1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved. 4 5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License version 2 as 9 published by the Free Software Foundation; 10 11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 22 SOFTWARE IS DISCLAIMED. 23 */ 24 25 /* Bluetooth HCI connection handling. */ 26 27 #include <linux/export.h> 28 #include <linux/debugfs.h> 29 30 #include <net/bluetooth/bluetooth.h> 31 #include <net/bluetooth/hci_core.h> 32 #include <net/bluetooth/l2cap.h> 33 34 #include "hci_request.h" 35 #include "smp.h" 36 #include "a2mp.h" 37 38 struct sco_param { 39 u16 pkt_type; 40 u16 max_latency; 41 u8 retrans_effort; 42 }; 43 44 static const struct sco_param esco_param_cvsd[] = { 45 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000a, 0x01 }, /* S3 */ 46 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x0007, 0x01 }, /* S2 */ 47 { EDR_ESCO_MASK | ESCO_EV3, 0x0007, 0x01 }, /* S1 */ 48 { EDR_ESCO_MASK | ESCO_HV3, 0xffff, 0x01 }, /* D1 */ 49 { EDR_ESCO_MASK | ESCO_HV1, 0xffff, 0x01 }, /* D0 */ 50 }; 51 52 static const struct sco_param sco_param_cvsd[] = { 53 { EDR_ESCO_MASK | ESCO_HV3, 0xffff, 0xff }, /* D1 */ 54 { EDR_ESCO_MASK | ESCO_HV1, 0xffff, 0xff }, /* D0 */ 55 }; 56 57 static const struct sco_param esco_param_msbc[] = { 58 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000d, 0x02 }, /* T2 */ 59 { EDR_ESCO_MASK | ESCO_EV3, 0x0008, 0x02 }, /* T1 */ 60 }; 61 62 /* This function requires the caller holds hdev->lock */ 63 static void hci_connect_le_scan_cleanup(struct hci_conn *conn) 64 { 65 struct hci_conn_params *params; 66 struct hci_dev *hdev = conn->hdev; 67 struct smp_irk *irk; 68 bdaddr_t *bdaddr; 69 u8 bdaddr_type; 70 71 bdaddr = &conn->dst; 72 bdaddr_type = conn->dst_type; 73 74 /* Check if we need to convert to identity address */ 75 irk = hci_get_irk(hdev, bdaddr, bdaddr_type); 76 if (irk) { 77 bdaddr = &irk->bdaddr; 78 bdaddr_type = irk->addr_type; 79 } 80 81 params = hci_pend_le_action_lookup(&hdev->pend_le_conns, bdaddr, 82 bdaddr_type); 83 if (!params || !params->explicit_connect) 84 return; 85 86 /* The connection attempt was doing scan for new RPA, and is 87 * in scan phase. If params are not associated with any other 88 * autoconnect action, remove them completely. If they are, just unmark 89 * them as waiting for connection, by clearing explicit_connect field. 90 */ 91 params->explicit_connect = false; 92 93 list_del_init(¶ms->action); 94 95 switch (params->auto_connect) { 96 case HCI_AUTO_CONN_EXPLICIT: 97 hci_conn_params_del(hdev, bdaddr, bdaddr_type); 98 /* return instead of break to avoid duplicate scan update */ 99 return; 100 case HCI_AUTO_CONN_DIRECT: 101 case HCI_AUTO_CONN_ALWAYS: 102 list_add(¶ms->action, &hdev->pend_le_conns); 103 break; 104 case HCI_AUTO_CONN_REPORT: 105 list_add(¶ms->action, &hdev->pend_le_reports); 106 break; 107 default: 108 break; 109 } 110 111 hci_update_passive_scan(hdev); 112 } 113 114 static void hci_conn_cleanup(struct hci_conn *conn) 115 { 116 struct hci_dev *hdev = conn->hdev; 117 118 if (test_bit(HCI_CONN_PARAM_REMOVAL_PEND, &conn->flags)) 119 hci_conn_params_del(conn->hdev, &conn->dst, conn->dst_type); 120 121 hci_chan_list_flush(conn); 122 123 hci_conn_hash_del(hdev, conn); 124 125 if (conn->type == SCO_LINK || conn->type == ESCO_LINK) { 126 switch (conn->setting & SCO_AIRMODE_MASK) { 127 case SCO_AIRMODE_CVSD: 128 case SCO_AIRMODE_TRANSP: 129 if (hdev->notify) 130 hdev->notify(hdev, HCI_NOTIFY_DISABLE_SCO); 131 break; 132 } 133 } else { 134 if (hdev->notify) 135 hdev->notify(hdev, HCI_NOTIFY_CONN_DEL); 136 } 137 138 hci_conn_del_sysfs(conn); 139 140 debugfs_remove_recursive(conn->debugfs); 141 142 hci_dev_put(hdev); 143 144 hci_conn_put(conn); 145 } 146 147 static void le_scan_cleanup(struct work_struct *work) 148 { 149 struct hci_conn *conn = container_of(work, struct hci_conn, 150 le_scan_cleanup); 151 struct hci_dev *hdev = conn->hdev; 152 struct hci_conn *c = NULL; 153 154 BT_DBG("%s hcon %p", hdev->name, conn); 155 156 hci_dev_lock(hdev); 157 158 /* Check that the hci_conn is still around */ 159 rcu_read_lock(); 160 list_for_each_entry_rcu(c, &hdev->conn_hash.list, list) { 161 if (c == conn) 162 break; 163 } 164 rcu_read_unlock(); 165 166 if (c == conn) { 167 hci_connect_le_scan_cleanup(conn); 168 hci_conn_cleanup(conn); 169 } 170 171 hci_dev_unlock(hdev); 172 hci_dev_put(hdev); 173 hci_conn_put(conn); 174 } 175 176 static void hci_connect_le_scan_remove(struct hci_conn *conn) 177 { 178 BT_DBG("%s hcon %p", conn->hdev->name, conn); 179 180 /* We can't call hci_conn_del/hci_conn_cleanup here since that 181 * could deadlock with another hci_conn_del() call that's holding 182 * hci_dev_lock and doing cancel_delayed_work_sync(&conn->disc_work). 183 * Instead, grab temporary extra references to the hci_dev and 184 * hci_conn and perform the necessary cleanup in a separate work 185 * callback. 186 */ 187 188 hci_dev_hold(conn->hdev); 189 hci_conn_get(conn); 190 191 /* Even though we hold a reference to the hdev, many other 192 * things might get cleaned up meanwhile, including the hdev's 193 * own workqueue, so we can't use that for scheduling. 194 */ 195 schedule_work(&conn->le_scan_cleanup); 196 } 197 198 static void hci_acl_create_connection(struct hci_conn *conn) 199 { 200 struct hci_dev *hdev = conn->hdev; 201 struct inquiry_entry *ie; 202 struct hci_cp_create_conn cp; 203 204 BT_DBG("hcon %p", conn); 205 206 /* Many controllers disallow HCI Create Connection while it is doing 207 * HCI Inquiry. So we cancel the Inquiry first before issuing HCI Create 208 * Connection. This may cause the MGMT discovering state to become false 209 * without user space's request but it is okay since the MGMT Discovery 210 * APIs do not promise that discovery should be done forever. Instead, 211 * the user space monitors the status of MGMT discovering and it may 212 * request for discovery again when this flag becomes false. 213 */ 214 if (test_bit(HCI_INQUIRY, &hdev->flags)) { 215 /* Put this connection to "pending" state so that it will be 216 * executed after the inquiry cancel command complete event. 217 */ 218 conn->state = BT_CONNECT2; 219 hci_send_cmd(hdev, HCI_OP_INQUIRY_CANCEL, 0, NULL); 220 return; 221 } 222 223 conn->state = BT_CONNECT; 224 conn->out = true; 225 conn->role = HCI_ROLE_MASTER; 226 227 conn->attempt++; 228 229 conn->link_policy = hdev->link_policy; 230 231 memset(&cp, 0, sizeof(cp)); 232 bacpy(&cp.bdaddr, &conn->dst); 233 cp.pscan_rep_mode = 0x02; 234 235 ie = hci_inquiry_cache_lookup(hdev, &conn->dst); 236 if (ie) { 237 if (inquiry_entry_age(ie) <= INQUIRY_ENTRY_AGE_MAX) { 238 cp.pscan_rep_mode = ie->data.pscan_rep_mode; 239 cp.pscan_mode = ie->data.pscan_mode; 240 cp.clock_offset = ie->data.clock_offset | 241 cpu_to_le16(0x8000); 242 } 243 244 memcpy(conn->dev_class, ie->data.dev_class, 3); 245 } 246 247 cp.pkt_type = cpu_to_le16(conn->pkt_type); 248 if (lmp_rswitch_capable(hdev) && !(hdev->link_mode & HCI_LM_MASTER)) 249 cp.role_switch = 0x01; 250 else 251 cp.role_switch = 0x00; 252 253 hci_send_cmd(hdev, HCI_OP_CREATE_CONN, sizeof(cp), &cp); 254 } 255 256 int hci_disconnect(struct hci_conn *conn, __u8 reason) 257 { 258 BT_DBG("hcon %p", conn); 259 260 /* When we are central of an established connection and it enters 261 * the disconnect timeout, then go ahead and try to read the 262 * current clock offset. Processing of the result is done 263 * within the event handling and hci_clock_offset_evt function. 