1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (C) 2000-2001 Qualcomm Incorporated 4 Copyright (C) 2011 ProFUSION Embedded Systems 5 6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 7 8 This program is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License version 2 as 10 published by the Free Software Foundation; 11 12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 20 21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 23 SOFTWARE IS DISCLAIMED. 24 */ 25 26 /* Bluetooth HCI core. */ 27 28 #include <linux/export.h> 29 #include <linux/rfkill.h> 30 #include <linux/debugfs.h> 31 #include <linux/crypto.h> 32 #include <linux/kcov.h> 33 #include <linux/property.h> 34 #include <linux/suspend.h> 35 #include <linux/wait.h> 36 #include <linux/unaligned.h> 37 38 #include <net/bluetooth/bluetooth.h> 39 #include <net/bluetooth/hci_core.h> 40 #include <net/bluetooth/l2cap.h> 41 #include <net/bluetooth/mgmt.h> 42 43 #include "hci_debugfs.h" 44 #include "smp.h" 45 #include "leds.h" 46 #include "msft.h" 47 #include "aosp.h" 48 #include "hci_codec.h" 49 50 static void hci_rx_work(struct work_struct *work); 51 static void hci_cmd_work(struct work_struct *work); 52 static void hci_tx_work(struct work_struct *work); 53 54 /* HCI device list */ 55 LIST_HEAD(hci_dev_list); 56 DEFINE_RWLOCK(hci_dev_list_lock); 57 58 /* HCI callback list */ 59 LIST_HEAD(hci_cb_list); 60 DEFINE_MUTEX(hci_cb_list_lock); 61 62 /* HCI ID Numbering */ 63 static DEFINE_IDA(hci_index_ida); 64 65 /* Get HCI device by index. 66 * Device is held on return. */ 67 struct hci_dev *hci_dev_get(int index) 68 { 69 struct hci_dev *hdev = NULL, *d; 70 71 BT_DBG("%d", index); 72 73 if (index < 0) 74 return NULL; 75 76 read_lock(&hci_dev_list_lock); 77 list_for_each_entry(d, &hci_dev_list, list) { 78 if (d->id == index) { 79 hdev = hci_dev_hold(d); 80 break; 81 } 82 } 83 read_unlock(&hci_dev_list_lock); 84 return hdev; 85 } 86 87 /* ---- Inquiry support ---- */ 88 89 bool hci_discovery_active(struct hci_dev *hdev) 90 { 91 struct discovery_state *discov = &hdev->discovery; 92 93 switch (discov->state) { 94 case DISCOVERY_FINDING: 95 case DISCOVERY_RESOLVING: 96 return true; 97 98 default: 99 return false; 100 } 101 } 102 103 void hci_discovery_set_state(struct hci_dev *hdev, int state) 104 { 105 int old_state = hdev->discovery.state; 106 107 if (old_state == state) 108 return; 109 110 hdev->discovery.state = state; 111 112 switch (state) { 113 case DISCOVERY_STOPPED: 114 hci_update_passive_scan(hdev); 115 116 if (old_state != DISCOVERY_STARTING) 117 mgmt_discovering(hdev, 0); 118 break; 119 case DISCOVERY_STARTING: 120 break; 121 case DISCOVERY_FINDING: 122 mgmt_discovering(hdev, 1); 123 break; 124 case DISCOVERY_RESOLVING: 125 break; 126 case DISCOVERY_STOPPING: 127 break; 128 } 129 130 bt_dev_dbg(hdev, "state %u -> %u", old_state, state); 131 } 132 133 void hci_inquiry_cache_flush(struct hci_dev *hdev) 134 { 135 struct discovery_state *cache = &hdev->discovery; 136 struct inquiry_entry *p, *n; 137 138 list_for_each_entry_safe(p, n, &cache->all, all) { 139 list_del(&p->all); 140 kfree(p); 141 } 142 143 INIT_LIST_HEAD(&cache->unknown); 144 INIT_LIST_HEAD(&cache->resolve); 145 } 146 147 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev, 148 bdaddr_t *bdaddr) 149 { 150 struct discovery_state *cache = &hdev->discovery; 151 struct inquiry_entry *e; 152 153 BT_DBG("cache %p, %pMR", cache, bdaddr); 154 155 list_for_each_entry(e, &cache->all, all) { 156 if (!bacmp(&e->data.bdaddr, bdaddr)) 157 return e; 158 } 159 160 return NULL; 161 } 162 163 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev, 164 bdaddr_t *bdaddr) 165 { 166 struct discovery_state *cache = &hdev->discovery; 167 struct inquiry_entry *e; 168 169 BT_DBG("cache %p, %pMR", cache, bdaddr); 170 171 list_for_each_entry(e, &cache->unknown, list) { 172 if (!bacmp(&e->data.bdaddr, bdaddr)) 173 return e; 174 } 175 176 return NULL; 177 } 178 179 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev, 180 bdaddr_t *bdaddr, 181 int state) 182 { 183 struct discovery_state *cache = &hdev->discovery; 184 struct inquiry_entry *e; 185 186 BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state); 187 188 list_for_each_entry(e, &cache->resolve, list) { 189 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state) 190 return e; 191 if (!bacmp(&e->data.bdaddr, bdaddr)) 192 return e; 193 } 194 195 return NULL; 196 } 197 198 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev, 199 struct inquiry_entry *ie) 200 { 201 struct discovery_state *cache = &hdev->discovery; 202 struct list_head *pos = &cache->resolve; 203 struct inquiry_entry *p; 204 205 list_del(&ie->list); 206 207 list_for_each_entry(p, &cache->resolve, list) { 208 if (p->name_state != NAME_PENDING && 209 abs(p->data.rssi) >= abs(ie->data.rssi)) 210 break; 211 pos = &p->list; 212 } 213 214 list_add(&ie->list, pos); 215 } 216 217 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data, 218 bool name_known) 219 { 220 struct discovery_state *cache = &hdev->discovery; 221 struct inquiry_entry *ie; 222 u32 flags = 0; 223 224 BT_DBG("cache %p, %pMR", cache, &data->bdaddr); 225 226 hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR); 227 228 if (!data->ssp_mode) 229 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING; 230 231 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr); 232 if (ie) { 233 if (!ie->data.ssp_mode) 234 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING; 235 236 if (ie->name_state == NAME_NEEDED && 237 data->rssi != ie->data.rssi) { 238 ie->data.rssi = data->rssi; 239 hci_inquiry_cache_update_resolve(hdev, ie); 240 } 241 242 goto update; 243 } 244 245 /* Entry not in the cache. Add new one. */ 246 ie = kzalloc(sizeof(*ie), GFP_KERNEL); 247 if (!ie) { 248 flags |= MGMT_DEV_FOUND_CONFIRM_NAME; 249 goto done; 250 } 251 252 list_add(&ie->all, &cache->all); 253 254 if (name_known) { 255 ie->name_state = NAME_KNOWN; 256 } else { 257 ie->name_state = NAME_NOT_KNOWN; 258 list_add(&ie->list, &cache->unknown); 259 } 260 261 update: 262 if (name_known && ie->name_state != NAME_KNOWN && 263 ie->name_state != NAME_PENDING) { 264 ie->name_state = NAME_KNOWN; 265 list_del(&ie->list); 266 } 267 268 memcpy(&ie->data, data, sizeof(*data)); 269 ie->timestamp = jiffies; 270 cache->timestamp = jiffies; 271 272 if (ie->name_state == NAME_NOT_KNOWN) 273 flags |= MGMT_DEV_FOUND_CONFIRM_NAME; 274 275 done: 276 return flags; 277 } 278 279 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf) 280 { 281 struct discovery_state *cache = &hdev->discovery; 282 struct inquiry_info *info = (struct inquiry_info *) buf; 283 struct inquiry_entry *e; 284 int copied = 0; 285 286 list_for_each_entry(e, &cache->all, all) { 287 struct inquiry_data *data = &e->data; 288 289 if (copied >= num) 290 break; 291 292 bacpy(&info->bdaddr, &data->bdaddr); 293 info->pscan_rep_mode = data->pscan_rep_mode; 294 info->pscan_period_mode = data->pscan_period_mode; 295 info->pscan_mode = data->pscan_mode; 296 memcpy(info->dev_class, data->dev_class, 3); 297 info->clock_offset = data->clock_offset; 298 299 info++; 300 copied++; 301 } 302 303 BT_DBG("cache %p, copied %d", cache, copied); 304 return copied; 305 } 306 307 int hci_inquiry(void __user *arg) 308 { 309 __u8 __user *ptr = arg; 310 struct hci_inquiry_req ir; 311 struct hci_dev *hdev; 312 int err = 0, do_inquiry = 0, max_rsp; 313 __u8 *buf; 314 315 if (copy_from_user(&ir, ptr, sizeof(ir))) 316 return -EFAULT; 317 318 hdev = hci_dev_get(ir.dev_id); 319 if (!hdev) 320 return -ENODEV; 321 322 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 323 err = -EBUSY; 324 goto done; 325 } 326 327 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 328 err = -EOPNOTSUPP; 329 goto done; 330 } 331 332 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 333 err = -EOPNOTSUPP; 334 goto done; 335 } 336 337 /* Restrict maximum inquiry length to 60 seconds */ 338 if (ir.length > 60) { 339 err = -EINVAL; 340 goto done; 341 } 342 343 hci_dev_lock(hdev); 344 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX || 345 inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) { 346 hci_inquiry_cache_flush(hdev); 347 do_inquiry = 1; 348 } 349 hci_dev_unlock(hdev); 350 351 if (do_inquiry) { 352 hci_req_sync_lock(hdev); 353 err = hci_inquiry_sync(hdev, ir.length, ir.num_rsp); 354 hci_req_sync_unlock(hdev); 355 356 if (err < 0) 357 goto done; 358 359 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is 360 * cleared). If it is interrupted by a signal, return -EINTR. 361 */ 362 if (wait_on_bit(&hdev->flags, HCI_INQUIRY, 363 TASK_INTERRUPTIBLE)) { 364 err = -EINTR; 365 goto done; 366 } 367 } 368 369 /* for unlimited number of responses we will use buffer with 370 * 255 entries 371 */ 372 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp; 373 374 /* cache_dump can't sleep. Therefore we allocate temp buffer and then 375 * copy it to the user space. 376 */ 377 buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL); 378 if (!buf) { 379 err = -ENOMEM; 380 goto done; 381 } 382 383 hci_dev_lock(hdev); 384 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf); 385 hci_dev_unlock(hdev); 386 387 BT_DBG("num_rsp %d", ir.num_rsp); 388 389 if (!copy_to_user(ptr, &ir, sizeof(ir))) { 390 ptr += sizeof(ir); 391 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) * 392 ir.num_rsp)) 393 err = -EFAULT; 394 } else 395 err = -EFAULT; 396 397 kfree(buf); 398 399 done: 400 hci_dev_put(hdev); 401 return err; 402 } 403 404 static int hci_dev_do_open(struct hci_dev *hdev) 405 { 406 int ret = 0; 407 408 BT_DBG("%s %p", hdev->name, hdev); 409 410 hci_req_sync_lock(hdev); 411 412 ret = hci_dev_open_sync(hdev); 413 414 hci_req_sync_unlock(hdev); 415 return ret; 416 } 417 418 /* ---- HCI ioctl helpers ---- */ 419 420 int hci_dev_open(__u16 dev) 421 { 422 struct hci_dev *hdev; 423 int err; 424 425 hdev = hci_dev_get(dev); 426 if (!hdev) 427 return -ENODEV; 428 429 /* Devices that are marked as unconfigured can only be powered 430 * up as user channel. Trying to bring them up as normal devices 431 * will result into a failure. Only user channel operation is 432 * possible. 433 * 434 * When this function is called for a user channel, the flag 435 * HCI_USER_CHANNEL will be set first before attempting to 436 * open the device. 437 */ 438 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 439 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 440 err = -EOPNOTSUPP; 441 goto done; 442 } 443 444 /* We need to ensure that no other power on/off work is pending 445 * before proceeding to call hci_dev_do_open. This is 446 * particularly important if the setup procedure has not yet 447 * completed. 448 */ 449 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) 450 cancel_delayed_work(&hdev->power_off); 451 452 /* After this call it is guaranteed that the setup procedure 453 * has finished. This means that error conditions like RFKILL 454 * or no valid public or static random address apply. 455 */ 456 flush_workqueue(hdev->req_workqueue); 457 458 /* For controllers not using the management interface and that 459 * are brought up using legacy ioctl, set the HCI_BONDABLE bit 460 * so that pairing works for them. Once the management interface 461 * is in use this bit will be cleared again and userspace has 462 * to explicitly enable it. 463 */ 464 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 465 !hci_dev_test_flag(hdev, HCI_MGMT)) 466 hci_dev_set_flag(hdev, HCI_BONDABLE); 467 468 err = hci_dev_do_open(hdev); 469 470 done: 471 hci_dev_put(hdev); 472 return err; 473 } 474 475 int hci_dev_do_close(struct hci_dev *hdev) 476 { 477 int err; 478 479 BT_DBG("%s %p", hdev->name, hdev); 480 481 hci_req_sync_lock(hdev); 482 483 err = hci_dev_close_sync(hdev); 484 485 hci_req_sync_unlock(hdev); 486 487 return err; 488 } 489 490 int hci_dev_close(__u16 dev) 491 { 492 struct hci_dev *hdev; 493 int err; 494 495 hdev = hci_dev_get(dev); 496 if (!hdev) 497 return -ENODEV; 498 499 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 500 err = -EBUSY; 501 goto done; 502 } 503 504 cancel_work_sync(&hdev->power_on); 505 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) 506 cancel_delayed_work(&hdev->power_off); 507 508 err = hci_dev_do_close(hdev); 509 510 done: 511 hci_dev_put(hdev); 512 return err; 513 } 514 515 static int hci_dev_do_reset(struct hci_dev *hdev) 516 { 517 int ret; 518 519 BT_DBG("%s %p", hdev->name, hdev); 520 521 hci_req_sync_lock(hdev); 522 523 /* Drop queues */ 524 skb_queue_purge(&hdev->rx_q); 525 skb_queue_purge(&hdev->cmd_q); 526 527 /* Cancel these to avoid queueing non-chained pending work */ 528 hci_dev_set_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE); 529 /* Wait for 530 * 531 * if (!hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE)) 532 * queue_delayed_work(&hdev->{cmd,ncmd}_timer) 533 * 534 * inside RCU section to see the flag or complete scheduling. 535 */ 536 synchronize_rcu(); 537 /* Explicitly cancel works in case scheduled after setting the flag. */ 538 cancel_delayed_work(&hdev->cmd_timer); 539 cancel_delayed_work(&hdev->ncmd_timer); 540 541 /* Avoid potential lockdep warnings from the *_flush() calls by 542 * ensuring the workqueue is empty up front. 