xref: /linux/net/bluetooth/hci_conn.c (revision 38fe0e0156c037c060f81fe4e36549fae760322d)
1 /*
2    BlueZ - Bluetooth protocol stack for Linux
3    Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved.
4 
5    Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License version 2 as
9    published by the Free Software Foundation;
10 
11    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
12    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
13    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
14    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
15    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
16    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 
20    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
21    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
22    SOFTWARE IS DISCLAIMED.
23 */
24 
25 /* Bluetooth HCI connection handling. */
26 
27 #include <linux/export.h>
28 #include <linux/debugfs.h>
29 
30 #include <net/bluetooth/bluetooth.h>
31 #include <net/bluetooth/hci_core.h>
32 #include <net/bluetooth/l2cap.h>
33 
34 #include "hci_request.h"
35 #include "smp.h"
36 #include "a2mp.h"
37 
38 struct sco_param {
39 	u16 pkt_type;
40 	u16 max_latency;
41 	u8  retrans_effort;
42 };
43 
44 static const struct sco_param esco_param_cvsd[] = {
45 	{ EDR_ESCO_MASK & ~ESCO_2EV3, 0x000a,	0x01 }, /* S3 */
46 	{ EDR_ESCO_MASK & ~ESCO_2EV3, 0x0007,	0x01 }, /* S2 */
47 	{ EDR_ESCO_MASK | ESCO_EV3,   0x0007,	0x01 }, /* S1 */
48 	{ EDR_ESCO_MASK | ESCO_HV3,   0xffff,	0x01 }, /* D1 */
49 	{ EDR_ESCO_MASK | ESCO_HV1,   0xffff,	0x01 }, /* D0 */
50 };
51 
52 static const struct sco_param sco_param_cvsd[] = {
53 	{ EDR_ESCO_MASK | ESCO_HV3,   0xffff,	0xff }, /* D1 */
54 	{ EDR_ESCO_MASK | ESCO_HV1,   0xffff,	0xff }, /* D0 */
55 };
56 
57 static const struct sco_param esco_param_msbc[] = {
58 	{ EDR_ESCO_MASK & ~ESCO_2EV3, 0x000d,	0x02 }, /* T2 */
59 	{ EDR_ESCO_MASK | ESCO_EV3,   0x0008,	0x02 }, /* T1 */
60 };
61 
62 /* This function requires the caller holds hdev->lock */
63 static void hci_connect_le_scan_cleanup(struct hci_conn *conn)
64 {
65 	struct hci_conn_params *params;
66 	struct hci_dev *hdev = conn->hdev;
67 	struct smp_irk *irk;
68 	bdaddr_t *bdaddr;
69 	u8 bdaddr_type;
70 
71 	bdaddr = &conn->dst;
72 	bdaddr_type = conn->dst_type;
73 
74 	/* Check if we need to convert to identity address */
75 	irk = hci_get_irk(hdev, bdaddr, bdaddr_type);
76 	if (irk) {
77 		bdaddr = &irk->bdaddr;
78 		bdaddr_type = irk->addr_type;
79 	}
80 
81 	params = hci_pend_le_action_lookup(&hdev->pend_le_conns, bdaddr,
82 					   bdaddr_type);
83 	if (!params || !params->explicit_connect)
84 		return;
85 
86 	/* The connection attempt was doing scan for new RPA, and is
87 	 * in scan phase. If params are not associated with any other
88 	 * autoconnect action, remove them completely. If they are, just unmark
89 	 * them as waiting for connection, by clearing explicit_connect field.
