xref: /linux/net/bluetooth/hci_core.c (revision 60cb1da6ed4a62ec8331e25ad4be87115cd28feb)
1 /*
2    BlueZ - Bluetooth protocol stack for Linux
3    Copyright (C) 2000-2001 Qualcomm Incorporated
4    Copyright (C) 2011 ProFUSION Embedded Systems
5 
6    Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License version 2 as
10    published by the Free Software Foundation;
11 
12    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 
21    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23    SOFTWARE IS DISCLAIMED.
24 */
25 
26 /* Bluetooth HCI core. */
27 
28 #include <linux/export.h>
29 #include <linux/rfkill.h>
30 #include <linux/debugfs.h>
31 #include <linux/crypto.h>
32 #include <linux/kcov.h>
33 #include <linux/property.h>
34 #include <linux/suspend.h>
35 #include <linux/wait.h>
36 #include <asm/unaligned.h>
37 
38 #include <net/bluetooth/bluetooth.h>
39 #include <net/bluetooth/hci_core.h>
40 #include <net/bluetooth/l2cap.h>
41 #include <net/bluetooth/mgmt.h>
42 
43 #include "hci_debugfs.h"
44 #include "smp.h"
45 #include "leds.h"
46 #include "msft.h"
47 #include "aosp.h"
48 #include "hci_codec.h"
49 
50 static void hci_rx_work(struct work_struct *work);
51 static void hci_cmd_work(struct work_struct *work);
52 static void hci_tx_work(struct work_struct *work);
53 
54 /* HCI device list */
55 LIST_HEAD(hci_dev_list);
56 DEFINE_RWLOCK(hci_dev_list_lock);
57 
58 /* HCI callback list */
59 LIST_HEAD(hci_cb_list);
60 DEFINE_MUTEX(hci_cb_list_lock);
61 
62 /* HCI ID Numbering */
63 static DEFINE_IDA(hci_index_ida);
64 
65 /* Get HCI device by index.
66  * Device is held on return. */
67 struct hci_dev *hci_dev_get(int index)
68 {
69 	struct hci_dev *hdev = NULL, *d;
70 
71 	BT_DBG("%d", index);
72 
73 	if (index < 0)
74 		return NULL;
75 
76 	read_lock(&hci_dev_list_lock);
77 	list_for_each_entry(d, &hci_dev_list, list) {
78 		if (d->id == index) {
79 			hdev = hci_dev_hold(d);
80 			break;
81 		}
82 	}
83 	read_unlock(&hci_dev_list_lock);
84 	return hdev;
85 }
86 
87 /* ---- Inquiry support ---- */
88 
89 bool hci_discovery_active(struct hci_dev *hdev)
90 {
91 	struct discovery_state *discov = &hdev->discovery;
92 
93 	switch (discov->state) {
94 	case DISCOVERY_FINDING:
95 	case DISCOVERY_RESOLVING:
96 		return true;
97 
98 	default:
99 		return false;
100 	}
101 }
102 
103 void hci_discovery_set_state(struct hci_dev *hdev, int state)
104 {
105 	int old_state = hdev->discovery.state;
106 
107 	if (old_state == state)
108 		return;
109 
110 	hdev->discovery.state = state;
111 
112 	switch (state) {
113 	case DISCOVERY_STOPPED:
114 		hci_update_passive_scan(hdev);
115 
116 		if (old_state != DISCOVERY_STARTING)
117 			mgmt_discovering(hdev, 0);
118 		break;
119 	case DISCOVERY_STARTING:
120 		break;
121 	case DISCOVERY_FINDING:
122 		mgmt_discovering(hdev, 1);
123 		break;
124 	case DISCOVERY_RESOLVING:
125 		break;
126 	case DISCOVERY_STOPPING:
127 		break;
128 	}
129 
130 	bt_dev_dbg(hdev, "state %u -> %u", old_state, state);
131 }
132 
133 void hci_inquiry_cache_flush(struct hci_dev *hdev)
134 {
135 	struct discovery_state *cache = &hdev->discovery;
136 	struct inquiry_entry *p, *n;
137 
138 	list_for_each_entry_safe(p, n, &cache->all, all) {
139 		list_del(&p->all);
140 		kfree(p);
141 	}
142 
143 	INIT_LIST_HEAD(&cache->unknown);
144 	INIT_LIST_HEAD(&cache->resolve);
145 }
146 
147 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
148 					       bdaddr_t *bdaddr)
149 {
150 	struct discovery_state *cache = &hdev->discovery;
151 	struct inquiry_entry *e;
152 
153 	BT_DBG("cache %p, %pMR", cache, bdaddr);
154 
155 	list_for_each_entry(e, &cache->all, all) {
156 		if (!bacmp(&e->data.bdaddr, bdaddr))
157 			return e;
158 	}
159 
160 	return NULL;
161 }
162 
163 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
164 						       bdaddr_t *bdaddr)
165 {
166 	struct discovery_state *cache = &hdev->discovery;
167 	struct inquiry_entry *e;
168 
169 	BT_DBG("cache %p, %pMR", cache, bdaddr);
170 
171 	list_for_each_entry(e, &cache->unknown, list) {
172 		if (!bacmp(&e->data.bdaddr, bdaddr))
173 			return e;
174 	}
175 
176 	return NULL;
177 }
178 
179 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
180 						       bdaddr_t *bdaddr,
181 						       int state)
182 {
183 	struct discovery_state *cache = &hdev->discovery;
184 	struct inquiry_entry *e;
185 
186 	BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
187 
188 	list_for_each_entry(e, &cache->resolve, list) {
189 		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
190 			return e;
191 		if (!bacmp(&e->data.bdaddr, bdaddr))
192 			return e;
193 	}
194 
195 	return NULL;
196 }
197 
198 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
199 				      struct inquiry_entry *ie)
200 {
201 	struct discovery_state *cache = &hdev->discovery;
202 	struct list_head *pos = &cache->resolve;
203 	struct inquiry_entry *p;
204 
205 	list_del(&ie->list);
206 
207 	list_for_each_entry(p, &cache->resolve, list) {
208 		if (p->name_state != NAME_PENDING &&
209 		    abs(p->data.rssi) >= abs(ie->data.rssi))
210 			break;
211 		pos = &p->list;
212 	}
213 
214 	list_add(&ie->list, pos);
215 }
216 
217 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
218 			     bool name_known)
219 {
220 	struct discovery_state *cache = &hdev->discovery;
221 	struct inquiry_entry *ie;
222 	u32 flags = 0;
223 
224 	BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
225 
226 	hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
227 
228 	if (!data->ssp_mode)
229 		flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
230 
231 	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
232 	if (ie) {
233 		if (!ie->data.ssp_mode)
234 			flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
235 
236 		if (ie->name_state == NAME_NEEDED &&
237 		    data->rssi != ie->data.rssi) {
238 			ie->data.rssi = data->rssi;
239 			hci_inquiry_cache_update_resolve(hdev, ie);
240 		}
241 
242 		goto update;
243 	}
244 
245 	/* Entry not in the cache. Add new one. */
246 	ie = kzalloc(sizeof(*ie), GFP_KERNEL);
247 	if (!ie) {
248 		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
249 		goto done;
250 	}
251 
252 	list_add(&ie->all, &cache->all);
253 
254 	if (name_known) {
255 		ie->name_state = NAME_KNOWN;
256 	} else {
257 		ie->name_state = NAME_NOT_KNOWN;
258 		list_add(&ie->list, &cache->unknown);
259 	}
260 
261 update:
262 	if (name_known && ie->name_state != NAME_KNOWN &&
263 	    ie->name_state != NAME_PENDING) {
264 		ie->name_state = NAME_KNOWN;
265 		list_del(&ie->list);
266 	}
267 
268 	memcpy(&ie->data, data, sizeof(*data));
269 	ie->timestamp = jiffies;
270 	cache->timestamp = jiffies;
271 
272 	if (ie->name_state == NAME_NOT_KNOWN)
273 		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
274 
275 done:
276 	return flags;
277 }
278 
279 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
280 {
281 	struct discovery_state *cache = &hdev->discovery;
282 	struct inquiry_info *info = (struct inquiry_info *) buf;
283 	struct inquiry_entry *e;
284 	int copied = 0;
285 
286 	list_for_each_entry(e, &cache->all, all) {
287 		struct inquiry_data *data = &e->data;
288 
289 		if (copied >= num)
290 			break;
291 
292 		bacpy(&info->bdaddr, &data->bdaddr);
293 		info->pscan_rep_mode	= data->pscan_rep_mode;
294 		info->pscan_period_mode	= data->pscan_period_mode;
295 		info->pscan_mode	= data->pscan_mode;
296 		memcpy(info->dev_class, data->dev_class, 3);
297 		info->clock_offset	= data->clock_offset;
298 
299 		info++;
300 		copied++;
301 	}
302 
303 	BT_DBG("cache %p, copied %d", cache, copied);
304 	return copied;
305 }
306 
307 int hci_inquiry(void __user *arg)
308 {
309 	__u8 __user *ptr = arg;
310 	struct hci_inquiry_req ir;
311 	struct hci_dev *hdev;
312 	int err = 0, do_inquiry = 0, max_rsp;
313 	__u8 *buf;
314 
315 	if (copy_from_user(&ir, ptr, sizeof(ir)))
316 		return -EFAULT;
317 
318 	hdev = hci_dev_get(ir.dev_id);
319 	if (!hdev)
320 		return -ENODEV;
321 
322 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
323 		err = -EBUSY;
324 		goto done;
325 	}
326 
327 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
328 		err = -EOPNOTSUPP;
329 		goto done;
330 	}
331 
332 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
333 		err = -EOPNOTSUPP;
334 		goto done;
335 	}
336 
337 	/* Restrict maximum inquiry length to 60 seconds */
338 	if (ir.length > 60) {
339 		err = -EINVAL;
340 		goto done;
341 	}
342 
343 	hci_dev_lock(hdev);
344 	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
345 	    inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
346 		hci_inquiry_cache_flush(hdev);
347 		do_inquiry = 1;
348 	}
349 	hci_dev_unlock(hdev);
350 
351 	if (do_inquiry) {
352 		hci_req_sync_lock(hdev);
353 		err = hci_inquiry_sync(hdev, ir.length, ir.num_rsp);
354 		hci_req_sync_unlock(hdev);
355 
356 		if (err < 0)
357 			goto done;
358 
359 		/* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
360 		 * cleared). If it is interrupted by a signal, return -EINTR.
361 		 */
362 		if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
363 				TASK_INTERRUPTIBLE)) {
364 			err = -EINTR;
365 			goto done;
366 		}
367 	}
368 
369 	/* for unlimited number of responses we will use buffer with
370 	 * 255 entries
371 	 */
372 	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
373 
374 	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
375 	 * copy it to the user space.
376 	 */
377 	buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
378 	if (!buf) {
379 		err = -ENOMEM;
380 		goto done;
381 	}
382 
383 	hci_dev_lock(hdev);
384 	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
385 	hci_dev_unlock(hdev);
386 
387 	BT_DBG("num_rsp %d", ir.num_rsp);
388 
389 	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
390 		ptr += sizeof(ir);
391 		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
392 				 ir.num_rsp))
393 			err = -EFAULT;
394 	} else
395 		err = -EFAULT;
396 
397 	kfree(buf);
398 
399 done:
400 	hci_dev_put(hdev);
401 	return err;
402 }
403 
404 static int hci_dev_do_open(struct hci_dev *hdev)
405 {
406 	int ret = 0;
407 
408 	BT_DBG("%s %p", hdev->name, hdev);
409 
410 	hci_req_sync_lock(hdev);
411 
412 	ret = hci_dev_open_sync(hdev);
413 
414 	hci_req_sync_unlock(hdev);
415 	return ret;
416 }
417 
418 /* ---- HCI ioctl helpers ---- */
419 
420 int hci_dev_open(__u16 dev)
421 {
422 	struct hci_dev *hdev;
423 	int err;
424 
425 	hdev = hci_dev_get(dev);
426 	if (!hdev)
427 		return -ENODEV;
428 
429 	/* Devices that are marked as unconfigured can only be powered
430 	 * up as user channel. Trying to bring them up as normal devices
431 	 * will result into a failure. Only user channel operation is
432 	 * possible.
433 	 *
434 	 * When this function is called for a user channel, the flag
435 	 * HCI_USER_CHANNEL will be set first before attempting to
436 	 * open the device.
437 	 */
438 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
439 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
440 		err = -EOPNOTSUPP;
441 		goto done;
442 	}
443 
444 	/* We need to ensure that no other power on/off work is pending
445 	 * before proceeding to call hci_dev_do_open. This is
446 	 * particularly important if the setup procedure has not yet
447 	 * completed.
448 	 */
449 	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
450 		cancel_delayed_work(&hdev->power_off);
451 
452 	/* After this call it is guaranteed that the setup procedure
453 	 * has finished. This means that error conditions like RFKILL
454 	 * or no valid public or static random address apply.
455 	 */
456 	flush_workqueue(hdev->req_workqueue);
457 
458 	/* For controllers not using the management interface and that
459 	 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
460 	 * so that pairing works for them. Once the management interface
461 	 * is in use this bit will be cleared again and userspace has
462 	 * to explicitly enable it.
463 	 */
464 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
465 	    !hci_dev_test_flag(hdev, HCI_MGMT))
466 		hci_dev_set_flag(hdev, HCI_BONDABLE);
467 
468 	err = hci_dev_do_open(hdev);
469 
470 done:
471 	hci_dev_put(hdev);
472 	return err;
473 }
474 
475 int hci_dev_do_close(struct hci_dev *hdev)
476 {
477 	int err;
478 
479 	BT_DBG("%s %p", hdev->name, hdev);
480 
481 	hci_req_sync_lock(hdev);
482 
483 	err = hci_dev_close_sync(hdev);
484 
485 	hci_req_sync_unlock(hdev);
486 
487 	return err;
488 }
489 
490 int hci_dev_close(__u16 dev)
491 {
492 	struct hci_dev *hdev;
493 	int err;
494 
495 	hdev = hci_dev_get(dev);
496 	if (!hdev)
497 		return -ENODEV;
498 
499 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
500 		err = -EBUSY;
501 		goto done;
502 	}
503 
504 	cancel_work_sync(&hdev->power_on);
505 	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
506 		cancel_delayed_work(&hdev->power_off);
507 
508 	err = hci_dev_do_close(hdev);
509 
510 done:
511 	hci_dev_put(hdev);
512 	return err;
513 }
514 
515 static int hci_dev_do_reset(struct hci_dev *hdev)
516 {
517 	int ret;
518 
519 	BT_DBG("%s %p", hdev->name, hdev);
520 
521 	hci_req_sync_lock(hdev);
522 
523 	/* Drop queues */
524 	skb_queue_purge(&hdev->rx_q);
525 	skb_queue_purge(&hdev->cmd_q);
526 
527 	/* Cancel these to avoid queueing non-chained pending work */
528 	hci_dev_set_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
529 	/* Wait for
530 	 *
531 	 *    if (!hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
532 	 *        queue_delayed_work(&hdev->{cmd,ncmd}_timer)
533 	 *
534 	 * inside RCU section to see the flag or complete scheduling.
535 	 */
536 	synchronize_rcu();
537 	/* Explicitly cancel works in case scheduled after setting the flag. */
538 	cancel_delayed_work(&hdev->cmd_timer);
539 	cancel_delayed_work(&hdev->ncmd_timer);
540 
541 	/* Avoid potential lockdep warnings from the *_flush() calls by
542 	 * ensuring the workqueue is empty up front.
