xref: /linux/net/bluetooth/hci_core.c (revision 9ac45d4628dec6d78b17846115f6df6c1d1de69e)
1 /*
2    BlueZ - Bluetooth protocol stack for Linux
3    Copyright (C) 2000-2001 Qualcomm Incorporated
4    Copyright (C) 2011 ProFUSION Embedded Systems
5 
6    Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License version 2 as
10    published by the Free Software Foundation;
11 
12    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 
21    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23    SOFTWARE IS DISCLAIMED.
24 */
25 
26 /* Bluetooth HCI core. */
27 
28 #include <linux/export.h>
29 #include <linux/rfkill.h>
30 #include <linux/debugfs.h>
31 #include <linux/crypto.h>
32 #include <linux/kcov.h>
33 #include <linux/property.h>
34 #include <linux/suspend.h>
35 #include <linux/wait.h>
36 #include <linux/unaligned.h>
37 
38 #include <net/bluetooth/bluetooth.h>
39 #include <net/bluetooth/hci_core.h>
40 #include <net/bluetooth/l2cap.h>
41 #include <net/bluetooth/mgmt.h>
42 
43 #include "hci_debugfs.h"
44 #include "smp.h"
45 #include "leds.h"
46 #include "msft.h"
47 #include "aosp.h"
48 #include "hci_codec.h"
49 
50 static void hci_rx_work(struct work_struct *work);
51 static void hci_cmd_work(struct work_struct *work);
52 static void hci_tx_work(struct work_struct *work);
53 
54 /* HCI device list */
55 LIST_HEAD(hci_dev_list);
56 DEFINE_RWLOCK(hci_dev_list_lock);
57 
58 /* HCI callback list */
59 LIST_HEAD(hci_cb_list);
60 DEFINE_MUTEX(hci_cb_list_lock);
61 
62 /* HCI ID Numbering */
63 static DEFINE_IDA(hci_index_ida);
64 
65 /* Get HCI device by index.
66  * Device is held on return. */
67 struct hci_dev *hci_dev_get(int index)
68 {
69 	struct hci_dev *hdev = NULL, *d;
70 
71 	BT_DBG("%d", index);
72 
73 	if (index < 0)
74 		return NULL;
75 
76 	read_lock(&hci_dev_list_lock);
77 	list_for_each_entry(d, &hci_dev_list, list) {
78 		if (d->id == index) {
79 			hdev = hci_dev_hold(d);
80 			break;
81 		}
82 	}
83 	read_unlock(&hci_dev_list_lock);
84 	return hdev;
85 }
86 
87 /* ---- Inquiry support ---- */
88 
89 bool hci_discovery_active(struct hci_dev *hdev)
90 {
91 	struct discovery_state *discov = &hdev->discovery;
92 
93 	switch (discov->state) {
94 	case DISCOVERY_FINDING:
95 	case DISCOVERY_RESOLVING:
96 		return true;
97 
98 	default:
99 		return false;
100 	}
101 }
102 
103 void hci_discovery_set_state(struct hci_dev *hdev, int state)
104 {
105 	int old_state = hdev->discovery.state;
106 
107 	if (old_state == state)
108 		return;
109 
110 	hdev->discovery.state = state;
111 
112 	switch (state) {
113 	case DISCOVERY_STOPPED:
114 		hci_update_passive_scan(hdev);
115 
116 		if (old_state != DISCOVERY_STARTING)
117 			mgmt_discovering(hdev, 0);
118 		break;
119 	case DISCOVERY_STARTING:
120 		break;
121 	case DISCOVERY_FINDING:
122 		mgmt_discovering(hdev, 1);
123 		break;
124 	case DISCOVERY_RESOLVING:
125 		break;
126 	case DISCOVERY_STOPPING:
127 		break;
128 	}
129 
130 	bt_dev_dbg(hdev, "state %u -> %u", old_state, state);
131 }
132 
133 void hci_inquiry_cache_flush(struct hci_dev *hdev)
134 {
135 	struct discovery_state *cache = &hdev->discovery;
136 	struct inquiry_entry *p, *n;
137 
138 	list_for_each_entry_safe(p, n, &cache->all, all) {
139 		list_del(&p->all);
140 		kfree(p);
141 	}
142 
143 	INIT_LIST_HEAD(&cache->unknown);
144 	INIT_LIST_HEAD(&cache->resolve);
145 }
146 
147 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
148 					       bdaddr_t *bdaddr)
149 {
150 	struct discovery_state *cache = &hdev->discovery;
151 	struct inquiry_entry *e;
152 
153 	BT_DBG("cache %p, %pMR", cache, bdaddr);
154 
155 	list_for_each_entry(e, &cache->all, all) {
156 		if (!bacmp(&e->data.bdaddr, bdaddr))
157 			return e;
158 	}
159 
160 	return NULL;
161 }
162 
163 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
164 						       bdaddr_t *bdaddr)
165 {
166 	struct discovery_state *cache = &hdev->discovery;
167 	struct inquiry_entry *e;
168 
169 	BT_DBG("cache %p, %pMR", cache, bdaddr);
170 
171 	list_for_each_entry(e, &cache->unknown, list) {
172 		if (!bacmp(&e->data.bdaddr, bdaddr))
173 			return e;
174 	}
175 
176 	return NULL;
177 }
178 
179 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
180 						       bdaddr_t *bdaddr,
181 						       int state)
182 {
183 	struct discovery_state *cache = &hdev->discovery;
184 	struct inquiry_entry *e;
185 
186 	BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
187 
188 	list_for_each_entry(e, &cache->resolve, list) {
189 		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
190 			return e;
191 		if (!bacmp(&e->data.bdaddr, bdaddr))
192 			return e;
193 	}
194 
195 	return NULL;
196 }
197 
198 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
199 				      struct inquiry_entry *ie)
200 {
201 	struct discovery_state *cache = &hdev->discovery;
202 	struct list_head *pos = &cache->resolve;
203 	struct inquiry_entry *p;
204 
205 	list_del(&ie->list);
206 
207 	list_for_each_entry(p, &cache->resolve, list) {
208 		if (p->name_state != NAME_PENDING &&
209 		    abs(p->data.rssi) >= abs(ie->data.rssi))
210 			break;
211 		pos = &p->list;
212 	}
213 
214 	list_add(&ie->list, pos);
215 }
216 
217 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
218 			     bool name_known)
219 {
220 	struct discovery_state *cache = &hdev->discovery;
221 	struct inquiry_entry *ie;
222 	u32 flags = 0;
223 
224 	BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
225 
226 	hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
227 
228 	if (!data->ssp_mode)
229 		flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
230 
231 	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
232 	if (ie) {
233 		if (!ie->data.ssp_mode)
234 			flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
235 
236 		if (ie->name_state == NAME_NEEDED &&
237 		    data->rssi != ie->data.rssi) {
238 			ie->data.rssi = data->rssi;
239 			hci_inquiry_cache_update_resolve(hdev, ie);
240 		}
241 
242 		goto update;
243 	}
244 
245 	/* Entry not in the cache. Add new one. */
246 	ie = kzalloc(sizeof(*ie), GFP_KERNEL);
247 	if (!ie) {
248 		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
249 		goto done;
250 	}
251 
252 	list_add(&ie->all, &cache->all);
253 
254 	if (name_known) {
255 		ie->name_state = NAME_KNOWN;
256 	} else {
257 		ie->name_state = NAME_NOT_KNOWN;
258 		list_add(&ie->list, &cache->unknown);
259 	}
260 
261 update:
262 	if (name_known && ie->name_state != NAME_KNOWN &&
263 	    ie->name_state != NAME_PENDING) {
264 		ie->name_state = NAME_KNOWN;
265 		list_del(&ie->list);
266 	}
267 
268 	memcpy(&ie->data, data, sizeof(*data));
269 	ie->timestamp = jiffies;
270 	cache->timestamp = jiffies;
271 
272 	if (ie->name_state == NAME_NOT_KNOWN)
273 		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
274 
275 done:
276 	return flags;
277 }
278 
279 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
280 {
281 	struct discovery_state *cache = &hdev->discovery;
282 	struct inquiry_info *info = (struct inquiry_info *) buf;
283 	struct inquiry_entry *e;
284 	int copied = 0;
285 
286 	list_for_each_entry(e, &cache->all, all) {
287 		struct inquiry_data *data = &e->data;
288 
289 		if (copied >= num)
290 			break;
291 
292 		bacpy(&info->bdaddr, &data->bdaddr);
293 		info->pscan_rep_mode	= data->pscan_rep_mode;
294 		info->pscan_period_mode	= data->pscan_period_mode;
295 		info->pscan_mode	= data->pscan_mode;
296 		memcpy(info->dev_class, data->dev_class, 3);
297 		info->clock_offset	= data->clock_offset;
298 
299 		info++;
300 		copied++;
301 	}
302 
303 	BT_DBG("cache %p, copied %d", cache, copied);
304 	return copied;
305 }
306 
307 int hci_inquiry(void __user *arg)
308 {
309 	__u8 __user *ptr = arg;
310 	struct hci_inquiry_req ir;
311 	struct hci_dev *hdev;
312 	int err = 0, do_inquiry = 0, max_rsp;
313 	__u8 *buf;
314 
315 	if (copy_from_user(&ir, ptr, sizeof(ir)))
316 		return -EFAULT;
317 
318 	hdev = hci_dev_get(ir.dev_id);
319 	if (!hdev)
320 		return -ENODEV;
321 
322 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
323 		err = -EBUSY;
324 		goto done;
325 	}
326 
327 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
328 		err = -EOPNOTSUPP;
329 		goto done;
330 	}
331 
332 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
333 		err = -EOPNOTSUPP;
334 		goto done;
335 	}
336 
337 	/* Restrict maximum inquiry length to 60 seconds */
338 	if (ir.length > 60) {
339 		err = -EINVAL;
340 		goto done;
341 	}
342 
343 	hci_dev_lock(hdev);
344 	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
345 	    inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
346 		hci_inquiry_cache_flush(hdev);
347 		do_inquiry = 1;
348 	}
349 	hci_dev_unlock(hdev);
350 
351 	if (do_inquiry) {
352 		hci_req_sync_lock(hdev);
353 		err = hci_inquiry_sync(hdev, ir.length, ir.num_rsp);
354 		hci_req_sync_unlock(hdev);
355 
356 		if (err < 0)
357 			goto done;
358 
359 		/* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
360 		 * cleared). If it is interrupted by a signal, return -EINTR.
361 		 */
362 		if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
363 				TASK_INTERRUPTIBLE)) {
364 			err = -EINTR;
365 			goto done;
366 		}
367 	}
368 
369 	/* for unlimited number of responses we will use buffer with
370 	 * 255 entries
371 	 */
372 	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
373 
374 	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
375 	 * copy it to the user space.
376 	 */
377 	buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
378 	if (!buf) {
379 		err = -ENOMEM;
380 		goto done;
381 	}
382 
383 	hci_dev_lock(hdev);
384 	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
385 	hci_dev_unlock(hdev);
386 
387 	BT_DBG("num_rsp %d", ir.num_rsp);
388 
389 	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
390 		ptr += sizeof(ir);
391 		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
392 				 ir.num_rsp))
393 			err = -EFAULT;
394 	} else
395 		err = -EFAULT;
396 
397 	kfree(buf);
398 
399 done:
400 	hci_dev_put(hdev);
401 	return err;
402 }
403 
404 static int hci_dev_do_open(struct hci_dev *hdev)
405 {
406 	int ret = 0;
407 
408 	BT_DBG("%s %p", hdev->name, hdev);
409 
410 	hci_req_sync_lock(hdev);
411 
412 	ret = hci_dev_open_sync(hdev);
413 
414 	hci_req_sync_unlock(hdev);
415 	return ret;
416 }
417 
418 /* ---- HCI ioctl helpers ---- */
419 
420 int hci_dev_open(__u16 dev)
421 {
422 	struct hci_dev *hdev;
423 	int err;
424 
425 	hdev = hci_dev_get(dev);
426 	if (!hdev)
427 		return -ENODEV;
428 
429 	/* Devices that are marked as unconfigured can only be powered
430 	 * up as user channel. Trying to bring them up as normal devices
431 	 * will result into a failure. Only user channel operation is
432 	 * possible.
433 	 *
434 	 * When this function is called for a user channel, the flag
435 	 * HCI_USER_CHANNEL will be set first before attempting to
436 	 * open the device.
437 	 */
438 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
439 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
440 		err = -EOPNOTSUPP;
441 		goto done;
442 	}
443 
444 	/* We need to ensure that no other power on/off work is pending
445 	 * before proceeding to call hci_dev_do_open. This is
446 	 * particularly important if the setup procedure has not yet
447 	 * completed.
448 	 */
449 	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
450 		cancel_delayed_work(&hdev->power_off);
451 
452 	/* After this call it is guaranteed that the setup procedure
453 	 * has finished. This means that error conditions like RFKILL
454 	 * or no valid public or static random address apply.
455 	 */
456 	flush_workqueue(hdev->req_workqueue);
457 
458 	/* For controllers not using the management interface and that
459 	 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
460 	 * so that pairing works for them. Once the management interface
461 	 * is in use this bit will be cleared again and userspace has
462 	 * to explicitly enable it.
463 	 */
464 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
465 	    !hci_dev_test_flag(hdev, HCI_MGMT))
466 		hci_dev_set_flag(hdev, HCI_BONDABLE);
467 
468 	err = hci_dev_do_open(hdev);
469 
470 done:
471 	hci_dev_put(hdev);
472 	return err;
473 }
474 
475 int hci_dev_do_close(struct hci_dev *hdev)
476 {
477 	int err;
478 
479 	BT_DBG("%s %p", hdev->name, hdev);
480 
481 	hci_req_sync_lock(hdev);
482 
483 	err = hci_dev_close_sync(hdev);
484 
485 	hci_req_sync_unlock(hdev);
486 
487 	return err;
488 }
489 
490 int hci_dev_close(__u16 dev)
491 {
492 	struct hci_dev *hdev;
493 	int err;
494 
495 	hdev = hci_dev_get(dev);
496 	if (!hdev)
497 		return -ENODEV;
498 
499 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
500 		err = -EBUSY;
501 		goto done;
502 	}
503 
504 	cancel_work_sync(&hdev->power_on);
505 	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
506 		cancel_delayed_work(&hdev->power_off);
507 
508 	err = hci_dev_do_close(hdev);
509 
510 done:
511 	hci_dev_put(hdev);
512 	return err;
513 }
514 
515 static int hci_dev_do_reset(struct hci_dev *hdev)
516 {
517 	int ret;
518 
519 	BT_DBG("%s %p", hdev->name, hdev);
520 
521 	hci_req_sync_lock(hdev);
522 
523 	/* Drop queues */
524 	skb_queue_purge(&hdev->rx_q);
525 	skb_queue_purge(&hdev->cmd_q);
526 
527 	/* Cancel these to avoid queueing non-chained pending work */
528 	hci_dev_set_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
529 	/* Wait for
530 	 *
531 	 *    if (!hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
532 	 *        queue_delayed_work(&hdev->{cmd,ncmd}_timer)
533 	 *
534 	 * inside RCU section to see the flag or complete scheduling.
535 	 */
536 	synchronize_rcu();
537 	/* Explicitly cancel works in case scheduled after setting the flag. */
538 	cancel_delayed_work(&hdev->cmd_timer);
539 	cancel_delayed_work(&hdev->ncmd_timer);
540 
541 	/* Avoid potential lockdep warnings from the *_flush() calls by
542 	 * ensuring the workqueue is empty up front.