90 	 */
91 	params->explicit_connect = false;
92 
93 	list_del_init(&params->action);
94 
95 	switch (params->auto_connect) {
96 	case HCI_AUTO_CONN_EXPLICIT:
97 		hci_conn_params_del(hdev, bdaddr, bdaddr_type);
98 		/* return instead of break to avoid duplicate scan update */
99 		return;
100 	case HCI_AUTO_CONN_DIRECT:
101 	case HCI_AUTO_CONN_ALWAYS:
102 		list_add(&params->action, &hdev->pend_le_conns);
103 		break;
104 	case HCI_AUTO_CONN_REPORT:
105 		list_add(&params->action, &hdev->pend_le_reports);
106 		break;
107 	default:
108 		break;
109 	}
110 
111 	hci_update_background_scan(hdev);
112 }
113 
114 static void hci_conn_cleanup(struct hci_conn *conn)
115 {
116 	struct hci_dev *hdev = conn->hdev;
117 
118 	if (test_bit(HCI_CONN_PARAM_REMOVAL_PEND, &conn->flags))
119 		hci_conn_params_del(conn->hdev, &conn->dst, conn->dst_type);
120 
121 	hci_chan_list_flush(conn);
122 
123 	hci_conn_hash_del(hdev, conn);
124 
125 	if (conn->type == SCO_LINK || conn->type == ESCO_LINK) {
126 		switch (conn->setting & SCO_AIRMODE_MASK) {
127 		case SCO_AIRMODE_CVSD:
128 		case SCO_AIRMODE_TRANSP:
129 			if (hdev->notify)
130 				hdev->notify(hdev, HCI_NOTIFY_DISABLE_SCO);
131 			break;
132 		}
133 	} else {
134 		if (hdev->notify)
135 			hdev->notify(hdev, HCI_NOTIFY_CONN_DEL);
136 	}
137 
138 	hci_conn_del_sysfs(conn);
139 
140 	debugfs_remove_recursive(conn->debugfs);
141 
142 	hci_dev_put(hdev);
143 
144 	hci_conn_put(conn);
145 }
146 
147 static void le_scan_cleanup(struct work_struct *work)
148 {
149 	struct hci_conn *conn = container_of(work, struct hci_conn,
150 					     le_scan_cleanup);
151 	struct hci_dev *hdev = conn->hdev;
152 	struct hci_conn *c = NULL;
153 
154 	BT_DBG("%s hcon %p", hdev->name, conn);
155 
156 	hci_dev_lock(hdev);
157 
158 	/* Check that the hci_conn is still around */
159 	rcu_read_lock();
160 	list_for_each_entry_rcu(c, &hdev->conn_hash.list, list) {
161 		if (c == conn)
162 			break;
163 	}
164 	rcu_read_unlock();
165 
166 	if (c == conn) {
167 		hci_connect_le_scan_cleanup(conn);
168 		hci_conn_cleanup(conn);
169 	}
170 
171 	hci_dev_unlock(hdev);
172 	hci_dev_put(hdev);
173 	hci_conn_put(conn);
174 }
175 
176 static void hci_connect_le_scan_remove(struct hci_conn *conn)
177 {
178 	BT_DBG("%s hcon %p", conn->hdev->name, conn);
179 
180 	/* We can't call hci_conn_del/hci_conn_cleanup here since that
181 	 * could deadlock with another hci_conn_del() call that's holding
182 	 * hci_dev_lock and doing cancel_delayed_work_sync(&conn->disc_work).
183 	 * Instead, grab temporary extra references to the hci_dev and
184 	 * hci_conn and perform the necessary cleanup in a separate work
185 	 * callback.
186 	 */
187 
188 	hci_dev_hold(conn->hdev);
189 	hci_conn_get(conn);
190 
191 	/* Even though we hold a reference to the hdev, many other
192 	 * things might get cleaned up meanwhile, including the hdev's
193 	 * own workqueue, so we can't use that for scheduling.
194 	 */
195 	schedule_work(&conn->le_scan_cleanup);
196 }
197 
198 static void hci_acl_create_connection(struct hci_conn *conn)
199 {
200 	struct hci_dev *hdev = conn->hdev;
201 	struct inquiry_entry *ie;
202 	struct hci_cp_create_conn cp;
203 
204 	BT_DBG("hcon %p", conn);
205 
206 	/* Many controllers disallow HCI Create Connection while it is doing
207 	 * HCI Inquiry. So we cancel the Inquiry first before issuing HCI Create
208 	 * Connection. This may cause the MGMT discovering state to become false
209 	 * without user space's request but it is okay since the MGMT Discovery
210 	 * APIs do not promise that discovery should be done forever. Instead,
211 	 * the user space monitors the status of MGMT discovering and it may
212 	 * request for discovery again when this flag becomes false.
213 	 */
214 	if (test_bit(HCI_INQUIRY, &hdev->flags)) {
215 		/* Put this connection to "pending" state so that it will be
216 		 * executed after the inquiry cancel command complete event.
