xref: /linux/net/bluetooth/hci_conn.c (revision 41fb0cf1bced59c1fe178cf6cc9f716b5da9e40e)
1 /*
2    BlueZ - Bluetooth protocol stack for Linux
3    Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved.
4 
5    Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License version 2 as
9    published by the Free Software Foundation;
10 
11    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
12    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
13    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
14    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
15    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
16    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 
20    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
21    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
22    SOFTWARE IS DISCLAIMED.
23 */
24 
25 /* Bluetooth HCI connection handling. */
26 
27 #include <linux/export.h>
28 #include <linux/debugfs.h>
29 
30 #include <net/bluetooth/bluetooth.h>
31 #include <net/bluetooth/hci_core.h>
32 #include <net/bluetooth/l2cap.h>
33 
34 #include "hci_request.h"
35 #include "smp.h"
36 #include "a2mp.h"
37 
38 struct sco_param {
39 	u16 pkt_type;
40 	u16 max_latency;
41 	u8  retrans_effort;
42 };
43 
44 static const struct sco_param esco_param_cvsd[] = {
45 	{ EDR_ESCO_MASK & ~ESCO_2EV3, 0x000a,	0x01 }, /* S3 */
46 	{ EDR_ESCO_MASK & ~ESCO_2EV3, 0x0007,	0x01 }, /* S2 */
47 	{ EDR_ESCO_MASK | ESCO_EV3,   0x0007,	0x01 }, /* S1 */
48 	{ EDR_ESCO_MASK | ESCO_HV3,   0xffff,	0x01 }, /* D1 */
49 	{ EDR_ESCO_MASK | ESCO_HV1,   0xffff,	0x01 }, /* D0 */
50 };
51 
52 static const struct sco_param sco_param_cvsd[] = {
53 	{ EDR_ESCO_MASK | ESCO_HV3,   0xffff,	0xff }, /* D1 */
54 	{ EDR_ESCO_MASK | ESCO_HV1,   0xffff,	0xff }, /* D0 */
55 };
56 
57 static const struct sco_param esco_param_msbc[] = {
58 	{ EDR_ESCO_MASK & ~ESCO_2EV3, 0x000d,	0x02 }, /* T2 */
59 	{ EDR_ESCO_MASK | ESCO_EV3,   0x0008,	0x02 }, /* T1 */
60 };
61 
62 /* This function requires the caller holds hdev->lock */
63 static void hci_connect_le_scan_cleanup(struct hci_conn *conn)
64 {
65 	struct hci_conn_params *params;
66 	struct hci_dev *hdev = conn->hdev;
67 	struct smp_irk *irk;
68 	bdaddr_t *bdaddr;
69 	u8 bdaddr_type;
70 
71 	bdaddr = &conn->dst;
72 	bdaddr_type = conn->dst_type;
73 
74 	/* Check if we need to convert to identity address */
75 	irk = hci_get_irk(hdev, bdaddr, bdaddr_type);
76 	if (irk) {
77 		bdaddr = &irk->bdaddr;
78 		bdaddr_type = irk->addr_type;
79 	}
80 
81 	params = hci_pend_le_action_lookup(&hdev->pend_le_conns, bdaddr,
82 					   bdaddr_type);
83 	if (!params || !params->explicit_connect)
84 		return;
85 
86 	/* The connection attempt was doing scan for new RPA, and is
87 	 * in scan phase. If params are not associated with any other
88 	 * autoconnect action, remove them completely. If they are, just unmark
89 	 * them as waiting for connection, by clearing explicit_connect field.
90 	 */
91 	params->explicit_connect = false;
92 
93 	list_del_init(&params->action);
94 
95 	switch (params->auto_connect) {
96 	case HCI_AUTO_CONN_EXPLICIT:
97 		hci_conn_params_del(hdev, bdaddr, bdaddr_type);
98 		/* return instead of break to avoid duplicate scan update */
99 		return;
100 	case HCI_AUTO_CONN_DIRECT:
101 	case HCI_AUTO_CONN_ALWAYS:
102 		list_add(&params->action, &hdev->pend_le_conns);
103 		break;
104 	case HCI_AUTO_CONN_REPORT:
105 		list_add(&params->action, &hdev->pend_le_reports);
106 		break;
107 	default:
108 		break;
109 	}
110 
111 	hci_update_passive_scan(hdev);
112 }
113 
114 static void hci_conn_cleanup(struct hci_conn *conn)
115 {
116 	struct hci_dev *hdev = conn->hdev;
117 
118 	if (test_bit(HCI_CONN_PARAM_REMOVAL_PEND, &conn->flags))
119 		hci_conn_params_del(conn->hdev, &conn->dst, conn->dst_type);
120 
121 	hci_chan_list_flush(conn);
122 
123 	hci_conn_hash_del(hdev, conn);
124 
125 	if (conn->type == SCO_LINK || conn->type == ESCO_LINK) {
126 		switch (conn->setting & SCO_AIRMODE_MASK) {
127 		case SCO_AIRMODE_CVSD:
128 		case SCO_AIRMODE_TRANSP:
129 			if (hdev->notify)
130 				hdev->notify(hdev, HCI_NOTIFY_DISABLE_SCO);
131 			break;
132 		}
133 	} else {
134 		if (hdev->notify)
135 			hdev->notify(hdev, HCI_NOTIFY_CONN_DEL);
136 	}
137 
138 	hci_conn_del_sysfs(conn);
139 
140 	debugfs_remove_recursive(conn->debugfs);
141 
142 	hci_dev_put(hdev);
143 
144 	hci_conn_put(conn);
145 }
146 
147 static void le_scan_cleanup(struct work_struct *work)
148 {
149 	struct hci_conn *conn = container_of(work, struct hci_conn,
150 					     le_scan_cleanup);
151 	struct hci_dev *hdev = conn->hdev;
152 	struct hci_conn *c = NULL;
153 
154 	BT_DBG("%s hcon %p", hdev->name, conn);
155 
156 	hci_dev_lock(hdev);
157 
158 	/* Check that the hci_conn is still around */
159 	rcu_read_lock();
160 	list_for_each_entry_rcu(c, &hdev->conn_hash.list, list) {
161 		if (c == conn)
162 			break;
163 	}
164 	rcu_read_unlock();
165 
166 	if (c == conn) {
167 		hci_connect_le_scan_cleanup(conn);
168 		hci_conn_cleanup(conn);
169 	}
170 
171 	hci_dev_unlock(hdev);
172 	hci_dev_put(hdev);
173 	hci_conn_put(conn);
174 }
175 
176 static void hci_connect_le_scan_remove(struct hci_conn *conn)
177 {
178 	BT_DBG("%s hcon %p", conn->hdev->name, conn);
179 
180 	/* We can't call hci_conn_del/hci_conn_cleanup here since that
181 	 * could deadlock with another hci_conn_del() call that's holding
182 	 * hci_dev_lock and doing cancel_delayed_work_sync(&conn->disc_work).
183 	 * Instead, grab temporary extra references to the hci_dev and
184 	 * hci_conn and perform the necessary cleanup in a separate work
185 	 * callback.
186 	 */
187 
188 	hci_dev_hold(conn->hdev);
189 	hci_conn_get(conn);
190 
191 	/* Even though we hold a reference to the hdev, many other
192 	 * things might get cleaned up meanwhile, including the hdev's
193 	 * own workqueue, so we can't use that for scheduling.
194 	 */
195 	schedule_work(&conn->le_scan_cleanup);
196 }
197 
198 static void hci_acl_create_connection(struct hci_conn *conn)
199 {
200 	struct hci_dev *hdev = conn->hdev;
201 	struct inquiry_entry *ie;
202 	struct hci_cp_create_conn cp;
203 
204 	BT_DBG("hcon %p", conn);
205 
206 	/* Many controllers disallow HCI Create Connection while it is doing
207 	 * HCI Inquiry. So we cancel the Inquiry first before issuing HCI Create
208 	 * Connection. This may cause the MGMT discovering state to become false
209 	 * without user space's request but it is okay since the MGMT Discovery
210 	 * APIs do not promise that discovery should be done forever. Instead,
211 	 * the user space monitors the status of MGMT discovering and it may
212 	 * request for discovery again when this flag becomes false.
213 	 */
214 	if (test_bit(HCI_INQUIRY, &hdev->flags)) {
215 		/* Put this connection to "pending" state so that it will be
216 		 * executed after the inquiry cancel command complete event.
217 		 */
218 		conn->state = BT_CONNECT2;
219 		hci_send_cmd(hdev, HCI_OP_INQUIRY_CANCEL, 0, NULL);
220 		return;
221 	}
222 
223 	conn->state = BT_CONNECT;
224 	conn->out = true;
225 	conn->role = HCI_ROLE_MASTER;
226 
227 	conn->attempt++;
228 
229 	conn->link_policy = hdev->link_policy;
230 
231 	memset(&cp, 0, sizeof(cp));
232 	bacpy(&cp.bdaddr, &conn->dst);
233 	cp.pscan_rep_mode = 0x02;
234 
235 	ie = hci_inquiry_cache_lookup(hdev, &conn->dst);
236 	if (ie) {
237 		if (inquiry_entry_age(ie) <= INQUIRY_ENTRY_AGE_MAX) {
238 			cp.pscan_rep_mode = ie->data.pscan_rep_mode;
239 			cp.pscan_mode     = ie->data.pscan_mode;
240 			cp.clock_offset   = ie->data.clock_offset |
241 					    cpu_to_le16(0x8000);
242 		}
243 
244 		memcpy(conn->dev_class, ie->data.dev_class, 3);
245 	}
246 
247 	cp.pkt_type = cpu_to_le16(conn->pkt_type);
248 	if (lmp_rswitch_capable(hdev) && !(hdev->link_mode & HCI_LM_MASTER))
249 		cp.role_switch = 0x01;
250 	else
251 		cp.role_switch = 0x00;
252 
253 	hci_send_cmd(hdev, HCI_OP_CREATE_CONN, sizeof(cp), &cp);
254 }
255 
256 int hci_disconnect(struct hci_conn *conn, __u8 reason)
257 {
258 	BT_DBG("hcon %p", conn);
259 
260 	/* When we are central of an established connection and it enters
261 	 * the disconnect timeout, then go ahead and try to read the
262 	 * current clock offset.  Processing of the result is done
263 	 * within the event handling and hci_clock_offset_evt function.
