xref: /linux/net/bluetooth/hci_core.c (revision 16e5ac127d8d18adf85fe5ba847d77b58d1ed418)
1 /*
2    BlueZ - Bluetooth protocol stack for Linux
3    Copyright (C) 2000-2001 Qualcomm Incorporated
4    Copyright (C) 2011 ProFUSION Embedded Systems
5 
6    Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License version 2 as
10    published by the Free Software Foundation;
11 
12    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 
21    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23    SOFTWARE IS DISCLAIMED.
24 */
25 
26 /* Bluetooth HCI core. */
27 
28 #include <linux/export.h>
29 #include <linux/rfkill.h>
30 #include <linux/debugfs.h>
31 #include <linux/crypto.h>
32 #include <linux/kcov.h>
33 #include <linux/property.h>
34 #include <linux/suspend.h>
35 #include <linux/wait.h>
36 #include <asm/unaligned.h>
37 
38 #include <net/bluetooth/bluetooth.h>
39 #include <net/bluetooth/hci_core.h>
40 #include <net/bluetooth/l2cap.h>
41 #include <net/bluetooth/mgmt.h>
42 
43 #include "hci_request.h"
44 #include "hci_debugfs.h"
45 #include "smp.h"
46 #include "leds.h"
47 #include "msft.h"
48 #include "aosp.h"
49 #include "hci_codec.h"
50 
51 static void hci_rx_work(struct work_struct *work);
52 static void hci_cmd_work(struct work_struct *work);
53 static void hci_tx_work(struct work_struct *work);
54 
55 /* HCI device list */
56 LIST_HEAD(hci_dev_list);
57 DEFINE_RWLOCK(hci_dev_list_lock);
58 
59 /* HCI callback list */
60 LIST_HEAD(hci_cb_list);
61 DEFINE_MUTEX(hci_cb_list_lock);
62 
63 /* HCI ID Numbering */
64 static DEFINE_IDA(hci_index_ida);
65 
66 static int hci_scan_req(struct hci_request *req, unsigned long opt)
67 {
68 	__u8 scan = opt;
69 
70 	BT_DBG("%s %x", req->hdev->name, scan);
71 
72 	/* Inquiry and Page scans */
73 	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
74 	return 0;
75 }
76 
77 static int hci_auth_req(struct hci_request *req, unsigned long opt)
78 {
79 	__u8 auth = opt;
80 
81 	BT_DBG("%s %x", req->hdev->name, auth);
82 
83 	/* Authentication */
84 	hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
85 	return 0;
86 }
87 
88 static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
89 {
90 	__u8 encrypt = opt;
91 
92 	BT_DBG("%s %x", req->hdev->name, encrypt);
93 
94 	/* Encryption */
95 	hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
96 	return 0;
97 }
98 
99 static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
100 {
101 	__le16 policy = cpu_to_le16(opt);
102 
103 	BT_DBG("%s %x", req->hdev->name, policy);
104 
105 	/* Default link policy */
106 	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
107 	return 0;
108 }
109 
110 /* Get HCI device by index.
111  * Device is held on return. */
112 struct hci_dev *hci_dev_get(int index)
113 {
114 	struct hci_dev *hdev = NULL, *d;
115 
116 	BT_DBG("%d", index);
117 
118 	if (index < 0)
119 		return NULL;
120 
121 	read_lock(&hci_dev_list_lock);
122 	list_for_each_entry(d, &hci_dev_list, list) {
123 		if (d->id == index) {
124 			hdev = hci_dev_hold(d);
125 			break;
126 		}
127 	}
128 	read_unlock(&hci_dev_list_lock);
129 	return hdev;
130 }
131 
132 /* ---- Inquiry support ---- */
133 
134 bool hci_discovery_active(struct hci_dev *hdev)
135 {
136 	struct discovery_state *discov = &hdev->discovery;
137 
138 	switch (discov->state) {
139 	case DISCOVERY_FINDING:
140 	case DISCOVERY_RESOLVING:
141 		return true;
142 
143 	default:
144 		return false;
145 	}
146 }
147 
148 void hci_discovery_set_state(struct hci_dev *hdev, int state)
149 {
150 	int old_state = hdev->discovery.state;
151 
152 	BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
153 
154 	if (old_state == state)
155 		return;
156 
157 	hdev->discovery.state = state;
158 
159 	switch (state) {
160 	case DISCOVERY_STOPPED:
161 		hci_update_passive_scan(hdev);
162 
163 		if (old_state != DISCOVERY_STARTING)
164 			mgmt_discovering(hdev, 0);
165 		break;
166 	case DISCOVERY_STARTING:
167 		break;
168 	case DISCOVERY_FINDING:
169 		mgmt_discovering(hdev, 1);
170 		break;
171 	case DISCOVERY_RESOLVING:
172 		break;
173 	case DISCOVERY_STOPPING:
174 		break;
175 	}
176 }
177 
178 void hci_inquiry_cache_flush(struct hci_dev *hdev)
179 {
180 	struct discovery_state *cache = &hdev->discovery;
181 	struct inquiry_entry *p, *n;
182 
183 	list_for_each_entry_safe(p, n, &cache->all, all) {
184 		list_del(&p->all);
185 		kfree(p);
186 	}
187 
188 	INIT_LIST_HEAD(&cache->unknown);
189 	INIT_LIST_HEAD(&cache->resolve);
190 }
191 
192 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
193 					       bdaddr_t *bdaddr)
194 {
195 	struct discovery_state *cache = &hdev->discovery;
196 	struct inquiry_entry *e;
197 
198 	BT_DBG("cache %p, %pMR", cache, bdaddr);
199 
200 	list_for_each_entry(e, &cache->all, all) {
201 		if (!bacmp(&e->data.bdaddr, bdaddr))
202 			return e;
203 	}
204 
205 	return NULL;
206 }
207 
208 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
209 						       bdaddr_t *bdaddr)
210 {
211 	struct discovery_state *cache = &hdev->discovery;
212 	struct inquiry_entry *e;
213 
214 	BT_DBG("cache %p, %pMR", cache, bdaddr);
215 
216 	list_for_each_entry(e, &cache->unknown, list) {
217 		if (!bacmp(&e->data.bdaddr, bdaddr))
218 			return e;
219 	}
220 
221 	return NULL;
222 }
223 
224 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
225 						       bdaddr_t *bdaddr,
226 						       int state)
227 {
228 	struct discovery_state *cache = &hdev->discovery;
229 	struct inquiry_entry *e;
230 
231 	BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
232 
233 	list_for_each_entry(e, &cache->resolve, list) {
234 		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
235 			return e;
236 		if (!bacmp(&e->data.bdaddr, bdaddr))
237 			return e;
238 	}
239 
240 	return NULL;
241 }
242 
243 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
244 				      struct inquiry_entry *ie)
245 {
246 	struct discovery_state *cache = &hdev->discovery;
247 	struct list_head *pos = &cache->resolve;
248 	struct inquiry_entry *p;
249 
250 	list_del(&ie->list);
251 
252 	list_for_each_entry(p, &cache->resolve, list) {
253 		if (p->name_state != NAME_PENDING &&
254 		    abs(p->data.rssi) >= abs(ie->data.rssi))
255 			break;
256 		pos = &p->list;
257 	}
258 
259 	list_add(&ie->list, pos);
260 }
261 
262 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
263 			     bool name_known)
264 {
265 	struct discovery_state *cache = &hdev->discovery;
266 	struct inquiry_entry *ie;
267 	u32 flags = 0;
268 
269 	BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
270 
271 	hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
272 
273 	if (!data->ssp_mode)
274 		flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
275 
276 	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
277 	if (ie) {
278 		if (!ie->data.ssp_mode)
279 			flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
280 
281 		if (ie->name_state == NAME_NEEDED &&
282 		    data->rssi != ie->data.rssi) {
283 			ie->data.rssi = data->rssi;
284 			hci_inquiry_cache_update_resolve(hdev, ie);
285 		}
286 
287 		goto update;
288 	}
289 
290 	/* Entry not in the cache. Add new one. */
291 	ie = kzalloc(sizeof(*ie), GFP_KERNEL);
292 	if (!ie) {
293 		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
294 		goto done;
295 	}
296 
297 	list_add(&ie->all, &cache->all);
298 
299 	if (name_known) {
300 		ie->name_state = NAME_KNOWN;
301 	} else {
302 		ie->name_state = NAME_NOT_KNOWN;
303 		list_add(&ie->list, &cache->unknown);
304 	}
305 
306 update:
307 	if (name_known && ie->name_state != NAME_KNOWN &&
308 	    ie->name_state != NAME_PENDING) {
309 		ie->name_state = NAME_KNOWN;
310 		list_del(&ie->list);
311 	}
312 
313 	memcpy(&ie->data, data, sizeof(*data));
314 	ie->timestamp = jiffies;
315 	cache->timestamp = jiffies;
316 
317 	if (ie->name_state == NAME_NOT_KNOWN)
318 		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
319 
320 done:
321 	return flags;
322 }
323 
324 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
325 {
326 	struct discovery_state *cache = &hdev->discovery;
327 	struct inquiry_info *info = (struct inquiry_info *) buf;
328 	struct inquiry_entry *e;
329 	int copied = 0;
330 
331 	list_for_each_entry(e, &cache->all, all) {
332 		struct inquiry_data *data = &e->data;
333 
334 		if (copied >= num)
335 			break;
336 
337 		bacpy(&info->bdaddr, &data->bdaddr);
338 		info->pscan_rep_mode	= data->pscan_rep_mode;
339 		info->pscan_period_mode	= data->pscan_period_mode;
340 		info->pscan_mode	= data->pscan_mode;
341 		memcpy(info->dev_class, data->dev_class, 3);
342 		info->clock_offset	= data->clock_offset;
343 
344 		info++;
345 		copied++;
346 	}
347 
348 	BT_DBG("cache %p, copied %d", cache, copied);
349 	return copied;
350 }
351 
352 static int hci_inq_req(struct hci_request *req, unsigned long opt)
353 {
354 	struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
355 	struct hci_dev *hdev = req->hdev;
356 	struct hci_cp_inquiry cp;
357 
358 	BT_DBG("%s", hdev->name);
359 
360 	if (test_bit(HCI_INQUIRY, &hdev->flags))
361 		return 0;
362 
363 	/* Start Inquiry */
364 	memcpy(&cp.lap, &ir->lap, 3);
365 	cp.length  = ir->length;
366 	cp.num_rsp = ir->num_rsp;
367 	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
368 
369 	return 0;
370 }
371 
372 int hci_inquiry(void __user *arg)
373 {
374 	__u8 __user *ptr = arg;
375 	struct hci_inquiry_req ir;
376 	struct hci_dev *hdev;
377 	int err = 0, do_inquiry = 0, max_rsp;
378 	long timeo;
379 	__u8 *buf;
380 
381 	if (copy_from_user(&ir, ptr, sizeof(ir)))
382 		return -EFAULT;
383 
384 	hdev = hci_dev_get(ir.dev_id);
385 	if (!hdev)
386 		return -ENODEV;
387 
388 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
389 		err = -EBUSY;
390 		goto done;
391 	}
392 
393 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
394 		err = -EOPNOTSUPP;
395 		goto done;
396 	}
397 
398 	if (hdev->dev_type != HCI_PRIMARY) {
399 		err = -EOPNOTSUPP;
400 		goto done;
401 	}
402 
403 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
404 		err = -EOPNOTSUPP;
405 		goto done;
406 	}
407 
408 	/* Restrict maximum inquiry length to 60 seconds */
409 	if (ir.length > 60) {
410 		err = -EINVAL;
411 		goto done;
412 	}
413 
414 	hci_dev_lock(hdev);
415 	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
416 	    inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
417 		hci_inquiry_cache_flush(hdev);
418 		do_inquiry = 1;
419 	}
420 	hci_dev_unlock(hdev);
421 
422 	timeo = ir.length * msecs_to_jiffies(2000);
423 
424 	if (do_inquiry) {
425 		err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
426 				   timeo, NULL);
427 		if (err < 0)
428 			goto done;
429 
430 		/* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
431 		 * cleared). If it is interrupted by a signal, return -EINTR.
432 		 */
433 		if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
434 				TASK_INTERRUPTIBLE)) {
435 			err = -EINTR;
436 			goto done;
437 		}
438 	}
439 
440 	/* for unlimited number of responses we will use buffer with
441 	 * 255 entries
442 	 */
443 	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
444 
445 	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
446 	 * copy it to the user space.
447 	 */
448 	buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
449 	if (!buf) {
450 		err = -ENOMEM;
451 		goto done;
452 	}
453 
454 	hci_dev_lock(hdev);
455 	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
456 	hci_dev_unlock(hdev);
457 
458 	BT_DBG("num_rsp %d", ir.num_rsp);
459 
460 	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
461 		ptr += sizeof(ir);
462 		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
463 				 ir.num_rsp))
464 			err = -EFAULT;
465 	} else
466 		err = -EFAULT;
467 
468 	kfree(buf);
469 
470 done:
471 	hci_dev_put(hdev);
472 	return err;
473 }
474 
475 static int hci_dev_do_open(struct hci_dev *hdev)
476 {
477 	int ret = 0;
478 
479 	BT_DBG("%s %p", hdev->name, hdev);
480 
481 	hci_req_sync_lock(hdev);
482 
483 	ret = hci_dev_open_sync(hdev);
484 
485 	hci_req_sync_unlock(hdev);
486 	return ret;
487 }
488 
489 /* ---- HCI ioctl helpers ---- */
490 
491 int hci_dev_open(__u16 dev)
492 {
493 	struct hci_dev *hdev;
494 	int err;
495 
496 	hdev = hci_dev_get(dev);
497 	if (!hdev)
498 		return -ENODEV;
499 
500 	/* Devices that are marked as unconfigured can only be powered
501 	 * up as user channel. Trying to bring them up as normal devices
502 	 * will result into a failure. Only user channel operation is
503 	 * possible.
504 	 *
505 	 * When this function is called for a user channel, the flag
506 	 * HCI_USER_CHANNEL will be set first before attempting to
507 	 * open the device.
508 	 */
509 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
510 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
511 		err = -EOPNOTSUPP;
512 		goto done;
513 	}
514 
515 	/* We need to ensure that no other power on/off work is pending
516 	 * before proceeding to call hci_dev_do_open. This is
517 	 * particularly important if the setup procedure has not yet
518 	 * completed.
519 	 */
520 	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
521 		cancel_delayed_work(&hdev->power_off);
522 
523 	/* After this call it is guaranteed that the setup procedure
524 	 * has finished. This means that error conditions like RFKILL
525 	 * or no valid public or static random address apply.
526 	 */
527 	flush_workqueue(hdev->req_workqueue);
528 
529 	/* For controllers not using the management interface and that
530 	 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
531 	 * so that pairing works for them. Once the management interface
532 	 * is in use this bit will be cleared again and userspace has
533 	 * to explicitly enable it.
534 	 */
535 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
536 	    !hci_dev_test_flag(hdev, HCI_MGMT))
537 		hci_dev_set_flag(hdev, HCI_BONDABLE);
538 
539 	err = hci_dev_do_open(hdev);
540 
541 done:
542 	hci_dev_put(hdev);
543 	return err;
544 }
545 
546 int hci_dev_do_close(struct hci_dev *hdev)
547 {
548 	int err;
549 
550 	BT_DBG("%s %p", hdev->name, hdev);
551 
552 	hci_req_sync_lock(hdev);
553 
554 	err = hci_dev_close_sync(hdev);
555 
556 	hci_req_sync_unlock(hdev);
557 
558 	return err;
559 }
560 
561 int hci_dev_close(__u16 dev)
562 {
563 	struct hci_dev *hdev;
564 	int err;
565 
566 	hdev = hci_dev_get(dev);
567 	if (!hdev)
568 		return -ENODEV;
569 
570 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
571 		err = -EBUSY;
572 		goto done;
573 	}
574 
575 	cancel_work_sync(&hdev->power_on);
576 	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
577 		cancel_delayed_work(&hdev->power_off);
578 
579 	err = hci_dev_do_close(hdev);
580 
581 done:
582 	hci_dev_put(hdev);
583 	return err;
584 }
585 
586 static int hci_dev_do_reset(struct hci_dev *hdev)
587 {
588 	int ret;
589 
590 	BT_DBG("%s %p", hdev->name, hdev);
591 
592 	hci_req_sync_lock(hdev);
593 
594 	/* Drop queues */
595 	skb_queue_purge(&hdev->rx_q);
596 	skb_queue_purge(&hdev->cmd_q);
597 
598 	/* Cancel these to avoid queueing non-chained pending work */
599 	hci_dev_set_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
600 	/* Wait for
601 	 *
602 	 *    if (!hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
603 	 *        queue_delayed_work(&hdev->{cmd,ncmd}_timer)
604 	 *
605 	 * inside RCU section to see the flag or complete scheduling.
