xref: /linux/net/bluetooth/hci_core.c (revision 13b25489b6f8bd73ed65f07928f7c27a481f1820)
1 /*
2    BlueZ - Bluetooth protocol stack for Linux
3    Copyright (C) 2000-2001 Qualcomm Incorporated
4    Copyright (C) 2011 ProFUSION Embedded Systems
5 
6    Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License version 2 as
10    published by the Free Software Foundation;
11 
12    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 
21    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23    SOFTWARE IS DISCLAIMED.
24 */
25 
26 /* Bluetooth HCI core. */
27 
28 #include <linux/export.h>
29 #include <linux/rfkill.h>
30 #include <linux/debugfs.h>
31 #include <linux/crypto.h>
32 #include <linux/kcov.h>
33 #include <linux/property.h>
34 #include <linux/suspend.h>
35 #include <linux/wait.h>
36 #include <linux/unaligned.h>
37 
38 #include <net/bluetooth/bluetooth.h>
39 #include <net/bluetooth/hci_core.h>
40 #include <net/bluetooth/l2cap.h>
41 #include <net/bluetooth/mgmt.h>
42 
43 #include "hci_debugfs.h"
44 #include "smp.h"
45 #include "leds.h"
46 #include "msft.h"
47 #include "aosp.h"
48 #include "hci_codec.h"
49 
50 static void hci_rx_work(struct work_struct *work);
51 static void hci_cmd_work(struct work_struct *work);
52 static void hci_tx_work(struct work_struct *work);
53 
54 /* HCI device list */
55 LIST_HEAD(hci_dev_list);
56 DEFINE_RWLOCK(hci_dev_list_lock);
57 
58 /* HCI callback list */
59 LIST_HEAD(hci_cb_list);
60 DEFINE_MUTEX(hci_cb_list_lock);
61 
62 /* HCI ID Numbering */
63 static DEFINE_IDA(hci_index_ida);
64 
65 /* Get HCI device by index.
66  * Device is held on return. */
67 struct hci_dev *hci_dev_get(int index)
68 {
69 	struct hci_dev *hdev = NULL, *d;
70 
71 	BT_DBG("%d", index);
72 
73 	if (index < 0)
74 		return NULL;
75 
76 	read_lock(&hci_dev_list_lock);
77 	list_for_each_entry(d, &hci_dev_list, list) {
78 		if (d->id == index) {
79 			hdev = hci_dev_hold(d);
80 			break;
81 		}
82 	}
83 	read_unlock(&hci_dev_list_lock);
84 	return hdev;
85 }
86 
87 /* ---- Inquiry support ---- */
88 
89 bool hci_discovery_active(struct hci_dev *hdev)
90 {
91 	struct discovery_state *discov = &hdev->discovery;
92 
93 	switch (discov->state) {
94 	case DISCOVERY_FINDING:
95 	case DISCOVERY_RESOLVING:
96 		return true;
97 
98 	default:
99 		return false;
100 	}
101 }
102 
103 void hci_discovery_set_state(struct hci_dev *hdev, int state)
104 {
105 	int old_state = hdev->discovery.state;
106 
107 	if (old_state == state)
108 		return;
109 
110 	hdev->discovery.state = state;
111 
112 	switch (state) {
113 	case DISCOVERY_STOPPED:
114 		hci_update_passive_scan(hdev);
115 
116 		if (old_state != DISCOVERY_STARTING)
117 			mgmt_discovering(hdev, 0);
118 		break;
119 	case DISCOVERY_STARTING:
120 		break;
121 	case DISCOVERY_FINDING:
122 		mgmt_discovering(hdev, 1);
123 		break;
124 	case DISCOVERY_RESOLVING:
125 		break;
126 	case DISCOVERY_STOPPING:
127 		break;
128 	}
129 
130 	bt_dev_dbg(hdev, "state %u -> %u", old_state, state);
131 }
132 
133 void hci_inquiry_cache_flush(struct hci_dev *hdev)
134 {
135 	struct discovery_state *cache = &hdev->discovery;
136 	struct inquiry_entry *p, *n;
137 
138 	list_for_each_entry_safe(p, n, &cache->all, all) {
139 		list_del(&p->all);
140 		kfree(p);
141 	}
142 
143 	INIT_LIST_HEAD(&cache->unknown);
144 	INIT_LIST_HEAD(&cache->resolve);
145 }
146 
147 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
148 					       bdaddr_t *bdaddr)
149 {
150 	struct discovery_state *cache = &hdev->discovery;
151 	struct inquiry_entry *e;
152 
153 	BT_DBG("cache %p, %pMR", cache, bdaddr);
154 
155 	list_for_each_entry(e, &cache->all, all) {
156 		if (!bacmp(&e->data.bdaddr, bdaddr))
157 			return e;
158 	}
159 
160 	return NULL;
161 }
162 
163 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
164 						       bdaddr_t *bdaddr)
165 {
166 	struct discovery_state *cache = &hdev->discovery;
167 	struct inquiry_entry *e;
168 
169 	BT_DBG("cache %p, %pMR", cache, bdaddr);
170 
171 	list_for_each_entry(e, &cache->unknown, list) {
172 		if (!bacmp(&e->data.bdaddr, bdaddr))
173 			return e;
174 	}
175 
176 	return NULL;
177 }
178 
179 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
180 						       bdaddr_t *bdaddr,
181 						       int state)
182 {
183 	struct discovery_state *cache = &hdev->discovery;
184 	struct inquiry_entry *e;
185 
186 	BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
187 
188 	list_for_each_entry(e, &cache->resolve, list) {
189 		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
190 			return e;
191 		if (!bacmp(&e->data.bdaddr, bdaddr))
192 			return e;
193 	}
194 
195 	return NULL;
196 }
197 
198 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
199 				      struct inquiry_entry *ie)
200 {
201 	struct discovery_state *cache = &hdev->discovery;
202 	struct list_head *pos = &cache->resolve;
203 	struct inquiry_entry *p;
204 
205 	list_del(&ie->list);
206 
207 	list_for_each_entry(p, &cache->resolve, list) {
208 		if (p->name_state != NAME_PENDING &&
209 		    abs(p->data.rssi) >= abs(ie->data.rssi))
210 			break;
211 		pos = &p->list;
212 	}
213 
214 	list_add(&ie->list, pos);
215 }
216 
217 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
218 			     bool name_known)
219 {
220 	struct discovery_state *cache = &hdev->discovery;
221 	struct inquiry_entry *ie;
222 	u32 flags = 0;
223 
224 	BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
225 
226 	hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
227 
228 	if (!data->ssp_mode)
229 		flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
230 
231 	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
232 	if (ie) {
233 		if (!ie->data.ssp_mode)
234 			flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
235 
236 		if (ie->name_state == NAME_NEEDED &&
237 		    data->rssi != ie->data.rssi) {
238 			ie->data.rssi = data->rssi;
239 			hci_inquiry_cache_update_resolve(hdev, ie);
240 		}
241 
242 		goto update;
243 	}
244 
245 	/* Entry not in the cache. Add new one. */
246 	ie = kzalloc(sizeof(*ie), GFP_KERNEL);
247 	if (!ie) {
248 		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
249 		goto done;
250 	}
251 
252 	list_add(&ie->all, &cache->all);
253 
254 	if (name_known) {
255 		ie->name_state = NAME_KNOWN;
256 	} else {
257 		ie->name_state = NAME_NOT_KNOWN;
258 		list_add(&ie->list, &cache->unknown);
259 	}
260 
261 update:
262 	if (name_known && ie->name_state != NAME_KNOWN &&
263 	    ie->name_state != NAME_PENDING) {
264 		ie->name_state = NAME_KNOWN;
265 		list_del(&ie->list);
266 	}
267 
268 	memcpy(&ie->data, data, sizeof(*data));
269 	ie->timestamp = jiffies;
270 	cache->timestamp = jiffies;
271 
272 	if (ie->name_state == NAME_NOT_KNOWN)
273 		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
274 
275 done:
276 	return flags;
277 }
278 
279 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
280 {
281 	struct discovery_state *cache = &hdev->discovery;
282 	struct inquiry_info *info = (struct inquiry_info *) buf;
283 	struct inquiry_entry *e;
284 	int copied = 0;
285 
286 	list_for_each_entry(e, &cache->all, all) {
287 		struct inquiry_data *data = &e->data;
288 
289 		if (copied >= num)
290 			break;
291 
292 		bacpy(&info->bdaddr, &data->bdaddr);
293 		info->pscan_rep_mode	= data->pscan_rep_mode;
294 		info->pscan_period_mode	= data->pscan_period_mode;
295 		info->pscan_mode	= data->pscan_mode;
296 		memcpy(info->dev_class, data->dev_class, 3);
297 		info->clock_offset	= data->clock_offset;
298 
299 		info++;
300 		copied++;
301 	}
302 
303 	BT_DBG("cache %p, copied %d", cache, copied);
304 	return copied;
305 }
306 
307 int hci_inquiry(void __user *arg)
308 {
309 	__u8 __user *ptr = arg;
310 	struct hci_inquiry_req ir;
311 	struct hci_dev *hdev;
312 	int err = 0, do_inquiry = 0, max_rsp;
313 	__u8 *buf;
314 
315 	if (copy_from_user(&ir, ptr, sizeof(ir)))
316 		return -EFAULT;
317 
318 	hdev = hci_dev_get(ir.dev_id);
319 	if (!hdev)
320 		return -ENODEV;
321 
322 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
323 		err = -EBUSY;
324 		goto done;
325 	}
326 
327 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
328 		err = -EOPNOTSUPP;
329 		goto done;
330 	}
331 
332 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
333 		err = -EOPNOTSUPP;
334 		goto done;
335 	}
336 
337 	/* Restrict maximum inquiry length to 60 seconds */
338 	if (ir.length > 60) {
339 		err = -EINVAL;
340 		goto done;
341 	}
342 
343 	hci_dev_lock(hdev);
344 	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
345 	    inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
346 		hci_inquiry_cache_flush(hdev);
347 		do_inquiry = 1;
348 	}
349 	hci_dev_unlock(hdev);
350 
351 	if (do_inquiry) {
352 		hci_req_sync_lock(hdev);
353 		err = hci_inquiry_sync(hdev, ir.length, ir.num_rsp);
354 		hci_req_sync_unlock(hdev);
355 
356 		if (err < 0)
357 			goto done;
358 
359 		/* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
360 		 * cleared). If it is interrupted by a signal, return -EINTR.
361 		 */
362 		if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
363 				TASK_INTERRUPTIBLE)) {
364 			err = -EINTR;
365 			goto done;
366 		}
367 	}
368 
369 	/* for unlimited number of responses we will use buffer with
370 	 * 255 entries
371 	 */
372 	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
373 
374 	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
375 	 * copy it to the user space.
376 	 */
377 	buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
378 	if (!buf) {
379 		err = -ENOMEM;
380 		goto done;
381 	}
382 
383 	hci_dev_lock(hdev);
384 	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
385 	hci_dev_unlock(hdev);
386 
387 	BT_DBG("num_rsp %d", ir.num_rsp);
388 
389 	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
390 		ptr += sizeof(ir);
391 		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
392 				 ir.num_rsp))
393 			err = -EFAULT;
394 	} else
395 		err = -EFAULT;
396 
397 	kfree(buf);
398 
399 done:
400 	hci_dev_put(hdev);
401 	return err;
402 }
403 
404 static int hci_dev_do_open(struct hci_dev *hdev)
405 {
406 	int ret = 0;
407 
408 	BT_DBG("%s %p", hdev->name, hdev);
409 
410 	hci_req_sync_lock(hdev);
411 
412 	ret = hci_dev_open_sync(hdev);
413 
414 	hci_req_sync_unlock(hdev);
415 	return ret;
416 }
417 
418 /* ---- HCI ioctl helpers ---- */
419 
420 int hci_dev_open(__u16 dev)
421 {
422 	struct hci_dev *hdev;
423 	int err;
424 
425 	hdev = hci_dev_get(dev);
426 	if (!hdev)
427 		return -ENODEV;
428 
429 	/* Devices that are marked as unconfigured can only be powered
430 	 * up as user channel. Trying to bring them up as normal devices
431 	 * will result into a failure. Only user channel operation is
432 	 * possible.
433 	 *
434 	 * When this function is called for a user channel, the flag
435 	 * HCI_USER_CHANNEL will be set first before attempting to
436 	 * open the device.
437 	 */
438 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
439 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
440 		err = -EOPNOTSUPP;
441 		goto done;
442 	}
443 
444 	/* We need to ensure that no other power on/off work is pending
445 	 * before proceeding to call hci_dev_do_open. This is
446 	 * particularly important if the setup procedure has not yet
447 	 * completed.
448 	 */
449 	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
450 		cancel_delayed_work(&hdev->power_off);
451 
452 	/* After this call it is guaranteed that the setup procedure
453 	 * has finished. This means that error conditions like RFKILL
454 	 * or no valid public or static random address apply.
455 	 */
456 	flush_workqueue(hdev->req_workqueue);
457 
458 	/* For controllers not using the management interface and that
459 	 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
460 	 * so that pairing works for them. Once the management interface
461 	 * is in use this bit will be cleared again and userspace has
462 	 * to explicitly enable it.
463 	 */
464 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
465 	    !hci_dev_test_flag(hdev, HCI_MGMT))
466 		hci_dev_set_flag(hdev, HCI_BONDABLE);
467 
468 	err = hci_dev_do_open(hdev);
469 
470 done:
471 	hci_dev_put(hdev);
472 	return err;
473 }
474 
475 int hci_dev_do_close(struct hci_dev *hdev)
476 {
477 	int err;
478 
479 	BT_DBG("%s %p", hdev->name, hdev);
480 
481 	hci_req_sync_lock(hdev);
482 
483 	err = hci_dev_close_sync(hdev);
484 
485 	hci_req_sync_unlock(hdev);
486 
487 	return err;
488 }
489 
490 int hci_dev_close(__u16 dev)
491 {
492 	struct hci_dev *hdev;
493 	int err;
494 
495 	hdev = hci_dev_get(dev);
496 	if (!hdev)
497 		return -ENODEV;
498 
499 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
500 		err = -EBUSY;
501 		goto done;
502 	}
503 
504 	cancel_work_sync(&hdev->power_on);
505 	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
506 		cancel_delayed_work(&hdev->power_off);
507 
508 	err = hci_dev_do_close(hdev);
509 
510 done:
511 	hci_dev_put(hdev);
512 	return err;
513 }
514 
515 static int hci_dev_do_reset(struct hci_dev *hdev)
516 {
517 	int ret;
518 
519 	BT_DBG("%s %p", hdev->name, hdev);
520 
521 	hci_req_sync_lock(hdev);
522 
523 	/* Drop queues */
524 	skb_queue_purge(&hdev->rx_q);
525 	skb_queue_purge(&hdev->cmd_q);
526 
527 	/* Cancel these to avoid queueing non-chained pending work */
528 	hci_dev_set_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
529 	/* Wait for
530 	 *
531 	 *    if (!hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
532 	 *        queue_delayed_work(&hdev->{cmd,ncmd}_timer)
533 	 *
534 	 * inside RCU section to see the flag or complete scheduling.
535 	 */
536 	synchronize_rcu();
537 	/* Explicitly cancel works in case scheduled after setting the flag. */
538 	cancel_delayed_work(&hdev->cmd_timer);
539 	cancel_delayed_work(&hdev->ncmd_timer);
540 
541 	/* Avoid potential lockdep warnings from the *_flush() calls by
542 	 * ensuring the workqueue is empty up front.