543 */ 544 drain_workqueue(hdev->workqueue); 545 546 hci_dev_lock(hdev); 547 hci_inquiry_cache_flush(hdev); 548 hci_conn_hash_flush(hdev); 549 hci_dev_unlock(hdev); 550 551 if (hdev->flush) 552 hdev->flush(hdev); 553 554 hci_dev_clear_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE); 555 556 atomic_set(&hdev->cmd_cnt, 1); 557 hdev->acl_cnt = 0; 558 hdev->sco_cnt = 0; 559 hdev->le_cnt = 0; 560 hdev->iso_cnt = 0; 561 562 ret = hci_reset_sync(hdev); 563 564 hci_req_sync_unlock(hdev); 565 return ret; 566 } 567 568 int hci_dev_reset(__u16 dev) 569 { 570 struct hci_dev *hdev; 571 int err; 572 573 hdev = hci_dev_get(dev); 574 if (!hdev) 575 return -ENODEV; 576 577 if (!test_bit(HCI_UP, &hdev->flags)) { 578 err = -ENETDOWN; 579 goto done; 580 } 581 582 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 583 err = -EBUSY; 584 goto done; 585 } 586 587 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 588 err = -EOPNOTSUPP; 589 goto done; 590 } 591 592 err = hci_dev_do_reset(hdev); 593 594 done: 595 hci_dev_put(hdev); 596 return err; 597 } 598 599 int hci_dev_reset_stat(__u16 dev) 600 { 601 struct hci_dev *hdev; 602 int ret = 0; 603 604 hdev = hci_dev_get(dev); 605 if (!hdev) 606 return -ENODEV; 607 608 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 609 ret = -EBUSY; 610 goto done; 611 } 612 613 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 614 ret = -EOPNOTSUPP; 615 goto done; 616 } 617 618 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats)); 619 620 done: 621 hci_dev_put(hdev); 622 return ret; 623 } 624 625 static void hci_update_passive_scan_state(struct hci_dev *hdev, u8 scan) 626 { 627 bool conn_changed, discov_changed; 628 629 BT_DBG("%s scan 0x%02x", hdev->name, scan); 630 631 if ((scan & SCAN_PAGE)) 632 conn_changed = !hci_dev_test_and_set_flag(hdev, 633 HCI_CONNECTABLE); 634 else 635 conn_changed = hci_dev_test_and_clear_flag(hdev, 636 HCI_CONNECTABLE); 637 638 if ((scan & SCAN_INQUIRY)) { 639 discov_changed = !hci_dev_test_and_set_flag(hdev, 640 HCI_DISCOVERABLE); 641 } else { 642 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 643 discov_changed = hci_dev_test_and_clear_flag(hdev, 644 HCI_DISCOVERABLE); 645 } 646 647 if (!hci_dev_test_flag(hdev, HCI_MGMT)) 648 return; 649 650 if (conn_changed || discov_changed) { 651 /* In case this was disabled through mgmt */ 652 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED); 653 654 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 655 hci_update_adv_data(hdev, hdev->cur_adv_instance); 656 657 mgmt_new_settings(hdev); 658 } 659 } 660 661 int hci_dev_cmd(unsigned int cmd, void __user *arg) 662 { 663 struct hci_dev *hdev; 664 struct hci_dev_req dr; 665 __le16 policy; 666 int err = 0; 667 668 if (copy_from_user(&dr, arg, sizeof(dr))) 669 return -EFAULT; 670 671 hdev = hci_dev_get(dr.dev_id); 672 if (!hdev) 673 return -ENODEV; 674 675 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 676 err = -EBUSY; 677 goto done; 678 } 679 680 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 681 err = -EOPNOTSUPP; 682 goto done; 683 } 684 685 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 686 err = -EOPNOTSUPP; 687 goto done; 688 } 689 690 switch (cmd) { 691 case HCISETAUTH: 692 err = hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE, 693 1, &dr.dev_opt, HCI_CMD_TIMEOUT); 694 break; 695 696 case HCISETENCRYPT: 697 if (!lmp_encrypt_capable(hdev)) { 698 err = -EOPNOTSUPP; 699 break; 700 } 701 702 if (!test_bit(HCI_AUTH, &hdev->flags)) { 703 /* Auth must be enabled first */ 704 err = hci_cmd_sync_status(hdev, 705 HCI_OP_WRITE_AUTH_ENABLE, 706 1, &dr.dev_opt, 707 HCI_CMD_TIMEOUT); 708 if (err) 709 break; 710 } 711 712 err = hci_cmd_sync_status(hdev, HCI_OP_WRITE_ENCRYPT_MODE, 713 1, &dr.dev_opt, HCI_CMD_TIMEOUT); 714 break; 715 716 case HCISETSCAN: 717 err = hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE, 718 1, &dr.dev_opt, HCI_CMD_TIMEOUT); 719 720 /* Ensure that the connectable and discoverable states 721 * get correctly modified as this was a non-mgmt change. 722 */ 723 if (!err) 724 hci_update_passive_scan_state(hdev, dr.dev_opt); 725 break; 726 727 case HCISETLINKPOL: 728 policy = cpu_to_le16(dr.dev_opt); 729 730 err = hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY, 731 2, &policy, HCI_CMD_TIMEOUT); 732 break; 733 734 case HCISETLINKMODE: 735 hdev->link_mode = ((__u16) dr.dev_opt) & 736 (HCI_LM_MASTER | HCI_LM_ACCEPT); 737 break; 738 739 case HCISETPTYPE: 740 if (hdev->pkt_type == (__u16) dr.dev_opt) 741 break; 742 743 hdev->pkt_type = (__u16) dr.dev_opt; 744 mgmt_phy_configuration_changed(hdev, NULL); 745 break; 746 747 case HCISETACLMTU: 748 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1); 749 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0); 750 break; 751 752 case HCISETSCOMTU: 753 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1); 754 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0); 755 break; 756 757 default: 758 err = -EINVAL; 759 break; 760 } 761 762 done: 763 hci_dev_put(hdev); 764 return err; 765 } 766 767 int hci_get_dev_list(void __user *arg) 768 { 769 struct hci_dev *hdev; 770 struct hci_dev_list_req *dl; 771 struct hci_dev_req *dr; 772 int n = 0, err; 773 __u16 dev_num; 774 775 if (get_user(dev_num, (__u16 __user *) arg)) 776 return -EFAULT; 777 778 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr)) 779 return -EINVAL; 780 781 dl = kzalloc(struct_size(dl, dev_req, dev_num), GFP_KERNEL); 782 if (!dl) 783 return -ENOMEM; 784 785 dl->dev_num = dev_num; 786 dr = dl->dev_req; 787 788 read_lock(&hci_dev_list_lock); 789 list_for_each_entry(hdev, &hci_dev_list, list) { 790 unsigned long flags = hdev->flags; 791 792 /* When the auto-off is configured it means the transport 793 * is running, but in that case still indicate that the 794 * device is actually down. 795 */ 796 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) 797 flags &= ~BIT(HCI_UP); 798 799 dr[n].dev_id = hdev->id; 800 dr[n].dev_opt = flags; 801 802 if (++n >= dev_num) 803 break; 804 } 805 read_unlock(&hci_dev_list_lock); 806 807 dl->dev_num = n; 808 err = copy_to_user(arg, dl, struct_size(dl, dev_req, n)); 809 kfree(dl); 810 811 return err ? -EFAULT : 0; 812 } 813 814 int hci_get_dev_info(void __user *arg) 815 { 816 struct hci_dev *hdev; 817 struct hci_dev_info di; 818 unsigned long flags; 819 int err = 0; 820 821 if (copy_from_user(&di, arg, sizeof(di))) 822 return -EFAULT; 823 824 hdev = hci_dev_get(di.dev_id); 825 if (!hdev) 826 return -ENODEV; 827 828 /* When the auto-off is configured it means the transport 829 * is running, but in that case still indicate that the 830 * device is actually down. 831 */ 832 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) 833 flags = hdev->flags & ~BIT(HCI_UP); 834 else 835 flags = hdev->flags; 836 837 strscpy(di.name, hdev->name, sizeof(di.name)); 838 di.bdaddr = hdev->bdaddr; 839 di.type = (hdev->bus & 0x0f); 840 di.flags = flags; 841 di.pkt_type = hdev->pkt_type; 842 if (lmp_bredr_capable(hdev)) { 843 di.acl_mtu = hdev->acl_mtu; 844 di.acl_pkts = hdev->acl_pkts; 845 di.sco_mtu = hdev->sco_mtu; 846 di.sco_pkts = hdev->sco_pkts; 847 } else { 848 di.acl_mtu = hdev->le_mtu; 849 di.acl_pkts = hdev->le_pkts; 850 di.sco_mtu = 0; 851 di.sco_pkts = 0; 852 } 853 di.link_policy = hdev->link_policy; 854 di.link_mode = hdev->link_mode; 855 856 memcpy(&di.stat, &hdev->stat, sizeof(di.stat)); 857 memcpy(&di.features, &hdev->features, sizeof(di.features)); 858 859 if (copy_to_user(arg, &di, sizeof(di))) 860 err = -EFAULT; 861 862 hci_dev_put(hdev); 863 864 return err; 865 } 866 867 /* ---- Interface to HCI drivers ---- */ 868 869 static int hci_dev_do_poweroff(struct hci_dev *hdev) 870 { 871 int err; 872 873 BT_DBG("%s %p", hdev->name, hdev); 874 875 hci_req_sync_lock(hdev); 876 877 err = hci_set_powered_sync(hdev, false); 878 879 hci_req_sync_unlock(hdev); 880 881 return err; 882 } 883 884 static int hci_rfkill_set_block(void *data, bool blocked) 885 { 886 struct hci_dev *hdev = data; 887 int err; 888 889 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked); 890 891 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) 892 return -EBUSY; 893 894 if (blocked == hci_dev_test_flag(hdev, HCI_RFKILLED)) 895 return 0; 896 897 if (blocked) { 898 hci_dev_set_flag(hdev, HCI_RFKILLED); 899 900 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 901 !hci_dev_test_flag(hdev, HCI_CONFIG)) { 902 err = hci_dev_do_poweroff(hdev); 903 if (err) { 904 bt_dev_err(hdev, "Error when powering off device on rfkill (%d)", 905 err); 906 907 /* Make sure the device is still closed even if 908 * anything during power off sequence (eg. 909 * disconnecting devices) failed. 910 */ 911 hci_dev_do_close(hdev); 912 } 913 } 914 } else { 915 hci_dev_clear_flag(hdev, HCI_RFKILLED); 916 } 917 918 return 0; 919 } 920 921 static const struct rfkill_ops hci_rfkill_ops = { 922 .set_block = hci_rfkill_set_block, 923 }; 924 925 static void hci_power_on(struct work_struct *work) 926 { 927 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on); 928 int err; 929 930 BT_DBG("%s", hdev->name); 931 932 if (test_bit(HCI_UP, &hdev->flags) && 933 hci_dev_test_flag(hdev, HCI_MGMT) && 934 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) { 935 cancel_delayed_work(&hdev->power_off); 936 err = hci_powered_update_sync(hdev); 937 mgmt_power_on(hdev, err); 938 return; 939 } 940 941 err = hci_dev_do_open(hdev); 942 if (err < 0) { 943 hci_dev_lock(hdev); 944 mgmt_set_powered_failed(hdev, err); 945 hci_dev_unlock(hdev); 946 return; 947 } 948 949 /* During the HCI setup phase, a few error conditions are 950 * ignored and they need to be checked now. If they are still 951 * valid, it is important to turn the device back off. 952 */ 953 if (hci_dev_test_flag(hdev, HCI_RFKILLED) || 954 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) || 955 (!bacmp(&hdev->bdaddr, BDADDR_ANY) && 956 !bacmp(&hdev->static_addr, BDADDR_ANY))) { 957 hci_dev_clear_flag(hdev, HCI_AUTO_OFF); 958 hci_dev_do_close(hdev); 959 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) { 960 queue_delayed_work(hdev->req_workqueue, &hdev->power_off, 961 HCI_AUTO_OFF_TIMEOUT); 962 } 963 964 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) { 965 /* For unconfigured devices, set the HCI_RAW flag 966 * so that userspace can easily identify them. 967 */ 968 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 969 set_bit(HCI_RAW, &hdev->flags); 970 971 /* For fully configured devices, this will send 972 * the Index Added event. For unconfigured devices, 973 * it will send Unconfigued Index Added event. 974 * 975 * Devices with HCI_QUIRK_RAW_DEVICE are ignored 976 * and no event will be send. 977 */ 978 mgmt_index_added(hdev); 979 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) { 980 /* When the controller is now configured, then it 981 * is important to clear the HCI_RAW flag. 982 */ 983 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 984 clear_bit(HCI_RAW, &hdev->flags); 985 986 /* Powering on the controller with HCI_CONFIG set only 987 * happens with the transition from unconfigured to 988 * configured. This will send the Index Added event. 989 */ 990 mgmt_index_added(hdev); 991 } 992 } 993 994 static void hci_power_off(struct work_struct *work) 995 { 996 struct hci_dev *hdev = container_of(work, struct hci_dev, 997 power_off.work); 998 999 BT_DBG("%s", hdev->name); 1000 1001 hci_dev_do_close(hdev); 1002 } 1003 1004 static void hci_error_reset(struct work_struct *work) 1005 { 1006 struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset); 1007 1008 hci_dev_hold(hdev); 1009 BT_DBG("%s", hdev->name); 1010 1011 if (hdev->hw_error) 1012 hdev->hw_error(hdev, hdev->hw_error_code); 1013 else 1014 bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code); 1015 1016 if (!hci_dev_do_close(hdev)) 1017 hci_dev_do_open(hdev); 1018 1019 hci_dev_put(hdev); 1020 } 1021 1022 void hci_uuids_clear(struct hci_dev *hdev) 1023 { 1024 struct bt_uuid *uuid, *tmp; 1025 1026 list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) { 1027 list_del(&uuid->list); 1028 kfree(uuid); 1029 } 1030 } 1031 1032 void hci_link_keys_clear(struct hci_dev *hdev) 1033 { 1034 struct link_key *key, *tmp; 1035 1036 list_for_each_entry_safe(key, tmp, &hdev->link_keys, list) { 1037 list_del_rcu(&key->list); 1038 kfree_rcu(key, rcu); 1039 } 1040 } 1041 1042 void hci_smp_ltks_clear(struct hci_dev *hdev) 1043 { 1044 struct smp_ltk *k, *tmp; 1045 1046 list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) { 1047 list_del_rcu(&k->list); 1048 kfree_rcu(k, rcu); 1049 } 1050 } 1051 1052 void hci_smp_irks_clear(struct hci_dev *hdev) 1053 { 1054 struct smp_irk *k, *tmp; 1055 1056 list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) { 1057 list_del_rcu(&k->list); 1058 kfree_rcu(k, rcu); 1059 } 1060 } 1061 1062 void hci_blocked_keys_clear(struct hci_dev *hdev) 1063 { 1064 struct blocked_key *b, *tmp; 1065 1066 list_for_each_entry_safe(b, tmp, &hdev->blocked_keys, list) { 1067 list_del_rcu(&b->list); 1068 kfree_rcu(b, rcu); 1069 } 1070 } 1071 1072 bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16]) 1073 { 1074 bool blocked = false; 1075 struct blocked_key *b; 1076 1077 rcu_read_lock(); 1078 list_for_each_entry_rcu(b, &hdev->blocked_keys, list) { 1079 if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) { 1080 blocked = true; 1081 break; 1082 } 1083 } 1084 1085 rcu_read_unlock(); 1086 return blocked; 1087 } 1088 1089 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr) 1090 { 1091 struct link_key *k; 1092 1093 rcu_read_lock(); 1094 list_for_each_entry_rcu(k, &hdev->link_keys, list) { 1095 if (bacmp(bdaddr, &k->bdaddr) == 0) { 1096 rcu_read_unlock(); 1097 1098 if (hci_is_blocked_key(hdev, 1099 HCI_BLOCKED_KEY_TYPE_LINKKEY, 1100 k->val)) { 1101 bt_dev_warn_ratelimited(hdev, 1102 "Link key blocked for %pMR", 1103 &k->bdaddr); 1104 return NULL; 1105 } 1106 1107 return k; 