xref: /linux/net/bluetooth/hci_core.c (revision 6de298ff13a807d12300bd616c6d3039987e6e87)
1 /*
2    BlueZ - Bluetooth protocol stack for Linux
3    Copyright (C) 2000-2001 Qualcomm Incorporated
4    Copyright (C) 2011 ProFUSION Embedded Systems
5 
6    Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License version 2 as
10    published by the Free Software Foundation;
11 
12    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 
21    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23    SOFTWARE IS DISCLAIMED.
24 */
25 
26 /* Bluetooth HCI core. */
27 
28 #include <linux/export.h>
29 #include <linux/rfkill.h>
30 #include <linux/debugfs.h>
31 #include <linux/crypto.h>
32 #include <linux/kcov.h>
33 #include <linux/property.h>
34 #include <linux/suspend.h>
35 #include <linux/wait.h>
36 #include <asm/unaligned.h>
37 
38 #include <net/bluetooth/bluetooth.h>
39 #include <net/bluetooth/hci_core.h>
40 #include <net/bluetooth/l2cap.h>
41 #include <net/bluetooth/mgmt.h>
42 
43 #include "hci_request.h"
44 #include "hci_debugfs.h"
45 #include "smp.h"
46 #include "leds.h"
47 #include "msft.h"
48 #include "aosp.h"
49 #include "hci_codec.h"
50 
51 static void hci_rx_work(struct work_struct *work);
52 static void hci_cmd_work(struct work_struct *work);
53 static void hci_tx_work(struct work_struct *work);
54 
55 /* HCI device list */
56 LIST_HEAD(hci_dev_list);
57 DEFINE_RWLOCK(hci_dev_list_lock);
58 
59 /* HCI callback list */
60 LIST_HEAD(hci_cb_list);
61 DEFINE_MUTEX(hci_cb_list_lock);
62 
63 /* HCI ID Numbering */
64 static DEFINE_IDA(hci_index_ida);
65 
66 static int hci_scan_req(struct hci_request *req, unsigned long opt)
67 {
68 	__u8 scan = opt;
69 
70 	BT_DBG("%s %x", req->hdev->name, scan);
71 
72 	/* Inquiry and Page scans */
73 	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
74 	return 0;
75 }
76 
77 static int hci_auth_req(struct hci_request *req, unsigned long opt)
78 {
79 	__u8 auth = opt;
80 
81 	BT_DBG("%s %x", req->hdev->name, auth);
82 
83 	/* Authentication */
84 	hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
85 	return 0;
86 }
87 
88 static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
89 {
90 	__u8 encrypt = opt;
91 
92 	BT_DBG("%s %x", req->hdev->name, encrypt);
93 
94 	/* Encryption */
95 	hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
96 	return 0;
97 }
98 
99 static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
100 {
101 	__le16 policy = cpu_to_le16(opt);
102 
103 	BT_DBG("%s %x", req->hdev->name, policy);
104 
105 	/* Default link policy */
106 	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
107 	return 0;
108 }
109 
110 /* Get HCI device by index.
111  * Device is held on return. */
112 struct hci_dev *hci_dev_get(int index)
113 {
114 	struct hci_dev *hdev = NULL, *d;
115 
116 	BT_DBG("%d", index);
117 
118 	if (index < 0)
119 		return NULL;
120 
121 	read_lock(&hci_dev_list_lock);
122 	list_for_each_entry(d, &hci_dev_list, list) {
123 		if (d->id == index) {
124 			hdev = hci_dev_hold(d);
125 			break;
126 		}
127 	}
128 	read_unlock(&hci_dev_list_lock);
129 	return hdev;
130 }
131 
132 /* ---- Inquiry support ---- */
133 
134 bool hci_discovery_active(struct hci_dev *hdev)
135 {
136 	struct discovery_state *discov = &hdev->discovery;
137 
138 	switch (discov->state) {
139 	case DISCOVERY_FINDING:
140 	case DISCOVERY_RESOLVING:
141 		return true;
142 
143 	default:
144 		return false;
145 	}
146 }
147 
148 void hci_discovery_set_state(struct hci_dev *hdev, int state)
149 {
150 	int old_state = hdev->discovery.state;
151 
152 	BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
153 
154 	if (old_state == state)
155 		return;
156 
157 	hdev->discovery.state = state;
158 
159 	switch (state) {
160 	case DISCOVERY_STOPPED:
161 		hci_update_passive_scan(hdev);
162 
163 		if (old_state != DISCOVERY_STARTING)
164 			mgmt_discovering(hdev, 0);
165 		break;
166 	case DISCOVERY_STARTING:
167 		break;
168 	case DISCOVERY_FINDING:
169 		mgmt_discovering(hdev, 1);
170 		break;
171 	case DISCOVERY_RESOLVING:
172 		break;
173 	case DISCOVERY_STOPPING:
174 		break;
175 	}
176 }
177 
178 void hci_inquiry_cache_flush(struct hci_dev *hdev)
179 {
180 	struct discovery_state *cache = &hdev->discovery;
181 	struct inquiry_entry *p, *n;
182 
183 	list_for_each_entry_safe(p, n, &cache->all, all) {
184 		list_del(&p->all);
185 		kfree(p);
186 	}
187 
188 	INIT_LIST_HEAD(&cache->unknown);
189 	INIT_LIST_HEAD(&cache->resolve);
190 }
191 
192 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
193 					       bdaddr_t *bdaddr)
194 {
195 	struct discovery_state *cache = &hdev->discovery;
196 	struct inquiry_entry *e;
197 
198 	BT_DBG("cache %p, %pMR", cache, bdaddr);
199 
200 	list_for_each_entry(e, &cache->all, all) {
201 		if (!bacmp(&e->data.bdaddr, bdaddr))
202 			return e;
203 	}
204 
205 	return NULL;
206 }
207 
208 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
209 						       bdaddr_t *bdaddr)
210 {
211 	struct discovery_state *cache = &hdev->discovery;
212 	struct inquiry_entry *e;
213 
214 	BT_DBG("cache %p, %pMR", cache, bdaddr);
215 
216 	list_for_each_entry(e, &cache->unknown, list) {
217 		if (!bacmp(&e->data.bdaddr, bdaddr))
218 			return e;
219 	}
220 
221 	return NULL;
222 }
223 
224 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
225 						       bdaddr_t *bdaddr,
226 						       int state)
227 {
228 	struct discovery_state *cache = &hdev->discovery;
229 	struct inquiry_entry *e;
230 
231 	BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
232 
233 	list_for_each_entry(e, &cache->resolve, list) {
234 		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
235 			return e;
236 		if (!bacmp(&e->data.bdaddr, bdaddr))
237 			return e;
238 	}
239 
240 	return NULL;
241 }
242 
243 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
244 				      struct inquiry_entry *ie)
245 {
246 	struct discovery_state *cache = &hdev->discovery;
247 	struct list_head *pos = &cache->resolve;
248 	struct inquiry_entry *p;
249 
250 	list_del(&ie->list);
251 
252 	list_for_each_entry(p, &cache->resolve, list) {
253 		if (p->name_state != NAME_PENDING &&
254 		    abs(p->data.rssi) >= abs(ie->data.rssi))
255 			break;
256 		pos = &p->list;
257 	}
258 
259 	list_add(&ie->list, pos);
260 }
261 
262 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
263 			     bool name_known)
264 {
265 	struct discovery_state *cache = &hdev->discovery;
266 	struct inquiry_entry *ie;
267 	u32 flags = 0;
268 
269 	BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
270 
271 	hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
272 
273 	if (!data->ssp_mode)
274 		flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
275 
276 	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
277 	if (ie) {
278 		if (!ie->data.ssp_mode)
279 			flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
280 
281 		if (ie->name_state == NAME_NEEDED &&
282 		    data->rssi != ie->data.rssi) {
283 			ie->data.rssi = data->rssi;
284 			hci_inquiry_cache_update_resolve(hdev, ie);
285 		}
286 
287 		goto update;
288 	}
289 
290 	/* Entry not in the cache. Add new one. */
291 	ie = kzalloc(sizeof(*ie), GFP_KERNEL);
292 	if (!ie) {
293 		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
294 		goto done;
295 	}
296 
297 	list_add(&ie->all, &cache->all);
298 
299 	if (name_known) {
300 		ie->name_state = NAME_KNOWN;
301 	} else {
302 		ie->name_state = NAME_NOT_KNOWN;
303 		list_add(&ie->list, &cache->unknown);
304 	}
305 
306 update:
307 	if (name_known && ie->name_state != NAME_KNOWN &&
308 	    ie->name_state != NAME_PENDING) {
309 		ie->name_state = NAME_KNOWN;
310 		list_del(&ie->list);
311 	}
312 
313 	memcpy(&ie->data, data, sizeof(*data));
314 	ie->timestamp = jiffies;
315 	cache->timestamp = jiffies;
316 
317 	if (ie->name_state == NAME_NOT_KNOWN)
318 		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
319 
320 done:
321 	return flags;
322 }
323 
324 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
325 {
326 	struct discovery_state *cache = &hdev->discovery;
327 	struct inquiry_info *info = (struct inquiry_info *) buf;
328 	struct inquiry_entry *e;
329 	int copied = 0;
330 
331 	list_for_each_entry(e, &cache->all, all) {
332 		struct inquiry_data *data = &e->data;
333 
334 		if (copied >= num)
335 			break;
336 
337 		bacpy(&info->bdaddr, &data->bdaddr);
338 		info->pscan_rep_mode	= data->pscan_rep_mode;
339 		info->pscan_period_mode	= data->pscan_period_mode;
340 		info->pscan_mode	= data->pscan_mode;
341 		memcpy(info->dev_class, data->dev_class, 3);
342 		info->clock_offset	= data->clock_offset;
343 
344 		info++;
345 		copied++;
346 	}
347 
348 	BT_DBG("cache %p, copied %d", cache, copied);
349 	return copied;
350 }
351 
352 static int hci_inq_req(struct hci_request *req, unsigned long opt)
353 {
354 	struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
355 	struct hci_dev *hdev = req->hdev;
356 	struct hci_cp_inquiry cp;
357 
358 	BT_DBG("%s", hdev->name);
359 
360 	if (test_bit(HCI_INQUIRY, &hdev->flags))
361 		return 0;
362 
363 	/* Start Inquiry */
364 	memcpy(&cp.lap, &ir->lap, 3);
365 	cp.length  = ir->length;
366 	cp.num_rsp = ir->num_rsp;
367 	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
368 
369 	return 0;
370 }
371 
372 int hci_inquiry(void __user *arg)
373 {
374 	__u8 __user *ptr = arg;
375 	struct hci_inquiry_req ir;
376 	struct hci_dev *hdev;
377 	int err = 0, do_inquiry = 0, max_rsp;
378 	long timeo;
379 	__u8 *buf;
380 
381 	if (copy_from_user(&ir, ptr, sizeof(ir)))
382 		return -EFAULT;
383 
384 	hdev = hci_dev_get(ir.dev_id);
385 	if (!hdev)
386 		return -ENODEV;
387 
388 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
389 		err = -EBUSY;
390 		goto done;
391 	}
392 
393 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
394 		err = -EOPNOTSUPP;
395 		goto done;
396 	}
397 
398 	if (hdev->dev_type != HCI_PRIMARY) {
399 		err = -EOPNOTSUPP;
400 		goto done;
401 	}
402 
403 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
404 		err = -EOPNOTSUPP;
405 		goto done;
406 	}
407 
408 	/* Restrict maximum inquiry length to 60 seconds */
409 	if (ir.length > 60) {
410 		err = -EINVAL;
411 		goto done;
412 	}
413 
414 	hci_dev_lock(hdev);
415 	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
416 	    inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
417 		hci_inquiry_cache_flush(hdev);
418 		do_inquiry = 1;
419 	}
420 	hci_dev_unlock(hdev);
421 
422 	timeo = ir.length * msecs_to_jiffies(2000);
423 
424 	if (do_inquiry) {
425 		err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
426 				   timeo, NULL);
427 		if (err < 0)
428 			goto done;
429 
430 		/* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
431 		 * cleared). If it is interrupted by a signal, return -EINTR.
432 		 */
433 		if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
434 				TASK_INTERRUPTIBLE)) {
435 			err = -EINTR;
436 			goto done;
437 		}
438 	}
439 
440 	/* for unlimited number of responses we will use buffer with
441 	 * 255 entries
442 	 */
443 	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
444 
445 	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
446 	 * copy it to the user space.
447 	 */
448 	buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
449 	if (!buf) {
450 		err = -ENOMEM;
451 		goto done;
452 	}
453 
454 	hci_dev_lock(hdev);
455 	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
456 	hci_dev_unlock(hdev);
457 
458 	BT_DBG("num_rsp %d", ir.num_rsp);
459 
460 	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
461 		ptr += sizeof(ir);
462 		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
463 				 ir.num_rsp))
464 			err = -EFAULT;
465 	} else
466 		err = -EFAULT;
467 
468 	kfree(buf);
469 
470 done:
471 	hci_dev_put(hdev);
472 	return err;
473 }
474 
475 static int hci_dev_do_open(struct hci_dev *hdev)
476 {
477 	int ret = 0;
478 
479 	BT_DBG("%s %p", hdev->name, hdev);
480 
481 	hci_req_sync_lock(hdev);
482 
483 	ret = hci_dev_open_sync(hdev);
484 
485 	hci_req_sync_unlock(hdev);
486 	return ret;
487 }
488 
489 /* ---- HCI ioctl helpers ---- */
490 
491 int hci_dev_open(__u16 dev)
492 {
493 	struct hci_dev *hdev;
494 	int err;
495 
496 	hdev = hci_dev_get(dev);
497 	if (!hdev)
498 		return -ENODEV;
499 
500 	/* Devices that are marked as unconfigured can only be powered
501 	 * up as user channel. Trying to bring them up as normal devices
502 	 * will result into a failure. Only user channel operation is
503 	 * possible.
504 	 *
505 	 * When this function is called for a user channel, the flag
506 	 * HCI_USER_CHANNEL will be set first before attempting to
507 	 * open the device.
508 	 */
509 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
510 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
511 		err = -EOPNOTSUPP;
512 		goto done;
513 	}
514 
515 	/* We need to ensure that no other power on/off work is pending
516 	 * before proceeding to call hci_dev_do_open. This is
517 	 * particularly important if the setup procedure has not yet
518 	 * completed.
519 	 */
520 	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
521 		cancel_delayed_work(&hdev->power_off);
522 
523 	/* After this call it is guaranteed that the setup procedure
524 	 * has finished. This means that error conditions like RFKILL
525 	 * or no valid public or static random address apply.
526 	 */
527 	flush_workqueue(hdev->req_workqueue);
528 
529 	/* For controllers not using the management interface and that
530 	 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
531 	 * so that pairing works for them. Once the management interface
532 	 * is in use this bit will be cleared again and userspace has
533 	 * to explicitly enable it.
534 	 */
535 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
536 	    !hci_dev_test_flag(hdev, HCI_MGMT))
537 		hci_dev_set_flag(hdev, HCI_BONDABLE);
538 
539 	err = hci_dev_do_open(hdev);
540 
541 done:
542 	hci_dev_put(hdev);
543 	return err;
544 }
545 
546 int hci_dev_do_close(struct hci_dev *hdev)
547 {
548 	int err;
549 
550 	BT_DBG("%s %p", hdev->name, hdev);
551 
552 	hci_req_sync_lock(hdev);
553 
554 	err = hci_dev_close_sync(hdev);
555 
556 	hci_req_sync_unlock(hdev);
557 
558 	return err;
559 }
560 
561 int hci_dev_close(__u16 dev)
562 {
563 	struct hci_dev *hdev;
564 	int err;
565 
566 	hdev = hci_dev_get(dev);
567 	if (!hdev)
568 		return -ENODEV;
569 
570 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
571 		err = -EBUSY;
572 		goto done;
573 	}
574 
575 	cancel_work_sync(&hdev->power_on);
576 	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
577 		cancel_delayed_work(&hdev->power_off);
578 
579 	err = hci_dev_do_close(hdev);
580 
581 done:
582 	hci_dev_put(hdev);
583 	return err;
584 }
585 
586 static int hci_dev_do_reset(struct hci_dev *hdev)
587 {
588 	int ret;
589 
590 	BT_DBG("%s %p", hdev->name, hdev);
591 
592 	hci_req_sync_lock(hdev);
593 
594 	/* Drop queues */
595 	skb_queue_purge(&hdev->rx_q);
596 	skb_queue_purge(&hdev->cmd_q);
597 
598 	/* Cancel these to avoid queueing non-chained pending work */
599 	hci_dev_set_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
600 	/* Wait for
601 	 *
602 	 *    if (!hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
603 	 *        queue_delayed_work(&hdev->{cmd,ncmd}_timer)
604 	 *
605 	 * inside RCU section to see the flag or complete scheduling.
