1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved. 4 5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License version 2 as 9 published by the Free Software Foundation; 10 11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 22 SOFTWARE IS DISCLAIMED. 23 */ 24 25 /* Bluetooth HCI connection handling. */ 26 27 #include <linux/export.h> 28 #include <linux/debugfs.h> 29 30 #include <net/bluetooth/bluetooth.h> 31 #include <net/bluetooth/hci_core.h> 32 #include <net/bluetooth/l2cap.h> 33 34 #include "hci_request.h" 35 #include "smp.h" 36 #include "a2mp.h" 37 38 struct sco_param { 39 u16 pkt_type; 40 u16 max_latency; 41 u8 retrans_effort; 42 }; 43 44 static const struct sco_param esco_param_cvsd[] = { 45 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000a, 0x01 }, /* S3 */ 46 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x0007, 0x01 }, /* S2 */ 47 { EDR_ESCO_MASK | ESCO_EV3, 0x0007, 0x01 }, /* S1 */ 48 { EDR_ESCO_MASK | ESCO_HV3, 0xffff, 0x01 }, /* D1 */ 49 { EDR_ESCO_MASK | ESCO_HV1, 0xffff, 0x01 }, /* D0 */ 50 }; 51 52 static const struct sco_param sco_param_cvsd[] = { 53 { EDR_ESCO_MASK | ESCO_HV3, 0xffff, 0xff }, /* D1 */ 54 { EDR_ESCO_MASK | ESCO_HV1, 0xffff, 0xff }, /* D0 */ 55 }; 56 57 static const struct sco_param esco_param_msbc[] = { 58 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000d, 0x02 }, /* T2 */ 59 { EDR_ESCO_MASK | ESCO_EV3, 0x0008, 0x02 }, /* T1 */ 60 }; 61 62 /* This function requires the caller holds hdev->lock */ 63 static void hci_connect_le_scan_cleanup(struct hci_conn *conn) 64 { 65 struct hci_conn_params *params; 66 struct hci_dev *hdev = conn->hdev; 67 struct smp_irk *irk; 68 bdaddr_t *bdaddr; 69 u8 bdaddr_type; 70 71 bdaddr = &conn->dst; 72 bdaddr_type = conn->dst_type; 73 74 /* Check if we need to convert to identity address */ 75 irk = hci_get_irk(hdev, bdaddr, bdaddr_type); 76 if (irk) { 77 bdaddr = &irk->bdaddr; 78 bdaddr_type = irk->addr_type; 79 } 80 81 params = hci_pend_le_action_lookup(&hdev->pend_le_conns, bdaddr, 82 bdaddr_type); 83 if (!params || !params->explicit_connect) 84 return; 85 86 /* The connection attempt was doing scan for new RPA, and is 87 * in scan phase. If params are not associated with any other 88 * autoconnect action, remove them completely. If they are, just unmark 89 * them as waiting for connection, by clearing explicit_connect field. 90 */ 91 params->explicit_connect = false; 92 93 list_del_init(¶ms->action); 94 95 switch (params->auto_connect) { 96 case HCI_AUTO_CONN_EXPLICIT: 97 hci_conn_params_del(hdev, bdaddr, bdaddr_type); 98 /* return instead of break to avoid duplicate scan update */ 99 return; 100 case HCI_AUTO_CONN_DIRECT: 101 case HCI_AUTO_CONN_ALWAYS: 102 list_add(¶ms->action, &hdev->pend_le_conns); 103 break; 104 case HCI_AUTO_CONN_REPORT: 105 list_add(¶ms->action, &hdev->pend_le_reports); 106 break; 107 default: 108 break; 109 } 110 111 hci_update_passive_scan(hdev); 112 } 113 114 static void hci_conn_cleanup(struct hci_conn *conn) 115 { 116 struct hci_dev *hdev = conn->hdev; 117 118 if (test_bit(HCI_CONN_PARAM_REMOVAL_PEND, &conn->flags)) 119 hci_conn_params_del(conn->hdev, &conn->dst, conn->dst_type); 120 121 hci_chan_list_flush(conn); 122 123 hci_conn_hash_del(hdev, conn); 124 125 if (conn->type == SCO_LINK || conn->type == ESCO_LINK) { 126 switch (conn->setting & SCO_AIRMODE_MASK) { 127 case SCO_AIRMODE_CVSD: 128 case SCO_AIRMODE_TRANSP: 129 if (hdev->notify) 130 hdev->notify(hdev, HCI_NOTIFY_DISABLE_SCO); 131 break; 132 } 133 } else { 134 if (hdev->notify) 135 hdev->notify(hdev, HCI_NOTIFY_CONN_DEL); 136 } 137 138 hci_conn_del_sysfs(conn); 139 140 debugfs_remove_recursive(conn->debugfs); 141 142 hci_dev_put(hdev); 143 144 hci_conn_put(conn); 145 } 146 147 static void le_scan_cleanup(struct work_struct *work) 148 { 149 struct hci_conn *conn = container_of(work, struct hci_conn, 150 le_scan_cleanup); 151 struct hci_dev *hdev = conn->hdev; 152 struct hci_conn *c = NULL; 153 154 BT_DBG("%s hcon %p", hdev->name, conn); 155 156 hci_dev_lock(hdev); 157 158 /* Check that the hci_conn is still around */ 159 rcu_read_lock(); 160 list_for_each_entry_rcu(c, &hdev->conn_hash.list, list) { 161 if (c == conn) 162 break; 163 } 164 rcu_read_unlock(); 165 166 if (c == conn) { 167 hci_connect_le_scan_cleanup(conn); 168 hci_conn_cleanup(conn); 169 } 170 171 hci_dev_unlock(hdev); 172 hci_dev_put(hdev); 173 hci_conn_put(conn); 174 } 175 176 static void hci_connect_le_scan_remove(struct hci_conn *conn) 177 { 178 BT_DBG("%s hcon %p", conn->hdev->name, conn); 179 180 /* We can't call hci_conn_del/hci_conn_cleanup here since that 181 * could deadlock with another hci_conn_del() call that's holding 182 * hci_dev_lock and doing cancel_delayed_work_sync(&conn->disc_work). 183 * Instead, grab temporary extra references to the hci_dev and 184 * hci_conn and perform the necessary cleanup in a separate work 185 * callback. 186 */ 187 188 hci_dev_hold(conn->hdev); 189 hci_conn_get(conn); 190 191 /* Even though we hold a reference to the hdev, many other 192 * things might get cleaned up meanwhile, including the hdev's 193 * own workqueue, so we can't use that for scheduling. 194 */ 195 schedule_work(&conn->le_scan_cleanup); 196 } 197 198 static void hci_acl_create_connection(struct hci_conn *conn) 199 { 200 struct hci_dev *hdev = conn->hdev; 201 struct inquiry_entry *ie; 202 struct hci_cp_create_conn cp; 203 204 BT_DBG("hcon %p", conn); 205 206 /* Many controllers disallow HCI Create Connection while it is doing 207 * HCI Inquiry. So we cancel the Inquiry first before issuing HCI Create 208 * Connection. This may cause the MGMT discovering state to become false 209 * without user space's request but it is okay since the MGMT Discovery 210 * APIs do not promise that discovery should be done forever. Instead, 211 * the user space monitors the status of MGMT discovering and it may 212 * request for discovery again when this flag becomes false. 213 */ 214 if (test_bit(HCI_INQUIRY, &hdev->flags)) { 215 /* Put this connection to "pending" state so that it will be 216 * executed after the inquiry cancel command complete event. 