xref: /linux/net/bluetooth/hci_conn.c (revision e7c22eeaff8565d9a8374f320238c251ca31480b)
1 /*
2    BlueZ - Bluetooth protocol stack for Linux
3    Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved.
4 
5    Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License version 2 as
9    published by the Free Software Foundation;
10 
11    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
12    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
13    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
14    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
15    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
16    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 
20    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
21    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
22    SOFTWARE IS DISCLAIMED.
23 */
24 
25 /* Bluetooth HCI connection handling. */
26 
27 #include <linux/export.h>
28 #include <linux/debugfs.h>
29 
30 #include <net/bluetooth/bluetooth.h>
31 #include <net/bluetooth/hci_core.h>
32 #include <net/bluetooth/l2cap.h>
33 
34 #include "hci_request.h"
35 #include "smp.h"
36 #include "a2mp.h"
37 
38 struct sco_param {
39 	u16 pkt_type;
40 	u16 max_latency;
41 	u8  retrans_effort;
42 };
43 
44 static const struct sco_param esco_param_cvsd[] = {
45 	{ EDR_ESCO_MASK & ~ESCO_2EV3, 0x000a,	0x01 }, /* S3 */
46 	{ EDR_ESCO_MASK & ~ESCO_2EV3, 0x0007,	0x01 }, /* S2 */
47 	{ EDR_ESCO_MASK | ESCO_EV3,   0x0007,	0x01 }, /* S1 */
48 	{ EDR_ESCO_MASK | ESCO_HV3,   0xffff,	0x01 }, /* D1 */
49 	{ EDR_ESCO_MASK | ESCO_HV1,   0xffff,	0x01 }, /* D0 */
50 };
51 
52 static const struct sco_param sco_param_cvsd[] = {
53 	{ EDR_ESCO_MASK | ESCO_HV3,   0xffff,	0xff }, /* D1 */
54 	{ EDR_ESCO_MASK | ESCO_HV1,   0xffff,	0xff }, /* D0 */
55 };
56 
57 static const struct sco_param esco_param_msbc[] = {
58 	{ EDR_ESCO_MASK & ~ESCO_2EV3, 0x000d,	0x02 }, /* T2 */
59 	{ EDR_ESCO_MASK | ESCO_EV3,   0x0008,	0x02 }, /* T1 */
60 };
61 
62 /* This function requires the caller holds hdev->lock */
63 static void hci_connect_le_scan_cleanup(struct hci_conn *conn)
64 {
65 	struct hci_conn_params *params;
66 	struct hci_dev *hdev = conn->hdev;
67 	struct smp_irk *irk;
68 	bdaddr_t *bdaddr;
69 	u8 bdaddr_type;
70 
71 	bdaddr = &conn->dst;
72 	bdaddr_type = conn->dst_type;
73 
74 	/* Check if we need to convert to identity address */
75 	irk = hci_get_irk(hdev, bdaddr, bdaddr_type);
76 	if (irk) {
77 		bdaddr = &irk->bdaddr;
78 		bdaddr_type = irk->addr_type;
79 	}
80 
81 	params = hci_pend_le_action_lookup(&hdev->pend_le_conns, bdaddr,
82 					   bdaddr_type);
83 	if (!params || !params->explicit_connect)
84 		return;
85 
86 	/* The connection attempt was doing scan for new RPA, and is
87 	 * in scan phase. If params are not associated with any other
88 	 * autoconnect action, remove them completely. If they are, just unmark
89 	 * them as waiting for connection, by clearing explicit_connect field.
90 	 */
91 	params->explicit_connect = false;
92 
93 	list_del_init(&params->action);
94 
95 	switch (params->auto_connect) {
96 	case HCI_AUTO_CONN_EXPLICIT:
97 		hci_conn_params_del(hdev, bdaddr, bdaddr_type);
98 		/* return instead of break to avoid duplicate scan update */
99 		return;
100 	case HCI_AUTO_CONN_DIRECT:
101 	case HCI_AUTO_CONN_ALWAYS:
102 		list_add(&params->action, &hdev->pend_le_conns);
103 		break;
104 	case HCI_AUTO_CONN_REPORT:
105 		list_add(&params->action, &hdev->pend_le_reports);
106 		break;
107 	default:
108 		break;
109 	}
110 
111 	hci_update_background_scan(hdev);
112 }
113 
114 static void hci_conn_cleanup(struct hci_conn *conn)
115 {
116 	struct hci_dev *hdev = conn->hdev;
117 
118 	if (test_bit(HCI_CONN_PARAM_REMOVAL_PEND, &conn->flags))
119 		hci_conn_params_del(conn->hdev, &conn->dst, conn->dst_type);
120 
121 	hci_chan_list_flush(conn);
122 
123 	hci_conn_hash_del(hdev, conn);
124 
125 	if (conn->type == SCO_LINK || conn->type == ESCO_LINK) {
126 		switch (conn->setting & SCO_AIRMODE_MASK) {
127 		case SCO_AIRMODE_CVSD:
128 		case SCO_AIRMODE_TRANSP:
129 			if (hdev->notify)
130 				hdev->notify(hdev, HCI_NOTIFY_DISABLE_SCO);
131 			break;
132 		}
133 	} else {
134 		if (hdev->notify)
135 			hdev->notify(hdev, HCI_NOTIFY_CONN_DEL);
136 	}
137 
138 	hci_conn_del_sysfs(conn);
139 
140 	debugfs_remove_recursive(conn->debugfs);
141 
142 	hci_dev_put(hdev);
143 
144 	hci_conn_put(conn);
145 }
146 
147 static void le_scan_cleanup(struct work_struct *work)
148 {
149 	struct hci_conn *conn = container_of(work, struct hci_conn,
150 					     le_scan_cleanup);
151 	struct hci_dev *hdev = conn->hdev;
152 	struct hci_conn *c = NULL;
153 
154 	BT_DBG("%s hcon %p", hdev->name, conn);
155 
156 	hci_dev_lock(hdev);
157 
158 	/* Check that the hci_conn is still around */
159 	rcu_read_lock();
160 	list_for_each_entry_rcu(c, &hdev->conn_hash.list, list) {
161 		if (c == conn)
162 			break;
163 	}
164 	rcu_read_unlock();
165 
166 	if (c == conn) {
167 		hci_connect_le_scan_cleanup(conn);
168 		hci_conn_cleanup(conn);
169 	}
170 
171 	hci_dev_unlock(hdev);
172 	hci_dev_put(hdev);
173 	hci_conn_put(conn);
174 }
175 
176 static void hci_connect_le_scan_remove(struct hci_conn *conn)
177 {
178 	BT_DBG("%s hcon %p", conn->hdev->name, conn);
179 
180 	/* We can't call hci_conn_del/hci_conn_cleanup here since that
181 	 * could deadlock with another hci_conn_del() call that's holding
182 	 * hci_dev_lock and doing cancel_delayed_work_sync(&conn->disc_work).
183 	 * Instead, grab temporary extra references to the hci_dev and
184 	 * hci_conn and perform the necessary cleanup in a separate work
185 	 * callback.
186 	 */
187 
188 	hci_dev_hold(conn->hdev);
189 	hci_conn_get(conn);
190 
191 	/* Even though we hold a reference to the hdev, many other
192 	 * things might get cleaned up meanwhile, including the hdev's
193 	 * own workqueue, so we can't use that for scheduling.
194 	 */
195 	schedule_work(&conn->le_scan_cleanup);
196 }
197 
198 static void hci_acl_create_connection(struct hci_conn *conn)
199 {
200 	struct hci_dev *hdev = conn->hdev;
201 	struct inquiry_entry *ie;
202 	struct hci_cp_create_conn cp;
203 
204 	BT_DBG("hcon %p", conn);
205 
206 	conn->state = BT_CONNECT;
207 	conn->out = true;
208 	conn->role = HCI_ROLE_MASTER;
209 
210 	conn->attempt++;
211 
212 	conn->link_policy = hdev->link_policy;
213 
214 	memset(&cp, 0, sizeof(cp));
215 	bacpy(&cp.bdaddr, &conn->dst);
216 	cp.pscan_rep_mode = 0x02;
217 
218 	ie = hci_inquiry_cache_lookup(hdev, &conn->dst);
219 	if (ie) {
220 		if (inquiry_entry_age(ie) <= INQUIRY_ENTRY_AGE_MAX) {
221 			cp.pscan_rep_mode = ie->data.pscan_rep_mode;
222 			cp.pscan_mode     = ie->data.pscan_mode;
223 			cp.clock_offset   = ie->data.clock_offset |
224 					    cpu_to_le16(0x8000);
225 		}
226 
227 		memcpy(conn->dev_class, ie->data.dev_class, 3);
228 	}
229 
230 	cp.pkt_type = cpu_to_le16(conn->pkt_type);
231 	if (lmp_rswitch_capable(hdev) && !(hdev->link_mode & HCI_LM_MASTER))
232 		cp.role_switch = 0x01;
233 	else
234 		cp.role_switch = 0x00;
235 
236 	hci_send_cmd(hdev, HCI_OP_CREATE_CONN, sizeof(cp), &cp);
237 }
238 
239 int hci_disconnect(struct hci_conn *conn, __u8 reason)
240 {
241 	BT_DBG("hcon %p", conn);
242 
243 	/* When we are master of an established connection and it enters
244 	 * the disconnect timeout, then go ahead and try to read the
245 	 * current clock offset.  Processing of the result is done
246 	 * within the event handling and hci_clock_offset_evt function.