606 	 */
607 	synchronize_rcu();
608 	/* Explicitly cancel works in case scheduled after setting the flag. */
609 	cancel_delayed_work(&hdev->cmd_timer);
610 	cancel_delayed_work(&hdev->ncmd_timer);
611 
612 	/* Avoid potential lockdep warnings from the *_flush() calls by
613 	 * ensuring the workqueue is empty up front.
614 	 */
615 	drain_workqueue(hdev->workqueue);
616 
617 	hci_dev_lock(hdev);
618 	hci_inquiry_cache_flush(hdev);
619 	hci_conn_hash_flush(hdev);
620 	hci_dev_unlock(hdev);
621 
622 	if (hdev->flush)
623 		hdev->flush(hdev);
624 
625 	hci_dev_clear_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
626 
627 	atomic_set(&hdev->cmd_cnt, 1);
628 	hdev->acl_cnt = 0;
629 	hdev->sco_cnt = 0;
630 	hdev->le_cnt = 0;
631 	hdev->iso_cnt = 0;
632 
633 	ret = hci_reset_sync(hdev);
634 
635 	hci_req_sync_unlock(hdev);
636 	return ret;
637 }
638 
639 int hci_dev_reset(__u16 dev)
640 {
641 	struct hci_dev *hdev;
642 	int err;
643 
644 	hdev = hci_dev_get(dev);
645 	if (!hdev)
646 		return -ENODEV;
647 
648 	if (!test_bit(HCI_UP, &hdev->flags)) {
649 		err = -ENETDOWN;
650 		goto done;
651 	}
652 
653 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
654 		err = -EBUSY;
655 		goto done;
656 	}
657 
658 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
659 		err = -EOPNOTSUPP;
660 		goto done;
661 	}
662 
663 	err = hci_dev_do_reset(hdev);
664 
665 done:
666 	hci_dev_put(hdev);
667 	return err;
668 }
669 
670 int hci_dev_reset_stat(__u16 dev)
671 {
672 	struct hci_dev *hdev;
673 	int ret = 0;
674 
675 	hdev = hci_dev_get(dev);
676 	if (!hdev)
677 		return -ENODEV;
678 
679 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
680 		ret = -EBUSY;
681 		goto done;
682 	}
683 
684 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
685 		ret = -EOPNOTSUPP;
686 		goto done;
687 	}
688 
689 	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
690 
691 done:
692 	hci_dev_put(hdev);
693 	return ret;
694 }
695 
696 static void hci_update_passive_scan_state(struct hci_dev *hdev, u8 scan)
697 {
698 	bool conn_changed, discov_changed;
699 
700 	BT_DBG("%s scan 0x%02x", hdev->name, scan);
701 
702 	if ((scan & SCAN_PAGE))
703 		conn_changed = !hci_dev_test_and_set_flag(hdev,
704 							  HCI_CONNECTABLE);
705 	else
706 		conn_changed = hci_dev_test_and_clear_flag(hdev,
707 							   HCI_CONNECTABLE);
708 
709 	if ((scan & SCAN_INQUIRY)) {
710 		discov_changed = !hci_dev_test_and_set_flag(hdev,
711 							    HCI_DISCOVERABLE);
712 	} else {
713 		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
714 		discov_changed = hci_dev_test_and_clear_flag(hdev,
715 							     HCI_DISCOVERABLE);
716 	}
717 
718 	if (!hci_dev_test_flag(hdev, HCI_MGMT))
719 		return;
720 
721 	if (conn_changed || discov_changed) {
722 		/* In case this was disabled through mgmt */
723 		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
724 
725 		if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
726 			hci_update_adv_data(hdev, hdev->cur_adv_instance);
727 
728 		mgmt_new_settings(hdev);
729 	}
730 }
731 
732 int hci_dev_cmd(unsigned int cmd, void __user *arg)
733 {
734 	struct hci_dev *hdev;
735 	struct hci_dev_req dr;
736 	int err = 0;
737 
738 	if (copy_from_user(&dr, arg, sizeof(dr)))
739 		return -EFAULT;
740 
741 	hdev = hci_dev_get(dr.dev_id);
742 	if (!hdev)
743 		return -ENODEV;
744 
745 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
746 		err = -EBUSY;
747 		goto done;
748 	}
749 
750 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
751 		err = -EOPNOTSUPP;
752 		goto done;
753 	}
754 
755 	if (hdev->dev_type != HCI_PRIMARY) {
756 		err = -EOPNOTSUPP;
757 		goto done;
758 	}
759 
760 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
761 		err = -EOPNOTSUPP;
762 		goto done;
763 	}
764 
765 	switch (cmd) {
766 	case HCISETAUTH:
767 		err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
768 				   HCI_INIT_TIMEOUT, NULL);
769 		break;
770 
771 	case HCISETENCRYPT:
772 		if (!lmp_encrypt_capable(hdev)) {
773 			err = -EOPNOTSUPP;
774 			break;
775 		}
776 
777 		if (!test_bit(HCI_AUTH, &hdev->flags)) {
778 			/* Auth must be enabled first */
779 			err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
780 					   HCI_INIT_TIMEOUT, NULL);
781 			if (err)
782 				break;
783 		}
784 
785 		err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
786 				   HCI_INIT_TIMEOUT, NULL);
787 		break;
788 
789 	case HCISETSCAN:
790 		err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
791 				   HCI_INIT_TIMEOUT, NULL);
792 
793 		/* Ensure that the connectable and discoverable states
794 		 * get correctly modified as this was a non-mgmt change.
795 		 */
796 		if (!err)
797 			hci_update_passive_scan_state(hdev, dr.dev_opt);
798 		break;
799 
800 	case HCISETLINKPOL:
801 		err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
802 				   HCI_INIT_TIMEOUT, NULL);
803 		break;
804 
805 	case HCISETLINKMODE:
806 		hdev->link_mode = ((__u16) dr.dev_opt) &
807 					(HCI_LM_MASTER | HCI_LM_ACCEPT);
808 		break;
809 
810 	case HCISETPTYPE:
811 		if (hdev->pkt_type == (__u16) dr.dev_opt)
812 			break;
813 
814 		hdev->pkt_type = (__u16) dr.dev_opt;
815 		mgmt_phy_configuration_changed(hdev, NULL);
816 		break;
817 
818 	case HCISETACLMTU:
819 		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
820 		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
821 		break;
822 
823 	case HCISETSCOMTU:
824 		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
825 		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
826 		break;
827 
828 	default:
829 		err = -EINVAL;
830 		break;
831 	}
832 
833 done:
834 	hci_dev_put(hdev);
835 	return err;
836 }
837 
838 int hci_get_dev_list(void __user *arg)
839 {
840 	struct hci_dev *hdev;
841 	struct hci_dev_list_req *dl;
842 	struct hci_dev_req *dr;
843 	int n = 0, size, err;
844 	__u16 dev_num;
845 
846 	if (get_user(dev_num, (__u16 __user *) arg))
847 		return -EFAULT;
848 
849 	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
850 		return -EINVAL;
851 
852 	size = sizeof(*dl) + dev_num * sizeof(*dr);
853 
854 	dl = kzalloc(size, GFP_KERNEL);
855 	if (!dl)
856 		return -ENOMEM;
857 
858 	dr = dl->dev_req;
859 
860 	read_lock(&hci_dev_list_lock);
861 	list_for_each_entry(hdev, &hci_dev_list, list) {
862 		unsigned long flags = hdev->flags;
863 
864 		/* When the auto-off is configured it means the transport
865 		 * is running, but in that case still indicate that the
866 		 * device is actually down.
867 		 */
868 		if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
869 			flags &= ~BIT(HCI_UP);
870 
871 		(dr + n)->dev_id  = hdev->id;
872 		(dr + n)->dev_opt = flags;
873 
874 		if (++n >= dev_num)
875 			break;
876 	}
877 	read_unlock(&hci_dev_list_lock);
878 
879 	dl->dev_num = n;
880 	size = sizeof(*dl) + n * sizeof(*dr);
881 
882 	err = copy_to_user(arg, dl, size);
883 	kfree(dl);
884 
885 	return err ? -EFAULT : 0;
886 }
887 
888 int hci_get_dev_info(void __user *arg)
889 {
890 	struct hci_dev *hdev;
891 	struct hci_dev_info di;
892 	unsigned long flags;
893 	int err = 0;
894 
895 	if (copy_from_user(&di, arg, sizeof(di)))
896 		return -EFAULT;
897 
898 	hdev = hci_dev_get(di.dev_id);
899 	if (!hdev)
900 		return -ENODEV;
901 
902 	/* When the auto-off is configured it means the transport
903 	 * is running, but in that case still indicate that the
904 	 * device is actually down.
905 	 */
906 	if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
907 		flags = hdev->flags & ~BIT(HCI_UP);
908 	else
909 		flags = hdev->flags;
910 
911 	strcpy(di.name, hdev->name);
912 	di.bdaddr   = hdev->bdaddr;
913 	di.type     = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
914 	di.flags    = flags;
915 	di.pkt_type = hdev->pkt_type;
916 	if (lmp_bredr_capable(hdev)) {
917 		di.acl_mtu  = hdev->acl_mtu;
918 		di.acl_pkts = hdev->acl_pkts;
919 		di.sco_mtu  = hdev->sco_mtu;
920 		di.sco_pkts = hdev->sco_pkts;
921 	} else {
922 		di.acl_mtu  = hdev->le_mtu;
923 		di.acl_pkts = hdev->le_pkts;
924 		di.sco_mtu  = 0;
925 		di.sco_pkts = 0;
926 	}
927 	di.link_policy = hdev->link_policy;
928 	di.link_mode   = hdev->link_mode;
929 
930 	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
931 	memcpy(&di.features, &hdev->features, sizeof(di.features));
932 
933 	if (copy_to_user(arg, &di, sizeof(di)))
934 		err = -EFAULT;
935 
936 	hci_dev_put(hdev);
937 
938 	return err;
939 }
940 
941 /* ---- Interface to HCI drivers ---- */
942 
943 static int hci_rfkill_set_block(void *data, bool blocked)
944 {
945 	struct hci_dev *hdev = data;
946 
947 	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
948 
949 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
950 		return -EBUSY;
951 
952 	if (blocked) {
953 		hci_dev_set_flag(hdev, HCI_RFKILLED);
954 		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
955 		    !hci_dev_test_flag(hdev, HCI_CONFIG))
956 			hci_dev_do_close(hdev);
957 	} else {
958 		hci_dev_clear_flag(hdev, HCI_RFKILLED);
959 	}
960 
961 	return 0;
962 }
963 
964 static const struct rfkill_ops hci_rfkill_ops = {
965 	.set_block = hci_rfkill_set_block,
966 };
967 
968 static void hci_power_on(struct work_struct *work)
969 {
970 	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
971 	int err;
972 
973 	BT_DBG("%s", hdev->name);
974 
975 	if (test_bit(HCI_UP, &hdev->flags) &&
976 	    hci_dev_test_flag(hdev, HCI_MGMT) &&
977 	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
978 		cancel_delayed_work(&hdev->power_off);
979 		err = hci_powered_update_sync(hdev);
980 		mgmt_power_on(hdev, err);
981 		return;
982 	}
983 
984 	err = hci_dev_do_open(hdev);
985 	if (err < 0) {
986 		hci_dev_lock(hdev);
987 		mgmt_set_powered_failed(hdev, err);
988 		hci_dev_unlock(hdev);
989 		return;
990 	}
991 
992 	/* During the HCI setup phase, a few error conditions are
993 	 * ignored and they need to be checked now. If they are still
994 	 * valid, it is important to turn the device back off.
995 	 */
996 	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
997 	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
998 	    (hdev->dev_type == HCI_PRIMARY &&
999 	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1000 	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
1001 		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
1002 		hci_dev_do_close(hdev);
1003 	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
1004 		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
1005 				   HCI_AUTO_OFF_TIMEOUT);
1006 	}
1007 
1008 	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
1009 		/* For unconfigured devices, set the HCI_RAW flag
1010 		 * so that userspace can easily identify them.
1011 		 */
1012 		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1013 			set_bit(HCI_RAW, &hdev->flags);
1014 
1015 		/* For fully configured devices, this will send
1016 		 * the Index Added event. For unconfigured devices,
1017 		 * it will send Unconfigued Index Added event.
1018 		 *
1019 		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
1020 		 * and no event will be send.
1021 		 */
1022 		mgmt_index_added(hdev);
1023 	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
1024 		/* When the controller is now configured, then it
1025 		 * is important to clear the HCI_RAW flag.
1026 		 */
1027 		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1028 			clear_bit(HCI_RAW, &hdev->flags);
1029 
1030 		/* Powering on the controller with HCI_CONFIG set only
1031 		 * happens with the transition from unconfigured to
1032 		 * configured. This will send the Index Added event.