217 */ 218 conn->state = BT_CONNECT2; 219 hci_send_cmd(hdev, HCI_OP_INQUIRY_CANCEL, 0, NULL); 220 return; 221 } 222 223 conn->state = BT_CONNECT; 224 conn->out = true; 225 conn->role = HCI_ROLE_MASTER; 226 227 conn->attempt++; 228 229 conn->link_policy = hdev->link_policy; 230 231 memset(&cp, 0, sizeof(cp)); 232 bacpy(&cp.bdaddr, &conn->dst); 233 cp.pscan_rep_mode = 0x02; 234 235 ie = hci_inquiry_cache_lookup(hdev, &conn->dst); 236 if (ie) { 237 if (inquiry_entry_age(ie) <= INQUIRY_ENTRY_AGE_MAX) { 238 cp.pscan_rep_mode = ie->data.pscan_rep_mode; 239 cp.pscan_mode = ie->data.pscan_mode; 240 cp.clock_offset = ie->data.clock_offset | 241 cpu_to_le16(0x8000); 242 } 243 244 memcpy(conn->dev_class, ie->data.dev_class, 3); 245 } 246 247 cp.pkt_type = cpu_to_le16(conn->pkt_type); 248 if (lmp_rswitch_capable(hdev) && !(hdev->link_mode & HCI_LM_MASTER)) 249 cp.role_switch = 0x01; 250 else 251 cp.role_switch = 0x00; 252 253 hci_send_cmd(hdev, HCI_OP_CREATE_CONN, sizeof(cp), &cp); 254 } 255 256 int hci_disconnect(struct hci_conn *conn, __u8 reason) 257 { 258 BT_DBG("hcon %p", conn); 259 260 /* When we are central of an established connection and it enters 261 * the disconnect timeout, then go ahead and try to read the 262 * current clock offset. Processing of the result is done 263 * within the event handling and hci_clock_offset_evt function. 264 */ 265 if (conn->type == ACL_LINK && conn->role == HCI_ROLE_MASTER && 266 (conn->state == BT_CONNECTED || conn->state == BT_CONFIG)) { 267 struct hci_dev *hdev = conn->hdev; 268 struct hci_cp_read_clock_offset clkoff_cp; 269 270 clkoff_cp.handle = cpu_to_le16(conn->handle); 271 hci_send_cmd(hdev, HCI_OP_READ_CLOCK_OFFSET, sizeof(clkoff_cp), 272 &clkoff_cp); 273 } 274 275 return hci_abort_conn(conn, reason); 276 } 277 278 static void hci_add_sco(struct hci_conn *conn, __u16 handle) 279 { 280 struct hci_dev *hdev = conn->hdev; 281 struct hci_cp_add_sco cp; 282 283 BT_DBG("hcon %p", conn); 284 285 conn->state = BT_CONNECT; 286 conn->out = true; 287 288 conn->attempt++; 289 290 cp.handle = cpu_to_le16(handle); 291 cp.pkt_type = cpu_to_le16(conn->pkt_type); 292 293 hci_send_cmd(hdev, HCI_OP_ADD_SCO, sizeof(cp), &cp); 294 } 295 296 static bool find_next_esco_param(struct hci_conn *conn, 297 const struct sco_param *esco_param, int size) 298 { 299 for (; conn->attempt <= size; conn->attempt++) { 300 if (lmp_esco_2m_capable(conn->link) || 301 (esco_param[conn->attempt - 1].pkt_type & ESCO_2EV3)) 302 break; 303 BT_DBG("hcon %p skipped attempt %d, eSCO 2M not supported", 304 conn, conn->attempt); 305 } 306 307 return conn->attempt <= size; 308 } 309 310 static bool hci_enhanced_setup_sync_conn(struct hci_conn *conn, __u16 handle) 311 { 312 struct hci_dev *hdev = conn->hdev; 313 struct hci_cp_enhanced_setup_sync_conn cp; 314 const struct sco_param *param; 315 316 bt_dev_dbg(hdev, "hcon %p", conn); 317 318 /* for offload use case, codec needs to configured before opening SCO */ 319 if (conn->codec.data_path) 320 hci_req_configure_datapath(hdev, &conn->codec); 321 322 conn->state = BT_CONNECT; 323 conn->out = true; 324 325 conn->attempt++; 326 327 memset(&cp, 0x00, sizeof(cp)); 328 329 cp.handle = cpu_to_le16(handle); 330 331 cp.tx_bandwidth = cpu_to_le32(0x00001f40); 332 cp.rx_bandwidth = cpu_to_le32(0x00001f40); 333 334 switch (conn->codec.id) { 335 case BT_CODEC_MSBC: 336 if (!find_next_esco_param(conn, esco_param_msbc, 337 ARRAY_SIZE(esco_param_msbc))) 338 return false; 339 340 param = &esco_param_msbc[conn->attempt - 1]; 341 cp.tx_coding_format.id = 0x05; 342 cp.rx_coding_format.id = 0x05; 343 cp.tx_codec_frame_size = __cpu_to_le16(60); 344 cp.rx_codec_frame_size = __cpu_to_le16(60); 345 cp.in_bandwidth = __cpu_to_le32(32000); 346 cp.out_bandwidth = __cpu_to_le32(32000); 347 cp.in_coding_format.id = 0x04; 348 cp.out_coding_format.id = 0x04; 349 cp.in_coded_data_size = __cpu_to_le16(16); 350 cp.out_coded_data_size = __cpu_to_le16(16); 351 cp.in_pcm_data_format = 2; 352 cp.out_pcm_data_format = 2; 353 cp.in_pcm_sample_payload_msb_pos = 0; 354 cp.out_pcm_sample_payload_msb_pos = 0; 355 cp.in_data_path = conn->codec.data_path; 356 cp.out_data_path = conn->codec.data_path; 357 cp.in_transport_unit_size = 1; 358 cp.out_transport_unit_size = 1; 359 break; 360 361 case BT_CODEC_TRANSPARENT: 362 if (!find_next_esco_param(conn, esco_param_msbc, 363 ARRAY_SIZE(esco_param_msbc))) 364 return false; 365 param = &esco_param_msbc[conn->attempt - 1]; 366 cp.tx_coding_format.id = 0x03; 367 cp.rx_coding_format.id = 0x03; 368 cp.tx_codec_frame_size = __cpu_to_le16(60); 369 cp.rx_codec_frame_size = __cpu_to_le16(60); 370 cp.in_bandwidth = __cpu_to_le32(0x1f40); 371 cp.out_bandwidth = __cpu_to_le32(0x1f40); 372 cp.in_coding_format.id = 0x03; 373 cp.out_coding_format.id = 0x03; 374 cp.in_coded_data_size = __cpu_to_le16(16); 375 cp.out_coded_data_size = __cpu_to_le16(16); 376 cp.in_pcm_data_format = 2; 377 cp.out_pcm_data_format = 2; 378 cp.in_pcm_sample_payload_msb_pos = 0; 379 cp.out_pcm_sample_payload_msb_pos = 0; 380 cp.in_data_path = conn->codec.data_path; 381 cp.out_data_path = conn->codec.data_path; 382 cp.in_transport_unit_size = 1; 383 cp.out_transport_unit_size = 1; 384 break; 385 386 case BT_CODEC_CVSD: 387 if (lmp_esco_capable(conn->link)) { 388 if (!find_next_esco_param(conn, esco_param_cvsd, 389 ARRAY_SIZE(esco_param_cvsd))) 390 return false; 391 param = &esco_param_cvsd[conn->attempt - 1]; 392 } else { 393 if (conn->attempt > ARRAY_SIZE(sco_param_cvsd)) 394 return false; 395 param = &sco_param_cvsd[conn->attempt - 1]; 396 } 397 cp.tx_coding_format.id = 2; 398 cp.rx_coding_format.id = 2; 399 cp.tx_codec_frame_size = __cpu_to_le16(60); 400 cp.rx_codec_frame_size = __cpu_to_le16(60); 401 cp.in_bandwidth = __cpu_to_le32(16000); 402 cp.out_bandwidth = __cpu_to_le32(16000); 403 cp.in_coding_format.id = 4; 404 cp.out_coding_format.id = 4; 405 cp.in_coded_data_size = __cpu_to_le16(16); 406 cp.out_coded_data_size = __cpu_to_le16(16); 407 cp.in_pcm_data_format = 2; 408 cp.out_pcm_data_format = 2; 409 cp.in_pcm_sample_payload_msb_pos = 0; 410 cp.out_pcm_sample_payload_msb_pos = 0; 411 cp.in_data_path = conn->codec.data_path; 412 cp.out_data_path = conn->codec.data_path; 413 cp.in_transport_unit_size = 16; 414 cp.out_transport_unit_size = 16; 415 break; 416 default: 417 return false; 418 } 419 420 cp.retrans_effort = param->retrans_effort; 421 cp.pkt_type = __cpu_to_le16(param->pkt_type); 422 cp.max_latency = __cpu_to_le16(param->max_latency); 423 424 if (hci_send_cmd(hdev, HCI_OP_ENHANCED_SETUP_SYNC_CONN, sizeof(cp), &cp) < 0) 425 return false; 426 427 return true; 428 } 429 430 static bool hci_setup_sync_conn(struct hci_conn *conn, __u16 