1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved. 4 5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License version 2 as 9 published by the Free Software Foundation; 10 11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 22 SOFTWARE IS DISCLAIMED. 23 */ 24 25 /* Bluetooth HCI connection handling. */ 26 27 #include <linux/export.h> 28 #include <linux/debugfs.h> 29 30 #include <net/bluetooth/bluetooth.h> 31 #include <net/bluetooth/hci_core.h> 32 #include <net/bluetooth/l2cap.h> 33 #include <net/bluetooth/iso.h> 34 #include <net/bluetooth/mgmt.h> 35 36 #include "hci_request.h" 37 #include "smp.h" 38 #include "a2mp.h" 39 #include "eir.h" 40 41 struct sco_param { 42 u16 pkt_type; 43 u16 max_latency; 44 u8 retrans_effort; 45 }; 46 47 static const struct sco_param esco_param_cvsd[] = { 48 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000a, 0x01 }, /* S3 */ 49 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x0007, 0x01 }, /* S2 */ 50 { EDR_ESCO_MASK | ESCO_EV3, 0x0007, 0x01 }, /* S1 */ 51 { EDR_ESCO_MASK | ESCO_HV3, 0xffff, 0x01 }, /* D1 */ 52 { EDR_ESCO_MASK | ESCO_HV1, 0xffff, 0x01 }, /* D0 */ 53 }; 54 55 static const struct sco_param sco_param_cvsd[] = { 56 { EDR_ESCO_MASK | ESCO_HV3, 0xffff, 0xff }, /* D1 */ 57 { EDR_ESCO_MASK | ESCO_HV1, 0xffff, 0xff }, /* D0 */ 58 }; 59 60 static const struct sco_param esco_param_msbc[] = { 61 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000d, 0x02 }, /* T2 */ 62 { EDR_ESCO_MASK | ESCO_EV3, 0x0008, 0x02 }, /* T1 */ 63 }; 64 65 /* This function requires the caller holds hdev->lock */ 66 static void hci_connect_le_scan_cleanup(struct hci_conn *conn) 67 { 68 struct hci_conn_params *params; 69 struct hci_dev *hdev = conn->hdev; 70 struct smp_irk *irk; 71 bdaddr_t *bdaddr; 72 u8 bdaddr_type; 73 74 bdaddr = &conn->dst; 75 bdaddr_type = conn->dst_type; 76 77 /* Check if we need to convert to identity address */ 78 irk = hci_get_irk(hdev, bdaddr, bdaddr_type); 79 if (irk) { 80 bdaddr = &irk->bdaddr; 81 bdaddr_type = irk->addr_type; 82 } 83 84 params = hci_pend_le_action_lookup(&hdev->pend_le_conns, bdaddr, 85 bdaddr_type); 86 if (!params || !params->explicit_connect) 87 return; 88 89 /* The connection attempt was doing scan for new RPA, and is 90 * in scan phase. If params are not associated with any other 91 * autoconnect action, remove them completely. If they are, just unmark 92 * them as waiting for connection, by clearing explicit_connect field. 93 */ 94 params->explicit_connect = false; 95 96 list_del_init(¶ms->action); 97 98 switch (params->auto_connect) { 99 case HCI_AUTO_CONN_EXPLICIT: 100 hci_conn_params_del(hdev, bdaddr, bdaddr_type); 101 /* return instead of break to avoid duplicate scan update */ 102 return; 103 case HCI_AUTO_CONN_DIRECT: 104 case HCI_AUTO_CONN_ALWAYS: 105 list_add(¶ms->action, &hdev->pend_le_conns); 106 break; 107 case HCI_AUTO_CONN_REPORT: 108 list_add(¶ms->action, &hdev->pend_le_reports); 109 break; 110 default: 111 break; 112 } 113 114 hci_update_passive_scan(hdev); 115 } 116 117 static void hci_conn_cleanup(struct hci_conn *conn) 118 { 119 struct hci_dev *hdev = conn->hdev; 120 121 if (test_bit(HCI_CONN_PARAM_REMOVAL_PEND, &conn->flags)) 122 hci_conn_params_del(conn->hdev, &conn->dst, conn->dst_type); 123 124 if (test_and_clear_bit(HCI_CONN_FLUSH_KEY, &conn->flags)) 125 hci_remove_link_key(hdev, &conn->dst); 126 127 hci_chan_list_flush(conn); 128 129 hci_conn_hash_del(hdev, conn); 130 131 if (conn->cleanup) 132 conn->cleanup(conn); 133 134 if (conn->type == SCO_LINK || conn->type == ESCO_LINK) { 135 switch (conn->setting & SCO_AIRMODE_MASK) { 136 case SCO_AIRMODE_CVSD: 137 case SCO_AIRMODE_TRANSP: 138 if (hdev->notify) 139 hdev->notify(hdev, HCI_NOTIFY_DISABLE_SCO); 140 break; 141 } 142 } else { 143 if (hdev->notify) 144 hdev->notify(hdev, HCI_NOTIFY_CONN_DEL); 145 } 146 147 hci_conn_del_sysfs(conn); 148 149 debugfs_remove_recursive(conn->debugfs); 150 151 hci_dev_put(hdev); 152 153 hci_conn_put(conn); 154 } 155 156 static void le_scan_cleanup(struct work_struct *work) 157 { 158 struct hci_conn *conn = container_of(work, struct hci_conn, 159 le_scan_cleanup); 160 struct hci_dev *hdev = conn->hdev; 161 struct hci_conn *c = NULL; 162 163 BT_DBG("%s hcon %p", hdev->name, conn); 164 165 hci_dev_lock(hdev); 166 167 /* Check that the hci_conn is still around */ 168 rcu_read_lock(); 169 list_for_each_entry_rcu(c, &hdev->conn_hash.list, list) { 170 if (c == conn) 171 break; 172 } 173 rcu_read_unlock(); 174 175 if (c == conn) { 176 hci_connect_le_scan_cleanup(conn); 177 hci_conn_cleanup(conn); 178 } 179 180 hci_dev_unlock(hdev); 181 hci_dev_put(hdev); 182 hci_conn_put(conn); 183 } 184 185 static void hci_connect_le_scan_remove(struct hci_conn *conn) 186 { 187 BT_DBG("%s hcon %p", conn->hdev->name, conn); 188 189 /* We can't call hci_conn_del/hci_conn_cleanup here since that 190 * could deadlock with another hci_conn_del() call that's holding 191 * hci_dev_lock and doing cancel_delayed_work_sync(&conn->disc_work). 192 * Instead, grab temporary extra references to the hci_dev and 193 * hci_conn and perform the necessary cleanup in a separate work 194 * callback. 195 */ 196 197 hci_dev_hold(conn->hdev); 198 hci_conn_get(conn); 199 200 /* Even though we hold a reference to the hdev, many other 201 * things might get cleaned up meanwhile, including the hdev's 202 * own workqueue, so we can't use that for scheduling. 203 */ 204 schedule_work(&conn->le_scan_cleanup); 205 } 206 207 static void hci_acl_create_connection(struct hci_conn *conn) 208 { 209 struct hci_dev *hdev = conn->hdev; 210 struct inquiry_entry *ie; 211 struct hci_cp_create_conn cp; 212 213 BT_DBG("hcon %p", conn); 214 215 /* Many controllers disallow HCI Create Connection while it is doing 216 * HCI Inquiry. So we cancel the Inquiry first before issuing HCI Create 217 * Connection. This may cause the MGMT discovering state to become false 218 * without user space's request but it is okay since the MGMT Discovery 219 * APIs do not promise that discovery should be done forever. Instead, 220 * the user space monitors the status of MGMT discovering and it may 221 * request for discovery again when this flag becomes false. 222 */ 223 if (test_bit(HCI_INQUIRY, &hdev->flags)) { 224 /* Put this connection to "pending" state so that it will be 225 * executed after the inquiry cancel command complete event. 226 */ 227 conn->state = BT_CONNECT2; 228 hci_send_cmd(hdev, HCI_OP_INQUIRY_CANCEL, 0, NULL); 229 return; 230 } 231 232 conn->state = BT_CONNECT; 233 conn->out = true; 234 conn->role = HCI_ROLE_MASTER; 235 236 conn->attempt++; 237 238 conn->link_policy = hdev->link_policy; 239 240 memset(&cp, 0, sizeof(cp)); 241 bacpy(&cp.bdaddr, &conn->dst); 242 cp.pscan_rep_mode = 0x02; 243 244 ie = hci_inquiry_cache_lookup(hdev, &conn->dst); 245 if (ie) { 246 if (inquiry_entry_age(ie) <= INQUIRY_ENTRY_AGE_MAX) { 247 cp.pscan_rep_mode = ie->data.pscan_rep_mode; 248 cp.pscan_mode = ie->data.pscan_mode; 249 cp.clock_offset = ie->data.clock_offset | 250 cpu_to_le16(0x8000); 251 } 252 253 memcpy(conn->dev_class, ie->data.dev_class, 3); 254 } 255 256 cp.pkt_type = cpu_to_le16(conn->pkt_type); 257 if (lmp_rswitch_capable(hdev) && !(hdev->link_mode & HCI_LM_MASTER)) 258 cp.role_switch = 0x01; 259 else 260 cp.role_switch = 0x00; 261 262 hci_send_cmd(hdev, HCI_OP_CREATE_CONN, sizeof(cp), &cp); 263 } 264 265 int hci_disconnect(struct hci_conn *conn, __u8 reason) 266 { 267 BT_DBG("hcon %p", conn); 268 269 /* When we are central of an established connection and it enters 270 * the disconnect timeout, then go ahead and try to read the 271 * current clock offset. Processing of the result is done 272 * within the event handling and hci_clock_offset_evt function. 273 */ 274 if (conn->type == ACL_LINK && conn->role == HCI_ROLE_MASTER && 275 (conn->state == BT_CONNECTED || conn->state == BT_CONFIG)) { 276 struct hci_dev *hdev = conn->hdev; 277 struct hci_cp_read_clock_offset clkoff_cp; 278 279 clkoff_cp.handle = cpu_to_le16(conn->handle); 280 hci_send_cmd(hdev, HCI_OP_READ_CLOCK_OFFSET, sizeof(clkoff_cp), 281 &clkoff_cp); 282 } 283 284 return hci_abort_conn(conn, reason); 285 } 286 287 static void hci_add_sco(struct hci_conn *conn, __u16 handle) 288 { 289 struct hci_dev *hdev = conn->hdev; 290 struct hci_cp_add_sco cp; 291 292 BT_DBG("hcon %p", conn); 293 294 conn->state = BT_CONNECT; 295 conn->out = true; 296 297 conn->attempt++; 298 299 cp.handle = cpu_to_le16(handle); 300 cp.pkt_type = cpu_to_le16(conn->pkt_type); 301 302 hci_send_cmd(hdev, HCI_OP_ADD_SCO, sizeof(cp), &cp); 303 } 304 305 static bool find_next_esco_param(struct hci_conn *conn, 306 const struct sco_param *esco_param, int size) 307 { 308 for (; conn->attempt <= size; conn->attempt++) { 309 if (lmp_esco_2m_capable(conn->link) || 310 (esco_param[conn->attempt - 1].pkt_type & ESCO_2EV3)) 311 break; 312 BT_DBG("hcon %p skipped attempt %d, eSCO 2M not supported", 313 conn, conn->attempt); 314 } 315 316 return conn->attempt <= size; 317 } 318 319 static bool hci_enhanced_setup_sync_conn(struct hci_conn *conn, __u16 handle) 320 { 321 struct hci_dev *hdev = conn->hdev; 322 struct hci_cp_enhanced_setup_sync_conn cp; 323 const struct sco_param *param; 324 325 bt_dev_dbg(hdev, "hcon %p", conn); 326 327 /* for offload use case, codec needs to configured before opening SCO */ 328 if (conn->codec.data_path) 329 hci_req_configure_datapath(hdev, &conn->codec); 