache = &hdev->discovery;
135 	struct inquiry_entry *p, *n;
136 
137 	list_for_each_entry_safe(p, n, &cache->all, all) {
138 		list_del(&p->all);
139 		kfree(p);
140 	}
141 
142 	INIT_LIST_HEAD(&cache->unknown);
143 	INIT_LIST_HEAD(&cache->resolve);
144 }
145 
146 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
147 					       bdaddr_t *bdaddr)
148 {
149 	struct discovery_state *cache = &hdev->discovery;
150 	struct inquiry_entry *e;
151 
152 	BT_DBG("cache %p, %pMR", cache, bdaddr);
153 
154 	list_for_each_entry(e, &cache->all, all) {
155 		if (!bacmp(&e->data.bdaddr, bdaddr))
156 			return e;
157 	}
158 
159 	return NULL;
160 }
161 
162 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
163 						       bdaddr_t *bdaddr)
164 {
165 	struct discovery_state *cache = &hdev->discovery;
166 	struct inquiry_entry *e;
167 
168 	BT_DBG("cache %p, %pMR", cache, bdaddr);
169 
170 	list_for_each_entry(e, &cache->unknown, list) {
171 		if (!bacmp(&e->data.bdaddr, bdaddr))
172 			return e;
173 	}
174 
175 	return NULL;
176 }
177 
178 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
179 						       bdaddr_t *bdaddr,
180 						       int state)
181 {
182 	struct discovery_state *cache = &hdev->discovery;
183 	struct inquiry_entry *e;
184 
185 	BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
186 
187 	list_for_each_entry(e, &cache->resolve, list) {
188 		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
189 			return e;
190 		if (!bacmp(&e->data.bdaddr, bdaddr))
191 			return e;
192 	}
193 
194 	return NULL;
195 }
196 
197 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
198 				      struct inquiry_entry *ie)
199 {
200 	struct discovery_state *cache = &hdev->discovery;
201 	struct list_head *pos = &cache->resolve;
202 	struct inquiry_entry *p;
203 
204 	list_del(&ie->list);
205 
206 	list_for_each_entry(p, &cache->resolve, list) {
207 		if (p->name_state != NAME_PENDING &&
208 		    abs(p->data.rssi) >= abs(ie->data.rssi))
209 			break;
210 		pos = &p->list;
211 	}
212 
213 	list_add(&ie->list, pos);
214 }
215 
216 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
217 			     bool name_known)
218 {
219 	struct discovery_state *cache = &hdev->discovery;
220 	struct inquiry_entry *ie;
221 	u32 flags = 0;
222 
223 	BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
224 
225 	hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
226 
227 	if (!data->ssp_mode)
228 		flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
229 
230 	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
231 	if (ie) {
232 		if (!ie->data.ssp_mode)
233 			flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
234 
235 		if (ie->name_state == NAME_NEEDED &&
236 		    data->rssi != ie->data.rssi) {
237 			ie->data.rssi = data->rssi;
238 			hci_inquiry_cache_update_resolve(hdev, ie);
239 		}
240 
241 		goto update;
242 	}
243 
244 	/* Entry not in the cache. Add new one. */
245 	ie = kzalloc(sizeof(*ie), GFP_KERNEL);
246 	if (!ie) {
247 		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
248 		goto done;
249 	}
250 
251 	list_add(&ie->all, &cache->all);
252 
253 	if (name_known) {
254 		ie->name_state = NAME_KNOWN;
255 	} else {
256 		ie->name_state = NAME_NOT_KNOWN;
257 		list_add(&ie->list, &cache->unknown);
258 	}
259 
260 update:
261 	if (name_known && ie->name_state != NAME_KNOWN &&
262 	    ie->name_state != NAME_PENDING) {
263 		ie->name_state = NAME_KNOWN;
264 		list_del(&ie->list);
265 	}
266 
267 	memcpy(&ie->data, data, sizeof(*data));
268 	ie->timestamp = jiffies;
269 	cache->timestamp = jiffies;
270 
271 	if (ie->name_state == NAME_NOT_KNOWN)
272 		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
273 
274 done:
275 	return flags;
276 }
277 
278 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
279 {
280 	struct discovery_state *cache = &hdev->discovery;
281 	struct inquiry_info *info = (struct inquiry_info *) buf;
282 	struct inquiry_entry *e;
283 	int copied = 0;
284 
285 	list_for_each_entry(e, &cache->all, all) {
286 		struct inquiry_data *data = &e->data;
287 
288 		if (copied >= num)
289 			break;
290 
291 		bacpy(&info->bdaddr, &data->bdaddr);
292 		info->pscan_rep_mode	= data->pscan_rep_mode;
293 		info->pscan_period_mode	= data->pscan_period_mode;
294 		info->pscan_mode	= data->pscan_mode;
295 		memcpy(info->dev_class, data->dev_class, 3);
296 		info->clock_offset	= data->clock_offset;
297 
298 		info++;
299 		copied++;
300 	}
301 
302 	BT_DBG("cache %p, copied %d", cache, copied);
303 	return copied;
304 }
305 
306 int hci_inquiry(void __user *arg)
307 {
308 	__u8 __user *ptr = arg;
309 	struct hci_inquiry_req ir;
310 	struct hci_dev *hdev;
311 	int err = 0, do_inquiry = 0, max_rsp;
312 	__u8 *buf;
313 
314 	if (copy_from_user(&ir, ptr, sizeof(ir)))
315 		return -EFAULT;
316 
317 	hdev = hci_dev_get(ir.dev_id);
318 	if (!hdev)
319 		return -ENODEV;
320 
321 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
322 		err = -EBUSY;
323 		goto done;
324 	}
325 
326 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
327 		err = -EOPNOTSUPP;
328 		goto done;
329 	}
330 
331 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
332 		err = -EOPNOTSUPP;
333 		goto done;
334 	}
335 
336 	/* Restrict maximum inquiry length to 60 seconds */
337 	if (ir.length > 60) {
338 		err = -EINVAL;
339 		goto done;
340 	}
341 
342 	hci_dev_lock(hdev);
343 	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
344 	    inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
345 		hci_inquiry_cache_flush(hdev);
346 		do_inquiry = 1;
347 	}
348 	hci_dev_unlock(hdev);
349 
350 	if (do_inquiry) {
351 		hci_req_sync_lock(hdev);
352 		err = hci_inquiry_sync(hdev, ir.length, ir.num_rsp);
353 		hci_req_sync_unlock(hdev);
354 
355 		if (err < 0)
356 			goto done;
357 
358 		/* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
359 		 * cleared). If it is interrupted by a signal, return -EINTR.
360 		 */
361 		if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
362 				TASK_INTERRUPTIBLE)) {
363 			err = -EINTR;
364 			goto done;
365 		}
366 	}
367 
368 	/* for unlimited number of responses we will use buffer with
369 	 * 255 entries
370 	 */
371 	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
372 
373 	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
374 	 * copy it to the user space.
375 	 */
376 	buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
377 	if (!buf) {
378 		err = -ENOMEM;
379 		goto done;
380 	}
381 
382 	hci_dev_lock(hdev);
383 	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
384 	hci_dev_unlock(hdev);
385 
386 	BT_DBG("num_rsp %d", ir.num_rsp);
387 
388 	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
389 		ptr += sizeof(ir);
390 		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
391 				 ir.num_rsp))
392 			err = -EFAULT;
393 	} else
394 		err = -EFAULT;
395 
396 	kfree(buf);
397 
398 done:
399 	hci_dev_put(hdev);
400 	return err;
401 }
402 
403 static int hci_dev_do_open(struct hci_dev *hdev)
404 {
405 	int ret = 0;
406 
407 	BT_DBG("%s %p", hdev->name, hdev);
408 
409 	hci_req_sync_lock(hdev);
410 
411 	ret = hci_dev_open_sync(hdev);
412 
413 	hci_req_sync_unlock(hdev);
414 	return ret;
415 }
416 
417 /* ---- HCI ioctl helpers ---- */
418 
419 int hci_dev_open(__u16 dev)
420 {
421 	struct hci_dev *hdev;
422 	int err;
423 
424 	hdev = hci_dev_get(dev);
425 	if (!hdev)
426 		return -ENODEV;
427 
428 	/* Devices that are marked as unconfigured can only be powered
429 	 * up as user channel. Trying to bring them up as normal devices
430 	 * will result into a failure. Only user channel operation is
431 	 * possible.
432 	 *
433 	 * When this function is called for a user channel, the flag
434 	 * HCI_USER_CHANNEL will be set first before attempting to
435 	 * open the device.
436 	 */
437 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
438 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
439 		err = -EOPNOTSUPP;
440 		goto done;
441 	}
442 
443 	/* We need to ensure that no other power on/off work is pending
444 	 * before proceeding to call hci_dev_do_open. This is
445 	 * particularly important if the setup procedure has not yet
446 	 * completed.
447 	 */
448 	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
449 		cancel_delayed_work(&hdev->power_off);
450 
451 	/* After this call it is guaranteed that the setup procedure
452 	 * has finished. This means that error conditions like RFKILL
453 	 * or no valid public or static random address apply.
454 	 */
455 	flush_workqueue(hdev->req_workqueue);
456 
457 	/* For controllers not using the management interface and that
458 	 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
459 	 * so that pairing works for them. Once the management interface
460 	 * is in use this bit will be cleared again and userspace has
461 	 * to explicitly enable it.
462 	 */
463 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
464 	    !hci_dev_test_flag(hdev, HCI_MGMT))
465 		hci_dev_set_flag(hdev, HCI_BONDABLE);
466 
467 	err = hci_dev_do_open(hdev);
468 
469 done:
470 	hci_dev_put(hdev);
471 	return err;
472 }
473 
474 int hci_dev_do_close(struct hci_dev *hdev)
475 {
476 	int err;
477 
478 	BT_DBG("%s %p", hdev->name, hdev);
479 
480 	hci_req_sync_lock(hdev);
481 
482 	err = hci_dev_close_sync(hdev);
483 
484 	hci_req_sync_unlock(hdev);
485 
486 	return err;
487 }
488 
489 int hci_dev_close(__u16 dev)
490 {
491 	struct hci_dev *hdev;
492 	int err;
493 
494 	hdev = hci_dev_get(dev);
495 	if (!hdev)
496 		return -ENODEV;
497 
498 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
499 		err = -EBUSY;
500 		goto done;
501 	}
502 
503 	cancel_work_sync(&hdev->power_on);
504 	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
505 		cancel_delayed_work(&hdev->power_off);
506 
507 	err = hci_dev_do_close(hdev);
508 
509 done:
510 	hci_dev_put(hdev);
511 	return err;
512 }
513 
514 static int hci_dev_do_reset(struct hci_dev *hdev)
515 {
516 	int ret;
517 
518 	BT_DBG("%s %p", hdev->name, hdev);
519 
520 	hci_req_sync_lock(hdev);
521 
522 	/* Drop queues */
523 	skb_queue_purge(&hdev->rx_q);
524 	skb_queue_purge(&hdev->cmd_q);
525 
526 	/* Cancel these to avoid queueing non-chained pending work */
527 	hci_dev_set_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
528 	/* Wait for
529 	 *
530 	 *    if (!hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
531 	 *        queue_delayed_work(&hdev->{cmd,ncmd}_timer)
532 	 *
533 	 * inside RCU section to see the flag or complete scheduling.
534 	 */
535 	synchronize_rcu();
536 	/* Explicitly cancel works in case scheduled after setting the flag. */
537 	cancel_delayed_work(&hdev->cmd_timer);
538 	cancel_delayed_work(&hdev->ncmd_timer);
539 
540 	/* Avoid potential lockdep warnings from the *_flush() calls by
541 	 * ensuring the workqueue is empty up front.
542 	 */
543 	drain_workqueue(hdev->workqueue);
544 
545 	hci_dev_lock(hdev);
546 	hci_inquiry_cache_flush(hdev);
547 	hci_conn_hash_flush(hdev);
548 	hci_dev_unlock(hdev);
549 
550 	if (hdev->flush)
551 		hdev->flush(hdev);
552 
553 	hci_dev_clear_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
554 
555 	atomic_set(&hdev->cmd_cnt, 1);
556 	hdev->acl_cnt = 0;
557 	hdev->sco_cnt = 0;
558 	hdev->le_cnt = 0;
559 	hdev->iso_cnt = 0;
560 
561 	ret = hci_reset_sync(hdev);
562 
563 	hci_req_sync_unlock(hdev);
564 	return ret;
565 }
566 
567 int hci_dev_reset(__u16 dev)
568 {
569 	struct hci_dev *hdev;
570 	int err;
571 
572 	hdev = hci_dev_get(dev);
573 	if (!hdev)
574 		return -ENODEV;
575 
576 	if (!test_bit(HCI_UP, &hdev->flags)) {
577 		err = -ENETDOWN;
578 		goto done;
579 	}
580 
581 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
582 		err = -EBUSY;
583 		goto done;
584 	}
585 
586 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
587 		err = -EOPNOTSUPP;
588 		goto done;
589 	}
590 
591 	err = hci_dev_do_reset(hdev);
592 
593 done:
594 	hci_dev_put(hdev);
595 	return err;
596 }
597 
598 int hci_dev_reset_stat(__u16 dev)
599 {
600 	struct hci_dev *hdev;
601 	int ret = 0;
602 
603 	hdev = hci_dev_get(dev);
604 	if (!hdev)
605 		return -ENODEV;
606 
607 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
608 		ret = -EBUSY;
609 		goto done;
610 	}
611 
612 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
613 		ret = -EOPNOTSUPP;
614 		goto done;
615 	}
616 
617 	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
618 
619 done:
620 	hci_dev_put(hdev);
621 	return ret;
622 }
623 
624 static void hci_update_passive_scan_state(struct hci_dev *hdev, u8 scan)
625 {
626 	bool conn_changed, discov_changed;
627 
628 	BT_DBG("%s scan 0x%02x", hdev->name, scan);
629 
630 	if ((scan & SCAN_PAGE))
631 		conn_changed = !hci_dev_test_and_set_flag(hdev,
632 							  HCI_CONNECTABLE);
633 	else
634 		conn_changed = hci_dev_test_and_clear_flag(hdev,
635 							   HCI_CONNECTABLE);
636 
637 	if ((scan & SCAN_INQUIRY)) {
638 		discov_changed = !hci_dev_test_and_set_flag(hdev,
639 							    HCI_DISCOVERABLE);
640 	} else {
641 		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
642 		discov_changed = hci_dev_test_and_clear_flag(hdev,
643 							     HCI_DISCOVERABLE);
644 	}
645 
646 	if (!hci_dev_test_flag(hdev, HCI_MGMT))
647 		return;
648 
649 	if (conn_changed || discov_changed) {
650 		/* In case this was disabled through mgmt */
651 		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
652 
653 		if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
654 			hci_update_adv_data(hdev, hdev->cur_adv_instance);
655 
656 		mgmt_new_settings(hdev);
657 	}
658 }
659 
660 int hci_dev_cmd(unsigned int cmd, void __user *arg)
661 {
662 	struct hci_dev *hdev;
663 	struct hci_dev_req dr;
664 	__le16 policy;
665 	int err = 0;
666 
667 	if (copy_from_user(&dr, arg, sizeof(dr)))
668 		return -EFAULT;
669 
670 	hdev = hci_dev_get(dr.dev_id);
671 	if (!hdev)
672 		return -ENODEV;
673 
674 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
675 		err = -EBUSY;
676 		goto done;
677 	}
678 
679 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
680 		err = -EOPNOTSUPP;
681 		goto done;
682 	}
683 
684 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
685 		err = -EOPNOTSUPP;
686 		goto done;
687 	}
688 
689 	switch (cmd) {
690 	case HCISETAUTH:
691 		err = hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE,
692 					  1, &dr.dev_opt, HCI_CMD_TIMEOUT);
693 		break;
694 
695 	case HCISETENCRYPT:
696 		if (!lmp_encrypt_capable(hdev)) {
697 			err = -EOPNOTSUPP;
698 			break;
699 		}
700 
701 		if (!test_bit(HCI_AUTH, &hdev->flags)) {
702 			/* Auth must be enabled first */
703 			err = hci_cmd_sync_status(hdev,
704 						  HCI_OP_WRITE_AUTH_ENABLE,
705 						  1, &dr.dev_opt,
706 						  HCI_CMD_TIMEOUT);
707 			if (err)
708 				break;
709 		}
710 
711 		err = hci_cmd_sync_status(hdev, HCI_OP_WRITE_ENCRYPT_MODE,
712 					  1, &dr.dev_opt, HCI_CMD_TIMEOUT);
713 		break;
714 
715 	case HCISETSCAN:
716 		err = hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE,
717 					  1, &dr.dev_opt, HCI_CMD_TIMEOUT);
718 
719 		/* Ensure that the connectable and discoverable states
720 		 * get correctly modified as this was a non-mgmt change.