264 	 */
265 	if (conn->type == ACL_LINK && conn->role == HCI_ROLE_MASTER &&
266 	    (conn->state == BT_CONNECTED || conn->state == BT_CONFIG)) {
267 		struct hci_dev *hdev = conn->hdev;
268 		struct hci_cp_read_clock_offset clkoff_cp;
269 
270 		clkoff_cp.handle = cpu_to_le16(conn->handle);
271 		hci_send_cmd(hdev, HCI_OP_READ_CLOCK_OFFSET, sizeof(clkoff_cp),
272 			     &clkoff_cp);
273 	}
274 
275 	return hci_abort_conn(conn, reason);
276 }
277 
278 static void hci_add_sco(struct hci_conn *conn, __u16 handle)
279 {
280 	struct hci_dev *hdev = conn->hdev;
281 	struct hci_cp_add_sco cp;
282 
283 	BT_DBG("hcon %p", conn);
284 
285 	conn->state = BT_CONNECT;
286 	conn->out = true;
287 
288 	conn->attempt++;
289 
290 	cp.handle   = cpu_to_le16(handle);
291 	cp.pkt_type = cpu_to_le16(conn->pkt_type);
292 
293 	hci_send_cmd(hdev, HCI_OP_ADD_SCO, sizeof(cp), &cp);
294 }
295 
296 static bool find_next_esco_param(struct hci_conn *conn,
297 				 const struct sco_param *esco_param, int size)
298 {
299 	for (; conn->attempt <= size; conn->attempt++) {
300 		if (lmp_esco_2m_capable(conn->link) ||
301 		    (esco_param[conn->attempt - 1].pkt_type & ESCO_2EV3))
302 			break;
303 		BT_DBG("hcon %p skipped attempt %d, eSCO 2M not supported",
304 		       conn, conn->attempt);
305 	}
306 
307 	return conn->attempt <= size;
308 }
309 
310 static bool hci_enhanced_setup_sync_conn(struct hci_conn *conn, __u16 handle)
311 {
312 	struct hci_dev *hdev = conn->hdev;
313 	struct hci_cp_enhanced_setup_sync_conn cp;
314 	const struct sco_param *param;
315 
316 	bt_dev_dbg(hdev, "hcon %p", conn);
317 
318 	/* for offload use case, codec needs to configured before opening SCO */
319 	if (conn->codec.data_path)
320 		hci_req_configure_datapath(hdev, &conn->codec);
321 
322 	conn->state = BT_CONNECT;
323 	conn->out = true;
324 
325 	conn->attempt++;
326 
327 	memset(&cp, 0x00, sizeof(cp));
328 
329 	cp.handle   = cpu_to_le16(handle);
330 
331 	cp.tx_bandwidth   = cpu_to_le32(0x00001f40);
332 	cp.rx_bandwidth   = cpu_to_le32(0x00001f40);
333 
334 	switch (conn->codec.id) {
335 	case BT_CODEC_MSBC:
336 		if (!find_next_esco_param(conn, esco_param_msbc,
337 					  ARRAY_SIZE(esco_param_msbc)))
338 			return false;
339 
340 		param = &esco_param_msbc[conn->attempt - 1];
341 		cp.tx_coding_format.id = 0x05;
342 		cp.rx_coding_format.id = 0x05;
343 		cp.tx_codec_frame_size = __cpu_to_le16(60);
344 		cp.rx_codec_frame_size = __cpu_to_le16(60);
345 		cp.in_bandwidth = __cpu_to_le32(32000);
346 		cp.out_bandwidth = __cpu_to_le32(32000);
347 		cp.in_coding_format.id = 0x04;
348 		cp.out_coding_format.id = 0x04;
349 		cp.in_coded_data_size = __cpu_to_le16(16);
350 		cp.out_coded_data_size = __cpu_to_le16(16);
351 		cp.in_pcm_data_format = 2;
352 		cp.out_pcm_data_format = 2;
353 		cp.in_pcm_sample_payload_msb_pos = 0;
354 		cp.out_pcm_sample_payload_msb_pos = 0;
355 		cp.in_data_path = conn->codec.data_path;
356 		cp.out_data_path = conn->codec.data_path;
357 		cp.in_transport_unit_size = 1;
358 		cp.out_transport_unit_size = 1;
359 		break;
360 
361 	case BT_CODEC_TRANSPARENT:
362 		if (!find_next_esco_param(conn, esco_param_msbc,
363 					  ARRAY_SIZE(esco_param_msbc)))
364 			return false;
365 		param = &esco_param_msbc[conn->attempt - 1];
366 		cp.tx_coding_format.id = 0x03;
367 		cp.rx_coding_format.id = 0x03;
368 		cp.tx_codec_frame_size = __cpu_to_le16(60);
369 		cp.rx_codec_frame_size = __cpu_to_le16(60);
370 		cp.in_bandwidth = __cpu_to_le32(0x1f40);
371 		cp.out_bandwidth = __cpu_to_le32(0x1f40);
372 		cp.in_coding_format.id = 0x03;
373 		cp.out_coding_format.id = 0x03;
374 		cp.in_coded_data_size = __cpu_to_le16(16);
375 		cp.out_coded_data_size = __cpu_to_le16(16);
376 		cp.in_pcm_data_format = 2;
377 		cp.out_pcm_data_format = 2;
378 		cp.in_pcm_sample_payload_msb_pos = 0;
379 		cp.out_pcm_sample_payload_msb_pos = 0;
380 		cp.in_data_path = conn->codec.data_path;
381 		cp.out_data_path = conn->codec.data_path;
382 		cp.in_transport_unit_size = 1;
383 		cp.out_transport_unit_size = 1;
384 		break;
385 
386 	case BT_CODEC_CVSD:
387 		if (lmp_esco_capable(conn->link)) {
388 			if (!find_next_esco_param(conn, esco_param_cvsd,
389 						  ARRAY_SIZE(esco_param_cvsd)))
390 				return false;
391 			param = &esco_param_cvsd[conn->attempt - 1];
392 		} else {
393 			if (conn->attempt > ARRAY_SIZE(sco_param_cvsd))
394 				return false;
395 			param = &sco_param_cvsd[conn->attempt - 1];
396 		}
397 		cp.tx_coding_format.id = 2;
398 		cp.rx_coding_format.id = 2;
399 		cp.tx_codec_frame_size = __cpu_to_le16(60);
400 		cp.rx_codec_frame_size = __cpu_to_le16(60);
401 		cp.in_bandwidth = __cpu_to_le32(16000);
402 		cp.out_bandwidth = __cpu_to_le32(16000);
403 		cp.in_coding_format.id = 4;
404 		cp.out_coding_format.id = 4;
405 		cp.in_coded_data_size = __cpu_to_le16(16);
406 		cp.out_coded_data_size = __cpu_to_le16(16);
407 		cp.in_pcm_data_format = 2;
408 		cp.out_pcm_data_format = 2;
409 		cp.in_pcm_sample_payload_msb_pos = 0;
410 		cp.out_pcm_sample_payload_msb_pos = 0;
411 		cp.in_data_path = conn->codec.data_path;
412 		cp.out_data_path = conn->codec.data_path;
413 		cp.in_transport_unit_size = 16;
414 		cp.out_transport_unit_size = 16;
415 		break;
416 	default:
417 		return false;
418 	}
419 
420 	cp.retrans_effort = param->retrans_effort;
421 	cp.pkt_type = __cpu_to_le16(param->pkt_type);
422 	cp.max_latency = __cpu_to_le16(param->max_latency);
423 
424 	if (hci_send_cmd(hdev, HCI_OP_ENHANCED_SETUP_SYNC_CONN, sizeof(cp), &cp) < 0)
425 		return false;
426 
427 	return true;
428 }
429 
430 static bool hci_setup_sync_conn(struct hci_conn *conn, __u16 handle)
431 {
432 	struct hci_dev *hdev = conn->hdev;
433 	struct hci_cp_setup_sync_conn cp;
434 	const struct sco_param *param;
435 
436 	bt_dev_dbg(hdev, "hcon %p", conn);
437 
438 	conn->state = BT_CONNECT;
439 	conn->out = true;
440 
441 	conn->attempt++;
442 
443 	cp.handle   = cpu_to_le16(handle);
444 
445 	cp.tx_bandwidth   = cpu_to_le32(0x00001f40);
446 	cp.rx_bandwidth   = cpu_to_le32(0x00001f40);
447 	cp.voice_setting  = cpu_to_le16(conn->setting);
448 
449 	switch (conn->setting & SCO_AIRMODE_MASK) {
450 	case SCO_AIRMODE_TRANSP:
451 		if (!find_next_esco_param(conn, esco_param_msbc,
452 					  ARRAY_SIZE(esco_param_msbc)))
453 			return false;
454 		param = &esco_param_msbc[conn->attempt - 1];
455 		break;
456 	case SCO_AIRMODE_CVSD:
457 		if (lmp_esco_capable(conn->link)) {
458 			if (!find_next_esco_param(conn, esco_param_cvsd,
459 						  ARRAY_SIZE(esco_param_cvsd)))
460 				return false;
461 			param = &esco_param_cvsd[conn->attempt - 1];
462 		} else {
463 			if (conn->attempt > ARRAY_SIZE(sco_param_cvsd))
464 				return false;
465 			param = &sco_param_cvsd[conn->attempt - 1];
466 		}
467 		break;
468 	default:
469 		return false;
470 	}
471 
472 	cp.retrans_effort = param->retrans_effort;
473 	cp.pkt_type = __cpu_to_le16(param->pkt_type);
474 	cp.max_latency = __cpu_to_le16(param->max_latency);
475 
476 	if (hci_send_cmd(hdev, HCI_OP_SETUP_SYNC_CONN, sizeof(cp), &cp) < 0)
477 		return false;
478 
479 	return true;
480 }
481 
482 bool hci_setup_sync(struct hci_conn *conn, __u16 handle)
483 {
484 	if (enhanced_sco_capable(conn->hdev))
485 		return hci_enhanced_setup_sync_conn(conn, handle);
486 
487 	return hci_setup_sync_conn(conn, handle);
488 }
489 
490 u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency,
491 		      u16 to_multiplier)
492 {
493 	struct hci_dev *hdev = conn->hdev;
494 	struct hci_conn_params *params;
495 	struct hci_cp_le_conn_update cp;
496 
497 	hci_dev_lock(hdev);
498 
499 	params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
500 	if (params) {
501 		params->conn_min_interval = min;
502 		params->conn_max_interval = max;
503 		params->conn_latency = latency;