543 	 */
544 	drain_workqueue(hdev->workqueue);
545 
546 	hci_dev_lock(hdev);
547 	hci_inquiry_cache_flush(hdev);
548 	hci_conn_hash_flush(hdev);
549 	hci_dev_unlock(hdev);
550 
551 	if (hdev->flush)
552 		hdev->flush(hdev);
553 
554 	hci_dev_clear_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
555 
556 	atomic_set(&hdev->cmd_cnt, 1);
557 	hdev->acl_cnt = 0;
558 	hdev->sco_cnt = 0;
559 	hdev->le_cnt = 0;
560 	hdev->iso_cnt = 0;
561 
562 	ret = hci_reset_sync(hdev);
563 
564 	hci_req_sync_unlock(hdev);
565 	return ret;
566 }
567 
568 int hci_dev_reset(__u16 dev)
569 {
570 	struct hci_dev *hdev;
571 	int err;
572 
573 	hdev = hci_dev_get(dev);
574 	if (!hdev)
575 		return -ENODEV;
576 
577 	if (!test_bit(HCI_UP, &hdev->flags)) {
578 		err = -ENETDOWN;
579 		goto done;
580 	}
581 
582 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
583 		err = -EBUSY;
584 		goto done;
585 	}
586 
587 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
588 		err = -EOPNOTSUPP;
589 		goto done;
590 	}
591 
592 	err = hci_dev_do_reset(hdev);
593 
594 done:
595 	hci_dev_put(hdev);
596 	return err;
597 }
598 
599 int hci_dev_reset_stat(__u16 dev)
600 {
601 	struct hci_dev *hdev;
602 	int ret = 0;
603 
604 	hdev = hci_dev_get(dev);
605 	if (!hdev)
606 		return -ENODEV;
607 
608 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
609 		ret = -EBUSY;
610 		goto done;
611 	}
612 
613 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
614 		ret = -EOPNOTSUPP;
615 		goto done;
616 	}
617 
618 	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
619 
620 done:
621 	hci_dev_put(hdev);
622 	return ret;
623 }
624 
625 static void hci_update_passive_scan_state(struct hci_dev *hdev, u8 scan)
626 {
627 	bool conn_changed, discov_changed;
628 
629 	BT_DBG("%s scan 0x%02x", hdev->name, scan);
630 
631 	if ((scan & SCAN_PAGE))
632 		conn_changed = !hci_dev_test_and_set_flag(hdev,
633 							  HCI_CONNECTABLE);
634 	else
635 		conn_changed = hci_dev_test_and_clear_flag(hdev,
636 							   HCI_CONNECTABLE);
637 
638 	if ((scan & SCAN_INQUIRY)) {
639 		discov_changed = !hci_dev_test_and_set_flag(hdev,
640 							    HCI_DISCOVERABLE);
641 	} else {
642 		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
643 		discov_changed = hci_dev_test_and_clear_flag(hdev,
644 							     HCI_DISCOVERABLE);
645 	}
646 
647 	if (!hci_dev_test_flag(hdev, HCI_MGMT))
648 		return;
649 
650 	if (conn_changed || discov_changed) {
651 		/* In case this was disabled through mgmt */
652 		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
653 
654 		if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
655 			hci_update_adv_data(hdev, hdev->cur_adv_instance);
656 
657 		mgmt_new_settings(hdev);
658 	}
659 }
660 
661 int hci_dev_cmd(unsigned int cmd, void __user *arg)
662 {
663 	struct hci_dev *hdev;
664 	struct hci_dev_req dr;
665 	__le16 policy;
666 	int err = 0;
667 
668 	if (copy_from_user(&dr, arg, sizeof(dr)))
669 		return -EFAULT;
670 
671 	hdev = hci_dev_get(dr.dev_id);
672 	if (!hdev)
673 		return -ENODEV;
674 
675 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
676 		err = -EBUSY;
677 		goto done;
678 	}
679 
680 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
681 		err = -EOPNOTSUPP;
682 		goto done;
683 	}
684 
685 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
686 		err = -EOPNOTSUPP;
687 		goto done;
688 	}
689 
690 	switch (cmd) {
691 	case HCISETAUTH:
692 		err = hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE,
693 					  1, &dr.dev_opt, HCI_CMD_TIMEOUT);
694 		break;
695 
696 	case HCISETENCRYPT:
697 		if (!lmp_encrypt_capable(hdev)) {
698 			err = -EOPNOTSUPP;
699 			break;
700 		}
701 
702 		if (!test_bit(HCI_AUTH, &hdev->flags)) {
703 			/* Auth must be enabled first */
704 			err = hci_cmd_sync_status(hdev,
705 						  HCI_OP_WRITE_AUTH_ENABLE,
706 						  1, &dr.dev_opt,
707 						  HCI_CMD_TIMEOUT);
708 			if (err)
709 				break;
710 		}
711 
712 		err = hci_cmd_sync_status(hdev, HCI_OP_WRITE_ENCRYPT_MODE,
713 					  1, &dr.dev_opt, HCI_CMD_TIMEOUT);
714 		break;
715 
716 	case HCISETSCAN:
717 		err = hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE,
718 					  1, &dr.dev_opt, HCI_CMD_TIMEOUT);
719 
720 		/* Ensure that the connectable and discoverable states
721 		 * get correctly modified as this was a non-mgmt change.
722 		 */
723 		if (!err)
724 			hci_update_passive_scan_state(hdev, dr.dev_opt);
725 		break;
726 
727 	case HCISETLINKPOL:
728 		policy = cpu_to_le16(dr.dev_opt);
729 
730 		err = hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY,
731 					  2, &policy, HCI_CMD_TIMEOUT);
732 		break;
733 
734 	case HCISETLINKMODE:
735 		hdev->link_mode = ((__u16) dr.dev_opt) &
736 					(HCI_LM_MASTER | HCI_LM_ACCEPT);
737 		break;
738 
739 	case HCISETPTYPE:
740 		if (hdev->pkt_type == (__u16) dr.dev_opt)
741 			break;
742 
743 		hdev->pkt_type = (__u16) dr.dev_opt;
744 		mgmt_phy_configuration_changed(hdev, NULL);
745 		break;
746 
747 	case HCISETACLMTU:
748 		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
749 		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
750 		break;
751 
752 	case HCISETSCOMTU:
753 		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
754 		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
755 		break;
756 
757 	default:
758 		err = -EINVAL;
759 		break;
760 	}
761 
762 done:
763 	hci_dev_put(hdev);
764 	return err;
765 }
766 
767 int hci_get_dev_list(void __user *arg)
768 {
769 	struct hci_dev *hdev;
770 	struct hci_dev_list_req *dl;
771 	struct hci_dev_req *dr;
772 	int n = 0, err;
773 	__u16 dev_num;
774 
775 	if (get_user(dev_num, (__u16 __user *) arg))
776 		return -EFAULT;
777 
778 	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
779 		return -EINVAL;
780 
781 	dl = kzalloc(struct_size(dl, dev_req, dev_num), GFP_KERNEL);
782 	if (!dl)
783 		return -ENOMEM;
784 
785 	dl->dev_num = dev_num;
786 	dr = dl->dev_req;
787 
788 	read_lock(&hci_dev_list_lock);
789 	list_for_each_entry(hdev, &hci_dev_list, list) {
790 		unsigned long flags = hdev->flags;
791 
792 		/* When the auto-off is configured it means the transport
793 		 * is running, but in that case still indicate that the
794 		 * device is actually down.
795 		 */
796 		if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
797 			flags &= ~BIT(HCI_UP);
798 
799 		dr[n].dev_id  = hdev->id;
800 		dr[n].dev_opt = flags;
801 
802 		if (++n >= dev_num)
803 			break;
804 	}
805 	read_unlock(&hci_dev_list_lock);
806 
807 	dl->dev_num = n;
808 	err = copy_to_user(arg, dl, struct_size(dl, dev_req, n));
809 	kfree(dl);
810 
811 	return err ? -EFAULT : 0;
812 }
813 
814 int hci_get_dev_info(void __user *arg)
815 {
816 	struct hci_dev *hdev;
817 	struct hci_dev_info di;
818 	unsigned long flags;
819 	int err = 0;
820 
821 	if (copy_from_user(&di, arg, sizeof(di)))
822 		return -EFAULT;
823 
824 	hdev = hci_dev_get(di.dev_id);
825 	if (!hdev)
826 		return -ENODEV;
827 
828 	/* When the auto-off is configured it means the transport
829 	 * is running, but in that case still indicate that the
830 	 * device is actually down.
831 	 */
832 	if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
833 		flags = hdev->flags & ~BIT(HCI_UP);
834 	else
835 		flags = hdev->flags;
836 
837 	strscpy(di.name, hdev->name, sizeof(di.name));
838 	di.bdaddr   = hdev->bdaddr;
839 	di.type     = (hdev->bus & 0x0f);
840 	di.flags    = flags;
841 	di.pkt_type = hdev->pkt_type;
842 	if (lmp_bredr_capable(hdev)) {
843 		di.acl_mtu  = hdev->acl_mtu;
844 		di.acl_pkts = hdev->acl_pkts;
845 		di.sco_mtu  = hdev->sco_mtu;
846 		di.sco_pkts = hdev->sco_pkts;
847 	} else {
848 		di.acl_mtu  = hdev->le_mtu;
849 		di.acl_pkts = hdev->le_pkts;
850 		di.sco_mtu  = 0;
851 		di.sco_pkts = 0;
852 	}
853 	di.link_policy = hdev->link_policy;
854 	di.link_mode   = hdev->link_mode;
855 
856 	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
857 	memcpy(&di.features, &hdev->features, sizeof(di.features));
858 
859 	if (copy_to_user(arg, &di, sizeof(di)))
860 		err = -EFAULT;
861 
862 	hci_dev_put(hdev);
863 
864 	return err;
865 }
866 
867 /* ---- Interface to HCI drivers ---- */
868 
869 static int hci_dev_do_poweroff(struct hci_dev *hdev)
870 {
871 	int err;
872 
873 	BT_DBG("%s %p", hdev->name, hdev);
874 
875 	hci_req_sync_lock(hdev);
876 
877 	err = hci_set_powered_sync(hdev, false);
878 
879 	hci_req_sync_unlock(hdev);
880 
881 	return err;
882 }
883 
884 static int hci_rfkill_set_block(void *data, bool blocked)
885 {
886 	struct hci_dev *hdev = data;
887 	int err;
888 
889 	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
890 
891 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
892 		return -EBUSY;
893 
894 	if (blocked == hci_dev_test_flag(hdev, HCI_RFKILLED))
895 		return 0;
896 
897 	if (blocked) {
898 		hci_dev_set_flag(hdev, HCI_RFKILLED);
899 
900 		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
901 		    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
902 			err = hci_dev_do_poweroff(hdev);
903 			if (err) {
904 				bt_dev_err(hdev, "Error when powering off device on rfkill (%d)",
905 					   err);
906 
907 				/* Make sure the device is still closed even if
908 				 * anything during power off sequence (eg.
909 				 * disconnecting devices) failed.
910 				 */
911 				hci_dev_do_close(hdev);
912 			}
913 		}
914 	} else {
915 		hci_dev_clear_flag(hdev, HCI_RFKILLED);
916 	}
917 
918 	return 0;
919 }
920 
921 static const struct rfkill_ops hci_rfkill_ops = {
922 	.set_block = hci_rfkill_set_block,
923 };
924 
925 static void hci_power_on(struct work_struct *work)
926 {
927 	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
928 	int err;
929 
930 	BT_DBG("%s", hdev->name);
931 
932 	if (test_bit(HCI_UP, &hdev->flags) &&
933 	    hci_dev_test_flag(hdev, HCI_MGMT) &&
934 	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
935 		cancel_delayed_work(&hdev->power_off);
936 		err = hci_powered_update_sync(hdev);
937 		mgmt_power_on(hdev, err);
938 		return;
939 	}
940 
941 	err = hci_dev_do_open(hdev);
942 	if (err < 0) {
943 		hci_dev_lock(hdev);
944 		mgmt_set_powered_failed(hdev, err);
945 		hci_dev_unlock(hdev);
946 		return;
947 	}
948 
949 	/* During the HCI setup phase, a few error conditions are
950 	 * ignored and they need to be checked now. If they are still
951 	 * valid, it is important to turn the device back off.
952 	 */
953 	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
954 	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
955 	    (!bacmp(&hdev->bdaddr, BDADDR_ANY) &&
956 	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
957 		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
958 		hci_dev_do_close(hdev);
959 	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
960 		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
961 				   HCI_AUTO_OFF_TIMEOUT);
962 	}
963 
964 	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
965 		/* For unconfigured devices, set the HCI_RAW flag
966 		 * so that userspace can easily identify them.
967 		 */
968 		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
969 			set_bit(HCI_RAW, &hdev->flags);
970 
971 		/* For fully configured devices, this will send
972 		 * the Index Added event. For unconfigured devices,
973 		 * it will send Unconfigued Index Added event.
974 		 *
975 		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
976 		 * and no event will be send.
977 		 */
978 		mgmt_index_added(hdev);
979 	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
980 		/* When the controller is now configured, then it
981 		 * is important to clear the HCI_RAW flag.
982 		 */
983 		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
984 			clear_bit(HCI_RAW, &hdev->flags);
985 
986 		/* Powering on the controller with HCI_CONFIG set only
987 		 * happens with the transition from unconfigured to
988 		 * configured. This will send the Index Added event.