1108 } 1109 } 1110 rcu_read_unlock(); 1111 1112 return NULL; 1113 } 1114 1115 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn, 1116 u8 key_type, u8 old_key_type) 1117 { 1118 /* Legacy key */ 1119 if (key_type < 0x03) 1120 return true; 1121 1122 /* Debug keys are insecure so don't store them persistently */ 1123 if (key_type == HCI_LK_DEBUG_COMBINATION) 1124 return false; 1125 1126 /* Changed combination key and there's no previous one */ 1127 if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff) 1128 return false; 1129 1130 /* Security mode 3 case */ 1131 if (!conn) 1132 return true; 1133 1134 /* BR/EDR key derived using SC from an LE link */ 1135 if (conn->type == LE_LINK) 1136 return true; 1137 1138 /* Neither local nor remote side had no-bonding as requirement */ 1139 if (conn->auth_type > 0x01 && conn->remote_auth > 0x01) 1140 return true; 1141 1142 /* Local side had dedicated bonding as requirement */ 1143 if (conn->auth_type == 0x02 || conn->auth_type == 0x03) 1144 return true; 1145 1146 /* Remote side had dedicated bonding as requirement */ 1147 if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03) 1148 return true; 1149 1150 /* If none of the above criteria match, then don't store the key 1151 * persistently */ 1152 return false; 1153 } 1154 1155 static u8 ltk_role(u8 type) 1156 { 1157 if (type == SMP_LTK) 1158 return HCI_ROLE_MASTER; 1159 1160 return HCI_ROLE_SLAVE; 1161 } 1162 1163 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, 1164 u8 addr_type, u8 role) 1165 { 1166 struct smp_ltk *k; 1167 1168 rcu_read_lock(); 1169 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) { 1170 if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr)) 1171 continue; 1172 1173 if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) { 1174 rcu_read_unlock(); 1175 1176 if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK, 1177 k->val)) { 1178 bt_dev_warn_ratelimited(hdev, 1179 "LTK blocked for %pMR", 1180 &k->bdaddr); 1181 return NULL; 1182 } 1183 1184 return k; 1185 } 1186 } 1187 rcu_read_unlock(); 1188 1189 return NULL; 1190 } 1191 1192 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa) 1193 { 1194 struct smp_irk *irk_to_return = NULL; 1195 struct smp_irk *irk; 1196 1197 rcu_read_lock(); 1198 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) { 1199 if (!bacmp(&irk->rpa, rpa)) { 1200 irk_to_return = irk; 1201 goto done; 1202 } 1203 } 1204 1205 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) { 1206 if (smp_irk_matches(hdev, irk->val, rpa)) { 1207 bacpy(&irk->rpa, rpa); 1208 irk_to_return = irk; 1209 goto done; 1210 } 1211 } 1212 1213 done: 1214 if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK, 1215 irk_to_return->val)) { 1216 bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR", 1217 &irk_to_return->bdaddr); 1218 irk_to_return = NULL; 1219 } 1220 1221 rcu_read_unlock(); 1222 1223 return irk_to_return; 1224 } 1225 1226 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr, 1227 u8 addr_type) 1228 { 1229 struct smp_irk *irk_to_return = NULL; 1230 struct smp_irk *irk; 1231 1232 /* Identity Address must be public or static random */ 1233 if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0) 1234 return NULL; 1235 1236 rcu_read_lock(); 1237 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) { 1238 if (addr_type == irk->addr_type && 1239 bacmp(bdaddr, &irk->bdaddr) == 0) { 1240 irk_to_return = irk; 1241 goto done; 1242 } 1243 } 1244 1245 done: 1246 1247 if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK, 1248 irk_to_return->val)) { 1249 bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR", 1250 &irk_to_return->bdaddr); 1251 irk_to_return = NULL; 1252 } 1253 1254 rcu_read_unlock(); 1255 1256 return irk_to_return; 1257 } 1258 1259 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, 1260 bdaddr_t *bdaddr, u8 *val, u8 type, 1261 u8 pin_len, bool *persistent) 1262 { 1263 struct link_key *key, *old_key; 1264 u8 old_key_type; 1265 1266 old_key = hci_find_link_key(hdev, bdaddr); 1267 if (old_key) { 1268 old_key_type = old_key->type; 1269 key = old_key; 1270 } else { 1271 old_key_type = conn ? conn->key_type : 0xff; 1272 key = kzalloc(sizeof(*key), GFP_KERNEL); 1273 if (!key) 1274 return NULL; 1275 list_add_rcu(&key->list, &hdev->link_keys); 1276 } 1277 1278 BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type); 1279 1280 /* Some buggy controller combinations generate a changed 1281 * combination key for legacy pairing even when there's no 1282 * previous key */ 1283 if (type == HCI_LK_CHANGED_COMBINATION && 1284 (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) { 1285 type = HCI_LK_COMBINATION; 1286 if (conn) 1287 conn->key_type = type; 1288 } 1289 1290 bacpy(&key->bdaddr, bdaddr); 1291 memcpy(key->val, val, HCI_LINK_KEY_SIZE); 1292 key->pin_len = pin_len; 1293 1294 if (type == HCI_LK_CHANGED_COMBINATION) 1295 key->type = old_key_type; 1296 else 1297 key->type = type; 1298 1299 if (persistent) 1300 *persistent = hci_persistent_key(hdev, conn, type, 1301 old_key_type); 1302 1303 return key; 1304 } 1305 1306 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, 1307 u8 addr_type, u8 type, u8 authenticated, 1308 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand) 1309 { 1310 struct smp_ltk *key, *old_key; 1311 u8 role = ltk_role(type); 1312 1313 old_key = hci_find_ltk(hdev, bdaddr, addr_type, role); 1314 if (old_key) 1315 key = old_key; 1316 else { 1317 key = kzalloc(sizeof(*key), GFP_KERNEL); 1318 if (!key) 1319 return NULL; 1320 list_add_rcu(&key->list, &hdev->long_term_keys); 1321 } 1322 1323 bacpy(&key->bdaddr, bdaddr); 1324 key->bdaddr_type = addr_type; 1325 memcpy(key->val, tk, sizeof(key->val)); 1326 key->authenticated = authenticated; 1327 key->ediv = ediv; 1328 key->rand = rand; 1329 key->enc_size = enc_size; 1330 key->type = type; 1331 1332 return key; 1333 } 1334 1335 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, 1336 u8 addr_type, u8 val[16], bdaddr_t *rpa) 1337 { 1338 struct smp_irk *irk; 1339 1340 irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type); 1341 if (!irk) { 1342 irk = kzalloc(sizeof(*irk), GFP_KERNEL); 1343 if (!irk) 1344 return NULL; 1345 1346 bacpy(&irk->bdaddr, bdaddr); 1347 irk->addr_type = addr_type; 1348 1349 list_add_rcu(&irk->list, &hdev->identity_resolving_keys); 1350 } 1351 1352 memcpy(irk->val, val, 16); 1353 bacpy(&irk->rpa, rpa); 1354 1355 return irk; 1356 } 1357 1358 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr) 1359 { 1360 struct link_key *key; 1361 1362 key = hci_find_link_key(hdev, bdaddr); 1363 if (!key) 1364 return -ENOENT; 1365 1366 BT_DBG("%s removing %pMR", hdev->name, bdaddr); 1367 1368 list_del_rcu(&key->list); 1369 kfree_rcu(key, rcu); 1370 1371 return 0; 1372 } 1373 1374 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type) 1375 { 1376 struct smp_ltk *k, *tmp; 1377 int removed = 0; 1378 1379 list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) { 1380 if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type) 1381 continue; 1382 1383 BT_DBG("%s removing %pMR", hdev->name, bdaddr); 1384 1385 list_del_rcu(&k->list); 1386 kfree_rcu(k, rcu); 1387 removed++; 1388 } 1389 1390 return removed ? 0 : -ENOENT; 1391 } 1392 1393 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type) 1394 { 1395 struct smp_irk *k, *tmp; 1396 1397 list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) { 1398 if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type) 1399 continue; 1400 1401 BT_DBG("%s removing %pMR", hdev->name, bdaddr); 1402 1403 list_del_rcu(&k->list); 1404 kfree_rcu(k, rcu); 1405 } 1406 } 1407 1408 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type) 1409 { 1410 struct smp_ltk *k; 1411 struct smp_irk *irk; 1412 u8 addr_type; 1413 1414 if (type == BDADDR_BREDR) { 1415 if (hci_find_link_key(hdev, bdaddr)) 1416 return true; 1417 return false; 1418 } 1419 1420 /* Convert to HCI addr type which struct smp_ltk uses */ 1421 if (type == BDADDR_LE_PUBLIC) 1422 addr_type = ADDR_LE_DEV_PUBLIC; 1423 else 1424 addr_type = ADDR_LE_DEV_RANDOM; 1425 1426 irk = hci_get_irk(hdev, bdaddr, addr_type); 1427 if (irk) { 1428 bdaddr = &irk->bdaddr; 1429 addr_type = irk->addr_type; 1430 } 1431 1432 rcu_read_lock(); 1433 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) { 1434 if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) { 1435 rcu_read_unlock(); 1436 return true; 1437 } 1438 } 1439 rcu_read_unlock(); 1440 1441 return false; 1442 } 1443 1444 /* HCI command timer function */ 1445 static void hci_cmd_timeout(struct work_struct *work) 1446 { 1447 struct hci_dev *hdev = container_of(work, struct hci_dev, 1448 cmd_timer.work); 1449 1450 if (hdev->req_skb) { 1451 u16 opcode = hci_skb_opcode(hdev->req_skb); 1452 1453 bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode); 1454 1455 hci_cmd_sync_cancel_sync(hdev, ETIMEDOUT); 1456 } else { 1457 bt_dev_err(hdev, "command tx timeout"); 1458 } 1459 1460 if (hdev->cmd_timeout) 1461 hdev->cmd_timeout(hdev); 1462 1463 atomic_set(&hdev->cmd_cnt, 1); 1464 queue_work(hdev->workqueue, &hdev->cmd_work); 1465 } 1466 1467 /* HCI ncmd timer function */ 1468 static void hci_ncmd_timeout(struct work_struct *work) 1469 { 1470 struct hci_dev *hdev = container_of(work, struct hci_dev, 1471 ncmd_timer.work); 1472 1473 bt_dev_err(hdev, "Controller not accepting commands anymore: ncmd = 0"); 1474 1475 /* During HCI_INIT phase no events can be injected if the ncmd timer 1476 * triggers since the procedure has its own timeout handling. 1477 */ 1478 if (test_bit(HCI_INIT, &hdev->flags)) 1479 return; 1480 1481 /* This is an irrecoverable state, inject hardware error event */ 1482 hci_reset_dev(hdev); 1483 } 1484 1485 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev, 1486 bdaddr_t *bdaddr, u8 bdaddr_type) 1487 { 1488 struct oob_data *data; 1489 1490 list_for_each_entry(data, &hdev->remote_oob_data, list) { 1491 if (bacmp(bdaddr, &data->bdaddr) != 0) 1492 continue; 1493 if (data->bdaddr_type != bdaddr_type) 1494 continue; 1495 return data; 1496 } 1497 1498 return NULL; 1499 } 1500 1501 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, 1502 u8 bdaddr_type) 1503 { 1504 struct oob_data *data; 1505 1506 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type); 1507 if (!data) 1508 return -ENOENT; 1509 1510 BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type); 1511 1512 list_del(&data->list); 1513 kfree(data); 1514 1515 return 0; 1516 } 1517 1518 void hci_remote_oob_data_clear(struct hci_dev *hdev) 1519 { 1520 struct oob_data *data, *n; 1521 1522 list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) { 1523 list_del(&data->list); 1524 kfree(data); 1525 } 1526 } 1527 1528 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, 1529 u8 bdaddr_type, u8 *hash192, u8 *rand192, 1530 u8 *hash256, u8 *rand256) 1531 { 1532 struct oob_data *data; 1533 1534 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type); 1535 if (!data) { 1536 data = kmalloc(sizeof(*data), GFP_KERNEL); 1537 if (!data) 1538 return -ENOMEM; 1539 1540 bacpy(&data->bdaddr, bdaddr); 1541 data->bdaddr_type = bdaddr_type; 1542 list_add(&data->list, &hdev->remote_oob_data); 1543 } 1544 1545 if (hash192 && rand192) { 1546 memcpy(data->hash192, hash192, sizeof(data->hash192)); 1547 memcpy(data->rand192, rand192, sizeof(data->rand192)); 1548 if (hash256 && rand256) 1549 data->present = 0x03; 1550 } else { 1551 memset(data->hash192, 0, sizeof(data->hash192)); 1552 memset(data->rand192, 0, sizeof(data->rand192)); 1553 if (hash256 && rand256) 1554 data->present = 0x02; 1555 else 1556 data->present = 0x00; 1557 } 1558 1559 if (hash256 && rand256) { 1560 memcpy(data->hash256, hash256, sizeof(data->hash256)); 1561 memcpy(data->rand256, rand256, sizeof(data->rand256)); 1562 } else { 1563 memset(data->hash256, 0, sizeof(data->hash256)); 1564 memset(data->rand256, 0, sizeof(data->rand256)); 1565 if (hash192 && rand192) 1566 data->present = 0x01; 1567 } 1568 1569 BT_DBG("%s for %pMR", hdev->name, bdaddr); 1570 1571 return 0; 1572 } 1573 1574 /* This function requires the caller holds hdev->lock */ 1575 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance) 1576 { 1577 struct adv_info *adv_instance; 1578 1579 list_for_each_entry(adv_instance, &hdev->adv_instances, list) { 1580 if (adv_instance->instance == instance) 1581 return adv_instance; 1582 } 1583 1584 return NULL; 1585 } 1586 1587 /* This function requires the caller holds hdev->lock */ 1588 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance) 1589 { 1590 struct adv_info *cur_instance; 1591 1592 cur_instance = hci_find_adv_instance(hdev, instance); 1593 if (!cur_instance) 1594 return NULL; 1595 1596 if (cur_instance == list_last_entry(&hdev->adv_instances, 1597 struct adv_info, list)) 1598 return list_first_entry(&hdev->adv_instances, 1599 struct adv_info, list); 1600 else 1601 return list_next_entry(cur_instance, list); 1602 } 1603 1604 /* This function requires the caller holds hdev->lock */ 1605 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance) 1606 { 1607 struct adv_info *adv_instance; 1608 1609 adv_instance = hci_find_adv_instance(hdev, instance); 1610 if (!adv_instance) 1611 return -ENOENT; 1612 1613 BT_DBG("%s removing %dMR", hdev->name, instance); 1614 1615 if (hdev->cur_adv_instance == instance) { 1616 if (hdev->adv_instance_timeout) { 1617 cancel_delayed_work(&hdev->adv_instance_expire); 1618 hdev->adv_instance_timeout = 0; 1619 } 1620 hdev->cur_adv_instance = 0x00; 1621 } 1622 1623 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb); 1624 1625 list_del(&adv_instance->list); 1626 