543 	 */
544 	drain_workqueue(hdev->workqueue);
545 
546 	hci_dev_lock(hdev);
547 	hci_inquiry_cache_flush(hdev);
548 	hci_conn_hash_flush(hdev);
549 	hci_dev_unlock(hdev);
550 
551 	if (hdev->flush)
552 		hdev->flush(hdev);
553 
554 	hci_dev_clear_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
555 
556 	atomic_set(&hdev->cmd_cnt, 1);
557 	hdev->acl_cnt = 0;
558 	hdev->sco_cnt = 0;
559 	hdev->le_cnt = 0;
560 	hdev->iso_cnt = 0;
561 
562 	ret = hci_reset_sync(hdev);
563 
564 	hci_req_sync_unlock(hdev);
565 	return ret;
566 }
567 
568 int hci_dev_reset(__u16 dev)
569 {
570 	struct hci_dev *hdev;
571 	int err;
572 
573 	hdev = hci_dev_get(dev);
574 	if (!hdev)
575 		return -ENODEV;
576 
577 	if (!test_bit(HCI_UP, &hdev->flags)) {
578 		err = -ENETDOWN;
579 		goto done;
580 	}
581 
582 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
583 		err = -EBUSY;
584 		goto done;
585 	}
586 
587 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
588 		err = -EOPNOTSUPP;
589 		goto done;
590 	}
591 
592 	err = hci_dev_do_reset(hdev);
593 
594 done:
595 	hci_dev_put(hdev);
596 	return err;
597 }
598 
599 int hci_dev_reset_stat(__u16 dev)
600 {
601 	struct hci_dev *hdev;
602 	int ret = 0;
603 
604 	hdev = hci_dev_get(dev);
605 	if (!hdev)
606 		return -ENODEV;
607 
608 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
609 		ret = -EBUSY;
610 		goto done;
611 	}
612 
613 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
614 		ret = -EOPNOTSUPP;
615 		goto done;
616 	}
617 
618 	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
619 
620 done:
621 	hci_dev_put(hdev);
622 	return ret;
623 }
624 
625 static void hci_update_passive_scan_state(struct hci_dev *hdev, u8 scan)
626 {
627 	bool conn_changed, discov_changed;
628 
629 	BT_DBG("%s scan 0x%02x", hdev->name, scan);
630 
631 	if ((scan & SCAN_PAGE))
632 		conn_changed = !hci_dev_test_and_set_flag(hdev,
633 							  HCI_CONNECTABLE);
634 	else
635 		conn_changed = hci_dev_test_and_clear_flag(hdev,
636 							   HCI_CONNECTABLE);
637 
638 	if ((scan & SCAN_INQUIRY)) {
639 		discov_changed = !hci_dev_test_and_set_flag(hdev,
640 							    HCI_DISCOVERABLE);
641 	} else {
642 		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
643 		discov_changed = hci_dev_test_and_clear_flag(hdev,
644 							     HCI_DISCOVERABLE);
645 	}
646 
647 	if (!hci_dev_test_flag(hdev, HCI_MGMT))
648 		return;
649 
650 	if (conn_changed || discov_changed) {
651 		/* In case this was disabled through mgmt */
652 		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
653 
654 		if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
655 			hci_update_adv_data(hdev, hdev->cur_adv_instance);
656 
657 		mgmt_new_settings(hdev);
658 	}
659 }
660 
661 int hci_dev_cmd(unsigned int cmd, void __user *arg)
662 {
663 	struct hci_dev *hdev;
664 	struct hci_dev_req dr;
665 	__le16 policy;
666 	int err = 0;
667 
668 	if (copy_from_user(&dr, arg, sizeof(dr)))
669 		return -EFAULT;
670 
671 	hdev = hci_dev_get(dr.dev_id);
672 	if (!hdev)
673 		return -ENODEV;
674 
675 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
676 		err = -EBUSY;
677 		goto done;
678 	}
679 
680 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
681 		err = -EOPNOTSUPP;
682 		goto done;
683 	}
684 
685 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
686 		err = -EOPNOTSUPP;
687 		goto done;
688 	}
689 
690 	switch (cmd) {
691 	case HCISETAUTH:
692 		err = hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE,
693 					  1, &dr.dev_opt, HCI_CMD_TIMEOUT);
694 		break;
695 
696 	case HCISETENCRYPT:
697 		if (!lmp_encrypt_capable(hdev)) {
698 			err = -EOPNOTSUPP;
699 			break;
700 		}
701 
702 		if (!test_bit(HCI_AUTH, &hdev->flags)) {
703 			/* Auth must be enabled first */
704 			err = hci_cmd_sync_status(hdev,
705 						  HCI_OP_WRITE_AUTH_ENABLE,
706 						  1, &dr.dev_opt,
707 						  HCI_CMD_TIMEOUT);
708 			if (err)
709 				break;
710 		}
711 
712 		err = hci_cmd_sync_status(hdev, HCI_OP_WRITE_ENCRYPT_MODE,
713 					  1, &dr.dev_opt, HCI_CMD_TIMEOUT);
714 		break;
715 
716 	case HCISETSCAN:
717 		err = hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE,
718 					  1, &dr.dev_opt, HCI_CMD_TIMEOUT);
719 
720 		/* Ensure that the connectable and discoverable states
721 		 * get correctly modified as this was a non-mgmt change.
722 		 */
723 		if (!err)
724 			hci_update_passive_scan_state(hdev, dr.dev_opt);
725 		break;
726 
727 	case HCISETLINKPOL:
728 		policy = cpu_to_le16(dr.dev_opt);
729 
730 		err = hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY,
731 					  2, &policy, HCI_CMD_TIMEOUT);
732 		break;
733 
734 	case HCISETLINKMODE:
735 		hdev->link_mode = ((__u16) dr.dev_opt) &
736 					(HCI_LM_MASTER | HCI_LM_ACCEPT);
737 		break;
738 
739 	case HCISETPTYPE:
740 		if (hdev->pkt_type == (__u16) dr.dev_opt)
741 			break;
742 
743 		hdev->pkt_type = (__u16) dr.dev_opt;
744 		mgmt_phy_configuration_changed(hdev, NULL);
745 		break;
746 
747 	case HCISETACLMTU:
748 		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
749 		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
750 		break;
751 
752 	case HCISETSCOMTU:
753 		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
754 		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
755 		break;
756 
757 	default:
758 		err = -EINVAL;
759 		break;
760 	}
761 
762 done:
763 	hci_dev_put(hdev);
764 	return err;
765 }
766 
767 int hci_get_dev_list(void __user *arg)
768 {
769 	struct hci_dev *hdev;
770 	struct hci_dev_list_req *dl;
771 	struct hci_dev_req *dr;
772 	int n = 0, err;
773 	__u16 dev_num;
774 
775 	if (get_user(dev_num, (__u16 __user *) arg))
776 		return -EFAULT;
777 
778 	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
779 		return -EINVAL;
780 
781 	dl = kzalloc(struct_size(dl, dev_req, dev_num), GFP_KERNEL);
782 	if (!dl)
783 		return -ENOMEM;
784 
785 	dl->dev_num = dev_num;
786 	dr = dl->dev_req;
787 
788 	read_lock(&hci_dev_list_lock);
789 	list_for_each_entry(hdev, &hci_dev_list, list) {
790 		unsigned long flags = hdev->flags;
791 
792 		/* When the auto-off is configured it means the transport
793 		 * is running, but in that case still indicate that the
794 		 * device is actually down.
795 		 */
796 		if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
797 			flags &= ~BIT(HCI_UP);
798 
799 		dr[n].dev_id  = hdev->id;
800 		dr[n].dev_opt = flags;
801 
802 		if (++n >= dev_num)
803 			break;
804 	}
805 	read_unlock(&hci_dev_list_lock);
806 
807 	dl->dev_num = n;
808 	err = copy_to_user(arg, dl, struct_size(dl, dev_req, n));
809 	kfree(dl);
810 
811 	return err ? -EFAULT : 0;
812 }
813 
814 int hci_get_dev_info(void __user *arg)
815 {
816 	struct hci_dev *hdev;
817 	struct hci_dev_info di;
818 	unsigned long flags;
819 	int err = 0;
820 
821 	if (copy_from_user(&di, arg, sizeof(di)))
822 		return -EFAULT;
823 
824 	hdev = hci_dev_get(di.dev_id);
825 	if (!hdev)
826 		return -ENODEV;
827 
828 	/* When the auto-off is configured it means the transport
829 	 * is running, but in that case still indicate that the
830 	 * device is actually down.
831 	 */
832 	if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
833 		flags = hdev->flags & ~BIT(HCI_UP);
834 	else
835 		flags = hdev->flags;
836 
837 	strscpy(di.name, hdev->name, sizeof(di.name));
838 	di.bdaddr   = hdev->bdaddr;
839 	di.type     = (hdev->bus & 0x0f);
840 	di.flags    = flags;
841 	di.pkt_type = hdev->pkt_type;
842 	if (lmp_bredr_capable(hdev)) {
843 		di.acl_mtu  = hdev->acl_mtu;
844 		di.acl_pkts = hdev->acl_pkts;
845 		di.sco_mtu  = hdev->sco_mtu;
846 		di.sco_pkts = hdev->sco_pkts;
847 	} else {
848 		di.acl_mtu  = hdev->le_mtu;
849 		di.acl_pkts = hdev->le_pkts;
850 		di.sco_mtu  = 0;
851 		di.sco_pkts = 0;
852 	}
853 	di.link_policy = hdev->link_policy;
854 	di.link_mode   = hdev->link_mode;
855 
856 	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
857 	memcpy(&di.features, &hdev->features, sizeof(di.features));
858 
859 	if (copy_to_user(arg, &di, sizeof(di)))
860 		err = -EFAULT;
861 
862 	hci_dev_put(hdev);
863 
864 	return err;
865 }
866 
867 /* ---- Interface to HCI drivers ---- */
868 
869 static int hci_dev_do_poweroff(struct hci_dev *hdev)
870 {
871 	int err;
872 
873 	BT_DBG("%s %p", hdev->name, hdev);
874 
875 	hci_req_sync_lock(hdev);
876 
877 	err = hci_set_powered_sync(hdev, false);
878 
879 	hci_req_sync_unlock(hdev);
880 
881 	return err;
882 }
883 
884 static int hci_rfkill_set_block(void *data, bool blocked)
885 {
886 	struct hci_dev *hdev = data;
887 	int err;
888 
889 	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
890 
891 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
892 		return -EBUSY;
893 
894 	if (blocked == hci_dev_test_flag(hdev, HCI_RFKILLED))
895 		return 0;
896 
897 	if (blocked) {
898 		hci_dev_set_flag(hdev, HCI_RFKILLED);
899 
900 		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
901 		    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
902 			err = hci_dev_do_poweroff(hdev);
903 			if (err) {
904 				bt_dev_err(hdev, "Error when powering off device on rfkill (%d)",
905 					   err);
906 
907 				/* Make sure the device is still closed even if
908 				 * anything during power off sequence (eg.
909 				 * disconnecting devices) failed.
910 				 */
911 				hci_dev_do_close(hdev);
912 			}
913 		}
914 	} else {
915 		hci_dev_clear_flag(hdev, HCI_RFKILLED);
916 	}
917 
918 	return 0;
919 }
920 
921 static const struct rfkill_ops hci_rfkill_ops = {
922 	.set_block = hci_rfkill_set_block,
923 };
924 
925 static void hci_power_on(struct work_struct *work)
926 {
927 	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
928 	int err;
929 
930 	BT_DBG("%s", hdev->name);
931 
932 	if (test_bit(HCI_UP, &hdev->flags) &&
933 	    hci_dev_test_flag(hdev, HCI_MGMT) &&
934 	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
935 		cancel_delayed_work(&hdev->power_off);
936 		err = hci_powered_update_sync(hdev);
937 		mgmt_power_on(hdev, err);
938 		return;
939 	}
940 
941 	err = hci_dev_do_open(hdev);
942 	if (err < 0) {
943 		hci_dev_lock(hdev);
944 		mgmt_set_powered_failed(hdev, err);
945 		hci_dev_unlock(hdev);
946 		return;
947 	}
948 
949 	/* During the HCI setup phase, a few error conditions are
950 	 * ignored and they need to be checked now. If they are still
951 	 * valid, it is important to turn the device back off.
952 	 */
953 	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
954 	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
955 	    (!bacmp(&hdev->bdaddr, BDADDR_ANY) &&
956 	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
957 		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
958 		hci_dev_do_close(hdev);
959 	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
960 		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
961 				   HCI_AUTO_OFF_TIMEOUT);
962 	}
963 
964 	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
965 		/* For unconfigured devices, set the HCI_RAW flag
966 		 * so that userspace can easily identify them.
967 		 */
968 		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
969 			set_bit(HCI_RAW, &hdev->flags);
970 
971 		/* For fully configured devices, this will send
972 		 * the Index Added event. For unconfigured devices,
973 		 * it will send Unconfigued Index Added event.
974 		 *
975 		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
976 		 * and no event will be send.
977 		 */
978 		mgmt_index_added(hdev);
979 	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
980 		/* When the controller is now configured, then it
981 		 * is important to clear the HCI_RAW flag.
982 		 */
983 		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
984 			clear_bit(HCI_RAW, &hdev->flags);
985 
986 		/* Powering on the controller with HCI_CONFIG set only
987 		 * happens with the transition from unconfigured to
988 		 * configured. This will send the Index Added event.