989 		 */
990 		mgmt_index_added(hdev);
991 	}
992 }
993 
994 static void hci_power_off(struct work_struct *work)
995 {
996 	struct hci_dev *hdev = container_of(work, struct hci_dev,
997 					    power_off.work);
998 
999 	BT_DBG("%s", hdev->name);
1000 
1001 	hci_dev_do_close(hdev);
1002 }
1003 
1004 static void hci_error_reset(struct work_struct *work)
1005 {
1006 	struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
1007 
1008 	hci_dev_hold(hdev);
1009 	BT_DBG("%s", hdev->name);
1010 
1011 	if (hdev->hw_error)
1012 		hdev->hw_error(hdev, hdev->hw_error_code);
1013 	else
1014 		bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
1015 
1016 	if (!hci_dev_do_close(hdev))
1017 		hci_dev_do_open(hdev);
1018 
1019 	hci_dev_put(hdev);
1020 }
1021 
1022 void hci_uuids_clear(struct hci_dev *hdev)
1023 {
1024 	struct bt_uuid *uuid, *tmp;
1025 
1026 	list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
1027 		list_del(&uuid->list);
1028 		kfree(uuid);
1029 	}
1030 }
1031 
1032 void hci_link_keys_clear(struct hci_dev *hdev)
1033 {
1034 	struct link_key *key, *tmp;
1035 
1036 	list_for_each_entry_safe(key, tmp, &hdev->link_keys, list) {
1037 		list_del_rcu(&key->list);
1038 		kfree_rcu(key, rcu);
1039 	}
1040 }
1041 
1042 void hci_smp_ltks_clear(struct hci_dev *hdev)
1043 {
1044 	struct smp_ltk *k, *tmp;
1045 
1046 	list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1047 		list_del_rcu(&k->list);
1048 		kfree_rcu(k, rcu);
1049 	}
1050 }
1051 
1052 void hci_smp_irks_clear(struct hci_dev *hdev)
1053 {
1054 	struct smp_irk *k, *tmp;
1055 
1056 	list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
1057 		list_del_rcu(&k->list);
1058 		kfree_rcu(k, rcu);
1059 	}
1060 }
1061 
1062 void hci_blocked_keys_clear(struct hci_dev *hdev)
1063 {
1064 	struct blocked_key *b, *tmp;
1065 
1066 	list_for_each_entry_safe(b, tmp, &hdev->blocked_keys, list) {
1067 		list_del_rcu(&b->list);
1068 		kfree_rcu(b, rcu);
1069 	}
1070 }
1071 
1072 bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16])
1073 {
1074 	bool blocked = false;
1075 	struct blocked_key *b;
1076 
1077 	rcu_read_lock();
1078 	list_for_each_entry_rcu(b, &hdev->blocked_keys, list) {
1079 		if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) {
1080 			blocked = true;
1081 			break;
1082 		}
1083 	}
1084 
1085 	rcu_read_unlock();
1086 	return blocked;
1087 }
1088 
1089 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1090 {
1091 	struct link_key *k;
1092 
1093 	rcu_read_lock();
1094 	list_for_each_entry_rcu(k, &hdev->link_keys, list) {
1095 		if (bacmp(bdaddr, &k->bdaddr) == 0) {
1096 			rcu_read_unlock();
1097 
1098 			if (hci_is_blocked_key(hdev,
1099 					       HCI_BLOCKED_KEY_TYPE_LINKKEY,
1100 					       k->val)) {
1101 				bt_dev_warn_ratelimited(hdev,
1102 							"Link key blocked for %pMR",
1103 							&k->bdaddr);
1104 				return NULL;
1105 			}
1106 
1107 			return k;
1108 		}
1109 	}
1110 	rcu_read_unlock();
1111 
1112 	return NULL;
1113 }
1114 
1115 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
1116 			       u8 key_type, u8 old_key_type)
1117 {
1118 	/* Legacy key */
1119 	if (key_type < 0x03)
1120 		return true;
1121 
1122 	/* Debug keys are insecure so don't store them persistently */
1123 	if (key_type == HCI_LK_DEBUG_COMBINATION)
1124 		return false;
1125 
1126 	/* Changed combination key and there's no previous one */
1127 	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
1128 		return false;
1129 
1130 	/* Security mode 3 case */
1131 	if (!conn)
1132 		return true;
1133 
1134 	/* BR/EDR key derived using SC from an LE link */
1135 	if (conn->type == LE_LINK)
1136 		return true;
1137 
1138 	/* Neither local nor remote side had no-bonding as requirement */
1139 	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
1140 		return true;
1141 
1142 	/* Local side had dedicated bonding as requirement */
1143 	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
1144 		return true;
1145 
1146 	/* Remote side had dedicated bonding as requirement */
1147 	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
1148 		return true;
1149 
1150 	/* If none of the above criteria match, then don't store the key
1151 	 * persistently */
1152 	return false;
1153 }
1154 
1155 static u8 ltk_role(u8 type)
1156 {
1157 	if (type == SMP_LTK)
1158 		return HCI_ROLE_MASTER;
1159 
1160 	return HCI_ROLE_SLAVE;
1161 }
1162 
1163 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1164 			     u8 addr_type, u8 role)
1165 {
1166 	struct smp_ltk *k;
1167 
1168 	rcu_read_lock();
1169 	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1170 		if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
1171 			continue;
1172 
1173 		if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
1174 			rcu_read_unlock();
1175 
1176 			if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK,
1177 					       k->val)) {
1178 				bt_dev_warn_ratelimited(hdev,
1179 							"LTK blocked for %pMR",
1180 							&k->bdaddr);
1181 				return NULL;
1182 			}
1183 
1184 			return k;
1185 		}
1186 	}
1187 	rcu_read_unlock();
1188 
1189 	return NULL;
1190 }
1191 
1192 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
1193 {
1194 	struct smp_irk *irk_to_return = NULL;
1195 	struct smp_irk *irk;
1196 
1197 	rcu_read_lock();
1198 	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1199 		if (!bacmp(&irk->rpa, rpa)) {
1200 			irk_to_return = irk;
1201 			goto done;
1202 		}
1203 	}
1204 
1205 	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1206 		if (smp_irk_matches(hdev, irk->val, rpa)) {
1207 			bacpy(&irk->rpa, rpa);
1208 			irk_to_return = irk;
1209 			goto done;
1210 		}
1211 	}
1212 
1213 done:
1214 	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1215 						irk_to_return->val)) {
1216 		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1217 					&irk_to_return->bdaddr);
1218 		irk_to_return = NULL;
1219 	}
1220 
1221 	rcu_read_unlock();
1222 
1223 	return irk_to_return;
1224 }
1225 
1226 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
1227 				     u8 addr_type)
1228 {
1229 	struct smp_irk *irk_to_return = NULL;
1230 	struct smp_irk *irk;
1231 
1232 	/* Identity Address must be public or static random */
1233 	if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
1234 		return NULL;
1235 
1236 	rcu_read_lock();
1237 	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1238 		if (addr_type == irk->addr_type &&
1239 		    bacmp(bdaddr, &irk->bdaddr) == 0) {
1240 			irk_to_return = irk;
1241 			goto done;
1242 		}
1243 	}
1244 
1245 done:
1246 
1247 	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1248 						irk_to_return->val)) {
1249 		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1250 					&irk_to_return->bdaddr);
1251 		irk_to_return = NULL;
1252 	}
1253 
1254 	rcu_read_unlock();
1255 
1256 	return irk_to_return;
1257 }
1258 
1259 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
1260 				  bdaddr_t *bdaddr, u8 *val, u8 type,
1261 				  u8 pin_len, bool *persistent)
1262 {
1263 	struct link_key *key, *old_key;
1264 	u8 old_key_type;
1265 
1266 	old_key = hci_find_link_key(hdev, bdaddr);
1267 	if (old_key) {
1268 		old_key_type = old_key->type;
1269 		key = old_key;
1270 	} else {
1271 		old_key_type = conn ? conn->key_type : 0xff;
1272 		key = kzalloc(sizeof(*key), GFP_KERNEL);
1273 		if (!key)
1274 			return NULL;
1275 		list_add_rcu(&key->list, &hdev->link_keys);
1276 	}
1277 
1278 	BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
1279 
1280 	/* Some buggy controller combinations generate a changed
1281 	 * combination key for legacy pairing even when there's no
1282 	 * previous key */
1283 	if (type == HCI_LK_CHANGED_COMBINATION &&
1284 	    (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
1285 		type = HCI_LK_COMBINATION;
1286 		if (conn)
1287 			conn->key_type = type;
1288 	}
1289 
1290 	bacpy(&key->bdaddr, bdaddr);
1291 	memcpy(key->val, val, HCI_LINK_KEY_SIZE);
1292 	key->pin_len = pin_len;
1293 
1294 	if (type == HCI_LK_CHANGED_COMBINATION)
1295 		key->type = old_key_type;
1296 	else
1297 		key->type = type;
1298 
1299 	if (persistent)
1300 		*persistent = hci_persistent_key(hdev, conn, type,
1301 						 old_key_type);
1302 
1303 	return key;
1304 }
1305 
1306 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1307 			    u8 addr_type, u8 type, u8 authenticated,
1308 			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
1309 {
1310 	struct smp_ltk *key, *old_key;
1311 	u8 role = ltk_role(type);
1312 
1313 	old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
1314 	if (old_key)
1315 		key = old_key;
1316 	else {
1317 		key = kzalloc(sizeof(*key), GFP_KERNEL);
1318 		if (!key)
1319 			return NULL;
1320 		list_add_rcu(&key->list, &hdev->long_term_keys);
1321 	}
1322 
1323 	bacpy(&key->bdaddr, bdaddr);
1324 	key->bdaddr_type = addr_type;
1325 	memcpy(key->val, tk, sizeof(key->val));
1326 	key->authenticated = authenticated;
1327 	key->ediv = ediv;
1328 	key->rand = rand;
1329 	key->enc_size = enc_size;
1330 	key->type = type;
1331 
1332 	return key;
1333 }
1334 
1335 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1336 			    u8 addr_type, u8 val[16], bdaddr_t *rpa)
1337 {
1338 	struct smp_irk *irk;
1339 
1340 	irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
1341 	if (!irk) {
1342 		irk = kzalloc(sizeof(*irk), GFP_KERNEL);
1343 		if (!irk)
1344 			return NULL;
1345 
1346 		bacpy(&irk->bdaddr, bdaddr);
1347 		irk->addr_type = addr_type;
1348 
1349 		list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
1350 	}
1351 
1352 	memcpy(irk->val, val, 16);
1353 	bacpy(&irk->rpa, rpa);
1354 
1355 	return irk;
1356 }
1357 
1358 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1359 {
1360 	struct link_key *key;
1361 
1362 	key = hci_find_link_key(hdev, bdaddr);
1363 	if (!key)
1364 		return -ENOENT;
1365 
1366 	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1367 
1368 	list_del_rcu(&key->list);
1369 	kfree_rcu(key, rcu);
1370 
1371 	return 0;
1372 }
1373 
1374 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
1375 {
1376 	struct smp_ltk *k, *tmp;
1377 	int removed = 0;
1378 
1379 	list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1380 		if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
1381 			continue;
1382 
1383 		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1384 
1385 		list_del_rcu(&k->list);
1386 		kfree_rcu(k, rcu);
1387 		removed++;
1388 	}
1389 
1390 	return removed ? 0 : -ENOENT;
1391 }
1392 
1393 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
1394 {
1395 	struct smp_irk *k, *tmp;
1396 
1397 	list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
1398 		if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
1399 			continue;
1400 
1401 		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1402 
1403 		list_del_rcu(&k->list);
1404 		kfree_rcu(k, rcu);
1405 	}
1406 }
1407 
1408 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
1409 {
1410 	struct smp_ltk *k;
1411 	struct smp_irk *irk;
1412 	u8 addr_type;
1413 
1414 	if (type == BDADDR_BREDR) {
1415 		if (hci_find_link_key(hdev, bdaddr))
1416 			return true;
1417 		return false;
1418 	}
1419 
1420 	/* Convert to HCI addr type which struct smp_ltk uses */
1421 	if (type == BDADDR_LE_PUBLIC)
1422 		addr_type = ADDR_LE_DEV_PUBLIC;
1423 	else
1424 		addr_type = ADDR_LE_DEV_RANDOM;
1425 
1426 	irk = hci_get_irk(hdev, bdaddr, addr_type);
1427 	if (irk) {
1428 		bdaddr = &irk->bdaddr;
1429 		addr_type = irk->addr_type;
1430 	}
1431 
1432 	rcu_read_lock();
1433 	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1434 		if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
1435 			rcu_read_unlock();
1436 			return true;
1437 		}
1438 	}
1439 	rcu_read_unlock();
1440 
1441 	return false;
1442 }
1443 
1444 /* HCI command timer function */
1445 static void hci_cmd_timeout(struct work_struct *work)
1446 {
1447 	struct hci_dev *hdev = container_of(work, struct hci_dev,
1448 					    cmd_timer.work);
1449 
1450 	if (hdev->req_skb) {
1451 		u16 opcode = hci_skb_opcode(hdev->req_skb);
1452 
1453 		bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
1454 
1455 		hci_cmd_sync_cancel_sync(hdev, ETIMEDOUT);
1456 	} else {
1457 		bt_dev_err(hdev, "command tx timeout");
1458 	}
1459 
1460 	if (hdev->cmd_timeout)
1461 		hdev->cmd_timeout(hdev);
1462 
1463 	atomic_set(&hdev->cmd_cnt, 1);
1464 	queue_work(hdev->workqueue, &hdev->cmd_work);
1465 }
1466 
1467 /* HCI ncmd timer function */
1468 static void hci_ncmd_timeout(struct work_struct *work)
1469 {
1470 	struct hci_dev *hdev = container_of(work, struct hci_dev,
1471 					    ncmd_timer.work);
1472 
1473 	bt_dev_err(hdev, "Controller not accepting commands anymore: ncmd = 0");
1474 
1475 	/* During HCI_INIT phase no events can be injected if the ncmd timer
1476 	 * triggers since the procedure has its own timeout handling.
1477 	 */
1478 	if (test_bit(HCI_INIT, &hdev->flags))
1479 		return;
1480 
1481 	/* This is an irrecoverable state, inject hardware error event */
1482 	hci_reset_dev(hdev);
1483 }
1484 
1485 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
1486 					  bdaddr_t *bdaddr, u8 bdaddr_type)
1487 {
1488 	struct oob_data *data;
1489 
1490 	list_for_each_entry(data, &hdev->remote_oob_data, list) {
1491 		if (bacmp(bdaddr, &data->bdaddr) != 0)
1492 			continue;
1493 		if (data->bdaddr_type != bdaddr_type)
1494 			continue;
1495 		return data;
1496 	}
1497 
1498 	return NULL;
1499 }
1500 
1501 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1502 			       u8 bdaddr_type)
1503 {
1504 	struct oob_data *data;
1505 
1506 	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1507 	if (!data)
1508 		return -ENOENT;
1509 
1510 	BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
1511 
1512 	list_del(&data->list);
1513 	kfree(data);
1514 
1515 	return 0;
1516 }
1517 
1518 void hci_remote_oob_data_clear(struct hci_dev *hdev)
1519 {
1520 	struct oob_data *data, *n;
1521 
1522 	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
1523 		list_del(&data->list);
1524 		kfree(data);
1525 	}
1526 }
1527 
1528 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1529 			    u8 bdaddr_type, u8 *hash192, u8 *rand192,
1530 			    u8 *hash256, u8 *rand256)
1531 {
1532 	struct oob_data *data;
1533 
1534 	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1535 	if (!data) {
1536 		data = kmalloc(sizeof(*data), GFP_KERNEL);
1537 		if (!data)
1538 			return -ENOMEM;
1539 
1540 		bacpy(&data->bdaddr, bdaddr);
1541 		data->bdaddr_type = bdaddr_type;
1542 		list_add(&data->list, &hdev->remote_oob_data);
1543 	}
1544 
1545 	if (hash192 && rand192) {
1546 		memcpy(data->hash192, hash192, sizeof(data->hash192));
1547 		memcpy(data->rand192, rand192, sizeof(data->rand192));
1548 		if (hash256 && rand256)
1549 			data->present = 0x03;
1550 	} else {
1551 		memset(data->hash192, 0, sizeof(data->hash192));
1552 		memset(data->rand192, 0, sizeof(data->rand192));
1553 		if (hash256 && rand256)
1554 			data->present = 0x02;
1555 		else
1556 			data->present = 0x00;
1557 	}
1558 
1559 	if (hash256 && rand256) {
1560 		memcpy(data->hash256, hash256, sizeof(data->hash256));
1561 		memcpy(data->rand256, rand256, sizeof(data->rand256));
1562 	} else {
1563 		memset(data->hash256, 0, sizeof(data->hash256));
1564 		memset(data->rand256, 0, sizeof(data->rand256));
1565 		if (hash192 && rand192)
1566 			data->present = 0x01;
1567 	}
1568 
1569 	BT_DBG("%s for %pMR", hdev->name, bdaddr);
1570 
1571 	return 0;
1572 }
1573 
1574 /* This function requires the caller holds hdev->lock */
1575 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
1576 {
1577 	struct adv_info *adv_instance;
1578 
1579 	list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
1580 		if (adv_instance->instance == instance)
1581 			return adv_instance;
1582 	}
1583 
1584 	return NULL;
1585 }
1586 
1587 /* This function requires the caller holds hdev->lock */
1588 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
1589 {
1590 	struct adv_info *cur_instance;
1591 
1592 	cur_instance = hci_find_adv_instance(hdev, instance);
1593 	if (!cur_instance)
1594 		return NULL;
1595 
1596 	if (cur_instance == list_last_entry(&hdev->adv_instances,
1597 					    struct adv_info, list))
1598 		return list_first_entry(&hdev->adv_instances,
1599 						 struct adv_info, list);
1600 	else
1601 		return list_next_entry(cur_instance, list);
1602 }
1603 
1604 /* This function requires the caller holds hdev->lock */
1605 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
1606 {
1607 	struct adv_info *adv_instance;
1608 
1609 	adv_instance = hci_find_adv_instance(hdev, instance);
1610 	if (!adv_instance)
1611 		return -ENOENT;
1612 
1613 	BT_DBG("%s removing %dMR", hdev->name, instance);
1614 
1615 	if (hdev->cur_adv_instance == instance) {
1616 		if (hdev->adv_instance_timeout) {
1617 			cancel_delayed_work(&hdev->adv_instance_expire);
1618 			hdev->adv_instance_timeout = 0;
1619 		}
1620 		hdev->cur_adv_instance = 0x00;
1621 	}
1622 
1623 	cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1624 
1625 	list_del(&adv_instance->list);
1626 	kfree(adv_instance);
1627 
1628 	hdev->adv_instance_cnt--;
1629 
1630 	return 0;
1631 }
1632 
1633 void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
1634 {
1635 	struct adv_info *adv_instance, *n;
1636 
1637 	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
1638 		adv_instance->rpa_expired = rpa_expired;
1639 }
1640 
1641 /* This function requires the caller holds hdev->lock */
1642 void hci_adv_instances_clear(struct hci_dev *hdev)
1643 {
1644 	struct adv_info *adv_instance, *n;
1645 
1646 	if (hdev->adv_instance_timeout) {
1647 		cancel_delayed_work(&hdev->adv_instance_expire);
1648 		hdev->adv_instance_timeout = 0;
1649 	}
1650 
1651 	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
1652 		cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1653 		list_del(&adv_instance->list);
1654 		kfree(adv_instance);
1655 	}
1656 
1657 	hdev->adv_instance_cnt = 0;
1658 	hdev->cur_adv_instance = 0x00;
1659 }
1660 
1661 static void adv_instance_rpa_expired(struct work_struct *work)
1662 {
1663 	struct adv_info *adv_instance = container_of(work, struct adv_info,
1664 						     rpa_expired_cb.work);
1665 
1666 	BT_DBG("");
1667 
1668 	adv_instance->rpa_expired = true;
1669 }
1670 
1671 /* This function requires the caller holds hdev->lock */
1672 struct adv_info *hci_add_adv_instance(struct hci_dev *hdev, u8 instance,
1673 				      u32 flags, u16 adv_data_len, u8 *adv_data,
1674 				      u16 scan_rsp_len, u8 *scan_rsp_data,
1675 				      u16 timeout, u16 duration, s8 tx_power,
1676 				      u32 min_interval, u32 max_interval,
1677 				      u8 mesh_handle)
1678 {
1679 	struct adv_info *adv;
1680 
1681 	adv = hci_find_adv_instance(hdev, instance);
1682 	if (adv) {
1683 		memset(adv->adv_data, 0, sizeof(adv->adv_data));
1684 		memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1685 		memset(adv->per_adv_data, 0, sizeof(adv->per_adv_data));
1686 	} else {
1687 		if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets ||
1688 		    instance < 1 || instance > hdev->le_num_of_adv_sets + 1)
1689 			return ERR_PTR(-EOVERFLOW);
1690 
1691 		adv = kzalloc(sizeof(*adv), GFP_KERNEL);
1692 		if (!adv)
1693 			return ERR_PTR(-ENOMEM);
1694 
1695 		adv->pending = true;
1696 		adv->instance = instance;
1697 
1698 		/* If controller support only one set and the instance is set to
1699 		 * 1 then there is no option other than using handle 0x00.