kfree(adv_instance); 1627 1628 hdev->adv_instance_cnt--; 1629 1630 return 0; 1631 } 1632 1633 void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired) 1634 { 1635 struct adv_info *adv_instance, *n; 1636 1637 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) 1638 adv_instance->rpa_expired = rpa_expired; 1639 } 1640 1641 /* This function requires the caller holds hdev->lock */ 1642 void hci_adv_instances_clear(struct hci_dev *hdev) 1643 { 1644 struct adv_info *adv_instance, *n; 1645 1646 if (hdev->adv_instance_timeout) { 1647 disable_delayed_work(&hdev->adv_instance_expire); 1648 hdev->adv_instance_timeout = 0; 1649 } 1650 1651 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) { 1652 disable_delayed_work_sync(&adv_instance->rpa_expired_cb); 1653 list_del(&adv_instance->list); 1654 kfree(adv_instance); 1655 } 1656 1657 hdev->adv_instance_cnt = 0; 1658 hdev->cur_adv_instance = 0x00; 1659 } 1660 1661 static void adv_instance_rpa_expired(struct work_struct *work) 1662 { 1663 struct adv_info *adv_instance = container_of(work, struct adv_info, 1664 rpa_expired_cb.work); 1665 1666 BT_DBG(""); 1667 1668 adv_instance->rpa_expired = true; 1669 } 1670 1671 /* This function requires the caller holds hdev->lock */ 1672 struct adv_info *hci_add_adv_instance(struct hci_dev *hdev, u8 instance, 1673 u32 flags, u16 adv_data_len, u8 *adv_data, 1674 u16 scan_rsp_len, u8 *scan_rsp_data, 1675 u16 timeout, u16 duration, s8 tx_power, 1676 u32 min_interval, u32 max_interval, 1677 u8 mesh_handle) 1678 { 1679 struct adv_info *adv; 1680 1681 adv = hci_find_adv_instance(hdev, instance); 1682 if (adv) { 1683 memset(adv->adv_data, 0, sizeof(adv->adv_data)); 1684 memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data)); 1685 memset(adv->per_adv_data, 0, sizeof(adv->per_adv_data)); 1686 } else { 1687 if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets || 1688 instance < 1 || instance > hdev->le_num_of_adv_sets + 1) 1689 return ERR_PTR(-EOVERFLOW); 1690 1691 adv = kzalloc(sizeof(*adv), GFP_KERNEL); 1692 if (!adv) 1693 return ERR_PTR(-ENOMEM); 1694 1695 adv->pending = true; 1696 adv->instance = instance; 1697 1698 /* If controller support only one set and the instance is set to 1699 * 1 then there is no option other than using handle 0x00. 1700 */ 1701 if (hdev->le_num_of_adv_sets == 1 && instance == 1) 1702 adv->handle = 0x00; 1703 else 1704 adv->handle = instance; 1705 1706 list_add(&adv->list, &hdev->adv_instances); 1707 hdev->adv_instance_cnt++; 1708 } 1709 1710 adv->flags = flags; 1711 adv->min_interval = min_interval; 1712 adv->max_interval = max_interval; 1713 adv->tx_power = tx_power; 1714 /* Defining a mesh_handle changes the timing units to ms, 1715 * rather than seconds, and ties the instance to the requested 1716 * mesh_tx queue. 1717 */ 1718 adv->mesh = mesh_handle; 1719 1720 hci_set_adv_instance_data(hdev, instance, adv_data_len, adv_data, 1721 scan_rsp_len, scan_rsp_data); 1722 1723 adv->timeout = timeout; 1724 adv->remaining_time = timeout; 1725 1726 if (duration == 0) 1727 adv->duration = hdev->def_multi_adv_rotation_duration; 1728 else 1729 adv->duration = duration; 1730 1731 INIT_DELAYED_WORK(&adv->rpa_expired_cb, adv_instance_rpa_expired); 1732 1733 BT_DBG("%s for %dMR", hdev->name, instance); 1734 1735 return adv; 1736 } 1737 1738 /* This function requires the caller holds hdev->lock */ 1739 struct adv_info *hci_add_per_instance(struct hci_dev *hdev, u8 instance, 1740 u32 flags, u8 data_len, u8 *data, 1741 u32 min_interval, u32 max_interval) 1742 { 1743 struct adv_info *adv; 1744 1745 adv = hci_add_adv_instance(hdev, instance, flags, 0, NULL, 0, NULL, 1746 0, 0, HCI_ADV_TX_POWER_NO_PREFERENCE, 1747 min_interval, max_interval, 0); 1748 if (IS_ERR(adv)) 1749 return adv; 1750 1751 adv->periodic = true; 1752 adv->per_adv_data_len = data_len; 1753 1754 if (data) 1755 memcpy(adv->per_adv_data, data, data_len); 1756 1757 return adv; 1758 } 1759 1760 /* This function requires the caller holds hdev->lock */ 1761 int hci_set_adv_instance_data(struct hci_dev *hdev, u8 instance, 1762 u16 adv_data_len, u8 *adv_data, 1763 u16 scan_rsp_len, u8 *scan_rsp_data) 1764 { 1765 struct adv_info *adv; 1766 1767 adv = hci_find_adv_instance(hdev, instance); 1768 1769 /* If advertisement doesn't exist, we can't modify its data */ 1770 if (!adv) 1771 return -ENOENT; 1772 1773 if (adv_data_len && ADV_DATA_CMP(adv, adv_data, adv_data_len)) { 1774 memset(adv->adv_data, 0, sizeof(adv->adv_data)); 1775 memcpy(adv->adv_data, adv_data, adv_data_len); 1776 adv->adv_data_len = adv_data_len; 1777 adv->adv_data_changed = true; 1778 } 1779 1780 if (scan_rsp_len && SCAN_RSP_CMP(adv, scan_rsp_data, scan_rsp_len)) { 1781 memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data)); 1782 memcpy(adv->scan_rsp_data, scan_rsp_data, scan_rsp_len); 1783 adv->scan_rsp_len = scan_rsp_len; 1784 adv->scan_rsp_changed = true; 1785 } 1786 1787 /* Mark as changed if there are flags which would affect it */ 1788 if (((adv->flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) || 1789 adv->flags & MGMT_ADV_FLAG_LOCAL_NAME) 1790 adv->scan_rsp_changed = true; 1791 1792 return 0; 1793 } 1794 1795 /* This function requires the caller holds hdev->lock */ 1796 u32 hci_adv_instance_flags(struct hci_dev *hdev, u8 instance) 1797 { 1798 u32 flags; 1799 struct adv_info *adv; 1800 1801 if (instance == 0x00) { 1802 /* Instance 0 always manages the "Tx Power" and "Flags" 1803 * fields 1804 */ 1805 flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS; 1806 1807 /* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting 1808 * corresponds to the "connectable" instance flag. 1809 */ 1810 if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE)) 1811 flags |= MGMT_ADV_FLAG_CONNECTABLE; 1812 1813 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) 1814 flags |= MGMT_ADV_FLAG_LIMITED_DISCOV; 1815 else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 1816 flags |= MGMT_ADV_FLAG_DISCOV; 1817 1818 return flags; 1819 } 1820 1821 adv = hci_find_adv_instance(hdev, instance); 1822 1823 /* Return 0 when we got an invalid instance identifier. */ 1824 if (!adv) 1825 return 0; 1826 1827 return adv->flags; 1828 } 1829 1830 bool hci_adv_instance_is_scannable(struct hci_dev *hdev, u8 instance) 1831 { 1832 struct adv_info *adv; 1833 1834 /* Instance 0x00 always set local name */ 1835 if (instance == 0x00) 1836 return true; 1837 1838 adv = hci_find_adv_instance(hdev, instance); 1839 if (!adv) 1840 return false; 1841 1842 if (adv->flags & MGMT_ADV_FLAG_APPEARANCE || 1843 adv->flags & MGMT_ADV_FLAG_LOCAL_NAME) 1844 return true; 1845 1846 return adv->scan_rsp_len ? true : false; 1847 } 1848 1849 /* This function requires the caller holds hdev->lock */ 1850 void hci_adv_monitors_clear(struct hci_dev *hdev) 1851 { 1852 struct adv_monitor *monitor; 1853 int handle; 1854 1855 idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle) 1856 hci_free_adv_monitor(hdev, monitor); 1857 1858 idr_destroy(&hdev->adv_monitors_idr); 1859 } 1860 1861 /* Frees the monitor structure and do some bookkeepings. 1862 * This function requires the caller holds hdev->lock. 1863 */ 1864 void hci_free_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor) 1865 { 1866 struct adv_pattern *pattern; 1867 struct adv_pattern *tmp; 1868 1869 if (!monitor) 1870 return; 1871 1872 list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list) { 1873 list_del(&pattern->list); 1874 kfree(pattern); 1875 } 1876 1877 if (monitor->handle) 1878 idr_remove(&hdev->adv_monitors_idr, monitor->handle); 1879 1880 if (monitor->state != ADV_MONITOR_STATE_NOT_REGISTERED) { 1881 hdev->adv_monitors_cnt--; 1882 mgmt_adv_monitor_removed(hdev, monitor->handle); 1883 } 1884 1885 kfree(monitor); 1886 } 1887 1888 /* Assigns handle to a monitor, and if offloading is supported and power is on, 1889 * also attempts to forward the request to the controller. 1890 * This function requires the caller holds hci_req_sync_lock. 1891 */ 1892 int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor) 1893 { 1894 int min, max, handle; 1895 int status = 0; 1896 1897 if (!monitor) 1898 return -EINVAL; 1899 1900 hci_dev_lock(hdev); 1901 1902 min = HCI_MIN_ADV_MONITOR_HANDLE; 1903 max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES; 1904 handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max, 1905 GFP_KERNEL); 1906 1907 hci_dev_unlock(hdev); 1908 1909 if (handle < 0) 1910 return handle; 1911 1912 monitor->handle = handle; 1913 1914 if (!hdev_is_powered(hdev)) 1915 return status; 1916 1917 switch (hci_get_adv_monitor_offload_ext(hdev)) { 1918 case HCI_ADV_MONITOR_EXT_NONE: 1919 bt_dev_dbg(hdev, "add monitor %d status %d", 1920 monitor->handle, status); 1921 /* Message was not forwarded to controller - not an error */ 1922 break; 1923 1924 case HCI_ADV_MONITOR_EXT_MSFT: 1925 status = msft_add_monitor_pattern(hdev, monitor); 1926 bt_dev_dbg(hdev, "add monitor %d msft status %d", 1927 handle, status); 1928 break; 1929 } 1930 1931 return status; 1932 } 1933 1934 /* Attempts to tell the controller and free the monitor. If somehow the 1935 * controller doesn't have a corresponding handle, remove anyway. 1936 * This function requires the caller holds hci_req_sync_lock. 1937 */ 1938 static int hci_remove_adv_monitor(struct hci_dev *hdev, 1939 struct adv_monitor *monitor) 1940 { 1941 int status = 0; 1942 int handle; 1943 1944 switch (hci_get_adv_monitor_offload_ext(hdev)) { 1945 case HCI_ADV_MONITOR_EXT_NONE: /* also goes here when powered off */ 1946 bt_dev_dbg(hdev, "remove monitor %d status %d", 1947 monitor->handle, status); 1948 goto free_monitor; 1949 1950 case HCI_ADV_MONITOR_EXT_MSFT: 1951 handle = monitor->handle; 1952 status = msft_remove_monitor(hdev, monitor); 1953 bt_dev_dbg(hdev, "remove monitor %d msft status %d", 1954 handle, status); 1955 break; 1956 } 1957 1958 /* In case no matching handle registered, just free the monitor */ 1959 if (status == -ENOENT) 1960 goto free_monitor; 1961 1962 return status; 1963 1964 free_monitor: 1965 if (status == -ENOENT) 1966 bt_dev_warn(hdev, "Removing monitor with no matching handle %d", 1967 monitor->handle); 1968 hci_free_adv_monitor(hdev, monitor); 1969 1970 return status; 1971 } 1972 1973 /* This function requires the caller holds hci_req_sync_lock */ 1974 int hci_remove_single_adv_monitor(struct hci_dev *hdev, u16 handle) 1975 { 1976 struct adv_monitor *monitor = idr_find(&hdev->adv_monitors_idr, handle); 1977 1978 if (!monitor) 1979 return -EINVAL; 1980 1981 return hci_remove_adv_monitor(hdev, monitor); 1982 } 1983 1984 /* This function requires the caller holds hci_req_sync_lock */ 1985 int hci_remove_all_adv_monitor(struct hci_dev *hdev) 1986 { 1987 struct adv_monitor *monitor; 1988 int idr_next_id = 0; 1989 int status = 0; 1990 1991 while (1) { 1992 monitor = idr_get_next(&hdev->adv_monitors_idr, &idr_next_id); 1993 if (!monitor) 1994 break; 1995 1996 status = hci_remove_adv_monitor(hdev, monitor); 1997 if (status) 1998 return status; 1999 2000 idr_next_id++; 2001 } 2002 2003 return status; 2004 } 2005 2006 /* This function requires the caller holds hdev->lock */ 2007 bool hci_is_adv_monitoring(struct hci_dev *hdev) 2008 { 2009 return !idr_is_empty(&hdev->adv_monitors_idr); 2010 } 2011 2012 int hci_get_adv_monitor_offload_ext(struct hci_dev *hdev) 2013 { 2014 if (msft_monitor_supported(hdev)) 2015 return HCI_ADV_MONITOR_EXT_MSFT; 2016 2017 return HCI_ADV_MONITOR_EXT_NONE; 2018 } 2019 2020 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list, 2021 bdaddr_t *bdaddr, u8 type) 2022 { 2023 struct bdaddr_list *b; 2024 2025 list_for_each_entry(b, bdaddr_list, list) { 2026 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type) 2027 return b; 2028 } 2029 2030 return NULL; 2031 } 2032 2033 struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk( 2034 struct list_head *bdaddr_list, bdaddr_t *bdaddr, 2035 u8 type) 2036 { 2037 struct bdaddr_list_with_irk *b; 2038 2039 list_for_each_entry(b, bdaddr_list, list) { 2040 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type) 2041 return b; 2042 } 2043 2044 return NULL; 2045 } 2046 2047 struct bdaddr_list_with_flags * 2048 hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list, 2049 bdaddr_t *bdaddr, u8 type) 2050 { 2051 struct bdaddr_list_with_flags *b; 2052 2053 list_for_each_entry(b, bdaddr_list, list) { 2054 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type) 2055 return b; 2056 } 2057 2058 return NULL; 2059 } 2060 2061 void hci_bdaddr_list_clear(struct list_head *bdaddr_list) 2062 { 2063 struct bdaddr_list *b, *n; 2064 2065 list_for_each_entry_safe(b, n, bdaddr_list, list) { 2066 list_del(&b->list); 2067 kfree(b); 2068 } 2069 } 2070 2071 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type) 2072 { 2073 struct bdaddr_list *entry; 2074 2075 if (!bacmp(bdaddr, BDADDR_ANY)) 2076 return -EBADF; 2077 2078 if (hci_bdaddr_list_lookup(list, bdaddr, type)) 2079 return -EEXIST; 2080 2081 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 2082 if (!entry) 2083 return -ENOMEM; 2084 2085 bacpy(&entry->bdaddr, bdaddr); 2086 entry->bdaddr_type = type; 2087 2088 list_add(&entry->list, list); 2089 2090 return 0; 2091 } 2092 2093 int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr, 2094 u8 type, u8 *peer_irk, u8 *local_irk) 2095 { 2096 struct bdaddr_list_with_irk *entry; 2097 2098 if (!bacmp(bdaddr, BDADDR_ANY)) 2099 return -EBADF; 2100 2101 if (hci_bdaddr_list_lookup(list, bdaddr, type)) 2102 return -EEXIST; 2103 2104 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 2105 if (!entry) 2106 return -ENOMEM; 2107 2108 