504 		params->supervision_timeout = to_multiplier;
505 	}
506 
507 	hci_dev_unlock(hdev);
508 
509 	memset(&cp, 0, sizeof(cp));
510 	cp.handle		= cpu_to_le16(conn->handle);
511 	cp.conn_interval_min	= cpu_to_le16(min);
512 	cp.conn_interval_max	= cpu_to_le16(max);
513 	cp.conn_latency		= cpu_to_le16(latency);
514 	cp.supervision_timeout	= cpu_to_le16(to_multiplier);
515 	cp.min_ce_len		= cpu_to_le16(0x0000);
516 	cp.max_ce_len		= cpu_to_le16(0x0000);
517 
518 	hci_send_cmd(hdev, HCI_OP_LE_CONN_UPDATE, sizeof(cp), &cp);
519 
520 	if (params)
521 		return 0x01;
522 
523 	return 0x00;
524 }
525 
526 void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand,
527 		      __u8 ltk[16], __u8 key_size)
528 {
529 	struct hci_dev *hdev = conn->hdev;
530 	struct hci_cp_le_start_enc cp;
531 
532 	BT_DBG("hcon %p", conn);
533 
534 	memset(&cp, 0, sizeof(cp));
535 
536 	cp.handle = cpu_to_le16(conn->handle);
537 	cp.rand = rand;
538 	cp.ediv = ediv;
539 	memcpy(cp.ltk, ltk, key_size);
540 
541 	hci_send_cmd(hdev, HCI_OP_LE_START_ENC, sizeof(cp), &cp);
542 }
543 
544 /* Device _must_ be locked */
545 void hci_sco_setup(struct hci_conn *conn, __u8 status)
546 {
547 	struct hci_conn *sco = conn->link;
548 
549 	if (!sco)
550 		return;
551 
552 	BT_DBG("hcon %p", conn);
553 
554 	if (!status) {
555 		if (lmp_esco_capable(conn->hdev))
556 			hci_setup_sync(sco, conn->handle);
557 		else
558 			hci_add_sco(sco, conn->handle);
559 	} else {
560 		hci_connect_cfm(sco, status);
561 		hci_conn_del(sco);
562 	}
563 }
564 
565 static void hci_conn_timeout(struct work_struct *work)
566 {
567 	struct hci_conn *conn = container_of(work, struct hci_conn,
568 					     disc_work.work);
569 	int refcnt = atomic_read(&conn->refcnt);
570 
571 	BT_DBG("hcon %p state %s", conn, state_to_string(conn->state));
572 
573 	WARN_ON(refcnt < 0);
574 
575 	/* FIXME: It was observed that in pairing failed scenario, refcnt
576 	 * drops below 0. Probably this is because l2cap_conn_del calls
577 	 * l2cap_chan_del for each channel, and inside l2cap_chan_del conn is
578 	 * dropped. After that loop hci_chan_del is called which also drops
579 	 * conn. For now make sure that ACL is alive if refcnt is higher then 0,
580 	 * otherwise drop it.
581 	 */
582 	if (refcnt > 0)
583 		return;
584 
585 	/* LE connections in scanning state need special handling */
586 	if (conn->state == BT_CONNECT && conn->type == LE_LINK &&
587 	    test_bit(HCI_CONN_SCANNING, &conn->flags)) {
588 		hci_connect_le_scan_remove(conn);
589 		return;
590 	}
591 
592 	hci_abort_conn(conn, hci_proto_disconn_ind(conn));
593 }
594 
595 /* Enter sniff mode */
596 static void hci_conn_idle(struct work_struct *work)
597 {
598 	struct hci_conn *conn = container_of(work, struct hci_conn,
599 					     idle_work.work);
600 	struct hci_dev *hdev = conn->hdev;
601 
602 	BT_DBG("hcon %p mode %d", conn, conn->mode);
603 
604 	if (!lmp_sniff_capable(hdev) || !lmp_sniff_capable(conn))
605 		return;
606 
607 	if (conn->mode != HCI_CM_ACTIVE || !(conn->link_policy & HCI_LP_SNIFF))
608 		return;
609 
610 	if (lmp_sniffsubr_capable(hdev) && lmp_sniffsubr_capable(conn)) {
611 		struct hci_cp_sniff_subrate cp;
612 		cp.handle             = cpu_to_le16(conn->handle);
613 		cp.max_latency        = cpu_to_le16(0);
614 		cp.min_remote_timeout = cpu_to_le16(0);
615 		cp.min_local_timeout  = cpu_to_le16(0);
616 		hci_send_cmd(hdev, HCI_OP_SNIFF_SUBRATE, sizeof(cp), &cp);
617 	}
618 
619 	if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) {
620 		struct hci_cp_sniff_mode cp;
621 		cp.handle       = cpu_to_le16(conn->handle);
622 		cp.max_interval = cpu_to_le16(hdev->sniff_max_interval);
623 		cp.min_interval = cpu_to_le16(hdev->sniff_min_interval);
624 		cp.attempt      = cpu_to_le16(4);
625 		cp.timeout      = cpu_to_le16(1);
626 		hci_send_cmd(hdev, HCI_OP_SNIFF_MODE, sizeof(cp), &cp);
627 	}
628 }
629 
630 static void hci_conn_auto_accept(struct work_struct *work)
631 {
632 	struct hci_conn *conn = container_of(work, struct hci_conn,
633 					     auto_accept_work.work);
634 
635 	hci_send_cmd(conn->hdev, HCI_OP_USER_CONFIRM_REPLY, sizeof(conn->dst),
636 		     &conn->dst);
637 }
638 
639 static void le_disable_advertising(struct hci_dev *hdev)
640 {
641 	if (ext_adv_capable(hdev)) {
642 		struct hci_cp_le_set_ext_adv_enable cp;
643 
644 		cp.enable = 0x00;
645 		cp.num_of_sets = 0x00;
646 
647 		hci_send_cmd(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, sizeof(cp),
648 			     &cp);
649 	} else {
650 		u8 enable = 0x00;
651 		hci_send_cmd(hdev, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable),
652 			     &enable);
653 	}
654 }
655 
656 static void le_conn_timeout(struct work_struct *work)
657 {
658 	struct hci_conn *conn = container_of(work, struct hci_conn,
659 					     le_conn_timeout.work);
660 	struct hci_dev *hdev = conn->hdev;
661 
662 	BT_DBG("");
663 
664 	/* We could end up here due to having done directed advertising,
665 	 * so clean up the state if necessary. This should however only
666 	 * happen with broken hardware or if low duty cycle was used
667 	 * (which doesn't have a timeout of its own).
668 	 */
669 	if (conn->role == HCI_ROLE_SLAVE) {
670 		/* Disable LE Advertising */
671 		le_disable_advertising(hdev);
672 		hci_le_conn_failed(conn, HCI_ERROR_ADVERTISING_TIMEOUT);
673 		return;
674 	}
675 
676 	hci_abort_conn(conn, HCI_ERROR_REMOTE_USER_TERM);
677 }
678 
679 struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst,
680 			      u8 role)
681 {
682 	struct hci_conn *conn;
683 
684 	BT_DBG("%s dst %pMR", hdev->name, dst);
685 
686 	conn = kzalloc(sizeof(*conn), GFP_KERNEL);
687 	if (!conn)
688 		return NULL;
689 
690 	bacpy(&conn->dst, dst);
691 	bacpy(&conn->src, &hdev->bdaddr);
692 	conn->hdev  = hdev;
693 	conn->type  = type;
694 	conn->role  = role;
695 	conn->mode  = HCI_CM_ACTIVE;
696 	conn->state = BT_OPEN;
697 	conn->auth_type = HCI_AT_GENERAL_BONDING;
698 	conn->io_capability = hdev->io_capability;
699 	conn->remote_auth = 0xff;
700 	conn->key_type = 0xff;
701 	conn->rssi = HCI_RSSI_INVALID;
702 	conn->tx_power = HCI_TX_POWER_INVALID;
703 	conn->max_tx_power = HCI_TX_POWER_INVALID;
704 
705 	set_bit(HCI_CONN_POWER_SAVE, &conn->flags);
706 	conn->disc_timeout = HCI_DISCONN_TIMEOUT;
707 
708 	/* Set Default Authenticated payload timeout to 30s */
709 	conn->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
710 
711 	if (conn->role == HCI_ROLE_MASTER)
712 		conn->out = true;
713 
714 	switch (type) {
715 	case ACL_LINK:
716 		conn->pkt_type = hdev->pkt_type & ACL_PTYPE_MASK;
717 		break;
718 	case LE_LINK:
719 		/* conn->src should reflect the local identity address */
720 		hci_copy_identity_address(hdev, &conn->src, &conn->src_type);
721 		break;
722 	case SCO_LINK:
723 		if (lmp_esco_capable(hdev))
724 			conn->pkt_type = (hdev->esco_type & SCO_ESCO_MASK) |
725 					(hdev->esco_type & EDR_ESCO_MASK);
726 		else
727 			conn->pkt_type = hdev->pkt_type & SCO_PTYPE_MASK;
728 		break;
729 	case ESCO_LINK:
730 		conn->pkt_type = hdev->esco_type & ~EDR_ESCO_MASK;
731 		break;
732 	}
733 
734 	skb_queue_head_init(&conn->data_q);
735 
736 	INIT_LIST_HEAD(&conn->chan_list);
737 
738 	INIT_DELAYED_WORK(&conn->disc_work, hci_conn_timeout);
739 	INIT_DELAYED_WORK(&conn->auto_accept_work, hci_conn_auto_accept);
740 	INIT_DELAYED_WORK(&conn->idle_work, hci_conn_idle);
741 	INIT_DELAYED_WORK(&conn->le_conn_timeout, le_conn_timeout);
742 	INIT_WORK(&conn->le_scan_cleanup, le_scan_cleanup);
743 
744 	atomic_set(&conn->refcnt, 0);
745 
746 	hci_dev_hold(hdev);
747 
748 	hci_conn_hash_add(hdev, conn);
749 
750 	/* The SCO and eSCO connections will only be notified when their
751 	 * setup has been completed. This is different to ACL links which
752 	 * can be notified right away.