606 	 */
607 	synchronize_rcu();
608 	/* Explicitly cancel works in case scheduled after setting the flag. */
609 	cancel_delayed_work(&hdev->cmd_timer);
610 	cancel_delayed_work(&hdev->ncmd_timer);
611 
612 	/* Avoid potential lockdep warnings from the *_flush() calls by
613 	 * ensuring the workqueue is empty up front.
614 	 */
615 	drain_workqueue(hdev->workqueue);
616 
617 	hci_dev_lock(hdev);
618 	hci_inquiry_cache_flush(hdev);
619 	hci_conn_hash_flush(hdev);
620 	hci_dev_unlock(hdev);
621 
622 	if (hdev->flush)
623 		hdev->flush(hdev);
624 
625 	hci_dev_clear_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
626 
627 	atomic_set(&hdev->cmd_cnt, 1);
628 	hdev->acl_cnt = 0;
629 	hdev->sco_cnt = 0;
630 	hdev->le_cnt = 0;
631 	hdev->iso_cnt = 0;
632 
633 	ret = hci_reset_sync(hdev);
634 
635 	hci_req_sync_unlock(hdev);
636 	return ret;
637 }
638 
639 int hci_dev_reset(__u16 dev)
640 {
641 	struct hci_dev *hdev;
642 	int err;
643 
644 	hdev = hci_dev_get(dev);
645 	if (!hdev)
646 		return -ENODEV;
647 
648 	if (!test_bit(HCI_UP, &hdev->flags)) {
649 		err = -ENETDOWN;
650 		goto done;
651 	}
652 
653 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
654 		err = -EBUSY;
655 		goto done;
656 	}
657 
658 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
659 		err = -EOPNOTSUPP;
660 		goto done;
661 	}
662 
663 	err = hci_dev_do_reset(hdev);
664 
665 done:
666 	hci_dev_put(hdev);
667 	return err;
668 }
669 
670 int hci_dev_reset_stat(__u16 dev)
671 {
672 	struct hci_dev *hdev;
673 	int ret = 0;
674 
675 	hdev = hci_dev_get(dev);
676 	if (!hdev)
677 		return -ENODEV;
678 
679 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
680 		ret = -EBUSY;
681 		goto done;
682 	}
683 
684 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
685 		ret = -EOPNOTSUPP;
686 		goto done;
687 	}
688 
689 	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
690 
691 done:
692 	hci_dev_put(hdev);
693 	return ret;
694 }
695 
696 static void hci_update_passive_scan_state(struct hci_dev *hdev, u8 scan)
697 {
698 	bool conn_changed, discov_changed;
699 
700 	BT_DBG("%s scan 0x%02x", hdev->name, scan);
701 
702 	if ((scan & SCAN_PAGE))
703 		conn_changed = !hci_dev_test_and_set_flag(hdev,
704 							  HCI_CONNECTABLE);
705 	else
706 		conn_changed = hci_dev_test_and_clear_flag(hdev,
707 							   HCI_CONNECTABLE);
708 
709 	if ((scan & SCAN_INQUIRY)) {
710 		discov_changed = !hci_dev_test_and_set_flag(hdev,
711 							    HCI_DISCOVERABLE);
712 	} else {
713 		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
714 		discov_changed = hci_dev_test_and_clear_flag(hdev,
715 							     HCI_DISCOVERABLE);
716 	}
717 
718 	if (!hci_dev_test_flag(hdev, HCI_MGMT))
719 		return;
720 
721 	if (conn_changed || discov_changed) {
722 		/* In case this was disabled through mgmt */
723 		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
724 
725 		if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
726 			hci_update_adv_data(hdev, hdev->cur_adv_instance);
727 
728 		mgmt_new_settings(hdev);
729 	}
730 }
731 
732 int hci_dev_cmd(unsigned int cmd, void __user *arg)
733 {
734 	struct hci_dev *hdev;
735 	struct hci_dev_req dr;
736 	int err = 0;
737 
738 	if (copy_from_user(&dr, arg, sizeof(dr)))
739 		return -EFAULT;
740 
741 	hdev = hci_dev_get(dr.dev_id);
742 	if (!hdev)
743 		return -ENODEV;
744 
745 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
746 		err = -EBUSY;
747 		goto done;
748 	}
749 
750 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
751 		err = -EOPNOTSUPP;
752 		goto done;
753 	}
754 
755 	if (hdev->dev_type != HCI_PRIMARY) {
756 		err = -EOPNOTSUPP;
757 		goto done;
758 	}
759 
760 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
761 		err = -EOPNOTSUPP;
762 		goto done;
763 	}
764 
765 	switch (cmd) {
766 	case HCISETAUTH:
767 		err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
768 				   HCI_INIT_TIMEOUT, NULL);
769 		break;
770 
771 	case HCISETENCRYPT:
772 		if (!lmp_encrypt_capable(hdev)) {
773 			err = -EOPNOTSUPP;
774 			break;
775 		}
776 
777 		if (!test_bit(HCI_AUTH, &hdev->flags)) {
778 			/* Auth must be enabled first */
779 			err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
780 					   HCI_INIT_TIMEOUT, NULL);
781 			if (err)
782 				break;
783 		}
784 
785 		err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
786 				   HCI_INIT_TIMEOUT, NULL);
787 		break;
788 
789 	case HCISETSCAN:
790 		err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
791 				   HCI_INIT_TIMEOUT, NULL);
792 
793 		/* Ensure that the connectable and discoverable states
794 		 * get correctly modified as this was a non-mgmt change.
795 		 */
796 		if (!err)
797 			hci_update_passive_scan_state(hdev, dr.dev_opt);
798 		break;
799 
800 	case HCISETLINKPOL:
801 		err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
802 				   HCI_INIT_TIMEOUT, NULL);
803 		break;
804 
805 	case HCISETLINKMODE:
806 		hdev->link_mode = ((__u16) dr.dev_opt) &
807 					(HCI_LM_MASTER | HCI_LM_ACCEPT);
808 		break;
809 
810 	case HCISETPTYPE:
811 		if (hdev->pkt_type == (__u16) dr.dev_opt)
812 			break;
813 
814 		hdev->pkt_type = (__u16) dr.dev_opt;
815 		mgmt_phy_configuration_changed(hdev, NULL);
816 		break;
817 
818 	case HCISETACLMTU:
819 		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
820 		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
821 		break;
822 
823 	case HCISETSCOMTU:
824 		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
825 		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
826 		break;
827 
828 	default:
829 		err = -EINVAL;
830 		break;
831 	}
832 
833 done:
834 	hci_dev_put(hdev);
835 	return err;
836 }
837 
838 int hci_get_dev_list(void __user *arg)
839 {
840 	struct hci_dev *hdev;
841 	struct hci_dev_list_req *dl;
842 	struct hci_dev_req *dr;
843 	int n = 0, size, err;
844 	__u16 dev_num;
845 
846 	if (get_user(dev_num, (__u16 __user *) arg))
847 		return -EFAULT;
848 
849 	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
850 		return -EINVAL;
851 
852 	size = sizeof(*dl) + dev_num * sizeof(*dr);
853 
854 	dl = kzalloc(size, GFP_KERNEL);
855 	if (!dl)
856 		return -ENOMEM;
857 
858 	dr = dl->dev_req;
859 
860 	read_lock(&hci_dev_list_lock);
861 	list_for_each_entry(hdev, &hci_dev_list, list) {
862 		unsigned long flags = hdev->flags;
863 
864 		/* When the auto-off is configured it means the transport
865 		 * is running, but in that case still indicate that the
866 		 * device is actually down.
867 		 */
868 		if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
869 			flags &= ~BIT(HCI_UP);
870 
871 		(dr + n)->dev_id  = hdev->id;
872 		(dr + n)->dev_opt = flags;
873 
874 		if (++n >= dev_num)
875 			break;
876 	}
877 	read_unlock(&hci_dev_list_lock);
878 
879 	dl->dev_num = n;
880 	size = sizeof(*dl) + n * sizeof(*dr);
881 
882 	err = copy_to_user(arg, dl, size);
883 	kfree(dl);
884 
885 	return err ? -EFAULT : 0;
886 }
887 
888 int hci_get_dev_info(void __user *arg)
889 {
890 	struct hci_dev *hdev;
891 	struct hci_dev_info di;
892 	unsigned long flags;
893 	int err = 0;
894 
895 	if (copy_from_user(&di, arg, sizeof(di)))
896 		return -EFAULT;
897 
898 	hdev = hci_dev_get(di.dev_id);
899 	if (!hdev)
900 		return -ENODEV;
901 
902 	/* When the auto-off is configured it means the transport
903 	 * is running, but in that case still indicate that the
904 	 * device is actually down.
905 	 */
906 	if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
907 		flags = hdev->flags & ~BIT(HCI_UP);
908 	else
909 		flags = hdev->flags;
910 
911 	strcpy(di.name, hdev->name);
912 	di.bdaddr   = hdev->bdaddr;
913 	di.type     = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
914 	di.flags    = flags;
915 	di.pkt_type = hdev->pkt_type;
916 	if (lmp_bredr_capable(hdev)) {
917 		di.acl_mtu  = hdev->acl_mtu;
918 		di.acl_pkts = hdev->acl_pkts;
919 		di.sco_mtu  = hdev->sco_mtu;
920 		di.sco_pkts = hdev->sco_pkts;
921 	} else {
922 		di.acl_mtu  = hdev->le_mtu;
923 		di.acl_pkts = hdev->le_pkts;
924 		di.sco_mtu  = 0;
925 		di.sco_pkts = 0;
926 	}
927 	di.link_policy = hdev->link_policy;
928 	di.link_mode   = hdev->link_mode;
929 
930 	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
931 	memcpy(&di.features, &hdev->features, sizeof(di.features));
932 
933 	if (copy_to_user(arg, &di, sizeof(di)))
934 		err = -EFAULT;
935 
936 	hci_dev_put(hdev);
937 
938 	return err;
939 }
940 
941 /* ---- Interface to HCI drivers ---- */
942 
943 static int hci_rfkill_set_block(void *data, bool blocked)
944 {
945 	struct hci_dev *hdev = data;
946 
947 	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
948 
949 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
950 		return -EBUSY;
951 
952 	if (blocked) {
953 		hci_dev_set_flag(hdev, HCI_RFKILLED);
954 		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
955 		    !hci_dev_test_flag(hdev, HCI_CONFIG))
956 			hci_dev_do_close(hdev);
957 	} else {
958 		hci_dev_clear_flag(hdev, HCI_RFKILLED);
959 	}
960 
961 	return 0;
962 }
963 
964 static const struct rfkill_ops hci_rfkill_ops = {
965 	.set_block = hci_rfkill_set_block,
966 };
967 
968 static void hci_power_on(struct work_struct *work)
969 {
970 	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
971 	int err;
972 
973 	BT_DBG("%s", hdev->name);
974 
975 	if (test_bit(HCI_UP, &hdev->flags) &&
976 	    hci_dev_test_flag(hdev, HCI_MGMT) &&
977 	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
978 		cancel_delayed_work(&hdev->power_off);
979 		err = hci_powered_update_sync(hdev);
980 		mgmt_power_on(hdev, err);
981 		return;
982 	}
983 
984 	err = hci_dev_do_open(hdev);
985 	if (err < 0) {
986 		hci_dev_lock(hdev);
987 		mgmt_set_powered_failed(hdev, err);
988 		hci_dev_unlock(hdev);
989 		return;
990 	}
991 
992 	/* During the HCI setup phase, a few error conditions are
993 	 * ignored and they need to be checked now. If they are still
994 	 * valid, it is important to turn the device back off.
995 	 */
996 	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
997 	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
998 	    (hdev->dev_type == HCI_PRIMARY &&
999 	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1000 	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
1001 		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
1002 		hci_dev_do_close(hdev);
1003 	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
1004 		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
1005 				   HCI_AUTO_OFF_TIMEOUT);
1006 	}
1007 
1008 	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
1009 		/* For unconfigured devices, set the HCI_RAW flag
1010 		 * so that userspace can easily identify them.
1011 		 */
1012 		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1013 			set_bit(HCI_RAW, &hdev->flags);
1014 
1015 		/* For fully configured devices, this will send
1016 		 * the Index Added event. For unconfigured devices,
1017 		 * it will send Unconfigued Index Added event.
1018 		 *
1019 		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
1020 		 * and no event will be send.
1021 		 */
1022 		mgmt_index_added(hdev);
1023 	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
1024 		/* When the controller is now configured, then it
1025 		 * is important to clear the HCI_RAW flag.
1026 		 */
1027 		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1028 			clear_bit(HCI_RAW, &hdev->flags);
1029 
1030 		/* Powering on the controller with HCI_CONFIG set only
1031 		 * happens with the transition from unconfigured to
1032 		 * configured. This will send the Index Added event.