247 	 */
248 	if (conn->type == ACL_LINK && conn->role == HCI_ROLE_MASTER &&
249 	    (conn->state == BT_CONNECTED || conn->state == BT_CONFIG)) {
250 		struct hci_dev *hdev = conn->hdev;
251 		struct hci_cp_read_clock_offset clkoff_cp;
252 
253 		clkoff_cp.handle = cpu_to_le16(conn->handle);
254 		hci_send_cmd(hdev, HCI_OP_READ_CLOCK_OFFSET, sizeof(clkoff_cp),
255 			     &clkoff_cp);
256 	}
257 
258 	return hci_abort_conn(conn, reason);
259 }
260 
261 static void hci_add_sco(struct hci_conn *conn, __u16 handle)
262 {
263 	struct hci_dev *hdev = conn->hdev;
264 	struct hci_cp_add_sco cp;
265 
266 	BT_DBG("hcon %p", conn);
267 
268 	conn->state = BT_CONNECT;
269 	conn->out = true;
270 
271 	conn->attempt++;
272 
273 	cp.handle   = cpu_to_le16(handle);
274 	cp.pkt_type = cpu_to_le16(conn->pkt_type);
275 
276 	hci_send_cmd(hdev, HCI_OP_ADD_SCO, sizeof(cp), &cp);
277 }
278 
279 bool hci_setup_sync(struct hci_conn *conn, __u16 handle)
280 {
281 	struct hci_dev *hdev = conn->hdev;
282 	struct hci_cp_setup_sync_conn cp;
283 	const struct sco_param *param;
284 
285 	BT_DBG("hcon %p", conn);
286 
287 	conn->state = BT_CONNECT;
288 	conn->out = true;
289 
290 	conn->attempt++;
291 
292 	cp.handle   = cpu_to_le16(handle);
293 
294 	cp.tx_bandwidth   = cpu_to_le32(0x00001f40);
295 	cp.rx_bandwidth   = cpu_to_le32(0x00001f40);
296 	cp.voice_setting  = cpu_to_le16(conn->setting);
297 
298 	switch (conn->setting & SCO_AIRMODE_MASK) {
299 	case SCO_AIRMODE_TRANSP:
300 		if (conn->attempt > ARRAY_SIZE(esco_param_msbc))
301 			return false;
302 		param = &esco_param_msbc[conn->attempt - 1];
303 		break;
304 	case SCO_AIRMODE_CVSD:
305 		if (lmp_esco_capable(conn->link)) {
306 			if (conn->attempt > ARRAY_SIZE(esco_param_cvsd))
307 				return false;
308 			param = &esco_param_cvsd[conn->attempt - 1];
309 		} else {
310 			if (conn->attempt > ARRAY_SIZE(sco_param_cvsd))
311 				return false;
312 			param = &sco_param_cvsd[conn->attempt - 1];
313 		}
314 		break;
315 	default:
316 		return false;
317 	}
318 
319 	cp.retrans_effort = param->retrans_effort;
320 	cp.pkt_type = __cpu_to_le16(param->pkt_type);
321 	cp.max_latency = __cpu_to_le16(param->max_latency);
322 
323 	if (hci_send_cmd(hdev, HCI_OP_SETUP_SYNC_CONN, sizeof(cp), &cp) < 0)
324 		return false;
325 
326 	return true;
327 }
328 
329 u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency,
330 		      u16 to_multiplier)
331 {
332 	struct hci_dev *hdev = conn->hdev;
333 	struct hci_conn_params *params;
334 	struct hci_cp_le_conn_update cp;
335 
336 	hci_dev_lock(hdev);
337 
338 	params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
339 	if (params) {
340 		params->conn_min_interval = min;
341 		params->conn_max_interval = max;
342 		params->conn_latency = latency;
343 		params->supervision_timeout = to_multiplier;
344 	}
345 
346 	hci_dev_unlock(hdev);
347 
348 	memset(&cp, 0, sizeof(cp));
349 	cp.handle		= cpu_to_le16(conn->handle);
350 	cp.conn_interval_min	= cpu_to_le16(min);
351 	cp.conn_interval_max	= cpu_to_le16(max);
352 	cp.conn_latency		= cpu_to_le16(latency);
353 	cp.supervision_timeout	= cpu_to_le16(to_multiplier);
354 	cp.min_ce_len		= cpu_to_le16(0x0000);
355 	cp.max_ce_len		= cpu_to_le16(0x0000);
356 
357 	hci_send_cmd(hdev, HCI_OP_LE_CONN_UPDATE, sizeof(cp), &cp);
358 
359 	if (params)
360 		return 0x01;
361 
362 	return 0x00;
363 }
364 
365 void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand,
366 		      __u8 ltk[16], __u8 key_size)
367 {
368 	struct hci_dev *hdev = conn->hdev;
369 	struct hci_cp_le_start_enc cp;
370 
371 	BT_DBG("hcon %p", conn);
372 
373 	memset(&cp, 0, sizeof(cp));
374 
375 	cp.handle = cpu_to_le16(conn->handle);
376 	cp.rand = rand;
377 	cp.ediv = ediv;
378 	memcpy(cp.ltk, ltk, key_size);
379 
380 	hci_send_cmd(hdev, HCI_OP_LE_START_ENC, sizeof(cp), &cp);
381 }
382 
383 /* Device _must_ be locked */
384 void hci_sco_setup(struct hci_conn *conn, __u8 status)
385 {
386 	struct hci_conn *sco = conn->link;
387 
388 	if (!sco)
389 		return;
390 
391 	BT_DBG("hcon %p", conn);
392 
393 	if (!status) {
394 		if (lmp_esco_capable(conn->hdev))
395 			hci_setup_sync(sco, conn->handle);
396 		else
397 			hci_add_sco(sco, conn->handle);
398 	} else {
399 		hci_connect_cfm(sco, status);
400 		hci_conn_del(sco);
401 	}
402 }
403 
404 static void hci_conn_timeout(struct work_struct *work)
405 {
406 	struct hci_conn *conn = container_of(work, struct hci_conn,
407 					     disc_work.work);
408 	int refcnt = atomic_read(&conn->refcnt);
409 
410 	BT_DBG("hcon %p state %s", conn, state_to_string(conn->state));
411 
412 	WARN_ON(refcnt < 0);
413 
414 	/* FIXME: It was observed that in pairing failed scenario, refcnt
415 	 * drops below 0. Probably this is because l2cap_conn_del calls
416 	 * l2cap_chan_del for each channel, and inside l2cap_chan_del conn is
417 	 * dropped. After that loop hci_chan_del is called which also drops
418 	 * conn. For now make sure that ACL is alive if refcnt is higher then 0,
419 	 * otherwise drop it.
420 	 */
421 	if (refcnt > 0)
422 		return;
423 
424 	/* LE connections in scanning state need special handling */
425 	if (conn->state == BT_CONNECT && conn->type == LE_LINK &&
426 	    test_bit(HCI_CONN_SCANNING, &conn->flags)) {
427 		hci_connect_le_scan_remove(conn);
428 		return;
429 	}
430 
431 	hci_abort_conn(conn, hci_proto_disconn_ind(conn));
432 }
433 
434 /* Enter sniff mode */
435 static void hci_conn_idle(struct work_struct *work)
436 {
437 	struct hci_conn *conn = container_of(work, struct hci_conn,
438 					     idle_work.work);
439 	struct hci_dev *hdev = conn->hdev;
440 
441 	BT_DBG("hcon %p mode %d", conn, conn->mode);
442 
443 	if (!lmp_sniff_capable(hdev) || !lmp_sniff_capable(conn))
444 		return;
445 
446 	if (conn->mode != HCI_CM_ACTIVE || !(conn->link_policy & HCI_LP_SNIFF))
447 		return;
448 
449 	if (lmp_sniffsubr_capable(hdev) && lmp_sniffsubr_capable(conn)) {
450 		struct hci_cp_sniff_subrate cp;
451 		cp.handle             = cpu_to_le16(conn->handle);
452 		cp.max_latency        = cpu_to_le16(0);
453 		cp.min_remote_timeout = cpu_to_le16(0);
454 		cp.min_local_timeout  = cpu_to_le16(0);
455 		hci_send_cmd(hdev, HCI_OP_SNIFF_SUBRATE, sizeof(cp), &cp);
456 	}
457 
458 	if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) {
459 		struct hci_cp_sniff_mode cp;
460 		cp.handle       = cpu_to_le16(conn->handle);
461 		cp.max_interval = cpu_to_le16(hdev->sniff_max_interval);
462 		cp.min_interval = cpu_to_le16(hdev->sniff_min_interval);
463 		cp.attempt      = cpu_to_le16(4);
464 		cp.timeout      = cpu_to_le16(1);
465 		hci_send_cmd(hdev, HCI_OP_SNIFF_MODE, sizeof(cp), &cp);
466 	}
467 }
468 
469 static void hci_conn_auto_accept(struct work_struct *work)
470 {
471 	struct hci_conn *conn = container_of(work, struct hci_conn,
472 					     auto_accept_work.work);
473 
474 	hci_send_cmd(conn->hdev, HCI_OP_USER_CONFIRM_REPLY, sizeof(conn->dst),
475 		     &conn->dst);
476 }
477 
478 static void le_disable_advertising(struct hci_dev *hdev)
479 {
480 	if (ext_adv_capable(hdev)) {
481 		struct hci_cp_le_set_ext_adv_enable cp;
482 
483 		cp.enable = 0x00;
484 		cp.num_of_sets = 0x00;
485 
486 		hci_send_cmd(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, sizeof(cp),
487 			     &cp);
488 	} else {
489 		u8 enable = 0x00;
490 		hci_send_cmd(hdev, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable),
491 			     &enable);
492 	}
493 }
494 
495 static void le_conn_timeout(struct work_struct *work)
496 {
497 	struct hci_conn *conn = container_of(work, struct hci_conn,
498 					     le_conn_timeout.work);
499 	struct hci_dev *hdev = conn->hdev;
500 
501 	BT_DBG("");
502 
503 	/* We could end up here due to having done directed advertising,
504 	 * so clean up the state if necessary. This should however only
505 	 * happen with broken hardware or if low duty cycle was used
506 	 * (which doesn't have a timeout of its own).