753 	 */
754 	if (conn->type != SCO_LINK && conn->type != ESCO_LINK) {
755 		if (hdev->notify)
756 			hdev->notify(hdev, HCI_NOTIFY_CONN_ADD);
757 	}
758 
759 	hci_conn_init_sysfs(conn);
760 
761 	return conn;
762 }
763 
764 int hci_conn_del(struct hci_conn *conn)
765 {
766 	struct hci_dev *hdev = conn->hdev;
767 
768 	BT_DBG("%s hcon %p handle %d", hdev->name, conn, conn->handle);
769 
770 	cancel_delayed_work_sync(&conn->disc_work);
771 	cancel_delayed_work_sync(&conn->auto_accept_work);
772 	cancel_delayed_work_sync(&conn->idle_work);
773 
774 	if (conn->type == ACL_LINK) {
775 		struct hci_conn *sco = conn->link;
776 		if (sco)
777 			sco->link = NULL;
778 
779 		/* Unacked frames */
780 		hdev->acl_cnt += conn->sent;
781 	} else if (conn->type == LE_LINK) {
782 		cancel_delayed_work(&conn->le_conn_timeout);
783 
784 		if (hdev->le_pkts)
785 			hdev->le_cnt += conn->sent;
786 		else
787 			hdev->acl_cnt += conn->sent;
788 	} else {
789 		struct hci_conn *acl = conn->link;
790 		if (acl) {
791 			acl->link = NULL;
792 			hci_conn_drop(acl);
793 		}
794 	}
795 
796 	if (conn->amp_mgr)
797 		amp_mgr_put(conn->amp_mgr);
798 
799 	skb_queue_purge(&conn->data_q);
800 
801 	/* Remove the connection from the list and cleanup its remaining
802 	 * state. This is a separate function since for some cases like
803 	 * BT_CONNECT_SCAN we *only* want the cleanup part without the
804 	 * rest of hci_conn_del.
805 	 */
806 	hci_conn_cleanup(conn);
807 
808 	return 0;
809 }
810 
811 struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src, uint8_t src_type)
812 {
813 	int use_src = bacmp(src, BDADDR_ANY);
814 	struct hci_dev *hdev = NULL, *d;
815 
816 	BT_DBG("%pMR -> %pMR", src, dst);
817 
818 	read_lock(&hci_dev_list_lock);
819 
820 	list_for_each_entry(d, &hci_dev_list, list) {
821 		if (!test_bit(HCI_UP, &d->flags) ||
822 		    hci_dev_test_flag(d, HCI_USER_CHANNEL) ||
823 		    d->dev_type != HCI_PRIMARY)
824 			continue;
825 
826 		/* Simple routing:
827 		 *   No source address - find interface with bdaddr != dst
828 		 *   Source address    - find interface with bdaddr == src
829 		 */
830 
831 		if (use_src) {
832 			bdaddr_t id_addr;
833 			u8 id_addr_type;
834 
835 			if (src_type == BDADDR_BREDR) {
836 				if (!lmp_bredr_capable(d))
837 					continue;
838 				bacpy(&id_addr, &d->bdaddr);
839 				id_addr_type = BDADDR_BREDR;
840 			} else {
841 				if (!lmp_le_capable(d))
842 					continue;
843 
844 				hci_copy_identity_address(d, &id_addr,
845 							  &id_addr_type);
846 
847 				/* Convert from HCI to three-value type */
848 				if (id_addr_type == ADDR_LE_DEV_PUBLIC)
849 					id_addr_type = BDADDR_LE_PUBLIC;
850 				else
851 					id_addr_type = BDADDR_LE_RANDOM;
852 			}
853 
854 			if (!bacmp(&id_addr, src) && id_addr_type == src_type) {
855 				hdev = d; break;
856 			}
857 		} else {
858 			if (bacmp(&d->bdaddr, dst)) {
859 				hdev = d; break;
860 			}
861 		}
862 	}
863 
864 	if (hdev)
865 		hdev = hci_dev_hold(hdev);
866 
867 	read_unlock(&hci_dev_list_lock);
868 	return hdev;
869 }
870 EXPORT_SYMBOL(hci_get_route);
871 
872 /* This function requires the caller holds hdev->lock */
873 void hci_le_conn_failed(struct hci_conn *conn, u8 status)
874 {
875 	struct hci_dev *hdev = conn->hdev;
876 	struct hci_conn_params *params;
877 
878 	params = hci_pend_le_action_lookup(&hdev->pend_le_conns, &conn->dst,
879 					   conn->dst_type);
880 	if (params && params->conn) {
881 		hci_conn_drop(params->conn);
882 		hci_conn_put(params->conn);
883 		params->conn = NULL;
884 	}
885 
886 	conn->state = BT_CLOSED;
887 
888 	/* If the status indicates successful cancellation of
889 	 * the attempt (i.e. Unknown Connection Id) there's no point of
890 	 * notifying failure since we'll go back to keep trying to
891 	 * connect. The only exception is explicit connect requests
892 	 * where a timeout + cancel does indicate an actual failure.
893 	 */
894 	if (status != HCI_ERROR_UNKNOWN_CONN_ID ||
895 	    (params && params->explicit_connect))
896 		mgmt_connect_failed(hdev, &conn->dst, conn->type,
897 				    conn->dst_type, status);
898 
899 	hci_connect_cfm(conn, status);
900 
901 	hci_conn_del(conn);
902 
903 	/* Since we may have temporarily stopped the background scanning in
904 	 * favor of connection establishment, we should restart it.
905 	 */
906 	hci_update_passive_scan(hdev);
907 
908 	/* Enable advertising in case this was a failed connection
909 	 * attempt as a peripheral.
910 	 */
911 	hci_enable_advertising(hdev);
912 }
913 
914 static void create_le_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode)
915 {
916 	struct hci_conn *conn;
917 
918 	hci_dev_lock(hdev);
919 
920 	conn = hci_lookup_le_connect(hdev);
921 
922 	if (hdev->adv_instance_cnt)
923 		hci_req_resume_adv_instances(hdev);
924 
925 	if (!status) {
926 		hci_connect_le_scan_cleanup(conn);
927 		goto done;
928 	}
929 
930 	bt_dev_err(hdev, "request failed to create LE connection: "
931 		   "status 0x%2.2x", status);
932 
933 	if (!conn)
934 		goto done;
935 
936 	hci_le_conn_failed(conn, status);
937 
938 done:
939 	hci_dev_unlock(hdev);
940 }
941 
942 static bool conn_use_rpa(struct hci_conn *conn)
943 {
944 	struct hci_dev *hdev = conn->hdev;
945 
946 	return hci_dev_test_flag(hdev, HCI_PRIVACY);
947 }
948 
949 static void set_ext_conn_params(struct hci_conn *conn,
950 				struct hci_cp_le_ext_conn_param *p)
951 {
952 	struct hci_dev *hdev = conn->hdev;
953 
954 	memset(p, 0, sizeof(*p));
955 
956 	p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
957 	p->scan_window = cpu_to_le16(hdev->le_scan_window_connect);
958 	p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
959 	p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
960 	p->conn_latency = cpu_to_le16(conn->le_conn_latency);
961 	p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
962 	p->min_ce_len = cpu_to_le16(0x0000);
963 	p->max_ce_len = cpu_to_le16(0x0000);
964 }
965 
966 static void hci_req_add_le_create_conn(struct hci_request *req,
967 				       struct hci_conn *conn,
968 				       bdaddr_t *direct_rpa)
969 {
970 	struct hci_dev *hdev = conn->hdev;
971 	u8 own_addr_type;
972 
973 	/* If direct address was provided we use it instead of current
974 	 * address.
975 	 */
976 	if (direct_rpa) {
977 		if (bacmp(&req->hdev->random_addr, direct_rpa))
978 			hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6,
979 								direct_rpa);
980 
981 		/* direct address is always RPA */
982 		own_addr_type = ADDR_LE_DEV_RANDOM;
983 	} else {
984 		/* Update random address, but set require_privacy to false so
985 		 * that we never connect with an non-resolvable address.
986 		 */
987 		if (hci_update_random_address(req, false, conn_use_rpa(conn),
988 					      &own_addr_type))
989 			return;
990 	}
991 
992 	if (use_ext_conn(hdev)) {
993 		struct hci_cp_le_ext_create_conn *cp;
994 		struct hci_cp_le_ext_conn_param *p;
995 		u8 data[sizeof(*cp) + sizeof(*p) * 3];
996 		u32 plen;
997 
998 		cp = (void *) data;
999 		p = (void *) cp->data;
1000 
1001 		memset(cp, 0, sizeof(*cp));
1002 
1003 		bacpy(&cp->peer_addr, &conn->dst);
1004 		cp->peer_addr_type = conn->dst_type;
1005 		cp->own_addr_type = own_addr_type;
1006 
1007 		plen = sizeof(*cp);
1008 
1009 		if (scan_1m(hdev)) {
1010 			cp->phys |= LE_SCAN_PHY_1M;
1011 			set_ext_conn_params(conn, p);
1012 
1013 			p++;
1014 			plen += sizeof(*p);
1015 		}
1016 
1017 		if (scan_2m(hdev)) {
1018 			cp->phys |= LE_SCAN_PHY_2M;
1019 			set_ext_conn_params(conn, p);
1020 
1021 			p++;
1022 			plen += sizeof(*p);
1023 		}
1024 
1025 		if (scan_coded(hdev)) {
1026 			cp->phys |= LE_SCAN_PHY_CODED;
1027 			set_ext_conn_params(conn, p);
1028 
1029 			plen += sizeof(*p);
1030 		}
1031 
1032 		hci_req_add(req, HCI_OP_LE_EXT_CREATE_CONN, plen, data);
1033 
1034 	} else {
1035 		struct hci_cp_le_create_conn cp;
1036 
1037 		memset(&cp, 0, sizeof(cp));
1038 
1039 		cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
1040 		cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect);
1041 
1042 		bacpy(&cp.peer_addr, &conn->dst);
1043 		cp.peer_addr_type = conn->dst_type;
1044 		cp.own_address_type = own_addr_type;
1045 		cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
1046 		cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
1047 		cp.conn_latency = cpu_to_le16(conn->le_conn_latency);
1048 		cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
1049 		cp.min_ce_len = cpu_to_le16(0x0000);
1050 		cp.max_ce_len = cpu_to_le16(0x0000);
1051 
1052 		hci_req_add(req, HCI_OP_LE_CREATE_CONN, sizeof(cp), &cp);
1053 	}
1054 
1055 	conn->state = BT_CONNECT;
1056 	clear_bit(HCI_CONN_SCANNING, &conn->flags);
1057 }
1058 
1059 static void hci_req_directed_advertising(struct hci_request *req,
1060 					 struct hci_conn *conn)
1061 {
1062 	struct hci_dev *hdev = req->hdev;
1063 	u8 own_addr_type;
1064 	u8 enable;
1065 
1066 	if (ext_adv_capable(hdev)) {
1067 		struct hci_cp_le_set_ext_adv_params cp;
1068 		bdaddr_t random_addr;
1069 
1070 		/* Set require_privacy to false so that the remote device has a
1071 		 * chance of identifying us.