1033 		 */
1034 		mgmt_index_added(hdev);
1035 	}
1036 }
1037 
1038 static void hci_power_off(struct work_struct *work)
1039 {
1040 	struct hci_dev *hdev = container_of(work, struct hci_dev,
1041 					    power_off.work);
1042 
1043 	BT_DBG("%s", hdev->name);
1044 
1045 	hci_dev_do_close(hdev);
1046 }
1047 
1048 static void hci_error_reset(struct work_struct *work)
1049 {
1050 	struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
1051 
1052 	BT_DBG("%s", hdev->name);
1053 
1054 	if (hdev->hw_error)
1055 		hdev->hw_error(hdev, hdev->hw_error_code);
1056 	else
1057 		bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
1058 
1059 	if (hci_dev_do_close(hdev))
1060 		return;
1061 
1062 	hci_dev_do_open(hdev);
1063 }
1064 
1065 void hci_uuids_clear(struct hci_dev *hdev)
1066 {
1067 	struct bt_uuid *uuid, *tmp;
1068 
1069 	list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
1070 		list_del(&uuid->list);
1071 		kfree(uuid);
1072 	}
1073 }
1074 
1075 void hci_link_keys_clear(struct hci_dev *hdev)
1076 {
1077 	struct link_key *key, *tmp;
1078 
1079 	list_for_each_entry_safe(key, tmp, &hdev->link_keys, list) {
1080 		list_del_rcu(&key->list);
1081 		kfree_rcu(key, rcu);
1082 	}
1083 }
1084 
1085 void hci_smp_ltks_clear(struct hci_dev *hdev)
1086 {
1087 	struct smp_ltk *k, *tmp;
1088 
1089 	list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1090 		list_del_rcu(&k->list);
1091 		kfree_rcu(k, rcu);
1092 	}
1093 }
1094 
1095 void hci_smp_irks_clear(struct hci_dev *hdev)
1096 {
1097 	struct smp_irk *k, *tmp;
1098 
1099 	list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
1100 		list_del_rcu(&k->list);
1101 		kfree_rcu(k, rcu);
1102 	}
1103 }
1104 
1105 void hci_blocked_keys_clear(struct hci_dev *hdev)
1106 {
1107 	struct blocked_key *b, *tmp;
1108 
1109 	list_for_each_entry_safe(b, tmp, &hdev->blocked_keys, list) {
1110 		list_del_rcu(&b->list);
1111 		kfree_rcu(b, rcu);
1112 	}
1113 }
1114 
1115 bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16])
1116 {
1117 	bool blocked = false;
1118 	struct blocked_key *b;
1119 
1120 	rcu_read_lock();
1121 	list_for_each_entry_rcu(b, &hdev->blocked_keys, list) {
1122 		if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) {
1123 			blocked = true;
1124 			break;
1125 		}
1126 	}
1127 
1128 	rcu_read_unlock();
1129 	return blocked;
1130 }
1131 
1132 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1133 {
1134 	struct link_key *k;
1135 
1136 	rcu_read_lock();
1137 	list_for_each_entry_rcu(k, &hdev->link_keys, list) {
1138 		if (bacmp(bdaddr, &k->bdaddr) == 0) {
1139 			rcu_read_unlock();
1140 
1141 			if (hci_is_blocked_key(hdev,
1142 					       HCI_BLOCKED_KEY_TYPE_LINKKEY,
1143 					       k->val)) {
1144 				bt_dev_warn_ratelimited(hdev,
1145 							"Link key blocked for %pMR",
1146 							&k->bdaddr);
1147 				return NULL;
1148 			}
1149 
1150 			return k;
1151 		}
1152 	}
1153 	rcu_read_unlock();
1154 
1155 	return NULL;
1156 }
1157 
1158 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
1159 			       u8 key_type, u8 old_key_type)
1160 {
1161 	/* Legacy key */
1162 	if (key_type < 0x03)
1163 		return true;
1164 
1165 	/* Debug keys are insecure so don't store them persistently */
1166 	if (key_type == HCI_LK_DEBUG_COMBINATION)
1167 		return false;
1168 
1169 	/* Changed combination key and there's no previous one */
1170 	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
1171 		return false;
1172 
1173 	/* Security mode 3 case */
1174 	if (!conn)
1175 		return true;
1176 
1177 	/* BR/EDR key derived using SC from an LE link */
1178 	if (conn->type == LE_LINK)
1179 		return true;
1180 
1181 	/* Neither local nor remote side had no-bonding as requirement */
1182 	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
1183 		return true;
1184 
1185 	/* Local side had dedicated bonding as requirement */
1186 	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
1187 		return true;
1188 
1189 	/* Remote side had dedicated bonding as requirement */
1190 	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
1191 		return true;
1192 
1193 	/* If none of the above criteria match, then don't store the key
1194 	 * persistently */
1195 	return false;
1196 }
1197 
1198 static u8 ltk_role(u8 type)
1199 {
1200 	if (type == SMP_LTK)
1201 		return HCI_ROLE_MASTER;
1202 
1203 	return HCI_ROLE_SLAVE;
1204 }
1205 
1206 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1207 			     u8 addr_type, u8 role)
1208 {
1209 	struct smp_ltk *k;
1210 
1211 	rcu_read_lock();
1212 	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1213 		if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
1214 			continue;
1215 
1216 		if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
1217 			rcu_read_unlock();
1218 
1219 			if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK,
1220 					       k->val)) {
1221 				bt_dev_warn_ratelimited(hdev,
1222 							"LTK blocked for %pMR",
1223 							&k->bdaddr);
1224 				return NULL;
1225 			}
1226 
1227 			return k;
1228 		}
1229 	}
1230 	rcu_read_unlock();
1231 
1232 	return NULL;
1233 }
1234 
1235 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
1236 {
1237 	struct smp_irk *irk_to_return = NULL;
1238 	struct smp_irk *irk;
1239 
1240 	rcu_read_lock();
1241 	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1242 		if (!bacmp(&irk->rpa, rpa)) {
1243 			irk_to_return = irk;
1244 			goto done;
1245 		}
1246 	}
1247 
1248 	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1249 		if (smp_irk_matches(hdev, irk->val, rpa)) {
1250 			bacpy(&irk->rpa, rpa);
1251 			irk_to_return = irk;
1252 			goto done;
1253 		}
1254 	}
1255 
1256 done:
1257 	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1258 						irk_to_return->val)) {
1259 		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1260 					&irk_to_return->bdaddr);
1261 		irk_to_return = NULL;
1262 	}
1263 
1264 	rcu_read_unlock();
1265 
1266 	return irk_to_return;
1267 }
1268 
1269 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
1270 				     u8 addr_type)
1271 {
1272 	struct smp_irk *irk_to_return = NULL;
1273 	struct smp_irk *irk;
1274 
1275 	/* Identity Address must be public or static random */
1276 	if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
1277 		return NULL;
1278 
1279 	rcu_read_lock();
1280 	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1281 		if (addr_type == irk->addr_type &&
1282 		    bacmp(bdaddr, &irk->bdaddr) == 0) {
1283 			irk_to_return = irk;
1284 			goto done;
1285 		}
1286 	}
1287 
1288 done:
1289 
1290 	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1291 						irk_to_return->val)) {
1292 		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1293 					&irk_to_return->bdaddr);
1294 		irk_to_return = NULL;
1295 	}
1296 
1297 	rcu_read_unlock();
1298 
1299 	return irk_to_return;
1300 }
1301 
1302 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
1303 				  bdaddr_t *bdaddr, u8 *val, u8 type,
1304 				  u8 pin_len, bool *persistent)
1305 {
1306 	struct link_key *key, *old_key;
1307 	u8 old_key_type;
1308 
1309 	old_key = hci_find_link_key(hdev, bdaddr);
1310 	if (old_key) {
1311 		old_key_type = old_key->type;
1312 		key = old_key;
1313 	} else {
1314 		old_key_type = conn ? conn->key_type : 0xff;
1315 		key = kzalloc(sizeof(*key), GFP_KERNEL);
1316 		if (!key)
1317 			return NULL;
1318 		list_add_rcu(&key->list, &hdev->link_keys);
1319 	}
1320 
1321 	BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
1322 
1323 	/* Some buggy controller combinations generate a changed
1324 	 * combination key for legacy pairing even when there's no
1325 	 * previous key */
1326 	if (type == HCI_LK_CHANGED_COMBINATION &&
1327 	    (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
1328 		type = HCI_LK_COMBINATION;
1329 		if (conn)
1330 			conn->key_type = type;
1331 	}
1332 
1333 	bacpy(&key->bdaddr, bdaddr);
1334 	memcpy(key->val, val, HCI_LINK_KEY_SIZE);
1335 	key->pin_len = pin_len;
1336 
1337 	if (type == HCI_LK_CHANGED_COMBINATION)
1338 		key->type = old_key_type;
1339 	else
1340 		key->type = type;
1341 
1342 	if (persistent)
1343 		*persistent = hci_persistent_key(hdev, conn, type,
1344 						 old_key_type);
1345 
1346 	return key;
1347 }
1348 
1349 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1350 			    u8 addr_type, u8 type, u8 authenticated,
1351 			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
1352 {
1353 	struct smp_ltk *key, *old_key;
1354 	u8 role = ltk_role(type);
1355 
1356 	old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
1357 	if (old_key)
1358 		key = old_key;
1359 	else {
1360 		key = kzalloc(sizeof(*key), GFP_KERNEL);
1361 		if (!key)
1362 			return NULL;
1363 		list_add_rcu(&key->list, &hdev->long_term_keys);
1364 	}
1365 
1366 	bacpy(&key->bdaddr, bdaddr);
1367 	key->bdaddr_type = addr_type;
1368 	memcpy(key->val, tk, sizeof(key->val));
1369 	key->authenticated = authenticated;
1370 	key->ediv = ediv;
1371 	key->rand = rand;
1372 	key->enc_size = enc_size;
1373 	key->type = type;
1374 
1375 	return key;
1376 }
1377 
1378 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1379 			    u8 addr_type, u8 val[16], bdaddr_t *rpa)
1380 {
1381 	struct smp_irk *irk;
1382 
1383 	irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
1384 	if (!irk) {
1385 		irk = kzalloc(sizeof(*irk), GFP_KERNEL);
1386 		if (!irk)
1387 			return NULL;
1388 
1389 		bacpy(&irk->bdaddr, bdaddr);
1390 		irk->addr_type = addr_type;
1391 
1392 		list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
1393 	}
1394 
1395 	memcpy(irk->val, val, 16);
1396 	bacpy(&irk->rpa, rpa);
1397 
1398 	return irk;
1399 }
1400 
1401 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1402 {
1403 	struct link_key *key;
1404 
1405 	key = hci_find_link_key(hdev, bdaddr);
1406 	if (!key)
1407 		return -ENOENT;
1408 
1409 	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1410 
1411 	list_del_rcu(&key->list);
1412 	kfree_rcu(key, rcu);
1413 
1414 	return 0;
1415 }
1416 
1417 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
1418 {
1419 	struct smp_ltk *k, *tmp;
1420 	int removed = 0;
1421 
1422 	list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1423 		if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
1424 			continue;
1425 
1426 		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1427 
1428 		list_del_rcu(&k->list);
1429 		kfree_rcu(k, rcu);
1430 		removed++;
1431 	}
1432 
1433 	return removed ? 0 : -ENOENT;
1434 }
1435 
1436 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
1437 {
1438 	struct smp_irk *k, *tmp;
1439 
1440 	list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
1441 		if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
1442 			continue;
1443 
1444 		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1445 
1446 		list_del_rcu(&k->list);
1447 		kfree_rcu(k, rcu);
1448 	}
1449 }
1450 
1451 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
1452 {
1453 	struct smp_ltk *k;
1454 	struct smp_irk *irk;
1455 	u8 addr_type;
1456 
1457 	if (type == BDADDR_BREDR) {
1458 		if (hci_find_link_key(hdev, bdaddr))
1459 			return true;
1460 		return false;
1461 	}
1462 
1463 	/* Convert to HCI addr type which struct smp_ltk uses */
1464 	if (type == BDADDR_LE_PUBLIC)
1465 		addr_type = ADDR_LE_DEV_PUBLIC;
1466 	else
1467 		addr_type = ADDR_LE_DEV_RANDOM;
1468 
1469 	irk = hci_get_irk(hdev, bdaddr, addr_type);
1470 	if (irk) {
1471 		bdaddr = &irk->bdaddr;
1472 		addr_type = irk->addr_type;
1473 	}
1474 
1475 	rcu_read_lock();
1476 	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1477 		if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
1478 			rcu_read_unlock();
1479 			return true;
1480 		}
1481 	}
1482 	rcu_read_unlock();
1483 
1484 	return false;
1485 }
1486 
1487 /* HCI command timer function */
1488 static void hci_cmd_timeout(struct work_struct *work)
1489 {
1490 	struct hci_dev *hdev = container_of(work, struct hci_dev,
1491 					    cmd_timer.work);
1492 
1493 	if (hdev->sent_cmd) {
1494 		struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
1495 		u16 opcode = __le16_to_cpu(sent->opcode);
1496 
1497 		bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
1498 	} else {
1499 		bt_dev_err(hdev, "command tx timeout");
1500 	}
1501 
1502 	if (hdev->cmd_timeout)
1503 		hdev->cmd_timeout(hdev);
1504 
1505 	atomic_set(&hdev->cmd_cnt, 1);
1506 	queue_work(hdev->workqueue, &hdev->cmd_work);
1507 }
1508 
1509 /* HCI ncmd timer function */
1510 static void hci_ncmd_timeout(struct work_struct *work)
1511 {
1512 	struct hci_dev *hdev = container_of(work, struct hci_dev,
1513 					    ncmd_timer.work);
1514 
1515 	bt_dev_err(hdev, "Controller not accepting commands anymore: ncmd = 0");
1516 
1517 	/* During HCI_INIT phase no events can be injected if the ncmd timer
1518 	 * triggers since the procedure has its own timeout handling.
1519 	 */
1520 	if (test_bit(HCI_INIT, &hdev->flags))
1521 		return;
1522 
1523 	/* This is an irrecoverable state, inject hardware error event */
1524 	hci_reset_dev(hdev);
1525 }
1526 
1527 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
1528 					  bdaddr_t *bdaddr, u8 bdaddr_type)
1529 {
1530 	struct oob_data *data;
1531 
1532 	list_for_each_entry(data, &hdev->remote_oob_data, list) {
1533 		if (bacmp(bdaddr, &data->bdaddr) != 0)
1534 			continue;
1535 		if (data->bdaddr_type != bdaddr_type)
1536 			continue;
1537 		return data;
1538 	}
1539 
1540 	return NULL;
1541 }
1542 
1543 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1544 			       u8 bdaddr_type)
1545 {
1546 	struct oob_data *data;
1547 
1548 	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1549 	if (!data)
1550 		return -ENOENT;
1551 
1552 	BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
1553 
1554 	list_del(&data->list);
1555 	kfree(data);
1556 
1557 	return 0;
1558 }
1559 
1560 void hci_remote_oob_data_clear(struct hci_dev *hdev)
1561 {
1562 	struct oob_data *data, *n;
1563 
1564 	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
1565 		list_del(&data->list);
1566 		kfree(data);
1567 	}
1568 }
1569 
1570 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1571 			    u8 bdaddr_type, u8 *hash192, u8 *rand192,
1572 			    u8 *hash256, u8 *rand256)
1573 {
1574 	struct oob_data *data;
1575 
1576 	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1577 	if (!data) {
1578 		data = kmalloc(sizeof(*data), GFP_KERNEL);
1579 		if (!data)
1580 			return -ENOMEM;
1581 
1582 		bacpy(&data->bdaddr, bdaddr);
1583 		data->bdaddr_type = bdaddr_type;
1584 		list_add(&data->list, &hdev->remote_oob_data);
1585 	}
1586 
1587 	if (hash192 && rand192) {
1588 		memcpy(data->hash192, hash192, sizeof(data->hash192));
1589 		memcpy(data->rand192, rand192, sizeof(data->rand192));
1590 		if (hash256 && rand256)
1591 			data->present = 0x03;
1592 	} else {
1593 		memset(data->hash192, 0, sizeof(data->hash192));
1594 		memset(data->rand192, 0, sizeof(data->rand192));
1595 		if (hash256 && rand256)
1596 			data->present = 0x02;
1597 		else
1598 			data->present = 0x00;
1599 	}
1600 
1601 	if (hash256 && rand256) {
1602 		memcpy(data->hash256, hash256, sizeof(data->hash256));
1603 		memcpy(data->rand256, rand256, sizeof(data->rand256));
1604 	} else {
1605 		memset(data->hash256, 0, sizeof(data->hash256));
1606 		memset(data->rand256, 0, sizeof(data->rand256));
1607 		if (hash192 && rand192)
1608 			data->present = 0x01;
1609 	}
1610 
1611 	BT_DBG("%s for %pMR", hdev->name, bdaddr);
1612 
1613 	return 0;
1614 }
1615 
1616 /* This function requires the caller holds hdev->lock */
1617 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
1618 {
1619 	struct adv_info *adv_instance;
1620 
1621 	list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
1622 		if (adv_instance->instance == instance)
1623 			return adv_instance;
1624 	}
1625 
1626 	return NULL;
1627 }
1628 
1629 /* This function requires the caller holds hdev->lock */
1630 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
1631 {
1632 	struct adv_info *cur_instance;
1633 
1634 	cur_instance = hci_find_adv_instance(hdev, instance);
1635 	if (!cur_instance)
1636 		return NULL;
1637 
1638 	if (cur_instance == list_last_entry(&hdev->adv_instances,
1639 					    struct adv_info, list))
1640 		return list_first_entry(&hdev->adv_instances,
1641 						 struct adv_info, list);
1642 	else
1643 		return list_next_entry(cur_instance, list);
1644 }
1645 
1646 /* This function requires the caller holds hdev->lock */
1647 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
1648 {
1649 	struct adv_info *adv_instance;
1650 
1651 	adv_instance = hci_find_adv_instance(hdev, instance);
1652 	if (!adv_instance)
1653 		return -ENOENT;
1654 
1655 	BT_DBG("%s removing %dMR", hdev->name, instance);
1656 
1657 	if (hdev->cur_adv_instance == instance) {
1658 		if (hdev->adv_instance_timeout) {
1659 			cancel_delayed_work(&hdev->adv_instance_expire);
1660 			hdev->adv_instance_timeout = 0;
1661 		}
1662 		hdev->cur_adv_instance = 0x00;
1663 	}
1664 
1665 	cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1666 
1667 	list_del(&adv_instance->list);
1668 	kfree(adv_instance);
1669 
1670 	hdev->adv_instance_cnt--;
1671 
1672 	return 0;
1673 }
1674 
1675 void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
1676 {
1677 	struct adv_info *adv_instance, *n;
1678 
1679 	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
1680 		adv_instance->rpa_expired = rpa_expired;
1681 }
1682 
1683 /* This function requires the caller holds hdev->lock */
1684 void hci_adv_instances_clear(struct hci_dev *hdev)
1685 {
1686 	struct adv_info *adv_instance, *n;
1687 
1688 	if (hdev->adv_instance_timeout) {
1689 		cancel_delayed_work(&hdev->adv_instance_expire);
1690 		hdev->adv_instance_timeout = 0;
1691 	}
1692 
1693 	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
1694 		cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1695 		list_del(&adv_instance->list);
1696 		kfree(adv_instance);
1697 	}
1698 
1699 	hdev->adv_instance_cnt = 0;
1700 	hdev->cur_adv_instance = 0x00;
1701 }
1702 
1703 static void adv_instance_rpa_expired(struct work_struct *work)
1704 {
1705 	struct adv_info *adv_instance = container_of(work, struct adv_info,
1706 						     rpa_expired_cb.work);
1707 
1708 	BT_DBG("");
1709 
1710 	adv_instance->rpa_expired = true;
1711 }
1712 
1713 /* This function requires the caller holds hdev->lock */
1714 struct adv_info *hci_add_adv_instance(struct hci_dev *hdev, u8 instance,
1715 				      u32 flags, u16 adv_data_len, u8 *adv_data,
1716 				      u16 scan_rsp_len, u8 *scan_rsp_data,
1717 				      u16 timeout, u16 duration, s8 tx_power,
1718 				      u32 min_interval, u32 max_interval,
1719 				      u8 mesh_handle)
1720 {
1721 	struct adv_info *adv;
1722 
1723 	adv = hci_find_adv_instance(hdev, instance);
1724 	if (adv) {
1725 		memset(adv->adv_data, 0, sizeof(adv->adv_data));
1726 		memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1727 		memset(adv->per_adv_data, 0, sizeof(adv->per_adv_data));
1728 	} else {
1729 		if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets ||
1730 		    instance < 1 || instance > hdev->le_num_of_adv_sets + 1)
1731 			return ERR_PTR(-EOVERFLOW);
1732 
1733 		adv = kzalloc(sizeof(*adv), GFP_KERNEL);
1734 		if (!adv)
1735 			return ERR_PTR(-ENOMEM);
1736 
1737 		adv->pending = true;
1738 		adv->instance = instance;
1739 		list_add(&adv->list, &hdev->adv_instances);
1740 		hdev->adv_instance_cnt++;
1741 	}
1742 
1743 	adv->flags = flags;
1744 	adv->min_interval = min_interval;
1745 	adv->max_interval = max_interval;
1746 	adv->tx_power = tx_power;
1747 	/* Defining a mesh_handle changes the timing units to ms,
1748 	 * rather than seconds, and ties the instance to the requested
1749 	 * mesh_tx queue.