264 */ 265 if (conn->type == ACL_LINK && conn->role == HCI_ROLE_MASTER && 266 (conn->state == BT_CONNECTED || conn->state == BT_CONFIG)) { 267 struct hci_dev *hdev = conn->hdev; 268 struct hci_cp_read_clock_offset clkoff_cp; 269 270 clkoff_cp.handle = cpu_to_le16(conn->handle); 271 hci_send_cmd(hdev, HCI_OP_READ_CLOCK_OFFSET, sizeof(clkoff_cp), 272 &clkoff_cp); 273 } 274 275 return hci_abort_conn(conn, reason); 276 } 277 278 static void hci_add_sco(struct hci_conn *conn, __u16 handle) 279 { 280 struct hci_dev *hdev = conn->hdev; 281 struct hci_cp_add_sco cp; 282 283 BT_DBG("hcon %p", conn); 284 285 conn->state = BT_CONNECT; 286 conn->out = true; 287 288 conn->attempt++; 289 290 cp.handle = cpu_to_le16(handle); 291 cp.pkt_type = cpu_to_le16(conn->pkt_type); 292 293 hci_send_cmd(hdev, HCI_OP_ADD_SCO, sizeof(cp), &cp); 294 } 295 296 static bool find_next_esco_param(struct hci_conn *conn, 297 const struct sco_param *esco_param, int size) 298 { 299 for (; conn->attempt <= size; conn->attempt++) { 300 if (lmp_esco_2m_capable(conn->link) || 301 (esco_param[conn->attempt - 1].pkt_type & ESCO_2EV3)) 302 break; 303 BT_DBG("hcon %p skipped attempt %d, eSCO 2M not supported", 304 conn, conn->attempt); 305 } 306 307 return conn->attempt <= size; 308 } 309 310 static bool hci_enhanced_setup_sync_conn(struct hci_conn *conn, __u16 handle) 311 { 312 struct hci_dev *hdev = conn->hdev; 313 struct hci_cp_enhanced_setup_sync_conn cp; 314 const struct sco_param *param; 315 316 bt_dev_dbg(hdev, "hcon %p", conn); 317 318 /* for offload use case, codec needs to configured before opening SCO */ 319 if (conn->codec.data_path) 320 hci_req_configure_datapath(hdev, &conn->codec); 321 322 conn->state = BT_CONNECT; 323 conn->out = true; 324 325 conn->attempt++; 326 327 memset(&cp, 0x00, sizeof(cp)); 328 329 cp.handle = cpu_to_le16(handle); 330 331 cp.tx_bandwidth = cpu_to_le32(0x00001f40); 332 cp.rx_bandwidth = cpu_to_le32(0x00001f40); 333 334 switch (conn->codec.id) { 335 case BT_CODEC_MSBC: 336 if (!find_next_esco_param(conn, esco_param_msbc, 337 ARRAY_SIZE(esco_param_msbc))) 338 return false; 339 340 param = &esco_param_msbc[conn->attempt - 1]; 341 cp.tx_coding_format.id = 0x05; 342 cp.rx_coding_format.id = 0x05; 343 cp.tx_codec_frame_size = __cpu_to_le16(60); 344 cp.rx_codec_frame_size = __cpu_to_le16(60); 345 cp.in_bandwidth = __cpu_to_le32(32000); 346 cp.out_bandwidth = __cpu_to_le32(32000); 347 cp.in_coding_format.id = 0x04; 348 cp.out_coding_format.id = 0x04; 349 cp.in_coded_data_size = __cpu_to_le16(16); 350 cp.out_coded_data_size = __cpu_to_le16(16); 351 cp.in_pcm_data_format = 2; 352 cp.out_pcm_data_format = 2; 353 cp.in_pcm_sample_payload_msb_pos = 0; 354 cp.out_pcm_sample_payload_msb_pos = 0; 355 cp.in_data_path = conn->codec.data_path; 356 cp.out_data_path = conn->codec.data_path; 357 cp.in_transport_unit_size = 1; 358 cp.out_transport_unit_size = 1; 359 break; 360 361 case BT_CODEC_TRANSPARENT: 362 if (!find_next_esco_param(conn, esco_param_msbc, 363 ARRAY_SIZE(esco_param_msbc))) 364 return false; 365 param = &esco_param_msbc[conn->attempt - 1]; 366 cp.tx_coding_format.id = 0x03; 367 cp.rx_coding_format.id = 0x03; 368 cp.tx_codec_frame_size = __cpu_to_le16(60); 369 cp.rx_codec_frame_size = __cpu_to_le16(60); 370 cp.in_bandwidth = __cpu_to_le32(0x1f40); 371 cp.out_bandwidth = __cpu_to_le32(0x1f40); 372 cp.in_coding_format.id = 0x03; 373 cp.out_coding_format.id = 0x03; 374 cp.in_coded_data_size = __cpu_to_le16(16); 375 cp.out_coded_data_size = __cpu_to_le16(16); 376 cp.in_pcm_data_format = 2; 377 cp.out_pcm_data_format = 2; 378 cp.in_pcm_sample_payload_msb_pos = 0; 379 cp.out_pcm_sample_payload_msb_pos = 0; 380 cp.in_data_path = conn->codec.data_path; 381 cp.out_data_path = conn->codec.data_path; 382 cp.in_transport_unit_size = 1; 383 cp.out_transport_unit_size = 1; 384 break; 385 386 case BT_CODEC_CVSD: 387 if (lmp_esco_capable(conn->link)) { 388 if (!find_next_esco_param(conn, esco_param_cvsd, 389 ARRAY_SIZE(esco_param_cvsd))) 390 return false; 391 param = &esco_param_cvsd[conn->attempt - 1]; 392 } else { 393 if (conn->attempt > ARRAY_SIZE(sco_param_cvsd)) 394 return false; 395 param = &sco_param_cvsd[conn->attempt - 1]; 396 } 397 cp.tx_coding_format.id = 2; 398 cp.rx_coding_format.id = 2; 399 cp.tx_codec_frame_size = __cpu_to_le16(60); 400 cp.rx_codec_frame_size = __cpu_to_le16(60); 401 cp.in_bandwidth = __cpu_to_le32(16000); 402 cp.out_bandwidth = __cpu_to_le32(16000); 403 cp.in_coding_format.id = 4; 404 cp.out_coding_format.id = 4; 405 cp.in_coded_data_size = __cpu_to_le16(16); 406 cp.out_coded_data_size = __cpu_to_le16(16); 407 cp.in_pcm_data_format = 2; 408 cp.out_pcm_data_format = 2; 409 cp.in_pcm_sample_payload_msb_pos = 0; 410 cp.out_pcm_sample_payload_msb_pos = 0; 411 cp.in_data_path = conn->codec.data_path; 412 cp.out_data_path = conn->codec.data_path; 413 cp.in_transport_unit_size = 16; 414 cp.out_transport_unit_size = 16; 415 break; 416 default: 417 return false; 418 } 419 420 cp.retrans_effort = param->retrans_effort; 421 cp.pkt_type = __cpu_to_le16(param->pkt_type); 422 cp.max_latency = __cpu_to_le16(param->max_latency); 423 424 if (hci_send_cmd(hdev, HCI_OP_ENHANCED_SETUP_SYNC_CONN, sizeof(cp), &cp) < 0) 425 return false; 426 427 return true; 428 } 429 430 static bool hci_setup_sync_conn(struct hci_conn *conn, __u16 handle) 431 { 432 struct hci_dev *hdev = conn->hdev; 433 struct hci_cp_setup_sync_conn cp; 434 const struct sco_param *param; 435 436 bt_dev_dbg(hdev, "hcon %p", conn); 437 438 conn->state = BT_CONNECT; 439 conn->out = true; 440 441 conn->attempt++; 442 443 cp.handle = cpu_to_le16(handle); 444 445 cp.tx_bandwidth = cpu_to_le32(0x00001f40); 446 cp.rx_bandwidth = cpu_to_le32(0x00001f40); 447 cp.voice_setting = cpu_to_le16(conn->setting); 448 449 switch (conn->setting & SCO_AIRMODE_MASK) { 450 case SCO_AIRMODE_TRANSP: 451 if (!find_next_esco_param(conn, esco_param_msbc, 452 ARRAY_SIZE(esco_param_msbc))) 453 return false; 454 param = &esco_param_msbc[conn->attempt - 1]; 455 break; 456 case SCO_AIRMODE_CVSD: 457 if (lmp_esco_capable(conn->link)) { 458 if (!find_next_esco_param(conn, esco_param_cvsd, 459 ARRAY_SIZE(esco_param_cvsd))) 460 return false; 461 param = &esco_param_cvsd[conn->attempt - 1]; 462 } else { 463 if (conn->attempt > ARRAY_SIZE(sco_param_cvsd)) 464 return false; 465 param = &sco_param_cvsd[conn->attempt - 1]; 466 } 467 break; 468 default: 469 return false; 470 } 471 472 cp.retrans_effort = param->retrans_effort; 473 cp.pkt_type = __cpu_to_le16(param->pkt_type); 474 cp.max_latency = __cpu_to_le16(param->max_latency); 475 476 if (hci_send_cmd(hdev, HCI_OP_SETUP_SYNC_CONN, sizeof(cp), &cp) < 0) 477 return false; 478 479 return true; 480 } 481 482 bool hci_setup_sync(struct hci_conn *conn, __u16 handle) 483 { 484 if (enhanced_sco_capable(conn->hdev)) 485 return hci_enhanced_setup_sync_conn(conn, handle); 486 487 return hci_setup_sync_conn(conn, handle); 488 } 489 490 u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency, 491 u16 to_multiplier) 492 { 493 struct hci_dev *hdev = conn->hdev; 494 struct hci_conn_params *params; 495 struct hci_cp_le_conn_update cp; 496 497 hci_dev_lock(hdev); 498 499 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); 500 if (params) { 501 params->conn_min_interval = min; 502 params->conn_max_interval = max; 503 params->conn_latency = latency; 504 params->supervision_timeout = to_multiplier; 505 } 506 507 hci_dev_unlock(hdev); 