989 		 */
990 		mgmt_index_added(hdev);
991 	}
992 }
993 
994 static void hci_power_off(struct work_struct *work)
995 {
996 	struct hci_dev *hdev = container_of(work, struct hci_dev,
997 					    power_off.work);
998 
999 	BT_DBG("%s", hdev->name);
1000 
1001 	hci_dev_do_close(hdev);
1002 }
1003 
1004 static void hci_error_reset(struct work_struct *work)
1005 {
1006 	struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
1007 
1008 	hci_dev_hold(hdev);
1009 	BT_DBG("%s", hdev->name);
1010 
1011 	if (hdev->hw_error)
1012 		hdev->hw_error(hdev, hdev->hw_error_code);
1013 	else
1014 		bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
1015 
1016 	if (!hci_dev_do_close(hdev))
1017 		hci_dev_do_open(hdev);
1018 
1019 	hci_dev_put(hdev);
1020 }
1021 
1022 void hci_uuids_clear(struct hci_dev *hdev)
1023 {
1024 	struct bt_uuid *uuid, *tmp;
1025 
1026 	list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
1027 		list_del(&uuid->list);
1028 		kfree(uuid);
1029 	}
1030 }
1031 
1032 void hci_link_keys_clear(struct hci_dev *hdev)
1033 {
1034 	struct link_key *key, *tmp;
1035 
1036 	list_for_each_entry_safe(key, tmp, &hdev->link_keys, list) {
1037 		list_del_rcu(&key->list);
1038 		kfree_rcu(key, rcu);
1039 	}
1040 }
1041 
1042 void hci_smp_ltks_clear(struct hci_dev *hdev)
1043 {
1044 	struct smp_ltk *k, *tmp;
1045 
1046 	list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1047 		list_del_rcu(&k->list);
1048 		kfree_rcu(k, rcu);
1049 	}
1050 }
1051 
1052 void hci_smp_irks_clear(struct hci_dev *hdev)
1053 {
1054 	struct smp_irk *k, *tmp;
1055 
1056 	list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
1057 		list_del_rcu(&k->list);
1058 		kfree_rcu(k, rcu);
1059 	}
1060 }
1061 
1062 void hci_blocked_keys_clear(struct hci_dev *hdev)
1063 {
1064 	struct blocked_key *b, *tmp;
1065 
1066 	list_for_each_entry_safe(b, tmp, &hdev->blocked_keys, list) {
1067 		list_del_rcu(&b->list);
1068 		kfree_rcu(b, rcu);
1069 	}
1070 }
1071 
1072 bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16])
1073 {
1074 	bool blocked = false;
1075 	struct blocked_key *b;
1076 
1077 	rcu_read_lock();
1078 	list_for_each_entry_rcu(b, &hdev->blocked_keys, list) {
1079 		if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) {
1080 			blocked = true;
1081 			break;
1082 		}
1083 	}
1084 
1085 	rcu_read_unlock();
1086 	return blocked;
1087 }
1088 
1089 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1090 {
1091 	struct link_key *k;
1092 
1093 	rcu_read_lock();
1094 	list_for_each_entry_rcu(k, &hdev->link_keys, list) {
1095 		if (bacmp(bdaddr, &k->bdaddr) == 0) {
1096 			rcu_read_unlock();
1097 
1098 			if (hci_is_blocked_key(hdev,
1099 					       HCI_BLOCKED_KEY_TYPE_LINKKEY,
1100 					       k->val)) {
1101 				bt_dev_warn_ratelimited(hdev,
1102 							"Link key blocked for %pMR",
1103 							&k->bdaddr);
1104 				return NULL;
1105 			}
1106 
1107 			return k;
1108 		}
1109 	}
1110 	rcu_read_unlock();
1111 
1112 	return NULL;
1113 }
1114 
1115 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
1116 			       u8 key_type, u8 old_key_type)
1117 {
1118 	/* Legacy key */
1119 	if (key_type < 0x03)
1120 		return true;
1121 
1122 	/* Debug keys are insecure so don't store them persistently */
1123 	if (key_type == HCI_LK_DEBUG_COMBINATION)
1124 		return false;
1125 
1126 	/* Changed combination key and there's no previous one */
1127 	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
1128 		return false;
1129 
1130 	/* Security mode 3 case */
1131 	if (!conn)
1132 		return true;
1133 
1134 	/* BR/EDR key derived using SC from an LE link */
1135 	if (conn->type == LE_LINK)
1136 		return true;
1137 
1138 	/* Neither local nor remote side had no-bonding as requirement */
1139 	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
1140 		return true;
1141 
1142 	/* Local side had dedicated bonding as requirement */
1143 	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
1144 		return true;
1145 
1146 	/* Remote side had dedicated bonding as requirement */
1147 	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
1148 		return true;
1149 
1150 	/* If none of the above criteria match, then don't store the key
1151 	 * persistently */
1152 	return false;
1153 }
1154 
1155 static u8 ltk_role(u8 type)
1156 {
1157 	if (type == SMP_LTK)
1158 		return HCI_ROLE_MASTER;
1159 
1160 	return HCI_ROLE_SLAVE;
1161 }
1162 
1163 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1164 			     u8 addr_type, u8 role)
1165 {
1166 	struct smp_ltk *k;
1167 
1168 	rcu_read_lock();
1169 	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1170 		if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
1171 			continue;
1172 
1173 		if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
1174 			rcu_read_unlock();
1175 
1176 			if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK,
1177 					       k->val)) {
1178 				bt_dev_warn_ratelimited(hdev,
1179 							"LTK blocked for %pMR",
1180 							&k->bdaddr);
1181 				return NULL;
1182 			}
1183 
1184 			return k;
1185 		}
1186 	}
1187 	rcu_read_unlock();
1188 
1189 	return NULL;
1190 }
1191 
1192 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
1193 {
1194 	struct smp_irk *irk_to_return = NULL;
1195 	struct smp_irk *irk;
1196 
1197 	rcu_read_lock();
1198 	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1199 		if (!bacmp(&irk->rpa, rpa)) {
1200 			irk_to_return = irk;
1201 			goto done;
1202 		}
1203 	}
1204 
1205 	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1206 		if (smp_irk_matches(hdev, irk->val, rpa)) {
1207 			bacpy(&irk->rpa, rpa);
1208 			irk_to_return = irk;
1209 			goto done;
1210 		}
1211 	}
1212 
1213 done:
1214 	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1215 						irk_to_return->val)) {
1216 		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1217 					&irk_to_return->bdaddr);
1218 		irk_to_return = NULL;
1219 	}
1220 
1221 	rcu_read_unlock();
1222 
1223 	return irk_to_return;
1224 }
1225 
1226 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
1227 				     u8 addr_type)
1228 {
1229 	struct smp_irk *irk_to_return = NULL;
1230 	struct smp_irk *irk;
1231 
1232 	/* Identity Address must be public or static random */
1233 	if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
1234 		return NULL;
1235 
1236 	rcu_read_lock();
1237 	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1238 		if (addr_type == irk->addr_type &&
1239 		    bacmp(bdaddr, &irk->bdaddr) == 0) {
1240 			irk_to_return = irk;
1241 			goto done;
1242 		}
1243 	}
1244 
1245 done:
1246 
1247 	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1248 						irk_to_return->val)) {
1249 		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1250 					&irk_to_return->bdaddr);
1251 		irk_to_return = NULL;
1252 	}
1253 
1254 	rcu_read_unlock();
1255 
1256 	return irk_to_return;
1257 }
1258 
1259 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
1260 				  bdaddr_t *bdaddr, u8 *val, u8 type,
1261 				  u8 pin_len, bool *persistent)
1262 {
1263 	struct link_key *key, *old_key;
1264 	u8 old_key_type;
1265 
1266 	old_key = hci_find_link_key(hdev, bdaddr);
1267 	if (old_key) {
1268 		old_key_type = old_key->type;
1269 		key = old_key;
1270 	} else {
1271 		old_key_type = conn ? conn->key_type : 0xff;
1272 		key = kzalloc(sizeof(*key), GFP_KERNEL);
1273 		if (!key)
1274 			return NULL;
1275 		list_add_rcu(&key->list, &hdev->link_keys);
1276 	}
1277 
1278 	BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
1279 
1280 	/* Some buggy controller combinations generate a changed
1281 	 * combination key for legacy pairing even when there's no
1282 	 * previous key */
1283 	if (type == HCI_LK_CHANGED_COMBINATION &&
1284 	    (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
1285 		type = HCI_LK_COMBINATION;
1286 		if (conn)
1287 			conn->key_type = type;
1288 	}
1289 
1290 	bacpy(&key->bdaddr, bdaddr);
1291 	memcpy(key->val, val, HCI_LINK_KEY_SIZE);
1292 	key->pin_len = pin_len;
1293 
1294 	if (type == HCI_LK_CHANGED_COMBINATION)
1295 		key->type = old_key_type;
1296 	else
1297 		key->type = type;
1298 
1299 	if (persistent)
1300 		*persistent = hci_persistent_key(hdev, conn, type,
1301 						 old_key_type);
1302 
1303 	return key;
1304 }
1305 
1306 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1307 			    u8 addr_type, u8 type, u8 authenticated,
1308 			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
1309 {
1310 	struct smp_ltk *key, *old_key;
1311 	u8 role = ltk_role(type);
1312 
1313 	old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
1314 	if (old_key)
1315 		key = old_key;
1316 	else {
1317 		key = kzalloc(sizeof(*key), GFP_KERNEL);
1318 		if (!key)
1319 			return NULL;
1320 		list_add_rcu(&key->list, &hdev->long_term_keys);
1321 	}
1322 
1323 	bacpy(&key->bdaddr, bdaddr);
1324 	key->bdaddr_type = addr_type;
1325 	memcpy(key->val, tk, sizeof(key->val));
1326 	key->authenticated = authenticated;
1327 	key->ediv = ediv;
1328 	key->rand = rand;
1329 	key->enc_size = enc_size;
1330 	key->type = type;
1331 
1332 	return key;
1333 }
1334 
1335 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1336 			    u8 addr_type, u8 val[16], bdaddr_t *rpa)
1337 {
1338 	struct smp_irk *irk;
1339 
1340 	irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
1341 	if (!irk) {
1342 		irk = kzalloc(sizeof(*irk), GFP_KERNEL);
1343 		if (!irk)
1344 			return NULL;
1345 
1346 		bacpy(&irk->bdaddr, bdaddr);
1347 		irk->addr_type = addr_type;
1348 
1349 		list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
1350 	}
1351 
1352 	memcpy(irk->val, val, 16);
1353 	bacpy(&irk->rpa, rpa);
1354 
1355 	return irk;
1356 }
1357 
1358 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1359 {
1360 	struct link_key *key;
1361 
1362 	key = hci_find_link_key(hdev, bdaddr);
1363 	if (!key)
1364 		return -ENOENT;
1365 
1366 	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1367 
1368 	list_del_rcu(&key->list);
1369 	kfree_rcu(key, rcu);
1370 
1371 	return 0;
1372 }
1373 
1374 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
1375 {
1376 	struct smp_ltk *k, *tmp;
1377 	int removed = 0;
1378 
1379 	list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1380 		if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
1381 			continue;
1382 
1383 		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1384 
1385 		list_del_rcu(&k->list);
1386 		kfree_rcu(k, rcu);
1387 		removed++;
1388 	}
1389 
1390 	return removed ? 0 : -ENOENT;
1391 }
1392 
1393 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
1394 {
1395 	struct smp_irk *k, *tmp;
1396 
1397 	list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
1398 		if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
1399 			continue;
1400 
1401 		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1402 
1403 		list_del_rcu(&k->list);
1404 		kfree_rcu(k, rcu);
1405 	}
1406 }
1407 
1408 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
1409 {
1410 	struct smp_ltk *k;
1411 	struct smp_irk *irk;
1412 	u8 addr_type;
1413 
1414 	if (type == BDADDR_BREDR) {
1415 		if (hci_find_link_key(hdev, bdaddr))
1416 			return true;
1417 		return false;
1418 	}
1419 
1420 	/* Convert to HCI addr type which struct smp_ltk uses */
1421 	if (type == BDADDR_LE_PUBLIC)
1422 		addr_type = ADDR_LE_DEV_PUBLIC;
1423 	else
1424 		addr_type = ADDR_LE_DEV_RANDOM;
1425 
1426 	irk = hci_get_irk(hdev, bdaddr, addr_type);
1427 	if (irk) {
1428 		bdaddr = &irk->bdaddr;
1429 		addr_type = irk->addr_type;
1430 	}
1431 
1432 	rcu_read_lock();
1433 	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1434 		if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
1435 			rcu_read_unlock();
1436 			return true;
1437 		}
1438 	}
1439 	rcu_read_unlock();
1440 
1441 	return false;
1442 }
1443 
1444 /* HCI command timer function */
1445 static void hci_cmd_timeout(struct work_struct *work)
1446 {
1447 	struct hci_dev *hdev = container_of(work, struct hci_dev,
1448 					    cmd_timer.work);
1449 
1450 	if (hdev->req_skb) {
1451 		u16 opcode = hci_skb_opcode(hdev->req_skb);
1452 
1453 		bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
1454 
1455 		hci_cmd_sync_cancel_sync(hdev, ETIMEDOUT);
1456 	} else {
1457 		bt_dev_err(hdev, "command tx timeout");
1458 	}
1459 
1460 	if (hdev->cmd_timeout)
1461 		hdev->cmd_timeout(hdev);
1462 
1463 	atomic_set(&hdev->cmd_cnt, 1);
1464 	queue_work(hdev->workqueue, &hdev->cmd_work);
1465 }
1466 
1467 /* HCI ncmd timer function */
1468 static void hci_ncmd_timeout(struct work_struct *work)
1469 {
1470 	struct hci_dev *hdev = container_of(work, struct hci_dev,
1471 					    ncmd_timer.work);
1472 
1473 	bt_dev_err(hdev, "Controller not accepting commands anymore: ncmd = 0");
1474 
1475 	/* During HCI_INIT phase no events can be injected if the ncmd timer
1476 	 * triggers since the procedure has its own timeout handling.
1477 	 */
1478 	if (test_bit(HCI_INIT, &hdev->flags))
1479 		return;
1480 
1481 	/* This is an irrecoverable state, inject hardware error event */
1482 	hci_reset_dev(hdev);
1483 }
1484 
1485 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
1486 					  bdaddr_t *bdaddr, u8 bdaddr_type)
1487 {
1488 	struct oob_data *data;
1489 
1490 	list_for_each_entry(data, &hdev->remote_oob_data, list) {
1491 		if (bacmp(bdaddr, &data->bdaddr) != 0)
1492 			continue;
1493 		if (data->bdaddr_type != bdaddr_type)
1494 			continue;
1495 		return data;
1496 	}
1497 
1498 	return NULL;
1499 }
1500 
1501 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1502 			       u8 bdaddr_type)
1503 {
1504 	struct oob_data *data;
1505 
1506 	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1507 	if (!data)
1508 		return -ENOENT;
1509 
1510 	BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
1511 
1512 	list_del(&data->list);
1513 	kfree(data);
1514 
1515 	return 0;
1516 }
1517 
1518 void hci_remote_oob_data_clear(struct hci_dev *hdev)
1519 {
1520 	struct oob_data *data, *n;
1521 
1522 	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
1523 		list_del(&data->list);
1524 		kfree(data);
1525 	}
1526 }
1527 
1528 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1529 			    u8 bdaddr_type, u8 *hash192, u8 *rand192,
1530 			    u8 *hash256, u8 *rand256)
1531 {
1532 	struct oob_data *data;
1533 
1534 	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1535 	if (!data) {
1536 		data = kmalloc(sizeof(*data), GFP_KERNEL);
1537 		if (!data)
1538 			return -ENOMEM;
1539 
1540 		bacpy(&data->bdaddr, bdaddr);
1541 		data->bdaddr_type = bdaddr_type;
1542 		list_add(&data->list, &hdev->remote_oob_data);
1543 	}
1544 
1545 	if (hash192 && rand192) {
1546 		memcpy(data->hash192, hash192, sizeof(data->hash192));
1547 		memcpy(data->rand192, rand192, sizeof(data->rand192));
1548 		if (hash256 && rand256)
1549 			data->present = 0x03;
1550 	} else {
1551 		memset(data->hash192, 0, sizeof(data->hash192));
1552 		memset(data->rand192, 0, sizeof(data->rand192));
1553 		if (hash256 && rand256)
1554 			data->present = 0x02;
1555 		else
1556 			data->present = 0x00;
1557 	}
1558 
1559 	if (hash256 && rand256) {
1560 		memcpy(data->hash256, hash256, sizeof(data->hash256));
1561 		memcpy(data->rand256, rand256, sizeof(data->rand256));
1562 	} else {
1563 		memset(data->hash256, 0, sizeof(data->hash256));
1564 		memset(data->rand256, 0, sizeof(data->rand256));
1565 		if (hash192 && rand192)
1566 			data->present = 0x01;
1567 	}
1568 
1569 	BT_DBG("%s for %pMR", hdev->name, bdaddr);
1570 
1571 	return 0;
1572 }
1573 
1574 /* This function requires the caller holds hdev->lock */
1575 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
1576 {
1577 	struct adv_info *adv_instance;
1578 
1579 	list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
1580 		if (adv_instance->instance == instance)
1581 			return adv_instance;
1582 	}
1583 
1584 	return NULL;
1585 }
1586 
1587 /* This function requires the caller holds hdev->lock */
1588 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
1589 {
1590 	struct adv_info *cur_instance;
1591 
1592 	cur_instance = hci_find_adv_instance(hdev, instance);
1593 	if (!cur_instance)
1594 		return NULL;
1595 
1596 	if (cur_instance == list_last_entry(&hdev->adv_instances,
1597 					    struct adv_info, list))
1598 		return list_first_entry(&hdev->adv_instances,
1599 						 struct adv_info, list);
1600 	else
1601 		return list_next_entry(cur_instance, list);
1602 }
1603 
1604 /* This function requires the caller holds hdev->lock */
1605 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
1606 {
1607 	struct adv_info *adv_instance;
1608 
1609 	adv_instance = hci_find_adv_instance(hdev, instance);
1610 	if (!adv_instance)
1611 		return -ENOENT;
1612 
1613 	BT_DBG("%s removing %dMR", hdev->name, instance);
1614 
1615 	if (hdev->cur_adv_instance == instance) {
1616 		if (hdev->adv_instance_timeout) {
1617 			cancel_delayed_work(&hdev->adv_instance_expire);
1618 			hdev->adv_instance_timeout = 0;
1619 		}
1620 		hdev->cur_adv_instance = 0x00;
1621 	}
1622 
1623 	cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1624 
1625 	list_del(&adv_instance->list);
1626 	kfree(adv_instance);
1627 
1628 	hdev->adv_instance_cnt--;
1629 
1630 	return 0;
1631 }
1632 
1633 void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
1634 {
1635 	struct adv_info *adv_instance, *n;
1636 
1637 	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
1638 		adv_instance->rpa_expired = rpa_expired;
1639 }
1640 
1641 /* This function requires the caller holds hdev->lock */
1642 void hci_adv_instances_clear(struct hci_dev *hdev)
1643 {
1644 	struct adv_info *adv_instance, *n;
1645 
1646 	if (hdev->adv_instance_timeout) {
1647 		disable_delayed_work(&hdev->adv_instance_expire);
1648 		hdev->adv_instance_timeout = 0;
1649 	}
1650 
1651 	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
1652 		disable_delayed_work_sync(&adv_instance->rpa_expired_cb);
1653 		list_del(&adv_instance->list);
1654 		kfree(adv_instance);
1655 	}
1656 
1657 	hdev->adv_instance_cnt = 0;
1658 	hdev->cur_adv_instance = 0x00;
1659 }
1660 
1661 static void adv_instance_rpa_expired(struct work_struct *work)
1662 {
1663 	struct adv_info *adv_instance = container_of(work, struct adv_info,
1664 						     rpa_expired_cb.work);
1665 
1666 	BT_DBG("");
1667 
1668 	adv_instance->rpa_expired = true;
1669 }
1670 
1671 /* This function requires the caller holds hdev->lock */
1672 struct adv_info *hci_add_adv_instance(struct hci_dev *hdev, u8 instance,
1673 				      u32 flags, u16 adv_data_len, u8 *adv_data,
1674 				      u16 scan_rsp_len, u8 *scan_rsp_data,
1675 				      u16 timeout, u16 duration, s8 tx_power,
1676 				      u32 min_interval, u32 max_interval,
1677 				      u8 mesh_handle)
1678 {
1679 	struct adv_info *adv;
1680 
1681 	adv = hci_find_adv_instance(hdev, instance);
1682 	if (adv) {
1683 		memset(adv->adv_data, 0, sizeof(adv->adv_data));
1684 		memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1685 		memset(adv->per_adv_data, 0, sizeof(adv->per_adv_data));
1686 	} else {
1687 		if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets ||
1688 		    instance < 1 || instance > hdev->le_num_of_adv_sets + 1)
1689 			return ERR_PTR(-EOVERFLOW);
1690 
1691 		adv = kzalloc(sizeof(*adv), GFP_KERNEL);
1692 		if (!adv)
1693 			return ERR_PTR(-ENOMEM);
1694 
1695 		adv->pending = true;
1696 		adv->instance = instance;
1697 
1698 		/* If controller support only one set and the instance is set to
1699 		 * 1 then there is no option other than using handle 0x00.