1750 	 */
1751 	adv->mesh = mesh_handle;
1752 
1753 	hci_set_adv_instance_data(hdev, instance, adv_data_len, adv_data,
1754 				  scan_rsp_len, scan_rsp_data);
1755 
1756 	adv->timeout = timeout;
1757 	adv->remaining_time = timeout;
1758 
1759 	if (duration == 0)
1760 		adv->duration = hdev->def_multi_adv_rotation_duration;
1761 	else
1762 		adv->duration = duration;
1763 
1764 	INIT_DELAYED_WORK(&adv->rpa_expired_cb, adv_instance_rpa_expired);
1765 
1766 	BT_DBG("%s for %dMR", hdev->name, instance);
1767 
1768 	return adv;
1769 }
1770 
1771 /* This function requires the caller holds hdev->lock */
1772 struct adv_info *hci_add_per_instance(struct hci_dev *hdev, u8 instance,
1773 				      u32 flags, u8 data_len, u8 *data,
1774 				      u32 min_interval, u32 max_interval)
1775 {
1776 	struct adv_info *adv;
1777 
1778 	adv = hci_add_adv_instance(hdev, instance, flags, 0, NULL, 0, NULL,
1779 				   0, 0, HCI_ADV_TX_POWER_NO_PREFERENCE,
1780 				   min_interval, max_interval, 0);
1781 	if (IS_ERR(adv))
1782 		return adv;
1783 
1784 	adv->periodic = true;
1785 	adv->per_adv_data_len = data_len;
1786 
1787 	if (data)
1788 		memcpy(adv->per_adv_data, data, data_len);
1789 
1790 	return adv;
1791 }
1792 
1793 /* This function requires the caller holds hdev->lock */
1794 int hci_set_adv_instance_data(struct hci_dev *hdev, u8 instance,
1795 			      u16 adv_data_len, u8 *adv_data,
1796 			      u16 scan_rsp_len, u8 *scan_rsp_data)
1797 {
1798 	struct adv_info *adv;
1799 
1800 	adv = hci_find_adv_instance(hdev, instance);
1801 
1802 	/* If advertisement doesn't exist, we can't modify its data */
1803 	if (!adv)
1804 		return -ENOENT;
1805 
1806 	if (adv_data_len && ADV_DATA_CMP(adv, adv_data, adv_data_len)) {
1807 		memset(adv->adv_data, 0, sizeof(adv->adv_data));
1808 		memcpy(adv->adv_data, adv_data, adv_data_len);
1809 		adv->adv_data_len = adv_data_len;
1810 		adv->adv_data_changed = true;
1811 	}
1812 
1813 	if (scan_rsp_len && SCAN_RSP_CMP(adv, scan_rsp_data, scan_rsp_len)) {
1814 		memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1815 		memcpy(adv->scan_rsp_data, scan_rsp_data, scan_rsp_len);
1816 		adv->scan_rsp_len = scan_rsp_len;
1817 		adv->scan_rsp_changed = true;
1818 	}
1819 
1820 	/* Mark as changed if there are flags which would affect it */
1821 	if (((adv->flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) ||
1822 	    adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1823 		adv->scan_rsp_changed = true;
1824 
1825 	return 0;
1826 }
1827 
1828 /* This function requires the caller holds hdev->lock */
1829 u32 hci_adv_instance_flags(struct hci_dev *hdev, u8 instance)
1830 {
1831 	u32 flags;
1832 	struct adv_info *adv;
1833 
1834 	if (instance == 0x00) {
1835 		/* Instance 0 always manages the "Tx Power" and "Flags"
1836 		 * fields
1837 		 */
1838 		flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
1839 
1840 		/* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
1841 		 * corresponds to the "connectable" instance flag.
1842 		 */
1843 		if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
1844 			flags |= MGMT_ADV_FLAG_CONNECTABLE;
1845 
1846 		if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
1847 			flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
1848 		else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1849 			flags |= MGMT_ADV_FLAG_DISCOV;
1850 
1851 		return flags;
1852 	}
1853 
1854 	adv = hci_find_adv_instance(hdev, instance);
1855 
1856 	/* Return 0 when we got an invalid instance identifier. */
1857 	if (!adv)
1858 		return 0;
1859 
1860 	return adv->flags;
1861 }
1862 
1863 bool hci_adv_instance_is_scannable(struct hci_dev *hdev, u8 instance)
1864 {
1865 	struct adv_info *adv;
1866 
1867 	/* Instance 0x00 always set local name */
1868 	if (instance == 0x00)
1869 		return true;
1870 
1871 	adv = hci_find_adv_instance(hdev, instance);
1872 	if (!adv)
1873 		return false;
1874 
1875 	if (adv->flags & MGMT_ADV_FLAG_APPEARANCE ||
1876 	    adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1877 		return true;
1878 
1879 	return adv->scan_rsp_len ? true : false;
1880 }
1881 
1882 /* This function requires the caller holds hdev->lock */
1883 void hci_adv_monitors_clear(struct hci_dev *hdev)
1884 {
1885 	struct adv_monitor *monitor;
1886 	int handle;
1887 
1888 	idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle)
1889 		hci_free_adv_monitor(hdev, monitor);
1890 
1891 	idr_destroy(&hdev->adv_monitors_idr);
1892 }
1893 
1894 /* Frees the monitor structure and do some bookkeepings.
1895  * This function requires the caller holds hdev->lock.
1896  */
1897 void hci_free_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1898 {
1899 	struct adv_pattern *pattern;
1900 	struct adv_pattern *tmp;
1901 
1902 	if (!monitor)
1903 		return;
1904 
1905 	list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list) {
1906 		list_del(&pattern->list);
1907 		kfree(pattern);
1908 	}
1909 
1910 	if (monitor->handle)
1911 		idr_remove(&hdev->adv_monitors_idr, monitor->handle);
1912 
1913 	if (monitor->state != ADV_MONITOR_STATE_NOT_REGISTERED) {
1914 		hdev->adv_monitors_cnt--;
1915 		mgmt_adv_monitor_removed(hdev, monitor->handle);
1916 	}
1917 
1918 	kfree(monitor);
1919 }
1920 
1921 /* Assigns handle to a monitor, and if offloading is supported and power is on,
1922  * also attempts to forward the request to the controller.
1923  * This function requires the caller holds hci_req_sync_lock.
1924  */
1925 int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1926 {
1927 	int min, max, handle;
1928 	int status = 0;
1929 
1930 	if (!monitor)
1931 		return -EINVAL;
1932 
1933 	hci_dev_lock(hdev);
1934 
1935 	min = HCI_MIN_ADV_MONITOR_HANDLE;
1936 	max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES;
1937 	handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max,
1938 			   GFP_KERNEL);
1939 
1940 	hci_dev_unlock(hdev);
1941 
1942 	if (handle < 0)
1943 		return handle;
1944 
1945 	monitor->handle = handle;
1946 
1947 	if (!hdev_is_powered(hdev))
1948 		return status;
1949 
1950 	switch (hci_get_adv_monitor_offload_ext(hdev)) {
1951 	case HCI_ADV_MONITOR_EXT_NONE:
1952 		bt_dev_dbg(hdev, "add monitor %d status %d",
1953 			   monitor->handle, status);
1954 		/* Message was not forwarded to controller - not an error */
1955 		break;
1956 
1957 	case HCI_ADV_MONITOR_EXT_MSFT:
1958 		status = msft_add_monitor_pattern(hdev, monitor);
1959 		bt_dev_dbg(hdev, "add monitor %d msft status %d",
1960 			   handle, status);
1961 		break;
1962 	}
1963 
1964 	return status;
1965 }
1966 
1967 /* Attempts to tell the controller and free the monitor. If somehow the
1968  * controller doesn't have a corresponding handle, remove anyway.
1969  * This function requires the caller holds hci_req_sync_lock.
1970  */
1971 static int hci_remove_adv_monitor(struct hci_dev *hdev,
1972 				  struct adv_monitor *monitor)
1973 {
1974 	int status = 0;
1975 	int handle;
1976 
1977 	switch (hci_get_adv_monitor_offload_ext(hdev)) {
1978 	case HCI_ADV_MONITOR_EXT_NONE: /* also goes here when powered off */
1979 		bt_dev_dbg(hdev, "remove monitor %d status %d",
1980 			   monitor->handle, status);
1981 		goto free_monitor;
1982 
1983 	case HCI_ADV_MONITOR_EXT_MSFT:
1984 		handle = monitor->handle;
1985 		status = msft_remove_monitor(hdev, monitor);
1986 		bt_dev_dbg(hdev, "remove monitor %d msft status %d",
1987 			   handle, status);
1988 		break;
1989 	}
1990 
1991 	/* In case no matching handle registered, just free the monitor */
1992 	if (status == -ENOENT)
1993 		goto free_monitor;
1994 
1995 	return status;
1996 
1997 free_monitor:
1998 	if (status == -ENOENT)
1999 		bt_dev_warn(hdev, "Removing monitor with no matching handle %d",
2000 			    monitor->handle);
2001 	hci_free_adv_monitor(hdev, monitor);
2002 
2003 	return status;
2004 }
2005 
2006 /* This function requires the caller holds hci_req_sync_lock */
2007 int hci_remove_single_adv_monitor(struct hci_dev *hdev, u16 handle)
2008 {
2009 	struct adv_monitor *monitor = idr_find(&hdev->adv_monitors_idr, handle);
2010 
2011 	if (!monitor)
2012 		return -EINVAL;
2013 
2014 	return hci_remove_adv_monitor(hdev, monitor);
2015 }
2016 
2017 /* This function requires the caller holds hci_req_sync_lock */
2018 int hci_remove_all_adv_monitor(struct hci_dev *hdev)
2019 {
2020 	struct adv_monitor *monitor;
2021 	int idr_next_id = 0;
2022 	int status = 0;
2023 
2024 	while (1) {
2025 		monitor = idr_get_next(&hdev->adv_monitors_idr, &idr_next_id);
2026 		if (!monitor)
2027 			break;
2028 
2029 		status = hci_remove_adv_monitor(hdev, monitor);
2030 		if (status)
2031 			return status;
2032 
2033 		idr_next_id++;
2034 	}
2035 
2036 	return status;
2037 }
2038 
2039 /* This function requires the caller holds hdev->lock */
2040 bool hci_is_adv_monitoring(struct hci_dev *hdev)
2041 {
2042 	return !idr_is_empty(&hdev->adv_monitors_idr);
2043 }
2044 
2045 int hci_get_adv_monitor_offload_ext(struct hci_dev *hdev)
2046 {
2047 	if (msft_monitor_supported(hdev))
2048 		return HCI_ADV_MONITOR_EXT_MSFT;
2049 
2050 	return HCI_ADV_MONITOR_EXT_NONE;
2051 }
2052 
2053 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2054 					 bdaddr_t *bdaddr, u8 type)
2055 {
2056 	struct bdaddr_list *b;
2057 
2058 	list_for_each_entry(b, bdaddr_list, list) {
2059 		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2060 			return b;
2061 	}
2062 
2063 	return NULL;
2064 }
2065 
2066 struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
2067 				struct list_head *bdaddr_list, bdaddr_t *bdaddr,
2068 				u8 type)
2069 {
2070 	struct bdaddr_list_with_irk *b;
2071 
2072 	list_for_each_entry(b, bdaddr_list, list) {
2073 		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2074 			return b;
2075 	}
2076 
2077 	return NULL;
2078 }
2079 
2080 struct bdaddr_list_with_flags *
2081 hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list,
2082 				  bdaddr_t *bdaddr, u8 type)
2083 {
2084 	struct bdaddr_list_with_flags *b;
2085 
2086 	list_for_each_entry(b, bdaddr_list, list) {
2087 		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2088 			return b;
2089 	}
2090 
2091 	return NULL;
2092 }
2093 
2094 void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2095 {
2096 	struct bdaddr_list *b, *n;
2097 
2098 	list_for_each_entry_safe(b, n, bdaddr_list, list) {
2099 		list_del(&b->list);
2100 		kfree(b);
2101 	}
2102 }
2103 
2104 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2105 {
2106 	struct bdaddr_list *entry;
2107 
2108 	if (!bacmp(bdaddr, BDADDR_ANY))
2109 		return -EBADF;
2110 
2111 	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2112 		return -EEXIST;
2113 
2114 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2115 	if (!entry)
2116 		return -ENOMEM;
2117 
2118 	bacpy(&entry->bdaddr, bdaddr);
2119 	entry->bdaddr_type = type;
2120 
2121 	list_add(&entry->list, list);
2122 
2123 	return 0;
2124 }
2125 
2126 int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2127 					u8 type, u8 *peer_irk, u8 *local_irk)
2128 {
2129 	struct bdaddr_list_with_irk *entry;
2130 
2131 	if (!bacmp(bdaddr, BDADDR_ANY))
2132 		return -EBADF;
2133 
2134 	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2135 		return -EEXIST;
2136 
2137 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2138 	if (!entry)
2139 		return -ENOMEM;
2140 
2141 	bacpy(&entry->bdaddr, bdaddr);
2142 	entry->bdaddr_type = type;
2143 
2144 	if (peer_irk)
2145 		memcpy(entry->peer_irk, peer_irk, 16);
2146 
2147 	if (local_irk)
2148 		memcpy(entry->local_irk, local_irk, 16);
2149 
2150 	list_add(&entry->list, list);
2151 
2152 	return 0;
2153 }
2154 
2155 int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2156 				   u8 type, u32 flags)
2157 {
2158 	struct bdaddr_list_with_flags *entry;
2159 
2160 	if (!bacmp(bdaddr, BDADDR_ANY))
2161 		return -EBADF;
2162 
2163 	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2164 		return -EEXIST;
2165 
2166 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2167 	if (!entry)
2168 		return -ENOMEM;
2169 
2170 	bacpy(&entry->bdaddr, bdaddr);
2171 	entry->bdaddr_type = type;
2172 	entry->flags = flags;
2173 
2174 	list_add(&entry->list, list);
2175 
2176 	return 0;
2177 }
2178 
2179 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2180 {
2181 	struct bdaddr_list *entry;
2182 
2183 	if (!bacmp(bdaddr, BDADDR_ANY)) {
2184 		hci_bdaddr_list_clear(list);
2185 		return 0;
2186 	}
2187 
2188 	entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2189 	if (!entry)
2190 		return -ENOENT;
2191 
2192 	list_del(&entry->list);
2193 	kfree(entry);
2194 
2195 	return 0;
2196 }
2197 
2198 int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2199 							u8 type)
2200 {
2201 	struct bdaddr_list_with_irk *entry;
2202 
2203 	if (!bacmp(bdaddr, BDADDR_ANY)) {
2204 		hci_bdaddr_list_clear(list);
2205 		return 0;
2206 	}
2207 
2208 	entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
2209 	if (!entry)
2210 		return -ENOENT;
2211 
2212 	list_del(&entry->list);
2213 	kfree(entry);
2214 
2215 	return 0;
2216 }
2217 
2218 int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2219 				   u8 type)
2220 {
2221 	struct bdaddr_list_with_flags *entry;
2222 
2223 	if (!bacmp(bdaddr, BDADDR_ANY)) {
2224 		hci_bdaddr_list_clear(list);
2225 		return 0;
2226 	}
2227 
2228 	entry = hci_bdaddr_list_lookup_with_flags(list, bdaddr, type);
2229 	if (!entry)
2230 		return -ENOENT;
2231 
2232 	list_del(&entry->list);
2233 	kfree(entry);
2234 
2235 	return 0;
2236 }
2237 
2238 /* This function requires the caller holds hdev->lock */
2239 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2240 					       bdaddr_t *addr, u8 addr_type)
2241 {
2242 	struct hci_conn_params *params;
2243 
2244 	list_for_each_entry(params, &hdev->le_conn_params, list) {
2245 		if (bacmp(&params->addr, addr) == 0 &&
