1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (C) 2000-2001 Qualcomm Incorporated 4 Copyright (C) 2011 ProFUSION Embedded Systems 5 6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 7 8 This program is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License version 2 as 10 published by the Free Software Foundation; 11 12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 20 21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 23 SOFTWARE IS DISCLAIMED. 24 */ 25 26 /* Bluetooth HCI core. */ 27 28 #include <linux/export.h> 29 #include <linux/rfkill.h> 30 #include <linux/debugfs.h> 31 #include <linux/crypto.h> 32 #include <linux/kcov.h> 33 #include <linux/property.h> 34 #include <linux/suspend.h> 35 #include <linux/wait.h> 36 #include <linux/unaligned.h> 37 38 #include <net/bluetooth/bluetooth.h> 39 #include <net/bluetooth/hci_core.h> 40 #include <net/bluetooth/l2cap.h> 41 #include <net/bluetooth/mgmt.h> 42 43 #include "hci_debugfs.h" 44 #include "smp.h" 45 #include "leds.h" 46 #include "msft.h" 47 #include "aosp.h" 48 #include "hci_codec.h" 49 50 static void hci_rx_work(struct work_struct *work); 51 static void hci_cmd_work(struct work_struct *work); 52 static void hci_tx_work(struct work_struct *work); 53 54 /* HCI device list */ 55 LIST_HEAD(hci_dev_list); 56 DEFINE_RWLOCK(hci_dev_list_lock); 57 58 /* HCI callback list */ 59 LIST_HEAD(hci_cb_list); 60 DEFINE_MUTEX(hci_cb_list_lock); 61 62 /* HCI ID Numbering */ 63 static DEFINE_IDA(hci_index_ida); 64 65 /* Get HCI device by index. 66 * Device is held on return. */ 67 struct hci_dev *hci_dev_get(int index) 68 { 69 struct hci_dev *hdev = NULL, *d; 70 71 BT_DBG("%d", index); 72 73 if (index < 0) 74 return NULL; 75 76 read_lock(&hci_dev_list_lock); 77 list_for_each_entry(d, &hci_dev_list, list) { 78 if (d->id == index) { 79 hdev = hci_dev_hold(d); 80 break; 81 } 82 } 83 read_unlock(&hci_dev_list_lock); 84 return hdev; 85 } 86 87 /* ---- Inquiry support ---- */ 88 89 bool hci_discovery_active(struct hci_dev *hdev) 90 { 91 struct discovery_state *discov = &hdev->discovery; 92 93 switch (discov->state) { 94 case DISCOVERY_FINDING: 95 case DISCOVERY_RESOLVING: 96 return true; 97 98 default: 99 return false; 100 } 101 } 102 103 void hci_discovery_set_state(struct hci_dev *hdev, int state) 104 { 105 int old_state = hdev->discovery.state; 106 107 if (old_state == state) 108 return; 109 110 hdev->discovery.state = state; 111 112 switch (state) { 113 case DISCOVERY_STOPPED: 114 hci_update_passive_scan(hdev); 115 116 if (old_state != DISCOVERY_STARTING) 117 mgmt_discovering(hdev, 0); 118 break; 119 case DISCOVERY_STARTING: 120 break; 121 case DISCOVERY_FINDING: 122 mgmt_discovering(hdev, 1); 123 break; 124 case DISCOVERY_RESOLVING: 125 break; 126 case DISCOVERY_STOPPING: 127 break; 128 } 129 130 bt_dev_dbg(hdev, "state %u -> %u", old_state, state); 131 } 132 133 void hci_inquiry_cache_flush(struct hci_dev *hdev) 134 { 135 struct discovery_state *cache = &hdev->discovery; 136 struct inquiry_entry *p, *n; 137 138 list_for_each_entry_safe(p, n, &cache->all, all) { 139 list_del(&p->all); 140 kfree(p); 141 } 142 143 INIT_LIST_HEAD(&cache->unknown); 144 INIT_LIST_HEAD(&cache->resolve); 145 } 146 147 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev, 148 bdaddr_t *bdaddr) 149 { 150 struct discovery_state *cache = &hdev->discovery; 151 struct inquiry_entry *e; 152 153 BT_DBG("cache %p, %pMR", cache, bdaddr); 154 155 list_for_each_entry(e, &cache->all, all) { 156 if (!bacmp(&e->data.bdaddr, bdaddr)) 157 return e; 158 } 159 160 return NULL; 161 } 162 163 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev, 164 bdaddr_t *bdaddr) 165 { 166 struct discovery_state *cache = &hdev->discovery; 167 struct inquiry_entry *e; 168 169 BT_DBG("cache %p, %pMR", cache, bdaddr); 170 171 list_for_each_entry(e, &cache->unknown, list) { 172 if (!bacmp(&e->data.bdaddr, bdaddr)) 173 return e; 174 } 175 176 return NULL; 177 } 178 179 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev, 180 bdaddr_t *bdaddr, 181 int state) 182 { 183 struct discovery_state *cache = &hdev->discovery; 184 struct inquiry_entry *e; 185 186 BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state); 187 188 list_for_each_entry(e, &cache->resolve, list) { 189 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state) 190 return e; 191 if (!bacmp(&e->data.bdaddr, bdaddr)) 192 return e; 193 } 194 195 return NULL; 196 } 197 198 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev, 199 struct inquiry_entry *ie) 200 { 201 struct discovery_state *cache = &hdev->discovery; 202 struct list_head *pos = &cache->resolve; 203 struct inquiry_entry *p; 204 205 list_del(&ie->list); 206 207 list_for_each_entry(p, &cache->resolve, list) { 208 if (p->name_state != NAME_PENDING && 209 abs(p->data.rssi) >= abs(ie->data.rssi)) 210 break; 211 pos = &p->list; 212 } 213 214 list_add(&ie->list, pos); 215 } 216 217 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data, 218 bool name_known) 219 { 220 struct discovery_state *cache = &hdev->discovery; 221 struct inquiry_entry *ie; 222 u32 flags = 0; 223 224 BT_DBG("cache %p, %pMR", cache, &data->bdaddr); 225 226 hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR); 227 228 if (!data->ssp_mode) 229 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING; 230 231 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr); 232 if (ie) { 233 if (!ie->data.ssp_mode) 234 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING; 235 236 if (ie->name_state == NAME_NEEDED && 237 data->rssi != ie->data.rssi) { 238 ie->data.rssi = data->rssi; 239 hci_inquiry_cache_update_resolve(hdev, ie); 240 } 241 242 goto update; 243 } 244 245 /* Entry not in the cache. Add new one. */ 246 ie = kzalloc(sizeof(*ie), GFP_KERNEL); 247 if (!ie) { 248 flags |= MGMT_DEV_FOUND_CONFIRM_NAME; 249 goto done; 250 } 251 252 list_add(&ie->all, &cache->all); 253 254 if (name_known) { 255 ie->name_state = NAME_KNOWN; 256 } else { 257 ie->name_state = NAME_NOT_KNOWN; 258 list_add(&ie->list, &cache->unknown); 259 } 260 261 update: 262 if (name_known && ie->name_state != NAME_KNOWN && 263 ie->name_state != NAME_PENDING) { 264 ie->name_state = NAME_KNOWN; 265 list_del(&ie->list); 266 } 267 268 memcpy(&ie->data, data, sizeof(*data)); 269 ie->timestamp = jiffies; 270 cache->timestamp = jiffies; 271 272 if (ie->name_state == NAME_NOT_KNOWN) 273 flags |= MGMT_DEV_FOUND_CONFIRM_NAME; 274 275 done: 276 return flags; 277 } 278 279 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf) 280 { 281 struct discovery_state *cache = &hdev->discovery; 282 struct inquiry_info *info = (struct inquiry_info *) buf; 283 struct inquiry_entry *e; 284 int copied = 0; 285 286 list_for_each_entry(e, &cache->all, all) { 287 struct inquiry_data *data = &e->data; 288 289 if (copied >= num) 290 break; 291 292 bacpy(&info->bdaddr, &data->bdaddr); 293 info->pscan_rep_mode = data->pscan_rep_mode; 294 info->pscan_period_mode = data->pscan_period_mode; 295 info->pscan_mode = data->pscan_mode; 296 memcpy(info->dev_class, data->dev_class, 3); 297 info->clock_offset = data->clock_offset; 298 299 info++; 300 copied++; 301 } 302 303 BT_DBG("cache %p, copied %d", cache, copied); 304 return copied; 305 } 306 307 int hci_inquiry(void __user *arg) 308 { 309 __u8 __user *ptr = arg; 310 struct hci_inquiry_req ir; 311 struct hci_dev *hdev; 312 int err = 0, do_inquiry = 0, max_rsp; 313 __u8 *buf; 314 315 if (copy_from_user(&ir, ptr, sizeof(ir))) 316 return -EFAULT; 317 318 hdev = hci_dev_get(ir.dev_id); 319 if (!hdev) 320 return -ENODEV; 321 322 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 323 err = -EBUSY; 324 goto done; 325 } 326 327 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 328 err = -EOPNOTSUPP; 329 goto done; 330 } 331 332 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 333 err = -EOPNOTSUPP; 334 goto done; 335 } 336 337 /* Restrict maximum inquiry length to 60 seconds */ 338 if (ir.length > 60) { 339 err = -EINVAL; 340 goto done; 341 } 342 343 hci_dev_lock(hdev); 344 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX || 345 inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) { 346 hci_inquiry_cache_flush(hdev); 347 do_inquiry = 1; 348 } 349 hci_dev_unlock(hdev); 350 351 if (do_inquiry) { 352 hci_req_sync_lock(hdev); 353 err = hci_inquiry_sync(hdev, ir.length, ir.num_rsp); 354 hci_req_sync_unlock(hdev); 355 356 if (err < 0) 357 goto done; 358 359 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is 360 * cleared). If it is interrupted by a signal, return -EINTR. 361 */ 362 if (wait_on_bit(&hdev->flags, HCI_INQUIRY, 363 TASK_INTERRUPTIBLE)) { 364 err = -EINTR; 365 goto done; 366 } 367 } 368 369 /* for unlimited number of responses we will use buffer with 370 * 255 entries 371 */ 372 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp; 373 374 /* cache_dump can't sleep. Therefore we allocate temp buffer and then 375 * copy it to the user space. 376 */ 377 buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL); 378 if (!buf) { 379 err = -ENOMEM; 380 goto done; 381 } 382 383 hci_dev_lock(hdev); 384 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf); 385 hci_dev_unlock(hdev); 386 387 BT_DBG("num_rsp %d", ir.num_rsp); 388 389 if (!copy_to_user(ptr, &ir, sizeof(ir))) { 390 ptr += sizeof(ir); 391 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) * 392 ir.num_rsp)) 393 err = -EFAULT; 394 } else 395 err = -EFAULT; 396 397 kfree(buf); 398 399 done: 400 hci_dev_put(hdev); 401 return err; 402 } 403 404 static int hci_dev_do_open(struct hci_dev *hdev) 405 { 406 int ret = 0; 407 408 BT_DBG("%s %p", hdev->name, hdev); 409 410 hci_req_sync_lock(hdev); 411 412 ret = hci_dev_open_sync(hdev); 413 414 hci_req_sync_unlock(hdev); 415 return ret; 416 } 417 418 /* ---- HCI ioctl helpers ---- */ 419 420 int hci_dev_open(__u16 dev) 421 { 422 struct hci_dev *hdev; 423 int err; 424 425 hdev = hci_dev_get(dev); 426 if (!hdev) 427 return -ENODEV; 428 429 /* Devices that are marked as unconfigured can only be powered 430 * up as user channel. Trying to bring them up as normal devices 431 * will result into a failure. Only user channel operation is 432 * possible. 433 * 434 * When this function is called for a user channel, the flag 435 * HCI_USER_CHANNEL will be set first before attempting to 436 * open the device. 437 */ 438 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 439 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 440 err = -EOPNOTSUPP; 441 goto done; 442 } 443 444 /* We need to ensure that no other power on/off work is pending 445 * before proceeding to call hci_dev_do_open. This is 446 * particularly important if the setup procedure has not yet 447 * completed. 448 */ 449 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) 450 cancel_delayed_work(&hdev->power_off); 451 452 /* After this call it is guaranteed that the setup procedure 453 * has finished. This means that error conditions like RFKILL 454 * or no valid public or static random address apply. 455 */ 456 flush_workqueue(hdev->req_workqueue); 457 458 /* For controllers not using the management interface and that 459 * are brought up using legacy ioctl, set the HCI_BONDABLE bit 460 * so that pairing works for them. Once the management interface 461 * is in use this bit will be cleared again and userspace has 462 * to explicitly enable it. 463 */ 464 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 465 !hci_dev_test_flag(hdev, HCI_MGMT)) 466 hci_dev_set_flag(hdev, HCI_BONDABLE); 467 468 err = hci_dev_do_open(hdev); 469 470 done: 471 hci_dev_put(hdev); 472 return err; 473 } 474 475 int hci_dev_do_close(struct hci_dev *hdev) 476 { 477 int err; 478 479 BT_DBG("%s %p", hdev->name, hdev); 480 481 hci_req_sync_lock(hdev); 482 483 err = hci_dev_close_sync(hdev); 484 485 hci_req_sync_unlock(hdev); 486 487 return err; 488 } 489 490 int hci_dev_close(__u16 dev) 491 { 492 struct hci_dev *hdev; 493 int err; 494 495 hdev = hci_dev_get(dev); 496 if (!hdev) 497 return -ENODEV; 498 499 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 500 err = -EBUSY; 501 goto done; 502 } 503 504 cancel_work_sync(&hdev->power_on); 505 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) 506 cancel_delayed_work(&hdev->power_off); 507 508 err = hci_dev_do_close(hdev); 509 510 done: 511 hci_dev_put(hdev); 512 return err; 513 } 514 515 static int hci_dev_do_reset(struct hci_dev *hdev) 516 { 517 int ret; 518 519 BT_DBG("%s %p", hdev->name, hdev); 520 521 hci_req_sync_lock(hdev); 522 523 /* Drop queues */ 524 skb_queue_purge(&hdev->rx_q); 525 skb_queue_purge(&hdev->cmd_q); 526 527 /* Cancel these to avoid queueing non-chained pending work */ 528 hci_dev_set_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE); 529 /* Wait for 530 * 531 * if (!hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE)) 532 * queue_delayed_work(&hdev->{cmd,ncmd}_timer) 533 * 534 * inside RCU section to see the flag or complete scheduling. 535 */ 536 synchronize_rcu(); 537 /* Explicitly cancel works in case scheduled after setting the flag. */ 538 cancel_delayed_work(&hdev->cmd_timer); 539 cancel_delayed_work(&hdev->ncmd_timer); 540 541 /* Avoid potential lockdep warnings from the *_flush() calls by 542 * ensuring the workqueue is empty up front. 