508 509 memset(&cp, 0, sizeof(cp)); 510 cp.handle = cpu_to_le16(conn->handle); 511 cp.conn_interval_min = cpu_to_le16(min); 512 cp.conn_interval_max = cpu_to_le16(max); 513 cp.conn_latency = cpu_to_le16(latency); 514 cp.supervision_timeout = cpu_to_le16(to_multiplier); 515 cp.min_ce_len = cpu_to_le16(0x0000); 516 cp.max_ce_len = cpu_to_le16(0x0000); 517 518 hci_send_cmd(hdev, HCI_OP_LE_CONN_UPDATE, sizeof(cp), &cp); 519 520 if (params) 521 return 0x01; 522 523 return 0x00; 524 } 525 526 void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand, 527 __u8 ltk[16], __u8 key_size) 528 { 529 struct hci_dev *hdev = conn->hdev; 530 struct hci_cp_le_start_enc cp; 531 532 BT_DBG("hcon %p", conn); 533 534 memset(&cp, 0, sizeof(cp)); 535 536 cp.handle = cpu_to_le16(conn->handle); 537 cp.rand = rand; 538 cp.ediv = ediv; 539 memcpy(cp.ltk, ltk, key_size); 540 541 hci_send_cmd(hdev, HCI_OP_LE_START_ENC, sizeof(cp), &cp); 542 } 543 544 /* Device _must_ be locked */ 545 void hci_sco_setup(struct hci_conn *conn, __u8 status) 546 { 547 struct hci_conn *sco = conn->link; 548 549 if (!sco) 550 return; 551 552 BT_DBG("hcon %p", conn); 553 554 if (!status) { 555 if (lmp_esco_capable(conn->hdev)) 556 hci_setup_sync(sco, conn->handle); 557 else 558 hci_add_sco(sco, conn->handle); 559 } else { 560 hci_connect_cfm(sco, status); 561 hci_conn_del(sco); 562 } 563 } 564 565 static void hci_conn_timeout(struct work_struct *work) 566 { 567 struct hci_conn *conn = container_of(work, struct hci_conn, 568 disc_work.work); 569 int refcnt = atomic_read(&conn->refcnt); 570 571 BT_DBG("hcon %p state %s", conn, state_to_string(conn->state)); 572 573 WARN_ON(refcnt < 0); 574 575 /* FIXME: It was observed that in pairing failed scenario, refcnt 576 * drops below 0. Probably this is because l2cap_conn_del calls 577 * l2cap_chan_del for each channel, and inside l2cap_chan_del conn is 578 * dropped. After that loop hci_chan_del is called which also drops 579 * conn. For now make sure that ACL is alive if refcnt is higher then 0, 580 * otherwise drop it. 581 */ 582 if (refcnt > 0) 583 return; 584 585 /* LE connections in scanning state need special handling */ 586 if (conn->state == BT_CONNECT && conn->type == LE_LINK && 587 test_bit(HCI_CONN_SCANNING, &conn->flags)) { 588 hci_connect_le_scan_remove(conn); 589 return; 590 } 591 592 hci_abort_conn(conn, hci_proto_disconn_ind(conn)); 593 } 594 595 /* Enter sniff mode */ 596 static void hci_conn_idle(struct work_struct *work) 597 { 598 struct hci_conn *conn = container_of(work, struct hci_conn, 599 idle_work.work); 600 struct hci_dev *hdev = conn->hdev; 601 602 BT_DBG("hcon %p mode %d", conn, conn->mode); 603 604 if (!lmp_sniff_capable(hdev) || !lmp_sniff_capable(conn)) 605 return; 606 607 if (conn->mode != HCI_CM_ACTIVE || !(conn->link_policy & HCI_LP_SNIFF)) 608 return; 609 610 if (lmp_sniffsubr_capable(hdev) && lmp_sniffsubr_capable(conn)) { 611 struct hci_cp_sniff_subrate cp; 612 cp.handle = cpu_to_le16(conn->handle); 613 cp.max_latency = cpu_to_le16(0); 614 cp.min_remote_timeout = cpu_to_le16(0); 615 cp.min_local_timeout = cpu_to_le16(0); 616 hci_send_cmd(hdev, HCI_OP_SNIFF_SUBRATE, sizeof(cp), &cp); 617 } 618 619 if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) { 620 struct hci_cp_sniff_mode cp; 621 cp.handle = cpu_to_le16(conn->handle); 622 cp.max_interval = cpu_to_le16(hdev->sniff_max_interval); 623 cp.min_interval = cpu_to_le16(hdev->sniff_min_interval); 624 cp.attempt = cpu_to_le16(4); 625 cp.timeout = cpu_to_le16(1); 626 hci_send_cmd(hdev, HCI_OP_SNIFF_MODE, sizeof(cp), &cp); 627 } 628 } 629 630 static void hci_conn_auto_accept(struct work_struct *work) 631 { 632 struct hci_conn *conn = container_of(work, struct hci_conn, 633 auto_accept_work.work); 634 635 hci_send_cmd(conn->hdev, HCI_OP_USER_CONFIRM_REPLY, sizeof(conn->dst), 636 &conn->dst); 637 } 638 639 static void le_disable_advertising(struct hci_dev *hdev) 640 { 641 if (ext_adv_capable(hdev)) { 642 struct hci_cp_le_set_ext_adv_enable cp; 643 644 cp.enable = 0x00; 645 cp.num_of_sets = 0x00; 646 647 hci_send_cmd(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, sizeof(cp), 648 &cp); 649 } else { 650 u8 enable = 0x00; 651 hci_send_cmd(hdev, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), 652 &enable); 653 } 654 } 655 656 static void le_conn_timeout(struct work_struct *work) 657 { 658 struct hci_conn *conn = container_of(work, struct hci_conn, 659 le_conn_timeout.work); 660 struct hci_dev *hdev = conn->hdev; 661 662 BT_DBG(""); 663 664 /* We could end up here due to having done directed advertising, 665 * so clean up the state if necessary. This should however only 666 * happen with broken hardware or if low duty cycle was used 667 * (which doesn't have a timeout of its own). 668 */ 669 if (conn->role == HCI_ROLE_SLAVE) { 670 /* Disable LE Advertising */ 671 le_disable_advertising(hdev); 672 hci_le_conn_failed(conn, HCI_ERROR_ADVERTISING_TIMEOUT); 673 return; 674 } 675 676 hci_abort_conn(conn, HCI_ERROR_REMOTE_USER_TERM); 677 } 678 679 struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst, 680 u8 role) 681 { 682 struct hci_conn *conn; 683 684 BT_DBG("%s dst %pMR", hdev->name, dst); 685 686 conn = kzalloc(sizeof(*conn), GFP_KERNEL); 687 if (!conn) 688 return NULL; 689 690 bacpy(&conn->dst, dst); 691 bacpy(&conn->src, &hdev->bdaddr); 692 conn->hdev = hdev; 693 conn->type = type; 694 conn->role = role; 695 conn->mode = HCI_CM_ACTIVE; 696 conn->state = BT_OPEN; 697 conn->auth_type = HCI_AT_GENERAL_BONDING; 698 conn->io_capability = hdev->io_capability; 699 conn->remote_auth = 0xff; 700 conn->key_type = 0xff; 701 conn->rssi = HCI_RSSI_INVALID; 702 conn->tx_power = HCI_TX_POWER_INVALID; 703 conn->max_tx_power = HCI_TX_POWER_INVALID; 704 705 set_bit(HCI_CONN_POWER_SAVE, &conn->flags); 706 conn->disc_timeout = HCI_DISCONN_TIMEOUT; 707 708 /* Set Default Authenticated payload timeout to 30s */ 709 conn->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT; 710 711 if (conn->role == HCI_ROLE_MASTER) 712 conn->out = true; 713 714 switch (type) { 715 case ACL_LINK: 716 conn->pkt_type = hdev->pkt_type & ACL_PTYPE_MASK; 717 break; 718 case LE_LINK: 719 /* conn->src should reflect the local identity address */ 720 hci_copy_identity_address(hdev, &conn->src, &conn->src_type); 721 break; 722 case SCO_LINK: 723 if (lmp_esco_capable(hdev)) 724 conn->pkt_type = (hdev->esco_type & SCO_ESCO_MASK) | 725 (hdev->esco_type & EDR_ESCO_MASK); 726 else 727 conn->pkt_type = hdev->pkt_type & SCO_PTYPE_MASK; 728 break; 729 case ESCO_LINK: 730 conn->pkt_type = hdev->esco_type & ~EDR_ESCO_MASK; 731 break; 732 } 733 734 skb_queue_head_init(&conn->data_q); 735 736 INIT_LIST_HEAD(&conn->chan_list); 737 738 INIT_DELAYED_WORK(&conn->disc_work, hci_conn_timeout); 739 INIT_DELAYED_WORK(&conn->auto_accept_work, hci_conn_auto_accept); 740 INIT_DELAYED_WORK(&conn->idle_work, hci_conn_idle); 741 INIT_DELAYED_WORK(&conn->le_conn_timeout, le_conn_timeout); 742 INIT_WORK(&conn->le_scan_cleanup, le_scan_cleanup); 743 744 atomic_set(&conn->refcnt, 0); 745 746 hci_dev_hold(hdev); 747 748 hci_conn_hash_add(hdev, conn); 749 750 /* The SCO and eSCO connections will only be notified when their 751 * setup has been completed. This is different to ACL links which 752 * can be notified right away. 753 */ 754 if (conn->type != SCO_LINK && conn->type != ESCO_LINK) { 755 if (hdev->notify) 756 hdev->notify(hdev, HCI_NOTIFY_CONN_ADD); 757 } 758 759 hci_conn_init_sysfs(conn); 