507 	 */
508 	if (conn->role == HCI_ROLE_SLAVE) {
509 		/* Disable LE Advertising */
510 		le_disable_advertising(hdev);
511 		hci_le_conn_failed(conn, HCI_ERROR_ADVERTISING_TIMEOUT);
512 		return;
513 	}
514 
515 	hci_abort_conn(conn, HCI_ERROR_REMOTE_USER_TERM);
516 }
517 
518 struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst,
519 			      u8 role)
520 {
521 	struct hci_conn *conn;
522 
523 	BT_DBG("%s dst %pMR", hdev->name, dst);
524 
525 	conn = kzalloc(sizeof(*conn), GFP_KERNEL);
526 	if (!conn)
527 		return NULL;
528 
529 	bacpy(&conn->dst, dst);
530 	bacpy(&conn->src, &hdev->bdaddr);
531 	conn->hdev  = hdev;
532 	conn->type  = type;
533 	conn->role  = role;
534 	conn->mode  = HCI_CM_ACTIVE;
535 	conn->state = BT_OPEN;
536 	conn->auth_type = HCI_AT_GENERAL_BONDING;
537 	conn->io_capability = hdev->io_capability;
538 	conn->remote_auth = 0xff;
539 	conn->key_type = 0xff;
540 	conn->rssi = HCI_RSSI_INVALID;
541 	conn->tx_power = HCI_TX_POWER_INVALID;
542 	conn->max_tx_power = HCI_TX_POWER_INVALID;
543 
544 	set_bit(HCI_CONN_POWER_SAVE, &conn->flags);
545 	conn->disc_timeout = HCI_DISCONN_TIMEOUT;
546 
547 	/* Set Default Authenticated payload timeout to 30s */
548 	conn->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
549 
550 	if (conn->role == HCI_ROLE_MASTER)
551 		conn->out = true;
552 
553 	switch (type) {
554 	case ACL_LINK:
555 		conn->pkt_type = hdev->pkt_type & ACL_PTYPE_MASK;
556 		break;
557 	case LE_LINK:
558 		/* conn->src should reflect the local identity address */
559 		hci_copy_identity_address(hdev, &conn->src, &conn->src_type);
560 		break;
561 	case SCO_LINK:
562 		if (lmp_esco_capable(hdev))
563 			conn->pkt_type = (hdev->esco_type & SCO_ESCO_MASK) |
564 					(hdev->esco_type & EDR_ESCO_MASK);
565 		else
566 			conn->pkt_type = hdev->pkt_type & SCO_PTYPE_MASK;
567 		break;
568 	case ESCO_LINK:
569 		conn->pkt_type = hdev->esco_type & ~EDR_ESCO_MASK;
570 		break;
571 	}
572 
573 	skb_queue_head_init(&conn->data_q);
574 
575 	INIT_LIST_HEAD(&conn->chan_list);
576 
577 	INIT_DELAYED_WORK(&conn->disc_work, hci_conn_timeout);
578 	INIT_DELAYED_WORK(&conn->auto_accept_work, hci_conn_auto_accept);
579 	INIT_DELAYED_WORK(&conn->idle_work, hci_conn_idle);
580 	INIT_DELAYED_WORK(&conn->le_conn_timeout, le_conn_timeout);
581 	INIT_WORK(&conn->le_scan_cleanup, le_scan_cleanup);
582 
583 	atomic_set(&conn->refcnt, 0);
584 
585 	hci_dev_hold(hdev);
586 
587 	hci_conn_hash_add(hdev, conn);
588 
589 	/* The SCO and eSCO connections will only be notified when their
590 	 * setup has been completed. This is different to ACL links which
591 	 * can be notified right away.
592 	 */
593 	if (conn->type != SCO_LINK && conn->type != ESCO_LINK) {
594 		if (hdev->notify)
595 			hdev->notify(hdev, HCI_NOTIFY_CONN_ADD);
596 	}
597 
598 	hci_conn_init_sysfs(conn);
599 
600 	return conn;
601 }
602 
603 int hci_conn_del(struct hci_conn *conn)
604 {
605 	struct hci_dev *hdev = conn->hdev;
606 
607 	BT_DBG("%s hcon %p handle %d", hdev->name, conn, conn->handle);
608 
609 	cancel_delayed_work_sync(&conn->disc_work);
610 	cancel_delayed_work_sync(&conn->auto_accept_work);
611 	cancel_delayed_work_sync(&conn->idle_work);
612 
613 	if (conn->type == ACL_LINK) {
614 		struct hci_conn *sco = conn->link;
615 		if (sco)
616 			sco->link = NULL;
617 
618 		/* Unacked frames */
619 		hdev->acl_cnt += conn->sent;
620 	} else if (conn->type == LE_LINK) {
621 		cancel_delayed_work(&conn->le_conn_timeout);
622 
623 		if (hdev->le_pkts)
624 			hdev->le_cnt += conn->sent;
625 		else
626 			hdev->acl_cnt += conn->sent;
627 	} else {
628 		struct hci_conn *acl = conn->link;
629 		if (acl) {
630 			acl->link = NULL;
631 			hci_conn_drop(acl);
632 		}
633 	}
634 
635 	if (conn->amp_mgr)
636 		amp_mgr_put(conn->amp_mgr);
637 
638 	skb_queue_purge(&conn->data_q);
639 
640 	/* Remove the connection from the list and cleanup its remaining
641 	 * state. This is a separate function since for some cases like
642 	 * BT_CONNECT_SCAN we *only* want the cleanup part without the
643 	 * rest of hci_conn_del.
644 	 */
645 	hci_conn_cleanup(conn);
646 
647 	return 0;
648 }
649 
650 struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src, uint8_t src_type)
651 {
652 	int use_src = bacmp(src, BDADDR_ANY);
653 	struct hci_dev *hdev = NULL, *d;
654 
655 	BT_DBG("%pMR -> %pMR", src, dst);
656 
657 	read_lock(&hci_dev_list_lock);
658 
659 	list_for_each_entry(d, &hci_dev_list, list) {
660 		if (!test_bit(HCI_UP, &d->flags) ||
661 		    hci_dev_test_flag(d, HCI_USER_CHANNEL) ||
662 		    d->dev_type != HCI_PRIMARY)
663 			continue;
664 
665 		/* Simple routing:
666 		 *   No source address - find interface with bdaddr != dst
667 		 *   Source address    - find interface with bdaddr == src
668 		 */
669 
670 		if (use_src) {
671 			bdaddr_t id_addr;
672 			u8 id_addr_type;
673 
674 			if (src_type == BDADDR_BREDR) {
675 				if (!lmp_bredr_capable(d))
676 					continue;
677 				bacpy(&id_addr, &d->bdaddr);
678 				id_addr_type = BDADDR_BREDR;
679 			} else {
680 				if (!lmp_le_capable(d))
681 					continue;
682 
683 				hci_copy_identity_address(d, &id_addr,
684 							  &id_addr_type);
685 
686 				/* Convert from HCI to three-value type */
687 				if (id_addr_type == ADDR_LE_DEV_PUBLIC)
688 					id_addr_type = BDADDR_LE_PUBLIC;
689 				else
690 					id_addr_type = BDADDR_LE_RANDOM;
691 			}
692 
693 			if (!bacmp(&id_addr, src) && id_addr_type == src_type) {
694 				hdev = d; break;
695 			}
696 		} else {
697 			if (bacmp(&d->bdaddr, dst)) {
698 				hdev = d; break;
699 			}
700 		}
701 	}
702 
703 	if (hdev)
704 		hdev = hci_dev_hold(hdev);
705 
706 	read_unlock(&hci_dev_list_lock);
707 	return hdev;
708 }
709 EXPORT_SYMBOL(hci_get_route);
710 
711 /* This function requires the caller holds hdev->lock */
712 void hci_le_conn_failed(struct hci_conn *conn, u8 status)
713 {
714 	struct hci_dev *hdev = conn->hdev;
715 	struct hci_conn_params *params;
716 
717 	params = hci_pend_le_action_lookup(&hdev->pend_le_conns, &conn->dst,
718 					   conn->dst_type);
719 	if (params && params->conn) {
720 		hci_conn_drop(params->conn);
721 		hci_conn_put(params->conn);
722 		params->conn = NULL;
723 	}
724 
725 	conn->state = BT_CLOSED;
726 
727 	/* If the status indicates successful cancellation of
728 	 * the attempt (i.e. Unkown Connection Id) there's no point of
729 	 * notifying failure since we'll go back to keep trying to
730 	 * connect. The only exception is explicit connect requests
731 	 * where a timeout + cancel does indicate an actual failure.