543 */ 544 drain_workqueue(hdev->workqueue); 545 546 hci_dev_lock(hdev); 547 hci_inquiry_cache_flush(hdev); 548 hci_conn_hash_flush(hdev); 549 hci_dev_unlock(hdev); 550 551 if (hdev->flush) 552 hdev->flush(hdev); 553 554 hci_dev_clear_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE); 555 556 atomic_set(&hdev->cmd_cnt, 1); 557 hdev->acl_cnt = 0; 558 hdev->sco_cnt = 0; 559 hdev->le_cnt = 0; 560 hdev->iso_cnt = 0; 561 562 ret = hci_reset_sync(hdev); 563 564 hci_req_sync_unlock(hdev); 565 return ret; 566 } 567 568 int hci_dev_reset(__u16 dev) 569 { 570 struct hci_dev *hdev; 571 int err; 572 573 hdev = hci_dev_get(dev); 574 if (!hdev) 575 return -ENODEV; 576 577 if (!test_bit(HCI_UP, &hdev->flags)) { 578 err = -ENETDOWN; 579 goto done; 580 } 581 582 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 583 err = -EBUSY; 584 goto done; 585 } 586 587 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 588 err = -EOPNOTSUPP; 589 goto done; 590 } 591 592 err = hci_dev_do_reset(hdev); 593 594 done: 595 hci_dev_put(hdev); 596 return err; 597 } 598 599 int hci_dev_reset_stat(__u16 dev) 600 { 601 struct hci_dev *hdev; 602 int ret = 0; 603 604 hdev = hci_dev_get(dev); 605 if (!hdev) 606 return -ENODEV; 607 608 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 609 ret = -EBUSY; 610 goto done; 611 } 612 613 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 614 ret = -EOPNOTSUPP; 615 goto done; 616 } 617 618 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats)); 619 620 done: 621 hci_dev_put(hdev); 622 return ret; 623 } 624 625 static void hci_update_passive_scan_state(struct hci_dev *hdev, u8 scan) 626 { 627 bool conn_changed, discov_changed; 628 629 BT_DBG("%s scan 0x%02x", hdev->name, scan); 630 631 if ((scan & SCAN_PAGE)) 632 conn_changed = !hci_dev_test_and_set_flag(hdev, 633 HCI_CONNECTABLE); 634 else 635 conn_changed = hci_dev_test_and_clear_flag(hdev, 636 HCI_CONNECTABLE); 637 638 if ((scan & SCAN_INQUIRY)) { 639 discov_changed = !hci_dev_test_and_set_flag(hdev, 640 HCI_DISCOVERABLE); 641 } else { 642 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 643 discov_changed = hci_dev_test_and_clear_flag(hdev, 644 HCI_DISCOVERABLE); 645 } 646 647 if (!hci_dev_test_flag(hdev, HCI_MGMT)) 648 return; 649 650 if (conn_changed || discov_changed) { 651 /* In case this was disabled through mgmt */ 652 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED); 653 654 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 655 hci_update_adv_data(hdev, hdev->cur_adv_instance); 656 657 mgmt_new_settings(hdev); 658 } 659 } 660 661 int hci_dev_cmd(unsigned int cmd, void __user *arg) 662 { 663 struct hci_dev *hdev; 664 struct hci_dev_req dr; 665 __le16 policy; 666 int err = 0; 667 668 if (copy_from_user(&dr, arg, sizeof(dr))) 669 return -EFAULT; 670 671 hdev = hci_dev_get(dr.dev_id); 672 if (!hdev) 673 return -ENODEV; 674 675 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 676 err = -EBUSY; 677 goto done; 678 } 679 680 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 681 err = -EOPNOTSUPP; 682 goto done; 683 } 684 685 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 686 err = -EOPNOTSUPP; 687 goto done; 688 } 689 690 switch (cmd) { 691 case HCISETAUTH: 692 err = hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE, 693 1, &dr.dev_opt, HCI_CMD_TIMEOUT); 694 break; 695 696 case HCISETENCRYPT: 697 if (!lmp_encrypt_capable(hdev)) { 698 err = -EOPNOTSUPP; 699 break; 700 } 701 702 if (!test_bit(HCI_AUTH, &hdev->flags)) { 703 /* Auth must be enabled first */ 704 err = hci_cmd_sync_status(hdev, 705 HCI_OP_WRITE_AUTH_ENABLE, 706 1, &dr.dev_opt, 707 HCI_CMD_TIMEOUT); 708 if (err) 709 break; 710 } 711 712 err = hci_cmd_sync_status(hdev, HCI_OP_WRITE_ENCRYPT_MODE, 713 1, &dr.dev_opt, HCI_CMD_TIMEOUT); 714 break; 715 716 case HCISETSCAN: 717 err = hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE, 718 1, &dr.dev_opt, HCI_CMD_TIMEOUT); 719 720 /* Ensure that the connectable and discoverable states 721 * get correctly modified as this was a non-mgmt change. 722 */ 723 if (!err) 724 hci_update_passive_scan_state(hdev, dr.dev_opt); 725 break; 726 727 case HCISETLINKPOL: 728 policy = cpu_to_le16(dr.dev_opt); 729 730 err = hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY, 731 2, &policy, HCI_CMD_TIMEOUT); 732 break; 733 734 case HCISETLINKMODE: 735 hdev->link_mode = ((__u16) dr.dev_opt) & 736 (HCI_LM_MASTER | HCI_LM_ACCEPT); 737 break; 738 739 case HCISETPTYPE: 740 if (hdev->pkt_type == (__u16) dr.dev_opt) 741 break; 742 743 hdev->pkt_type = (__u16) dr.dev_opt; 744 mgmt_phy_configuration_changed(hdev, NULL); 745 break; 746 747 case HCISETACLMTU: 748 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1); 749 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0); 750 break; 751 752 case HCISETSCOMTU: 753 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1); 754 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0); 755 break; 756 757 default: 758 err = -EINVAL; 759 break; 760 } 761 762 done: 763 hci_dev_put(hdev); 764 return err; 765 } 766 767 int hci_get_dev_list(void __user *arg) 768 { 769 struct hci_dev *hdev; 770 struct hci_dev_list_req *dl; 771 struct hci_dev_req *dr; 772 int n = 0, err; 773 __u16 dev_num; 774 775 if (get_user(dev_num, (__u16 __user *) arg)) 776 return -EFAULT; 777 778 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr)) 779 return -EINVAL; 780 781 dl = kzalloc(struct_size(dl, dev_req, dev_num), GFP_KERNEL); 782 if (!dl) 783 return -ENOMEM; 784 785 dl->dev_num = dev_num; 786 dr = dl->dev_req; 787 788 read_lock(&hci_dev_list_lock); 789 list_for_each_entry(hdev, &hci_dev_list, list) { 790 unsigned long flags = hdev->flags; 791 792 /* When the auto-off is configured it means the transport 793 * is running, but in that case still indicate that the 794 * device is actually down. 795 */ 796 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) 797 flags &= ~BIT(HCI_UP); 798 799 dr[n].dev_id = hdev->id; 800 dr[n].dev_opt = flags; 801 802 if (++n >= dev_num) 803 break; 804 } 805 read_unlock(&hci_dev_list_lock); 806 807 dl->dev_num = n; 808 err = copy_to_user(arg, dl, struct_size(dl, dev_req, n)); 809 kfree(dl); 810 811 return err ? -EFAULT : 0; 812 } 813 814 int hci_get_dev_info(void __user *arg) 815 { 816 struct hci_dev *hdev; 817 struct hci_dev_info di; 818 unsigned long flags; 819 int err = 0; 820 821 if (copy_from_user(&di, arg, sizeof(di))) 822 return -EFAULT; 823 824 hdev = hci_dev_get(di.dev_id); 825 if (!hdev) 826 return -ENODEV; 827 828 /* When the auto-off is configured it means the transport 829 * is running, but in that case still indicate that the 830 * device is actually down. 831 */ 832 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) 833 flags = hdev->flags & ~BIT(HCI_UP); 834 else 835 flags = hdev->flags; 836 837 strscpy(di.name, hdev->name, sizeof(di.name)); 838 di.bdaddr = hdev->bdaddr; 839 di.type = (hdev->bus & 0x0f); 840 di.flags = flags; 841 di.pkt_type = hdev->pkt_type; 842 if (lmp_bredr_capable(hdev)) { 843 di.acl_mtu = hdev->acl_mtu; 844 di.acl_pkts = hdev->acl_pkts; 845 di.sco_mtu = hdev->sco_mtu; 846 di.sco_pkts = hdev->sco_pkts; 847 } else { 848 di.acl_mtu = hdev->le_mtu; 849 di.acl_pkts = hdev->le_pkts; 850 di.sco_mtu = 0; 851 di.sco_pkts = 0; 852 } 853 di.link_policy = hdev->link_policy; 854 di.link_mode = hdev->link_mode; 855 856 memcpy(&di.stat, &hdev->stat, sizeof(di.stat)); 857 memcpy(&di.features, &hdev->features, sizeof(di.features)); 858 859 if (copy_to_user(arg, &di, sizeof(di))) 860 err = -EFAULT; 861 862 hci_dev_put(hdev); 863 864 return err; 865 } 866 867 /* ---- Interface to HCI drivers ---- */ 868 869 static int hci_dev_do_poweroff(struct hci_dev *hdev) 870 { 871 int err; 872 873 BT_DBG("%s %p", hdev->name, hdev); 874 875 hci_req_sync_lock(hdev); 876 877 err = hci_set_powered_sync(hdev, false); 878 879 hci_req_sync_unlock(hdev); 880 881 return err; 882 } 883 884 static int hci_rfkill_set_block(void *data, bool blocked) 885 { 886 struct hci_dev *hdev = data; 887 int err; 888 889 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked); 890 891 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) 892 return -EBUSY; 893 894 if (blocked == hci_dev_test_flag(hdev, HCI_RFKILLED)) 895 return 0; 896 897 if (blocked) { 898 hci_dev_set_flag(hdev, HCI_RFKILLED); 899 900 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 901 !hci_dev_test_flag(hdev, HCI_CONFIG)) { 902 err = hci_dev_do_poweroff(hdev); 903 if (err) { 904 bt_dev_err(hdev, "Error when powering off device on rfkill (%d)", 905 err); 906 907 /* Make sure the device is still closed even if 908 * anything during power off sequence (eg. 909 * disconnecting devices) failed. 910 */ 911 hci_dev_do_close(hdev); 912 } 913 } 914 } else { 915 hci_dev_clear_flag(hdev, HCI_RFKILLED); 916 } 917 918 return 0; 919 } 920 921 static const struct rfkill_ops hci_rfkill_ops = { 922 .set_block = hci_rfkill_set_block, 923 }; 924 925 static void hci_power_on(struct work_struct *work) 926 { 927 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on); 928 int err; 929 930 BT_DBG("%s", hdev->name); 931 932 if (test_bit(HCI_UP, &hdev->flags) && 933 hci_dev_test_flag(hdev, HCI_MGMT) && 934 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) { 935 cancel_delayed_work(&hdev->power_off); 936 err = hci_powered_update_sync(hdev); 937 mgmt_power_on(hdev, err); 938 return; 939 } 940 941 err = hci_dev_do_open(hdev); 942 if (err < 0) { 943 hci_dev_lock(hdev); 944 mgmt_set_powered_failed(hdev, err); 945 hci_dev_unlock(hdev); 946 return; 947 } 948 949 /* During the HCI setup phase, a few error conditions are 950 * ignored and they need to be checked now. If they are still 951 * valid, it is important to turn the device back off. 952 */ 953 if (hci_dev_test_flag(hdev, HCI_RFKILLED) || 954 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) || 955 (!bacmp(&hdev->bdaddr, BDADDR_ANY) && 956 !bacmp(&hdev->static_addr, BDADDR_ANY))) { 957 hci_dev_clear_flag(hdev, HCI_AUTO_OFF); 958 hci_dev_do_close(hdev); 959 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) { 960 queue_delayed_work(hdev->req_workqueue, &hdev->power_off, 961 HCI_AUTO_OFF_TIMEOUT); 962 } 963 964 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) { 965 /* For unconfigured devices, set the HCI_RAW flag 966 * so that userspace can easily identify them. 967 */ 968 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 969 set_bit(HCI_RAW, &hdev->flags); 970 971 /* For fully configured devices, this will send 972 * the Index Added event. For unconfigured devices, 973 * it will send Unconfigued Index Added event. 974 * 975 * Devices with HCI_QUIRK_RAW_DEVICE are ignored 976 * and no event will be send. 977 */ 978 mgmt_index_added(hdev); 979 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) { 980 /* When the controller is now configured, then it 981 * is important to clear the HCI_RAW flag. 982 */ 983 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 984 clear_bit(HCI_RAW, &hdev->flags); 985 986 /* Powering on the controller with HCI_CONFIG set only 987 * happens with the transition from unconfigured to 988 * configured. This will send the Index Added event. 989 */ 990 mgmt_index_added(hdev); 991 } 992 } 993 994 static void hci_power_off(struct work_struct *work) 995 { 996 struct hci_dev *hdev = container_of(work, struct hci_dev, 997 power_off.work); 998 999 BT_DBG("%s", hdev->name); 1000 1001 hci_dev_do_close(hdev); 1002 } 1003 1004 static void hci_error_reset(struct work_struct *work) 1005 { 1006 struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset); 1007 1008 hci_dev_hold(hdev); 1009 BT_DBG("%s", hdev->name); 1010 1011 if (hdev->hw_error) 1012 hdev->hw_error(hdev, hdev->hw_error_code); 1013 else 1014 bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code); 1015 1016 if (!hci_dev_do_close(hdev)) 1017 hci_dev_do_open(hdev); 1018 1019 hci_dev_put(hdev); 1020 } 1021 1022 void hci_uuids_clear(struct hci_dev *hdev) 1023 { 1024 struct bt_uuid *uuid, *tmp; 1025 1026 list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) { 1027 list_del(&uuid->list); 1028 kfree(uuid); 1029 } 1030 } 1031 1032 void hci_link_keys_clear(struct hci_dev *hdev) 1033 { 1034 struct link_key *key, *tmp; 1035 1036 list_for_each_entry_safe(key, tmp, &hdev->link_keys, list) { 1037 list_del_rcu(&key->list); 1038 kfree_rcu(key, rcu); 1039 } 1040 } 1041 1042 void hci_smp_ltks_clear(struct hci_dev *hdev) 1043 { 1044 struct smp_ltk *k, *tmp; 1045 1046 list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) { 1047 list_del_rcu(&k->list); 1048 kfree_rcu(k, rcu); 1049 } 1050 } 1051 1052 void hci_smp_irks_clear(struct hci_dev *hdev) 1053 { 1054 struct smp_irk *k, *tmp; 1055 1056 list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) { 1057 list_del_rcu(&k->list); 1058 kfree_rcu(k, rcu); 1059 } 1060 } 1061 1062 void hci_blocked_keys_clear(struct hci_dev *hdev) 1063 { 1064 struct blocked_key *b, *tmp; 1065 1066 list_for_each_entry_safe(b, tmp, &hdev->blocked_keys, list) { 1067 list_del_rcu(&b->list); 1068 kfree_rcu(b, rcu); 1069 } 1070 } 1071 1072 bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16]) 1073 { 1074 bool blocked = false; 1075 struct blocked_key *b; 1076 1077 rcu_read_lock(); 1078 list_for_each_entry_rcu(b, &hdev->blocked_keys, list) { 1079 if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) { 1080 blocked = true; 1081 break; 1082 } 1083 } 1084 1085 rcu_read_unlock(); 1086 return blocked; 1087 } 1088 1089 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr) 1090 { 1091 struct link_key *k; 1092 1093 rcu_read_lock(); 1094 list_for_each_entry_rcu(k, &hdev->link_keys, list) { 1095 if (bacmp(bdaddr, &k->bdaddr) == 0) { 1096 rcu_read_unlock(); 1097 1098 if (hci_is_blocked_key(hdev, 1099 HCI_BLOCKED_KEY_TYPE_LINKKEY, 1100 k->val)) { 1101 bt_dev_warn_ratelimited(hdev, 1102 "Link key blocked for %pMR", 1103 &k->bdaddr); 1104 return NULL; 1105 } 1106 1107 return k; 1108 } 1109 } 1110 rcu_read_unlock(); 