2246 		    params->addr_type == addr_type) {
2247 			return params;
2248 		}
2249 	}
2250 
2251 	return NULL;
2252 }
2253 
2254 /* This function requires the caller holds hdev->lock or rcu_read_lock */
2255 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2256 						  bdaddr_t *addr, u8 addr_type)
2257 {
2258 	struct hci_conn_params *param;
2259 
2260 	rcu_read_lock();
2261 
2262 	list_for_each_entry_rcu(param, list, action) {
2263 		if (bacmp(&param->addr, addr) == 0 &&
2264 		    param->addr_type == addr_type) {
2265 			rcu_read_unlock();
2266 			return param;
2267 		}
2268 	}
2269 
2270 	rcu_read_unlock();
2271 
2272 	return NULL;
2273 }
2274 
2275 /* This function requires the caller holds hdev->lock */
2276 void hci_pend_le_list_del_init(struct hci_conn_params *param)
2277 {
2278 	if (list_empty(&param->action))
2279 		return;
2280 
2281 	list_del_rcu(&param->action);
2282 	synchronize_rcu();
2283 	INIT_LIST_HEAD(&param->action);
2284 }
2285 
2286 /* This function requires the caller holds hdev->lock */
2287 void hci_pend_le_list_add(struct hci_conn_params *param,
2288 			  struct list_head *list)
2289 {
2290 	list_add_rcu(&param->action, list);
2291 }
2292 
2293 /* This function requires the caller holds hdev->lock */
2294 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2295 					    bdaddr_t *addr, u8 addr_type)
2296 {
2297 	struct hci_conn_params *params;
2298 
2299 	params = hci_conn_params_lookup(hdev, addr, addr_type);
2300 	if (params)
2301 		return params;
2302 
2303 	params = kzalloc(sizeof(*params), GFP_KERNEL);
2304 	if (!params) {
2305 		bt_dev_err(hdev, "out of memory");
2306 		return NULL;
2307 	}
2308 
2309 	bacpy(&params->addr, addr);
2310 	params->addr_type = addr_type;
2311 
2312 	list_add(&params->list, &hdev->le_conn_params);
2313 	INIT_LIST_HEAD(&params->action);
2314 
2315 	params->conn_min_interval = hdev->le_conn_min_interval;
2316 	params->conn_max_interval = hdev->le_conn_max_interval;
2317 	params->conn_latency = hdev->le_conn_latency;
2318 	params->supervision_timeout = hdev->le_supv_timeout;
2319 	params->auto_connect = HCI_AUTO_CONN_DISABLED;
2320 
2321 	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2322 
2323 	return params;
2324 }
2325 
2326 void hci_conn_params_free(struct hci_conn_params *params)
2327 {
2328 	hci_pend_le_list_del_init(params);
2329 
2330 	if (params->conn) {
2331 		hci_conn_drop(params->conn);
2332 		hci_conn_put(params->conn);
2333 	}
2334 
2335 	list_del(&params->list);
2336 	kfree(params);
2337 }
2338 
2339 /* This function requires the caller holds hdev->lock */
2340 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2341 {
2342 	struct hci_conn_params *params;
2343 
2344 	params = hci_conn_params_lookup(hdev, addr, addr_type);
2345 	if (!params)
2346 		return;
2347 
2348 	hci_conn_params_free(params);
2349 
2350 	hci_update_passive_scan(hdev);
2351 
2352 	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2353 }
2354 
2355 /* This function requires the caller holds hdev->lock */
2356 void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2357 {
2358 	struct hci_conn_params *params, *tmp;
2359 
2360 	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2361 		if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2362 			continue;
2363 
2364 		/* If trying to establish one time connection to disabled
2365 		 * device, leave the params, but mark them as just once.
2366 		 */
2367 		if (params->explicit_connect) {
2368 			params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2369 			continue;
2370 		}
2371 
2372 		hci_conn_params_free(params);
2373 	}
2374 
2375 	BT_DBG("All LE disabled connection parameters were removed");
2376 }
2377 
2378 /* This function requires the caller holds hdev->lock */
2379 static void hci_conn_params_clear_all(struct hci_dev *hdev)
2380 {
2381 	struct hci_conn_params *params, *tmp;
2382 
2383 	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2384 		hci_conn_params_free(params);
2385 
2386 	BT_DBG("All LE connection parameters were removed");
2387 }
2388 
2389 /* Copy the Identity Address of the controller.
2390  *
2391  * If the controller has a public BD_ADDR, then by default use that one.
2392  * If this is a LE only controller without a public address, default to
2393  * the static random address.
2394  *
2395  * For debugging purposes it is possible to force controllers with a
2396  * public address to use the static random address instead.
2397  *
2398  * In case BR/EDR has been disabled on a dual-mode controller and
2399  * userspace has configured a static address, then that address
2400  * becomes the identity address instead of the public BR/EDR address.
2401  */
2402 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2403 			       u8 *bdaddr_type)
2404 {
2405 	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2406 	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2407 	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2408 	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
2409 		bacpy(bdaddr, &hdev->static_addr);
2410 		*bdaddr_type = ADDR_LE_DEV_RANDOM;
2411 	} else {
2412 		bacpy(bdaddr, &hdev->bdaddr);
2413 		*bdaddr_type = ADDR_LE_DEV_PUBLIC;
2414 	}
2415 }
2416 
2417 static void hci_clear_wake_reason(struct hci_dev *hdev)
2418 {
2419 	hci_dev_lock(hdev);
2420 
2421 	hdev->wake_reason = 0;
2422 	bacpy(&hdev->wake_addr, BDADDR_ANY);
2423 	hdev->wake_addr_type = 0;
2424 
2425 	hci_dev_unlock(hdev);
2426 }
2427 
2428 static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action,
2429 				void *data)
2430 {
2431 	struct hci_dev *hdev =
2432 		container_of(nb, struct hci_dev, suspend_notifier);
2433 	int ret = 0;
2434 
2435 	/* Userspace has full control of this device. Do nothing. */
2436 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2437 		return NOTIFY_DONE;
2438 
2439 	/* To avoid a potential race with hci_unregister_dev. */
2440 	hci_dev_hold(hdev);
2441 
2442 	if (action == PM_SUSPEND_PREPARE)
2443 		ret = hci_suspend_dev(hdev);
2444 	else if (action == PM_POST_SUSPEND)
2445 		ret = hci_resume_dev(hdev);
2446 
2447 	if (ret)
2448 		bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d",
2449 			   action, ret);
2450 
2451 	hci_dev_put(hdev);
2452 	return NOTIFY_DONE;
2453 }
2454 
2455 /* Alloc HCI device */
2456 struct hci_dev *hci_alloc_dev_priv(int sizeof_priv)
2457 {
2458 	struct hci_dev *hdev;
2459 	unsigned int alloc_size;
2460 
2461 	alloc_size = sizeof(*hdev);
2462 	if (sizeof_priv) {
2463 		/* Fixme: May need ALIGN-ment? */
2464 		alloc_size += sizeof_priv;
2465 	}
2466 
2467 	hdev = kzalloc(alloc_size, GFP_KERNEL);
2468 	if (!hdev)
2469 		return NULL;
2470 
2471 	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2472 	hdev->esco_type = (ESCO_HV1);
2473 	hdev->link_mode = (HCI_LM_ACCEPT);
2474 	hdev->num_iac = 0x01;		/* One IAC support is mandatory */
2475 	hdev->io_capability = 0x03;	/* No Input No Output */
2476 	hdev->manufacturer = 0xffff;	/* Default to internal use */
2477 	hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2478 	hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2479 	hdev->adv_instance_cnt = 0;
2480 	hdev->cur_adv_instance = 0x00;
2481 	hdev->adv_instance_timeout = 0;
2482 
2483 	hdev->advmon_allowlist_duration = 300;
2484 	hdev->advmon_no_filter_duration = 500;
2485 	hdev->enable_advmon_interleave_scan = 0x00;	/* Default to disable */
2486 
2487 	hdev->sniff_max_interval = 800;
2488 	hdev->sniff_min_interval = 80;
2489 
2490 	hdev->le_adv_channel_map = 0x07;
2491 	hdev->le_adv_min_interval = 0x0800;
2492 	hdev->le_adv_max_interval = 0x0800;
2493 	hdev->le_scan_interval = 0x0060;
2494 	hdev->le_scan_window = 0x0030;
2495 	hdev->le_scan_int_suspend = 0x0400;
2496 	hdev->le_scan_window_suspend = 0x0012;
2497 	hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT;
2498 	hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN;
2499 	hdev->le_scan_int_adv_monitor = 0x0060;
2500 	hdev->le_scan_window_adv_monitor = 0x0030;
2501 	hdev->le_scan_int_connect = 0x0060;
2502 	hdev->le_scan_window_connect = 0x0060;
2503 	hdev->le_conn_min_interval = 0x0018;
2504 	hdev->le_conn_max_interval = 0x0028;
2505 	hdev->le_conn_latency = 0x0000;
2506 	hdev->le_supv_timeout = 0x002a;
2507 	hdev->le_def_tx_len = 0x001b;
2508 	hdev->le_def_tx_time = 0x0148;
2509 	hdev->le_max_tx_len = 0x001b;
2510 	hdev->le_max_tx_time = 0x0148;
2511 	hdev->le_max_rx_len = 0x001b;
2512 	hdev->le_max_rx_time = 0x0148;
2513 	hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
2514 	hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
2515 	hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
2516 	hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
2517 	hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES;
2518 	hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION;
2519 	hdev->def_le_autoconnect_timeout = HCI_LE_AUTOCONN_TIMEOUT;
2520 	hdev->min_le_tx_power = HCI_TX_POWER_INVALID;
2521 	hdev->max_le_tx_power = HCI_TX_POWER_INVALID;
2522 
2523 	hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
2524 	hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
2525 	hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
2526 	hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
2527 	hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
2528 	hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE;
2529 
2530 	/* default 1.28 sec page scan */
2531 	hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD;
2532 	hdev->def_page_scan_int = 0x0800;
2533 	hdev->def_page_scan_window = 0x0012;
2534 
2535 	mutex_init(&hdev->lock);
2536 	mutex_init(&hdev->req_lock);
2537 
2538 	ida_init(&hdev->unset_handle_ida);
2539 
2540 	INIT_LIST_HEAD(&hdev->mesh_pending);
2541 	INIT_LIST_HEAD(&hdev->mgmt_pending);
2542 	INIT_LIST_HEAD(&hdev->reject_list);
2543 	INIT_LIST_HEAD(&hdev->accept_list);
2544 	INIT_LIST_HEAD(&hdev->uuids);
2545 	INIT_LIST_HEAD(&hdev->link_keys);
2546 	INIT_LIST_HEAD(&hdev->long_term_keys);
2547 	INIT_LIST_HEAD(&hdev->identity_resolving_keys);
2548 	INIT_LIST_HEAD(&hdev->remote_oob_data);
2549 	INIT_LIST_HEAD(&hdev->le_accept_list);
2550 	INIT_LIST_HEAD(&hdev->le_resolv_list);
2551 	INIT_LIST_HEAD(&hdev->le_conn_params);
2552 	INIT_LIST_HEAD(&hdev->pend_le_conns);
2553 	INIT_LIST_HEAD(&hdev->pend_le_reports);
2554 	INIT_LIST_HEAD(&hdev->conn_hash.list);
2555 	INIT_LIST_HEAD(&hdev->adv_instances);
2556 	INIT_LIST_HEAD(&hdev->blocked_keys);
2557 	INIT_LIST_HEAD(&hdev->monitored_devices);
2558 
2559 	INIT_LIST_HEAD(&hdev->local_codecs);
2560 	INIT_WORK(&hdev->rx_work, hci_rx_work);
2561 	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
2562 	INIT_WORK(&hdev->tx_work, hci_tx_work);
2563 	INIT_WORK(&hdev->power_on, hci_power_on);
2564 	INIT_WORK(&hdev->error_reset, hci_error_reset);
2565 
2566 	hci_cmd_sync_init(hdev);
2567 
2568 	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
2569 
2570 	skb_queue_head_init(&hdev->rx_q);
2571 	skb_queue_head_init(&hdev->cmd_q);
2572 	skb_queue_head_init(&hdev->raw_q);
2573 
2574 	init_waitqueue_head(&hdev->req_wait_q);
2575 
2576 	INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
2577 	INIT_DELAYED_WORK(&hdev->ncmd_timer, hci_ncmd_timeout);
2578 
2579 	hci_devcd_setup(hdev);
2580 	hci_request_setup(hdev);
2581 
2582 	hci_init_sysfs(hdev);
2583 	discovery_init(hdev);
2584 
2585 	return hdev;
2586 }
2587 EXPORT_SYMBOL(hci_alloc_dev_priv);
2588 
2589 /* Free HCI device */
2590 void hci_free_dev(struct hci_dev *hdev)
2591 {
2592 	/* will free via device release */
2593 	put_device(&hdev->dev);
2594 }
2595 EXPORT_SYMBOL(hci_free_dev);
2596 
2597 /* Register HCI device */
2598 int hci_register_dev(struct hci_dev *hdev)
2599 {
2600 	int id, error;
2601 
2602 	if (!hdev->open || !hdev->close || !hdev->send)
2603 		return -EINVAL;
2604 
2605 	/* Do not allow HCI_AMP devices to register at index 0,
2606 	 * so the index can be used as the AMP controller ID.
2607 	 */
2608 	switch (hdev->dev_type) {
2609 	case HCI_PRIMARY:
2610 		id = ida_simple_get(&hci_index_ida, 0, HCI_MAX_ID, GFP_KERNEL);
2611 		break;
2612 	case HCI_AMP:
2613 		id = ida_simple_get(&hci_index_ida, 1, HCI_MAX_ID, GFP_KERNEL);
2614 		break;
2615 	default:
2616 		return -EINVAL;
2617 	}
2618 
2619 	if (id < 0)
2620 		return id;
2621 
2622 	error = dev_set_name(&hdev->dev, "hci%u", id);
2623 	if (error)
2624 		return error;
2625 
2626 	hdev->name = dev_name(&hdev->dev);
2627 	hdev->id = id;
2628 
2629 	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2630 
2631 	hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
2632 	if (!hdev->workqueue) {
2633 		error = -ENOMEM;
2634 		goto err;
2635 	}
2636 
2637 	hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
2638 						      hdev->name);
2639 	if (!hdev->req_workqueue) {
2640 		destroy_workqueue(hdev->workqueue);
2641 		error = -ENOMEM;
2642 		goto err;
2643 	}
2644 
2645 	if (!IS_ERR_OR_NULL(bt_debugfs))
2646 		hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
2647 
2648 	error = device_add(&hdev->dev);
2649 	if (error < 0)
2650 		goto err_wqueue;
2651 
2652 	hci_leds_init(hdev);
2653 
2654 	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
2655 				    RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
2656 				    hdev);
2657 	if (hdev->rfkill) {
2658 		if (rfkill_register(hdev->rfkill) < 0) {
2659 			rfkill_destroy(hdev->rfkill);
2660 			hdev->rfkill = NULL;
2661 		}
2662 	}
2663 
2664 	if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
2665 		hci_dev_set_flag(hdev, HCI_RFKILLED);
2666 
2667 	hci_dev_set_flag(hdev, HCI_SETUP);
2668 	hci_dev_set_flag(hdev, HCI_AUTO_OFF);
2669 
2670 	if (hdev->dev_type == HCI_PRIMARY) {
2671 		/* Assume BR/EDR support until proven otherwise (such as
2672 		 * through reading supported features during init.