330 331 conn->state = BT_CONNECT; 332 conn->out = true; 333 334 conn->attempt++; 335 336 memset(&cp, 0x00, sizeof(cp)); 337 338 cp.handle = cpu_to_le16(handle); 339 340 cp.tx_bandwidth = cpu_to_le32(0x00001f40); 341 cp.rx_bandwidth = cpu_to_le32(0x00001f40); 342 343 switch (conn->codec.id) { 344 case BT_CODEC_MSBC: 345 if (!find_next_esco_param(conn, esco_param_msbc, 346 ARRAY_SIZE(esco_param_msbc))) 347 return false; 348 349 param = &esco_param_msbc[conn->attempt - 1]; 350 cp.tx_coding_format.id = 0x05; 351 cp.rx_coding_format.id = 0x05; 352 cp.tx_codec_frame_size = __cpu_to_le16(60); 353 cp.rx_codec_frame_size = __cpu_to_le16(60); 354 cp.in_bandwidth = __cpu_to_le32(32000); 355 cp.out_bandwidth = __cpu_to_le32(32000); 356 cp.in_coding_format.id = 0x04; 357 cp.out_coding_format.id = 0x04; 358 cp.in_coded_data_size = __cpu_to_le16(16); 359 cp.out_coded_data_size = __cpu_to_le16(16); 360 cp.in_pcm_data_format = 2; 361 cp.out_pcm_data_format = 2; 362 cp.in_pcm_sample_payload_msb_pos = 0; 363 cp.out_pcm_sample_payload_msb_pos = 0; 364 cp.in_data_path = conn->codec.data_path; 365 cp.out_data_path = conn->codec.data_path; 366 cp.in_transport_unit_size = 1; 367 cp.out_transport_unit_size = 1; 368 break; 369 370 case BT_CODEC_TRANSPARENT: 371 if (!find_next_esco_param(conn, esco_param_msbc, 372 ARRAY_SIZE(esco_param_msbc))) 373 return false; 374 param = &esco_param_msbc[conn->attempt - 1]; 375 cp.tx_coding_format.id = 0x03; 376 cp.rx_coding_format.id = 0x03; 377 cp.tx_codec_frame_size = __cpu_to_le16(60); 378 cp.rx_codec_frame_size = __cpu_to_le16(60); 379 cp.in_bandwidth = __cpu_to_le32(0x1f40); 380 cp.out_bandwidth = __cpu_to_le32(0x1f40); 381 cp.in_coding_format.id = 0x03; 382 cp.out_coding_format.id = 0x03; 383 cp.in_coded_data_size = __cpu_to_le16(16); 384 cp.out_coded_data_size = __cpu_to_le16(16); 385 cp.in_pcm_data_format = 2; 386 cp.out_pcm_data_format = 2; 387 cp.in_pcm_sample_payload_msb_pos = 0; 388 cp.out_pcm_sample_payload_msb_pos = 0; 389 cp.in_data_path = conn->codec.data_path; 390 cp.out_data_path = conn->codec.data_path; 391 cp.in_transport_unit_size = 1; 392 cp.out_transport_unit_size = 1; 393 break; 394 395 case BT_CODEC_CVSD: 396 if (lmp_esco_capable(conn->link)) { 397 if (!find_next_esco_param(conn, esco_param_cvsd, 398 ARRAY_SIZE(esco_param_cvsd))) 399 return false; 400 param = &esco_param_cvsd[conn->attempt - 1]; 401 } else { 402 if (conn->attempt > ARRAY_SIZE(sco_param_cvsd)) 403 return false; 404 param = &sco_param_cvsd[conn->attempt - 1]; 405 } 406 cp.tx_coding_format.id = 2; 407 cp.rx_coding_format.id = 2; 408 cp.tx_codec_frame_size = __cpu_to_le16(60); 409 cp.rx_codec_frame_size = __cpu_to_le16(60); 410 cp.in_bandwidth = __cpu_to_le32(16000); 411 cp.out_bandwidth = __cpu_to_le32(16000); 412 cp.in_coding_format.id = 4; 413 cp.out_coding_format.id = 4; 414 cp.in_coded_data_size = __cpu_to_le16(16); 415 cp.out_coded_data_size = __cpu_to_le16(16); 416 cp.in_pcm_data_format = 2; 417 cp.out_pcm_data_format = 2; 418 cp.in_pcm_sample_payload_msb_pos = 0; 419 cp.out_pcm_sample_payload_msb_pos = 0; 420 cp.in_data_path = conn->codec.data_path; 421 cp.out_data_path = conn->codec.data_path; 422 cp.in_transport_unit_size = 16; 423 cp.out_transport_unit_size = 16; 424 break; 425 default: 426 return false; 427 } 428 429 cp.retrans_effort = param->retrans_effort; 430 cp.pkt_type = __cpu_to_le16(param->pkt_type); 431 cp.max_latency = __cpu_to_le16(param->max_latency); 432 433 if (hci_send_cmd(hdev, HCI_OP_ENHANCED_SETUP_SYNC_CONN, sizeof(cp), &cp) < 0) 434 return false; 435 436 return true; 437 } 438 439 static bool hci_setup_sync_conn(struct hci_conn *conn, __u16 handle) 440 { 441 struct hci_dev *hdev = conn->hdev; 442 struct hci_cp_setup_sync_conn cp; 443 const struct sco_param *param; 444 445 bt_dev_dbg(hdev, "hcon %p", conn); 446 447 conn->state = BT_CONNECT; 448 conn->out = true; 449 450 conn->attempt++; 451 452 cp.handle = cpu_to_le16(handle); 453 454 cp.tx_bandwidth = cpu_to_le32(0x00001f40); 455 cp.rx_bandwidth = cpu_to_le32(0x00001f40); 456 cp.voice_setting = cpu_to_le16(conn->setting); 457 458 switch (conn->setting & SCO_AIRMODE_MASK) { 459 case SCO_AIRMODE_TRANSP: 460 if (!find_next_esco_param(conn, esco_param_msbc, 461 ARRAY_SIZE(esco_param_msbc))) 462 return false; 463 param = &esco_param_msbc[conn->attempt - 1]; 464 break; 465 case SCO_AIRMODE_CVSD: 466 if (lmp_esco_capable(conn->link)) { 467 if (!find_next_esco_param(conn, esco_param_cvsd, 468 ARRAY_SIZE(esco_param_cvsd))) 469 return false; 470 param = &esco_param_cvsd[conn->attempt - 1]; 471 } else { 472 if (conn->attempt > ARRAY_SIZE(sco_param_cvsd)) 473 return false; 474 param = &sco_param_cvsd[conn->attempt - 1]; 475 } 476 break; 477 default: 478 return false; 479 } 480 481 cp.retrans_effort = param->retrans_effort; 482 cp.pkt_type = __cpu_to_le16(param->pkt_type); 483 cp.max_latency = __cpu_to_le16(param->max_latency); 484 485 if (hci_send_cmd(hdev, HCI_OP_SETUP_SYNC_CONN, sizeof(cp), &cp) < 0) 486 return false; 487 488 return true; 489 } 490 491 bool hci_setup_sync(struct hci_conn *conn, __u16 handle) 492 { 493 if (enhanced_sync_conn_capable(conn->hdev)) 494 return hci_enhanced_setup_sync_conn(conn, handle); 495 496 return hci_setup_sync_conn(conn, handle); 497 } 498 499 u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency, 500 u16 to_multiplier) 501 { 502 struct hci_dev *hdev = conn->hdev; 503 struct hci_conn_params *params; 504 struct hci_cp_le_conn_update cp; 505 506 hci_dev_lock(hdev); 507 508 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); 509 if (params) { 510 params->conn_min_interval = min; 511 params->conn_max_interval = max; 512 params->conn_latency = latency; 513 params->supervision_timeout = to_multiplier; 514 } 515 516 hci_dev_unlock(hdev); 517 518 memset(&cp, 0, sizeof(cp)); 519 cp.handle = cpu_to_le16(conn->handle); 520 cp.conn_interval_min = cpu_to_le16(min); 521 cp.conn_interval_max = cpu_to_le16(max); 522 cp.conn_latency = cpu_to_le16(latency); 523 cp.supervision_timeout = cpu_to_le16(to_multiplier); 524 cp.min_ce_len = cpu_to_le16(0x0000); 525 cp.max_ce_len = cpu_to_le16(0x0000); 526 527 hci_send_cmd(hdev, HCI_OP_LE_CONN_UPDATE, sizeof(cp), &cp); 528 529 if (params) 530 return 0x01; 531 532 return 0x00; 533 } 534 535 void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand, 536 __u8 ltk[16], __u8 key_size) 537 { 538 struct hci_dev *hdev = conn->hdev; 539 struct hci_cp_le_start_enc cp; 540 541 BT_DBG("hcon %p", conn); 542 543 memset(&cp, 0, sizeof(cp)); 544 545 cp.handle = cpu_to_le16(conn->handle); 546 cp.rand = rand; 547 cp.ediv = ediv; 548 memcpy(cp.ltk, ltk, key_size); 549 550 hci_send_cmd(hdev, HCI_OP_LE_START_ENC, sizeof(cp), &cp); 551 } 552 553 /* Device _must_ be locked */ 554 void hci_sco_setup(struct hci_conn *conn, __u8 status) 555 { 556 struct hci_conn *sco = conn->link; 557 558 if (!sco) 559 return; 560 561 BT_DBG("hcon %p", conn); 562 563 if (!status) { 564 if (lmp_esco_capable(conn->hdev)) 565 hci_setup_sync(sco, conn->handle); 566 else 567 hci_add_sco(sco, conn->handle); 568 } else { 569 hci_connect_cfm(sco, status); 570 hci_conn_del(sco); 571 } 572 } 573 574 static void hci_conn_timeout(struct work_struct *work) 575 { 576 struct hci_conn *conn = container_of(work, struct hci_conn, 577 disc_work.work); 578 int refcnt = atomic_read(&conn->refcnt); 579 580 BT_DBG("hcon %p state %s", conn, state_to_string(conn->state)); 581 582 WARN_ON(refcnt < 0); 583 584 /* FIXME: It was observed that in pairing failed scenario, refcnt 585 * drops below 0. Probably this is because l2cap_conn_del calls 586 * l2cap_chan_del for each channel, and inside l2cap_chan_del conn is 587 * dropped. After that loop hci_chan_del is called which also drops 588 * conn. For now make sure that ACL is alive if refcnt is higher then 0, 589 * otherwise drop it. 590 */ 591 if (refcnt > 0) 592 return; 593 594 /* LE connections in scanning state need special handling */ 595 if (conn->state == BT_CONNECT && conn->type == LE_LINK && 596 test_bit(HCI_CONN_SCANNING, &conn->flags)) { 597 hci_connect_le_scan_remove(conn); 598 return; 599 } 600 601 hci_abort_conn(conn, hci_proto_disconn_ind(conn)); 602 } 603 604 /* Enter sniff mode */ 605 static void hci_conn_idle(struct work_struct *work) 606 { 607 struct hci_conn *conn = container_of(work, struct hci_conn, 608 idle_work.work); 609 struct hci_dev *hdev = conn->hdev; 610 611 BT_DBG("hcon %p mode %d", conn, conn->mode); 612 613 if (!lmp_sniff_capable(hdev) || !lmp_sniff_capable(conn)) 614 return; 615 616 if (conn->mode != HCI_CM_ACTIVE || !