1700 		 */
1701 		if (hdev->le_num_of_adv_sets == 1 && instance == 1)
1702 			adv->handle = 0x00;
1703 		else
1704 			adv->handle = instance;
1705 
1706 		list_add(&adv->list, &hdev->adv_instances);
1707 		hdev->adv_instance_cnt++;
1708 	}
1709 
1710 	adv->flags = flags;
1711 	adv->min_interval = min_interval;
1712 	adv->max_interval = max_interval;
1713 	adv->tx_power = tx_power;
1714 	/* Defining a mesh_handle changes the timing units to ms,
1715 	 * rather than seconds, and ties the instance to the requested
1716 	 * mesh_tx queue.
1717 	 */
1718 	adv->mesh = mesh_handle;
1719 
1720 	hci_set_adv_instance_data(hdev, instance, adv_data_len, adv_data,
1721 				  scan_rsp_len, scan_rsp_data);
1722 
1723 	adv->timeout = timeout;
1724 	adv->remaining_time = timeout;
1725 
1726 	if (duration == 0)
1727 		adv->duration = hdev->def_multi_adv_rotation_duration;
1728 	else
1729 		adv->duration = duration;
1730 
1731 	INIT_DELAYED_WORK(&adv->rpa_expired_cb, adv_instance_rpa_expired);
1732 
1733 	BT_DBG("%s for %dMR", hdev->name, instance);
1734 
1735 	return adv;
1736 }
1737 
1738 /* This function requires the caller holds hdev->lock */
1739 struct adv_info *hci_add_per_instance(struct hci_dev *hdev, u8 instance,
1740 				      u32 flags, u8 data_len, u8 *data,
1741 				      u32 min_interval, u32 max_interval)
1742 {
1743 	struct adv_info *adv;
1744 
1745 	adv = hci_add_adv_instance(hdev, instance, flags, 0, NULL, 0, NULL,
1746 				   0, 0, HCI_ADV_TX_POWER_NO_PREFERENCE,
1747 				   min_interval, max_interval, 0);
1748 	if (IS_ERR(adv))
1749 		return adv;
1750 
1751 	adv->periodic = true;
1752 	adv->per_adv_data_len = data_len;
1753 
1754 	if (data)
1755 		memcpy(adv->per_adv_data, data, data_len);
1756 
1757 	return adv;
1758 }
1759 
1760 /* This function requires the caller holds hdev->lock */
1761 int hci_set_adv_instance_data(struct hci_dev *hdev, u8 instance,
1762 			      u16 adv_data_len, u8 *adv_data,
1763 			      u16 scan_rsp_len, u8 *scan_rsp_data)
1764 {
1765 	struct adv_info *adv;
1766 
1767 	adv = hci_find_adv_instance(hdev, instance);
1768 
1769 	/* If advertisement doesn't exist, we can't modify its data */
1770 	if (!adv)
1771 		return -ENOENT;
1772 
1773 	if (adv_data_len && ADV_DATA_CMP(adv, adv_data, adv_data_len)) {
1774 		memset(adv->adv_data, 0, sizeof(adv->adv_data));
1775 		memcpy(adv->adv_data, adv_data, adv_data_len);
1776 		adv->adv_data_len = adv_data_len;
1777 		adv->adv_data_changed = true;
1778 	}
1779 
1780 	if (scan_rsp_len && SCAN_RSP_CMP(adv, scan_rsp_data, scan_rsp_len)) {
1781 		memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1782 		memcpy(adv->scan_rsp_data, scan_rsp_data, scan_rsp_len);
1783 		adv->scan_rsp_len = scan_rsp_len;
1784 		adv->scan_rsp_changed = true;
1785 	}
1786 
1787 	/* Mark as changed if there are flags which would affect it */
1788 	if (((adv->flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) ||
1789 	    adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1790 		adv->scan_rsp_changed = true;
1791 
1792 	return 0;
1793 }
1794 
1795 /* This function requires the caller holds hdev->lock */
1796 u32 hci_adv_instance_flags(struct hci_dev *hdev, u8 instance)
1797 {
1798 	u32 flags;
1799 	struct adv_info *adv;
1800 
1801 	if (instance == 0x00) {
1802 		/* Instance 0 always manages the "Tx Power" and "Flags"
1803 		 * fields
1804 		 */
1805 		flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
1806 
1807 		/* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
1808 		 * corresponds to the "connectable" instance flag.
1809 		 */
1810 		if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
1811 			flags |= MGMT_ADV_FLAG_CONNECTABLE;
1812 
1813 		if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
1814 			flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
1815 		else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1816 			flags |= MGMT_ADV_FLAG_DISCOV;
1817 
1818 		return flags;
1819 	}
1820 
1821 	adv = hci_find_adv_instance(hdev, instance);
1822 
1823 	/* Return 0 when we got an invalid instance identifier. */
1824 	if (!adv)
1825 		return 0;
1826 
1827 	return adv->flags;
1828 }
1829 
1830 bool hci_adv_instance_is_scannable(struct hci_dev *hdev, u8 instance)
1831 {
1832 	struct adv_info *adv;
1833 
1834 	/* Instance 0x00 always set local name */
1835 	if (instance == 0x00)
1836 		return true;
1837 
1838 	adv = hci_find_adv_instance(hdev, instance);
1839 	if (!adv)
1840 		return false;
1841 
1842 	if (adv->flags & MGMT_ADV_FLAG_APPEARANCE ||
1843 	    adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1844 		return true;
1845 
1846 	return adv->scan_rsp_len ? true : false;
1847 }
1848 
1849 /* This function requires the caller holds hdev->lock */
1850 void hci_adv_monitors_clear(struct hci_dev *hdev)
1851 {
1852 	struct adv_monitor *monitor;
1853 	int handle;
1854 
1855 	idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle)
1856 		hci_free_adv_monitor(hdev, monitor);
1857 
1858 	idr_destroy(&hdev->adv_monitors_idr);
1859 }
1860 
1861 /* Frees the monitor structure and do some bookkeepings.
1862  * This function requires the caller holds hdev->lock.
1863  */
1864 void hci_free_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1865 {
1866 	struct adv_pattern *pattern;
1867 	struct adv_pattern *tmp;
1868 
1869 	if (!monitor)
1870 		return;
1871 
1872 	list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list) {
1873 		list_del(&pattern->list);
1874 		kfree(pattern);
1875 	}
1876 
1877 	if (monitor->handle)
1878 		idr_remove(&hdev->adv_monitors_idr, monitor->handle);
1879 
1880 	if (monitor->state != ADV_MONITOR_STATE_NOT_REGISTERED) {
1881 		hdev->adv_monitors_cnt--;
1882 		mgmt_adv_monitor_removed(hdev, monitor->handle);
1883 	}
1884 
1885 	kfree(monitor);
1886 }
1887 
1888 /* Assigns handle to a monitor, and if offloading is supported and power is on,
1889  * also attempts to forward the request to the controller.
1890  * This function requires the caller holds hci_req_sync_lock.
1891  */
1892 int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1893 {
1894 	int min, max, handle;
1895 	int status = 0;
1896 
1897 	if (!monitor)
1898 		return -EINVAL;
1899 
1900 	hci_dev_lock(hdev);
1901 
1902 	min = HCI_MIN_ADV_MONITOR_HANDLE;
1903 	max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES;
1904 	handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max,
1905 			   GFP_KERNEL);
1906 
1907 	hci_dev_unlock(hdev);
1908 
1909 	if (handle < 0)
1910 		return handle;
1911 
1912 	monitor->handle = handle;
1913 
1914 	if (!hdev_is_powered(hdev))
1915 		return status;
1916 
1917 	switch (hci_get_adv_monitor_offload_ext(hdev)) {
1918 	case HCI_ADV_MONITOR_EXT_NONE:
1919 		bt_dev_dbg(hdev, "add monitor %d status %d",
1920 			   monitor->handle, status);
1921 		/* Message was not forwarded to controller - not an error */
1922 		break;
1923 
1924 	case HCI_ADV_MONITOR_EXT_MSFT:
1925 		status = msft_add_monitor_pattern(hdev, monitor);
1926 		bt_dev_dbg(hdev, "add monitor %d msft status %d",
1927 			   handle, status);
1928 		break;
1929 	}
1930 
1931 	return status;
1932 }
1933 
1934 /* Attempts to tell the controller and free the monitor. If somehow the
1935  * controller doesn't have a corresponding handle, remove anyway.
1936  * This function requires the caller holds hci_req_sync_lock.
1937  */
1938 static int hci_remove_adv_monitor(struct hci_dev *hdev,
1939 				  struct adv_monitor *monitor)
1940 {
1941 	int status = 0;
1942 	int handle;
1943 
1944 	switch (hci_get_adv_monitor_offload_ext(hdev)) {
1945 	case HCI_ADV_MONITOR_EXT_NONE: /* also goes here when powered off */
1946 		bt_dev_dbg(hdev, "remove monitor %d status %d",
1947 			   monitor->handle, status);
1948 		goto free_monitor;
1949 
1950 	case HCI_ADV_MONITOR_EXT_MSFT:
1951 		handle = monitor->handle;
1952 		status = msft_remove_monitor(hdev, monitor);
1953 		bt_dev_dbg(hdev, "remove monitor %d msft status %d",
1954 			   handle, status);
1955 		break;
1956 	}
1957 
1958 	/* In case no matching handle registered, just free the monitor */
1959 	if (status == -ENOENT)
1960 		goto free_monitor;
1961 
1962 	return status;
1963 
1964 free_monitor:
1965 	if (status == -ENOENT)
1966 		bt_dev_warn(hdev, "Removing monitor with no matching handle %d",
1967 			    monitor->handle);
1968 	hci_free_adv_monitor(hdev, monitor);
1969 
1970 	return status;
1971 }
1972 
1973 /* This function requires the caller holds hci_req_sync_lock */
1974 int hci_remove_single_adv_monitor(struct hci_dev *hdev, u16 handle)
1975 {
1976 	struct adv_monitor *monitor = idr_find(&hdev->adv_monitors_idr, handle);
1977 
1978 	if (!monitor)
1979 		return -EINVAL;
1980 
1981 	return hci_remove_adv_monitor(hdev, monitor);
1982 }
1983 
1984 /* This function requires the caller holds hci_req_sync_lock */
1985 int hci_remove_all_adv_monitor(struct hci_dev *hdev)
1986 {
1987 	struct adv_monitor *monitor;
1988 	int idr_next_id = 0;
1989 	int status = 0;
1990 
1991 	while (1) {
1992 		monitor = idr_get_next(&hdev->adv_monitors_idr, &idr_next_id);
1993 		if (!monitor)
1994 			break;
1995 
1996 		status = hci_remove_adv_monitor(hdev, monitor);
1997 		if (status)
1998 			return status;
1999 
2000 		idr_next_id++;
2001 	}
2002 
2003 	return status;
2004 }
2005 
2006 /* This function requires the caller holds hdev->lock */
2007 bool hci_is_adv_monitoring(struct hci_dev *hdev)
2008 {
2009 	return !idr_is_empty(&hdev->adv_monitors_idr);
2010 }
2011 
2012 int hci_get_adv_monitor_offload_ext(struct hci_dev *hdev)
2013 {
2014 	if (msft_monitor_supported(hdev))
2015 		return HCI_ADV_MONITOR_EXT_MSFT;
2016 
2017 	return HCI_ADV_MONITOR_EXT_NONE;
2018 }
2019 
2020 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2021 					 bdaddr_t *bdaddr, u8 type)
2022 {
2023 	struct bdaddr_list *b;
2024 
2025 	list_for_each_entry(b, bdaddr_list, list) {
2026 		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2027 			return b;
2028 	}
2029 
2030 	return NULL;
2031 }
2032 
2033 struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
2034 				struct list_head *bdaddr_list, bdaddr_t *bdaddr,
2035 				u8 type)
2036 {
2037 	struct bdaddr_list_with_irk *b;
2038 
2039 	list_for_each_entry(b, bdaddr_list, list) {
2040 		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2041 			return b;
2042 	}
2043 
2044 	return NULL;
2045 }
2046 
2047 struct bdaddr_list_with_flags *
2048 hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list,
2049 				  bdaddr_t *bdaddr, u8 type)
2050 {
2051 	struct bdaddr_list_with_flags *b;
2052 
2053 	list_for_each_entry(b, bdaddr_list, list) {
2054 		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2055 			return b;
2056 	}
2057 
2058 	return NULL;
2059 }
2060 
2061 void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2062 {
2063 	struct bdaddr_list *b, *n;
2064 
2065 	list_for_each_entry_safe(b, n, bdaddr_list, list) {
2066 		list_del(&b->list);
2067 		kfree(b);
2068 	}
2069 }
2070 
2071 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2072 {
2073 	struct bdaddr_list *entry;
2074 
2075 	if (!bacmp(bdaddr, BDADDR_ANY))
2076 		return -EBADF;
2077 
2078 	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2079 		return -EEXIST;
2080 
2081 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2082 	if (!entry)
2083 		return -ENOMEM;
2084 
2085 	bacpy(&entry->bdaddr, bdaddr);
2086 	entry->bdaddr_type = type;
2087 
2088 	list_add(&entry->list, list);
2089 
2090 	return 0;
2091 }
2092 
2093 int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2094 					u8 type, u8 *peer_irk, u8 *local_irk)
2095 {
2096 	struct bdaddr_list_with_irk *entry;
2097 
2098 	if (!bacmp(bdaddr, BDADDR_ANY))
2099 		return -EBADF;
2100 
2101 	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2102 		return -EEXIST;
2103 
2104 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2105 	if (!entry)
2106 		return -ENOMEM;
2107 
2108 	bacpy(&entry->bdaddr, bdaddr);
2109 	entry->bdaddr_type = type;
2110 
2111 	if (peer_irk)
2112 		memcpy(entry->peer_irk, peer_irk, 16);
2113 
2114 	if (local_irk)
2115 		memcpy(entry->local_irk, local_irk, 16);
2116 
2117 	list_add(&entry->list, list);
2118 
2119 	return 0;
2120 }
2121 
2122 int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2123 				   u8 type, u32 flags)
2124 {
2125 	struct bdaddr_list_with_flags *entry;
2126 
2127 	if (!bacmp(bdaddr, BDADDR_ANY))
2128 		return -EBADF;
2129 
2130 	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2131 		return -EEXIST;
2132 
2133 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2134 	if (!entry)
2135 		return -ENOMEM;
2136 
2137 	bacpy(&entry->bdaddr, bdaddr);
2138 	entry->bdaddr_type = type;
2139 	entry->flags = flags;
2140 
2141 	list_add(&entry->list, list);
2142 
2143 	return 0;
2144 }
2145 
2146 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2147 {
2148 	struct bdaddr_list *entry;
2149 
2150 	if (!bacmp(bdaddr, BDADDR_ANY)) {
2151 		hci_bdaddr_list_clear(list);
2152 		return 0;
2153 	}
2154 
2155 	entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2156 	if (!entry)
2157 		return -ENOENT;
2158 
2159 	list_del(&entry->list);
2160 	kfree(entry);
2161 
2162 	return 0;
2163 }
2164 
2165 int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2166 							u8 type)
2167 {
2168 	struct bdaddr_list_with_irk *entry;
2169 
2170 	if (!bacmp(bdaddr, BDADDR_ANY)) {
2171 		hci_bdaddr_list_clear(list);
2172 		return 0;
2173 	}
2174 
2175 	entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
2176 	if (!entry)
2177 		return -ENOENT;
2178 
2179 	list_del(&entry->list);
2180 	kfree(entry);
2181 
2182 	return 0;
2183 }
2184 
2185 int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2186 				   u8 type)
2187 {
2188 	struct bdaddr_list_with_flags *entry;
2189 
2190 	if (!bacmp(bdaddr, BDADDR_ANY)) {
2191 		hci_bdaddr_list_clear(list);
2192 		return 0;
2193 	}
2194 
2195 	entry = hci_bdaddr_list_lookup_with_flags(list, bdaddr, type);
2196 	if (!entry)
2197 		return -ENOENT;
2198 
2199 	list_del(&entry->list);