1111 1112 return NULL; 1113 } 1114 1115 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn, 1116 u8 key_type, u8 old_key_type) 1117 { 1118 /* Legacy key */ 1119 if (key_type < 0x03) 1120 return true; 1121 1122 /* Debug keys are insecure so don't store them persistently */ 1123 if (key_type == HCI_LK_DEBUG_COMBINATION) 1124 return false; 1125 1126 /* Changed combination key and there's no previous one */ 1127 if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff) 1128 return false; 1129 1130 /* Security mode 3 case */ 1131 if (!conn) 1132 return true; 1133 1134 /* BR/EDR key derived using SC from an LE link */ 1135 if (conn->type == LE_LINK) 1136 return true; 1137 1138 /* Neither local nor remote side had no-bonding as requirement */ 1139 if (conn->auth_type > 0x01 && conn->remote_auth > 0x01) 1140 return true; 1141 1142 /* Local side had dedicated bonding as requirement */ 1143 if (conn->auth_type == 0x02 || conn->auth_type == 0x03) 1144 return true; 1145 1146 /* Remote side had dedicated bonding as requirement */ 1147 if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03) 1148 return true; 1149 1150 /* If none of the above criteria match, then don't store the key 1151 * persistently */ 1152 return false; 1153 } 1154 1155 static u8 ltk_role(u8 type) 1156 { 1157 if (type == SMP_LTK) 1158 return HCI_ROLE_MASTER; 1159 1160 return HCI_ROLE_SLAVE; 1161 } 1162 1163 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, 1164 u8 addr_type, u8 role) 1165 { 1166 struct smp_ltk *k; 1167 1168 rcu_read_lock(); 1169 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) { 1170 if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr)) 1171 continue; 1172 1173 if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) { 1174 rcu_read_unlock(); 1175 1176 if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK, 1177 k->val)) { 1178 bt_dev_warn_ratelimited(hdev, 1179 "LTK blocked for %pMR", 1180 &k->bdaddr); 1181 return NULL; 1182 } 1183 1184 return k; 1185 } 1186 } 1187 rcu_read_unlock(); 1188 1189 return NULL; 1190 } 1191 1192 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa) 1193 { 1194 struct smp_irk *irk_to_return = NULL; 1195 struct smp_irk *irk; 1196 1197 rcu_read_lock(); 1198 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) { 1199 if (!bacmp(&irk->rpa, rpa)) { 1200 irk_to_return = irk; 1201 goto done; 1202 } 1203 } 1204 1205 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) { 1206 if (smp_irk_matches(hdev, irk->val, rpa)) { 1207 bacpy(&irk->rpa, rpa); 1208 irk_to_return = irk; 1209 goto done; 1210 } 1211 } 1212 1213 done: 1214 if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK, 1215 irk_to_return->val)) { 1216 bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR", 1217 &irk_to_return->bdaddr); 1218 irk_to_return = NULL; 1219 } 1220 1221 rcu_read_unlock(); 1222 1223 return irk_to_return; 1224 } 1225 1226 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr, 1227 u8 addr_type) 1228 { 1229 struct smp_irk *irk_to_return = NULL; 1230 struct smp_irk *irk; 1231 1232 /* Identity Address must be public or static random */ 1233 if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0) 1234 return NULL; 1235 1236 rcu_read_lock(); 1237 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) { 1238 if (addr_type == irk->addr_type && 1239 bacmp(bdaddr, &irk->bdaddr) == 0) { 1240 irk_to_return = irk; 1241 goto done; 1242 } 1243 } 1244 1245 done: 1246 1247 if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK, 1248 irk_to_return->val)) { 1249 bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR", 1250 &irk_to_return->bdaddr); 1251 irk_to_return = NULL; 1252 } 1253 1254 rcu_read_unlock(); 1255 1256 return irk_to_return; 1257 } 1258 1259 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, 1260 bdaddr_t *bdaddr, u8 *val, u8 type, 1261 u8 pin_len, bool *persistent) 1262 { 1263 struct link_key *key, *old_key; 1264 u8 old_key_type; 1265 1266 old_key = hci_find_link_key(hdev, bdaddr); 1267 if (old_key) { 1268 old_key_type = old_key->type; 1269 key = old_key; 1270 } else { 1271 old_key_type = conn ? conn->key_type : 0xff; 1272 key = kzalloc(sizeof(*key), GFP_KERNEL); 1273 if (!key) 1274 return NULL; 1275 list_add_rcu(&key->list, &hdev->link_keys); 1276 } 1277 1278 BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type); 1279 1280 /* Some buggy controller combinations generate a changed 1281 * combination key for legacy pairing even when there's no 1282 * previous key */ 1283 if (type == HCI_LK_CHANGED_COMBINATION && 1284 (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) { 1285 type = HCI_LK_COMBINATION; 1286 if (conn) 1287 conn->key_type = type; 1288 } 1289 1290 bacpy(&key->bdaddr, bdaddr); 1291 memcpy(key->val, val, HCI_LINK_KEY_SIZE); 1292 key->pin_len = pin_len; 1293 1294 if (type == HCI_LK_CHANGED_COMBINATION) 1295 key->type = old_key_type; 1296 else 1297 key->type = type; 1298 1299 if (persistent) 1300 *persistent = hci_persistent_key(hdev, conn, type, 1301 old_key_type); 1302 1303 return key; 1304 } 1305 1306 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, 1307 u8 addr_type, u8 type, u8 authenticated, 1308 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand) 1309 { 1310 struct smp_ltk *key, *old_key; 1311 u8 role = ltk_role(type); 1312 1313 old_key = hci_find_ltk(hdev, bdaddr, addr_type, role); 1314 if (old_key) 1315 key = old_key; 1316 else { 1317 key = kzalloc(sizeof(*key), GFP_KERNEL); 1318 if (!key) 1319 return NULL; 1320 list_add_rcu(&key->list, &hdev->long_term_keys); 1321 } 1322 1323 bacpy(&key->bdaddr, bdaddr); 1324 key->bdaddr_type = addr_type; 1325 memcpy(key->val, tk, sizeof(key->val)); 1326 key->authenticated = authenticated; 1327 key->ediv = ediv; 1328 key->rand = rand; 1329 key->enc_size = enc_size; 1330 key->type = type; 1331 1332 return key; 1333 } 1334 1335 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, 1336 u8 addr_type, u8 val[16], bdaddr_t *rpa) 1337 { 1338 struct smp_irk *irk; 1339 1340 irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type); 1341 if (!irk) { 1342 irk = kzalloc(sizeof(*irk), GFP_KERNEL); 1343 if (!irk) 1344 return NULL; 1345 1346 bacpy(&irk->bdaddr, bdaddr); 1347 irk->addr_type = addr_type; 1348 1349 list_add_rcu(&irk->list, &hdev->identity_resolving_keys); 1350 } 1351 1352 memcpy(irk->val, val, 16); 1353 bacpy(&irk->rpa, rpa); 1354 1355 return irk; 1356 } 1357 1358 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr) 1359 { 1360 struct link_key *key; 1361 1362 key = hci_find_link_key(hdev, bdaddr); 1363 if (!key) 1364 return -ENOENT; 1365 1366 BT_DBG("%s removing %pMR", hdev->name, bdaddr); 1367 1368 list_del_rcu(&key->list); 1369 kfree_rcu(key, rcu); 1370 1371 return 0; 1372 } 1373 1374 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type) 1375 { 1376 struct smp_ltk *k, *tmp; 1377 int removed = 0; 1378 1379 list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) { 1380 if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type) 1381 continue; 1382 1383 BT_DBG("%s removing %pMR", hdev->name, bdaddr); 1384 1385 list_del_rcu(&k->list); 1386 kfree_rcu(k, rcu); 1387 removed++; 1388 } 1389 1390 return removed ? 0 : -ENOENT; 1391 } 1392 1393 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type) 1394 { 1395 struct smp_irk *k, *tmp; 1396 1397 list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) { 1398 if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type) 1399 continue; 1400 1401 BT_DBG("%s removing %pMR", hdev->name, bdaddr); 1402 1403 list_del_rcu(&k->list); 1404 kfree_rcu(k, rcu); 1405 } 1406 } 1407 1408 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type) 1409 { 1410 struct smp_ltk *k; 1411 struct smp_irk *irk; 1412 u8 addr_type; 1413 1414 if (type == BDADDR_BREDR) { 1415 if (hci_find_link_key(hdev, bdaddr)) 1416 return true; 1417 return false; 1418 } 1419 1420 /* Convert to HCI addr type which struct smp_ltk uses */ 1421 if (type == BDADDR_LE_PUBLIC) 1422 addr_type = ADDR_LE_DEV_PUBLIC; 1423 else 1424 addr_type = ADDR_LE_DEV_RANDOM; 1425 1426 irk = hci_get_irk(hdev, bdaddr, addr_type); 1427 if (irk) { 1428 bdaddr = &irk->bdaddr; 1429 addr_type = irk->addr_type; 1430 } 1431 1432 rcu_read_lock(); 1433 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) { 1434 if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) { 1435 rcu_read_unlock(); 1436 return true; 1437 } 1438 } 1439 rcu_read_unlock(); 1440 1441 return false; 1442 } 1443 1444 /* HCI command timer function */ 1445 static void hci_cmd_timeout(struct work_struct *work) 1446 { 1447 struct hci_dev *hdev = container_of(work, struct hci_dev, 1448 cmd_timer.work); 1449 1450 if (hdev->req_skb) { 1451 u16 opcode = hci_skb_opcode(hdev->req_skb); 1452 1453 bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode); 1454 1455 hci_cmd_sync_cancel_sync(hdev, ETIMEDOUT); 1456 } else { 1457 bt_dev_err(hdev, "command tx timeout"); 1458 } 1459 1460 if (hdev->reset) 1461 hdev->reset(hdev); 1462 1463 atomic_set(&hdev->cmd_cnt, 1); 1464 queue_work(hdev->workqueue, &hdev->cmd_work); 1465 } 1466 1467 /* HCI ncmd timer function */ 1468 static void hci_ncmd_timeout(struct work_struct *work) 1469 { 1470 struct hci_dev *hdev = container_of(work, struct hci_dev, 1471 ncmd_timer.work); 1472 1473 bt_dev_err(hdev, "Controller not accepting commands anymore: ncmd = 0"); 1474 1475 /* During HCI_INIT phase no events can be injected if the ncmd timer 1476 * triggers since the procedure has its own timeout handling. 1477 */ 1478 if (test_bit(HCI_INIT, &hdev->flags)) 1479 return; 1480 1481 /* This is an irrecoverable state, inject hardware error event */ 1482 hci_reset_dev(hdev); 1483 } 1484 1485 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev, 1486 bdaddr_t *bdaddr, u8 bdaddr_type) 1487 { 1488 struct oob_data *data; 1489 1490 list_for_each_entry(data, &hdev->remote_oob_data, list) { 1491 if (bacmp(bdaddr, &data->bdaddr) != 0) 1492 continue; 1493 if (data->bdaddr_type != bdaddr_type) 1494 continue; 1495 return data; 1496 } 1497 1498 return NULL; 1499 } 1500 1501 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, 1502 u8 bdaddr_type) 1503 { 1504 struct oob_data *data; 1505 1506 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type); 1507 if (!data) 1508 return -ENOENT; 1509 1510 BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type); 1511 1512 list_del(&data->list); 1513 kfree(data); 1514 1515 return 0; 1516 } 1517 1518 void hci_remote_oob_data_clear(struct hci_dev *hdev) 1519 { 1520 struct oob_data *data, *n; 1521 1522 list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) { 1523 list_del(&data->list); 1524 kfree(data); 1525 } 1526 } 1527 1528 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, 1529 u8 bdaddr_type, u8 *hash192, u8 *rand192, 1530 u8 *hash256, u8 *rand256) 1531 { 1532 struct oob_data *data; 1533 1534 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type); 1535 if (!data) { 1536 data = kmalloc(sizeof(*data), GFP_KERNEL); 1537 if (!data) 1538 return -ENOMEM; 1539 1540 bacpy(&data->bdaddr, bdaddr); 1541 data->bdaddr_type = bdaddr_type; 1542 list_add(&data->list, &hdev->remote_oob_data); 1543 } 1544 1545 if (hash192 && rand192) { 1546 memcpy(data->hash192, hash192, sizeof(data->hash192)); 1547 memcpy(data->rand192, rand192, sizeof(data->rand192)); 1548 if (hash256 && rand256) 1549 data->present = 0x03; 1550 } else { 1551 memset(data->hash192, 0, sizeof(data->hash192)); 1552 memset(data->rand192, 0, sizeof(data->rand192)); 1553 if (hash256 && rand256) 1554 data->present = 0x02; 1555 else 1556 data->present = 0x00; 1557 } 1558 1559 if (hash256 && rand256) { 1560 memcpy(data->hash256, hash256, sizeof(data->hash256)); 1561 memcpy(data->rand256, rand256, sizeof(data->rand256)); 1562 } else { 1563 memset(data->hash256, 0, sizeof(data->hash256)); 1564 memset(data->rand256, 0, sizeof(data->rand256)); 1565 if (hash192 && rand192) 1566 data->present = 0x01; 1567 } 1568 1569 BT_DBG("%s for %pMR", hdev->name, bdaddr); 1570 1571 return 0; 1572 } 1573 1574 /* This function requires the caller holds hdev->lock */ 1575 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance) 1576 { 1577 struct adv_info *adv_instance; 1578 1579 list_for_each_entry(adv_instance, &hdev->adv_instances, list) { 1580 if (adv_instance->instance == instance) 1581 return adv_instance; 1582 } 1583 1584 return NULL; 1585 } 1586 1587 /* This function requires the caller holds hdev->lock */ 1588 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance) 1589 { 1590 struct adv_info *cur_instance; 1591 1592 cur_instance = hci_find_adv_instance(hdev, instance); 1593 if (!cur_instance) 1594 return NULL; 1595 1596 if (cur_instance == list_last_entry(&hdev->adv_instances, 1597 struct adv_info, list)) 1598 return list_first_entry(&hdev->adv_instances, 1599 struct adv_info, list); 1600 else 1601 return list_next_entry(cur_instance, list); 1602 } 1603 1604 /* This function requires the caller holds hdev->lock */ 1605 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance) 1606 { 1607 struct adv_info *adv_instance; 1608 1609 adv_instance = hci_find_adv_instance(hdev, instance); 1610 if (!adv_instance) 1611 return -ENOENT; 1612 1613 BT_DBG("%s removing %dMR", hdev->name, instance); 1614 1615 if (hdev->cur_adv_instance == instance) { 1616 if (hdev->adv_instance_timeout) { 1617 cancel_delayed_work(&hdev->adv_instance_expire); 1618 hdev->adv_instance_timeout = 0; 1619 } 1620 hdev->cur_adv_instance = 0x00; 1621 } 1622 1623 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb); 1624 1625 list_del(&adv_instance->list); 1626 kfree(adv_instance); 1627 1628 hdev->adv_instance_cnt--; 