(conn->link_policy & HCI_LP_SNIFF)) 617 return; 618 619 if (lmp_sniffsubr_capable(hdev) && lmp_sniffsubr_capable(conn)) { 620 struct hci_cp_sniff_subrate cp; 621 cp.handle = cpu_to_le16(conn->handle); 622 cp.max_latency = cpu_to_le16(0); 623 cp.min_remote_timeout = cpu_to_le16(0); 624 cp.min_local_timeout = cpu_to_le16(0); 625 hci_send_cmd(hdev, HCI_OP_SNIFF_SUBRATE, sizeof(cp), &cp); 626 } 627 628 if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) { 629 struct hci_cp_sniff_mode cp; 630 cp.handle = cpu_to_le16(conn->handle); 631 cp.max_interval = cpu_to_le16(hdev->sniff_max_interval); 632 cp.min_interval = cpu_to_le16(hdev->sniff_min_interval); 633 cp.attempt = cpu_to_le16(4); 634 cp.timeout = cpu_to_le16(1); 635 hci_send_cmd(hdev, HCI_OP_SNIFF_MODE, sizeof(cp), &cp); 636 } 637 } 638 639 static void hci_conn_auto_accept(struct work_struct *work) 640 { 641 struct hci_conn *conn = container_of(work, struct hci_conn, 642 auto_accept_work.work); 643 644 hci_send_cmd(conn->hdev, HCI_OP_USER_CONFIRM_REPLY, sizeof(conn->dst), 645 &conn->dst); 646 } 647 648 static void le_disable_advertising(struct hci_dev *hdev) 649 { 650 if (ext_adv_capable(hdev)) { 651 struct hci_cp_le_set_ext_adv_enable cp; 652 653 cp.enable = 0x00; 654 cp.num_of_sets = 0x00; 655 656 hci_send_cmd(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, sizeof(cp), 657 &cp); 658 } else { 659 u8 enable = 0x00; 660 hci_send_cmd(hdev, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), 661 &enable); 662 } 663 } 664 665 static void le_conn_timeout(struct work_struct *work) 666 { 667 struct hci_conn *conn = container_of(work, struct hci_conn, 668 le_conn_timeout.work); 669 struct hci_dev *hdev = conn->hdev; 670 671 BT_DBG(""); 672 673 /* We could end up here due to having done directed advertising, 674 * so clean up the state if necessary. This should however only 675 * happen with broken hardware or if low duty cycle was used 676 * (which doesn't have a timeout of its own). 677 */ 678 if (conn->role == HCI_ROLE_SLAVE) { 679 /* Disable LE Advertising */ 680 le_disable_advertising(hdev); 681 hci_dev_lock(hdev); 682 hci_conn_failed(conn, HCI_ERROR_ADVERTISING_TIMEOUT); 683 hci_dev_unlock(hdev); 684 return; 685 } 686 687 hci_abort_conn(conn, HCI_ERROR_REMOTE_USER_TERM); 688 } 689 690 struct iso_list_data { 691 union { 692 u8 cig; 693 u8 big; 694 }; 695 union { 696 u8 cis; 697 u8 bis; 698 u16 sync_handle; 699 }; 700 int count; 701 struct { 702 struct hci_cp_le_set_cig_params cp; 703 struct hci_cis_params cis[0x11]; 704 } pdu; 705 }; 706 707 static void bis_list(struct hci_conn *conn, void *data) 708 { 709 struct iso_list_data *d = data; 710 711 /* Skip if not broadcast/ANY address */ 712 if (bacmp(&conn->dst, BDADDR_ANY)) 713 return; 714 715 if (d->big != conn->iso_qos.big || d->bis == BT_ISO_QOS_BIS_UNSET || 716 d->bis != conn->iso_qos.bis) 717 return; 718 719 d->count++; 720 } 721 722 static void find_bis(struct hci_conn *conn, void *data) 723 { 724 struct iso_list_data *d = data; 725 726 /* Ignore unicast */ 727 if (bacmp(&conn->dst, BDADDR_ANY)) 728 return; 729 730 d->count++; 731 } 732 733 static int terminate_big_sync(struct hci_dev *hdev, void *data) 734 { 735 struct iso_list_data *d = data; 736 737 bt_dev_dbg(hdev, "big 0x%2.2x bis 0x%2.2x", d->big, d->bis); 738 739 hci_remove_ext_adv_instance_sync(hdev, d->bis, NULL); 740 741 /* Check if ISO connection is a BIS and terminate BIG if there are 742 * no other connections using it. 743 */ 744 hci_conn_hash_list_state(hdev, find_bis, ISO_LINK, BT_CONNECTED, d); 745 if (d->count) 746 return 0; 747 748 return hci_le_terminate_big_sync(hdev, d->big, 749 HCI_ERROR_LOCAL_HOST_TERM); 750 } 751 752 static void terminate_big_destroy(struct hci_dev *hdev, void *data, int err) 753 { 754 kfree(data); 755 } 756 757 static int hci_le_terminate_big(struct hci_dev *hdev, u8 big, u8 bis) 758 { 759 struct iso_list_data *d; 760 761 bt_dev_dbg(hdev, "big 0x%2.2x bis 0x%2.2x", big, bis); 762 763 d = kmalloc(sizeof(*d), GFP_KERNEL); 764 if (!d) 765 return -ENOMEM; 766 767 memset(d, 0, sizeof(*d)); 768 d->big = big; 769 d->bis = bis; 770 771 return hci_cmd_sync_queue(hdev, terminate_big_sync, d, 772 terminate_big_destroy); 773 } 774 775 static int big_terminate_sync(struct hci_dev *hdev, void *data) 776 { 777 struct iso_list_data *d = data; 778 779 bt_dev_dbg(hdev, "big 0x%2.2x sync_handle 0x%4.4x", d->big, 780 d->sync_handle); 781 782 /* Check if ISO connection is a BIS and terminate BIG if there are 783 * no other connections using it. 784 */ 785 hci_conn_hash_list_state(hdev, find_bis, ISO_LINK, BT_CONNECTED, d); 786 if (d->count) 787 return 0; 788 789 hci_le_big_terminate_sync(hdev, d->big); 790 791 return hci_le_pa_terminate_sync(hdev, d->sync_handle); 792 } 793 794 static int hci_le_big_terminate(struct hci_dev *hdev, u8 big, u16 sync_handle) 795 { 796 struct iso_list_data *d; 797 798 bt_dev_dbg(hdev, "big 0x%2.2x sync_handle 0x%4.4x", big, sync_handle); 799 800 d = kmalloc(sizeof(*d), GFP_KERNEL); 801 if (!d) 802 return -ENOMEM; 803 804 memset(d, 0, sizeof(*d)); 805 d->big = big; 806 d->sync_handle = sync_handle; 807 808 return hci_cmd_sync_queue(hdev, big_terminate_sync, d, 809 terminate_big_destroy); 810 } 811 812 /* Cleanup BIS connection 813 * 814 * Detects if there any BIS left connected in a BIG 815 * broadcaster: Remove advertising instance and terminate BIG. 816 * broadcaster receiver: Teminate BIG sync and terminate PA sync. 817 */ 818 static void bis_cleanup(struct hci_conn *conn) 819 { 820 struct hci_dev *hdev = conn->hdev; 821 822 bt_dev_dbg(hdev, "conn %p", conn); 823 824 if (conn->role == HCI_ROLE_MASTER) { 825 if (!test_and_clear_bit(HCI_CONN_PER_ADV, &conn->flags)) 826 return; 827 828 hci_le_terminate_big(hdev, conn->iso_qos.big, 829 conn->iso_qos.bis); 830 } else { 831 hci_le_big_terminate(hdev, conn->iso_qos.big, 832 conn->sync_handle); 833 } 834 } 835 836 static int remove_cig_sync(struct hci_dev *hdev, void *data) 837 { 838 u8 handle = PTR_ERR(data); 839 840 return hci_le_remove_cig_sync(hdev, handle); 841 } 842 843 static int hci_le_remove_cig(struct hci_dev *hdev, u8 handle) 844 { 845 bt_dev_dbg(hdev, "handle 0x%2.2x", handle); 846 847 return hci_cmd_sync_queue(hdev, remove_cig_sync, ERR_PTR(handle), NULL); 848 } 849 850 static void find_cis(struct hci_conn *conn, void *data) 851 { 852 struct iso_list_data *d = data; 853 854 /* Ignore broadcast */ 855 if (!bacmp(&conn->dst, BDADDR_ANY)) 856 return; 857 858 d->count++; 859 } 860 861 /* Cleanup CIS connection: 862 * 863 * Detects if there any CIS left connected in a CIG and remove it. 864 */ 865 static void cis_cleanup(struct hci_conn *conn) 866 { 867 struct hci_dev *hdev = conn->hdev; 868 struct iso_list_data d; 869 870 memset(&d, 0, sizeof(d)); 871 d.cig = conn->iso_qos.cig; 872 873 /* Check if ISO connection is a CIS and remove CIG if there are 874 * no other connections using it. 875 */ 876 hci_conn_hash_list_state(hdev, find_cis, ISO_LINK, BT_CONNECTED, &d); 877 if (d.count) 878 return; 879 880 hci_le_remove_cig(hdev, conn->iso_qos.cig); 881 } 882 883 struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst, 884 u8 role) 885 { 886 struct hci_conn *conn; 887 888 BT_DBG("%s dst %pMR", hdev->name, dst); 889 890 conn = kzalloc(sizeof(*conn), GFP_KERNEL); 891 if (!conn) 892 return NULL; 893 894 bacpy(&conn->dst, dst); 895 bacpy(&conn->src, &hdev->bdaddr); 896 conn->handle = HCI_CONN_HANDLE_UNSET; 897 conn->hdev = hdev; 898 conn->type = type; 899 conn->role = role; 900 conn->mode = HCI_CM_ACTIVE; 901 conn->state = BT_OPEN; 902 conn->auth_type = HCI_AT_GENERAL_BONDING; 903 conn->io_capability = hdev->io_capability; 904 conn->remote_auth = 0xff; 905 conn->key_type = 0xff; 906 conn->rssi = HCI_RSSI_INVALID; 907 conn->tx_power = HCI_TX_POWER_INVALID; 908 conn->max_tx_power = HCI_TX_POWER_INVALID; 909 910 set_bit(HCI_CONN_POWER_SAVE, &conn->flags); 911 conn->disc_timeout = HCI_DISCONN_TIMEOUT; 912 913 /* Set Default Authenticated payload timeout to 30s */ 914 conn->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT; 915 916 if (conn->role == HCI_ROLE_MASTER) 917 conn->out = true; 918 919 switch (type) { 920 case ACL_LINK: 921 conn->pkt_type = hdev->pkt_type & ACL_PTYPE_MASK; 922 break; 923 case LE_LINK: 924 /* conn->src should reflect the local identity address */ 925 hci_copy_identity_address(hdev, &conn->src, &conn->src_type); 926 break; 927 case ISO_LINK: 928 /* conn->src should reflect the local identity address */ 929 hci_copy_identity_address(hdev, &conn->src, &conn->src_type); 930 931 /* set proper cleanup function */ 932 if (!bacmp(dst, BDADDR_ANY)) 933 conn->cleanup = bis_cleanup; 934 else if (conn->role == HCI_ROLE_MASTER) 935 conn->cleanup = cis_cleanup; 936 937 break; 938 case SCO_LINK: 939 if (lmp_esco_capable(hdev)) 940 conn->pkt_type = (hdev->esco_type & SCO_ESCO_MASK) | 941 (hdev->esco_type & EDR_ESCO_MASK); 942 else 943 conn->pkt_type = hdev->pkt_type & SCO_PTYPE_MASK; 944 break; 945 case ESCO_LINK: 946 conn->pkt_type = hdev->esco_type & ~EDR_ESCO_MASK; 947 break; 948 } 949 950 skb_queue_head_init(&conn->data_q); 951 952 INIT_LIST_HEAD(&conn->chan_list); 953 954 INIT_DELAYED_WORK(&conn->disc_work, hci_conn_timeout); 955 INIT_DELAYED_WORK(&conn->auto_accept_work, hci_conn_auto_accept); 956 INIT_DELAYED_WORK(&conn->idle_work, hci_conn_idle); 957 INIT_DELAYED_WORK(&conn->le_conn_timeout, le_conn_timeout); 958 INIT_WORK(&conn->le_scan_cleanup, le_scan_cleanup); 959 960 atomic_set(&conn->refcnt, 0); 961 962 hci_dev_hold(hdev); 963 964 hci_conn_hash_add(hdev, conn); 965 966 /* The SCO and eSCO connections will only be notified when their 967 * setup has been completed. This is different to ACL links which 968 * can be notified right away. 969 */ 970 if (conn->type != SCO_LINK && conn->type != ESCO_LINK) { 971 if (hdev->notify) 972 hdev->notify(hdev, HCI_NOTIFY_CONN_ADD); 973 } 974 975 hci_conn_init_sysfs(conn); 976 977 return conn; 978 } 979 980 int hci_conn_del(struct hci_conn *conn) 981 { 982 struct hci_dev *hdev = conn->hdev; 983 984 BT_DBG("%s hcon %p handle %d", hdev->name, conn, conn->handle); 985 986 cancel_delayed_work_sync(&conn->disc_work); 987 cancel_delayed_work_sync(&conn->auto_accept_work); 988 cancel_delayed_work_sync(&conn->idle_work); 