handle) 431 { 432 struct hci_dev *hdev = conn->hdev; 433 struct hci_cp_setup_sync_conn cp; 434 const struct sco_param *param; 435 436 bt_dev_dbg(hdev, "hcon %p", conn); 437 438 conn->state = BT_CONNECT; 439 conn->out = true; 440 441 conn->attempt++; 442 443 cp.handle = cpu_to_le16(handle); 444 445 cp.tx_bandwidth = cpu_to_le32(0x00001f40); 446 cp.rx_bandwidth = cpu_to_le32(0x00001f40); 447 cp.voice_setting = cpu_to_le16(conn->setting); 448 449 switch (conn->setting & SCO_AIRMODE_MASK) { 450 case SCO_AIRMODE_TRANSP: 451 if (!find_next_esco_param(conn, esco_param_msbc, 452 ARRAY_SIZE(esco_param_msbc))) 453 return false; 454 param = &esco_param_msbc[conn->attempt - 1]; 455 break; 456 case SCO_AIRMODE_CVSD: 457 if (lmp_esco_capable(conn->link)) { 458 if (!find_next_esco_param(conn, esco_param_cvsd, 459 ARRAY_SIZE(esco_param_cvsd))) 460 return false; 461 param = &esco_param_cvsd[conn->attempt - 1]; 462 } else { 463 if (conn->attempt > ARRAY_SIZE(sco_param_cvsd)) 464 return false; 465 param = &sco_param_cvsd[conn->attempt - 1]; 466 } 467 break; 468 default: 469 return false; 470 } 471 472 cp.retrans_effort = param->retrans_effort; 473 cp.pkt_type = __cpu_to_le16(param->pkt_type); 474 cp.max_latency = __cpu_to_le16(param->max_latency); 475 476 if (hci_send_cmd(hdev, HCI_OP_SETUP_SYNC_CONN, sizeof(cp), &cp) < 0) 477 return false; 478 479 return true; 480 } 481 482 bool hci_setup_sync(struct hci_conn *conn, __u16 handle) 483 { 484 if (enhanced_sync_conn_capable(conn->hdev)) 485 return hci_enhanced_setup_sync_conn(conn, handle); 486 487 return hci_setup_sync_conn(conn, handle); 488 } 489 490 u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency, 491 u16 to_multiplier) 492 { 493 struct hci_dev *hdev = conn->hdev; 494 struct hci_conn_params *params; 495 struct hci_cp_le_conn_update cp; 496 497 hci_dev_lock(hdev); 498 499 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); 500 if (params) { 501 params->conn_min_interval = min; 502 params->conn_max_interval = max; 503 params->conn_latency = latency; 504 params->supervision_timeout = to_multiplier; 505 } 506 507 hci_dev_unlock(hdev); 508 509 memset(&cp, 0, sizeof(cp)); 510 cp.handle = cpu_to_le16(conn->handle); 511 cp.conn_interval_min = cpu_to_le16(min); 512 cp.conn_interval_max = cpu_to_le16(max); 513 cp.conn_latency = cpu_to_le16(latency); 514 cp.supervision_timeout = cpu_to_le16(to_multiplier); 515 cp.min_ce_len = cpu_to_le16(0x0000); 516 cp.max_ce_len = cpu_to_le16(0x0000); 517 518 hci_send_cmd(hdev, HCI_OP_LE_CONN_UPDATE, sizeof(cp), &cp); 519 520 if (params) 521 return 0x01; 522 523 return 0x00; 524 } 525 526 void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand, 527 __u8 ltk[16], __u8 key_size) 528 { 529 struct hci_dev *hdev = conn->hdev; 530 struct hci_cp_le_start_enc cp; 531 532 BT_DBG("hcon %p", conn); 533 534 memset(&cp, 0, sizeof(cp)); 535 536 cp.handle = cpu_to_le16(conn->handle); 537 cp.rand = rand; 538 cp.ediv = ediv; 539 memcpy(cp.ltk, ltk, key_size); 540 541 hci_send_cmd(hdev, HCI_OP_LE_START_ENC, sizeof(cp), &cp); 542 } 543 544 /* Device _must_ be locked */ 545 void hci_sco_setup(struct hci_conn *conn, __u8 status) 546 { 547 struct hci_conn *sco = conn->link; 548 549 if (!sco) 550 return; 551 552 BT_DBG("hcon %p", conn); 553 554 if (!status) { 555 if (lmp_esco_capable(conn->hdev)) 556 hci_setup_sync(sco, conn->handle); 557 else 558 hci_add_sco(sco, conn->handle); 559 } else { 560 hci_connect_cfm(sco, status); 561 hci_conn_del(sco); 562 } 563 } 564 565 static void hci_conn_timeout(struct work_struct *work) 566 { 567 struct hci_conn *conn = container_of(work, struct hci_conn, 568 disc_work.work); 569 int refcnt = atomic_read(&conn->refcnt); 570 571 BT_DBG("hcon %p state %s", conn, state_to_string(conn->state)); 572 573 WARN_ON(refcnt < 0); 574 575 /* FIXME: It was observed that in pairing failed scenario, refcnt 576 * drops below 0. Probably this is because l2cap_conn_del calls 577 * l2cap_chan_del for each channel, and inside l2cap_chan_del conn is 578 * dropped. After that loop hci_chan_del is called which also drops 579 * conn. For now make sure that ACL is alive if refcnt is higher then 0, 580 * otherwise drop it. 581 */ 582 if (refcnt > 0) 583 return; 584 585 /* LE connections in scanning state need special handling */ 586 if (conn->state == BT_CONNECT && conn->type == LE_LINK && 587 test_bit(HCI_CONN_SCANNING, &conn->flags)) { 588 hci_connect_le_scan_remove(conn); 589 return; 590 } 591 592 hci_abort_conn(conn, hci_proto_disconn_ind(conn)); 593 } 594 595 /* Enter sniff mode */ 596 static void hci_conn_idle(struct work_struct *work) 597 { 598 struct hci_conn *conn = container_of(work, struct hci_conn, 599 idle_work.work); 600 struct hci_dev *hdev = conn->hdev; 601 602 BT_DBG("hcon %p mode %d", conn, conn->mode); 603 604 if (!lmp_sniff_capable(hdev) || !lmp_sniff_capable(conn)) 605 return; 606 607 if (conn->mode != HCI_CM_ACTIVE || !(conn->link_policy & HCI_LP_SNIFF)) 608 return; 609 610 if (lmp_sniffsubr_capable(hdev) && lmp_sniffsubr_capable(conn)) { 611 struct hci_cp_sniff_subrate cp; 612 cp.handle = cpu_to_le16(conn->handle); 613 cp.max_latency = cpu_to_le16(0); 614 cp.min_remote_timeout = cpu_to_le16(0); 615 cp.min_local_timeout = cpu_to_le16(0); 616 hci_send_cmd(hdev, HCI_OP_SNIFF_SUBRATE, sizeof(cp), &cp); 617 } 618 619 if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) { 620 struct hci_cp_sniff_mode cp; 621 cp.handle = cpu_to_le16(conn->handle); 622 cp.max_interval = cpu_to_le16(hdev->sniff_max_interval); 623 cp.min_interval = cpu_to_le16(hdev->sniff_min_interval); 624 cp.attempt = cpu_to_le16(4); 625 cp.timeout = cpu_to_le16(1); 626 hci_send_cmd(hdev, HCI_OP_SNIFF_MODE, sizeof(cp), &cp); 627 } 628 } 629 630 static void hci_conn_auto_accept(struct work_struct *work) 631 { 632 struct hci_conn *conn = container_of(work, struct hci_conn, 633 auto_accept_work.work); 634 635 hci_send_cmd(conn->hdev, HCI_OP_USER_CONFIRM_REPLY, sizeof(conn->dst), 636 &conn->dst); 637 } 638 639 static void le_disable_advertising(struct hci_dev *hdev) 640 { 641 if (ext_adv_capable(hdev)) { 642 struct hci_cp_le_set_ext_adv_enable cp; 643 644 cp.enable = 0x00; 645 cp.num_of_sets = 0x00; 646 647 hci_send_cmd(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, sizeof(cp), 648 &cp); 649 } else { 650 u8 enable = 0x00; 651 hci_send_cmd(hdev, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), 652 &enable); 653 } 654 } 655 656 static void le_conn_timeout(struct work_struct *work) 657 { 658 struct hci_conn *conn = container_of(work, struct hci_conn, 659 le_conn_timeout.work); 660 struct hci_dev *hdev = conn->hdev; 661 662 BT_DBG(""); 663 664 /* We could end up here due to having done directed advertising, 665 * so clean up the state if necessary. This should however only 666 * happen with broken hardware or if low duty cycle was used 667 * (which doesn't have a timeout of its own). 