1629 1630 return 0; 1631 } 1632 1633 void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired) 1634 { 1635 struct adv_info *adv_instance, *n; 1636 1637 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) 1638 adv_instance->rpa_expired = rpa_expired; 1639 } 1640 1641 /* This function requires the caller holds hdev->lock */ 1642 void hci_adv_instances_clear(struct hci_dev *hdev) 1643 { 1644 struct adv_info *adv_instance, *n; 1645 1646 if (hdev->adv_instance_timeout) { 1647 disable_delayed_work(&hdev->adv_instance_expire); 1648 hdev->adv_instance_timeout = 0; 1649 } 1650 1651 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) { 1652 disable_delayed_work_sync(&adv_instance->rpa_expired_cb); 1653 list_del(&adv_instance->list); 1654 kfree(adv_instance); 1655 } 1656 1657 hdev->adv_instance_cnt = 0; 1658 hdev->cur_adv_instance = 0x00; 1659 } 1660 1661 static void adv_instance_rpa_expired(struct work_struct *work) 1662 { 1663 struct adv_info *adv_instance = container_of(work, struct adv_info, 1664 rpa_expired_cb.work); 1665 1666 BT_DBG(""); 1667 1668 adv_instance->rpa_expired = true; 1669 } 1670 1671 /* This function requires the caller holds hdev->lock */ 1672 struct adv_info *hci_add_adv_instance(struct hci_dev *hdev, u8 instance, 1673 u32 flags, u16 adv_data_len, u8 *adv_data, 1674 u16 scan_rsp_len, u8 *scan_rsp_data, 1675 u16 timeout, u16 duration, s8 tx_power, 1676 u32 min_interval, u32 max_interval, 1677 u8 mesh_handle) 1678 { 1679 struct adv_info *adv; 1680 1681 adv = hci_find_adv_instance(hdev, instance); 1682 if (adv) { 1683 memset(adv->adv_data, 0, sizeof(adv->adv_data)); 1684 memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data)); 1685 memset(adv->per_adv_data, 0, sizeof(adv->per_adv_data)); 1686 } else { 1687 if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets || 1688 instance < 1 || instance > hdev->le_num_of_adv_sets + 1) 1689 return ERR_PTR(-EOVERFLOW); 1690 1691 adv = kzalloc(sizeof(*adv), GFP_KERNEL); 1692 if (!adv) 1693 return ERR_PTR(-ENOMEM); 1694 1695 adv->pending = true; 1696 adv->instance = instance; 1697 1698 /* If controller support only one set and the instance is set to 1699 * 1 then there is no option other than using handle 0x00. 1700 */ 1701 if (hdev->le_num_of_adv_sets == 1 && instance == 1) 1702 adv->handle = 0x00; 1703 else 1704 adv->handle = instance; 1705 1706 list_add(&adv->list, &hdev->adv_instances); 1707 hdev->adv_instance_cnt++; 1708 } 1709 1710 adv->flags = flags; 1711 adv->min_interval = min_interval; 1712 adv->max_interval = max_interval; 1713 adv->tx_power = tx_power; 1714 /* Defining a mesh_handle changes the timing units to ms, 1715 * rather than seconds, and ties the instance to the requested 1716 * mesh_tx queue. 1717 */ 1718 adv->mesh = mesh_handle; 1719 1720 hci_set_adv_instance_data(hdev, instance, adv_data_len, adv_data, 1721 scan_rsp_len, scan_rsp_data); 1722 1723 adv->timeout = timeout; 1724 adv->remaining_time = timeout; 1725 1726 if (duration == 0) 1727 adv->duration = hdev->def_multi_adv_rotation_duration; 1728 else 1729 adv->duration = duration; 1730 1731 INIT_DELAYED_WORK(&adv->rpa_expired_cb, adv_instance_rpa_expired); 1732 1733 BT_DBG("%s for %dMR", hdev->name, instance); 1734 1735 return adv; 1736 } 1737 1738 /* This function requires the caller holds hdev->lock */ 1739 struct adv_info *hci_add_per_instance(struct hci_dev *hdev, u8 instance, 1740 u32 flags, u8 data_len, u8 *data, 1741 u32 min_interval, u32 max_interval) 1742 { 1743 struct adv_info *adv; 1744 1745 adv = hci_add_adv_instance(hdev, instance, flags, 0, NULL, 0, NULL, 1746 0, 0, HCI_ADV_TX_POWER_NO_PREFERENCE, 1747 min_interval, max_interval, 0); 1748 if (IS_ERR(adv)) 1749 return adv; 1750 1751 adv->periodic = true; 1752 adv->per_adv_data_len = data_len; 1753 1754 if (data) 1755 memcpy(adv->per_adv_data, data, data_len); 1756 1757 return adv; 1758 } 1759 1760 /* This function requires the caller holds hdev->lock */ 1761 int hci_set_adv_instance_data(struct hci_dev *hdev, u8 instance, 1762 u16 adv_data_len, u8 *adv_data, 1763 u16 scan_rsp_len, u8 *scan_rsp_data) 1764 { 1765 struct adv_info *adv; 1766 1767 adv = hci_find_adv_instance(hdev, instance); 1768 1769 /* If advertisement doesn't exist, we can't modify its data */ 1770 if (!adv) 1771 return -ENOENT; 1772 1773 if (adv_data_len && ADV_DATA_CMP(adv, adv_data, adv_data_len)) { 1774 memset(adv->adv_data, 0, sizeof(adv->adv_data)); 1775 memcpy(adv->adv_data, adv_data, adv_data_len); 1776 adv->adv_data_len = adv_data_len; 1777 adv->adv_data_changed = true; 1778 } 1779 1780 if (scan_rsp_len && SCAN_RSP_CMP(adv, scan_rsp_data, scan_rsp_len)) { 1781 memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data)); 1782 memcpy(adv->scan_rsp_data, scan_rsp_data, scan_rsp_len); 1783 adv->scan_rsp_len = scan_rsp_len; 1784 adv->scan_rsp_changed = true; 1785 } 1786 1787 /* Mark as changed if there are flags which would affect it */ 1788 if (((adv->flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) || 1789 adv->flags & MGMT_ADV_FLAG_LOCAL_NAME) 1790 adv->scan_rsp_changed = true; 1791 1792 return 0; 1793 } 1794 1795 /* This function requires the caller holds hdev->lock */ 1796 u32 hci_adv_instance_flags(struct hci_dev *hdev, u8 instance) 1797 { 1798 u32 flags; 1799 struct adv_info *adv; 1800 1801 if (instance == 0x00) { 1802 /* Instance 0 always manages the "Tx Power" and "Flags" 1803 * fields 1804 */ 1805 flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS; 1806 1807 /* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting 1808 * corresponds to the "connectable" instance flag. 1809 */ 1810 if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE)) 1811 flags |= MGMT_ADV_FLAG_CONNECTABLE; 1812 1813 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) 1814 flags |= MGMT_ADV_FLAG_LIMITED_DISCOV; 1815 else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 1816 flags |= MGMT_ADV_FLAG_DISCOV; 1817 1818 return flags; 1819 } 1820 1821 adv = hci_find_adv_instance(hdev, instance); 1822 1823 /* Return 0 when we got an invalid instance identifier. */ 1824 if (!adv) 1825 return 0; 1826 1827 return adv->flags; 1828 } 1829 1830 bool hci_adv_instance_is_scannable(struct hci_dev *hdev, u8 instance) 1831 { 1832 struct adv_info *adv; 1833 1834 /* Instance 0x00 always set local name */ 1835 if (instance == 0x00) 1836 return true; 1837 1838 adv = hci_find_adv_instance(hdev, instance); 1839 if (!adv) 1840 return false; 1841 1842 if (adv->flags & MGMT_ADV_FLAG_APPEARANCE || 1843 adv->flags & MGMT_ADV_FLAG_LOCAL_NAME) 1844 return true; 1845 1846 return adv->scan_rsp_len ? true : false; 1847 } 1848 1849 /* This function requires the caller holds hdev->lock */ 1850 void hci_adv_monitors_clear(struct hci_dev *hdev) 1851 { 1852 struct adv_monitor *monitor; 1853 int handle; 1854 1855 idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle) 1856 hci_free_adv_monitor(hdev, monitor); 1857 1858 idr_destroy(&hdev->adv_monitors_idr); 1859 } 1860 1861 /* Frees the monitor structure and do some bookkeepings. 1862 * This function requires the caller holds hdev->lock. 1863 */ 1864 void hci_free_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor) 1865 { 1866 struct adv_pattern *pattern; 1867 struct adv_pattern *tmp; 1868 1869 if (!monitor) 1870 return; 1871 1872 list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list) { 1873 list_del(&pattern->list); 1874 kfree(pattern); 1875 } 1876 1877 if (monitor->handle) 1878 idr_remove(&hdev->adv_monitors_idr, monitor->handle); 1879 1880 if (monitor->state != ADV_MONITOR_STATE_NOT_REGISTERED) { 1881 hdev->adv_monitors_cnt--; 1882 mgmt_adv_monitor_removed(hdev, monitor->handle); 1883 } 1884 1885 kfree(monitor); 1886 } 1887 1888 /* Assigns handle to a monitor, and if offloading is supported and power is on, 1889 * also attempts to forward the request to the controller. 1890 * This function requires the caller holds hci_req_sync_lock. 1891 */ 1892 int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor) 1893 { 1894 int min, max, handle; 1895 int status = 0; 1896 1897 if (!monitor) 1898 return -EINVAL; 1899 1900 hci_dev_lock(hdev); 1901 1902 min = HCI_MIN_ADV_MONITOR_HANDLE; 1903 max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES; 1904 handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max, 1905 GFP_KERNEL); 1906 1907 hci_dev_unlock(hdev); 1908 1909 if (handle < 0) 1910 return handle; 1911 1912 monitor->handle = handle; 1913 1914 if (!hdev_is_powered(hdev)) 1915 return status; 1916 1917 switch (hci_get_adv_monitor_offload_ext(hdev)) { 1918 case HCI_ADV_MONITOR_EXT_NONE: 1919 bt_dev_dbg(hdev, "add monitor %d status %d", 1920 monitor->handle, status); 1921 /* Message was not forwarded to controller - not an error */ 1922 break; 1923 1924 case HCI_ADV_MONITOR_EXT_MSFT: 1925 status = msft_add_monitor_pattern(hdev, monitor); 1926 bt_dev_dbg(hdev, "add monitor %d msft status %d", 1927 handle, status); 1928 break; 1929 } 1930 1931 return status; 1932 } 1933 1934 /* Attempts to tell the controller and free the monitor. If somehow the 1935 * controller doesn't have a corresponding handle, remove anyway. 1936 * This function requires the caller holds hci_req_sync_lock. 1937 */ 1938 static int hci_remove_adv_monitor(struct hci_dev *hdev, 1939 struct adv_monitor *monitor) 1940 { 1941 int status = 0; 1942 int handle; 1943 1944 switch (hci_get_adv_monitor_offload_ext(hdev)) { 1945 case HCI_ADV_MONITOR_EXT_NONE: /* also goes here when powered off */ 1946 bt_dev_dbg(hdev, "remove monitor %d status %d", 1947 monitor->handle, status); 1948 goto free_monitor; 1949 1950 case HCI_ADV_MONITOR_EXT_MSFT: 1951 handle = monitor->handle; 1952 status = msft_remove_monitor(hdev, monitor); 1953 bt_dev_dbg(hdev, "remove monitor %d msft status %d", 1954 handle, status); 1955 break; 1956 } 1957 1958 /* In case no matching handle registered, just free the monitor */ 1959 if (status == -ENOENT) 1960 goto free_monitor; 1961 1962 return status; 1963 1964 free_monitor: 1965 if (status == -ENOENT) 1966 bt_dev_warn(hdev, "Removing monitor with no matching handle %d", 1967 monitor->handle); 1968 hci_free_adv_monitor(hdev, monitor); 1969 1970 return status; 1971 } 1972 1973 /* This function requires the caller holds hci_req_sync_lock */ 1974 int hci_remove_single_adv_monitor(struct hci_dev *hdev, u16 handle) 1975 { 1976 struct adv_monitor *monitor = idr_find(&hdev->adv_monitors_idr, handle); 1977 1978 if (!monitor) 1979 return -EINVAL; 1980 1981 return hci_remove_adv_monitor(hdev, monitor); 1982 } 1983 1984 /* This function requires the caller holds hci_req_sync_lock */ 1985 int hci_remove_all_adv_monitor(struct hci_dev *hdev) 1986 { 1987 struct adv_monitor *monitor; 1988 int idr_next_id = 0; 1989 int status = 0; 1990 1991 while (1) { 1992 monitor = idr_get_next(&hdev->adv_monitors_idr, &idr_next_id); 1993 if (!monitor) 1994 break; 1995 1996 status = hci_remove_adv_monitor(hdev, monitor); 1997 if (status) 1998 return status; 1999 2000 idr_next_id++; 2001 } 2002 2003 return status; 2004 } 2005 2006 /* This function requires the caller holds hdev->lock */ 2007 bool hci_is_adv_monitoring(struct hci_dev *hdev) 2008 { 2009 return !idr_is_empty(&hdev->adv_monitors_idr); 2010 } 2011 2012 int hci_get_adv_monitor_offload_ext(struct hci_dev *hdev) 2013 { 2014 if (msft_monitor_supported(hdev)) 2015 return HCI_ADV_MONITOR_EXT_MSFT; 2016 2017 return HCI_ADV_MONITOR_EXT_NONE; 2018 } 2019 2020 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list, 2021 bdaddr_t *bdaddr, u8 type) 2022 { 2023 struct bdaddr_list *b; 2024 2025 list_for_each_entry(b, bdaddr_list, list) { 2026 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type) 2027 return b; 2028 } 2029 2030 return NULL; 2031 } 2032 2033 struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk( 2034 struct list_head *bdaddr_list, bdaddr_t *bdaddr, 2035 u8 type) 2036 { 2037 struct bdaddr_list_with_irk *b; 2038 2039 list_for_each_entry(b, bdaddr_list, list) { 2040 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type) 2041 return b; 2042 } 2043 2044 return NULL; 2045 } 2046 2047 struct bdaddr_list_with_flags * 2048 hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list, 2049 bdaddr_t *bdaddr, u8 type) 2050 { 2051 struct bdaddr_list_with_flags *b; 2052 2053 list_for_each_entry(b, bdaddr_list, list) { 2054 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type) 2055 return b; 2056 } 2057 2058 return NULL; 2059 } 2060 2061 void hci_bdaddr_list_clear(struct list_head *bdaddr_list) 2062 { 2063 struct bdaddr_list *b, *n; 2064 2065 list_for_each_entry_safe(b, n, bdaddr_list, list) { 2066 list_del(&b->list); 2067 kfree(b); 2068 } 2069 } 2070 2071 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type) 2072 { 2073 struct bdaddr_list *entry; 2074 2075 if (!bacmp(bdaddr, BDADDR_ANY)) 2076 return -EBADF; 2077 2078 if (hci_bdaddr_list_lookup(list, bdaddr, type)) 2079 return -EEXIST; 2080 2081 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 2082 if (!entry) 2083 return -ENOMEM; 2084 2085 bacpy(&entry->bdaddr, bdaddr); 2086 entry->bdaddr_type = type; 2087 2088 list_add(&entry->list, list); 2089 2090 return 0; 2091 } 2092 2093 int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr, 2094 u8 type, u8 *peer_irk, u8 *local_irk) 2095 { 2096 struct bdaddr_list_with_irk *entry; 2097 2098 if (!bacmp(bdaddr, BDADDR_ANY)) 2099 return -EBADF; 2100 2101 if (hci_bdaddr_list_lookup(list, bdaddr, type)) 2102 return -EEXIST; 2103 2104 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 2105 if (!entry) 2106 return -ENOMEM; 2107 2108 bacpy(&entry->bdaddr, bdaddr); 2109 entry->bdaddr_type = type; 2110 