1700 		 */
1701 		if (hdev->le_num_of_adv_sets == 1 && instance == 1)
1702 			adv->handle = 0x00;
1703 		else
1704 			adv->handle = instance;
1705 
1706 		list_add(&adv->list, &hdev->adv_instances);
1707 		hdev->adv_instance_cnt++;
1708 	}
1709 
1710 	adv->flags = flags;
1711 	adv->min_interval = min_interval;
1712 	adv->max_interval = max_interval;
1713 	adv->tx_power = tx_power;
1714 	/* Defining a mesh_handle changes the timing units to ms,
1715 	 * rather than seconds, and ties the instance to the requested
1716 	 * mesh_tx queue.
1717 	 */
1718 	adv->mesh = mesh_handle;
1719 
1720 	hci_set_adv_instance_data(hdev, instance, adv_data_len, adv_data,
1721 				  scan_rsp_len, scan_rsp_data);
1722 
1723 	adv->timeout = timeout;
1724 	adv->remaining_time = timeout;
1725 
1726 	if (duration == 0)
1727 		adv->duration = hdev->def_multi_adv_rotation_duration;
1728 	else
1729 		adv->duration = duration;
1730 
1731 	INIT_DELAYED_WORK(&adv->rpa_expired_cb, adv_instance_rpa_expired);
1732 
1733 	BT_DBG("%s for %dMR", hdev->name, instance);
1734 
1735 	return adv;
1736 }
1737 
1738 /* This function requires the caller holds hdev->lock */
1739 struct adv_info *hci_add_per_instance(struct hci_dev *hdev, u8 instance,
1740 				      u32 flags, u8 data_len, u8 *data,
1741 				      u32 min_interval, u32 max_interval)
1742 {
1743 	struct adv_info *adv;
1744 
1745 	adv = hci_add_adv_instance(hdev, instance, flags, 0, NULL, 0, NULL,
1746 				   0, 0, HCI_ADV_TX_POWER_NO_PREFERENCE,
1747 				   min_interval, max_interval, 0);
1748 	if (IS_ERR(adv))
1749 		return adv;
1750 
1751 	adv->periodic = true;
1752 	adv->per_adv_data_len = data_len;
1753 
1754 	if (data)
1755 		memcpy(adv->per_adv_data, data, data_len);
1756 
1757 	return adv;
1758 }
1759 
1760 /* This function requires the caller holds hdev->lock */
1761 int hci_set_adv_instance_data(struct hci_dev *hdev, u8 instance,
1762 			      u16 adv_data_len, u8 *adv_data,
1763 			      u16 scan_rsp_len, u8 *scan_rsp_data)
1764 {
1765 	struct adv_info *adv;
1766 
1767 	adv = hci_find_adv_instance(hdev, instance);
1768 
1769 	/* If advertisement doesn't exist, we can't modify its data */
1770 	if (!adv)
1771 		return -ENOENT;
1772 
1773 	if (adv_data_len && ADV_DATA_CMP(adv, adv_data, adv_data_len)) {
1774 		memset(adv->adv_data, 0, sizeof(adv->adv_data));
1775 		memcpy(adv->adv_data, adv_data, adv_data_len);
1776 		adv->adv_data_len = adv_data_len;
1777 		adv->adv_data_changed = true;
1778 	}
1779 
1780 	if (scan_rsp_len && SCAN_RSP_CMP(adv, scan_rsp_data, scan_rsp_len)) {
1781 		memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1782 		memcpy(adv->scan_rsp_data, scan_rsp_data, scan_rsp_len);
1783 		adv->scan_rsp_len = scan_rsp_len;
1784 		adv->scan_rsp_changed = true;
1785 	}
1786 
1787 	/* Mark as changed if there are flags which would affect it */
1788 	if (((adv->flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) ||
1789 	    adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1790 		adv->scan_rsp_changed = true;
1791 
1792 	return 0;
1793 }
1794 
1795 /* This function requires the caller holds hdev->lock */
1796 u32 hci_adv_instance_flags(struct hci_dev *hdev, u8 instance)
1797 {
1798 	u32 flags;
1799 	struct adv_info *adv;
1800 
1801 	if (instance == 0x00) {
1802 		/* Instance 0 always manages the "Tx Power" and "Flags"
1803 		 * fields
1804 		 */
1805 		flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
1806 
1807 		/* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
1808 		 * corresponds to the "connectable" instance flag.
1809 		 */
1810 		if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
1811 			flags |= MGMT_ADV_FLAG_CONNECTABLE;
1812 
1813 		if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
1814 			flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
1815 		else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1816 			flags |= MGMT_ADV_FLAG_DISCOV;
1817 
1818 		return flags;
1819 	}
1820 
1821 	adv = hci_find_adv_instance(hdev, instance);
1822 
1823 	/* Return 0 when we got an invalid instance identifier. */
1824 	if (!adv)
1825 		return 0;
1826 
1827 	return adv->flags;
1828 }
1829 
1830 bool hci_adv_instance_is_scannable(struct hci_dev *hdev, u8 instance)
1831 {
1832 	struct adv_info *adv;
1833 
1834 	/* Instance 0x00 always set local name */
1835 	if (instance == 0x00)
1836 		return true;
1837 
1838 	adv = hci_find_adv_instance(hdev, instance);
1839 	if (!adv)
1840 		return false;
1841 
1842 	if (adv->flags & MGMT_ADV_FLAG_APPEARANCE ||
1843 	    adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1844 		return true;
1845 
1846 	return adv->scan_rsp_len ? true : false;
1847 }
1848 
1849 /* This function requires the caller holds hdev->lock */
1850 void hci_adv_monitors_clear(struct hci_dev *hdev)
1851 {
1852 	struct adv_monitor *monitor;
1853 	int handle;
1854 
1855 	idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle)
1856 		hci_free_adv_monitor(hdev, monitor);
1857 
1858 	idr_destroy(&hdev->adv_monitors_idr);
1859 }
1860 
1861 /* Frees the monitor structure and do some bookkeepings.
1862  * This function requires the caller holds hdev->lock.
1863  */
1864 void hci_free_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1865 {
1866 	struct adv_pattern *pattern;
1867 	struct adv_pattern *tmp;
1868 
1869 	if (!monitor)
1870 		return;
1871 
1872 	list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list) {
1873 		list_del(&pattern->list);
1874 		kfree(pattern);
1875 	}
1876 
1877 	if (monitor->handle)
1878 		idr_remove(&hdev->adv_monitors_idr, monitor->handle);
1879 
1880 	if (monitor->state != ADV_MONITOR_STATE_NOT_REGISTERED) {
1881 		hdev->adv_monitors_cnt--;
1882 		mgmt_adv_monitor_removed(hdev, monitor->handle);
1883 	}
1884 
1885 	kfree(monitor);
1886 }
1887 
1888 /* Assigns handle to a monitor, and if offloading is supported and power is on,
1889  * also attempts to forward the request to the controller.
1890  * This function requires the caller holds hci_req_sync_lock.
1891  */
1892 int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1893 {
1894 	int min, max, handle;
1895 	int status = 0;
1896 
1897 	if (!monitor)
1898 		return -EINVAL;
1899 
1900 	hci_dev_lock(hdev);
1901 
1902 	min = HCI_MIN_ADV_MONITOR_HANDLE;
1903 	max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES;
1904 	handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max,
1905 			   GFP_KERNEL);
1906 
1907 	hci_dev_unlock(hdev);
1908 
1909 	if (handle < 0)
1910 		return handle;
1911 
1912 	monitor->handle = handle;
1913 
1914 	if (!hdev_is_powered(hdev))
1915 		return status;
1916 
1917 	switch (hci_get_adv_monitor_offload_ext(hdev)) {
1918 	case HCI_ADV_MONITOR_EXT_NONE:
1919 		bt_dev_dbg(hdev, "add monitor %d status %d",
1920 			   monitor->handle, status);
1921 		/* Message was not forwarded to controller - not an error */
1922 		break;
1923 
1924 	case HCI_ADV_MONITOR_EXT_MSFT:
1925 		status = msft_add_monitor_pattern(hdev, monitor);
1926 		bt_dev_dbg(hdev, "add monitor %d msft status %d",
1927 			   handle, status);
1928 		break;
1929 	}
1930 
1931 	return status;
1932 }
1933 
1934 /* Attempts to tell the controller and free the monitor. If somehow the
1935  * controller doesn't have a corresponding handle, remove anyway.
1936  * This function requires the caller holds hci_req_sync_lock.
1937  */
1938 static int hci_remove_adv_monitor(struct hci_dev *hdev,
1939 				  struct adv_monitor *monitor)
1940 {
1941 	int status = 0;
1942 	int handle;
1943 
1944 	switch (hci_get_adv_monitor_offload_ext(hdev)) {
1945 	case HCI_ADV_MONITOR_EXT_NONE: /* also goes here when powered off */
1946 		bt_dev_dbg(hdev, "remove monitor %d status %d",
1947 			   monitor->handle, status);
1948 		goto free_monitor;
1949 
1950 	case HCI_ADV_MONITOR_EXT_MSFT:
1951 		handle = monitor->handle;
1952 		status = msft_remove_monitor(hdev, monitor);
1953 		bt_dev_dbg(hdev, "remove monitor %d msft status %d",
1954 			   handle, status);
1955 		break;
1956 	}
1957 
1958 	/* In case no matching handle registered, just free the monitor */
1959 	if (status == -ENOENT)
1960 		goto free_monitor;
1961 
1962 	return status;
1963 
1964 free_monitor:
1965 	if (status == -ENOENT)
1966 		bt_dev_warn(hdev, "Removing monitor with no matching handle %d",
1967 			    monitor->handle);
1968 	hci_free_adv_monitor(hdev, monitor);
1969 
1970 	return status;
1971 }
1972 
1973 /* This function requires the caller holds hci_req_sync_lock */
1974 int hci_remove_single_adv_monitor(struct hci_dev *hdev, u16 handle)
1975 {
1976 	struct adv_monitor *monitor = idr_find(&hdev->adv_monitors_idr, handle);
1977 
1978 	if (!monitor)
1979 		return -EINVAL;
1980 
1981 	return hci_remove_adv_monitor(hdev, monitor);
1982 }
1983 
1984 /* This function requires the caller holds hci_req_sync_lock */
1985 int hci_remove_all_adv_monitor(struct hci_dev *hdev)
1986 {
1987 	struct adv_monitor *monitor;
1988 	int idr_next_id = 0;
1989 	int status = 0;
1990 
1991 	while (1) {
1992 		monitor = idr_get_next(&hdev->adv_monitors_idr, &idr_next_id);
1993 		if (!monitor)
1994 			break;
1995 
1996 		status = hci_remove_adv_monitor(hdev, monitor);
1997 		if (status)
1998 			return status;
1999 
2000 		idr_next_id++;
2001 	}
2002 
2003 	return status;
2004 }
2005 
2006 /* This function requires the caller holds hdev->lock */
2007 bool hci_is_adv_monitoring(struct hci_dev *hdev)
2008 {
2009 	return !idr_is_empty(&hdev->adv_monitors_idr);
2010 }
2011 
2012 int hci_get_adv_monitor_offload_ext(struct hci_dev *hdev)
2013 {
2014 	if (msft_monitor_supported(hdev))
2015 		return HCI_ADV_MONITOR_EXT_MSFT;
2016 
2017 	return HCI_ADV_MONITOR_EXT_NONE;
2018 }
2019 
2020 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2021 					 bdaddr_t *bdaddr, u8 type)
2022 {
2023 	struct bdaddr_list *b;
2024 
2025 	list_for_each_entry(b, bdaddr_list, list) {
2026 		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2027 			return b;
2028 	}
2029 
2030 	return NULL;
2031 }
2032 
2033 struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
2034 				struct list_head *bdaddr_list, bdaddr_t *bdaddr,
2035 				u8 type)
2036 {
2037 	struct bdaddr_list_with_irk *b;
2038 
2039 	list_for_each_entry(b, bdaddr_list, list) {
2040 		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2041 			return b;
2042 	}
2043 
2044 	return NULL;
2045 }
2046 
2047 struct bdaddr_list_with_flags *
2048 hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list,
2049 				  bdaddr_t *bdaddr, u8 type)
2050 {
2051 	struct bdaddr_list_with_flags *b;
2052 
2053 	list_for_each_entry(b, bdaddr_list, list) {
2054 		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2055 			return b;
2056 	}
2057 
2058 	return NULL;
2059 }
2060 
2061 void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2062 {
2063 	struct bdaddr_list *b, *n;
2064 
2065 	list_for_each_entry_safe(b, n, bdaddr_list, list) {
2066 		list_del(&b->list);
2067 		kfree(b);
2068 	}
2069 }
2070 
2071 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2072 {
2073 	struct bdaddr_list *entry;
2074 
2075 	if (!bacmp(bdaddr, BDADDR_ANY))
2076 		return -EBADF;
2077 
2078 	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2079 		return -EEXIST;
2080 
2081 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2082 	if (!entry)
2083 		return -ENOMEM;
2084 
2085 	bacpy(&entry->bdaddr, bdaddr);
2086 	entry->bdaddr_type = type;
2087 
2088 	list_add(&entry->list, list);
2089 
2090 	return 0;
2091 }
2092 
2093 int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2094 					u8 type, u8 *peer_irk, u8 *local_irk)
2095 {
2096 	struct bdaddr_list_with_irk *entry;
2097 
2098 	if (!bacmp(bdaddr, BDADDR_ANY))
2099 		return -EBADF;
2100 
2101 	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2102 		return -EEXIST;
2103 
2104 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2105 	if (!entry)
2106 		return -ENOMEM;
2107 
2108 	bacpy(&entry->bdaddr, bdaddr);
2109 	entry->bdaddr_type = type;
2110 
2111 	if (peer_irk)
2112 		memcpy(entry->peer_irk, peer_irk, 16);
2113 
2114 	if (local_irk)
2115 		memcpy(entry->local_irk, local_irk, 16);
2116 
2117 	list_add(&entry->list, list);
2118 
2119 	return 0;
2120 }
2121 
2122 int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2123 				   u8 type, u32 flags)
2124 {
2125 	struct bdaddr_list_with_flags *entry;
2126 
2127 	if (!bacmp(bdaddr, BDADDR_ANY))
2128 		return -EBADF;
2129 
2130 	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2131 		return -EEXIST;
2132 
2133 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2134 	if (!entry)
2135 		return -ENOMEM;
2136 
2137 	bacpy(&entry->bdaddr, bdaddr);
2138 	entry->bdaddr_type = type;
2139 	entry->flags = flags;
2140 
2141 	list_add(&entry->list, list);
2142 
2143 	return 0;
2144 }
2145 
2146 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2147 {
2148 	struct bdaddr_list *entry;
2149 
2150 	if (!bacmp(bdaddr, BDADDR_ANY)) {
2151 		hci_bdaddr_list_clear(list);
2152 		return 0;
2153 	}
2154 
2155 	entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2156 	if (!entry)
2157 		return -ENOENT;
2158 
2159 	list_del(&entry->list);
2160 	kfree(entry);
2161 
2162 	return 0;
2163 }
2164 
2165 int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2166 							u8 type)
2167 {
2168 	struct bdaddr_list_with_irk *entry;
2169 
2170 	if (!bacmp(bdaddr, BDADDR_ANY)) {
2171 		hci_bdaddr_list_clear(list);
2172 		return 0;
2173 	}
2174 
2175 	entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
2176 	if (!entry)
2177 		return -ENOENT;
2178 
2179 	list_del(&entry->list);
2180 	kfree(entry);
2181 
2182 	return 0;
2183 }
2184 
2185 int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2186 				   u8 type)
2187 {
2188 	struct bdaddr_list_with_flags *entry;
2189 
2190 	if (!bacmp(bdaddr, BDADDR_ANY)) {
2191 		hci_bdaddr_list_clear(list);
2192 		return 0;
2193 	}
2194 
2195 	entry = hci_bdaddr_list_lookup_with_flags(list, bdaddr, type);
2196 	if (!entry)
2197 		return -ENOENT;
2198 
2199 	list_del(&entry->list);