989 990 if (conn->type == ACL_LINK) { 991 struct hci_conn *sco = conn->link; 992 if (sco) 993 sco->link = NULL; 994 995 /* Unacked frames */ 996 hdev->acl_cnt += conn->sent; 997 } else if (conn->type == LE_LINK) { 998 cancel_delayed_work(&conn->le_conn_timeout); 999 1000 if (hdev->le_pkts) 1001 hdev->le_cnt += conn->sent; 1002 else 1003 hdev->acl_cnt += conn->sent; 1004 } else { 1005 struct hci_conn *acl = conn->link; 1006 if (acl) { 1007 acl->link = NULL; 1008 hci_conn_drop(acl); 1009 } 1010 } 1011 1012 if (conn->amp_mgr) 1013 amp_mgr_put(conn->amp_mgr); 1014 1015 skb_queue_purge(&conn->data_q); 1016 1017 /* Remove the connection from the list and cleanup its remaining 1018 * state. This is a separate function since for some cases like 1019 * BT_CONNECT_SCAN we *only* want the cleanup part without the 1020 * rest of hci_conn_del. 1021 */ 1022 hci_conn_cleanup(conn); 1023 1024 return 0; 1025 } 1026 1027 struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src, uint8_t src_type) 1028 { 1029 int use_src = bacmp(src, BDADDR_ANY); 1030 struct hci_dev *hdev = NULL, *d; 1031 1032 BT_DBG("%pMR -> %pMR", src, dst); 1033 1034 read_lock(&hci_dev_list_lock); 1035 1036 list_for_each_entry(d, &hci_dev_list, list) { 1037 if (!test_bit(HCI_UP, &d->flags) || 1038 hci_dev_test_flag(d, HCI_USER_CHANNEL) || 1039 d->dev_type != HCI_PRIMARY) 1040 continue; 1041 1042 /* Simple routing: 1043 * No source address - find interface with bdaddr != dst 1044 * Source address - find interface with bdaddr == src 1045 */ 1046 1047 if (use_src) { 1048 bdaddr_t id_addr; 1049 u8 id_addr_type; 1050 1051 if (src_type == BDADDR_BREDR) { 1052 if (!lmp_bredr_capable(d)) 1053 continue; 1054 bacpy(&id_addr, &d->bdaddr); 1055 id_addr_type = BDADDR_BREDR; 1056 } else { 1057 if (!lmp_le_capable(d)) 1058 continue; 1059 1060 hci_copy_identity_address(d, &id_addr, 1061 &id_addr_type); 1062 1063 /* Convert from HCI to three-value type */ 1064 if (id_addr_type == ADDR_LE_DEV_PUBLIC) 1065 id_addr_type = BDADDR_LE_PUBLIC; 1066 else 1067 id_addr_type = BDADDR_LE_RANDOM; 1068 } 1069 1070 if (!bacmp(&id_addr, src) && id_addr_type == src_type) { 1071 hdev = d; break; 1072 } 1073 } else { 1074 if (bacmp(&d->bdaddr, dst)) { 1075 hdev = d; break; 1076 } 1077 } 1078 } 1079 1080 if (hdev) 1081 hdev = hci_dev_hold(hdev); 1082 1083 read_unlock(&hci_dev_list_lock); 1084 return hdev; 1085 } 1086 EXPORT_SYMBOL(hci_get_route); 1087 1088 /* This function requires the caller holds hdev->lock */ 1089 static void hci_le_conn_failed(struct hci_conn *conn, u8 status) 1090 { 1091 struct hci_dev *hdev = conn->hdev; 1092 struct hci_conn_params *params; 1093 1094 params = hci_pend_le_action_lookup(&hdev->pend_le_conns, &conn->dst, 1095 conn->dst_type); 1096 if (params && params->conn) { 1097 hci_conn_drop(params->conn); 1098 hci_conn_put(params->conn); 1099 params->conn = NULL; 1100 } 1101 1102 /* If the status indicates successful cancellation of 1103 * the attempt (i.e. Unknown Connection Id) there's no point of 1104 * notifying failure since we'll go back to keep trying to 1105 * connect. The only exception is explicit connect requests 1106 * where a timeout + cancel does indicate an actual failure. 1107 */ 1108 if (status != HCI_ERROR_UNKNOWN_CONN_ID || 1109 (params && params->explicit_connect)) 1110 mgmt_connect_failed(hdev, &conn->dst, conn->type, 1111 conn->dst_type, status); 1112 1113 /* Since we may have temporarily stopped the background scanning in 1114 * favor of connection establishment, we should restart it. 1115 */ 1116 hci_update_passive_scan(hdev); 1117 1118 /* Enable advertising in case this was a failed connection 1119 * attempt as a peripheral. 1120 */ 1121 hci_enable_advertising(hdev); 1122 } 1123 1124 /* This function requires the caller holds hdev->lock */ 1125 void hci_conn_failed(struct hci_conn *conn, u8 status) 1126 { 1127 struct hci_dev *hdev = conn->hdev; 1128 1129 bt_dev_dbg(hdev, "status 0x%2.2x", status); 1130 1131 switch (conn->type) { 1132 case LE_LINK: 1133 hci_le_conn_failed(conn, status); 1134 break; 1135 case ACL_LINK: 1136 mgmt_connect_failed(hdev, &conn->dst, conn->type, 1137 conn->dst_type, status); 1138 break; 1139 } 1140 1141 conn->state = BT_CLOSED; 1142 hci_connect_cfm(conn, status); 1143 hci_conn_del(conn); 1144 } 1145 1146 static void create_le_conn_complete(struct hci_dev *hdev, void *data, int err) 1147 { 1148 struct hci_conn *conn = data; 1149 1150 hci_dev_lock(hdev); 1151 1152 if (!err) { 1153 hci_connect_le_scan_cleanup(conn); 1154 goto done; 1155 } 1156 1157 bt_dev_err(hdev, "request failed to create LE connection: err %d", err); 1158 1159 /* Check if connection is still pending */ 1160 if (conn != hci_lookup_le_connect(hdev)) 1161 goto done; 1162 1163 hci_conn_failed(conn, bt_status(err)); 1164 1165 done: 1166 hci_dev_unlock(hdev); 1167 } 1168 1169 static int hci_connect_le_sync(struct hci_dev *hdev, void *data) 1170 { 1171 struct hci_conn *conn = data; 1172 1173 bt_dev_dbg(hdev, "conn %p", conn); 1174 1175 return hci_le_create_conn_sync(hdev, conn); 1176 } 1177 1178 struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst, 1179 u8 dst_type, bool dst_resolved, u8 sec_level, 1180 u16 conn_timeout, u8 role) 1181 { 1182 struct hci_conn *conn; 1183 struct smp_irk *irk; 1184 int err; 1185 1186 /* Let's make sure that le is enabled.*/ 1187 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 1188 if (lmp_le_capable(hdev)) 1189 return ERR_PTR(-ECONNREFUSED); 1190 1191 return ERR_PTR(-EOPNOTSUPP); 1192 } 1193 1194 /* Since the controller supports only one LE connection attempt at a 1195 * time, we return -EBUSY if there is any connection attempt running. 1196 */ 1197 if (hci_lookup_le_connect(hdev)) 1198 return ERR_PTR(-EBUSY); 1199 1200 /* If there's already a connection object but it's not in 1201 * scanning state it means it must already be established, in 1202 * which case we can't do anything else except report a failure 1203 * to connect. 1204 */ 1205 conn = hci_conn_hash_lookup_le(hdev, dst, dst_type); 1206 if (conn && !test_bit(HCI_CONN_SCANNING, &conn->flags)) { 1207 return ERR_PTR(-EBUSY); 1208 } 1209 1210 /* Check if the destination address has been resolved by the controller 1211 * since if it did then the identity address shall be used. 1212 */ 1213 if (!dst_resolved) { 1214 /* When given an identity address with existing identity 1215 * resolving key, the connection needs to be established 1216 * to a resolvable random address. 1217 * 1218 * Storing the resolvable random address is required here 1219 * to handle connection failures. The address will later 1220 * be resolved back into the original identity address 1221 * from the connect request. 1222 */ 1223 irk = hci_find_irk_by_addr(hdev, dst, dst_type); 1224 if (irk && bacmp(&irk->rpa, BDADDR_ANY)) { 1225 dst = &irk->rpa; 1226 dst_type = ADDR_LE_DEV_RANDOM; 1227 } 1228 } 1229 1230 if (conn) { 1231 bacpy(&conn->dst, dst); 1232 } else { 1233 conn = hci_conn_add(hdev, LE_LINK, dst, role); 1234 if (!conn) 1235 return ERR_PTR(-ENOMEM); 1236 hci_conn_hold(conn); 1237 conn->pending_sec_level = sec_level; 1238 } 1239 1240 conn->dst_type = dst_type; 1241 conn->sec_level = BT_SECURITY_LOW; 1242 conn->conn_timeout = conn_timeout; 1243 1244 conn->state = BT_CONNECT; 1245 clear_bit(HCI_CONN_SCANNING, &conn->flags); 1246 1247 err = hci_cmd_sync_queue(hdev, hci_connect_le_sync, conn, 1248 create_le_conn_complete); 1249 if (err) { 1250 hci_conn_del(conn); 1251 return ERR_PTR(err); 1252 } 1253 1254 return conn; 1255 } 1256 1257 static bool is_connected(struct hci_dev *hdev, bdaddr_t *addr, u8 type) 1258 { 1259 struct hci_conn *conn; 1260 1261 conn = hci_conn_hash_lookup_le(hdev, addr, type); 1262 if (!conn) 1263 return false; 1264 1265 if (conn->state != BT_CONNECTED) 1266 return false; 1267 1268 return true; 1269 } 1270 1271 /* This function requires the caller holds hdev->lock */ 1272 static int hci_explicit_conn_params_set(struct hci_dev *hdev, 1273 bdaddr_t *addr, u8 addr_type) 1274 { 1275 struct hci_conn_params *params; 1276 1277 if (is_connected(hdev, addr, addr_type)) 1278 return -EISCONN; 1279 1280 params = hci_conn_params_lookup(hdev, addr, addr_type); 1281 if (!params) { 1282 params = hci_conn_params_add(hdev, addr, addr_type); 1283 if (!params) 1284 return -ENOMEM; 1285 1286 /* If we created new params, mark them to be deleted in 1287 * hci_connect_le_scan_cleanup. It's different case than 1288 * existing disabled params, those will stay after cleanup. 