1072 		 */
1073 		if (hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL,
1074 					   &own_addr_type, &random_addr) < 0)
1075 			return;
1076 
1077 		memset(&cp, 0, sizeof(cp));
1078 
1079 		cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND);
1080 		cp.own_addr_type = own_addr_type;
1081 		cp.channel_map = hdev->le_adv_channel_map;
1082 		cp.tx_power = HCI_TX_POWER_INVALID;
1083 		cp.primary_phy = HCI_ADV_PHY_1M;
1084 		cp.secondary_phy = HCI_ADV_PHY_1M;
1085 		cp.handle = 0; /* Use instance 0 for directed adv */
1086 		cp.own_addr_type = own_addr_type;
1087 		cp.peer_addr_type = conn->dst_type;
1088 		bacpy(&cp.peer_addr, &conn->dst);
1089 
1090 		/* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for
1091 		 * advertising_event_property LE_LEGACY_ADV_DIRECT_IND
1092 		 * does not supports advertising data when the advertising set already
1093 		 * contains some, the controller shall return erroc code 'Invalid
1094 		 * HCI Command Parameters(0x12).
1095 		 * So it is required to remove adv set for handle 0x00. since we use
1096 		 * instance 0 for directed adv.
1097 		 */
1098 		__hci_req_remove_ext_adv_instance(req, cp.handle);
1099 
1100 		hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_PARAMS, sizeof(cp), &cp);
1101 
1102 		if (own_addr_type == ADDR_LE_DEV_RANDOM &&
1103 		    bacmp(&random_addr, BDADDR_ANY) &&
1104 		    bacmp(&random_addr, &hdev->random_addr)) {
1105 			struct hci_cp_le_set_adv_set_rand_addr cp;
1106 
1107 			memset(&cp, 0, sizeof(cp));
1108 
1109 			cp.handle = 0;
1110 			bacpy(&cp.bdaddr, &random_addr);
1111 
1112 			hci_req_add(req,
1113 				    HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
1114 				    sizeof(cp), &cp);
1115 		}
1116 
1117 		__hci_req_enable_ext_advertising(req, 0x00);
1118 	} else {
1119 		struct hci_cp_le_set_adv_param cp;
1120 
1121 		/* Clear the HCI_LE_ADV bit temporarily so that the
1122 		 * hci_update_random_address knows that it's safe to go ahead
1123 		 * and write a new random address. The flag will be set back on
1124 		 * as soon as the SET_ADV_ENABLE HCI command completes.
1125 		 */
1126 		hci_dev_clear_flag(hdev, HCI_LE_ADV);
1127 
1128 		/* Set require_privacy to false so that the remote device has a
1129 		 * chance of identifying us.
1130 		 */
1131 		if (hci_update_random_address(req, false, conn_use_rpa(conn),
1132 					      &own_addr_type) < 0)
1133 			return;
1134 
1135 		memset(&cp, 0, sizeof(cp));
1136 
1137 		/* Some controllers might reject command if intervals are not
1138 		 * within range for undirected advertising.
1139 		 * BCM20702A0 is known to be affected by this.
1140 		 */
1141 		cp.min_interval = cpu_to_le16(0x0020);
1142 		cp.max_interval = cpu_to_le16(0x0020);
1143 
1144 		cp.type = LE_ADV_DIRECT_IND;
1145 		cp.own_address_type = own_addr_type;
1146 		cp.direct_addr_type = conn->dst_type;
1147 		bacpy(&cp.direct_addr, &conn->dst);
1148 		cp.channel_map = hdev->le_adv_channel_map;
1149 
1150 		hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp);
1151 
1152 		enable = 0x01;
1153 		hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable),
1154 			    &enable);
1155 	}
1156 
1157 	conn->state = BT_CONNECT;
1158 }
1159 
1160 struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst,
1161 				u8 dst_type, bool dst_resolved, u8 sec_level,
1162 				u16 conn_timeout, u8 role, bdaddr_t *direct_rpa)
1163 {
1164 	struct hci_conn_params *params;
1165 	struct hci_conn *conn;
1166 	struct smp_irk *irk;
1167 	struct hci_request req;
1168 	int err;
1169 
1170 	/* This ensures that during disable le_scan address resolution
1171 	 * will not be disabled if it is followed by le_create_conn
1172 	 */
1173 	bool rpa_le_conn = true;
1174 
1175 	/* Let's make sure that le is enabled.*/
1176 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
1177 		if (lmp_le_capable(hdev))
1178 			return ERR_PTR(-ECONNREFUSED);
1179 
1180 		return ERR_PTR(-EOPNOTSUPP);
1181 	}
1182 
1183 	/* Since the controller supports only one LE connection attempt at a
1184 	 * time, we return -EBUSY if there is any connection attempt running.
1185 	 */
1186 	if (hci_lookup_le_connect(hdev))
1187 		return ERR_PTR(-EBUSY);
1188 
1189 	/* If there's already a connection object but it's not in
1190 	 * scanning state it means it must already be established, in
1191 	 * which case we can't do anything else except report a failure
1192 	 * to connect.
1193 	 */
1194 	conn = hci_conn_hash_lookup_le(hdev, dst, dst_type);
1195 	if (conn && !test_bit(HCI_CONN_SCANNING, &conn->flags)) {
1196 		return ERR_PTR(-EBUSY);
1197 	}
1198 
1199 	/* Check if the destination address has been resolved by the controller
1200 	 * since if it did then the identity address shall be used.
1201 	 */
1202 	if (!dst_resolved) {
1203 		/* When given an identity address with existing identity
1204 		 * resolving key, the connection needs to be established
1205 		 * to a resolvable random address.
1206 		 *
1207 		 * Storing the resolvable random address is required here
1208 		 * to handle connection failures. The address will later
1209 		 * be resolved back into the original identity address
1210 		 * from the connect request.
1211 		 */
1212 		irk = hci_find_irk_by_addr(hdev, dst, dst_type);
1213 		if (irk && bacmp(&irk->rpa, BDADDR_ANY)) {
1214 			dst = &irk->rpa;
1215 			dst_type = ADDR_LE_DEV_RANDOM;
1216 		}
1217 	}
1218 
1219 	if (conn) {
1220 		bacpy(&conn->dst, dst);
1221 	} else {
1222 		conn = hci_conn_add(hdev, LE_LINK, dst, role);
1223 		if (!conn)
1224 			return ERR_PTR(-ENOMEM);
1225 		hci_conn_hold(conn);
1226 		conn->pending_sec_level = sec_level;
1227 	}
1228 
1229 	conn->dst_type = dst_type;
1230 	conn->sec_level = BT_SECURITY_LOW;
1231 	conn->conn_timeout = conn_timeout;
1232 
1233 	hci_req_init(&req, hdev);
1234 
1235 	/* Disable advertising if we're active. For central role
1236 	 * connections most controllers will refuse to connect if
1237 	 * advertising is enabled, and for peripheral role connections we
1238 	 * anyway have to disable it in order to start directed
1239 	 * advertising. Any registered advertisements will be
1240 	 * re-enabled after the connection attempt is finished.
1241 	 */
1242 	if (hci_dev_test_flag(hdev, HCI_LE_ADV))
1243 		__hci_req_pause_adv_instances(&req);
1244 
1245 	/* If requested to connect as peripheral use directed advertising */
1246 	if (conn->role == HCI_ROLE_SLAVE) {
1247 		/* If we're active scanning most controllers are unable
1248 		 * to initiate advertising. Simply reject the attempt.
1249 		 */
1250 		if (hci_dev_test_flag(hdev, HCI_LE_SCAN) &&
1251 		    hdev->le_scan_type == LE_SCAN_ACTIVE) {
1252 			hci_req_purge(&req);
1253 			hci_conn_del(conn);
1254 			return ERR_PTR(-EBUSY);
1255 		}
1256 
1257 		hci_req_directed_advertising(&req, conn);
1258 		goto create_conn;
1259 	}
1260 
1261 	params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
1262 	if (params) {
1263 		conn->le_conn_min_interval = params->conn_min_interval;
1264 		conn->le_conn_max_interval = params->conn_max_interval;
1265 		conn->le_conn_latency = params->conn_latency;
1266 		conn->le_supv_timeout = params->supervision_timeout;
1267 	} else {
1268 		conn->le_conn_min_interval = hdev->le_conn_min_interval;
1269 		conn->le_conn_max_interval = hdev->le_conn_max_interval;
1270 		conn->le_conn_latency = hdev->le_conn_latency;
1271 		conn->le_supv_timeout = hdev->le_supv_timeout;
1272 	}
1273 
1274 	/* If controller is scanning, we stop it since some controllers are
1275 	 * not able to scan and connect at the same time. Also set the
1276 	 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete
1277 	 * handler for scan disabling knows to set the correct discovery
1278 	 * state.