1033 		 */
1034 		mgmt_index_added(hdev);
1035 	}
1036 }
1037 
1038 static void hci_power_off(struct work_struct *work)
1039 {
1040 	struct hci_dev *hdev = container_of(work, struct hci_dev,
1041 					    power_off.work);
1042 
1043 	BT_DBG("%s", hdev->name);
1044 
1045 	hci_dev_do_close(hdev);
1046 }
1047 
1048 static void hci_error_reset(struct work_struct *work)
1049 {
1050 	struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
1051 
1052 	BT_DBG("%s", hdev->name);
1053 
1054 	if (hdev->hw_error)
1055 		hdev->hw_error(hdev, hdev->hw_error_code);
1056 	else
1057 		bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
1058 
1059 	if (hci_dev_do_close(hdev))
1060 		return;
1061 
1062 	hci_dev_do_open(hdev);
1063 }
1064 
1065 void hci_uuids_clear(struct hci_dev *hdev)
1066 {
1067 	struct bt_uuid *uuid, *tmp;
1068 
1069 	list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
1070 		list_del(&uuid->list);
1071 		kfree(uuid);
1072 	}
1073 }
1074 
1075 void hci_link_keys_clear(struct hci_dev *hdev)
1076 {
1077 	struct link_key *key;
1078 
1079 	list_for_each_entry(key, &hdev->link_keys, list) {
1080 		list_del_rcu(&key->list);
1081 		kfree_rcu(key, rcu);
1082 	}
1083 }
1084 
1085 void hci_smp_ltks_clear(struct hci_dev *hdev)
1086 {
1087 	struct smp_ltk *k;
1088 
1089 	list_for_each_entry(k, &hdev->long_term_keys, list) {
1090 		list_del_rcu(&k->list);
1091 		kfree_rcu(k, rcu);
1092 	}
1093 }
1094 
1095 void hci_smp_irks_clear(struct hci_dev *hdev)
1096 {
1097 	struct smp_irk *k;
1098 
1099 	list_for_each_entry(k, &hdev->identity_resolving_keys, list) {
1100 		list_del_rcu(&k->list);
1101 		kfree_rcu(k, rcu);
1102 	}
1103 }
1104 
1105 void hci_blocked_keys_clear(struct hci_dev *hdev)
1106 {
1107 	struct blocked_key *b;
1108 
1109 	list_for_each_entry(b, &hdev->blocked_keys, list) {
1110 		list_del_rcu(&b->list);
1111 		kfree_rcu(b, rcu);
1112 	}
1113 }
1114 
1115 bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16])
1116 {
1117 	bool blocked = false;
1118 	struct blocked_key *b;
1119 
1120 	rcu_read_lock();
1121 	list_for_each_entry_rcu(b, &hdev->blocked_keys, list) {
1122 		if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) {
1123 			blocked = true;
1124 			break;
1125 		}
1126 	}
1127 
1128 	rcu_read_unlock();
1129 	return blocked;
1130 }
1131 
1132 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1133 {
1134 	struct link_key *k;
1135 
1136 	rcu_read_lock();
1137 	list_for_each_entry_rcu(k, &hdev->link_keys, list) {
1138 		if (bacmp(bdaddr, &k->bdaddr) == 0) {
1139 			rcu_read_unlock();
1140 
1141 			if (hci_is_blocked_key(hdev,
1142 					       HCI_BLOCKED_KEY_TYPE_LINKKEY,
1143 					       k->val)) {
1144 				bt_dev_warn_ratelimited(hdev,
1145 							"Link key blocked for %pMR",
1146 							&k->bdaddr);
1147 				return NULL;
1148 			}
1149 
1150 			return k;
1151 		}
1152 	}
1153 	rcu_read_unlock();
1154 
1155 	return NULL;
1156 }
1157 
1158 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
1159 			       u8 key_type, u8 old_key_type)
1160 {
1161 	/* Legacy key */
1162 	if (key_type < 0x03)
1163 		return true;
1164 
1165 	/* Debug keys are insecure so don't store them persistently */
1166 	if (key_type == HCI_LK_DEBUG_COMBINATION)
1167 		return false;
1168 
1169 	/* Changed combination key and there's no previous one */
1170 	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
1171 		return false;
1172 
1173 	/* Security mode 3 case */
1174 	if (!conn)
1175 		return true;
1176 
1177 	/* BR/EDR key derived using SC from an LE link */
1178 	if (conn->type == LE_LINK)
1179 		return true;
1180 
1181 	/* Neither local nor remote side had no-bonding as requirement */
1182 	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
1183 		return true;
1184 
1185 	/* Local side had dedicated bonding as requirement */
1186 	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
1187 		return true;
1188 
1189 	/* Remote side had dedicated bonding as requirement */
1190 	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
1191 		return true;
1192 
1193 	/* If none of the above criteria match, then don't store the key
1194 	 * persistently */
1195 	return false;
1196 }
1197 
1198 static u8 ltk_role(u8 type)
1199 {
1200 	if (type == SMP_LTK)
1201 		return HCI_ROLE_MASTER;
1202 
1203 	return HCI_ROLE_SLAVE;
1204 }
1205 
1206 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1207 			     u8 addr_type, u8 role)
1208 {
1209 	struct smp_ltk *k;
1210 
1211 	rcu_read_lock();
1212 	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1213 		if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
1214 			continue;
1215 
1216 		if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
1217 			rcu_read_unlock();
1218 
1219 			if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK,
1220 					       k->val)) {
1221 				bt_dev_warn_ratelimited(hdev,
1222 							"LTK blocked for %pMR",
1223 							&k->bdaddr);
1224 				return NULL;
1225 			}
1226 
1227 			return k;
1228 		}
1229 	}
1230 	rcu_read_unlock();
1231 
1232 	return NULL;
1233 }
1234 
1235 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
1236 {
1237 	struct smp_irk *irk_to_return = NULL;
1238 	struct smp_irk *irk;
1239 
1240 	rcu_read_lock();
1241 	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1242 		if (!bacmp(&irk->rpa, rpa)) {
1243 			irk_to_return = irk;
1244 			goto done;
1245 		}
1246 	}
1247 
1248 	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1249 		if (smp_irk_matches(hdev, irk->val, rpa)) {
1250 			bacpy(&irk->rpa, rpa);
1251 			irk_to_return = irk;
1252 			goto done;
1253 		}
1254 	}
1255 
1256 done:
1257 	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1258 						irk_to_return->val)) {
1259 		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1260 					&irk_to_return->bdaddr);
1261 		irk_to_return = NULL;
1262 	}
1263 
1264 	rcu_read_unlock();
1265 
1266 	return irk_to_return;
1267 }
1268 
1269 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
1270 				     u8 addr_type)
1271 {
1272 	struct smp_irk *irk_to_return = NULL;
1273 	struct smp_irk *irk;
1274 
1275 	/* Identity Address must be public or static random */
1276 	if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
1277 		return NULL;
1278 
1279 	rcu_read_lock();
1280 	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1281 		if (addr_type == irk->addr_type &&
1282 		    bacmp(bdaddr, &irk->bdaddr) == 0) {
1283 			irk_to_return = irk;
1284 			goto done;
1285 		}
1286 	}
1287 
1288 done:
1289 
1290 	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1291 						irk_to_return->val)) {
1292 		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1293 					&irk_to_return->bdaddr);
1294 		irk_to_return = NULL;
1295 	}
1296 
1297 	rcu_read_unlock();
1298 
1299 	return irk_to_return;
1300 }
1301 
1302 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
1303 				  bdaddr_t *bdaddr, u8 *val, u8 type,
1304 				  u8 pin_len, bool *persistent)
1305 {
1306 	struct link_key *key, *old_key;
1307 	u8 old_key_type;
1308 
1309 	old_key = hci_find_link_key(hdev, bdaddr);
1310 	if (old_key) {
1311 		old_key_type = old_key->type;
1312 		key = old_key;
1313 	} else {
1314 		old_key_type = conn ? conn->key_type : 0xff;
1315 		key = kzalloc(sizeof(*key), GFP_KERNEL);
1316 		if (!key)
1317 			return NULL;
1318 		list_add_rcu(&key->list, &hdev->link_keys);
1319 	}
1320 
1321 	BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
1322 
1323 	/* Some buggy controller combinations generate a changed
1324 	 * combination key for legacy pairing even when there's no
1325 	 * previous key */
1326 	if (type == HCI_LK_CHANGED_COMBINATION &&
1327 	    (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
1328 		type = HCI_LK_COMBINATION;
1329 		if (conn)
1330 			conn->key_type = type;
1331 	}
1332 
1333 	bacpy(&key->bdaddr, bdaddr);
1334 	memcpy(key->val, val, HCI_LINK_KEY_SIZE);
1335 	key->pin_len = pin_len;
1336 
1337 	if (type == HCI_LK_CHANGED_COMBINATION)
1338 		key->type = old_key_type;
1339 	else
1340 		key->type = type;
1341 
1342 	if (persistent)
1343 		*persistent = hci_persistent_key(hdev, conn, type,
1344 						 old_key_type);
1345 
1346 	return key;
1347 }
1348 
1349 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1350 			    u8 addr_type, u8 type, u8 authenticated,
1351 			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
1352 {
1353 	struct smp_ltk *key, *old_key;
1354 	u8 role = ltk_role(type);
1355 
1356 	old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
1357 	if (old_key)
1358 		key = old_key;
1359 	else {
1360 		key = kzalloc(sizeof(*key), GFP_KERNEL);
1361 		if (!key)
1362 			return NULL;
1363 		list_add_rcu(&key->list, &hdev->long_term_keys);
1364 	}
1365 
1366 	bacpy(&key->bdaddr, bdaddr);
1367 	key->bdaddr_type = addr_type;
1368 	memcpy(key->val, tk, sizeof(key->val));
1369 	key->authenticated = authenticated;
1370 	key->ediv = ediv;
1371 	key->rand = rand;
1372 	key->enc_size = enc_size;
1373 	key->type = type;
1374 
1375 	return key;
1376 }
1377 
1378 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1379 			    u8 addr_type, u8 val[16], bdaddr_t *rpa)
1380 {
1381 	struct smp_irk *irk;
1382 
1383 	irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
1384 	if (!irk) {
1385 		irk = kzalloc(sizeof(*irk), GFP_KERNEL);
1386 		if (!irk)
1387 			return NULL;
1388 
1389 		bacpy(&irk->bdaddr, bdaddr);
1390 		irk->addr_type = addr_type;
1391 
1392 		list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
1393 	}
1394 
1395 	memcpy(irk->val, val, 16);
1396 	bacpy(&irk->rpa, rpa);
1397 
1398 	return irk;
1399 }
1400 
1401 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1402 {
1403 	struct link_key *key;
1404 
1405 	key = hci_find_link_key(hdev, bdaddr);
1406 	if (!key)
1407 		return -ENOENT;
1408 
1409 	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1410 
1411 	list_del_rcu(&key->list);
1412 	kfree_rcu(key, rcu);
1413 
1414 	return 0;
1415 }
1416 
1417 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
1418 {
1419 	struct smp_ltk *k, *tmp;
1420 	int removed = 0;
1421 
1422 	list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1423 		if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
1424 			continue;
1425 
1426 		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1427 
1428 		list_del_rcu(&k->list);
1429 		kfree_rcu(k, rcu);
1430 		removed++;
1431 	}
1432 
1433 	return removed ? 0 : -ENOENT;
1434 }
1435 
1436 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
1437 {
1438 	struct smp_irk *k, *tmp;
1439 
1440 	list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
1441 		if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
1442 			continue;
1443 
1444 		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1445 
1446 		list_del_rcu(&k->list);
1447 		kfree_rcu(k, rcu);
1448 	}
1449 }
1450 
1451 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
1452 {
1453 	struct smp_ltk *k;
1454 	struct smp_irk *irk;
1455 	u8 addr_type;
1456 
1457 	if (type == BDADDR_BREDR) {
1458 		if (hci_find_link_key(hdev, bdaddr))
1459 			return true;
1460 		return false;
1461 	}
1462 
1463 	/* Convert to HCI addr type which struct smp_ltk uses */
1464 	if (type == BDADDR_LE_PUBLIC)
1465 		addr_type = ADDR_LE_DEV_PUBLIC;
1466 	else
1467 		addr_type = ADDR_LE_DEV_RANDOM;
1468 
1469 	irk = hci_get_irk(hdev, bdaddr, addr_type);
1470 	if (irk) {
1471 		bdaddr = &irk->bdaddr;
1472 		addr_type = irk->addr_type;
1473 	}
1474 
1475 	rcu_read_lock();
1476 	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1477 		if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
1478 			rcu_read_unlock();
1479 			return true;
1480 		}
1481 	}
1482 	rcu_read_unlock();
1483 
1484 	return false;
1485 }
1486 
1487 /* HCI command timer function */
1488 static void hci_cmd_timeout(struct work_struct *work)
1489 {
1490 	struct hci_dev *hdev = container_of(work, struct hci_dev,
1491 					    cmd_timer.work);
1492 
1493 	if (hdev->sent_cmd) {
1494 		struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
1495 		u16 opcode = __le16_to_cpu(sent->opcode);
1496 
1497 		bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
1498 	} else {
1499 		bt_dev_err(hdev, "command tx timeout");
1500 	}
1501 
1502 	if (hdev->cmd_timeout)
1503 		hdev->cmd_timeout(hdev);
1504 
1505 	atomic_set(&hdev->cmd_cnt, 1);
1506 	queue_work(hdev->workqueue, &hdev->cmd_work);
1507 }
1508 
1509 /* HCI ncmd timer function */
1510 static void hci_ncmd_timeout(struct work_struct *work)
1511 {
1512 	struct hci_dev *hdev = container_of(work, struct hci_dev,
1513 					    ncmd_timer.work);
1514 
1515 	bt_dev_err(hdev, "Controller not accepting commands anymore: ncmd = 0");
1516 
1517 	/* During HCI_INIT phase no events can be injected if the ncmd timer
1518 	 * triggers since the procedure has its own timeout handling.
1519 	 */
1520 	if (test_bit(HCI_INIT, &hdev->flags))
1521 		return;
1522 
1523 	/* This is an irrecoverable state, inject hardware error event */
1524 	hci_reset_dev(hdev);
1525 }
1526 
1527 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
1528 					  bdaddr_t *bdaddr, u8 bdaddr_type)
1529 {
1530 	struct oob_data *data;
1531 
1532 	list_for_each_entry(data, &hdev->remote_oob_data, list) {
1533 		if (bacmp(bdaddr, &data->bdaddr) != 0)
1534 			continue;
1535 		if (data->bdaddr_type != bdaddr_type)
1536 			continue;
1537 		return data;
1538 	}
1539 
1540 	return NULL;
1541 }
1542 
1543 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1544 			       u8 bdaddr_type)
1545 {
1546 	struct oob_data *data;
1547 
1548 	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1549 	if (!data)
1550 		return -ENOENT;
1551 
1552 	BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
1553 
1554 	list_del(&data->list);
1555 	kfree(data);
1556 
1557 	return 0;
1558 }
1559 
1560 void hci_remote_oob_data_clear(struct hci_dev *hdev)
1561 {
1562 	struct oob_data *data, *n;
1563 
1564 	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
1565 		list_del(&data->list);
1566 		kfree(data);
1567 	}
1568 }
1569 
1570 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1571 			    u8 bdaddr_type, u8 *hash192, u8 *rand192,
1572 			    u8 *hash256, u8 *rand256)
1573 {
1574 	struct oob_data *data;
1575 
1576 	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1577 	if (!data) {
1578 		data = kmalloc(sizeof(*data), GFP_KERNEL);
1579 		if (!data)
1580 			return -ENOMEM;
1581 
1582 		bacpy(&data->bdaddr, bdaddr);
1583 		data->bdaddr_type = bdaddr_type;
1584 		list_add(&data->list, &hdev->remote_oob_data);
1585 	}
1586 
1587 	if (hash192 && rand192) {
1588 		memcpy(data->hash192, hash192, sizeof(data->hash192));
1589 		memcpy(data->rand192, rand192, sizeof(data->rand192));
1590 		if (hash256 && rand256)
1591 			data->present = 0x03;
1592 	} else {
1593 		memset(data->hash192, 0, sizeof(data->hash192));
1594 		memset(data->rand192, 0, sizeof(data->rand192));
1595 		if (hash256 && rand256)
1596 			data->present = 0x02;
1597 		else
1598 			data->present = 0x00;
1599 	}
1600 
1601 	if (hash256 && rand256) {
1602 		memcpy(data->hash256, hash256, sizeof(data->hash256));
1603 		memcpy(data->rand256, rand256, sizeof(data->rand256));
1604 	} else {
1605 		memset(data->hash256, 0, sizeof(data->hash256));
1606 		memset(data->rand256, 0, sizeof(data->rand256));
1607 		if (hash192 && rand192)
1608 			data->present = 0x01;
1609 	}
1610 
1611 	BT_DBG("%s for %pMR", hdev->name, bdaddr);
1612 
1613 	return 0;
1614 }
1615 
1616 /* This function requires the caller holds hdev->lock */
1617 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
1618 {
1619 	struct adv_info *adv_instance;
1620 
1621 	list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
1622 		if (adv_instance->instance == instance)
1623 			return adv_instance;
1624 	}
1625 
1626 	return NULL;
1627 }
1628 
1629 /* This function requires the caller holds hdev->lock */
1630 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
1631 {
1632 	struct adv_info *cur_instance;
1633 
1634 	cur_instance = hci_find_adv_instance(hdev, instance);
1635 	if (!cur_instance)
1636 		return NULL;
1637 
1638 	if (cur_instance == list_last_entry(&hdev->adv_instances,
1639 					    struct adv_info, list))
1640 		return list_first_entry(&hdev->adv_instances,
1641 						 struct adv_info, list);
1642 	else
1643 		return list_next_entry(cur_instance, list);
1644 }
1645 
1646 /* This function requires the caller holds hdev->lock */
1647 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
1648 {
1649 	struct adv_info *adv_instance;
1650 
1651 	adv_instance = hci_find_adv_instance(hdev, instance);
1652 	if (!adv_instance)
1653 		return -ENOENT;
1654 
1655 	BT_DBG("%s removing %dMR", hdev->name, instance);
1656 
1657 	if (hdev->cur_adv_instance == instance) {
1658 		if (hdev->adv_instance_timeout) {
1659 			cancel_delayed_work(&hdev->adv_instance_expire);
1660 			hdev->adv_instance_timeout = 0;
1661 		}
1662 		hdev->cur_adv_instance = 0x00;
1663 	}
1664 
1665 	cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1666 
1667 	list_del(&adv_instance->list);
1668 	kfree(adv_instance);
1669 
1670 	hdev->adv_instance_cnt--;
1671 
1672 	return 0;
1673 }
1674 
1675 void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
1676 {
1677 	struct adv_info *adv_instance, *n;
1678 
1679 	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
1680 		adv_instance->rpa_expired = rpa_expired;
1681 }
1682 
1683 /* This function requires the caller holds hdev->lock */
1684 void hci_adv_instances_clear(struct hci_dev *hdev)
1685 {
1686 	struct adv_info *adv_instance, *n;
1687 
1688 	if (hdev->adv_instance_timeout) {
1689 		cancel_delayed_work(&hdev->adv_instance_expire);
1690 		hdev->adv_instance_timeout = 0;
1691 	}
1692 
1693 	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
1694 		cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1695 		list_del(&adv_instance->list);
1696 		kfree(adv_instance);
1697 	}
1698 
1699 	hdev->adv_instance_cnt = 0;
1700 	hdev->cur_adv_instance = 0x00;
1701 }
1702 
1703 static void adv_instance_rpa_expired(struct work_struct *work)
1704 {
1705 	struct adv_info *adv_instance = container_of(work, struct adv_info,
1706 						     rpa_expired_cb.work);
1707 
1708 	BT_DBG("");
1709 
1710 	adv_instance->rpa_expired = true;
1711 }
1712 
1713 /* This function requires the caller holds hdev->lock */
1714 struct adv_info *hci_add_adv_instance(struct hci_dev *hdev, u8 instance,
1715 				      u32 flags, u16 adv_data_len, u8 *adv_data,
1716 				      u16 scan_rsp_len, u8 *scan_rsp_data,
1717 				      u16 timeout, u16 duration, s8 tx_power,
1718 				      u32 min_interval, u32 max_interval,
1719 				      u8 mesh_handle)
1720 {
1721 	struct adv_info *adv;
1722 
1723 	adv = hci_find_adv_instance(hdev, instance);
1724 	if (adv) {
1725 		memset(adv->adv_data, 0, sizeof(adv->adv_data));
1726 		memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1727 		memset(adv->per_adv_data, 0, sizeof(adv->per_adv_data));
1728 	} else {
1729 		if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets ||
1730 		    instance < 1 || instance > hdev->le_num_of_adv_sets + 1)
1731 			return ERR_PTR(-EOVERFLOW);
1732 
1733 		adv = kzalloc(sizeof(*adv), GFP_KERNEL);
1734 		if (!adv)
1735 			return ERR_PTR(-ENOMEM);
1736 
1737 		adv->pending = true;
1738 		adv->instance = instance;
1739 		list_add(&adv->list, &hdev->adv_instances);
1740 		hdev->adv_instance_cnt++;
1741 	}
1742 
1743 	adv->flags = flags;
1744 	adv->min_interval = min_interval;
1745 	adv->max_interval = max_interval;
1746 	adv->tx_power = tx_power;
1747 	/* Defining a mesh_handle changes the timing units to ms,
1748 	 * rather than seconds, and ties the instance to the requested
1749 	 * mesh_tx queue.