668 */ 669 if (conn->role == HCI_ROLE_SLAVE) { 670 /* Disable LE Advertising */ 671 le_disable_advertising(hdev); 672 hci_dev_lock(hdev); 673 hci_conn_failed(conn, HCI_ERROR_ADVERTISING_TIMEOUT); 674 hci_dev_unlock(hdev); 675 return; 676 } 677 678 hci_abort_conn(conn, HCI_ERROR_REMOTE_USER_TERM); 679 } 680 681 struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst, 682 u8 role) 683 { 684 struct hci_conn *conn; 685 686 BT_DBG("%s dst %pMR", hdev->name, dst); 687 688 conn = kzalloc(sizeof(*conn), GFP_KERNEL); 689 if (!conn) 690 return NULL; 691 692 bacpy(&conn->dst, dst); 693 bacpy(&conn->src, &hdev->bdaddr); 694 conn->handle = HCI_CONN_HANDLE_UNSET; 695 conn->hdev = hdev; 696 conn->type = type; 697 conn->role = role; 698 conn->mode = HCI_CM_ACTIVE; 699 conn->state = BT_OPEN; 700 conn->auth_type = HCI_AT_GENERAL_BONDING; 701 conn->io_capability = hdev->io_capability; 702 conn->remote_auth = 0xff; 703 conn->key_type = 0xff; 704 conn->rssi = HCI_RSSI_INVALID; 705 conn->tx_power = HCI_TX_POWER_INVALID; 706 conn->max_tx_power = HCI_TX_POWER_INVALID; 707 708 set_bit(HCI_CONN_POWER_SAVE, &conn->flags); 709 conn->disc_timeout = HCI_DISCONN_TIMEOUT; 710 711 /* Set Default Authenticated payload timeout to 30s */ 712 conn->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT; 713 714 if (conn->role == HCI_ROLE_MASTER) 715 conn->out = true; 716 717 switch (type) { 718 case ACL_LINK: 719 conn->pkt_type = hdev->pkt_type & ACL_PTYPE_MASK; 720 break; 721 case LE_LINK: 722 /* conn->src should reflect the local identity address */ 723 hci_copy_identity_address(hdev, &conn->src, &conn->src_type); 724 break; 725 case SCO_LINK: 726 if (lmp_esco_capable(hdev)) 727 conn->pkt_type = (hdev->esco_type & SCO_ESCO_MASK) | 728 (hdev->esco_type & EDR_ESCO_MASK); 729 else 730 conn->pkt_type = hdev->pkt_type & SCO_PTYPE_MASK; 731 break; 732 case ESCO_LINK: 733 conn->pkt_type = hdev->esco_type & ~EDR_ESCO_MASK; 734 break; 735 } 736 737 skb_queue_head_init(&conn->data_q); 738 739 INIT_LIST_HEAD(&conn->chan_list); 740 741 INIT_DELAYED_WORK(&conn->disc_work, hci_conn_timeout); 742 INIT_DELAYED_WORK(&conn->auto_accept_work, hci_conn_auto_accept); 743 INIT_DELAYED_WORK(&conn->idle_work, hci_conn_idle); 744 INIT_DELAYED_WORK(&conn->le_conn_timeout, le_conn_timeout); 745 INIT_WORK(&conn->le_scan_cleanup, le_scan_cleanup); 746 747 atomic_set(&conn->refcnt, 0); 748 749 hci_dev_hold(hdev); 750 751 hci_conn_hash_add(hdev, conn); 752 753 /* The SCO and eSCO connections will only be notified when their 754 * setup has been completed. This is different to ACL links which 755 * can be notified right away. 756 */ 757 if (conn->type != SCO_LINK && conn->type != ESCO_LINK) { 758 if (hdev->notify) 759 hdev->notify(hdev, HCI_NOTIFY_CONN_ADD); 760 } 761 762 hci_conn_init_sysfs(conn); 763 764 return conn; 765 } 766 767 int hci_conn_del(struct hci_conn *conn) 768 { 769 struct hci_dev *hdev = conn->hdev; 770 771 BT_DBG("%s hcon %p handle %d", hdev->name, conn, conn->handle); 772 773 cancel_delayed_work_sync(&conn->disc_work); 774 cancel_delayed_work_sync(&conn->auto_accept_work); 775 cancel_delayed_work_sync(&conn->idle_work); 776 777 if (conn->type == ACL_LINK) { 778 struct hci_conn *sco = conn->link; 779 if (sco) 780 sco->link = NULL; 781 782 /* Unacked frames */ 783 hdev->acl_cnt += conn->sent; 784 } else if (conn->type == LE_LINK) { 785 cancel_delayed_work(&conn->le_conn_timeout); 786 787 if (hdev->le_pkts) 788 hdev->le_cnt += conn->sent; 789 else 790 hdev->acl_cnt += conn->sent; 791 } else { 792 struct hci_conn *acl = conn->link; 793 if (acl) { 794 acl->link = NULL; 795 hci_conn_drop(acl); 796 } 797 } 798 799 if (conn->amp_mgr) 800 amp_mgr_put(conn->amp_mgr); 801 802 skb_queue_purge(&conn->data_q); 803 804 /* Remove the connection from the list and cleanup its remaining 805 * state. This is a separate function since for some cases like 806 * BT_CONNECT_SCAN we *only* want the cleanup part without the 807 * rest of hci_conn_del. 808 */ 809 hci_conn_cleanup(conn); 810 811 return 0; 812 } 813 814 struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src, uint8_t src_type) 815 { 816 int use_src = bacmp(src, BDADDR_ANY); 817 struct hci_dev *hdev = NULL, *d; 818 819 BT_DBG("%pMR -> %pMR", src, dst); 820 821 read_lock(&hci_dev_list_lock); 822 823 list_for_each_entry(d, &hci_dev_list, list) { 824 if (!test_bit(HCI_UP, &d->flags) || 825 hci_dev_test_flag(d, HCI_USER_CHANNEL) || 826 d->dev_type != HCI_PRIMARY) 827 continue; 828 829 /* Simple routing: 830 * No source address - find interface with bdaddr != dst 831 * Source address - find interface with bdaddr == src 832 */ 833 834 if (use_src) { 835 bdaddr_t id_addr; 836 u8 id_addr_type; 837 838 if (src_type == BDADDR_BREDR) { 839 if (!lmp_bredr_capable(d)) 840 continue; 841 bacpy(&id_addr, &d->bdaddr); 842 id_addr_type = BDADDR_BREDR; 843 } else { 844 if (!lmp_le_capable(d)) 845 continue; 846 847 hci_copy_identity_address(d, &id_addr, 848 &id_addr_type); 849 850 /* Convert from HCI to three-value type */ 851 if (id_addr_type == ADDR_LE_DEV_PUBLIC) 852 id_addr_type = BDADDR_LE_PUBLIC; 853 else 854 id_addr_type = BDADDR_LE_RANDOM; 855 } 856 857 if (!bacmp(&id_addr, src) && id_addr_type == src_type) { 858 hdev = d; break; 859 } 860 } else { 861 if (bacmp(&d->bdaddr, dst)) { 862 hdev = d; break; 863 } 864 } 865 } 866 867 if (hdev) 868 hdev = hci_dev_hold(hdev); 869 870 read_unlock(&hci_dev_list_lock); 871 return hdev; 872 } 873 EXPORT_SYMBOL(hci_get_route); 874 875 /* This function requires the caller holds hdev->lock */ 876 static void hci_le_conn_failed(struct hci_conn *conn, u8 status) 877 { 878 struct hci_dev *hdev = conn->hdev; 879 struct hci_conn_params *params; 880 881 params = hci_pend_le_action_lookup(&hdev->pend_le_conns, &conn->dst, 882 conn->dst_type); 883 if (params && params->conn) { 884 hci_conn_drop(params->conn); 885 hci_conn_put(params->conn); 886 params->conn = NULL; 887 } 888 889 /* If the status indicates successful cancellation of 890 * the attempt (i.e. Unknown Connection Id) there's no point of 891 * notifying failure since we'll go back to keep trying to 892 * connect. The only exception is explicit connect requests 893 * where a timeout + cancel does indicate an actual failure. 