1279 	 */
1280 	if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
1281 		hci_req_add_le_scan_disable(&req, rpa_le_conn);
1282 		hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED);
1283 	}
1284 
1285 	hci_req_add_le_create_conn(&req, conn, direct_rpa);
1286 
1287 create_conn:
1288 	err = hci_req_run(&req, create_le_conn_complete);
1289 	if (err) {
1290 		hci_conn_del(conn);
1291 
1292 		if (hdev->adv_instance_cnt)
1293 			hci_req_resume_adv_instances(hdev);
1294 
1295 		return ERR_PTR(err);
1296 	}
1297 
1298 	return conn;
1299 }
1300 
1301 static bool is_connected(struct hci_dev *hdev, bdaddr_t *addr, u8 type)
1302 {
1303 	struct hci_conn *conn;
1304 
1305 	conn = hci_conn_hash_lookup_le(hdev, addr, type);
1306 	if (!conn)
1307 		return false;
1308 
1309 	if (conn->state != BT_CONNECTED)
1310 		return false;
1311 
1312 	return true;
1313 }
1314 
1315 /* This function requires the caller holds hdev->lock */
1316 static int hci_explicit_conn_params_set(struct hci_dev *hdev,
1317 					bdaddr_t *addr, u8 addr_type)
1318 {
1319 	struct hci_conn_params *params;
1320 
1321 	if (is_connected(hdev, addr, addr_type))
1322 		return -EISCONN;
1323 
1324 	params = hci_conn_params_lookup(hdev, addr, addr_type);
1325 	if (!params) {
1326 		params = hci_conn_params_add(hdev, addr, addr_type);
1327 		if (!params)
1328 			return -ENOMEM;
1329 
1330 		/* If we created new params, mark them to be deleted in
1331 		 * hci_connect_le_scan_cleanup. It's different case than
1332 		 * existing disabled params, those will stay after cleanup.
1333 		 */
1334 		params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
1335 	}
1336 
1337 	/* We're trying to connect, so make sure params are at pend_le_conns */
1338 	if (params->auto_connect == HCI_AUTO_CONN_DISABLED ||
1339 	    params->auto_connect == HCI_AUTO_CONN_REPORT ||
1340 	    params->auto_connect == HCI_AUTO_CONN_EXPLICIT) {
1341 		list_del_init(&params->action);
1342 		list_add(&params->action, &hdev->pend_le_conns);
1343 	}
1344 
1345 	params->explicit_connect = true;
1346 
1347 	BT_DBG("addr %pMR (type %u) auto_connect %u", addr, addr_type,
1348 	       params->auto_connect);
1349 
1350 	return 0;
1351 }
1352 
1353 /* This function requires the caller holds hdev->lock */
1354 struct hci_conn *hci_connect_le_scan(struct hci_dev *hdev, bdaddr_t *dst,
1355 				     u8 dst_type, u8 sec_level,
1356 				     u16 conn_timeout,
1357 				     enum conn_reasons conn_reason)
1358 {
1359 	struct hci_conn *conn;
1360 
1361 	/* Let's make sure that le is enabled.*/
1362 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
1363 		if (lmp_le_capable(hdev))
1364 			return ERR_PTR(-ECONNREFUSED);
1365 
1366 		return ERR_PTR(-EOPNOTSUPP);
1367 	}
1368 
1369 	/* Some devices send ATT messages as soon as the physical link is
1370 	 * established. To be able to handle these ATT messages, the user-
1371 	 * space first establishes the connection and then starts the pairing
1372 	 * process.
1373 	 *
1374 	 * So if a hci_conn object already exists for the following connection
1375 	 * attempt, we simply update pending_sec_level and auth_type fields
1376 	 * and return the object found.
1377 	 */
1378 	conn = hci_conn_hash_lookup_le(hdev, dst, dst_type);
1379 	if (conn) {
1380 		if (conn->pending_sec_level < sec_level)
1381 			conn->pending_sec_level = sec_level;
1382 		goto done;
1383 	}
1384 
1385 	BT_DBG("requesting refresh of dst_addr");
1386 
1387 	conn = hci_conn_add(hdev, LE_LINK, dst, HCI_ROLE_MASTER);
1388 	if (!conn)
1389 		return ERR_PTR(-ENOMEM);
1390 
1391 	if (hci_explicit_conn_params_set(hdev, dst, dst_type) < 0) {
1392 		hci_conn_del(conn);
1393 		return ERR_PTR(-EBUSY);
1394 	}
1395 
1396 	conn->state = BT_CONNECT;
1397 	set_bit(HCI_CONN_SCANNING, &conn->flags);
1398 	conn->dst_type = dst_type;
1399 	conn->sec_level = BT_SECURITY_LOW;
1400 	conn->pending_sec_level = sec_level;
1401 	conn->conn_timeout = conn_timeout;
1402 	conn->conn_reason = conn_reason;
1403 
1404 	hci_update_passive_scan(hdev);
1405 
1406 done:
1407 	hci_conn_hold(conn);
1408 	return conn;
1409 }
1410 
1411 struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst,
1412 				 u8 sec_level, u8 auth_type,
1413 				 enum conn_reasons conn_reason)
1414 {
1415 	struct hci_conn *acl;
1416 
1417 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1418 		if (lmp_bredr_capable(hdev))
1419 			return ERR_PTR(-ECONNREFUSED);
1420 
1421 		return ERR_PTR(-EOPNOTSUPP);
1422 	}
1423 
1424 	acl = hci_conn_hash_lookup_ba(hdev, ACL_LINK, dst);
1425 	if (!acl) {
1426 		acl = hci_conn_add(hdev, ACL_LINK, dst, HCI_ROLE_MASTER);
1427 		if (!acl)
1428 			return ERR_PTR(-ENOMEM);
1429 	}
1430 
1431 	hci_conn_hold(acl);
1432 
1433 	acl->conn_reason = conn_reason;
1434 	if (acl->state == BT_OPEN || acl->state == BT_CLOSED) {
1435 		acl->sec_level = BT_SECURITY_LOW;
1436 		acl->pending_sec_level = sec_level;
1437 		acl->auth_type = auth_type;
1438 		hci_acl_create_connection(acl);
1439 	}
1440 
1441 	return acl;
1442 }
1443 
1444 struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst,
1445 				 __u16 setting, struct bt_codec *codec)
1446 {
1447 	struct hci_conn *acl;
1448 	struct hci_conn *sco;
1449 
1450 	acl = hci_connect_acl(hdev, dst, BT_SECURITY_LOW, HCI_AT_NO_BONDING,
1451 			      CONN_REASON_SCO_CONNECT);
1452 	if (IS_ERR(acl))
1453 		return acl;
1454 
1455 	sco = hci_conn_hash_lookup_ba(hdev, type, dst);
1456 	if (!sco) {
1457 		sco = hci_conn_add(hdev, type, dst, HCI_ROLE_MASTER);
1458 		if (!sco) {
1459 			hci_conn_drop(acl);
1460 			return ERR_PTR(-ENOMEM);
1461 		}
1462 	}
1463 
1464 	acl->link = sco;
1465 	sco->link = acl;
1466 
1467 	hci_conn_hold(sco);
1468 
1469 	sco->setting = setting;
1470 	sco->codec = *codec;
1471 
1472 	if (acl->state == BT_CONNECTED &&
1473 	    (sco->state == BT_OPEN || sco->state == BT_CLOSED)) {
1474 		set_bit(HCI_CONN_POWER_SAVE, &acl->flags);
1475 		hci_conn_enter_active_mode(acl, BT_POWER_FORCE_ACTIVE_ON);
1476 
1477 		if (test_bit(HCI_CONN_MODE_CHANGE_PEND, &acl->flags)) {
1478 			/* defer SCO setup until mode change completed */
1479 			set_bit(HCI_CONN_SCO_SETUP_PEND, &acl->flags);
1480 			return sco;
1481 		}
1482 
1483 		hci_sco_setup(acl, 0x00);
1484 	}
1485 
1486 	return sco;
1487 }
1488 
1489 /* Check link security requirement */
1490 int hci_conn_check_link_mode(struct hci_conn *conn)
1491 {
1492 	BT_DBG("hcon %p", conn);
1493 
1494 	/* In Secure Connections Only mode, it is required that Secure
1495 	 * Connections is used and the link is encrypted with AES-CCM
1496 	 * using a P-256 authenticated combination key.
1497 	 */
1498 	if (hci_dev_test_flag(conn->hdev, HCI_SC_ONLY)) {
1499 		if (!hci_conn_sc_enabled(conn) ||
1500 		    !test_bit(HCI_CONN_AES_CCM, &conn->flags) ||
1501 		    conn->key_type != HCI_LK_AUTH_COMBINATION_P256)
1502 			return 0;
1503 	}
1504 
1505 	 /* AES encryption is required for Level 4:
1506 	  *
1507 	  * BLUETOOTH CORE SPECIFICATION Version 5.2 | Vol 3, Part C
1508 	  * page 1319:
1509 	  *
1510 	  * 128-bit equivalent strength for link and encryption keys
1511 	  * required using FIPS approved algorithms (E0 not allowed,
1512 	  * SAFER+ not allowed, and P-192 not allowed; encryption key
1513 	  * not shortened)
1514 	  */
1515 	if (conn->sec_level == BT_SECURITY_FIPS &&
1516 	    !test_bit(HCI_CONN_AES_CCM, &conn->flags)) {
1517 		bt_dev_err(conn->hdev,
1518 			   "Invalid security: Missing AES-CCM usage");
1519 		return 0;
1520 	}
1521 
1522 	if (hci_conn_ssp_enabled(conn) &&
1523 	    !test_bit(HCI_CONN_ENCRYPT, &conn->flags))
1524 		return 0;
1525 
1526 	return 1;
1527 }
1528 
1529 /* Authenticate remote device */
1530 static int hci_conn_auth(struct hci_conn *conn, __u8 sec_level, __u8 auth_type)
1531 {
1532 	BT_DBG("hcon %p", conn);
1533 
1534 	if (conn->pending_sec_level > sec_level)
1535 		sec_level = conn->pending_sec_level;
1536 
1537 	if (sec_level > conn->sec_level)
1538 		conn->pending_sec_level = sec_level;
1539 	else if (test_bit(HCI_CONN_AUTH, &conn->flags))
1540 		return 1;
1541 
1542 	/* Make sure we preserve an existing MITM requirement*/
1543 	auth_type |= (conn->auth_type & 0x01);
1544 
1545 	conn->auth_type = auth_type;
1546 
1547 	if (!test_and_set_bit(HCI_CONN_AUTH_PEND, &conn->flags)) {
1548 		struct hci_cp_auth_requested cp;
1549 
1550 		cp.handle = cpu_to_le16(conn->handle);
1551 		hci_send_cmd(conn->hdev, HCI_OP_AUTH_REQUESTED,
1552 			     sizeof(cp), &cp);
1553 
1554 		/* If we're already encrypted set the REAUTH_PEND flag,
1555 		 * otherwise set the ENCRYPT_PEND.