2673 		 */
2674 		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
2675 	}
2676 
2677 	write_lock(&hci_dev_list_lock);
2678 	list_add(&hdev->list, &hci_dev_list);
2679 	write_unlock(&hci_dev_list_lock);
2680 
2681 	/* Devices that are marked for raw-only usage are unconfigured
2682 	 * and should not be included in normal operation.
2683 	 */
2684 	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
2685 		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
2686 
2687 	/* Mark Remote Wakeup connection flag as supported if driver has wakeup
2688 	 * callback.
2689 	 */
2690 	if (hdev->wakeup)
2691 		hdev->conn_flags |= HCI_CONN_FLAG_REMOTE_WAKEUP;
2692 
2693 	hci_sock_dev_event(hdev, HCI_DEV_REG);
2694 	hci_dev_hold(hdev);
2695 
2696 	error = hci_register_suspend_notifier(hdev);
2697 	if (error)
2698 		BT_WARN("register suspend notifier failed error:%d\n", error);
2699 
2700 	queue_work(hdev->req_workqueue, &hdev->power_on);
2701 
2702 	idr_init(&hdev->adv_monitors_idr);
2703 	msft_register(hdev);
2704 
2705 	return id;
2706 
2707 err_wqueue:
2708 	debugfs_remove_recursive(hdev->debugfs);
2709 	destroy_workqueue(hdev->workqueue);
2710 	destroy_workqueue(hdev->req_workqueue);
2711 err:
2712 	ida_simple_remove(&hci_index_ida, hdev->id);
2713 
2714 	return error;
2715 }
2716 EXPORT_SYMBOL(hci_register_dev);
2717 
2718 /* Unregister HCI device */
2719 void hci_unregister_dev(struct hci_dev *hdev)
2720 {
2721 	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2722 
2723 	mutex_lock(&hdev->unregister_lock);
2724 	hci_dev_set_flag(hdev, HCI_UNREGISTER);
2725 	mutex_unlock(&hdev->unregister_lock);
2726 
2727 	write_lock(&hci_dev_list_lock);
2728 	list_del(&hdev->list);
2729 	write_unlock(&hci_dev_list_lock);
2730 
2731 	cancel_work_sync(&hdev->power_on);
2732 
2733 	hci_cmd_sync_clear(hdev);
2734 
2735 	hci_unregister_suspend_notifier(hdev);
2736 
2737 	msft_unregister(hdev);
2738 
2739 	hci_dev_do_close(hdev);
2740 
2741 	if (!test_bit(HCI_INIT, &hdev->flags) &&
2742 	    !hci_dev_test_flag(hdev, HCI_SETUP) &&
2743 	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
2744 		hci_dev_lock(hdev);
2745 		mgmt_index_removed(hdev);
2746 		hci_dev_unlock(hdev);
2747 	}
2748 
2749 	/* mgmt_index_removed should take care of emptying the
2750 	 * pending list */
2751 	BUG_ON(!list_empty(&hdev->mgmt_pending));
2752 
2753 	hci_sock_dev_event(hdev, HCI_DEV_UNREG);
2754 
2755 	if (hdev->rfkill) {
2756 		rfkill_unregister(hdev->rfkill);
2757 		rfkill_destroy(hdev->rfkill);
2758 	}
2759 
2760 	device_del(&hdev->dev);
2761 	/* Actual cleanup is deferred until hci_release_dev(). */
2762 	hci_dev_put(hdev);
2763 }
2764 EXPORT_SYMBOL(hci_unregister_dev);
2765 
2766 /* Release HCI device */
2767 void hci_release_dev(struct hci_dev *hdev)
2768 {
2769 	debugfs_remove_recursive(hdev->debugfs);
2770 	kfree_const(hdev->hw_info);
2771 	kfree_const(hdev->fw_info);
2772 
2773 	destroy_workqueue(hdev->workqueue);
2774 	destroy_workqueue(hdev->req_workqueue);
2775 
2776 	hci_dev_lock(hdev);
2777 	hci_bdaddr_list_clear(&hdev->reject_list);
2778 	hci_bdaddr_list_clear(&hdev->accept_list);
2779 	hci_uuids_clear(hdev);
2780 	hci_link_keys_clear(hdev);
2781 	hci_smp_ltks_clear(hdev);
2782 	hci_smp_irks_clear(hdev);
2783 	hci_remote_oob_data_clear(hdev);
2784 	hci_adv_instances_clear(hdev);
2785 	hci_adv_monitors_clear(hdev);
2786 	hci_bdaddr_list_clear(&hdev->le_accept_list);
2787 	hci_bdaddr_list_clear(&hdev->le_resolv_list);
2788 	hci_conn_params_clear_all(hdev);
2789 	hci_discovery_filter_clear(hdev);
2790 	hci_blocked_keys_clear(hdev);
2791 	hci_codec_list_clear(&hdev->local_codecs);
2792 	hci_dev_unlock(hdev);
2793 
2794 	ida_destroy(&hdev->unset_handle_ida);
2795 	ida_simple_remove(&hci_index_ida, hdev->id);
2796 	kfree_skb(hdev->sent_cmd);
2797 	kfree_skb(hdev->recv_event);
2798 	kfree(hdev);
2799 }
2800 EXPORT_SYMBOL(hci_release_dev);
2801 
2802 int hci_register_suspend_notifier(struct hci_dev *hdev)
2803 {
2804 	int ret = 0;
2805 
2806 	if (!hdev->suspend_notifier.notifier_call &&
2807 	    !test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) {
2808 		hdev->suspend_notifier.notifier_call = hci_suspend_notifier;
2809 		ret = register_pm_notifier(&hdev->suspend_notifier);
2810 	}
2811 
2812 	return ret;
2813 }
2814 
2815 int hci_unregister_suspend_notifier(struct hci_dev *hdev)
2816 {
2817 	int ret = 0;
2818 
2819 	if (hdev->suspend_notifier.notifier_call) {
2820 		ret = unregister_pm_notifier(&hdev->suspend_notifier);
2821 		if (!ret)
2822 			hdev->suspend_notifier.notifier_call = NULL;
2823 	}
2824 
2825 	return ret;
2826 }
2827 
2828 /* Suspend HCI device */
2829 int hci_suspend_dev(struct hci_dev *hdev)
2830 {
2831 	int ret;
2832 
2833 	bt_dev_dbg(hdev, "");
2834 
2835 	/* Suspend should only act on when powered. */
2836 	if (!hdev_is_powered(hdev) ||
2837 	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2838 		return 0;
2839 
2840 	/* If powering down don't attempt to suspend */
2841 	if (mgmt_powering_down(hdev))
2842 		return 0;
2843 
2844 	/* Cancel potentially blocking sync operation before suspend */
2845 	__hci_cmd_sync_cancel(hdev, -EHOSTDOWN);
2846 
2847 	hci_req_sync_lock(hdev);
2848 	ret = hci_suspend_sync(hdev);
2849 	hci_req_sync_unlock(hdev);
2850 
2851 	hci_clear_wake_reason(hdev);
2852 	mgmt_suspending(hdev, hdev->suspend_state);
2853 
2854 	hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
2855 	return ret;
2856 }
2857 EXPORT_SYMBOL(hci_suspend_dev);
2858 
2859 /* Resume HCI device */
2860 int hci_resume_dev(struct hci_dev *hdev)
2861 {
2862 	int ret;
2863 
2864 	bt_dev_dbg(hdev, "");
2865 
2866 	/* Resume should only act on when powered. */
2867 	if (!hdev_is_powered(hdev) ||
2868 	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2869 		return 0;
2870 
2871 	/* If powering down don't attempt to resume */
2872 	if (mgmt_powering_down(hdev))
2873 		return 0;
2874 
2875 	hci_req_sync_lock(hdev);
2876 	ret = hci_resume_sync(hdev);
2877 	hci_req_sync_unlock(hdev);
2878 
2879 	mgmt_resuming(hdev, hdev->wake_reason, &hdev->wake_addr,
2880 		      hdev->wake_addr_type);
2881 
2882 	hci_sock_dev_event(hdev, HCI_DEV_RESUME);
2883 	return ret;
2884 }
2885 EXPORT_SYMBOL(hci_resume_dev);
2886 
2887 /* Reset HCI device */
2888 int hci_reset_dev(struct hci_dev *hdev)
2889 {
2890 	static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
2891 	struct sk_buff *skb;
2892 
2893 	skb = bt_skb_alloc(3, GFP_ATOMIC);
2894 	if (!skb)
2895 		return -ENOMEM;
2896 
2897 	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
2898 	skb_put_data(skb, hw_err, 3);
2899 
2900 	bt_dev_err(hdev, "Injecting HCI hardware error event");
2901 
2902 	/* Send Hardware Error to upper stack */
2903 	return hci_recv_frame(hdev, skb);
2904 }
2905 EXPORT_SYMBOL(hci_reset_dev);
2906 
2907 /* Receive frame from HCI drivers */
2908 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
2909 {
2910 	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
2911 		      && !test_bit(HCI_INIT, &hdev->flags))) {
2912 		kfree_skb(skb);
2913 		return -ENXIO;
2914 	}
2915 
2916 	switch (hci_skb_pkt_type(skb)) {
2917 	case HCI_EVENT_PKT:
2918 		break;
2919 	case HCI_ACLDATA_PKT:
2920 		/* Detect if ISO packet has been sent as ACL */
2921 		if (hci_conn_num(hdev, ISO_LINK)) {
2922 			__u16 handle = __le16_to_cpu(hci_acl_hdr(skb)->handle);
2923 			__u8 type;
2924 
2925 			type = hci_conn_lookup_type(hdev, hci_handle(handle));
2926 			if (type == ISO_LINK)
2927 				hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
2928 		}
2929 		break;
2930 	case HCI_SCODATA_PKT:
2931 		break;
2932 	case HCI_ISODATA_PKT:
2933 		break;
2934 	default:
2935 		kfree_skb(skb);
2936 		return -EINVAL;
2937 	}
2938 
2939 	/* Incoming skb */
2940 	bt_cb(skb)->incoming = 1;
2941 
2942 	/* Time stamp */
2943 	__net_timestamp(skb);
2944 
2945 	skb_queue_tail(&hdev->rx_q, skb);
2946 	queue_work(hdev->workqueue, &hdev->rx_work);
2947 
2948 	return 0;
2949 }
2950 EXPORT_SYMBOL(hci_recv_frame);
2951 
2952 /* Receive diagnostic message from HCI drivers */
2953 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
2954 {
2955 	/* Mark as diagnostic packet */
2956 	hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
2957 
2958 	/* Time stamp */
2959 	__net_timestamp(skb);
2960 
2961 	skb_queue_tail(&hdev->rx_q, skb);
2962 	queue_work(hdev->workqueue, &hdev->rx_work);
2963 
2964 	return 0;
2965 }
2966 EXPORT_SYMBOL(hci_recv_diag);
2967 
2968 void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
2969 {
2970 	va_list vargs;
2971 
2972 	va_start(vargs, fmt);
2973 	kfree_const(hdev->hw_info);
2974 	hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
2975 	va_end(vargs);
2976 }
2977 EXPORT_SYMBOL(hci_set_hw_info);
2978 
2979 void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
2980 {
2981 	va_list vargs;
2982 
2983 	va_start(vargs, fmt);
2984 	kfree_const(hdev->fw_info);
2985 	hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
2986 	va_end(vargs);
2987 }
2988 EXPORT_SYMBOL(hci_set_fw_info);
2989 
2990 /* ---- Interface to upper protocols ---- */
2991 
2992 int hci_register_cb(struct hci_cb *cb)
2993 {
2994 	BT_DBG("%p name %s", cb, cb->name);
2995 
2996 	mutex_lock(&hci_cb_list_lock);
2997 	list_add_tail(&cb->list, &hci_cb_list);
2998 	mutex_unlock(&hci_cb_list_lock);
2999 
3000 	return 0;
3001 }
3002 EXPORT_SYMBOL(hci_register_cb);
3003 
3004 int hci_unregister_cb(struct hci_cb *cb)
3005 {
3006 	BT_DBG("%p name %s", cb, cb->name);
3007 
3008 	mutex_lock(&hci_cb_list_lock);
3009 	list_del(&cb->list);
3010 	mutex_unlock(&hci_cb_list_lock);
3011 
3012 	return 0;
3013 }
3014 EXPORT_SYMBOL(hci_unregister_cb);
3015 
3016 static int hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3017 {
3018 	int err;
3019 
3020 	BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3021 	       skb->len);
3022 
3023 	/* Time stamp */
3024 	__net_timestamp(skb);
3025 
3026 	/* Send copy to monitor */
3027 	hci_send_to_monitor(hdev, skb);
3028 
3029 	if (atomic_read(&hdev->promisc)) {
3030 		/* Send copy to the sockets */
3031 		hci_send_to_sock(hdev, skb);
3032 	}
3033 
3034 	/* Get rid of skb owner, prior to sending to the driver. */
3035 	skb_orphan(skb);
3036 
3037 	if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3038 		kfree_skb(skb);
3039 		return -EINVAL;
3040 	}
3041 
3042 	err = hdev->send(hdev, skb);
3043 	if (err < 0) {
3044 		bt_dev_err(hdev, "sending frame failed (%d)", err);
3045 		kfree_skb(skb);
3046 		return err;
3047 	}
3048 
3049 	return 0;
3050 }
3051 
3052 /* Send HCI command */
3053 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3054 		 const void *param)
3055 {
3056 	struct sk_buff *skb;
3057 
3058 	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3059 
3060 	skb = hci_prepare_cmd(hdev, opcode, plen, param);
3061 	if (!skb) {
3062 		bt_dev_err(hdev, "no memory for command");
3063 		return -ENOMEM;
3064 	}
3065 
3066 	/* Stand-alone HCI commands must be flagged as
3067 	 * single-command requests.
3068 	 */
3069 	bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3070 
3071 	skb_queue_tail(&hdev->cmd_q, skb);
3072 	queue_work(hdev->workqueue, &hdev->cmd_work);
3073 
3074 	return 0;
3075 }
3076 
3077 int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
3078 		   const void *param)
3079 {
3080 	struct sk_buff *skb;
3081 
3082 	if (hci_opcode_ogf(opcode) != 0x3f) {
3083 		/* A controller receiving a command shall respond with either
3084 		 * a Command Status Event or a Command Complete Event.
3085 		 * Therefore, all standard HCI commands must be sent via the
3086 		 * standard API, using hci_send_cmd or hci_cmd_sync helpers.
3087 		 * Some vendors do not comply with this rule for vendor-specific
3088 		 * commands and do not return any event. We want to support
3089 		 * unresponded commands for such cases only.