1289 */ 1290 params->auto_connect = HCI_AUTO_CONN_EXPLICIT; 1291 } 1292 1293 /* We're trying to connect, so make sure params are at pend_le_conns */ 1294 if (params->auto_connect == HCI_AUTO_CONN_DISABLED || 1295 params->auto_connect == HCI_AUTO_CONN_REPORT || 1296 params->auto_connect == HCI_AUTO_CONN_EXPLICIT) { 1297 list_del_init(¶ms->action); 1298 list_add(¶ms->action, &hdev->pend_le_conns); 1299 } 1300 1301 params->explicit_connect = true; 1302 1303 BT_DBG("addr %pMR (type %u) auto_connect %u", addr, addr_type, 1304 params->auto_connect); 1305 1306 return 0; 1307 } 1308 1309 static int qos_set_big(struct hci_dev *hdev, struct bt_iso_qos *qos) 1310 { 1311 struct iso_list_data data; 1312 1313 /* Allocate a BIG if not set */ 1314 if (qos->big == BT_ISO_QOS_BIG_UNSET) { 1315 for (data.big = 0x00; data.big < 0xef; data.big++) { 1316 data.count = 0; 1317 data.bis = 0xff; 1318 1319 hci_conn_hash_list_state(hdev, bis_list, ISO_LINK, 1320 BT_BOUND, &data); 1321 if (!data.count) 1322 break; 1323 } 1324 1325 if (data.big == 0xef) 1326 return -EADDRNOTAVAIL; 1327 1328 /* Update BIG */ 1329 qos->big = data.big; 1330 } 1331 1332 return 0; 1333 } 1334 1335 static int qos_set_bis(struct hci_dev *hdev, struct bt_iso_qos *qos) 1336 { 1337 struct iso_list_data data; 1338 1339 /* Allocate BIS if not set */ 1340 if (qos->bis == BT_ISO_QOS_BIS_UNSET) { 1341 /* Find an unused adv set to advertise BIS, skip instance 0x00 1342 * since it is reserved as general purpose set. 1343 */ 1344 for (data.bis = 0x01; data.bis < hdev->le_num_of_adv_sets; 1345 data.bis++) { 1346 data.count = 0; 1347 1348 hci_conn_hash_list_state(hdev, bis_list, ISO_LINK, 1349 BT_BOUND, &data); 1350 if (!data.count) 1351 break; 1352 } 1353 1354 if (data.bis == hdev->le_num_of_adv_sets) 1355 return -EADDRNOTAVAIL; 1356 1357 /* Update BIS */ 1358 qos->bis = data.bis; 1359 } 1360 1361 return 0; 1362 } 1363 1364 /* This function requires the caller holds hdev->lock */ 1365 static struct hci_conn *hci_add_bis(struct hci_dev *hdev, bdaddr_t *dst, 1366 struct bt_iso_qos *qos) 1367 { 1368 struct hci_conn *conn; 1369 struct iso_list_data data; 1370 int err; 1371 1372 /* Let's make sure that le is enabled.*/ 1373 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 1374 if (lmp_le_capable(hdev)) 1375 return ERR_PTR(-ECONNREFUSED); 1376 return ERR_PTR(-EOPNOTSUPP); 1377 } 1378 1379 err = qos_set_big(hdev, qos); 1380 if (err) 1381 return ERR_PTR(err); 1382 1383 err = qos_set_bis(hdev, qos); 1384 if (err) 1385 return ERR_PTR(err); 1386 1387 data.big = qos->big; 1388 data.bis = qos->bis; 1389 data.count = 0; 1390 1391 /* Check if there is already a matching BIG/BIS */ 1392 hci_conn_hash_list_state(hdev, bis_list, ISO_LINK, BT_BOUND, &data); 1393 if (data.count) 1394 return ERR_PTR(-EADDRINUSE); 1395 1396 conn = hci_conn_hash_lookup_bis(hdev, dst, qos->big, qos->bis); 1397 if (conn) 1398 return ERR_PTR(-EADDRINUSE); 1399 1400 conn = hci_conn_add(hdev, ISO_LINK, dst, HCI_ROLE_MASTER); 1401 if (!conn) 1402 return ERR_PTR(-ENOMEM); 1403 1404 set_bit(HCI_CONN_PER_ADV, &conn->flags); 1405 conn->state = BT_CONNECT; 1406 1407 hci_conn_hold(conn); 1408 return conn; 1409 } 1410 1411 /* This function requires the caller holds hdev->lock */ 1412 struct hci_conn *hci_connect_le_scan(struct hci_dev *hdev, bdaddr_t *dst, 1413 u8 dst_type, u8 sec_level, 1414 u16 conn_timeout, 1415 enum conn_reasons conn_reason) 1416 { 1417 struct hci_conn *conn; 1418 1419 /* Let's make sure that le is enabled.*/ 1420 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 1421 if (lmp_le_capable(hdev)) 1422 return ERR_PTR(-ECONNREFUSED); 1423 1424 return ERR_PTR(-EOPNOTSUPP); 1425 } 1426 1427 /* Some devices send ATT messages as soon as the physical link is 1428 * established. To be able to handle these ATT messages, the user- 1429 * space first establishes the connection and then starts the pairing 1430 * process. 1431 * 1432 * So if a hci_conn object already exists for the following connection 1433 * attempt, we simply update pending_sec_level and auth_type fields 1434 * and return the object found. 1435 */ 1436 conn = hci_conn_hash_lookup_le(hdev, dst, dst_type); 1437 if (conn) { 1438 if (conn->pending_sec_level < sec_level) 1439 conn->pending_sec_level = sec_level; 1440 goto done; 1441 } 1442 1443 BT_DBG("requesting refresh of dst_addr"); 1444 1445 conn = hci_conn_add(hdev, LE_LINK, dst, HCI_ROLE_MASTER); 1446 if (!conn) 1447 return ERR_PTR(-ENOMEM); 1448 1449 if (hci_explicit_conn_params_set(hdev, dst, dst_type) < 0) { 1450 hci_conn_del(conn); 1451 return ERR_PTR(-EBUSY); 1452 } 1453 1454 conn->state = BT_CONNECT; 1455 set_bit(HCI_CONN_SCANNING, &conn->flags); 1456 conn->dst_type = dst_type; 1457 conn->sec_level = BT_SECURITY_LOW; 1458 conn->pending_sec_level = sec_level; 1459 conn->conn_timeout = conn_timeout; 1460 conn->conn_reason = conn_reason; 1461 1462 hci_update_passive_scan(hdev); 1463 1464 done: 1465 hci_conn_hold(conn); 1466 return conn; 1467 } 1468 1469 struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst, 1470 u8 sec_level, u8 auth_type, 1471 enum conn_reasons conn_reason) 1472 { 1473 struct hci_conn *acl; 1474 1475 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 1476 if (lmp_bredr_capable(hdev)) 1477 return ERR_PTR(-ECONNREFUSED); 1478 1479 return ERR_PTR(-EOPNOTSUPP); 1480 } 1481 1482 acl = hci_conn_hash_lookup_ba(hdev, ACL_LINK, dst); 1483 if (!acl) { 1484 acl = hci_conn_add(hdev, ACL_LINK, dst, HCI_ROLE_MASTER); 1485 if (!acl) 1486 return ERR_PTR(-ENOMEM); 1487 } 1488 1489 hci_conn_hold(acl); 1490 1491 acl->conn_reason = conn_reason; 1492 if (acl->state == BT_OPEN || acl->state == BT_CLOSED) { 1493 acl->sec_level = BT_SECURITY_LOW; 1494 acl->pending_sec_level = sec_level; 1495 acl->auth_type = auth_type; 1496 hci_acl_create_connection(acl); 1497 } 1498 1499 return acl; 1500 } 1501 1502 struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst, 1503 __u16 setting, struct bt_codec *codec) 1504 { 1505 struct hci_conn *acl; 1506 struct hci_conn *sco; 1507 1508 acl = hci_connect_acl(hdev, dst, BT_SECURITY_LOW, HCI_AT_NO_BONDING, 1509 CONN_REASON_SCO_CONNECT); 1510 if (IS_ERR(acl)) 1511 return acl; 1512 1513 sco = hci_conn_hash_lookup_ba(hdev, type, dst); 1514 if (!sco) { 1515 sco = hci_conn_add(hdev, type, dst, HCI_ROLE_MASTER); 1516 if (!sco) { 1517 hci_conn_drop(acl); 1518 return ERR_PTR(-ENOMEM); 1519 } 1520 } 1521 1522 acl->link = sco; 1523 sco->link = acl; 1524 1525 hci_conn_hold(sco); 1526 1527 sco->setting = setting; 1528 sco->codec = *codec; 1529 1530 if (acl->state == BT_CONNECTED && 1531 (sco->state == BT_OPEN || sco->state == BT_CLOSED)) { 1532 set_bit(HCI_CONN_POWER_SAVE, &acl->flags); 1533 hci_conn_enter_active_mode(acl, BT_POWER_FORCE_ACTIVE_ON); 1534 1535 if (test_bit(HCI_CONN_MODE_CHANGE_PEND, &acl->flags)) { 1536 /* defer SCO setup until mode change completed */ 1537 set_bit(HCI_CONN_SCO_SETUP_PEND, &acl->flags); 1538 return sco; 1539 } 1540 1541 hci_sco_setup(acl, 0x00); 1542 } 1543 1544 return sco; 1545 } 1546 1547 static void cis_add(struct iso_list_data *d, struct bt_iso_qos *qos) 1548 { 1549 struct hci_cis_params *cis = &d->pdu.cis[d->pdu.cp.num_cis]; 1550 1551 cis->cis_id = qos->cis; 1552 cis->c_sdu = cpu_to_le16(qos->out.sdu); 1553 cis->p_sdu = cpu_to_le16(qos->in.sdu); 1554 cis->c_phy = qos->out.phy ? qos->out.phy : qos->in.phy; 1555 cis->p_phy = qos->in.phy ? qos->in.phy : qos->out.phy; 1556 cis->c_rtn = qos->out.rtn; 1557 cis->p_rtn = qos->in.rtn; 1558 1559 d->pdu.cp.num_cis++; 1560 } 1561 1562 static void cis_list(struct hci_conn *conn, void *data) 1563 { 1564 struct iso_list_data *d = data; 1565 1566 /* Skip if broadcast/ANY address */ 1567 if (!bacmp(&conn->dst, BDADDR_ANY)) 1568 return; 1569 1570 if (d->cig != conn->iso_qos.cig || d->cis == BT_ISO_QOS_CIS_UNSET || 1571 d->cis != conn->iso_qos.cis) 1572 return; 1573 1574 d->count++; 1575 1576 if (d->pdu.cp.cig_id == BT_ISO_QOS_CIG_UNSET || 1577 d->count >= ARRAY_SIZE(d->pdu.cis)) 1578 return; 1579 1580 cis_add(d, &conn->iso_qos); 1581 } 1582 1583 static int hci_le_create_big(struct hci_conn *conn, struct bt_iso_qos *qos) 1584 { 1585 struct hci_dev *hdev = conn->hdev; 1586 struct hci_cp_le_create_big cp; 1587 1588 memset(&cp, 0, sizeof(cp)); 1589 1590 cp.handle = qos->big; 1591 cp.adv_handle = qos->bis; 1592 cp.num_bis = 0x01; 1593 hci_cpu_to_le24(qos->out.interval, cp.bis.sdu_interval); 1594 cp.bis.sdu = cpu_to_le16(qos->out.sdu); 1595 cp.bis.latency = cpu_to_le16(qos->out.latency); 1596 cp.bis.rtn = qos->out.rtn; 1597 cp.bis.phy = qos->out.phy; 1598 cp.bis.packing = qos->packing; 1599 cp.bis.framing = qos->framing; 1600 cp.bis.encryption = 0x00; 1601 memset(&cp.bis.bcode, 0, sizeof(cp.bis.bcode)); 1602 1603 return hci_send_cmd(hdev, HCI_OP_LE_CREATE_BIG, sizeof(cp), &cp); 1604 } 1605 1606 static bool hci_le_set_cig_params(struct hci_conn *conn, struct bt_iso_qos *qos) 1607 { 1608 struct hci_dev *hdev = conn->hdev; 1609 struct iso_list_data data; 1610 1611 memset(&data, 0, sizeof(data)); 1612 1613 /* Allocate a CIG if not set */ 1614 if (qos->cig == BT_ISO_QOS_CIG_UNSET) { 1615 for (data.cig = 0x00; data.cig < 0xff; data.cig++) { 1616 data.count = 0; 1617 data.cis = 0xff; 1618 1619 hci_conn_hash_list_state(hdev, cis_list, ISO_LINK, 1620 BT_BOUND, &data); 1621 if (data.count) 1622 continue; 1623 1624 hci_conn_hash_list_state(hdev, cis_list, ISO_LINK, 1625 BT_CONNECTED, &data); 1626 if (!data.count) 1627 break; 1628 } 1629 1630 if (data.cig == 0xff) 1631 return false; 1632 1633 /* Update CIG */ 1634 qos->cig = data.cig; 1635 } 1636 1637 data.pdu.cp.cig_id = qos->cig; 1638 hci_cpu_to_le24(qos->out.interval, data.pdu.cp.c_interval); 1639 hci_cpu_to_le24(qos->in.interval, data.pdu.cp.p_interval); 1640 data.pdu.cp.sca = qos->sca; 1641 data.pdu.cp.packing = qos->packing; 1642 data.pdu.cp.framing = qos->framing; 1643 data.pdu.cp.c_latency = cpu_to_le16(qos->out.latency); 1644 data.pdu.cp.p_latency = cpu_to_le16(qos->in.latency); 1645 1646 if (qos->cis != BT_ISO_QOS_CIS_UNSET) { 1647 data.count = 0; 1648 data.cig = qos->cig; 1649 data.cis = qos->cis; 1650 1651 hci_conn_hash_list_state(hdev, cis_list, ISO_LINK, BT_BOUND, 1652 &data); 1653 if (data.count) 1654 return false; 1655 1656 cis_add(&data, qos); 1657 } 1658 1659 /* Reprogram all CIS(s) with the same CIG */ 1660 for (data.cig = qos->cig, data.cis = 