543 	 */
544 	drain_workqueue(hdev->workqueue);
545 
546 	hci_dev_lock(hdev);
547 	hci_inquiry_cache_flush(hdev);
548 	hci_conn_hash_flush(hdev);
549 	hci_dev_unlock(hdev);
550 
551 	if (hdev->flush)
552 		hdev->flush(hdev);
553 
554 	hci_dev_clear_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
555 
556 	atomic_set(&hdev->cmd_cnt, 1);
557 	hdev->acl_cnt = 0;
558 	hdev->sco_cnt = 0;
559 	hdev->le_cnt = 0;
560 	hdev->iso_cnt = 0;
561 
562 	ret = hci_reset_sync(hdev);
563 
564 	hci_req_sync_unlock(hdev);
565 	return ret;
566 }
567 
568 int hci_dev_reset(__u16 dev)
569 {
570 	struct hci_dev *hdev;
571 	int err;
572 
573 	hdev = hci_dev_get(dev);
574 	if (!hdev)
575 		return -ENODEV;
576 
577 	if (!test_bit(HCI_UP, &hdev->flags)) {
578 		err = -ENETDOWN;
579 		goto done;
580 	}
581 
582 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
583 		err = -EBUSY;
584 		goto done;
585 	}
586 
587 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
588 		err = -EOPNOTSUPP;
589 		goto done;
590 	}
591 
592 	err = hci_dev_do_reset(hdev);
593 
594 done:
595 	hci_dev_put(hdev);
596 	return err;
597 }
598 
599 int hci_dev_reset_stat(__u16 dev)
600 {
601 	struct hci_dev *hdev;
602 	int ret = 0;
603 
604 	hdev = hci_dev_get(dev);
605 	if (!hdev)
606 		return -ENODEV;
607 
608 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
609 		ret = -EBUSY;
610 		goto done;
611 	}
612 
613 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
614 		ret = -EOPNOTSUPP;
615 		goto done;
616 	}
617 
618 	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
619 
620 done:
621 	hci_dev_put(hdev);
622 	return ret;
623 }
624 
625 static void hci_update_passive_scan_state(struct hci_dev *hdev, u8 scan)
626 {
627 	bool conn_changed, discov_changed;
628 
629 	BT_DBG("%s scan 0x%02x", hdev->name, scan);
630 
631 	if ((scan & SCAN_PAGE))
632 		conn_changed = !hci_dev_test_and_set_flag(hdev,
633 							  HCI_CONNECTABLE);
634 	else
635 		conn_changed = hci_dev_test_and_clear_flag(hdev,
636 							   HCI_CONNECTABLE);
637 
638 	if ((scan & SCAN_INQUIRY)) {
639 		discov_changed = !hci_dev_test_and_set_flag(hdev,
640 							    HCI_DISCOVERABLE);
641 	} else {
642 		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
643 		discov_changed = hci_dev_test_and_clear_flag(hdev,
644 							     HCI_DISCOVERABLE);
645 	}
646 
647 	if (!hci_dev_test_flag(hdev, HCI_MGMT))
648 		return;
649 
650 	if (conn_changed || discov_changed) {
651 		/* In case this was disabled through mgmt */
652 		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
653 
654 		if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
655 			hci_update_adv_data(hdev, hdev->cur_adv_instance);
656 
657 		mgmt_new_settings(hdev);
658 	}
659 }
660 
661 int hci_dev_cmd(unsigned int cmd, void __user *arg)
662 {
663 	struct hci_dev *hdev;
664 	struct hci_dev_req dr;
665 	__le16 policy;
666 	int err = 0;
667 
668 	if (copy_from_user(&dr, arg, sizeof(dr)))
669 		return -EFAULT;
670 
671 	hdev = hci_dev_get(dr.dev_id);
672 	if (!hdev)
673 		return -ENODEV;
674 
675 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
676 		err = -EBUSY;
677 		goto done;
678 	}
679 
680 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
681 		err = -EOPNOTSUPP;
682 		goto done;
683 	}
684 
685 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
686 		err = -EOPNOTSUPP;
687 		goto done;
688 	}
689 
690 	switch (cmd) {
691 	case HCISETAUTH:
692 		err = hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE,
693 					  1, &dr.dev_opt, HCI_CMD_TIMEOUT);
694 		break;
695 
696 	case HCISETENCRYPT:
697 		if (!lmp_encrypt_capable(hdev)) {
698 			err = -EOPNOTSUPP;
699 			break;
700 		}
701 
702 		if (!test_bit(HCI_AUTH, &hdev->flags)) {
703 			/* Auth must be enabled first */
704 			err = hci_cmd_sync_status(hdev,
705 						  HCI_OP_WRITE_AUTH_ENABLE,
706 						  1, &dr.dev_opt,
707 						  HCI_CMD_TIMEOUT);
708 			if (err)
709 				break;
710 		}
711 
712 		err = hci_cmd_sync_status(hdev, HCI_OP_WRITE_ENCRYPT_MODE,
713 					  1, &dr.dev_opt, HCI_CMD_TIMEOUT);
714 		break;
715 
716 	case HCISETSCAN:
717 		err = hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE,
718 					  1, &dr.dev_opt, HCI_CMD_TIMEOUT);
719 
720 		/* Ensure that the connectable and discoverable states
721 		 * get correctly modified as this was a non-mgmt change.
722 		 */
723 		if (!err)
724 			hci_update_passive_scan_state(hdev, dr.dev_opt);
725 		break;
726 
727 	case HCISETLINKPOL:
728 		policy = cpu_to_le16(dr.dev_opt);
729 
730 		err = hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY,
731 					  2, &policy, HCI_CMD_TIMEOUT);
732 		break;
733 
734 	case HCISETLINKMODE:
735 		hdev->link_mode = ((__u16) dr.dev_opt) &
736 					(HCI_LM_MASTER | HCI_LM_ACCEPT);
737 		break;
738 
739 	case HCISETPTYPE:
740 		if (hdev->pkt_type == (__u16) dr.dev_opt)
741 			break;
742 
743 		hdev->pkt_type = (__u16) dr.dev_opt;
744 		mgmt_phy_configuration_changed(hdev, NULL);
745 		break;
746 
747 	case HCISETACLMTU:
748 		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
749 		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
750 		break;
751 
752 	case HCISETSCOMTU:
753 		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
754 		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
755 		break;
756 
757 	default:
758 		err = -EINVAL;
759 		break;
760 	}
761 
762 done:
763 	hci_dev_put(hdev);
764 	return err;
765 }
766 
767 int hci_get_dev_list(void __user *arg)
768 {
769 	struct hci_dev *hdev;
770 	struct hci_dev_list_req *dl;
771 	struct hci_dev_req *dr;
772 	int n = 0, err;
773 	__u16 dev_num;
774 
775 	if (get_user(dev_num, (__u16 __user *) arg))
776 		return -EFAULT;
777 
778 	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
779 		return -EINVAL;
780 
781 	dl = kzalloc(struct_size(dl, dev_req, dev_num), GFP_KERNEL);
782 	if (!dl)
783 		return -ENOMEM;
784 
785 	dl->dev_num = dev_num;
786 	dr = dl->dev_req;
787 
788 	read_lock(&hci_dev_list_lock);
789 	list_for_each_entry(hdev, &hci_dev_list, list) {
790 		unsigned long flags = hdev->flags;
791 
792 		/* When the auto-off is configured it means the transport
793 		 * is running, but in that case still indicate that the
794 		 * device is actually down.
795 		 */
796 		if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
797 			flags &= ~BIT(HCI_UP);
798 
799 		dr[n].dev_id  = hdev->id;
800 		dr[n].dev_opt = flags;
801 
802 		if (++n >= dev_num)
803 			break;
804 	}
805 	read_unlock(&hci_dev_list_lock);
806 
807 	dl->dev_num = n;
808 	err = copy_to_user(arg, dl, struct_size(dl, dev_req, n));
809 	kfree(dl);
810 
811 	return err ? -EFAULT : 0;
812 }
813 
814 int hci_get_dev_info(void __user *arg)
815 {
816 	struct hci_dev *hdev;
817 	struct hci_dev_info di;
818 	unsigned long flags;
819 	int err = 0;
820 
821 	if (copy_from_user(&di, arg, sizeof(di)))
822 		return -EFAULT;
823 
824 	hdev = hci_dev_get(di.dev_id);
825 	if (!hdev)
826 		return -ENODEV;
827 
828 	/* When the auto-off is configured it means the transport
829 	 * is running, but in that case still indicate that the
830 	 * device is actually down.
831 	 */
832 	if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
833 		flags = hdev->flags & ~BIT(HCI_UP);
834 	else
835 		flags = hdev->flags;
836 
837 	strscpy(di.name, hdev->name, sizeof(di.name));
838 	di.bdaddr   = hdev->bdaddr;
839 	di.type     = (hdev->bus & 0x0f);
840 	di.flags    = flags;
841 	di.pkt_type = hdev->pkt_type;
842 	if (lmp_bredr_capable(hdev)) {
843 		di.acl_mtu  = hdev->acl_mtu;
844 		di.acl_pkts = hdev->acl_pkts;
845 		di.sco_mtu  = hdev->sco_mtu;
846 		di.sco_pkts = hdev->sco_pkts;
847 	} else {
848 		di.acl_mtu  = hdev->le_mtu;
849 		di.acl_pkts = hdev->le_pkts;
850 		di.sco_mtu  = 0;
851 		di.sco_pkts = 0;
852 	}
853 	di.link_policy = hdev->link_policy;
854 	di.link_mode   = hdev->link_mode;
855 
856 	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
857 	memcpy(&di.features, &hdev->features, sizeof(di.features));
858 
859 	if (copy_to_user(arg, &di, sizeof(di)))
860 		err = -EFAULT;
861 
862 	hci_dev_put(hdev);
863 
864 	return err;
865 }
866 
867 /* ---- Interface to HCI drivers ---- */
868 
869 static int hci_dev_do_poweroff(struct hci_dev *hdev)
870 {
871 	int err;
872 
873 	BT_DBG("%s %p", hdev->name, hdev);
874 
875 	hci_req_sync_lock(hdev);
876 
877 	err = hci_set_powered_sync(hdev, false);
878 
879 	hci_req_sync_unlock(hdev);
880 
881 	return err;
882 }
883 
884 static int hci_rfkill_set_block(void *data, bool blocked)
885 {
886 	struct hci_dev *hdev = data;
887 	int err;
888 
889 	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
890 
891 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
892 		return -EBUSY;
893 
894 	if (blocked == hci_dev_test_flag(hdev, HCI_RFKILLED))
895 		return 0;
896 
897 	if (blocked) {
898 		hci_dev_set_flag(hdev, HCI_RFKILLED);
899 
900 		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
901 		    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
902 			err = hci_dev_do_poweroff(hdev);
903 			if (err) {
904 				bt_dev_err(hdev, "Error when powering off device on rfkill (%d)",
905 					   err);
906 
907 				/* Make sure the device is still closed even if
908 				 * anything during power off sequence (eg.
909 				 * disconnecting devices) failed.
910 				 */
911 				hci_dev_do_close(hdev);
912 			}
913 		}
914 	} else {
915 		hci_dev_clear_flag(hdev, HCI_RFKILLED);
916 	}
917 
918 	return 0;
919 }
920 
921 static const struct rfkill_ops hci_rfkill_ops = {
922 	.set_block = hci_rfkill_set_block,
923 };
924 
925 static void hci_power_on(struct work_struct *work)
926 {
927 	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
928 	int err;
929 
930 	BT_DBG("%s", hdev->name);
931 
932 	if (test_bit(HCI_UP, &hdev->flags) &&
933 	    hci_dev_test_flag(hdev, HCI_MGMT) &&
934 	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
935 		cancel_delayed_work(&hdev->power_off);
936 		err = hci_powered_update_sync(hdev);
937 		mgmt_power_on(hdev, err);
938 		return;
939 	}
940 
941 	err = hci_dev_do_open(hdev);
942 	if (err < 0) {
943 		hci_dev_lock(hdev);
944 		mgmt_set_powered_failed(hdev, err);
945 		hci_dev_unlock(hdev);
946 		return;
947 	}
948 
949 	/* During the HCI setup phase, a few error conditions are
950 	 * ignored and they need to be checked now. If they are still
951 	 * valid, it is important to turn the device back off.
952 	 */
953 	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
954 	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
955 	    (!bacmp(&hdev->bdaddr, BDADDR_ANY) &&
956 	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
957 		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
958 		hci_dev_do_close(hdev);
959 	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
960 		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
961 				   HCI_AUTO_OFF_TIMEOUT);
962 	}
963 
964 	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
965 		/* For unconfigured devices, set the HCI_RAW flag
966 		 * so that userspace can easily identify them.
967 		 */
968 		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
969 			set_bit(HCI_RAW, &hdev->flags);
970 
971 		/* For fully configured devices, this will send
972 		 * the Index Added event. For unconfigured devices,
973 		 * it will send Unconfigued Index Added event.
974 		 *
975 		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
976 		 * and no event will be send.
977 		 */
978 		mgmt_index_added(hdev);
979 	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
980 		/* When the controller is now configured, then it
981 		 * is important to clear the HCI_RAW flag.
982 		 */
983 		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
984 			clear_bit(HCI_RAW, &hdev->flags);
985 
986 		/* Powering on the controller with HCI_CONFIG set only
987 		 * happens with the transition from unconfigured to
988 		 * configured. This will send the Index Added event.