732 	 */
733 	if (status != HCI_ERROR_UNKNOWN_CONN_ID ||
734 	    (params && params->explicit_connect))
735 		mgmt_connect_failed(hdev, &conn->dst, conn->type,
736 				    conn->dst_type, status);
737 
738 	hci_connect_cfm(conn, status);
739 
740 	hci_conn_del(conn);
741 
742 	/* Since we may have temporarily stopped the background scanning in
743 	 * favor of connection establishment, we should restart it.
744 	 */
745 	hci_update_background_scan(hdev);
746 
747 	/* Re-enable advertising in case this was a failed connection
748 	 * attempt as a peripheral.
749 	 */
750 	hci_req_reenable_advertising(hdev);
751 }
752 
753 static void create_le_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode)
754 {
755 	struct hci_conn *conn;
756 
757 	hci_dev_lock(hdev);
758 
759 	conn = hci_lookup_le_connect(hdev);
760 
761 	if (hdev->adv_instance_cnt)
762 		hci_req_resume_adv_instances(hdev);
763 
764 	if (!status) {
765 		hci_connect_le_scan_cleanup(conn);
766 		goto done;
767 	}
768 
769 	bt_dev_err(hdev, "request failed to create LE connection: "
770 		   "status 0x%2.2x", status);
771 
772 	if (!conn)
773 		goto done;
774 
775 	hci_le_conn_failed(conn, status);
776 
777 done:
778 	hci_dev_unlock(hdev);
779 }
780 
781 static bool conn_use_rpa(struct hci_conn *conn)
782 {
783 	struct hci_dev *hdev = conn->hdev;
784 
785 	return hci_dev_test_flag(hdev, HCI_PRIVACY);
786 }
787 
788 static void set_ext_conn_params(struct hci_conn *conn,
789 				struct hci_cp_le_ext_conn_param *p)
790 {
791 	struct hci_dev *hdev = conn->hdev;
792 
793 	memset(p, 0, sizeof(*p));
794 
795 	p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
796 	p->scan_window = cpu_to_le16(hdev->le_scan_window_connect);
797 	p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
798 	p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
799 	p->conn_latency = cpu_to_le16(conn->le_conn_latency);
800 	p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
801 	p->min_ce_len = cpu_to_le16(0x0000);
802 	p->max_ce_len = cpu_to_le16(0x0000);
803 }
804 
805 static void hci_req_add_le_create_conn(struct hci_request *req,
806 				       struct hci_conn *conn,
807 				       bdaddr_t *direct_rpa)
808 {
809 	struct hci_dev *hdev = conn->hdev;
810 	u8 own_addr_type;
811 
812 	/* If direct address was provided we use it instead of current
813 	 * address.
814 	 */
815 	if (direct_rpa) {
816 		if (bacmp(&req->hdev->random_addr, direct_rpa))
817 			hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6,
818 								direct_rpa);
819 
820 		/* direct address is always RPA */
821 		own_addr_type = ADDR_LE_DEV_RANDOM;
822 	} else {
823 		/* Update random address, but set require_privacy to false so
824 		 * that we never connect with an non-resolvable address.
825 		 */
826 		if (hci_update_random_address(req, false, conn_use_rpa(conn),
827 					      &own_addr_type))
828 			return;
829 	}
830 
831 	if (use_ext_conn(hdev)) {
832 		struct hci_cp_le_ext_create_conn *cp;
833 		struct hci_cp_le_ext_conn_param *p;
834 		u8 data[sizeof(*cp) + sizeof(*p) * 3];
835 		u32 plen;
836 
837 		cp = (void *) data;
838 		p = (void *) cp->data;
839 
840 		memset(cp, 0, sizeof(*cp));
841 
842 		bacpy(&cp->peer_addr, &conn->dst);
843 		cp->peer_addr_type = conn->dst_type;
844 		cp->own_addr_type = own_addr_type;
845 
846 		plen = sizeof(*cp);
847 
848 		if (scan_1m(hdev)) {
849 			cp->phys |= LE_SCAN_PHY_1M;
850 			set_ext_conn_params(conn, p);
851 
852 			p++;
853 			plen += sizeof(*p);
854 		}
855 
856 		if (scan_2m(hdev)) {
857 			cp->phys |= LE_SCAN_PHY_2M;
858 			set_ext_conn_params(conn, p);
859 
860 			p++;
861 			plen += sizeof(*p);
862 		}
863 
864 		if (scan_coded(hdev)) {
865 			cp->phys |= LE_SCAN_PHY_CODED;
866 			set_ext_conn_params(conn, p);
867 
868 			plen += sizeof(*p);
869 		}
870 
871 		hci_req_add(req, HCI_OP_LE_EXT_CREATE_CONN, plen, data);
872 
873 	} else {
874 		struct hci_cp_le_create_conn cp;
875 
876 		memset(&cp, 0, sizeof(cp));
877 
878 		cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
879 		cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect);
880 
881 		bacpy(&cp.peer_addr, &conn->dst);
882 		cp.peer_addr_type = conn->dst_type;
883 		cp.own_address_type = own_addr_type;
884 		cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
885 		cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
886 		cp.conn_latency = cpu_to_le16(conn->le_conn_latency);
887 		cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
888 		cp.min_ce_len = cpu_to_le16(0x0000);
889 		cp.max_ce_len = cpu_to_le16(0x0000);
890 
891 		hci_req_add(req, HCI_OP_LE_CREATE_CONN, sizeof(cp), &cp);
892 	}
893 
894 	conn->state = BT_CONNECT;
895 	clear_bit(HCI_CONN_SCANNING, &conn->flags);
896 }
897 
898 static void hci_req_directed_advertising(struct hci_request *req,
899 					 struct hci_conn *conn)
900 {
901 	struct hci_dev *hdev = req->hdev;
902 	u8 own_addr_type;
903 	u8 enable;
904 
905 	if (ext_adv_capable(hdev)) {
906 		struct hci_cp_le_set_ext_adv_params cp;
907 		bdaddr_t random_addr;
908 
909 		/* Set require_privacy to false so that the remote device has a
910 		 * chance of identifying us.
911 		 */
912 		if (hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL,
913 					   &own_addr_type, &random_addr) < 0)
914 			return;
915 
916 		memset(&cp, 0, sizeof(cp));
917 
918 		cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND);
919 		cp.own_addr_type = own_addr_type;
920 		cp.channel_map = hdev->le_adv_channel_map;
921 		cp.tx_power = HCI_TX_POWER_INVALID;
922 		cp.primary_phy = HCI_ADV_PHY_1M;
923 		cp.secondary_phy = HCI_ADV_PHY_1M;
924 		cp.handle = 0; /* Use instance 0 for directed adv */
925 		cp.own_addr_type = own_addr_type;
926 		cp.peer_addr_type = conn->dst_type;
927 		bacpy(&cp.peer_addr, &conn->dst);
928 
929 		/* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for
930 		 * advertising_event_property LE_LEGACY_ADV_DIRECT_IND
931 		 * does not supports advertising data when the advertising set already
932 		 * contains some, the controller shall return erroc code 'Invalid
933 		 * HCI Command Parameters(0x12).
934 		 * So it is required to remove adv set for handle 0x00. since we use
935 		 * instance 0 for directed adv.
936 		 */
937 		__hci_req_remove_ext_adv_instance(req, cp.handle);
938 
939 		hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_PARAMS, sizeof(cp), &cp);
940 
941 		if (own_addr_type == ADDR_LE_DEV_RANDOM &&
942 		    bacmp(&random_addr, BDADDR_ANY) &&
943 		    bacmp(&random_addr, &hdev->random_addr)) {
944 			struct hci_cp_le_set_adv_set_rand_addr cp;
945 
946 			memset(&cp, 0, sizeof(cp));
947 
948 			cp.handle = 0;
949 			bacpy(&cp.bdaddr, &random_addr);
950 
951 			hci_req_add(req,
952 				    HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
953 				    sizeof(cp), &cp);
954 		}
955 
956 		__hci_req_enable_ext_advertising(req, 0x00);
957 	} else {
958 		struct hci_cp_le_set_adv_param cp;
959 
960 		/* Clear the HCI_LE_ADV bit temporarily so that the
961 		 * hci_update_random_address knows that it's safe to go ahead
962 		 * and write a new random address. The flag will be set back on
963 		 * as soon as the SET_ADV_ENABLE HCI command completes.
964 		 */
965 		hci_dev_clear_flag(hdev, HCI_LE_ADV);
966 
967 		/* Set require_privacy to false so that the remote device has a
968 		 * chance of identifying us.