bacpy(&entry->bdaddr, bdaddr); 2109 entry->bdaddr_type = type; 2110 2111 if (peer_irk) 2112 memcpy(entry->peer_irk, peer_irk, 16); 2113 2114 if (local_irk) 2115 memcpy(entry->local_irk, local_irk, 16); 2116 2117 list_add(&entry->list, list); 2118 2119 return 0; 2120 } 2121 2122 int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr, 2123 u8 type, u32 flags) 2124 { 2125 struct bdaddr_list_with_flags *entry; 2126 2127 if (!bacmp(bdaddr, BDADDR_ANY)) 2128 return -EBADF; 2129 2130 if (hci_bdaddr_list_lookup(list, bdaddr, type)) 2131 return -EEXIST; 2132 2133 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 2134 if (!entry) 2135 return -ENOMEM; 2136 2137 bacpy(&entry->bdaddr, bdaddr); 2138 entry->bdaddr_type = type; 2139 entry->flags = flags; 2140 2141 list_add(&entry->list, list); 2142 2143 return 0; 2144 } 2145 2146 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type) 2147 { 2148 struct bdaddr_list *entry; 2149 2150 if (!bacmp(bdaddr, BDADDR_ANY)) { 2151 hci_bdaddr_list_clear(list); 2152 return 0; 2153 } 2154 2155 entry = hci_bdaddr_list_lookup(list, bdaddr, type); 2156 if (!entry) 2157 return -ENOENT; 2158 2159 list_del(&entry->list); 2160 kfree(entry); 2161 2162 return 0; 2163 } 2164 2165 int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr, 2166 u8 type) 2167 { 2168 struct bdaddr_list_with_irk *entry; 2169 2170 if (!bacmp(bdaddr, BDADDR_ANY)) { 2171 hci_bdaddr_list_clear(list); 2172 return 0; 2173 } 2174 2175 entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type); 2176 if (!entry) 2177 return -ENOENT; 2178 2179 list_del(&entry->list); 2180 kfree(entry); 2181 2182 return 0; 2183 } 2184 2185 int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr, 2186 u8 type) 2187 { 2188 struct bdaddr_list_with_flags *entry; 2189 2190 if (!bacmp(bdaddr, BDADDR_ANY)) { 2191 hci_bdaddr_list_clear(list); 2192 return 0; 2193 } 2194 2195 entry = hci_bdaddr_list_lookup_with_flags(list, bdaddr, type); 2196 if (!entry) 2197 return -ENOENT; 2198 2199 list_del(&entry->list); 2200 kfree(entry); 2201 2202 return 0; 2203 } 2204 2205 /* This function requires the caller holds hdev->lock */ 2206 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev, 2207 bdaddr_t *addr, u8 addr_type) 2208 { 2209 struct hci_conn_params *params; 2210 2211 list_for_each_entry(params, &hdev->le_conn_params, list) { 2212 if (bacmp(¶ms->addr, addr) == 0 && 2213 params->addr_type == addr_type) { 2214 return params; 2215 } 2216 } 2217 2218 return NULL; 2219 } 2220 2221 /* This function requires the caller holds hdev->lock or rcu_read_lock */ 2222 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list, 2223 bdaddr_t *addr, u8 addr_type) 2224 { 2225 struct hci_conn_params *param; 2226 2227 rcu_read_lock(); 2228 2229 list_for_each_entry_rcu(param, list, action) { 2230 if (bacmp(¶m->addr, addr) == 0 && 2231 param->addr_type == addr_type) { 2232 rcu_read_unlock(); 2233 return param; 2234 } 2235 } 2236 2237 rcu_read_unlock(); 2238 2239 return NULL; 2240 } 2241 2242 /* This function requires the caller holds hdev->lock */ 2243 void hci_pend_le_list_del_init(struct hci_conn_params *param) 2244 { 2245 if (list_empty(¶m->action)) 2246 return; 2247 2248 list_del_rcu(¶m->action); 2249 synchronize_rcu(); 2250 INIT_LIST_HEAD(¶m->action); 2251 } 2252 2253 /* This function requires the caller holds hdev->lock */ 2254 void hci_pend_le_list_add(struct hci_conn_params *param, 2255 struct list_head *list) 2256 { 2257 list_add_rcu(¶m->action, list); 2258 } 2259 2260 /* This function requires the caller holds hdev->lock */ 2261 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev, 2262 bdaddr_t *addr, u8 addr_type) 2263 { 2264 struct hci_conn_params *params; 2265 2266 params = hci_conn_params_lookup(hdev, addr, addr_type); 2267 if (params) 2268 return params; 2269 2270 params = kzalloc(sizeof(*params), GFP_KERNEL); 2271 if (!params) { 2272 bt_dev_err(hdev, "out of memory"); 2273 return NULL; 2274 } 2275 2276 bacpy(¶ms->addr, addr); 2277 params->addr_type = addr_type; 2278 2279 list_add(¶ms->list, &hdev->le_conn_params); 2280 INIT_LIST_HEAD(¶ms->action); 2281 2282 params->conn_min_interval = hdev->le_conn_min_interval; 2283 params->conn_max_interval = hdev->le_conn_max_interval; 2284 params->conn_latency = hdev->le_conn_latency; 2285 params->supervision_timeout = hdev->le_supv_timeout; 2286 params->auto_connect = HCI_AUTO_CONN_DISABLED; 2287 2288 BT_DBG("addr %pMR (type %u)", addr, addr_type); 2289 2290 return params; 2291 } 2292 2293 void hci_conn_params_free(struct hci_conn_params *params) 2294 { 2295 hci_pend_le_list_del_init(params); 2296 2297 if (params->conn) { 2298 hci_conn_drop(params->conn); 2299 hci_conn_put(params->conn); 2300 } 2301 2302 list_del(¶ms->list); 2303 kfree(params); 2304 } 2305 2306 /* This function requires the caller holds hdev->lock */ 2307 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type) 2308 { 2309 struct hci_conn_params *params; 2310 2311 params = hci_conn_params_lookup(hdev, addr, addr_type); 2312 if (!params) 2313 return; 2314 2315 hci_conn_params_free(params); 2316 2317 hci_update_passive_scan(hdev); 2318 2319 BT_DBG("addr %pMR (type %u)", addr, addr_type); 2320 } 2321 2322 /* This function requires the caller holds hdev->lock */ 2323 void hci_conn_params_clear_disabled(struct hci_dev *hdev) 2324 { 2325 struct hci_conn_params *params, *tmp; 2326 2327 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) { 2328 if (params->auto_connect != HCI_AUTO_CONN_DISABLED) 2329 continue; 2330 2331 /* If trying to establish one time connection to disabled 2332 * device, leave the params, but mark them as just once. 2333 */ 2334 if (params->explicit_connect) { 2335 params->auto_connect = HCI_AUTO_CONN_EXPLICIT; 2336 continue; 2337 } 2338 2339 hci_conn_params_free(params); 2340 } 2341 2342 BT_DBG("All LE disabled connection parameters were removed"); 2343 } 2344 2345 /* This function requires the caller holds hdev->lock */ 2346 static void hci_conn_params_clear_all(struct hci_dev *hdev) 2347 { 2348 struct hci_conn_params *params, *tmp; 2349 2350 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) 2351 hci_conn_params_free(params); 2352 2353 BT_DBG("All LE connection parameters were removed"); 2354 } 2355 2356 /* Copy the Identity Address of the controller. 2357 * 2358 * If the controller has a public BD_ADDR, then by default use that one. 2359 * If this is a LE only controller without a public address, default to 2360 * the static random address. 2361 * 2362 * For debugging purposes it is possible to force controllers with a 2363 * public address to use the static random address instead. 2364 * 2365 * In case BR/EDR has been disabled on a dual-mode controller and 2366 * userspace has configured a static address, then that address 2367 * becomes the identity address instead of the public BR/EDR address. 2368 */ 2369 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr, 2370 u8 *bdaddr_type) 2371 { 2372 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 2373 !bacmp(&hdev->bdaddr, BDADDR_ANY) || 2374 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && 2375 bacmp(&hdev->static_addr, BDADDR_ANY))) { 2376 bacpy(bdaddr, &hdev->static_addr); 2377 *bdaddr_type = ADDR_LE_DEV_RANDOM; 2378 } else { 2379 bacpy(bdaddr, &hdev->bdaddr); 2380 *bdaddr_type = ADDR_LE_DEV_PUBLIC; 2381 } 2382 } 2383 2384 static void hci_clear_wake_reason(struct hci_dev *hdev) 2385 { 2386 hci_dev_lock(hdev); 2387 2388 hdev->wake_reason = 0; 2389 bacpy(&hdev->wake_addr, BDADDR_ANY); 2390 hdev->wake_addr_type = 0; 2391 2392 hci_dev_unlock(hdev); 2393 } 2394 2395 static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action, 2396 void *data) 2397 { 2398 struct hci_dev *hdev = 2399 container_of(nb, struct hci_dev, suspend_notifier); 2400 int ret = 0; 2401 2402 /* Userspace has full control of this device. Do nothing. */ 2403 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) 2404 return NOTIFY_DONE; 2405 2406 /* To avoid a potential race with hci_unregister_dev. */ 2407 hci_dev_hold(hdev); 2408 2409 switch (action) { 2410 case PM_HIBERNATION_PREPARE: 2411 case PM_SUSPEND_PREPARE: 2412 ret = hci_suspend_dev(hdev); 2413 break; 2414 case PM_POST_HIBERNATION: 2415 case PM_POST_SUSPEND: 2416 ret = hci_resume_dev(hdev); 2417 break; 2418 } 2419 2420 if (ret) 2421 bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d", 2422 action, ret); 2423 2424 hci_dev_put(hdev); 2425 return NOTIFY_DONE; 2426 } 2427 2428 /* Alloc HCI device */ 2429 struct hci_dev *hci_alloc_dev_priv(int sizeof_priv) 2430 { 2431 struct hci_dev *hdev; 2432 unsigned int alloc_size; 2433 2434 alloc_size = sizeof(*hdev); 2435 if (sizeof_priv) { 2436 /* Fixme: May need ALIGN-ment? */ 2437 alloc_size += sizeof_priv; 2438 } 2439 2440 hdev = kzalloc(alloc_size, GFP_KERNEL); 2441 if (!hdev) 2442 return NULL; 2443 2444 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1); 2445 hdev->esco_type = (ESCO_HV1); 2446 hdev->link_mode = (HCI_LM_ACCEPT); 2447 hdev->num_iac = 0x01; /* One IAC support is mandatory */ 2448 hdev->io_capability = 0x03; /* No Input No Output */ 2449 hdev->manufacturer = 0xffff; /* Default to internal use */ 2450 hdev->inq_tx_power = HCI_TX_POWER_INVALID; 2451 hdev->adv_tx_power = HCI_TX_POWER_INVALID; 2452 hdev->adv_instance_cnt = 0; 2453 hdev->cur_adv_instance = 0x00; 2454 hdev->adv_instance_timeout = 0; 2455 2456 hdev->advmon_allowlist_duration = 300; 2457 hdev->advmon_no_filter_duration = 500; 2458 hdev->enable_advmon_interleave_scan = 0x00; /* Default to disable */ 2459 2460 hdev->sniff_max_interval = 800; 2461 hdev->sniff_min_interval = 80; 2462 2463 hdev->le_adv_channel_map = 0x07; 2464 hdev->le_adv_min_interval = 0x0800; 2465 hdev->le_adv_max_interval = 0x0800; 2466 hdev->le_scan_interval = DISCOV_LE_SCAN_INT_FAST; 2467 hdev->le_scan_window = DISCOV_LE_SCAN_WIN_FAST; 2468 hdev->le_scan_int_suspend = DISCOV_LE_SCAN_INT_SLOW1; 2469 hdev->le_scan_window_suspend = DISCOV_LE_SCAN_WIN_SLOW1; 2470 hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT; 2471 hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN; 2472 hdev->le_scan_int_adv_monitor = DISCOV_LE_SCAN_INT_FAST; 2473 hdev->le_scan_window_adv_monitor = DISCOV_LE_SCAN_WIN_FAST; 2474 hdev->le_scan_int_connect = DISCOV_LE_SCAN_INT_CONN; 2475 hdev->le_scan_window_connect = DISCOV_LE_SCAN_WIN_CONN; 2476 hdev->le_conn_min_interval = 0x0018; 2477 hdev->le_conn_max_interval = 0x0028; 2478 hdev->le_conn_latency = 0x0000; 2479 hdev->le_supv_timeout = 0x002a; 2480 hdev->le_def_tx_len = 0x001b; 2481 hdev->le_def_tx_time = 0x0148; 2482 hdev->le_max_tx_len = 0x001b; 2483 hdev->le_max_tx_time = 0x0148; 2484 hdev->le_max_rx_len = 0x001b; 2485 hdev->le_max_rx_time = 0x0148; 2486 hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE; 2487 hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE; 2488 hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M; 2489 hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M; 2490 hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES; 2491 hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION; 2492 hdev->def_le_autoconnect_timeout = HCI_LE_CONN_TIMEOUT; 2493 hdev->min_le_tx_power = HCI_TX_POWER_INVALID; 2494 hdev->max_le_tx_power = HCI_TX_POWER_INVALID; 2495 2496 hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT; 2497 hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT; 2498 hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE; 2499 hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE; 2500 hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT; 2501 hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE; 2502 2503 /* default 1.28 sec page scan */ 2504 hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD; 2505 hdev->def_page_scan_int = 0x0800; 2506 hdev->def_page_scan_window = 0x0012; 2507 2508 mutex_init(&hdev->lock); 2509 mutex_init(&hdev->req_lock); 2510 2511 ida_init(&hdev->unset_handle_ida); 2512 2513 INIT_LIST_HEAD(&hdev->mesh_pending); 2514 INIT_LIST_HEAD(&hdev->mgmt_pending); 2515 INIT_LIST_HEAD(&hdev->reject_list); 2516 INIT_LIST_HEAD(&hdev->accept_list); 2517 INIT_LIST_HEAD(&hdev->uuids); 2518 INIT_LIST_HEAD(&hdev->link_keys); 2519 INIT_LIST_HEAD(&hdev->long_term_keys); 2520 INIT_LIST_HEAD(&hdev->identity_resolving_keys); 2521 INIT_LIST_HEAD(&hdev->remote_oob_data); 2522 INIT_LIST_HEAD(&hdev->le_accept_list); 2523 INIT_LIST_HEAD(&hdev->le_resolv_list); 2524 INIT_LIST_HEAD(&hdev->le_conn_params); 2525 INIT_LIST_HEAD(&hdev->pend_le_conns); 2526 INIT_LIST_HEAD(&hdev->pend_le_reports); 2527 INIT_LIST_HEAD(&hdev->conn_hash.list); 2528 INIT_LIST_HEAD(&hdev->adv_instances); 2529 INIT_LIST_HEAD(&hdev->blocked_keys); 2530 INIT_LIST_HEAD(&hdev->monitored_devices); 2531 2532 INIT_LIST_HEAD(&hdev->local_codecs); 2533 INIT_WORK(&hdev->rx_work, hci_rx_work); 2534 INIT_WORK(&hdev->cmd_work, hci_cmd_work); 2535 INIT_WORK(&hdev->tx_work, hci_tx_work); 2536 INIT_WORK(&hdev->power_on, hci_power_on); 2537 INIT_WORK(&hdev->error_reset, hci_error_reset); 2538 2539 hci_cmd_sync_init(hdev); 2540 2541 INIT_DELAYED_WORK(&hdev->power_off, hci_power_off); 2542 2543 skb_queue_head_init(&hdev->rx_q); 2544 skb_queue_head_init(&hdev->cmd_q); 2545 skb_queue_head_init(&hdev->raw_q); 2546 2547 init_waitqueue_head(&hdev->req_wait_q); 2548 2549 INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout); 2550 INIT_DELAYED_WORK(&hdev->ncmd_timer, hci_ncmd_timeout); 2551 2552 hci_devcd_setup(hdev); 2553 2554 hci_init_sysfs(hdev); 2555 discovery_init(hdev); 2556 2557 return hdev; 2558 } 2559 EXPORT_SYMBOL(hci_alloc_dev_priv); 2560 2561 /* Free HCI device */ 2562 void hci_free_dev(struct