1750 	 */
1751 	adv->mesh = mesh_handle;
1752 
1753 	hci_set_adv_instance_data(hdev, instance, adv_data_len, adv_data,
1754 				  scan_rsp_len, scan_rsp_data);
1755 
1756 	adv->timeout = timeout;
1757 	adv->remaining_time = timeout;
1758 
1759 	if (duration == 0)
1760 		adv->duration = hdev->def_multi_adv_rotation_duration;
1761 	else
1762 		adv->duration = duration;
1763 
1764 	INIT_DELAYED_WORK(&adv->rpa_expired_cb, adv_instance_rpa_expired);
1765 
1766 	BT_DBG("%s for %dMR", hdev->name, instance);
1767 
1768 	return adv;
1769 }
1770 
1771 /* This function requires the caller holds hdev->lock */
1772 struct adv_info *hci_add_per_instance(struct hci_dev *hdev, u8 instance,
1773 				      u32 flags, u8 data_len, u8 *data,
1774 				      u32 min_interval, u32 max_interval)
1775 {
1776 	struct adv_info *adv;
1777 
1778 	adv = hci_add_adv_instance(hdev, instance, flags, 0, NULL, 0, NULL,
1779 				   0, 0, HCI_ADV_TX_POWER_NO_PREFERENCE,
1780 				   min_interval, max_interval, 0);
1781 	if (IS_ERR(adv))
1782 		return adv;
1783 
1784 	adv->periodic = true;
1785 	adv->per_adv_data_len = data_len;
1786 
1787 	if (data)
1788 		memcpy(adv->per_adv_data, data, data_len);
1789 
1790 	return adv;
1791 }
1792 
1793 /* This function requires the caller holds hdev->lock */
1794 int hci_set_adv_instance_data(struct hci_dev *hdev, u8 instance,
1795 			      u16 adv_data_len, u8 *adv_data,
1796 			      u16 scan_rsp_len, u8 *scan_rsp_data)
1797 {
1798 	struct adv_info *adv;
1799 
1800 	adv = hci_find_adv_instance(hdev, instance);
1801 
1802 	/* If advertisement doesn't exist, we can't modify its data */
1803 	if (!adv)
1804 		return -ENOENT;
1805 
1806 	if (adv_data_len && ADV_DATA_CMP(adv, adv_data, adv_data_len)) {
1807 		memset(adv->adv_data, 0, sizeof(adv->adv_data));
1808 		memcpy(adv->adv_data, adv_data, adv_data_len);
1809 		adv->adv_data_len = adv_data_len;
1810 		adv->adv_data_changed = true;
1811 	}
1812 
1813 	if (scan_rsp_len && SCAN_RSP_CMP(adv, scan_rsp_data, scan_rsp_len)) {
1814 		memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1815 		memcpy(adv->scan_rsp_data, scan_rsp_data, scan_rsp_len);
1816 		adv->scan_rsp_len = scan_rsp_len;
1817 		adv->scan_rsp_changed = true;
1818 	}
1819 
1820 	/* Mark as changed if there are flags which would affect it */
1821 	if (((adv->flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) ||
1822 	    adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1823 		adv->scan_rsp_changed = true;
1824 
1825 	return 0;
1826 }
1827 
1828 /* This function requires the caller holds hdev->lock */
1829 u32 hci_adv_instance_flags(struct hci_dev *hdev, u8 instance)
1830 {
1831 	u32 flags;
1832 	struct adv_info *adv;
1833 
1834 	if (instance == 0x00) {
1835 		/* Instance 0 always manages the "Tx Power" and "Flags"
1836 		 * fields
1837 		 */
1838 		flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
1839 
1840 		/* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
1841 		 * corresponds to the "connectable" instance flag.
1842 		 */
1843 		if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
1844 			flags |= MGMT_ADV_FLAG_CONNECTABLE;
1845 
1846 		if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
1847 			flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
1848 		else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1849 			flags |= MGMT_ADV_FLAG_DISCOV;
1850 
1851 		return flags;
1852 	}
1853 
1854 	adv = hci_find_adv_instance(hdev, instance);
1855 
1856 	/* Return 0 when we got an invalid instance identifier. */
1857 	if (!adv)
1858 		return 0;
1859 
1860 	return adv->flags;
1861 }
1862 
1863 bool hci_adv_instance_is_scannable(struct hci_dev *hdev, u8 instance)
1864 {
1865 	struct adv_info *adv;
1866 
1867 	/* Instance 0x00 always set local name */
1868 	if (instance == 0x00)
1869 		return true;
1870 
1871 	adv = hci_find_adv_instance(hdev, instance);
1872 	if (!adv)
1873 		return false;
1874 
1875 	if (adv->flags & MGMT_ADV_FLAG_APPEARANCE ||
1876 	    adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1877 		return true;
1878 
1879 	return adv->scan_rsp_len ? true : false;
1880 }
1881 
1882 /* This function requires the caller holds hdev->lock */
1883 void hci_adv_monitors_clear(struct hci_dev *hdev)
1884 {
1885 	struct adv_monitor *monitor;
1886 	int handle;
1887 
1888 	idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle)
1889 		hci_free_adv_monitor(hdev, monitor);
1890 
1891 	idr_destroy(&hdev->adv_monitors_idr);
1892 }
1893 
1894 /* Frees the monitor structure and do some bookkeepings.
1895  * This function requires the caller holds hdev->lock.
1896  */
1897 void hci_free_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1898 {
1899 	struct adv_pattern *pattern;
1900 	struct adv_pattern *tmp;
1901 
1902 	if (!monitor)
1903 		return;
1904 
1905 	list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list) {
1906 		list_del(&pattern->list);
1907 		kfree(pattern);
1908 	}
1909 
1910 	if (monitor->handle)
1911 		idr_remove(&hdev->adv_monitors_idr, monitor->handle);
1912 
1913 	if (monitor->state != ADV_MONITOR_STATE_NOT_REGISTERED) {
1914 		hdev->adv_monitors_cnt--;
1915 		mgmt_adv_monitor_removed(hdev, monitor->handle);
1916 	}
1917 
1918 	kfree(monitor);
1919 }
1920 
1921 /* Assigns handle to a monitor, and if offloading is supported and power is on,
1922  * also attempts to forward the request to the controller.
1923  * This function requires the caller holds hci_req_sync_lock.
1924  */
1925 int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1926 {
1927 	int min, max, handle;
1928 	int status = 0;
1929 
1930 	if (!monitor)
1931 		return -EINVAL;
1932 
1933 	hci_dev_lock(hdev);
1934 
1935 	min = HCI_MIN_ADV_MONITOR_HANDLE;
1936 	max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES;
1937 	handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max,
1938 			   GFP_KERNEL);
1939 
1940 	hci_dev_unlock(hdev);
1941 
1942 	if (handle < 0)
1943 		return handle;
1944 
1945 	monitor->handle = handle;
1946 
1947 	if (!hdev_is_powered(hdev))
1948 		return status;
1949 
1950 	switch (hci_get_adv_monitor_offload_ext(hdev)) {
1951 	case HCI_ADV_MONITOR_EXT_NONE:
1952 		bt_dev_dbg(hdev, "%s add monitor %d status %d", hdev->name,
1953 			   monitor->handle, status);
1954 		/* Message was not forwarded to controller - not an error */
1955 		break;
1956 
1957 	case HCI_ADV_MONITOR_EXT_MSFT:
1958 		status = msft_add_monitor_pattern(hdev, monitor);
1959 		bt_dev_dbg(hdev, "%s add monitor %d msft status %d", hdev->name,
1960 			   monitor->handle, status);
1961 		break;
1962 	}
1963 
1964 	return status;
1965 }
1966 
1967 /* Attempts to tell the controller and free the monitor. If somehow the
1968  * controller doesn't have a corresponding handle, remove anyway.
1969  * This function requires the caller holds hci_req_sync_lock.
1970  */
1971 static int hci_remove_adv_monitor(struct hci_dev *hdev,
1972 				  struct adv_monitor *monitor)
1973 {
1974 	int status = 0;
1975 
1976 	switch (hci_get_adv_monitor_offload_ext(hdev)) {
1977 	case HCI_ADV_MONITOR_EXT_NONE: /* also goes here when powered off */
1978 		bt_dev_dbg(hdev, "%s remove monitor %d status %d", hdev->name,
1979 			   monitor->handle, status);
1980 		goto free_monitor;
1981 
1982 	case HCI_ADV_MONITOR_EXT_MSFT:
1983 		status = msft_remove_monitor(hdev, monitor);
1984 		bt_dev_dbg(hdev, "%s remove monitor %d msft status %d",
1985 			   hdev->name, monitor->handle, status);
1986 		break;
1987 	}
1988 
1989 	/* In case no matching handle registered, just free the monitor */
1990 	if (status == -ENOENT)
1991 		goto free_monitor;
1992 
1993 	return status;
1994 
1995 free_monitor:
1996 	if (status == -ENOENT)
1997 		bt_dev_warn(hdev, "Removing monitor with no matching handle %d",
1998 			    monitor->handle);
1999 	hci_free_adv_monitor(hdev, monitor);
2000 
2001 	return status;
2002 }
2003 
2004 /* This function requires the caller holds hci_req_sync_lock */
2005 int hci_remove_single_adv_monitor(struct hci_dev *hdev, u16 handle)
2006 {
2007 	struct adv_monitor *monitor = idr_find(&hdev->adv_monitors_idr, handle);
2008 
2009 	if (!monitor)
2010 		return -EINVAL;
2011 
2012 	return hci_remove_adv_monitor(hdev, monitor);
2013 }
2014 
2015 /* This function requires the caller holds hci_req_sync_lock */
2016 int hci_remove_all_adv_monitor(struct hci_dev *hdev)
2017 {
2018 	struct adv_monitor *monitor;
2019 	int idr_next_id = 0;
2020 	int status = 0;
2021 
2022 	while (1) {
2023 		monitor = idr_get_next(&hdev->adv_monitors_idr, &idr_next_id);
2024 		if (!monitor)
2025 			break;
2026 
2027 		status = hci_remove_adv_monitor(hdev, monitor);
2028 		if (status)
2029 			return status;
2030 
2031 		idr_next_id++;
2032 	}
2033 
2034 	return status;
2035 }
2036 
2037 /* This function requires the caller holds hdev->lock */
2038 bool hci_is_adv_monitoring(struct hci_dev *hdev)
2039 {
2040 	return !idr_is_empty(&hdev->adv_monitors_idr);
2041 }
2042 
2043 int hci_get_adv_monitor_offload_ext(struct hci_dev *hdev)
2044 {
2045 	if (msft_monitor_supported(hdev))
2046 		return HCI_ADV_MONITOR_EXT_MSFT;
2047 
2048 	return HCI_ADV_MONITOR_EXT_NONE;
2049 }
2050 
2051 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2052 					 bdaddr_t *bdaddr, u8 type)
2053 {
2054 	struct bdaddr_list *b;
2055 
2056 	list_for_each_entry(b, bdaddr_list, list) {
2057 		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2058 			return b;
2059 	}
2060 
2061 	return NULL;
2062 }
2063 
2064 struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
2065 				struct list_head *bdaddr_list, bdaddr_t *bdaddr,
2066 				u8 type)
2067 {
2068 	struct bdaddr_list_with_irk *b;
2069 
2070 	list_for_each_entry(b, bdaddr_list, list) {
2071 		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2072 			return b;
2073 	}
2074 
2075 	return NULL;
2076 }
2077 
2078 struct bdaddr_list_with_flags *
2079 hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list,
2080 				  bdaddr_t *bdaddr, u8 type)
2081 {
2082 	struct bdaddr_list_with_flags *b;
2083 
2084 	list_for_each_entry(b, bdaddr_list, list) {
2085 		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2086 			return b;
2087 	}
2088 
2089 	return NULL;
2090 }
2091 
2092 void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2093 {
2094 	struct bdaddr_list *b, *n;
2095 
2096 	list_for_each_entry_safe(b, n, bdaddr_list, list) {
2097 		list_del(&b->list);
2098 		kfree(b);
2099 	}
2100 }
2101 
2102 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2103 {
2104 	struct bdaddr_list *entry;
2105 
2106 	if (!bacmp(bdaddr, BDADDR_ANY))
2107 		return -EBADF;
2108 
2109 	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2110 		return -EEXIST;
2111 
2112 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2113 	if (!entry)
2114 		return -ENOMEM;
2115 
2116 	bacpy(&entry->bdaddr, bdaddr);
2117 	entry->bdaddr_type = type;
2118 
2119 	list_add(&entry->list, list);
2120 
2121 	return 0;
2122 }
2123 
2124 int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2125 					u8 type, u8 *peer_irk, u8 *local_irk)
2126 {
2127 	struct bdaddr_list_with_irk *entry;
2128 
2129 	if (!bacmp(bdaddr, BDADDR_ANY))
2130 		return -EBADF;
2131 
2132 	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2133 		return -EEXIST;
2134 
2135 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2136 	if (!entry)
2137 		return -ENOMEM;
2138 
2139 	bacpy(&entry->bdaddr, bdaddr);
2140 	entry->bdaddr_type = type;
2141 
2142 	if (peer_irk)
2143 		memcpy(entry->peer_irk, peer_irk, 16);
2144 
2145 	if (local_irk)
2146 		memcpy(entry->local_irk, local_irk, 16);
2147 
2148 	list_add(&entry->list, list);
2149 
2150 	return 0;
2151 }
2152 
2153 int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2154 				   u8 type, u32 flags)
2155 {
2156 	struct bdaddr_list_with_flags *entry;
2157 
2158 	if (!bacmp(bdaddr, BDADDR_ANY))
2159 		return -EBADF;
2160 
2161 	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2162 		return -EEXIST;
2163 
2164 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2165 	if (!entry)
2166 		return -ENOMEM;
2167 
2168 	bacpy(&entry->bdaddr, bdaddr);
2169 	entry->bdaddr_type = type;
2170 	entry->flags = flags;
2171 
2172 	list_add(&entry->list, list);
2173 
2174 	return 0;
2175 }
2176 
2177 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2178 {
2179 	struct bdaddr_list *entry;
2180 
2181 	if (!bacmp(bdaddr, BDADDR_ANY)) {
2182 		hci_bdaddr_list_clear(list);
2183 		return 0;
2184 	}
2185 
2186 	entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2187 	if (!entry)
2188 		return -ENOENT;
2189 
2190 	list_del(&entry->list);
2191 	kfree(entry);
2192 
2193 	return 0;
2194 }
2195 
2196 int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2197 							u8 type)
2198 {
2199 	struct bdaddr_list_with_irk *entry;
2200 
2201 	if (!bacmp(bdaddr, BDADDR_ANY)) {
2202 		hci_bdaddr_list_clear(list);
2203 		return 0;
2204 	}
2205 
2206 	entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
2207 	if (!entry)
2208 		return -ENOENT;
2209 
2210 	list_del(&entry->list);
2211 	kfree(entry);
2212 
2213 	return 0;
2214 }
2215 
2216 int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2217 				   u8 type)
2218 {
2219 	struct bdaddr_list_with_flags *entry;
2220 
2221 	if (!bacmp(bdaddr, BDADDR_ANY)) {
2222 		hci_bdaddr_list_clear(list);
2223 		return 0;
2224 	}
2225 
2226 	entry = hci_bdaddr_list_lookup_with_flags(list, bdaddr, type);
2227 	if (!entry)