969 		 */
970 		if (hci_update_random_address(req, false, conn_use_rpa(conn),
971 					      &own_addr_type) < 0)
972 			return;
973 
974 		memset(&cp, 0, sizeof(cp));
975 
976 		/* Some controllers might reject command if intervals are not
977 		 * within range for undirected advertising.
978 		 * BCM20702A0 is known to be affected by this.
979 		 */
980 		cp.min_interval = cpu_to_le16(0x0020);
981 		cp.max_interval = cpu_to_le16(0x0020);
982 
983 		cp.type = LE_ADV_DIRECT_IND;
984 		cp.own_address_type = own_addr_type;
985 		cp.direct_addr_type = conn->dst_type;
986 		bacpy(&cp.direct_addr, &conn->dst);
987 		cp.channel_map = hdev->le_adv_channel_map;
988 
989 		hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp);
990 
991 		enable = 0x01;
992 		hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable),
993 			    &enable);
994 	}
995 
996 	conn->state = BT_CONNECT;
997 }
998 
999 struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst,
1000 				u8 dst_type, u8 sec_level, u16 conn_timeout,
1001 				u8 role, bdaddr_t *direct_rpa)
1002 {
1003 	struct hci_conn_params *params;
1004 	struct hci_conn *conn;
1005 	struct smp_irk *irk;
1006 	struct hci_request req;
1007 	int err;
1008 
1009 	/* This ensures that during disable le_scan address resolution
1010 	 * will not be disabled if it is followed by le_create_conn
1011 	 */
1012 	bool rpa_le_conn = true;
1013 
1014 	/* Let's make sure that le is enabled.*/
1015 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
1016 		if (lmp_le_capable(hdev))
1017 			return ERR_PTR(-ECONNREFUSED);
1018 
1019 		return ERR_PTR(-EOPNOTSUPP);
1020 	}
1021 
1022 	/* Since the controller supports only one LE connection attempt at a
1023 	 * time, we return -EBUSY if there is any connection attempt running.
1024 	 */
1025 	if (hci_lookup_le_connect(hdev))
1026 		return ERR_PTR(-EBUSY);
1027 
1028 	/* If there's already a connection object but it's not in
1029 	 * scanning state it means it must already be established, in
1030 	 * which case we can't do anything else except report a failure
1031 	 * to connect.
1032 	 */
1033 	conn = hci_conn_hash_lookup_le(hdev, dst, dst_type);
1034 	if (conn && !test_bit(HCI_CONN_SCANNING, &conn->flags)) {
1035 		return ERR_PTR(-EBUSY);
1036 	}
1037 
1038 	/* When given an identity address with existing identity
1039 	 * resolving key, the connection needs to be established
1040 	 * to a resolvable random address.
1041 	 *
1042 	 * Storing the resolvable random address is required here
1043 	 * to handle connection failures. The address will later
1044 	 * be resolved back into the original identity address
1045 	 * from the connect request.
1046 	 */
1047 	irk = hci_find_irk_by_addr(hdev, dst, dst_type);
1048 	if (irk && bacmp(&irk->rpa, BDADDR_ANY)) {
1049 		dst = &irk->rpa;
1050 		dst_type = ADDR_LE_DEV_RANDOM;
1051 	}
1052 
1053 	if (conn) {
1054 		bacpy(&conn->dst, dst);
1055 	} else {
1056 		conn = hci_conn_add(hdev, LE_LINK, dst, role);
1057 		if (!conn)
1058 			return ERR_PTR(-ENOMEM);
1059 		hci_conn_hold(conn);
1060 		conn->pending_sec_level = sec_level;
1061 	}
1062 
1063 	conn->dst_type = dst_type;
1064 	conn->sec_level = BT_SECURITY_LOW;
1065 	conn->conn_timeout = conn_timeout;
1066 
1067 	hci_req_init(&req, hdev);
1068 
1069 	/* Disable advertising if we're active. For master role
1070 	 * connections most controllers will refuse to connect if
1071 	 * advertising is enabled, and for slave role connections we
1072 	 * anyway have to disable it in order to start directed
1073 	 * advertising. Any registered advertisements will be
1074 	 * re-enabled after the connection attempt is finished.
1075 	 */
1076 	if (hci_dev_test_flag(hdev, HCI_LE_ADV))
1077 		__hci_req_pause_adv_instances(&req);
1078 
1079 	/* If requested to connect as slave use directed advertising */
1080 	if (conn->role == HCI_ROLE_SLAVE) {
1081 		/* If we're active scanning most controllers are unable
1082 		 * to initiate advertising. Simply reject the attempt.
1083 		 */
1084 		if (hci_dev_test_flag(hdev, HCI_LE_SCAN) &&
1085 		    hdev->le_scan_type == LE_SCAN_ACTIVE) {
1086 			hci_req_purge(&req);
1087 			hci_conn_del(conn);
1088 			return ERR_PTR(-EBUSY);
1089 		}
1090 
1091 		hci_req_directed_advertising(&req, conn);
1092 		goto create_conn;
1093 	}
1094 
1095 	params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
1096 	if (params) {
1097 		conn->le_conn_min_interval = params->conn_min_interval;
1098 		conn->le_conn_max_interval = params->conn_max_interval;
1099 		conn->le_conn_latency = params->conn_latency;
1100 		conn->le_supv_timeout = params->supervision_timeout;
1101 	} else {
1102 		conn->le_conn_min_interval = hdev->le_conn_min_interval;
1103 		conn->le_conn_max_interval = hdev->le_conn_max_interval;
1104 		conn->le_conn_latency = hdev->le_conn_latency;
1105 		conn->le_supv_timeout = hdev->le_supv_timeout;
1106 	}
1107 
1108 	/* If controller is scanning, we stop it since some controllers are
1109 	 * not able to scan and connect at the same time. Also set the
1110 	 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete
1111 	 * handler for scan disabling knows to set the correct discovery
1112 	 * state.
1113 	 */
1114 	if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
1115 		hci_req_add_le_scan_disable(&req, rpa_le_conn);
1116 		hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED);
1117 	}
1118 
1119 	hci_req_add_le_create_conn(&req, conn, direct_rpa);
1120 
1121 create_conn:
1122 	err = hci_req_run(&req, create_le_conn_complete);
1123 	if (err) {
1124 		hci_conn_del(conn);
1125 
1126 		if (hdev->adv_instance_cnt)
1127 			hci_req_resume_adv_instances(hdev);
1128 
1129 		return ERR_PTR(err);
1130 	}
1131 
1132 	return conn;
1133 }
1134 
1135 static bool is_connected(struct hci_dev *hdev, bdaddr_t *addr, u8 type)
1136 {
1137 	struct hci_conn *conn;
1138 
1139 	conn = hci_conn_hash_lookup_le(hdev, addr, type);
1140 	if (!conn)
1141 		return false;
1142 
1143 	if (conn->state != BT_CONNECTED)
1144 		return false;
1145 
1146 	return true;
1147 }
1148 
1149 /* This function requires the caller holds hdev->lock */
1150 static int hci_explicit_conn_params_set(struct hci_dev *hdev,
1151 					bdaddr_t *addr, u8 addr_type)
1152 {
1153 	struct hci_conn_params *params;
1154 
1155 	if (is_connected(hdev, addr, addr_type))
1156 		return -EISCONN;
1157 
1158 	params = hci_conn_params_lookup(hdev, addr, addr_type);
1159 	if (!params) {
1160 		params = hci_conn_params_add(hdev, addr, addr_type);
1161 		if (!params)
1162 			return -ENOMEM;
1163 
1164 		/* If we created new params, mark them to be deleted in
1165 		 * hci_connect_le_scan_cleanup. It's different case than
1166 		 * existing disabled params, those will stay after cleanup.
1167 		 */
1168 		params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
1169 	}
1170 
1171 	/* We're trying to connect, so make sure params are at pend_le_conns */
1172 	if (params->auto_connect == HCI_AUTO_CONN_DISABLED ||
1173 	    params->auto_connect == HCI_AUTO_CONN_REPORT ||
1174 	    params->auto_connect == HCI_AUTO_CONN_EXPLICIT) {
1175 		list_del_init(&params->action);
1176 		list_add(&params->action, &hdev->pend_le_conns);
1177 	}
1178 
1179 	params->explicit_connect = true;
1180 
1181 	BT_DBG("addr %pMR (type %u) auto_connect %u", addr, addr_type,
1182 	       params->auto_connect);
1183 
1184 	return 0;
1185 }
1186 
1187 /* This function requires the caller holds hdev->lock */
1188 struct hci_conn *hci_connect_le_scan(struct hci_dev *hdev, bdaddr_t *dst,
1189 				     u8 dst_type, u8 sec_level,
1190 				     u16 conn_timeout,
1191 				     enum conn_reasons conn_reason)
1192 {
1193 	struct hci_conn *conn;
1194 
1195 	/* Let's make sure that le is enabled.*/
1196 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
1197 		if (lmp_le_capable(hdev))
1198 			return ERR_PTR(-ECONNREFUSED);
1199 
1200 		return ERR_PTR(-EOPNOTSUPP);
1201 	}
1202 
1203 	/* Some devices send ATT messages as soon as the physical link is
1204 	 * established. To be able to handle these ATT messages, the user-
1205 	 * space first establishes the connection and then starts the pairing
1206 	 * process.