0x00; data.cis < 0x11; 1661 data.cis++) { 1662 data.count = 0; 1663 1664 hci_conn_hash_list_state(hdev, cis_list, ISO_LINK, BT_BOUND, 1665 &data); 1666 if (data.count) 1667 continue; 1668 1669 /* Allocate a CIS if not set */ 1670 if (qos->cis == BT_ISO_QOS_CIS_UNSET) { 1671 /* Update CIS */ 1672 qos->cis = data.cis; 1673 cis_add(&data, qos); 1674 } 1675 } 1676 1677 if (qos->cis == BT_ISO_QOS_CIS_UNSET || !data.pdu.cp.num_cis) 1678 return false; 1679 1680 if (hci_send_cmd(hdev, HCI_OP_LE_SET_CIG_PARAMS, 1681 sizeof(data.pdu.cp) + 1682 (data.pdu.cp.num_cis * sizeof(*data.pdu.cis)), 1683 &data.pdu) < 0) 1684 return false; 1685 1686 return true; 1687 } 1688 1689 struct hci_conn *hci_bind_cis(struct hci_dev *hdev, bdaddr_t *dst, 1690 __u8 dst_type, struct bt_iso_qos *qos) 1691 { 1692 struct hci_conn *cis; 1693 1694 cis = hci_conn_hash_lookup_cis(hdev, dst, dst_type); 1695 if (!cis) { 1696 cis = hci_conn_add(hdev, ISO_LINK, dst, HCI_ROLE_MASTER); 1697 if (!cis) 1698 return ERR_PTR(-ENOMEM); 1699 cis->cleanup = cis_cleanup; 1700 } 1701 1702 if (cis->state == BT_CONNECTED) 1703 return cis; 1704 1705 /* Check if CIS has been set and the settings matches */ 1706 if (cis->state == BT_BOUND && 1707 !memcmp(&cis->iso_qos, qos, sizeof(*qos))) 1708 return cis; 1709 1710 /* Update LINK PHYs according to QoS preference */ 1711 cis->le_tx_phy = qos->out.phy; 1712 cis->le_rx_phy = qos->in.phy; 1713 1714 /* If output interval is not set use the input interval as it cannot be 1715 * 0x000000. 1716 */ 1717 if (!qos->out.interval) 1718 qos->out.interval = qos->in.interval; 1719 1720 /* If input interval is not set use the output interval as it cannot be 1721 * 0x000000. 1722 */ 1723 if (!qos->in.interval) 1724 qos->in.interval = qos->out.interval; 1725 1726 /* If output latency is not set use the input latency as it cannot be 1727 * 0x0000. 1728 */ 1729 if (!qos->out.latency) 1730 qos->out.latency = qos->in.latency; 1731 1732 /* If input latency is not set use the output latency as it cannot be 1733 * 0x0000. 1734 */ 1735 if (!qos->in.latency) 1736 qos->in.latency = qos->out.latency; 1737 1738 if (!hci_le_set_cig_params(cis, qos)) { 1739 hci_conn_drop(cis); 1740 return ERR_PTR(-EINVAL); 1741 } 1742 1743 cis->iso_qos = *qos; 1744 cis->state = BT_BOUND; 1745 1746 return cis; 1747 } 1748 1749 bool hci_iso_setup_path(struct hci_conn *conn) 1750 { 1751 struct hci_dev *hdev = conn->hdev; 1752 struct hci_cp_le_setup_iso_path cmd; 1753 1754 memset(&cmd, 0, sizeof(cmd)); 1755 1756 if (conn->iso_qos.out.sdu) { 1757 cmd.handle = cpu_to_le16(conn->handle); 1758 cmd.direction = 0x00; /* Input (Host to Controller) */ 1759 cmd.path = 0x00; /* HCI path if enabled */ 1760 cmd.codec = 0x03; /* Transparent Data */ 1761 1762 if (hci_send_cmd(hdev, HCI_OP_LE_SETUP_ISO_PATH, sizeof(cmd), 1763 &cmd) < 0) 1764 return false; 1765 } 1766 1767 if (conn->iso_qos.in.sdu) { 1768 cmd.handle = cpu_to_le16(conn->handle); 1769 cmd.direction = 0x01; /* Output (Controller to Host) */ 1770 cmd.path = 0x00; /* HCI path if enabled */ 1771 cmd.codec = 0x03; /* Transparent Data */ 1772 1773 if (hci_send_cmd(hdev, HCI_OP_LE_SETUP_ISO_PATH, sizeof(cmd), 1774 &cmd) < 0) 1775 return false; 1776 } 1777 1778 return true; 1779 } 1780 1781 static int hci_create_cis_sync(struct hci_dev *hdev, void *data) 1782 { 1783 struct { 1784 struct hci_cp_le_create_cis cp; 1785 struct hci_cis cis[0x1f]; 1786 } cmd; 1787 struct hci_conn *conn = data; 1788 u8 cig; 1789 1790 memset(&cmd, 0, sizeof(cmd)); 1791 cmd.cis[0].acl_handle = cpu_to_le16(conn->link->handle); 1792 cmd.cis[0].cis_handle = cpu_to_le16(conn->handle); 1793 cmd.cp.num_cis++; 1794 cig = conn->iso_qos.cig; 1795 1796 hci_dev_lock(hdev); 1797 1798 rcu_read_lock(); 1799 1800 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) { 1801 struct hci_cis *cis = &cmd.cis[cmd.cp.num_cis]; 1802 1803 if (conn == data || conn->type != ISO_LINK || 1804 conn->state == BT_CONNECTED || conn->iso_qos.cig != cig) 1805 continue; 1806 1807 /* Check if all CIS(s) belonging to a CIG are ready */ 1808 if (conn->link->state != BT_CONNECTED || 1809 conn->state != BT_CONNECT) { 1810 cmd.cp.num_cis = 0; 1811 break; 1812 } 1813 1814 /* Group all CIS with state BT_CONNECT since the spec don't 1815 * allow to send them individually: 1816 * 1817 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E 1818 * page 2566: 1819 * 1820 * If the Host issues this command before all the 1821 * HCI_LE_CIS_Established events from the previous use of the 1822 * command have been generated, the Controller shall return the 1823 * error code Command Disallowed (0x0C). 1824 */ 1825 cis->acl_handle = cpu_to_le16(conn->link->handle); 1826 cis->cis_handle = cpu_to_le16(conn->handle); 1827 cmd.cp.num_cis++; 1828 } 1829 1830 rcu_read_unlock(); 1831 1832 hci_dev_unlock(hdev); 1833 1834 if (!cmd.cp.num_cis) 1835 return 0; 1836 1837 return hci_send_cmd(hdev, HCI_OP_LE_CREATE_CIS, sizeof(cmd.cp) + 1838 sizeof(cmd.cis[0]) * cmd.cp.num_cis, &cmd); 1839 } 1840 1841 int hci_le_create_cis(struct hci_conn *conn) 1842 { 1843 struct hci_conn *cis; 1844 struct hci_dev *hdev = conn->hdev; 1845 int err; 1846 1847 switch (conn->type) { 1848 case LE_LINK: 1849 if (!conn->link || conn->state != BT_CONNECTED) 1850 return -EINVAL; 1851 cis = conn->link; 1852 break; 1853 case ISO_LINK: 1854 cis = conn; 1855 break; 1856 default: 1857 return -EINVAL; 1858 } 1859 1860 if (cis->state == BT_CONNECT) 1861 return 0; 1862 1863 /* Queue Create CIS */ 1864 err = hci_cmd_sync_queue(hdev, hci_create_cis_sync, cis, NULL); 1865 if (err) 1866 return err; 1867 1868 cis->state = BT_CONNECT; 1869 1870 return 0; 1871 } 1872 1873 static void hci_iso_qos_setup(struct hci_dev *hdev, struct hci_conn *conn, 1874 struct bt_iso_io_qos *qos, __u8 phy) 1875 { 1876 /* Only set MTU if PHY is enabled */ 1877 if (!qos->sdu && qos->phy) { 1878 if (hdev->iso_mtu > 0) 1879 qos->sdu = hdev->iso_mtu; 1880 else if (hdev->le_mtu > 0) 1881 qos->sdu = hdev->le_mtu; 1882 else 1883 qos->sdu = hdev->acl_mtu; 1884 } 1885 1886 /* Use the same PHY as ACL if set to any */ 1887 if (qos->phy == BT_ISO_PHY_ANY) 1888 qos->phy = phy; 1889 1890 /* Use LE ACL connection interval if not set */ 1891 if (!qos->interval) 1892 /* ACL interval unit in 1.25 ms to us */ 1893 qos->interval = conn->le_conn_interval * 1250; 1894 1895 /* Use LE ACL connection latency if not set */ 1896 if (!qos->latency) 1897 qos->latency = conn->le_conn_latency; 1898 } 1899 1900 static struct hci_conn *hci_bind_bis(struct hci_conn *conn, 1901 struct bt_iso_qos *qos) 1902 { 1903 /* Update LINK PHYs according to QoS preference */ 1904 conn->le_tx_phy = qos->out.phy; 1905 conn->le_tx_phy = qos->out.phy; 1906 conn->iso_qos = *qos; 1907 conn->state = BT_BOUND; 1908 1909 return conn; 1910 } 1911 1912 static int create_big_sync(struct hci_dev *hdev, void *data) 1913 { 1914 struct hci_conn *conn = data; 1915 struct bt_iso_qos *qos = &conn->iso_qos; 1916 u16 interval, sync_interval = 0; 1917 u32 flags = 0; 1918 int err; 1919 1920 if (qos->out.phy == 0x02) 1921 flags |= MGMT_ADV_FLAG_SEC_2M; 1922 1923 /* Align intervals */ 1924 interval = qos->out.interval / 1250; 1925 1926 if (qos->bis) 1927 sync_interval = qos->sync_interval * 1600; 1928 1929 err = hci_start_per_adv_sync(hdev, qos->bis, conn->le_per_adv_data_len, 1930 conn->le_per_adv_data, flags, interval, 1931 interval, sync_interval); 1932 if (err) 1933 return err; 1934 1935 return hci_le_create_big(conn, &conn->iso_qos); 1936 } 1937 1938 static void create_pa_complete(struct hci_dev *hdev, void *data, int err) 1939 { 1940 struct hci_cp_le_pa_create_sync *cp = data; 1941 1942 bt_dev_dbg(hdev, ""); 1943 1944 if (err) 1945 bt_dev_err(hdev, "Unable to create PA: %d", err); 1946 1947 kfree(cp); 1948 } 1949 1950 static int create_pa_sync(struct hci_dev *hdev, void *data) 1951 { 1952 struct hci_cp_le_pa_create_sync *cp = data; 1953 int err; 1954 1955 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_PA_CREATE_SYNC, 1956 sizeof(*cp), cp, HCI_CMD_TIMEOUT); 1957 if (err) { 1958 hci_dev_clear_flag(hdev, HCI_PA_SYNC); 1959 return err; 1960 } 1961 1962 return hci_update_passive_scan_sync(hdev); 1963 } 1964 1965 int hci_pa_create_sync(struct hci_dev *hdev, bdaddr_t *dst, __u8 dst_type, 1966 __u8 sid) 1967 { 1968 struct hci_cp_le_pa_create_sync *cp; 1969 1970 if (hci_dev_test_and_set_flag(hdev, HCI_PA_SYNC)) 1971 return -EBUSY; 1972 1973 cp = kmalloc(sizeof(*cp), GFP_KERNEL); 1974 if (!cp) { 1975 hci_dev_clear_flag(hdev, HCI_PA_SYNC); 1976 return -ENOMEM; 1977 } 1978 1979 /* Convert from ISO socket address type to HCI address type */ 1980 if (dst_type == BDADDR_LE_PUBLIC) 1981 dst_type = ADDR_LE_DEV_PUBLIC; 1982 else 1983 dst_type = ADDR_LE_DEV_RANDOM; 1984 1985 memset(cp, 0, sizeof(*cp)); 1986 cp->sid = sid; 1987 cp->addr_type = dst_type; 1988 bacpy(&cp->addr, dst); 1989 1990 /* Queue start pa_create_sync and scan */ 1991 return hci_cmd_sync_queue(hdev, create_pa_sync, cp, create_pa_complete); 1992 } 1993 1994 int hci_le_big_create_sync(struct hci_dev *hdev, struct bt_iso_qos *qos, 1995 __u16 sync_handle, __u8 num_bis, __u8 bis[]) 1996 { 1997 struct _packed { 1998 struct hci_cp_le_big_create_sync cp; 1999 __u8 bis[0x11]; 2000 } pdu; 2001 int err; 2002 2003 if (num_bis > sizeof(pdu.bis)) 2004 return -EINVAL; 2005 2006 err = qos_set_big(hdev, qos); 2007 if (err) 2008 return err; 2009 2010 memset(&pdu, 0, sizeof(pdu)); 2011 pdu.cp.handle = qos->big; 2012 