721 		 */
722 		if (!err)
723 			hci_update_passive_scan_state(hdev, dr.dev_opt);
724 		break;
725 
726 	case HCISETLINKPOL:
727 		policy = cpu_to_le16(dr.dev_opt);
728 
729 		err = hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY,
730 					  2, &policy, HCI_CMD_TIMEOUT);
731 		break;
732 
733 	case HCISETLINKMODE:
734 		hdev->link_mode = ((__u16) dr.dev_opt) &
735 					(HCI_LM_MASTER | HCI_LM_ACCEPT);
736 		break;
737 
738 	case HCISETPTYPE:
739 		if (hdev->pkt_type == (__u16) dr.dev_opt)
740 			break;
741 
742 		hdev->pkt_type = (__u16) dr.dev_opt;
743 		mgmt_phy_configuration_changed(hdev, NULL);
744 		break;
745 
746 	case HCISETACLMTU:
747 		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
748 		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
749 		break;
750 
751 	case HCISETSCOMTU:
752 		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
753 		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
754 		break;
755 
756 	default:
757 		err = -EINVAL;
758 		break;
759 	}
760 
761 done:
762 	hci_dev_put(hdev);
763 	return err;
764 }
765 
766 int hci_get_dev_list(void __user *arg)
767 {
768 	struct hci_dev *hdev;
769 	struct hci_dev_list_req *dl;
770 	struct hci_dev_req *dr;
771 	int n = 0, err;
772 	__u16 dev_num;
773 
774 	if (get_user(dev_num, (__u16 __user *) arg))
775 		return -EFAULT;
776 
777 	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
778 		return -EINVAL;
779 
780 	dl = kzalloc(struct_size(dl, dev_req, dev_num), GFP_KERNEL);
781 	if (!dl)
782 		return -ENOMEM;
783 
784 	dl->dev_num = dev_num;
785 	dr = dl->dev_req;
786 
787 	read_lock(&hci_dev_list_lock);
788 	list_for_each_entry(hdev, &hci_dev_list, list) {
789 		unsigned long flags = hdev->flags;
790 
791 		/* When the auto-off is configured it means the transport
792 		 * is running, but in that case still indicate that the
793 		 * device is actually down.
794 		 */
795 		if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
796 			flags &= ~BIT(HCI_UP);
797 
798 		dr[n].dev_id  = hdev->id;
799 		dr[n].dev_opt = flags;
800 
801 		if (++n >= dev_num)
802 			break;
803 	}
804 	read_unlock(&hci_dev_list_lock);
805 
806 	dl->dev_num = n;
807 	err = copy_to_user(arg, dl, struct_size(dl, dev_req, n));
808 	kfree(dl);
809 
810 	return err ? -EFAULT : 0;
811 }
812 
813 int hci_get_dev_info(void __user *arg)
814 {
815 	struct hci_dev *hdev;
816 	struct hci_dev_info di;
817 	unsigned long flags;
818 	int err = 0;
819 
820 	if (copy_from_user(&di, arg, sizeof(di)))
821 		return -EFAULT;
822 
823 	hdev = hci_dev_get(di.dev_id);
824 	if (!hdev)
825 		return -ENODEV;
826 
827 	/* When the auto-off is configured it means the transport
828 	 * is running, but in that case still indicate that the
829 	 * device is actually down.
830 	 */
831 	if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
832 		flags = hdev->flags & ~BIT(HCI_UP);
833 	else
834 		flags = hdev->flags;
835 
836 	strscpy(di.name, hdev->name, sizeof(di.name));
837 	di.bdaddr   = hdev->bdaddr;
838 	di.type     = (hdev->bus & 0x0f);
839 	di.flags    = flags;
840 	di.pkt_type = hdev->pkt_type;
841 	if (lmp_bredr_capable(hdev)) {
842 		di.acl_mtu  = hdev->acl_mtu;
843 		di.acl_pkts = hdev->acl_pkts;
844 		di.sco_mtu  = hdev->sco_mtu;
845 		di.sco_pkts = hdev->sco_pkts;
846 	} else {
847 		di.acl_mtu  = hdev->le_mtu;
848 		di.acl_pkts = hdev->le_pkts;
849 		di.sco_mtu  = 0;
850 		di.sco_pkts = 0;
851 	}
852 	di.link_policy = hdev->link_policy;
853 	di.link_mode   = hdev->link_mode;
854 
855 	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
856 	memcpy(&di.features, &hdev->features, sizeof(di.features));
857 
858 	if (copy_to_user(arg, &di, sizeof(di)))
859 		err = -EFAULT;
860 
861 	hci_dev_put(hdev);
862 
863 	return err;
864 }
865 
866 /* ---- Interface to HCI drivers ---- */
867 
868 static int hci_dev_do_poweroff(struct hci_dev *hdev)
869 {
870 	int err;
871 
872 	BT_DBG("%s %p", hdev->name, hdev);
873 
874 	hci_req_sync_lock(hdev);
875 
876 	err = hci_set_powered_sync(hdev, false);
877 
878 	hci_req_sync_unlock(hdev);
879 
880 	return err;
881 }
882 
883 static int hci_rfkill_set_block(void *data, bool blocked)
884 {
885 	struct hci_dev *hdev = data;
886 	int err;
887 
888 	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
889 
890 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
891 		return -EBUSY;
892 
893 	if (blocked == hci_dev_test_flag(hdev, HCI_RFKILLED))
894 		return 0;
895 
896 	if (blocked) {
897 		hci_dev_set_flag(hdev, HCI_RFKILLED);
898 
899 		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
900 		    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
901 			err = hci_dev_do_poweroff(hdev);
902 			if (err) {
903 				bt_dev_err(hdev, "Error when powering off device on rfkill (%d)",
904 					   err);
905 
906 				/* Make sure the device is still closed even if
907 				 * anything during power off sequence (eg.
908 				 * disconnecting devices) failed.
909 				 */
910 				hci_dev_do_close(hdev);
911 			}
912 		}
913 	} else {
914 		hci_dev_clear_flag(hdev, HCI_RFKILLED);
915 	}
916 
917 	return 0;
918 }
919 
920 static const struct rfkill_ops hci_rfkill_ops = {
921 	.set_block = hci_rfkill_set_block,
922 };
923 
924 static void hci_power_on(struct work_struct *work)
925 {
926 	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
927 	int err;
928 
929 	BT_DBG("%s", hdev->name);
930 
931 	if (test_bit(HCI_UP, &hdev->flags) &&
932 	    hci_dev_test_flag(hdev, HCI_MGMT) &&
933 	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
934 		cancel_delayed_work(&hdev->power_off);
935 		err = hci_powered_update_sync(hdev);
936 		mgmt_power_on(hdev, err);
937 		return;
938 	}
939 
940 	err = hci_dev_do_open(hdev);
941 	if (err < 0) {
942 		hci_dev_lock(hdev);
943 		mgmt_set_powered_failed(hdev, err);
944 		hci_dev_unlock(hdev);
945 		return;
946 	}
947 
948 	/* During the HCI setup phase, a few error conditions are
949 	 * ignored and they need to be checked now. If they are still
950 	 * valid, it is important to turn the device back off.
951 	 */
952 	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
953 	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
954 	    (!bacmp(&hdev->bdaddr, BDADDR_ANY) &&
955 	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
956 		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
957 		hci_dev_do_close(hdev);
958 	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
959 		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
960 				   HCI_AUTO_OFF_TIMEOUT);
961 	}
962 
963 	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
964 		/* For unconfigured devices, set the HCI_RAW flag
965 		 * so that userspace can easily identify them.
966 		 */
967 		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
968 			set_bit(HCI_RAW, &hdev->flags);
969 
970 		/* For fully configured devices, this will send
971 		 * the Index Added event. For unconfigured devices,
972 		 * it will send Unconfigued Index Added event.
973 		 *
974 		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
975 		 * and no event will be send.
976 		 */
977 		mgmt_index_added(hdev);
978 	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
979 		/* When the controller is now configured, then it
980 		 * is important to clear the HCI_RAW flag.
981 		 */
982 		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
983 			clear_bit(HCI_RAW, &hdev->flags);
984 
985 		/* Powering on the controller with HCI_CONFIG set only
986 		 * happens with the transition from unconfigured to
987 		 * configured. This will send the Index Added event.
988 		 */
989 		mgmt_index_added(hdev);
990 	}
991 }
992 
993 static void hci_power_off(struct work_struct *work)
994 {
995 	struct hci_dev *hdev = container_of(work, struct hci_dev,
996 					    power_off.work);
997 
998 	BT_DBG("%s", hdev->name);
999 
1000 	hci_dev_do_close(hdev);
1001 }
1002 
1003 static void hci_error_reset(struct work_struct *work)
1004 {
1005 	struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
1006 
1007 	hci_dev_hold(hdev);
1008 	BT_DBG("%s", hdev->name);
1009 
1010 	if (hdev->hw_error)
1011 		hdev->hw_error(hdev, hdev->hw_error_code);
1012 	else
1013 		bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
1014 
1015 	if (!hci_dev_do_close(hdev))
1016 		hci_dev_do_open(hdev);
1017 
1018 	hci_dev_put(hdev);
1019 }
1020 
1021 void hci_uuids_clear(struct hci_dev *hdev)
1022 {
1023 	struct bt_uuid *uuid, *tmp;
1024 
1025 	list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
1026 		list_del(&uuid->list);
1027 		kfree(uuid);
1028 	}
1029 }
1030 
1031 void hci_link_keys_clear(struct hci_dev *hdev)
1032 {
1033 	struct link_key *key, *tmp;
1034 
1035 	list_for_each_entry_safe(key, tmp, &hdev->link_keys, list) {
1036 		list_del_rcu(&key->list);
1037 		kfree_rcu(key, rcu);
1038 	}
1039 }
1040 
1041 void hci_smp_ltks_clear(struct hci_dev *hdev)
1042 {
1043 	struct smp_ltk *k, *tmp;
1044 
1045 	list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1046 		list_del_rcu(&k->list);
1047 		kfree_rcu(k, rcu);
1048 	}
1049 }
1050 
1051 void hci_smp_irks_clear(struct hci_dev *hdev)
1052 {
1053 	struct smp_irk *k, *tmp;
1054 
1055 	list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
1056 		list_del_rcu(&k->list);
1057 		kfree_rcu(k, rcu);
1058 	}
1059 }
1060 
1061 void hci_blocked_keys_clear(struct hci_dev *hdev)
1062 {
1063 	struct blocked_key *b, *tmp;
1064 
1065 	list_for_each_entry_safe(b, tmp, &hdev->blocked_keys, list) {
1066 		list_del_rcu(&b->list);
1067 		kfree_rcu(b, rcu);
1068 	}
1069 }
1070 
1071 bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16])
1072 {
1073 	bool blocked = false;
1074 	struct blocked_key *b;
1075 
1076 	rcu_read_lock();
1077 	list_for_each_entry_rcu(b, &hdev->blocked_keys, list) {
1078 		if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) {
1079 			blocked = true;
1080 			break;
1081 		}
1082 	}
1083 
1084 	rcu_read_unlock();
1085 	return blocked;
1086 }
1087 
1088 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1089 {
1090 	struct link_key *k;
1091 
1092 	rcu_read_lock();
1093 	list_for_each_entry_rcu(k, &hdev->link_keys, list) {
1094 		if (bacmp(bdaddr, &k->bdaddr) == 0) {
1095 			rcu_read_unlock();
1096 
1097 			if (hci_is_blocked_key(hdev,
1098 					       HCI_BLOCKED_KEY_TYPE_LINKKEY,
1099 					       k->val)) {
1100 				bt_dev_warn_ratelimited(hdev,
1101 							"Link key blocked for %pMR",
1102 							&k->bdaddr);
1103 				return NULL;
1104 			}
1105 
1106 			return k;
1107 		}
1108 	}
1109 	rcu_read_unlock();
1110 
1111 	return NULL;
1112 }
1113 
1114 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
1115 			       u8 key_type, u8 old_key_type)
1116 {
1117 	/* Legacy key */
1118 	if (key_type < 0x03)
1119 		return true;
1120 
1121 	/* Debug keys are insecure so don't store them persistently */
1122 	if (key_type == HCI_LK_DEBUG_COMBINATION)
1123 		return false;
1124 
1125 	/* Changed combination key and there's no previous one */
1126 	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
1127 		return false;
1128 
1129 	/* Security mode 3 case */
1130 	if (!conn)
1131 		return true;
1132 
1133 	/* BR/EDR key derived using SC from an LE link */
1134 	if (conn->type == LE_LINK)
1135 		return true;
1136 
1137 	/* Neither local nor remote side had no-bonding as requirement */
1138 	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
1139 		return true;
1140 
1141 	/* Local side had dedicated bonding as requirement */
1142 	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
1143 		return true;
1144 
1145 	/* Remote side had dedicated bonding as requirement */
1146 	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
1147 		return true;
1148 
1149 	/* If none of the above criteria match, then don't store the key
1150 	 * persistently */
1151 	return false;
1152 }
1153 
1154 static u8 ltk_role(u8 type)
1155 {
1156 	if (type == SMP_LTK)
1157 		return HCI_ROLE_MASTER;
1158 
1159 	return HCI_ROLE_SLAVE;
1160 }
1161 
1162 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1163 			     u8 addr_type, u8 role)
1164 {
1165 	struct smp_ltk *k;
1166 
1167 	rcu_read_lock();
1168 	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1169 		if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
1170 			continue;
1171 
1172 		if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
1173 			rcu_read_unlock();
1174 
1175 			if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK,
1176 					       k->val)) {
1177 				bt_dev_warn_ratelimited(hdev,
1178 							"LTK blocked for %pMR",
1179 							&k->bdaddr);
1180 				return NULL;
1181 			}
1182 
1183 			return k;
1184 		}
1185 	}
1186 	rcu_read_unlock();
1187 
1188 	return NULL;
1189 }
1190 
1191 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
1192 {
1193 	struct smp_irk *irk_to_return = NULL;
1194 	struct smp_irk *irk;
1195 
1196 	rcu_read_lock();
1197 	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1198 		if (!bacmp(&irk->rpa, rpa)) {
1199 			irk_to_return = irk;
1200 			goto done;
1201 		}
1202 	}
1203 
1204 	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1205 		if (smp_irk_matches(hdev, irk->val, rpa)) {
1206 			bacpy(&irk->rpa, rpa);
1207 			irk_to_return = irk;
1208 			goto done;
1209 		}
1210 	}
1211 
1212 done:
1213 	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1214 						irk_to_return->val)) {
1215 		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1216 					&irk_to_return->bdaddr);
1217 		irk_to_return = NULL;
1218 	}
1219 
1220 	rcu_read_unlock();
1221 
1222 	return irk_to_return;
1223 }
1224 
1225 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
1226 				     u8 addr_type)
1227 {
1228 	struct smp_irk *irk_to_return = NULL;
1229 	struct smp_irk *irk;
1230 
1231 	/* Identity Address must be public or static random */