2200 	kfree(entry);
2201 
2202 	return 0;
2203 }
2204 
2205 /* This function requires the caller holds hdev->lock */
2206 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2207 					       bdaddr_t *addr, u8 addr_type)
2208 {
2209 	struct hci_conn_params *params;
2210 
2211 	list_for_each_entry(params, &hdev->le_conn_params, list) {
2212 		if (bacmp(&params->addr, addr) == 0 &&
2213 		    params->addr_type == addr_type) {
2214 			return params;
2215 		}
2216 	}
2217 
2218 	return NULL;
2219 }
2220 
2221 /* This function requires the caller holds hdev->lock or rcu_read_lock */
2222 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2223 						  bdaddr_t *addr, u8 addr_type)
2224 {
2225 	struct hci_conn_params *param;
2226 
2227 	rcu_read_lock();
2228 
2229 	list_for_each_entry_rcu(param, list, action) {
2230 		if (bacmp(&param->addr, addr) == 0 &&
2231 		    param->addr_type == addr_type) {
2232 			rcu_read_unlock();
2233 			return param;
2234 		}
2235 	}
2236 
2237 	rcu_read_unlock();
2238 
2239 	return NULL;
2240 }
2241 
2242 /* This function requires the caller holds hdev->lock */
2243 void hci_pend_le_list_del_init(struct hci_conn_params *param)
2244 {
2245 	if (list_empty(&param->action))
2246 		return;
2247 
2248 	list_del_rcu(&param->action);
2249 	synchronize_rcu();
2250 	INIT_LIST_HEAD(&param->action);
2251 }
2252 
2253 /* This function requires the caller holds hdev->lock */
2254 void hci_pend_le_list_add(struct hci_conn_params *param,
2255 			  struct list_head *list)
2256 {
2257 	list_add_rcu(&param->action, list);
2258 }
2259 
2260 /* This function requires the caller holds hdev->lock */
2261 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2262 					    bdaddr_t *addr, u8 addr_type)
2263 {
2264 	struct hci_conn_params *params;
2265 
2266 	params = hci_conn_params_lookup(hdev, addr, addr_type);
2267 	if (params)
2268 		return params;
2269 
2270 	params = kzalloc(sizeof(*params), GFP_KERNEL);
2271 	if (!params) {
2272 		bt_dev_err(hdev, "out of memory");
2273 		return NULL;
2274 	}
2275 
2276 	bacpy(&params->addr, addr);
2277 	params->addr_type = addr_type;
2278 
2279 	list_add(&params->list, &hdev->le_conn_params);
2280 	INIT_LIST_HEAD(&params->action);
2281 
2282 	params->conn_min_interval = hdev->le_conn_min_interval;
2283 	params->conn_max_interval = hdev->le_conn_max_interval;
2284 	params->conn_latency = hdev->le_conn_latency;
2285 	params->supervision_timeout = hdev->le_supv_timeout;
2286 	params->auto_connect = HCI_AUTO_CONN_DISABLED;
2287 
2288 	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2289 
2290 	return params;
2291 }
2292 
2293 void hci_conn_params_free(struct hci_conn_params *params)
2294 {
2295 	hci_pend_le_list_del_init(params);
2296 
2297 	if (params->conn) {
2298 		hci_conn_drop(params->conn);
2299 		hci_conn_put(params->conn);
2300 	}
2301 
2302 	list_del(&params->list);
2303 	kfree(params);
2304 }
2305 
2306 /* This function requires the caller holds hdev->lock */
2307 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2308 {
2309 	struct hci_conn_params *params;
2310 
2311 	params = hci_conn_params_lookup(hdev, addr, addr_type);
2312 	if (!params)
2313 		return;
2314 
2315 	hci_conn_params_free(params);
2316 
2317 	hci_update_passive_scan(hdev);
2318 
2319 	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2320 }
2321 
2322 /* This function requires the caller holds hdev->lock */
2323 void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2324 {
2325 	struct hci_conn_params *params, *tmp;
2326 
2327 	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2328 		if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2329 			continue;
2330 
2331 		/* If trying to establish one time connection to disabled
2332 		 * device, leave the params, but mark them as just once.
2333 		 */
2334 		if (params->explicit_connect) {
2335 			params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2336 			continue;
2337 		}
2338 
2339 		hci_conn_params_free(params);
2340 	}
2341 
2342 	BT_DBG("All LE disabled connection parameters were removed");
2343 }
2344 
2345 /* This function requires the caller holds hdev->lock */
2346 static void hci_conn_params_clear_all(struct hci_dev *hdev)
2347 {
2348 	struct hci_conn_params *params, *tmp;
2349 
2350 	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2351 		hci_conn_params_free(params);
2352 
2353 	BT_DBG("All LE connection parameters were removed");
2354 }
2355 
2356 /* Copy the Identity Address of the controller.
2357  *
2358  * If the controller has a public BD_ADDR, then by default use that one.
2359  * If this is a LE only controller without a public address, default to
2360  * the static random address.
2361  *
2362  * For debugging purposes it is possible to force controllers with a
2363  * public address to use the static random address instead.
2364  *
2365  * In case BR/EDR has been disabled on a dual-mode controller and
2366  * userspace has configured a static address, then that address
2367  * becomes the identity address instead of the public BR/EDR address.
2368  */
2369 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2370 			       u8 *bdaddr_type)
2371 {
2372 	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2373 	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2374 	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2375 	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
2376 		bacpy(bdaddr, &hdev->static_addr);
2377 		*bdaddr_type = ADDR_LE_DEV_RANDOM;
2378 	} else {
2379 		bacpy(bdaddr, &hdev->bdaddr);
2380 		*bdaddr_type = ADDR_LE_DEV_PUBLIC;
2381 	}
2382 }
2383 
2384 static void hci_clear_wake_reason(struct hci_dev *hdev)
2385 {
2386 	hci_dev_lock(hdev);
2387 
2388 	hdev->wake_reason = 0;
2389 	bacpy(&hdev->wake_addr, BDADDR_ANY);
2390 	hdev->wake_addr_type = 0;
2391 
2392 	hci_dev_unlock(hdev);
2393 }
2394 
2395 static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action,
2396 				void *data)
2397 {
2398 	struct hci_dev *hdev =
2399 		container_of(nb, struct hci_dev, suspend_notifier);
2400 	int ret = 0;
2401 
2402 	/* Userspace has full control of this device. Do nothing. */
2403 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2404 		return NOTIFY_DONE;
2405 
2406 	/* To avoid a potential race with hci_unregister_dev. */
2407 	hci_dev_hold(hdev);
2408 
2409 	switch (action) {
2410 	case PM_HIBERNATION_PREPARE:
2411 	case PM_SUSPEND_PREPARE:
2412 		ret = hci_suspend_dev(hdev);
2413 		break;
2414 	case PM_POST_HIBERNATION:
2415 	case PM_POST_SUSPEND:
2416 		ret = hci_resume_dev(hdev);
2417 		break;
2418 	}
2419 
2420 	if (ret)
2421 		bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d",
2422 			   action, ret);
2423 
2424 	hci_dev_put(hdev);
2425 	return NOTIFY_DONE;
2426 }
2427 
2428 /* Alloc HCI device */
2429 struct hci_dev *hci_alloc_dev_priv(int sizeof_priv)
2430 {
2431 	struct hci_dev *hdev;
2432 	unsigned int alloc_size;
2433 
2434 	alloc_size = sizeof(*hdev);
2435 	if (sizeof_priv) {
2436 		/* Fixme: May need ALIGN-ment? */
2437 		alloc_size += sizeof_priv;
2438 	}
2439 
2440 	hdev = kzalloc(alloc_size, GFP_KERNEL);
2441 	if (!hdev)
2442 		return NULL;
2443 
2444 	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2445 	hdev->esco_type = (ESCO_HV1);
2446 	hdev->link_mode = (HCI_LM_ACCEPT);
2447 	hdev->num_iac = 0x01;		/* One IAC support is mandatory */
2448 	hdev->io_capability = 0x03;	/* No Input No Output */
2449 	hdev->manufacturer = 0xffff;	/* Default to internal use */
2450 	hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2451 	hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2452 	hdev->adv_instance_cnt = 0;
2453 	hdev->cur_adv_instance = 0x00;
2454 	hdev->adv_instance_timeout = 0;
2455 
2456 	hdev->advmon_allowlist_duration = 300;
2457 	hdev->advmon_no_filter_duration = 500;
2458 	hdev->enable_advmon_interleave_scan = 0x00;	/* Default to disable */
2459 
2460 	hdev->sniff_max_interval = 800;
2461 	hdev->sniff_min_interval = 80;
2462 
2463 	hdev->le_adv_channel_map = 0x07;
2464 	hdev->le_adv_min_interval = 0x0800;
2465 	hdev->le_adv_max_interval = 0x0800;
2466 	hdev->le_scan_interval = DISCOV_LE_SCAN_INT_FAST;
2467 	hdev->le_scan_window = DISCOV_LE_SCAN_WIN_FAST;
2468 	hdev->le_scan_int_suspend = DISCOV_LE_SCAN_INT_SLOW1;
2469 	hdev->le_scan_window_suspend = DISCOV_LE_SCAN_WIN_SLOW1;
2470 	hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT;
2471 	hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN;
2472 	hdev->le_scan_int_adv_monitor = DISCOV_LE_SCAN_INT_FAST;
2473 	hdev->le_scan_window_adv_monitor = DISCOV_LE_SCAN_WIN_FAST;
2474 	hdev->le_scan_int_connect = DISCOV_LE_SCAN_INT_CONN;
2475 	hdev->le_scan_window_connect = DISCOV_LE_SCAN_WIN_CONN;
2476 	hdev->le_conn_min_interval = 0x0018;
2477 	hdev->le_conn_max_interval = 0x0028;
2478 	hdev->le_conn_latency = 0x0000;
2479 	hdev->le_supv_timeout = 0x002a;
2480 	hdev->le_def_tx_len = 0x001b;
2481 	hdev->le_def_tx_time = 0x0148;
2482 	hdev->le_max_tx_len = 0x001b;
2483 	hdev->le_max_tx_time = 0x0148;
2484 	hdev->le_max_rx_len = 0x001b;
2485 	hdev->le_max_rx_time = 0x0148;
2486 	hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
2487 	hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
2488 	hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
2489 	hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
2490 	hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES;
2491 	hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION;
2492 	hdev->def_le_autoconnect_timeout = HCI_LE_CONN_TIMEOUT;
2493 	hdev->min_le_tx_power = HCI_TX_POWER_INVALID;
2494 	hdev->max_le_tx_power = HCI_TX_POWER_INVALID;
2495 
2496 	hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
2497 	hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
2498 	hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
2499 	hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
2500 	hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
2501 	hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE;
2502 
2503 	/* default 1.28 sec page scan */
2504 	hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD;
2505 	hdev->def_page_scan_int = 0x0800;
2506 	hdev->def_page_scan_window = 0x0012;
2507 
2508 	mutex_init(&hdev->lock);
2509 	mutex_init(&hdev->req_lock);
2510 
2511 	ida_init(&hdev->unset_handle_ida);
2512 
2513 	INIT_LIST_HEAD(&hdev->mesh_pending);
2514 	INIT_LIST_HEAD(&hdev->mgmt_pending);
2515 	INIT_LIST_HEAD(&hdev->reject_list);
2516 	INIT_LIST_HEAD(&hdev->accept_list);
2517 	INIT_LIST_HEAD(&hdev->uuids);
2518 	INIT_LIST_HEAD(&hdev->link_keys);
2519 	INIT_LIST_HEAD(&hdev->long_term_keys);
2520 	INIT_LIST_HEAD(&hdev->identity_resolving_keys);
2521 	INIT_LIST_HEAD(&hdev->remote_oob_data);
2522 	INIT_LIST_HEAD(&hdev->le_accept_list);
2523 	INIT_LIST_HEAD(&hdev->le_resolv_list);
2524 	INIT_LIST_HEAD(&hdev->le_conn_params);
2525 	INIT_LIST_HEAD(&hdev->pend_le_conns);
2526 	INIT_LIST_HEAD(&hdev->pend_le_reports);
2527 	INIT_LIST_HEAD(&hdev->conn_hash.list);
2528 	INIT_LIST_HEAD(&hdev->adv_instances);
2529 	INIT_LIST_HEAD(&hdev->blocked_keys);
2530 	INIT_LIST_HEAD(&hdev->monitored_devices);
2531 
2532 	INIT_LIST_HEAD(&hdev->local_codecs);
2533 	INIT_WORK(&hdev->rx_work, hci_rx_work);
2534 	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
2535 	INIT_WORK(&hdev->tx_work, hci_tx_work);
2536 	INIT_WORK(&hdev->power_on, hci_power_on);
2537 	INIT_WORK(&hdev->error_reset, hci_error_reset);
2538 
2539 	hci_cmd_sync_init(hdev);
2540 
2541 	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
2542 
2543 	skb_queue_head_init(&hdev->rx_q);
2544 	skb_queue_head_init(&hdev->cmd_q);
2545 	skb_queue_head_init(&hdev->raw_q);
2546 
2547 	init_waitqueue_head(&hdev->req_wait_q);
2548 
2549 	INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
2550 	INIT_DELAYED_WORK(&hdev->ncmd_timer, hci_ncmd_timeout);
2551 
2552 	hci_devcd_setup(hdev);
2553 
2554 	hci_init_sysfs(hdev);
2555 	discovery_init(hdev);
2556 
2557 	return hdev;
2558 }
2559 EXPORT_SYMBOL(hci_alloc_dev_priv);
2560 
2561 /* Free HCI device */
2562 void hci_free_dev(struct hci_dev *hdev)
2563 {
2564 	/* will free via device release */
2565 	put_device(&hdev->dev);
2566 }
2567 EXPORT_SYMBOL(hci_free_dev);
2568 
2569 /* Register HCI device */
2570 int hci_register_dev(struct hci_dev *hdev)
2571 {
2572 	int id, error;
2573 
2574 	if (!hdev->open || !hdev->close || !hdev->send)
2575 		return -EINVAL;
2576 
2577 	id = ida_alloc_max(&hci_index_ida, HCI_MAX_ID - 1, GFP_KERNEL);
2578 	if (id < 0)
2579 		return id;
2580 
2581 	error = dev_set_name(&hdev->dev, "hci%u", id);
2582 	if (error)
2583 		return error;
2584 
2585 	hdev->name = dev_name(&hdev->dev);
2586 	hdev->id = id;
2587 
2588 	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2589 
2590 	hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
2591 	if (!hdev->workqueue) {
2592 		error = -ENOMEM;
2593 		goto err;
2594 	}
2595 
2596 	hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
2597 						      hdev->name);
2598 	if (!hdev->req_workqueue) {
2599 		destroy_workqueue(hdev->workqueue);
2600 		error = -ENOMEM;
2601 		goto err;
2602 	}
2603 
2604 	if (!IS_ERR_OR_NULL(bt_debugfs))
2605 		hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
2606 
2607 	error = device_add(&hdev->dev);
2608 	if (error < 0)
2609 		goto err_wqueue;
2610 
2611 	hci_leds_init(hdev);
2612 
2613 	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
2614 				    RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
2615 				    hdev);
2616 	if (hdev->rfkill) {
2617 		if (rfkill_register(hdev->rfkill) < 0) {
2618 			rfkill_destroy(hdev->rfkill);
2619 			hdev->rfkill = NULL;
2620 		}
2621 	}
2622 
2623 	if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
2624 		hci_dev_set_flag(hdev, HCI_RFKILLED);
2625 
2626 	hci_dev_set_flag(hdev, HCI_SETUP);
2627 	hci_dev_set_flag(hdev, HCI_AUTO_OFF);
2628 
2629 	/* Assume BR/EDR support until proven otherwise (such as
2630 	 * through reading supported features during init.