2228 		return -ENOENT;
2229 
2230 	list_del(&entry->list);
2231 	kfree(entry);
2232 
2233 	return 0;
2234 }
2235 
2236 /* This function requires the caller holds hdev->lock */
2237 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2238 					       bdaddr_t *addr, u8 addr_type)
2239 {
2240 	struct hci_conn_params *params;
2241 
2242 	list_for_each_entry(params, &hdev->le_conn_params, list) {
2243 		if (bacmp(&params->addr, addr) == 0 &&
2244 		    params->addr_type == addr_type) {
2245 			return params;
2246 		}
2247 	}
2248 
2249 	return NULL;
2250 }
2251 
2252 /* This function requires the caller holds hdev->lock */
2253 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2254 						  bdaddr_t *addr, u8 addr_type)
2255 {
2256 	struct hci_conn_params *param;
2257 
2258 	list_for_each_entry(param, list, action) {
2259 		if (bacmp(&param->addr, addr) == 0 &&
2260 		    param->addr_type == addr_type)
2261 			return param;
2262 	}
2263 
2264 	return NULL;
2265 }
2266 
2267 /* This function requires the caller holds hdev->lock */
2268 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2269 					    bdaddr_t *addr, u8 addr_type)
2270 {
2271 	struct hci_conn_params *params;
2272 
2273 	params = hci_conn_params_lookup(hdev, addr, addr_type);
2274 	if (params)
2275 		return params;
2276 
2277 	params = kzalloc(sizeof(*params), GFP_KERNEL);
2278 	if (!params) {
2279 		bt_dev_err(hdev, "out of memory");
2280 		return NULL;
2281 	}
2282 
2283 	bacpy(&params->addr, addr);
2284 	params->addr_type = addr_type;
2285 
2286 	list_add(&params->list, &hdev->le_conn_params);
2287 	INIT_LIST_HEAD(&params->action);
2288 
2289 	params->conn_min_interval = hdev->le_conn_min_interval;
2290 	params->conn_max_interval = hdev->le_conn_max_interval;
2291 	params->conn_latency = hdev->le_conn_latency;
2292 	params->supervision_timeout = hdev->le_supv_timeout;
2293 	params->auto_connect = HCI_AUTO_CONN_DISABLED;
2294 
2295 	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2296 
2297 	return params;
2298 }
2299 
2300 static void hci_conn_params_free(struct hci_conn_params *params)
2301 {
2302 	if (params->conn) {
2303 		hci_conn_drop(params->conn);
2304 		hci_conn_put(params->conn);
2305 	}
2306 
2307 	list_del(&params->action);
2308 	list_del(&params->list);
2309 	kfree(params);
2310 }
2311 
2312 /* This function requires the caller holds hdev->lock */
2313 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2314 {
2315 	struct hci_conn_params *params;
2316 
2317 	params = hci_conn_params_lookup(hdev, addr, addr_type);
2318 	if (!params)
2319 		return;
2320 
2321 	hci_conn_params_free(params);
2322 
2323 	hci_update_passive_scan(hdev);
2324 
2325 	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2326 }
2327 
2328 /* This function requires the caller holds hdev->lock */
2329 void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2330 {
2331 	struct hci_conn_params *params, *tmp;
2332 
2333 	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2334 		if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2335 			continue;
2336 
2337 		/* If trying to establish one time connection to disabled
2338 		 * device, leave the params, but mark them as just once.
2339 		 */
2340 		if (params->explicit_connect) {
2341 			params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2342 			continue;
2343 		}
2344 
2345 		list_del(&params->list);
2346 		kfree(params);
2347 	}
2348 
2349 	BT_DBG("All LE disabled connection parameters were removed");
2350 }
2351 
2352 /* This function requires the caller holds hdev->lock */
2353 static void hci_conn_params_clear_all(struct hci_dev *hdev)
2354 {
2355 	struct hci_conn_params *params, *tmp;
2356 
2357 	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2358 		hci_conn_params_free(params);
2359 
2360 	BT_DBG("All LE connection parameters were removed");
2361 }
2362 
2363 /* Copy the Identity Address of the controller.
2364  *
2365  * If the controller has a public BD_ADDR, then by default use that one.
2366  * If this is a LE only controller without a public address, default to
2367  * the static random address.
2368  *
2369  * For debugging purposes it is possible to force controllers with a
2370  * public address to use the static random address instead.
2371  *
2372  * In case BR/EDR has been disabled on a dual-mode controller and
2373  * userspace has configured a static address, then that address
2374  * becomes the identity address instead of the public BR/EDR address.
2375  */
2376 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2377 			       u8 *bdaddr_type)
2378 {
2379 	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2380 	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2381 	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2382 	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
2383 		bacpy(bdaddr, &hdev->static_addr);
2384 		*bdaddr_type = ADDR_LE_DEV_RANDOM;
2385 	} else {
2386 		bacpy(bdaddr, &hdev->bdaddr);
2387 		*bdaddr_type = ADDR_LE_DEV_PUBLIC;
2388 	}
2389 }
2390 
2391 static void hci_clear_wake_reason(struct hci_dev *hdev)
2392 {
2393 	hci_dev_lock(hdev);
2394 
2395 	hdev->wake_reason = 0;
2396 	bacpy(&hdev->wake_addr, BDADDR_ANY);
2397 	hdev->wake_addr_type = 0;
2398 
2399 	hci_dev_unlock(hdev);
2400 }
2401 
2402 static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action,
2403 				void *data)
2404 {
2405 	struct hci_dev *hdev =
2406 		container_of(nb, struct hci_dev, suspend_notifier);
2407 	int ret = 0;
2408 
2409 	/* Userspace has full control of this device. Do nothing. */
2410 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2411 		return NOTIFY_DONE;
2412 
2413 	if (action == PM_SUSPEND_PREPARE)
2414 		ret = hci_suspend_dev(hdev);
2415 	else if (action == PM_POST_SUSPEND)
2416 		ret = hci_resume_dev(hdev);
2417 
2418 	if (ret)
2419 		bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d",
2420 			   action, ret);
2421 
2422 	return NOTIFY_DONE;
2423 }
2424 
2425 /* Alloc HCI device */
2426 struct hci_dev *hci_alloc_dev_priv(int sizeof_priv)
2427 {
2428 	struct hci_dev *hdev;
2429 	unsigned int alloc_size;
2430 
2431 	alloc_size = sizeof(*hdev);
2432 	if (sizeof_priv) {
2433 		/* Fixme: May need ALIGN-ment? */
2434 		alloc_size += sizeof_priv;
2435 	}
2436 
2437 	hdev = kzalloc(alloc_size, GFP_KERNEL);
2438 	if (!hdev)
2439 		return NULL;
2440 
2441 	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2442 	hdev->esco_type = (ESCO_HV1);
2443 	hdev->link_mode = (HCI_LM_ACCEPT);
2444 	hdev->num_iac = 0x01;		/* One IAC support is mandatory */
2445 	hdev->io_capability = 0x03;	/* No Input No Output */
2446 	hdev->manufacturer = 0xffff;	/* Default to internal use */
2447 	hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2448 	hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2449 	hdev->adv_instance_cnt = 0;
2450 	hdev->cur_adv_instance = 0x00;
2451 	hdev->adv_instance_timeout = 0;
2452 
2453 	hdev->advmon_allowlist_duration = 300;
2454 	hdev->advmon_no_filter_duration = 500;
2455 	hdev->enable_advmon_interleave_scan = 0x00;	/* Default to disable */
2456 
2457 	hdev->sniff_max_interval = 800;
2458 	hdev->sniff_min_interval = 80;
2459 
2460 	hdev->le_adv_channel_map = 0x07;
2461 	hdev->le_adv_min_interval = 0x0800;
2462 	hdev->le_adv_max_interval = 0x0800;
2463 	hdev->le_scan_interval = 0x0060;
2464 	hdev->le_scan_window = 0x0030;
2465 	hdev->le_scan_int_suspend = 0x0400;
2466 	hdev->le_scan_window_suspend = 0x0012;
2467 	hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT;
2468 	hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN;
2469 	hdev->le_scan_int_adv_monitor = 0x0060;
2470 	hdev->le_scan_window_adv_monitor = 0x0030;
2471 	hdev->le_scan_int_connect = 0x0060;
2472 	hdev->le_scan_window_connect = 0x0060;
2473 	hdev->le_conn_min_interval = 0x0018;
2474 	hdev->le_conn_max_interval = 0x0028;
2475 	hdev->le_conn_latency = 0x0000;
2476 	hdev->le_supv_timeout = 0x002a;
2477 	hdev->le_def_tx_len = 0x001b;
2478 	hdev->le_def_tx_time = 0x0148;
2479 	hdev->le_max_tx_len = 0x001b;
2480 	hdev->le_max_tx_time = 0x0148;
2481 	hdev->le_max_rx_len = 0x001b;
2482 	hdev->le_max_rx_time = 0x0148;
2483 	hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
2484 	hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
2485 	hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
2486 	hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
2487 	hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES;
2488 	hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION;
2489 	hdev->def_le_autoconnect_timeout = HCI_LE_AUTOCONN_TIMEOUT;
2490 	hdev->min_le_tx_power = HCI_TX_POWER_INVALID;
2491 	hdev->max_le_tx_power = HCI_TX_POWER_INVALID;
2492 
2493 	hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
2494 	hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
2495 	hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
2496 	hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
2497 	hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
2498 	hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE;
2499 
2500 	/* default 1.28 sec page scan */
2501 	hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD;
2502 	hdev->def_page_scan_int = 0x0800;
2503 	hdev->def_page_scan_window = 0x0012;
2504 
2505 	mutex_init(&hdev->lock);
2506 	mutex_init(&hdev->req_lock);
2507 
2508 	INIT_LIST_HEAD(&hdev->mesh_pending);
2509 	INIT_LIST_HEAD(&hdev->mgmt_pending);
2510 	INIT_LIST_HEAD(&hdev->reject_list);
2511 	INIT_LIST_HEAD(&hdev->accept_list);
2512 	INIT_LIST_HEAD(&hdev->uuids);
2513 	INIT_LIST_HEAD(&hdev->link_keys);
2514 	INIT_LIST_HEAD(&hdev->long_term_keys);
2515 	INIT_LIST_HEAD(&hdev->identity_resolving_keys);
2516 	INIT_LIST_HEAD(&hdev->remote_oob_data);
2517 	INIT_LIST_HEAD(&hdev->le_accept_list);
2518 	INIT_LIST_HEAD(&hdev->le_resolv_list);
2519 	INIT_LIST_HEAD(&hdev->le_conn_params);
2520 	INIT_LIST_HEAD(&hdev->pend_le_conns);
2521 	INIT_LIST_HEAD(&hdev->pend_le_reports);
2522 	INIT_LIST_HEAD(&hdev->conn_hash.list);
2523 	INIT_LIST_HEAD(&hdev->adv_instances);
2524 	INIT_LIST_HEAD(&hdev->blocked_keys);
2525 	INIT_LIST_HEAD(&hdev->monitored_devices);
2526 
2527 	INIT_LIST_HEAD(&hdev->local_codecs);
2528 	INIT_WORK(&hdev->rx_work, hci_rx_work);
2529 	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
2530 	INIT_WORK(&hdev->tx_work, hci_tx_work);
2531 	INIT_WORK(&hdev->power_on, hci_power_on);
2532 	INIT_WORK(&hdev->error_reset, hci_error_reset);
2533 
2534 	hci_cmd_sync_init(hdev);
2535 
2536 	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
2537 
2538 	skb_queue_head_init(&hdev->rx_q);
2539 	skb_queue_head_init(&hdev->cmd_q);
2540 	skb_queue_head_init(&hdev->raw_q);
2541 
2542 	init_waitqueue_head(&hdev->req_wait_q);
2543 
2544 	INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
2545 	INIT_DELAYED_WORK(&hdev->ncmd_timer, hci_ncmd_timeout);
2546 
2547 	hci_devcd_setup(hdev);
2548 	hci_request_setup(hdev);
2549 
2550 	hci_init_sysfs(hdev);
2551 	discovery_init(hdev);
2552 
2553 	return hdev;
2554 }
2555 EXPORT_SYMBOL(hci_alloc_dev_priv);
2556 
2557 /* Free HCI device */
2558 void hci_free_dev(struct hci_dev *hdev)
2559 {
2560 	/* will free via device release */
2561 	put_device(&hdev->dev);
2562 }
2563 EXPORT_SYMBOL(hci_free_dev);
2564 
2565 /* Register HCI device */
2566 int hci_register_dev(struct hci_dev *hdev)
2567 {
2568 	int id, error;
2569 
2570 	if (!hdev->open || !hdev->close || !hdev->send)
2571 		return -EINVAL;
2572 
2573 	/* Do not allow HCI_AMP devices to register at index 0,
2574 	 * so the index can be used as the AMP controller ID.
2575 	 */
2576 	switch (hdev->dev_type) {
2577 	case HCI_PRIMARY:
2578 		id = ida_simple_get(&hci_index_ida, 0, HCI_MAX_ID, GFP_KERNEL);
2579 		break;
2580 	case HCI_AMP:
2581 		id = ida_simple_get(&hci_index_ida, 1, HCI_MAX_ID, GFP_KERNEL);
2582 		break;
2583 	default:
2584 		return -EINVAL;
2585 	}
2586 
2587 	if (id < 0)
2588 		return id;
2589 
2590 	snprintf(hdev->name, sizeof(hdev->name), "hci%d", id);
2591 	hdev->id = id;
2592 
2593 	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2594 
2595 	hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
2596 	if (!hdev->workqueue) {
2597 		error = -ENOMEM;
2598 		goto err;
2599 	}
2600 
2601 	hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
2602 						      hdev->name);
2603 	if (!hdev->req_workqueue) {
2604 		destroy_workqueue(hdev->workqueue);
2605 		error = -ENOMEM;
2606 		goto err;
2607 	}
2608 
2609 	if (!IS_ERR_OR_NULL(bt_debugfs))
2610 		hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
2611 
2612 	dev_set_name(&hdev->dev, "%s", hdev->name);
2613 
2614 	error = device_add(&hdev->dev);
2615 	if (error < 0)
2616 		goto err_wqueue;
2617 
2618 	hci_leds_init(hdev);
2619 
2620 	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
2621 				    RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
2622 				    hdev);
2623 	if (hdev->rfkill) {
2624 		if (rfkill_register(hdev->rfkill) < 0) {
2625 			rfkill_destroy(hdev->rfkill);
2626 			hdev->rfkill = NULL;
2627 		}
2628 	}
2629 
2630 	if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
2631 		hci_dev_set_flag(hdev, HCI_RFKILLED);
2632 
2633 	hci_dev_set_flag(hdev, HCI_SETUP);
2634 	hci_dev_set_flag(hdev, HCI_AUTO_OFF);
2635 
2636 	if (hdev->dev_type == HCI_PRIMARY) {
2637 		/* Assume BR/EDR support until proven otherwise (such as
2638 		 * through reading supported features during init.
