1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved. 4 5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License version 2 as 9 published by the Free Software Foundation; 10 11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 22 SOFTWARE IS DISCLAIMED. 23 */ 24 25 /* Bluetooth HCI connection handling. */ 26 27 #include <linux/export.h> 28 #include <linux/debugfs.h> 29 30 #include <net/bluetooth/bluetooth.h> 31 #include <net/bluetooth/hci_core.h> 32 #include <net/bluetooth/l2cap.h> 33 34 #include "hci_request.h" 35 #include "smp.h" 36 #include "a2mp.h" 37 38 struct sco_param { 39 u16 pkt_type; 40 u16 max_latency; 41 u8 retrans_effort; 42 }; 43 44 static const struct sco_param esco_param_cvsd[] = { 45 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000a, 0x01 }, /* S3 */ 46 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x0007, 0x01 }, /* S2 */ 47 { EDR_ESCO_MASK | ESCO_EV3, 0x0007, 0x01 }, /* S1 */ 48 { EDR_ESCO_MASK | ESCO_HV3, 0xffff, 0x01 }, /* D1 */ 49 { EDR_ESCO_MASK | ESCO_HV1, 0xffff, 0x01 }, /* D0 */ 50 }; 51 52 static const struct sco_param sco_param_cvsd[] = { 53 { EDR_ESCO_MASK | ESCO_HV3, 0xffff, 0xff }, /* D1 */ 54 { EDR_ESCO_MASK | ESCO_HV1, 0xffff, 0xff }, /* D0 */ 55 }; 56 57 static const struct sco_param esco_param_msbc[] = { 58 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000d, 0x02 }, /* T2 */ 59 { EDR_ESCO_MASK | ESCO_EV3, 0x0008, 0x02 }, /* T1 */ 60 }; 61 62 /* This function requires the caller holds hdev->lock */ 63 static void hci_connect_le_scan_cleanup(struct hci_conn *conn) 64 { 65 struct hci_conn_params *params; 66 struct hci_dev *hdev = conn->hdev; 67 struct smp_irk *irk; 68 bdaddr_t *bdaddr; 69 u8 bdaddr_type; 70 71 bdaddr = &conn->dst; 72 bdaddr_type = conn->dst_type; 73 74 /* Check if we need to convert to identity address */ 75 irk = hci_get_irk(hdev, bdaddr, bdaddr_type); 76 if (irk) { 77 bdaddr = &irk->bdaddr; 78 bdaddr_type = irk->addr_type; 79 } 80 81 params = hci_pend_le_action_lookup(&hdev->pend_le_conns, bdaddr, 82 bdaddr_type); 83 if (!params || !params->explicit_connect) 84 return; 85 86 /* The connection attempt was doing scan for new RPA, and is 87 * in scan phase. If params are not associated with any other 88 * autoconnect action, remove them completely. If they are, just unmark 89 * them as waiting for connection, by clearing explicit_connect field. 90 */ 91 params->explicit_connect = false; 92 93 list_del_init(¶ms->action); 94 95 switch (params->auto_connect) { 96 case HCI_AUTO_CONN_EXPLICIT: 97 hci_conn_params_del(hdev, bdaddr, bdaddr_type); 98 /* return instead of break to avoid duplicate scan update */ 99 return; 100 case HCI_AUTO_CONN_DIRECT: 101 case HCI_AUTO_CONN_ALWAYS: 102 list_add(¶ms->action, &hdev->pend_le_conns); 103 break; 104 case HCI_AUTO_CONN_REPORT: 105 list_add(¶ms->action, &hdev->pend_le_reports); 106 break; 107 default: 108 break; 109 } 110 111 hci_update_background_scan(hdev); 112 } 113 114 static void hci_conn_cleanup(struct hci_conn *conn) 115 { 116 struct hci_dev *hdev = conn->hdev; 117 118 if (test_bit(HCI_CONN_PARAM_REMOVAL_PEND, &conn->flags)) 119 hci_conn_params_del(conn->hdev, &conn->dst, conn->dst_type); 120 121 hci_chan_list_flush(conn); 122 123 hci_conn_hash_del(hdev, conn); 124 125 if (hdev->notify) 126 hdev->notify(hdev, HCI_NOTIFY_CONN_DEL); 127 128 hci_conn_del_sysfs(conn); 129 130 debugfs_remove_recursive(conn->debugfs); 131 132 hci_dev_put(hdev); 133 134 hci_conn_put(conn); 135 } 136 137 static void le_scan_cleanup(struct work_struct *work) 138 { 139 struct hci_conn *conn = container_of(work, struct hci_conn, 140 le_scan_cleanup); 141 struct hci_dev *hdev = conn->hdev; 142 struct hci_conn *c = NULL; 143 144 BT_DBG("%s hcon %p", hdev->name, conn); 145 146 hci_dev_lock(hdev); 147 148 /* Check that the hci_conn is still around */ 149 rcu_read_lock(); 150 list_for_each_entry_rcu(c, &hdev->conn_hash.list, list) { 151 if (c == conn) 152 break; 153 } 154 rcu_read_unlock(); 155 156 if (c == conn) { 157 hci_connect_le_scan_cleanup(conn); 158 hci_conn_cleanup(conn); 159 } 160 161 hci_dev_unlock(hdev); 162 hci_dev_put(hdev); 163 hci_conn_put(conn); 164 } 165 166 static void hci_connect_le_scan_remove(struct hci_conn *conn) 167 { 168 BT_DBG("%s hcon %p", conn->hdev->name, conn); 169 170 /* We can't call hci_conn_del/hci_conn_cleanup here since that 171 * could deadlock with another hci_conn_del() call that's holding 172 * hci_dev_lock and doing cancel_delayed_work_sync(&conn->disc_work). 173 * Instead, grab temporary extra references to the hci_dev and 174 * hci_conn and perform the necessary cleanup in a separate work 175 * callback. 176 */ 177 178 hci_dev_hold(conn->hdev); 179 hci_conn_get(conn); 180 181 /* Even though we hold a reference to the hdev, many other 182 * things might get cleaned up meanwhile, including the hdev's 183 * own workqueue, so we can't use that for scheduling. 184 */ 185 schedule_work(&conn->le_scan_cleanup); 186 } 187 188 static void hci_acl_create_connection(struct hci_conn *conn) 189 { 190 struct hci_dev *hdev = conn->hdev; 191 struct inquiry_entry *ie; 192 struct hci_cp_create_conn cp; 193 194 BT_DBG("hcon %p", conn); 195 196 conn->state = BT_CONNECT; 197 conn->out = true; 198 conn->role = HCI_ROLE_MASTER; 199 200 conn->attempt++; 201 202 conn->link_policy = hdev->link_policy; 203 204 memset(&cp, 0, sizeof(cp)); 205 bacpy(&cp.bdaddr, &conn->dst); 206 cp.pscan_rep_mode = 0x02; 207 208 ie = hci_inquiry_cache_lookup(hdev, &conn->dst); 209 if (ie) { 210 if (inquiry_entry_age(ie) <= INQUIRY_ENTRY_AGE_MAX) { 211 cp.pscan_rep_mode = ie->data.pscan_rep_mode; 212 cp.pscan_mode = ie->data.pscan_mode; 213 cp.clock_offset = ie->data.clock_offset | 214 cpu_to_le16(0x8000); 215 } 216 217 memcpy(conn->dev_class, ie->data.dev_class, 3); 218 if (ie->data.ssp_mode > 0) 219 set_bit(HCI_CONN_SSP_ENABLED, &conn->flags); 220 } 221 222 cp.pkt_type = cpu_to_le16(conn->pkt_type); 223 if (lmp_rswitch_capable(hdev) && !