1207 	 *
1208 	 * So if a hci_conn object already exists for the following connection
1209 	 * attempt, we simply update pending_sec_level and auth_type fields
1210 	 * and return the object found.
1211 	 */
1212 	conn = hci_conn_hash_lookup_le(hdev, dst, dst_type);
1213 	if (conn) {
1214 		if (conn->pending_sec_level < sec_level)
1215 			conn->pending_sec_level = sec_level;
1216 		goto done;
1217 	}
1218 
1219 	BT_DBG("requesting refresh of dst_addr");
1220 
1221 	conn = hci_conn_add(hdev, LE_LINK, dst, HCI_ROLE_MASTER);
1222 	if (!conn)
1223 		return ERR_PTR(-ENOMEM);
1224 
1225 	if (hci_explicit_conn_params_set(hdev, dst, dst_type) < 0) {
1226 		hci_conn_del(conn);
1227 		return ERR_PTR(-EBUSY);
1228 	}
1229 
1230 	conn->state = BT_CONNECT;
1231 	set_bit(HCI_CONN_SCANNING, &conn->flags);
1232 	conn->dst_type = dst_type;
1233 	conn->sec_level = BT_SECURITY_LOW;
1234 	conn->pending_sec_level = sec_level;
1235 	conn->conn_timeout = conn_timeout;
1236 	conn->conn_reason = conn_reason;
1237 
1238 	hci_update_background_scan(hdev);
1239 
1240 done:
1241 	hci_conn_hold(conn);
1242 	return conn;
1243 }
1244 
1245 struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst,
1246 				 u8 sec_level, u8 auth_type,
1247 				 enum conn_reasons conn_reason)
1248 {
1249 	struct hci_conn *acl;
1250 
1251 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1252 		if (lmp_bredr_capable(hdev))
1253 			return ERR_PTR(-ECONNREFUSED);
1254 
1255 		return ERR_PTR(-EOPNOTSUPP);
1256 	}
1257 
1258 	acl = hci_conn_hash_lookup_ba(hdev, ACL_LINK, dst);
1259 	if (!acl) {
1260 		acl = hci_conn_add(hdev, ACL_LINK, dst, HCI_ROLE_MASTER);
1261 		if (!acl)
1262 			return ERR_PTR(-ENOMEM);
1263 	}
1264 
1265 	hci_conn_hold(acl);
1266 
1267 	acl->conn_reason = conn_reason;
1268 	if (acl->state == BT_OPEN || acl->state == BT_CLOSED) {
1269 		acl->sec_level = BT_SECURITY_LOW;
1270 		acl->pending_sec_level = sec_level;
1271 		acl->auth_type = auth_type;
1272 		hci_acl_create_connection(acl);
1273 	}
1274 
1275 	return acl;
1276 }
1277 
1278 struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst,
1279 				 __u16 setting)
1280 {
1281 	struct hci_conn *acl;
1282 	struct hci_conn *sco;
1283 
1284 	acl = hci_connect_acl(hdev, dst, BT_SECURITY_LOW, HCI_AT_NO_BONDING,
1285 			      CONN_REASON_SCO_CONNECT);
1286 	if (IS_ERR(acl))
1287 		return acl;
1288 
1289 	sco = hci_conn_hash_lookup_ba(hdev, type, dst);
1290 	if (!sco) {
1291 		sco = hci_conn_add(hdev, type, dst, HCI_ROLE_MASTER);
1292 		if (!sco) {
1293 			hci_conn_drop(acl);
1294 			return ERR_PTR(-ENOMEM);
1295 		}
1296 	}
1297 
1298 	acl->link = sco;
1299 	sco->link = acl;
1300 
1301 	hci_conn_hold(sco);
1302 
1303 	sco->setting = setting;
1304 
1305 	if (acl->state == BT_CONNECTED &&
1306 	    (sco->state == BT_OPEN || sco->state == BT_CLOSED)) {
1307 		set_bit(HCI_CONN_POWER_SAVE, &acl->flags);
1308 		hci_conn_enter_active_mode(acl, BT_POWER_FORCE_ACTIVE_ON);
1309 
1310 		if (test_bit(HCI_CONN_MODE_CHANGE_PEND, &acl->flags)) {
1311 			/* defer SCO setup until mode change completed */
1312 			set_bit(HCI_CONN_SCO_SETUP_PEND, &acl->flags);
1313 			return sco;
1314 		}
1315 
1316 		hci_sco_setup(acl, 0x00);
1317 	}
1318 
1319 	return sco;
1320 }
1321 
1322 /* Check link security requirement */
1323 int hci_conn_check_link_mode(struct hci_conn *conn)
1324 {
1325 	BT_DBG("hcon %p", conn);
1326 
1327 	/* In Secure Connections Only mode, it is required that Secure
1328 	 * Connections is used and the link is encrypted with AES-CCM
1329 	 * using a P-256 authenticated combination key.
1330 	 */
1331 	if (hci_dev_test_flag(conn->hdev, HCI_SC_ONLY)) {
1332 		if (!hci_conn_sc_enabled(conn) ||
1333 		    !test_bit(HCI_CONN_AES_CCM, &conn->flags) ||
1334 		    conn->key_type != HCI_LK_AUTH_COMBINATION_P256)
1335 			return 0;
1336 	}
1337 
1338 	 /* AES encryption is required for Level 4:
1339 	  *
1340 	  * BLUETOOTH CORE SPECIFICATION Version 5.2 | Vol 3, Part C
1341 	  * page 1319:
1342 	  *
1343 	  * 128-bit equivalent strength for link and encryption keys
1344 	  * required using FIPS approved algorithms (E0 not allowed,
1345 	  * SAFER+ not allowed, and P-192 not allowed; encryption key
1346 	  * not shortened)
1347 	  */
1348 	if (conn->sec_level == BT_SECURITY_FIPS &&
1349 	    !test_bit(HCI_CONN_AES_CCM, &conn->flags)) {
1350 		bt_dev_err(conn->hdev,
1351 			   "Invalid security: Missing AES-CCM usage");
1352 		return 0;
1353 	}
1354 
1355 	if (hci_conn_ssp_enabled(conn) &&
1356 	    !test_bit(HCI_CONN_ENCRYPT, &conn->flags))
1357 		return 0;
1358 
1359 	return 1;
1360 }
1361 
1362 /* Authenticate remote device */
1363 static int hci_conn_auth(struct hci_conn *conn, __u8 sec_level, __u8 auth_type)
1364 {
1365 	BT_DBG("hcon %p", conn);
1366 
1367 	if (conn->pending_sec_level > sec_level)
1368 		sec_level = conn->pending_sec_level;
1369 
1370 	if (sec_level > conn->sec_level)
1371 		conn->pending_sec_level = sec_level;
1372 	else if (test_bit(HCI_CONN_AUTH, &conn->flags))
1373 		return 1;
1374 
1375 	/* Make sure we preserve an existing MITM requirement*/
1376 	auth_type |= (conn->auth_type & 0x01);
1377 
1378 	conn->auth_type = auth_type;
1379 
1380 	if (!test_and_set_bit(HCI_CONN_AUTH_PEND, &conn->flags)) {
1381 		struct hci_cp_auth_requested cp;
1382 
1383 		cp.handle = cpu_to_le16(conn->handle);
1384 		hci_send_cmd(conn->hdev, HCI_OP_AUTH_REQUESTED,
1385 			     sizeof(cp), &cp);
1386 
1387 		/* If we're already encrypted set the REAUTH_PEND flag,
1388 		 * otherwise set the ENCRYPT_PEND.
1389 		 */
1390 		if (test_bit(HCI_CONN_ENCRYPT, &conn->flags))
1391 			set_bit(HCI_CONN_REAUTH_PEND, &conn->flags);
1392 		else
1393 			set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags);
1394 	}
1395 
1396 	return 0;
1397 }
1398 
1399 /* Encrypt the link */
1400 static void hci_conn_encrypt(struct hci_conn *conn)
1401 {
1402 	BT_DBG("hcon %p", conn);
1403 
1404 	if (!test_and_set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) {
1405 		struct hci_cp_set_conn_encrypt cp;
1406 		cp.handle  = cpu_to_le16(conn->handle);
1407 		cp.encrypt = 0x01;
1408 		hci_send_cmd(conn->hdev, HCI_OP_SET_CONN_ENCRYPT, sizeof(cp),
1409 			     &cp);
1410 	}
1411 }
1412 
1413 /* Enable security */
1414 int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type,
1415 		      bool initiator)
1416 {
1417 	BT_DBG("hcon %p", conn);
1418 
1419 	if (conn->type == LE_LINK)
1420 		return smp_conn_security(conn, sec_level);
1421 
1422 	/* For sdp we don't need the link key. */
1423 	if (sec_level == BT_SECURITY_SDP)
1424 		return 1;
1425 
1426 	/* For non 2.1 devices and low security level we don't need the link
1427 	   key. */
1428 	if (sec_level == BT_SECURITY_LOW && !hci_conn_ssp_enabled(conn))
1429 		return 1;
1430 
1431 	/* For other security levels we need the link key. */
1432 	if (!test_bit(HCI_CONN_AUTH, &conn->flags))
1433 		goto auth;
1434 
1435 	/* An authenticated FIPS approved combination key has sufficient
1436 	 * security for security level 4. */
1437 	if (conn->key_type == HCI_LK_AUTH_COMBINATION_P256 &&
1438 	    sec_level == BT_SECURITY_FIPS)
1439 		goto encrypt;
1440 
1441 	/* An authenticated combination key has sufficient security for
1442 	   security level 3. */
1443 	if ((conn->key_type == HCI_LK_AUTH_COMBINATION_P192 ||
1444 	     conn->key_type == HCI_LK_AUTH_COMBINATION_P256) &&
1445 	    sec_level == BT_SECURITY_HIGH)
1446 		goto encrypt;
1447 
1448 	/* An unauthenticated combination key has sufficient security for
1449 	   security level 1 and 2. */
1450 	if ((conn->key_type == HCI_LK_UNAUTH_COMBINATION_P192 ||
1451 	     conn->key_type == HCI_LK_UNAUTH_COMBINATION_P256) &&
1452 	    (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW))
1453 		goto encrypt;
1454 
1455 	/* A combination key has always sufficient security for the security
1456 	   levels 1 or 2. High security level requires the combination key
1457 	   is generated using maximum PIN code length (16).