2639 		 */
2640 		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
2641 	}
2642 
2643 	write_lock(&hci_dev_list_lock);
2644 	list_add(&hdev->list, &hci_dev_list);
2645 	write_unlock(&hci_dev_list_lock);
2646 
2647 	/* Devices that are marked for raw-only usage are unconfigured
2648 	 * and should not be included in normal operation.
2649 	 */
2650 	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
2651 		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
2652 
2653 	/* Mark Remote Wakeup connection flag as supported if driver has wakeup
2654 	 * callback.
2655 	 */
2656 	if (hdev->wakeup)
2657 		hdev->conn_flags |= HCI_CONN_FLAG_REMOTE_WAKEUP;
2658 
2659 	hci_sock_dev_event(hdev, HCI_DEV_REG);
2660 	hci_dev_hold(hdev);
2661 
2662 	error = hci_register_suspend_notifier(hdev);
2663 	if (error)
2664 		BT_WARN("register suspend notifier failed error:%d\n", error);
2665 
2666 	queue_work(hdev->req_workqueue, &hdev->power_on);
2667 
2668 	idr_init(&hdev->adv_monitors_idr);
2669 	msft_register(hdev);
2670 
2671 	return id;
2672 
2673 err_wqueue:
2674 	debugfs_remove_recursive(hdev->debugfs);
2675 	destroy_workqueue(hdev->workqueue);
2676 	destroy_workqueue(hdev->req_workqueue);
2677 err:
2678 	ida_simple_remove(&hci_index_ida, hdev->id);
2679 
2680 	return error;
2681 }
2682 EXPORT_SYMBOL(hci_register_dev);
2683 
2684 /* Unregister HCI device */
2685 void hci_unregister_dev(struct hci_dev *hdev)
2686 {
2687 	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2688 
2689 	mutex_lock(&hdev->unregister_lock);
2690 	hci_dev_set_flag(hdev, HCI_UNREGISTER);
2691 	mutex_unlock(&hdev->unregister_lock);
2692 
2693 	write_lock(&hci_dev_list_lock);
2694 	list_del(&hdev->list);
2695 	write_unlock(&hci_dev_list_lock);
2696 
2697 	cancel_work_sync(&hdev->power_on);
2698 
2699 	hci_cmd_sync_clear(hdev);
2700 
2701 	hci_unregister_suspend_notifier(hdev);
2702 
2703 	msft_unregister(hdev);
2704 
2705 	hci_dev_do_close(hdev);
2706 
2707 	if (!test_bit(HCI_INIT, &hdev->flags) &&
2708 	    !hci_dev_test_flag(hdev, HCI_SETUP) &&
2709 	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
2710 		hci_dev_lock(hdev);
2711 		mgmt_index_removed(hdev);
2712 		hci_dev_unlock(hdev);
2713 	}
2714 
2715 	/* mgmt_index_removed should take care of emptying the
2716 	 * pending list */
2717 	BUG_ON(!list_empty(&hdev->mgmt_pending));
2718 
2719 	hci_sock_dev_event(hdev, HCI_DEV_UNREG);
2720 
2721 	if (hdev->rfkill) {
2722 		rfkill_unregister(hdev->rfkill);
2723 		rfkill_destroy(hdev->rfkill);
2724 	}
2725 
2726 	device_del(&hdev->dev);
2727 	/* Actual cleanup is deferred until hci_release_dev(). */
2728 	hci_dev_put(hdev);
2729 }
2730 EXPORT_SYMBOL(hci_unregister_dev);
2731 
2732 /* Release HCI device */
2733 void hci_release_dev(struct hci_dev *hdev)
2734 {
2735 	debugfs_remove_recursive(hdev->debugfs);
2736 	kfree_const(hdev->hw_info);
2737 	kfree_const(hdev->fw_info);
2738 
2739 	destroy_workqueue(hdev->workqueue);
2740 	destroy_workqueue(hdev->req_workqueue);
2741 
2742 	hci_dev_lock(hdev);
2743 	hci_bdaddr_list_clear(&hdev->reject_list);
2744 	hci_bdaddr_list_clear(&hdev->accept_list);
2745 	hci_uuids_clear(hdev);
2746 	hci_link_keys_clear(hdev);
2747 	hci_smp_ltks_clear(hdev);
2748 	hci_smp_irks_clear(hdev);
2749 	hci_remote_oob_data_clear(hdev);
2750 	hci_adv_instances_clear(hdev);
2751 	hci_adv_monitors_clear(hdev);
2752 	hci_bdaddr_list_clear(&hdev->le_accept_list);
2753 	hci_bdaddr_list_clear(&hdev->le_resolv_list);
2754 	hci_conn_params_clear_all(hdev);
2755 	hci_discovery_filter_clear(hdev);
2756 	hci_blocked_keys_clear(hdev);
2757 	hci_dev_unlock(hdev);
2758 
2759 	ida_simple_remove(&hci_index_ida, hdev->id);
2760 	kfree_skb(hdev->sent_cmd);
2761 	kfree_skb(hdev->recv_event);
2762 	kfree(hdev);
2763 }
2764 EXPORT_SYMBOL(hci_release_dev);
2765 
2766 int hci_register_suspend_notifier(struct hci_dev *hdev)
2767 {
2768 	int ret = 0;
2769 
2770 	if (!hdev->suspend_notifier.notifier_call &&
2771 	    !test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) {
2772 		hdev->suspend_notifier.notifier_call = hci_suspend_notifier;
2773 		ret = register_pm_notifier(&hdev->suspend_notifier);
2774 	}
2775 
2776 	return ret;
2777 }
2778 
2779 int hci_unregister_suspend_notifier(struct hci_dev *hdev)
2780 {
2781 	int ret = 0;
2782 
2783 	if (hdev->suspend_notifier.notifier_call) {
2784 		ret = unregister_pm_notifier(&hdev->suspend_notifier);
2785 		if (!ret)
2786 			hdev->suspend_notifier.notifier_call = NULL;
2787 	}
2788 
2789 	return ret;
2790 }
2791 
2792 /* Suspend HCI device */
2793 int hci_suspend_dev(struct hci_dev *hdev)
2794 {
2795 	int ret;
2796 
2797 	bt_dev_dbg(hdev, "");
2798 
2799 	/* Suspend should only act on when powered. */
2800 	if (!hdev_is_powered(hdev) ||
2801 	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2802 		return 0;
2803 
2804 	/* If powering down don't attempt to suspend */
2805 	if (mgmt_powering_down(hdev))
2806 		return 0;
2807 
2808 	/* Cancel potentially blocking sync operation before suspend */
2809 	__hci_cmd_sync_cancel(hdev, -EHOSTDOWN);
2810 
2811 	hci_req_sync_lock(hdev);
2812 	ret = hci_suspend_sync(hdev);
2813 	hci_req_sync_unlock(hdev);
2814 
2815 	hci_clear_wake_reason(hdev);
2816 	mgmt_suspending(hdev, hdev->suspend_state);
2817 
2818 	hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
2819 	return ret;
2820 }
2821 EXPORT_SYMBOL(hci_suspend_dev);
2822 
2823 /* Resume HCI device */
2824 int hci_resume_dev(struct hci_dev *hdev)
2825 {
2826 	int ret;
2827 
2828 	bt_dev_dbg(hdev, "");
2829 
2830 	/* Resume should only act on when powered. */
2831 	if (!hdev_is_powered(hdev) ||
2832 	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2833 		return 0;
2834 
2835 	/* If powering down don't attempt to resume */
2836 	if (mgmt_powering_down(hdev))
2837 		return 0;
2838 
2839 	hci_req_sync_lock(hdev);
2840 	ret = hci_resume_sync(hdev);
2841 	hci_req_sync_unlock(hdev);
2842 
2843 	mgmt_resuming(hdev, hdev->wake_reason, &hdev->wake_addr,
2844 		      hdev->wake_addr_type);
2845 
2846 	hci_sock_dev_event(hdev, HCI_DEV_RESUME);
2847 	return ret;
2848 }
2849 EXPORT_SYMBOL(hci_resume_dev);
2850 
2851 /* Reset HCI device */
2852 int hci_reset_dev(struct hci_dev *hdev)
2853 {
2854 	static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
2855 	struct sk_buff *skb;
2856 
2857 	skb = bt_skb_alloc(3, GFP_ATOMIC);
2858 	if (!skb)
2859 		return -ENOMEM;
2860 
2861 	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
2862 	skb_put_data(skb, hw_err, 3);
2863 
2864 	bt_dev_err(hdev, "Injecting HCI hardware error event");
2865 
2866 	/* Send Hardware Error to upper stack */
2867 	return hci_recv_frame(hdev, skb);
2868 }
2869 EXPORT_SYMBOL(hci_reset_dev);
2870 
2871 /* Receive frame from HCI drivers */
2872 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
2873 {
2874 	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
2875 		      && !test_bit(HCI_INIT, &hdev->flags))) {
2876 		kfree_skb(skb);
2877 		return -ENXIO;
2878 	}
2879 
2880 	switch (hci_skb_pkt_type(skb)) {
2881 	case HCI_EVENT_PKT:
2882 		break;
2883 	case HCI_ACLDATA_PKT:
2884 		/* Detect if ISO packet has been sent as ACL */
2885 		if (hci_conn_num(hdev, ISO_LINK)) {
2886 			__u16 handle = __le16_to_cpu(hci_acl_hdr(skb)->handle);
2887 			__u8 type;
2888 
2889 			type = hci_conn_lookup_type(hdev, hci_handle(handle));
2890 			if (type == ISO_LINK)
2891 				hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
2892 		}
2893 		break;
2894 	case HCI_SCODATA_PKT:
2895 		break;
2896 	case HCI_ISODATA_PKT:
2897 		break;
2898 	default:
2899 		kfree_skb(skb);
2900 		return -EINVAL;
2901 	}
2902 
2903 	/* Incoming skb */
2904 	bt_cb(skb)->incoming = 1;
2905 
2906 	/* Time stamp */
2907 	__net_timestamp(skb);
2908 
2909 	skb_queue_tail(&hdev->rx_q, skb);
2910 	queue_work(hdev->workqueue, &hdev->rx_work);
2911 
2912 	return 0;
2913 }
2914 EXPORT_SYMBOL(hci_recv_frame);
2915 
2916 /* Receive diagnostic message from HCI drivers */
2917 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
2918 {
2919 	/* Mark as diagnostic packet */
2920 	hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
2921 
2922 	/* Time stamp */
2923 	__net_timestamp(skb);
2924 
2925 	skb_queue_tail(&hdev->rx_q, skb);
2926 	queue_work(hdev->workqueue, &hdev->rx_work);
2927 
2928 	return 0;
2929 }
2930 EXPORT_SYMBOL(hci_recv_diag);
2931 
2932 void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
2933 {
2934 	va_list vargs;
2935 
2936 	va_start(vargs, fmt);
2937 	kfree_const(hdev->hw_info);
2938 	hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
2939 	va_end(vargs);
2940 }
2941 EXPORT_SYMBOL(hci_set_hw_info);
2942 
2943 void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
2944 {
2945 	va_list vargs;
2946 
2947 	va_start(vargs, fmt);
2948 	kfree_const(hdev->fw_info);
2949 	hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
2950 	va_end(vargs);
2951 }
2952 EXPORT_SYMBOL(hci_set_fw_info);
2953 
2954 /* ---- Interface to upper protocols ---- */
2955 
2956 int hci_register_cb(struct hci_cb *cb)
2957 {
2958 	BT_DBG("%p name %s", cb, cb->name);
2959 
2960 	mutex_lock(&hci_cb_list_lock);
2961 	list_add_tail(&cb->list, &hci_cb_list);
2962 	mutex_unlock(&hci_cb_list_lock);
2963 
2964 	return 0;
2965 }
2966 EXPORT_SYMBOL(hci_register_cb);
2967 
2968 int hci_unregister_cb(struct hci_cb *cb)
2969 {
2970 	BT_DBG("%p name %s", cb, cb->name);
2971 
2972 	mutex_lock(&hci_cb_list_lock);
2973 	list_del(&cb->list);
2974 	mutex_unlock(&hci_cb_list_lock);
2975 
2976 	return 0;
2977 }
2978 EXPORT_SYMBOL(hci_unregister_cb);
2979 
2980 static int hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
2981 {
2982 	int err;
2983 
2984 	BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
2985 	       skb->len);
2986 
2987 	/* Time stamp */
2988 	__net_timestamp(skb);
2989 
2990 	/* Send copy to monitor */
2991 	hci_send_to_monitor(hdev, skb);
2992 
2993 	if (atomic_read(&hdev->promisc)) {
2994 		/* Send copy to the sockets */
2995 		hci_send_to_sock(hdev, skb);
2996 	}
2997 
2998 	/* Get rid of skb owner, prior to sending to the driver. */
2999 	skb_orphan(skb);
3000 
3001 	if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3002 		kfree_skb(skb);
3003 		return -EINVAL;
3004 	}
3005 
3006 	err = hdev->send(hdev, skb);
3007 	if (err < 0) {
3008 		bt_dev_err(hdev, "sending frame failed (%d)", err);
3009 		kfree_skb(skb);
3010 		return err;
3011 	}
3012 
3013 	return 0;
3014 }
3015 
3016 /* Send HCI command */
3017 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3018 		 const void *param)
3019 {
3020 	struct sk_buff *skb;
3021 
3022 	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3023 
3024 	skb = hci_prepare_cmd(hdev, opcode, plen, param);
3025 	if (!skb) {
3026 		bt_dev_err(hdev, "no memory for command");
3027 		return -ENOMEM;
3028 	}
3029 
3030 	/* Stand-alone HCI commands must be flagged as
3031 	 * single-command requests.
3032 	 */
3033 	bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3034 
3035 	skb_queue_tail(&hdev->cmd_q, skb);
3036 	queue_work(hdev->workqueue, &hdev->cmd_work);
3037 
3038 	return 0;
3039 }
3040 
3041 int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
3042 		   const void *param)
3043 {
3044 	struct sk_buff *skb;
3045 
3046 	if (hci_opcode_ogf(opcode) != 0x3f) {
3047 		/* A controller receiving a command shall respond with either
3048 		 * a Command Status Event or a Command Complete Event.
3049 		 * Therefore, all standard HCI commands must be sent via the
3050 		 * standard API, using hci_send_cmd or hci_cmd_sync helpers.
3051 		 * Some vendors do not comply with this rule for vendor-specific
3052 		 * commands and do not return any event. We want to support
3053 		 * unresponded commands for such cases only.