(hdev->link_mode & HCI_LM_MASTER)) 224 cp.role_switch = 0x01; 225 else 226 cp.role_switch = 0x00; 227 228 hci_send_cmd(hdev, HCI_OP_CREATE_CONN, sizeof(cp), &cp); 229 } 230 231 int hci_disconnect(struct hci_conn *conn, __u8 reason) 232 { 233 BT_DBG("hcon %p", conn); 234 235 /* When we are master of an established connection and it enters 236 * the disconnect timeout, then go ahead and try to read the 237 * current clock offset. Processing of the result is done 238 * within the event handling and hci_clock_offset_evt function. 239 */ 240 if (conn->type == ACL_LINK && conn->role == HCI_ROLE_MASTER && 241 (conn->state == BT_CONNECTED || conn->state == BT_CONFIG)) { 242 struct hci_dev *hdev = conn->hdev; 243 struct hci_cp_read_clock_offset clkoff_cp; 244 245 clkoff_cp.handle = cpu_to_le16(conn->handle); 246 hci_send_cmd(hdev, HCI_OP_READ_CLOCK_OFFSET, sizeof(clkoff_cp), 247 &clkoff_cp); 248 } 249 250 return hci_abort_conn(conn, reason); 251 } 252 253 static void hci_add_sco(struct hci_conn *conn, __u16 handle) 254 { 255 struct hci_dev *hdev = conn->hdev; 256 struct hci_cp_add_sco cp; 257 258 BT_DBG("hcon %p", conn); 259 260 conn->state = BT_CONNECT; 261 conn->out = true; 262 263 conn->attempt++; 264 265 cp.handle = cpu_to_le16(handle); 266 cp.pkt_type = cpu_to_le16(conn->pkt_type); 267 268 hci_send_cmd(hdev, HCI_OP_ADD_SCO, sizeof(cp), &cp); 269 } 270 271 bool hci_setup_sync(struct hci_conn *conn, __u16 handle) 272 { 273 struct hci_dev *hdev = conn->hdev; 274 struct hci_cp_setup_sync_conn cp; 275 const struct sco_param *param; 276 277 BT_DBG("hcon %p", conn); 278 279 conn->state = BT_CONNECT; 280 conn->out = true; 281 282 conn->attempt++; 283 284 cp.handle = cpu_to_le16(handle); 285 286 cp.tx_bandwidth = cpu_to_le32(0x00001f40); 287 cp.rx_bandwidth = cpu_to_le32(0x00001f40); 288 cp.voice_setting = cpu_to_le16(conn->setting); 289 290 switch (conn->setting & SCO_AIRMODE_MASK) { 291 case SCO_AIRMODE_TRANSP: 292 if (conn->attempt > ARRAY_SIZE(esco_param_msbc)) 293 return false; 294 param = &esco_param_msbc[conn->attempt - 1]; 295 break; 296 case SCO_AIRMODE_CVSD: 297 if (lmp_esco_capable(conn->link)) { 298 if (conn->attempt > ARRAY_SIZE(esco_param_cvsd)) 299 return false; 300 param = &esco_param_cvsd[conn->attempt - 1]; 301 } else { 302 if (conn->attempt > ARRAY_SIZE(sco_param_cvsd)) 303 return false; 304 param = &sco_param_cvsd[conn->attempt - 1]; 305 } 306 break; 307 default: 308 return false; 309 } 310 311 cp.retrans_effort = param->retrans_effort; 312 cp.pkt_type = __cpu_to_le16(param->pkt_type); 313 cp.max_latency = __cpu_to_le16(param->max_latency); 314 315 if (hci_send_cmd(hdev, HCI_OP_SETUP_SYNC_CONN, sizeof(cp), &cp) < 0) 316 return false; 317 318 return true; 319 } 320 321 u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency, 322 u16 to_multiplier) 323 { 324 struct hci_dev *hdev = conn->hdev; 325 struct hci_conn_params *params; 326 struct hci_cp_le_conn_update cp; 327 328 hci_dev_lock(hdev); 329 330 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); 331 if (params) { 332 params->conn_min_interval = min; 333 params->conn_max_interval = max; 334 params->conn_latency = latency; 335 params->supervision_timeout = to_multiplier; 336 } 337 338 hci_dev_unlock(hdev); 339 340 memset(&cp, 0, sizeof(cp)); 341 cp.handle = cpu_to_le16(conn->handle); 342 cp.conn_interval_min = cpu_to_le16(min); 343 cp.conn_interval_max = cpu_to_le16(max); 344 cp.conn_latency = cpu_to_le16(latency); 345 cp.supervision_timeout = cpu_to_le16(to_multiplier); 346 cp.min_ce_len = cpu_to_le16(0x0000); 347 cp.max_ce_len = cpu_to_le16(0x0000); 348 349 hci_send_cmd(hdev, HCI_OP_LE_CONN_UPDATE, sizeof(cp), &cp); 350 351 if (params) 352 return 0x01; 353 354 return 0x00; 355 } 356 357 void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand, 358 __u8 ltk[16], __u8 key_size) 359 { 360 struct hci_dev *hdev = conn->hdev; 361 struct hci_cp_le_start_enc cp; 362 363 BT_DBG("hcon %p", conn); 364 365 memset(&cp, 0, sizeof(cp)); 366 367 cp.handle = cpu_to_le16(conn->handle); 368 cp.rand = rand; 369 cp.ediv = ediv; 370 memcpy(cp.ltk, ltk, key_size); 371 372 hci_send_cmd(hdev, HCI_OP_LE_START_ENC, sizeof(cp), &cp); 373 } 374 375 /* Device _must_ be locked */ 376 void hci_sco_setup(struct hci_conn *conn, __u8 status) 377 { 378 struct hci_conn *sco = conn->link; 379 380 if (!sco) 381 return; 382 383 BT_DBG("hcon %p", conn); 384 385 if (!status) { 386 if (lmp_esco_capable(conn->hdev)) 387 hci_setup_sync(sco, conn->handle); 388 else 389 hci_add_sco(sco, conn->handle); 390 } else { 391 hci_connect_cfm(sco, status); 392 hci_conn_del(sco); 393 } 394 } 395 396 static void hci_conn_timeout(struct work_struct *work) 397 { 398 struct hci_conn *conn = container_of(work, struct hci_conn, 399 disc_work.work); 400 int refcnt = atomic_read(&conn->refcnt); 401 402 BT_DBG("hcon %p state %s", conn, state_to_string(conn->state)); 403 404 WARN_ON(refcnt < 0); 405 406 /* FIXME: It was observed that in pairing failed scenario, refcnt 407 * drops below 