989 		 */
990 		mgmt_index_added(hdev);
991 	}
992 }
993 
994 static void hci_power_off(struct work_struct *work)
995 {
996 	struct hci_dev *hdev = container_of(work, struct hci_dev,
997 					    power_off.work);
998 
999 	BT_DBG("%s", hdev->name);
1000 
1001 	hci_dev_do_close(hdev);
1002 }
1003 
1004 static void hci_error_reset(struct work_struct *work)
1005 {
1006 	struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
1007 
1008 	hci_dev_hold(hdev);
1009 	BT_DBG("%s", hdev->name);
1010 
1011 	if (hdev->hw_error)
1012 		hdev->hw_error(hdev, hdev->hw_error_code);
1013 	else
1014 		bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
1015 
1016 	if (!hci_dev_do_close(hdev))
1017 		hci_dev_do_open(hdev);
1018 
1019 	hci_dev_put(hdev);
1020 }
1021 
1022 void hci_uuids_clear(struct hci_dev *hdev)
1023 {
1024 	struct bt_uuid *uuid, *tmp;
1025 
1026 	list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
1027 		list_del(&uuid->list);
1028 		kfree(uuid);
1029 	}
1030 }
1031 
1032 void hci_link_keys_clear(struct hci_dev *hdev)
1033 {
1034 	struct link_key *key, *tmp;
1035 
1036 	list_for_each_entry_safe(key, tmp, &hdev->link_keys, list) {
1037 		list_del_rcu(&key->list);
1038 		kfree_rcu(key, rcu);
1039 	}
1040 }
1041 
1042 void hci_smp_ltks_clear(struct hci_dev *hdev)
1043 {
1044 	struct smp_ltk *k, *tmp;
1045 
1046 	list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1047 		list_del_rcu(&k->list);
1048 		kfree_rcu(k, rcu);
1049 	}
1050 }
1051 
1052 void hci_smp_irks_clear(struct hci_dev *hdev)
1053 {
1054 	struct smp_irk *k, *tmp;
1055 
1056 	list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
1057 		list_del_rcu(&k->list);
1058 		kfree_rcu(k, rcu);
1059 	}
1060 }
1061 
1062 void hci_blocked_keys_clear(struct hci_dev *hdev)
1063 {
1064 	struct blocked_key *b, *tmp;
1065 
1066 	list_for_each_entry_safe(b, tmp, &hdev->blocked_keys, list) {
1067 		list_del_rcu(&b->list);
1068 		kfree_rcu(b, rcu);
1069 	}
1070 }
1071 
1072 bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16])
1073 {
1074 	bool blocked = false;
1075 	struct blocked_key *b;
1076 
1077 	rcu_read_lock();
1078 	list_for_each_entry_rcu(b, &hdev->blocked_keys, list) {
1079 		if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) {
1080 			blocked = true;
1081 			break;
1082 		}
1083 	}
1084 
1085 	rcu_read_unlock();
1086 	return blocked;
1087 }
1088 
1089 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1090 {
1091 	struct link_key *k;
1092 
1093 	rcu_read_lock();
1094 	list_for_each_entry_rcu(k, &hdev->link_keys, list) {
1095 		if (bacmp(bdaddr, &k->bdaddr) == 0) {
1096 			rcu_read_unlock();
1097 
1098 			if (hci_is_blocked_key(hdev,
1099 					       HCI_BLOCKED_KEY_TYPE_LINKKEY,
1100 					       k->val)) {
1101 				bt_dev_warn_ratelimited(hdev,
1102 							"Link key blocked for %pMR",
1103 							&k->bdaddr);
1104 				return NULL;
1105 			}
1106 
1107 			return k;
1108 		}
1109 	}
1110 	rcu_read_unlock();
1111 
1112 	return NULL;
1113 }
1114 
1115 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
1116 			       u8 key_type, u8 old_key_type)
1117 {
1118 	/* Legacy key */
1119 	if (key_type < 0x03)
1120 		return true;
1121 
1122 	/* Debug keys are insecure so don't store them persistently */
1123 	if (key_type == HCI_LK_DEBUG_COMBINATION)
1124 		return false;
1125 
1126 	/* Changed combination key and there's no previous one */
1127 	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
1128 		return false;
1129 
1130 	/* Security mode 3 case */
1131 	if (!conn)
1132 		return true;
1133 
1134 	/* BR/EDR key derived using SC from an LE link */
1135 	if (conn->type == LE_LINK)
1136 		return true;
1137 
1138 	/* Neither local nor remote side had no-bonding as requirement */
1139 	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
1140 		return true;
1141 
1142 	/* Local side had dedicated bonding as requirement */
1143 	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
1144 		return true;
1145 
1146 	/* Remote side had dedicated bonding as requirement */
1147 	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
1148 		return true;
1149 
1150 	/* If none of the above criteria match, then don't store the key
1151 	 * persistently */
1152 	return false;
1153 }
1154 
1155 static u8 ltk_role(u8 type)
1156 {
1157 	if (type == SMP_LTK)
1158 		return HCI_ROLE_MASTER;
1159 
1160 	return HCI_ROLE_SLAVE;
1161 }
1162 
1163 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1164 			     u8 addr_type, u8 role)
1165 {
1166 	struct smp_ltk *k;
1167 
1168 	rcu_read_lock();
1169 	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1170 		if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
1171 			continue;
1172 
1173 		if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
1174 			rcu_read_unlock();
1175 
1176 			if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK,
1177 					       k->val)) {
1178 				bt_dev_warn_ratelimited(hdev,
1179 							"LTK blocked for %pMR",
1180 							&k->bdaddr);
1181 				return NULL;
1182 			}
1183 
1184 			return k;
1185 		}
1186 	}
1187 	rcu_read_unlock();
1188 
1189 	return NULL;
1190 }
1191 
1192 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
1193 {
1194 	struct smp_irk *irk_to_return = NULL;
1195 	struct smp_irk *irk;
1196 
1197 	rcu_read_lock();
1198 	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1199 		if (!bacmp(&irk->rpa, rpa)) {
1200 			irk_to_return = irk;
1201 			goto done;
1202 		}
1203 	}
1204 
1205 	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1206 		if (smp_irk_matches(hdev, irk->val, rpa)) {
1207 			bacpy(&irk->rpa, rpa);
1208 			irk_to_return = irk;
1209 			goto done;
1210 		}
1211 	}
1212 
1213 done:
1214 	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1215 						irk_to_return->val)) {
1216 		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1217 					&irk_to_return->bdaddr);
1218 		irk_to_return = NULL;
1219 	}
1220 
1221 	rcu_read_unlock();
1222 
1223 	return irk_to_return;
1224 }
1225 
1226 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
1227 				     u8 addr_type)
1228 {
1229 	struct smp_irk *irk_to_return = NULL;
1230 	struct smp_irk *irk;
1231 
1232 	/* Identity Address must be public or static random */
1233 	if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
1234 		return NULL;
1235 
1236 	rcu_read_lock();
1237 	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1238 		if (addr_type == irk->addr_type &&
1239 		    bacmp(bdaddr, &irk->bdaddr) == 0) {
1240 			irk_to_return = irk;
1241 			goto done;
1242 		}
1243 	}
1244 
1245 done:
1246 
1247 	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1248 						irk_to_return->val)) {
1249 		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1250 					&irk_to_return->bdaddr);
1251 		irk_to_return = NULL;
1252 	}
1253 
1254 	rcu_read_unlock();
1255 
1256 	return irk_to_return;
1257 }
1258 
1259 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
1260 				  bdaddr_t *bdaddr, u8 *val, u8 type,
1261 				  u8 pin_len, bool *persistent)
1262 {
1263 	struct link_key *key, *old_key;
1264 	u8 old_key_type;
1265 
1266 	old_key = hci_find_link_key(hdev, bdaddr);
1267 	if (old_key) {
1268 		old_key_type = old_key->type;
1269 		key = old_key;
1270 	} else {
1271 		old_key_type = conn ? conn->key_type : 0xff;
1272 		key = kzalloc(sizeof(*key), GFP_KERNEL);
1273 		if (!key)
1274 			return NULL;
1275 		list_add_rcu(&key->list, &hdev->link_keys);
1276 	}
1277 
1278 	BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
1279 
1280 	/* Some buggy controller combinations generate a changed
1281 	 * combination key for legacy pairing even when there's no
1282 	 * previous key */
1283 	if (type == HCI_LK_CHANGED_COMBINATION &&
1284 	    (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
1285 		type = HCI_LK_COMBINATION;
1286 		if (conn)
1287 			conn->key_type = type;
1288 	}
1289 
1290 	bacpy(&key->bdaddr, bdaddr);
1291 	memcpy(key->val, val, HCI_LINK_KEY_SIZE);
1292 	key->pin_len = pin_len;
1293 
1294 	if (type == HCI_LK_CHANGED_COMBINATION)
1295 		key->type = old_key_type;
1296 	else
1297 		key->type = type;
1298 
1299 	if (persistent)
1300 		*persistent = hci_persistent_key(hdev, conn, type,
1301 						 old_key_type);
1302 
1303 	return key;
1304 }
1305 
1306 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1307 			    u8 addr_type, u8 type, u8 authenticated,
1308 			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
1309 {
1310 	struct smp_ltk *key, *old_key;
1311 	u8 role = ltk_role(type);
1312 
1313 	old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
1314 	if (old_key)
1315 		key = old_key;
1316 	else {
1317 		key = kzalloc(sizeof(*key), GFP_KERNEL);
1318 		if (!key)
1319 			return NULL;
1320 		list_add_rcu(&key->list, &hdev->long_term_keys);
1321 	}
1322 
1323 	bacpy(&key->bdaddr, bdaddr);
1324 	key->bdaddr_type = addr_type;
1325 	memcpy(key->val, tk, sizeof(key->val));
1326 	key->authenticated = authenticated;
1327 	key->ediv = ediv;
1328 	key->rand = rand;
1329 	key->enc_size = enc_size;
1330 	key->type = type;
1331 
1332 	return key;
1333 }
1334 
1335 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1336 			    u8 addr_type, u8 val[16], bdaddr_t *rpa)
1337 {
1338 	struct smp_irk *irk;
1339 
1340 	irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
1341 	if (!irk) {
1342 		irk = kzalloc(sizeof(*irk), GFP_KERNEL);
1343 		if (!irk)
1344 			return NULL;
1345 
1346 		bacpy(&irk->bdaddr, bdaddr);
1347 		irk->addr_type = addr_type;
1348 
1349 		list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
1350 	}
1351 
1352 	memcpy(irk->val, val, 16);
1353 	bacpy(&irk->rpa, rpa);
1354 
1355 	return irk;
1356 }
1357 
1358 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1359 {
1360 	struct link_key *key;
1361 
1362 	key = hci_find_link_key(hdev, bdaddr);
1363 	if (!key)
1364 		return -ENOENT;
1365 
1366 	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1367 
1368 	list_del_rcu(&key->list);
1369 	kfree_rcu(key, rcu);
1370 
1371 	return 0;
1372 }
1373 
1374 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
1375 {
1376 	struct smp_ltk *k, *tmp;
1377 	int removed = 0;
1378 
1379 	list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1380 		if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
1381 			continue;
1382 
1383 		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1384 
1385 		list_del_rcu(&k->list);
1386 		kfree_rcu(k, rcu);
1387 		removed++;
1388 	}
1389 
1390 	return removed ? 0 : -ENOENT;
1391 }
1392 
1393 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
1394 {
1395 	struct smp_irk *k, *tmp;
1396 
1397 	list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
1398 		if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
1399 			continue;
1400 
1401 		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1402 
1403 		list_del_rcu(&k->list);
1404 		kfree_rcu(k, rcu);
1405 	}
1406 }
1407 
1408 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
1409 {
1410 	struct smp_ltk *k;
1411 	struct smp_irk *irk;
1412 	u8 addr_type;
1413 
1414 	if (type == BDADDR_BREDR) {
1415 		if (hci_find_link_key(hdev, bdaddr))
1416 			return true;
1417 		return false;
1418 	}
1419 
1420 	/* Convert to HCI addr type which struct smp_ltk uses */
1421 	if (type == BDADDR_LE_PUBLIC)
1422 		addr_type = ADDR_LE_DEV_PUBLIC;
1423 	else
1424 		addr_type = ADDR_LE_DEV_RANDOM;
1425 
1426 	irk = hci_get_irk(hdev, bdaddr, addr_type);
1427 	if (irk) {
1428 		bdaddr = &irk->bdaddr;
1429 		addr_type = irk->addr_type;
1430 	}
1431 
1432 	rcu_read_lock();
1433 	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1434 		if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
1435 			rcu_read_unlock();
1436 			return true;
1437 		}
1438 	}
1439 	rcu_read_unlock();
1440 
1441 	return false;
1442 }
1443 
1444 /* HCI command timer function */
1445 static void hci_cmd_timeout(struct work_struct *work)
1446 {
1447 	struct hci_dev *hdev = container_of(work, struct hci_dev,
1448 					    cmd_timer.work);
1449 
1450 	if (hdev->req_skb) {
1451 		u16 opcode = hci_skb_opcode(hdev->req_skb);
1452 
1453 		bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
1454 
1455 		hci_cmd_sync_cancel_sync(hdev, ETIMEDOUT);
1456 	} else {
1457 		bt_dev_err(hdev, "command tx timeout");
1458 	}
1459 
1460 	if (hdev->cmd_timeout)
1461 		hdev->cmd_timeout(hdev);
1462 
1463 	atomic_set(&hdev->cmd_cnt, 1);
1464 	queue_work(hdev->workqueue, &hdev->cmd_work);
1465 }
1466 
1467 /* HCI ncmd timer function */
1468 static void hci_ncmd_timeout(struct work_struct *work)
1469 {
1470 	struct hci_dev *hdev = container_of(work, struct hci_dev,
1471 					    ncmd_timer.work);
1472 
1473 	bt_dev_err(hdev, "Controller not accepting commands anymore: ncmd = 0");
1474 
1475 	/* During HCI_INIT phase no events can be injected if the ncmd timer
1476 	 * triggers since the procedure has its own timeout handling.
1477 	 */
1478 	if (test_bit(HCI_INIT, &hdev->flags))
1479 		return;
1480 
1481 	/* This is an irrecoverable state, inject hardware error event */
1482 	hci_reset_dev(hdev);
1483 }
1484 
1485 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
1486 					  bdaddr_t *bdaddr, u8 bdaddr_type)
1487 {
1488 	struct oob_data *data;
1489 
1490 	list_for_each_entry(data, &hdev->remote_oob_data, list) {
1491 		if (bacmp(bdaddr, &data->bdaddr) != 0)
1492 			continue;
1493 		if (data->bdaddr_type != bdaddr_type)
1494 			continue;
1495 		return data;
1496 	}
1497 
1498 	return NULL;
1499 }
1500 
1501 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1502 			       u8 bdaddr_type)
1503 {
1504 	struct oob_data *data;
1505 
1506 	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1507 	if (!data)
1508 		return -ENOENT;
1509 
1510 	BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
1511 
1512 	list_del(&data->list);
1513 	kfree(data);
1514 
1515 	return 0;
1516 }
1517 
1518 void hci_remote_oob_data_clear(struct hci_dev *hdev)
1519 {
1520 	struct oob_data *data, *n;
1521 
1522 	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
1523 		list_del(&data->list);
1524 		kfree(data);
1525 	}
1526 }
1527 
1528 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1529 			    u8 bdaddr_type, u8 *hash192, u8 *rand192,
1530 			    u8 *hash256, u8 *rand256)
1531 {
1532 	struct oob_data *data;
1533 
1534 	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1535 	if (!data) {
1536 		data = kmalloc(sizeof(*data), GFP_KERNEL);
1537 		if (!data)
1538 			return -ENOMEM;
1539 
1540 		bacpy(&data->bdaddr, bdaddr);
1541 		data->bdaddr_type = bdaddr_type;
1542 		list_add(&data->list, &hdev->remote_oob_data);
1543 	}
1544 
1545 	if (hash192 && rand192) {
1546 		memcpy(data->hash192, hash192, sizeof(data->hash192));
1547 		memcpy(data->rand192, rand192, sizeof(data->rand192));
1548 		if (hash256 && rand256)
1549 			data->present = 0x03;
1550 	} else {
1551 		memset(data->hash192, 0, sizeof(data->hash192));
1552 		memset(data->rand192, 0, sizeof(data->rand192));
1553 		if (hash256 && rand256)
1554 			data->present = 0x02;
1555 		else
1556 			data->present = 0x00;
1557 	}
1558 
1559 	if (hash256 && rand256) {
1560 		memcpy(data->hash256, hash256, sizeof(data->hash256));
1561 		memcpy(data->rand256, rand256, sizeof(data->rand256));
1562 	} else {
1563 		memset(data->hash256, 0, sizeof(data->hash256));
1564 		memset(data->rand256, 0, sizeof(data->rand256));
1565 		if (hash192 && rand192)
1566 			data->present = 0x01;
1567 	}
1568 
1569 	BT_DBG("%s for %pMR", hdev->name, bdaddr);
1570 
1571 	return 0;
1572 }
1573 
1574 /* This function requires the caller holds hdev->lock */
1575 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
1576 {
1577 	struct adv_info *adv_instance;
1578 
1579 	list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
1580 		if (adv_instance->instance == instance)
1581 			return adv_instance;
1582 	}
1583 
1584 	return NULL;
1585 }
1586 
1587 /* This function requires the caller holds hdev->lock */
1588 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
1589 {
1590 	struct adv_info *cur_instance;
1591 
1592 	cur_instance = hci_find_adv_instance(hdev, instance);
1593 	if (!cur_instance)
1594 		return NULL;
1595 
1596 	if (cur_instance == list_last_entry(&hdev->adv_instances,
1597 					    struct adv_info, list))
1598 		return list_first_entry(&hdev->adv_instances,
1599 						 struct adv_info, list);
1600 	else
1601 		return list_next_entry(cur_instance, list);
1602 }
1603 
1604 /* This function requires the caller holds hdev->lock */
1605 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
1606 {
1607 	struct adv_info *adv_instance;
1608 
1609 	adv_instance = hci_find_adv_instance(hdev, instance);
1610 	if (!adv_instance)
1611 		return -ENOENT;
1612 
1613 	BT_DBG("%s removing %dMR", hdev->name, instance);
1614 
1615 	if (hdev->cur_adv_instance == instance) {
1616 		if (hdev->adv_instance_timeout) {
1617 			cancel_delayed_work(&hdev->adv_instance_expire);
1618 			hdev->adv_instance_timeout = 0;
1619 		}
1620 		hdev->cur_adv_instance = 0x00;
1621 	}
1622 
1623 	cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1624 
1625 	list_del(&adv_instance->list);
1626 	kfree(adv_instance);
1627 
1628 	hdev->adv_instance_cnt--;
1629 
1630 	return 0;
1631 }
1632 
1633 void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
1634 {
1635 	struct adv_info *adv_instance, *n;
1636 
1637 	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
1638 		adv_instance->rpa_expired = rpa_expired;
1639 }
1640 
1641 /* This function requires the caller holds hdev->lock */
1642 void hci_adv_instances_clear(struct hci_dev *hdev)
1643 {
1644 	struct adv_info *adv_instance, *n;
1645 
1646 	if (hdev->adv_instance_timeout) {
1647 		cancel_delayed_work(&hdev->adv_instance_expire);
1648 		hdev->adv_instance_timeout = 0;
1649 	}
1650 
1651 	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
1652 		cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1653 		list_del(&adv_instance->list);
1654 		kfree(adv_instance);
1655 	}
1656 
1657 	hdev->adv_instance_cnt = 0;
1658 	hdev->cur_adv_instance = 0x00;
1659 }
1660 
1661 static void adv_instance_rpa_expired(struct work_struct *work)
1662 {
1663 	struct adv_info *adv_instance = container_of(work, struct adv_info,
1664 						     rpa_expired_cb.work);
1665 
1666 	BT_DBG("");
1667 
1668 	adv_instance->rpa_expired = true;
1669 }
1670 
1671 /* This function requires the caller holds hdev->lock */
1672 struct adv_info *hci_add_adv_instance(struct hci_dev *hdev, u8 instance,
1673 				      u32 flags, u16 adv_data_len, u8 *adv_data,
1674 				      u16 scan_rsp_len, u8 *scan_rsp_data,
1675 				      u16 timeout, u16 duration, s8 tx_power,
1676 				      u32 min_interval, u32 max_interval,
1677 				      u8 mesh_handle)
1678 {
1679 	struct adv_info *adv;
1680 
1681 	adv = hci_find_adv_instance(hdev, instance);
1682 	if (adv) {
1683 		memset(adv->adv_data, 0, sizeof(adv->adv_data));
1684 		memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1685 		memset(adv->per_adv_data, 0, sizeof(adv->per_adv_data));
1686 	} else {
1687 		if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets ||
1688 		    instance < 1 || instance > hdev->le_num_of_adv_sets + 1)
1689 			return ERR_PTR(-EOVERFLOW);
1690 
1691 		adv = kzalloc(sizeof(*adv), GFP_KERNEL);
1692 		if (!adv)
1693 			return ERR_PTR(-ENOMEM);
1694 
1695 		adv->pending = true;
1696 		adv->instance = instance;
1697 
1698 		/* If controller support only one set and the instance is set to
1699 		 * 1 then there is no option other than using handle 0x00.