760 761 return conn; 762 } 763 764 int hci_conn_del(struct hci_conn *conn) 765 { 766 struct hci_dev *hdev = conn->hdev; 767 768 BT_DBG("%s hcon %p handle %d", hdev->name, conn, conn->handle); 769 770 cancel_delayed_work_sync(&conn->disc_work); 771 cancel_delayed_work_sync(&conn->auto_accept_work); 772 cancel_delayed_work_sync(&conn->idle_work); 773 774 if (conn->type == ACL_LINK) { 775 struct hci_conn *sco = conn->link; 776 if (sco) 777 sco->link = NULL; 778 779 /* Unacked frames */ 780 hdev->acl_cnt += conn->sent; 781 } else if (conn->type == LE_LINK) { 782 cancel_delayed_work(&conn->le_conn_timeout); 783 784 if (hdev->le_pkts) 785 hdev->le_cnt += conn->sent; 786 else 787 hdev->acl_cnt += conn->sent; 788 } else { 789 struct hci_conn *acl = conn->link; 790 if (acl) { 791 acl->link = NULL; 792 hci_conn_drop(acl); 793 } 794 } 795 796 if (conn->amp_mgr) 797 amp_mgr_put(conn->amp_mgr); 798 799 skb_queue_purge(&conn->data_q); 800 801 /* Remove the connection from the list and cleanup its remaining 802 * state. This is a separate function since for some cases like 803 * BT_CONNECT_SCAN we *only* want the cleanup part without the 804 * rest of hci_conn_del. 805 */ 806 hci_conn_cleanup(conn); 807 808 return 0; 809 } 810 811 struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src, uint8_t src_type) 812 { 813 int use_src = bacmp(src, BDADDR_ANY); 814 struct hci_dev *hdev = NULL, *d; 815 816 BT_DBG("%pMR -> %pMR", src, dst); 817 818 read_lock(&hci_dev_list_lock); 819 820 list_for_each_entry(d, &hci_dev_list, list) { 821 if (!test_bit(HCI_UP, &d->flags) || 822 hci_dev_test_flag(d, HCI_USER_CHANNEL) || 823 d->dev_type != HCI_PRIMARY) 824 continue; 825 826 /* Simple routing: 827 * No source address - find interface with bdaddr != dst 828 * Source address - find interface with bdaddr == src 829 */ 830 831 if (use_src) { 832 bdaddr_t id_addr; 833 u8 id_addr_type; 834 835 if (src_type == BDADDR_BREDR) { 836 if (!lmp_bredr_capable(d)) 837 continue; 838 bacpy(&id_addr, &d->bdaddr); 839 id_addr_type = BDADDR_BREDR; 840 } else { 841 if (!lmp_le_capable(d)) 842 continue; 843 844 hci_copy_identity_address(d, &id_addr, 845 &id_addr_type); 846 847 /* Convert from HCI to three-value type */ 848 if (id_addr_type == ADDR_LE_DEV_PUBLIC) 849 id_addr_type = BDADDR_LE_PUBLIC; 850 else 851 id_addr_type = BDADDR_LE_RANDOM; 852 } 853 854 if (!bacmp(&id_addr, src) && id_addr_type == src_type) { 855 hdev = d; break; 856 } 857 } else { 858 if (bacmp(&d->bdaddr, dst)) { 859 hdev = d; break; 860 } 861 } 862 } 863 864 if (hdev) 865 hdev = hci_dev_hold(hdev); 866 867 read_unlock(&hci_dev_list_lock); 868 return hdev; 869 } 870 EXPORT_SYMBOL(hci_get_route); 871 872 /* This function requires the caller holds hdev->lock */ 873 void hci_le_conn_failed(struct hci_conn *conn, u8 status) 874 { 875 struct hci_dev *hdev = conn->hdev; 876 struct hci_conn_params *params; 877 878 params = hci_pend_le_action_lookup(&hdev->pend_le_conns, &conn->dst, 879 conn->dst_type); 880 if (params && params->conn) { 881 hci_conn_drop(params->conn); 882 hci_conn_put(params->conn); 883 params->conn = NULL; 884 } 885 886 conn->state = BT_CLOSED; 887 888 /* If the status indicates successful cancellation of 889 * the attempt (i.e. Unknown Connection Id) there's no point of 890 * notifying failure since we'll go back to keep trying to 891 * connect. The only exception is explicit connect requests 892 * where a timeout + cancel does indicate an actual failure. 893 */ 894 if (status != HCI_ERROR_UNKNOWN_CONN_ID || 895 (params && params->explicit_connect)) 896 mgmt_connect_failed(hdev, &conn->dst, conn->type, 897 conn->dst_type, status); 898 899 hci_connect_cfm(conn, status); 900 901 hci_conn_del(conn); 902 903 /* Since we may have temporarily stopped the background scanning in 904 * favor of connection establishment, we should restart it. 905 */ 906 hci_update_passive_scan(hdev); 907 908 /* Enable advertising in case this was a failed connection 909 * attempt as a peripheral. 910 */ 911 hci_enable_advertising(hdev); 912 } 913 914 static void create_le_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode) 915 { 916 struct hci_conn *conn; 917 918 hci_dev_lock(hdev); 919 920 conn = hci_lookup_le_connect(hdev); 921 922 if (hdev->adv_instance_cnt) 923 hci_req_resume_adv_instances(hdev); 924 925 if (!status) { 926 hci_connect_le_scan_cleanup(conn); 927 goto done; 928 } 929 930 bt_dev_err(hdev, "request failed to create LE connection: " 931 "status 0x%2.2x", status); 932 933 if (!conn) 934 goto done; 935 936 hci_le_conn_failed(conn, status); 937 938 done: 939 hci_dev_unlock(hdev); 940 } 941 942 static bool conn_use_rpa(struct hci_conn *conn) 943 { 944 struct hci_dev *hdev = conn->hdev; 945 946 return hci_dev_test_flag(hdev, HCI_PRIVACY); 947 } 948 949 static void set_ext_conn_params(struct hci_conn *conn, 950 struct hci_cp_le_ext_conn_param *p) 951 { 952 struct hci_dev *hdev = conn->hdev; 953 954 memset(p, 0, sizeof(*p)); 955 956 p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect); 957 p->scan_window = cpu_to_le16(hdev->le_scan_window_connect); 958 p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 959 p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 960 p->conn_latency = cpu_to_le16(conn->le_conn_latency); 961 p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 962 p->min_ce_len = cpu_to_le16(0x0000); 963 p->max_ce_len = cpu_to_le16(0x0000); 964 } 965 966 static void hci_req_add_le_create_conn(struct hci_request *req, 967 struct hci_conn *conn, 968 bdaddr_t *direct_rpa) 969 { 970 struct hci_dev *hdev = conn->hdev; 971 u8 own_addr_type; 972 973 /* If direct address was provided we use it instead of current 974 * address. 975 */ 976 if (direct_rpa) { 977 if (bacmp(&req->hdev->random_addr, direct_rpa)) 978 hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, 979 direct_rpa); 980 981 /* direct address is always RPA */ 982 own_addr_type = ADDR_LE_DEV_RANDOM; 983 } else { 984 /* Update random address, but set require_privacy to false so 985 * that we never connect with an non-resolvable address. 986 */ 987 if (hci_update_random_address(req, false, conn_use_rpa(conn), 988 &own_addr_type)) 989 return; 990 } 991 992 if (use_ext_conn(hdev)) { 993 struct hci_cp_le_ext_create_conn *cp; 994 struct hci_cp_le_ext_conn_param *p; 995 u8 data[sizeof(*cp) + sizeof(*p) * 3]; 996 u32 plen; 997 998 cp = (void *) data; 999 p = (void *) cp->data; 1000 1001 memset(cp, 0, sizeof(*cp)); 1002 1003 bacpy(&cp->peer_addr, &conn->dst); 1004 cp->peer_addr_type = conn->dst_type; 1005 cp->own_addr_type = own_addr_type; 1006 1007 plen = sizeof(*cp); 1008 1009 if (scan_1m(hdev)) { 1010 cp->phys |= LE_SCAN_PHY_1M; 1011 set_ext_conn_params(conn, p); 1012 1013 p++; 1014 plen += sizeof(*p); 1015 } 1016 1017 if (scan_2m(hdev)) { 1018 cp->phys |= LE_SCAN_PHY_2M; 1019 set_ext_conn_params(conn, p); 1020 1021 p++; 1022 plen += sizeof(*p); 1023 } 1024 1025 if (scan_coded(hdev)) { 1026 cp->phys |= LE_SCAN_PHY_CODED; 1027 set_ext_conn_params(conn, p); 1028 1029 plen += sizeof(*p); 1030 } 1031 1032 hci_req_add(req, HCI_OP_LE_EXT_CREATE_CONN, plen, data); 1033 1034 } else { 1035 struct hci_cp_le_create_conn cp; 1036 1037 memset(&cp, 0, sizeof(cp)); 1038 1039 cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect); 1040 cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect); 1041 1042 bacpy(&cp.peer_addr, &conn->dst); 1043 cp.peer_addr_type = conn->dst_type; 1044 cp.own_address_type = own_addr_type; 1045 cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 1046 cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 1047 cp.conn_latency = cpu_to_le16(conn->le_conn_latency); 1048 cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 1049 cp.min_ce_len = cpu_to_le16(0x0000); 1050 cp.max_ce_len = cpu_to_le16(0x0000); 1051 1052 hci_req_add(req, HCI_OP_LE_CREATE_CONN, sizeof(cp), &cp); 1053 } 1054 1055 conn->state = BT_CONNECT; 1056 clear_bit(HCI_CONN_SCANNING, &conn->flags); 1057 } 1058 1059 static void hci_req_directed_advertising(struct hci_request *req, 1060 struct hci_conn *conn) 1061 { 1062 struct hci_dev *hdev = req->hdev; 1063 u8 own_addr_type; 1064 u8 enable; 1065 1066 if (ext_adv_capable(hdev)) { 1067 struct hci_cp_le_set_ext_adv_params cp; 1068 bdaddr_t random_addr; 1069 1070 /* Set require_privacy to false so that the remote device has a 1071 * chance of identifying us. 1072 */ 1073 if (hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL, 1074 &own_addr_type, &random_addr) < 0) 1075 return; 1076 1077 memset(&cp, 0, sizeof(cp)); 1078 1079 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND); 1080 cp.own_addr_type = own_addr_type; 1081 cp.channel_map = hdev->le_adv_channel_map; 1082 cp.tx_power = HCI_TX_POWER_INVALID; 1083 cp.primary_phy = HCI_ADV_PHY_1M; 1084 cp.secondary_phy = HCI_ADV_PHY_1M; 1085 cp.handle = 0; /* Use instance 0 for directed adv */ 1086 cp.own_addr_type = own_addr_type; 1087 cp.peer_addr_type = conn->dst_type; 1088 bacpy(&cp.peer_addr, &conn->dst); 1089 1090 /* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for 1091 * advertising_event_property LE_LEGACY_ADV_DIRECT_IND 1092 * does not supports advertising data when the advertising set already 1093 * contains some, the controller shall return erroc code 'Invalid 1094 * HCI Command Parameters(0x12). 1095 * So it is required to remove adv set for handle 0x00. since we use 1096 * instance 0 for directed adv. 1097 */ 1098 __hci_req_remove_ext_adv_instance(req, cp.handle); 1099 1100 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_PARAMS, sizeof(cp), &cp); 1101 1102 if (own_addr_type == ADDR_LE_DEV_RANDOM && 1103 bacmp(&random_addr, BDADDR_ANY) && 1104 bacmp(&random_addr, &hdev->random_addr)) { 1105 struct hci_cp_le_set_adv_set_rand_addr cp; 1106 1107 memset(&cp, 0, sizeof(cp)); 1108 1109 cp.handle = 0; 1110 bacpy(&cp.bdaddr, &random_addr); 1111 1112 hci_req_add(req, 1113 HCI_OP_LE_SET_ADV_SET_RAND_ADDR, 1114 sizeof(cp), &cp); 1115 } 1116 1117 __hci_req_enable_ext_advertising(req, 0x00); 1118 } else { 1119 struct hci_cp_le_set_adv_param cp; 1120 1121 /* Clear the HCI_LE_ADV bit temporarily so that the 1122 * hci_update_random_address knows that it's safe to go ahead 1123 * and write a new random address. The flag will be set back on 1124 * as soon as the SET_ADV_ENABLE HCI command completes. 1125 */ 1126 hci_dev_clear_flag(hdev, HCI_LE_ADV); 1127 1128 /* Set require_privacy to false so that the remote device has a 1129 * chance of identifying us. 1130 */ 1131 if (hci_update_random_address(req, false, conn_use_rpa(conn), 1132 &own_addr_type) < 0) 1133 return; 1134 1135 memset(&cp, 0, sizeof(cp)); 1136 1137 /* Some controllers might reject command if intervals are not 1138 * within range for undirected advertising. 1139 * BCM20702A0 is known to be affected by this. 1140 */ 1141 cp.min_interval = cpu_to_le16(0x0020); 1142 cp.max_interval = cpu_to_le16(0x0020); 1143 1144 cp.type = LE_ADV_DIRECT_IND; 1145 cp.own_address_type = own_addr_type; 1146 cp.direct_addr_type = conn->dst_type; 1147 bacpy(&cp.direct_addr, &conn->dst); 1148 cp.channel_map = hdev->le_adv_channel_map; 1149 1150 hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp); 1151 1152 enable = 0x01; 1153 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), 1154 &enable); 1155 } 1156 1157 conn->state = BT_CONNECT; 1158 } 1159 1160 struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst, 1161 u8 dst_type, bool dst_resolved, u8 sec_level, 1162 u16 conn_timeout, u8 role, bdaddr_t *direct_rpa) 1163 { 1164 struct hci_conn_params *params; 1165 struct hci_conn *conn; 1166 struct smp_irk *irk; 1167 struct hci_request req; 1168 int err; 1169 1170 /* This ensures that during disable le_scan address resolution 1171 * will not be disabled if it is followed by le_create_conn 1172 */ 1173 bool rpa_le_conn = true; 1174 1175 /* Let's make sure that le is enabled.*/ 1176 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 1177 if (lmp_le_capable(hdev)) 1178 return ERR_PTR(-ECONNREFUSED); 1179 1180 return ERR_PTR(-EOPNOTSUPP); 1181 } 1182 1183 /* Since the controller supports only one LE connection attempt at a 1184 * time, we return -EBUSY if there is any connection attempt running. 1185 */ 1186 if (hci_lookup_le_connect(hdev)) 1187 return ERR_PTR(-EBUSY); 1188 1189 /* If there's already a connection object but it's not in 1190 * scanning state it means it must already be established, in 1191 * which case we can't do anything else except report a failure 1192 * to connect. 1193 */ 1194 conn = hci_conn_hash_lookup_le(hdev, dst, dst_type); 1195 if (conn && !test_bit(HCI_CONN_SCANNING, &conn->flags)) { 1196 return ERR_PTR(-EBUSY); 1197 } 1198 1199 /* Check if the destination address has been resolved by the controller 1200 * since if it did then the identity address shall be used. 1201 */ 1202 if (!dst_resolved) { 1203 /* When given an identity address with existing identity 1204 * resolving key, the connection needs to be established 1205 * to a resolvable random address. 1206 * 1207 * Storing the resolvable random address is required here 1208 * to handle connection failures. The address will later 1209 * be resolved back into the original identity address 1210 * from the connect request. 1211 */ 1212 irk = hci_find_irk_by_addr(hdev, dst, dst_type); 1213 if (irk && bacmp(&irk->rpa, BDADDR_ANY)) { 1214 dst = &irk->rpa; 1215 dst_type = ADDR_LE_DEV_RANDOM; 1216 } 1217 } 1218 1219 if (conn) { 1220 bacpy(&conn->dst, dst); 1221 } else { 1222 conn = hci_conn_add(hdev, LE_LINK, dst, role); 1223 if (!conn) 1224 return ERR_PTR(-ENOMEM); 1225 hci_conn_hold(conn); 1226 conn->pending_sec_level = sec_level; 1227 } 1228 1229 conn->dst_type = dst_type; 1230 conn->sec_level = BT_SECURITY_LOW; 1231 conn->conn_timeout = conn_timeout; 1232 1233 hci_req_init(&req, hdev); 1234 1235 /* Disable advertising if we're active. For central role 1236 * connections most controllers will refuse to connect if 1237 * advertising is enabled, and for peripheral role connections we 1238 * anyway have to disable it in order to start directed 1239 * advertising. Any registered advertisements will be 1240 * re-enabled after the connection attempt is finished. 1241 */ 1242 if (hci_dev_test_flag(hdev, HCI_LE_ADV)) 1243 __hci_req_pause_adv_instances(&req); 1244 1245 /* If requested to connect as peripheral use directed advertising */ 1246 if (conn->role == HCI_ROLE_SLAVE) { 1247 /* If we're active scanning most controllers are unable 1248 * to initiate advertising. Simply reject the attempt. 