0. Probably this is because l2cap_conn_del calls 408 * l2cap_chan_del for each channel, and inside l2cap_chan_del conn is 409 * dropped. After that loop hci_chan_del is called which also drops 410 * conn. For now make sure that ACL is alive if refcnt is higher then 0, 411 * otherwise drop it. 412 */ 413 if (refcnt > 0) 414 return; 415 416 /* LE connections in scanning state need special handling */ 417 if (conn->state == BT_CONNECT && conn->type == LE_LINK && 418 test_bit(HCI_CONN_SCANNING, &conn->flags)) { 419 hci_connect_le_scan_remove(conn); 420 return; 421 } 422 423 hci_abort_conn(conn, hci_proto_disconn_ind(conn)); 424 } 425 426 /* Enter sniff mode */ 427 static void hci_conn_idle(struct work_struct *work) 428 { 429 struct hci_conn *conn = container_of(work, struct hci_conn, 430 idle_work.work); 431 struct hci_dev *hdev = conn->hdev; 432 433 BT_DBG("hcon %p mode %d", conn, conn->mode); 434 435 if (!lmp_sniff_capable(hdev) || !lmp_sniff_capable(conn)) 436 return; 437 438 if (conn->mode != HCI_CM_ACTIVE || !(conn->link_policy & HCI_LP_SNIFF)) 439 return; 440 441 if (lmp_sniffsubr_capable(hdev) && lmp_sniffsubr_capable(conn)) { 442 struct hci_cp_sniff_subrate cp; 443 cp.handle = cpu_to_le16(conn->handle); 444 cp.max_latency = cpu_to_le16(0); 445 cp.min_remote_timeout = cpu_to_le16(0); 446 cp.min_local_timeout = cpu_to_le16(0); 447 hci_send_cmd(hdev, HCI_OP_SNIFF_SUBRATE, sizeof(cp), &cp); 448 } 449 450 if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) { 451 struct hci_cp_sniff_mode cp; 452 cp.handle = cpu_to_le16(conn->handle); 453 cp.max_interval = cpu_to_le16(hdev->sniff_max_interval); 454 cp.min_interval = cpu_to_le16(hdev->sniff_min_interval); 455 cp.attempt = cpu_to_le16(4); 456 cp.timeout = cpu_to_le16(1); 457 hci_send_cmd(hdev, HCI_OP_SNIFF_MODE, sizeof(cp), &cp); 458 } 459 } 460 461 static void hci_conn_auto_accept(struct work_struct *work) 462 { 463 struct hci_conn *conn = container_of(work, struct hci_conn, 464 auto_accept_work.work); 465 466 hci_send_cmd(conn->hdev, HCI_OP_USER_CONFIRM_REPLY, sizeof(conn->dst), 467 &conn->dst); 468 } 469 470 static void le_conn_timeout(struct work_struct *work) 471 { 472 struct hci_conn *conn = container_of(work, struct hci_conn, 473 le_conn_timeout.work); 474 struct hci_dev *hdev = conn->hdev; 475 476 BT_DBG(""); 477 478 /* We could end up here due to having done directed advertising, 479 * so clean up the state if necessary. This should however only 480 * happen with broken hardware or if low duty cycle was used 481 * (which doesn't have a timeout of its own). 482 */ 483 if (conn->role == HCI_ROLE_SLAVE) { 484 u8 enable = 0x00; 485 hci_send_cmd(hdev, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), 486 &enable); 487 hci_le_conn_failed(conn, HCI_ERROR_ADVERTISING_TIMEOUT); 488 return; 489 } 490 491 hci_abort_conn(conn, HCI_ERROR_REMOTE_USER_TERM); 492 } 493 494 struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst, 495 u8 role) 496 { 497 struct hci_conn *conn; 498 499 BT_DBG("%s dst %pMR", hdev->name, dst); 500 501 conn = kzalloc(sizeof(*conn), GFP_KERNEL); 502 if (!conn) 503 return NULL; 504 505 bacpy(&conn->dst, dst); 506 bacpy(&conn->src, &hdev->bdaddr); 507 conn->hdev = hdev; 508 conn->type = type; 509 conn->role = role; 510 conn->mode = HCI_CM_ACTIVE; 511 conn->state = BT_OPEN; 512 conn->auth_type = HCI_AT_GENERAL_BONDING; 513 conn->io_capability = hdev->io_capability; 514 conn->remote_auth = 0xff; 515 conn->key_type = 0xff; 516 conn->rssi = HCI_RSSI_INVALID; 517 conn->tx_power = HCI_TX_POWER_INVALID; 518 conn->max_tx_power = HCI_TX_POWER_INVALID; 519 520 set_bit(HCI_CONN_POWER_SAVE, &conn->flags); 521 conn->disc_timeout = HCI_DISCONN_TIMEOUT; 522 523 if (conn->role == HCI_ROLE_MASTER) 524 conn->out = true; 525 526 switch (type) { 527 case ACL_LINK: 528 conn->pkt_type = hdev->pkt_type & ACL_PTYPE_MASK; 529 break; 530 case LE_LINK: 531 /* conn->src should reflect the local identity address */ 532 hci_copy_identity_address(hdev, &conn->src, &conn->src_type); 533 break; 534 case SCO_LINK: 535 if (lmp_esco_capable(hdev)) 536 conn->pkt_type = (hdev->esco_type & SCO_ESCO_MASK) | 537 (hdev->esco_type & EDR_ESCO_MASK); 538 else 539 conn->pkt_type = hdev->pkt_type & SCO_PTYPE_MASK; 540 break; 541 case ESCO_LINK: 542 conn->pkt_type = hdev->esco_type & ~EDR_ESCO_MASK; 543 break; 544 } 545 546 skb_queue_head_init(&conn->data_q); 547 548 INIT_LIST_HEAD(&conn->chan_list); 549 550 INIT_DELAYED_WORK(&conn->disc_work, hci_conn_timeout); 551 INIT_DELAYED_WORK(&conn->auto_accept_work, hci_conn_auto_accept); 552 INIT_DELAYED_WORK(&conn->idle_work, hci_conn_idle); 553 INIT_DELAYED_WORK(&conn->le_conn_timeout, le_conn_timeout); 554 INIT_WORK(&conn->le_scan_cleanup, le_scan_cleanup); 555 556 atomic_set(&conn->refcnt, 0); 557 558 hci_dev_hold(hdev); 559 560 hci_conn_hash_add(hdev, conn); 561 if (hdev->notify) 562 hdev->notify(hdev, HCI_NOTIFY_CONN_ADD); 563 564 hci_conn_init_sysfs(conn); 565 566 return conn; 567 } 568 569 int hci_conn_del(struct hci_conn *conn) 570 { 571 struct hci_dev *hdev = conn->hdev; 572 573 BT_DBG("%s hcon %p handle %d", hdev->name, conn, conn->handle); 574 575 cancel_delayed_work_sync(&conn->disc_work); 576 cancel_delayed_work_sync(&conn->auto_accept_work); 577 cancel_delayed_work_sync(&conn->idle_work); 578 579 if (conn->type == ACL_LINK) { 580 struct hci_conn *sco = conn->link; 581 if (sco) 582 sco->link = NULL; 583 584 /* Unacked frames */ 585 hdev->acl_cnt += conn->sent; 586 } else if (conn->type == LE_LINK) { 587 cancel_delayed_work(&conn->le_conn_timeout); 588 589 if (hdev->le_pkts) 590 hdev->le_cnt += conn->sent; 591 else 592 hdev->acl_cnt += conn->sent; 593 } else { 594 struct hci_conn *acl = conn->link; 595 if (acl) { 596 acl->link = NULL; 597 hci_conn_drop(acl); 598 } 599 } 600 601 if (conn->amp_mgr) 602 amp_mgr_put(conn->amp_mgr); 603 604 skb_queue_purge(&conn->data_q); 605 606 /* Remove the connection from the list and cleanup its remaining 607 * state. This is a separate function since for some cases like 608 * BT_CONNECT_SCAN we *only* want the cleanup part without the 609 * rest of hci_conn_del. 610 */ 611 hci_conn_cleanup(conn); 612 613 return 0; 614 } 615 616 struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src) 617 { 618 int use_src = bacmp(src, BDADDR_ANY); 619 struct hci_dev *hdev = NULL, *d; 620 621 BT_DBG("%pMR -> %pMR", src, dst); 622 623 read_lock(&hci_dev_list_lock); 624 625 list_for_each_entry(d, &hci_dev_list, list) { 626 if (!test_bit(HCI_UP, &d->flags) || 627 hci_dev_test_flag(d, HCI_USER_CHANNEL) || 628 d->dev_type != HCI_BREDR) 629 continue; 630 631 /* Simple routing: 632 * No source address - find interface with bdaddr != dst 633 * Source address - find interface with bdaddr == src 634 */ 635 636 if (use_src) { 637 if (!bacmp(&d->bdaddr, src)) { 638 hdev = d; break; 639 } 640 } else { 641 if (bacmp(&d->bdaddr, dst)) { 642 hdev = d; break; 643 } 644 } 645 } 646 647 if (hdev) 648 hdev = hci_dev_hold(hdev); 649 650 read_unlock(&hci_dev_list_lock); 651 return hdev; 652 } 653 EXPORT_SYMBOL(hci_get_route); 654 655 /* This function requires the caller holds hdev->lock */ 656 void hci_le_conn_failed(struct hci_conn *conn, u8 status) 657 { 658 struct hci_dev *hdev = conn->hdev; 659 struct hci_conn_params *params; 660 661 params = hci_pend_le_action_lookup(&hdev->pend_le_conns, &conn->dst, 662 conn->dst_type); 663 if (params && params->conn) { 664 hci_conn_drop(params->conn); 665 hci_conn_put(params->conn); 666 params->conn = NULL; 667 } 668 669 conn->state = BT_CLOSED; 670 671 /* If the status indicates successful cancellation of 672 * the attempt (i.e. Unkown Connection Id) there's no point of 673 * notifying failure since we'll go back to keep trying to 674 * connect. The only exception is explicit connect requests 675 * where a timeout + cancel does indicate an actual failure. 676 */ 677 if (status != HCI_ERROR_UNKNOWN_CONN_ID || 678 (params && params->explicit_connect)) 679 mgmt_connect_failed(hdev, &conn->dst, conn->type, 680 conn->dst_type, status); 681 682 hci_connect_cfm(conn, status); 683 684 hci_conn_del(conn); 685 686 /* Since we may have temporarily stopped the background scanning in 687 * favor of connection establishment, we should restart it. 688 */ 689 hci_update_background_scan(hdev); 690 691 /* Re-enable advertising in case this was a failed connection 692 * attempt as a peripheral. 693 */ 694 hci_req_reenable_advertising(hdev); 695 } 696 697 static void create_le_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode) 698 { 699 struct hci_conn *conn; 700 701 hci_dev_lock(hdev); 702 703 conn = hci_lookup_le_connect(hdev); 704 705 if (!status) { 706 hci_connect_le_scan_cleanup(conn); 707 goto done; 708 } 709 710 BT_ERR("HCI request failed to create LE connection: status 0x%2.2x", 711 status); 712 713 if (!conn) 714 goto done; 715 716 hci_le_conn_failed(conn, status); 717 718 done: 719 hci_dev_unlock(hdev); 720 } 721 722 static void hci_req_add_le_create_conn(struct hci_request *req, 723 struct hci_conn *conn) 724 { 725 struct hci_cp_le_create_conn cp; 726 struct hci_dev *hdev = conn->hdev; 727 u8 own_addr_type; 728 729 memset(&cp, 0, sizeof(cp)); 730 731 /* Update random address, but set require_privacy to false so 732 * that we never connect with an non-resolvable address. 733 */ 734 if (hci_update_random_address(req, false, &own_addr_type)) 735 return; 736 737 /* Set window to be the same value as the interval to enable 738 * continuous scanning. 739 */ 740 cp.scan_interval = cpu_to_le16(hdev->le_scan_interval); 741 cp.scan_window = cp.scan_interval; 742 743 bacpy(&cp.peer_addr, &conn->dst); 744 cp.peer_addr_type = conn->dst_type; 745 cp.own_address_type = own_addr_type; 746 cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 747 cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 748 cp.conn_latency = cpu_to_le16(conn->le_conn_latency); 749 cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 750 cp.min_ce_len = cpu_to_le16(0x0000); 751 cp.max_ce_len = cpu_to_le16(0x0000); 752 753 hci_req_add(req, HCI_OP_LE_CREATE_CONN, sizeof(cp), &cp); 754 755 conn->state = BT_CONNECT; 756 clear_bit(HCI_CONN_SCANNING, &conn->flags); 757 } 758 759 static void hci_req_directed_advertising(struct hci_request *req, 760 struct hci_conn *conn) 761 { 762 struct hci_dev *hdev = req->hdev; 763 struct hci_cp_le_set_adv_param cp; 764 u8 own_addr_type; 765 u8 enable; 766 767 /* Clear the HCI_LE_ADV bit temporarily so that the 768 * hci_update_random_address knows that it's safe to go ahead 769 * and write a new random address. The flag will be set back on 770 * as soon as the SET_ADV_ENABLE HCI command completes. 