3054 		 */
3055 		bt_dev_err(hdev, "unresponded command not supported");
3056 		return -EINVAL;
3057 	}
3058 
3059 	skb = hci_prepare_cmd(hdev, opcode, plen, param);
3060 	if (!skb) {
3061 		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
3062 			   opcode);
3063 		return -ENOMEM;
3064 	}
3065 
3066 	hci_send_frame(hdev, skb);
3067 
3068 	return 0;
3069 }
3070 EXPORT_SYMBOL(__hci_cmd_send);
3071 
3072 /* Get data from the previously sent command */
3073 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3074 {
3075 	struct hci_command_hdr *hdr;
3076 
3077 	if (!hdev->sent_cmd)
3078 		return NULL;
3079 
3080 	hdr = (void *) hdev->sent_cmd->data;
3081 
3082 	if (hdr->opcode != cpu_to_le16(opcode))
3083 		return NULL;
3084 
3085 	BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
3086 
3087 	return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3088 }
3089 
3090 /* Get data from last received event */
3091 void *hci_recv_event_data(struct hci_dev *hdev, __u8 event)
3092 {
3093 	struct hci_event_hdr *hdr;
3094 	int offset;
3095 
3096 	if (!hdev->recv_event)
3097 		return NULL;
3098 
3099 	hdr = (void *)hdev->recv_event->data;
3100 	offset = sizeof(*hdr);
3101 
3102 	if (hdr->evt != event) {
3103 		/* In case of LE metaevent check the subevent match */
3104 		if (hdr->evt == HCI_EV_LE_META) {
3105 			struct hci_ev_le_meta *ev;
3106 
3107 			ev = (void *)hdev->recv_event->data + offset;
3108 			offset += sizeof(*ev);
3109 			if (ev->subevent == event)
3110 				goto found;
3111 		}
3112 		return NULL;
3113 	}
3114 
3115 found:
3116 	bt_dev_dbg(hdev, "event 0x%2.2x", event);
3117 
3118 	return hdev->recv_event->data + offset;
3119 }
3120 
3121 /* Send ACL data */
3122 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3123 {
3124 	struct hci_acl_hdr *hdr;
3125 	int len = skb->len;
3126 
3127 	skb_push(skb, HCI_ACL_HDR_SIZE);
3128 	skb_reset_transport_header(skb);
3129 	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3130 	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3131 	hdr->dlen   = cpu_to_le16(len);
3132 }
3133 
3134 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3135 			  struct sk_buff *skb, __u16 flags)
3136 {
3137 	struct hci_conn *conn = chan->conn;
3138 	struct hci_dev *hdev = conn->hdev;
3139 	struct sk_buff *list;
3140 
3141 	skb->len = skb_headlen(skb);
3142 	skb->data_len = 0;
3143 
3144 	hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3145 
3146 	switch (hdev->dev_type) {
3147 	case HCI_PRIMARY:
3148 		hci_add_acl_hdr(skb, conn->handle, flags);
3149 		break;
3150 	case HCI_AMP:
3151 		hci_add_acl_hdr(skb, chan->handle, flags);
3152 		break;
3153 	default:
3154 		bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type);
3155 		return;
3156 	}
3157 
3158 	list = skb_shinfo(skb)->frag_list;
3159 	if (!list) {
3160 		/* Non fragmented */
3161 		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3162 
3163 		skb_queue_tail(queue, skb);
3164 	} else {
3165 		/* Fragmented */
3166 		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3167 
3168 		skb_shinfo(skb)->frag_list = NULL;
3169 
3170 		/* Queue all fragments atomically. We need to use spin_lock_bh
3171 		 * here because of 6LoWPAN links, as there this function is
3172 		 * called from softirq and using normal spin lock could cause
3173 		 * deadlocks.
3174 		 */
3175 		spin_lock_bh(&queue->lock);
3176 
3177 		__skb_queue_tail(queue, skb);
3178 
3179 		flags &= ~ACL_START;
3180 		flags |= ACL_CONT;
3181 		do {
3182 			skb = list; list = list->next;
3183 
3184 			hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3185 			hci_add_acl_hdr(skb, conn->handle, flags);
3186 
3187 			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3188 
3189 			__skb_queue_tail(queue, skb);
3190 		} while (list);
3191 
3192 		spin_unlock_bh(&queue->lock);
3193 	}
3194 }
3195 
3196 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3197 {
3198 	struct hci_dev *hdev = chan->conn->hdev;
3199 
3200 	BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3201 
3202 	hci_queue_acl(chan, &chan->data_q, skb, flags);
3203 
3204 	queue_work(hdev->workqueue, &hdev->tx_work);
3205 }
3206 
3207 /* Send SCO data */
3208 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3209 {
3210 	struct hci_dev *hdev = conn->hdev;
3211 	struct hci_sco_hdr hdr;
3212 
3213 	BT_DBG("%s len %d", hdev->name, skb->len);
3214 
3215 	hdr.handle = cpu_to_le16(conn->handle);
3216 	hdr.dlen   = skb->len;
3217 
3218 	skb_push(skb, HCI_SCO_HDR_SIZE);
3219 	skb_reset_transport_header(skb);
3220 	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3221 
3222 	hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3223 
3224 	skb_queue_tail(&conn->data_q, skb);
3225 	queue_work(hdev->workqueue, &hdev->tx_work);
3226 }
3227 
3228 /* Send ISO data */
3229 static void hci_add_iso_hdr(struct sk_buff *skb, __u16 handle, __u8 flags)
3230 {
3231 	struct hci_iso_hdr *hdr;
3232 	int len = skb->len;
3233 
3234 	skb_push(skb, HCI_ISO_HDR_SIZE);
3235 	skb_reset_transport_header(skb);
3236 	hdr = (struct hci_iso_hdr *)skb_transport_header(skb);
3237 	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3238 	hdr->dlen   = cpu_to_le16(len);
3239 }
3240 
3241 static void hci_queue_iso(struct hci_conn *conn, struct sk_buff_head *queue,
3242 			  struct sk_buff *skb)
3243 {
3244 	struct hci_dev *hdev = conn->hdev;
3245 	struct sk_buff *list;
3246 	__u16 flags;
3247 
3248 	skb->len = skb_headlen(skb);
3249 	skb->data_len = 0;
3250 
3251 	hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3252 
3253 	list = skb_shinfo(skb)->frag_list;
3254 
3255 	flags = hci_iso_flags_pack(list ? ISO_START : ISO_SINGLE, 0x00);
3256 	hci_add_iso_hdr(skb, conn->handle, flags);
3257 
3258 	if (!list) {
3259 		/* Non fragmented */
3260 		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3261 
3262 		skb_queue_tail(queue, skb);
3263 	} else {
3264 		/* Fragmented */
3265 		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3266 
3267 		skb_shinfo(skb)->frag_list = NULL;
3268 
3269 		__skb_queue_tail(queue, skb);
3270 
3271 		do {
3272 			skb = list; list = list->next;
3273 
3274 			hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3275 			flags = hci_iso_flags_pack(list ? ISO_CONT : ISO_END,
3276 						   0x00);
3277 			hci_add_iso_hdr(skb, conn->handle, flags);
3278 
3279 			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3280 
3281 			__skb_queue_tail(queue, skb);
3282 		} while (list);
3283 	}
3284 }
3285 
3286 void hci_send_iso(struct hci_conn *conn, struct sk_buff *skb)
3287 {
3288 	struct hci_dev *hdev = conn->hdev;
3289 
3290 	BT_DBG("%s len %d", hdev->name, skb->len);
3291 
3292 	hci_queue_iso(conn, &conn->data_q, skb);
3293 
3294 	queue_work(hdev->workqueue, &hdev->tx_work);
3295 }
3296 
3297 /* ---- HCI TX task (outgoing data) ---- */
3298 
3299 /* HCI Connection scheduler */
3300 static inline void hci_quote_sent(struct hci_conn *conn, int num, int *quote)
3301 {
3302 	struct hci_dev *hdev;
3303 	int cnt, q;
3304 
3305 	if (!conn) {
3306 		*quote = 0;
3307 		return;
3308 	}
3309 
3310 	hdev = conn->hdev;
3311 
3312 	switch (conn->type) {
3313 	case ACL_LINK:
3314 		cnt = hdev->acl_cnt;
3315 		break;
3316 	case AMP_LINK:
3317 		cnt = hdev->block_cnt;
3318 		break;
3319 	case SCO_LINK:
3320 	case ESCO_LINK:
3321 		cnt = hdev->sco_cnt;
3322 		break;
3323 	case LE_LINK:
3324 		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3325 		break;
3326 	case ISO_LINK:
3327 		cnt = hdev->iso_mtu ? hdev->iso_cnt :
3328 			hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3329 		break;
3330 	default:
3331 		cnt = 0;
3332 		bt_dev_err(hdev, "unknown link type %d", conn->type);
3333 	}
3334 
3335 	q = cnt / num;
3336 	*quote = q ? q : 1;
3337 }
3338 
3339 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3340 				     int *quote)
3341 {
3342 	struct hci_conn_hash *h = &hdev->conn_hash;
3343 	struct hci_conn *conn = NULL, *c;
3344 	unsigned int num = 0, min = ~0;
3345 
3346 	/* We don't have to lock device here. Connections are always
3347 	 * added and removed with TX task disabled. */
3348 
3349 	rcu_read_lock();
3350 
3351 	list_for_each_entry_rcu(c, &h->list, list) {
3352 		if (c->type != type || skb_queue_empty(&c->data_q))
3353 			continue;
3354 
3355 		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3356 			continue;
3357 
3358 		num++;
3359 
3360 		if (c->sent < min) {
3361 			min  = c->sent;
3362 			conn = c;
3363 		}
3364 
3365 		if (hci_conn_num(hdev, type) == num)
3366 			break;
3367 	}
3368 
3369 	rcu_read_unlock();
3370 
3371 	hci_quote_sent(conn, num, quote);
3372 
3373 	BT_DBG("conn %p quote %d", conn, *quote);
3374 	return conn;
3375 }
3376 
3377 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3378 {
3379 	struct hci_conn_hash *h = &hdev->conn_hash;
3380 	struct hci_conn *c;
3381 
3382 	bt_dev_err(hdev, "link tx timeout");
3383 
3384 	rcu_read_lock();
3385 
3386 	/* Kill stalled connections */
3387 	list_for_each_entry_rcu(c, &h->list, list) {
3388 		if (c->type == type && c->sent) {
3389 			bt_dev_err(hdev, "killing stalled connection %pMR",
3390 				   &c->dst);
3391 			hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3392 		}
3393 	}
3394 
3395 	rcu_read_unlock();
3396 }
3397 
3398 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3399 				      int *quote)
3400 {
3401 	struct hci_conn_hash *h = &hdev->conn_hash;
3402 	struct hci_chan *chan = NULL;
3403 	unsigned int num = 0, min = ~0, cur_prio = 0;
3404 	struct hci_conn *conn;
3405 	int conn_num = 0;
3406 
3407 	BT_DBG("%s", hdev->name);
3408 
3409 	rcu_read_lock();
3410 
3411 	list_for_each_entry_rcu(conn, &h->list, list) {
3412 		struct hci_chan *tmp;
3413 
3414 		if (conn->type != type)
3415 			continue;
3416 
3417 		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3418 			continue;
3419 
3420 		conn_num++;
3421 
3422 		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3423 			struct sk_buff *skb;
3424 
3425 			if (skb_queue_empty(&tmp->data_q))
3426 				continue;
3427 
3428 			skb = skb_peek(&tmp->data_q);
3429 			if (skb->priority < cur_prio)
3430 				continue;
3431 
3432 			if (skb->priority > cur_prio) {
3433 				num = 0;
3434 				min = ~0;
3435 				cur_prio = skb->priority;
3436 			}
3437 
3438 			num++;
3439 
3440 			if (conn->sent < min) {
3441 				min  = conn->sent;
3442 				chan = tmp;
3443 			}
3444 		}
3445 
3446 		if (hci_conn_num(hdev, type) == conn_num)
3447 			break;
3448 	}
3449 
3450 	rcu_read_unlock();
3451 
3452 	if (!chan)
3453 		return NULL;
3454 
3455 	hci_quote_sent(chan->conn, num, quote);
3456 
3457 	BT_DBG("chan %p quote %d", chan, *quote);
3458 	return chan;
3459 }
3460 
3461 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3462 {
3463 	struct hci_conn_hash *h = &hdev->conn_hash;
3464 	struct hci_conn *conn;
3465 	int num = 0;
3466 
3467 	BT_DBG("%s", hdev->name);
3468 
3469 	rcu_read_lock();
3470 
3471 	list_for_each_entry_rcu(conn, &h->list, list) {
3472 		struct hci_chan *chan;
3473 
3474 		if (conn->type != type)
3475 			continue;
3476 
3477 		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3478 			continue;
3479 
3480 		num++;
3481 
3482 		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3483 			struct sk_buff *skb;
3484 
3485 			if (chan->sent) {
3486 				chan->sent = 0;
3487 				continue;
3488 			}
3489 
3490 			if (skb_queue_empty(&chan->data_q))
3491 				continue;
3492 
3493 			skb = skb_peek(&chan->data_q);
3494 			if (skb->priority >= HCI_PRIO_MAX - 1)
3495 				continue;
3496 
3497 			skb->priority = HCI_PRIO_MAX - 1;
3498 
3499 			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3500 			       skb->priority);
3501 		}
3502 
3503 		if (hci_conn_num(hdev, type) == num)
3504 			break;
3505 	}
3506 
3507 	rcu_read_unlock();
3508 
3509 }
3510 
3511 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
3512 {
3513 	/* Calculate count of blocks used by this packet */
3514 	return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
3515 }
3516 
3517 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt, u8 type)
3518 {
3519 	unsigned long last_tx;
3520 
3521 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
3522 		return;
3523 
3524 	switch (type) {
3525 	case LE_LINK:
3526 		last_tx = hdev->le_last_tx;
3527 		break;
3528 	default:
3529 		last_tx = hdev->acl_last_tx;
3530 		break;
3531 	}
3532 
3533 	/* tx timeout must be longer than maximum link supervision timeout
3534 	 * (40.9 seconds)
3535 	 */
3536 	if (!cnt && time_after(jiffies, last_tx + HCI_ACL_TX_TIMEOUT))
3537 		hci_link_tx_to(hdev, type);
3538 }
3539 
3540 /* Schedule SCO */
3541 static void hci_sched_sco(struct hci_dev *hdev)
3542 {
3543 	struct hci_conn *conn;
3544 	struct sk_buff *skb;
3545 	int quote;
3546 
3547 	BT_DBG("%s", hdev->name);
3548 
3549 	if (!hci_conn_num(hdev, SCO_LINK))
3550 		return;
3551 
3552 	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
3553 		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3554 			BT_DBG("skb %p len %d", skb, skb->len);
3555 			hci_send_frame(hdev, skb);
3556 
3557 			conn->sent++;
3558 			if (conn->sent == ~0)
3559 				conn->sent = 0;
3560 		}
3561 	}
3562 }
3563 
3564 static void hci_sched_esco(struct hci_dev *hdev)
3565 {
3566 	struct hci_conn *conn;
3567 	struct sk_buff *skb;
3568 	int quote;
3569 
3570 	BT_DBG("%s", hdev->name);
3571 
3572 	if (!hci_conn_num(hdev, ESCO_LINK))
3573 		return;
3574 
3575 	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3576 						     &quote))) {
3577 		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3578 			BT_DBG("skb %p len %d", skb, skb->len);
3579 			hci_send_frame(hdev, skb);
3580 
3581 			conn->sent++;
3582 			if (conn->sent == ~0)
3583 				conn->sent = 0;
3584 		}
3585 	}
3586 }
3587 
3588 static void hci_sched_acl_pkt(struct hci_dev *hdev)
3589 {
3590 	unsigned int cnt = hdev->acl_cnt;
3591 	struct hci_chan *chan;
3592 	struct sk_buff *skb;
3593 	int quote;
3594 
3595 	__check_timeout(hdev, cnt, ACL_LINK);
3596 
3597 	while (hdev->acl_cnt &&
3598 	       (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
3599 		u32 priority = (skb_peek(&chan->data_q))->priority;
3600 		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3601 			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3602 			       skb->len, skb->priority);
3603 
3604 			/* Stop if priority has changed */
3605 			if (skb->priority < priority)
3606 				break;
3607 
3608 			skb = skb_dequeue(&chan->data_q);
3609 
3610 			hci_conn_enter_active_mode(chan->conn,
3611 						   bt_cb(skb)->force_active);
3612 
3613 			hci_send_frame(hdev, skb);
3614 			hdev->acl_last_tx = jiffies;
3615 