2111 if (peer_irk) 2112 memcpy(entry->peer_irk, peer_irk, 16); 2113 2114 if (local_irk) 2115 memcpy(entry->local_irk, local_irk, 16); 2116 2117 list_add(&entry->list, list); 2118 2119 return 0; 2120 } 2121 2122 int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr, 2123 u8 type, u32 flags) 2124 { 2125 struct bdaddr_list_with_flags *entry; 2126 2127 if (!bacmp(bdaddr, BDADDR_ANY)) 2128 return -EBADF; 2129 2130 if (hci_bdaddr_list_lookup(list, bdaddr, type)) 2131 return -EEXIST; 2132 2133 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 2134 if (!entry) 2135 return -ENOMEM; 2136 2137 bacpy(&entry->bdaddr, bdaddr); 2138 entry->bdaddr_type = type; 2139 entry->flags = flags; 2140 2141 list_add(&entry->list, list); 2142 2143 return 0; 2144 } 2145 2146 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type) 2147 { 2148 struct bdaddr_list *entry; 2149 2150 if (!bacmp(bdaddr, BDADDR_ANY)) { 2151 hci_bdaddr_list_clear(list); 2152 return 0; 2153 } 2154 2155 entry = hci_bdaddr_list_lookup(list, bdaddr, type); 2156 if (!entry) 2157 return -ENOENT; 2158 2159 list_del(&entry->list); 2160 kfree(entry); 2161 2162 return 0; 2163 } 2164 2165 int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr, 2166 u8 type) 2167 { 2168 struct bdaddr_list_with_irk *entry; 2169 2170 if (!bacmp(bdaddr, BDADDR_ANY)) { 2171 hci_bdaddr_list_clear(list); 2172 return 0; 2173 } 2174 2175 entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type); 2176 if (!entry) 2177 return -ENOENT; 2178 2179 list_del(&entry->list); 2180 kfree(entry); 2181 2182 return 0; 2183 } 2184 2185 /* This function requires the caller holds hdev->lock */ 2186 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev, 2187 bdaddr_t *addr, u8 addr_type) 2188 { 2189 struct hci_conn_params *params; 2190 2191 list_for_each_entry(params, &hdev->le_conn_params, list) { 2192 if (bacmp(¶ms->addr, addr) == 0 && 2193 params->addr_type == addr_type) { 2194 return params; 2195 } 2196 } 2197 2198 return NULL; 2199 } 2200 2201 /* This function requires the caller holds hdev->lock or rcu_read_lock */ 2202 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list, 2203 bdaddr_t *addr, u8 addr_type) 2204 { 2205 struct hci_conn_params *param; 2206 2207 rcu_read_lock(); 2208 2209 list_for_each_entry_rcu(param, list, action) { 2210 if (bacmp(¶m->addr, addr) == 0 && 2211 param->addr_type == addr_type) { 2212 rcu_read_unlock(); 2213 return param; 2214 } 2215 } 2216 2217 rcu_read_unlock(); 2218 2219 return NULL; 2220 } 2221 2222 /* This function requires the caller holds hdev->lock */ 2223 void hci_pend_le_list_del_init(struct hci_conn_params *param) 2224 { 2225 if (list_empty(¶m->action)) 2226 return; 2227 2228 list_del_rcu(¶m->action); 2229 synchronize_rcu(); 2230 INIT_LIST_HEAD(¶m->action); 2231 } 2232 2233 /* This function requires the caller holds hdev->lock */ 2234 void hci_pend_le_list_add(struct hci_conn_params *param, 2235 struct list_head *list) 2236 { 2237 list_add_rcu(¶m->action, list); 2238 } 2239 2240 /* This function requires the caller holds hdev->lock */ 2241 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev, 2242 bdaddr_t *addr, u8 addr_type) 2243 { 2244 struct hci_conn_params *params; 2245 2246 params = hci_conn_params_lookup(hdev, addr, addr_type); 2247 if (params) 2248 return params; 2249 2250 params = kzalloc(sizeof(*params), GFP_KERNEL); 2251 if (!params) { 2252 bt_dev_err(hdev, "out of memory"); 2253 return NULL; 2254 } 2255 2256 bacpy(¶ms->addr, addr); 2257 params->addr_type = addr_type; 2258 2259 list_add(¶ms->list, &hdev->le_conn_params); 2260 INIT_LIST_HEAD(¶ms->action); 2261 2262 params->conn_min_interval = hdev->le_conn_min_interval; 2263 params->conn_max_interval = hdev->le_conn_max_interval; 2264 params->conn_latency = hdev->le_conn_latency; 2265 params->supervision_timeout = hdev->le_supv_timeout; 2266 params->auto_connect = HCI_AUTO_CONN_DISABLED; 2267 2268 BT_DBG("addr %pMR (type %u)", addr, addr_type); 2269 2270 return params; 2271 } 2272 2273 void hci_conn_params_free(struct hci_conn_params *params) 2274 { 2275 hci_pend_le_list_del_init(params); 2276 2277 if (params->conn) { 2278 hci_conn_drop(params->conn); 2279 hci_conn_put(params->conn); 2280 } 2281 2282 list_del(¶ms->list); 2283 kfree(params); 2284 } 2285 2286 /* This function requires the caller holds hdev->lock */ 2287 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type) 2288 { 2289 struct hci_conn_params *params; 2290 2291 params = hci_conn_params_lookup(hdev, addr, addr_type); 2292 if (!params) 2293 return; 2294 2295 hci_conn_params_free(params); 2296 2297 hci_update_passive_scan(hdev); 2298 2299 BT_DBG("addr %pMR (type %u)", addr, addr_type); 2300 } 2301 2302 /* This function requires the caller holds hdev->lock */ 2303 void hci_conn_params_clear_disabled(struct hci_dev *hdev) 2304 { 2305 struct hci_conn_params *params, *tmp; 2306 2307 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) { 2308 if (params->auto_connect != HCI_AUTO_CONN_DISABLED) 2309 continue; 2310 2311 /* If trying to establish one time connection to disabled 2312 * device, leave the params, but mark them as just once. 2313 */ 2314 if (params->explicit_connect) { 2315 params->auto_connect = HCI_AUTO_CONN_EXPLICIT; 2316 continue; 2317 } 2318 2319 hci_conn_params_free(params); 2320 } 2321 2322 BT_DBG("All LE disabled connection parameters were removed"); 2323 } 2324 2325 /* This function requires the caller holds hdev->lock */ 2326 static void hci_conn_params_clear_all(struct hci_dev *hdev) 2327 { 2328 struct hci_conn_params *params, *tmp; 2329 2330 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) 2331 hci_conn_params_free(params); 2332 2333 BT_DBG("All LE connection parameters were removed"); 2334 } 2335 2336 /* Copy the Identity Address of the controller. 2337 * 2338 * If the controller has a public BD_ADDR, then by default use that one. 2339 * If this is a LE only controller without a public address, default to 2340 * the static random address. 2341 * 2342 * For debugging purposes it is possible to force controllers with a 2343 * public address to use the static random address instead. 2344 * 2345 * In case BR/EDR has been disabled on a dual-mode controller and 2346 * userspace has configured a static address, then that address 2347 * becomes the identity address instead of the public BR/EDR address. 2348 */ 2349 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr, 2350 u8 *bdaddr_type) 2351 { 2352 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 2353 !bacmp(&hdev->bdaddr, BDADDR_ANY) || 2354 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && 2355 bacmp(&hdev->static_addr, BDADDR_ANY))) { 2356 bacpy(bdaddr, &hdev->static_addr); 2357 *bdaddr_type = ADDR_LE_DEV_RANDOM; 2358 } else { 2359 bacpy(bdaddr, &hdev->bdaddr); 2360 *bdaddr_type = ADDR_LE_DEV_PUBLIC; 2361 } 2362 } 2363 2364 static void hci_clear_wake_reason(struct hci_dev *hdev) 2365 { 2366 hci_dev_lock(hdev); 2367 2368 hdev->wake_reason = 0; 2369 bacpy(&hdev->wake_addr, BDADDR_ANY); 2370 hdev->wake_addr_type = 0; 2371 2372 hci_dev_unlock(hdev); 2373 } 2374 2375 static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action, 2376 void *data) 2377 { 2378 struct hci_dev *hdev = 2379 container_of(nb, struct hci_dev, suspend_notifier); 2380 int ret = 0; 2381 2382 /* Userspace has full control of this device. Do nothing. */ 2383 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) 2384 return NOTIFY_DONE; 2385 2386 /* To avoid a potential race with hci_unregister_dev. */ 2387 hci_dev_hold(hdev); 2388 2389 switch (action) { 2390 case PM_HIBERNATION_PREPARE: 2391 case PM_SUSPEND_PREPARE: 2392 ret = hci_suspend_dev(hdev); 2393 break; 2394 case PM_POST_HIBERNATION: 2395 case PM_POST_SUSPEND: 2396 ret = hci_resume_dev(hdev); 2397 break; 2398 } 2399 2400 if (ret) 2401 bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d", 2402 action, ret); 2403 2404 hci_dev_put(hdev); 2405 return NOTIFY_DONE; 2406 } 2407 2408 /* Alloc HCI device */ 2409 struct hci_dev *hci_alloc_dev_priv(int sizeof_priv) 2410 { 2411 struct hci_dev *hdev; 2412 unsigned int alloc_size; 2413 2414 alloc_size = sizeof(*hdev); 2415 if (sizeof_priv) { 2416 /* Fixme: May need ALIGN-ment? */ 2417 alloc_size += sizeof_priv; 2418 } 2419 2420 hdev = kzalloc(alloc_size, GFP_KERNEL); 2421 if (!hdev) 2422 return NULL; 2423 2424 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1); 2425 hdev->esco_type = (ESCO_HV1); 2426 hdev->link_mode = (HCI_LM_ACCEPT); 2427 hdev->num_iac = 0x01; /* One IAC support is mandatory */ 2428 hdev->io_capability = 0x03; /* No Input No Output */ 2429 hdev->manufacturer = 0xffff; /* Default to internal use */ 2430 hdev->inq_tx_power = HCI_TX_POWER_INVALID; 2431 hdev->adv_tx_power = HCI_TX_POWER_INVALID; 2432 hdev->adv_instance_cnt = 0; 2433 hdev->cur_adv_instance = 0x00; 2434 hdev->adv_instance_timeout = 0; 2435 2436 hdev->advmon_allowlist_duration = 300; 2437 hdev->advmon_no_filter_duration = 500; 2438 hdev->enable_advmon_interleave_scan = 0x00; /* Default to disable */ 2439 2440 hdev->sniff_max_interval = 800; 2441 hdev->sniff_min_interval = 80; 2442 2443 hdev->le_adv_channel_map = 0x07; 2444 hdev->le_adv_min_interval = 0x0800; 2445 hdev->le_adv_max_interval = 0x0800; 2446 hdev->le_scan_interval = DISCOV_LE_SCAN_INT_FAST; 2447 hdev->le_scan_window = DISCOV_LE_SCAN_WIN_FAST; 2448 hdev->le_scan_int_suspend = DISCOV_LE_SCAN_INT_SLOW1; 2449 hdev->le_scan_window_suspend = DISCOV_LE_SCAN_WIN_SLOW1; 2450 hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT; 2451 hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN; 2452 hdev->le_scan_int_adv_monitor = DISCOV_LE_SCAN_INT_FAST; 2453 hdev->le_scan_window_adv_monitor = DISCOV_LE_SCAN_WIN_FAST; 2454 hdev->le_scan_int_connect = DISCOV_LE_SCAN_INT_CONN; 2455 hdev->le_scan_window_connect = DISCOV_LE_SCAN_WIN_CONN; 2456 hdev->le_conn_min_interval = 0x0018; 2457 hdev->le_conn_max_interval = 0x0028; 2458 hdev->le_conn_latency = 0x0000; 2459 hdev->le_supv_timeout = 0x002a; 2460 hdev->le_def_tx_len = 0x001b; 2461 hdev->le_def_tx_time = 0x0148; 2462 hdev->le_max_tx_len = 0x001b; 2463 hdev->le_max_tx_time = 0x0148; 2464 hdev->le_max_rx_len = 0x001b; 2465 hdev->le_max_rx_time = 0x0148; 2466 hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE; 2467 hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE; 2468 hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M; 2469 hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M; 2470 hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES; 2471 hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION; 2472 hdev->def_le_autoconnect_timeout = HCI_LE_CONN_TIMEOUT; 2473 hdev->min_le_tx_power = HCI_TX_POWER_INVALID; 2474 hdev->max_le_tx_power = HCI_TX_POWER_INVALID; 2475 2476 hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT; 2477 hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT; 2478 hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE; 2479 hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE; 2480 hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT; 2481 hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE; 2482 2483 /* default 1.28 sec page scan */ 2484 hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD; 2485 hdev->def_page_scan_int = 0x0800; 2486 hdev->def_page_scan_window = 0x0012; 2487 2488 mutex_init(&hdev->lock); 2489 mutex_init(&hdev->req_lock); 2490 2491 ida_init(&hdev->unset_handle_ida); 2492 2493 INIT_LIST_HEAD(&hdev->mesh_pending); 2494 INIT_LIST_HEAD(&hdev->mgmt_pending); 2495 INIT_LIST_HEAD(&hdev->reject_list); 2496 INIT_LIST_HEAD(&hdev->accept_list); 2497 INIT_LIST_HEAD(&hdev->uuids); 2498 INIT_LIST_HEAD(&hdev->link_keys); 2499 INIT_LIST_HEAD(&hdev->long_term_keys); 2500 INIT_LIST_HEAD(&hdev->identity_resolving_keys); 2501 INIT_LIST_HEAD(&hdev->remote_oob_data); 2502 INIT_LIST_HEAD(&hdev->le_accept_list); 2503 INIT_LIST_HEAD(&hdev->le_resolv_list); 2504 INIT_LIST_HEAD(&hdev->le_conn_params); 2505 INIT_LIST_HEAD(&hdev->pend_le_conns); 2506 INIT_LIST_HEAD(&hdev->pend_le_reports); 2507 INIT_LIST_HEAD(&hdev->conn_hash.list); 2508 INIT_LIST_HEAD(&hdev->adv_instances); 2509 INIT_LIST_HEAD(&hdev->blocked_keys); 2510 INIT_LIST_HEAD(&hdev->monitored_devices); 2511 2512 INIT_LIST_HEAD(&hdev->local_codecs); 2513 INIT_WORK(&hdev->rx_work, hci_rx_work); 2514 INIT_WORK(&hdev->cmd_work, hci_cmd_work); 2515 INIT_WORK(&hdev->tx_work, hci_tx_work); 2516 INIT_WORK(&hdev->power_on, hci_power_on); 2517 INIT_WORK(&hdev->error_reset, hci_error_reset); 2518 2519 hci_cmd_sync_init(hdev); 2520 2521 INIT_DELAYED_WORK(&hdev->power_off, hci_power_off); 2522 2523 skb_queue_head_init(&hdev->rx_q); 2524 skb_queue_head_init(&hdev->cmd_q); 2525 skb_queue_head_init(&hdev->raw_q); 2526 2527 init_waitqueue_head(&hdev->req_wait_q); 2528 2529 INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout); 2530 INIT_DELAYED_WORK(&hdev->ncmd_timer, hci_ncmd_timeout); 2531 2532 hci_devcd_setup(hdev); 2533 2534 hci_init_sysfs(hdev); 2535 discovery_init(hdev); 2536 2537 return hdev; 2538 } 2539 EXPORT_SYMBOL(hci_alloc_dev_priv); 2540 2541 /* Free HCI device */ 2542 void hci_free_dev(struct hci_dev *hdev) 2543 { 2544 /* will free via device release */ 2545 put_device(&hdev->dev); 2546 } 2547 EXPORT_SYMBOL(hci_free_dev); 2548 2549 /* Register HCI device */ 2550 int hci_register_dev(struct hci_dev *hdev) 2551 { 2552 int id, error; 2553 2554 if (!hdev->open || !hdev->close || !hdev->send) 2555 return -EINVAL; 2556 2557 id = ida_alloc_max(&hci_index_ida, HCI_MAX_ID - 1, GFP_KERNEL); 2558 if (id < 0) 2559 return id; 2560 2561 error = dev_set_name(&hdev->dev, "hci%u", id); 2562 if (error) 2563 return error; 2564 2565 hdev->name = dev_name(&hdev->dev); 2566 hdev->id = id; 2567 2568 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus); 2569 2570 hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name); 2571 if (!hdev->workqueue) { 2572 error = -ENOMEM; 2573 goto err; 2574 } 2575 2576 hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, 2577 hdev->name); 2578 if (!hdev->req_workqueue) { 2579 destroy_workqueue(hdev->workqueue); 2580 error = -ENOMEM; 2581 goto err; 2582 } 2583 2584 if (!IS_ERR_OR_NULL(bt_debugfs)) 2585 hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs); 2586 2587 error = device_add(&hdev->dev); 2588 if (error < 0) 2589 goto err_wqueue; 2590 2591 hci_leds_init(hdev); 2592 2593 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev, 2594 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops, 2595 hdev); 2596 if (hdev->rfkill) { 2597 if (rfkill_register(hdev->rfkill) < 0) { 2598 rfkill_destroy(hdev->rfkill); 2599 hdev->rfkill = NULL; 2600 } 2601 } 2602 2603 if (hdev->rfkill && rfkill_blocked(hdev->rfkill)) 2604 hci_dev_set_flag(hdev, HCI_RFKILLED); 2605 2606 hci_dev_set_flag(hdev, HCI_SETUP); 2607 hci_dev_set_flag(hdev, HCI_AUTO_OFF); 2608 2609 /* Assume BR/EDR support until proven otherwise (such as 2610 * through reading supported features during init. 2611 */ 2612 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED); 2613 2614 write_lock(&hci_dev_list_lock); 2615 list_add(&hdev->list, &hci_dev_list); 2616 write_unlock(&hci_dev_list_lock); 2617 2618 /* Devices that are marked for raw-only usage are unconfigured 2619 * and should not be included in normal operation. 