1232 	if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
1233 		return NULL;
1234 
1235 	rcu_read_lock();
1236 	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1237 		if (addr_type == irk->addr_type &&
1238 		    bacmp(bdaddr, &irk->bdaddr) == 0) {
1239 			irk_to_return = irk;
1240 			goto done;
1241 		}
1242 	}
1243 
1244 done:
1245 
1246 	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1247 						irk_to_return->val)) {
1248 		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1249 					&irk_to_return->bdaddr);
1250 		irk_to_return = NULL;
1251 	}
1252 
1253 	rcu_read_unlock();
1254 
1255 	return irk_to_return;
1256 }
1257 
1258 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
1259 				  bdaddr_t *bdaddr, u8 *val, u8 type,
1260 				  u8 pin_len, bool *persistent)
1261 {
1262 	struct link_key *key, *old_key;
1263 	u8 old_key_type;
1264 
1265 	old_key = hci_find_link_key(hdev, bdaddr);
1266 	if (old_key) {
1267 		old_key_type = old_key->type;
1268 		key = old_key;
1269 	} else {
1270 		old_key_type = conn ? conn->key_type : 0xff;
1271 		key = kzalloc(sizeof(*key), GFP_KERNEL);
1272 		if (!key)
1273 			return NULL;
1274 		list_add_rcu(&key->list, &hdev->link_keys);
1275 	}
1276 
1277 	BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
1278 
1279 	/* Some buggy controller combinations generate a changed
1280 	 * combination key for legacy pairing even when there's no
1281 	 * previous key */
1282 	if (type == HCI_LK_CHANGED_COMBINATION &&
1283 	    (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
1284 		type = HCI_LK_COMBINATION;
1285 		if (conn)
1286 			conn->key_type = type;
1287 	}
1288 
1289 	bacpy(&key->bdaddr, bdaddr);
1290 	memcpy(key->val, val, HCI_LINK_KEY_SIZE);
1291 	key->pin_len = pin_len;
1292 
1293 	if (type == HCI_LK_CHANGED_COMBINATION)
1294 		key->type = old_key_type;
1295 	else
1296 		key->type = type;
1297 
1298 	if (persistent)
1299 		*persistent = hci_persistent_key(hdev, conn, type,
1300 						 old_key_type);
1301 
1302 	return key;
1303 }
1304 
1305 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1306 			    u8 addr_type, u8 type, u8 authenticated,
1307 			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
1308 {
1309 	struct smp_ltk *key, *old_key;
1310 	u8 role = ltk_role(type);
1311 
1312 	old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
1313 	if (old_key)
1314 		key = old_key;
1315 	else {
1316 		key = kzalloc(sizeof(*key), GFP_KERNEL);
1317 		if (!key)
1318 			return NULL;
1319 		list_add_rcu(&key->list, &hdev->long_term_keys);
1320 	}
1321 
1322 	bacpy(&key->bdaddr, bdaddr);
1323 	key->bdaddr_type = addr_type;
1324 	memcpy(key->val, tk, sizeof(key->val));
1325 	key->authenticated = authenticated;
1326 	key->ediv = ediv;
1327 	key->rand = rand;
1328 	key->enc_size = enc_size;
1329 	key->type = type;
1330 
1331 	return key;
1332 }
1333 
1334 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1335 			    u8 addr_type, u8 val[16], bdaddr_t *rpa)
1336 {
1337 	struct smp_irk *irk;
1338 
1339 	irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
1340 	if (!irk) {
1341 		irk = kzalloc(sizeof(*irk), GFP_KERNEL);
1342 		if (!irk)
1343 			return NULL;
1344 
1345 		bacpy(&irk->bdaddr, bdaddr);
1346 		irk->addr_type = addr_type;
1347 
1348 		list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
1349 	}
1350 
1351 	memcpy(irk->val, val, 16);
1352 	bacpy(&irk->rpa, rpa);
1353 
1354 	return irk;
1355 }
1356 
1357 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1358 {
1359 	struct link_key *key;
1360 
1361 	key = hci_find_link_key(hdev, bdaddr);
1362 	if (!key)
1363 		return -ENOENT;
1364 
1365 	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1366 
1367 	list_del_rcu(&key->list);
1368 	kfree_rcu(key, rcu);
1369 
1370 	return 0;
1371 }
1372 
1373 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
1374 {
1375 	struct smp_ltk *k, *tmp;
1376 	int removed = 0;
1377 
1378 	list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1379 		if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
1380 			continue;
1381 
1382 		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1383 
1384 		list_del_rcu(&k->list);
1385 		kfree_rcu(k, rcu);
1386 		removed++;
1387 	}
1388 
1389 	return removed ? 0 : -ENOENT;
1390 }
1391 
1392 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
1393 {
1394 	struct smp_irk *k, *tmp;
1395 
1396 	list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
1397 		if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
1398 			continue;
1399 
1400 		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1401 
1402 		list_del_rcu(&k->list);
1403 		kfree_rcu(k, rcu);
1404 	}
1405 }
1406 
1407 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
1408 {
1409 	struct smp_ltk *k;
1410 	struct smp_irk *irk;
1411 	u8 addr_type;
1412 
1413 	if (type == BDADDR_BREDR) {
1414 		if (hci_find_link_key(hdev, bdaddr))
1415 			return true;
1416 		return false;
1417 	}
1418 
1419 	/* Convert to HCI addr type which struct smp_ltk uses */
1420 	if (type == BDADDR_LE_PUBLIC)
1421 		addr_type = ADDR_LE_DEV_PUBLIC;
1422 	else
1423 		addr_type = ADDR_LE_DEV_RANDOM;
1424 
1425 	irk = hci_get_irk(hdev, bdaddr, addr_type);
1426 	if (irk) {
1427 		bdaddr = &irk->bdaddr;
1428 		addr_type = irk->addr_type;
1429 	}
1430 
1431 	rcu_read_lock();
1432 	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1433 		if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
1434 			rcu_read_unlock();
1435 			return true;
1436 		}
1437 	}
1438 	rcu_read_unlock();
1439 
1440 	return false;
1441 }
1442 
1443 /* HCI command timer function */
1444 static void hci_cmd_timeout(struct work_struct *work)
1445 {
1446 	struct hci_dev *hdev = container_of(work, struct hci_dev,
1447 					    cmd_timer.work);
1448 
1449 	if (hdev->req_skb) {
1450 		u16 opcode = hci_skb_opcode(hdev->req_skb);
1451 
1452 		bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
1453 
1454 		hci_cmd_sync_cancel_sync(hdev, ETIMEDOUT);
1455 	} else {
1456 		bt_dev_err(hdev, "command tx timeout");
1457 	}
1458 
1459 	if (hdev->reset)
1460 		hdev->reset(hdev);
1461 
1462 	atomic_set(&hdev->cmd_cnt, 1);
1463 	queue_work(hdev->workqueue, &hdev->cmd_work);
1464 }
1465 
1466 /* HCI ncmd timer function */
1467 static void hci_ncmd_timeout(struct work_struct *work)
1468 {
1469 	struct hci_dev *hdev = container_of(work, struct hci_dev,
1470 					    ncmd_timer.work);
1471 
1472 	bt_dev_err(hdev, "Controller not accepting commands anymore: ncmd = 0");
1473 
1474 	/* During HCI_INIT phase no events can be injected if the ncmd timer
1475 	 * triggers since the procedure has its own timeout handling.
1476 	 */
1477 	if (test_bit(HCI_INIT, &hdev->flags))
1478 		return;
1479 
1480 	/* This is an irrecoverable state, inject hardware error event */
1481 	hci_reset_dev(hdev);
1482 }
1483 
1484 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
1485 					  bdaddr_t *bdaddr, u8 bdaddr_type)
1486 {
1487 	struct oob_data *data;
1488 
1489 	list_for_each_entry(data, &hdev->remote_oob_data, list) {
1490 		if (bacmp(bdaddr, &data->bdaddr) != 0)
1491 			continue;
1492 		if (data->bdaddr_type != bdaddr_type)
1493 			continue;
1494 		return data;
1495 	}
1496 
1497 	return NULL;
1498 }
1499 
1500 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1501 			       u8 bdaddr_type)
1502 {
1503 	struct oob_data *data;
1504 
1505 	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1506 	if (!data)
1507 		return -ENOENT;
1508 
1509 	BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
1510 
1511 	list_del(&data->list);
1512 	kfree(data);
1513 
1514 	return 0;
1515 }
1516 
1517 void hci_remote_oob_data_clear(struct hci_dev *hdev)
1518 {
1519 	struct oob_data *data, *n;
1520 
1521 	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
1522 		list_del(&data->list);
1523 		kfree(data);
1524 	}
1525 }
1526 
1527 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1528 			    u8 bdaddr_type, u8 *hash192, u8 *rand192,
1529 			    u8 *hash256, u8 *rand256)
1530 {
1531 	struct oob_data *data;
1532 
1533 	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1534 	if (!data) {
1535 		data = kmalloc(sizeof(*data), GFP_KERNEL);
1536 		if (!data)
1537 			return -ENOMEM;
1538 
1539 		bacpy(&data->bdaddr, bdaddr);
1540 		data->bdaddr_type = bdaddr_type;
1541 		list_add(&data->list, &hdev->remote_oob_data);
1542 	}
1543 
1544 	if (hash192 && rand192) {
1545 		memcpy(data->hash192, hash192, sizeof(data->hash192));
1546 		memcpy(data->rand192, rand192, sizeof(data->rand192));
1547 		if (hash256 && rand256)
1548 			data->present = 0x03;
1549 	} else {
1550 		memset(data->hash192, 0, sizeof(data->hash192));
1551 		memset(data->rand192, 0, sizeof(data->rand192));
1552 		if (hash256 && rand256)
1553 			data->present = 0x02;
1554 		else
1555 			data->present = 0x00;
1556 	}
1557 
1558 	if (hash256 && rand256) {
1559 		memcpy(data->hash256, hash256, sizeof(data->hash256));
1560 		memcpy(data->rand256, rand256, sizeof(data->rand256));
1561 	} else {
1562 		memset(data->hash256, 0, sizeof(data->hash256));
1563 		memset(data->rand256, 0, sizeof(data->rand256));
1564 		if (hash192 && rand192)
1565 			data->present = 0x01;
1566 	}
1567 
1568 	BT_DBG("%s for %pMR", hdev->name, bdaddr);
1569 
1570 	return 0;
1571 }
1572 
1573 /* This function requires the caller holds hdev->lock */
1574 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
1575 {
1576 	struct adv_info *adv_instance;
1577 
1578 	list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
1579 		if (adv_instance->instance == instance)
1580 			return adv_instance;
1581 	}
1582 
1583 	return NULL;
1584 }
1585 
1586 /* This function requires the caller holds hdev->lock */
1587 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
1588 {
1589 	struct adv_info *cur_instance;
1590 
1591 	cur_instance = hci_find_adv_instance(hdev, instance);
1592 	if (!cur_instance)
1593 		return NULL;
1594 
1595 	if (cur_instance == list_last_entry(&hdev->adv_instances,
1596 					    struct adv_info, list))
1597 		return list_first_entry(&hdev->adv_instances,
1598 						 struct adv_info, list);
1599 	else
1600 		return list_next_entry(cur_instance, list);
1601 }
1602 
1603 /* This function requires the caller holds hdev->lock */
1604 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
1605 {
1606 	struct adv_info *adv_instance;
1607 
1608 	adv_instance = hci_find_adv_instance(hdev, instance);
1609 	if (!adv_instance)
1610 		return -ENOENT;
1611 
1612 	BT_DBG("%s removing %dMR", hdev->name, instance);
1613 
1614 	if (hdev->cur_adv_instance == instance) {
1615 		if (hdev->adv_instance_timeout) {
1616 			cancel_delayed_work(&hdev->adv_instance_expire);
1617 			hdev->adv_instance_timeout = 0;
1618 		}
1619 		hdev->cur_adv_instance = 0x00;
1620 	}
1621 
1622 	cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1623 
1624 	list_del(&adv_instance->list);
1625 	kfree(adv_instance);
1626 
1627 	hdev->adv_instance_cnt--;
1628 
1629 	return 0;
1630 }
1631 
1632 void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
1633 {
1634 	struct adv_info *adv_instance, *n;
1635 
1636 	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
1637 		adv_instance->rpa_expired = rpa_expired;
1638 }
1639 
1640 /* This function requires the caller holds hdev->lock */
1641 void hci_adv_instances_clear(struct hci_dev *hdev)
1642 {
1643 	struct adv_info *adv_instance, *n;
1644 
1645 	if (hdev->adv_instance_timeout) {
1646 		disable_delayed_work(&hdev->adv_instance_expire);
1647 		hdev->adv_instance_timeout = 0;
1648 	}
1649 
1650 	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
1651 		disable_delayed_work_sync(&adv_instance->rpa_expired_cb);
1652 		list_del(&adv_instance->list);
1653 		kfree(adv_instance);
1654 	}
1655 
1656 	hdev->adv_instance_cnt = 0;
1657 	hdev->cur_adv_instance = 0x00;
1658 }
1659 
1660 static void adv_instance_rpa_expired(struct work_struct *work)
1661 {
1662 	struct adv_info *adv_instance = container_of(work, struct adv_info,
1663 						     rpa_expired_cb.work);
1664 
1665 	BT_DBG("");
1666 
1667 	adv_instance->rpa_expired = true;
1668 }
1669 
1670 /* This function requires the caller holds hdev->lock */
1671 struct adv_info *hci_add_adv_instance(struct hci_dev *hdev, u8 instance,
1672 				      u32 flags, u16 adv_data_len, u8 *adv_data,
1673 				      u16 scan_rsp_len, u8 *scan_rsp_data,
1674 				      u16 timeout, u16 duration, s8 tx_power,
1675 				      u32 min_interval, u32 max_interval,
1676 				      u8 mesh_handle)
1677 {
1678 	struct adv_info *adv;
1679 
1680 	adv = hci_find_adv_instance(hdev, instance);
1681 	if (adv) {
1682 		memset(adv->adv_data, 0, sizeof(adv->adv_data));
1683 		memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1684 		memset(adv->per_adv_data, 0, sizeof(adv->per_adv_data));
1685 	} else {
1686 		if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets ||
1687 		    instance < 1 || instance > hdev->le_num_of_adv_sets + 1)
1688 			return ERR_PTR(-EOVERFLOW);
1689 
1690 		adv = kzalloc(sizeof(*adv), GFP_KERNEL);
1691 		if (!adv)
1692 			return ERR_PTR(-ENOMEM);
1693 
1694 		adv->pending = true;
1695 		adv->instance = instance;
1696 
1697 		/* If controller support only one set and the instance is set to
1698 		 * 1 then there is no option other than using handle 0x00.
1699 		 */
1700 		if (hdev->le_num_of_adv_sets == 1 && instance == 1)
1701 			adv->handle = 0x00;
1702 		else
1703 			adv->handle = instance;
1704 
1705 		list_add(&adv->list, &hdev->adv_instances);
1706 		hdev->adv_instance_cnt++;
1707 	}
1708 
1709 	adv->flags = flags;
1710 	adv->min_interval = min_interval;
1711 	adv->max_interval = max_interval;
1712 	adv->tx_power = tx_power;
1713 	/* Defining a mesh_handle changes the timing units to ms,
1714 	 * rather than seconds, and ties the instance to the requested
1715 	 * mesh_tx queue.