1249 */ 1250 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) && 1251 hdev->le_scan_type == LE_SCAN_ACTIVE) { 1252 hci_req_purge(&req); 1253 hci_conn_del(conn); 1254 return ERR_PTR(-EBUSY); 1255 } 1256 1257 hci_req_directed_advertising(&req, conn); 1258 goto create_conn; 1259 } 1260 1261 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); 1262 if (params) { 1263 conn->le_conn_min_interval = params->conn_min_interval; 1264 conn->le_conn_max_interval = params->conn_max_interval; 1265 conn->le_conn_latency = params->conn_latency; 1266 conn->le_supv_timeout = params->supervision_timeout; 1267 } else { 1268 conn->le_conn_min_interval = hdev->le_conn_min_interval; 1269 conn->le_conn_max_interval = hdev->le_conn_max_interval; 1270 conn->le_conn_latency = hdev->le_conn_latency; 1271 conn->le_supv_timeout = hdev->le_supv_timeout; 1272 } 1273 1274 /* If controller is scanning, we stop it since some controllers are 1275 * not able to scan and connect at the same time. Also set the 1276 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete 1277 * handler for scan disabling knows to set the correct discovery 1278 * state. 1279 */ 1280 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 1281 hci_req_add_le_scan_disable(&req, rpa_le_conn); 1282 hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED); 1283 } 1284 1285 hci_req_add_le_create_conn(&req, conn, direct_rpa); 1286 1287 create_conn: 1288 err = hci_req_run(&req, create_le_conn_complete); 1289 if (err) { 1290 hci_conn_del(conn); 1291 1292 if (hdev->adv_instance_cnt) 1293 hci_req_resume_adv_instances(hdev); 1294 1295 return ERR_PTR(err); 1296 } 1297 1298 return conn; 1299 } 1300 1301 static bool is_connected(struct hci_dev *hdev, bdaddr_t *addr, u8 type) 1302 { 1303 struct hci_conn *conn; 1304 1305 conn = hci_conn_hash_lookup_le(hdev, addr, type); 1306 if (!conn) 1307 return false; 1308 1309 if (conn->state != BT_CONNECTED) 1310 return false; 1311 1312 return true; 1313 } 1314 1315 /* This function requires the caller holds hdev->lock */ 1316 static int hci_explicit_conn_params_set(struct hci_dev *hdev, 1317 bdaddr_t *addr, u8 addr_type) 1318 { 1319 struct hci_conn_params *params; 1320 1321 if (is_connected(hdev, addr, addr_type)) 1322 return -EISCONN; 1323 1324 params = hci_conn_params_lookup(hdev, addr, addr_type); 1325 if (!params) { 1326 params = hci_conn_params_add(hdev, addr, addr_type); 1327 if (!params) 1328 return -ENOMEM; 1329 1330 /* If we created new params, mark them to be deleted in 1331 * hci_connect_le_scan_cleanup. It's different case than 1332 * existing disabled params, those will stay after cleanup. 1333 */ 1334 params->auto_connect = HCI_AUTO_CONN_EXPLICIT; 1335 } 1336 1337 /* We're trying to connect, so make sure params are at pend_le_conns */ 1338 if (params->auto_connect == HCI_AUTO_CONN_DISABLED || 1339 params->auto_connect == HCI_AUTO_CONN_REPORT || 1340 params->auto_connect == HCI_AUTO_CONN_EXPLICIT) { 1341 list_del_init(¶ms->action); 1342 list_add(¶ms->action, &hdev->pend_le_conns); 1343 } 1344 1345 params->explicit_connect = true; 1346 1347 BT_DBG("addr %pMR (type %u) auto_connect %u", addr, addr_type, 1348 params->auto_connect); 1349 1350 return 0; 1351 } 1352 1353 /* This function requires the caller holds hdev->lock */ 1354 struct hci_conn *hci_connect_le_scan(struct hci_dev *hdev, bdaddr_t *dst, 1355 u8 dst_type, u8 sec_level, 1356 u16 conn_timeout, 1357 enum conn_reasons conn_reason) 1358 { 1359 struct hci_conn *conn; 1360 1361 /* Let's make sure that le is enabled.*/ 1362 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 1363 if (lmp_le_capable(hdev)) 1364 return ERR_PTR(-ECONNREFUSED); 1365 1366 return ERR_PTR(-EOPNOTSUPP); 1367 } 1368 1369 /* Some devices send ATT messages as soon as the physical link is 1370 * established. To be able to handle these ATT messages, the user- 1371 * space first establishes the connection and then starts the pairing 1372 * process. 1373 * 1374 * So if a hci_conn object already exists for the following connection 1375 * attempt, we simply update pending_sec_level and auth_type fields 1376 * and return the object found. 1377 */ 1378 conn = hci_conn_hash_lookup_le(hdev, dst, dst_type); 1379 if (conn) { 1380 if (conn->pending_sec_level < sec_level) 1381 conn->pending_sec_level = sec_level; 1382 goto done; 1383 } 1384 1385 BT_DBG("requesting refresh of dst_addr"); 1386 1387 conn = hci_conn_add(hdev, LE_LINK, dst, HCI_ROLE_MASTER); 1388 if (!conn) 1389 return ERR_PTR(-ENOMEM); 1390 1391 if (hci_explicit_conn_params_set(hdev, dst, dst_type) < 0) { 1392 hci_conn_del(conn); 1393 return ERR_PTR(-EBUSY); 1394 } 1395 1396 conn->state = BT_CONNECT; 1397 set_bit(HCI_CONN_SCANNING, &conn->flags); 1398 conn->dst_type = dst_type; 1399 conn->sec_level = BT_SECURITY_LOW; 1400 conn->pending_sec_level = sec_level; 1401 conn->conn_timeout = conn_timeout; 1402 conn->conn_reason = conn_reason; 1403 1404 hci_update_passive_scan(hdev); 1405 1406 done: 1407 hci_conn_hold(conn); 1408 return conn; 1409 } 1410 1411 struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst, 1412 u8 sec_level, u8 auth_type, 1413 enum conn_reasons conn_reason) 1414 { 1415 struct hci_conn *acl; 1416 1417 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 1418 if (lmp_bredr_capable(hdev)) 1419 return ERR_PTR(-ECONNREFUSED); 1420 1421 return ERR_PTR(-EOPNOTSUPP); 1422 } 1423 1424 acl = hci_conn_hash_lookup_ba(hdev, ACL_LINK, dst); 1425 if (!acl) { 1426 acl = hci_conn_add(hdev, ACL_LINK, dst, HCI_ROLE_MASTER); 1427 if (!acl) 1428 return ERR_PTR(-ENOMEM); 1429 } 1430 1431 hci_conn_hold(acl); 1432 1433 acl->conn_reason = conn_reason; 1434 if (acl->state == BT_OPEN || acl->state == BT_CLOSED) { 1435 acl->sec_level = BT_SECURITY_LOW; 1436 acl->pending_sec_level = sec_level; 1437 acl->auth_type = auth_type; 1438 hci_acl_create_connection(acl); 1439 } 1440 1441 return acl; 1442 } 1443 1444 struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst, 1445 __u16 setting, struct bt_codec *codec) 1446 { 1447 struct hci_conn *acl; 1448 struct hci_conn *sco; 1449 1450 acl = hci_connect_acl(hdev, dst, BT_SECURITY_LOW, HCI_AT_NO_BONDING, 1451 CONN_REASON_SCO_CONNECT); 1452 if (IS_ERR(acl)) 1453 return acl; 1454 1455 sco = hci_conn_hash_lookup_ba(hdev, type, dst); 1456 if (!sco) { 1457 sco = hci_conn_add(hdev, type, dst, HCI_ROLE_MASTER); 1458 if (!sco) { 1459 hci_conn_drop(acl); 1460 return ERR_PTR(-ENOMEM); 1461 } 1462 } 1463 1464 acl->link = sco; 1465 sco->link = acl; 1466 1467 hci_conn_hold(sco); 1468 1469 sco->setting = setting; 1470 sco->codec = *codec; 1471 1472 if (acl->state == BT_CONNECTED && 1473 (sco->state == BT_OPEN || sco->state == BT_CLOSED)) { 1474 set_bit(HCI_CONN_POWER_SAVE, &acl->flags); 1475 hci_conn_enter_active_mode(acl, BT_POWER_FORCE_ACTIVE_ON); 1476 1477 if (test_bit(HCI_CONN_MODE_CHANGE_PEND, &acl->flags)) { 1478 /* defer SCO setup until mode change completed */ 1479 set_bit(HCI_CONN_SCO_SETUP_PEND, &acl->flags); 1480 return sco; 1481 } 1482 1483 hci_sco_setup(acl, 0x00); 1484 } 1485 1486 return sco; 1487 } 1488 1489 /* Check link security requirement */ 1490 int hci_conn_check_link_mode(struct hci_conn *conn) 1491 { 1492 BT_DBG("hcon %p", conn); 1493 1494 /* In Secure Connections Only mode, it is required that Secure 1495 * Connections is used and the link is encrypted with AES-CCM 1496 * using a P-256 authenticated combination key. 1497 */ 1498 if (hci_dev_test_flag(conn->hdev, HCI_SC_ONLY)) { 1499 if (!hci_conn_sc_enabled(conn) || 1500 !test_bit(HCI_CONN_AES_CCM, &conn->flags) || 1501 conn->key_type != HCI_LK_AUTH_COMBINATION_P256) 1502 return 0; 1503 } 1504 1505 /* AES encryption is required for Level 4: 1506 * 1507 * BLUETOOTH CORE SPECIFICATION Version 5.2 | Vol 3, Part C 1508 * page 1319: 1509 * 1510 * 128-bit equivalent strength for link and encryption keys 1511 * required using FIPS approved algorithms (E0 not allowed, 1512 * SAFER+ not allowed, and P-192 not allowed; encryption key 1513 * not shortened) 1514 */ 1515 if (conn->sec_level == BT_SECURITY_FIPS && 1516 !test_bit(HCI_CONN_AES_CCM, &conn->flags)) { 1517 bt_dev_err(conn->hdev, 1518 "Invalid security: Missing AES-CCM usage"); 1519 return 0; 1520 } 1521 1522 if (hci_conn_ssp_enabled(conn) && 1523 !test_bit(HCI_CONN_ENCRYPT, &conn->flags)) 1524 return 0; 1525 1526 return 1; 1527 } 1528 1529 /* Authenticate remote device */ 1530 static int hci_conn_auth(struct hci_conn *conn, __u8 sec_level, __u8 auth_type) 1531 { 1532 BT_DBG("hcon %p", conn); 1533 1534 if (conn->pending_sec_level > sec_level) 1535 sec_level = conn->pending_sec_level; 1536 1537 if (sec_level > conn->sec_level) 1538 conn->pending_sec_level = sec_level; 1539 else if (test_bit(HCI_CONN_AUTH, &conn->flags)) 1540 return 1; 1541 1542 /* Make sure we preserve an existing MITM requirement*/ 1543 auth_type |= (conn->auth_type & 0x01); 1544 1545 conn->auth_type = auth_type; 1546 1547 if (!test_and_set_bit(HCI_CONN_AUTH_PEND, &conn->flags)) { 1548 struct hci_cp_auth_requested cp; 1549 1550 cp.handle = cpu_to_le16(conn->handle); 1551 hci_send_cmd(conn->hdev, HCI_OP_AUTH_REQUESTED, 1552 sizeof(cp), &cp); 1553 1554 /* If we're already encrypted set the REAUTH_PEND flag, 1555 * otherwise set the ENCRYPT_PEND. 1556 */ 1557 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) 1558 set_bit(HCI_CONN_REAUTH_PEND, &conn->flags); 1559 else 1560 set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags); 1561 } 1562 1563 return 0; 1564 } 1565 1566 /* Encrypt the link */ 1567 static void hci_conn_encrypt(struct hci_conn *conn) 1568 { 1569 BT_DBG("hcon %p", conn); 1570 1571 if (!test_and_set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) { 1572 struct hci_cp_set_conn_encrypt cp; 1573 cp.handle = cpu_to_le16(conn->handle); 1574 cp.encrypt = 0x01; 1575 hci_send_cmd(conn->hdev, HCI_OP_SET_CONN_ENCRYPT, sizeof(cp), 1576 &cp); 1577 } 1578 } 1579 1580 /* Enable security */ 1581 int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type, 1582 bool initiator) 1583 { 1584 BT_DBG("hcon %p", conn); 1585 1586 if (conn->type == LE_LINK) 1587 return smp_conn_security(conn, sec_level); 1588 1589 /* For sdp we don't need the link key. */ 1590 if (sec_level == BT_SECURITY_SDP) 1591 return 1; 1592 1593 /* For non 2.1 devices and low security level we don't need the link 1594 key. */ 1595 if (sec_level == BT_SECURITY_LOW && !hci_conn_ssp_enabled(conn)) 1596 return 1; 1597 1598 /* For other security levels we need the link key. */ 1599 if (!test_bit(HCI_CONN_AUTH, &conn->flags)) 1600 goto auth; 1601 1602 /* An authenticated FIPS approved combination key has sufficient 1603 * security for security level 4. */ 1604 if (conn->key_type == HCI_LK_AUTH_COMBINATION_P256 && 1605 sec_level == BT_SECURITY_FIPS) 1606 goto encrypt; 1607 1608 /* An authenticated combination key has sufficient security for 1609 security level 3. */ 1610 if ((conn->key_type == HCI_LK_AUTH_COMBINATION_P192 || 1611 conn->key_type == HCI_LK_AUTH_COMBINATION_P256) && 1612 sec_level == BT_SECURITY_HIGH) 1613 goto encrypt; 1614 1615 /* An unauthenticated combination key has sufficient security for 1616 security level 1 and 2. */ 1617 if ((conn->key_type == HCI_LK_UNAUTH_COMBINATION_P192 || 1618 conn->key_type == HCI_LK_UNAUTH_COMBINATION_P256) && 1619 (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW)) 1620 goto encrypt; 1621 1622 /* A combination key has always sufficient security for the security 1623 levels 1 or 2. High security level requires the combination key 1624 is generated using maximum PIN code length (16). 1625 For pre 2.1 units. */ 1626 if (conn->key_type == HCI_LK_COMBINATION && 1627 (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW || 1628 conn->pin_length == 16)) 1629 goto encrypt; 1630 1631 auth: 1632 if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) 1633 return 0; 1634 1635 if (initiator) 1636 set_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags); 1637 1638 if (!hci_conn_auth(conn, sec_level, auth_type)) 1639 return 0; 1640 1641 encrypt: 1642 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) { 1643 /* Ensure that the encryption key size has been read, 1644 * otherwise stall the upper layer responses. 1645 */ 1646 if (!conn->enc_key_size) 1647 return 0; 1648 1649 /* Nothing else needed, all requirements are met */ 1650 return 1; 1651 } 1652 1653 hci_conn_encrypt(conn); 1654 return 0; 1655 } 1656 EXPORT_SYMBOL(hci_conn_security); 1657 1658 /* Check secure link requirement */ 1659 int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level) 1660 { 1661 BT_DBG("hcon %p", conn); 1662 1663 /* Accept if non-secure or higher security level is required */ 1664 if (sec_level != BT_SECURITY_HIGH && sec_level != BT_SECURITY_FIPS) 1665 return 1; 1666 1667 /* Accept if secure or higher security level is already present */ 1668 if (conn->sec_level == BT_SECURITY_HIGH || 1669 conn->sec_level == BT_SECURITY_FIPS) 1670 return 1; 1671 1672 /* Reject not secure link */ 1673 return 0; 1674 } 1675 EXPORT_SYMBOL(hci_conn_check_secure); 1676 1677 /* Switch role */ 1678 int hci_conn_switch_role(struct hci_conn *conn, __u8 role) 1679 { 1680 BT_DBG("hcon %p", conn); 1681 1682 if (role == conn->role) 1683 return 1; 1684 1685 if (!test_and_set_bit(HCI_CONN_RSWITCH_PEND, &conn->flags)) { 1686 struct hci_cp_switch_role cp; 1687 bacpy(&cp.bdaddr, &conn->dst); 1688 cp.role = role; 1689 hci_send_cmd(conn->hdev, HCI_OP_SWITCH_ROLE, sizeof(cp), &cp); 1690 } 1691 1692 return 0; 1693 } 1694 EXPORT_SYMBOL(hci_conn_switch_role); 1695 1696 /* Enter active mode */ 1697 void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active) 1698 { 1699 struct hci_dev *hdev = conn->hdev; 1700 1701 BT_DBG("hcon %p mode %d", conn, conn->mode); 1702 1703 if (conn->mode != HCI_CM_SNIFF) 1704 goto timer; 1705 1706 if (!test_bit(HCI_CONN_POWER_SAVE, &conn->flags) && !force_active) 1707 goto timer; 1708 1709 if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) { 1710 struct hci_cp_exit_sniff_mode cp; 1711 cp.handle = cpu_to_le16(conn->handle); 1712 hci_send_cmd(hdev, HCI_OP_EXIT_SNIFF_MODE, sizeof(cp), &cp); 1713 } 1714 1715 timer: 1716 if (hdev->idle_timeout > 0) 1717 queue_delayed_work(hdev->workqueue, &conn->idle_work, 1718 msecs_to_jiffies(hdev->idle_timeout)); 1719 } 1720 1721 /* Drop all connection on the device */ 1722 void hci_conn_hash_flush(struct hci_dev *hdev) 1723 { 1724 struct hci_conn_hash *h = &hdev->conn_hash; 1725 struct hci_conn *c, *n; 1726 1727 BT_DBG("hdev %s", hdev->name); 1728 1729 list_for_each_entry_safe(c, n, &h->list, list) { 1730 c->state = BT_CLOSED; 1731 1732 hci_disconn_cfm(c, HCI_ERROR_LOCAL_HOST_TERM); 1733 hci_conn_del(c); 1734 } 1735 } 1736 1737 /* Check pending connect attempts */ 1738 void hci_conn_check_pending(struct hci_dev *hdev) 1739 { 1740 struct hci_conn *conn; 1741 1742 BT_DBG("hdev %s", hdev->name); 1743 1744 hci_dev_lock(hdev); 1745 1746 conn = hci_conn_hash_lookup_state(hdev, ACL_LINK, BT_CONNECT2); 1747 if (conn) 1748 hci_acl_create_connection(conn); 1749 1750 hci_dev_unlock(hdev); 1751 } 1752 1753 static u32 get_link_mode(struct hci_conn *conn) 1754 { 1755 u32 link_mode = 0; 1756 1757 if (conn->role == HCI_ROLE_MASTER) 1758 link_mode |= HCI_LM_MASTER; 1759 1760 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) 1761 link_mode |= HCI_LM_ENCRYPT; 1762 1763 if (test_bit(HCI_CONN_AUTH, &conn->flags)) 