hci_dev *hdev) 2563 { 2564 /* will free via device release */ 2565 put_device(&hdev->dev); 2566 } 2567 EXPORT_SYMBOL(hci_free_dev); 2568 2569 /* Register HCI device */ 2570 int hci_register_dev(struct hci_dev *hdev) 2571 { 2572 int id, error; 2573 2574 if (!hdev->open || !hdev->close || !hdev->send) 2575 return -EINVAL; 2576 2577 id = ida_alloc_max(&hci_index_ida, HCI_MAX_ID - 1, GFP_KERNEL); 2578 if (id < 0) 2579 return id; 2580 2581 error = dev_set_name(&hdev->dev, "hci%u", id); 2582 if (error) 2583 return error; 2584 2585 hdev->name = dev_name(&hdev->dev); 2586 hdev->id = id; 2587 2588 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus); 2589 2590 hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name); 2591 if (!hdev->workqueue) { 2592 error = -ENOMEM; 2593 goto err; 2594 } 2595 2596 hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, 2597 hdev->name); 2598 if (!hdev->req_workqueue) { 2599 destroy_workqueue(hdev->workqueue); 2600 error = -ENOMEM; 2601 goto err; 2602 } 2603 2604 if (!IS_ERR_OR_NULL(bt_debugfs)) 2605 hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs); 2606 2607 error = device_add(&hdev->dev); 2608 if (error < 0) 2609 goto err_wqueue; 2610 2611 hci_leds_init(hdev); 2612 2613 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev, 2614 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops, 2615 hdev); 2616 if (hdev->rfkill) { 2617 if (rfkill_register(hdev->rfkill) < 0) { 2618 rfkill_destroy(hdev->rfkill); 2619 hdev->rfkill = NULL; 2620 } 2621 } 2622 2623 if (hdev->rfkill && rfkill_blocked(hdev->rfkill)) 2624 hci_dev_set_flag(hdev, HCI_RFKILLED); 2625 2626 hci_dev_set_flag(hdev, HCI_SETUP); 2627 hci_dev_set_flag(hdev, HCI_AUTO_OFF); 2628 2629 /* Assume BR/EDR support until proven otherwise (such as 2630 * through reading supported features during init. 2631 */ 2632 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED); 2633 2634 write_lock(&hci_dev_list_lock); 2635 list_add(&hdev->list, &hci_dev_list); 2636 write_unlock(&hci_dev_list_lock); 2637 2638 /* Devices that are marked for raw-only usage are unconfigured 2639 * and should not be included in normal operation. 2640 */ 2641 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) 2642 hci_dev_set_flag(hdev, HCI_UNCONFIGURED); 2643 2644 /* Mark Remote Wakeup connection flag as supported if driver has wakeup 2645 * callback. 2646 */ 2647 if (hdev->wakeup) 2648 hdev->conn_flags |= HCI_CONN_FLAG_REMOTE_WAKEUP; 2649 2650 hci_sock_dev_event(hdev, HCI_DEV_REG); 2651 hci_dev_hold(hdev); 2652 2653 error = hci_register_suspend_notifier(hdev); 2654 if (error) 2655 BT_WARN("register suspend notifier failed error:%d\n", error); 2656 2657 queue_work(hdev->req_workqueue, &hdev->power_on); 2658 2659 idr_init(&hdev->adv_monitors_idr); 2660 msft_register(hdev); 2661 2662 return id; 2663 2664 err_wqueue: 2665 debugfs_remove_recursive(hdev->debugfs); 2666 destroy_workqueue(hdev->workqueue); 2667 destroy_workqueue(hdev->req_workqueue); 2668 err: 2669 ida_free(&hci_index_ida, hdev->id); 2670 2671 return error; 2672 } 2673 EXPORT_SYMBOL(hci_register_dev); 2674 2675 /* Unregister HCI device */ 2676 void hci_unregister_dev(struct hci_dev *hdev) 2677 { 2678 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus); 2679 2680 mutex_lock(&hdev->unregister_lock); 2681 hci_dev_set_flag(hdev, HCI_UNREGISTER); 2682 mutex_unlock(&hdev->unregister_lock); 2683 2684 write_lock(&hci_dev_list_lock); 2685 list_del(&hdev->list); 2686 write_unlock(&hci_dev_list_lock); 2687 2688 disable_work_sync(&hdev->rx_work); 2689 disable_work_sync(&hdev->cmd_work); 2690 disable_work_sync(&hdev->tx_work); 2691 disable_work_sync(&hdev->power_on); 2692 disable_work_sync(&hdev->error_reset); 2693 2694 hci_cmd_sync_clear(hdev); 2695 2696 hci_unregister_suspend_notifier(hdev); 2697 2698 hci_dev_do_close(hdev); 2699 2700 if (!test_bit(HCI_INIT, &hdev->flags) && 2701 !hci_dev_test_flag(hdev, HCI_SETUP) && 2702 !hci_dev_test_flag(hdev, HCI_CONFIG)) { 2703 hci_dev_lock(hdev); 2704 mgmt_index_removed(hdev); 2705 hci_dev_unlock(hdev); 2706 } 2707 2708 /* mgmt_index_removed should take care of emptying the 2709 * pending list */ 2710 BUG_ON(!list_empty(&hdev->mgmt_pending)); 2711 2712 hci_sock_dev_event(hdev, HCI_DEV_UNREG); 2713 2714 if (hdev->rfkill) { 2715 rfkill_unregister(hdev->rfkill); 2716 rfkill_destroy(hdev->rfkill); 2717 } 2718 2719 device_del(&hdev->dev); 2720 /* Actual cleanup is deferred until hci_release_dev(). */ 2721 hci_dev_put(hdev); 2722 } 2723 EXPORT_SYMBOL(hci_unregister_dev); 2724 2725 /* Release HCI device */ 2726 void hci_release_dev(struct hci_dev *hdev) 2727 { 2728 debugfs_remove_recursive(hdev->debugfs); 2729 kfree_const(hdev->hw_info); 2730 kfree_const(hdev->fw_info); 2731 2732 destroy_workqueue(hdev->workqueue); 2733 destroy_workqueue(hdev->req_workqueue); 2734 2735 hci_dev_lock(hdev); 2736 hci_bdaddr_list_clear(&hdev->reject_list); 2737 hci_bdaddr_list_clear(&hdev->accept_list); 2738 hci_uuids_clear(hdev); 2739 hci_link_keys_clear(hdev); 2740 hci_smp_ltks_clear(hdev); 2741 hci_smp_irks_clear(hdev); 2742 hci_remote_oob_data_clear(hdev); 2743 hci_adv_instances_clear(hdev); 2744 hci_adv_monitors_clear(hdev); 2745 hci_bdaddr_list_clear(&hdev->le_accept_list); 2746 hci_bdaddr_list_clear(&hdev->le_resolv_list); 2747 hci_conn_params_clear_all(hdev); 2748 hci_discovery_filter_clear(hdev); 2749 hci_blocked_keys_clear(hdev); 2750 hci_codec_list_clear(&hdev->local_codecs); 2751 msft_release(hdev); 2752 hci_dev_unlock(hdev); 2753 2754 ida_destroy(&hdev->unset_handle_ida); 2755 ida_free(&hci_index_ida, hdev->id); 2756 kfree_skb(hdev->sent_cmd); 2757 kfree_skb(hdev->req_skb); 2758 kfree_skb(hdev->recv_event); 2759 kfree(hdev); 2760 } 2761 EXPORT_SYMBOL(hci_release_dev); 2762 2763 int hci_register_suspend_notifier(struct hci_dev *hdev) 2764 { 2765 int ret = 0; 2766 2767 if (!hdev->suspend_notifier.notifier_call && 2768 !test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) { 2769 hdev->suspend_notifier.notifier_call = hci_suspend_notifier; 2770 ret = register_pm_notifier(&hdev->suspend_notifier); 2771 } 2772 2773 return ret; 2774 } 2775 2776 int hci_unregister_suspend_notifier(struct hci_dev *hdev) 2777 { 2778 int ret = 0; 2779 2780 if (hdev->suspend_notifier.notifier_call) { 2781 ret = unregister_pm_notifier(&hdev->suspend_notifier); 2782 if (!ret) 2783 hdev->suspend_notifier.notifier_call = NULL; 2784 } 2785 2786 return ret; 2787 } 2788 2789 /* Cancel ongoing command synchronously: 2790 * 2791 * - Cancel command timer 2792 * - Reset command counter 2793 * - Cancel command request 2794 */ 2795 static void hci_cancel_cmd_sync(struct hci_dev *hdev, int err) 2796 { 2797 bt_dev_dbg(hdev, "err 0x%2.2x", err); 2798 2799 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 2800 disable_delayed_work_sync(&hdev->cmd_timer); 2801 disable_delayed_work_sync(&hdev->ncmd_timer); 2802 } else { 2803 cancel_delayed_work_sync(&hdev->cmd_timer); 2804 cancel_delayed_work_sync(&hdev->ncmd_timer); 2805 } 2806 2807 atomic_set(&hdev->cmd_cnt, 1); 2808 2809 hci_cmd_sync_cancel_sync(hdev, err); 2810 } 2811 2812 /* Suspend HCI device */ 2813 int hci_suspend_dev(struct hci_dev *hdev) 2814 { 2815 int ret; 2816 2817 bt_dev_dbg(hdev, ""); 2818 2819 /* Suspend should only act on when powered. */ 2820 if (!hdev_is_powered(hdev) || 2821 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 2822 return 0; 2823 2824 /* If powering down don't attempt to suspend */ 2825 if (mgmt_powering_down(hdev)) 2826 return 0; 2827 2828 /* Cancel potentially blocking sync operation before suspend */ 2829 hci_cancel_cmd_sync(hdev, EHOSTDOWN); 2830 2831 hci_req_sync_lock(hdev); 2832 ret = hci_suspend_sync(hdev); 2833 hci_req_sync_unlock(hdev); 2834 2835 hci_clear_wake_reason(hdev); 2836 mgmt_suspending(hdev, hdev->suspend_state); 2837 2838 hci_sock_dev_event(hdev, HCI_DEV_SUSPEND); 2839 return ret; 2840 } 2841 EXPORT_SYMBOL(hci_suspend_dev); 2842 2843 /* Resume HCI device */ 2844 int hci_resume_dev(struct hci_dev *hdev) 2845 { 2846 int ret; 2847 2848 bt_dev_dbg(hdev, ""); 2849 2850 /* Resume should only act on when powered. */ 2851 if (!hdev_is_powered(hdev) || 2852 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 2853 return 0; 2854 2855 /* If powering down don't attempt to resume */ 2856 if (mgmt_powering_down(hdev)) 2857 return 0; 2858 2859 hci_req_sync_lock(hdev); 2860 ret = hci_resume_sync(hdev); 2861 hci_req_sync_unlock(hdev); 2862 2863 mgmt_resuming(hdev, hdev->wake_reason, &hdev->wake_addr, 2864 hdev->wake_addr_type); 2865 2866 hci_sock_dev_event(hdev, HCI_DEV_RESUME); 2867 return ret; 2868 } 2869 EXPORT_SYMBOL(hci_resume_dev); 2870 2871 /* Reset HCI device */ 2872 int hci_reset_dev(struct hci_dev *hdev) 2873 { 2874 static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 }; 2875 struct sk_buff *skb; 2876 2877 skb = bt_skb_alloc(3, GFP_ATOMIC); 2878 if (!skb) 2879 return -ENOMEM; 2880 2881 hci_skb_pkt_type(skb) = HCI_EVENT_PKT; 2882 skb_put_data(skb, hw_err, 3); 2883 2884 bt_dev_err(hdev, "Injecting HCI hardware error event"); 2885 2886 /* Send Hardware Error to upper stack */ 2887 return hci_recv_frame(hdev, skb); 2888 } 2889 EXPORT_SYMBOL(hci_reset_dev); 2890 2891 static u8 hci_dev_classify_pkt_type(struct hci_dev *hdev, struct sk_buff *skb) 2892 { 2893 if (hdev->classify_pkt_type) 2894 return hdev->classify_pkt_type(hdev, skb); 2895 2896 return hci_skb_pkt_type(skb); 2897 } 2898 2899 /* Receive frame from HCI drivers */ 2900 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb) 2901 { 2902 u8 dev_pkt_type; 2903 2904 if (!hdev || (!test_bit(HCI_UP, &hdev->flags) 2905 && !test_bit(HCI_INIT, &hdev->flags))) { 2906 kfree_skb(skb); 2907 return -ENXIO; 2908 } 2909 2910 /* Check if the driver agree with packet type classification */ 2911 dev_pkt_type = hci_dev_classify_pkt_type(hdev, skb); 2912 if (hci_skb_pkt_type(skb) != dev_pkt_type) { 2913 hci_skb_pkt_type(skb) = dev_pkt_type; 2914 } 2915 2916 switch (hci_skb_pkt_type(skb)) { 2917 case HCI_EVENT_PKT: 2918 break; 2919 case HCI_ACLDATA_PKT: 2920 /* Detect if ISO packet has been sent as ACL */ 2921 if (hci_conn_num(hdev, ISO_LINK)) { 2922 __u16 handle = __le16_to_cpu(hci_acl_hdr(skb)->handle); 2923 __u8 type; 2924 2925 type = hci_conn_lookup_type(hdev, hci_handle(handle)); 2926 if (type == ISO_LINK) 2927 hci_skb_pkt_type(skb) = HCI_ISODATA_PKT; 2928 } 2929 break; 2930 case HCI_SCODATA_PKT: 2931 break; 2932 case HCI_ISODATA_PKT: 2933 break; 2934 default: 2935 kfree_skb(skb); 2936 return -EINVAL; 2937 } 2938 2939 /* Incoming skb */ 2940 bt_cb(skb)->incoming = 1; 2941 2942 /* Time stamp */ 2943 __net_timestamp(skb); 2944 2945 skb_queue_tail(&hdev->rx_q, skb); 2946 queue_work(hdev->workqueue, &hdev->rx_work); 2947 2948 return 0; 2949 } 2950 EXPORT_SYMBOL(hci_recv_frame); 2951 2952 /* Receive diagnostic message from HCI drivers */ 2953 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb) 2954 { 2955 /* Mark as diagnostic packet */ 2956 hci_skb_pkt_type(skb) = HCI_DIAG_PKT; 2957 2958 /* Time stamp */ 2959 __net_timestamp(skb); 2960 2961 skb_queue_tail(&hdev->rx_q, skb); 2962 queue_work(hdev->workqueue, &hdev->rx_work); 2963 2964 return 0; 2965 } 2966 EXPORT_SYMBOL(hci_recv_diag); 2967 2968 void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...) 2969 { 2970 va_list vargs; 2971 2972 va_start(vargs, fmt); 2973 kfree_const(hdev->hw_info); 2974 hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs); 2975 va_end(vargs); 2976 } 2977 EXPORT_SYMBOL(hci_set_hw_info); 2978 2979 void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...) 2980 { 2981 va_list vargs; 2982 2983 va_start(vargs, fmt); 2984 kfree_const(hdev->fw_info); 2985 hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs); 2986 va_end(vargs); 2987 } 2988 EXPORT_SYMBOL(hci_set_fw_info); 2989 2990 /* ---- Interface to upper protocols ---- */ 2991 2992 int hci_register_cb(struct hci_cb *cb) 2993 { 2994 BT_DBG("%p name %s", cb, cb->name); 2995 2996 mutex_lock(&hci_cb_list_lock); 2997 list_add_tail(&cb->list, &hci_cb_list); 2998 mutex_unlock(&hci_cb_list_lock); 2999 3000 return 0; 3001 } 3002 EXPORT_SYMBOL(hci_register_cb); 3003 3004 int hci_unregister_cb(struct hci_cb *cb) 3005 { 3006 BT_DBG("%p name %s", cb, cb->name); 3007 3008 mutex_lock(&hci_cb_list_lock); 3009 list_del(&cb->list); 3010 mutex_unlock(&hci_cb_list_lock); 3011 3012 return 0; 3013 } 3014 EXPORT_SYMBOL(hci_unregister_cb); 3015 3016 static int hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb) 3017 { 3018 int err; 3019 3020 BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb), 3021 skb->len); 3022 3023 /* Time stamp */ 3024 __net_timestamp(skb); 3025 3026 /* Send copy to monitor */ 3027 hci_send_to_monitor(hdev, skb); 3028 3029 if (atomic_read(&hdev->promisc)) { 3030 /* Send copy to the sockets */ 3031 hci_send_to_sock(hdev, skb); 3032 } 3033 3034 /* Get rid of skb owner, prior to sending to the driver. */ 3035 skb_orphan(skb); 3036 3037 if (!test_bit(HCI_RUNNING, &hdev->flags)) { 3038 kfree_skb(skb); 3039 return -EINVAL; 3040 } 3041 3042 err = hdev->send(hdev, skb); 3043 if (err < 0) { 3044 bt_dev_err(hdev, "sending frame failed (%d)", err); 3045 kfree_skb(skb); 3046 return err; 3047 } 3048 3049 return 0; 3050 } 3051 3052 /* Send HCI command */ 3053 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen, 3054 const void *param) 3055 { 3056 struct sk_buff *skb; 3057 3058 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen); 3059 3060 skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, NULL); 3061 if (!skb) { 3062 bt_dev_err(hdev, "no memory for command"); 3063 return -ENOMEM; 3064 } 3065 3066 /* Stand-alone HCI commands must be flagged as 3067 * single-command requests. 