2631 	 */
2632 	hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
2633 
2634 	write_lock(&hci_dev_list_lock);
2635 	list_add(&hdev->list, &hci_dev_list);
2636 	write_unlock(&hci_dev_list_lock);
2637 
2638 	/* Devices that are marked for raw-only usage are unconfigured
2639 	 * and should not be included in normal operation.
2640 	 */
2641 	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
2642 		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
2643 
2644 	/* Mark Remote Wakeup connection flag as supported if driver has wakeup
2645 	 * callback.
2646 	 */
2647 	if (hdev->wakeup)
2648 		hdev->conn_flags |= HCI_CONN_FLAG_REMOTE_WAKEUP;
2649 
2650 	hci_sock_dev_event(hdev, HCI_DEV_REG);
2651 	hci_dev_hold(hdev);
2652 
2653 	error = hci_register_suspend_notifier(hdev);
2654 	if (error)
2655 		BT_WARN("register suspend notifier failed error:%d\n", error);
2656 
2657 	queue_work(hdev->req_workqueue, &hdev->power_on);
2658 
2659 	idr_init(&hdev->adv_monitors_idr);
2660 	msft_register(hdev);
2661 
2662 	return id;
2663 
2664 err_wqueue:
2665 	debugfs_remove_recursive(hdev->debugfs);
2666 	destroy_workqueue(hdev->workqueue);
2667 	destroy_workqueue(hdev->req_workqueue);
2668 err:
2669 	ida_free(&hci_index_ida, hdev->id);
2670 
2671 	return error;
2672 }
2673 EXPORT_SYMBOL(hci_register_dev);
2674 
2675 /* Unregister HCI device */
2676 void hci_unregister_dev(struct hci_dev *hdev)
2677 {
2678 	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2679 
2680 	mutex_lock(&hdev->unregister_lock);
2681 	hci_dev_set_flag(hdev, HCI_UNREGISTER);
2682 	mutex_unlock(&hdev->unregister_lock);
2683 
2684 	write_lock(&hci_dev_list_lock);
2685 	list_del(&hdev->list);
2686 	write_unlock(&hci_dev_list_lock);
2687 
2688 	cancel_work_sync(&hdev->rx_work);
2689 	cancel_work_sync(&hdev->cmd_work);
2690 	cancel_work_sync(&hdev->tx_work);
2691 	cancel_work_sync(&hdev->power_on);
2692 	cancel_work_sync(&hdev->error_reset);
2693 
2694 	hci_cmd_sync_clear(hdev);
2695 
2696 	hci_unregister_suspend_notifier(hdev);
2697 
2698 	hci_dev_do_close(hdev);
2699 
2700 	if (!test_bit(HCI_INIT, &hdev->flags) &&
2701 	    !hci_dev_test_flag(hdev, HCI_SETUP) &&
2702 	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
2703 		hci_dev_lock(hdev);
2704 		mgmt_index_removed(hdev);
2705 		hci_dev_unlock(hdev);
2706 	}
2707 
2708 	/* mgmt_index_removed should take care of emptying the
2709 	 * pending list */
2710 	BUG_ON(!list_empty(&hdev->mgmt_pending));
2711 
2712 	hci_sock_dev_event(hdev, HCI_DEV_UNREG);
2713 
2714 	if (hdev->rfkill) {
2715 		rfkill_unregister(hdev->rfkill);
2716 		rfkill_destroy(hdev->rfkill);
2717 	}
2718 
2719 	device_del(&hdev->dev);
2720 	/* Actual cleanup is deferred until hci_release_dev(). */
2721 	hci_dev_put(hdev);
2722 }
2723 EXPORT_SYMBOL(hci_unregister_dev);
2724 
2725 /* Release HCI device */
2726 void hci_release_dev(struct hci_dev *hdev)
2727 {
2728 	debugfs_remove_recursive(hdev->debugfs);
2729 	kfree_const(hdev->hw_info);
2730 	kfree_const(hdev->fw_info);
2731 
2732 	destroy_workqueue(hdev->workqueue);
2733 	destroy_workqueue(hdev->req_workqueue);
2734 
2735 	hci_dev_lock(hdev);
2736 	hci_bdaddr_list_clear(&hdev->reject_list);
2737 	hci_bdaddr_list_clear(&hdev->accept_list);
2738 	hci_uuids_clear(hdev);
2739 	hci_link_keys_clear(hdev);
2740 	hci_smp_ltks_clear(hdev);
2741 	hci_smp_irks_clear(hdev);
2742 	hci_remote_oob_data_clear(hdev);
2743 	hci_adv_instances_clear(hdev);
2744 	hci_adv_monitors_clear(hdev);
2745 	hci_bdaddr_list_clear(&hdev->le_accept_list);
2746 	hci_bdaddr_list_clear(&hdev->le_resolv_list);
2747 	hci_conn_params_clear_all(hdev);
2748 	hci_discovery_filter_clear(hdev);
2749 	hci_blocked_keys_clear(hdev);
2750 	hci_codec_list_clear(&hdev->local_codecs);
2751 	msft_release(hdev);
2752 	hci_dev_unlock(hdev);
2753 
2754 	ida_destroy(&hdev->unset_handle_ida);
2755 	ida_free(&hci_index_ida, hdev->id);
2756 	kfree_skb(hdev->sent_cmd);
2757 	kfree_skb(hdev->req_skb);
2758 	kfree_skb(hdev->recv_event);
2759 	kfree(hdev);
2760 }
2761 EXPORT_SYMBOL(hci_release_dev);
2762 
2763 int hci_register_suspend_notifier(struct hci_dev *hdev)
2764 {
2765 	int ret = 0;
2766 
2767 	if (!hdev->suspend_notifier.notifier_call &&
2768 	    !test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) {
2769 		hdev->suspend_notifier.notifier_call = hci_suspend_notifier;
2770 		ret = register_pm_notifier(&hdev->suspend_notifier);
2771 	}
2772 
2773 	return ret;
2774 }
2775 
2776 int hci_unregister_suspend_notifier(struct hci_dev *hdev)
2777 {
2778 	int ret = 0;
2779 
2780 	if (hdev->suspend_notifier.notifier_call) {
2781 		ret = unregister_pm_notifier(&hdev->suspend_notifier);
2782 		if (!ret)
2783 			hdev->suspend_notifier.notifier_call = NULL;
2784 	}
2785 
2786 	return ret;
2787 }
2788 
2789 /* Cancel ongoing command synchronously:
2790  *
2791  * - Cancel command timer
2792  * - Reset command counter
2793  * - Cancel command request
2794  */
2795 static void hci_cancel_cmd_sync(struct hci_dev *hdev, int err)
2796 {
2797 	bt_dev_dbg(hdev, "err 0x%2.2x", err);
2798 
2799 	cancel_delayed_work_sync(&hdev->cmd_timer);
2800 	cancel_delayed_work_sync(&hdev->ncmd_timer);
2801 	atomic_set(&hdev->cmd_cnt, 1);
2802 
2803 	hci_cmd_sync_cancel_sync(hdev, err);
2804 }
2805 
2806 /* Suspend HCI device */
2807 int hci_suspend_dev(struct hci_dev *hdev)
2808 {
2809 	int ret;
2810 
2811 	bt_dev_dbg(hdev, "");
2812 
2813 	/* Suspend should only act on when powered. */
2814 	if (!hdev_is_powered(hdev) ||
2815 	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2816 		return 0;
2817 
2818 	/* If powering down don't attempt to suspend */
2819 	if (mgmt_powering_down(hdev))
2820 		return 0;
2821 
2822 	/* Cancel potentially blocking sync operation before suspend */
2823 	hci_cancel_cmd_sync(hdev, EHOSTDOWN);
2824 
2825 	hci_req_sync_lock(hdev);
2826 	ret = hci_suspend_sync(hdev);
2827 	hci_req_sync_unlock(hdev);
2828 
2829 	hci_clear_wake_reason(hdev);
2830 	mgmt_suspending(hdev, hdev->suspend_state);
2831 
2832 	hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
2833 	return ret;
2834 }
2835 EXPORT_SYMBOL(hci_suspend_dev);
2836 
2837 /* Resume HCI device */
2838 int hci_resume_dev(struct hci_dev *hdev)
2839 {
2840 	int ret;
2841 
2842 	bt_dev_dbg(hdev, "");
2843 
2844 	/* Resume should only act on when powered. */
2845 	if (!hdev_is_powered(hdev) ||
2846 	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2847 		return 0;
2848 
2849 	/* If powering down don't attempt to resume */
2850 	if (mgmt_powering_down(hdev))
2851 		return 0;
2852 
2853 	hci_req_sync_lock(hdev);
2854 	ret = hci_resume_sync(hdev);
2855 	hci_req_sync_unlock(hdev);
2856 
2857 	mgmt_resuming(hdev, hdev->wake_reason, &hdev->wake_addr,
2858 		      hdev->wake_addr_type);
2859 
2860 	hci_sock_dev_event(hdev, HCI_DEV_RESUME);
2861 	return ret;
2862 }
2863 EXPORT_SYMBOL(hci_resume_dev);
2864 
2865 /* Reset HCI device */
2866 int hci_reset_dev(struct hci_dev *hdev)
2867 {
2868 	static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
2869 	struct sk_buff *skb;
2870 
2871 	skb = bt_skb_alloc(3, GFP_ATOMIC);
2872 	if (!skb)
2873 		return -ENOMEM;
2874 
2875 	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
2876 	skb_put_data(skb, hw_err, 3);
2877 
2878 	bt_dev_err(hdev, "Injecting HCI hardware error event");
2879 
2880 	/* Send Hardware Error to upper stack */
2881 	return hci_recv_frame(hdev, skb);
2882 }
2883 EXPORT_SYMBOL(hci_reset_dev);
2884 
2885 static u8 hci_dev_classify_pkt_type(struct hci_dev *hdev, struct sk_buff *skb)
2886 {
2887 	if (hdev->classify_pkt_type)
2888 		return hdev->classify_pkt_type(hdev, skb);
2889 
2890 	return hci_skb_pkt_type(skb);
2891 }
2892 
2893 /* Receive frame from HCI drivers */
2894 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
2895 {
2896 	u8 dev_pkt_type;
2897 
2898 	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
2899 		      && !test_bit(HCI_INIT, &hdev->flags))) {
2900 		kfree_skb(skb);
2901 		return -ENXIO;
2902 	}
2903 
2904 	/* Check if the driver agree with packet type classification */
2905 	dev_pkt_type = hci_dev_classify_pkt_type(hdev, skb);
2906 	if (hci_skb_pkt_type(skb) != dev_pkt_type) {
2907 		hci_skb_pkt_type(skb) = dev_pkt_type;
2908 	}
2909 
2910 	switch (hci_skb_pkt_type(skb)) {
2911 	case HCI_EVENT_PKT:
2912 		break;
2913 	case HCI_ACLDATA_PKT:
2914 		/* Detect if ISO packet has been sent as ACL */
2915 		if (hci_conn_num(hdev, ISO_LINK)) {
2916 			__u16 handle = __le16_to_cpu(hci_acl_hdr(skb)->handle);
2917 			__u8 type;
2918 
2919 			type = hci_conn_lookup_type(hdev, hci_handle(handle));
2920 			if (type == ISO_LINK)
2921 				hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
2922 		}
2923 		break;
2924 	case HCI_SCODATA_PKT:
2925 		break;
2926 	case HCI_ISODATA_PKT:
2927 		break;
2928 	default:
2929 		kfree_skb(skb);
2930 		return -EINVAL;
2931 	}
2932 
2933 	/* Incoming skb */
2934 	bt_cb(skb)->incoming = 1;
2935 
2936 	/* Time stamp */
2937 	__net_timestamp(skb);
2938 
2939 	skb_queue_tail(&hdev->rx_q, skb);
2940 	queue_work(hdev->workqueue, &hdev->rx_work);
2941 
2942 	return 0;
2943 }
2944 EXPORT_SYMBOL(hci_recv_frame);
2945 
2946 /* Receive diagnostic message from HCI drivers */
2947 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
2948 {
2949 	/* Mark as diagnostic packet */
2950 	hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
2951 
2952 	/* Time stamp */
2953 	__net_timestamp(skb);
2954 
2955 	skb_queue_tail(&hdev->rx_q, skb);
2956 	queue_work(hdev->workqueue, &hdev->rx_work);
2957 
2958 	return 0;
2959 }
2960 EXPORT_SYMBOL(hci_recv_diag);
2961 
2962 void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
2963 {
2964 	va_list vargs;
2965 
2966 	va_start(vargs, fmt);
2967 	kfree_const(hdev->hw_info);
2968 	hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
2969 	va_end(vargs);
2970 }
2971 EXPORT_SYMBOL(hci_set_hw_info);
2972 
2973 void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
2974 {
2975 	va_list vargs;
2976 
2977 	va_start(vargs, fmt);
2978 	kfree_const(hdev->fw_info);
2979 	hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
2980 	va_end(vargs);
2981 }
2982 EXPORT_SYMBOL(hci_set_fw_info);
2983 
2984 /* ---- Interface to upper protocols ---- */
2985 
2986 int hci_register_cb(struct hci_cb *cb)
2987 {
2988 	BT_DBG("%p name %s", cb, cb->name);
2989 
2990 	mutex_lock(&hci_cb_list_lock);
2991 	list_add_tail(&cb->list, &hci_cb_list);
2992 	mutex_unlock(&hci_cb_list_lock);
2993 
2994 	return 0;
2995 }
2996 EXPORT_SYMBOL(hci_register_cb);
2997 
2998 int hci_unregister_cb(struct hci_cb *cb)
2999 {
3000 	BT_DBG("%p name %s", cb, cb->name);
3001 
3002 	mutex_lock(&hci_cb_list_lock);
3003 	list_del(&cb->list);
3004 	mutex_unlock(&hci_cb_list_lock);
3005 
3006 	return 0;
3007 }
3008 EXPORT_SYMBOL(hci_unregister_cb);
3009 
3010 static int hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3011 {
3012 	int err;
3013 
3014 	BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3015 	       skb->len);
3016 
3017 	/* Time stamp */
3018 	__net_timestamp(skb);
3019 
3020 	/* Send copy to monitor */
3021 	hci_send_to_monitor(hdev, skb);
3022 
3023 	if (atomic_read(&hdev->promisc)) {
3024 		/* Send copy to the sockets */
3025 		hci_send_to_sock(hdev, skb);
3026 	}
3027 
3028 	/* Get rid of skb owner, prior to sending to the driver. */
3029 	skb_orphan(skb);
3030 
3031 	if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3032 		kfree_skb(skb);
3033 		return -EINVAL;
3034 	}
3035 
3036 	err = hdev->send(hdev, skb);
3037 	if (err < 0) {
3038 		bt_dev_err(hdev, "sending frame failed (%d)", err);
3039 		kfree_skb(skb);
3040 		return err;
3041 	}
3042 
3043 	return 0;
3044 }
3045 
3046 /* Send HCI command */
3047 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3048 		 const void *param)
3049 {
3050 	struct sk_buff *skb;
3051 
3052 	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3053 
3054 	skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, NULL);
3055 	if (!skb) {
3056 		bt_dev_err(hdev, "no memory for command");
3057 		return -ENOMEM;
3058 	}
3059 
3060 	/* Stand-alone HCI commands must be flagged as
3061 	 * single-command requests.
3062 	 */
3063 	bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3064 
3065 	skb_queue_tail(&hdev->cmd_q, skb);
3066 	queue_work(hdev->workqueue, &hdev->cmd_work);
3067 
3068 	return 0;
3069 }
3070 
3071 int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
3072 		   const void *param)
3073 {
3074 	struct sk_buff *skb;
3075 
3076 	if (hci_opcode_ogf(opcode) != 0x3f) {
3077 		/* A controller receiving a command shall respond with either
3078 		 * a Command Status Event or a Command Complete Event.
3079 		 * Therefore, all standard HCI commands must be sent via the
3080 		 * standard API, using hci_send_cmd or hci_cmd_sync helpers.