1716 	 */
1717 	adv->mesh = mesh_handle;
1718 
1719 	hci_set_adv_instance_data(hdev, instance, adv_data_len, adv_data,
1720 				  scan_rsp_len, scan_rsp_data);
1721 
1722 	adv->timeout = timeout;
1723 	adv->remaining_time = timeout;
1724 
1725 	if (duration == 0)
1726 		adv->duration = hdev->def_multi_adv_rotation_duration;
1727 	else
1728 		adv->duration = duration;
1729 
1730 	INIT_DELAYED_WORK(&adv->rpa_expired_cb, adv_instance_rpa_expired);
1731 
1732 	BT_DBG("%s for %dMR", hdev->name, instance);
1733 
1734 	return adv;
1735 }
1736 
1737 /* This function requires the caller holds hdev->lock */
1738 struct adv_info *hci_add_per_instance(struct hci_dev *hdev, u8 instance,
1739 				      u32 flags, u8 data_len, u8 *data,
1740 				      u32 min_interval, u32 max_interval)
1741 {
1742 	struct adv_info *adv;
1743 
1744 	adv = hci_add_adv_instance(hdev, instance, flags, 0, NULL, 0, NULL,
1745 				   0, 0, HCI_ADV_TX_POWER_NO_PREFERENCE,
1746 				   min_interval, max_interval, 0);
1747 	if (IS_ERR(adv))
1748 		return adv;
1749 
1750 	adv->periodic = true;
1751 	adv->per_adv_data_len = data_len;
1752 
1753 	if (data)
1754 		memcpy(adv->per_adv_data, data, data_len);
1755 
1756 	return adv;
1757 }
1758 
1759 /* This function requires the caller holds hdev->lock */
1760 int hci_set_adv_instance_data(struct hci_dev *hdev, u8 instance,
1761 			      u16 adv_data_len, u8 *adv_data,
1762 			      u16 scan_rsp_len, u8 *scan_rsp_data)
1763 {
1764 	struct adv_info *adv;
1765 
1766 	adv = hci_find_adv_instance(hdev, instance);
1767 
1768 	/* If advertisement doesn't exist, we can't modify its data */
1769 	if (!adv)
1770 		return -ENOENT;
1771 
1772 	if (adv_data_len && ADV_DATA_CMP(adv, adv_data, adv_data_len)) {
1773 		memset(adv->adv_data, 0, sizeof(adv->adv_data));
1774 		memcpy(adv->adv_data, adv_data, adv_data_len);
1775 		adv->adv_data_len = adv_data_len;
1776 		adv->adv_data_changed = true;
1777 	}
1778 
1779 	if (scan_rsp_len && SCAN_RSP_CMP(adv, scan_rsp_data, scan_rsp_len)) {
1780 		memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1781 		memcpy(adv->scan_rsp_data, scan_rsp_data, scan_rsp_len);
1782 		adv->scan_rsp_len = scan_rsp_len;
1783 		adv->scan_rsp_changed = true;
1784 	}
1785 
1786 	/* Mark as changed if there are flags which would affect it */
1787 	if (((adv->flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) ||
1788 	    adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1789 		adv->scan_rsp_changed = true;
1790 
1791 	return 0;
1792 }
1793 
1794 /* This function requires the caller holds hdev->lock */
1795 u32 hci_adv_instance_flags(struct hci_dev *hdev, u8 instance)
1796 {
1797 	u32 flags;
1798 	struct adv_info *adv;
1799 
1800 	if (instance == 0x00) {
1801 		/* Instance 0 always manages the "Tx Power" and "Flags"
1802 		 * fields
1803 		 */
1804 		flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
1805 
1806 		/* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
1807 		 * corresponds to the "connectable" instance flag.
1808 		 */
1809 		if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
1810 			flags |= MGMT_ADV_FLAG_CONNECTABLE;
1811 
1812 		if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
1813 			flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
1814 		else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1815 			flags |= MGMT_ADV_FLAG_DISCOV;
1816 
1817 		return flags;
1818 	}
1819 
1820 	adv = hci_find_adv_instance(hdev, instance);
1821 
1822 	/* Return 0 when we got an invalid instance identifier. */
1823 	if (!adv)
1824 		return 0;
1825 
1826 	return adv->flags;
1827 }
1828 
1829 bool hci_adv_instance_is_scannable(struct hci_dev *hdev, u8 instance)
1830 {
1831 	struct adv_info *adv;
1832 
1833 	/* Instance 0x00 always set local name */
1834 	if (instance == 0x00)
1835 		return true;
1836 
1837 	adv = hci_find_adv_instance(hdev, instance);
1838 	if (!adv)
1839 		return false;
1840 
1841 	if (adv->flags & MGMT_ADV_FLAG_APPEARANCE ||
1842 	    adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1843 		return true;
1844 
1845 	return adv->scan_rsp_len ? true : false;
1846 }
1847 
1848 /* This function requires the caller holds hdev->lock */
1849 void hci_adv_monitors_clear(struct hci_dev *hdev)
1850 {
1851 	struct adv_monitor *monitor;
1852 	int handle;
1853 
1854 	idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle)
1855 		hci_free_adv_monitor(hdev, monitor);
1856 
1857 	idr_destroy(&hdev->adv_monitors_idr);
1858 }
1859 
1860 /* Frees the monitor structure and do some bookkeepings.
1861  * This function requires the caller holds hdev->lock.
1862  */
1863 void hci_free_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1864 {
1865 	struct adv_pattern *pattern;
1866 	struct adv_pattern *tmp;
1867 
1868 	if (!monitor)
1869 		return;
1870 
1871 	list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list) {
1872 		list_del(&pattern->list);
1873 		kfree(pattern);
1874 	}
1875 
1876 	if (monitor->handle)
1877 		idr_remove(&hdev->adv_monitors_idr, monitor->handle);
1878 
1879 	if (monitor->state != ADV_MONITOR_STATE_NOT_REGISTERED) {
1880 		hdev->adv_monitors_cnt--;
1881 		mgmt_adv_monitor_removed(hdev, monitor->handle);
1882 	}
1883 
1884 	kfree(monitor);
1885 }
1886 
1887 /* Assigns handle to a monitor, and if offloading is supported and power is on,
1888  * also attempts to forward the request to the controller.
1889  * This function requires the caller holds hci_req_sync_lock.
1890  */
1891 int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1892 {
1893 	int min, max, handle;
1894 	int status = 0;
1895 
1896 	if (!monitor)
1897 		return -EINVAL;
1898 
1899 	hci_dev_lock(hdev);
1900 
1901 	min = HCI_MIN_ADV_MONITOR_HANDLE;
1902 	max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES;
1903 	handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max,
1904 			   GFP_KERNEL);
1905 
1906 	hci_dev_unlock(hdev);
1907 
1908 	if (handle < 0)
1909 		return handle;
1910 
1911 	monitor->handle = handle;
1912 
1913 	if (!hdev_is_powered(hdev))
1914 		return status;
1915 
1916 	switch (hci_get_adv_monitor_offload_ext(hdev)) {
1917 	case HCI_ADV_MONITOR_EXT_NONE:
1918 		bt_dev_dbg(hdev, "add monitor %d status %d",
1919 			   monitor->handle, status);
1920 		/* Message was not forwarded to controller - not an error */
1921 		break;
1922 
1923 	case HCI_ADV_MONITOR_EXT_MSFT:
1924 		status = msft_add_monitor_pattern(hdev, monitor);
1925 		bt_dev_dbg(hdev, "add monitor %d msft status %d",
1926 			   handle, status);
1927 		break;
1928 	}
1929 
1930 	return status;
1931 }
1932 
1933 /* Attempts to tell the controller and free the monitor. If somehow the
1934  * controller doesn't have a corresponding handle, remove anyway.
1935  * This function requires the caller holds hci_req_sync_lock.
1936  */
1937 static int hci_remove_adv_monitor(struct hci_dev *hdev,
1938 				  struct adv_monitor *monitor)
1939 {
1940 	int status = 0;
1941 	int handle;
1942 
1943 	switch (hci_get_adv_monitor_offload_ext(hdev)) {
1944 	case HCI_ADV_MONITOR_EXT_NONE: /* also goes here when powered off */
1945 		bt_dev_dbg(hdev, "remove monitor %d status %d",
1946 			   monitor->handle, status);
1947 		goto free_monitor;
1948 
1949 	case HCI_ADV_MONITOR_EXT_MSFT:
1950 		handle = monitor->handle;
1951 		status = msft_remove_monitor(hdev, monitor);
1952 		bt_dev_dbg(hdev, "remove monitor %d msft status %d",
1953 			   handle, status);
1954 		break;
1955 	}
1956 
1957 	/* In case no matching handle registered, just free the monitor */
1958 	if (status == -ENOENT)
1959 		goto free_monitor;
1960 
1961 	return status;
1962 
1963 free_monitor:
1964 	if (status == -ENOENT)
1965 		bt_dev_warn(hdev, "Removing monitor with no matching handle %d",
1966 			    monitor->handle);
1967 	hci_free_adv_monitor(hdev, monitor);
1968 
1969 	return status;
1970 }
1971 
1972 /* This function requires the caller holds hci_req_sync_lock */
1973 int hci_remove_single_adv_monitor(struct hci_dev *hdev, u16 handle)
1974 {
1975 	struct adv_monitor *monitor = idr_find(&hdev->adv_monitors_idr, handle);
1976 
1977 	if (!monitor)
1978 		return -EINVAL;
1979 
1980 	return hci_remove_adv_monitor(hdev, monitor);
1981 }
1982 
1983 /* This function requires the caller holds hci_req_sync_lock */
1984 int hci_remove_all_adv_monitor(struct hci_dev *hdev)
1985 {
1986 	struct adv_monitor *monitor;
1987 	int idr_next_id = 0;
1988 	int status = 0;
1989 
1990 	while (1) {
1991 		monitor = idr_get_next(&hdev->adv_monitors_idr, &idr_next_id);
1992 		if (!monitor)
1993 			break;
1994 
1995 		status = hci_remove_adv_monitor(hdev, monitor);
1996 		if (status)
1997 			return status;
1998 
1999 		idr_next_id++;
2000 	}
2001 
2002 	return status;
2003 }
2004 
2005 /* This function requires the caller holds hdev->lock */
2006 bool hci_is_adv_monitoring(struct hci_dev *hdev)
2007 {
2008 	return !idr_is_empty(&hdev->adv_monitors_idr);
2009 }
2010 
2011 int hci_get_adv_monitor_offload_ext(struct hci_dev *hdev)
2012 {
2013 	if (msft_monitor_supported(hdev))
2014 		return HCI_ADV_MONITOR_EXT_MSFT;
2015 
2016 	return HCI_ADV_MONITOR_EXT_NONE;
2017 }
2018 
2019 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2020 					 bdaddr_t *bdaddr, u8 type)
2021 {
2022 	struct bdaddr_list *b;
2023 
2024 	list_for_each_entry(b, bdaddr_list, list) {
2025 		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2026 			return b;
2027 	}
2028 
2029 	return NULL;
2030 }
2031 
2032 struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
2033 				struct list_head *bdaddr_list, bdaddr_t *bdaddr,
2034 				u8 type)
2035 {
2036 	struct bdaddr_list_with_irk *b;
2037 
2038 	list_for_each_entry(b, bdaddr_list, list) {
2039 		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2040 			return b;
2041 	}
2042 
2043 	return NULL;
2044 }
2045 
2046 struct bdaddr_list_with_flags *
2047 hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list,
2048 				  bdaddr_t *bdaddr, u8 type)
2049 {
2050 	struct bdaddr_list_with_flags *b;
2051 
2052 	list_for_each_entry(b, bdaddr_list, list) {
2053 		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2054 			return b;
2055 	}
2056 
2057 	return NULL;
2058 }
2059 
2060 void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2061 {
2062 	struct bdaddr_list *b, *n;
2063 
2064 	list_for_each_entry_safe(b, n, bdaddr_list, list) {
2065 		list_del(&b->list);
2066 		kfree(b);
2067 	}
2068 }
2069 
2070 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2071 {
2072 	struct bdaddr_list *entry;
2073 
2074 	if (!bacmp(bdaddr, BDADDR_ANY))
2075 		return -EBADF;
2076 
2077 	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2078 		return -EEXIST;
2079 
2080 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2081 	if (!entry)
2082 		return -ENOMEM;
2083 
2084 	bacpy(&entry->bdaddr, bdaddr);
2085 	entry->bdaddr_type = type;
2086 
2087 	list_add(&entry->list, list);
2088 
2089 	return 0;
2090 }
2091 
2092 int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2093 					u8 type, u8 *peer_irk, u8 *local_irk)
2094 {
2095 	struct bdaddr_list_with_irk *entry;
2096 
2097 	if (!bacmp(bdaddr, BDADDR_ANY))
2098 		return -EBADF;
2099 
2100 	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2101 		return -EEXIST;
2102 
2103 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2104 	if (!entry)
2105 		return -ENOMEM;
2106 
2107 	bacpy(&entry->bdaddr, bdaddr);
2108 	entry->bdaddr_type = type;
2109 
2110 	if (peer_irk)
2111 		memcpy(entry->peer_irk, peer_irk, 16);
2112 
2113 	if (local_irk)
2114 		memcpy(entry->local_irk, local_irk, 16);
2115 
2116 	list_add(&entry->list, list);
2117 
2118 	return 0;
2119 }
2120 
2121 int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2122 				   u8 type, u32 flags)
2123 {
2124 	struct bdaddr_list_with_flags *entry;
2125 
2126 	if (!bacmp(bdaddr, BDADDR_ANY))
2127 		return -EBADF;
2128 
2129 	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2130 		return -EEXIST;
2131 
2132 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2133 	if (!entry)
2134 		return -ENOMEM;
2135 
2136 	bacpy(&entry->bdaddr, bdaddr);
2137 	entry->bdaddr_type = type;
2138 	entry->flags = flags;
2139 
2140 	list_add(&entry->list, list);
2141 
2142 	return 0;
2143 }
2144 
2145 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2146 {
2147 	struct bdaddr_list *entry;
2148 
2149 	if (!bacmp(bdaddr, BDADDR_ANY)) {
2150 		hci_bdaddr_list_clear(list);
2151 		return 0;
2152 	}
2153 
2154 	entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2155 	if (!entry)
2156 		return -ENOENT;
2157 
2158 	list_del(&entry->list);
2159 	kfree(entry);
2160 
2161 	return 0;
2162 }
2163 
2164 int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2165 							u8 type)
2166 {
2167 	struct bdaddr_list_with_irk *entry;
2168 
2169 	if (!bacmp(bdaddr, BDADDR_ANY)) {
2170 		hci_bdaddr_list_clear(list);
2171 		return 0;
2172 	}
2173 
2174 	entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
2175 	if (!entry)
2176 		return -ENOENT;
2177 
2178 	list_del(&entry->list);
2179 	kfree(entry);
2180 
2181 	return 0;
2182 }
2183 
2184 /* This function requires the caller holds hdev->lock */
2185 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2186 					       bdaddr_t *addr, u8 addr_type)
2187 {
2188 	struct hci_conn_params *params;
2189 
2190 	list_for_each_entry(params, &hdev->le_conn_params, list) {
2191 		if (bacmp(&params->addr, addr) == 0 &&
2192 		    params->addr_type == addr_type) {
2193 			return params;
2194 		}
2195 	}
2196 
2197 	return NULL;
2198 }
2199 
2200 /* This function requires the caller holds hdev->lock or rcu_read_lock */
2201 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2202 						  bdaddr_t *addr, u8 addr_type)
2203 {
2204 	struct hci_conn_params *param;
2205 
2206 	rcu_read_lock();
2207 
2208 	list_for_each_entry_rcu(param, list, action) {
2209 		if (bacmp(&param->addr, addr) == 0 &&
2210 		    param->addr_type == addr_type) {
2211 			rcu_read_unlock();
2212 			return param;
2213 		}
2214 	}
2215 
2216 	rcu_read_unlock();
2217 
2218 	return NULL;
2219 }
2220 
2221 /* This function requires the caller holds hdev->lock */
2222 void hci_pend_le_list_del_init(struct hci_conn_params *param)
2223 {
2224 	if (list_empty(&param->action))
2225 		return;
2226 
2227 	list_del_rcu(&param->action);
2228 	synchronize_rcu();
2229 	INIT_LIST_HEAD(&param->action);
2230 }
2231 
2232 /* This function requires the caller holds hdev->lock */
2233 void hci_pend_le_list_add(struct hci_conn_params *param,
2234 			  struct list_head *list)
2235 {
2236 	list_add_rcu(&param->action, list);
2237 }
2238 
2239 /* This function requires the caller holds hdev->lock */
2240 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2241 					    bdaddr_t *addr, u8 addr_type)
2242 {
2243 	struct hci_conn_params *params;
2244 
2245 	params = hci_conn_params_lookup(hdev, addr, addr_type);
2246 	if (params)
2247 		return params;
2248 
2249 	params = kzalloc(sizeof(*params), GFP_KERNEL);
2250 	if (!params) {
2251 		bt_dev_err(hdev, "out of memory");
2252 		return NULL;
2253 	}
2254 
2255 	bacpy(&params->addr, addr);
2256 	params->addr_type = addr_type;
2257 
2258 	list_add(&params->list, &hdev->le_conn_params);
2259 	INIT_LIST_HEAD(&params->action);
2260 
2261 	params->conn_min_interval = hdev->le_conn_min_interval;
2262 	params->conn_max_interval = hdev->le_conn_max_interval;
2263 	params->conn_latency = hdev->le_conn_latency;
2264 	params->supervision_timeout = hdev->le_supv_timeout;
2265 	params->auto_connect = HCI_AUTO_CONN_DISABLED;
2266 
2267 	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2268 
2269 	return params;
2270 }
2271 
2272 void hci_conn_params_free(struct hci_conn_params *params)
2273 {
2274 	hci_pend_le_list_del_init(params);
2275 
2276 	if (params->conn) {
2277 		hci_conn_drop(params->conn);
2278 		hci_conn_put(params->conn);
2279 	}
2280 
2281 	list_del(&params->list);
2282 	kfree(params);
2283 }
2284 
2285 /* This function requires the caller holds hdev->lock */
2286 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2287 {
2288 	struct hci_conn_params *params;
2289 
2290 	params = hci_conn_params_lookup(hdev, addr, addr_type);
2291 	if (!params)
2292 		return;
2293 
2294 	hci_conn_params_free(params);
2295 
2296 	hci_update_passive_scan(hdev);
2297 
2298 	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2299 }
2300 
2301 /* This function requires the caller holds hdev->lock */
2302 void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2303 {
2304 	struct hci_conn_params *params, *tmp;
2305 
2306 	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2307 		if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2308 			continue;
2309 
2310 		/* If trying to establish one time connection to disabled
2311 		 * device, leave the params, but mark them as just once.