894 */ 895 if (status != HCI_ERROR_UNKNOWN_CONN_ID || 896 (params && params->explicit_connect)) 897 mgmt_connect_failed(hdev, &conn->dst, conn->type, 898 conn->dst_type, status); 899 900 /* Since we may have temporarily stopped the background scanning in 901 * favor of connection establishment, we should restart it. 902 */ 903 hci_update_passive_scan(hdev); 904 905 /* Enable advertising in case this was a failed connection 906 * attempt as a peripheral. 907 */ 908 hci_enable_advertising(hdev); 909 } 910 911 /* This function requires the caller holds hdev->lock */ 912 void hci_conn_failed(struct hci_conn *conn, u8 status) 913 { 914 struct hci_dev *hdev = conn->hdev; 915 916 bt_dev_dbg(hdev, "status 0x%2.2x", status); 917 918 switch (conn->type) { 919 case LE_LINK: 920 hci_le_conn_failed(conn, status); 921 break; 922 case ACL_LINK: 923 mgmt_connect_failed(hdev, &conn->dst, conn->type, 924 conn->dst_type, status); 925 break; 926 } 927 928 conn->state = BT_CLOSED; 929 hci_connect_cfm(conn, status); 930 hci_conn_del(conn); 931 } 932 933 static void create_le_conn_complete(struct hci_dev *hdev, void *data, int err) 934 { 935 struct hci_conn *conn = data; 936 937 hci_dev_lock(hdev); 938 939 if (!err) { 940 hci_connect_le_scan_cleanup(conn); 941 goto done; 942 } 943 944 bt_dev_err(hdev, "request failed to create LE connection: err %d", err); 945 946 /* Check if connection is still pending */ 947 if (conn != hci_lookup_le_connect(hdev)) 948 goto done; 949 950 hci_conn_failed(conn, err); 951 952 done: 953 hci_dev_unlock(hdev); 954 } 955 956 static int hci_connect_le_sync(struct hci_dev *hdev, void *data) 957 { 958 struct hci_conn *conn = data; 959 960 bt_dev_dbg(hdev, "conn %p", conn); 961 962 return hci_le_create_conn_sync(hdev, conn); 963 } 964 965 struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst, 966 u8 dst_type, bool dst_resolved, u8 sec_level, 967 u16 conn_timeout, u8 role) 968 { 969 struct hci_conn *conn; 970 struct smp_irk *irk; 971 int err; 972 973 /* Let's make sure that le is enabled.*/ 974 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 975 if (lmp_le_capable(hdev)) 976 return ERR_PTR(-ECONNREFUSED); 977 978 return ERR_PTR(-EOPNOTSUPP); 979 } 980 981 /* Since the controller supports only one LE connection attempt at a 982 * time, we return -EBUSY if there is any connection attempt running. 983 */ 984 if (hci_lookup_le_connect(hdev)) 985 return ERR_PTR(-EBUSY); 986 987 /* If there's already a connection object but it's not in 988 * scanning state it means it must already be established, in 989 * which case we can't do anything else except report a failure 990 * to connect. 991 */ 992 conn = hci_conn_hash_lookup_le(hdev, dst, dst_type); 993 if (conn && !test_bit(HCI_CONN_SCANNING, &conn->flags)) { 994 return ERR_PTR(-EBUSY); 995 } 996 997 /* Check if the destination address has been resolved by the controller 998 * since if it did then the identity address shall be used. 999 */ 1000 if (!dst_resolved) { 1001 /* When given an identity address with existing identity 1002 * resolving key, the connection needs to be established 1003 * to a resolvable random address. 1004 * 1005 * Storing the resolvable random address is required here 1006 * to handle connection failures. The address will later 1007 * be resolved back into the original identity address 1008 * from the connect request. 1009 */ 1010 irk = hci_find_irk_by_addr(hdev, dst, dst_type); 1011 if (irk && bacmp(&irk->rpa, BDADDR_ANY)) { 1012 dst = &irk->rpa; 1013 dst_type = ADDR_LE_DEV_RANDOM; 1014 } 1015 } 1016 1017 if (conn) { 1018 bacpy(&conn->dst, dst); 1019 } else { 1020 conn = hci_conn_add(hdev, LE_LINK, dst, role); 1021 if (!conn) 1022 return ERR_PTR(-ENOMEM); 1023 hci_conn_hold(conn); 1024 conn->pending_sec_level = sec_level; 1025 } 1026 1027 conn->dst_type = dst_type; 1028 conn->sec_level = BT_SECURITY_LOW; 1029 conn->conn_timeout = conn_timeout; 1030 1031 conn->state = BT_CONNECT; 1032 clear_bit(HCI_CONN_SCANNING, &conn->flags); 1033 1034 err = hci_cmd_sync_queue(hdev, hci_connect_le_sync, conn, 1035 create_le_conn_complete); 1036 if (err) { 1037 hci_conn_del(conn); 1038 return ERR_PTR(err); 1039 } 1040 1041 return conn; 1042 } 1043 1044 static bool is_connected(struct hci_dev *hdev, bdaddr_t *addr, u8 type) 1045 { 1046 struct hci_conn *conn; 1047 1048 conn = hci_conn_hash_lookup_le(hdev, addr, type); 1049 if (!conn) 1050 return false; 1051 1052 if (conn->state != BT_CONNECTED) 1053 return false; 1054 1055 return true; 1056 } 1057 1058 /* This function requires the caller holds hdev->lock */ 1059 static int hci_explicit_conn_params_set(struct hci_dev *hdev, 1060 bdaddr_t *addr, u8 addr_type) 1061 { 1062 struct hci_conn_params *params; 1063 1064 if (is_connected(hdev, addr, addr_type)) 1065 return -EISCONN; 1066 1067 params = hci_conn_params_lookup(hdev, addr, addr_type); 1068 if (!params) { 1069 params = hci_conn_params_add(hdev, addr, addr_type); 1070 if (!params) 1071 return -ENOMEM; 1072 1073 /* If we created new params, mark them to be deleted in 1074 * hci_connect_le_scan_cleanup. It's different case than 1075 * existing disabled params, those will stay after cleanup. 1076 */ 1077 params->auto_connect = HCI_AUTO_CONN_EXPLICIT; 1078 } 1079 1080 /* We're trying to connect, so make sure params are at pend_le_conns */ 1081 if (params->auto_connect == HCI_AUTO_CONN_DISABLED || 1082 params->auto_connect == HCI_AUTO_CONN_REPORT || 1083 params->auto_connect == HCI_AUTO_CONN_EXPLICIT) { 1084 list_del_init(¶ms->action); 1085 list_add(¶ms->action, &hdev->pend_le_conns); 1086 } 1087 1088 params->explicit_connect = true; 1089 1090 BT_DBG("addr %pMR (type %u) auto_connect %u", addr, addr_type, 1091 params->auto_connect); 1092 1093 return 0; 1094 } 1095 1096 /* This function requires the caller holds hdev->lock */ 1097 struct hci_conn *hci_connect_le_scan(struct hci_dev *hdev, bdaddr_t *dst, 1098 u8 dst_type, u8 sec_level, 1099 u16 conn_timeout, 1100 enum conn_reasons conn_reason) 1101 { 1102 struct hci_conn *conn; 1103 1104 /* Let's make sure that le is enabled.