2620 */ 2621 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) 2622 hci_dev_set_flag(hdev, HCI_UNCONFIGURED); 2623 2624 /* Mark Remote Wakeup connection flag as supported if driver has wakeup 2625 * callback. 2626 */ 2627 if (hdev->wakeup) 2628 hdev->conn_flags |= HCI_CONN_FLAG_REMOTE_WAKEUP; 2629 2630 hci_sock_dev_event(hdev, HCI_DEV_REG); 2631 hci_dev_hold(hdev); 2632 2633 error = hci_register_suspend_notifier(hdev); 2634 if (error) 2635 BT_WARN("register suspend notifier failed error:%d\n", error); 2636 2637 queue_work(hdev->req_workqueue, &hdev->power_on); 2638 2639 idr_init(&hdev->adv_monitors_idr); 2640 msft_register(hdev); 2641 2642 return id; 2643 2644 err_wqueue: 2645 debugfs_remove_recursive(hdev->debugfs); 2646 destroy_workqueue(hdev->workqueue); 2647 destroy_workqueue(hdev->req_workqueue); 2648 err: 2649 ida_free(&hci_index_ida, hdev->id); 2650 2651 return error; 2652 } 2653 EXPORT_SYMBOL(hci_register_dev); 2654 2655 /* Unregister HCI device */ 2656 void hci_unregister_dev(struct hci_dev *hdev) 2657 { 2658 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus); 2659 2660 mutex_lock(&hdev->unregister_lock); 2661 hci_dev_set_flag(hdev, HCI_UNREGISTER); 2662 mutex_unlock(&hdev->unregister_lock); 2663 2664 write_lock(&hci_dev_list_lock); 2665 list_del(&hdev->list); 2666 write_unlock(&hci_dev_list_lock); 2667 2668 disable_work_sync(&hdev->rx_work); 2669 disable_work_sync(&hdev->cmd_work); 2670 disable_work_sync(&hdev->tx_work); 2671 disable_work_sync(&hdev->power_on); 2672 disable_work_sync(&hdev->error_reset); 2673 2674 hci_cmd_sync_clear(hdev); 2675 2676 hci_unregister_suspend_notifier(hdev); 2677 2678 hci_dev_do_close(hdev); 2679 2680 if (!test_bit(HCI_INIT, &hdev->flags) && 2681 !hci_dev_test_flag(hdev, HCI_SETUP) && 2682 !hci_dev_test_flag(hdev, HCI_CONFIG)) { 2683 hci_dev_lock(hdev); 2684 mgmt_index_removed(hdev); 2685 hci_dev_unlock(hdev); 2686 } 2687 2688 /* mgmt_index_removed should take care of emptying the 2689 * pending list */ 2690 BUG_ON(!list_empty(&hdev->mgmt_pending)); 2691 2692 hci_sock_dev_event(hdev, HCI_DEV_UNREG); 2693 2694 if (hdev->rfkill) { 2695 rfkill_unregister(hdev->rfkill); 2696 rfkill_destroy(hdev->rfkill); 2697 } 2698 2699 device_del(&hdev->dev); 2700 /* Actual cleanup is deferred until hci_release_dev(). */ 2701 hci_dev_put(hdev); 2702 } 2703 EXPORT_SYMBOL(hci_unregister_dev); 2704 2705 /* Release HCI device */ 2706 void hci_release_dev(struct hci_dev *hdev) 2707 { 2708 debugfs_remove_recursive(hdev->debugfs); 2709 kfree_const(hdev->hw_info); 2710 kfree_const(hdev->fw_info); 2711 2712 destroy_workqueue(hdev->workqueue); 2713 destroy_workqueue(hdev->req_workqueue); 2714 2715 hci_dev_lock(hdev); 2716 hci_bdaddr_list_clear(&hdev->reject_list); 2717 hci_bdaddr_list_clear(&hdev->accept_list); 2718 hci_uuids_clear(hdev); 2719 hci_link_keys_clear(hdev); 2720 hci_smp_ltks_clear(hdev); 2721 hci_smp_irks_clear(hdev); 2722 hci_remote_oob_data_clear(hdev); 2723 hci_adv_instances_clear(hdev); 2724 hci_adv_monitors_clear(hdev); 2725 hci_bdaddr_list_clear(&hdev->le_accept_list); 2726 hci_bdaddr_list_clear(&hdev->le_resolv_list); 2727 hci_conn_params_clear_all(hdev); 2728 hci_discovery_filter_clear(hdev); 2729 hci_blocked_keys_clear(hdev); 2730 hci_codec_list_clear(&hdev->local_codecs); 2731 msft_release(hdev); 2732 hci_dev_unlock(hdev); 2733 2734 ida_destroy(&hdev->unset_handle_ida); 2735 ida_free(&hci_index_ida, hdev->id); 2736 kfree_skb(hdev->sent_cmd); 2737 kfree_skb(hdev->req_skb); 2738 kfree_skb(hdev->recv_event); 2739 kfree(hdev); 2740 } 2741 EXPORT_SYMBOL(hci_release_dev); 2742 2743 int hci_register_suspend_notifier(struct hci_dev *hdev) 2744 { 2745 int ret = 0; 2746 2747 if (!hdev->suspend_notifier.notifier_call && 2748 !test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) { 2749 hdev->suspend_notifier.notifier_call = hci_suspend_notifier; 2750 ret = register_pm_notifier(&hdev->suspend_notifier); 2751 } 2752 2753 return ret; 2754 } 2755 2756 int hci_unregister_suspend_notifier(struct hci_dev *hdev) 2757 { 2758 int ret = 0; 2759 2760 if (hdev->suspend_notifier.notifier_call) { 2761 ret = unregister_pm_notifier(&hdev->suspend_notifier); 2762 if (!ret) 2763 hdev->suspend_notifier.notifier_call = NULL; 2764 } 2765 2766 return ret; 2767 } 2768 2769 /* Cancel ongoing command synchronously: 2770 * 2771 * - Cancel command timer 2772 * - Reset command counter 2773 * - Cancel command request 2774 */ 2775 static void hci_cancel_cmd_sync(struct hci_dev *hdev, int err) 2776 { 2777 bt_dev_dbg(hdev, "err 0x%2.2x", err); 2778 2779 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 2780 disable_delayed_work_sync(&hdev->cmd_timer); 2781 disable_delayed_work_sync(&hdev->ncmd_timer); 2782 } else { 2783 cancel_delayed_work_sync(&hdev->cmd_timer); 2784 cancel_delayed_work_sync(&hdev->ncmd_timer); 2785 } 2786 2787 atomic_set(&hdev->cmd_cnt, 1); 2788 2789 hci_cmd_sync_cancel_sync(hdev, err); 2790 } 2791 2792 /* Suspend HCI device */ 2793 int hci_suspend_dev(struct hci_dev *hdev) 2794 { 2795 int ret; 2796 2797 bt_dev_dbg(hdev, ""); 2798 2799 /* Suspend should only act on when powered. */ 2800 if (!hdev_is_powered(hdev) || 2801 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 2802 return 0; 2803 2804 /* If powering down don't attempt to suspend */ 2805 if (mgmt_powering_down(hdev)) 2806 return 0; 2807 2808 /* Cancel potentially blocking sync operation before suspend */ 2809 hci_cancel_cmd_sync(hdev, EHOSTDOWN); 2810 2811 hci_req_sync_lock(hdev); 2812 ret = hci_suspend_sync(hdev); 2813 hci_req_sync_unlock(hdev); 2814 2815 hci_clear_wake_reason(hdev); 2816 mgmt_suspending(hdev, hdev->suspend_state); 2817 2818 hci_sock_dev_event(hdev, HCI_DEV_SUSPEND); 2819 return ret; 2820 } 2821 EXPORT_SYMBOL(hci_suspend_dev); 2822 2823 /* Resume HCI device */ 2824 int hci_resume_dev(struct hci_dev *hdev) 2825 { 2826 int ret; 2827 2828 bt_dev_dbg(hdev, ""); 2829 2830 /* Resume should only act on when powered. */ 2831 if (!hdev_is_powered(hdev) || 2832 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 2833 return 0; 2834 2835 /* If powering down don't attempt to resume */ 2836 if (mgmt_powering_down(hdev)) 2837 return 0; 2838 2839 hci_req_sync_lock(hdev); 2840 ret = hci_resume_sync(hdev); 2841 hci_req_sync_unlock(hdev); 2842 2843 mgmt_resuming(hdev, hdev->wake_reason, &hdev->wake_addr, 2844 hdev->wake_addr_type); 2845 2846 hci_sock_dev_event(hdev, HCI_DEV_RESUME); 2847 return ret; 2848 } 2849 EXPORT_SYMBOL(hci_resume_dev); 2850 2851 /* Reset HCI device */ 2852 int hci_reset_dev(struct hci_dev *hdev) 2853 { 2854 static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 }; 2855 struct sk_buff *skb; 2856 2857 skb = bt_skb_alloc(3, GFP_ATOMIC); 2858 if (!skb) 2859 return -ENOMEM; 2860 2861 hci_skb_pkt_type(skb) = HCI_EVENT_PKT; 2862 skb_put_data(skb, hw_err, 3); 2863 2864 bt_dev_err(hdev, "Injecting HCI hardware error event"); 2865 2866 /* Send Hardware Error to upper stack */ 2867 return hci_recv_frame(hdev, skb); 2868 } 2869 EXPORT_SYMBOL(hci_reset_dev); 2870 2871 static u8 hci_dev_classify_pkt_type(struct hci_dev *hdev, struct sk_buff *skb) 2872 { 2873 if (hdev->classify_pkt_type) 2874 return hdev->classify_pkt_type(hdev, skb); 2875 2876 return hci_skb_pkt_type(skb); 2877 } 2878 2879 /* Receive frame from HCI drivers */ 2880 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb) 2881 { 2882 u8 dev_pkt_type; 2883 2884 if (!hdev || (!test_bit(HCI_UP, &hdev->flags) 2885 && !test_bit(HCI_INIT, &hdev->flags))) { 2886 kfree_skb(skb); 2887 return -ENXIO; 2888 } 2889 2890 /* Check if the driver agree with packet type classification */ 2891 dev_pkt_type = hci_dev_classify_pkt_type(hdev, skb); 2892 if (hci_skb_pkt_type(skb) != dev_pkt_type) { 2893 hci_skb_pkt_type(skb) = dev_pkt_type; 2894 } 2895 2896 switch (hci_skb_pkt_type(skb)) { 2897 case HCI_EVENT_PKT: 2898 break; 2899 case HCI_ACLDATA_PKT: 2900 /* Detect if ISO packet has been sent as ACL */ 2901 if (hci_conn_num(hdev, ISO_LINK)) { 2902 __u16 handle = __le16_to_cpu(hci_acl_hdr(skb)->handle); 2903 __u8 type; 2904 2905 type = hci_conn_lookup_type(hdev, hci_handle(handle)); 2906 if (type == ISO_LINK) 2907 hci_skb_pkt_type(skb) = HCI_ISODATA_PKT; 2908 } 2909 break; 2910 case HCI_SCODATA_PKT: 2911 break; 2912 case HCI_ISODATA_PKT: 2913 break; 2914 default: 2915 kfree_skb(skb); 2916 return -EINVAL; 2917 } 2918 2919 /* Incoming skb */ 2920 bt_cb(skb)->incoming = 1; 2921 2922 /* Time stamp */ 2923 __net_timestamp(skb); 2924 2925 skb_queue_tail(&hdev->rx_q, skb); 2926 queue_work(hdev->workqueue, &hdev->rx_work); 2927 2928 return 0; 2929 } 2930 EXPORT_SYMBOL(hci_recv_frame); 2931 2932 /* Receive diagnostic message from HCI drivers */ 2933 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb) 2934 { 2935 /* Mark as diagnostic packet */ 2936 hci_skb_pkt_type(skb) = HCI_DIAG_PKT; 2937 2938 /* Time stamp */ 2939 __net_timestamp(skb); 2940 2941 skb_queue_tail(&hdev->rx_q, skb); 2942 queue_work(hdev->workqueue, &hdev->rx_work); 2943 2944 return 0; 2945 } 2946 EXPORT_SYMBOL(hci_recv_diag); 2947 2948 void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...) 2949 { 2950 va_list vargs; 2951 2952 va_start(vargs, fmt); 2953 kfree_const(hdev->hw_info); 2954 hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs); 2955 va_end(vargs); 2956 } 2957 EXPORT_SYMBOL(hci_set_hw_info); 2958 2959 void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...) 2960 { 2961 va_list vargs; 2962 2963 va_start(vargs, fmt); 2964 kfree_const(hdev->fw_info); 2965 hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs); 2966 va_end(vargs); 2967 } 2968 EXPORT_SYMBOL(hci_set_fw_info); 2969 2970 /* ---- Interface to upper protocols ---- */ 2971 2972 int hci_register_cb(struct hci_cb *cb) 2973 { 2974 BT_DBG("%p name %s", cb, cb->name); 2975 2976 mutex_lock(&hci_cb_list_lock); 2977 list_add_tail(&cb->list, &hci_cb_list); 2978 mutex_unlock(&hci_cb_list_lock); 2979 2980 return 0; 2981 } 2982 EXPORT_SYMBOL(hci_register_cb); 2983 2984 int hci_unregister_cb(struct hci_cb *cb) 2985 { 2986 BT_DBG("%p name %s", cb, cb->name); 2987 2988 mutex_lock(&hci_cb_list_lock); 2989 list_del(&cb->list); 2990 mutex_unlock(&hci_cb_list_lock); 2991 2992 return 0; 2993 } 2994 EXPORT_SYMBOL(hci_unregister_cb); 2995 2996 static int hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb) 2997 { 2998 int err; 2999 3000 BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb), 3001 skb->len); 3002 3003 /* Time stamp */ 3004 __net_timestamp(skb); 3005 3006 /* Send copy to monitor */ 3007 hci_send_to_monitor(hdev, skb); 3008 3009 if (atomic_read(&hdev->promisc)) { 3010 /* Send copy to the sockets */ 3011 hci_send_to_sock(hdev, skb); 3012 } 3013 3014 /* Get rid of skb owner, prior to sending to the driver. */ 3015 skb_orphan(skb); 3016 3017 if (!test_bit(HCI_RUNNING, &hdev->flags)) { 3018 kfree_skb(skb); 3019 return -EINVAL; 3020 } 3021 3022 err = hdev->send(hdev, skb); 3023 if (err < 0) { 3024 bt_dev_err(hdev, "sending frame failed (%d)", err); 3025 kfree_skb(skb); 3026 return err; 3027 } 3028 3029 return 0; 3030 } 3031 3032 static int hci_send_conn_frame(struct hci_dev *hdev, struct hci_conn *conn, 3033 struct sk_buff *skb) 3034 { 3035 hci_conn_tx_queue(conn, skb); 3036 return hci_send_frame(hdev, skb); 3037 } 3038 3039 /* Send HCI command */ 3040 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen, 3041 const void *param) 3042 { 3043 struct sk_buff *skb; 3044 3045 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen); 3046 3047 skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, NULL); 3048 if (!skb) { 3049 bt_dev_err(hdev, "no memory for command"); 3050 return -ENOMEM; 3051 } 3052 3053 /* Stand-alone HCI commands must be flagged as 3054 * single-command requests. 3055 */ 3056 bt_cb(skb)->hci.req_flags |= HCI_REQ_START; 3057 3058 skb_queue_tail(&hdev->cmd_q, skb); 3059 queue_work(hdev->workqueue, &hdev->cmd_work); 3060 3061 return 0; 3062 } 3063 3064 int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen, 3065 const void *param) 3066 { 3067 struct sk_buff *skb; 3068 3069 if (hci_opcode_ogf(opcode) != 0x3f) { 3070 /* A controller receiving a command shall respond with either 3071 * a Command Status Event or a Command Complete Event. 