771 */ 772 hci_dev_clear_flag(hdev, HCI_LE_ADV); 773 774 /* Set require_privacy to false so that the remote device has a 775 * chance of identifying us. 776 */ 777 if (hci_update_random_address(req, false, &own_addr_type) < 0) 778 return; 779 780 memset(&cp, 0, sizeof(cp)); 781 cp.type = LE_ADV_DIRECT_IND; 782 cp.own_address_type = own_addr_type; 783 cp.direct_addr_type = conn->dst_type; 784 bacpy(&cp.direct_addr, &conn->dst); 785 cp.channel_map = hdev->le_adv_channel_map; 786 787 hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp); 788 789 enable = 0x01; 790 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable); 791 792 conn->state = BT_CONNECT; 793 } 794 795 struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst, 796 u8 dst_type, u8 sec_level, u16 conn_timeout, 797 u8 role) 798 { 799 struct hci_conn_params *params; 800 struct hci_conn *conn; 801 struct smp_irk *irk; 802 struct hci_request req; 803 int err; 804 805 /* Let's make sure that le is enabled.*/ 806 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 807 if (lmp_le_capable(hdev)) 808 return ERR_PTR(-ECONNREFUSED); 809 810 return ERR_PTR(-EOPNOTSUPP); 811 } 812 813 /* Since the controller supports only one LE connection attempt at a 814 * time, we return -EBUSY if there is any connection attempt running. 815 */ 816 if (hci_lookup_le_connect(hdev)) 817 return ERR_PTR(-EBUSY); 818 819 /* If there's already a connection object but it's not in 820 * scanning state it means it must already be established, in 821 * which case we can't do anything else except report a failure 822 * to connect. 823 */ 824 conn = hci_conn_hash_lookup_le(hdev, dst, dst_type); 825 if (conn && !test_bit(HCI_CONN_SCANNING, &conn->flags)) { 826 return ERR_PTR(-EBUSY); 827 } 828 829 /* When given an identity address with existing identity 830 * resolving key, the connection needs to be established 831 * to a resolvable random address. 832 * 833 * Storing the resolvable random address is required here 834 * to handle connection failures. The address will later 835 * be resolved back into the original identity address 836 * from the connect request. 837 */ 838 irk = hci_find_irk_by_addr(hdev, dst, dst_type); 839 if (irk && bacmp(&irk->rpa, BDADDR_ANY)) { 840 dst = &irk->rpa; 841 dst_type = ADDR_LE_DEV_RANDOM; 842 } 843 844 if (conn) { 845 bacpy(&conn->dst, dst); 846 } else { 847 conn = hci_conn_add(hdev, LE_LINK, dst, role); 848 if (!conn) 849 return ERR_PTR(-ENOMEM); 850 hci_conn_hold(conn); 851 conn->pending_sec_level = sec_level; 852 } 853 854 conn->dst_type = dst_type; 855 conn->sec_level = BT_SECURITY_LOW; 856 conn->conn_timeout = conn_timeout; 857 858 hci_req_init(&req, hdev); 859 860 /* Disable advertising if we're active. For master role 861 * connections most controllers will refuse to connect if 862 * advertising is enabled, and for slave role connections we 863 * anyway have to disable it in order to start directed 864 * advertising. 865 */ 866 if (hci_dev_test_flag(hdev, HCI_LE_ADV)) { 867 u8 enable = 0x00; 868 hci_req_add(&req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), 869 &enable); 870 } 871 872 /* If requested to connect as slave use directed advertising */ 873 if (conn->role == HCI_ROLE_SLAVE) { 874 /* If we're active scanning most controllers are unable 875 * to initiate advertising. Simply reject the attempt. 876 */ 877 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) && 878 hdev->le_scan_type == LE_SCAN_ACTIVE) { 879 skb_queue_purge(&req.cmd_q); 880 hci_conn_del(conn); 881 return ERR_PTR(-EBUSY); 882 } 883 884 hci_req_directed_advertising(&req, conn); 885 goto create_conn; 886 } 887 888 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); 889 if (params) { 890 conn->le_conn_min_interval = params->conn_min_interval; 891 conn->le_conn_max_interval = params->conn_max_interval; 892 conn->le_conn_latency = params->conn_latency; 893 conn->le_supv_timeout = params->supervision_timeout; 894 } else { 895 conn->le_conn_min_interval = hdev->le_conn_min_interval; 896 conn->le_conn_max_interval = hdev->le_conn_max_interval; 897 conn->le_conn_latency = hdev->le_conn_latency; 898 conn->le_supv_timeout = hdev->le_supv_timeout; 899 } 900 901 /* If controller is scanning, we stop it since some controllers are 902 * not able to scan and connect at the same time. Also set the 903 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete 904 * handler for scan disabling knows to set the correct discovery 905 * state. 906 */ 907 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 908 hci_req_add_le_scan_disable(&req); 909 hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED); 910 } 911 912 hci_req_add_le_create_conn(&req, conn); 913 914 create_conn: 915 err = hci_req_run(&req, create_le_conn_complete); 916 if (err) { 917 hci_conn_del(conn); 918 return ERR_PTR(err); 919 } 920 921 return conn; 922 } 923 924 static bool is_connected(struct hci_dev *hdev, bdaddr_t *addr, u8 type) 925 { 926 struct hci_conn *conn; 927 928 conn = hci_conn_hash_lookup_le(hdev, addr, type); 929 if (!conn) 930 return false; 931 932 if (conn->state != BT_CONNECTED) 933 return false; 934 935 return true; 936 } 937 938 /* This function requires the caller holds hdev->lock */ 939 static int hci_explicit_conn_params_set(struct hci_dev *hdev, 940 bdaddr_t *addr, u8 addr_type) 941 { 942 struct hci_conn_params *params; 943 944 if (is_connected(hdev, addr, addr_type)) 945 return -EISCONN; 946 947 params = hci_conn_params_lookup(hdev, addr, addr_type); 948 if (!params) { 949 params = hci_conn_params_add(hdev, addr, addr_type); 950 if (!params) 951 return -ENOMEM; 952 953 /* If we created new params, mark them to be deleted in 954 * hci_connect_le_scan_cleanup. It's different case than 955 * existing disabled params, those will stay after cleanup. 