3090 		 */
3091 		bt_dev_err(hdev, "unresponded command not supported");
3092 		return -EINVAL;
3093 	}
3094 
3095 	skb = hci_prepare_cmd(hdev, opcode, plen, param);
3096 	if (!skb) {
3097 		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
3098 			   opcode);
3099 		return -ENOMEM;
3100 	}
3101 
3102 	hci_send_frame(hdev, skb);
3103 
3104 	return 0;
3105 }
3106 EXPORT_SYMBOL(__hci_cmd_send);
3107 
3108 /* Get data from the previously sent command */
3109 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3110 {
3111 	struct hci_command_hdr *hdr;
3112 
3113 	if (!hdev->sent_cmd)
3114 		return NULL;
3115 
3116 	hdr = (void *) hdev->sent_cmd->data;
3117 
3118 	if (hdr->opcode != cpu_to_le16(opcode))
3119 		return NULL;
3120 
3121 	BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
3122 
3123 	return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3124 }
3125 
3126 /* Get data from last received event */
3127 void *hci_recv_event_data(struct hci_dev *hdev, __u8 event)
3128 {
3129 	struct hci_event_hdr *hdr;
3130 	int offset;
3131 
3132 	if (!hdev->recv_event)
3133 		return NULL;
3134 
3135 	hdr = (void *)hdev->recv_event->data;
3136 	offset = sizeof(*hdr);
3137 
3138 	if (hdr->evt != event) {
3139 		/* In case of LE metaevent check the subevent match */
3140 		if (hdr->evt == HCI_EV_LE_META) {
3141 			struct hci_ev_le_meta *ev;
3142 
3143 			ev = (void *)hdev->recv_event->data + offset;
3144 			offset += sizeof(*ev);
3145 			if (ev->subevent == event)
3146 				goto found;
3147 		}
3148 		return NULL;
3149 	}
3150 
3151 found:
3152 	bt_dev_dbg(hdev, "event 0x%2.2x", event);
3153 
3154 	return hdev->recv_event->data + offset;
3155 }
3156 
3157 /* Send ACL data */
3158 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3159 {
3160 	struct hci_acl_hdr *hdr;
3161 	int len = skb->len;
3162 
3163 	skb_push(skb, HCI_ACL_HDR_SIZE);
3164 	skb_reset_transport_header(skb);
3165 	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3166 	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3167 	hdr->dlen   = cpu_to_le16(len);
3168 }
3169 
3170 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3171 			  struct sk_buff *skb, __u16 flags)
3172 {
3173 	struct hci_conn *conn = chan->conn;
3174 	struct hci_dev *hdev = conn->hdev;
3175 	struct sk_buff *list;
3176 
3177 	skb->len = skb_headlen(skb);
3178 	skb->data_len = 0;
3179 
3180 	hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3181 
3182 	switch (hdev->dev_type) {
3183 	case HCI_PRIMARY:
3184 		hci_add_acl_hdr(skb, conn->handle, flags);
3185 		break;
3186 	case HCI_AMP:
3187 		hci_add_acl_hdr(skb, chan->handle, flags);
3188 		break;
3189 	default:
3190 		bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type);
3191 		return;
3192 	}
3193 
3194 	list = skb_shinfo(skb)->frag_list;
3195 	if (!list) {
3196 		/* Non fragmented */
3197 		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3198 
3199 		skb_queue_tail(queue, skb);
3200 	} else {
3201 		/* Fragmented */
3202 		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3203 
3204 		skb_shinfo(skb)->frag_list = NULL;
3205 
3206 		/* Queue all fragments atomically. We need to use spin_lock_bh
3207 		 * here because of 6LoWPAN links, as there this function is
3208 		 * called from softirq and using normal spin lock could cause
3209 		 * deadlocks.
3210 		 */
3211 		spin_lock_bh(&queue->lock);
3212 
3213 		__skb_queue_tail(queue, skb);
3214 
3215 		flags &= ~ACL_START;
3216 		flags |= ACL_CONT;
3217 		do {
3218 			skb = list; list = list->next;
3219 
3220 			hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3221 			hci_add_acl_hdr(skb, conn->handle, flags);
3222 
3223 			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3224 
3225 			__skb_queue_tail(queue, skb);
3226 		} while (list);
3227 
3228 		spin_unlock_bh(&queue->lock);
3229 	}
3230 }
3231 
3232 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3233 {
3234 	struct hci_dev *hdev = chan->conn->hdev;
3235 
3236 	BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3237 
3238 	hci_queue_acl(chan, &chan->data_q, skb, flags);
3239 
3240 	queue_work(hdev->workqueue, &hdev->tx_work);
3241 }
3242 
3243 /* Send SCO data */
3244 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3245 {
3246 	struct hci_dev *hdev = conn->hdev;
3247 	struct hci_sco_hdr hdr;
3248 
3249 	BT_DBG("%s len %d", hdev->name, skb->len);
3250 
3251 	hdr.handle = cpu_to_le16(conn->handle);
3252 	hdr.dlen   = skb->len;
3253 
3254 	skb_push(skb, HCI_SCO_HDR_SIZE);
3255 	skb_reset_transport_header(skb);
3256 	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3257 
3258 	hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3259 
3260 	skb_queue_tail(&conn->data_q, skb);
3261 	queue_work(hdev->workqueue, &hdev->tx_work);
3262 }
3263 
3264 /* Send ISO data */
3265 static void hci_add_iso_hdr(struct sk_buff *skb, __u16 handle, __u8 flags)
3266 {
3267 	struct hci_iso_hdr *hdr;
3268 	int len = skb->len;
3269 
3270 	skb_push(skb, HCI_ISO_HDR_SIZE);
3271 	skb_reset_transport_header(skb);
3272 	hdr = (struct hci_iso_hdr *)skb_transport_header(skb);
3273 	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3274 	hdr->dlen   = cpu_to_le16(len);
3275 }
3276 
3277 static void hci_queue_iso(struct hci_conn *conn, struct sk_buff_head *queue,
3278 			  struct sk_buff *skb)
3279 {
3280 	struct hci_dev *hdev = conn->hdev;
3281 	struct sk_buff *list;
3282 	__u16 flags;
3283 
3284 	skb->len = skb_headlen(skb);
3285 	skb->data_len = 0;
3286 
3287 	hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3288 
3289 	list = skb_shinfo(skb)->frag_list;
3290 
3291 	flags = hci_iso_flags_pack(list ? ISO_START : ISO_SINGLE, 0x00);
3292 	hci_add_iso_hdr(skb, conn->handle, flags);
3293 
3294 	if (!list) {
3295 		/* Non fragmented */
3296 		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3297 
3298 		skb_queue_tail(queue, skb);
3299 	} else {
3300 		/* Fragmented */
3301 		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3302 
3303 		skb_shinfo(skb)->frag_list = NULL;
3304 
3305 		__skb_queue_tail(queue, skb);
3306 
3307 		do {
3308 			skb = list; list = list->next;
3309 
3310 			hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3311 			flags = hci_iso_flags_pack(list ? ISO_CONT : ISO_END,
3312 						   0x00);
3313 			hci_add_iso_hdr(skb, conn->handle, flags);
3314 
3315 			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3316 
3317 			__skb_queue_tail(queue, skb);
3318 		} while (list);
3319 	}
3320 }
3321 
3322 void hci_send_iso(struct hci_conn *conn, struct sk_buff *skb)
3323 {
3324 	struct hci_dev *hdev = conn->hdev;
3325 
3326 	BT_DBG("%s len %d", hdev->name, skb->len);
3327 
3328 	hci_queue_iso(conn, &conn->data_q, skb);
3329 
3330 	queue_work(hdev->workqueue, &hdev->tx_work);
3331 }
3332 
3333 /* ---- HCI TX task (outgoing data) ---- */
3334 
3335 /* HCI Connection scheduler */
3336 static inline void hci_quote_sent(struct hci_conn *conn, int num, int *quote)
3337 {
3338 	struct hci_dev *hdev;
3339 	int cnt, q;
3340 
3341 	if (!conn) {
3342 		*quote = 0;
3343 		return;
3344 	}
3345 
3346 	hdev = conn->hdev;
3347 
3348 	switch (conn->type) {
3349 	case ACL_LINK:
3350 		cnt = hdev->acl_cnt;
3351 		break;
3352 	case AMP_LINK:
3353 		cnt = hdev->block_cnt;
3354 		break;
3355 	case SCO_LINK:
3356 	case ESCO_LINK:
3357 		cnt = hdev->sco_cnt;
3358 		break;
3359 	case LE_LINK:
3360 		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3361 		break;
3362 	case ISO_LINK:
3363 		cnt = hdev->iso_mtu ? hdev->iso_cnt :
3364 			hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3365 		break;
3366 	default:
3367 		cnt = 0;
3368 		bt_dev_err(hdev, "unknown link type %d", conn->type);
3369 	}
3370 
3371 	q = cnt / num;
3372 	*quote = q ? q : 1;
3373 }
3374 
3375 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3376 				     int *quote)
3377 {
3378 	struct hci_conn_hash *h = &hdev->conn_hash;
3379 	struct hci_conn *conn = NULL, *c;
3380 	unsigned int num = 0, min = ~0;
3381 
3382 	/* We don't have to lock device here. Connections are always
3383 	 * added and removed with TX task disabled. */
3384 
3385 	rcu_read_lock();
3386 
3387 	list_for_each_entry_rcu(c, &h->list, list) {
3388 		if (c->type != type || skb_queue_empty(&c->data_q))
3389 			continue;
3390 
3391 		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3392 			continue;
3393 
3394 		num++;
3395 
3396 		if (c->sent < min) {
3397 			min  = c->sent;
3398 			conn = c;
3399 		}
3400 
3401 		if (hci_conn_num(hdev, type) == num)
3402 			break;
3403 	}
3404 
3405 	rcu_read_unlock();
3406 
3407 	hci_quote_sent(conn, num, quote);
3408 
3409 	BT_DBG("conn %p quote %d", conn, *quote);
3410 	return conn;
3411 }
3412 
3413 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3414 {
3415 	struct hci_conn_hash *h = &hdev->conn_hash;
3416 	struct hci_conn *c;
3417 
3418 	bt_dev_err(hdev, "link tx timeout");
3419 
3420 	rcu_read_lock();
3421 
3422 	/* Kill stalled connections */
3423 	list_for_each_entry_rcu(c, &h->list, list) {
3424 		if (c->type == type && c->sent) {
3425 			bt_dev_err(hdev, "killing stalled connection %pMR",
3426 				   &c->dst);
3427 			/* hci_disconnect might sleep, so, we have to release
3428 			 * the RCU read lock before calling it.
3429 			 */
3430 			rcu_read_unlock();
3431 			hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3432 			rcu_read_lock();
3433 		}
3434 	}
3435 
3436 	rcu_read_unlock();
3437 }
3438 
3439 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3440 				      int *quote)
3441 {
3442 	struct hci_conn_hash *h = &hdev->conn_hash;
3443 	struct hci_chan *chan = NULL;
3444 	unsigned int num = 0, min = ~0, cur_prio = 0;
3445 	struct hci_conn *conn;
3446 	int conn_num = 0;
3447 
3448 	BT_DBG("%s", hdev->name);
3449 
3450 	rcu_read_lock();
3451 
3452 	list_for_each_entry_rcu(conn, &h->list, list) {
3453 		struct hci_chan *tmp;
3454 
3455 		if (conn->type != type)
3456 			continue;
3457 
3458 		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3459 			continue;
3460 
3461 		conn_num++;
3462 
3463 		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3464 			struct sk_buff *skb;
3465 
3466 			if (skb_queue_empty(&tmp->data_q))
3467 				continue;
3468 
3469 			skb = skb_peek(&tmp->data_q);
3470 			if (skb->priority < cur_prio)
3471 				continue;
3472 
3473 			if (skb->priority > cur_prio) {
3474 				num = 0;
3475 				min = ~0;
3476 				cur_prio = skb->priority;
3477 			}
3478 
3479 			num++;
3480 
3481 			if (conn->sent < min) {
3482 				min  = conn->sent;
3483 				chan = tmp;
3484 			}
3485 		}
3486 
3487 		if (hci_conn_num(hdev, type) == conn_num)
3488 			break;
3489 	}
3490 
3491 	rcu_read_unlock();
3492 
3493 	if (!chan)
3494 		return NULL;
3495 
3496 	hci_quote_sent(chan->conn, num, quote);
3497 
3498 	BT_DBG("chan %p quote %d", chan, *quote);
3499 	return chan;
3500 }
3501 
3502 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3503 {
3504 	struct hci_conn_hash *h = &hdev->conn_hash;
3505 	struct hci_conn *conn;
3506 	int num = 0;
3507 
3508 	BT_DBG("%s", hdev->name);
3509 
3510 	rcu_read_lock();
3511 
3512 	list_for_each_entry_rcu(conn, &h->list, list) {
3513 		struct hci_chan *chan;
3514 
3515 		if (conn->type != type)
3516 			continue;
3517 
3518 		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3519 			continue;
3520 
3521 		num++;
3522 
3523 		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3524 			struct sk_buff *skb;
3525 
3526 			if (chan->sent) {
3527 				chan->sent = 0;
3528 				continue;
3529 			}
3530 
3531 			if (skb_queue_empty(&chan->data_q))
3532 				continue;
3533 
3534 			skb = skb_peek(&chan->data_q);
3535 			if (skb->priority >= HCI_PRIO_MAX - 1)
3536 				continue;
3537 
3538 			skb->priority = HCI_PRIO_MAX - 1;
3539 
3540 			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3541 			       skb->priority);
3542 		}
3543 
3544 		if (hci_conn_num(hdev, type) == num)
3545 			break;
3546 	}
3547 
3548 	rcu_read_unlock();
3549 
3550 }
3551 
3552 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
3553 {
3554 	/* Calculate count of blocks used by this packet */
3555 	return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
3556 }
3557 
3558 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt, u8 type)
3559 {
3560 	unsigned long last_tx;
3561 
3562 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
3563 		return;
3564 
3565 	switch (type) {
3566 	case LE_LINK:
3567 		last_tx = hdev->le_last_tx;
3568 		break;
3569 	default:
3570 		last_tx = hdev->acl_last_tx;
3571 		break;
3572 	}
3573 
3574 	/* tx timeout must be longer than maximum link supervision timeout
3575 	 * (40.9 seconds)
3576 	 */
3577 	if (!cnt && time_after(jiffies, last_tx + HCI_ACL_TX_TIMEOUT))
3578 		hci_link_tx_to(hdev, type);
3579 }
3580 
3581 /* Schedule SCO */
3582 static void hci_sched_sco(struct hci_dev *hdev)
3583 {
3584 	struct hci_conn *conn;
3585 	struct sk_buff *skb;
3586 	int quote;
3587 
3588 	BT_DBG("%s", hdev->name);
3589 
3590 	if (!hci_conn_num(hdev, SCO_LINK))
3591 		return;
3592 
3593 	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
3594 		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3595 			BT_DBG("skb %p len %d", skb, skb->len);
3596 			hci_send_frame(hdev, skb);
3597 
3598 			conn->sent++;
3599 			if (conn->sent == ~0)
3600 				conn->sent = 0;
3601 		}
3602 	}
3603 }
3604 
3605 static void hci_sched_esco(struct hci_dev *hdev)
3606 {
3607 	struct hci_conn *conn;
3608 	struct sk_buff *skb;
3609 	int quote;
3610 
3611 	BT_DBG("%s", hdev->name);
3612 
3613 	if (!hci_conn_num(hdev, ESCO_LINK))
3614 		return;
3615 
3616 	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3617 						     &quote))) {
3618 		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3619 			BT_DBG("skb %p len %d", skb, skb->len);
3620 			hci_send_frame(hdev, skb);
3621 
3622 			conn->sent++;
3623 			if (conn->sent == ~0)
3624 				conn->sent = 0;
3625 		}
3626 	}
3627 }
3628 
3629 static void hci_sched_acl_pkt(struct hci_dev *hdev)
3630 {
3631 	unsigned int cnt = hdev->acl_cnt;
3632 	struct hci_chan *chan;
3633 	struct sk_buff *skb;
3634 	int quote;
3635 
3636 	__check_timeout(hdev, cnt, ACL_LINK);
3637 
3638 	while (hdev->acl_cnt &&
3639 	       (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
3640 		u32 priority = (skb_peek(&chan->data_q))->priority;
3641 		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3642 			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3643 			       skb->len, skb->priority);
3644 
3645 			/* Stop if priority has changed */
3646 			if (skb->priority < priority)
3647 				break;
3648 
3649 			skb = skb_dequeue(&chan->data_q);
3650 
3651 			hci_conn_enter_active_mode(chan->conn,
3652 						   bt_cb(skb)->force_active);