1700 		 */
1701 		if (hdev->le_num_of_adv_sets == 1 && instance == 1)
1702 			adv->handle = 0x00;
1703 		else
1704 			adv->handle = instance;
1705 
1706 		list_add(&adv->list, &hdev->adv_instances);
1707 		hdev->adv_instance_cnt++;
1708 	}
1709 
1710 	adv->flags = flags;
1711 	adv->min_interval = min_interval;
1712 	adv->max_interval = max_interval;
1713 	adv->tx_power = tx_power;
1714 	/* Defining a mesh_handle changes the timing units to ms,
1715 	 * rather than seconds, and ties the instance to the requested
1716 	 * mesh_tx queue.
1717 	 */
1718 	adv->mesh = mesh_handle;
1719 
1720 	hci_set_adv_instance_data(hdev, instance, adv_data_len, adv_data,
1721 				  scan_rsp_len, scan_rsp_data);
1722 
1723 	adv->timeout = timeout;
1724 	adv->remaining_time = timeout;
1725 
1726 	if (duration == 0)
1727 		adv->duration = hdev->def_multi_adv_rotation_duration;
1728 	else
1729 		adv->duration = duration;
1730 
1731 	INIT_DELAYED_WORK(&adv->rpa_expired_cb, adv_instance_rpa_expired);
1732 
1733 	BT_DBG("%s for %dMR", hdev->name, instance);
1734 
1735 	return adv;
1736 }
1737 
1738 /* This function requires the caller holds hdev->lock */
1739 struct adv_info *hci_add_per_instance(struct hci_dev *hdev, u8 instance,
1740 				      u32 flags, u8 data_len, u8 *data,
1741 				      u32 min_interval, u32 max_interval)
1742 {
1743 	struct adv_info *adv;
1744 
1745 	adv = hci_add_adv_instance(hdev, instance, flags, 0, NULL, 0, NULL,
1746 				   0, 0, HCI_ADV_TX_POWER_NO_PREFERENCE,
1747 				   min_interval, max_interval, 0);
1748 	if (IS_ERR(adv))
1749 		return adv;
1750 
1751 	adv->periodic = true;
1752 	adv->per_adv_data_len = data_len;
1753 
1754 	if (data)
1755 		memcpy(adv->per_adv_data, data, data_len);
1756 
1757 	return adv;
1758 }
1759 
1760 /* This function requires the caller holds hdev->lock */
1761 int hci_set_adv_instance_data(struct hci_dev *hdev, u8 instance,
1762 			      u16 adv_data_len, u8 *adv_data,
1763 			      u16 scan_rsp_len, u8 *scan_rsp_data)
1764 {
1765 	struct adv_info *adv;
1766 
1767 	adv = hci_find_adv_instance(hdev, instance);
1768 
1769 	/* If advertisement doesn't exist, we can't modify its data */
1770 	if (!adv)
1771 		return -ENOENT;
1772 
1773 	if (adv_data_len && ADV_DATA_CMP(adv, adv_data, adv_data_len)) {
1774 		memset(adv->adv_data, 0, sizeof(adv->adv_data));
1775 		memcpy(adv->adv_data, adv_data, adv_data_len);
1776 		adv->adv_data_len = adv_data_len;
1777 		adv->adv_data_changed = true;
1778 	}
1779 
1780 	if (scan_rsp_len && SCAN_RSP_CMP(adv, scan_rsp_data, scan_rsp_len)) {
1781 		memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1782 		memcpy(adv->scan_rsp_data, scan_rsp_data, scan_rsp_len);
1783 		adv->scan_rsp_len = scan_rsp_len;
1784 		adv->scan_rsp_changed = true;
1785 	}
1786 
1787 	/* Mark as changed if there are flags which would affect it */
1788 	if (((adv->flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) ||
1789 	    adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1790 		adv->scan_rsp_changed = true;
1791 
1792 	return 0;
1793 }
1794 
1795 /* This function requires the caller holds hdev->lock */
1796 u32 hci_adv_instance_flags(struct hci_dev *hdev, u8 instance)
1797 {
1798 	u32 flags;
1799 	struct adv_info *adv;
1800 
1801 	if (instance == 0x00) {
1802 		/* Instance 0 always manages the "Tx Power" and "Flags"
1803 		 * fields
1804 		 */
1805 		flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
1806 
1807 		/* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
1808 		 * corresponds to the "connectable" instance flag.
1809 		 */
1810 		if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
1811 			flags |= MGMT_ADV_FLAG_CONNECTABLE;
1812 
1813 		if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
1814 			flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
1815 		else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1816 			flags |= MGMT_ADV_FLAG_DISCOV;
1817 
1818 		return flags;
1819 	}
1820 
1821 	adv = hci_find_adv_instance(hdev, instance);
1822 
1823 	/* Return 0 when we got an invalid instance identifier. */
1824 	if (!adv)
1825 		return 0;
1826 
1827 	return adv->flags;
1828 }
1829 
1830 bool hci_adv_instance_is_scannable(struct hci_dev *hdev, u8 instance)
1831 {
1832 	struct adv_info *adv;
1833 
1834 	/* Instance 0x00 always set local name */
1835 	if (instance == 0x00)
1836 		return true;
1837 
1838 	adv = hci_find_adv_instance(hdev, instance);
1839 	if (!adv)
1840 		return false;
1841 
1842 	if (adv->flags & MGMT_ADV_FLAG_APPEARANCE ||
1843 	    adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1844 		return true;
1845 
1846 	return adv->scan_rsp_len ? true : false;
1847 }
1848 
1849 /* This function requires the caller holds hdev->lock */
1850 void hci_adv_monitors_clear(struct hci_dev *hdev)
1851 {
1852 	struct adv_monitor *monitor;
1853 	int handle;
1854 
1855 	idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle)
1856 		hci_free_adv_monitor(hdev, monitor);
1857 
1858 	idr_destroy(&hdev->adv_monitors_idr);
1859 }
1860 
1861 /* Frees the monitor structure and do some bookkeepings.
1862  * This function requires the caller holds hdev->lock.
1863  */
1864 void hci_free_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1865 {
1866 	struct adv_pattern *pattern;
1867 	struct adv_pattern *tmp;
1868 
1869 	if (!monitor)
1870 		return;
1871 
1872 	list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list) {
1873 		list_del(&pattern->list);
1874 		kfree(pattern);
1875 	}
1876 
1877 	if (monitor->handle)
1878 		idr_remove(&hdev->adv_monitors_idr, monitor->handle);
1879 
1880 	if (monitor->state != ADV_MONITOR_STATE_NOT_REGISTERED) {
1881 		hdev->adv_monitors_cnt--;
1882 		mgmt_adv_monitor_removed(hdev, monitor->handle);
1883 	}
1884 
1885 	kfree(monitor);
1886 }
1887 
1888 /* Assigns handle to a monitor, and if offloading is supported and power is on,
1889  * also attempts to forward the request to the controller.
1890  * This function requires the caller holds hci_req_sync_lock.
1891  */
1892 int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1893 {
1894 	int min, max, handle;
1895 	int status = 0;
1896 
1897 	if (!monitor)
1898 		return -EINVAL;
1899 
1900 	hci_dev_lock(hdev);
1901 
1902 	min = HCI_MIN_ADV_MONITOR_HANDLE;
1903 	max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES;
1904 	handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max,
1905 			   GFP_KERNEL);
1906 
1907 	hci_dev_unlock(hdev);
1908 
1909 	if (handle < 0)
1910 		return handle;
1911 
1912 	monitor->handle = handle;
1913 
1914 	if (!hdev_is_powered(hdev))
1915 		return status;
1916 
1917 	switch (hci_get_adv_monitor_offload_ext(hdev)) {
1918 	case HCI_ADV_MONITOR_EXT_NONE:
1919 		bt_dev_dbg(hdev, "add monitor %d status %d",
1920 			   monitor->handle, status);
1921 		/* Message was not forwarded to controller - not an error */
1922 		break;
1923 
1924 	case HCI_ADV_MONITOR_EXT_MSFT:
1925 		status = msft_add_monitor_pattern(hdev, monitor);
1926 		bt_dev_dbg(hdev, "add monitor %d msft status %d",
1927 			   handle, status);
1928 		break;
1929 	}
1930 
1931 	return status;
1932 }
1933 
1934 /* Attempts to tell the controller and free the monitor. If somehow the
1935  * controller doesn't have a corresponding handle, remove anyway.
1936  * This function requires the caller holds hci_req_sync_lock.
1937  */
1938 static int hci_remove_adv_monitor(struct hci_dev *hdev,
1939 				  struct adv_monitor *monitor)
1940 {
1941 	int status = 0;
1942 	int handle;
1943 
1944 	switch (hci_get_adv_monitor_offload_ext(hdev)) {
1945 	case HCI_ADV_MONITOR_EXT_NONE: /* also goes here when powered off */
1946 		bt_dev_dbg(hdev, "remove monitor %d status %d",
1947 			   monitor->handle, status);
1948 		goto free_monitor;
1949 
1950 	case HCI_ADV_MONITOR_EXT_MSFT:
1951 		handle = monitor->handle;
1952 		status = msft_remove_monitor(hdev, monitor);
1953 		bt_dev_dbg(hdev, "remove monitor %d msft status %d",
1954 			   handle, status);
1955 		break;
1956 	}
1957 
1958 	/* In case no matching handle registered, just free the monitor */
1959 	if (status == -ENOENT)
1960 		goto free_monitor;
1961 
1962 	return status;
1963 
1964 free_monitor:
1965 	if (status == -ENOENT)
1966 		bt_dev_warn(hdev, "Removing monitor with no matching handle %d",
1967 			    monitor->handle);
1968 	hci_free_adv_monitor(hdev, monitor);
1969 
1970 	return status;
1971 }
1972 
1973 /* This function requires the caller holds hci_req_sync_lock */
1974 int hci_remove_single_adv_monitor(struct hci_dev *hdev, u16 handle)
1975 {
1976 	struct adv_monitor *monitor = idr_find(&hdev->adv_monitors_idr, handle);
1977 
1978 	if (!monitor)
1979 		return -EINVAL;
1980 
1981 	return hci_remove_adv_monitor(hdev, monitor);
1982 }
1983 
1984 /* This function requires the caller holds hci_req_sync_lock */
1985 int hci_remove_all_adv_monitor(struct hci_dev *hdev)
1986 {
1987 	struct adv_monitor *monitor;
1988 	int idr_next_id = 0;
1989 	int status = 0;
1990 
1991 	while (1) {
1992 		monitor = idr_get_next(&hdev->adv_monitors_idr, &idr_next_id);
1993 		if (!monitor)
1994 			break;
1995 
1996 		status = hci_remove_adv_monitor(hdev, monitor);
1997 		if (status)
1998 			return status;
1999 
2000 		idr_next_id++;
2001 	}
2002 
2003 	return status;
2004 }
2005 
2006 /* This function requires the caller holds hdev->lock */
2007 bool hci_is_adv_monitoring(struct hci_dev *hdev)
2008 {
2009 	return !idr_is_empty(&hdev->adv_monitors_idr);
2010 }
2011 
2012 int hci_get_adv_monitor_offload_ext(struct hci_dev *hdev)
2013 {
2014 	if (msft_monitor_supported(hdev))
2015 		return HCI_ADV_MONITOR_EXT_MSFT;
2016 
2017 	return HCI_ADV_MONITOR_EXT_NONE;
2018 }
2019 
2020 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2021 					 bdaddr_t *bdaddr, u8 type)
2022 {
2023 	struct bdaddr_list *b;
2024 
2025 	list_for_each_entry(b, bdaddr_list, list) {
2026 		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2027 			return b;
2028 	}
2029 
2030 	return NULL;
2031 }
2032 
2033 struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
2034 				struct list_head *bdaddr_list, bdaddr_t *bdaddr,
2035 				u8 type)
2036 {
2037 	struct bdaddr_list_with_irk *b;
2038 
2039 	list_for_each_entry(b, bdaddr_list, list) {
2040 		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2041 			return b;
2042 	}
2043 
2044 	return NULL;
2045 }
2046 
2047 struct bdaddr_list_with_flags *
2048 hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list,
2049 				  bdaddr_t *bdaddr, u8 type)
2050 {
2051 	struct bdaddr_list_with_flags *b;
2052 
2053 	list_for_each_entry(b, bdaddr_list, list) {
2054 		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2055 			return b;
2056 	}
2057 
2058 	return NULL;
2059 }
2060 
2061 void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2062 {
2063 	struct bdaddr_list *b, *n;
2064 
2065 	list_for_each_entry_safe(b, n, bdaddr_list, list) {
2066 		list_del(&b->list);
2067 		kfree(b);
2068 	}
2069 }
2070 
2071 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2072 {
2073 	struct bdaddr_list *entry;
2074 
2075 	if (!bacmp(bdaddr, BDADDR_ANY))
2076 		return -EBADF;
2077 
2078 	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2079 		return -EEXIST;
2080 
2081 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2082 	if (!entry)
2083 		return -ENOMEM;
2084 
2085 	bacpy(&entry->bdaddr, bdaddr);
2086 	entry->bdaddr_type = type;
2087 
2088 	list_add(&entry->list, list);
2089 
2090 	return 0;
2091 }
2092 
2093 int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2094 					u8 type, u8 *peer_irk, u8 *local_irk)
2095 {
2096 	struct bdaddr_list_with_irk *entry;
2097 
2098 	if (!bacmp(bdaddr, BDADDR_ANY))
2099 		return -EBADF;
2100 
2101 	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2102 		return -EEXIST;
2103 
2104 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2105 	if (!entry)
2106 		return -ENOMEM;
2107 
2108 	bacpy(&entry->bdaddr, bdaddr);
2109 	entry->bdaddr_type = type;
2110 
2111 	if (peer_irk)
2112 		memcpy(entry->peer_irk, peer_irk, 16);
2113 
2114 	if (local_irk)
2115 		memcpy(entry->local_irk, local_irk, 16);
2116 
2117 	list_add(&entry->list, list);
2118 
2119 	return 0;
2120 }
2121 
2122 int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2123 				   u8 type, u32 flags)
2124 {
2125 	struct bdaddr_list_with_flags *entry;
2126 
2127 	if (!bacmp(bdaddr, BDADDR_ANY))
2128 		return -EBADF;
2129 
2130 	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2131 		return -EEXIST;
2132 
2133 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2134 	if (!entry)
2135 		return -ENOMEM;
2136 
2137 	bacpy(&entry->bdaddr, bdaddr);
2138 	entry->bdaddr_type = type;
2139 	entry->flags = flags;
2140 
2141 	list_add(&entry->list, list);
2142 
2143 	return 0;
2144 }
2145 
2146 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2147 {
2148 	struct bdaddr_list *entry;
2149 
2150 	if (!bacmp(bdaddr, BDADDR_ANY)) {
2151 		hci_bdaddr_list_clear(list);
2152 		return 0;
2153 	}
2154 
2155 	entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2156 	if (!entry)
2157 		return -ENOENT;
2158 
2159 	list_del(&entry->list);
2160 	kfree(entry);
2161 
2162 	return 0;
2163 }
2164 
2165 int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2166 							u8 type)
2167 {
2168 	struct bdaddr_list_with_irk *entry;
2169 
2170 	if (!bacmp(bdaddr, BDADDR_ANY)) {
2171 		hci_bdaddr_list_clear(list);
2172 		return 0;
2173 	}
2174 
2175 	entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
2176 	if (!entry)
2177 		return -ENOENT;
2178 
2179 	list_del(&entry->list);
2180 	kfree(entry);
2181 
2182 	return 0;
2183 }
2184 
2185 int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2186 				   u8 type)
2187 {
2188 	struct bdaddr_list_with_flags *entry;
2189 
2190 	if (!bacmp(bdaddr, BDADDR_ANY)) {
2191 		hci_bdaddr_list_clear(list);
2192 		return 0;
2193 	}
2194 
2195 	entry = hci_bdaddr_list_lookup_with_flags(list, bdaddr, type);
2196 	if (!entry)