3068 */ 3069 bt_cb(skb)->hci.req_flags |= HCI_REQ_START; 3070 3071 skb_queue_tail(&hdev->cmd_q, skb); 3072 queue_work(hdev->workqueue, &hdev->cmd_work); 3073 3074 return 0; 3075 } 3076 3077 int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen, 3078 const void *param) 3079 { 3080 struct sk_buff *skb; 3081 3082 if (hci_opcode_ogf(opcode) != 0x3f) { 3083 /* A controller receiving a command shall respond with either 3084 * a Command Status Event or a Command Complete Event. 3085 * Therefore, all standard HCI commands must be sent via the 3086 * standard API, using hci_send_cmd or hci_cmd_sync helpers. 3087 * Some vendors do not comply with this rule for vendor-specific 3088 * commands and do not return any event. We want to support 3089 * unresponded commands for such cases only. 3090 */ 3091 bt_dev_err(hdev, "unresponded command not supported"); 3092 return -EINVAL; 3093 } 3094 3095 skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, NULL); 3096 if (!skb) { 3097 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)", 3098 opcode); 3099 return -ENOMEM; 3100 } 3101 3102 hci_send_frame(hdev, skb); 3103 3104 return 0; 3105 } 3106 EXPORT_SYMBOL(__hci_cmd_send); 3107 3108 /* Get data from the previously sent command */ 3109 static void *hci_cmd_data(struct sk_buff *skb, __u16 opcode) 3110 { 3111 struct hci_command_hdr *hdr; 3112 3113 if (!skb || skb->len < HCI_COMMAND_HDR_SIZE) 3114 return NULL; 3115 3116 hdr = (void *)skb->data; 3117 3118 if (hdr->opcode != cpu_to_le16(opcode)) 3119 return NULL; 3120 3121 return skb->data + HCI_COMMAND_HDR_SIZE; 3122 } 3123 3124 /* Get data from the previously sent command */ 3125 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode) 3126 { 3127 void *data; 3128 3129 /* Check if opcode matches last sent command */ 3130 data = hci_cmd_data(hdev->sent_cmd, opcode); 3131 if (!data) 3132 /* Check if opcode matches last request */ 3133 data = hci_cmd_data(hdev->req_skb, opcode); 3134 3135 return data; 3136 } 3137 3138 /* Get data from last received event */ 3139 void *hci_recv_event_data(struct hci_dev *hdev, __u8 event) 3140 { 3141 struct hci_event_hdr *hdr; 3142 int offset; 3143 3144 if (!hdev->recv_event) 3145 return NULL; 3146 3147 hdr = (void *)hdev->recv_event->data; 3148 offset = sizeof(*hdr); 3149 3150 if (hdr->evt != event) { 3151 /* In case of LE metaevent check the subevent match */ 3152 if (hdr->evt == HCI_EV_LE_META) { 3153 struct hci_ev_le_meta *ev; 3154 3155 ev = (void *)hdev->recv_event->data + offset; 3156 offset += sizeof(*ev); 3157 if (ev->subevent == event) 3158 goto found; 3159 } 3160 return NULL; 3161 } 3162 3163 found: 3164 bt_dev_dbg(hdev, "event 0x%2.2x", event); 3165 3166 return hdev->recv_event->data + offset; 3167 } 3168 3169 /* Send ACL data */ 3170 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags) 3171 { 3172 struct hci_acl_hdr *hdr; 3173 int len = skb->len; 3174 3175 skb_push(skb, HCI_ACL_HDR_SIZE); 3176 skb_reset_transport_header(skb); 3177 hdr = (struct hci_acl_hdr *)skb_transport_header(skb); 3178 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags)); 3179 hdr->dlen = cpu_to_le16(len); 3180 } 3181 3182 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue, 3183 struct sk_buff *skb, __u16 flags) 3184 { 3185 struct hci_conn *conn = chan->conn; 3186 struct hci_dev *hdev = conn->hdev; 3187 struct sk_buff *list; 3188 3189 skb->len = skb_headlen(skb); 3190 skb->data_len = 0; 3191 3192 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT; 3193 3194 hci_add_acl_hdr(skb, conn->handle, flags); 3195 3196 list = skb_shinfo(skb)->frag_list; 3197 if (!list) { 3198 /* Non fragmented */ 3199 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len); 3200 3201 skb_queue_tail(queue, skb); 3202 } else { 3203 /* Fragmented */ 3204 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len); 3205 3206 skb_shinfo(skb)->frag_list = NULL; 3207 3208 /* Queue all fragments atomically. We need to use spin_lock_bh 3209 * here because of 6LoWPAN links, as there this function is 3210 * called from softirq and using normal spin lock could cause 3211 * deadlocks. 3212 */ 3213 spin_lock_bh(&queue->lock); 3214 3215 __skb_queue_tail(queue, skb); 3216 3217 flags &= ~ACL_START; 3218 flags |= ACL_CONT; 3219 do { 3220 skb = list; list = list->next; 3221 3222 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT; 3223 hci_add_acl_hdr(skb, conn->handle, flags); 3224 3225 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len); 3226 3227 __skb_queue_tail(queue, skb); 3228 } while (list); 3229 3230 spin_unlock_bh(&queue->lock); 3231 } 3232 } 3233 3234 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags) 3235 { 3236 struct hci_dev *hdev = chan->conn->hdev; 3237 3238 BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags); 3239 3240 hci_queue_acl(chan, &chan->data_q, skb, flags); 3241 3242 queue_work(hdev->workqueue, &hdev->tx_work); 3243 } 3244 3245 /* Send SCO data */ 3246 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb) 3247 { 3248 struct hci_dev *hdev = conn->hdev; 3249 struct hci_sco_hdr hdr; 3250 3251 BT_DBG("%s len %d", hdev->name, skb->len); 3252 3253 hdr.handle = cpu_to_le16(conn->handle); 3254 hdr.dlen = skb->len; 3255 3256 skb_push(skb, HCI_SCO_HDR_SIZE); 3257 skb_reset_transport_header(skb); 3258 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE); 3259 3260 hci_skb_pkt_type(skb) = HCI_SCODATA_PKT; 3261 3262 skb_queue_tail(&conn->data_q, skb); 3263 queue_work(hdev->workqueue, &hdev->tx_work); 3264 } 3265 3266 /* Send ISO data */ 3267 static void hci_add_iso_hdr(struct sk_buff *skb, __u16 handle, __u8 flags) 3268 { 3269 struct hci_iso_hdr *hdr; 3270 int len = skb->len; 3271 3272 skb_push(skb, HCI_ISO_HDR_SIZE); 3273 skb_reset_transport_header(skb); 3274 hdr = (struct hci_iso_hdr *)skb_transport_header(skb); 3275 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags)); 3276 hdr->dlen = cpu_to_le16(len); 3277 } 3278 3279 static void hci_queue_iso(struct hci_conn *conn, struct sk_buff_head *queue, 3280 struct sk_buff *skb) 3281 { 3282 struct hci_dev *hdev = conn->hdev; 3283 struct sk_buff *list; 3284 __u16 flags; 3285 3286 skb->len = skb_headlen(skb); 3287 skb->data_len = 0; 3288 3289 hci_skb_pkt_type(skb) = HCI_ISODATA_PKT; 3290 3291 list = skb_shinfo(skb)->frag_list; 3292 3293 flags = hci_iso_flags_pack(list ? ISO_START : ISO_SINGLE, 0x00); 3294 hci_add_iso_hdr(skb, conn->handle, flags); 3295 3296 if (!list) { 3297 /* Non fragmented */ 3298 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len); 3299 3300 skb_queue_tail(queue, skb); 3301 } else { 3302 /* Fragmented */ 3303 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len); 3304 3305 skb_shinfo(skb)->frag_list = NULL; 3306 3307 __skb_queue_tail(queue, skb); 3308 3309 do { 3310 skb = list; list = list->next; 3311 3312 hci_skb_pkt_type(skb) = HCI_ISODATA_PKT; 3313 flags = hci_iso_flags_pack(list ? ISO_CONT : ISO_END, 3314 0x00); 3315 hci_add_iso_hdr(skb, conn->handle, flags); 3316 3317 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len); 3318 3319 __skb_queue_tail(queue, skb); 3320 } while (list); 3321 } 3322 } 3323 3324 void hci_send_iso(struct hci_conn *conn, struct sk_buff *skb) 3325 { 3326 struct hci_dev *hdev = conn->hdev; 3327 3328 BT_DBG("%s len %d", hdev->name, skb->len); 3329 3330 hci_queue_iso(conn, &conn->data_q, skb); 3331 3332 queue_work(hdev->workqueue, &hdev->tx_work); 3333 } 3334 3335 /* ---- HCI TX task (outgoing data) ---- */ 3336 3337 /* HCI Connection scheduler */ 3338 static inline void hci_quote_sent(struct hci_conn *conn, int num, int *quote) 3339 { 3340 struct hci_dev *hdev; 3341 int cnt, q; 3342 3343 if (!conn) { 3344 *quote = 0; 3345 return; 3346 } 3347 3348 hdev = conn->hdev; 3349 3350 switch (conn->type) { 3351 case ACL_LINK: 3352 cnt = hdev->acl_cnt; 3353 break; 3354 case SCO_LINK: 3355 case ESCO_LINK: 3356 cnt = hdev->sco_cnt; 3357 break; 3358 case LE_LINK: 3359 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt; 3360 break; 3361 case ISO_LINK: 3362 cnt = hdev->iso_mtu ? hdev->iso_cnt : 3363 hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt; 3364 break; 3365 default: 3366 cnt = 0; 3367 bt_dev_err(hdev, "unknown link type %d", conn->type); 3368 } 3369 3370 q = cnt / num; 3371 *quote = q ? q : 1; 3372 } 3373 3374 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type, 3375 int *quote) 3376 { 3377 struct hci_conn_hash *h = &hdev->conn_hash; 3378 struct hci_conn *conn = NULL, *c; 3379 unsigned int num = 0, min = ~0; 3380 3381 /* We don't have to lock device here. Connections are always 3382 * added and removed with TX task disabled. */ 3383 3384 rcu_read_lock(); 3385 3386 list_for_each_entry_rcu(c, &h->list, list) { 3387 if (c->type != type || skb_queue_empty(&c->data_q)) 3388 continue; 3389 3390 if (c->state != BT_CONNECTED && c->state != BT_CONFIG) 3391 continue; 3392 3393 num++; 3394 3395 if (c->sent < min) { 3396 min = c->sent; 3397 conn = c; 3398 } 3399 3400 if (hci_conn_num(hdev, type) == num) 3401 break; 3402 } 3403 3404 rcu_read_unlock(); 3405 3406 hci_quote_sent(conn, num, quote); 3407 3408 BT_DBG("conn %p quote %d", conn, *quote); 3409 return conn; 3410 } 3411 3412 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type) 3413 { 3414 struct hci_conn_hash *h = &hdev->conn_hash; 3415 struct hci_conn *c; 3416 3417 bt_dev_err(hdev, "link tx timeout"); 3418 3419 rcu_read_lock(); 3420 3421 /* Kill stalled connections */ 3422 list_for_each_entry_rcu(c, &h->list, list) { 3423 if (c->type == type && c->sent) { 3424 bt_dev_err(hdev, "killing stalled connection %pMR", 3425 &c->dst); 3426 /* hci_disconnect might sleep, so, we have to release 3427 * the RCU read lock before calling it. 3428 */ 3429 rcu_read_unlock(); 3430 hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM); 3431 rcu_read_lock(); 3432 } 3433 } 3434 3435 rcu_read_unlock(); 3436 } 3437 3438 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type, 3439 int *quote) 3440 { 3441 struct hci_conn_hash *h = &hdev->conn_hash; 3442 struct hci_chan *chan = NULL; 3443 unsigned int num = 0, min = ~0, cur_prio = 0; 3444 struct hci_conn *conn; 3445 int conn_num = 0; 3446 3447 BT_DBG("%s", hdev->name); 3448 3449 rcu_read_lock(); 3450 3451 list_for_each_entry_rcu(conn, &h->list, list) { 3452 struct hci_chan *tmp; 3453 3454 if (conn->type != type) 3455 continue; 3456 3457 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 3458 continue; 3459 3460 conn_num++; 3461 3462 list_for_each_entry_rcu(tmp, &conn->chan_list, list) { 3463 struct sk_buff *skb; 3464 3465 if (skb_queue_empty(&tmp->data_q)) 3466 continue; 3467 3468 skb = skb_peek(&tmp->data_q); 3469 if (skb->priority < cur_prio) 3470 continue; 3471 3472 if (skb->priority > cur_prio) { 3473 num = 0; 3474 min = ~0; 3475 cur_prio = skb->priority; 3476 } 3477 3478 num++; 3479 3480 if (conn->sent < min) { 3481 min = conn->sent; 3482 chan = tmp; 3483 } 3484 } 3485 3486 if (hci_conn_num(hdev, type) == conn_num) 3487 break; 3488 } 3489 3490 rcu_read_unlock(); 3491 3492 if (!chan) 3493 return NULL; 3494 3495 hci_quote_sent(chan->conn, num, quote); 3496 3497 BT_DBG("chan %p quote %d", chan, *quote); 3498 return chan; 3499 } 3500 3501 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type) 3502 { 3503 struct hci_conn_hash *h = &hdev->conn_hash; 3504 struct hci_conn *conn; 3505 int num = 0; 3506 3507 BT_DBG("%s", hdev->name); 3508 3509 rcu_read_lock(); 3510 3511 list_for_each_entry_rcu(conn, &h->list, list) { 3512 struct hci_chan *chan; 3513 3514 if (conn->type != type) 3515 continue; 3516 3517 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 3518 continue; 3519 3520 num++; 3521 3522 list_for_each_entry_rcu(chan, &conn->chan_list, list) { 3523 struct sk_buff *skb; 3524 3525 if (chan->sent) { 3526 chan->sent = 0; 3527 continue; 3528 } 3529 3530 if (skb_queue_empty(&chan->data_q)) 3531 continue; 3532 3533 skb = skb_peek(&chan->data_q); 3534 if (skb->priority >= HCI_PRIO_MAX - 1) 3535 continue; 3536 3537 skb->priority = HCI_PRIO_MAX - 1; 3538 3539 BT_DBG("chan %p skb %p promoted to %d", chan, skb, 3540 skb->priority); 3541 } 3542 3543 if (hci_conn_num(hdev, type) == num) 3544 break; 3545 } 3546 3547 rcu_read_unlock(); 3548 3549 } 3550 3551 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt, u8 type) 3552 { 3553 unsigned long last_tx; 3554 3555 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 3556 return; 3557 3558 switch (type) { 3559 case LE_LINK: 3560 last_tx = hdev->le_last_tx; 3561 break; 3562 default: 3563 last_tx = hdev->acl_last_tx; 3564 break; 3565 } 3566 3567 /* tx timeout must be longer than maximum link supervision timeout 3568 * (40.9 seconds) 3569 */ 3570 if (!cnt && time_after(jiffies, last_tx + HCI_ACL_TX_TIMEOUT)) 3571 hci_link_tx_to(hdev, type); 3572 } 3573 3574 /* Schedule SCO */ 3575 static void hci_sched_sco(struct hci_dev *hdev) 3576 { 3577 struct hci_conn *conn; 3578 struct sk_buff *skb; 3579 int quote; 3580 3581 BT_DBG("%s", hdev->name); 3582 3583 if (!hci_conn_num(hdev, SCO_LINK)) 3584 return; 3585 3586 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, "e))) { 3587 while (quote-- && (skb = skb_dequeue(&conn->data_q))) { 3588 BT_DBG("skb %p len %d", skb, skb->len); 3589 hci_send_frame(hdev, skb); 3590 3591 conn->sent++; 3592 if (conn->sent == ~0) 3593 conn->sent = 0; 3594 } 3595 } 3596 } 3597 3598 static void hci_sched_esco(struct hci_dev *hdev) 3599 { 3600 struct hci_conn *conn; 3601 struct sk_buff *skb; 3602 int quote; 3603 3604 BT_DBG("%s", hdev->name); 3605 3606 if (!hci_conn_num(hdev, ESCO_LINK)) 3607 return; 