1556 		 */
1557 		if (test_bit(HCI_CONN_ENCRYPT, &conn->flags))
1558 			set_bit(HCI_CONN_REAUTH_PEND, &conn->flags);
1559 		else
1560 			set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags);
1561 	}
1562 
1563 	return 0;
1564 }
1565 
1566 /* Encrypt the link */
1567 static void hci_conn_encrypt(struct hci_conn *conn)
1568 {
1569 	BT_DBG("hcon %p", conn);
1570 
1571 	if (!test_and_set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) {
1572 		struct hci_cp_set_conn_encrypt cp;
1573 		cp.handle  = cpu_to_le16(conn->handle);
1574 		cp.encrypt = 0x01;
1575 		hci_send_cmd(conn->hdev, HCI_OP_SET_CONN_ENCRYPT, sizeof(cp),
1576 			     &cp);
1577 	}
1578 }
1579 
1580 /* Enable security */
1581 int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type,
1582 		      bool initiator)
1583 {
1584 	BT_DBG("hcon %p", conn);
1585 
1586 	if (conn->type == LE_LINK)
1587 		return smp_conn_security(conn, sec_level);
1588 
1589 	/* For sdp we don't need the link key. */
1590 	if (sec_level == BT_SECURITY_SDP)
1591 		return 1;
1592 
1593 	/* For non 2.1 devices and low security level we don't need the link
1594 	   key. */
1595 	if (sec_level == BT_SECURITY_LOW && !hci_conn_ssp_enabled(conn))
1596 		return 1;
1597 
1598 	/* For other security levels we need the link key. */
1599 	if (!test_bit(HCI_CONN_AUTH, &conn->flags))
1600 		goto auth;
1601 
1602 	/* An authenticated FIPS approved combination key has sufficient
1603 	 * security for security level 4. */
1604 	if (conn->key_type == HCI_LK_AUTH_COMBINATION_P256 &&
1605 	    sec_level == BT_SECURITY_FIPS)
1606 		goto encrypt;
1607 
1608 	/* An authenticated combination key has sufficient security for
1609 	   security level 3. */
1610 	if ((conn->key_type == HCI_LK_AUTH_COMBINATION_P192 ||
1611 	     conn->key_type == HCI_LK_AUTH_COMBINATION_P256) &&
1612 	    sec_level == BT_SECURITY_HIGH)
1613 		goto encrypt;
1614 
1615 	/* An unauthenticated combination key has sufficient security for
1616 	   security level 1 and 2. */
1617 	if ((conn->key_type == HCI_LK_UNAUTH_COMBINATION_P192 ||
1618 	     conn->key_type == HCI_LK_UNAUTH_COMBINATION_P256) &&
1619 	    (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW))
1620 		goto encrypt;
1621 
1622 	/* A combination key has always sufficient security for the security
1623 	   levels 1 or 2. High security level requires the combination key
1624 	   is generated using maximum PIN code length (16).
1625 	   For pre 2.1 units. */
1626 	if (conn->key_type == HCI_LK_COMBINATION &&
1627 	    (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW ||
1628 	     conn->pin_length == 16))
1629 		goto encrypt;
1630 
1631 auth:
1632 	if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags))
1633 		return 0;
1634 
1635 	if (initiator)
1636 		set_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags);
1637 
1638 	if (!hci_conn_auth(conn, sec_level, auth_type))
1639 		return 0;
1640 
1641 encrypt:
1642 	if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) {
1643 		/* Ensure that the encryption key size has been read,
1644 		 * otherwise stall the upper layer responses.
1645 		 */
1646 		if (!conn->enc_key_size)
1647 			return 0;
1648 
1649 		/* Nothing else needed, all requirements are met */
1650 		return 1;
1651 	}
1652 
1653 	hci_conn_encrypt(conn);
1654 	return 0;
1655 }
1656 EXPORT_SYMBOL(hci_conn_security);
1657 
1658 /* Check secure link requirement */
1659 int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level)
1660 {
1661 	BT_DBG("hcon %p", conn);
1662 
1663 	/* Accept if non-secure or higher security level is required */
1664 	if (sec_level != BT_SECURITY_HIGH && sec_level != BT_SECURITY_FIPS)
1665 		return 1;
1666 
1667 	/* Accept if secure or higher security level is already present */
1668 	if (conn->sec_level == BT_SECURITY_HIGH ||
1669 	    conn->sec_level == BT_SECURITY_FIPS)
1670 		return 1;
1671 
1672 	/* Reject not secure link */
1673 	return 0;
1674 }
1675 EXPORT_SYMBOL(hci_conn_check_secure);
1676 
1677 /* Switch role */
1678 int hci_conn_switch_role(struct hci_conn *conn, __u8 role)
1679 {
1680 	BT_DBG("hcon %p", conn);
1681 
1682 	if (role == conn->role)
1683 		return 1;
1684 
1685 	if (!test_and_set_bit(HCI_CONN_RSWITCH_PEND, &conn->flags)) {
1686 		struct hci_cp_switch_role cp;
1687 		bacpy(&cp.bdaddr, &conn->dst);
1688 		cp.role = role;
1689 		hci_send_cmd(conn->hdev, HCI_OP_SWITCH_ROLE, sizeof(cp), &cp);
1690 	}
1691 
1692 	return 0;
1693 }
1694 EXPORT_SYMBOL(hci_conn_switch_role);
1695 
1696 /* Enter active mode */
1697 void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active)
1698 {
1699 	struct hci_dev *hdev = conn->hdev;
1700 
1701 	BT_DBG("hcon %p mode %d", conn, conn->mode);
1702 
1703 	if (conn->mode != HCI_CM_SNIFF)
1704 		goto timer;
1705 
1706 	if (!test_bit(HCI_CONN_POWER_SAVE, &conn->flags) && !force_active)
1707 		goto timer;
1708 
1709 	if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) {
1710 		struct hci_cp_exit_sniff_mode cp;
1711 		cp.handle = cpu_to_le16(conn->handle);
1712 		hci_send_cmd(hdev, HCI_OP_EXIT_SNIFF_MODE, sizeof(cp), &cp);
1713 	}
1714 
1715 timer:
1716 	if (hdev->idle_timeout > 0)
1717 		queue_delayed_work(hdev->workqueue, &conn->idle_work,
1718 				   msecs_to_jiffies(hdev->idle_timeout));
1719 }
1720 
1721 /* Drop all connection on the device */
1722 void hci_conn_hash_flush(struct hci_dev *hdev)
1723 {
1724 	struct hci_conn_hash *h = &hdev->conn_hash;
1725 	struct hci_conn *c, *n;
1726 
1727 	BT_DBG("hdev %s", hdev->name);
1728 
1729 	list_for_each_entry_safe(c, n, &h->list, list) {
1730 		c->state = BT_CLOSED;
1731 
1732 		hci_disconn_cfm(c, HCI_ERROR_LOCAL_HOST_TERM);
1733 		hci_conn_del(c);
1734 	}
1735 }
1736 
1737 /* Check pending connect attempts */
1738 void hci_conn_check_pending(struct hci_dev *hdev)
1739 {
1740 	struct hci_conn *conn;
1741 
1742 	BT_DBG("hdev %s", hdev->name);
1743 
1744 	hci_dev_lock(hdev);
1745 
1746 	conn = hci_conn_hash_lookup_state(hdev, ACL_LINK, BT_CONNECT2);
1747 	if (conn)
1748 		hci_acl_create_connection(conn);
1749 
1750 	hci_dev_unlock(hdev);
1751 }
1752 
1753 static u32 get_link_mode(struct hci_conn *conn)
1754 {
1755 	u32 link_mode = 0;
1756 
1757 	if (conn->role == HCI_ROLE_MASTER)
1758 		link_mode |= HCI_LM_MASTER;
1759 
1760 	if (test_bit(HCI_CONN_ENCRYPT, &conn->flags))
1761 		link_mode |= HCI_LM_ENCRYPT;
1762 
1763 	if (test_bit(HCI_CONN_AUTH, &conn->flags))
1764 		link_mode |= HCI_LM_AUTH;
1765 
1766 	if (test_bit(HCI_CONN_SECURE, &conn->flags))
1767 		link_mode |= HCI_LM_SECURE;
1768 
1769 	if (test_bit(HCI_CONN_FIPS, &conn->flags))
1770 		link_mode |= HCI_LM_FIPS;
1771 
1772 	return link_mode;
1773 }
1774 
1775 int hci_get_conn_list(void __user *arg)
1776 {
1777 	struct hci_conn *c;
1778 	struct hci_conn_list_req req, *cl;
1779 	struct hci_conn_info *ci;
1780 	struct hci_dev *hdev;
1781 	int n = 0, size, err;
1782 
1783 	if (copy_from_user(&req, arg, sizeof(req)))
1784 		return -EFAULT;
1785 
1786 	if (!req.conn_num || req.conn_num > (PAGE_SIZE * 2) / sizeof(*ci))
1787 		return -EINVAL;
1788 
1789 	size = sizeof(req) + req.conn_num * sizeof(*ci);
1790 
1791 	cl = kmalloc(size, GFP_KERNEL);