3072 * Therefore, all standard HCI commands must be sent via the 3073 * standard API, using hci_send_cmd or hci_cmd_sync helpers. 3074 * Some vendors do not comply with this rule for vendor-specific 3075 * commands and do not return any event. We want to support 3076 * unresponded commands for such cases only. 3077 */ 3078 bt_dev_err(hdev, "unresponded command not supported"); 3079 return -EINVAL; 3080 } 3081 3082 skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, NULL); 3083 if (!skb) { 3084 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)", 3085 opcode); 3086 return -ENOMEM; 3087 } 3088 3089 hci_send_frame(hdev, skb); 3090 3091 return 0; 3092 } 3093 EXPORT_SYMBOL(__hci_cmd_send); 3094 3095 /* Get data from the previously sent command */ 3096 static void *hci_cmd_data(struct sk_buff *skb, __u16 opcode) 3097 { 3098 struct hci_command_hdr *hdr; 3099 3100 if (!skb || skb->len < HCI_COMMAND_HDR_SIZE) 3101 return NULL; 3102 3103 hdr = (void *)skb->data; 3104 3105 if (hdr->opcode != cpu_to_le16(opcode)) 3106 return NULL; 3107 3108 return skb->data + HCI_COMMAND_HDR_SIZE; 3109 } 3110 3111 /* Get data from the previously sent command */ 3112 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode) 3113 { 3114 void *data; 3115 3116 /* Check if opcode matches last sent command */ 3117 data = hci_cmd_data(hdev->sent_cmd, opcode); 3118 if (!data) 3119 /* Check if opcode matches last request */ 3120 data = hci_cmd_data(hdev->req_skb, opcode); 3121 3122 return data; 3123 } 3124 3125 /* Get data from last received event */ 3126 void *hci_recv_event_data(struct hci_dev *hdev, __u8 event) 3127 { 3128 struct hci_event_hdr *hdr; 3129 int offset; 3130 3131 if (!hdev->recv_event) 3132 return NULL; 3133 3134 hdr = (void *)hdev->recv_event->data; 3135 offset = sizeof(*hdr); 3136 3137 if (hdr->evt != event) { 3138 /* In case of LE metaevent check the subevent match */ 3139 if (hdr->evt == HCI_EV_LE_META) { 3140 struct hci_ev_le_meta *ev; 3141 3142 ev = (void *)hdev->recv_event->data + offset; 3143 offset += sizeof(*ev); 3144 if (ev->subevent == event) 3145 goto found; 3146 } 3147 return NULL; 3148 } 3149 3150 found: 3151 bt_dev_dbg(hdev, "event 0x%2.2x", event); 3152 3153 return hdev->recv_event->data + offset; 3154 } 3155 3156 /* Send ACL data */ 3157 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags) 3158 { 3159 struct hci_acl_hdr *hdr; 3160 int len = skb->len; 3161 3162 skb_push(skb, HCI_ACL_HDR_SIZE); 3163 skb_reset_transport_header(skb); 3164 hdr = (struct hci_acl_hdr *)skb_transport_header(skb); 3165 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags)); 3166 hdr->dlen = cpu_to_le16(len); 3167 } 3168 3169 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue, 3170 struct sk_buff *skb, __u16 flags) 3171 { 3172 struct hci_conn *conn = chan->conn; 3173 struct hci_dev *hdev = conn->hdev; 3174 struct sk_buff *list; 3175 3176 skb->len = skb_headlen(skb); 3177 skb->data_len = 0; 3178 3179 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT; 3180 3181 hci_add_acl_hdr(skb, conn->handle, flags); 3182 3183 list = skb_shinfo(skb)->frag_list; 3184 if (!list) { 3185 /* Non fragmented */ 3186 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len); 3187 3188 skb_queue_tail(queue, skb); 3189 } else { 3190 /* Fragmented */ 3191 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len); 3192 3193 skb_shinfo(skb)->frag_list = NULL; 3194 3195 /* Queue all fragments atomically. We need to use spin_lock_bh 3196 * here because of 6LoWPAN links, as there this function is 3197 * called from softirq and using normal spin lock could cause 3198 * deadlocks. 3199 */ 3200 spin_lock_bh(&queue->lock); 3201 3202 __skb_queue_tail(queue, skb); 3203 3204 flags &= ~ACL_START; 3205 flags |= ACL_CONT; 3206 do { 3207 skb = list; list = list->next; 3208 3209 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT; 3210 hci_add_acl_hdr(skb, conn->handle, flags); 3211 3212 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len); 3213 3214 __skb_queue_tail(queue, skb); 3215 } while (list); 3216 3217 spin_unlock_bh(&queue->lock); 3218 } 3219 } 3220 3221 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags) 3222 { 3223 struct hci_dev *hdev = chan->conn->hdev; 3224 3225 BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags); 3226 3227 hci_queue_acl(chan, &chan->data_q, skb, flags); 3228 3229 queue_work(hdev->workqueue, &hdev->tx_work); 3230 } 3231 3232 /* Send SCO data */ 3233 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb) 3234 { 3235 struct hci_dev *hdev = conn->hdev; 3236 struct hci_sco_hdr hdr; 3237 3238 BT_DBG("%s len %d", hdev->name, skb->len); 3239 3240 hdr.handle = cpu_to_le16(conn->handle); 3241 hdr.dlen = skb->len; 3242 3243 skb_push(skb, HCI_SCO_HDR_SIZE); 3244 skb_reset_transport_header(skb); 3245 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE); 3246 3247 hci_skb_pkt_type(skb) = HCI_SCODATA_PKT; 3248 3249 skb_queue_tail(&conn->data_q, skb); 3250 queue_work(hdev->workqueue, &hdev->tx_work); 3251 } 3252 3253 /* Send ISO data */ 3254 static void hci_add_iso_hdr(struct sk_buff *skb, __u16 handle, __u8 flags) 3255 { 3256 struct hci_iso_hdr *hdr; 3257 int len = skb->len; 3258 3259 skb_push(skb, HCI_ISO_HDR_SIZE); 3260 skb_reset_transport_header(skb); 3261 hdr = (struct hci_iso_hdr *)skb_transport_header(skb); 3262 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags)); 3263 hdr->dlen = cpu_to_le16(len); 3264 } 3265 3266 static void hci_queue_iso(struct hci_conn *conn, struct sk_buff_head *queue, 3267 struct sk_buff *skb) 3268 { 3269 struct hci_dev *hdev = conn->hdev; 3270 struct sk_buff *list; 3271 __u16 flags; 3272 3273 skb->len = skb_headlen(skb); 3274 skb->data_len = 0; 3275 3276 hci_skb_pkt_type(skb) = HCI_ISODATA_PKT; 3277 3278 list = skb_shinfo(skb)->frag_list; 3279 3280 flags = hci_iso_flags_pack(list ? ISO_START : ISO_SINGLE, 0x00); 3281 hci_add_iso_hdr(skb, conn->handle, flags); 3282 3283 if (!list) { 3284 /* Non fragmented */ 3285 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len); 3286 3287 skb_queue_tail(queue, skb); 3288 } else { 3289 /* Fragmented */ 3290 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len); 3291 3292 skb_shinfo(skb)->frag_list = NULL; 3293 3294 __skb_queue_tail(queue, skb); 3295 3296 do { 3297 skb = list; list = list->next; 3298 3299 hci_skb_pkt_type(skb) = HCI_ISODATA_PKT; 3300 flags = hci_iso_flags_pack(list ? ISO_CONT : ISO_END, 3301 0x00); 3302 hci_add_iso_hdr(skb, conn->handle, flags); 3303 3304 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len); 3305 3306 __skb_queue_tail(queue, skb); 3307 } while (list); 3308 } 3309 } 3310 3311 void hci_send_iso(struct hci_conn *conn, struct sk_buff *skb) 3312 { 3313 struct hci_dev *hdev = conn->hdev; 3314 3315 BT_DBG("%s len %d", hdev->name, skb->len); 3316 3317 hci_queue_iso(conn, &conn->data_q, skb); 3318 3319 queue_work(hdev->workqueue, &hdev->tx_work); 3320 } 3321 3322 /* ---- HCI TX task (outgoing data) ---- */ 3323 3324 /* HCI Connection scheduler */ 3325 static inline void hci_quote_sent(struct hci_conn *conn, int num, int *quote) 3326 { 3327 struct hci_dev *hdev; 3328 int cnt, q; 3329 3330 if (!conn) { 3331 *quote = 0; 3332 return; 3333 } 3334 3335 hdev = conn->hdev; 3336 3337 switch (conn->type) { 3338 case ACL_LINK: 3339 cnt = hdev->acl_cnt; 3340 break; 3341 case SCO_LINK: 3342 case ESCO_LINK: 3343 cnt = hdev->sco_cnt; 3344 break; 3345 case LE_LINK: 3346 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt; 3347 break; 3348 case ISO_LINK: 3349 cnt = hdev->iso_mtu ? hdev->iso_cnt : 3350 hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt; 3351 break; 3352 default: 3353 cnt = 0; 3354 bt_dev_err(hdev, "unknown link type %d", conn->type); 3355 } 3356 3357 q = cnt / num; 3358 *quote = q ? q : 1; 3359 } 3360 3361 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type, 3362 int *quote) 3363 { 3364 struct hci_conn_hash *h = &hdev->conn_hash; 3365 struct hci_conn *conn = NULL, *c; 3366 unsigned int num = 0, min = ~0; 3367 3368 /* We don't have to lock device here. Connections are always 3369 * added and removed with TX task disabled. */ 3370 3371 rcu_read_lock(); 3372 3373 list_for_each_entry_rcu(c, &h->list, list) { 3374 if (c->type != type || skb_queue_empty(&c->data_q)) 3375 continue; 3376 3377 if (c->state != BT_CONNECTED && c->state != BT_CONFIG) 3378 continue; 3379 3380 num++; 3381 3382 if (c->sent < min) { 3383 min = c->sent; 3384 conn = c; 3385 } 3386 3387 if (hci_conn_num(hdev, type) == num) 3388 break; 3389 } 3390 3391 rcu_read_unlock(); 3392 3393 hci_quote_sent(conn, num, quote); 3394 3395 BT_DBG("conn %p quote %d", conn, *quote); 3396 return conn; 3397 } 3398 3399 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type) 3400 { 3401 struct hci_conn_hash *h = &hdev->conn_hash; 3402 struct hci_conn *c; 3403 3404 bt_dev_err(hdev, "link tx timeout"); 3405 3406 rcu_read_lock(); 3407 3408 /* Kill stalled connections */ 3409 list_for_each_entry_rcu(c, &h->list, list) { 3410 if (c->type == type && c->sent) { 3411 bt_dev_err(hdev, "killing stalled connection %pMR", 3412 &c->dst); 3413 /* hci_disconnect might sleep, so, we have to release 3414 * the RCU read lock before calling it. 3415 */ 3416 rcu_read_unlock(); 3417 hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM); 3418 rcu_read_lock(); 3419 } 3420 } 3421 3422 rcu_read_unlock(); 3423 } 3424 3425 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type, 3426 int *quote) 3427 { 3428 struct hci_conn_hash *h = &hdev->conn_hash; 3429 struct hci_chan *chan = NULL; 3430 unsigned int num = 0, min = ~0, cur_prio = 0; 3431 struct hci_conn *conn; 3432 int conn_num = 0; 3433 3434 BT_DBG("%s", hdev->name); 3435 3436 rcu_read_lock(); 3437 3438 list_for_each_entry_rcu(conn, &h->list, list) { 3439 struct hci_chan *tmp; 3440 3441 if (conn->type != type) 3442 continue; 3443 3444 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 3445 continue; 3446 3447 conn_num++; 3448 3449 list_for_each_entry_rcu(tmp, &conn->chan_list, list) { 3450 struct sk_buff *skb; 3451 3452 if (skb_queue_empty(&tmp->data_q)) 3453 continue; 3454 3455 skb = skb_peek(&tmp->data_q); 3456 if (skb->priority < cur_prio) 3457 continue; 3458 3459 if (skb->priority > cur_prio) { 3460 num = 0; 3461 min = ~0; 3462 cur_prio = skb->priority; 3463 } 3464 3465 num++; 3466 3467 if (conn->sent < min) { 3468 min = conn->sent; 3469 chan = tmp; 3470 } 3471 } 3472 3473 if (hci_conn_num(hdev, type) == conn_num) 3474 break; 3475 } 3476 3477 rcu_read_unlock(); 3478 3479 if (!chan) 3480 return NULL; 3481 3482 hci_quote_sent(chan->conn, num, quote); 3483 3484 BT_DBG("chan %p quote %d", chan, *quote); 3485 return chan; 3486 } 3487 3488 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type) 3489 { 3490 struct hci_conn_hash *h = &hdev->conn_hash; 3491 struct hci_conn *conn; 3492 int num = 0; 3493 3494 BT_DBG("%s", hdev->name); 3495 3496 rcu_read_lock(); 3497 3498 list_for_each_entry_rcu(conn, &h->list, list) { 3499 struct hci_chan *chan; 3500 3501 if (conn->type != type) 3502 continue; 3503 3504 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 3505 continue; 3506 3507 num++; 3508 3509 list_for_each_entry_rcu(chan, &conn->chan_list, list) { 3510 struct sk_buff *skb; 3511 3512 if (chan->sent) { 3513 chan->sent = 0; 3514 continue; 3515 } 3516 3517 if (skb_queue_empty(&chan->data_q)) 3518 continue; 3519 3520 skb = skb_peek(&chan->data_q); 3521 if (skb->priority >= HCI_PRIO_MAX - 1) 3522 continue; 3523 3524 skb->priority = HCI_PRIO_MAX - 1; 3525 3526 BT_DBG("chan %p skb %p promoted to %d", chan, skb, 3527 skb->priority); 3528 } 3529 3530 if (hci_conn_num(hdev, type) == num) 3531 break; 3532 } 3533 3534 rcu_read_unlock(); 3535 3536 } 3537 3538 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt, u8 type) 3539 { 3540 unsigned long last_tx; 3541 3542 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 3543 return; 3544 3545 switch (type) { 3546 case LE_LINK: 3547 last_tx = hdev->le_last_tx; 3548 break; 3549 default: 3550 last_tx = hdev->acl_last_tx; 3551 break; 3552 } 3553 3554 /* tx timeout must be longer than maximum link supervision timeout 3555 * (40.9 seconds) 3556 */ 3557 if (!cnt && time_after(jiffies, last_tx + HCI_ACL_TX_TIMEOUT)) 3558 hci_link_tx_to(hdev, type); 3559 } 3560 3561 /* Schedule SCO */ 3562 static void hci_sched_sco(struct hci_dev *hdev, __u8 type) 3563 { 3564 struct hci_conn *conn; 3565 struct sk_buff *skb; 3566 int quote, *cnt; 3567 unsigned int pkts = hdev->sco_pkts; 3568 3569 bt_dev_dbg(hdev, "type %u", type); 3570 3571 if (!hci_conn_num(hdev, type) || !pkts) 3572 return; 3573 3574 /* Use sco_pkts if flow control has not been enabled which will limit 3575 * the amount of buffer sent in a row. 3576 */ 3577 if (!hci_dev_test_flag(hdev, HCI_SCO_FLOWCTL)) 3578 cnt = &pkts; 3579 else 3580 cnt = &hdev->sco_cnt; 3581 3582 while (*cnt && (conn = hci_low_sent(hdev, type, "e))) { 3583 while (quote-- && (skb = skb_dequeue(&conn->data_q))) { 3584 BT_DBG("skb %p len %d", skb, skb->len); 3585 hci_send_conn_frame(hdev, conn, skb); 3586 3587 conn->sent++; 3588 if (conn->sent == ~0) 3589 conn->sent = 0; 3590 (*cnt)--; 3591 } 3592 } 3593 3594 /* Rescheduled if all packets were sent and flow control is not enabled 3595 * as there could be more packets queued that could not be sent and 3596 * since no HCI_EV_NUM_COMP_PKTS event will be generated the reschedule 3597 * needs to be forced. 