2312 		 */
2313 		if (params->explicit_connect) {
2314 			params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2315 			continue;
2316 		}
2317 
2318 		hci_conn_params_free(params);
2319 	}
2320 
2321 	BT_DBG("All LE disabled connection parameters were removed");
2322 }
2323 
2324 /* This function requires the caller holds hdev->lock */
2325 static void hci_conn_params_clear_all(struct hci_dev *hdev)
2326 {
2327 	struct hci_conn_params *params, *tmp;
2328 
2329 	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2330 		hci_conn_params_free(params);
2331 
2332 	BT_DBG("All LE connection parameters were removed");
2333 }
2334 
2335 /* Copy the Identity Address of the controller.
2336  *
2337  * If the controller has a public BD_ADDR, then by default use that one.
2338  * If this is a LE only controller without a public address, default to
2339  * the static random address.
2340  *
2341  * For debugging purposes it is possible to force controllers with a
2342  * public address to use the static random address instead.
2343  *
2344  * In case BR/EDR has been disabled on a dual-mode controller and
2345  * userspace has configured a static address, then that address
2346  * becomes the identity address instead of the public BR/EDR address.
2347  */
2348 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2349 			       u8 *bdaddr_type)
2350 {
2351 	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2352 	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2353 	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2354 	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
2355 		bacpy(bdaddr, &hdev->static_addr);
2356 		*bdaddr_type = ADDR_LE_DEV_RANDOM;
2357 	} else {
2358 		bacpy(bdaddr, &hdev->bdaddr);
2359 		*bdaddr_type = ADDR_LE_DEV_PUBLIC;
2360 	}
2361 }
2362 
2363 static void hci_clear_wake_reason(struct hci_dev *hdev)
2364 {
2365 	hci_dev_lock(hdev);
2366 
2367 	hdev->wake_reason = 0;
2368 	bacpy(&hdev->wake_addr, BDADDR_ANY);
2369 	hdev->wake_addr_type = 0;
2370 
2371 	hci_dev_unlock(hdev);
2372 }
2373 
2374 static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action,
2375 				void *data)
2376 {
2377 	struct hci_dev *hdev =
2378 		container_of(nb, struct hci_dev, suspend_notifier);
2379 	int ret = 0;
2380 
2381 	/* Userspace has full control of this device. Do nothing. */
2382 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2383 		return NOTIFY_DONE;
2384 
2385 	/* To avoid a potential race with hci_unregister_dev. */
2386 	hci_dev_hold(hdev);
2387 
2388 	switch (action) {
2389 	case PM_HIBERNATION_PREPARE:
2390 	case PM_SUSPEND_PREPARE:
2391 		ret = hci_suspend_dev(hdev);
2392 		break;
2393 	case PM_POST_HIBERNATION:
2394 	case PM_POST_SUSPEND:
2395 		ret = hci_resume_dev(hdev);
2396 		break;
2397 	}
2398 
2399 	if (ret)
2400 		bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d",
2401 			   action, ret);
2402 
2403 	hci_dev_put(hdev);
2404 	return NOTIFY_DONE;
2405 }
2406 
2407 /* Alloc HCI device */
2408 struct hci_dev *hci_alloc_dev_priv(int sizeof_priv)
2409 {
2410 	struct hci_dev *hdev;
2411 	unsigned int alloc_size;
2412 
2413 	alloc_size = sizeof(*hdev);
2414 	if (sizeof_priv) {
2415 		/* Fixme: May need ALIGN-ment? */
2416 		alloc_size += sizeof_priv;
2417 	}
2418 
2419 	hdev = kzalloc(alloc_size, GFP_KERNEL);
2420 	if (!hdev)
2421 		return NULL;
2422 
2423 	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2424 	hdev->esco_type = (ESCO_HV1);
2425 	hdev->link_mode = (HCI_LM_ACCEPT);
2426 	hdev->num_iac = 0x01;		/* One IAC support is mandatory */
2427 	hdev->io_capability = 0x03;	/* No Input No Output */
2428 	hdev->manufacturer = 0xffff;	/* Default to internal use */
2429 	hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2430 	hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2431 	hdev->adv_instance_cnt = 0;
2432 	hdev->cur_adv_instance = 0x00;
2433 	hdev->adv_instance_timeout = 0;
2434 
2435 	hdev->advmon_allowlist_duration = 300;
2436 	hdev->advmon_no_filter_duration = 500;
2437 	hdev->enable_advmon_interleave_scan = 0x00;	/* Default to disable */
2438 
2439 	hdev->sniff_max_interval = 800;
2440 	hdev->sniff_min_interval = 80;
2441 
2442 	hdev->le_adv_channel_map = 0x07;
2443 	hdev->le_adv_min_interval = 0x0800;
2444 	hdev->le_adv_max_interval = 0x0800;
2445 	hdev->le_scan_interval = DISCOV_LE_SCAN_INT_FAST;
2446 	hdev->le_scan_window = DISCOV_LE_SCAN_WIN_FAST;
2447 	hdev->le_scan_int_suspend = DISCOV_LE_SCAN_INT_SLOW1;
2448 	hdev->le_scan_window_suspend = DISCOV_LE_SCAN_WIN_SLOW1;
2449 	hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT;
2450 	hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN;
2451 	hdev->le_scan_int_adv_monitor = DISCOV_LE_SCAN_INT_FAST;
2452 	hdev->le_scan_window_adv_monitor = DISCOV_LE_SCAN_WIN_FAST;
2453 	hdev->le_scan_int_connect = DISCOV_LE_SCAN_INT_CONN;
2454 	hdev->le_scan_window_connect = DISCOV_LE_SCAN_WIN_CONN;
2455 	hdev->le_conn_min_interval = 0x0018;
2456 	hdev->le_conn_max_interval = 0x0028;
2457 	hdev->le_conn_latency = 0x0000;
2458 	hdev->le_supv_timeout = 0x002a;
2459 	hdev->le_def_tx_len = 0x001b;
2460 	hdev->le_def_tx_time = 0x0148;
2461 	hdev->le_max_tx_len = 0x001b;
2462 	hdev->le_max_tx_time = 0x0148;
2463 	hdev->le_max_rx_len = 0x001b;
2464 	hdev->le_max_rx_time = 0x0148;
2465 	hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
2466 	hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
2467 	hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
2468 	hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
2469 	hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES;
2470 	hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION;
2471 	hdev->def_le_autoconnect_timeout = HCI_LE_CONN_TIMEOUT;
2472 	hdev->min_le_tx_power = HCI_TX_POWER_INVALID;
2473 	hdev->max_le_tx_power = HCI_TX_POWER_INVALID;
2474 
2475 	hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
2476 	hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
2477 	hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
2478 	hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
2479 	hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
2480 	hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE;
2481 
2482 	/* default 1.28 sec page scan */
2483 	hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD;
2484 	hdev->def_page_scan_int = 0x0800;
2485 	hdev->def_page_scan_window = 0x0012;
2486 
2487 	mutex_init(&hdev->lock);
2488 	mutex_init(&hdev->req_lock);
2489 
2490 	ida_init(&hdev->unset_handle_ida);
2491 
2492 	INIT_LIST_HEAD(&hdev->mesh_pending);
2493 	INIT_LIST_HEAD(&hdev->mgmt_pending);
2494 	INIT_LIST_HEAD(&hdev->reject_list);
2495 	INIT_LIST_HEAD(&hdev->accept_list);
2496 	INIT_LIST_HEAD(&hdev->uuids);
2497 	INIT_LIST_HEAD(&hdev->link_keys);
2498 	INIT_LIST_HEAD(&hdev->long_term_keys);
2499 	INIT_LIST_HEAD(&hdev->identity_resolving_keys);
2500 	INIT_LIST_HEAD(&hdev->remote_oob_data);
2501 	INIT_LIST_HEAD(&hdev->le_accept_list);
2502 	INIT_LIST_HEAD(&hdev->le_resolv_list);
2503 	INIT_LIST_HEAD(&hdev->le_conn_params);
2504 	INIT_LIST_HEAD(&hdev->pend_le_conns);
2505 	INIT_LIST_HEAD(&hdev->pend_le_reports);
2506 	INIT_LIST_HEAD(&hdev->conn_hash.list);
2507 	INIT_LIST_HEAD(&hdev->adv_instances);
2508 	INIT_LIST_HEAD(&hdev->blocked_keys);
2509 	INIT_LIST_HEAD(&hdev->monitored_devices);
2510 
2511 	INIT_LIST_HEAD(&hdev->local_codecs);
2512 	INIT_WORK(&hdev->rx_work, hci_rx_work);
2513 	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
2514 	INIT_WORK(&hdev->tx_work, hci_tx_work);
2515 	INIT_WORK(&hdev->power_on, hci_power_on);
2516 	INIT_WORK(&hdev->error_reset, hci_error_reset);
2517 
2518 	hci_cmd_sync_init(hdev);
2519 
2520 	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
2521 
2522 	skb_queue_head_init(&hdev->rx_q);
2523 	skb_queue_head_init(&hdev->cmd_q);
2524 	skb_queue_head_init(&hdev->raw_q);
2525 
2526 	init_waitqueue_head(&hdev->req_wait_q);
2527 
2528 	INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
2529 	INIT_DELAYED_WORK(&hdev->ncmd_timer, hci_ncmd_timeout);
2530 
2531 	hci_devcd_setup(hdev);
2532 
2533 	hci_init_sysfs(hdev);
2534 	discovery_init(hdev);
2535 
2536 	return hdev;
2537 }
2538 EXPORT_SYMBOL(hci_alloc_dev_priv);
2539 
2540 /* Free HCI device */
2541 void hci_free_dev(struct hci_dev *hdev)
2542 {
2543 	/* will free via device release */
2544 	put_device(&hdev->dev);
2545 }
2546 EXPORT_SYMBOL(hci_free_dev);
2547 
2548 /* Register HCI device */
2549 int hci_register_dev(struct hci_dev *hdev)
2550 {
2551 	int id, error;
2552 
2553 	if (!hdev->open || !hdev->close || !hdev->send)
2554 		return -EINVAL;
2555 
2556 	id = ida_alloc_max(&hci_index_ida, HCI_MAX_ID - 1, GFP_KERNEL);
2557 	if (id < 0)
2558 		return id;
2559 
2560 	error = dev_set_name(&hdev->dev, "hci%u", id);
2561 	if (error)
2562 		return error;
2563 
2564 	hdev->name = dev_name(&hdev->dev);
2565 	hdev->id = id;
2566 
2567 	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2568 
2569 	hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
2570 	if (!hdev->workqueue) {
2571 		error = -ENOMEM;
2572 		goto err;
2573 	}
2574 
2575 	hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
2576 						      hdev->name);
2577 	if (!hdev->req_workqueue) {
2578 		destroy_workqueue(hdev->workqueue);
2579 		error = -ENOMEM;
2580 		goto err;
2581 	}
2582 
2583 	if (!IS_ERR_OR_NULL(bt_debugfs))
2584 		hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
2585 
2586 	error = device_add(&hdev->dev);
2587 	if (error < 0)
2588 		goto err_wqueue;
2589 
2590 	hci_leds_init(hdev);
2591 
2592 	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
2593 				    RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
2594 				    hdev);
2595 	if (hdev->rfkill) {
2596 		if (rfkill_register(hdev->rfkill) < 0) {
2597 			rfkill_destroy(hdev->rfkill);
2598 			hdev->rfkill = NULL;
2599 		}
2600 	}
2601 
2602 	if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
2603 		hci_dev_set_flag(hdev, HCI_RFKILLED);
2604 
2605 	hci_dev_set_flag(hdev, HCI_SETUP);
2606 	hci_dev_set_flag(hdev, HCI_AUTO_OFF);
2607 
2608 	/* Assume BR/EDR support until proven otherwise (such as
2609 	 * through reading supported features during init.
2610 	 */
2611 	hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
2612 
2613 	write_lock(&hci_dev_list_lock);
2614 	list_add(&hdev->list, &hci_dev_list);
2615 	write_unlock(&hci_dev_list_lock);
2616 
2617 	/* Devices that are marked for raw-only usage are unconfigured
2618 	 * and should not be included in normal operation.
2619 	 */
2620 	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
2621 		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
2622 
2623 	/* Mark Remote Wakeup connection flag as supported if driver has wakeup
2624 	 * callback.