2197 		return -ENOENT;
2198 
2199 	list_del(&entry->list);
2200 	kfree(entry);
2201 
2202 	return 0;
2203 }
2204 
2205 /* This function requires the caller holds hdev->lock */
2206 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2207 					       bdaddr_t *addr, u8 addr_type)
2208 {
2209 	struct hci_conn_params *params;
2210 
2211 	list_for_each_entry(params, &hdev->le_conn_params, list) {
2212 		if (bacmp(&params->addr, addr) == 0 &&
2213 		    params->addr_type == addr_type) {
2214 			return params;
2215 		}
2216 	}
2217 
2218 	return NULL;
2219 }
2220 
2221 /* This function requires the caller holds hdev->lock or rcu_read_lock */
2222 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2223 						  bdaddr_t *addr, u8 addr_type)
2224 {
2225 	struct hci_conn_params *param;
2226 
2227 	rcu_read_lock();
2228 
2229 	list_for_each_entry_rcu(param, list, action) {
2230 		if (bacmp(&param->addr, addr) == 0 &&
2231 		    param->addr_type == addr_type) {
2232 			rcu_read_unlock();
2233 			return param;
2234 		}
2235 	}
2236 
2237 	rcu_read_unlock();
2238 
2239 	return NULL;
2240 }
2241 
2242 /* This function requires the caller holds hdev->lock */
2243 void hci_pend_le_list_del_init(struct hci_conn_params *param)
2244 {
2245 	if (list_empty(&param->action))
2246 		return;
2247 
2248 	list_del_rcu(&param->action);
2249 	synchronize_rcu();
2250 	INIT_LIST_HEAD(&param->action);
2251 }
2252 
2253 /* This function requires the caller holds hdev->lock */
2254 void hci_pend_le_list_add(struct hci_conn_params *param,
2255 			  struct list_head *list)
2256 {
2257 	list_add_rcu(&param->action, list);
2258 }
2259 
2260 /* This function requires the caller holds hdev->lock */
2261 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2262 					    bdaddr_t *addr, u8 addr_type)
2263 {
2264 	struct hci_conn_params *params;
2265 
2266 	params = hci_conn_params_lookup(hdev, addr, addr_type);
2267 	if (params)
2268 		return params;
2269 
2270 	params = kzalloc(sizeof(*params), GFP_KERNEL);
2271 	if (!params) {
2272 		bt_dev_err(hdev, "out of memory");
2273 		return NULL;
2274 	}
2275 
2276 	bacpy(&params->addr, addr);
2277 	params->addr_type = addr_type;
2278 
2279 	list_add(&params->list, &hdev->le_conn_params);
2280 	INIT_LIST_HEAD(&params->action);
2281 
2282 	params->conn_min_interval = hdev->le_conn_min_interval;
2283 	params->conn_max_interval = hdev->le_conn_max_interval;
2284 	params->conn_latency = hdev->le_conn_latency;
2285 	params->supervision_timeout = hdev->le_supv_timeout;
2286 	params->auto_connect = HCI_AUTO_CONN_DISABLED;
2287 
2288 	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2289 
2290 	return params;
2291 }
2292 
2293 void hci_conn_params_free(struct hci_conn_params *params)
2294 {
2295 	hci_pend_le_list_del_init(params);
2296 
2297 	if (params->conn) {
2298 		hci_conn_drop(params->conn);
2299 		hci_conn_put(params->conn);
2300 	}
2301 
2302 	list_del(&params->list);
2303 	kfree(params);
2304 }
2305 
2306 /* This function requires the caller holds hdev->lock */
2307 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2308 {
2309 	struct hci_conn_params *params;
2310 
2311 	params = hci_conn_params_lookup(hdev, addr, addr_type);
2312 	if (!params)
2313 		return;
2314 
2315 	hci_conn_params_free(params);
2316 
2317 	hci_update_passive_scan(hdev);
2318 
2319 	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2320 }
2321 
2322 /* This function requires the caller holds hdev->lock */
2323 void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2324 {
2325 	struct hci_conn_params *params, *tmp;
2326 
2327 	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2328 		if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2329 			continue;
2330 
2331 		/* If trying to establish one time connection to disabled
2332 		 * device, leave the params, but mark them as just once.
2333 		 */
2334 		if (params->explicit_connect) {
2335 			params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2336 			continue;
2337 		}
2338 
2339 		hci_conn_params_free(params);
2340 	}
2341 
2342 	BT_DBG("All LE disabled connection parameters were removed");
2343 }
2344 
2345 /* This function requires the caller holds hdev->lock */
2346 static void hci_conn_params_clear_all(struct hci_dev *hdev)
2347 {
2348 	struct hci_conn_params *params, *tmp;
2349 
2350 	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2351 		hci_conn_params_free(params);
2352 
2353 	BT_DBG("All LE connection parameters were removed");
2354 }
2355 
2356 /* Copy the Identity Address of the controller.
2357  *
2358  * If the controller has a public BD_ADDR, then by default use that one.
2359  * If this is a LE only controller without a public address, default to
2360  * the static random address.
2361  *
2362  * For debugging purposes it is possible to force controllers with a
2363  * public address to use the static random address instead.
2364  *
2365  * In case BR/EDR has been disabled on a dual-mode controller and
2366  * userspace has configured a static address, then that address
2367  * becomes the identity address instead of the public BR/EDR address.
2368  */
2369 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2370 			       u8 *bdaddr_type)
2371 {
2372 	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2373 	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2374 	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2375 	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
2376 		bacpy(bdaddr, &hdev->static_addr);
2377 		*bdaddr_type = ADDR_LE_DEV_RANDOM;
2378 	} else {
2379 		bacpy(bdaddr, &hdev->bdaddr);
2380 		*bdaddr_type = ADDR_LE_DEV_PUBLIC;
2381 	}
2382 }
2383 
2384 static void hci_clear_wake_reason(struct hci_dev *hdev)
2385 {
2386 	hci_dev_lock(hdev);
2387 
2388 	hdev->wake_reason = 0;
2389 	bacpy(&hdev->wake_addr, BDADDR_ANY);
2390 	hdev->wake_addr_type = 0;
2391 
2392 	hci_dev_unlock(hdev);
2393 }
2394 
2395 static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action,
2396 				void *data)
2397 {
2398 	struct hci_dev *hdev =
2399 		container_of(nb, struct hci_dev, suspend_notifier);
2400 	int ret = 0;
2401 
2402 	/* Userspace has full control of this device. Do nothing. */
2403 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2404 		return NOTIFY_DONE;
2405 
2406 	/* To avoid a potential race with hci_unregister_dev. */
2407 	hci_dev_hold(hdev);
2408 
2409 	if (action == PM_SUSPEND_PREPARE)
2410 		ret = hci_suspend_dev(hdev);
2411 	else if (action == PM_POST_SUSPEND)
2412 		ret = hci_resume_dev(hdev);
2413 
2414 	if (ret)
2415 		bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d",
2416 			   action, ret);
2417 
2418 	hci_dev_put(hdev);
2419 	return NOTIFY_DONE;
2420 }
2421 
2422 /* Alloc HCI device */
2423 struct hci_dev *hci_alloc_dev_priv(int sizeof_priv)
2424 {
2425 	struct hci_dev *hdev;
2426 	unsigned int alloc_size;
2427 
2428 	alloc_size = sizeof(*hdev);
2429 	if (sizeof_priv) {
2430 		/* Fixme: May need ALIGN-ment? */
2431 		alloc_size += sizeof_priv;
2432 	}
2433 
2434 	hdev = kzalloc(alloc_size, GFP_KERNEL);
2435 	if (!hdev)
2436 		return NULL;
2437 
2438 	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2439 	hdev->esco_type = (ESCO_HV1);
2440 	hdev->link_mode = (HCI_LM_ACCEPT);
2441 	hdev->num_iac = 0x01;		/* One IAC support is mandatory */
2442 	hdev->io_capability = 0x03;	/* No Input No Output */
2443 	hdev->manufacturer = 0xffff;	/* Default to internal use */
2444 	hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2445 	hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2446 	hdev->adv_instance_cnt = 0;
2447 	hdev->cur_adv_instance = 0x00;
2448 	hdev->adv_instance_timeout = 0;
2449 
2450 	hdev->advmon_allowlist_duration = 300;
2451 	hdev->advmon_no_filter_duration = 500;
2452 	hdev->enable_advmon_interleave_scan = 0x00;	/* Default to disable */
2453 
2454 	hdev->sniff_max_interval = 800;
2455 	hdev->sniff_min_interval = 80;
2456 
2457 	hdev->le_adv_channel_map = 0x07;
2458 	hdev->le_adv_min_interval = 0x0800;
2459 	hdev->le_adv_max_interval = 0x0800;
2460 	hdev->le_scan_interval = DISCOV_LE_SCAN_INT_FAST;
2461 	hdev->le_scan_window = DISCOV_LE_SCAN_WIN_FAST;
2462 	hdev->le_scan_int_suspend = DISCOV_LE_SCAN_INT_SLOW1;
2463 	hdev->le_scan_window_suspend = DISCOV_LE_SCAN_WIN_SLOW1;
2464 	hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT;
2465 	hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN;
2466 	hdev->le_scan_int_adv_monitor = DISCOV_LE_SCAN_INT_FAST;
2467 	hdev->le_scan_window_adv_monitor = DISCOV_LE_SCAN_WIN_FAST;
2468 	hdev->le_scan_int_connect = DISCOV_LE_SCAN_INT_CONN;
2469 	hdev->le_scan_window_connect = DISCOV_LE_SCAN_WIN_CONN;
2470 	hdev->le_conn_min_interval = 0x0018;
2471 	hdev->le_conn_max_interval = 0x0028;
2472 	hdev->le_conn_latency = 0x0000;
2473 	hdev->le_supv_timeout = 0x002a;
2474 	hdev->le_def_tx_len = 0x001b;
2475 	hdev->le_def_tx_time = 0x0148;
2476 	hdev->le_max_tx_len = 0x001b;
2477 	hdev->le_max_tx_time = 0x0148;
2478 	hdev->le_max_rx_len = 0x001b;
2479 	hdev->le_max_rx_time = 0x0148;
2480 	hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
2481 	hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
2482 	hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
2483 	hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
2484 	hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES;
2485 	hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION;
2486 	hdev->def_le_autoconnect_timeout = HCI_LE_CONN_TIMEOUT;
2487 	hdev->min_le_tx_power = HCI_TX_POWER_INVALID;
2488 	hdev->max_le_tx_power = HCI_TX_POWER_INVALID;
2489 
2490 	hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
2491 	hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
2492 	hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
2493 	hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
2494 	hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
2495 	hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE;
2496 
2497 	/* default 1.28 sec page scan */
2498 	hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD;
2499 	hdev->def_page_scan_int = 0x0800;
2500 	hdev->def_page_scan_window = 0x0012;
2501 
2502 	mutex_init(&hdev->lock);
2503 	mutex_init(&hdev->req_lock);
2504 
2505 	ida_init(&hdev->unset_handle_ida);
2506 
2507 	INIT_LIST_HEAD(&hdev->mesh_pending);
2508 	INIT_LIST_HEAD(&hdev->mgmt_pending);
2509 	INIT_LIST_HEAD(&hdev->reject_list);
2510 	INIT_LIST_HEAD(&hdev->accept_list);
2511 	INIT_LIST_HEAD(&hdev->uuids);
2512 	INIT_LIST_HEAD(&hdev->link_keys);
2513 	INIT_LIST_HEAD(&hdev->long_term_keys);
2514 	INIT_LIST_HEAD(&hdev->identity_resolving_keys);
2515 	INIT_LIST_HEAD(&hdev->remote_oob_data);
2516 	INIT_LIST_HEAD(&hdev->le_accept_list);
2517 	INIT_LIST_HEAD(&hdev->le_resolv_list);
2518 	INIT_LIST_HEAD(&hdev->le_conn_params);
2519 	INIT_LIST_HEAD(&hdev->pend_le_conns);
2520 	INIT_LIST_HEAD(&hdev->pend_le_reports);
2521 	INIT_LIST_HEAD(&hdev->conn_hash.list);
2522 	INIT_LIST_HEAD(&hdev->adv_instances);
2523 	INIT_LIST_HEAD(&hdev->blocked_keys);
2524 	INIT_LIST_HEAD(&hdev->monitored_devices);
2525 
2526 	INIT_LIST_HEAD(&hdev->local_codecs);
2527 	INIT_WORK(&hdev->rx_work, hci_rx_work);
2528 	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
2529 	INIT_WORK(&hdev->tx_work, hci_tx_work);
2530 	INIT_WORK(&hdev->power_on, hci_power_on);
2531 	INIT_WORK(&hdev->error_reset, hci_error_reset);
2532 
2533 	hci_cmd_sync_init(hdev);
2534 
2535 	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
2536 
2537 	skb_queue_head_init(&hdev->rx_q);
2538 	skb_queue_head_init(&hdev->cmd_q);
2539 	skb_queue_head_init(&hdev->raw_q);
2540 
2541 	init_waitqueue_head(&hdev->req_wait_q);
2542 
2543 	INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
2544 	INIT_DELAYED_WORK(&hdev->ncmd_timer, hci_ncmd_timeout);
2545 
2546 	hci_devcd_setup(hdev);
2547 
2548 	hci_init_sysfs(hdev);
2549 	discovery_init(hdev);
2550 
2551 	return hdev;
2552 }
2553 EXPORT_SYMBOL(hci_alloc_dev_priv);
2554 
2555 /* Free HCI device */
2556 void hci_free_dev(struct hci_dev *hdev)
2557 {
2558 	/* will free via device release */
2559 	put_device(&hdev->dev);
2560 }
2561 EXPORT_SYMBOL(hci_free_dev);
2562 
2563 /* Register HCI device */
2564 int hci_register_dev(struct hci_dev *hdev)
2565 {
2566 	int id, error;
2567 
2568 	if (!hdev->open || !hdev->close || !hdev->send)
2569 		return -EINVAL;
2570 
2571 	id = ida_alloc_max(&hci_index_ida, HCI_MAX_ID - 1, GFP_KERNEL);
2572 	if (id < 0)
2573 		return id;
2574 
2575 	error = dev_set_name(&hdev->dev, "hci%u", id);
2576 	if (error)
2577 		return error;
2578 
2579 	hdev->name = dev_name(&hdev->dev);
2580 	hdev->id = id;
2581 
2582 	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2583 
2584 	hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
2585 	if (!hdev->workqueue) {
2586 		error = -ENOMEM;
2587 		goto err;
2588 	}
2589 
2590 	hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
2591 						      hdev->name);
2592 	if (!hdev->req_workqueue) {
2593 		destroy_workqueue(hdev->workqueue);
2594 		error = -ENOMEM;
2595 		goto err;
2596 	}
2597 
2598 	if (!IS_ERR_OR_NULL(bt_debugfs))
2599 		hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
2600 
2601 	error = device_add(&hdev->dev);
2602 	if (error < 0)
2603 		goto err_wqueue;
2604 
2605 	hci_leds_init(hdev);
2606 
2607 	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
2608 				    RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
2609 				    hdev);
2610 	if (hdev->rfkill) {
2611 		if (rfkill_register(hdev->rfkill) < 0) {
2612 			rfkill_destroy(hdev->rfkill);
2613 			hdev->rfkill = NULL;
2614 		}
2615 	}
2616 
2617 	if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
2618 		hci_dev_set_flag(hdev, HCI_RFKILLED);
2619 
2620 	hci_dev_set_flag(hdev, HCI_SETUP);
2621 	hci_dev_set_flag(hdev, HCI_AUTO_OFF);
2622 
2623 	/* Assume BR/EDR support until proven otherwise (such as
2624 	 * through reading supported features during init.