pdu.cp.sync_handle = cpu_to_le16(sync_handle); 2013 pdu.cp.num_bis = num_bis; 2014 memcpy(pdu.bis, bis, num_bis); 2015 2016 return hci_send_cmd(hdev, HCI_OP_LE_BIG_CREATE_SYNC, 2017 sizeof(pdu.cp) + num_bis, &pdu); 2018 } 2019 2020 static void create_big_complete(struct hci_dev *hdev, void *data, int err) 2021 { 2022 struct hci_conn *conn = data; 2023 2024 bt_dev_dbg(hdev, "conn %p", conn); 2025 2026 if (err) { 2027 bt_dev_err(hdev, "Unable to create BIG: %d", err); 2028 hci_connect_cfm(conn, err); 2029 hci_conn_del(conn); 2030 } 2031 } 2032 2033 struct hci_conn *hci_connect_bis(struct hci_dev *hdev, bdaddr_t *dst, 2034 __u8 dst_type, struct bt_iso_qos *qos, 2035 __u8 base_len, __u8 *base) 2036 { 2037 struct hci_conn *conn; 2038 int err; 2039 2040 /* We need hci_conn object using the BDADDR_ANY as dst */ 2041 conn = hci_add_bis(hdev, dst, qos); 2042 if (IS_ERR(conn)) 2043 return conn; 2044 2045 conn = hci_bind_bis(conn, qos); 2046 if (!conn) { 2047 hci_conn_drop(conn); 2048 return ERR_PTR(-ENOMEM); 2049 } 2050 2051 /* Add Basic Announcement into Peridic Adv Data if BASE is set */ 2052 if (base_len && base) { 2053 base_len = eir_append_service_data(conn->le_per_adv_data, 0, 2054 0x1851, base, base_len); 2055 conn->le_per_adv_data_len = base_len; 2056 } 2057 2058 /* Queue start periodic advertising and create BIG */ 2059 err = hci_cmd_sync_queue(hdev, create_big_sync, conn, 2060 create_big_complete); 2061 if (err < 0) { 2062 hci_conn_drop(conn); 2063 return ERR_PTR(err); 2064 } 2065 2066 hci_iso_qos_setup(hdev, conn, &qos->out, 2067 conn->le_tx_phy ? conn->le_tx_phy : 2068 hdev->le_tx_def_phys); 2069 2070 return conn; 2071 } 2072 2073 struct hci_conn *hci_connect_cis(struct hci_dev *hdev, bdaddr_t *dst, 2074 __u8 dst_type, struct bt_iso_qos *qos) 2075 { 2076 struct hci_conn *le; 2077 struct hci_conn *cis; 2078 2079 /* Convert from ISO socket address type to HCI address type */ 2080 if (dst_type == BDADDR_LE_PUBLIC) 2081 dst_type = ADDR_LE_DEV_PUBLIC; 2082 else 2083 dst_type = ADDR_LE_DEV_RANDOM; 2084 2085 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) 2086 le = hci_connect_le(hdev, dst, dst_type, false, 2087 BT_SECURITY_LOW, 2088 HCI_LE_CONN_TIMEOUT, 2089 HCI_ROLE_SLAVE); 2090 else 2091 le = hci_connect_le_scan(hdev, dst, dst_type, 2092 BT_SECURITY_LOW, 2093 HCI_LE_CONN_TIMEOUT, 2094 CONN_REASON_ISO_CONNECT); 2095 if (IS_ERR(le)) 2096 return le; 2097 2098 hci_iso_qos_setup(hdev, le, &qos->out, 2099 le->le_tx_phy ? le->le_tx_phy : hdev->le_tx_def_phys); 2100 hci_iso_qos_setup(hdev, le, &qos->in, 2101 le->le_rx_phy ? le->le_rx_phy : hdev->le_rx_def_phys); 2102 2103 cis = hci_bind_cis(hdev, dst, dst_type, qos); 2104 if (IS_ERR(cis)) { 2105 hci_conn_drop(le); 2106 return cis; 2107 } 2108 2109 le->link = cis; 2110 cis->link = le; 2111 2112 hci_conn_hold(cis); 2113 2114 /* If LE is already connected and CIS handle is already set proceed to 2115 * Create CIS immediately. 2116 */ 2117 if (le->state == BT_CONNECTED && cis->handle != HCI_CONN_HANDLE_UNSET) 2118 hci_le_create_cis(le); 2119 2120 return cis; 2121 } 2122 2123 /* Check link security requirement */ 2124 int hci_conn_check_link_mode(struct hci_conn *conn) 2125 { 2126 BT_DBG("hcon %p", conn); 2127 2128 /* In Secure Connections Only mode, it is required that Secure 2129 * Connections is used and the link is encrypted with AES-CCM 2130 * using a P-256 authenticated combination key. 2131 */ 2132 if (hci_dev_test_flag(conn->hdev, HCI_SC_ONLY)) { 2133 if (!hci_conn_sc_enabled(conn) || 2134 !test_bit(HCI_CONN_AES_CCM, &conn->flags) || 2135 conn->key_type != HCI_LK_AUTH_COMBINATION_P256) 2136 return 0; 2137 } 2138 2139 /* AES encryption is required for Level 4: 2140 * 2141 * BLUETOOTH CORE SPECIFICATION Version 5.2 | Vol 3, Part C 2142 * page 1319: 2143 * 2144 * 128-bit equivalent strength for link and encryption keys 2145 * required using FIPS approved algorithms (E0 not allowed, 2146 * SAFER+ not allowed, and P-192 not allowed; encryption key 2147 * not shortened) 2148 */ 2149 if (conn->sec_level == BT_SECURITY_FIPS && 2150 !test_bit(HCI_CONN_AES_CCM, &conn->flags)) { 2151 bt_dev_err(conn->hdev, 2152 "Invalid security: Missing AES-CCM usage"); 2153 return 0; 2154 } 2155 2156 if (hci_conn_ssp_enabled(conn) && 2157 !test_bit(HCI_CONN_ENCRYPT, &conn->flags)) 2158 return 0; 2159 2160 return 1; 2161 } 2162 2163 /* Authenticate remote device */ 2164 static int hci_conn_auth(struct hci_conn *conn, __u8 sec_level, __u8 auth_type) 2165 { 2166 BT_DBG("hcon %p", conn); 2167 2168 if (conn->pending_sec_level > sec_level) 2169 sec_level = conn->pending_sec_level; 2170 2171 if (sec_level > conn->sec_level) 2172 conn->pending_sec_level = sec_level; 2173 else if (test_bit(HCI_CONN_AUTH, &conn->flags)) 2174 return 1; 2175 2176 /* Make sure we preserve an existing MITM requirement*/ 2177 auth_type |= (conn->auth_type & 0x01); 2178 2179 conn->auth_type = auth_type; 2180 2181 if (!test_and_set_bit(HCI_CONN_AUTH_PEND, &conn->flags)) { 2182 struct hci_cp_auth_requested cp; 2183 2184 cp.handle = cpu_to_le16(conn->handle); 2185 hci_send_cmd(conn->hdev, HCI_OP_AUTH_REQUESTED, 2186 sizeof(cp), &cp); 2187 2188 /* If we're already encrypted set the REAUTH_PEND flag, 2189 * otherwise set the ENCRYPT_PEND. 2190 */ 2191 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) 2192 set_bit(HCI_CONN_REAUTH_PEND, &conn->flags); 2193 else 2194 set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags); 2195 } 2196 2197 return 0; 2198 } 2199 2200 /* Encrypt the link */ 2201 static void hci_conn_encrypt(struct hci_conn *conn) 2202 { 2203 BT_DBG("hcon %p", conn); 2204 2205 if (!test_and_set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) { 2206 struct hci_cp_set_conn_encrypt cp; 2207 cp.handle = cpu_to_le16(conn->handle); 2208 cp.encrypt = 0x01; 2209 hci_send_cmd(conn->hdev, HCI_OP_SET_CONN_ENCRYPT, sizeof(cp), 2210 &cp); 2211 } 2212 } 2213 2214 /* Enable security */ 2215 int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type, 2216 bool initiator) 2217 { 2218 BT_DBG("hcon %p", conn); 2219 2220 if (conn->type == LE_LINK) 2221 return smp_conn_security(conn, sec_level); 2222 2223 /* For sdp we don't need the link key. */ 2224 if (sec_level == BT_SECURITY_SDP) 2225 return 1; 2226 2227 /* For non 2.1 devices and low security level we don't need the link 2228 key. */ 2229 if (sec_level == BT_SECURITY_LOW && !hci_conn_ssp_enabled(conn)) 2230 return 1; 2231 2232 /* For other security levels we need the link key. */ 2233 if (!test_bit(HCI_CONN_AUTH, &conn->flags)) 2234 goto auth; 2235 2236 /* An authenticated FIPS approved combination key has sufficient 2237 * security for security level 4. */ 2238 if (conn->key_type == HCI_LK_AUTH_COMBINATION_P256 && 2239 sec_level == BT_SECURITY_FIPS) 2240 goto encrypt; 2241 2242 /* An authenticated combination key has sufficient security for 2243 security level 3. */ 2244 if ((conn->key_type == HCI_LK_AUTH_COMBINATION_P192 || 2245 conn->key_type == HCI_LK_AUTH_COMBINATION_P256) && 2246 sec_level == BT_SECURITY_HIGH) 2247 goto encrypt; 2248 2249 /* An unauthenticated combination key has sufficient security for 2250 security level 1 and 2. */ 2251 if ((conn->key_type == HCI_LK_UNAUTH_COMBINATION_P192 || 2252 conn->key_type == HCI_LK_UNAUTH_COMBINATION_P256) && 2253 (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW)) 2254 goto encrypt; 2255 2256 /* A combination key has always sufficient security for the security 2257 levels 1 or 2. High security level requires the combination key 2258 is generated using maximum PIN code length (16). 2259 For pre 2.1 units. */ 2260 if (conn->key_type == HCI_LK_COMBINATION && 2261 (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW || 2262 conn->pin_length == 16)) 2263 goto encrypt; 2264 2265 auth: 2266 if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) 2267 return 0; 2268 2269 if (initiator) 2270 set_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags); 2271 2272 if (!hci_conn_auth(conn, sec_level, auth_type)) 2273 return 0; 2274 2275 encrypt: 2276 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) { 2277 /* Ensure that the encryption key size has been read, 2278 * otherwise stall the upper layer responses. 