2625 	 */
2626 	if (hdev->wakeup)
2627 		hdev->conn_flags |= HCI_CONN_FLAG_REMOTE_WAKEUP;
2628 
2629 	hci_sock_dev_event(hdev, HCI_DEV_REG);
2630 	hci_dev_hold(hdev);
2631 
2632 	error = hci_register_suspend_notifier(hdev);
2633 	if (error)
2634 		BT_WARN("register suspend notifier failed error:%d\n", error);
2635 
2636 	queue_work(hdev->req_workqueue, &hdev->power_on);
2637 
2638 	idr_init(&hdev->adv_monitors_idr);
2639 	msft_register(hdev);
2640 
2641 	return id;
2642 
2643 err_wqueue:
2644 	debugfs_remove_recursive(hdev->debugfs);
2645 	destroy_workqueue(hdev->workqueue);
2646 	destroy_workqueue(hdev->req_workqueue);
2647 err:
2648 	ida_free(&hci_index_ida, hdev->id);
2649 
2650 	return error;
2651 }
2652 EXPORT_SYMBOL(hci_register_dev);
2653 
2654 /* Unregister HCI device */
2655 void hci_unregister_dev(struct hci_dev *hdev)
2656 {
2657 	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2658 
2659 	mutex_lock(&hdev->unregister_lock);
2660 	hci_dev_set_flag(hdev, HCI_UNREGISTER);
2661 	mutex_unlock(&hdev->unregister_lock);
2662 
2663 	write_lock(&hci_dev_list_lock);
2664 	list_del(&hdev->list);
2665 	write_unlock(&hci_dev_list_lock);
2666 
2667 	disable_work_sync(&hdev->rx_work);
2668 	disable_work_sync(&hdev->cmd_work);
2669 	disable_work_sync(&hdev->tx_work);
2670 	disable_work_sync(&hdev->power_on);
2671 	disable_work_sync(&hdev->error_reset);
2672 
2673 	hci_cmd_sync_clear(hdev);
2674 
2675 	hci_unregister_suspend_notifier(hdev);
2676 
2677 	hci_dev_do_close(hdev);
2678 
2679 	if (!test_bit(HCI_INIT, &hdev->flags) &&
2680 	    !hci_dev_test_flag(hdev, HCI_SETUP) &&
2681 	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
2682 		hci_dev_lock(hdev);
2683 		mgmt_index_removed(hdev);
2684 		hci_dev_unlock(hdev);
2685 	}
2686 
2687 	/* mgmt_index_removed should take care of emptying the
2688 	 * pending list */
2689 	BUG_ON(!list_empty(&hdev->mgmt_pending));
2690 
2691 	hci_sock_dev_event(hdev, HCI_DEV_UNREG);
2692 
2693 	if (hdev->rfkill) {
2694 		rfkill_unregister(hdev->rfkill);
2695 		rfkill_destroy(hdev->rfkill);
2696 	}
2697 
2698 	device_del(&hdev->dev);
2699 	/* Actual cleanup is deferred until hci_release_dev(). */
2700 	hci_dev_put(hdev);
2701 }
2702 EXPORT_SYMBOL(hci_unregister_dev);
2703 
2704 /* Release HCI device */
2705 void hci_release_dev(struct hci_dev *hdev)
2706 {
2707 	debugfs_remove_recursive(hdev->debugfs);
2708 	kfree_const(hdev->hw_info);
2709 	kfree_const(hdev->fw_info);
2710 
2711 	destroy_workqueue(hdev->workqueue);
2712 	destroy_workqueue(hdev->req_workqueue);
2713 
2714 	hci_dev_lock(hdev);
2715 	hci_bdaddr_list_clear(&hdev->reject_list);
2716 	hci_bdaddr_list_clear(&hdev->accept_list);
2717 	hci_uuids_clear(hdev);
2718 	hci_link_keys_clear(hdev);
2719 	hci_smp_ltks_clear(hdev);
2720 	hci_smp_irks_clear(hdev);
2721 	hci_remote_oob_data_clear(hdev);
2722 	hci_adv_instances_clear(hdev);
2723 	hci_adv_monitors_clear(hdev);
2724 	hci_bdaddr_list_clear(&hdev->le_accept_list);
2725 	hci_bdaddr_list_clear(&hdev->le_resolv_list);
2726 	hci_conn_params_clear_all(hdev);
2727 	hci_discovery_filter_clear(hdev);
2728 	hci_blocked_keys_clear(hdev);
2729 	hci_codec_list_clear(&hdev->local_codecs);
2730 	msft_release(hdev);
2731 	hci_dev_unlock(hdev);
2732 
2733 	ida_destroy(&hdev->unset_handle_ida);
2734 	ida_free(&hci_index_ida, hdev->id);
2735 	kfree_skb(hdev->sent_cmd);
2736 	kfree_skb(hdev->req_skb);
2737 	kfree_skb(hdev->recv_event);
2738 	kfree(hdev);
2739 }
2740 EXPORT_SYMBOL(hci_release_dev);
2741 
2742 int hci_register_suspend_notifier(struct hci_dev *hdev)
2743 {
2744 	int ret = 0;
2745 
2746 	if (!hdev->suspend_notifier.notifier_call &&
2747 	    !test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) {
2748 		hdev->suspend_notifier.notifier_call = hci_suspend_notifier;
2749 		ret = register_pm_notifier(&hdev->suspend_notifier);
2750 	}
2751 
2752 	return ret;
2753 }
2754 
2755 int hci_unregister_suspend_notifier(struct hci_dev *hdev)
2756 {
2757 	int ret = 0;
2758 
2759 	if (hdev->suspend_notifier.notifier_call) {
2760 		ret = unregister_pm_notifier(&hdev->suspend_notifier);
2761 		if (!ret)
2762 			hdev->suspend_notifier.notifier_call = NULL;
2763 	}
2764 
2765 	return ret;
2766 }
2767 
2768 /* Cancel ongoing command synchronously:
2769  *
2770  * - Cancel command timer
2771  * - Reset command counter
2772  * - Cancel command request
2773  */
2774 static void hci_cancel_cmd_sync(struct hci_dev *hdev, int err)
2775 {
2776 	bt_dev_dbg(hdev, "err 0x%2.2x", err);
2777 
2778 	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
2779 		disable_delayed_work_sync(&hdev->cmd_timer);
2780 		disable_delayed_work_sync(&hdev->ncmd_timer);
2781 	} else  {
2782 		cancel_delayed_work_sync(&hdev->cmd_timer);
2783 		cancel_delayed_work_sync(&hdev->ncmd_timer);
2784 	}
2785 
2786 	atomic_set(&hdev->cmd_cnt, 1);
2787 
2788 	hci_cmd_sync_cancel_sync(hdev, err);
2789 }
2790 
2791 /* Suspend HCI device */
2792 int hci_suspend_dev(struct hci_dev *hdev)
2793 {
2794 	int ret;
2795 
2796 	bt_dev_dbg(hdev, "");
2797 
2798 	/* Suspend should only act on when powered. */
2799 	if (!hdev_is_powered(hdev) ||
2800 	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2801 		return 0;
2802 
2803 	/* If powering down don't attempt to suspend */
2804 	if (mgmt_powering_down(hdev))
2805 		return 0;
2806 
2807 	/* Cancel potentially blocking sync operation before suspend */
2808 	hci_cancel_cmd_sync(hdev, EHOSTDOWN);
2809 
2810 	hci_req_sync_lock(hdev);
2811 	ret = hci_suspend_sync(hdev);
2812 	hci_req_sync_unlock(hdev);
2813 
2814 	hci_clear_wake_reason(hdev);
2815 	mgmt_suspending(hdev, hdev->suspend_state);
2816 
2817 	hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
2818 	return ret;
2819 }
2820 EXPORT_SYMBOL(hci_suspend_dev);
2821 
2822 /* Resume HCI device */
2823 int hci_resume_dev(struct hci_dev *hdev)
2824 {
2825 	int ret;
2826 
2827 	bt_dev_dbg(hdev, "");
2828 
2829 	/* Resume should only act on when powered. */
2830 	if (!hdev_is_powered(hdev) ||
2831 	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2832 		return 0;
2833 
2834 	/* If powering down don't attempt to resume */
2835 	if (mgmt_powering_down(hdev))
2836 		return 0;
2837 
2838 	hci_req_sync_lock(hdev);
2839 	ret = hci_resume_sync(hdev);
2840 	hci_req_sync_unlock(hdev);
2841 
2842 	mgmt_resuming(hdev, hdev->wake_reason, &hdev->wake_addr,
2843 		      hdev->wake_addr_type);
2844 
2845 	hci_sock_dev_event(hdev, HCI_DEV_RESUME);
2846 	return ret;
2847 }
2848 EXPORT_SYMBOL(hci_resume_dev);
2849 
2850 /* Reset HCI device */
2851 int hci_reset_dev(struct hci_dev *hdev)
2852 {
2853 	static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
2854 	struct sk_buff *skb;
2855 
2856 	skb = bt_skb_alloc(3, GFP_ATOMIC);
2857 	if (!skb)
2858 		return -ENOMEM;
2859 
2860 	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
2861 	skb_put_data(skb, hw_err, 3);
2862 
2863 	bt_dev_err(hdev, "Injecting HCI hardware error event");
2864 
2865 	/* Send Hardware Error to upper stack */
2866 	return hci_recv_frame(hdev, skb);
2867 }
2868 EXPORT_SYMBOL(hci_reset_dev);
2869 
2870 static u8 hci_dev_classify_pkt_type(struct hci_dev *hdev, struct sk_buff *skb)
2871 {
2872 	if (hdev->classify_pkt_type)
2873 		return hdev->classify_pkt_type(hdev, skb);
2874 
2875 	return hci_skb_pkt_type(skb);
2876 }
2877 
2878 /* Receive frame from HCI drivers */
2879 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
2880 {
2881 	u8 dev_pkt_type;
2882 
2883 	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
2884 		      && !test_bit(HCI_INIT, &hdev->flags))) {
2885 		kfree_skb(skb);
2886 		return -ENXIO;
2887 	}
2888 
2889 	/* Check if the driver agree with packet type classification */
2890 	dev_pkt_type = hci_dev_classify_pkt_type(hdev, skb);
2891 	if (hci_skb_pkt_type(skb) != dev_pkt_type) {
2892 		hci_skb_pkt_type(skb) = dev_pkt_type;
2893 	}
2894 
2895 	switch (hci_skb_pkt_type(skb)) {
2896 	case HCI_EVENT_PKT:
2897 		break;
2898 	case HCI_ACLDATA_PKT:
2899 		/* Detect if ISO packet has been sent as ACL */
2900 		if (hci_conn_num(hdev, ISO_LINK)) {
2901 			__u16 handle = __le16_to_cpu(hci_acl_hdr(skb)->handle);
2902 			__u8 type;
2903 
2904 			type = hci_conn_lookup_type(hdev, hci_handle(handle));
2905 			if (type == ISO_LINK)
2906 				hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
2907 		}
2908 		break;
2909 	case HCI_SCODATA_PKT:
2910 		break;
2911 	case HCI_ISODATA_PKT:
2912 		break;
2913 	default:
2914 		kfree_skb(skb);
2915 		return -EINVAL;
2916 	}
2917 
2918 	/* Incoming skb */
2919 	bt_cb(skb)->incoming = 1;
2920 
2921 	/* Time stamp */
2922 	__net_timestamp(skb);
2923 
2924 	skb_queue_tail(&hdev->rx_q, skb);
2925 	queue_work(hdev->workqueue, &hdev->rx_work);
2926 
2927 	return 0;
2928 }
2929 EXPORT_SYMBOL(hci_recv_frame);
2930 
2931 /* Receive diagnostic message from HCI drivers */
2932 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
2933 {
2934 	/* Mark as diagnostic packet */
2935 	hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
2936 
2937 	/* Time stamp */
2938 	__net_timestamp(skb);
2939 
2940 	skb_queue_tail(&hdev->rx_q, skb);
2941 	queue_work(hdev->workqueue, &hdev->rx_work);
2942 
2943 	return 0;
2944 }
2945 EXPORT_SYMBOL(hci_recv_diag);
2946 
2947 void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
2948 {
2949 	va_list vargs;
2950 
2951 	va_start(vargs, fmt);
2952 	kfree_const(hdev->hw_info);
2953 	hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
2954 	va_end(vargs);
2955 }
2956 EXPORT_SYMBOL(hci_set_hw_info);
2957 
2958 void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
2959 {
2960 	va_list vargs;
2961 
2962 	va_start(vargs, fmt);
2963 	kfree_const(hdev->fw_info);
2964 	hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
2965 	va_end(vargs);
2966 }
2967 EXPORT_SYMBOL(hci_set_fw_info);
2968 
2969 /* ---- Interface to upper protocols ---- */
2970 
2971 int hci_register_cb(struct hci_cb *cb)
2972 {
2973 	BT_DBG("%p name %s", cb, cb->name);
2974 
2975 	list_add_tail_rcu(&cb->list, &hci_cb_list);
2976 
2977 	return 0;
2978 }
2979 EXPORT_SYMBOL(hci_register_cb);
2980 
2981 int hci_unregister_cb(struct hci_cb *cb)
2982 {
2983 	BT_DBG("%p name %s", cb, cb->name);
2984 
2985 	list_del_rcu(&cb->list);
2986 	synchronize_rcu();
2987 
2988 	return 0;
2989 }
2990 EXPORT_SYMBOL(hci_unregister_cb);
2991 
2992 static int hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
2993 {
2994 	int err;
2995 
2996 	BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
2997 	       skb->len);
2998 
2999 	/* Time stamp */
3000 	__net_timestamp(skb);
3001 
3002 	/* Send copy to monitor */
3003 	hci_send_to_monitor(hdev, skb);
3004 
3005 	if (atomic_read(&hdev->promisc)) {
3006 		/* Send copy to the sockets */
3007 		hci_send_to_sock(hdev, skb);
3008 	}
3009 
3010 	/* Get rid of skb owner, prior to sending to the driver. */
3011 	skb_orphan(skb);
3012 
3013 	if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3014 		kfree_skb(skb);
3015 		return -EINVAL;
3016 	}
3017 
3018 	err = hdev->send(hdev, skb);
3019 	if (err < 0) {
3020 		bt_dev_err(hdev, "sending frame failed (%d)", err);
3021 		kfree_skb(skb);
3022 		return err;
3023 	}
3024 
3025 	return 0;
3026 }
3027 
3028 /* Send HCI command */
3029 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3030 		 const void *param)
3031 {
3032 	struct sk_buff *skb;
3033 
3034 	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3035 
3036 	skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, NULL);
3037 	if (!skb) {
3038 		bt_dev_err(hdev, "no memory for command");
3039 		return -ENOMEM;
3040 	}
3041 
3042 	/* Stand-alone HCI commands must be flagged as
3043 	 * single-command requests.
3044 	 */
3045 	bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3046 
3047 	skb_queue_tail(&hdev->cmd_q, skb);
3048 	queue_work(hdev->workqueue, &hdev->cmd_work);
3049 
3050 	return 0;
3051 }
3052 
3053 int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
3054 		   const void *param)
3055 {
3056 	struct sk_buff *skb;
3057 
3058 	if (hci_opcode_ogf(opcode) != 0x3f) {
3059 		/* A controller receiving a command shall respond with either
3060 		 * a Command Status Event or a Command Complete Event.
3061 		 * Therefore, all standard HCI commands must be sent via the
3062 		 * standard API, using hci_send_cmd or hci_cmd_sync helpers.
3063 		 * Some vendors do not comply with this rule for vendor-specific
3064 		 * commands and do not return any event. We want to support
3065 		 * unresponded commands for such cases only.