2625 	 */
2626 	hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
2627 
2628 	write_lock(&hci_dev_list_lock);
2629 	list_add(&hdev->list, &hci_dev_list);
2630 	write_unlock(&hci_dev_list_lock);
2631 
2632 	/* Devices that are marked for raw-only usage are unconfigured
2633 	 * and should not be included in normal operation.
2634 	 */
2635 	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
2636 		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
2637 
2638 	/* Mark Remote Wakeup connection flag as supported if driver has wakeup
2639 	 * callback.
2640 	 */
2641 	if (hdev->wakeup)
2642 		hdev->conn_flags |= HCI_CONN_FLAG_REMOTE_WAKEUP;
2643 
2644 	hci_sock_dev_event(hdev, HCI_DEV_REG);
2645 	hci_dev_hold(hdev);
2646 
2647 	error = hci_register_suspend_notifier(hdev);
2648 	if (error)
2649 		BT_WARN("register suspend notifier failed error:%d\n", error);
2650 
2651 	queue_work(hdev->req_workqueue, &hdev->power_on);
2652 
2653 	idr_init(&hdev->adv_monitors_idr);
2654 	msft_register(hdev);
2655 
2656 	return id;
2657 
2658 err_wqueue:
2659 	debugfs_remove_recursive(hdev->debugfs);
2660 	destroy_workqueue(hdev->workqueue);
2661 	destroy_workqueue(hdev->req_workqueue);
2662 err:
2663 	ida_free(&hci_index_ida, hdev->id);
2664 
2665 	return error;
2666 }
2667 EXPORT_SYMBOL(hci_register_dev);
2668 
2669 /* Unregister HCI device */
2670 void hci_unregister_dev(struct hci_dev *hdev)
2671 {
2672 	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2673 
2674 	mutex_lock(&hdev->unregister_lock);
2675 	hci_dev_set_flag(hdev, HCI_UNREGISTER);
2676 	mutex_unlock(&hdev->unregister_lock);
2677 
2678 	write_lock(&hci_dev_list_lock);
2679 	list_del(&hdev->list);
2680 	write_unlock(&hci_dev_list_lock);
2681 
2682 	cancel_work_sync(&hdev->rx_work);
2683 	cancel_work_sync(&hdev->cmd_work);
2684 	cancel_work_sync(&hdev->tx_work);
2685 	cancel_work_sync(&hdev->power_on);
2686 	cancel_work_sync(&hdev->error_reset);
2687 
2688 	hci_cmd_sync_clear(hdev);
2689 
2690 	hci_unregister_suspend_notifier(hdev);
2691 
2692 	hci_dev_do_close(hdev);
2693 
2694 	if (!test_bit(HCI_INIT, &hdev->flags) &&
2695 	    !hci_dev_test_flag(hdev, HCI_SETUP) &&
2696 	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
2697 		hci_dev_lock(hdev);
2698 		mgmt_index_removed(hdev);
2699 		hci_dev_unlock(hdev);
2700 	}
2701 
2702 	/* mgmt_index_removed should take care of emptying the
2703 	 * pending list */
2704 	BUG_ON(!list_empty(&hdev->mgmt_pending));
2705 
2706 	hci_sock_dev_event(hdev, HCI_DEV_UNREG);
2707 
2708 	if (hdev->rfkill) {
2709 		rfkill_unregister(hdev->rfkill);
2710 		rfkill_destroy(hdev->rfkill);
2711 	}
2712 
2713 	device_del(&hdev->dev);
2714 	/* Actual cleanup is deferred until hci_release_dev(). */
2715 	hci_dev_put(hdev);
2716 }
2717 EXPORT_SYMBOL(hci_unregister_dev);
2718 
2719 /* Release HCI device */
2720 void hci_release_dev(struct hci_dev *hdev)
2721 {
2722 	debugfs_remove_recursive(hdev->debugfs);
2723 	kfree_const(hdev->hw_info);
2724 	kfree_const(hdev->fw_info);
2725 
2726 	destroy_workqueue(hdev->workqueue);
2727 	destroy_workqueue(hdev->req_workqueue);
2728 
2729 	hci_dev_lock(hdev);
2730 	hci_bdaddr_list_clear(&hdev->reject_list);
2731 	hci_bdaddr_list_clear(&hdev->accept_list);
2732 	hci_uuids_clear(hdev);
2733 	hci_link_keys_clear(hdev);
2734 	hci_smp_ltks_clear(hdev);
2735 	hci_smp_irks_clear(hdev);
2736 	hci_remote_oob_data_clear(hdev);
2737 	hci_adv_instances_clear(hdev);
2738 	hci_adv_monitors_clear(hdev);
2739 	hci_bdaddr_list_clear(&hdev->le_accept_list);
2740 	hci_bdaddr_list_clear(&hdev->le_resolv_list);
2741 	hci_conn_params_clear_all(hdev);
2742 	hci_discovery_filter_clear(hdev);
2743 	hci_blocked_keys_clear(hdev);
2744 	hci_codec_list_clear(&hdev->local_codecs);
2745 	msft_release(hdev);
2746 	hci_dev_unlock(hdev);
2747 
2748 	ida_destroy(&hdev->unset_handle_ida);
2749 	ida_free(&hci_index_ida, hdev->id);
2750 	kfree_skb(hdev->sent_cmd);
2751 	kfree_skb(hdev->req_skb);
2752 	kfree_skb(hdev->recv_event);
2753 	kfree(hdev);
2754 }
2755 EXPORT_SYMBOL(hci_release_dev);
2756 
2757 int hci_register_suspend_notifier(struct hci_dev *hdev)
2758 {
2759 	int ret = 0;
2760 
2761 	if (!hdev->suspend_notifier.notifier_call &&
2762 	    !test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) {
2763 		hdev->suspend_notifier.notifier_call = hci_suspend_notifier;
2764 		ret = register_pm_notifier(&hdev->suspend_notifier);
2765 	}
2766 
2767 	return ret;
2768 }
2769 
2770 int hci_unregister_suspend_notifier(struct hci_dev *hdev)
2771 {
2772 	int ret = 0;
2773 
2774 	if (hdev->suspend_notifier.notifier_call) {
2775 		ret = unregister_pm_notifier(&hdev->suspend_notifier);
2776 		if (!ret)
2777 			hdev->suspend_notifier.notifier_call = NULL;
2778 	}
2779 
2780 	return ret;
2781 }
2782 
2783 /* Cancel ongoing command synchronously:
2784  *
2785  * - Cancel command timer
2786  * - Reset command counter
2787  * - Cancel command request
2788  */
2789 static void hci_cancel_cmd_sync(struct hci_dev *hdev, int err)
2790 {
2791 	bt_dev_dbg(hdev, "err 0x%2.2x", err);
2792 
2793 	cancel_delayed_work_sync(&hdev->cmd_timer);
2794 	cancel_delayed_work_sync(&hdev->ncmd_timer);
2795 	atomic_set(&hdev->cmd_cnt, 1);
2796 
2797 	hci_cmd_sync_cancel_sync(hdev, err);
2798 }
2799 
2800 /* Suspend HCI device */
2801 int hci_suspend_dev(struct hci_dev *hdev)
2802 {
2803 	int ret;
2804 
2805 	bt_dev_dbg(hdev, "");
2806 
2807 	/* Suspend should only act on when powered. */
2808 	if (!hdev_is_powered(hdev) ||
2809 	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2810 		return 0;
2811 
2812 	/* If powering down don't attempt to suspend */
2813 	if (mgmt_powering_down(hdev))
2814 		return 0;
2815 
2816 	/* Cancel potentially blocking sync operation before suspend */
2817 	hci_cancel_cmd_sync(hdev, EHOSTDOWN);
2818 
2819 	hci_req_sync_lock(hdev);
2820 	ret = hci_suspend_sync(hdev);
2821 	hci_req_sync_unlock(hdev);
2822 
2823 	hci_clear_wake_reason(hdev);
2824 	mgmt_suspending(hdev, hdev->suspend_state);
2825 
2826 	hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
2827 	return ret;
2828 }
2829 EXPORT_SYMBOL(hci_suspend_dev);
2830 
2831 /* Resume HCI device */
2832 int hci_resume_dev(struct hci_dev *hdev)
2833 {
2834 	int ret;
2835 
2836 	bt_dev_dbg(hdev, "");
2837 
2838 	/* Resume should only act on when powered. */
2839 	if (!hdev_is_powered(hdev) ||
2840 	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2841 		return 0;
2842 
2843 	/* If powering down don't attempt to resume */
2844 	if (mgmt_powering_down(hdev))
2845 		return 0;
2846 
2847 	hci_req_sync_lock(hdev);
2848 	ret = hci_resume_sync(hdev);
2849 	hci_req_sync_unlock(hdev);
2850 
2851 	mgmt_resuming(hdev, hdev->wake_reason, &hdev->wake_addr,
2852 		      hdev->wake_addr_type);
2853 
2854 	hci_sock_dev_event(hdev, HCI_DEV_RESUME);
2855 	return ret;
2856 }
2857 EXPORT_SYMBOL(hci_resume_dev);
2858 
2859 /* Reset HCI device */
2860 int hci_reset_dev(struct hci_dev *hdev)
2861 {
2862 	static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
2863 	struct sk_buff *skb;
2864 
2865 	skb = bt_skb_alloc(3, GFP_ATOMIC);
2866 	if (!skb)
2867 		return -ENOMEM;
2868 
2869 	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
2870 	skb_put_data(skb, hw_err, 3);
2871 
2872 	bt_dev_err(hdev, "Injecting HCI hardware error event");
2873 
2874 	/* Send Hardware Error to upper stack */
2875 	return hci_recv_frame(hdev, skb);
2876 }
2877 EXPORT_SYMBOL(hci_reset_dev);
2878 
2879 static u8 hci_dev_classify_pkt_type(struct hci_dev *hdev, struct sk_buff *skb)
2880 {
2881 	if (hdev->classify_pkt_type)
2882 		return hdev->classify_pkt_type(hdev, skb);
2883 
2884 	return hci_skb_pkt_type(skb);
2885 }
2886 
2887 /* Receive frame from HCI drivers */
2888 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
2889 {
2890 	u8 dev_pkt_type;
2891 
2892 	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
2893 		      && !test_bit(HCI_INIT, &hdev->flags))) {
2894 		kfree_skb(skb);
2895 		return -ENXIO;
2896 	}
2897 
2898 	/* Check if the driver agree with packet type classification */
2899 	dev_pkt_type = hci_dev_classify_pkt_type(hdev, skb);
2900 	if (hci_skb_pkt_type(skb) != dev_pkt_type) {
2901 		hci_skb_pkt_type(skb) = dev_pkt_type;
2902 	}
2903 
2904 	switch (hci_skb_pkt_type(skb)) {
2905 	case HCI_EVENT_PKT:
2906 		break;
2907 	case HCI_ACLDATA_PKT:
2908 		/* Detect if ISO packet has been sent as ACL */
2909 		if (hci_conn_num(hdev, ISO_LINK)) {
2910 			__u16 handle = __le16_to_cpu(hci_acl_hdr(skb)->handle);
2911 			__u8 type;
2912 
2913 			type = hci_conn_lookup_type(hdev, hci_handle(handle));
2914 			if (type == ISO_LINK)
2915 				hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
2916 		}
2917 		break;
2918 	case HCI_SCODATA_PKT:
2919 		break;
2920 	case HCI_ISODATA_PKT:
2921 		break;
2922 	default:
2923 		kfree_skb(skb);
2924 		return -EINVAL;
2925 	}
2926 
2927 	/* Incoming skb */
2928 	bt_cb(skb)->incoming = 1;
2929 
2930 	/* Time stamp */
2931 	__net_timestamp(skb);
2932 
2933 	skb_queue_tail(&hdev->rx_q, skb);
2934 	queue_work(hdev->workqueue, &hdev->rx_work);
2935 
2936 	return 0;
2937 }
2938 EXPORT_SYMBOL(hci_recv_frame);
2939 
2940 /* Receive diagnostic message from HCI drivers */
2941 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
2942 {
2943 	/* Mark as diagnostic packet */
2944 	hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
2945 
2946 	/* Time stamp */
2947 	__net_timestamp(skb);
2948 
2949 	skb_queue_tail(&hdev->rx_q, skb);
2950 	queue_work(hdev->workqueue, &hdev->rx_work);
2951 
2952 	return 0;
2953 }
2954 EXPORT_SYMBOL(hci_recv_diag);
2955 
2956 void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
2957 {
2958 	va_list vargs;
2959 
2960 	va_start(vargs, fmt);
2961 	kfree_const(hdev->hw_info);
2962 	hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
2963 	va_end(vargs);
2964 }
2965 EXPORT_SYMBOL(hci_set_hw_info);
2966 
2967 void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
2968 {
2969 	va_list vargs;
2970 
2971 	va_start(vargs, fmt);
2972 	kfree_const(hdev->fw_info);
2973 	hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
2974 	va_end(vargs);
2975 }
2976 EXPORT_SYMBOL(hci_set_fw_info);
2977 
2978 /* ---- Interface to upper protocols ---- */
2979 
2980 int hci_register_cb(struct hci_cb *cb)
2981 {
2982 	BT_DBG("%p name %s", cb, cb->name);
2983 
2984 	mutex_lock(&hci_cb_list_lock);
2985 	list_add_tail(&cb->list, &hci_cb_list);
2986 	mutex_unlock(&hci_cb_list_lock);
2987 
2988 	return 0;
2989 }
2990 EXPORT_SYMBOL(hci_register_cb);
2991 
2992 int hci_unregister_cb(struct hci_cb *cb)
2993 {
2994 	BT_DBG("%p name %s", cb, cb->name);
2995 
2996 	mutex_lock(&hci_cb_list_lock);
2997 	list_del(&cb->list);
2998 	mutex_unlock(&hci_cb_list_lock);
2999 
3000 	return 0;
3001 }
3002 EXPORT_SYMBOL(hci_unregister_cb);
3003 
3004 static int hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3005 {
3006 	int err;
3007 
3008 	BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3009 	       skb->len);
3010 
3011 	/* Time stamp */
3012 	__net_timestamp(skb);
3013 
3014 	/* Send copy to monitor */
3015 	hci_send_to_monitor(hdev, skb);
3016 
3017 	if (atomic_read(&hdev->promisc)) {
3018 		/* Send copy to the sockets */
3019 		hci_send_to_sock(hdev, skb);
3020 	}
3021 
3022 	/* Get rid of skb owner, prior to sending to the driver. */
3023 	skb_orphan(skb);
3024 
3025 	if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3026 		kfree_skb(skb);
3027 		return -EINVAL;
3028 	}
3029 
3030 	err = hdev->send(hdev, skb);
3031 	if (err < 0) {
3032 		bt_dev_err(hdev, "sending frame failed (%d)", err);
3033 		kfree_skb(skb);
3034 		return err;
3035 	}
3036 
3037 	return 0;
3038 }
3039 
3040 /* Send HCI command */
3041 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3042 		 const void *param)
3043 {
3044 	struct sk_buff *skb;
3045 
3046 	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3047 
3048 	skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, NULL);
3049 	if (!skb) {
3050 		bt_dev_err(hdev, "no memory for command");
3051 		return -ENOMEM;
3052 	}
3053 
3054 	/* Stand-alone HCI commands must be flagged as
3055 	 * single-command requests.
3056 	 */
3057 	bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3058 
3059 	skb_queue_tail(&hdev->cmd_q, skb);
3060 	queue_work(hdev->workqueue, &hdev->cmd_work);
3061 
3062 	return 0;
3063 }
3064 
3065 int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
3066 		   const void *param)
3067 {
3068 	struct sk_buff *skb;
3069 
3070 	if (hci_opcode_ogf(opcode) != 0x3f) {
3071 		/* A controller receiving a command shall respond with either
3072 		 * a Command Status Event or a Command Complete Event.
3073 		 * Therefore, all standard HCI commands must be sent via the
3074 		 * standard API, using hci_send_cmd or hci_cmd_sync helpers.