2279 */ 2280 if (!conn->enc_key_size) 2281 return 0; 2282 2283 /* Nothing else needed, all requirements are met */ 2284 return 1; 2285 } 2286 2287 hci_conn_encrypt(conn); 2288 return 0; 2289 } 2290 EXPORT_SYMBOL(hci_conn_security); 2291 2292 /* Check secure link requirement */ 2293 int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level) 2294 { 2295 BT_DBG("hcon %p", conn); 2296 2297 /* Accept if non-secure or higher security level is required */ 2298 if (sec_level != BT_SECURITY_HIGH && sec_level != BT_SECURITY_FIPS) 2299 return 1; 2300 2301 /* Accept if secure or higher security level is already present */ 2302 if (conn->sec_level == BT_SECURITY_HIGH || 2303 conn->sec_level == BT_SECURITY_FIPS) 2304 return 1; 2305 2306 /* Reject not secure link */ 2307 return 0; 2308 } 2309 EXPORT_SYMBOL(hci_conn_check_secure); 2310 2311 /* Switch role */ 2312 int hci_conn_switch_role(struct hci_conn *conn, __u8 role) 2313 { 2314 BT_DBG("hcon %p", conn); 2315 2316 if (role == conn->role) 2317 return 1; 2318 2319 if (!test_and_set_bit(HCI_CONN_RSWITCH_PEND, &conn->flags)) { 2320 struct hci_cp_switch_role cp; 2321 bacpy(&cp.bdaddr, &conn->dst); 2322 cp.role = role; 2323 hci_send_cmd(conn->hdev, HCI_OP_SWITCH_ROLE, sizeof(cp), &cp); 2324 } 2325 2326 return 0; 2327 } 2328 EXPORT_SYMBOL(hci_conn_switch_role); 2329 2330 /* Enter active mode */ 2331 void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active) 2332 { 2333 struct hci_dev *hdev = conn->hdev; 2334 2335 BT_DBG("hcon %p mode %d", conn, conn->mode); 2336 2337 if (conn->mode != HCI_CM_SNIFF) 2338 goto timer; 2339 2340 if (!test_bit(HCI_CONN_POWER_SAVE, &conn->flags) && !force_active) 2341 goto timer; 2342 2343 if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) { 2344 struct hci_cp_exit_sniff_mode cp; 2345 cp.handle = cpu_to_le16(conn->handle); 2346 hci_send_cmd(hdev, HCI_OP_EXIT_SNIFF_MODE, sizeof(cp), &cp); 2347 } 2348 2349 timer: 2350 if (hdev->idle_timeout > 0) 2351 queue_delayed_work(hdev->workqueue, &conn->idle_work, 2352 msecs_to_jiffies(hdev->idle_timeout)); 2353 } 2354 2355 /* Drop all connection on the device */ 2356 void hci_conn_hash_flush(struct hci_dev *hdev) 2357 { 2358 struct hci_conn_hash *h = &hdev->conn_hash; 2359 struct hci_conn *c, *n; 2360 2361 BT_DBG("hdev %s", hdev->name); 2362 2363 list_for_each_entry_safe(c, n, &h->list, list) { 2364 c->state = BT_CLOSED; 2365 2366 hci_disconn_cfm(c, HCI_ERROR_LOCAL_HOST_TERM); 2367 hci_conn_del(c); 2368 } 2369 } 2370 2371 /* Check pending connect attempts */ 2372 void hci_conn_check_pending(struct hci_dev *hdev) 2373 { 2374 struct hci_conn *conn; 2375 2376 BT_DBG("hdev %s", hdev->name); 2377 2378 hci_dev_lock(hdev); 2379 2380 conn = hci_conn_hash_lookup_state(hdev, ACL_LINK, BT_CONNECT2); 2381 if (conn) 2382 hci_acl_create_connection(conn); 2383 2384 hci_dev_unlock(hdev); 2385 } 2386 2387 static u32 get_link_mode(struct hci_conn *conn) 2388 { 2389 u32 link_mode = 0; 2390 2391 if (conn->role == HCI_ROLE_MASTER) 2392 link_mode |= HCI_LM_MASTER; 2393 2394 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) 2395 link_mode |= HCI_LM_ENCRYPT; 2396 2397 if (test_bit(HCI_CONN_AUTH, &conn->flags)) 2398 link_mode |= HCI_LM_AUTH; 2399 2400 if (test_bit(HCI_CONN_SECURE, &conn->flags)) 2401 link_mode |= HCI_LM_SECURE; 2402 2403 if (test_bit(HCI_CONN_FIPS, &conn->flags)) 2404 link_mode |= HCI_LM_FIPS; 2405 2406 return link_mode; 2407 } 2408 2409 int hci_get_conn_list(void __user *arg) 2410 { 2411 struct hci_conn *c; 2412 struct hci_conn_list_req req, *cl; 2413 struct hci_conn_info *ci; 2414 struct hci_dev *hdev; 2415 int n = 0, size, err; 2416 2417 if (copy_from_user(&req, arg, sizeof(req))) 2418 return -EFAULT; 2419 2420 if (!req.conn_num || req.conn_num > (PAGE_SIZE * 2) / sizeof(*ci)) 2421 return -EINVAL; 2422 2423 size = sizeof(req) + req.conn_num * sizeof(*ci); 2424 2425 cl = kmalloc(size, GFP_KERNEL); 2426 if (!cl) 2427 return -ENOMEM; 2428 2429 hdev = hci_dev_get(req.dev_id); 2430 if (!hdev) { 2431 kfree(cl); 2432 return -ENODEV; 2433 } 2434 2435 ci = cl->conn_info; 2436 2437 hci_dev_lock(hdev); 2438 list_for_each_entry(c, &hdev->conn_hash.list, list) { 2439 bacpy(&(ci + n)->bdaddr, &c->dst); 2440 (ci + n)->handle = c->handle; 2441 (ci + n)->type = c->type; 2442 (ci + n)->out = c->out; 2443 (ci + n)->state = c->state; 2444 (ci + n)->link_mode = get_link_mode(c); 2445 if (++n >= req.conn_num) 2446 break; 2447 } 2448 hci_dev_unlock(hdev); 2449 2450 cl->dev_id = hdev->id; 2451 cl->conn_num = n; 2452 size = sizeof(req) + n * sizeof(*ci); 2453 2454 hci_dev_put(hdev); 2455 2456 err = copy_to_user(arg, cl, size); 2457 kfree(cl); 2458 2459 return err ? -EFAULT : 0; 2460 } 2461 2462 int hci_get_conn_info(struct hci_dev *hdev, void __user *arg) 2463 { 2464 struct hci_conn_info_req req; 2465 struct hci_conn_info ci; 2466 struct hci_conn *conn; 2467 char __user *ptr = arg + sizeof(req); 2468 2469 if (copy_from_user(&req, arg, sizeof(req))) 2470 return -EFAULT; 2471 2472 hci_dev_lock(hdev); 2473 conn = hci_conn_hash_lookup_ba(hdev, req.type, &req.bdaddr); 2474 if (conn) { 2475 bacpy(&ci.bdaddr, &conn->dst); 2476 ci.handle = conn->handle; 2477 ci.type = conn->type; 2478 ci.out = conn->out; 2479 ci.state = conn->state; 2480 ci.link_mode = get_link_mode(conn); 2481 } 2482 hci_dev_unlock(hdev); 2483 2484 if (!conn) 2485 return -ENOENT; 2486 2487 return copy_to_user(ptr, &ci, sizeof(ci)) ? -EFAULT : 0; 2488 } 2489 2490 int hci_get_auth_info(struct hci_dev *hdev, void __user *arg) 2491 { 2492 struct hci_auth_info_req req; 2493 struct hci_conn *conn; 2494 2495 if (copy_from_user(&req, arg, sizeof(req))) 2496 return -EFAULT; 2497 2498 hci_dev_lock(hdev); 2499 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &req.bdaddr); 2500 if (conn) 2501 req.type = conn->auth_type; 2502 hci_dev_unlock(hdev); 2503 2504 if (!conn) 2505 return -ENOENT; 2506 2507 return copy_to_user(arg, &req, sizeof(req)) ? -EFAULT : 0; 2508 } 2509 2510 struct hci_chan *hci_chan_create(struct hci_conn *conn) 2511 { 2512 struct hci_dev *hdev = conn->hdev; 2513 struct hci_chan *chan; 2514 2515 BT_DBG("%s hcon %p", hdev->name, conn); 2516 2517 if (test_bit(HCI_CONN_DROP, &conn->flags)) { 2518 BT_DBG("Refusing to create new hci_chan"); 2519 return NULL; 2520 } 2521 2522 chan = kzalloc(sizeof(*chan), GFP_KERNEL); 2523 if (!chan) 2524 return NULL; 2525 2526 chan->conn = hci_conn_get(conn); 2527 skb_queue_head_init(&chan->data_q); 2528 chan->state = BT_CONNECTED; 2529 2530 list_add_rcu(&chan->list, &conn->chan_list); 2531 2532 return chan; 2533 } 2534 2535 void hci_chan_del(struct hci_chan *chan) 2536 { 2537 struct hci_conn *conn = chan->conn; 2538 struct hci_dev *hdev = conn->hdev; 2539 2540 BT_DBG("%s hcon %p chan %p", hdev->name, conn, chan); 2541 2542 list_del_rcu(&chan->list); 2543 2544 synchronize_rcu(); 2545 2546 /* Prevent new hci_chan's to be created for this hci_conn */ 2547 set_bit(HCI_CONN_DROP, &conn->flags); 2548 2549 hci_conn_put(conn); 2550 2551 skb_queue_purge(&chan->data_q); 2552 kfree(chan); 2553 } 2554 2555 void hci_chan_list_flush(struct hci_conn *conn) 2556 { 2557 struct hci_chan *chan, *n; 2558 2559 BT_DBG("hcon %p", conn); 2560 2561 list_for_each_entry_safe(chan, n, &conn->chan_list, list) 2562 hci_chan_del(chan); 2563 } 2564 2565 static struct hci_chan *__hci_chan_lookup_handle(struct hci_conn *hcon, 2566 __u16 handle) 2567 { 2568 struct hci_chan *hchan; 2569 2570 list_for_each_entry(hchan, &hcon->chan_list, list) { 2571 if (hchan->handle == handle) 2572 return hchan; 2573 } 2574 2575 return NULL; 2576 } 2577 2578 struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle) 2579 { 2580 struct hci_conn_hash *h = &hdev->conn_hash; 2581 struct hci_conn *hcon; 2582 struct hci_chan *hchan = NULL; 2583 2584 rcu_read_lock(); 2585 2586 list_for_each_entry_rcu(hcon, &h->list, list) { 2587 hchan = __hci_chan_lookup_handle(hcon, handle); 2588 if (hchan) 2589 break; 2590 } 2591 2592 rcu_read_unlock(); 2593 2594 return hchan; 2595 } 2596 2597 u32 hci_conn_get_phy(struct hci_conn *conn) 2598 { 2599 u32 phys = 0; 2600 2601 /* BLUETOOTH CORE SPECIFICATION Version 5.2 | Vol 2, Part B page 471: 2602 * Table 6.2: Packets defined for synchronous, asynchronous, and 2603 * CPB logical transport types. 2604 */ 2605 switch (conn->type) { 2606 case SCO_LINK: 2607 /* SCO logical transport (1 Mb/s): 2608 * HV1, HV2, HV3 and DV. 2609 */ 2610 phys |= BT_PHY_BR_1M_1SLOT; 2611 2612 break; 2613 2614 case ACL_LINK: 2615 /* ACL logical transport (1 Mb/s) ptt=0: 2616 * DH1, DM3, DH3, DM5 and DH5. 2617 */ 2618 phys |= BT_PHY_BR_1M_1SLOT; 2619 2620 if (conn->pkt_type & (HCI_DM3 | HCI_DH3)) 2621 phys |= BT_PHY_BR_1M_3SLOT; 2622 2623 if (conn->pkt_type & (HCI_DM5 | HCI_DH5)) 2624 phys |= BT_PHY_BR_1M_5SLOT; 2625 2626 /* ACL logical transport (2 Mb/s) ptt=1: 2627 * 2-DH1, 2-DH3 and 2-DH5. 2628 */ 2629 if (!(conn->pkt_type & HCI_2DH1)) 2630 phys |= BT_PHY_EDR_2M_1SLOT; 2631 2632 if (!(conn->pkt_type & HCI_2DH3)) 2633 phys |= BT_PHY_EDR_2M_3SLOT; 2634 2635 if (!(conn->pkt_type & HCI_2DH5)) 2636 phys |= BT_PHY_EDR_2M_5SLOT; 2637 2638 /* ACL logical transport (3 Mb/s) ptt=1: 2639 * 3-DH1, 3-DH3 and 3-DH5. 2640 */ 2641 if (!(conn->pkt_type & HCI_3DH1)) 2642 phys |= BT_PHY_EDR_3M_1SLOT; 2643 2644 if (!(conn->pkt_type & HCI_3DH3)) 2645 phys |= BT_PHY_EDR_3M_3SLOT; 2646 2647 if (!(conn->pkt_type & HCI_3DH5)) 2648 phys |= BT_PHY_EDR_3M_5SLOT; 2649 2650 break; 2651 2652 case ESCO_LINK: 2653 /* eSCO logical transport (1 Mb/s): EV3, EV4 and EV5 */ 2654 phys |= BT_PHY_BR_1M_1SLOT; 2655 2656 if (!(conn->pkt_type & (ESCO_EV4 | ESCO_EV5))) 2657 phys |= BT_PHY_BR_1M_3SLOT; 2658 2659 /* eSCO logical transport (2 Mb/s): 2-EV3, 2-EV5 */ 2660 if (!(conn->pkt_type & ESCO_2EV3)) 2661 phys |= BT_PHY_EDR_2M_1SLOT; 2662 2663 if (!(conn->pkt_type & ESCO_2EV5)) 2664 phys |= BT_PHY_EDR_2M_3SLOT; 2665 2666 /* eSCO logical transport (3 Mb/s): 3-EV3, 3-EV5 */ 2667 if (!(conn->pkt_type & ESCO_3EV3)) 2668 phys |= BT_PHY_EDR_3M_1SLOT; 2669 2670 if (!(conn->pkt_type & ESCO_3EV5)) 2671 phys |= BT_PHY_EDR_3M_3SLOT; 2672 2673 break; 2674 2675 case LE_LINK: 2676 if (conn->le_tx_phy & HCI_LE_SET_PHY_1M) 2677 phys |= BT_PHY_LE_1M_TX; 2678 2679 if (conn->le_rx_phy & HCI_LE_SET_PHY_1M) 2680 phys |= BT_PHY_LE_1M_RX; 2681 2682 if (conn->le_tx_phy & HCI_LE_SET_PHY_2M) 2683 phys |= BT_PHY_LE_2M_TX; 2684 2685 if (conn->le_rx_phy & HCI_LE_SET_PHY_2M) 2686 phys |= BT_PHY_LE_2M_RX; 2687 2688 if (conn->le_tx_phy & HCI_LE_SET_PHY_CODED) 2689 phys |= BT_PHY_LE_CODED_TX; 2690 2691 if (conn->le_rx_phy & HCI_LE_SET_PHY_CODED) 2692 phys |= BT_PHY_LE_CODED_RX; 2693 2694 break; 2695 } 2696 2697 return phys; 2698 } 2699