*/ 1105 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 1106 if (lmp_le_capable(hdev)) 1107 return ERR_PTR(-ECONNREFUSED); 1108 1109 return ERR_PTR(-EOPNOTSUPP); 1110 } 1111 1112 /* Some devices send ATT messages as soon as the physical link is 1113 * established. To be able to handle these ATT messages, the user- 1114 * space first establishes the connection and then starts the pairing 1115 * process. 1116 * 1117 * So if a hci_conn object already exists for the following connection 1118 * attempt, we simply update pending_sec_level and auth_type fields 1119 * and return the object found. 1120 */ 1121 conn = hci_conn_hash_lookup_le(hdev, dst, dst_type); 1122 if (conn) { 1123 if (conn->pending_sec_level < sec_level) 1124 conn->pending_sec_level = sec_level; 1125 goto done; 1126 } 1127 1128 BT_DBG("requesting refresh of dst_addr"); 1129 1130 conn = hci_conn_add(hdev, LE_LINK, dst, HCI_ROLE_MASTER); 1131 if (!conn) 1132 return ERR_PTR(-ENOMEM); 1133 1134 if (hci_explicit_conn_params_set(hdev, dst, dst_type) < 0) { 1135 hci_conn_del(conn); 1136 return ERR_PTR(-EBUSY); 1137 } 1138 1139 conn->state = BT_CONNECT; 1140 set_bit(HCI_CONN_SCANNING, &conn->flags); 1141 conn->dst_type = dst_type; 1142 conn->sec_level = BT_SECURITY_LOW; 1143 conn->pending_sec_level = sec_level; 1144 conn->conn_timeout = conn_timeout; 1145 conn->conn_reason = conn_reason; 1146 1147 hci_update_passive_scan(hdev); 1148 1149 done: 1150 hci_conn_hold(conn); 1151 return conn; 1152 } 1153 1154 struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst, 1155 u8 sec_level, u8 auth_type, 1156 enum conn_reasons conn_reason) 1157 { 1158 struct hci_conn *acl; 1159 1160 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 1161 if (lmp_bredr_capable(hdev)) 1162 return ERR_PTR(-ECONNREFUSED); 1163 1164 return ERR_PTR(-EOPNOTSUPP); 1165 } 1166 1167 acl = hci_conn_hash_lookup_ba(hdev, ACL_LINK, dst); 1168 if (!acl) { 1169 acl = hci_conn_add(hdev, ACL_LINK, dst, HCI_ROLE_MASTER); 1170 if (!acl) 1171 return ERR_PTR(-ENOMEM); 1172 } 1173 1174 hci_conn_hold(acl); 1175 1176 acl->conn_reason = conn_reason; 1177 if (acl->state == BT_OPEN || acl->state == BT_CLOSED) { 1178 acl->sec_level = BT_SECURITY_LOW; 1179 acl->pending_sec_level = sec_level; 1180 acl->auth_type = auth_type; 1181 hci_acl_create_connection(acl); 1182 } 1183 1184 return acl; 1185 } 1186 1187 struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst, 1188 __u16 setting, struct bt_codec *codec) 1189 { 1190 struct hci_conn *acl; 1191 struct hci_conn *sco; 1192 1193 acl = hci_connect_acl(hdev, dst, BT_SECURITY_LOW, HCI_AT_NO_BONDING, 1194 CONN_REASON_SCO_CONNECT); 1195 if (IS_ERR(acl)) 1196 return acl; 1197 1198 sco = hci_conn_hash_lookup_ba(hdev, type, dst); 1199 if (!sco) { 1200 sco = hci_conn_add(hdev, type, dst, HCI_ROLE_MASTER); 1201 if (!sco) { 1202 hci_conn_drop(acl); 1203 return ERR_PTR(-ENOMEM); 1204 } 1205 } 1206 1207 acl->link = sco; 1208 sco->link = acl; 1209 1210 hci_conn_hold(sco); 1211 1212 sco->setting = setting; 1213 sco->codec = *codec; 1214 1215 if (acl->state == BT_CONNECTED && 1216 (sco->state == BT_OPEN || sco->state == BT_CLOSED)) { 1217 set_bit(HCI_CONN_POWER_SAVE, &acl->flags); 1218 hci_conn_enter_active_mode(acl, BT_POWER_FORCE_ACTIVE_ON); 1219 1220 if (test_bit(HCI_CONN_MODE_CHANGE_PEND, &acl->flags)) { 1221 /* defer SCO setup until mode change completed */ 1222 set_bit(HCI_CONN_SCO_SETUP_PEND, &acl->flags); 1223 return sco; 1224 } 1225 1226 hci_sco_setup(acl, 0x00); 1227 } 1228 1229 return sco; 1230 } 1231 1232 /* Check link security requirement */ 1233 int hci_conn_check_link_mode(struct hci_conn *conn) 1234 { 1235 BT_DBG("hcon %p", conn); 1236 1237 /* In Secure Connections Only mode, it is required that Secure 1238 * Connections is used and the link is encrypted with AES-CCM 1239 * using a P-256 authenticated combination key. 1240 */ 1241 if (hci_dev_test_flag(conn->hdev, HCI_SC_ONLY)) { 1242 if (!hci_conn_sc_enabled(conn) || 1243 !test_bit(HCI_CONN_AES_CCM, &conn->flags) || 1244 conn->key_type != HCI_LK_AUTH_COMBINATION_P256) 1245 return 0; 1246 } 1247 1248 /* AES encryption is required for Level 4: 1249 * 1250 * BLUETOOTH CORE SPECIFICATION Version 5.2 | Vol 3, Part C 1251 * page 1319: 1252 * 1253 * 128-bit equivalent strength for link and encryption keys 1254 * required using FIPS approved algorithms (E0 not allowed, 1255 * SAFER+ not allowed, and P-192 not allowed; encryption key 1256 * not shortened) 1257 */ 1258 if (conn->sec_level == BT_SECURITY_FIPS && 1259 !test_bit(HCI_CONN_AES_CCM, &conn->flags)) { 1260 bt_dev_err(conn->hdev, 1261 "Invalid security: Missing AES-CCM usage"); 1262 return 0; 1263 } 1264 1265 if (hci_conn_ssp_enabled(conn) && 1266 !test_bit(HCI_CONN_ENCRYPT, &conn->flags)) 1267 return 0; 1268 1269 return 1; 1270 } 1271 1272 /* Authenticate remote device */ 1273 static int hci_conn_auth(struct hci_conn *conn, __u8 sec_level, __u8 auth_type) 1274 { 1275 BT_DBG("hcon %p", conn); 1276 1277 if (conn->pending_sec_level > sec_level) 1278 sec_level = conn->pending_sec_level; 1279 1280 if (sec_level > conn->sec_level) 1281 conn->pending_sec_level = sec_level; 1282 else if (test_bit(HCI_CONN_AUTH, &conn->flags)) 1283 return 1; 1284 1285 /* Make sure we preserve an existing MITM requirement*/ 1286 auth_type |= (conn->auth_type & 0x01); 1287 1288 conn->auth_type = auth_type; 1289 1290 if (!test_and_set_bit(HCI_CONN_AUTH_PEND, &conn->flags)) { 1291 struct hci_cp_auth_requested cp; 1292 1293 cp.handle = cpu_to_le16(conn->handle); 1294 hci_send_cmd(conn->hdev, HCI_OP_AUTH_REQUESTED, 1295 sizeof(cp), &cp); 1296 1297 /* If we're already encrypted set the REAUTH_PEND flag, 1298 * otherwise set the ENCRYPT_PEND. 1299 */ 1300 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) 1301 set_bit(HCI_CONN_REAUTH_PEND, &conn->flags); 1302 else 1303 set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags); 1304 } 1305 1306 return 0; 1307 } 1308 1309 /* Encrypt the link */ 1310 static void hci_conn_encrypt(struct hci_conn *conn) 1311 { 1312 BT_DBG("hcon %p", conn); 1313 1314 if (!test_and_set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) { 1315 struct hci_cp_set_conn_encrypt cp; 1316 cp.handle = cpu_to_le16(conn->handle); 1317 cp.encrypt = 0x01; 1318 hci_send_cmd(conn->hdev, HCI_OP_SET_CONN_ENCRYPT, sizeof(cp), 1319 &cp); 1320 } 1321 } 1322 1323 /* Enable security */ 1324 int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type, 1325 bool initiator) 1326 { 1327 BT_DBG("hcon %p", conn); 1328 1329 if (conn->type == LE_LINK) 1330 return smp_conn_security(conn, sec_level); 1331 1332 /* For sdp we don't need the link key. */ 1333 if (sec_level == BT_SECURITY_SDP) 1334 return 1; 1335 1336 /* For non 2.1 devices and low security level we don't need the link 1337 key. */ 1338 if (sec_level == BT_SECURITY_LOW && !hci_conn_ssp_enabled(conn)) 1339 return 1; 1340 1341 /* For other security levels we need the link key. */ 1342 if (!test_bit(HCI_CONN_AUTH, &conn->flags)) 1343 goto auth; 1344 1345 /* An authenticated FIPS approved combination key has sufficient 1346 * security for security level 4. */ 1347 if (conn->key_type == HCI_LK_AUTH_COMBINATION_P256 && 1348 sec_level == BT_SECURITY_FIPS) 1349 goto encrypt; 1350 1351 /* An authenticated combination key has sufficient security for 1352 security level 3. */ 1353 if ((conn->key_type == HCI_LK_AUTH_COMBINATION_P192 || 1354 conn->key_type == HCI_LK_AUTH_COMBINATION_P256) && 1355 sec_level == BT_SECURITY_HIGH) 1356 goto encrypt; 1357 1358 /* An unauthenticated combination key has sufficient security for 1359 security level 1 and 2. */ 1360 if ((conn->key_type == HCI_LK_UNAUTH_COMBINATION_P192 || 1361 conn->key_type == HCI_LK_UNAUTH_COMBINATION_P256) && 1362 (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW)) 1363 goto encrypt; 1364 1365 /* A combination key has always sufficient security for the security 1366 levels 1 or 2. High security level requires the combination key 1367 is generated using maximum PIN code length (16). 1368 For pre 2.1 units. */ 1369 if (conn->key_type == HCI_LK_COMBINATION && 1370 (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW || 1371 conn->pin_length == 16)) 1372 goto encrypt; 1373 1374 auth: 1375 if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) 1376 return 0; 1377 1378 if (initiator) 1379 set_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags); 1380 1381 if (!hci_conn_auth(conn, sec_level, auth_type)) 1382 return 0; 1383 1384 encrypt: 1385 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) { 1386 /* Ensure that the encryption key size has been read, 1387 * otherwise stall the upper layer responses. 1388 */ 1389 if (!conn->enc_key_size) 1390 return 0; 1391 1392 /* Nothing else needed, all requirements are met */ 1393 return 1; 1394 } 1395 1396 hci_conn_encrypt(conn); 1397 return 0; 1398 } 1399 EXPORT_SYMBOL(hci_conn_security); 1400 1401 /* Check secure link requirement */ 1402 int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level) 1403 { 1404 BT_DBG("hcon %p", conn); 1405 1406 /* Accept if non-secure or higher security level is required */ 1407 if (sec_level != BT_SECURITY_HIGH && sec_level != BT_SECURITY_FIPS) 1408 return 1; 1409 1410 /* Accept if secure or higher security level is already present */ 1411 if (conn->sec_level == BT_SECURITY_HIGH || 1412 conn->sec_level == BT_SECURITY_FIPS) 1413 return 1; 1414 1415 /* Reject not secure link */ 1416 return 0; 1417 } 1418 EXPORT_SYMBOL(hci_conn_check_secure); 1419 1420 /* Switch role */ 1421 int hci_conn_switch_role(struct hci_conn *conn, __u8 role) 1422 { 1423 BT_DBG("hcon %p", conn); 1424 1425 if (role == conn->role) 1426 return 1; 1427 1428 if (!test_and_set_bit(HCI_CONN_RSWITCH_PEND, &conn->flags)) { 1429 struct hci_cp_switch_role cp; 1430 bacpy(&cp.bdaddr, &conn->dst); 1431 cp.role = role; 1432 hci_send_cmd(conn->hdev, HCI_OP_SWITCH_ROLE, sizeof(cp), &cp); 1433 } 1434 1435 return 0; 1436 } 1437 EXPORT_SYMBOL(hci_conn_switch_role); 1438 1439 /* Enter active mode */ 1440 void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active) 1441 { 1442 struct hci_dev *hdev = conn->hdev; 1443 1444 BT_DBG("hcon %p mode %d", conn, conn->mode); 1445 1446 if (conn->mode != HCI_CM_SNIFF) 1447 goto timer; 1448 1449 if (!test_bit(HCI_CONN_POWER_SAVE, &conn->flags) && !force_active) 1450 goto timer; 1451 1452 if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) { 1453 struct hci_cp_exit_sniff_mode cp; 1454 cp.handle = cpu_to_le16(conn->handle); 1455 hci_send_cmd(hdev, HCI_OP_EXIT_SNIFF_MODE, sizeof(cp), &cp); 1456 } 1457 1458 timer: 1459 if (hdev->idle_timeout > 0) 1460 queue_delayed_work(hdev->workqueue, &conn->idle_work, 1461 msecs_to_jiffies(hdev->idle_timeout)); 1462 } 1463 1464 /* Drop all connection on the device */ 1465 void hci_conn_hash_flush(struct hci_dev *hdev) 1466 { 1467 struct hci_conn_hash *h = &hdev->conn_hash; 1468 struct hci_conn *c, *n; 1469 1470 BT_DBG("hdev %s", hdev->name); 1471 1472 list_for_each_entry_safe(c, n, &h->list, list) { 1473 c->state = BT_CLOSED; 1474 1475 hci_disconn_cfm(c, HCI_ERROR_LOCAL_HOST_TERM); 1476 hci_conn_del(c); 1477 } 1478 } 1479 1480 /* Check pending connect attempts */ 1481 void hci_conn_check_pending(struct hci_dev *hdev) 1482 { 1483 struct hci_conn *conn; 1484 1485 BT_DBG("hdev %s", hdev->name); 1486 1487 hci_dev_lock(hdev); 1488 1489 conn = hci_conn_hash_lookup_state(hdev, ACL_LINK, BT_CONNECT2); 1490 if (conn) 1491 hci_acl_create_connection(conn); 1492 1493 hci_dev_unlock(hdev); 1494 } 1495 1496 static u32 get_link_mode(struct hci_conn *conn) 1497 { 1498 u32 link_mode = 0; 1499 1500 if (conn->role == HCI_ROLE_MASTER) 1501 link_mode |= HCI_LM_MASTER; 1502 1503 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) 1504 link_mode |= HCI_LM_ENCRYPT; 1505 1506 if (test_bit(HCI_CONN_AUTH, &conn->flags)) 1507 link_mode |= HCI_LM_AUTH; 1508 1509 if (test_bit(HCI_CONN_SECURE, &conn->flags)) 1510 link_mode |= HCI_LM_SECURE; 1511 1512 if (test_bit(HCI_CONN_FIPS, &conn->flags)) 1513 link_mode |= HCI_LM_FIPS; 1514 1515 return link_mode; 1516 } 1517 1518 int hci_get_conn_list(void __user *arg) 1519 { 1520 struct hci_conn *c; 1521 struct hci_conn_list_req req, *cl; 1522 struct hci_conn_info *ci; 1523 struct hci_dev *hdev; 1524 int n = 0, size, err; 1525 1526 if (copy_from_user(&req, arg, sizeof(req))) 1527 return -EFAULT; 1528 1529 if (!req.conn_num || req.conn_num > (PAGE_SIZE * 2) / sizeof(*ci)) 1530 return -EINVAL; 1531 1532 size = sizeof(req) + req.conn_num * sizeof(*ci); 1533 1534 cl = kmalloc(size, GFP_KERNEL); 1535 if (!cl) 1536 return -ENOMEM; 1537 1538 hdev = hci_dev_get(req.dev_id); 1539 if (!hdev) { 1540 kfree(cl); 1541 return -ENODEV; 1542 } 1543 1544 ci = cl->conn_info; 1545 1546 hci_dev_lock(hdev); 1547 list_for_each_entry(c, &hdev->conn_hash.list, list) { 1548 bacpy(&(ci + n)->bdaddr, &c->dst); 1549 (ci + n)->handle = c->handle; 