2200 	kfree(entry);
2201 
2202 	return 0;
2203 }
2204 
2205 /* This function requires the caller holds hdev->lock */
2206 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2207 					       bdaddr_t *addr, u8 addr_type)
2208 {
2209 	struct hci_conn_params *params;
2210 
2211 	list_for_each_entry(params, &hdev->le_conn_params, list) {
2212 		if (bacmp(&params->addr, addr) == 0 &&
2213 		    params->addr_type == addr_type) {
2214 			return params;
2215 		}
2216 	}
2217 
2218 	return NULL;
2219 }
2220 
2221 /* This function requires the caller holds hdev->lock or rcu_read_lock */
2222 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2223 						  bdaddr_t *addr, u8 addr_type)
2224 {
2225 	struct hci_conn_params *param;
2226 
2227 	rcu_read_lock();
2228 
2229 	list_for_each_entry_rcu(param, list, action) {
2230 		if (bacmp(&param->addr, addr) == 0 &&
2231 		    param->addr_type == addr_type) {
2232 			rcu_read_unlock();
2233 			return param;
2234 		}
2235 	}
2236 
2237 	rcu_read_unlock();
2238 
2239 	return NULL;
2240 }
2241 
2242 /* This function requires the caller holds hdev->lock */
2243 void hci_pend_le_list_del_init(struct hci_conn_params *param)
2244 {
2245 	if (list_empty(&param->action))
2246 		return;
2247 
2248 	list_del_rcu(&param->action);
2249 	synchronize_rcu();
2250 	INIT_LIST_HEAD(&param->action);
2251 }
2252 
2253 /* This function requires the caller holds hdev->lock */
2254 void hci_pend_le_list_add(struct hci_conn_params *param,
2255 			  struct list_head *list)
2256 {
2257 	list_add_rcu(&param->action, list);
2258 }
2259 
2260 /* This function requires the caller holds hdev->lock */
2261 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2262 					    bdaddr_t *addr, u8 addr_type)
2263 {
2264 	struct hci_conn_params *params;
2265 
2266 	params = hci_conn_params_lookup(hdev, addr, addr_type);
2267 	if (params)
2268 		return params;
2269 
2270 	params = kzalloc(sizeof(*params), GFP_KERNEL);
2271 	if (!params) {
2272 		bt_dev_err(hdev, "out of memory");
2273 		return NULL;
2274 	}
2275 
2276 	bacpy(&params->addr, addr);
2277 	params->addr_type = addr_type;
2278 
2279 	list_add(&params->list, &hdev->le_conn_params);
2280 	INIT_LIST_HEAD(&params->action);
2281 
2282 	params->conn_min_interval = hdev->le_conn_min_interval;
2283 	params->conn_max_interval = hdev->le_conn_max_interval;
2284 	params->conn_latency = hdev->le_conn_latency;
2285 	params->supervision_timeout = hdev->le_supv_timeout;
2286 	params->auto_connect = HCI_AUTO_CONN_DISABLED;
2287 
2288 	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2289 
2290 	return params;
2291 }
2292 
2293 void hci_conn_params_free(struct hci_conn_params *params)
2294 {
2295 	hci_pend_le_list_del_init(params);
2296 
2297 	if (params->conn) {
2298 		hci_conn_drop(params->conn);
2299 		hci_conn_put(params->conn);
2300 	}
2301 
2302 	list_del(&params->list);
2303 	kfree(params);
2304 }
2305 
2306 /* This function requires the caller holds hdev->lock */
2307 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2308 {
2309 	struct hci_conn_params *params;
2310 
2311 	params = hci_conn_params_lookup(hdev, addr, addr_type);
2312 	if (!params)
2313 		return;
2314 
2315 	hci_conn_params_free(params);
2316 
2317 	hci_update_passive_scan(hdev);
2318 
2319 	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2320 }
2321 
2322 /* This function requires the caller holds hdev->lock */
2323 void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2324 {
2325 	struct hci_conn_params *params, *tmp;
2326 
2327 	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2328 		if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2329 			continue;
2330 
2331 		/* If trying to establish one time connection to disabled
2332 		 * device, leave the params, but mark them as just once.
2333 		 */
2334 		if (params->explicit_connect) {
2335 			params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2336 			continue;
2337 		}
2338 
2339 		hci_conn_params_free(params);
2340 	}
2341 
2342 	BT_DBG("All LE disabled connection parameters were removed");
2343 }
2344 
2345 /* This function requires the caller holds hdev->lock */
2346 static void hci_conn_params_clear_all(struct hci_dev *hdev)
2347 {
2348 	struct hci_conn_params *params, *tmp;
2349 
2350 	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2351 		hci_conn_params_free(params);
2352 
2353 	BT_DBG("All LE connection parameters were removed");
2354 }
2355 
2356 /* Copy the Identity Address of the controller.
2357  *
2358  * If the controller has a public BD_ADDR, then by default use that one.
2359  * If this is a LE only controller without a public address, default to
2360  * the static random address.
2361  *
2362  * For debugging purposes it is possible to force controllers with a
2363  * public address to use the static random address instead.
2364  *
2365  * In case BR/EDR has been disabled on a dual-mode controller and
2366  * userspace has configured a static address, then that address
2367  * becomes the identity address instead of the public BR/EDR address.
2368  */
2369 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2370 			       u8 *bdaddr_type)
2371 {
2372 	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2373 	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2374 	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2375 	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
2376 		bacpy(bdaddr, &hdev->static_addr);
2377 		*bdaddr_type = ADDR_LE_DEV_RANDOM;
2378 	} else {
2379 		bacpy(bdaddr, &hdev->bdaddr);
2380 		*bdaddr_type = ADDR_LE_DEV_PUBLIC;
2381 	}
2382 }
2383 
2384 static void hci_clear_wake_reason(struct hci_dev *hdev)
2385 {
2386 	hci_dev_lock(hdev);
2387 
2388 	hdev->wake_reason = 0;
2389 	bacpy(&hdev->wake_addr, BDADDR_ANY);
2390 	hdev->wake_addr_type = 0;
2391 
2392 	hci_dev_unlock(hdev);
2393 }
2394 
2395 static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action,
2396 				void *data)
2397 {
2398 	struct hci_dev *hdev =
2399 		container_of(nb, struct hci_dev, suspend_notifier);
2400 	int ret = 0;
2401 
2402 	/* Userspace has full control of this device. Do nothing. */
2403 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2404 		return NOTIFY_DONE;
2405 
2406 	/* To avoid a potential race with hci_unregister_dev. */
2407 	hci_dev_hold(hdev);
2408 
2409 	switch (action) {
2410 	case PM_HIBERNATION_PREPARE:
2411 	case PM_SUSPEND_PREPARE:
2412 		ret = hci_suspend_dev(hdev);
2413 		break;
2414 	case PM_POST_HIBERNATION:
2415 	case PM_POST_SUSPEND:
2416 		ret = hci_resume_dev(hdev);
2417 		break;
2418 	}
2419 
2420 	if (ret)
2421 		bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d",
2422 			   action, ret);
2423 
2424 	hci_dev_put(hdev);
2425 	return NOTIFY_DONE;
2426 }
2427 
2428 /* Alloc HCI device */
2429 struct hci_dev *hci_alloc_dev_priv(int sizeof_priv)
2430 {
2431 	struct hci_dev *hdev;
2432 	unsigned int alloc_size;
2433 
2434 	alloc_size = sizeof(*hdev);
2435 	if (sizeof_priv) {
2436 		/* Fixme: May need ALIGN-ment? */
2437 		alloc_size += sizeof_priv;
2438 	}
2439 
2440 	hdev = kzalloc(alloc_size, GFP_KERNEL);
2441 	if (!hdev)
2442 		return NULL;
2443 
2444 	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2445 	hdev->esco_type = (ESCO_HV1);
2446 	hdev->link_mode = (HCI_LM_ACCEPT);
2447 	hdev->num_iac = 0x01;		/* One IAC support is mandatory */
2448 	hdev->io_capability = 0x03;	/* No Input No Output */
2449 	hdev->manufacturer = 0xffff;	/* Default to internal use */
2450 	hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2451 	hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2452 	hdev->adv_instance_cnt = 0;
2453 	hdev->cur_adv_instance = 0x00;
2454 	hdev->adv_instance_timeout = 0;
2455 
2456 	hdev->advmon_allowlist_duration = 300;
2457 	hdev->advmon_no_filter_duration = 500;
2458 	hdev->enable_advmon_interleave_scan = 0x00;	/* Default to disable */
2459 
2460 	hdev->sniff_max_interval = 800;
2461 	hdev->sniff_min_interval = 80;
2462 
2463 	hdev->le_adv_channel_map = 0x07;
2464 	hdev->le_adv_min_interval = 0x0800;
2465 	hdev->le_adv_max_interval = 0x0800;
2466 	hdev->le_scan_interval = DISCOV_LE_SCAN_INT_FAST;
2467 	hdev->le_scan_window = DISCOV_LE_SCAN_WIN_FAST;
2468 	hdev->le_scan_int_suspend = DISCOV_LE_SCAN_INT_SLOW1;
2469 	hdev->le_scan_window_suspend = DISCOV_LE_SCAN_WIN_SLOW1;
2470 	hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT;
2471 	hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN;
2472 	hdev->le_scan_int_adv_monitor = DISCOV_LE_SCAN_INT_FAST;
2473 	hdev->le_scan_window_adv_monitor = DISCOV_LE_SCAN_WIN_FAST;
2474 	hdev->le_scan_int_connect = DISCOV_LE_SCAN_INT_CONN;
2475 	hdev->le_scan_window_connect = DISCOV_LE_SCAN_WIN_CONN;
2476 	hdev->le_conn_min_interval = 0x0018;
2477 	hdev->le_conn_max_interval = 0x0028;
2478 	hdev->le_conn_latency = 0x0000;
2479 	hdev->le_supv_timeout = 0x002a;
2480 	hdev->le_def_tx_len = 0x001b;
2481 	hdev->le_def_tx_time = 0x0148;
2482 	hdev->le_max_tx_len = 0x001b;
2483 	hdev->le_max_tx_time = 0x0148;
2484 	hdev->le_max_rx_len = 0x001b;
2485 	hdev->le_max_rx_time = 0x0148;
2486 	hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
2487 	hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
2488 	hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
2489 	hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
2490 	hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES;
2491 	hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION;
2492 	hdev->def_le_autoconnect_timeout = HCI_LE_CONN_TIMEOUT;
2493 	hdev->min_le_tx_power = HCI_TX_POWER_INVALID;
2494 	hdev->max_le_tx_power = HCI_TX_POWER_INVALID;
2495 
2496 	hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
2497 	hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
2498 	hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
2499 	hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
2500 	hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
2501 	hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE;
2502 
2503 	/* default 1.28 sec page scan */
2504 	hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD;
2505 	hdev->def_page_scan_int = 0x0800;
2506 	hdev->def_page_scan_window = 0x0012;
2507 
2508 	mutex_init(&hdev->lock);
2509 	mutex_init(&hdev->req_lock);
2510 
2511 	ida_init(&hdev->unset_handle_ida);
2512 
2513 	INIT_LIST_HEAD(&hdev->mesh_pending);
2514 	INIT_LIST_HEAD(&hdev->mgmt_pending);
2515 	INIT_LIST_HEAD(&hdev->reject_list);
2516 	INIT_LIST_HEAD(&hdev->accept_list);
2517 	INIT_LIST_HEAD(&hdev->uuids);
2518 	INIT_LIST_HEAD(&hdev->link_keys);
2519 	INIT_LIST_HEAD(&hdev->long_term_keys);
2520 	INIT_LIST_HEAD(&hdev->identity_resolving_keys);
2521 	INIT_LIST_HEAD(&hdev->remote_oob_data);
2522 	INIT_LIST_HEAD(&hdev->le_accept_list);
2523 	INIT_LIST_HEAD(&hdev->le_resolv_list);
2524 	INIT_LIST_HEAD(&hdev->le_conn_params);
2525 	INIT_LIST_HEAD(&hdev->pend_le_conns);
2526 	INIT_LIST_HEAD(&hdev->pend_le_reports);
2527 	INIT_LIST_HEAD(&hdev->conn_hash.list);
2528 	INIT_LIST_HEAD(&hdev->adv_instances);
2529 	INIT_LIST_HEAD(&hdev->blocked_keys);
2530 	INIT_LIST_HEAD(&hdev->monitored_devices);
2531 
2532 	INIT_LIST_HEAD(&hdev->local_codecs);
2533 	INIT_WORK(&hdev->rx_work, hci_rx_work);
2534 	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
2535 	INIT_WORK(&hdev->tx_work, hci_tx_work);
2536 	INIT_WORK(&hdev->power_on, hci_power_on);
2537 	INIT_WORK(&hdev->error_reset, hci_error_reset);
2538 
2539 	hci_cmd_sync_init(hdev);
2540 
2541 	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
2542 
2543 	skb_queue_head_init(&hdev->rx_q);
2544 	skb_queue_head_init(&hdev->cmd_q);
2545 	skb_queue_head_init(&hdev->raw_q);
2546 
2547 	init_waitqueue_head(&hdev->req_wait_q);
2548 
2549 	INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
2550 	INIT_DELAYED_WORK(&hdev->ncmd_timer, hci_ncmd_timeout);
2551 
2552 	hci_devcd_setup(hdev);
2553 
2554 	hci_init_sysfs(hdev);
2555 	discovery_init(hdev);
2556 
2557 	return hdev;
2558 }
2559 EXPORT_SYMBOL(hci_alloc_dev_priv);
2560 
2561 /* Free HCI device */
2562 void hci_free_dev(struct hci_dev *hdev)
2563 {
2564 	/* will free via device release */
2565 	put_device(&hdev->dev);
2566 }
2567 EXPORT_SYMBOL(hci_free_dev);
2568 
2569 /* Register HCI device */
2570 int hci_register_dev(struct hci_dev *hdev)
2571 {
2572 	int id, error;
2573 
2574 	if (!hdev->open || !hdev->close || !hdev->send)
2575 		return -EINVAL;
2576 
2577 	id = ida_alloc_max(&hci_index_ida, HCI_MAX_ID - 1, GFP_KERNEL);
2578 	if (id < 0)
2579 		return id;
2580 
2581 	error = dev_set_name(&hdev->dev, "hci%u", id);
2582 	if (error)
2583 		return error;
2584 
2585 	hdev->name = dev_name(&hdev->dev);
2586 	hdev->id = id;
2587 
2588 	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2589 
2590 	hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
2591 	if (!hdev->workqueue) {
2592 		error = -ENOMEM;
2593 		goto err;
2594 	}
2595 
2596 	hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
2597 						      hdev->name);
2598 	if (!hdev->req_workqueue) {
2599 		destroy_workqueue(hdev->workqueue);
2600 		error = -ENOMEM;
2601 		goto err;
2602 	}
2603 
2604 	if (!IS_ERR_OR_NULL(bt_debugfs))
2605 		hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
2606 
2607 	error = device_add(&hdev->dev);
2608 	if (error < 0)
2609 		goto err_wqueue;
2610 
2611 	hci_leds_init(hdev);
2612 
2613 	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
2614 				    RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
2615 				    hdev);
2616 	if (hdev->rfkill) {
2617 		if (rfkill_register(hdev->rfkill) < 0) {
2618 			rfkill_destroy(hdev->rfkill);
2619 			hdev->rfkill = NULL;
2620 		}
2621 	}
2622 
2623 	if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
2624 		hci_dev_set_flag(hdev, HCI_RFKILLED);
2625 
2626 	hci_dev_set_flag(hdev, HCI_SETUP);
2627 	hci_dev_set_flag(hdev, HCI_AUTO_OFF);
2628 
2629 	/* Assume BR/EDR support until proven otherwise (such as
2630 	 * through reading supported features during init.