3081 		 * Some vendors do not comply with this rule for vendor-specific
3082 		 * commands and do not return any event. We want to support
3083 		 * unresponded commands for such cases only.
3084 		 */
3085 		bt_dev_err(hdev, "unresponded command not supported");
3086 		return -EINVAL;
3087 	}
3088 
3089 	skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, NULL);
3090 	if (!skb) {
3091 		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
3092 			   opcode);
3093 		return -ENOMEM;
3094 	}
3095 
3096 	hci_send_frame(hdev, skb);
3097 
3098 	return 0;
3099 }
3100 EXPORT_SYMBOL(__hci_cmd_send);
3101 
3102 /* Get data from the previously sent command */
3103 static void *hci_cmd_data(struct sk_buff *skb, __u16 opcode)
3104 {
3105 	struct hci_command_hdr *hdr;
3106 
3107 	if (!skb || skb->len < HCI_COMMAND_HDR_SIZE)
3108 		return NULL;
3109 
3110 	hdr = (void *)skb->data;
3111 
3112 	if (hdr->opcode != cpu_to_le16(opcode))
3113 		return NULL;
3114 
3115 	return skb->data + HCI_COMMAND_HDR_SIZE;
3116 }
3117 
3118 /* Get data from the previously sent command */
3119 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3120 {
3121 	void *data;
3122 
3123 	/* Check if opcode matches last sent command */
3124 	data = hci_cmd_data(hdev->sent_cmd, opcode);
3125 	if (!data)
3126 		/* Check if opcode matches last request */
3127 		data = hci_cmd_data(hdev->req_skb, opcode);
3128 
3129 	return data;
3130 }
3131 
3132 /* Get data from last received event */
3133 void *hci_recv_event_data(struct hci_dev *hdev, __u8 event)
3134 {
3135 	struct hci_event_hdr *hdr;
3136 	int offset;
3137 
3138 	if (!hdev->recv_event)
3139 		return NULL;
3140 
3141 	hdr = (void *)hdev->recv_event->data;
3142 	offset = sizeof(*hdr);
3143 
3144 	if (hdr->evt != event) {
3145 		/* In case of LE metaevent check the subevent match */
3146 		if (hdr->evt == HCI_EV_LE_META) {
3147 			struct hci_ev_le_meta *ev;
3148 
3149 			ev = (void *)hdev->recv_event->data + offset;
3150 			offset += sizeof(*ev);
3151 			if (ev->subevent == event)
3152 				goto found;
3153 		}
3154 		return NULL;
3155 	}
3156 
3157 found:
3158 	bt_dev_dbg(hdev, "event 0x%2.2x", event);
3159 
3160 	return hdev->recv_event->data + offset;
3161 }
3162 
3163 /* Send ACL data */
3164 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3165 {
3166 	struct hci_acl_hdr *hdr;
3167 	int len = skb->len;
3168 
3169 	skb_push(skb, HCI_ACL_HDR_SIZE);
3170 	skb_reset_transport_header(skb);
3171 	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3172 	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3173 	hdr->dlen   = cpu_to_le16(len);
3174 }
3175 
3176 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3177 			  struct sk_buff *skb, __u16 flags)
3178 {
3179 	struct hci_conn *conn = chan->conn;
3180 	struct hci_dev *hdev = conn->hdev;
3181 	struct sk_buff *list;
3182 
3183 	skb->len = skb_headlen(skb);
3184 	skb->data_len = 0;
3185 
3186 	hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3187 
3188 	hci_add_acl_hdr(skb, conn->handle, flags);
3189 
3190 	list = skb_shinfo(skb)->frag_list;
3191 	if (!list) {
3192 		/* Non fragmented */
3193 		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3194 
3195 		skb_queue_tail(queue, skb);
3196 	} else {
3197 		/* Fragmented */
3198 		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3199 
3200 		skb_shinfo(skb)->frag_list = NULL;
3201 
3202 		/* Queue all fragments atomically. We need to use spin_lock_bh
3203 		 * here because of 6LoWPAN links, as there this function is
3204 		 * called from softirq and using normal spin lock could cause
3205 		 * deadlocks.
3206 		 */
3207 		spin_lock_bh(&queue->lock);
3208 
3209 		__skb_queue_tail(queue, skb);
3210 
3211 		flags &= ~ACL_START;
3212 		flags |= ACL_CONT;
3213 		do {
3214 			skb = list; list = list->next;
3215 
3216 			hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3217 			hci_add_acl_hdr(skb, conn->handle, flags);
3218 
3219 			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3220 
3221 			__skb_queue_tail(queue, skb);
3222 		} while (list);
3223 
3224 		spin_unlock_bh(&queue->lock);
3225 	}
3226 }
3227 
3228 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3229 {
3230 	struct hci_dev *hdev = chan->conn->hdev;
3231 
3232 	BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3233 
3234 	hci_queue_acl(chan, &chan->data_q, skb, flags);
3235 
3236 	queue_work(hdev->workqueue, &hdev->tx_work);
3237 }
3238 
3239 /* Send SCO data */
3240 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3241 {
3242 	struct hci_dev *hdev = conn->hdev;
3243 	struct hci_sco_hdr hdr;
3244 
3245 	BT_DBG("%s len %d", hdev->name, skb->len);
3246 
3247 	hdr.handle = cpu_to_le16(conn->handle);
3248 	hdr.dlen   = skb->len;
3249 
3250 	skb_push(skb, HCI_SCO_HDR_SIZE);
3251 	skb_reset_transport_header(skb);
3252 	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3253 
3254 	hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3255 
3256 	skb_queue_tail(&conn->data_q, skb);
3257 	queue_work(hdev->workqueue, &hdev->tx_work);
3258 }
3259 
3260 /* Send ISO data */
3261 static void hci_add_iso_hdr(struct sk_buff *skb, __u16 handle, __u8 flags)
3262 {
3263 	struct hci_iso_hdr *hdr;
3264 	int len = skb->len;
3265 
3266 	skb_push(skb, HCI_ISO_HDR_SIZE);
3267 	skb_reset_transport_header(skb);
3268 	hdr = (struct hci_iso_hdr *)skb_transport_header(skb);
3269 	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3270 	hdr->dlen   = cpu_to_le16(len);
3271 }
3272 
3273 static void hci_queue_iso(struct hci_conn *conn, struct sk_buff_head *queue,
3274 			  struct sk_buff *skb)
3275 {
3276 	struct hci_dev *hdev = conn->hdev;
3277 	struct sk_buff *list;
3278 	__u16 flags;
3279 
3280 	skb->len = skb_headlen(skb);
3281 	skb->data_len = 0;
3282 
3283 	hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3284 
3285 	list = skb_shinfo(skb)->frag_list;
3286 
3287 	flags = hci_iso_flags_pack(list ? ISO_START : ISO_SINGLE, 0x00);
3288 	hci_add_iso_hdr(skb, conn->handle, flags);
3289 
3290 	if (!list) {
3291 		/* Non fragmented */
3292 		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3293 
3294 		skb_queue_tail(queue, skb);
3295 	} else {
3296 		/* Fragmented */
3297 		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3298 
3299 		skb_shinfo(skb)->frag_list = NULL;
3300 
3301 		__skb_queue_tail(queue, skb);
3302 
3303 		do {
3304 			skb = list; list = list->next;
3305 
3306 			hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3307 			flags = hci_iso_flags_pack(list ? ISO_CONT : ISO_END,
3308 						   0x00);
3309 			hci_add_iso_hdr(skb, conn->handle, flags);
3310 
3311 			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3312 
3313 			__skb_queue_tail(queue, skb);
3314 		} while (list);
3315 	}
3316 }
3317 
3318 void hci_send_iso(struct hci_conn *conn, struct sk_buff *skb)
3319 {
3320 	struct hci_dev *hdev = conn->hdev;
3321 
3322 	BT_DBG("%s len %d", hdev->name, skb->len);
3323 
3324 	hci_queue_iso(conn, &conn->data_q, skb);
3325 
3326 	queue_work(hdev->workqueue, &hdev->tx_work);
3327 }
3328 
3329 /* ---- HCI TX task (outgoing data) ---- */
3330 
3331 /* HCI Connection scheduler */
3332 static inline void hci_quote_sent(struct hci_conn *conn, int num, int *quote)
3333 {
3334 	struct hci_dev *hdev;
3335 	int cnt, q;
3336 
3337 	if (!conn) {
3338 		*quote = 0;
3339 		return;
3340 	}
3341 
3342 	hdev = conn->hdev;
3343 
3344 	switch (conn->type) {
3345 	case ACL_LINK:
3346 		cnt = hdev->acl_cnt;
3347 		break;
3348 	case SCO_LINK:
3349 	case ESCO_LINK:
3350 		cnt = hdev->sco_cnt;
3351 		break;
3352 	case LE_LINK:
3353 		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3354 		break;
3355 	case ISO_LINK:
3356 		cnt = hdev->iso_mtu ? hdev->iso_cnt :
3357 			hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3358 		break;
3359 	default:
3360 		cnt = 0;
3361 		bt_dev_err(hdev, "unknown link type %d", conn->type);
3362 	}
3363 
3364 	q = cnt / num;
3365 	*quote = q ? q : 1;
3366 }
3367 
3368 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3369 				     int *quote)
3370 {
3371 	struct hci_conn_hash *h = &hdev->conn_hash;
3372 	struct hci_conn *conn = NULL, *c;
3373 	unsigned int num = 0, min = ~0;
3374 
3375 	/* We don't have to lock device here. Connections are always
3376 	 * added and removed with TX task disabled. */
3377 
3378 	rcu_read_lock();
3379 
3380 	list_for_each_entry_rcu(c, &h->list, list) {
3381 		if (c->type != type || skb_queue_empty(&c->data_q))
3382 			continue;
3383 
3384 		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3385 			continue;
3386 
3387 		num++;
3388 
3389 		if (c->sent < min) {
3390 			min  = c->sent;
3391 			conn = c;
3392 		}
3393 
3394 		if (hci_conn_num(hdev, type) == num)
3395 			break;
3396 	}
3397 
3398 	rcu_read_unlock();
3399 
3400 	hci_quote_sent(conn, num, quote);
3401 
3402 	BT_DBG("conn %p quote %d", conn, *quote);
3403 	return conn;
3404 }
3405 
3406 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3407 {
3408 	struct hci_conn_hash *h = &hdev->conn_hash;
3409 	struct hci_conn *c;
3410 
3411 	bt_dev_err(hdev, "link tx timeout");
3412 
3413 	rcu_read_lock();
3414 
3415 	/* Kill stalled connections */
3416 	list_for_each_entry_rcu(c, &h->list, list) {
3417 		if (c->type == type && c->sent) {
3418 			bt_dev_err(hdev, "killing stalled connection %pMR",
3419 				   &c->dst);
3420 			/* hci_disconnect might sleep, so, we have to release
3421 			 * the RCU read lock before calling it.
3422 			 */
3423 			rcu_read_unlock();
3424 			hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3425 			rcu_read_lock();
3426 		}
3427 	}
3428 
3429 	rcu_read_unlock();
3430 }
3431 
3432 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3433 				      int *quote)
3434 {
3435 	struct hci_conn_hash *h = &hdev->conn_hash;
3436 	struct hci_chan *chan = NULL;
3437 	unsigned int num = 0, min = ~0, cur_prio = 0;
3438 	struct hci_conn *conn;
3439 	int conn_num = 0;
3440 
3441 	BT_DBG("%s", hdev->name);
3442 
3443 	rcu_read_lock();
3444 
3445 	list_for_each_entry_rcu(conn, &h->list, list) {
3446 		struct hci_chan *tmp;
3447 
3448 		if (conn->type != type)
3449 			continue;
3450 
3451 		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3452 			continue;
3453 
3454 		conn_num++;
3455 
3456 		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3457 			struct sk_buff *skb;
3458 
3459 			if (skb_queue_empty(&tmp->data_q))
3460 				continue;
3461 
3462 			skb = skb_peek(&tmp->data_q);
3463 			if (skb->priority < cur_prio)
3464 				continue;
3465 
3466 			if (skb->priority > cur_prio) {
3467 				num = 0;
3468 				min = ~0;
3469 				cur_prio = skb->priority;
3470 			}
3471 
3472 			num++;
3473 
3474 			if (conn->sent < min) {
3475 				min  = conn->sent;
3476 				chan = tmp;
3477 			}
3478 		}
3479 
3480 		if (hci_conn_num(hdev, type) == conn_num)
3481 			break;
3482 	}
3483 
3484 	rcu_read_unlock();
3485 
3486 	if (!chan)
3487 		return NULL;
3488 
3489 	hci_quote_sent(chan->conn, num, quote);
3490 
3491 	BT_DBG("chan %p quote %d", chan, *quote);
3492 	return chan;
3493 }
3494 
3495 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3496 {
3497 	struct hci_conn_hash *h = &hdev->conn_hash;
3498 	struct hci_conn *conn;
3499 	int num = 0;
3500 
3501 	BT_DBG("%s", hdev->name);
3502 
3503 	rcu_read_lock();
3504 
3505 	list_for_each_entry_rcu(conn, &h->list, list) {
3506 		struct hci_chan *chan;
3507 
3508 		if (conn->type != type)
3509 			continue;
3510 
3511 		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3512 			continue;
3513 
3514 		num++;
3515 
3516 		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3517 			struct sk_buff *skb;
3518 
3519 			if (chan->sent) {
3520 				chan->sent = 0;
3521 				continue;
3522 			}
3523 
3524 			if (skb_queue_empty(&chan->data_q))
3525 				continue;
3526 
3527 			skb = skb_peek(&chan->data_q);
3528 			if (skb->priority >= HCI_PRIO_MAX - 1)
3529 				continue;
3530 
3531 			skb->priority = HCI_PRIO_MAX - 1;
3532 
3533 			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3534 			       skb->priority);
3535 		}
3536 
3537 		if (hci_conn_num(hdev, type) == num)
3538 			break;
3539 	}
3540 
3541 	rcu_read_unlock();
3542 
3543 }
3544 
3545 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt, u8 type)
3546 {
3547 	unsigned long last_tx;
3548 
3549 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
3550 		return;
3551 
3552 	switch (type) {
3553 	case LE_LINK:
3554 		last_tx = hdev->le_last_tx;
3555 		break;
3556 	default:
3557 		last_tx = hdev->acl_last_tx;
3558 		break;
3559 	}
3560 
3561 	/* tx timeout must be longer than maximum link supervision timeout
3562 	 * (40.9 seconds)
3563 	 */
3564 	if (!cnt && time_after(jiffies, last_tx + HCI_ACL_TX_TIMEOUT))
3565 		hci_link_tx_to(hdev, type);
3566 }
3567 
3568 /* Schedule SCO */
3569 static void hci_sched_sco(struct hci_dev *hdev)
3570 {
3571 	struct hci_conn *conn;
3572 	struct sk_buff *skb;
3573 	int quote;
3574 
3575 	BT_DBG("%s", hdev->name);
3576 
3577 	if (!hci_conn_num(hdev, SCO_LINK))
3578 		return;
3579 
3580 	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
3581 		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3582 			BT_DBG("skb %p len %d", skb, skb->len);
3583 			hci_send_frame(hdev, skb);
3584 
3585 			conn->sent++;
3586 			if (conn->sent == ~0)
3587 				conn->sent = 0;
3588 		}
3589 	}
3590 }
3591 
3592 static void hci_sched_esco(struct hci_dev *hdev)
3593 {
3594 	struct hci_conn *conn;
3595 	struct sk_buff *skb;
3596 	int quote;
3597 
3598 	BT_DBG("%s", hdev->name);
3599 
3600 	if (!hci_conn_num(hdev, ESCO_LINK))
3601 		return;
3602 
3603 	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3604 						     &quote))) {
3605 		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3606 			BT_DBG("skb %p len %d", skb, skb->len);
3607 			hci_send_frame(hdev, skb);
3608 
3609 			conn->sent++;
3610 			if (conn->sent == ~0)
3611 				conn->sent = 0;
3612 		}
3613 	}
3614 }
3615 
3616 static void hci_sched_acl_pkt(struct hci_dev *hdev)
3617 {