956 */ 957 params->auto_connect = HCI_AUTO_CONN_EXPLICIT; 958 } 959 960 /* We're trying to connect, so make sure params are at pend_le_conns */ 961 if (params->auto_connect == HCI_AUTO_CONN_DISABLED || 962 params->auto_connect == HCI_AUTO_CONN_REPORT || 963 params->auto_connect == HCI_AUTO_CONN_EXPLICIT) { 964 list_del_init(¶ms->action); 965 list_add(¶ms->action, &hdev->pend_le_conns); 966 } 967 968 params->explicit_connect = true; 969 970 BT_DBG("addr %pMR (type %u) auto_connect %u", addr, addr_type, 971 params->auto_connect); 972 973 return 0; 974 } 975 976 /* This function requires the caller holds hdev->lock */ 977 struct hci_conn *hci_connect_le_scan(struct hci_dev *hdev, bdaddr_t *dst, 978 u8 dst_type, u8 sec_level, 979 u16 conn_timeout) 980 { 981 struct hci_conn *conn; 982 983 /* Let's make sure that le is enabled.*/ 984 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 985 if (lmp_le_capable(hdev)) 986 return ERR_PTR(-ECONNREFUSED); 987 988 return ERR_PTR(-EOPNOTSUPP); 989 } 990 991 /* Some devices send ATT messages as soon as the physical link is 992 * established. To be able to handle these ATT messages, the user- 993 * space first establishes the connection and then starts the pairing 994 * process. 995 * 996 * So if a hci_conn object already exists for the following connection 997 * attempt, we simply update pending_sec_level and auth_type fields 998 * and return the object found. 999 */ 1000 conn = hci_conn_hash_lookup_le(hdev, dst, dst_type); 1001 if (conn) { 1002 if (conn->pending_sec_level < sec_level) 1003 conn->pending_sec_level = sec_level; 1004 goto done; 1005 } 1006 1007 BT_DBG("requesting refresh of dst_addr"); 1008 1009 conn = hci_conn_add(hdev, LE_LINK, dst, HCI_ROLE_MASTER); 1010 if (!conn) 1011 return ERR_PTR(-ENOMEM); 1012 1013 if (hci_explicit_conn_params_set(hdev, dst, dst_type) < 0) 1014 return ERR_PTR(-EBUSY); 1015 1016 conn->state = BT_CONNECT; 1017 set_bit(HCI_CONN_SCANNING, &conn->flags); 1018 conn->dst_type = dst_type; 1019 conn->sec_level = BT_SECURITY_LOW; 1020 conn->pending_sec_level = sec_level; 1021 conn->conn_timeout = conn_timeout; 1022 1023 hci_update_background_scan(hdev); 1024 1025 done: 1026 hci_conn_hold(conn); 1027 return conn; 1028 } 1029 1030 struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst, 1031 u8 sec_level, u8 auth_type) 1032 { 1033 struct hci_conn *acl; 1034 1035 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 1036 if (lmp_bredr_capable(hdev)) 1037 return ERR_PTR(-ECONNREFUSED); 1038 1039 return ERR_PTR(-EOPNOTSUPP); 1040 } 1041 1042 acl = hci_conn_hash_lookup_ba(hdev, ACL_LINK, dst); 1043 if (!acl) { 1044 acl = hci_conn_add(hdev, ACL_LINK, dst, HCI_ROLE_MASTER); 1045 if (!acl) 1046 return ERR_PTR(-ENOMEM); 1047 } 1048 1049 hci_conn_hold(acl); 1050 1051 if (acl->state == BT_OPEN || acl->state == BT_CLOSED) { 1052 acl->sec_level = BT_SECURITY_LOW; 1053 acl->pending_sec_level = sec_level; 1054 acl->auth_type = auth_type; 1055 hci_acl_create_connection(acl); 1056 } 1057 1058 return acl; 1059 } 1060 1061 struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst, 1062 __u16 setting) 1063 { 1064 struct hci_conn *acl; 1065 struct hci_conn *sco; 1066 1067 acl = hci_connect_acl(hdev, dst, BT_SECURITY_LOW, HCI_AT_NO_BONDING); 1068 if (IS_ERR(acl)) 1069 return acl; 1070 1071 sco = hci_conn_hash_lookup_ba(hdev, type, dst); 1072 if (!sco) { 1073 sco = hci_conn_add(hdev, type, dst, HCI_ROLE_MASTER); 1074 if (!sco) { 1075 hci_conn_drop(acl); 1076 return ERR_PTR(-ENOMEM); 1077 } 1078 } 1079 1080 acl->link = sco; 1081 sco->link = acl; 1082 1083 hci_conn_hold(sco); 1084 1085 sco->setting = setting; 1086 1087 if (acl->state == BT_CONNECTED && 1088 (sco->state == BT_OPEN || sco->state == BT_CLOSED)) { 1089 set_bit(HCI_CONN_POWER_SAVE, &acl->flags); 1090 hci_conn_enter_active_mode(acl, BT_POWER_FORCE_ACTIVE_ON); 1091 1092 if (test_bit(HCI_CONN_MODE_CHANGE_PEND, &acl->flags)) { 1093 /* defer SCO setup until mode change completed */ 1094 set_bit(HCI_CONN_SCO_SETUP_PEND, &acl->flags); 1095 return sco; 1096 } 1097 1098 hci_sco_setup(acl, 0x00); 1099 } 1100 1101 return sco; 1102 } 1103 1104 /* Check link security requirement */ 1105 int hci_conn_check_link_mode(struct hci_conn *conn) 1106 { 1107 BT_DBG("hcon %p", conn); 1108 1109 /* In Secure Connections Only mode, it is required that Secure 1110 * Connections is used and the link is encrypted with AES-CCM 1111 * using a P-256 authenticated combination key. 1112 */ 1113 if (hci_dev_test_flag(conn->hdev, HCI_SC_ONLY)) { 1114 if (!hci_conn_sc_enabled(conn) || 1115 !test_bit(HCI_CONN_AES_CCM, &conn->flags) || 1116 conn->key_type != HCI_LK_AUTH_COMBINATION_P256) 1117 return 0; 1118 } 1119 1120 if (hci_conn_ssp_enabled(conn) && 1121 !test_bit(HCI_CONN_ENCRYPT, &conn->flags)) 1122 return 0; 1123 1124 return 1; 1125 } 1126 1127 /* Authenticate remote device */ 1128 static int hci_conn_auth(struct hci_conn *conn, __u8 sec_level, __u8 auth_type) 1129 { 1130 BT_DBG("hcon %p", conn); 1131 1132 if (conn->pending_sec_level > sec_level) 1133 sec_level = conn->pending_sec_level; 1134 1135 if (sec_level > conn->sec_level) 1136 conn->pending_sec_level = sec_level; 1137 else if (test_bit(HCI_CONN_AUTH, &conn->flags)) 1138 return 1; 1139 1140 /* Make sure we preserve an existing MITM requirement*/ 1141 auth_type |= (conn->auth_type & 0x01); 1142 1143 conn->auth_type = auth_type; 1144 1145 if (!test_and_set_bit(HCI_CONN_AUTH_PEND, &conn->flags)) { 1146 struct