2631 	 */
2632 	hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
2633 
2634 	write_lock(&hci_dev_list_lock);
2635 	list_add(&hdev->list, &hci_dev_list);
2636 	write_unlock(&hci_dev_list_lock);
2637 
2638 	/* Devices that are marked for raw-only usage are unconfigured
2639 	 * and should not be included in normal operation.
2640 	 */
2641 	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
2642 		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
2643 
2644 	/* Mark Remote Wakeup connection flag as supported if driver has wakeup
2645 	 * callback.
2646 	 */
2647 	if (hdev->wakeup)
2648 		hdev->conn_flags |= HCI_CONN_FLAG_REMOTE_WAKEUP;
2649 
2650 	hci_sock_dev_event(hdev, HCI_DEV_REG);
2651 	hci_dev_hold(hdev);
2652 
2653 	error = hci_register_suspend_notifier(hdev);
2654 	if (error)
2655 		BT_WARN("register suspend notifier failed error:%d\n", error);
2656 
2657 	queue_work(hdev->req_workqueue, &hdev->power_on);
2658 
2659 	idr_init(&hdev->adv_monitors_idr);
2660 	msft_register(hdev);
2661 
2662 	return id;
2663 
2664 err_wqueue:
2665 	debugfs_remove_recursive(hdev->debugfs);
2666 	destroy_workqueue(hdev->workqueue);
2667 	destroy_workqueue(hdev->req_workqueue);
2668 err:
2669 	ida_free(&hci_index_ida, hdev->id);
2670 
2671 	return error;
2672 }
2673 EXPORT_SYMBOL(hci_register_dev);
2674 
2675 /* Unregister HCI device */
2676 void hci_unregister_dev(struct hci_dev *hdev)
2677 {
2678 	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2679 
2680 	mutex_lock(&hdev->unregister_lock);
2681 	hci_dev_set_flag(hdev, HCI_UNREGISTER);
2682 	mutex_unlock(&hdev->unregister_lock);
2683 
2684 	write_lock(&hci_dev_list_lock);
2685 	list_del(&hdev->list);
2686 	write_unlock(&hci_dev_list_lock);
2687 
2688 	disable_work_sync(&hdev->rx_work);
2689 	disable_work_sync(&hdev->cmd_work);
2690 	disable_work_sync(&hdev->tx_work);
2691 	disable_work_sync(&hdev->power_on);
2692 	disable_work_sync(&hdev->error_reset);
2693 
2694 	hci_cmd_sync_clear(hdev);
2695 
2696 	hci_unregister_suspend_notifier(hdev);
2697 
2698 	hci_dev_do_close(hdev);
2699 
2700 	if (!test_bit(HCI_INIT, &hdev->flags) &&
2701 	    !hci_dev_test_flag(hdev, HCI_SETUP) &&
2702 	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
2703 		hci_dev_lock(hdev);
2704 		mgmt_index_removed(hdev);
2705 		hci_dev_unlock(hdev);
2706 	}
2707 
2708 	/* mgmt_index_removed should take care of emptying the
2709 	 * pending list */
2710 	BUG_ON(!list_empty(&hdev->mgmt_pending));
2711 
2712 	hci_sock_dev_event(hdev, HCI_DEV_UNREG);
2713 
2714 	if (hdev->rfkill) {
2715 		rfkill_unregister(hdev->rfkill);
2716 		rfkill_destroy(hdev->rfkill);
2717 	}
2718 
2719 	device_del(&hdev->dev);
2720 	/* Actual cleanup is deferred until hci_release_dev(). */
2721 	hci_dev_put(hdev);
2722 }
2723 EXPORT_SYMBOL(hci_unregister_dev);
2724 
2725 /* Release HCI device */
2726 void hci_release_dev(struct hci_dev *hdev)
2727 {
2728 	debugfs_remove_recursive(hdev->debugfs);
2729 	kfree_const(hdev->hw_info);
2730 	kfree_const(hdev->fw_info);
2731 
2732 	destroy_workqueue(hdev->workqueue);
2733 	destroy_workqueue(hdev->req_workqueue);
2734 
2735 	hci_dev_lock(hdev);
2736 	hci_bdaddr_list_clear(&hdev->reject_list);
2737 	hci_bdaddr_list_clear(&hdev->accept_list);
2738 	hci_uuids_clear(hdev);
2739 	hci_link_keys_clear(hdev);
2740 	hci_smp_ltks_clear(hdev);
2741 	hci_smp_irks_clear(hdev);
2742 	hci_remote_oob_data_clear(hdev);
2743 	hci_adv_instances_clear(hdev);
2744 	hci_adv_monitors_clear(hdev);
2745 	hci_bdaddr_list_clear(&hdev->le_accept_list);
2746 	hci_bdaddr_list_clear(&hdev->le_resolv_list);
2747 	hci_conn_params_clear_all(hdev);
2748 	hci_discovery_filter_clear(hdev);
2749 	hci_blocked_keys_clear(hdev);
2750 	hci_codec_list_clear(&hdev->local_codecs);
2751 	msft_release(hdev);
2752 	hci_dev_unlock(hdev);
2753 
2754 	ida_destroy(&hdev->unset_handle_ida);
2755 	ida_free(&hci_index_ida, hdev->id);
2756 	kfree_skb(hdev->sent_cmd);
2757 	kfree_skb(hdev->req_skb);
2758 	kfree_skb(hdev->recv_event);
2759 	kfree(hdev);
2760 }
2761 EXPORT_SYMBOL(hci_release_dev);
2762 
2763 int hci_register_suspend_notifier(struct hci_dev *hdev)
2764 {
2765 	int ret = 0;
2766 
2767 	if (!hdev->suspend_notifier.notifier_call &&
2768 	    !test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) {
2769 		hdev->suspend_notifier.notifier_call = hci_suspend_notifier;
2770 		ret = register_pm_notifier(&hdev->suspend_notifier);
2771 	}
2772 
2773 	return ret;
2774 }
2775 
2776 int hci_unregister_suspend_notifier(struct hci_dev *hdev)
2777 {
2778 	int ret = 0;
2779 
2780 	if (hdev->suspend_notifier.notifier_call) {
2781 		ret = unregister_pm_notifier(&hdev->suspend_notifier);
2782 		if (!ret)
2783 			hdev->suspend_notifier.notifier_call = NULL;
2784 	}
2785 
2786 	return ret;
2787 }
2788 
2789 /* Cancel ongoing command synchronously:
2790  *
2791  * - Cancel command timer
2792  * - Reset command counter
2793  * - Cancel command request
2794  */
2795 static void hci_cancel_cmd_sync(struct hci_dev *hdev, int err)
2796 {
2797 	bt_dev_dbg(hdev, "err 0x%2.2x", err);
2798 
2799 	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
2800 		disable_delayed_work_sync(&hdev->cmd_timer);
2801 		disable_delayed_work_sync(&hdev->ncmd_timer);
2802 	} else  {
2803 		cancel_delayed_work_sync(&hdev->cmd_timer);
2804 		cancel_delayed_work_sync(&hdev->ncmd_timer);
2805 	}
2806 
2807 	atomic_set(&hdev->cmd_cnt, 1);
2808 
2809 	hci_cmd_sync_cancel_sync(hdev, err);
2810 }
2811 
2812 /* Suspend HCI device */
2813 int hci_suspend_dev(struct hci_dev *hdev)
2814 {
2815 	int ret;
2816 
2817 	bt_dev_dbg(hdev, "");
2818 
2819 	/* Suspend should only act on when powered. */
2820 	if (!hdev_is_powered(hdev) ||
2821 	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2822 		return 0;
2823 
2824 	/* If powering down don't attempt to suspend */
2825 	if (mgmt_powering_down(hdev))
2826 		return 0;
2827 
2828 	/* Cancel potentially blocking sync operation before suspend */
2829 	hci_cancel_cmd_sync(hdev, EHOSTDOWN);
2830 
2831 	hci_req_sync_lock(hdev);
2832 	ret = hci_suspend_sync(hdev);
2833 	hci_req_sync_unlock(hdev);
2834 
2835 	hci_clear_wake_reason(hdev);
2836 	mgmt_suspending(hdev, hdev->suspend_state);
2837 
2838 	hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
2839 	return ret;
2840 }
2841 EXPORT_SYMBOL(hci_suspend_dev);
2842 
2843 /* Resume HCI device */
2844 int hci_resume_dev(struct hci_dev *hdev)
2845 {
2846 	int ret;
2847 
2848 	bt_dev_dbg(hdev, "");
2849 
2850 	/* Resume should only act on when powered. */
2851 	if (!hdev_is_powered(hdev) ||
2852 	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2853 		return 0;
2854 
2855 	/* If powering down don't attempt to resume */
2856 	if (mgmt_powering_down(hdev))
2857 		return 0;
2858 
2859 	hci_req_sync_lock(hdev);
2860 	ret = hci_resume_sync(hdev);
2861 	hci_req_sync_unlock(hdev);
2862 
2863 	mgmt_resuming(hdev, hdev->wake_reason, &hdev->wake_addr,
2864 		      hdev->wake_addr_type);
2865 
2866 	hci_sock_dev_event(hdev, HCI_DEV_RESUME);
2867 	return ret;
2868 }
2869 EXPORT_SYMBOL(hci_resume_dev);
2870 
2871 /* Reset HCI device */
2872 int hci_reset_dev(struct hci_dev *hdev)
2873 {
2874 	static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
2875 	struct sk_buff *skb;
2876 
2877 	skb = bt_skb_alloc(3, GFP_ATOMIC);
2878 	if (!skb)
2879 		return -ENOMEM;
2880 
2881 	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
2882 	skb_put_data(skb, hw_err, 3);
2883 
2884 	bt_dev_err(hdev, "Injecting HCI hardware error event");
2885 
2886 	/* Send Hardware Error to upper stack */
2887 	return hci_recv_frame(hdev, skb);
2888 }
2889 EXPORT_SYMBOL(hci_reset_dev);
2890 
2891 static u8 hci_dev_classify_pkt_type(struct hci_dev *hdev, struct sk_buff *skb)
2892 {
2893 	if (hdev->classify_pkt_type)
2894 		return hdev->classify_pkt_type(hdev, skb);
2895 
2896 	return hci_skb_pkt_type(skb);
2897 }
2898 
2899 /* Receive frame from HCI drivers */
2900 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
2901 {
2902 	u8 dev_pkt_type;
2903 
2904 	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
2905 		      && !test_bit(HCI_INIT, &hdev->flags))) {
2906 		kfree_skb(skb);
2907 		return -ENXIO;
2908 	}
2909 
2910 	/* Check if the driver agree with packet type classification */
2911 	dev_pkt_type = hci_dev_classify_pkt_type(hdev, skb);
2912 	if (hci_skb_pkt_type(skb) != dev_pkt_type) {
2913 		hci_skb_pkt_type(skb) = dev_pkt_type;
2914 	}
2915 
2916 	switch (hci_skb_pkt_type(skb)) {
2917 	case HCI_EVENT_PKT:
2918 		break;
2919 	case HCI_ACLDATA_PKT:
2920 		/* Detect if ISO packet has been sent as ACL */
2921 		if (hci_conn_num(hdev, ISO_LINK)) {
2922 			__u16 handle = __le16_to_cpu(hci_acl_hdr(skb)->handle);
2923 			__u8 type;
2924 
2925 			type = hci_conn_lookup_type(hdev, hci_handle(handle));
2926 			if (type == ISO_LINK)
2927 				hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
2928 		}
2929 		break;
2930 	case HCI_SCODATA_PKT:
2931 		break;
2932 	case HCI_ISODATA_PKT:
2933 		break;
2934 	default:
2935 		kfree_skb(skb);
2936 		return -EINVAL;
2937 	}
2938 
2939 	/* Incoming skb */
2940 	bt_cb(skb)->incoming = 1;
2941 
2942 	/* Time stamp */
2943 	__net_timestamp(skb);
2944 
2945 	skb_queue_tail(&hdev->rx_q, skb);
2946 	queue_work(hdev->workqueue, &hdev->rx_work);
2947 
2948 	return 0;
2949 }
2950 EXPORT_SYMBOL(hci_recv_frame);
2951 
2952 /* Receive diagnostic message from HCI drivers */
2953 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
2954 {
2955 	/* Mark as diagnostic packet */
2956 	hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
2957 
2958 	/* Time stamp */
2959 	__net_timestamp(skb);
2960 
2961 	skb_queue_tail(&hdev->rx_q, skb);
2962 	queue_work(hdev->workqueue, &hdev->rx_work);
2963 
2964 	return 0;
2965 }
2966 EXPORT_SYMBOL(hci_recv_diag);
2967 
2968 void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
2969 {
2970 	va_list vargs;
2971 
2972 	va_start(vargs, fmt);
2973 	kfree_const(hdev->hw_info);
2974 	hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
2975 	va_end(vargs);
2976 }
2977 EXPORT_SYMBOL(hci_set_hw_info);
2978 
2979 void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
2980 {
2981 	va_list vargs;
2982 
2983 	va_start(vargs, fmt);
2984 	kfree_const(hdev->fw_info);
2985 	hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
2986 	va_end(vargs);
2987 }
2988 EXPORT_SYMBOL(hci_set_fw_info);
2989 
2990 /* ---- Interface to upper protocols ---- */
2991 
2992 int hci_register_cb(struct hci_cb *cb)
2993 {
2994 	BT_DBG("%p name %s", cb, cb->name);
2995 
2996 	mutex_lock(&hci_cb_list_lock);
2997 	list_add_tail(&cb->list, &hci_cb_list);
2998 	mutex_unlock(&hci_cb_list_lock);
2999 
3000 	return 0;
3001 }
3002 EXPORT_SYMBOL(hci_register_cb);
3003 
3004 int hci_unregister_cb(struct hci_cb *cb)
3005 {
3006 	BT_DBG("%p name %s", cb, cb->name);
3007 
3008 	mutex_lock(&hci_cb_list_lock);
3009 	list_del(&cb->list);
3010 	mutex_unlock(&hci_cb_list_lock);
3011 
3012 	return 0;
3013 }
3014 EXPORT_SYMBOL(hci_unregister_cb);
3015 
3016 static int hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3017 {
3018 	int err;
3019 
3020 	BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3021 	       skb->len);
3022 
3023 	/* Time stamp */
3024 	__net_timestamp(skb);
3025 
3026 	/* Send copy to monitor */
3027 	hci_send_to_monitor(hdev, skb);
3028 
3029 	if (atomic_read(&hdev->promisc)) {
3030 		/* Send copy to the sockets */
3031 		hci_send_to_sock(hdev, skb);
3032 	}
3033 
3034 	/* Get rid of skb owner, prior to sending to the driver. */
3035 	skb_orphan(skb);
3036 
3037 	if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3038 		kfree_skb(skb);
3039 		return -EINVAL;
3040 	}
3041 
3042 	err = hdev->send(hdev, skb);
3043 	if (err < 0) {
3044 		bt_dev_err(hdev, "sending frame failed (%d)", err);
3045 		kfree_skb(skb);
3046 		return err;
3047 	}
3048 
3049 	return 0;
3050 }
3051 
3052 /* Send HCI command */
3053 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3054 		 const void *param)
3055 {
3056 	struct sk_buff *skb;
3057 
3058 	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3059 
3060 	skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, NULL);
3061 	if (!skb) {
3062 		bt_dev_err(hdev, "no memory for command");
3063 		return -ENOMEM;
3064 	}
3065 
3066 	/* Stand-alone HCI commands must be flagged as
3067 	 * single-command requests.
3068 	 */
3069 	bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3070 
3071 	skb_queue_tail(&hdev->cmd_q, skb);
3072 	queue_work(hdev->workqueue, &hdev->cmd_work);
3073 
3074 	return 0;
3075 }
3076 
3077 int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
3078 		   const void *param)
3079 {
3080 	struct sk_buff *skb;
3081 
3082 	if (hci_opcode_ogf(opcode) != 0x3f) {
3083 		/* A controller receiving a command shall respond with either
3084 		 * a Command Status Event or a Command Complete Event.