3618 	unsigned int cnt = hdev->acl_cnt;
3619 	struct hci_chan *chan;
3620 	struct sk_buff *skb;
3621 	int quote;
3622 
3623 	__check_timeout(hdev, cnt, ACL_LINK);
3624 
3625 	while (hdev->acl_cnt &&
3626 	       (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
3627 		u32 priority = (skb_peek(&chan->data_q))->priority;
3628 		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3629 			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3630 			       skb->len, skb->priority);
3631 
3632 			/* Stop if priority has changed */
3633 			if (skb->priority < priority)
3634 				break;
3635 
3636 			skb = skb_dequeue(&chan->data_q);
3637 
3638 			hci_conn_enter_active_mode(chan->conn,
3639 						   bt_cb(skb)->force_active);
3640 
3641 			hci_send_frame(hdev, skb);
3642 			hdev->acl_last_tx = jiffies;
3643 
3644 			hdev->acl_cnt--;
3645 			chan->sent++;
3646 			chan->conn->sent++;
3647 
3648 			/* Send pending SCO packets right away */
3649 			hci_sched_sco(hdev);
3650 			hci_sched_esco(hdev);
3651 		}
3652 	}
3653 
3654 	if (cnt != hdev->acl_cnt)
3655 		hci_prio_recalculate(hdev, ACL_LINK);
3656 }
3657 
3658 static void hci_sched_acl(struct hci_dev *hdev)
3659 {
3660 	BT_DBG("%s", hdev->name);
3661 
3662 	/* No ACL link over BR/EDR controller */
3663 	if (!hci_conn_num(hdev, ACL_LINK))
3664 		return;
3665 
3666 	hci_sched_acl_pkt(hdev);
3667 }
3668 
3669 static void hci_sched_le(struct hci_dev *hdev)
3670 {
3671 	struct hci_chan *chan;
3672 	struct sk_buff *skb;
3673 	int quote, *cnt, tmp;
3674 
3675 	BT_DBG("%s", hdev->name);
3676 
3677 	if (!hci_conn_num(hdev, LE_LINK))
3678 		return;
3679 
3680 	cnt = hdev->le_pkts ? &hdev->le_cnt : &hdev->acl_cnt;
3681 
3682 	__check_timeout(hdev, *cnt, LE_LINK);
3683 
3684 	tmp = *cnt;
3685 	while (*cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
3686 		u32 priority = (skb_peek(&chan->data_q))->priority;
3687 		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3688 			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3689 			       skb->len, skb->priority);
3690 
3691 			/* Stop if priority has changed */
3692 			if (skb->priority < priority)
3693 				break;
3694 
3695 			skb = skb_dequeue(&chan->data_q);
3696 
3697 			hci_send_frame(hdev, skb);
3698 			hdev->le_last_tx = jiffies;
3699 
3700 			(*cnt)--;
3701 			chan->sent++;
3702 			chan->conn->sent++;
3703 
3704 			/* Send pending SCO packets right away */
3705 			hci_sched_sco(hdev);
3706 			hci_sched_esco(hdev);
3707 		}
3708 	}
3709 
3710 	if (*cnt != tmp)
3711 		hci_prio_recalculate(hdev, LE_LINK);
3712 }
3713 
3714 /* Schedule CIS */
3715 static void hci_sched_iso(struct hci_dev *hdev)
3716 {
3717 	struct hci_conn *conn;
3718 	struct sk_buff *skb;
3719 	int quote, *cnt;
3720 
3721 	BT_DBG("%s", hdev->name);
3722 
3723 	if (!hci_conn_num(hdev, ISO_LINK))
3724 		return;
3725 
3726 	cnt = hdev->iso_pkts ? &hdev->iso_cnt :
3727 		hdev->le_pkts ? &hdev->le_cnt : &hdev->acl_cnt;
3728 	while (*cnt && (conn = hci_low_sent(hdev, ISO_LINK, &quote))) {
3729 		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3730 			BT_DBG("skb %p len %d", skb, skb->len);
3731 			hci_send_frame(hdev, skb);
3732 
3733 			conn->sent++;
3734 			if (conn->sent == ~0)
3735 				conn->sent = 0;
3736 			(*cnt)--;
3737 		}
3738 	}
3739 }
3740 
3741 static void hci_tx_work(struct work_struct *work)
3742 {
3743 	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
3744 	struct sk_buff *skb;
3745 
3746 	BT_DBG("%s acl %d sco %d le %d iso %d", hdev->name, hdev->acl_cnt,
3747 	       hdev->sco_cnt, hdev->le_cnt, hdev->iso_cnt);
3748 
3749 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3750 		/* Schedule queues and send stuff to HCI driver */
3751 		hci_sched_sco(hdev);
3752 		hci_sched_esco(hdev);
3753 		hci_sched_iso(hdev);
3754 		hci_sched_acl(hdev);
3755 		hci_sched_le(hdev);
3756 	}
3757 
3758 	/* Send next queued raw (unknown type) packet */
3759 	while ((skb = skb_dequeue(&hdev->raw_q)))
3760 		hci_send_frame(hdev, skb);
3761 }
3762 
3763 /* ----- HCI RX task (incoming data processing) ----- */
3764 
3765 /* ACL data packet */
3766 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3767 {
3768 	struct hci_acl_hdr *hdr = (void *) skb->data;
3769 	struct hci_conn *conn;
3770 	__u16 handle, flags;
3771 
3772 	skb_pull(skb, HCI_ACL_HDR_SIZE);
3773 
3774 	handle = __le16_to_cpu(hdr->handle);
3775 	flags  = hci_flags(handle);
3776 	handle = hci_handle(handle);
3777 
3778 	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3779 	       handle, flags);
3780 
3781 	hdev->stat.acl_rx++;
3782 
3783 	hci_dev_lock(hdev);
3784 	conn = hci_conn_hash_lookup_handle(hdev, handle);
3785 	if (conn && hci_dev_test_flag(hdev, HCI_MGMT))
3786 		mgmt_device_connected(hdev, conn, NULL, 0);
3787 	hci_dev_unlock(hdev);
3788 
3789 	if (conn) {
3790 		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
3791 
3792 		/* Send to upper protocol */
3793 		l2cap_recv_acldata(conn, skb, flags);
3794 		return;
3795 	} else {
3796 		bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
3797 			   handle);
3798 	}
3799 
3800 	kfree_skb(skb);
3801 }
3802 
3803 /* SCO data packet */
3804 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3805 {
3806 	struct hci_sco_hdr *hdr = (void *) skb->data;
3807 	struct hci_conn *conn;
3808 	__u16 handle, flags;
3809 
3810 	skb_pull(skb, HCI_SCO_HDR_SIZE);
3811 
3812 	handle = __le16_to_cpu(hdr->handle);
3813 	flags  = hci_flags(handle);
3814 	handle = hci_handle(handle);
3815 
3816 	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3817 	       handle, flags);
3818 
3819 	hdev->stat.sco_rx++;
3820 
3821 	hci_dev_lock(hdev);
3822 	conn = hci_conn_hash_lookup_handle(hdev, handle);
3823 	hci_dev_unlock(hdev);
3824 
3825 	if (conn) {
3826 		/* Send to upper protocol */
3827 		hci_skb_pkt_status(skb) = flags & 0x03;
3828 		sco_recv_scodata(conn, skb);
3829 		return;
3830 	} else {
3831 		bt_dev_err_ratelimited(hdev, "SCO packet for unknown connection handle %d",
3832 				       handle);
3833 	}
3834 
3835 	kfree_skb(skb);
3836 }
3837 
3838 static void hci_isodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3839 {
3840 	struct hci_iso_hdr *hdr;
3841 	struct hci_conn *conn;
3842 	__u16 handle, flags;
3843 
3844 	hdr = skb_pull_data(skb, sizeof(*hdr));
3845 	if (!hdr) {
3846 		bt_dev_err(hdev, "ISO packet too small");
3847 		goto drop;
3848 	}
3849 
3850 	handle = __le16_to_cpu(hdr->handle);
3851 	flags  = hci_flags(handle);
3852 	handle = hci_handle(handle);
3853 
3854 	bt_dev_dbg(hdev, "len %d handle 0x%4.4x flags 0x%4.4x", skb->len,
3855 		   handle, flags);
3856 
3857 	hci_dev_lock(hdev);
3858 	conn = hci_conn_hash_lookup_handle(hdev, handle);
3859 	hci_dev_unlock(hdev);
3860 
3861 	if (!conn) {
3862 		bt_dev_err(hdev, "ISO packet for unknown connection handle %d",
3863 			   handle);
3864 		goto drop;
3865 	}
3866 
3867 	/* Send to upper protocol */
3868 	iso_recv(conn, skb, flags);
3869 	return;
3870 
3871 drop:
3872 	kfree_skb(skb);
3873 }
3874 
3875 static bool hci_req_is_complete(struct hci_dev *hdev)
3876 {
3877 	struct sk_buff *skb;
3878 
3879 	skb = skb_peek(&hdev->cmd_q);
3880 	if (!skb)
3881 		return true;
3882 
3883 	return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
3884 }
3885 
3886 static void hci_resend_last(struct hci_dev *hdev)
3887 {
3888 	struct hci_command_hdr *sent;
3889 	struct sk_buff *skb;
3890 	u16 opcode;
3891 
3892 	if (!hdev->sent_cmd)
3893 		return;
3894 
3895 	sent = (void *) hdev->sent_cmd->data;
3896 	opcode = __le16_to_cpu(sent->opcode);
3897 	if (opcode == HCI_OP_RESET)
3898 		return;
3899 
3900 	skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
3901 	if (!skb)
3902 		return;
3903 
3904 	skb_queue_head(&hdev->cmd_q, skb);
3905 	queue_work(hdev->workqueue, &hdev->cmd_work);
3906 }
3907 
3908 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
3909 			  hci_req_complete_t *req_complete,
3910 			  hci_req_complete_skb_t *req_complete_skb)
3911 {
3912 	struct sk_buff *skb;
3913 	unsigned long flags;
3914 
3915 	BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
3916 
3917 	/* If the completed command doesn't match the last one that was
3918 	 * sent we need to do special handling of it.
3919 	 */
3920 	if (!hci_sent_cmd_data(hdev, opcode)) {
3921 		/* Some CSR based controllers generate a spontaneous
3922 		 * reset complete event during init and any pending
3923 		 * command will never be completed. In such a case we
3924 		 * need to resend whatever was the last sent
3925 		 * command.
3926 		 */
3927 		if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
3928 			hci_resend_last(hdev);
3929 
3930 		return;
3931 	}
3932 
3933 	/* If we reach this point this event matches the last command sent */
3934 	hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
3935 
3936 	/* If the command succeeded and there's still more commands in
3937 	 * this request the request is not yet complete.
3938 	 */
3939 	if (!status && !hci_req_is_complete(hdev))
3940 		return;
3941 
3942 	skb = hdev->req_skb;
3943 
3944 	/* If this was the last command in a request the complete
3945 	 * callback would be found in hdev->req_skb instead of the
3946 	 * command queue (hdev->cmd_q).
3947 	 */
3948 	if (skb && bt_cb(skb)->hci.req_flags & HCI_REQ_SKB) {
3949 		*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
3950 		return;
3951 	}
3952 
3953 	if (skb && bt_cb(skb)->hci.req_complete) {
3954 		*req_complete = bt_cb(skb)->hci.req_complete;
3955 		return;
3956 	}
3957 
3958 	/* Remove all pending commands belonging to this request */
3959 	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
3960 	while ((skb = __skb_dequeue(&hdev->cmd_q))) {
3961 		if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
3962 			__skb_queue_head(&hdev->cmd_q, skb);
3963 			break;
3964 		}
3965 
3966 		if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
3967 			*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
3968 		else
3969 			*req_complete = bt_cb(skb)->hci.req_complete;
3970 		dev_kfree_skb_irq(skb);
3971 	}
3972 	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
3973 }
3974 
3975 static void hci_rx_work(struct work_struct *work)
3976 {
3977 	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
3978 	struct sk_buff *skb;
3979 
3980 	BT_DBG("%s", hdev->name);
3981 
3982 	/* The kcov_remote functions used for collecting packet parsing
3983 	 * coverage information from this background thread and associate
3984 	 * the coverage with the syscall's thread which originally injected
3985 	 * the packet. This helps fuzzing the kernel.
3986 	 */
3987 	for (; (skb = skb_dequeue(&hdev->rx_q)); kcov_remote_stop()) {
3988 		kcov_remote_start_common(skb_get_kcov_handle(skb));
3989 
3990 		/* Send copy to monitor */
3991 		hci_send_to_monitor(hdev, skb);
3992 
3993 		if (atomic_read(&hdev->promisc)) {
3994 			/* Send copy to the sockets */
3995 			hci_send_to_sock(hdev, skb);
3996 		}
3997 
3998 		/* If the device has been opened in HCI_USER_CHANNEL,
3999 		 * the userspace has exclusive access to device.
4000 		 * When device is HCI_INIT, we still need to process
4001 		 * the data packets to the driver in order
4002 		 * to complete its setup().
4003 		 */
4004 		if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4005 		    !test_bit(HCI_INIT, &hdev->flags)) {
4006 			kfree_skb(skb);
4007 			continue;
4008 		}
4009 
4010 		if (test_bit(HCI_INIT, &hdev->flags)) {
4011 			/* Don't process data packets in this states. */
4012 			switch (hci_skb_pkt_type(skb)) {
4013 			case HCI_ACLDATA_PKT:
4014 			case HCI_SCODATA_PKT:
4015 			case HCI_ISODATA_PKT:
4016 				kfree_skb(skb);
4017 				continue;
4018 			}
4019 		}
4020 
4021 		/* Process frame */
4022 		switch (hci_skb_pkt_type(skb)) {
4023 		case HCI_EVENT_PKT:
4024 			BT_DBG("%s Event packet", hdev->name);
4025 			hci_event_packet(hdev, skb);
4026 			break;
4027 
4028 		case HCI_ACLDATA_PKT:
4029 			BT_DBG("%s ACL data packet", hdev->name);
4030 			hci_acldata_packet(hdev, skb);
4031 			break;
4032 
4033 		case HCI_SCODATA_PKT:
4034 			BT_DBG("%s SCO data packet", hdev->name);
4035 			hci_scodata_packet(hdev, skb);
4036 			break;
4037 
4038 		case HCI_ISODATA_PKT:
4039 			BT_DBG("%s ISO data packet", hdev->name);
4040 			hci_isodata_packet(hdev, skb);
4041 			break;
4042 
4043 		default:
4044 			kfree_skb(skb);
4045 			break;
4046 		}
4047 	}
4048 }
4049 
4050 static void hci_send_cmd_sync(struct hci_dev *hdev, struct sk_buff *skb)
4051 {
4052 	int err;
4053 
4054 	bt_dev_dbg(hdev, "skb %p", skb);
4055 
4056 	kfree_skb(hdev->sent_cmd);
4057 
4058 	hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4059 	if (!hdev->sent_cmd) {
4060 		skb_queue_head(&hdev->cmd_q, skb);
4061 		queue_work(hdev->workqueue, &hdev->cmd_work);
4062 		return;
4063 	}
4064 
4065 	err = hci_send_frame(hdev, skb);
4066 	if (err < 0) {
4067 		hci_cmd_sync_cancel_sync(hdev, -err);
4068 		return;
4069 	}
4070 
4071 	if (hdev->req_status == HCI_REQ_PEND &&
4072 	    !hci_dev_test_and_set_flag(hdev, HCI_CMD_PENDING)) {
4073 		kfree_skb(hdev->req_skb);
4074 		hdev->req_skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4075 	}
4076 
4077 	atomic_dec(&hdev->cmd_cnt);
4078 }
4079 
4080 static void hci_cmd_work(struct work_struct *work)
4081 {
4082 	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4083 	struct sk_buff *skb;
4084 
4085 	BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4086 	       atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4087 
4088 	/* Send queued commands */
4089 	if (atomic_read(&hdev->cmd_cnt)) {
4090 		skb = skb_dequeue(&hdev->cmd_q);
4091 		if (!skb)
4092 			return;
4093 
4094 		hci_send_cmd_sync(hdev, skb);
4095 
4096 		rcu_read_lock();
4097 		if (test_bit(HCI_RESET, &hdev->flags) ||
4098 		    hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
4099 			cancel_delayed_work(&hdev->cmd_timer);
4100 		else
4101 			queue_delayed_work(hdev->workqueue, &hdev->cmd_timer,
4102 					   HCI_CMD_TIMEOUT);
4103 		rcu_read_unlock();
4104 	}
4105 }
4106