hci_cp_auth_requested cp; 1147 1148 cp.handle = cpu_to_le16(conn->handle); 1149 hci_send_cmd(conn->hdev, HCI_OP_AUTH_REQUESTED, 1150 sizeof(cp), &cp); 1151 1152 /* If we're already encrypted set the REAUTH_PEND flag, 1153 * otherwise set the ENCRYPT_PEND. 1154 */ 1155 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) 1156 set_bit(HCI_CONN_REAUTH_PEND, &conn->flags); 1157 else 1158 set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags); 1159 } 1160 1161 return 0; 1162 } 1163 1164 /* Encrypt the the link */ 1165 static void hci_conn_encrypt(struct hci_conn *conn) 1166 { 1167 BT_DBG("hcon %p", conn); 1168 1169 if (!test_and_set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) { 1170 struct hci_cp_set_conn_encrypt cp; 1171 cp.handle = cpu_to_le16(conn->handle); 1172 cp.encrypt = 0x01; 1173 hci_send_cmd(conn->hdev, HCI_OP_SET_CONN_ENCRYPT, sizeof(cp), 1174 &cp); 1175 } 1176 } 1177 1178 /* Enable security */ 1179 int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type, 1180 bool initiator) 1181 { 1182 BT_DBG("hcon %p", conn); 1183 1184 if (conn->type == LE_LINK) 1185 return smp_conn_security(conn, sec_level); 1186 1187 /* For sdp we don't need the link key. */ 1188 if (sec_level == BT_SECURITY_SDP) 1189 return 1; 1190 1191 /* For non 2.1 devices and low security level we don't need the link 1192 key. */ 1193 if (sec_level == BT_SECURITY_LOW && !hci_conn_ssp_enabled(conn)) 1194 return 1; 1195 1196 /* For other security levels we need the link key. */ 1197 if (!test_bit(HCI_CONN_AUTH, &conn->flags)) 1198 goto auth; 1199 1200 /* An authenticated FIPS approved combination key has sufficient 1201 * security for security level 4. */ 1202 if (conn->key_type == HCI_LK_AUTH_COMBINATION_P256 && 1203 sec_level == BT_SECURITY_FIPS) 1204 goto encrypt; 1205 1206 /* An authenticated combination key has sufficient security for 1207 security level 3. */ 1208 if ((conn->key_type == HCI_LK_AUTH_COMBINATION_P192 || 1209 conn->key_type == HCI_LK_AUTH_COMBINATION_P256) && 1210 sec_level == BT_SECURITY_HIGH) 1211 goto encrypt; 1212 1213 /* An unauthenticated combination key has sufficient security for 1214 security level 1 and 2. */ 1215 if ((conn->key_type == HCI_LK_UNAUTH_COMBINATION_P192 || 1216 conn->key_type == HCI_LK_UNAUTH_COMBINATION_P256) && 1217 (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW)) 1218 goto encrypt; 1219 1220 /* A combination key has always sufficient security for the security 1221 levels 1 or 2. High security level requires the combination key 1222 is generated using maximum PIN code length (16). 1223 For pre 2.1 units. */ 1224 if (conn->key_type == HCI_LK_COMBINATION && 1225 (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW || 1226 conn->pin_length == 16)) 1227 goto encrypt; 1228 1229 auth: 1230 if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) 1231 return 0; 1232 1233 if (initiator) 1234 set_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags); 1235 1236 if (!hci_conn_auth(conn, sec_level, auth_type)) 1237 return 0; 1238 1239 encrypt: 1240 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) 1241 return 1; 1242 1243 hci_conn_encrypt(conn); 1244 return 0; 1245 } 1246 EXPORT_SYMBOL(hci_conn_security); 1247 1248 /* Check secure link requirement */ 1249 int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level) 1250 { 1251 BT_DBG("hcon %p", conn); 1252 1253 /* Accept if non-secure or higher security level is required */ 1254 if (sec_level != BT_SECURITY_HIGH && sec_level != BT_SECURITY_FIPS) 1255 return 1; 1256 1257 /* Accept if secure or higher security level is already present */ 1258 if (conn->sec_level == BT_SECURITY_HIGH || 1259 conn->sec_level == BT_SECURITY_FIPS) 1260 return 1; 1261 1262 /* Reject not secure link */ 1263 return 0; 1264 } 1265 EXPORT_SYMBOL(hci_conn_check_secure); 1266 1267 /* Switch role */ 1268 int hci_conn_switch_role(struct hci_conn *conn, __u8 role) 1269 { 1270 BT_DBG("hcon %p", conn); 1271 1272 if (role == conn->role) 1273 return 1; 1274 1275 if (!test_and_set_bit(HCI_CONN_RSWITCH_PEND, &conn->flags)) { 1276 struct hci_cp_switch_role cp; 1277 bacpy(&cp.bdaddr, &conn->dst); 1278 cp.role = role; 1279 hci_send_cmd(conn->hdev, HCI_OP_SWITCH_ROLE, sizeof(cp), &cp); 1280 } 1281 1282 return 0; 1283 } 1284 EXPORT_SYMBOL(hci_conn_switch_role); 1285 1286 /* Enter active mode */ 1287 void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active) 1288 { 1289 struct hci_dev *hdev = conn->hdev; 1290 1291 BT_DBG("hcon %p mode %d", conn, conn->mode); 1292 1293 if (conn->mode != HCI_CM_SNIFF) 1294 goto timer; 1295 1296 if (!test_bit(HCI_CONN_POWER_SAVE, &conn->flags) && !force_active) 1297 goto timer; 1298 1299 if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) { 1300 struct hci_cp_exit_sniff_mode cp; 1301 cp.handle = cpu_to_le16(conn->handle); 1302 hci_send_cmd(hdev, HCI_OP_EXIT_SNIFF_MODE, sizeof(cp), &cp); 1303 } 1304 1305 timer: 1306 if (hdev->idle_timeout > 0) 1307 queue_delayed_work(hdev->workqueue, &conn->idle_work, 1308 msecs_to_jiffies(hdev->idle_timeout)); 1309 } 1310 1311 /* Drop all connection on the device */ 1312 void hci_conn_hash_flush(struct hci_dev *hdev) 1313 { 1314 struct hci_conn_hash *h = &hdev->conn_hash; 1315 struct hci_conn *c, *n; 1316 1317 BT_DBG("hdev %s", hdev->name); 1318 1319 list_for_each_entry_safe(c, n, &h->list, list) { 1320 c->state = BT_CLOSED; 1321 1322 hci_disconn_cfm(c, HCI_ERROR_LOCAL_HOST_TERM); 1323 hci_conn_del(c); 1324 } 1325 } 1326 1327 /* Check