3085 		 * Therefore, all standard HCI commands must be sent via the
3086 		 * standard API, using hci_send_cmd or hci_cmd_sync helpers.
3087 		 * Some vendors do not comply with this rule for vendor-specific
3088 		 * commands and do not return any event. We want to support
3089 		 * unresponded commands for such cases only.
3090 		 */
3091 		bt_dev_err(hdev, "unresponded command not supported");
3092 		return -EINVAL;
3093 	}
3094 
3095 	skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, NULL);
3096 	if (!skb) {
3097 		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
3098 			   opcode);
3099 		return -ENOMEM;
3100 	}
3101 
3102 	hci_send_frame(hdev, skb);
3103 
3104 	return 0;
3105 }
3106 EXPORT_SYMBOL(__hci_cmd_send);
3107 
3108 /* Get data from the previously sent command */
3109 static void *hci_cmd_data(struct sk_buff *skb, __u16 opcode)
3110 {
3111 	struct hci_command_hdr *hdr;
3112 
3113 	if (!skb || skb->len < HCI_COMMAND_HDR_SIZE)
3114 		return NULL;
3115 
3116 	hdr = (void *)skb->data;
3117 
3118 	if (hdr->opcode != cpu_to_le16(opcode))
3119 		return NULL;
3120 
3121 	return skb->data + HCI_COMMAND_HDR_SIZE;
3122 }
3123 
3124 /* Get data from the previously sent command */
3125 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3126 {
3127 	void *data;
3128 
3129 	/* Check if opcode matches last sent command */
3130 	data = hci_cmd_data(hdev->sent_cmd, opcode);
3131 	if (!data)
3132 		/* Check if opcode matches last request */
3133 		data = hci_cmd_data(hdev->req_skb, opcode);
3134 
3135 	return data;
3136 }
3137 
3138 /* Get data from last received event */
3139 void *hci_recv_event_data(struct hci_dev *hdev, __u8 event)
3140 {
3141 	struct hci_event_hdr *hdr;
3142 	int offset;
3143 
3144 	if (!hdev->recv_event)
3145 		return NULL;
3146 
3147 	hdr = (void *)hdev->recv_event->data;
3148 	offset = sizeof(*hdr);
3149 
3150 	if (hdr->evt != event) {
3151 		/* In case of LE metaevent check the subevent match */
3152 		if (hdr->evt == HCI_EV_LE_META) {
3153 			struct hci_ev_le_meta *ev;
3154 
3155 			ev = (void *)hdev->recv_event->data + offset;
3156 			offset += sizeof(*ev);
3157 			if (ev->subevent == event)
3158 				goto found;
3159 		}
3160 		return NULL;
3161 	}
3162 
3163 found:
3164 	bt_dev_dbg(hdev, "event 0x%2.2x", event);
3165 
3166 	return hdev->recv_event->data + offset;
3167 }
3168 
3169 /* Send ACL data */
3170 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3171 {
3172 	struct hci_acl_hdr *hdr;
3173 	int len = skb->len;
3174 
3175 	skb_push(skb, HCI_ACL_HDR_SIZE);
3176 	skb_reset_transport_header(skb);
3177 	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3178 	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3179 	hdr->dlen   = cpu_to_le16(len);
3180 }
3181 
3182 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3183 			  struct sk_buff *skb, __u16 flags)
3184 {
3185 	struct hci_conn *conn = chan->conn;
3186 	struct hci_dev *hdev = conn->hdev;
3187 	struct sk_buff *list;
3188 
3189 	skb->len = skb_headlen(skb);
3190 	skb->data_len = 0;
3191 
3192 	hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3193 
3194 	hci_add_acl_hdr(skb, conn->handle, flags);
3195 
3196 	list = skb_shinfo(skb)->frag_list;
3197 	if (!list) {
3198 		/* Non fragmented */
3199 		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3200 
3201 		skb_queue_tail(queue, skb);
3202 	} else {
3203 		/* Fragmented */
3204 		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3205 
3206 		skb_shinfo(skb)->frag_list = NULL;
3207 
3208 		/* Queue all fragments atomically. We need to use spin_lock_bh
3209 		 * here because of 6LoWPAN links, as there this function is
3210 		 * called from softirq and using normal spin lock could cause
3211 		 * deadlocks.
3212 		 */
3213 		spin_lock_bh(&queue->lock);
3214 
3215 		__skb_queue_tail(queue, skb);
3216 
3217 		flags &= ~ACL_START;
3218 		flags |= ACL_CONT;
3219 		do {
3220 			skb = list; list = list->next;
3221 
3222 			hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3223 			hci_add_acl_hdr(skb, conn->handle, flags);
3224 
3225 			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3226 
3227 			__skb_queue_tail(queue, skb);
3228 		} while (list);
3229 
3230 		spin_unlock_bh(&queue->lock);
3231 	}
3232 }
3233 
3234 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3235 {
3236 	struct hci_dev *hdev = chan->conn->hdev;
3237 
3238 	BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3239 
3240 	hci_queue_acl(chan, &chan->data_q, skb, flags);
3241 
3242 	queue_work(hdev->workqueue, &hdev->tx_work);
3243 }
3244 
3245 /* Send SCO data */
3246 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3247 {
3248 	struct hci_dev *hdev = conn->hdev;
3249 	struct hci_sco_hdr hdr;
3250 
3251 	BT_DBG("%s len %d", hdev->name, skb->len);
3252 
3253 	hdr.handle = cpu_to_le16(conn->handle);
3254 	hdr.dlen   = skb->len;
3255 
3256 	skb_push(skb, HCI_SCO_HDR_SIZE);
3257 	skb_reset_transport_header(skb);
3258 	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3259 
3260 	hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3261 
3262 	skb_queue_tail(&conn->data_q, skb);
3263 	queue_work(hdev->workqueue, &hdev->tx_work);
3264 }
3265 
3266 /* Send ISO data */
3267 static void hci_add_iso_hdr(struct sk_buff *skb, __u16 handle, __u8 flags)
3268 {
3269 	struct hci_iso_hdr *hdr;
3270 	int len = skb->len;
3271 
3272 	skb_push(skb, HCI_ISO_HDR_SIZE);
3273 	skb_reset_transport_header(skb);
3274 	hdr = (struct hci_iso_hdr *)skb_transport_header(skb);
3275 	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3276 	hdr->dlen   = cpu_to_le16(len);
3277 }
3278 
3279 static void hci_queue_iso(struct hci_conn *conn, struct sk_buff_head *queue,
3280 			  struct sk_buff *skb)
3281 {
3282 	struct hci_dev *hdev = conn->hdev;
3283 	struct sk_buff *list;
3284 	__u16 flags;
3285 
3286 	skb->len = skb_headlen(skb);
3287 	skb->data_len = 0;
3288 
3289 	hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3290 
3291 	list = skb_shinfo(skb)->frag_list;
3292 
3293 	flags = hci_iso_flags_pack(list ? ISO_START : ISO_SINGLE, 0x00);
3294 	hci_add_iso_hdr(skb, conn->handle, flags);
3295 
3296 	if (!list) {
3297 		/* Non fragmented */
3298 		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3299 
3300 		skb_queue_tail(queue, skb);
3301 	} else {
3302 		/* Fragmented */
3303 		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3304 
3305 		skb_shinfo(skb)->frag_list = NULL;
3306 
3307 		__skb_queue_tail(queue, skb);
3308 
3309 		do {
3310 			skb = list; list = list->next;
3311 
3312 			hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3313 			flags = hci_iso_flags_pack(list ? ISO_CONT : ISO_END,
3314 						   0x00);
3315 			hci_add_iso_hdr(skb, conn->handle, flags);
3316 
3317 			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3318 
3319 			__skb_queue_tail(queue, skb);
3320 		} while (list);
3321 	}
3322 }
3323 
3324 void hci_send_iso(struct hci_conn *conn, struct sk_buff *skb)
3325 {
3326 	struct hci_dev *hdev = conn->hdev;
3327 
3328 	BT_DBG("%s len %d", hdev->name, skb->len);
3329 
3330 	hci_queue_iso(conn, &conn->data_q, skb);
3331 
3332 	queue_work(hdev->workqueue, &hdev->tx_work);
3333 }
3334 
3335 /* ---- HCI TX task (outgoing data) ---- */
3336 
3337 /* HCI Connection scheduler */
3338 static inline void hci_quote_sent(struct hci_conn *conn, int num, int *quote)
3339 {
3340 	struct hci_dev *hdev;
3341 	int cnt, q;
3342 
3343 	if (!conn) {
3344 		*quote = 0;
3345 		return;
3346 	}
3347 
3348 	hdev = conn->hdev;
3349 
3350 	switch (conn->type) {
3351 	case ACL_LINK:
3352 		cnt = hdev->acl_cnt;
3353 		break;
3354 	case SCO_LINK:
3355 	case ESCO_LINK:
3356 		cnt = hdev->sco_cnt;
3357 		break;
3358 	case LE_LINK:
3359 		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3360 		break;
3361 	case ISO_LINK:
3362 		cnt = hdev->iso_mtu ? hdev->iso_cnt :
3363 			hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3364 		break;
3365 	default:
3366 		cnt = 0;
3367 		bt_dev_err(hdev, "unknown link type %d", conn->type);
3368 	}
3369 
3370 	q = cnt / num;
3371 	*quote = q ? q : 1;
3372 }
3373 
3374 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3375 				     int *quote)
3376 {
3377 	struct hci_conn_hash *h = &hdev->conn_hash;
3378 	struct hci_conn *conn = NULL, *c;
3379 	unsigned int num = 0, min = ~0;
3380 
3381 	/* We don't have to lock device here. Connections are always
3382 	 * added and removed with TX task disabled. */
3383 
3384 	rcu_read_lock();
3385 
3386 	list_for_each_entry_rcu(c, &h->list, list) {
3387 		if (c->type != type || skb_queue_empty(&c->data_q))
3388 			continue;
3389 
3390 		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3391 			continue;
3392 
3393 		num++;
3394 
3395 		if (c->sent < min) {
3396 			min  = c->sent;
3397 			conn = c;
3398 		}
3399 
3400 		if (hci_conn_num(hdev, type) == num)
3401 			break;
3402 	}
3403 
3404 	rcu_read_unlock();
3405 
3406 	hci_quote_sent(conn, num, quote);
3407 
3408 	BT_DBG("conn %p quote %d", conn, *quote);
3409 	return conn;
3410 }
3411 
3412 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3413 {
3414 	struct hci_conn_hash *h = &hdev->conn_hash;
3415 	struct hci_conn *c;
3416 
3417 	bt_dev_err(hdev, "link tx timeout");
3418 
3419 	rcu_read_lock();
3420 
3421 	/* Kill stalled connections */
3422 	list_for_each_entry_rcu(c, &h->list, list) {
3423 		if (c->type == type && c->sent) {
3424 			bt_dev_err(hdev, "killing stalled connection %pMR",
3425 				   &c->dst);
3426 			/* hci_disconnect might sleep, so, we have to release
3427 			 * the RCU read lock before calling it.
3428 			 */
3429 			rcu_read_unlock();
3430 			hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3431 			rcu_read_lock();
3432 		}
3433 	}
3434 
3435 	rcu_read_unlock();
3436 }
3437 
3438 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3439 				      int *quote)
3440 {
3441 	struct hci_conn_hash *h = &hdev->conn_hash;
3442 	struct hci_chan *chan = NULL;
3443 	unsigned int num = 0, min = ~0, cur_prio = 0;
3444 	struct hci_conn *conn;
3445 	int conn_num = 0;
3446 
3447 	BT_DBG("%s", hdev->name);
3448 
3449 	rcu_read_lock();
3450 
3451 	list_for_each_entry_rcu(conn, &h->list, list) {
3452 		struct hci_chan *tmp;
3453 
3454 		if (conn->type != type)
3455 			continue;
3456 
3457 		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3458 			continue;
3459 
3460 		conn_num++;
3461 
3462 		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3463 			struct sk_buff *skb;
3464 
3465 			if (skb_queue_empty(&tmp->data_q))
3466 				continue;
3467 
3468 			skb = skb_peek(&tmp->data_q);
3469 			if (skb->priority < cur_prio)
3470 				continue;
3471 
3472 			if (skb->priority > cur_prio) {
3473 				num = 0;
3474 				min = ~0;
3475 				cur_prio = skb->priority;
3476 			}
3477 
3478 			num++;
3479 
3480 			if (conn->sent < min) {
3481 				min  = conn->sent;
3482 				chan = tmp;
3483 			}
3484 		}
3485 
3486 		if (hci_conn_num(hdev, type) == conn_num)
3487 			break;
3488 	}
3489 
3490 	rcu_read_unlock();
3491 
3492 	if (!chan)
3493 		return NULL;
3494 
3495 	hci_quote_sent(chan->conn, num, quote);
3496 
3497 	BT_DBG("chan %p quote %d", chan, *quote);
3498 	return chan;
3499 }
3500 
3501 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3502 {
3503 	struct hci_conn_hash *h = &hdev->conn_hash;
3504 	struct hci_conn *conn;
3505 	int num = 0;
3506 
3507 	BT_DBG("%s", hdev->name);
3508 
3509 	rcu_read_lock();
3510 
3511 	list_for_each_entry_rcu(conn, &h->list, list) {
3512 		struct hci_chan *chan;
3513 
3514 		if (conn->type != type)
3515 			continue;
3516 
3517 		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3518 			continue;
3519 
3520 		num++;
3521 
3522 		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3523 			struct sk_buff *skb;
3524 
3525 			if (chan->sent) {
3526 				chan->sent = 0;
3527 				continue;
3528 			}
3529 
3530 			if (skb_queue_empty(&chan->data_q))
3531 				continue;
3532 
3533 			skb = skb_peek(&chan->data_q);
3534 			if (skb->priority >= HCI_PRIO_MAX - 1)
3535 				continue;
3536 
3537 			skb->priority = HCI_PRIO_MAX - 1;
3538 
3539 			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3540 			       skb->priority);
3541 		}
3542 
3543 		if (hci_conn_num(hdev, type) == num)
3544 			break;
3545 	}
3546 
3547 	rcu_read_unlock();
3548 
3549 }
3550 
3551 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt, u8 type)
3552 {
3553 	unsigned long last_tx;
3554 
3555 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
3556 		return;
3557 
3558 	switch (type) {
3559 	case LE_LINK:
3560 		last_tx = hdev->le_last_tx;
3561 		break;
3562 	default:
3563 		last_tx = hdev->acl_last_tx;
3564 		break;
3565 	}
3566 
3567 	/* tx timeout must be longer than maximum link supervision timeout
3568 	 * (40.9 seconds)
3569 	 */
3570 	if (!cnt && time_after(jiffies, last_tx + HCI_ACL_TX_TIMEOUT))
3571 		hci_link_tx_to(hdev, type);
3572 }
3573 
3574 /* Schedule SCO */
3575 static void hci_sched_sco(struct hci_dev *hdev)
3576 {
3577 	struct hci_conn *conn;
3578 	struct sk_buff *skb;
3579 	int quote;
3580 
3581 	BT_DBG("%s", hdev->name);
3582 
3583 	if (!hci_conn_num(hdev, SCO_LINK))
3584 		return;
3585 
3586 	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
3587 		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3588 			BT_DBG("skb %p len %d", skb, skb->len);
3589 			hci_send_frame(hdev, skb);
3590 
3591 			conn->sent++;
3592 			if (conn->sent == ~0)
3593 				conn->sent = 0;
3594 		}
3595 	}
3596 }
3597 
3598 static void hci_sched_esco(struct hci_dev *hdev)
3599 {
3600 	struct hci_conn *conn;
3601 	struct sk_buff *skb;
3602 	int quote;
3603 
3604 	BT_DBG("%s", hdev->name);
3605 
3606 	if (!hci_conn_num(hdev, ESCO_LINK))
3607 		return;
3608 
3609 	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3610 						     &quote))) {
3611 		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3612 			BT_DBG("skb %p len %d", skb, skb->len);
3613 			hci_send_frame(hdev, skb);
3614 
3615 			conn->sent++;
3616 			if (conn->sent == ~0)
3617 				conn->sent = 0;
3618 		}
3619 	}
3620 }
3621 