1792 	if (!cl)
1793 		return -ENOMEM;
1794 
1795 	hdev = hci_dev_get(req.dev_id);
1796 	if (!hdev) {
1797 		kfree(cl);
1798 		return -ENODEV;
1799 	}
1800 
1801 	ci = cl->conn_info;
1802 
1803 	hci_dev_lock(hdev);
1804 	list_for_each_entry(c, &hdev->conn_hash.list, list) {
1805 		bacpy(&(ci + n)->bdaddr, &c->dst);
1806 		(ci + n)->handle = c->handle;
1807 		(ci + n)->type  = c->type;
1808 		(ci + n)->out   = c->out;
1809 		(ci + n)->state = c->state;
1810 		(ci + n)->link_mode = get_link_mode(c);
1811 		if (++n >= req.conn_num)
1812 			break;
1813 	}
1814 	hci_dev_unlock(hdev);
1815 
1816 	cl->dev_id = hdev->id;
1817 	cl->conn_num = n;
1818 	size = sizeof(req) + n * sizeof(*ci);
1819 
1820 	hci_dev_put(hdev);
1821 
1822 	err = copy_to_user(arg, cl, size);
1823 	kfree(cl);
1824 
1825 	return err ? -EFAULT : 0;
1826 }
1827 
1828 int hci_get_conn_info(struct hci_dev *hdev, void __user *arg)
1829 {
1830 	struct hci_conn_info_req req;
1831 	struct hci_conn_info ci;
1832 	struct hci_conn *conn;
1833 	char __user *ptr = arg + sizeof(req);
1834 
1835 	if (copy_from_user(&req, arg, sizeof(req)))
1836 		return -EFAULT;
1837 
1838 	hci_dev_lock(hdev);
1839 	conn = hci_conn_hash_lookup_ba(hdev, req.type, &req.bdaddr);
1840 	if (conn) {
1841 		bacpy(&ci.bdaddr, &conn->dst);
1842 		ci.handle = conn->handle;
1843 		ci.type  = conn->type;
1844 		ci.out   = conn->out;
1845 		ci.state = conn->state;
1846 		ci.link_mode = get_link_mode(conn);
1847 	}
1848 	hci_dev_unlock(hdev);
1849 
1850 	if (!conn)
1851 		return -ENOENT;
1852 
1853 	return copy_to_user(ptr, &ci, sizeof(ci)) ? -EFAULT : 0;
1854 }
1855 
1856 int hci_get_auth_info(struct hci_dev *hdev, void __user *arg)
1857 {
1858 	struct hci_auth_info_req req;
1859 	struct hci_conn *conn;
1860 
1861 	if (copy_from_user(&req, arg, sizeof(req)))
1862 		return -EFAULT;
1863 
1864 	hci_dev_lock(hdev);
1865 	conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &req.bdaddr);
1866 	if (conn)
1867 		req.type = conn->auth_type;
1868 	hci_dev_unlock(hdev);
1869 
1870 	if (!conn)
1871 		return -ENOENT;
1872 
1873 	return copy_to_user(arg, &req, sizeof(req)) ? -EFAULT : 0;
1874 }
1875 
1876 struct hci_chan *hci_chan_create(struct hci_conn *conn)
1877 {
1878 	struct hci_dev *hdev = conn->hdev;
1879 	struct hci_chan *chan;
1880 
1881 	BT_DBG("%s hcon %p", hdev->name, conn);
1882 
1883 	if (test_bit(HCI_CONN_DROP, &conn->flags)) {
1884 		BT_DBG("Refusing to create new hci_chan");
1885 		return NULL;
1886 	}
1887 
1888 	chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1889 	if (!chan)
1890 		return NULL;
1891 
1892 	chan->conn = hci_conn_get(conn);
1893 	skb_queue_head_init(&chan->data_q);
1894 	chan->state = BT_CONNECTED;
1895 
1896 	list_add_rcu(&chan->list, &conn->chan_list);
1897 
1898 	return chan;
1899 }
1900 
1901 void hci_chan_del(struct hci_chan *chan)
1902 {
1903 	struct hci_conn *conn = chan->conn;
1904 	struct hci_dev *hdev = conn->hdev;
1905 
1906 	BT_DBG("%s hcon %p chan %p", hdev->name, conn, chan);
1907 
1908 	list_del_rcu(&chan->list);
1909 
1910 	synchronize_rcu();
1911 
1912 	/* Prevent new hci_chan's to be created for this hci_conn */
1913 	set_bit(HCI_CONN_DROP, &conn->flags);
1914 
1915 	hci_conn_put(conn);
1916 
1917 	skb_queue_purge(&chan->data_q);
1918 	kfree(chan);
1919 }
1920 
1921 void hci_chan_list_flush(struct hci_conn *conn)
1922 {
1923 	struct hci_chan *chan, *n;
1924 
1925 	BT_DBG("hcon %p", conn);
1926 
1927 	list_for_each_entry_safe(chan, n, &conn->chan_list, list)
1928 		hci_chan_del(chan);
1929 }
1930 
1931 static struct hci_chan *__hci_chan_lookup_handle(struct hci_conn *hcon,
1932 						 __u16 handle)
1933 {
1934 	struct hci_chan *hchan;
1935 
1936 	list_for_each_entry(hchan, &hcon->chan_list, list) {
1937 		if (hchan->handle == handle)
1938 			return hchan;
1939 	}
1940 
1941 	return NULL;
1942 }
1943 
1944 struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle)
1945 {
1946 	struct hci_conn_hash *h = &hdev->conn_hash;
1947 	struct hci_conn *hcon;
1948 	struct hci_chan *hchan = NULL;
1949 
1950 	rcu_read_lock();
1951 
1952 	list_for_each_entry_rcu(hcon, &h->list, list) {
1953 		hchan = __hci_chan_lookup_handle(hcon, handle);
1954 		if (hchan)
1955 			break;
1956 	}
1957 
1958 	rcu_read_unlock();
1959 
1960 	return hchan;
1961 }
1962 
1963 u32 hci_conn_get_phy(struct hci_conn *conn)
1964 {
1965 	u32 phys = 0;
1966 
1967 	/* BLUETOOTH CORE SPECIFICATION Version 5.2 | Vol 2, Part B page 471:
1968 	 * Table 6.2: Packets defined for synchronous, asynchronous, and
1969 	 * CPB logical transport types.
1970 	 */
1971 	switch (conn->type) {
1972 	case SCO_LINK:
1973 		/* SCO logical transport (1 Mb/s):
1974 		 * HV1, HV2, HV3 and DV.
1975 		 */
1976 		phys |= BT_PHY_BR_1M_1SLOT;
1977 
1978 		break;
1979 
1980 	case ACL_LINK:
1981 		/* ACL logical transport (1 Mb/s) ptt=0:
1982 		 * DH1, DM3, DH3, DM5 and DH5.
1983 		 */
1984 		phys |= BT_PHY_BR_1M_1SLOT;
1985 
1986 		if (conn->pkt_type & (HCI_DM3 | HCI_DH3))
1987 			phys |= BT_PHY_BR_1M_3SLOT;
1988 
1989 		if (conn->pkt_type & (HCI_DM5 | HCI_DH5))
1990 			phys |= BT_PHY_BR_1M_5SLOT;
1991 
1992 		/* ACL logical transport (2 Mb/s) ptt=1:
1993 		 * 2-DH1, 2-DH3 and 2-DH5.
1994 		 */
1995 		if (!(conn->pkt_type & HCI_2DH1))
1996 			phys |= BT_PHY_EDR_2M_1SLOT;
1997 
1998 		if (!(conn->pkt_type & HCI_2DH3))
1999 			phys |= BT_PHY_EDR_2M_3SLOT;
2000 
2001 		if (!(conn->pkt_type & HCI_2DH5))
2002 			phys |= BT_PHY_EDR_2M_5SLOT;
2003 
2004 		/* ACL logical transport (3 Mb/s) ptt=1:
2005 		 * 3-DH1, 3-DH3 and 3-DH5.
2006 		 */
2007 		if (!(conn->pkt_type & HCI_3DH1))
2008 			phys |= BT_PHY_EDR_3M_1SLOT;
2009 
2010 		if (!(conn->pkt_type & HCI_3DH3))
2011 			phys |= BT_PHY_EDR_3M_3SLOT;
2012 
2013 		if (!(conn->pkt_type & HCI_3DH5))
2014 			phys |= BT_PHY_EDR_3M_5SLOT;
2015 
2016 		break;
2017 
2018 	case ESCO_LINK:
2019 		/* eSCO logical transport (1 Mb/s): EV3, EV4 and EV5 */
2020 		phys |= BT_PHY_BR_1M_1SLOT;
2021 
2022 		if (!(conn->pkt_type & (ESCO_EV4 | ESCO_EV5)))
2023 			phys |= BT_PHY_BR_1M_3SLOT;
2024 
2025 		/* eSCO logical transport (2 Mb/s): 2-EV3, 2-EV5 */
2026 		if (!(conn->pkt_type & ESCO_2EV3))
2027 			phys |= BT_PHY_EDR_2M_1SLOT;
2028 
2029 		if (!(conn->pkt_type & ESCO_2EV5))
2030 			phys |= BT_PHY_EDR_2M_3SLOT;
2031 
2032 		/* eSCO logical transport (3 Mb/s): 3-EV3, 3-EV5 */
2033 		if (!(conn->pkt_type & ESCO_3EV3))
2034 			phys |= BT_PHY_EDR_3M_1SLOT;
2035 
2036 		if (!(conn->pkt_type & ESCO_3EV5))
2037 			phys |= BT_PHY_EDR_3M_3SLOT;
2038 
2039 		break;
2040 
2041 	case LE_LINK:
2042 		if (conn->le_tx_phy & HCI_LE_SET_PHY_1M)
2043 			phys |= BT_PHY_LE_1M_TX;
2044 
2045 		if (conn->le_rx_phy & HCI_LE_SET_PHY_1M)
2046 			phys |= BT_PHY_LE_1M_RX;
2047 
2048 		if (conn->le_tx_phy & HCI_LE_SET_PHY_2M)
2049 			phys |= BT_PHY_LE_2M_TX;
2050 
2051 		if (conn->le_rx_phy & HCI_LE_SET_PHY_2M)
2052 			phys |= BT_PHY_LE_2M_RX;
2053 
2054 		if (conn->le_tx_phy & HCI_LE_SET_PHY_CODED)
2055 			phys |= BT_PHY_LE_CODED_TX;
2056 
2057 		if (conn->le_rx_phy & HCI_LE_SET_PHY_CODED)
2058 			phys |= BT_PHY_LE_CODED_RX;
2059 
2060 		break;
2061 	}
2062 
2063 	return phys;
2064 }
2065