3653 
3654 			hci_send_frame(hdev, skb);
3655 			hdev->acl_last_tx = jiffies;
3656 
3657 			hdev->acl_cnt--;
3658 			chan->sent++;
3659 			chan->conn->sent++;
3660 
3661 			/* Send pending SCO packets right away */
3662 			hci_sched_sco(hdev);
3663 			hci_sched_esco(hdev);
3664 		}
3665 	}
3666 
3667 	if (cnt != hdev->acl_cnt)
3668 		hci_prio_recalculate(hdev, ACL_LINK);
3669 }
3670 
3671 static void hci_sched_acl_blk(struct hci_dev *hdev)
3672 {
3673 	unsigned int cnt = hdev->block_cnt;
3674 	struct hci_chan *chan;
3675 	struct sk_buff *skb;
3676 	int quote;
3677 	u8 type;
3678 
3679 	BT_DBG("%s", hdev->name);
3680 
3681 	if (hdev->dev_type == HCI_AMP)
3682 		type = AMP_LINK;
3683 	else
3684 		type = ACL_LINK;
3685 
3686 	__check_timeout(hdev, cnt, type);
3687 
3688 	while (hdev->block_cnt > 0 &&
3689 	       (chan = hci_chan_sent(hdev, type, &quote))) {
3690 		u32 priority = (skb_peek(&chan->data_q))->priority;
3691 		while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
3692 			int blocks;
3693 
3694 			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3695 			       skb->len, skb->priority);
3696 
3697 			/* Stop if priority has changed */
3698 			if (skb->priority < priority)
3699 				break;
3700 
3701 			skb = skb_dequeue(&chan->data_q);
3702 
3703 			blocks = __get_blocks(hdev, skb);
3704 			if (blocks > hdev->block_cnt)
3705 				return;
3706 
3707 			hci_conn_enter_active_mode(chan->conn,
3708 						   bt_cb(skb)->force_active);
3709 
3710 			hci_send_frame(hdev, skb);
3711 			hdev->acl_last_tx = jiffies;
3712 
3713 			hdev->block_cnt -= blocks;
3714 			quote -= blocks;
3715 
3716 			chan->sent += blocks;
3717 			chan->conn->sent += blocks;
3718 		}
3719 	}
3720 
3721 	if (cnt != hdev->block_cnt)
3722 		hci_prio_recalculate(hdev, type);
3723 }
3724 
3725 static void hci_sched_acl(struct hci_dev *hdev)
3726 {
3727 	BT_DBG("%s", hdev->name);
3728 
3729 	/* No ACL link over BR/EDR controller */
3730 	if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
3731 		return;
3732 
3733 	/* No AMP link over AMP controller */
3734 	if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
3735 		return;
3736 
3737 	switch (hdev->flow_ctl_mode) {
3738 	case HCI_FLOW_CTL_MODE_PACKET_BASED:
3739 		hci_sched_acl_pkt(hdev);
3740 		break;
3741 
3742 	case HCI_FLOW_CTL_MODE_BLOCK_BASED:
3743 		hci_sched_acl_blk(hdev);
3744 		break;
3745 	}
3746 }
3747 
3748 static void hci_sched_le(struct hci_dev *hdev)
3749 {
3750 	struct hci_chan *chan;
3751 	struct sk_buff *skb;
3752 	int quote, cnt, tmp;
3753 
3754 	BT_DBG("%s", hdev->name);
3755 
3756 	if (!hci_conn_num(hdev, LE_LINK))
3757 		return;
3758 
3759 	cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
3760 
3761 	__check_timeout(hdev, cnt, LE_LINK);
3762 
3763 	tmp = cnt;
3764 	while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
3765 		u32 priority = (skb_peek(&chan->data_q))->priority;
3766 		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3767 			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3768 			       skb->len, skb->priority);
3769 
3770 			/* Stop if priority has changed */
3771 			if (skb->priority < priority)
3772 				break;
3773 
3774 			skb = skb_dequeue(&chan->data_q);
3775 
3776 			hci_send_frame(hdev, skb);
3777 			hdev->le_last_tx = jiffies;
3778 
3779 			cnt--;
3780 			chan->sent++;
3781 			chan->conn->sent++;
3782 
3783 			/* Send pending SCO packets right away */
3784 			hci_sched_sco(hdev);
3785 			hci_sched_esco(hdev);
3786 		}
3787 	}
3788 
3789 	if (hdev->le_pkts)
3790 		hdev->le_cnt = cnt;
3791 	else
3792 		hdev->acl_cnt = cnt;
3793 
3794 	if (cnt != tmp)
3795 		hci_prio_recalculate(hdev, LE_LINK);
3796 }
3797 
3798 /* Schedule CIS */
3799 static void hci_sched_iso(struct hci_dev *hdev)
3800 {
3801 	struct hci_conn *conn;
3802 	struct sk_buff *skb;
3803 	int quote, *cnt;
3804 
3805 	BT_DBG("%s", hdev->name);
3806 
3807 	if (!hci_conn_num(hdev, ISO_LINK))
3808 		return;
3809 
3810 	cnt = hdev->iso_pkts ? &hdev->iso_cnt :
3811 		hdev->le_pkts ? &hdev->le_cnt : &hdev->acl_cnt;
3812 	while (*cnt && (conn = hci_low_sent(hdev, ISO_LINK, &quote))) {
3813 		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3814 			BT_DBG("skb %p len %d", skb, skb->len);
3815 			hci_send_frame(hdev, skb);
3816 
3817 			conn->sent++;
3818 			if (conn->sent == ~0)
3819 				conn->sent = 0;
3820 			(*cnt)--;
3821 		}
3822 	}
3823 }
3824 
3825 static void hci_tx_work(struct work_struct *work)
3826 {
3827 	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
3828 	struct sk_buff *skb;
3829 
3830 	BT_DBG("%s acl %d sco %d le %d iso %d", hdev->name, hdev->acl_cnt,
3831 	       hdev->sco_cnt, hdev->le_cnt, hdev->iso_cnt);
3832 
3833 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3834 		/* Schedule queues and send stuff to HCI driver */
3835 		hci_sched_sco(hdev);
3836 		hci_sched_esco(hdev);
3837 		hci_sched_iso(hdev);
3838 		hci_sched_acl(hdev);
3839 		hci_sched_le(hdev);
3840 	}
3841 
3842 	/* Send next queued raw (unknown type) packet */
3843 	while ((skb = skb_dequeue(&hdev->raw_q)))
3844 		hci_send_frame(hdev, skb);
3845 }
3846 
3847 /* ----- HCI RX task (incoming data processing) ----- */
3848 
3849 /* ACL data packet */
3850 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3851 {
3852 	struct hci_acl_hdr *hdr = (void *) skb->data;
3853 	struct hci_conn *conn;
3854 	__u16 handle, flags;
3855 
3856 	skb_pull(skb, HCI_ACL_HDR_SIZE);
3857 
3858 	handle = __le16_to_cpu(hdr->handle);
3859 	flags  = hci_flags(handle);
3860 	handle = hci_handle(handle);
3861 
3862 	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3863 	       handle, flags);
3864 
3865 	hdev->stat.acl_rx++;
3866 
3867 	hci_dev_lock(hdev);
3868 	conn = hci_conn_hash_lookup_handle(hdev, handle);
3869 	hci_dev_unlock(hdev);
3870 
3871 	if (conn) {
3872 		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
3873 
3874 		/* Send to upper protocol */
3875 		l2cap_recv_acldata(conn, skb, flags);
3876 		return;
3877 	} else {
3878 		bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
3879 			   handle);
3880 	}
3881 
3882 	kfree_skb(skb);
3883 }
3884 
3885 /* SCO data packet */
3886 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3887 {
3888 	struct hci_sco_hdr *hdr = (void *) skb->data;
3889 	struct hci_conn *conn;
3890 	__u16 handle, flags;
3891 
3892 	skb_pull(skb, HCI_SCO_HDR_SIZE);
3893 
3894 	handle = __le16_to_cpu(hdr->handle);
3895 	flags  = hci_flags(handle);
3896 	handle = hci_handle(handle);
3897 
3898 	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3899 	       handle, flags);
3900 
3901 	hdev->stat.sco_rx++;
3902 
3903 	hci_dev_lock(hdev);
3904 	conn = hci_conn_hash_lookup_handle(hdev, handle);
3905 	hci_dev_unlock(hdev);
3906 
3907 	if (conn) {
3908 		/* Send to upper protocol */
3909 		hci_skb_pkt_status(skb) = flags & 0x03;
3910 		sco_recv_scodata(conn, skb);
3911 		return;
3912 	} else {
3913 		bt_dev_err_ratelimited(hdev, "SCO packet for unknown connection handle %d",
3914 				       handle);
3915 	}
3916 
3917 	kfree_skb(skb);
3918 }
3919 
3920 static void hci_isodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3921 {
3922 	struct hci_iso_hdr *hdr;
3923 	struct hci_conn *conn;
3924 	__u16 handle, flags;
3925 
3926 	hdr = skb_pull_data(skb, sizeof(*hdr));
3927 	if (!hdr) {
3928 		bt_dev_err(hdev, "ISO packet too small");
3929 		goto drop;
3930 	}
3931 
3932 	handle = __le16_to_cpu(hdr->handle);
3933 	flags  = hci_flags(handle);
3934 	handle = hci_handle(handle);
3935 
3936 	bt_dev_dbg(hdev, "len %d handle 0x%4.4x flags 0x%4.4x", skb->len,
3937 		   handle, flags);
3938 
3939 	hci_dev_lock(hdev);
3940 	conn = hci_conn_hash_lookup_handle(hdev, handle);
3941 	hci_dev_unlock(hdev);
3942 
3943 	if (!conn) {
3944 		bt_dev_err(hdev, "ISO packet for unknown connection handle %d",
3945 			   handle);
3946 		goto drop;
3947 	}
3948 
3949 	/* Send to upper protocol */
3950 	iso_recv(conn, skb, flags);
3951 	return;
3952 
3953 drop:
3954 	kfree_skb(skb);
3955 }
3956 
3957 static bool hci_req_is_complete(struct hci_dev *hdev)
3958 {
3959 	struct sk_buff *skb;
3960 
3961 	skb = skb_peek(&hdev->cmd_q);
3962 	if (!skb)
3963 		return true;
3964 
3965 	return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
3966 }
3967 
3968 static void hci_resend_last(struct hci_dev *hdev)
3969 {
3970 	struct hci_command_hdr *sent;
3971 	struct sk_buff *skb;
3972 	u16 opcode;
3973 
3974 	if (!hdev->sent_cmd)
3975 		return;
3976 
3977 	sent = (void *) hdev->sent_cmd->data;
3978 	opcode = __le16_to_cpu(sent->opcode);
3979 	if (opcode == HCI_OP_RESET)
3980 		return;
3981 
3982 	skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
3983 	if (!skb)
3984 		return;
3985 
3986 	skb_queue_head(&hdev->cmd_q, skb);
3987 	queue_work(hdev->workqueue, &hdev->cmd_work);
3988 }
3989 
3990 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
3991 			  hci_req_complete_t *req_complete,
3992 			  hci_req_complete_skb_t *req_complete_skb)
3993 {
3994 	struct sk_buff *skb;
3995 	unsigned long flags;
3996 
3997 	BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
3998 
3999 	/* If the completed command doesn't match the last one that was
4000 	 * sent we need to do special handling of it.
4001 	 */
4002 	if (!hci_sent_cmd_data(hdev, opcode)) {
4003 		/* Some CSR based controllers generate a spontaneous
4004 		 * reset complete event during init and any pending
4005 		 * command will never be completed. In such a case we
4006 		 * need to resend whatever was the last sent
4007 		 * command.
4008 		 */
4009 		if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4010 			hci_resend_last(hdev);
4011 
4012 		return;
4013 	}
4014 
4015 	/* If we reach this point this event matches the last command sent */
4016 	hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
4017 
4018 	/* If the command succeeded and there's still more commands in
4019 	 * this request the request is not yet complete.
4020 	 */
4021 	if (!status && !hci_req_is_complete(hdev))
4022 		return;
4023 
4024 	/* If this was the last command in a request the complete
4025 	 * callback would be found in hdev->sent_cmd instead of the
4026 	 * command queue (hdev->cmd_q).
4027 	 */
4028 	if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4029 		*req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4030 		return;
4031 	}
4032 
4033 	if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4034 		*req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4035 		return;
4036 	}
4037 
4038 	/* Remove all pending commands belonging to this request */
4039 	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4040 	while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4041 		if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4042 			__skb_queue_head(&hdev->cmd_q, skb);
4043 			break;
4044 		}
4045 
4046 		if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4047 			*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4048 		else
4049 			*req_complete = bt_cb(skb)->hci.req_complete;
4050 		dev_kfree_skb_irq(skb);
4051 	}
4052 	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4053 }
4054 
4055 static void hci_rx_work(struct work_struct *work)
4056 {
4057 	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4058 	struct sk_buff *skb;
4059 
4060 	BT_DBG("%s", hdev->name);
4061 
4062 	/* The kcov_remote functions used for collecting packet parsing
4063 	 * coverage information from this background thread and associate
4064 	 * the coverage with the syscall's thread which originally injected
4065 	 * the packet. This helps fuzzing the kernel.
4066 	 */
4067 	for (; (skb = skb_dequeue(&hdev->rx_q)); kcov_remote_stop()) {
4068 		kcov_remote_start_common(skb_get_kcov_handle(skb));
4069 
4070 		/* Send copy to monitor */
4071 		hci_send_to_monitor(hdev, skb);
4072 
4073 		if (atomic_read(&hdev->promisc)) {
4074 			/* Send copy to the sockets */
4075 			hci_send_to_sock(hdev, skb);
4076 		}
4077 
4078 		/* If the device has been opened in HCI_USER_CHANNEL,
4079 		 * the userspace has exclusive access to device.
4080 		 * When device is HCI_INIT, we still need to process
4081 		 * the data packets to the driver in order
4082 		 * to complete its setup().
4083 		 */
4084 		if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4085 		    !test_bit(HCI_INIT, &hdev->flags)) {
4086 			kfree_skb(skb);
4087 			continue;
4088 		}
4089 
4090 		if (test_bit(HCI_INIT, &hdev->flags)) {
4091 			/* Don't process data packets in this states. */
4092 			switch (hci_skb_pkt_type(skb)) {
4093 			case HCI_ACLDATA_PKT:
4094 			case HCI_SCODATA_PKT:
4095 			case HCI_ISODATA_PKT:
4096 				kfree_skb(skb);
4097 				continue;
4098 			}
4099 		}
4100 
4101 		/* Process frame */
4102 		switch (hci_skb_pkt_type(skb)) {
4103 		case HCI_EVENT_PKT:
4104 			BT_DBG("%s Event packet", hdev->name);
4105 			hci_event_packet(hdev, skb);
4106 			break;
4107 
4108 		case HCI_ACLDATA_PKT:
4109 			BT_DBG("%s ACL data packet", hdev->name);
4110 			hci_acldata_packet(hdev, skb);
4111 			break;
4112 
4113 		case HCI_SCODATA_PKT:
4114 			BT_DBG("%s SCO data packet", hdev->name);
4115 			hci_scodata_packet(hdev, skb);
4116 			break;
4117 
4118 		case HCI_ISODATA_PKT:
4119 			BT_DBG("%s ISO data packet", hdev->name);
4120 			hci_isodata_packet(hdev, skb);
4121 			break;
4122 
4123 		default:
4124 			kfree_skb(skb);
4125 			break;
4126 		}
4127 	}
4128 }
4129 
4130 static void hci_cmd_work(struct work_struct *work)
4131 {
4132 	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4133 	struct sk_buff *skb;
4134 
4135 	BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4136 	       atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4137 
4138 	/* Send queued commands */
4139 	if (atomic_read(&hdev->cmd_cnt)) {
4140 		skb = skb_dequeue(&hdev->cmd_q);
4141 		if (!skb)
4142 			return;
4143 
4144 		kfree_skb(hdev->sent_cmd);
4145 
4146 		hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4147 		if (hdev->sent_cmd) {
4148 			int res;
4149 			if (hci_req_status_pend(hdev))
4150 				hci_dev_set_flag(hdev, HCI_CMD_PENDING);
4151 			atomic_dec(&hdev->cmd_cnt);
4152 
4153 			res = hci_send_frame(hdev, skb);
4154 			if (res < 0)
4155 				__hci_cmd_sync_cancel(hdev, -res);
4156 
4157 			rcu_read_lock();
4158 			if (test_bit(HCI_RESET, &hdev->flags) ||
4159 			    hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
4160 				cancel_delayed_work(&hdev->cmd_timer);
4161 			else
4162 				queue_delayed_work(hdev->workqueue, &hdev->cmd_timer,
4163 						   HCI_CMD_TIMEOUT);
4164 			rcu_read_unlock();
4165 		} else {
4166 			skb_queue_head(&hdev->cmd_q, skb);
4167 			queue_work(hdev->workqueue, &hdev->cmd_work);
4168 		}
4169 	}
4170 }
4171