3622 static void hci_sched_acl_pkt(struct hci_dev *hdev)
3623 {
3624 	unsigned int cnt = hdev->acl_cnt;
3625 	struct hci_chan *chan;
3626 	struct sk_buff *skb;
3627 	int quote;
3628 
3629 	__check_timeout(hdev, cnt, ACL_LINK);
3630 
3631 	while (hdev->acl_cnt &&
3632 	       (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
3633 		u32 priority = (skb_peek(&chan->data_q))->priority;
3634 		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3635 			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3636 			       skb->len, skb->priority);
3637 
3638 			/* Stop if priority has changed */
3639 			if (skb->priority < priority)
3640 				break;
3641 
3642 			skb = skb_dequeue(&chan->data_q);
3643 
3644 			hci_conn_enter_active_mode(chan->conn,
3645 						   bt_cb(skb)->force_active);
3646 
3647 			hci_send_frame(hdev, skb);
3648 			hdev->acl_last_tx = jiffies;
3649 
3650 			hdev->acl_cnt--;
3651 			chan->sent++;
3652 			chan->conn->sent++;
3653 
3654 			/* Send pending SCO packets right away */
3655 			hci_sched_sco(hdev);
3656 			hci_sched_esco(hdev);
3657 		}
3658 	}
3659 
3660 	if (cnt != hdev->acl_cnt)
3661 		hci_prio_recalculate(hdev, ACL_LINK);
3662 }
3663 
3664 static void hci_sched_acl(struct hci_dev *hdev)
3665 {
3666 	BT_DBG("%s", hdev->name);
3667 
3668 	/* No ACL link over BR/EDR controller */
3669 	if (!hci_conn_num(hdev, ACL_LINK))
3670 		return;
3671 
3672 	hci_sched_acl_pkt(hdev);
3673 }
3674 
3675 static void hci_sched_le(struct hci_dev *hdev)
3676 {
3677 	struct hci_chan *chan;
3678 	struct sk_buff *skb;
3679 	int quote, *cnt, tmp;
3680 
3681 	BT_DBG("%s", hdev->name);
3682 
3683 	if (!hci_conn_num(hdev, LE_LINK))
3684 		return;
3685 
3686 	cnt = hdev->le_pkts ? &hdev->le_cnt : &hdev->acl_cnt;
3687 
3688 	__check_timeout(hdev, *cnt, LE_LINK);
3689 
3690 	tmp = *cnt;
3691 	while (*cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
3692 		u32 priority = (skb_peek(&chan->data_q))->priority;
3693 		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3694 			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3695 			       skb->len, skb->priority);
3696 
3697 			/* Stop if priority has changed */
3698 			if (skb->priority < priority)
3699 				break;
3700 
3701 			skb = skb_dequeue(&chan->data_q);
3702 
3703 			hci_send_frame(hdev, skb);
3704 			hdev->le_last_tx = jiffies;
3705 
3706 			(*cnt)--;
3707 			chan->sent++;
3708 			chan->conn->sent++;
3709 
3710 			/* Send pending SCO packets right away */
3711 			hci_sched_sco(hdev);
3712 			hci_sched_esco(hdev);
3713 		}
3714 	}
3715 
3716 	if (*cnt != tmp)
3717 		hci_prio_recalculate(hdev, LE_LINK);
3718 }
3719 
3720 /* Schedule CIS */
3721 static void hci_sched_iso(struct hci_dev *hdev)
3722 {
3723 	struct hci_conn *conn;
3724 	struct sk_buff *skb;
3725 	int quote, *cnt;
3726 
3727 	BT_DBG("%s", hdev->name);
3728 
3729 	if (!hci_conn_num(hdev, ISO_LINK))
3730 		return;
3731 
3732 	cnt = hdev->iso_pkts ? &hdev->iso_cnt :
3733 		hdev->le_pkts ? &hdev->le_cnt : &hdev->acl_cnt;
3734 	while (*cnt && (conn = hci_low_sent(hdev, ISO_LINK, &quote))) {
3735 		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3736 			BT_DBG("skb %p len %d", skb, skb->len);
3737 			hci_send_frame(hdev, skb);
3738 
3739 			conn->sent++;
3740 			if (conn->sent == ~0)
3741 				conn->sent = 0;
3742 			(*cnt)--;
3743 		}
3744 	}
3745 }
3746 
3747 static void hci_tx_work(struct work_struct *work)
3748 {
3749 	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
3750 	struct sk_buff *skb;
3751 
3752 	BT_DBG("%s acl %d sco %d le %d iso %d", hdev->name, hdev->acl_cnt,
3753 	       hdev->sco_cnt, hdev->le_cnt, hdev->iso_cnt);
3754 
3755 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3756 		/* Schedule queues and send stuff to HCI driver */
3757 		hci_sched_sco(hdev);
3758 		hci_sched_esco(hdev);
3759 		hci_sched_iso(hdev);
3760 		hci_sched_acl(hdev);
3761 		hci_sched_le(hdev);
3762 	}
3763 
3764 	/* Send next queued raw (unknown type) packet */
3765 	while ((skb = skb_dequeue(&hdev->raw_q)))
3766 		hci_send_frame(hdev, skb);
3767 }
3768 
3769 /* ----- HCI RX task (incoming data processing) ----- */
3770 
3771 /* ACL data packet */
3772 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3773 {
3774 	struct hci_acl_hdr *hdr = (void *) skb->data;
3775 	struct hci_conn *conn;
3776 	__u16 handle, flags;
3777 
3778 	skb_pull(skb, HCI_ACL_HDR_SIZE);
3779 
3780 	handle = __le16_to_cpu(hdr->handle);
3781 	flags  = hci_flags(handle);
3782 	handle = hci_handle(handle);
3783 
3784 	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3785 	       handle, flags);
3786 
3787 	hdev->stat.acl_rx++;
3788 
3789 	hci_dev_lock(hdev);
3790 	conn = hci_conn_hash_lookup_handle(hdev, handle);
3791 	if (conn && hci_dev_test_flag(hdev, HCI_MGMT))
3792 		mgmt_device_connected(hdev, conn, NULL, 0);
3793 	hci_dev_unlock(hdev);
3794 
3795 	if (conn) {
3796 		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
3797 
3798 		/* Send to upper protocol */
3799 		l2cap_recv_acldata(conn, skb, flags);
3800 		return;
3801 	} else {
3802 		bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
3803 			   handle);
3804 	}
3805 
3806 	kfree_skb(skb);
3807 }
3808 
3809 /* SCO data packet */
3810 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3811 {
3812 	struct hci_sco_hdr *hdr = (void *) skb->data;
3813 	struct hci_conn *conn;
3814 	__u16 handle, flags;
3815 
3816 	skb_pull(skb, HCI_SCO_HDR_SIZE);
3817 
3818 	handle = __le16_to_cpu(hdr->handle);
3819 	flags  = hci_flags(handle);
3820 	handle = hci_handle(handle);
3821 
3822 	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3823 	       handle, flags);
3824 
3825 	hdev->stat.sco_rx++;
3826 
3827 	hci_dev_lock(hdev);
3828 	conn = hci_conn_hash_lookup_handle(hdev, handle);
3829 	hci_dev_unlock(hdev);
3830 
3831 	if (conn) {
3832 		/* Send to upper protocol */
3833 		hci_skb_pkt_status(skb) = flags & 0x03;
3834 		sco_recv_scodata(conn, skb);
3835 		return;
3836 	} else {
3837 		bt_dev_err_ratelimited(hdev, "SCO packet for unknown connection handle %d",
3838 				       handle);
3839 	}
3840 
3841 	kfree_skb(skb);
3842 }
3843 
3844 static void hci_isodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3845 {
3846 	struct hci_iso_hdr *hdr;
3847 	struct hci_conn *conn;
3848 	__u16 handle, flags;
3849 
3850 	hdr = skb_pull_data(skb, sizeof(*hdr));
3851 	if (!hdr) {
3852 		bt_dev_err(hdev, "ISO packet too small");
3853 		goto drop;
3854 	}
3855 
3856 	handle = __le16_to_cpu(hdr->handle);
3857 	flags  = hci_flags(handle);
3858 	handle = hci_handle(handle);
3859 
3860 	bt_dev_dbg(hdev, "len %d handle 0x%4.4x flags 0x%4.4x", skb->len,
3861 		   handle, flags);
3862 
3863 	hci_dev_lock(hdev);
3864 	conn = hci_conn_hash_lookup_handle(hdev, handle);
3865 	hci_dev_unlock(hdev);
3866 
3867 	if (!conn) {
3868 		bt_dev_err(hdev, "ISO packet for unknown connection handle %d",
3869 			   handle);
3870 		goto drop;
3871 	}
3872 
3873 	/* Send to upper protocol */
3874 	iso_recv(conn, skb, flags);
3875 	return;
3876 
3877 drop:
3878 	kfree_skb(skb);
3879 }
3880 
3881 static bool hci_req_is_complete(struct hci_dev *hdev)
3882 {
3883 	struct sk_buff *skb;
3884 
3885 	skb = skb_peek(&hdev->cmd_q);
3886 	if (!skb)
3887 		return true;
3888 
3889 	return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
3890 }
3891 
3892 static void hci_resend_last(struct hci_dev *hdev)
3893 {
3894 	struct hci_command_hdr *sent;
3895 	struct sk_buff *skb;
3896 	u16 opcode;
3897 
3898 	if (!hdev->sent_cmd)
3899 		return;
3900 
3901 	sent = (void *) hdev->sent_cmd->data;
3902 	opcode = __le16_to_cpu(sent->opcode);
3903 	if (opcode == HCI_OP_RESET)
3904 		return;
3905 
3906 	skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
3907 	if (!skb)
3908 		return;
3909 
3910 	skb_queue_head(&hdev->cmd_q, skb);
3911 	queue_work(hdev->workqueue, &hdev->cmd_work);
3912 }
3913 
3914 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
3915 			  hci_req_complete_t *req_complete,
3916 			  hci_req_complete_skb_t *req_complete_skb)
3917 {
3918 	struct sk_buff *skb;
3919 	unsigned long flags;
3920 
3921 	BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
3922 
3923 	/* If the completed command doesn't match the last one that was
3924 	 * sent we need to do special handling of it.
3925 	 */
3926 	if (!hci_sent_cmd_data(hdev, opcode)) {
3927 		/* Some CSR based controllers generate a spontaneous
3928 		 * reset complete event during init and any pending
3929 		 * command will never be completed. In such a case we
3930 		 * need to resend whatever was the last sent
3931 		 * command.
3932 		 */
3933 		if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
3934 			hci_resend_last(hdev);
3935 
3936 		return;
3937 	}
3938 
3939 	/* If we reach this point this event matches the last command sent */
3940 	hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
3941 
3942 	/* If the command succeeded and there's still more commands in
3943 	 * this request the request is not yet complete.
3944 	 */
3945 	if (!status && !hci_req_is_complete(hdev))
3946 		return;
3947 
3948 	skb = hdev->req_skb;
3949 
3950 	/* If this was the last command in a request the complete
3951 	 * callback would be found in hdev->req_skb instead of the
3952 	 * command queue (hdev->cmd_q).
3953 	 */
3954 	if (skb && bt_cb(skb)->hci.req_flags & HCI_REQ_SKB) {
3955 		*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
3956 		return;
3957 	}
3958 
3959 	if (skb && bt_cb(skb)->hci.req_complete) {
3960 		*req_complete = bt_cb(skb)->hci.req_complete;
3961 		return;
3962 	}
3963 
3964 	/* Remove all pending commands belonging to this request */
3965 	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
3966 	while ((skb = __skb_dequeue(&hdev->cmd_q))) {
3967 		if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
3968 			__skb_queue_head(&hdev->cmd_q, skb);
3969 			break;
3970 		}
3971 
3972 		if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
3973 			*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
3974 		else
3975 			*req_complete = bt_cb(skb)->hci.req_complete;
3976 		dev_kfree_skb_irq(skb);
3977 	}
3978 	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
3979 }
3980 
3981 static void hci_rx_work(struct work_struct *work)
3982 {
3983 	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
3984 	struct sk_buff *skb;
3985 
3986 	BT_DBG("%s", hdev->name);
3987 
3988 	/* The kcov_remote functions used for collecting packet parsing
3989 	 * coverage information from this background thread and associate
3990 	 * the coverage with the syscall's thread which originally injected
3991 	 * the packet. This helps fuzzing the kernel.
3992 	 */
3993 	for (; (skb = skb_dequeue(&hdev->rx_q)); kcov_remote_stop()) {
3994 		kcov_remote_start_common(skb_get_kcov_handle(skb));
3995 
3996 		/* Send copy to monitor */
3997 		hci_send_to_monitor(hdev, skb);
3998 
3999 		if (atomic_read(&hdev->promisc)) {
4000 			/* Send copy to the sockets */
4001 			hci_send_to_sock(hdev, skb);
4002 		}
4003 
4004 		/* If the device has been opened in HCI_USER_CHANNEL,
4005 		 * the userspace has exclusive access to device.
4006 		 * When device is HCI_INIT, we still need to process
4007 		 * the data packets to the driver in order
4008 		 * to complete its setup().
4009 		 */
4010 		if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4011 		    !test_bit(HCI_INIT, &hdev->flags)) {
4012 			kfree_skb(skb);
4013 			continue;
4014 		}
4015 
4016 		if (test_bit(HCI_INIT, &hdev->flags)) {
4017 			/* Don't process data packets in this states. */
4018 			switch (hci_skb_pkt_type(skb)) {
4019 			case HCI_ACLDATA_PKT:
4020 			case HCI_SCODATA_PKT:
4021 			case HCI_ISODATA_PKT:
4022 				kfree_skb(skb);
4023 				continue;
4024 			}
4025 		}
4026 
4027 		/* Process frame */
4028 		switch (hci_skb_pkt_type(skb)) {
4029 		case HCI_EVENT_PKT:
4030 			BT_DBG("%s Event packet", hdev->name);
4031 			hci_event_packet(hdev, skb);
4032 			break;
4033 
4034 		case HCI_ACLDATA_PKT:
4035 			BT_DBG("%s ACL data packet", hdev->name);
4036 			hci_acldata_packet(hdev, skb);
4037 			break;
4038 
4039 		case HCI_SCODATA_PKT:
4040 			BT_DBG("%s SCO data packet", hdev->name);
4041 			hci_scodata_packet(hdev, skb);
4042 			break;
4043 
4044 		case HCI_ISODATA_PKT:
4045 			BT_DBG("%s ISO data packet", hdev->name);
4046 			hci_isodata_packet(hdev, skb);
4047 			break;
4048 
4049 		default:
4050 			kfree_skb(skb);
4051 			break;
4052 		}
4053 	}
4054 }
4055 
4056 static void hci_send_cmd_sync(struct hci_dev *hdev, struct sk_buff *skb)
4057 {
4058 	int err;
4059 
4060 	bt_dev_dbg(hdev, "skb %p", skb);
4061 
4062 	kfree_skb(hdev->sent_cmd);
4063 
4064 	hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4065 	if (!hdev->sent_cmd) {
4066 		skb_queue_head(&hdev->cmd_q, skb);
4067 		queue_work(hdev->workqueue, &hdev->cmd_work);
4068 		return;
4069 	}
4070 
4071 	err = hci_send_frame(hdev, skb);
4072 	if (err < 0) {
4073 		hci_cmd_sync_cancel_sync(hdev, -err);
4074 		return;
4075 	}
4076 
4077 	if (hdev->req_status == HCI_REQ_PEND &&
4078 	    !hci_dev_test_and_set_flag(hdev, HCI_CMD_PENDING)) {
4079 		kfree_skb(hdev->req_skb);
4080 		hdev->req_skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4081 	}
4082 
4083 	atomic_dec(&hdev->cmd_cnt);
4084 }
4085 
4086 static void hci_cmd_work(struct work_struct *work)
4087 {
4088 	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4089 	struct sk_buff *skb;
4090 
4091 	BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4092 	       atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4093 
4094 	/* Send queued commands */
4095 	if (atomic_read(&hdev->cmd_cnt)) {
4096 		skb = skb_dequeue(&hdev->cmd_q);
4097 		if (!skb)
4098 			return;
4099 
4100 		hci_send_cmd_sync(hdev, skb);
4101 
4102 		rcu_read_lock();
4103 		if (test_bit(HCI_RESET, &hdev->flags) ||
4104 		    hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
4105 			cancel_delayed_work(&hdev->cmd_timer);
4106 		else
4107 			queue_delayed_work(hdev->workqueue, &hdev->cmd_timer,
4108 					   HCI_CMD_TIMEOUT);
4109 		rcu_read_unlock();
4110 	}
4111 }
4112