1550 (ci + n)->type = c->type; 1551 (ci + n)->out = c->out; 1552 (ci + n)->state = c->state; 1553 (ci + n)->link_mode = get_link_mode(c); 1554 if (++n >= req.conn_num) 1555 break; 1556 } 1557 hci_dev_unlock(hdev); 1558 1559 cl->dev_id = hdev->id; 1560 cl->conn_num = n; 1561 size = sizeof(req) + n * sizeof(*ci); 1562 1563 hci_dev_put(hdev); 1564 1565 err = copy_to_user(arg, cl, size); 1566 kfree(cl); 1567 1568 return err ? -EFAULT : 0; 1569 } 1570 1571 int hci_get_conn_info(struct hci_dev *hdev, void __user *arg) 1572 { 1573 struct hci_conn_info_req req; 1574 struct hci_conn_info ci; 1575 struct hci_conn *conn; 1576 char __user *ptr = arg + sizeof(req); 1577 1578 if (copy_from_user(&req, arg, sizeof(req))) 1579 return -EFAULT; 1580 1581 hci_dev_lock(hdev); 1582 conn = hci_conn_hash_lookup_ba(hdev, req.type, &req.bdaddr); 1583 if (conn) { 1584 bacpy(&ci.bdaddr, &conn->dst); 1585 ci.handle = conn->handle; 1586 ci.type = conn->type; 1587 ci.out = conn->out; 1588 ci.state = conn->state; 1589 ci.link_mode = get_link_mode(conn); 1590 } 1591 hci_dev_unlock(hdev); 1592 1593 if (!conn) 1594 return -ENOENT; 1595 1596 return copy_to_user(ptr, &ci, sizeof(ci)) ? -EFAULT : 0; 1597 } 1598 1599 int hci_get_auth_info(struct hci_dev *hdev, void __user *arg) 1600 { 1601 struct hci_auth_info_req req; 1602 struct hci_conn *conn; 1603 1604 if (copy_from_user(&req, arg, sizeof(req))) 1605 return -EFAULT; 1606 1607 hci_dev_lock(hdev); 1608 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &req.bdaddr); 1609 if (conn) 1610 req.type = conn->auth_type; 1611 hci_dev_unlock(hdev); 1612 1613 if (!conn) 1614 return -ENOENT; 1615 1616 return copy_to_user(arg, &req, sizeof(req)) ? -EFAULT : 0; 1617 } 1618 1619 struct hci_chan *hci_chan_create(struct hci_conn *conn) 1620 { 1621 struct hci_dev *hdev = conn->hdev; 1622 struct hci_chan *chan; 1623 1624 BT_DBG("%s hcon %p", hdev->name, conn); 1625 1626 if (test_bit(HCI_CONN_DROP, &conn->flags)) { 1627 BT_DBG("Refusing to create new hci_chan"); 1628 return NULL; 1629 } 1630 1631 chan = kzalloc(sizeof(*chan), GFP_KERNEL); 1632 if (!chan) 1633 return NULL; 1634 1635 chan->conn = hci_conn_get(conn); 1636 skb_queue_head_init(&chan->data_q); 1637 chan->state = BT_CONNECTED; 1638 1639 list_add_rcu(&chan->list, &conn->chan_list); 1640 1641 return chan; 1642 } 1643 1644 void hci_chan_del(struct hci_chan *chan) 1645 { 1646 struct hci_conn *conn = chan->conn; 1647 struct hci_dev *hdev = conn->hdev; 1648 1649 BT_DBG("%s hcon %p chan %p", hdev->name, conn, chan); 1650 1651 list_del_rcu(&chan->list); 1652 1653 synchronize_rcu(); 1654 1655 /* Prevent new hci_chan's to be created for this hci_conn */ 1656 set_bit(HCI_CONN_DROP, &conn->flags); 1657 1658 hci_conn_put(conn); 1659 1660 skb_queue_purge(&chan->data_q); 1661 kfree(chan); 1662 } 1663 1664 void hci_chan_list_flush(struct hci_conn *conn) 1665 { 1666 struct hci_chan *chan, *n; 1667 1668 BT_DBG("hcon %p", conn); 1669 1670 list_for_each_entry_safe(chan, n, &conn->chan_list, list) 1671 hci_chan_del(chan); 1672 } 1673 1674 static struct hci_chan *__hci_chan_lookup_handle(struct hci_conn *hcon, 1675 __u16 handle) 1676 { 1677 struct hci_chan *hchan; 1678 1679 list_for_each_entry(hchan, &hcon->chan_list, list) { 1680 if (hchan->handle == handle) 1681 return hchan; 1682 } 1683 1684 return NULL; 1685 } 1686 1687 struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle) 1688 { 1689 struct hci_conn_hash *h = &hdev->conn_hash; 1690 struct hci_conn *hcon; 1691 struct hci_chan *hchan = NULL; 1692 1693 rcu_read_lock(); 1694 1695 list_for_each_entry_rcu(hcon, &h->list, list) { 1696 hchan = __hci_chan_lookup_handle(hcon, handle); 1697 if (hchan) 1698 break; 1699 } 1700 1701 rcu_read_unlock(); 1702 1703 return hchan; 1704 } 1705 1706 u32 hci_conn_get_phy(struct hci_conn *conn) 1707 { 1708 u32 phys = 0; 1709 1710 /* BLUETOOTH CORE SPECIFICATION Version 5.2 | Vol 2, Part B page 471: 1711 * Table 6.2: Packets defined for synchronous, asynchronous, and 1712 * CPB logical transport types. 1713 */ 1714 switch (conn->type) { 1715 case SCO_LINK: 1716 /* SCO logical transport (1 Mb/s): 1717 * HV1, HV2, HV3 and DV. 1718 */ 1719 phys |= BT_PHY_BR_1M_1SLOT; 1720 1721 break; 1722 1723 case ACL_LINK: 1724 /* ACL logical transport (1 Mb/s) ptt=0: 1725 * DH1, DM3, DH3, DM5 and DH5. 1726 */ 1727 phys |= BT_PHY_BR_1M_1SLOT; 1728 1729 if (conn->pkt_type & (HCI_DM3 | HCI_DH3)) 1730 phys |= BT_PHY_BR_1M_3SLOT; 1731 1732 if (conn->pkt_type & (HCI_DM5 | HCI_DH5)) 1733 phys |= BT_PHY_BR_1M_5SLOT; 1734 1735 /* ACL logical transport (2 Mb/s) ptt=1: 1736 * 2-DH1, 2-DH3 and 2-DH5. 1737 */ 1738 if (!(conn->pkt_type & HCI_2DH1)) 1739 phys |= BT_PHY_EDR_2M_1SLOT; 1740 1741 if (!(conn->pkt_type & HCI_2DH3)) 1742 phys |= BT_PHY_EDR_2M_3SLOT; 1743 1744 if (!(conn->pkt_type & HCI_2DH5)) 1745 phys |= BT_PHY_EDR_2M_5SLOT; 1746 1747 /* ACL logical transport (3 Mb/s) ptt=1: 1748 * 3-DH1, 3-DH3 and 3-DH5. 1749 */ 1750 if (!(conn->pkt_type & HCI_3DH1)) 1751 phys |= BT_PHY_EDR_3M_1SLOT; 1752 1753 if (!(conn->pkt_type & HCI_3DH3)) 1754 phys |= BT_PHY_EDR_3M_3SLOT; 1755 1756 if (!(conn->pkt_type & HCI_3DH5)) 1757 phys |= BT_PHY_EDR_3M_5SLOT; 1758 1759 break; 1760 1761 case ESCO_LINK: 1762 /* eSCO logical transport (1 Mb/s): EV3, EV4 and EV5 */ 1763 phys |= BT_PHY_BR_1M_1SLOT; 1764 1765 if (!(conn->pkt_type & (ESCO_EV4 | ESCO_EV5))) 1766 phys |= BT_PHY_BR_1M_3SLOT; 1767 1768 /* eSCO logical transport (2 Mb/s): 2-EV3, 2-EV5 */ 1769 if (!(conn->pkt_type & ESCO_2EV3)) 1770 phys |= BT_PHY_EDR_2M_1SLOT; 1771 1772 if (!(conn->pkt_type & ESCO_2EV5)) 1773 phys |= BT_PHY_EDR_2M_3SLOT; 1774 1775 /* eSCO logical transport (3 Mb/s): 3-EV3, 3-EV5 */ 1776 if (!(conn->pkt_type & ESCO_3EV3)) 1777 phys |= BT_PHY_EDR_3M_1SLOT; 1778 1779 if (!(conn->pkt_type & ESCO_3EV5)) 1780 phys |= BT_PHY_EDR_3M_3SLOT; 1781 1782 break; 1783 1784 case LE_LINK: 1785 if (conn->le_tx_phy & HCI_LE_SET_PHY_1M) 1786 phys |= BT_PHY_LE_1M_TX; 1787 1788 if (conn->le_rx_phy & HCI_LE_SET_PHY_1M) 1789 phys |= BT_PHY_LE_1M_RX; 1790 1791 if (conn->le_tx_phy & HCI_LE_SET_PHY_2M) 1792 phys |= BT_PHY_LE_2M_TX; 1793 1794 if (conn->le_rx_phy & HCI_LE_SET_PHY_2M) 1795 phys |= BT_PHY_LE_2M_RX; 1796 1797 if (conn->le_tx_phy & HCI_LE_SET_PHY_CODED) 1798 phys |= BT_PHY_LE_CODED_TX; 1799 1800 if (conn->le_rx_phy & HCI_LE_SET_PHY_CODED) 1801 phys |= BT_PHY_LE_CODED_RX; 1802 1803 break; 1804 } 1805 1806 return phys; 1807 } 1808