3616 			hdev->acl_cnt--;
3617 			chan->sent++;
3618 			chan->conn->sent++;
3619 
3620 			/* Send pending SCO packets right away */
3621 			hci_sched_sco(hdev);
3622 			hci_sched_esco(hdev);
3623 		}
3624 	}
3625 
3626 	if (cnt != hdev->acl_cnt)
3627 		hci_prio_recalculate(hdev, ACL_LINK);
3628 }
3629 
3630 static void hci_sched_acl_blk(struct hci_dev *hdev)
3631 {
3632 	unsigned int cnt = hdev->block_cnt;
3633 	struct hci_chan *chan;
3634 	struct sk_buff *skb;
3635 	int quote;
3636 	u8 type;
3637 
3638 	BT_DBG("%s", hdev->name);
3639 
3640 	if (hdev->dev_type == HCI_AMP)
3641 		type = AMP_LINK;
3642 	else
3643 		type = ACL_LINK;
3644 
3645 	__check_timeout(hdev, cnt, type);
3646 
3647 	while (hdev->block_cnt > 0 &&
3648 	       (chan = hci_chan_sent(hdev, type, &quote))) {
3649 		u32 priority = (skb_peek(&chan->data_q))->priority;
3650 		while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
3651 			int blocks;
3652 
3653 			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3654 			       skb->len, skb->priority);
3655 
3656 			/* Stop if priority has changed */
3657 			if (skb->priority < priority)
3658 				break;
3659 
3660 			skb = skb_dequeue(&chan->data_q);
3661 
3662 			blocks = __get_blocks(hdev, skb);
3663 			if (blocks > hdev->block_cnt)
3664 				return;
3665 
3666 			hci_conn_enter_active_mode(chan->conn,
3667 						   bt_cb(skb)->force_active);
3668 
3669 			hci_send_frame(hdev, skb);
3670 			hdev->acl_last_tx = jiffies;
3671 
3672 			hdev->block_cnt -= blocks;
3673 			quote -= blocks;
3674 
3675 			chan->sent += blocks;
3676 			chan->conn->sent += blocks;
3677 		}
3678 	}
3679 
3680 	if (cnt != hdev->block_cnt)
3681 		hci_prio_recalculate(hdev, type);
3682 }
3683 
3684 static void hci_sched_acl(struct hci_dev *hdev)
3685 {
3686 	BT_DBG("%s", hdev->name);
3687 
3688 	/* No ACL link over BR/EDR controller */
3689 	if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
3690 		return;
3691 
3692 	/* No AMP link over AMP controller */
3693 	if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
3694 		return;
3695 
3696 	switch (hdev->flow_ctl_mode) {
3697 	case HCI_FLOW_CTL_MODE_PACKET_BASED:
3698 		hci_sched_acl_pkt(hdev);
3699 		break;
3700 
3701 	case HCI_FLOW_CTL_MODE_BLOCK_BASED:
3702 		hci_sched_acl_blk(hdev);
3703 		break;
3704 	}
3705 }
3706 
3707 static void hci_sched_le(struct hci_dev *hdev)
3708 {
3709 	struct hci_chan *chan;
3710 	struct sk_buff *skb;
3711 	int quote, cnt, tmp;
3712 
3713 	BT_DBG("%s", hdev->name);
3714 
3715 	if (!hci_conn_num(hdev, LE_LINK))
3716 		return;
3717 
3718 	cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
3719 
3720 	__check_timeout(hdev, cnt, LE_LINK);
3721 
3722 	tmp = cnt;
3723 	while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
3724 		u32 priority = (skb_peek(&chan->data_q))->priority;
3725 		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3726 			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3727 			       skb->len, skb->priority);
3728 
3729 			/* Stop if priority has changed */
3730 			if (skb->priority < priority)
3731 				break;
3732 
3733 			skb = skb_dequeue(&chan->data_q);
3734 
3735 			hci_send_frame(hdev, skb);
3736 			hdev->le_last_tx = jiffies;
3737 
3738 			cnt--;
3739 			chan->sent++;
3740 			chan->conn->sent++;
3741 
3742 			/* Send pending SCO packets right away */
3743 			hci_sched_sco(hdev);
3744 			hci_sched_esco(hdev);
3745 		}
3746 	}
3747 
3748 	if (hdev->le_pkts)
3749 		hdev->le_cnt = cnt;
3750 	else
3751 		hdev->acl_cnt = cnt;
3752 
3753 	if (cnt != tmp)
3754 		hci_prio_recalculate(hdev, LE_LINK);
3755 }
3756 
3757 /* Schedule CIS */
3758 static void hci_sched_iso(struct hci_dev *hdev)
3759 {
3760 	struct hci_conn *conn;
3761 	struct sk_buff *skb;
3762 	int quote, *cnt;
3763 
3764 	BT_DBG("%s", hdev->name);
3765 
3766 	if (!hci_conn_num(hdev, ISO_LINK))
3767 		return;
3768 
3769 	cnt = hdev->iso_pkts ? &hdev->iso_cnt :
3770 		hdev->le_pkts ? &hdev->le_cnt : &hdev->acl_cnt;
3771 	while (*cnt && (conn = hci_low_sent(hdev, ISO_LINK, &quote))) {
3772 		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3773 			BT_DBG("skb %p len %d", skb, skb->len);
3774 			hci_send_frame(hdev, skb);
3775 
3776 			conn->sent++;
3777 			if (conn->sent == ~0)
3778 				conn->sent = 0;
3779 			(*cnt)--;
3780 		}
3781 	}
3782 }
3783 
3784 static void hci_tx_work(struct work_struct *work)
3785 {
3786 	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
3787 	struct sk_buff *skb;
3788 
3789 	BT_DBG("%s acl %d sco %d le %d iso %d", hdev->name, hdev->acl_cnt,
3790 	       hdev->sco_cnt, hdev->le_cnt, hdev->iso_cnt);
3791 
3792 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3793 		/* Schedule queues and send stuff to HCI driver */
3794 		hci_sched_sco(hdev);
3795 		hci_sched_esco(hdev);
3796 		hci_sched_iso(hdev);
3797 		hci_sched_acl(hdev);
3798 		hci_sched_le(hdev);
3799 	}
3800 
3801 	/* Send next queued raw (unknown type) packet */
3802 	while ((skb = skb_dequeue(&hdev->raw_q)))
3803 		hci_send_frame(hdev, skb);
3804 }
3805 
3806 /* ----- HCI RX task (incoming data processing) ----- */
3807 
3808 /* ACL data packet */
3809 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3810 {
3811 	struct hci_acl_hdr *hdr = (void *) skb->data;
3812 	struct hci_conn *conn;
3813 	__u16 handle, flags;
3814 
3815 	skb_pull(skb, HCI_ACL_HDR_SIZE);
3816 
3817 	handle = __le16_to_cpu(hdr->handle);
3818 	flags  = hci_flags(handle);
3819 	handle = hci_handle(handle);
3820 
3821 	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3822 	       handle, flags);
3823 
3824 	hdev->stat.acl_rx++;
3825 
3826 	hci_dev_lock(hdev);
3827 	conn = hci_conn_hash_lookup_handle(hdev, handle);
3828 	hci_dev_unlock(hdev);
3829 
3830 	if (conn) {
3831 		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
3832 
3833 		/* Send to upper protocol */
3834 		l2cap_recv_acldata(conn, skb, flags);
3835 		return;
3836 	} else {
3837 		bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
3838 			   handle);
3839 	}
3840 
3841 	kfree_skb(skb);
3842 }
3843 
3844 /* SCO data packet */
3845 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3846 {
3847 	struct hci_sco_hdr *hdr = (void *) skb->data;
3848 	struct hci_conn *conn;
3849 	__u16 handle, flags;
3850 
3851 	skb_pull(skb, HCI_SCO_HDR_SIZE);
3852 
3853 	handle = __le16_to_cpu(hdr->handle);
3854 	flags  = hci_flags(handle);
3855 	handle = hci_handle(handle);
3856 
3857 	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3858 	       handle, flags);
3859 
3860 	hdev->stat.sco_rx++;
3861 
3862 	hci_dev_lock(hdev);
3863 	conn = hci_conn_hash_lookup_handle(hdev, handle);
3864 	hci_dev_unlock(hdev);
3865 
3866 	if (conn) {
3867 		/* Send to upper protocol */
3868 		bt_cb(skb)->sco.pkt_status = flags & 0x03;
3869 		sco_recv_scodata(conn, skb);
3870 		return;
3871 	} else {
3872 		bt_dev_err_ratelimited(hdev, "SCO packet for unknown connection handle %d",
3873 				       handle);
3874 	}
3875 
3876 	kfree_skb(skb);
3877 }
3878 
3879 static void hci_isodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3880 {
3881 	struct hci_iso_hdr *hdr;
3882 	struct hci_conn *conn;
3883 	__u16 handle, flags;
3884 
3885 	hdr = skb_pull_data(skb, sizeof(*hdr));
3886 	if (!hdr) {
3887 		bt_dev_err(hdev, "ISO packet too small");
3888 		goto drop;
3889 	}
3890 
3891 	handle = __le16_to_cpu(hdr->handle);
3892 	flags  = hci_flags(handle);
3893 	handle = hci_handle(handle);
3894 
3895 	bt_dev_dbg(hdev, "len %d handle 0x%4.4x flags 0x%4.4x", skb->len,
3896 		   handle, flags);
3897 
3898 	hci_dev_lock(hdev);
3899 	conn = hci_conn_hash_lookup_handle(hdev, handle);
3900 	hci_dev_unlock(hdev);
3901 
3902 	if (!conn) {
3903 		bt_dev_err(hdev, "ISO packet for unknown connection handle %d",
3904 			   handle);
3905 		goto drop;
3906 	}
3907 
3908 	/* Send to upper protocol */
3909 	iso_recv(conn, skb, flags);
3910 	return;
3911 
3912 drop:
3913 	kfree_skb(skb);
3914 }
3915 
3916 static bool hci_req_is_complete(struct hci_dev *hdev)
3917 {
3918 	struct sk_buff *skb;
3919 
3920 	skb = skb_peek(&hdev->cmd_q);
3921 	if (!skb)
3922 		return true;
3923 
3924 	return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
3925 }
3926 
3927 static void hci_resend_last(struct hci_dev *hdev)
3928 {
3929 	struct hci_command_hdr *sent;
3930 	struct sk_buff *skb;
3931 	u16 opcode;
3932 
3933 	if (!hdev->sent_cmd)
3934 		return;
3935 
3936 	sent = (void *) hdev->sent_cmd->data;
3937 	opcode = __le16_to_cpu(sent->opcode);
3938 	if (opcode == HCI_OP_RESET)
3939 		return;
3940 
3941 	skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
3942 	if (!skb)
3943 		return;
3944 
3945 	skb_queue_head(&hdev->cmd_q, skb);
3946 	queue_work(hdev->workqueue, &hdev->cmd_work);
3947 }
3948 
3949 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
3950 			  hci_req_complete_t *req_complete,
3951 			  hci_req_complete_skb_t *req_complete_skb)
3952 {
3953 	struct sk_buff *skb;
3954 	unsigned long flags;
3955 
3956 	BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
3957 
3958 	/* If the completed command doesn't match the last one that was
3959 	 * sent we need to do special handling of it.
3960 	 */
3961 	if (!hci_sent_cmd_data(hdev, opcode)) {
3962 		/* Some CSR based controllers generate a spontaneous
3963 		 * reset complete event during init and any pending
3964 		 * command will never be completed. In such a case we
3965 		 * need to resend whatever was the last sent
3966 		 * command.
3967 		 */
3968 		if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
3969 			hci_resend_last(hdev);
3970 
3971 		return;
3972 	}
3973 
3974 	/* If we reach this point this event matches the last command sent */
3975 	hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
3976 
3977 	/* If the command succeeded and there's still more commands in
3978 	 * this request the request is not yet complete.
3979 	 */
3980 	if (!status && !hci_req_is_complete(hdev))
3981 		return;
3982 
3983 	/* If this was the last command in a request the complete
3984 	 * callback would be found in hdev->sent_cmd instead of the
3985 	 * command queue (hdev->cmd_q).
3986 	 */
3987 	if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
3988 		*req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
3989 		return;
3990 	}
3991 
3992 	if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
3993 		*req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
3994 		return;
3995 	}
3996 
3997 	/* Remove all pending commands belonging to this request */
3998 	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
3999 	while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4000 		if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4001 			__skb_queue_head(&hdev->cmd_q, skb);
4002 			break;
4003 		}
4004 
4005 		if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4006 			*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4007 		else
4008 			*req_complete = bt_cb(skb)->hci.req_complete;
4009 		dev_kfree_skb_irq(skb);
4010 	}
4011 	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4012 }
4013 
4014 static void hci_rx_work(struct work_struct *work)
4015 {
4016 	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4017 	struct sk_buff *skb;
4018 
4019 	BT_DBG("%s", hdev->name);
4020 
4021 	/* The kcov_remote functions used for collecting packet parsing
4022 	 * coverage information from this background thread and associate
4023 	 * the coverage with the syscall's thread which originally injected
4024 	 * the packet. This helps fuzzing the kernel.
4025 	 */
4026 	for (; (skb = skb_dequeue(&hdev->rx_q)); kcov_remote_stop()) {
4027 		kcov_remote_start_common(skb_get_kcov_handle(skb));
4028 
4029 		/* Send copy to monitor */
4030 		hci_send_to_monitor(hdev, skb);
4031 
4032 		if (atomic_read(&hdev->promisc)) {
4033 			/* Send copy to the sockets */
4034 			hci_send_to_sock(hdev, skb);
4035 		}
4036 
4037 		/* If the device has been opened in HCI_USER_CHANNEL,
4038 		 * the userspace has exclusive access to device.
4039 		 * When device is HCI_INIT, we still need to process
4040 		 * the data packets to the driver in order
4041 		 * to complete its setup().
4042 		 */
4043 		if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4044 		    !test_bit(HCI_INIT, &hdev->flags)) {
4045 			kfree_skb(skb);
4046 			continue;
4047 		}
4048 
4049 		if (test_bit(HCI_INIT, &hdev->flags)) {
4050 			/* Don't process data packets in this states. */
4051 			switch (hci_skb_pkt_type(skb)) {
4052 			case HCI_ACLDATA_PKT:
4053 			case HCI_SCODATA_PKT:
4054 			case HCI_ISODATA_PKT:
4055 				kfree_skb(skb);
4056 				continue;
4057 			}
4058 		}
4059 
4060 		/* Process frame */
4061 		switch (hci_skb_pkt_type(skb)) {
4062 		case HCI_EVENT_PKT:
4063 			BT_DBG("%s Event packet", hdev->name);
4064 			hci_event_packet(hdev, skb);
4065 			break;
4066 
4067 		case HCI_ACLDATA_PKT:
4068 			BT_DBG("%s ACL data packet", hdev->name);
4069 			hci_acldata_packet(hdev, skb);
4070 			break;
4071 
4072 		case HCI_SCODATA_PKT:
4073 			BT_DBG("%s SCO data packet", hdev->name);
4074 			hci_scodata_packet(hdev, skb);
4075 			break;
4076 
4077 		case HCI_ISODATA_PKT:
4078 			BT_DBG("%s ISO data packet", hdev->name);
4079 			hci_isodata_packet(hdev, skb);
4080 			break;
4081 
4082 		default:
4083 			kfree_skb(skb);
4084 			break;
4085 		}
4086 	}
4087 }
4088 
4089 static void hci_cmd_work(struct work_struct *work)
4090 {
4091 	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4092 	struct sk_buff *skb;
4093 
4094 	BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4095 	       atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4096 
4097 	/* Send queued commands */
4098 	if (atomic_read(&hdev->cmd_cnt)) {
4099 		skb = skb_dequeue(&hdev->cmd_q);
4100 		if (!skb)
4101 			return;
4102 
4103 		kfree_skb(hdev->sent_cmd);
4104 
4105 		hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4106 		if (hdev->sent_cmd) {
4107 			int res;
4108 			if (hci_req_status_pend(hdev))
4109 				hci_dev_set_flag(hdev, HCI_CMD_PENDING);
4110 			atomic_dec(&hdev->cmd_cnt);
4111 
4112 			res = hci_send_frame(hdev, skb);
4113 			if (res < 0)
4114 				__hci_cmd_sync_cancel(hdev, -res);
4115 
4116 			rcu_read_lock();
4117 			if (test_bit(HCI_RESET, &hdev->flags) ||
4118 			    hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
4119 				cancel_delayed_work(&hdev->cmd_timer);
4120 			else
4121 				queue_delayed_work(hdev->workqueue, &hdev->cmd_timer,
4122 						   HCI_CMD_TIMEOUT);
4123 			rcu_read_unlock();
4124 		} else {
4125 			skb_queue_head(&hdev->cmd_q, skb);
4126 			queue_work(hdev->workqueue, &hdev->cmd_work);
4127 		}
4128 	}
4129 }
4130