3075 		 * Some vendors do not comply with this rule for vendor-specific
3076 		 * commands and do not return any event. We want to support
3077 		 * unresponded commands for such cases only.
3078 		 */
3079 		bt_dev_err(hdev, "unresponded command not supported");
3080 		return -EINVAL;
3081 	}
3082 
3083 	skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, NULL);
3084 	if (!skb) {
3085 		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
3086 			   opcode);
3087 		return -ENOMEM;
3088 	}
3089 
3090 	hci_send_frame(hdev, skb);
3091 
3092 	return 0;
3093 }
3094 EXPORT_SYMBOL(__hci_cmd_send);
3095 
3096 /* Get data from the previously sent command */
3097 static void *hci_cmd_data(struct sk_buff *skb, __u16 opcode)
3098 {
3099 	struct hci_command_hdr *hdr;
3100 
3101 	if (!skb || skb->len < HCI_COMMAND_HDR_SIZE)
3102 		return NULL;
3103 
3104 	hdr = (void *)skb->data;
3105 
3106 	if (hdr->opcode != cpu_to_le16(opcode))
3107 		return NULL;
3108 
3109 	return skb->data + HCI_COMMAND_HDR_SIZE;
3110 }
3111 
3112 /* Get data from the previously sent command */
3113 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3114 {
3115 	void *data;
3116 
3117 	/* Check if opcode matches last sent command */
3118 	data = hci_cmd_data(hdev->sent_cmd, opcode);
3119 	if (!data)
3120 		/* Check if opcode matches last request */
3121 		data = hci_cmd_data(hdev->req_skb, opcode);
3122 
3123 	return data;
3124 }
3125 
3126 /* Get data from last received event */
3127 void *hci_recv_event_data(struct hci_dev *hdev, __u8 event)
3128 {
3129 	struct hci_event_hdr *hdr;
3130 	int offset;
3131 
3132 	if (!hdev->recv_event)
3133 		return NULL;
3134 
3135 	hdr = (void *)hdev->recv_event->data;
3136 	offset = sizeof(*hdr);
3137 
3138 	if (hdr->evt != event) {
3139 		/* In case of LE metaevent check the subevent match */
3140 		if (hdr->evt == HCI_EV_LE_META) {
3141 			struct hci_ev_le_meta *ev;
3142 
3143 			ev = (void *)hdev->recv_event->data + offset;
3144 			offset += sizeof(*ev);
3145 			if (ev->subevent == event)
3146 				goto found;
3147 		}
3148 		return NULL;
3149 	}
3150 
3151 found:
3152 	bt_dev_dbg(hdev, "event 0x%2.2x", event);
3153 
3154 	return hdev->recv_event->data + offset;
3155 }
3156 
3157 /* Send ACL data */
3158 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3159 {
3160 	struct hci_acl_hdr *hdr;
3161 	int len = skb->len;
3162 
3163 	skb_push(skb, HCI_ACL_HDR_SIZE);
3164 	skb_reset_transport_header(skb);
3165 	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3166 	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3167 	hdr->dlen   = cpu_to_le16(len);
3168 }
3169 
3170 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3171 			  struct sk_buff *skb, __u16 flags)
3172 {
3173 	struct hci_conn *conn = chan->conn;
3174 	struct hci_dev *hdev = conn->hdev;
3175 	struct sk_buff *list;
3176 
3177 	skb->len = skb_headlen(skb);
3178 	skb->data_len = 0;
3179 
3180 	hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3181 
3182 	hci_add_acl_hdr(skb, conn->handle, flags);
3183 
3184 	list = skb_shinfo(skb)->frag_list;
3185 	if (!list) {
3186 		/* Non fragmented */
3187 		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3188 
3189 		skb_queue_tail(queue, skb);
3190 	} else {
3191 		/* Fragmented */
3192 		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3193 
3194 		skb_shinfo(skb)->frag_list = NULL;
3195 
3196 		/* Queue all fragments atomically. We need to use spin_lock_bh
3197 		 * here because of 6LoWPAN links, as there this function is
3198 		 * called from softirq and using normal spin lock could cause
3199 		 * deadlocks.
3200 		 */
3201 		spin_lock_bh(&queue->lock);
3202 
3203 		__skb_queue_tail(queue, skb);
3204 
3205 		flags &= ~ACL_START;
3206 		flags |= ACL_CONT;
3207 		do {
3208 			skb = list; list = list->next;
3209 
3210 			hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3211 			hci_add_acl_hdr(skb, conn->handle, flags);
3212 
3213 			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3214 
3215 			__skb_queue_tail(queue, skb);
3216 		} while (list);
3217 
3218 		spin_unlock_bh(&queue->lock);
3219 	}
3220 }
3221 
3222 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3223 {
3224 	struct hci_dev *hdev = chan->conn->hdev;
3225 
3226 	BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3227 
3228 	hci_queue_acl(chan, &chan->data_q, skb, flags);
3229 
3230 	queue_work(hdev->workqueue, &hdev->tx_work);
3231 }
3232 
3233 /* Send SCO data */
3234 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3235 {
3236 	struct hci_dev *hdev = conn->hdev;
3237 	struct hci_sco_hdr hdr;
3238 
3239 	BT_DBG("%s len %d", hdev->name, skb->len);
3240 
3241 	hdr.handle = cpu_to_le16(conn->handle);
3242 	hdr.dlen   = skb->len;
3243 
3244 	skb_push(skb, HCI_SCO_HDR_SIZE);
3245 	skb_reset_transport_header(skb);
3246 	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3247 
3248 	hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3249 
3250 	skb_queue_tail(&conn->data_q, skb);
3251 	queue_work(hdev->workqueue, &hdev->tx_work);
3252 }
3253 
3254 /* Send ISO data */
3255 static void hci_add_iso_hdr(struct sk_buff *skb, __u16 handle, __u8 flags)
3256 {
3257 	struct hci_iso_hdr *hdr;
3258 	int len = skb->len;
3259 
3260 	skb_push(skb, HCI_ISO_HDR_SIZE);
3261 	skb_reset_transport_header(skb);
3262 	hdr = (struct hci_iso_hdr *)skb_transport_header(skb);
3263 	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3264 	hdr->dlen   = cpu_to_le16(len);
3265 }
3266 
3267 static void hci_queue_iso(struct hci_conn *conn, struct sk_buff_head *queue,
3268 			  struct sk_buff *skb)
3269 {
3270 	struct hci_dev *hdev = conn->hdev;
3271 	struct sk_buff *list;
3272 	__u16 flags;
3273 
3274 	skb->len = skb_headlen(skb);
3275 	skb->data_len = 0;
3276 
3277 	hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3278 
3279 	list = skb_shinfo(skb)->frag_list;
3280 
3281 	flags = hci_iso_flags_pack(list ? ISO_START : ISO_SINGLE, 0x00);
3282 	hci_add_iso_hdr(skb, conn->handle, flags);
3283 
3284 	if (!list) {
3285 		/* Non fragmented */
3286 		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3287 
3288 		skb_queue_tail(queue, skb);
3289 	} else {
3290 		/* Fragmented */
3291 		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3292 
3293 		skb_shinfo(skb)->frag_list = NULL;
3294 
3295 		__skb_queue_tail(queue, skb);
3296 
3297 		do {
3298 			skb = list; list = list->next;
3299 
3300 			hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3301 			flags = hci_iso_flags_pack(list ? ISO_CONT : ISO_END,
3302 						   0x00);
3303 			hci_add_iso_hdr(skb, conn->handle, flags);
3304 
3305 			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3306 
3307 			__skb_queue_tail(queue, skb);
3308 		} while (list);
3309 	}
3310 }
3311 
3312 void hci_send_iso(struct hci_conn *conn, struct sk_buff *skb)
3313 {
3314 	struct hci_dev *hdev = conn->hdev;
3315 
3316 	BT_DBG("%s len %d", hdev->name, skb->len);
3317 
3318 	hci_queue_iso(conn, &conn->data_q, skb);
3319 
3320 	queue_work(hdev->workqueue, &hdev->tx_work);
3321 }
3322 
3323 /* ---- HCI TX task (outgoing data) ---- */
3324 
3325 /* HCI Connection scheduler */
3326 static inline void hci_quote_sent(struct hci_conn *conn, int num, int *quote)
3327 {
3328 	struct hci_dev *hdev;
3329 	int cnt, q;
3330 
3331 	if (!conn) {
3332 		*quote = 0;
3333 		return;
3334 	}
3335 
3336 	hdev = conn->hdev;
3337 
3338 	switch (conn->type) {
3339 	case ACL_LINK:
3340 		cnt = hdev->acl_cnt;
3341 		break;
3342 	case SCO_LINK:
3343 	case ESCO_LINK:
3344 		cnt = hdev->sco_cnt;
3345 		break;
3346 	case LE_LINK:
3347 		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3348 		break;
3349 	case ISO_LINK:
3350 		cnt = hdev->iso_mtu ? hdev->iso_cnt :
3351 			hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3352 		break;
3353 	default:
3354 		cnt = 0;
3355 		bt_dev_err(hdev, "unknown link type %d", conn->type);
3356 	}
3357 
3358 	q = cnt / num;
3359 	*quote = q ? q : 1;
3360 }
3361 
3362 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3363 				     int *quote)
3364 {
3365 	struct hci_conn_hash *h = &hdev->conn_hash;
3366 	struct hci_conn *conn = NULL, *c;
3367 	unsigned int num = 0, min = ~0;
3368 
3369 	/* We don't have to lock device here. Connections are always
3370 	 * added and removed with TX task disabled. */
3371 
3372 	rcu_read_lock();
3373 
3374 	list_for_each_entry_rcu(c, &h->list, list) {
3375 		if (c->type != type || skb_queue_empty(&c->data_q))
3376 			continue;
3377 
3378 		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3379 			continue;
3380 
3381 		num++;
3382 
3383 		if (c->sent < min) {
3384 			min  = c->sent;
3385 			conn = c;
3386 		}
3387 
3388 		if (hci_conn_num(hdev, type) == num)
3389 			break;
3390 	}
3391 
3392 	rcu_read_unlock();
3393 
3394 	hci_quote_sent(conn, num, quote);
3395 
3396 	BT_DBG("conn %p quote %d", conn, *quote);
3397 	return conn;
3398 }
3399 
3400 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3401 {
3402 	struct hci_conn_hash *h = &hdev->conn_hash;
3403 	struct hci_conn *c;
3404 
3405 	bt_dev_err(hdev, "link tx timeout");
3406 
3407 	rcu_read_lock();
3408 
3409 	/* Kill stalled connections */
3410 	list_for_each_entry_rcu(c, &h->list, list) {
3411 		if (c->type == type && c->sent) {
3412 			bt_dev_err(hdev, "killing stalled connection %pMR",
3413 				   &c->dst);
3414 			/* hci_disconnect might sleep, so, we have to release
3415 			 * the RCU read lock before calling it.
3416 			 */
3417 			rcu_read_unlock();
3418 			hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3419 			rcu_read_lock();
3420 		}
3421 	}
3422 
3423 	rcu_read_unlock();
3424 }
3425 
3426 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3427 				      int *quote)
3428 {
3429 	struct hci_conn_hash *h = &hdev->conn_hash;
3430 	struct hci_chan *chan = NULL;
3431 	unsigned int num = 0, min = ~0, cur_prio = 0;
3432 	struct hci_conn *conn;
3433 	int conn_num = 0;
3434 
3435 	BT_DBG("%s", hdev->name);
3436 
3437 	rcu_read_lock();
3438 
3439 	list_for_each_entry_rcu(conn, &h->list, list) {
3440 		struct hci_chan *tmp;
3441 
3442 		if (conn->type != type)
3443 			continue;
3444 
3445 		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3446 			continue;
3447 
3448 		conn_num++;
3449 
3450 		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3451 			struct sk_buff *skb;
3452 
3453 			if (skb_queue_empty(&tmp->data_q))
3454 				continue;
3455 
3456 			skb = skb_peek(&tmp->data_q);
3457 			if (skb->priority < cur_prio)
3458 				continue;
3459 
3460 			if (skb->priority > cur_prio) {
3461 				num = 0;
3462 				min = ~0;
3463 				cur_prio = skb->priority;
3464 			}
3465 
3466 			num++;
3467 
3468 			if (conn->sent < min) {
3469 				min  = conn->sent;
3470 				chan = tmp;
3471 			}
3472 		}
3473 
3474 		if (hci_conn_num(hdev, type) == conn_num)
3475 			break;
3476 	}
3477 
3478 	rcu_read_unlock();
3479 
3480 	if (!chan)
3481 		return NULL;
3482 
3483 	hci_quote_sent(chan->conn, num, quote);
3484 
3485 	BT_DBG("chan %p quote %d", chan, *quote);
3486 	return chan;
3487 }
3488 
3489 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3490 {
3491 	struct hci_conn_hash *h = &hdev->conn_hash;
3492 	struct hci_conn *conn;
3493 	int num = 0;
3494 
3495 	BT_DBG("%s", hdev->name);
3496 
3497 	rcu_read_lock();
3498 
3499 	list_for_each_entry_rcu(conn, &h->list, list) {
3500 		struct hci_chan *chan;
3501 
3502 		if (conn->type != type)
3503 			continue;
3504 
3505 		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3506 			continue;
3507 
3508 		num++;
3509 
3510 		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3511 			struct sk_buff *skb;
3512 
3513 			if (chan->sent) {
3514 				chan->sent = 0;
3515 				continue;
3516 			}
3517 
3518 			if (skb_queue_empty(&chan->data_q))
3519 				continue;
3520 
3521 			skb = skb_peek(&chan->data_q);
3522 			if (skb->priority >= HCI_PRIO_MAX - 1)
3523 				continue;
3524 
3525 			skb->priority = HCI_PRIO_MAX - 1;
3526 
3527 			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3528 			       skb->priority);
3529 		}
3530 
3531 		if (hci_conn_num(hdev, type) == num)
3532 			break;
3533 	}
3534 
3535 	rcu_read_unlock();
3536 
3537 }
3538 
3539 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt, u8 type)
3540 {
3541 	unsigned long last_tx;
3542 
3543 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
3544 		return;
3545 
3546 	switch (type) {
3547 	case LE_LINK:
3548 		last_tx = hdev->le_last_tx;
3549 		break;
3550 	default:
3551 		last_tx = hdev->acl_last_tx;
3552 		break;
3553 	}
3554 
3555 	/* tx timeout must be longer than maximum link supervision timeout
3556 	 * (40.9 seconds)
3557 	 */
3558 	if (!cnt && time_after(jiffies, last_tx + HCI_ACL_TX_TIMEOUT))
3559 		hci_link_tx_to(hdev, type);
3560 }
3561 
3562 /* Schedule SCO */
3563 static void hci_sched_sco(struct hci_dev *hdev)
3564 {
3565 	struct hci_conn *conn;
3566 	struct sk_buff *skb;
3567 	int quote;
3568 
3569 	BT_DBG("%s", hdev->name);
3570 
3571 	if (!hci_conn_num(hdev, SCO_LINK))
3572 		return;
3573 
3574 	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
3575 		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3576 			BT_DBG("skb %p len %d", skb, skb->len);
3577 			hci_send_frame(hdev, skb);
3578 
3579 			conn->sent++;
3580 			if (conn->sent == ~0)
3581 				conn->sent = 0;
3582 		}
3583 	}
3584 }
3585 
3586 static void hci_sched_esco(struct hci_dev *hdev)
3587 {
3588 	struct hci_conn *conn;
3589 	struct sk_buff *skb;
3590 	int quote;
3591 
3592 	BT_DBG("%s", hdev->name);
3593 
3594 	if (!hci_conn_num(hdev, ESCO_LINK))
3595 		return;
3596 
3597 	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3598 						     &quote))) {
3599 		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3600 			BT_DBG("skb %p len %d", skb, skb->len);
3601 			hci_send_frame(hdev, skb);
3602 
3603 			conn->sent++;
3604 			if (conn->sent == ~0)
3605 				conn->sent = 0;
3606 		}
3607 	}
3608 }
3609 
3610 static void hci_sched_acl_pkt(struct hci_dev *hdev)
3611 {