3066 		 */
3067 		bt_dev_err(hdev, "unresponded command not supported");
3068 		return -EINVAL;
3069 	}
3070 
3071 	skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, NULL);
3072 	if (!skb) {
3073 		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
3074 			   opcode);
3075 		return -ENOMEM;
3076 	}
3077 
3078 	hci_send_frame(hdev, skb);
3079 
3080 	return 0;
3081 }
3082 EXPORT_SYMBOL(__hci_cmd_send);
3083 
3084 /* Get data from the previously sent command */
3085 static void *hci_cmd_data(struct sk_buff *skb, __u16 opcode)
3086 {
3087 	struct hci_command_hdr *hdr;
3088 
3089 	if (!skb || skb->len < HCI_COMMAND_HDR_SIZE)
3090 		return NULL;
3091 
3092 	hdr = (void *)skb->data;
3093 
3094 	if (hdr->opcode != cpu_to_le16(opcode))
3095 		return NULL;
3096 
3097 	return skb->data + HCI_COMMAND_HDR_SIZE;
3098 }
3099 
3100 /* Get data from the previously sent command */
3101 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3102 {
3103 	void *data;
3104 
3105 	/* Check if opcode matches last sent command */
3106 	data = hci_cmd_data(hdev->sent_cmd, opcode);
3107 	if (!data)
3108 		/* Check if opcode matches last request */
3109 		data = hci_cmd_data(hdev->req_skb, opcode);
3110 
3111 	return data;
3112 }
3113 
3114 /* Get data from last received event */
3115 void *hci_recv_event_data(struct hci_dev *hdev, __u8 event)
3116 {
3117 	struct hci_event_hdr *hdr;
3118 	int offset;
3119 
3120 	if (!hdev->recv_event)
3121 		return NULL;
3122 
3123 	hdr = (void *)hdev->recv_event->data;
3124 	offset = sizeof(*hdr);
3125 
3126 	if (hdr->evt != event) {
3127 		/* In case of LE metaevent check the subevent match */
3128 		if (hdr->evt == HCI_EV_LE_META) {
3129 			struct hci_ev_le_meta *ev;
3130 
3131 			ev = (void *)hdev->recv_event->data + offset;
3132 			offset += sizeof(*ev);
3133 			if (ev->subevent == event)
3134 				goto found;
3135 		}
3136 		return NULL;
3137 	}
3138 
3139 found:
3140 	bt_dev_dbg(hdev, "event 0x%2.2x", event);
3141 
3142 	return hdev->recv_event->data + offset;
3143 }
3144 
3145 /* Send ACL data */
3146 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3147 {
3148 	struct hci_acl_hdr *hdr;
3149 	int len = skb->len;
3150 
3151 	skb_push(skb, HCI_ACL_HDR_SIZE);
3152 	skb_reset_transport_header(skb);
3153 	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3154 	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3155 	hdr->dlen   = cpu_to_le16(len);
3156 }
3157 
3158 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3159 			  struct sk_buff *skb, __u16 flags)
3160 {
3161 	struct hci_conn *conn = chan->conn;
3162 	struct hci_dev *hdev = conn->hdev;
3163 	struct sk_buff *list;
3164 
3165 	skb->len = skb_headlen(skb);
3166 	skb->data_len = 0;
3167 
3168 	hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3169 
3170 	hci_add_acl_hdr(skb, conn->handle, flags);
3171 
3172 	list = skb_shinfo(skb)->frag_list;
3173 	if (!list) {
3174 		/* Non fragmented */
3175 		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3176 
3177 		skb_queue_tail(queue, skb);
3178 	} else {
3179 		/* Fragmented */
3180 		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3181 
3182 		skb_shinfo(skb)->frag_list = NULL;
3183 
3184 		/* Queue all fragments atomically. We need to use spin_lock_bh
3185 		 * here because of 6LoWPAN links, as there this function is
3186 		 * called from softirq and using normal spin lock could cause
3187 		 * deadlocks.
3188 		 */
3189 		spin_lock_bh(&queue->lock);
3190 
3191 		__skb_queue_tail(queue, skb);
3192 
3193 		flags &= ~ACL_START;
3194 		flags |= ACL_CONT;
3195 		do {
3196 			skb = list; list = list->next;
3197 
3198 			hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3199 			hci_add_acl_hdr(skb, conn->handle, flags);
3200 
3201 			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3202 
3203 			__skb_queue_tail(queue, skb);
3204 		} while (list);
3205 
3206 		spin_unlock_bh(&queue->lock);
3207 	}
3208 }
3209 
3210 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3211 {
3212 	struct hci_dev *hdev = chan->conn->hdev;
3213 
3214 	BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3215 
3216 	hci_queue_acl(chan, &chan->data_q, skb, flags);
3217 
3218 	queue_work(hdev->workqueue, &hdev->tx_work);
3219 }
3220 
3221 /* Send SCO data */
3222 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3223 {
3224 	struct hci_dev *hdev = conn->hdev;
3225 	struct hci_sco_hdr hdr;
3226 
3227 	BT_DBG("%s len %d", hdev->name, skb->len);
3228 
3229 	hdr.handle = cpu_to_le16(conn->handle);
3230 	hdr.dlen   = skb->len;
3231 
3232 	skb_push(skb, HCI_SCO_HDR_SIZE);
3233 	skb_reset_transport_header(skb);
3234 	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3235 
3236 	hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3237 
3238 	skb_queue_tail(&conn->data_q, skb);
3239 	queue_work(hdev->workqueue, &hdev->tx_work);
3240 }
3241 
3242 /* Send ISO data */
3243 static void hci_add_iso_hdr(struct sk_buff *skb, __u16 handle, __u8 flags)
3244 {
3245 	struct hci_iso_hdr *hdr;
3246 	int len = skb->len;
3247 
3248 	skb_push(skb, HCI_ISO_HDR_SIZE);
3249 	skb_reset_transport_header(skb);
3250 	hdr = (struct hci_iso_hdr *)skb_transport_header(skb);
3251 	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3252 	hdr->dlen   = cpu_to_le16(len);
3253 }
3254 
3255 static void hci_queue_iso(struct hci_conn *conn, struct sk_buff_head *queue,
3256 			  struct sk_buff *skb)
3257 {
3258 	struct hci_dev *hdev = conn->hdev;
3259 	struct sk_buff *list;
3260 	__u16 flags;
3261 
3262 	skb->len = skb_headlen(skb);
3263 	skb->data_len = 0;
3264 
3265 	hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3266 
3267 	list = skb_shinfo(skb)->frag_list;
3268 
3269 	flags = hci_iso_flags_pack(list ? ISO_START : ISO_SINGLE, 0x00);
3270 	hci_add_iso_hdr(skb, conn->handle, flags);
3271 
3272 	if (!list) {
3273 		/* Non fragmented */
3274 		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3275 
3276 		skb_queue_tail(queue, skb);
3277 	} else {
3278 		/* Fragmented */
3279 		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3280 
3281 		skb_shinfo(skb)->frag_list = NULL;
3282 
3283 		__skb_queue_tail(queue, skb);
3284 
3285 		do {
3286 			skb = list; list = list->next;
3287 
3288 			hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3289 			flags = hci_iso_flags_pack(list ? ISO_CONT : ISO_END,
3290 						   0x00);
3291 			hci_add_iso_hdr(skb, conn->handle, flags);
3292 
3293 			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3294 
3295 			__skb_queue_tail(queue, skb);
3296 		} while (list);
3297 	}
3298 }
3299 
3300 void hci_send_iso(struct hci_conn *conn, struct sk_buff *skb)
3301 {
3302 	struct hci_dev *hdev = conn->hdev;
3303 
3304 	BT_DBG("%s len %d", hdev->name, skb->len);
3305 
3306 	hci_queue_iso(conn, &conn->data_q, skb);
3307 
3308 	queue_work(hdev->workqueue, &hdev->tx_work);
3309 }
3310 
3311 /* ---- HCI TX task (outgoing data) ---- */
3312 
3313 /* HCI Connection scheduler */
3314 static inline void hci_quote_sent(struct hci_conn *conn, int num, int *quote)
3315 {
3316 	struct hci_dev *hdev;
3317 	int cnt, q;
3318 
3319 	if (!conn) {
3320 		*quote = 0;
3321 		return;
3322 	}
3323 
3324 	hdev = conn->hdev;
3325 
3326 	switch (conn->type) {
3327 	case ACL_LINK:
3328 		cnt = hdev->acl_cnt;
3329 		break;
3330 	case SCO_LINK:
3331 	case ESCO_LINK:
3332 		cnt = hdev->sco_cnt;
3333 		break;
3334 	case LE_LINK:
3335 		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3336 		break;
3337 	case ISO_LINK:
3338 		cnt = hdev->iso_mtu ? hdev->iso_cnt :
3339 			hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3340 		break;
3341 	default:
3342 		cnt = 0;
3343 		bt_dev_err(hdev, "unknown link type %d", conn->type);
3344 	}
3345 
3346 	q = cnt / num;
3347 	*quote = q ? q : 1;
3348 }
3349 
3350 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3351 				     int *quote)
3352 {
3353 	struct hci_conn_hash *h = &hdev->conn_hash;
3354 	struct hci_conn *conn = NULL, *c;
3355 	unsigned int num = 0, min = ~0;
3356 
3357 	/* We don't have to lock device here. Connections are always
3358 	 * added and removed with TX task disabled. */
3359 
3360 	rcu_read_lock();
3361 
3362 	list_for_each_entry_rcu(c, &h->list, list) {
3363 		if (c->type != type || skb_queue_empty(&c->data_q))
3364 			continue;
3365 
3366 		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3367 			continue;
3368 
3369 		num++;
3370 
3371 		if (c->sent < min) {
3372 			min  = c->sent;
3373 			conn = c;
3374 		}
3375 
3376 		if (hci_conn_num(hdev, type) == num)
3377 			break;
3378 	}
3379 
3380 	rcu_read_unlock();
3381 
3382 	hci_quote_sent(conn, num, quote);
3383 
3384 	BT_DBG("conn %p quote %d", conn, *quote);
3385 	return conn;
3386 }
3387 
3388 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3389 {
3390 	struct hci_conn_hash *h = &hdev->conn_hash;
3391 	struct hci_conn *c;
3392 
3393 	bt_dev_err(hdev, "link tx timeout");
3394 
3395 	rcu_read_lock();
3396 
3397 	/* Kill stalled connections */
3398 	list_for_each_entry_rcu(c, &h->list, list) {
3399 		if (c->type == type && c->sent) {
3400 			bt_dev_err(hdev, "killing stalled connection %pMR",
3401 				   &c->dst);
3402 			/* hci_disconnect might sleep, so, we have to release
3403 			 * the RCU read lock before calling it.
3404 			 */
3405 			rcu_read_unlock();
3406 			hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3407 			rcu_read_lock();
3408 		}
3409 	}
3410 
3411 	rcu_read_unlock();
3412 }
3413 
3414 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3415 				      int *quote)
3416 {
3417 	struct hci_conn_hash *h = &hdev->conn_hash;
3418 	struct hci_chan *chan = NULL;
3419 	unsigned int num = 0, min = ~0, cur_prio = 0;
3420 	struct hci_conn *conn;
3421 	int conn_num = 0;
3422 
3423 	BT_DBG("%s", hdev->name);
3424 
3425 	rcu_read_lock();
3426 
3427 	list_for_each_entry_rcu(conn, &h->list, list) {
3428 		struct hci_chan *tmp;
3429 
3430 		if (conn->type != type)
3431 			continue;
3432 
3433 		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3434 			continue;
3435 
3436 		conn_num++;
3437 
3438 		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3439 			struct sk_buff *skb;
3440 
3441 			if (skb_queue_empty(&tmp->data_q))
3442 				continue;
3443 
3444 			skb = skb_peek(&tmp->data_q);
3445 			if (skb->priority < cur_prio)
3446 				continue;
3447 
3448 			if (skb->priority > cur_prio) {
3449 				num = 0;
3450 				min = ~0;
3451 				cur_prio = skb->priority;
3452 			}
3453 
3454 			num++;
3455 
3456 			if (conn->sent < min) {
3457 				min  = conn->sent;
3458 				chan = tmp;
3459 			}
3460 		}
3461 
3462 		if (hci_conn_num(hdev, type) == conn_num)
3463 			break;
3464 	}
3465 
3466 	rcu_read_unlock();
3467 
3468 	if (!chan)
3469 		return NULL;
3470 
3471 	hci_quote_sent(chan->conn, num, quote);
3472 
3473 	BT_DBG("chan %p quote %d", chan, *quote);
3474 	return chan;
3475 }
3476 
3477 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3478 {
3479 	struct hci_conn_hash *h = &hdev->conn_hash;
3480 	struct hci_conn *conn;
3481 	int num = 0;
3482 
3483 	BT_DBG("%s", hdev->name);
3484 
3485 	rcu_read_lock();
3486 
3487 	list_for_each_entry_rcu(conn, &h->list, list) {
3488 		struct hci_chan *chan;
3489 
3490 		if (conn->type != type)
3491 			continue;
3492 
3493 		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3494 			continue;
3495 
3496 		num++;
3497 
3498 		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3499 			struct sk_buff *skb;
3500 
3501 			if (chan->sent) {
3502 				chan->sent = 0;
3503 				continue;
3504 			}
3505 
3506 			if (skb_queue_empty(&chan->data_q))
3507 				continue;
3508 
3509 			skb = skb_peek(&chan->data_q);
3510 			if (skb->priority >= HCI_PRIO_MAX - 1)
3511 				continue;
3512 
3513 			skb->priority = HCI_PRIO_MAX - 1;
3514 
3515 			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3516 			       skb->priority);
3517 		}
3518 
3519 		if (hci_conn_num(hdev, type) == num)
3520 			break;
3521 	}
3522 
3523 	rcu_read_unlock();
3524 
3525 }
3526 
3527 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt, u8 type)
3528 {
3529 	unsigned long last_tx;
3530 
3531 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
3532 		return;
3533 
3534 	switch (type) {
3535 	case LE_LINK:
3536 		last_tx = hdev->le_last_tx;
3537 		break;
3538 	default:
3539 		last_tx = hdev->acl_last_tx;
3540 		break;
3541 	}
3542 
3543 	/* tx timeout must be longer than maximum link supervision timeout
3544 	 * (40.9 seconds)
3545 	 */
3546 	if (!cnt && time_after(jiffies, last_tx + HCI_ACL_TX_TIMEOUT))
3547 		hci_link_tx_to(hdev, type);
3548 }
3549 
3550 /* Schedule SCO */
3551 static void hci_sched_sco(struct hci_dev *hdev)
3552 {
3553 	struct hci_conn *conn;
3554 	struct sk_buff *skb;
3555 	int quote;
3556 
3557 	BT_DBG("%s", hdev->name);
3558 
3559 	if (!hci_conn_num(hdev, SCO_LINK))
3560 		return;
3561 
3562 	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
3563 		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3564 			BT_DBG("skb %p len %d", skb, skb->len);
3565 			hci_send_frame(hdev, skb);
3566 
3567 			conn->sent++;
3568 			if (conn->sent == ~0)
3569 				conn->sent = 0;
3570 		}
3571 	}
3572 }
3573 
3574 static void hci_sched_esco(struct hci_dev *hdev)
3575 {
3576 	struct hci_conn *conn;
3577 	struct sk_buff *skb;
3578 	int quote;
3579 
3580 	BT_DBG("%s", hdev->name);
3581 
3582 	if (!hci_conn_num(hdev, ESCO_LINK))
3583 		return;
3584 
3585 	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3586 						     &quote))) {
3587 		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3588 			BT_DBG("skb %p len %d", skb, skb->len);
3589 			hci_send_frame(hdev, skb);
3590 
3591 			conn->sent++;
3592 			if (conn->sent == ~0)
3593 				conn->sent = 0;
3594 		}
3595 	}
3596 }
3597 
3598 static void hci_sched_acl_pkt(struct hci_dev *hdev)
3599 {
3600 	unsigned int cnt = hdev->acl_cnt;
3601 	struct hci_chan *chan;
3602 	struct sk_buff *skb;
3603 	int quote;
3604 
3605 	__check_timeout(hdev, cnt, ACL_LINK);