pending connect attempts */ 1328 void hci_conn_check_pending(struct hci_dev *hdev) 1329 { 1330 struct hci_conn *conn; 1331 1332 BT_DBG("hdev %s", hdev->name); 1333 1334 hci_dev_lock(hdev); 1335 1336 conn = hci_conn_hash_lookup_state(hdev, ACL_LINK, BT_CONNECT2); 1337 if (conn) 1338 hci_acl_create_connection(conn); 1339 1340 hci_dev_unlock(hdev); 1341 } 1342 1343 static u32 get_link_mode(struct hci_conn *conn) 1344 { 1345 u32 link_mode = 0; 1346 1347 if (conn->role == HCI_ROLE_MASTER) 1348 link_mode |= HCI_LM_MASTER; 1349 1350 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) 1351 link_mode |= HCI_LM_ENCRYPT; 1352 1353 if (test_bit(HCI_CONN_AUTH, &conn->flags)) 1354 link_mode |= HCI_LM_AUTH; 1355 1356 if (test_bit(HCI_CONN_SECURE, &conn->flags)) 1357 link_mode |= HCI_LM_SECURE; 1358 1359 if (test_bit(HCI_CONN_FIPS, &conn->flags)) 1360 link_mode |= HCI_LM_FIPS; 1361 1362 return link_mode; 1363 } 1364 1365 int hci_get_conn_list(void __user *arg) 1366 { 1367 struct hci_conn *c; 1368 struct hci_conn_list_req req, *cl; 1369 struct hci_conn_info *ci; 1370 struct hci_dev *hdev; 1371 int n = 0, size, err; 1372 1373 if (copy_from_user(&req, arg, sizeof(req))) 1374 return -EFAULT; 1375 1376 if (!req.conn_num || req.conn_num > (PAGE_SIZE * 2) / sizeof(*ci)) 1377 return -EINVAL; 1378 1379 size = sizeof(req) + req.conn_num * sizeof(*ci); 1380 1381 cl = kmalloc(size, GFP_KERNEL); 1382 if (!cl) 1383 return -ENOMEM; 1384 1385 hdev = hci_dev_get(req.dev_id); 1386 if (!hdev) { 1387 kfree(cl); 1388 return -ENODEV; 1389 } 1390 1391 ci = cl->conn_info; 1392 1393 hci_dev_lock(hdev); 1394 list_for_each_entry(c, &hdev->conn_hash.list, list) { 1395 bacpy(&(ci + n)->bdaddr, &c->dst); 1396 (ci + n)->handle = c->handle; 1397 (ci + n)->type = c->type; 1398 (ci + n)->out = c->out; 1399 (ci + n)->state = c->state; 1400 (ci + n)->link_mode = get_link_mode(c); 1401 if (++n >= req.conn_num) 1402 break; 1403 } 1404 hci_dev_unlock(hdev); 1405 1406 cl->dev_id = hdev->id; 1407 cl->conn_num = n; 1408 size = sizeof(req) + n * sizeof(*ci); 1409 1410 hci_dev_put(hdev); 1411 1412 err = copy_to_user(arg, cl, size); 1413 kfree(cl); 1414 1415 return err ? -EFAULT : 0; 1416 } 1417 1418 int hci_get_conn_info(struct hci_dev *hdev, void __user *arg) 1419 { 1420 struct hci_conn_info_req req; 1421 struct hci_conn_info ci; 1422 struct hci_conn *conn; 1423 char __user *ptr = arg + sizeof(req); 1424 1425 if (copy_from_user(&req, arg, sizeof(req))) 1426 return -EFAULT; 1427 1428 hci_dev_lock(hdev); 1429 conn = hci_conn_hash_lookup_ba(hdev, req.type, &req.bdaddr); 1430 if (conn) { 1431 bacpy(&ci.bdaddr, &conn->dst); 1432 ci.handle = conn->handle; 1433 ci.type = conn->type; 1434 ci.out = conn->out; 1435 ci.state = conn->state; 1436 ci.link_mode = get_link_mode(conn); 1437 } 1438 hci_dev_unlock(hdev); 1439 1440 if (!conn) 1441 return -ENOENT; 1442 1443 return copy_to_user(ptr, &ci, sizeof(ci)) ? -EFAULT : 0; 1444 } 1445 1446 int hci_get_auth_info(struct hci_dev *hdev, void __user *arg) 1447 { 1448 struct hci_auth_info_req req; 1449 struct hci_conn *conn; 1450 1451 if (copy_from_user(&req, arg, sizeof(req))) 1452 return -EFAULT; 1453 1454 hci_dev_lock(hdev); 1455 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &req.bdaddr); 1456 if (conn) 1457 req.type = conn->auth_type; 1458 hci_dev_unlock(hdev); 1459 1460 if (!conn) 1461 return -ENOENT; 1462 1463 return copy_to_user(arg, &req, sizeof(req)) ? -EFAULT : 0; 1464 } 1465 1466 struct hci_chan *hci_chan_create(struct hci_conn *conn) 1467 { 1468 struct hci_dev *hdev = conn->hdev; 1469 struct hci_chan *chan; 1470 1471 BT_DBG("%s hcon %p", hdev->name, conn); 1472 1473 if (test_bit(HCI_CONN_DROP, &conn->flags)) { 1474 BT_DBG("Refusing to create new hci_chan"); 1475 return NULL; 1476 } 1477 1478 chan = kzalloc(sizeof(*chan), GFP_KERNEL); 1479 if (!chan) 1480 return NULL; 1481 1482 chan->conn = hci_conn_get(conn); 1483 skb_queue_head_init(&chan->data_q); 1484 chan->state = BT_CONNECTED; 1485 1486 list_add_rcu(&chan->list, &conn->chan_list); 1487 1488 return chan; 1489 } 1490 1491 void hci_chan_del(struct hci_chan *chan) 1492 { 1493 struct hci_conn *conn = chan->conn; 1494 struct hci_dev *hdev = conn->hdev; 1495 1496 BT_DBG("%s hcon %p chan %p", hdev->name, conn, chan); 1497 1498 list_del_rcu(&chan->list); 1499 1500 synchronize_rcu(); 1501 1502 /* Prevent new hci_chan's to be created for this hci_conn */ 1503 set_bit(HCI_CONN_DROP, &conn->flags); 1504 1505 hci_conn_put(conn); 1506 1507 skb_queue_purge(&chan->data_q); 1508 kfree(chan); 1509 } 1510 1511 void hci_chan_list_flush(struct hci_conn *conn) 1512 { 1513 struct hci_chan *chan, *n; 1514 1515 BT_DBG("hcon %p", conn); 1516 1517 list_for_each_entry_safe(chan, n, &conn->chan_list, list) 1518 hci_chan_del(chan); 1519 } 1520 1521 static struct hci_chan *__hci_chan_lookup_handle(struct hci_conn *hcon, 1522 __u16 handle) 1523 { 1524 struct hci_chan *hchan; 1525 1526 list_for_each_entry(hchan, &hcon->chan_list, list) { 1527 if (hchan->handle == handle) 1528 return hchan; 1529 } 1530 1531 return NULL; 1532 } 1533 1534 struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle) 1535 { 1536 struct hci_conn_hash *h = &hdev->conn_hash; 1537 struct hci_conn *hcon; 1538 struct hci_chan *hchan = NULL; 1539 1540 rcu_read_lock(); 1541 1542 list_for_each_entry_rcu(hcon, &h->list, list) { 1543 hchan = __hci_chan_lookup_handle(hcon, handle); 1544 if (hchan) 1545 break; 1546 } 1547 1548 rcu_read_unlock(); 1549 1550 return hchan; 1551 } 1552