1458 	   For pre 2.1 units. */
1459 	if (conn->key_type == HCI_LK_COMBINATION &&
1460 	    (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW ||
1461 	     conn->pin_length == 16))
1462 		goto encrypt;
1463 
1464 auth:
1465 	if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags))
1466 		return 0;
1467 
1468 	if (initiator)
1469 		set_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags);
1470 
1471 	if (!hci_conn_auth(conn, sec_level, auth_type))
1472 		return 0;
1473 
1474 encrypt:
1475 	if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) {
1476 		/* Ensure that the encryption key size has been read,
1477 		 * otherwise stall the upper layer responses.
1478 		 */
1479 		if (!conn->enc_key_size)
1480 			return 0;
1481 
1482 		/* Nothing else needed, all requirements are met */
1483 		return 1;
1484 	}
1485 
1486 	hci_conn_encrypt(conn);
1487 	return 0;
1488 }
1489 EXPORT_SYMBOL(hci_conn_security);
1490 
1491 /* Check secure link requirement */
1492 int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level)
1493 {
1494 	BT_DBG("hcon %p", conn);
1495 
1496 	/* Accept if non-secure or higher security level is required */
1497 	if (sec_level != BT_SECURITY_HIGH && sec_level != BT_SECURITY_FIPS)
1498 		return 1;
1499 
1500 	/* Accept if secure or higher security level is already present */
1501 	if (conn->sec_level == BT_SECURITY_HIGH ||
1502 	    conn->sec_level == BT_SECURITY_FIPS)
1503 		return 1;
1504 
1505 	/* Reject not secure link */
1506 	return 0;
1507 }
1508 EXPORT_SYMBOL(hci_conn_check_secure);
1509 
1510 /* Switch role */
1511 int hci_conn_switch_role(struct hci_conn *conn, __u8 role)
1512 {
1513 	BT_DBG("hcon %p", conn);
1514 
1515 	if (role == conn->role)
1516 		return 1;
1517 
1518 	if (!test_and_set_bit(HCI_CONN_RSWITCH_PEND, &conn->flags)) {
1519 		struct hci_cp_switch_role cp;
1520 		bacpy(&cp.bdaddr, &conn->dst);
1521 		cp.role = role;
1522 		hci_send_cmd(conn->hdev, HCI_OP_SWITCH_ROLE, sizeof(cp), &cp);
1523 	}
1524 
1525 	return 0;
1526 }
1527 EXPORT_SYMBOL(hci_conn_switch_role);
1528 
1529 /* Enter active mode */
1530 void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active)
1531 {
1532 	struct hci_dev *hdev = conn->hdev;
1533 
1534 	BT_DBG("hcon %p mode %d", conn, conn->mode);
1535 
1536 	if (conn->mode != HCI_CM_SNIFF)
1537 		goto timer;
1538 
1539 	if (!test_bit(HCI_CONN_POWER_SAVE, &conn->flags) && !force_active)
1540 		goto timer;
1541 
1542 	if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) {
1543 		struct hci_cp_exit_sniff_mode cp;
1544 		cp.handle = cpu_to_le16(conn->handle);
1545 		hci_send_cmd(hdev, HCI_OP_EXIT_SNIFF_MODE, sizeof(cp), &cp);
1546 	}
1547 
1548 timer:
1549 	if (hdev->idle_timeout > 0)
1550 		queue_delayed_work(hdev->workqueue, &conn->idle_work,
1551 				   msecs_to_jiffies(hdev->idle_timeout));
1552 }
1553 
1554 /* Drop all connection on the device */
1555 void hci_conn_hash_flush(struct hci_dev *hdev)
1556 {
1557 	struct hci_conn_hash *h = &hdev->conn_hash;
1558 	struct hci_conn *c, *n;
1559 
1560 	BT_DBG("hdev %s", hdev->name);
1561 
1562 	list_for_each_entry_safe(c, n, &h->list, list) {
1563 		c->state = BT_CLOSED;
1564 
1565 		hci_disconn_cfm(c, HCI_ERROR_LOCAL_HOST_TERM);
1566 		hci_conn_del(c);
1567 	}
1568 }
1569 
1570 /* Check pending connect attempts */
1571 void hci_conn_check_pending(struct hci_dev *hdev)
1572 {
1573 	struct hci_conn *conn;
1574 
1575 	BT_DBG("hdev %s", hdev->name);
1576 
1577 	hci_dev_lock(hdev);
1578 
1579 	conn = hci_conn_hash_lookup_state(hdev, ACL_LINK, BT_CONNECT2);
1580 	if (conn)
1581 		hci_acl_create_connection(conn);
1582 
1583 	hci_dev_unlock(hdev);
1584 }
1585 
1586 static u32 get_link_mode(struct hci_conn *conn)
1587 {
1588 	u32 link_mode = 0;
1589 
1590 	if (conn->role == HCI_ROLE_MASTER)
1591 		link_mode |= HCI_LM_MASTER;
1592 
1593 	if (test_bit(HCI_CONN_ENCRYPT, &conn->flags))
1594 		link_mode |= HCI_LM_ENCRYPT;
1595 
1596 	if (test_bit(HCI_CONN_AUTH, &conn->flags))
1597 		link_mode |= HCI_LM_AUTH;
1598 
1599 	if (test_bit(HCI_CONN_SECURE, &conn->flags))
1600 		link_mode |= HCI_LM_SECURE;
1601 
1602 	if (test_bit(HCI_CONN_FIPS, &conn->flags))
1603 		link_mode |= HCI_LM_FIPS;
1604 
1605 	return link_mode;
1606 }
1607 
1608 int hci_get_conn_list(void __user *arg)
1609 {
1610 	struct hci_conn *c;
1611 	struct hci_conn_list_req req, *cl;
1612 	struct hci_conn_info *ci;
1613 	struct hci_dev *hdev;
1614 	int n = 0, size, err;
1615 
1616 	if (copy_from_user(&req, arg, sizeof(req)))
1617 		return -EFAULT;
1618 
1619 	if (!req.conn_num || req.conn_num > (PAGE_SIZE * 2) / sizeof(*ci))
1620 		return -EINVAL;
1621 
1622 	size = sizeof(req) + req.conn_num * sizeof(*ci);
1623 
1624 	cl = kmalloc(size, GFP_KERNEL);
1625 	if (!cl)
1626 		return -ENOMEM;
1627 
1628 	hdev = hci_dev_get(req.dev_id);
1629 	if (!hdev) {
1630 		kfree(cl);
1631 		return -ENODEV;
1632 	}
1633 
1634 	ci = cl->conn_info;
1635 
1636 	hci_dev_lock(hdev);
1637 	list_for_each_entry(c, &hdev->conn_hash.list, list) {
1638 		bacpy(&(ci + n)->bdaddr, &c->dst);
1639 		(ci + n)->handle = c->handle;
1640 		(ci + n)->type  = c->type;
1641 		(ci + n)->out   = c->out;
1642 		(ci + n)->state = c->state;
1643 		(ci + n)->link_mode = get_link_mode(c);
1644 		if (++n >= req.conn_num)
1645 			break;
1646 	}
1647 	hci_dev_unlock(hdev);
1648 
1649 	cl->dev_id = hdev->id;
1650 	cl->conn_num = n;
1651 	size = sizeof(req) + n * sizeof(*ci);
1652 
1653 	hci_dev_put(hdev);
1654 
1655 	err = copy_to_user(arg, cl, size);
1656 	kfree(cl);
1657 
1658 	return err ? -EFAULT : 0;
1659 }
1660 
1661 int hci_get_conn_info(struct hci_dev *hdev, void __user *arg)
1662 {
1663 	struct hci_conn_info_req req;
1664 	struct hci_conn_info ci;
1665 	struct hci_conn *conn;
1666 	char __user *ptr = arg + sizeof(req);
1667 
1668 	if (copy_from_user(&req, arg, sizeof(req)))
1669 		return -EFAULT;
1670 
1671 	hci_dev_lock(hdev);
1672 	conn = hci_conn_hash_lookup_ba(hdev, req.type, &req.bdaddr);
1673 	if (conn) {