3612 	unsigned int cnt = hdev->acl_cnt;
3613 	struct hci_chan *chan;
3614 	struct sk_buff *skb;
3615 	int quote;
3616 
3617 	__check_timeout(hdev, cnt, ACL_LINK);
3618 
3619 	while (hdev->acl_cnt &&
3620 	       (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
3621 		u32 priority = (skb_peek(&chan->data_q))->priority;
3622 		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3623 			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3624 			       skb->len, skb->priority);
3625 
3626 			/* Stop if priority has changed */
3627 			if (skb->priority < priority)
3628 				break;
3629 
3630 			skb = skb_dequeue(&chan->data_q);
3631 
3632 			hci_conn_enter_active_mode(chan->conn,
3633 						   bt_cb(skb)->force_active);
3634 
3635 			hci_send_frame(hdev, skb);
3636 			hdev->acl_last_tx = jiffies;
3637 
3638 			hdev->acl_cnt--;
3639 			chan->sent++;
3640 			chan->conn->sent++;
3641 
3642 			/* Send pending SCO packets right away */
3643 			hci_sched_sco(hdev);
3644 			hci_sched_esco(hdev);
3645 		}
3646 	}
3647 
3648 	if (cnt != hdev->acl_cnt)
3649 		hci_prio_recalculate(hdev, ACL_LINK);
3650 }
3651 
3652 static void hci_sched_acl(struct hci_dev *hdev)
3653 {
3654 	BT_DBG("%s", hdev->name);
3655 
3656 	/* No ACL link over BR/EDR controller */
3657 	if (!hci_conn_num(hdev, ACL_LINK))
3658 		return;
3659 
3660 	hci_sched_acl_pkt(hdev);
3661 }
3662 
3663 static void hci_sched_le(struct hci_dev *hdev)
3664 {
3665 	struct hci_chan *chan;
3666 	struct sk_buff *skb;
3667 	int quote, cnt, tmp;
3668 
3669 	BT_DBG("%s", hdev->name);
3670 
3671 	if (!hci_conn_num(hdev, LE_LINK))
3672 		return;
3673 
3674 	cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
3675 
3676 	__check_timeout(hdev, cnt, LE_LINK);
3677 
3678 	tmp = cnt;
3679 	while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
3680 		u32 priority = (skb_peek(&chan->data_q))->priority;
3681 		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3682 			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3683 			       skb->len, skb->priority);
3684 
3685 			/* Stop if priority has changed */
3686 			if (skb->priority < priority)
3687 				break;
3688 
3689 			skb = skb_dequeue(&chan->data_q);
3690 
3691 			hci_send_frame(hdev, skb);
3692 			hdev->le_last_tx = jiffies;
3693 
3694 			cnt--;
3695 			chan->sent++;
3696 			chan->conn->sent++;
3697 
3698 			/* Send pending SCO packets right away */
3699 			hci_sched_sco(hdev);
3700 			hci_sched_esco(hdev);
3701 		}
3702 	}
3703 
3704 	if (hdev->le_pkts)
3705 		hdev->le_cnt = cnt;
3706 	else
3707 		hdev->acl_cnt = cnt;
3708 
3709 	if (cnt != tmp)
3710 		hci_prio_recalculate(hdev, LE_LINK);
3711 }
3712 
3713 /* Schedule CIS */
3714 static void hci_sched_iso(struct hci_dev *hdev)
3715 {
3716 	struct hci_conn *conn;
3717 	struct sk_buff *skb;
3718 	int quote, *cnt;
3719 
3720 	BT_DBG("%s", hdev->name);
3721 
3722 	if (!hci_conn_num(hdev, ISO_LINK))
3723 		return;
3724 
3725 	cnt = hdev->iso_pkts ? &hdev->iso_cnt :
3726 		hdev->le_pkts ? &hdev->le_cnt : &hdev->acl_cnt;
3727 	while (*cnt && (conn = hci_low_sent(hdev, ISO_LINK, &quote))) {
3728 		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3729 			BT_DBG("skb %p len %d", skb, skb->len);
3730 			hci_send_frame(hdev, skb);
3731 
3732 			conn->sent++;
3733 			if (conn->sent == ~0)
3734 				conn->sent = 0;
3735 			(*cnt)--;
3736 		}
3737 	}
3738 }
3739 
3740 static void hci_tx_work(struct work_struct *work)
3741 {
3742 	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
3743 	struct sk_buff *skb;
3744 
3745 	BT_DBG("%s acl %d sco %d le %d iso %d", hdev->name, hdev->acl_cnt,
3746 	       hdev->sco_cnt, hdev->le_cnt, hdev->iso_cnt);
3747 
3748 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3749 		/* Schedule queues and send stuff to HCI driver */
3750 		hci_sched_sco(hdev);
3751 		hci_sched_esco(hdev);
3752 		hci_sched_iso(hdev);
3753 		hci_sched_acl(hdev);
3754 		hci_sched_le(hdev);
3755 	}
3756 
3757 	/* Send next queued raw (unknown type) packet */
3758 	while ((skb = skb_dequeue(&hdev->raw_q)))
3759 		hci_send_frame(hdev, skb);
3760 }
3761 
3762 /* ----- HCI RX task (incoming data processing) ----- */
3763 
3764 /* ACL data packet */
3765 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3766 {
3767 	struct hci_acl_hdr *hdr = (void *) skb->data;
3768 	struct hci_conn *conn;
3769 	__u16 handle, flags;
3770 
3771 	skb_pull(skb, HCI_ACL_HDR_SIZE);
3772 
3773 	handle = __le16_to_cpu(hdr->handle);
3774 	flags  = hci_flags(handle);
3775 	handle = hci_handle(handle);
3776 
3777 	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3778 	       handle, flags);
3779 
3780 	hdev->stat.acl_rx++;
3781 
3782 	hci_dev_lock(hdev);
3783 	conn = hci_conn_hash_lookup_handle(hdev, handle);
3784 	hci_dev_unlock(hdev);
3785 
3786 	if (conn) {
3787 		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
3788 
3789 		/* Send to upper protocol */
3790 		l2cap_recv_acldata(conn, skb, flags);
3791 		return;
3792 	} else {
3793 		bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
3794 			   handle);
3795 	}
3796 
3797 	kfree_skb(skb);
3798 }
3799 
3800 /* SCO data packet */
3801 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3802 {
3803 	struct hci_sco_hdr *hdr = (void *) skb->data;
3804 	struct hci_conn *conn;
3805 	__u16 handle, flags;
3806 
3807 	skb_pull(skb, HCI_SCO_HDR_SIZE);
3808 
3809 	handle = __le16_to_cpu(hdr->handle);
3810 	flags  = hci_flags(handle);
3811 	handle = hci_handle(handle);
3812 
3813 	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3814 	       handle, flags);
3815 
3816 	hdev->stat.sco_rx++;
3817 
3818 	hci_dev_lock(hdev);
3819 	conn = hci_conn_hash_lookup_handle(hdev, handle);
3820 	hci_dev_unlock(hdev);
3821 
3822 	if (conn) {
3823 		/* Send to upper protocol */
3824 		hci_skb_pkt_status(skb) = flags & 0x03;
3825 		sco_recv_scodata(conn, skb);
3826 		return;
3827 	} else {
3828 		bt_dev_err_ratelimited(hdev, "SCO packet for unknown connection handle %d",
3829 				       handle);
3830 	}
3831 
3832 	kfree_skb(skb);
3833 }
3834 
3835 static void hci_isodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3836 {
3837 	struct hci_iso_hdr *hdr;
3838 	struct hci_conn *conn;
3839 	__u16 handle, flags;
3840 
3841 	hdr = skb_pull_data(skb, sizeof(*hdr));
3842 	if (!hdr) {
3843 		bt_dev_err(hdev, "ISO packet too small");
3844 		goto drop;
3845 	}
3846 
3847 	handle = __le16_to_cpu(hdr->handle);
3848 	flags  = hci_flags(handle);
3849 	handle = hci_handle(handle);
3850 
3851 	bt_dev_dbg(hdev, "len %d handle 0x%4.4x flags 0x%4.4x", skb->len,
3852 		   handle, flags);
3853 
3854 	hci_dev_lock(hdev);
3855 	conn = hci_conn_hash_lookup_handle(hdev, handle);
3856 	hci_dev_unlock(hdev);
3857 
3858 	if (!conn) {
3859 		bt_dev_err(hdev, "ISO packet for unknown connection handle %d",
3860 			   handle);
3861 		goto drop;
3862 	}
3863 
3864 	/* Send to upper protocol */
3865 	iso_recv(conn, skb, flags);
3866 	return;
3867 
3868 drop:
3869 	kfree_skb(skb);
3870 }
3871 
3872 static bool hci_req_is_complete(struct hci_dev *hdev)
3873 {
3874 	struct sk_buff *skb;
3875 
3876 	skb = skb_peek(&hdev->cmd_q);
3877 	if (!skb)
3878 		return true;
3879 
3880 	return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
3881 }
3882 
3883 static void hci_resend_last(struct hci_dev *hdev)
3884 {
3885 	struct hci_command_hdr *sent;
3886 	struct sk_buff *skb;
3887 	u16 opcode;
3888 
3889 	if (!hdev->sent_cmd)
3890 		return;
3891 
3892 	sent = (void *) hdev->sent_cmd->data;
3893 	opcode = __le16_to_cpu(sent->opcode);
3894 	if (opcode == HCI_OP_RESET)
3895 		return;
3896 
3897 	skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
3898 	if (!skb)
3899 		return;
3900 
3901 	skb_queue_head(&hdev->cmd_q, skb);
3902 	queue_work(hdev->workqueue, &hdev->cmd_work);
3903 }
3904 
3905 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
3906 			  hci_req_complete_t *req_complete,
3907 			  hci_req_complete_skb_t *req_complete_skb)
3908 {
3909 	struct sk_buff *skb;
3910 	unsigned long flags;
3911 
3912 	BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
3913 
3914 	/* If the completed command doesn't match the last one that was
3915 	 * sent we need to do special handling of it.
3916 	 */
3917 	if (!hci_sent_cmd_data(hdev, opcode)) {
3918 		/* Some CSR based controllers generate a spontaneous
3919 		 * reset complete event during init and any pending
3920 		 * command will never be completed. In such a case we
3921 		 * need to resend whatever was the last sent
3922 		 * command.
3923 		 */
3924 		if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
3925 			hci_resend_last(hdev);
3926 
3927 		return;
3928 	}
3929 
3930 	/* If we reach this point this event matches the last command sent */
3931 	hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
3932 
3933 	/* If the command succeeded and there's still more commands in
3934 	 * this request the request is not yet complete.
3935 	 */
3936 	if (!status && !hci_req_is_complete(hdev))
3937 		return;
3938 
3939 	skb = hdev->req_skb;
3940 
3941 	/* If this was the last command in a request the complete
3942 	 * callback would be found in hdev->req_skb instead of the
3943 	 * command queue (hdev->cmd_q).
3944 	 */
3945 	if (skb && bt_cb(skb)->hci.req_flags & HCI_REQ_SKB) {
3946 		*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
3947 		return;
3948 	}
3949 
3950 	if (skb && bt_cb(skb)->hci.req_complete) {
3951 		*req_complete = bt_cb(skb)->hci.req_complete;
3952 		return;
3953 	}
3954 
3955 	/* Remove all pending commands belonging to this request */
3956 	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
3957 	while ((skb = __skb_dequeue(&hdev->cmd_q))) {
3958 		if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
3959 			__skb_queue_head(&hdev->cmd_q, skb);
3960 			break;
3961 		}
3962 
3963 		if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
3964 			*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
3965 		else
3966 			*req_complete = bt_cb(skb)->hci.req_complete;
3967 		dev_kfree_skb_irq(skb);
3968 	}
3969 	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
3970 }
3971 
3972 static void hci_rx_work(struct work_struct *work)
3973 {
3974 	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
3975 	struct sk_buff *skb;
3976 
3977 	BT_DBG("%s", hdev->name);
3978 
3979 	/* The kcov_remote functions used for collecting packet parsing
3980 	 * coverage information from this background thread and associate
3981 	 * the coverage with the syscall's thread which originally injected
3982 	 * the packet. This helps fuzzing the kernel.
3983 	 */
3984 	for (; (skb = skb_dequeue(&hdev->rx_q)); kcov_remote_stop()) {
3985 		kcov_remote_start_common(skb_get_kcov_handle(skb));
3986 
3987 		/* Send copy to monitor */
3988 		hci_send_to_monitor(hdev, skb);
3989 
3990 		if (atomic_read(&hdev->promisc)) {
3991 			/* Send copy to the sockets */
3992 			hci_send_to_sock(hdev, skb);
3993 		}
3994 
3995 		/* If the device has been opened in HCI_USER_CHANNEL,
3996 		 * the userspace has exclusive access to device.
3997 		 * When device is HCI_INIT, we still need to process
3998 		 * the data packets to the driver in order
3999 		 * to complete its setup().
4000 		 */
4001 		if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4002 		    !test_bit(HCI_INIT, &hdev->flags)) {
4003 			kfree_skb(skb);
4004 			continue;
4005 		}
4006 
4007 		if (test_bit(HCI_INIT, &hdev->flags)) {
4008 			/* Don't process data packets in this states. */
4009 			switch (hci_skb_pkt_type(skb)) {
4010 			case HCI_ACLDATA_PKT:
4011 			case HCI_SCODATA_PKT:
4012 			case HCI_ISODATA_PKT:
4013 				kfree_skb(skb);
4014 				continue;
4015 			}
4016 		}
4017 
4018 		/* Process frame */
4019 		switch (hci_skb_pkt_type(skb)) {
4020 		case HCI_EVENT_PKT:
4021 			BT_DBG("%s Event packet", hdev->name);
4022 			hci_event_packet(hdev, skb);
4023 			break;
4024 
4025 		case HCI_ACLDATA_PKT:
4026 			BT_DBG("%s ACL data packet", hdev->name);
4027 			hci_acldata_packet(hdev, skb);
4028 			break;
4029 
4030 		case HCI_SCODATA_PKT:
4031 			BT_DBG("%s SCO data packet", hdev->name);
4032 			hci_scodata_packet(hdev, skb);
4033 			break;
4034 
4035 		case HCI_ISODATA_PKT:
4036 			BT_DBG("%s ISO data packet", hdev->name);
4037 			hci_isodata_packet(hdev, skb);
4038 			break;
4039 
4040 		default:
4041 			kfree_skb(skb);
4042 			break;
4043 		}
4044 	}
4045 }
4046 
4047 static void hci_send_cmd_sync(struct hci_dev *hdev, struct sk_buff *skb)
4048 {
4049 	int err;
4050 
4051 	bt_dev_dbg(hdev, "skb %p", skb);
4052 
4053 	kfree_skb(hdev->sent_cmd);
4054 
4055 	hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4056 	if (!hdev->sent_cmd) {
4057 		skb_queue_head(&hdev->cmd_q, skb);
4058 		queue_work(hdev->workqueue, &hdev->cmd_work);
4059 		return;
4060 	}
4061 
4062 	err = hci_send_frame(hdev, skb);
4063 	if (err < 0) {
4064 		hci_cmd_sync_cancel_sync(hdev, -err);
4065 		return;
4066 	}
4067 
4068 	if (hdev->req_status == HCI_REQ_PEND &&
4069 	    !hci_dev_test_and_set_flag(hdev, HCI_CMD_PENDING)) {
4070 		kfree_skb(hdev->req_skb);
4071 		hdev->req_skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4072 	}
4073 
4074 	atomic_dec(&hdev->cmd_cnt);
4075 }
4076 
4077 static void hci_cmd_work(struct work_struct *work)
4078 {
4079 	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4080 	struct sk_buff *skb;
4081 
4082 	BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4083 	       atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4084 
4085 	/* Send queued commands */
4086 	if (atomic_read(&hdev->cmd_cnt)) {
4087 		skb = skb_dequeue(&hdev->cmd_q);
4088 		if (!skb)
4089 			return;
4090 
4091 		hci_send_cmd_sync(hdev, skb);
4092 
4093 		rcu_read_lock();
4094 		if (test_bit(HCI_RESET, &hdev->flags) ||
4095 		    hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
4096 			cancel_delayed_work(&hdev->cmd_timer);
4097 		else
4098 			queue_delayed_work(hdev->workqueue, &hdev->cmd_timer,
4099 					   HCI_CMD_TIMEOUT);
4100 		rcu_read_unlock();
4101 	}
4102 }
4103