3598 */ 3599 if (!pkts && !hci_dev_test_flag(hdev, HCI_SCO_FLOWCTL)) 3600 queue_work(hdev->workqueue, &hdev->tx_work); 3601 } 3602 3603 static void hci_sched_acl_pkt(struct hci_dev *hdev) 3604 { 3605 unsigned int cnt = hdev->acl_cnt; 3606 struct hci_chan *chan; 3607 struct sk_buff *skb; 3608 int quote; 3609 3610 __check_timeout(hdev, cnt, ACL_LINK); 3611 3612 while (hdev->acl_cnt && 3613 (chan = hci_chan_sent(hdev, ACL_LINK, "e))) { 3614 u32 priority = (skb_peek(&chan->data_q))->priority; 3615 while (quote-- && (skb = skb_peek(&chan->data_q))) { 3616 BT_DBG("chan %p skb %p len %d priority %u", chan, skb, 3617 skb->len, skb->priority); 3618 3619 /* Stop if priority has changed */ 3620 if (skb->priority < priority) 3621 break; 3622 3623 skb = skb_dequeue(&chan->data_q); 3624 3625 hci_conn_enter_active_mode(chan->conn, 3626 bt_cb(skb)->force_active); 3627 3628 hci_send_conn_frame(hdev, chan->conn, skb); 3629 hdev->acl_last_tx = jiffies; 3630 3631 hdev->acl_cnt--; 3632 chan->sent++; 3633 chan->conn->sent++; 3634 3635 /* Send pending SCO packets right away */ 3636 hci_sched_sco(hdev, SCO_LINK); 3637 hci_sched_sco(hdev, ESCO_LINK); 3638 } 3639 } 3640 3641 if (cnt != hdev->acl_cnt) 3642 hci_prio_recalculate(hdev, ACL_LINK); 3643 } 3644 3645 static void hci_sched_acl(struct hci_dev *hdev) 3646 { 3647 BT_DBG("%s", hdev->name); 3648 3649 /* No ACL link over BR/EDR controller */ 3650 if (!hci_conn_num(hdev, ACL_LINK)) 3651 return; 3652 3653 hci_sched_acl_pkt(hdev); 3654 } 3655 3656 static void hci_sched_le(struct hci_dev *hdev) 3657 { 3658 struct hci_chan *chan; 3659 struct sk_buff *skb; 3660 int quote, *cnt, tmp; 3661 3662 BT_DBG("%s", hdev->name); 3663 3664 if (!hci_conn_num(hdev, LE_LINK)) 3665 return; 3666 3667 cnt = hdev->le_pkts ? &hdev->le_cnt : &hdev->acl_cnt; 3668 3669 __check_timeout(hdev, *cnt, LE_LINK); 3670 3671 tmp = *cnt; 3672 while (*cnt && (chan = hci_chan_sent(hdev, LE_LINK, "e))) { 3673 u32 priority = (skb_peek(&chan->data_q))->priority; 3674 while (quote-- && (skb = skb_peek(&chan->data_q))) { 3675 BT_DBG("chan %p skb %p len %d priority %u", chan, skb, 3676 skb->len, skb->priority); 3677 3678 /* Stop if priority has changed */ 3679 if (skb->priority < priority) 3680 break; 3681 3682 skb = skb_dequeue(&chan->data_q); 3683 3684 hci_send_conn_frame(hdev, chan->conn, skb); 3685 hdev->le_last_tx = jiffies; 3686 3687 (*cnt)--; 3688 chan->sent++; 3689 chan->conn->sent++; 3690 3691 /* Send pending SCO packets right away */ 3692 hci_sched_sco(hdev, SCO_LINK); 3693 hci_sched_sco(hdev, ESCO_LINK); 3694 } 3695 } 3696 3697 if (*cnt != tmp) 3698 hci_prio_recalculate(hdev, LE_LINK); 3699 } 3700 3701 /* Schedule CIS */ 3702 static void hci_sched_iso(struct hci_dev *hdev) 3703 { 3704 struct hci_conn *conn; 3705 struct sk_buff *skb; 3706 int quote, *cnt; 3707 3708 BT_DBG("%s", hdev->name); 3709 3710 if (!hci_conn_num(hdev, ISO_LINK)) 3711 return; 3712 3713 cnt = hdev->iso_pkts ? &hdev->iso_cnt : 3714 hdev->le_pkts ? &hdev->le_cnt : &hdev->acl_cnt; 3715 while (*cnt && (conn = hci_low_sent(hdev, ISO_LINK, "e))) { 3716 while (quote-- && (skb = skb_dequeue(&conn->data_q))) { 3717 BT_DBG("skb %p len %d", skb, skb->len); 3718 hci_send_conn_frame(hdev, conn, skb); 3719 3720 conn->sent++; 3721 if (conn->sent == ~0) 3722 conn->sent = 0; 3723 (*cnt)--; 3724 } 3725 } 3726 } 3727 3728 static void hci_tx_work(struct work_struct *work) 3729 { 3730 struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work); 3731 struct sk_buff *skb; 3732 3733 BT_DBG("%s acl %d sco %d le %d iso %d", hdev->name, hdev->acl_cnt, 3734 hdev->sco_cnt, hdev->le_cnt, hdev->iso_cnt); 3735 3736 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 3737 /* Schedule queues and send stuff to HCI driver */ 3738 hci_sched_sco(hdev, SCO_LINK); 3739 hci_sched_sco(hdev, ESCO_LINK); 3740 hci_sched_iso(hdev); 3741 hci_sched_acl(hdev); 3742 hci_sched_le(hdev); 3743 } 3744 3745 /* Send next queued raw (unknown type) packet */ 3746 while ((skb = skb_dequeue(&hdev->raw_q))) 3747 hci_send_frame(hdev, skb); 3748 } 3749 3750 /* ----- HCI RX task (incoming data processing) ----- */ 3751 3752 /* ACL data packet */ 3753 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb) 3754 { 3755 struct hci_acl_hdr *hdr; 3756 struct hci_conn *conn; 3757 __u16 handle, flags; 3758 3759 hdr = skb_pull_data(skb, sizeof(*hdr)); 3760 if (!hdr) { 3761 bt_dev_err(hdev, "ACL packet too small"); 3762 goto drop; 3763 } 3764 3765 handle = __le16_to_cpu(hdr->handle); 3766 flags = hci_flags(handle); 3767 handle = hci_handle(handle); 3768 3769 bt_dev_dbg(hdev, "len %d handle 0x%4.4x flags 0x%4.4x", skb->len, 3770 handle, flags); 3771 3772 hdev->stat.acl_rx++; 3773 3774 hci_dev_lock(hdev); 3775 conn = hci_conn_hash_lookup_handle(hdev, handle); 3776 hci_dev_unlock(hdev); 3777 3778 if (conn) { 3779 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF); 3780 3781 /* Send to upper protocol */ 3782 l2cap_recv_acldata(conn, skb, flags); 3783 return; 3784 } else { 3785 bt_dev_err(hdev, "ACL packet for unknown connection handle %d", 3786 handle); 3787 } 3788 3789 drop: 3790 kfree_skb(skb); 3791 } 3792 3793 /* SCO data packet */ 3794 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb) 3795 { 3796 struct hci_sco_hdr *hdr; 3797 struct hci_conn *conn; 3798 __u16 handle, flags; 3799 3800 hdr = skb_pull_data(skb, sizeof(*hdr)); 3801 if (!hdr) { 3802 bt_dev_err(hdev, "SCO packet too small"); 3803 goto drop; 3804 } 3805 3806 handle = __le16_to_cpu(hdr->handle); 3807 flags = hci_flags(handle); 3808 handle = hci_handle(handle); 3809 3810 bt_dev_dbg(hdev, "len %d handle 0x%4.4x flags 0x%4.4x", skb->len, 3811 handle, flags); 3812 3813 hdev->stat.sco_rx++; 3814 3815 hci_dev_lock(hdev); 3816 conn = hci_conn_hash_lookup_handle(hdev, handle); 3817 hci_dev_unlock(hdev); 3818 3819 if (conn) { 3820 /* Send to upper protocol */ 3821 hci_skb_pkt_status(skb) = flags & 0x03; 3822 sco_recv_scodata(conn, skb); 3823 return; 3824 } else { 3825 bt_dev_err_ratelimited(hdev, "SCO packet for unknown connection handle %d", 3826 handle); 3827 } 3828 3829 drop: 3830 kfree_skb(skb); 3831 } 3832 3833 static void hci_isodata_packet(struct hci_dev *hdev, struct sk_buff *skb) 3834 { 3835 struct hci_iso_hdr *hdr; 3836 struct hci_conn *conn; 3837 __u16 handle, flags; 3838 3839 hdr = skb_pull_data(skb, sizeof(*hdr)); 3840 if (!hdr) { 3841 bt_dev_err(hdev, "ISO packet too small"); 3842 goto drop; 3843 } 3844 3845 handle = __le16_to_cpu(hdr->handle); 3846 flags = hci_flags(handle); 3847 handle = hci_handle(handle); 3848 3849 bt_dev_dbg(hdev, "len %d handle 0x%4.4x flags 0x%4.4x", skb->len, 3850 handle, flags); 3851 3852 hci_dev_lock(hdev); 3853 conn = hci_conn_hash_lookup_handle(hdev, handle); 3854 hci_dev_unlock(hdev); 3855 3856 if (!conn) { 3857 bt_dev_err(hdev, "ISO packet for unknown connection handle %d", 3858 handle); 3859 goto drop; 3860 } 3861 3862 /* Send to upper protocol */ 3863 iso_recv(conn, skb, flags); 3864 return; 3865 3866 drop: 3867 kfree_skb(skb); 3868 } 3869 3870 static bool hci_req_is_complete(struct hci_dev *hdev) 3871 { 3872 struct sk_buff *skb; 3873 3874 skb = skb_peek(&hdev->cmd_q); 3875 if (!skb) 3876 return true; 3877 3878 return (bt_cb(skb)->hci.req_flags & HCI_REQ_START); 3879 } 3880 3881 static void hci_resend_last(struct hci_dev *hdev) 3882 { 3883 struct hci_command_hdr *sent; 3884 struct sk_buff *skb; 3885 u16 opcode; 3886 3887 if (!hdev->sent_cmd) 3888 return; 3889 3890 sent = (void *) hdev->sent_cmd->data; 3891 opcode = __le16_to_cpu(sent->opcode); 3892 if (opcode == HCI_OP_RESET) 3893 return; 3894 3895 skb = skb_clone(hdev->sent_cmd, GFP_KERNEL); 3896 if (!skb) 3897 return; 3898 3899 skb_queue_head(&hdev->cmd_q, skb); 3900 queue_work(hdev->workqueue, &hdev->cmd_work); 3901 } 3902 3903 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status, 3904 hci_req_complete_t *req_complete, 3905 hci_req_complete_skb_t *req_complete_skb) 3906 { 3907 struct sk_buff *skb; 3908 unsigned long flags; 3909 3910 BT_DBG("opcode 0x%04x status 0x%02x", opcode, status); 3911 3912 /* If the completed command doesn't match the last one that was 3913 * sent we need to do special handling of it. 3914 */ 3915 if (!hci_sent_cmd_data(hdev, opcode)) { 3916 /* Some CSR based controllers generate a spontaneous 3917 * reset complete event during init and any pending 3918 * command will never be completed. In such a case we 3919 * need to resend whatever was the last sent 3920 * command. 3921 */ 3922 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET) 3923 hci_resend_last(hdev); 3924 3925 return; 3926 } 3927 3928 /* If we reach this point this event matches the last command sent */ 3929 hci_dev_clear_flag(hdev, HCI_CMD_PENDING); 3930 3931 /* If the command succeeded and there's still more commands in 3932 * this request the request is not yet complete. 3933 */ 3934 if (!status && !hci_req_is_complete(hdev)) 3935 return; 3936 3937 skb = hdev->req_skb; 3938 3939 /* If this was the last command in a request the complete 3940 * callback would be found in hdev->req_skb instead of the 3941 * command queue (hdev->cmd_q). 3942 */ 3943 if (skb && bt_cb(skb)->hci.req_flags & HCI_REQ_SKB) { 3944 *req_complete_skb = bt_cb(skb)->hci.req_complete_skb; 3945 return; 3946 } 3947 3948 if (skb && bt_cb(skb)->hci.req_complete) { 3949 *req_complete = bt_cb(skb)->hci.req_complete; 3950 return; 3951 } 3952 3953 /* Remove all pending commands belonging to this request */ 3954 spin_lock_irqsave(&hdev->cmd_q.lock, flags); 3955 while ((skb = __skb_dequeue(&hdev->cmd_q))) { 3956 if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) { 3957 __skb_queue_head(&hdev->cmd_q, skb); 3958 break; 3959 } 3960 3961 if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB) 3962 *req_complete_skb = bt_cb(skb)->hci.req_complete_skb; 3963 else 3964 *req_complete = bt_cb(skb)->hci.req_complete; 3965 dev_kfree_skb_irq(skb); 3966 } 3967 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); 3968 } 3969 3970 static void hci_rx_work(struct work_struct *work) 3971 { 3972 struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work); 3973 struct sk_buff *skb; 3974 3975 BT_DBG("%s", hdev->name); 3976 3977 /* The kcov_remote functions used for collecting packet parsing 3978 * coverage information from this background thread and associate 3979 * the coverage with the syscall's thread which originally injected 3980 * the packet. This helps fuzzing the kernel. 3981 */ 3982 for (; (skb = skb_dequeue(&hdev->rx_q)); kcov_remote_stop()) { 3983 kcov_remote_start_common(skb_get_kcov_handle(skb)); 3984 3985 /* Send copy to monitor */ 3986 hci_send_to_monitor(hdev, skb); 3987 3988 if (atomic_read(&hdev->promisc)) { 3989 /* Send copy to the sockets */ 3990 hci_send_to_sock(hdev, skb); 3991 } 3992 3993 /* If the device has been opened in HCI_USER_CHANNEL, 3994 * the userspace has exclusive access to device. 3995 * When device is HCI_INIT, we still need to process 3996 * the data packets to the driver in order 3997 * to complete its setup(). 3998 */ 3999 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4000 !test_bit(HCI_INIT, &hdev->flags)) { 4001 kfree_skb(skb); 4002 continue; 4003 } 4004 4005 if (test_bit(HCI_INIT, &hdev->flags)) { 4006 /* Don't process data packets in this states. */ 4007 switch (hci_skb_pkt_type(skb)) { 4008 case HCI_ACLDATA_PKT: 4009 case HCI_SCODATA_PKT: 4010 case HCI_ISODATA_PKT: 4011 kfree_skb(skb); 4012 continue; 4013 } 4014 } 4015 4016 /* Process frame */ 4017 switch (hci_skb_pkt_type(skb)) { 4018 case HCI_EVENT_PKT: 4019 BT_DBG("%s Event packet", hdev->name); 4020 hci_event_packet(hdev, skb); 4021 break; 4022 4023 case HCI_ACLDATA_PKT: 4024 BT_DBG("%s ACL data packet", hdev->name); 4025 hci_acldata_packet(hdev, skb); 4026 break; 4027 4028 case HCI_SCODATA_PKT: 4029 BT_DBG("%s SCO data packet", hdev->name); 4030 hci_scodata_packet(hdev, skb); 4031 break; 4032 4033 case HCI_ISODATA_PKT: 4034 BT_DBG("%s ISO data packet", hdev->name); 4035 hci_isodata_packet(hdev, skb); 4036 break; 4037 4038 default: 4039 kfree_skb(skb); 4040 break; 4041 } 4042 } 4043 } 4044 4045 static void hci_send_cmd_sync(struct hci_dev *hdev, struct sk_buff *skb) 4046 { 4047 int err; 4048 4049 bt_dev_dbg(hdev, "skb %p", skb); 4050 4051 kfree_skb(hdev->sent_cmd); 4052 4053 hdev->sent_cmd = skb_clone(skb, GFP_KERNEL); 4054 if (!hdev->sent_cmd) { 4055 skb_queue_head(&hdev->cmd_q, skb); 4056 queue_work(hdev->workqueue, &hdev->cmd_work); 4057 return; 4058 } 4059 4060 err = hci_send_frame(hdev, skb); 4061 if (err < 0) { 4062 hci_cmd_sync_cancel_sync(hdev, -err); 4063 return; 4064 } 4065 4066 if (hdev->req_status == HCI_REQ_PEND && 4067 !hci_dev_test_and_set_flag(hdev, HCI_CMD_PENDING)) { 4068 kfree_skb(hdev->req_skb); 4069 hdev->req_skb = skb_clone(hdev->sent_cmd, GFP_KERNEL); 4070 } 4071 4072 atomic_dec(&hdev->cmd_cnt); 4073 } 4074 4075 static void hci_cmd_work(struct work_struct *work) 4076 { 4077 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work); 4078 struct sk_buff *skb; 4079 4080 BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name, 4081 atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q)); 4082 4083 /* Send queued commands */ 4084 if (atomic_read(&hdev->cmd_cnt)) { 4085 skb = skb_dequeue(&hdev->cmd_q); 4086 if (!skb) 4087 return; 4088 4089 hci_send_cmd_sync(hdev, skb); 4090 4091 rcu_read_lock(); 4092 if (test_bit(HCI_RESET, &hdev->flags) || 4093 hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE)) 4094 cancel_delayed_work(&hdev->cmd_timer); 4095 else 4096 queue_delayed_work(hdev->workqueue, &hdev->cmd_timer, 4097 HCI_CMD_TIMEOUT); 4098 rcu_read_unlock(); 4099 } 4100 } 4101