1764 link_mode |= HCI_LM_AUTH; 1765 1766 if (test_bit(HCI_CONN_SECURE, &conn->flags)) 1767 link_mode |= HCI_LM_SECURE; 1768 1769 if (test_bit(HCI_CONN_FIPS, &conn->flags)) 1770 link_mode |= HCI_LM_FIPS; 1771 1772 return link_mode; 1773 } 1774 1775 int hci_get_conn_list(void __user *arg) 1776 { 1777 struct hci_conn *c; 1778 struct hci_conn_list_req req, *cl; 1779 struct hci_conn_info *ci; 1780 struct hci_dev *hdev; 1781 int n = 0, size, err; 1782 1783 if (copy_from_user(&req, arg, sizeof(req))) 1784 return -EFAULT; 1785 1786 if (!req.conn_num || req.conn_num > (PAGE_SIZE * 2) / sizeof(*ci)) 1787 return -EINVAL; 1788 1789 size = sizeof(req) + req.conn_num * sizeof(*ci); 1790 1791 cl = kmalloc(size, GFP_KERNEL); 1792 if (!cl) 1793 return -ENOMEM; 1794 1795 hdev = hci_dev_get(req.dev_id); 1796 if (!hdev) { 1797 kfree(cl); 1798 return -ENODEV; 1799 } 1800 1801 ci = cl->conn_info; 1802 1803 hci_dev_lock(hdev); 1804 list_for_each_entry(c, &hdev->conn_hash.list, list) { 1805 bacpy(&(ci + n)->bdaddr, &c->dst); 1806 (ci + n)->handle = c->handle; 1807 (ci + n)->type = c->type; 1808 (ci + n)->out = c->out; 1809 (ci + n)->state = c->state; 1810 (ci + n)->link_mode = get_link_mode(c); 1811 if (++n >= req.conn_num) 1812 break; 1813 } 1814 hci_dev_unlock(hdev); 1815 1816 cl->dev_id = hdev->id; 1817 cl->conn_num = n; 1818 size = sizeof(req) + n * sizeof(*ci); 1819 1820 hci_dev_put(hdev); 1821 1822 err = copy_to_user(arg, cl, size); 1823 kfree(cl); 1824 1825 return err ? -EFAULT : 0; 1826 } 1827 1828 int hci_get_conn_info(struct hci_dev *hdev, void __user *arg) 1829 { 1830 struct hci_conn_info_req req; 1831 struct hci_conn_info ci; 1832 struct hci_conn *conn; 1833 char __user *ptr = arg + sizeof(req); 1834 1835 if (copy_from_user(&req, arg, sizeof(req))) 1836 return -EFAULT; 1837 1838 hci_dev_lock(hdev); 1839 conn = hci_conn_hash_lookup_ba(hdev, req.type, &req.bdaddr); 1840 if (conn) { 1841 bacpy(&ci.bdaddr, &conn->dst); 1842 ci.handle = conn->handle; 1843 ci.type = conn->type; 1844 ci.out = conn->out; 1845 ci.state = conn->state; 1846 ci.link_mode = get_link_mode(conn); 1847 } 1848 hci_dev_unlock(hdev); 1849 1850 if (!conn) 1851 return -ENOENT; 1852 1853 return copy_to_user(ptr, &ci, sizeof(ci)) ? -EFAULT : 0; 1854 } 1855 1856 int hci_get_auth_info(struct hci_dev *hdev, void __user *arg) 1857 { 1858 struct hci_auth_info_req req; 1859 struct hci_conn *conn; 1860 1861 if (copy_from_user(&req, arg, sizeof(req))) 1862 return -EFAULT; 1863 1864 hci_dev_lock(hdev); 1865 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &req.bdaddr); 1866 if (conn) 1867 req.type = conn->auth_type; 1868 hci_dev_unlock(hdev); 1869 1870 if (!conn) 1871 return -ENOENT; 1872 1873 return copy_to_user(arg, &req, sizeof(req)) ? -EFAULT : 0; 1874 } 1875 1876 struct hci_chan *hci_chan_create(struct hci_conn *conn) 1877 { 1878 struct hci_dev *hdev = conn->hdev; 1879 struct hci_chan *chan; 1880 1881 BT_DBG("%s hcon %p", hdev->name, conn); 1882 1883 if (test_bit(HCI_CONN_DROP, &conn->flags)) { 1884 BT_DBG("Refusing to create new hci_chan"); 1885 return NULL; 1886 } 1887 1888 chan = kzalloc(sizeof(*chan), GFP_KERNEL); 1889 if (!chan) 1890 return NULL; 1891 1892 chan->conn = hci_conn_get(conn); 1893 skb_queue_head_init(&chan->data_q); 1894 chan->state = BT_CONNECTED; 1895 1896 list_add_rcu(&chan->list, &conn->chan_list); 1897 1898 return chan; 1899 } 1900 1901 void hci_chan_del(struct hci_chan *chan) 1902 { 1903 struct hci_conn *conn = chan->conn; 1904 struct hci_dev *hdev = conn->hdev; 1905 1906 BT_DBG("%s hcon %p chan %p", hdev->name, conn, chan); 1907 1908 list_del_rcu(&chan->list); 1909 1910 synchronize_rcu(); 1911 1912 /* Prevent new hci_chan's to be created for this hci_conn */ 1913 set_bit(HCI_CONN_DROP, &conn->flags); 1914 1915 hci_conn_put(conn); 1916 1917 skb_queue_purge(&chan->data_q); 1918 kfree(chan); 1919 } 1920 1921 void hci_chan_list_flush(struct hci_conn *conn) 1922 { 1923 struct hci_chan *chan, *n; 1924 1925 BT_DBG("hcon %p", conn); 1926 1927 list_for_each_entry_safe(chan, n, &conn->chan_list, list) 1928 hci_chan_del(chan); 1929 } 1930 1931 static struct hci_chan *__hci_chan_lookup_handle(struct hci_conn *hcon, 1932 __u16 handle) 1933 { 1934 struct hci_chan *hchan; 1935 1936 list_for_each_entry(hchan, &hcon->chan_list, list) { 1937 if (hchan->handle == handle) 1938 return hchan; 1939 } 1940 1941 return NULL; 1942 } 1943 1944 struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle) 1945 { 1946 struct hci_conn_hash *h = &hdev->conn_hash; 1947 struct hci_conn *hcon; 1948 struct hci_chan *hchan = NULL; 1949 1950 rcu_read_lock(); 1951 1952 list_for_each_entry_rcu(hcon, &h->list, list) { 1953 hchan = __hci_chan_lookup_handle(hcon, handle); 1954 if (hchan) 1955 break; 1956 } 1957 1958 rcu_read_unlock(); 1959 1960 return hchan; 1961 } 1962 1963 u32 hci_conn_get_phy(struct hci_conn *conn) 1964 { 1965 u32 phys = 0; 1966 1967 /* BLUETOOTH CORE SPECIFICATION Version 5.2 | Vol 2, Part B page 471: 1968 * Table 6.2: Packets defined for synchronous, asynchronous, and 1969 * CPB logical transport types. 1970 */ 1971 switch (conn->type) { 1972 case SCO_LINK: 1973 /* SCO logical transport (1 Mb/s): 1974 * HV1, HV2, HV3 and DV. 1975 */ 1976 phys |= BT_PHY_BR_1M_1SLOT; 1977 1978 break; 1979 1980 case ACL_LINK: 1981 /* ACL logical transport (1 Mb/s) ptt=0: 1982 * DH1, DM3, DH3, DM5 and DH5. 1983 */ 1984 phys |= BT_PHY_BR_1M_1SLOT; 1985 1986 if (conn->pkt_type & (HCI_DM3 | HCI_DH3)) 1987 phys |= BT_PHY_BR_1M_3SLOT; 1988 1989 if (conn->pkt_type & (HCI_DM5 | HCI_DH5)) 1990 phys |= BT_PHY_BR_1M_5SLOT; 1991 1992 /* ACL logical transport (2 Mb/s) ptt=1: 1993 * 2-DH1, 2-DH3 and 2-DH5. 1994 */ 1995 if (!(conn->pkt_type & HCI_2DH1)) 1996 phys |= BT_PHY_EDR_2M_1SLOT; 1997 1998 if (!(conn->pkt_type & HCI_2DH3)) 1999 phys |= BT_PHY_EDR_2M_3SLOT; 2000 2001 if (!(conn->pkt_type & HCI_2DH5)) 2002 phys |= BT_PHY_EDR_2M_5SLOT; 2003 2004 /* ACL logical transport (3 Mb/s) ptt=1: 2005 * 3-DH1, 3-DH3 and 3-DH5. 2006 */ 2007 if (!(conn->pkt_type & HCI_3DH1)) 2008 phys |= BT_PHY_EDR_3M_1SLOT; 2009 2010 if (!(conn->pkt_type & HCI_3DH3)) 2011 phys |= BT_PHY_EDR_3M_3SLOT; 2012 2013 if (!(conn->pkt_type & HCI_3DH5)) 2014 phys |= BT_PHY_EDR_3M_5SLOT; 2015 2016 break; 2017 2018 case ESCO_LINK: 2019 /* eSCO logical transport (1 Mb/s): EV3, EV4 and EV5 */ 2020 phys |= BT_PHY_BR_1M_1SLOT; 2021 2022 if (!(conn->pkt_type & (ESCO_EV4 | ESCO_EV5))) 2023 phys |= BT_PHY_BR_1M_3SLOT; 2024 2025 /* eSCO logical transport (2 Mb/s): 2-EV3, 2-EV5 */ 2026 if (!(conn->pkt_type & ESCO_2EV3)) 2027 phys |= BT_PHY_EDR_2M_1SLOT; 2028 2029 if (!(conn->pkt_type & ESCO_2EV5)) 2030 phys |= BT_PHY_EDR_2M_3SLOT; 2031 2032 /* eSCO logical transport (3 Mb/s): 3-EV3, 3-EV5 */ 2033 if (!(conn->pkt_type & ESCO_3EV3)) 2034 phys |= BT_PHY_EDR_3M_1SLOT; 2035 2036 if (!(conn->pkt_type & ESCO_3EV5)) 2037 phys |= BT_PHY_EDR_3M_3SLOT; 2038 2039 break; 2040 2041 case LE_LINK: 2042 if (conn->le_tx_phy & HCI_LE_SET_PHY_1M) 2043 phys |= BT_PHY_LE_1M_TX; 2044 2045 if (conn->le_rx_phy & HCI_LE_SET_PHY_1M) 2046 phys |= BT_PHY_LE_1M_RX; 2047 2048 if (conn->le_tx_phy & HCI_LE_SET_PHY_2M) 2049 phys |= BT_PHY_LE_2M_TX; 2050 2051 if (conn->le_rx_phy & HCI_LE_SET_PHY_2M) 2052 phys |= BT_PHY_LE_2M_RX; 2053 2054 if (conn->le_tx_phy & HCI_LE_SET_PHY_CODED) 2055 phys |= BT_PHY_LE_CODED_TX; 2056 2057 if (conn->le_rx_phy & HCI_LE_SET_PHY_CODED) 2058 phys |= BT_PHY_LE_CODED_RX; 2059 2060 break; 2061 } 2062 2063 return phys; 2064 } 2065