3606 
3607 	while (hdev->acl_cnt &&
3608 	       (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
3609 		u32 priority = (skb_peek(&chan->data_q))->priority;
3610 		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3611 			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3612 			       skb->len, skb->priority);
3613 
3614 			/* Stop if priority has changed */
3615 			if (skb->priority < priority)
3616 				break;
3617 
3618 			skb = skb_dequeue(&chan->data_q);
3619 
3620 			hci_conn_enter_active_mode(chan->conn,
3621 						   bt_cb(skb)->force_active);
3622 
3623 			hci_send_frame(hdev, skb);
3624 			hdev->acl_last_tx = jiffies;
3625 
3626 			hdev->acl_cnt--;
3627 			chan->sent++;
3628 			chan->conn->sent++;
3629 
3630 			/* Send pending SCO packets right away */
3631 			hci_sched_sco(hdev);
3632 			hci_sched_esco(hdev);
3633 		}
3634 	}
3635 
3636 	if (cnt != hdev->acl_cnt)
3637 		hci_prio_recalculate(hdev, ACL_LINK);
3638 }
3639 
3640 static void hci_sched_acl(struct hci_dev *hdev)
3641 {
3642 	BT_DBG("%s", hdev->name);
3643 
3644 	/* No ACL link over BR/EDR controller */
3645 	if (!hci_conn_num(hdev, ACL_LINK))
3646 		return;
3647 
3648 	hci_sched_acl_pkt(hdev);
3649 }
3650 
3651 static void hci_sched_le(struct hci_dev *hdev)
3652 {
3653 	struct hci_chan *chan;
3654 	struct sk_buff *skb;
3655 	int quote, *cnt, tmp;
3656 
3657 	BT_DBG("%s", hdev->name);
3658 
3659 	if (!hci_conn_num(hdev, LE_LINK))
3660 		return;
3661 
3662 	cnt = hdev->le_pkts ? &hdev->le_cnt : &hdev->acl_cnt;
3663 
3664 	__check_timeout(hdev, *cnt, LE_LINK);
3665 
3666 	tmp = *cnt;
3667 	while (*cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
3668 		u32 priority = (skb_peek(&chan->data_q))->priority;
3669 		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3670 			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3671 			       skb->len, skb->priority);
3672 
3673 			/* Stop if priority has changed */
3674 			if (skb->priority < priority)
3675 				break;
3676 
3677 			skb = skb_dequeue(&chan->data_q);
3678 
3679 			hci_send_frame(hdev, skb);
3680 			hdev->le_last_tx = jiffies;
3681 
3682 			(*cnt)--;
3683 			chan->sent++;
3684 			chan->conn->sent++;
3685 
3686 			/* Send pending SCO packets right away */
3687 			hci_sched_sco(hdev);
3688 			hci_sched_esco(hdev);
3689 		}
3690 	}
3691 
3692 	if (*cnt != tmp)
3693 		hci_prio_recalculate(hdev, LE_LINK);
3694 }
3695 
3696 /* Schedule CIS */
3697 static void hci_sched_iso(struct hci_dev *hdev)
3698 {
3699 	struct hci_conn *conn;
3700 	struct sk_buff *skb;
3701 	int quote, *cnt;
3702 
3703 	BT_DBG("%s", hdev->name);
3704 
3705 	if (!hci_conn_num(hdev, ISO_LINK))
3706 		return;
3707 
3708 	cnt = hdev->iso_pkts ? &hdev->iso_cnt :
3709 		hdev->le_pkts ? &hdev->le_cnt : &hdev->acl_cnt;
3710 	while (*cnt && (conn = hci_low_sent(hdev, ISO_LINK, &quote))) {
3711 		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3712 			BT_DBG("skb %p len %d", skb, skb->len);
3713 			hci_send_frame(hdev, skb);
3714 
3715 			conn->sent++;
3716 			if (conn->sent == ~0)
3717 				conn->sent = 0;
3718 			(*cnt)--;
3719 		}
3720 	}
3721 }
3722 
3723 static void hci_tx_work(struct work_struct *work)
3724 {
3725 	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
3726 	struct sk_buff *skb;
3727 
3728 	BT_DBG("%s acl %d sco %d le %d iso %d", hdev->name, hdev->acl_cnt,
3729 	       hdev->sco_cnt, hdev->le_cnt, hdev->iso_cnt);
3730 
3731 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3732 		/* Schedule queues and send stuff to HCI driver */
3733 		hci_sched_sco(hdev);
3734 		hci_sched_esco(hdev);
3735 		hci_sched_iso(hdev);
3736 		hci_sched_acl(hdev);
3737 		hci_sched_le(hdev);
3738 	}
3739 
3740 	/* Send next queued raw (unknown type) packet */
3741 	while ((skb = skb_dequeue(&hdev->raw_q)))
3742 		hci_send_frame(hdev, skb);
3743 }
3744 
3745 /* ----- HCI RX task (incoming data processing) ----- */
3746 
3747 /* ACL data packet */
3748 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3749 {
3750 	struct hci_acl_hdr *hdr;
3751 	struct hci_conn *conn;
3752 	__u16 handle, flags;
3753 
3754 	hdr = skb_pull_data(skb, sizeof(*hdr));
3755 	if (!hdr) {
3756 		bt_dev_err(hdev, "ACL packet too small");
3757 		goto drop;
3758 	}
3759 
3760 	handle = __le16_to_cpu(hdr->handle);
3761 	flags  = hci_flags(handle);
3762 	handle = hci_handle(handle);
3763 
3764 	bt_dev_dbg(hdev, "len %d handle 0x%4.4x flags 0x%4.4x", skb->len,
3765 		   handle, flags);
3766 
3767 	hdev->stat.acl_rx++;
3768 
3769 	hci_dev_lock(hdev);
3770 	conn = hci_conn_hash_lookup_handle(hdev, handle);
3771 	hci_dev_unlock(hdev);
3772 
3773 	if (conn) {
3774 		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
3775 
3776 		/* Send to upper protocol */
3777 		l2cap_recv_acldata(conn, skb, flags);
3778 		return;
3779 	} else {
3780 		bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
3781 			   handle);
3782 	}
3783 
3784 drop:
3785 	kfree_skb(skb);
3786 }
3787 
3788 /* SCO data packet */
3789 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3790 {
3791 	struct hci_sco_hdr *hdr;
3792 	struct hci_conn *conn;
3793 	__u16 handle, flags;
3794 
3795 	hdr = skb_pull_data(skb, sizeof(*hdr));
3796 	if (!hdr) {
3797 		bt_dev_err(hdev, "SCO packet too small");
3798 		goto drop;
3799 	}
3800 
3801 	handle = __le16_to_cpu(hdr->handle);
3802 	flags  = hci_flags(handle);
3803 	handle = hci_handle(handle);
3804 
3805 	bt_dev_dbg(hdev, "len %d handle 0x%4.4x flags 0x%4.4x", skb->len,
3806 		   handle, flags);
3807 
3808 	hdev->stat.sco_rx++;
3809 
3810 	hci_dev_lock(hdev);
3811 	conn = hci_conn_hash_lookup_handle(hdev, handle);
3812 	hci_dev_unlock(hdev);
3813 
3814 	if (conn) {
3815 		/* Send to upper protocol */
3816 		hci_skb_pkt_status(skb) = flags & 0x03;
3817 		sco_recv_scodata(conn, skb);
3818 		return;
3819 	} else {
3820 		bt_dev_err_ratelimited(hdev, "SCO packet for unknown connection handle %d",
3821 				       handle);
3822 	}
3823 
3824 drop:
3825 	kfree_skb(skb);
3826 }
3827 
3828 static void hci_isodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3829 {
3830 	struct hci_iso_hdr *hdr;
3831 	struct hci_conn *conn;
3832 	__u16 handle, flags;
3833 
3834 	hdr = skb_pull_data(skb, sizeof(*hdr));
3835 	if (!hdr) {
3836 		bt_dev_err(hdev, "ISO packet too small");
3837 		goto drop;
3838 	}
3839 
3840 	handle = __le16_to_cpu(hdr->handle);
3841 	flags  = hci_flags(handle);
3842 	handle = hci_handle(handle);
3843 
3844 	bt_dev_dbg(hdev, "len %d handle 0x%4.4x flags 0x%4.4x", skb->len,
3845 		   handle, flags);
3846 
3847 	hci_dev_lock(hdev);
3848 	conn = hci_conn_hash_lookup_handle(hdev, handle);
3849 	hci_dev_unlock(hdev);
3850 
3851 	if (!conn) {
3852 		bt_dev_err(hdev, "ISO packet for unknown connection handle %d",
3853 			   handle);
3854 		goto drop;
3855 	}
3856 
3857 	/* Send to upper protocol */
3858 	iso_recv(conn, skb, flags);
3859 	return;
3860 
3861 drop:
3862 	kfree_skb(skb);
3863 }
3864 
3865 static bool hci_req_is_complete(struct hci_dev *hdev)
3866 {
3867 	struct sk_buff *skb;
3868 
3869 	skb = skb_peek(&hdev->cmd_q);
3870 	if (!skb)
3871 		return true;
3872 
3873 	return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
3874 }
3875 
3876 static void hci_resend_last(struct hci_dev *hdev)
3877 {
3878 	struct hci_command_hdr *sent;
3879 	struct sk_buff *skb;
3880 	u16 opcode;
3881 
3882 	if (!hdev->sent_cmd)
3883 		return;
3884 
3885 	sent = (void *) hdev->sent_cmd->data;
3886 	opcode = __le16_to_cpu(sent->opcode);
3887 	if (opcode == HCI_OP_RESET)
3888 		return;
3889 
3890 	skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
3891 	if (!skb)
3892 		return;
3893 
3894 	skb_queue_head(&hdev->cmd_q, skb);
3895 	queue_work(hdev->workqueue, &hdev->cmd_work);
3896 }
3897 
3898 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
3899 			  hci_req_complete_t *req_complete,
3900 			  hci_req_complete_skb_t *req_complete_skb)
3901 {
3902 	struct sk_buff *skb;
3903 	unsigned long flags;
3904 
3905 	BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
3906 
3907 	/* If the completed command doesn't match the last one that was
3908 	 * sent we need to do special handling of it.
3909 	 */
3910 	if (!hci_sent_cmd_data(hdev, opcode)) {
3911 		/* Some CSR based controllers generate a spontaneous
3912 		 * reset complete event during init and any pending
3913 		 * command will never be completed. In such a case we
3914 		 * need to resend whatever was the last sent
3915 		 * command.
3916 		 */
3917 		if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
3918 			hci_resend_last(hdev);
3919 
3920 		return;
3921 	}
3922 
3923 	/* If we reach this point this event matches the last command sent */
3924 	hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
3925 
3926 	/* If the command succeeded and there's still more commands in
3927 	 * this request the request is not yet complete.
3928 	 */
3929 	if (!status && !hci_req_is_complete(hdev))
3930 		return;
3931 
3932 	skb = hdev->req_skb;
3933 
3934 	/* If this was the last command in a request the complete
3935 	 * callback would be found in hdev->req_skb instead of the
3936 	 * command queue (hdev->cmd_q).
3937 	 */
3938 	if (skb && bt_cb(skb)->hci.req_flags & HCI_REQ_SKB) {
3939 		*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
3940 		return;
3941 	}
3942 
3943 	if (skb && bt_cb(skb)->hci.req_complete) {
3944 		*req_complete = bt_cb(skb)->hci.req_complete;
3945 		return;
3946 	}
3947 
3948 	/* Remove all pending commands belonging to this request */
3949 	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
3950 	while ((skb = __skb_dequeue(&hdev->cmd_q))) {
3951 		if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
3952 			__skb_queue_head(&hdev->cmd_q, skb);
3953 			break;
3954 		}
3955 
3956 		if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
3957 			*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
3958 		else
3959 			*req_complete = bt_cb(skb)->hci.req_complete;
3960 		dev_kfree_skb_irq(skb);
3961 	}
3962 	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
3963 }
3964 
3965 static void hci_rx_work(struct work_struct *work)
3966 {
3967 	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
3968 	struct sk_buff *skb;
3969 
3970 	BT_DBG("%s", hdev->name);
3971 
3972 	/* The kcov_remote functions used for collecting packet parsing
3973 	 * coverage information from this background thread and associate
3974 	 * the coverage with the syscall's thread which originally injected
3975 	 * the packet. This helps fuzzing the kernel.
3976 	 */
3977 	for (; (skb = skb_dequeue(&hdev->rx_q)); kcov_remote_stop()) {
3978 		kcov_remote_start_common(skb_get_kcov_handle(skb));
3979 
3980 		/* Send copy to monitor */
3981 		hci_send_to_monitor(hdev, skb);
3982 
3983 		if (atomic_read(&hdev->promisc)) {
3984 			/* Send copy to the sockets */
3985 			hci_send_to_sock(hdev, skb);
3986 		}
3987 
3988 		/* If the device has been opened in HCI_USER_CHANNEL,
3989 		 * the userspace has exclusive access to device.
3990 		 * When device is HCI_INIT, we still need to process
3991 		 * the data packets to the driver in order
3992 		 * to complete its setup().
3993 		 */
3994 		if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
3995 		    !test_bit(HCI_INIT, &hdev->flags)) {
3996 			kfree_skb(skb);
3997 			continue;
3998 		}
3999 
4000 		if (test_bit(HCI_INIT, &hdev->flags)) {
4001 			/* Don't process data packets in this states. */
4002 			switch (hci_skb_pkt_type(skb)) {
4003 			case HCI_ACLDATA_PKT:
4004 			case HCI_SCODATA_PKT:
4005 			case HCI_ISODATA_PKT:
4006 				kfree_skb(skb);
4007 				continue;
4008 			}
4009 		}
4010 
4011 		/* Process frame */
4012 		switch (hci_skb_pkt_type(skb)) {
4013 		case HCI_EVENT_PKT:
4014 			BT_DBG("%s Event packet", hdev->name);
4015 			hci_event_packet(hdev, skb);
4016 			break;
4017 
4018 		case HCI_ACLDATA_PKT:
4019 			BT_DBG("%s ACL data packet", hdev->name);
4020 			hci_acldata_packet(hdev, skb);
4021 			break;
4022 
4023 		case HCI_SCODATA_PKT:
4024 			BT_DBG("%s SCO data packet", hdev->name);
4025 			hci_scodata_packet(hdev, skb);
4026 			break;
4027 
4028 		case HCI_ISODATA_PKT:
4029 			BT_DBG("%s ISO data packet", hdev->name);
4030 			hci_isodata_packet(hdev, skb);
4031 			break;
4032 
4033 		default:
4034 			kfree_skb(skb);
4035 			break;
4036 		}
4037 	}
4038 }
4039 
4040 static void hci_send_cmd_sync(struct hci_dev *hdev, struct sk_buff *skb)
4041 {
4042 	int err;
4043 
4044 	bt_dev_dbg(hdev, "skb %p", skb);
4045 
4046 	kfree_skb(hdev->sent_cmd);
4047 
4048 	hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4049 	if (!hdev->sent_cmd) {
4050 		skb_queue_head(&hdev->cmd_q, skb);
4051 		queue_work(hdev->workqueue, &hdev->cmd_work);
4052 		return;
4053 	}
4054 
4055 	err = hci_send_frame(hdev, skb);
4056 	if (err < 0) {
4057 		hci_cmd_sync_cancel_sync(hdev, -err);
4058 		return;
4059 	}
4060 
4061 	if (hdev->req_status == HCI_REQ_PEND &&
4062 	    !hci_dev_test_and_set_flag(hdev, HCI_CMD_PENDING)) {
4063 		kfree_skb(hdev->req_skb);
4064 		hdev->req_skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4065 	}
4066 
4067 	atomic_dec(&hdev->cmd_cnt);
4068 }
4069 
4070 static void hci_cmd_work(struct work_struct *work)
4071 {
4072 	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4073 	struct sk_buff *skb;
4074 
4075 	BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4076 	       atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4077 
4078 	/* Send queued commands */
4079 	if (atomic_read(&hdev->cmd_cnt)) {
4080 		skb = skb_dequeue(&hdev->cmd_q);
4081 		if (!skb)
4082 			return;
4083 
4084 		hci_send_cmd_sync(hdev, skb);
4085 
4086 		rcu_read_lock();
4087 		if (test_bit(HCI_RESET, &hdev->flags) ||
4088 		    hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
4089 			cancel_delayed_work(&hdev->cmd_timer);
4090 		else
4091 			queue_delayed_work(hdev->workqueue, &hdev->cmd_timer,
4092 					   HCI_CMD_TIMEOUT);
4093 		rcu_read_unlock();
4094 	}
4095 }
4096