1674 		bacpy(&ci.bdaddr, &conn->dst);
1675 		ci.handle = conn->handle;
1676 		ci.type  = conn->type;
1677 		ci.out   = conn->out;
1678 		ci.state = conn->state;
1679 		ci.link_mode = get_link_mode(conn);
1680 	}
1681 	hci_dev_unlock(hdev);
1682 
1683 	if (!conn)
1684 		return -ENOENT;
1685 
1686 	return copy_to_user(ptr, &ci, sizeof(ci)) ? -EFAULT : 0;
1687 }
1688 
1689 int hci_get_auth_info(struct hci_dev *hdev, void __user *arg)
1690 {
1691 	struct hci_auth_info_req req;
1692 	struct hci_conn *conn;
1693 
1694 	if (copy_from_user(&req, arg, sizeof(req)))
1695 		return -EFAULT;
1696 
1697 	hci_dev_lock(hdev);
1698 	conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &req.bdaddr);
1699 	if (conn)
1700 		req.type = conn->auth_type;
1701 	hci_dev_unlock(hdev);
1702 
1703 	if (!conn)
1704 		return -ENOENT;
1705 
1706 	return copy_to_user(arg, &req, sizeof(req)) ? -EFAULT : 0;
1707 }
1708 
1709 struct hci_chan *hci_chan_create(struct hci_conn *conn)
1710 {
1711 	struct hci_dev *hdev = conn->hdev;
1712 	struct hci_chan *chan;
1713 
1714 	BT_DBG("%s hcon %p", hdev->name, conn);
1715 
1716 	if (test_bit(HCI_CONN_DROP, &conn->flags)) {
1717 		BT_DBG("Refusing to create new hci_chan");
1718 		return NULL;
1719 	}
1720 
1721 	chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1722 	if (!chan)
1723 		return NULL;
1724 
1725 	chan->conn = hci_conn_get(conn);
1726 	skb_queue_head_init(&chan->data_q);
1727 	chan->state = BT_CONNECTED;
1728 
1729 	list_add_rcu(&chan->list, &conn->chan_list);
1730 
1731 	return chan;
1732 }
1733 
1734 void hci_chan_del(struct hci_chan *chan)
1735 {
1736 	struct hci_conn *conn = chan->conn;
1737 	struct hci_dev *hdev = conn->hdev;
1738 
1739 	BT_DBG("%s hcon %p chan %p", hdev->name, conn, chan);
1740 
1741 	list_del_rcu(&chan->list);
1742 
1743 	synchronize_rcu();
1744 
1745 	/* Prevent new hci_chan's to be created for this hci_conn */
1746 	set_bit(HCI_CONN_DROP, &conn->flags);
1747 
1748 	hci_conn_put(conn);
1749 
1750 	skb_queue_purge(&chan->data_q);
1751 	kfree(chan);
1752 }
1753 
1754 void hci_chan_list_flush(struct hci_conn *conn)
1755 {
1756 	struct hci_chan *chan, *n;
1757 
1758 	BT_DBG("hcon %p", conn);
1759 
1760 	list_for_each_entry_safe(chan, n, &conn->chan_list, list)
1761 		hci_chan_del(chan);
1762 }
1763 
1764 static struct hci_chan *__hci_chan_lookup_handle(struct hci_conn *hcon,
1765 						 __u16 handle)
1766 {
1767 	struct hci_chan *hchan;
1768 
1769 	list_for_each_entry(hchan, &hcon->chan_list, list) {
1770 		if (hchan->handle == handle)
1771 			return hchan;
1772 	}
1773 
1774 	return NULL;
1775 }
1776 
1777 struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle)
1778 {
1779 	struct hci_conn_hash *h = &hdev->conn_hash;
1780 	struct hci_conn *hcon;
1781 	struct hci_chan *hchan = NULL;
1782 
1783 	rcu_read_lock();
1784 
1785 	list_for_each_entry_rcu(hcon, &h->list, list) {
1786 		hchan = __hci_chan_lookup_handle(hcon, handle);
1787 		if (hchan)
1788 			break;
1789 	}
1790 
1791 	rcu_read_unlock();
1792 
1793 	return hchan;
1794 }
1795 
1796 u32 hci_conn_get_phy(struct hci_conn *conn)
1797 {
1798 	u32 phys = 0;
1799 
1800 	hci_dev_lock(conn->hdev);
1801 
1802 	/* BLUETOOTH CORE SPECIFICATION Version 5.2 | Vol 2, Part B page 471:
1803 	 * Table 6.2: Packets defined for synchronous, asynchronous, and
1804 	 * CSB logical transport types.
1805 	 */
1806 	switch (conn->type) {
1807 	case SCO_LINK:
1808 		/* SCO logical transport (1 Mb/s):
1809 		 * HV1, HV2, HV3 and DV.
1810 		 */
1811 		phys |= BT_PHY_BR_1M_1SLOT;
1812 
1813 		break;
1814 
1815 	case ACL_LINK:
1816 		/* ACL logical transport (1 Mb/s) ptt=0:
1817 		 * DH1, DM3, DH3, DM5 and DH5.
1818 		 */
1819 		phys |= BT_PHY_BR_1M_1SLOT;
1820 
1821 		if (conn->pkt_type & (HCI_DM3 | HCI_DH3))
1822 			phys |= BT_PHY_BR_1M_3SLOT;
1823 
1824 		if (conn->pkt_type & (HCI_DM5 | HCI_DH5))
1825 			phys |= BT_PHY_BR_1M_5SLOT;
1826 
1827 		/* ACL logical transport (2 Mb/s) ptt=1:
1828 		 * 2-DH1, 2-DH3 and 2-DH5.
1829 		 */
1830 		if (!(conn->pkt_type & HCI_2DH1))
1831 			phys |= BT_PHY_EDR_2M_1SLOT;
1832 
1833 		if (!(conn->pkt_type & HCI_2DH3))
1834 			phys |= BT_PHY_EDR_2M_3SLOT;
1835 
1836 		if (!(conn->pkt_type & HCI_2DH5))
1837 			phys |= BT_PHY_EDR_2M_5SLOT;
1838 
1839 		/* ACL logical transport (3 Mb/s) ptt=1:
1840 		 * 3-DH1, 3-DH3 and 3-DH5.
1841 		 */
1842 		if (!(conn->pkt_type & HCI_3DH1))
1843 			phys |= BT_PHY_EDR_3M_1SLOT;
1844 
1845 		if (!(conn->pkt_type & HCI_3DH3))
1846 			phys |= BT_PHY_EDR_3M_3SLOT;
1847 
1848 		if (!(conn->pkt_type & HCI_3DH5))
1849 			phys |= BT_PHY_EDR_3M_5SLOT;
1850 
1851 		break;
1852 
1853 	case ESCO_LINK:
1854 		/* eSCO logical transport (1 Mb/s): EV3, EV4 and EV5 */
1855 		phys |= BT_PHY_BR_1M_1SLOT;
1856 
1857 		if (!(conn->pkt_type & (ESCO_EV4 | ESCO_EV5)))
1858 			phys |= BT_PHY_BR_1M_3SLOT;
1859 
1860 		/* eSCO logical transport (2 Mb/s): 2-EV3, 2-EV5 */
1861 		if (!(conn->pkt_type & ESCO_2EV3))
1862 			phys |= BT_PHY_EDR_2M_1SLOT;
1863 
1864 		if (!(conn->pkt_type & ESCO_2EV5))
1865 			phys |= BT_PHY_EDR_2M_3SLOT;
1866 
1867 		/* eSCO logical transport (3 Mb/s): 3-EV3, 3-EV5 */
1868 		if (!(conn->pkt_type & ESCO_3EV3))
1869 			phys |= BT_PHY_EDR_3M_1SLOT;
1870 
1871 		if (!(conn->pkt_type & ESCO_3EV5))
1872 			phys |= BT_PHY_EDR_3M_3SLOT;
1873 
1874 		break;
1875 
1876 	case LE_LINK:
1877 		if (conn->le_tx_phy & HCI_LE_SET_PHY_1M)
1878 			phys |= BT_PHY_LE_1M_TX;
1879 
1880 		if (conn->le_rx_phy & HCI_LE_SET_PHY_1M)
1881 			phys |= BT_PHY_LE_1M_RX;
1882 
1883 		if (conn->le_tx_phy & HCI_LE_SET_PHY_2M)
1884 			phys |= BT_PHY_LE_2M_TX;
1885 
1886 		if (conn->le_rx_phy & HCI_LE_SET_PHY_2M)
1887 			phys |= BT_PHY_LE_2M_RX;
1888 
1889 		if (conn->le_tx_phy & HCI_LE_SET_PHY_CODED)
1890 			phys |= BT_PHY_LE_CODED_TX;
1891 
1892 		if (conn->le_rx_phy & HCI_LE_SET_PHY_CODED)
1893 			phys |= BT_PHY_LE_CODED_RX;
1894 
1895 		break;
1896 	}
1897 
1898 	hci_dev_unlock(conn->hdev);
1899 
1900 	return phys;
1901 }
1902