3608 3609 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK, 3610 "e))) { 3611 while (quote-- && (skb = skb_dequeue(&conn->data_q))) { 3612 BT_DBG("skb %p len %d", skb, skb->len); 3613 hci_send_frame(hdev, skb); 3614 3615 conn->sent++; 3616 if (conn->sent == ~0) 3617 conn->sent = 0; 3618 } 3619 } 3620 } 3621 3622 static void hci_sched_acl_pkt(struct hci_dev *hdev) 3623 { 3624 unsigned int cnt = hdev->acl_cnt; 3625 struct hci_chan *chan; 3626 struct sk_buff *skb; 3627 int quote; 3628 3629 __check_timeout(hdev, cnt, ACL_LINK); 3630 3631 while (hdev->acl_cnt && 3632 (chan = hci_chan_sent(hdev, ACL_LINK, "e))) { 3633 u32 priority = (skb_peek(&chan->data_q))->priority; 3634 while (quote-- && (skb = skb_peek(&chan->data_q))) { 3635 BT_DBG("chan %p skb %p len %d priority %u", chan, skb, 3636 skb->len, skb->priority); 3637 3638 /* Stop if priority has changed */ 3639 if (skb->priority < priority) 3640 break; 3641 3642 skb = skb_dequeue(&chan->data_q); 3643 3644 hci_conn_enter_active_mode(chan->conn, 3645 bt_cb(skb)->force_active); 3646 3647 hci_send_frame(hdev, skb); 3648 hdev->acl_last_tx = jiffies; 3649 3650 hdev->acl_cnt--; 3651 chan->sent++; 3652 chan->conn->sent++; 3653 3654 /* Send pending SCO packets right away */ 3655 hci_sched_sco(hdev); 3656 hci_sched_esco(hdev); 3657 } 3658 } 3659 3660 if (cnt != hdev->acl_cnt) 3661 hci_prio_recalculate(hdev, ACL_LINK); 3662 } 3663 3664 static void hci_sched_acl(struct hci_dev *hdev) 3665 { 3666 BT_DBG("%s", hdev->name); 3667 3668 /* No ACL link over BR/EDR controller */ 3669 if (!hci_conn_num(hdev, ACL_LINK)) 3670 return; 3671 3672 hci_sched_acl_pkt(hdev); 3673 } 3674 3675 static void hci_sched_le(struct hci_dev *hdev) 3676 { 3677 struct hci_chan *chan; 3678 struct sk_buff *skb; 3679 int quote, *cnt, tmp; 3680 3681 BT_DBG("%s", hdev->name); 3682 3683 if (!hci_conn_num(hdev, LE_LINK)) 3684 return; 3685 3686 cnt = hdev->le_pkts ? &hdev->le_cnt : &hdev->acl_cnt; 3687 3688 __check_timeout(hdev, *cnt, LE_LINK); 3689 3690 tmp = *cnt; 3691 while (*cnt && (chan = hci_chan_sent(hdev, LE_LINK, "e))) { 3692 u32 priority = (skb_peek(&chan->data_q))->priority; 3693 while (quote-- && (skb = skb_peek(&chan->data_q))) { 3694 BT_DBG("chan %p skb %p len %d priority %u", chan, skb, 3695 skb->len, skb->priority); 3696 3697 /* Stop if priority has changed */ 3698 if (skb->priority < priority) 3699 break; 3700 3701 skb = skb_dequeue(&chan->data_q); 3702 3703 hci_send_frame(hdev, skb); 3704 hdev->le_last_tx = jiffies; 3705 3706 (*cnt)--; 3707 chan->sent++; 3708 chan->conn->sent++; 3709 3710 /* Send pending SCO packets right away */ 3711 hci_sched_sco(hdev); 3712 hci_sched_esco(hdev); 3713 } 3714 } 3715 3716 if (*cnt != tmp) 3717 hci_prio_recalculate(hdev, LE_LINK); 3718 } 3719 3720 /* Schedule CIS */ 3721 static void hci_sched_iso(struct hci_dev *hdev) 3722 { 3723 struct hci_conn *conn; 3724 struct sk_buff *skb; 3725 int quote, *cnt; 3726 3727 BT_DBG("%s", hdev->name); 3728 3729 if (!hci_conn_num(hdev, ISO_LINK)) 3730 return; 3731 3732 cnt = hdev->iso_pkts ? &hdev->iso_cnt : 3733 hdev->le_pkts ? &hdev->le_cnt : &hdev->acl_cnt; 3734 while (*cnt && (conn = hci_low_sent(hdev, ISO_LINK, "e))) { 3735 while (quote-- && (skb = skb_dequeue(&conn->data_q))) { 3736 BT_DBG("skb %p len %d", skb, skb->len); 3737 hci_send_frame(hdev, skb); 3738 3739 conn->sent++; 3740 if (conn->sent == ~0) 3741 conn->sent = 0; 3742 (*cnt)--; 3743 } 3744 } 3745 } 3746 3747 static void hci_tx_work(struct work_struct *work) 3748 { 3749 struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work); 3750 struct sk_buff *skb; 3751 3752 BT_DBG("%s acl %d sco %d le %d iso %d", hdev->name, hdev->acl_cnt, 3753 hdev->sco_cnt, hdev->le_cnt, hdev->iso_cnt); 3754 3755 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 3756 /* Schedule queues and send stuff to HCI driver */ 3757 hci_sched_sco(hdev); 3758 hci_sched_esco(hdev); 3759 hci_sched_iso(hdev); 3760 hci_sched_acl(hdev); 3761 hci_sched_le(hdev); 3762 } 3763 3764 /* Send next queued raw (unknown type) packet */ 3765 while ((skb = skb_dequeue(&hdev->raw_q))) 3766 hci_send_frame(hdev, skb); 3767 } 3768 3769 /* ----- HCI RX task (incoming data processing) ----- */ 3770 3771 /* ACL data packet */ 3772 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb) 3773 { 3774 struct hci_acl_hdr *hdr = (void *) skb->data; 3775 struct hci_conn *conn; 3776 __u16 handle, flags; 3777 3778 skb_pull(skb, HCI_ACL_HDR_SIZE); 3779 3780 handle = __le16_to_cpu(hdr->handle); 3781 flags = hci_flags(handle); 3782 handle = hci_handle(handle); 3783 3784 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len, 3785 handle, flags); 3786 3787 hdev->stat.acl_rx++; 3788 3789 hci_dev_lock(hdev); 3790 conn = hci_conn_hash_lookup_handle(hdev, handle); 3791 if (conn && hci_dev_test_flag(hdev, HCI_MGMT)) 3792 mgmt_device_connected(hdev, conn, NULL, 0); 3793 hci_dev_unlock(hdev); 3794 3795 if (conn) { 3796 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF); 3797 3798 /* Send to upper protocol */ 3799 l2cap_recv_acldata(conn, skb, flags); 3800 return; 3801 } else { 3802 bt_dev_err(hdev, "ACL packet for unknown connection handle %d", 3803 handle); 3804 } 3805 3806 kfree_skb(skb); 3807 } 3808 3809 /* SCO data packet */ 3810 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb) 3811 { 3812 struct hci_sco_hdr *hdr = (void *) skb->data; 3813 struct hci_conn *conn; 3814 __u16 handle, flags; 3815 3816 skb_pull(skb, HCI_SCO_HDR_SIZE); 3817 3818 handle = __le16_to_cpu(hdr->handle); 3819 flags = hci_flags(handle); 3820 handle = hci_handle(handle); 3821 3822 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len, 3823 handle, flags); 3824 3825 hdev->stat.sco_rx++; 3826 3827 hci_dev_lock(hdev); 3828 conn = hci_conn_hash_lookup_handle(hdev, handle); 3829 hci_dev_unlock(hdev); 3830 3831 if (conn) { 3832 /* Send to upper protocol */ 3833 hci_skb_pkt_status(skb) = flags & 0x03; 3834 sco_recv_scodata(conn, skb); 3835 return; 3836 } else { 3837 bt_dev_err_ratelimited(hdev, "SCO packet for unknown connection handle %d", 3838 handle); 3839 } 3840 3841 kfree_skb(skb); 3842 } 3843 3844 static void hci_isodata_packet(struct hci_dev *hdev, struct sk_buff *skb) 3845 { 3846 struct hci_iso_hdr *hdr; 3847 struct hci_conn *conn; 3848 __u16 handle, flags; 3849 3850 hdr = skb_pull_data(skb, sizeof(*hdr)); 3851 if (!hdr) { 3852 bt_dev_err(hdev, "ISO packet too small"); 3853 goto drop; 3854 } 3855 3856 handle = __le16_to_cpu(hdr->handle); 3857 flags = hci_flags(handle); 3858 handle = hci_handle(handle); 3859 3860 bt_dev_dbg(hdev, "len %d handle 0x%4.4x flags 0x%4.4x", skb->len, 3861 handle, flags); 3862 3863 hci_dev_lock(hdev); 3864 conn = hci_conn_hash_lookup_handle(hdev, handle); 3865 hci_dev_unlock(hdev); 3866 3867 if (!conn) { 3868 bt_dev_err(hdev, "ISO packet for unknown connection handle %d", 3869 handle); 3870 goto drop; 3871 } 3872 3873 /* Send to upper protocol */ 3874 iso_recv(conn, skb, flags); 3875 return; 3876 3877 drop: 3878 kfree_skb(skb); 3879 } 3880 3881 static bool hci_req_is_complete(struct hci_dev *hdev) 3882 { 3883 struct sk_buff *skb; 3884 3885 skb = skb_peek(&hdev->cmd_q); 3886 if (!skb) 3887 return true; 3888 3889 return (bt_cb(skb)->hci.req_flags & HCI_REQ_START); 3890 } 3891 3892 static void hci_resend_last(struct hci_dev *hdev) 3893 { 3894 struct hci_command_hdr *sent; 3895 struct sk_buff *skb; 3896 u16 opcode; 3897 3898 if (!hdev->sent_cmd) 3899 return; 3900 3901 sent = (void *) hdev->sent_cmd->data; 3902 opcode = __le16_to_cpu(sent->opcode); 3903 if (opcode == HCI_OP_RESET) 3904 return; 3905 3906 skb = skb_clone(hdev->sent_cmd, GFP_KERNEL); 3907 if (!skb) 3908 return; 3909 3910 skb_queue_head(&hdev->cmd_q, skb); 3911 queue_work(hdev->workqueue, &hdev->cmd_work); 3912 } 3913 3914 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status, 3915 hci_req_complete_t *req_complete, 3916 hci_req_complete_skb_t *req_complete_skb) 3917 { 3918 struct sk_buff *skb; 3919 unsigned long flags; 3920 3921 BT_DBG("opcode 0x%04x status 0x%02x", opcode, status); 3922 3923 /* If the completed command doesn't match the last one that was 3924 * sent we need to do special handling of it. 3925 */ 3926 if (!hci_sent_cmd_data(hdev, opcode)) { 3927 /* Some CSR based controllers generate a spontaneous 3928 * reset complete event during init and any pending 3929 * command will never be completed. In such a case we 3930 * need to resend whatever was the last sent 3931 * command. 3932 */ 3933 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET) 3934 hci_resend_last(hdev); 3935 3936 return; 3937 } 3938 3939 /* If we reach this point this event matches the last command sent */ 3940 hci_dev_clear_flag(hdev, HCI_CMD_PENDING); 3941 3942 /* If the command succeeded and there's still more commands in 3943 * this request the request is not yet complete. 3944 */ 3945 if (!status && !hci_req_is_complete(hdev)) 3946 return; 3947 3948 skb = hdev->req_skb; 3949 3950 /* If this was the last command in a request the complete 3951 * callback would be found in hdev->req_skb instead of the 3952 * command queue (hdev->cmd_q). 3953 */ 3954 if (skb && bt_cb(skb)->hci.req_flags & HCI_REQ_SKB) { 3955 *req_complete_skb = bt_cb(skb)->hci.req_complete_skb; 3956 return; 3957 } 3958 3959 if (skb && bt_cb(skb)->hci.req_complete) { 3960 *req_complete = bt_cb(skb)->hci.req_complete; 3961 return; 3962 } 3963 3964 /* Remove all pending commands belonging to this request */ 3965 spin_lock_irqsave(&hdev->cmd_q.lock, flags); 3966 while ((skb = __skb_dequeue(&hdev->cmd_q))) { 3967 if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) { 3968 __skb_queue_head(&hdev->cmd_q, skb); 3969 break; 3970 } 3971 3972 if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB) 3973 *req_complete_skb = bt_cb(skb)->hci.req_complete_skb; 3974 else 3975 *req_complete = bt_cb(skb)->hci.req_complete; 3976 dev_kfree_skb_irq(skb); 3977 } 3978 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); 3979 } 3980 3981 static void hci_rx_work(struct work_struct *work) 3982 { 3983 struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work); 3984 struct sk_buff *skb; 3985 3986 BT_DBG("%s", hdev->name); 3987 3988 /* The kcov_remote functions used for collecting packet parsing 3989 * coverage information from this background thread and associate 3990 * the coverage with the syscall's thread which originally injected 3991 * the packet. This helps fuzzing the kernel. 3992 */ 3993 for (; (skb = skb_dequeue(&hdev->rx_q)); kcov_remote_stop()) { 3994 kcov_remote_start_common(skb_get_kcov_handle(skb)); 3995 3996 /* Send copy to monitor */ 3997 hci_send_to_monitor(hdev, skb); 3998 3999 if (atomic_read(&hdev->promisc)) { 4000 /* Send copy to the sockets */ 4001 hci_send_to_sock(hdev, skb); 4002 } 4003 4004 /* If the device has been opened in HCI_USER_CHANNEL, 4005 * the userspace has exclusive access to device. 4006 * When device is HCI_INIT, we still need to process 4007 * the data packets to the driver in order 4008 * to complete its setup(). 4009 */ 4010 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4011 !test_bit(HCI_INIT, &hdev->flags)) { 4012 kfree_skb(skb); 4013 continue; 4014 } 4015 4016 if (test_bit(HCI_INIT, &hdev->flags)) { 4017 /* Don't process data packets in this states. */ 4018 switch (hci_skb_pkt_type(skb)) { 4019 case HCI_ACLDATA_PKT: 4020 case HCI_SCODATA_PKT: 4021 case HCI_ISODATA_PKT: 4022 kfree_skb(skb); 4023 continue; 4024 } 4025 } 4026 4027 /* Process frame */ 4028 switch (hci_skb_pkt_type(skb)) { 4029 case HCI_EVENT_PKT: 4030 BT_DBG("%s Event packet", hdev->name); 4031 hci_event_packet(hdev, skb); 4032 break; 4033 4034 case HCI_ACLDATA_PKT: 4035 BT_DBG("%s ACL data packet", hdev->name); 4036 hci_acldata_packet(hdev, skb); 4037 break; 4038 4039 case HCI_SCODATA_PKT: 4040 BT_DBG("%s SCO data packet", hdev->name); 4041 hci_scodata_packet(hdev, skb); 4042 break; 4043 4044 case HCI_ISODATA_PKT: 4045 BT_DBG("%s ISO data packet", hdev->name); 4046 hci_isodata_packet(hdev, skb); 4047 break; 4048 4049 default: 4050 kfree_skb(skb); 4051 break; 4052 } 4053 } 4054 } 4055 4056 static void hci_send_cmd_sync(struct hci_dev *hdev, struct sk_buff *skb) 4057 { 4058 int err; 4059 4060 bt_dev_dbg(hdev, "skb %p", skb); 4061 4062 kfree_skb(hdev->sent_cmd); 4063 4064 hdev->sent_cmd = skb_clone(skb, GFP_KERNEL); 4065 if (!hdev->sent_cmd) { 4066 skb_queue_head(&hdev->cmd_q, skb); 4067 queue_work(hdev->workqueue, &hdev->cmd_work); 4068 return; 4069 } 4070 4071 err = hci_send_frame(hdev, skb); 4072 if (err < 0) { 4073 hci_cmd_sync_cancel_sync(hdev, -err); 4074 return; 4075 } 4076 4077 if (hdev->req_status == HCI_REQ_PEND && 4078 !hci_dev_test_and_set_flag(hdev, HCI_CMD_PENDING)) { 4079 kfree_skb(hdev->req_skb); 4080 hdev->req_skb = skb_clone(hdev->sent_cmd, GFP_KERNEL); 4081 } 4082 4083 atomic_dec(&hdev->cmd_cnt); 4084 } 4085 4086 static void hci_cmd_work(struct work_struct *work) 4087 { 4088 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work); 4089 struct sk_buff *skb; 4090 4091 BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name, 4092 atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q)); 4093 4094 /* Send queued commands */ 4095 if (atomic_read(&hdev->cmd_cnt)) { 4096 skb = skb_dequeue(&hdev->cmd_q); 4097 if (!skb) 4098 return; 4099 4100 hci_send_cmd_sync(hdev, skb); 4101 4102 rcu_read_lock(); 4103 if (test_bit(HCI_RESET, &hdev->flags) || 4104 hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE)) 4105 cancel_delayed_work(&hdev->cmd_timer); 4106 else 4107 queue_delayed_work(hdev->workqueue, &hdev->cmd_timer, 4108 HCI_CMD_TIMEOUT); 4109 rcu_read_unlock(); 4110 } 4111 } 4112