217 		 */
218 		conn->state = BT_CONNECT2;
219 		hci_send_cmd(hdev, HCI_OP_INQUIRY_CANCEL, 0, NULL);
220 		return;
221 	}
222 
223 	conn->state = BT_CONNECT;
224 	conn->out = true;
225 	conn->role = HCI_ROLE_MASTER;
226 
227 	conn->attempt++;
228 
229 	conn->link_policy = hdev->link_policy;
230 
231 	memset(&cp, 0, sizeof(cp));
232 	bacpy(&cp.bdaddr, &conn->dst);
233 	cp.pscan_rep_mode = 0x02;
234 
235 	ie = hci_inquiry_cache_lookup(hdev, &conn->dst);
236 	if (ie) {
237 		if (inquiry_entry_age(ie) <= INQUIRY_ENTRY_AGE_MAX) {
238 			cp.pscan_rep_mode = ie->data.pscan_rep_mode;
239 			cp.pscan_mode     = ie->data.pscan_mode;
240 			cp.clock_offset   = ie->data.clock_offset |
241 					    cpu_to_le16(0x8000);
242 		}
243 
244 		memcpy(conn->dev_class, ie->data.dev_class, 3);
245 	}
246 
247 	cp.pkt_type = cpu_to_le16(conn->pkt_type);
248 	if (lmp_rswitch_capable(hdev) && !(hdev->link_mode & HCI_LM_MASTER))
249 		cp.role_switch = 0x01;
250 	else
251 		cp.role_switch = 0x00;
252 
253 	hci_send_cmd(hdev, HCI_OP_CREATE_CONN, sizeof(cp), &cp);
254 }
255 
256 int hci_disconnect(struct hci_conn *conn, __u8 reason)
257 {
258 	BT_DBG("hcon %p", conn);
259 
260 	/* When we are central of an established connection and it enters
261 	 * the disconnect timeout, then go ahead and try to read the
262 	 * current clock offset.  Processing of the result is done
263 	 * within the event handling and hci_clock_offset_evt function.
264 	 */
265 	if (conn->type == ACL_LINK && conn->role == HCI_ROLE_MASTER &&
266 	    (conn->state == BT_CONNECTED || conn->state == BT_CONFIG)) {
267 		struct hci_dev *hdev = conn->hdev;
268 		struct hci_cp_read_clock_offset clkoff_cp;
269 
270 		clkoff_cp.handle = cpu_to_le16(conn->handle);
271 		hci_send_cmd(hdev, HCI_OP_READ_CLOCK_OFFSET, sizeof(clkoff_cp),
272 			     &clkoff_cp);
273 	}
274 
275 	return hci_abort_conn(conn, reason);
276 }
277 
278 static void hci_add_sco(struct hci_conn *conn, __u16 handle)
279 {
280 	struct hci_dev *hdev = conn->hdev;
281 	struct hci_cp_add_sco cp;
282 
283 	BT_DBG("hcon %p", conn);
284 
285 	conn->state = BT_CONNECT;
286 	conn->out = true;
287 
288 	conn->attempt++;
289 
290 	cp.handle   = cpu_to_le16(handle);
291 	cp.pkt_type = cpu_to_le16(conn->pkt_type);
292 
293 	hci_send_cmd(hdev, HCI_OP_ADD_SCO, sizeof(cp), &cp);
294 }
295 
296 static bool find_next_esco_param(struct hci_conn *conn,
297 				 const struct sco_param *esco_param, int size)
298 {
299 	for (; conn->attempt <= size; conn->attempt++) {
300 		if (lmp_esco_2m_capable(conn->link) ||
301 		    (esco_param[conn->attempt - 1].pkt_type & ESCO_2EV3))
302 			break;
303 		BT_DBG("hcon %p skipped attempt %d, eSCO 2M not supported",
304 		       conn, conn->attempt);
305 	}
306 
307 	return conn->attempt <= size;
308 }
309 
310 bool hci_setup_sync(struct hci_conn *conn, __u16 handle)
311 {
312 	struct hci_dev *hdev = conn->hdev;
313 	struct hci_cp_setup_sync_conn cp;
314 	const struct sco_param *param;
315 
316 	BT_DBG("hcon %p", conn);
317 
318 	conn->state = BT_CONNECT;
319 	conn->out = true;
320 
321 	conn->attempt++;
322 
323 	cp.handle   = cpu_to_le16(handle);
324 
325 	cp.tx_bandwidth   = cpu_to_le32(0x00001f40);
326 	cp.rx_bandwidth   = cpu_to_le32(0x00001f40);
327 	cp.voice_setting  = cpu_to_le16(conn->setting);
328 
329 	switch (conn->setting & SCO_AIRMODE_MASK) {
330 	case SCO_AIRMODE_TRANSP:
331 		if (!find_next_esco_param(conn, esco_param_msbc,
332 					  ARRAY_SIZE(esco_param_msbc)))
333 			return false;
334 		param = &esco_param_msbc[conn->attempt - 1];
335 		break;
336 	case SCO_AIRMODE_CVSD:
337 		if (lmp_esco_capable(conn->link)) {
338 			if (!find_next_esco_param(conn, esco_param_cvsd,
339 						  ARRAY_SIZE(esco_param_cvsd)))
340 				return false;
341 			param = &esco_param_cvsd[conn->attempt - 1];
342 		} else {
343 			if (conn->attempt > ARRAY_SIZE(sco_param_cvsd))
344 				return false;
345 			param = &sco_param_cvsd[conn->attempt - 1];
346 		}
347 		break;
348 	default:
349 		return false;
350 	}
351 
352 	cp.retrans_effort = param->retrans_effort;
353 	cp.pkt_type = __cpu_to_le16(param->pkt_type);
354 	cp.max_latency = __cpu_to_le16(param->max_latency);
355 
356 	if (hci_send_cmd(hdev, HCI_OP_SETUP_SYNC_CONN, sizeof(cp), &cp) < 0)
357 		return false;
358 
359 	return true;
360 }
361 
362 u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency,
363 		      u16 to_multiplier)
364 {
365 	struct hci_dev *hdev = conn->hdev;
366 	struct hci_conn_params *params;
367 	struct hci_cp_le_conn_update cp;
368 
369 	hci_dev_lock(hdev);
370 
371 	params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
372 	if (params) {
373 		params->conn_min_interval = min;
374 		params->conn_max_interval = max;
375 		params->conn_latency = latency;
376 		params->supervision_timeout = to_multiplier;
377 	}
378 
379 	hci_dev_unlock(hdev);
380 
381 	memset(&cp, 0, sizeof(cp));
382 	cp.handle		= cpu_to_le16(conn->handle);
383 	cp.conn_interval_min	= cpu_to_le16(min);
384 	cp.conn_interval_max	= cpu_to_le16(max);
385 	cp.conn_latency		= cpu_to_le16(latency);
386 	cp.supervision_timeout	= cpu_to_le16(to_multiplier);
387 	cp.min_ce_len		= cpu_to_le16(0x0000);
388 	cp.max_ce_len		= cpu_to_le16(0x0000);
389 
390 	hci_send_cmd(hdev, HCI_OP_LE_CONN_UPDATE, sizeof(cp), &cp);
391 
392 	if (params)
393 		return 0x01;
394 
395 	return 0x00;
396 }
397 
398 void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand,
399 		      __u8 ltk[16], __u8 key_size)
400 {
401 	struct hci_dev *hdev = conn->hdev;
402 	struct hci_cp_le_start_enc cp;
403 
404 	BT_DBG("hcon %p", conn);
405 
406 	memset(&cp, 0, sizeof(cp));
407 
408 	cp.handle = cpu_to_le16(conn->handle);
409 	cp.rand = rand;
410 	cp.ediv = ediv;
411 	memcpy(cp.ltk, ltk, key_size);
412 
413 	hci_send_cmd(hdev, HCI_OP_LE_START_ENC, sizeof(cp), &cp);
414 }
415 
416 /* Device _must_ be locked */
417 void hci_sco_setup(struct hci_conn *conn, __u8 status)
418 {
419 	struct hci_conn *sco = conn->link;
420 
421 	if (!sco)
422 		return;
423 
424 	BT_DBG("hcon %p", conn);
425 
426 	if (!status) {
427 		if (lmp_esco_capable(conn->hdev))
428 			hci_setup_sync(sco, conn->handle);
429 		else
430 			hci_add_sco(sco, conn->handle);
431 	} else {
432 		hci_connect_cfm(sco, status);
433 		hci_conn_del(sco);
434 	}
435 }
436 
437 static void hci_conn_timeout(struct work_struct *work)
438 {
439 	struct hci_conn *conn = container_of(work, struct hci_conn,
440 					     disc_work.work);
441 	int refcnt = atomic_read(&conn->refcnt);
442 
443 	BT_DBG("hcon %p state %s", conn, state_to_string(conn->state));
444 
445 	WARN_ON(refcnt < 0);
446 
447 	/* FIXME: It was observed that in pairing failed scenario, refcnt
448 	 * drops below 0. Probably this is because l2cap_conn_del calls
449 	 * l2cap_chan_del for each channel, and inside l2cap_chan_del conn is
450 	 * dropped. After that loop hci_chan_del is called which also drops
451 	 * conn. For now make sure that ACL is alive if refcnt is higher then 0,
452 	 * otherwise drop it.
453 	 */
454 	if (refcnt > 0)
455 		return;
456 
457 	/* LE connections in scanning state need special handling */
458 	if (conn->state == BT_CONNECT && conn->type == LE_LINK &&
459 	    test_bit(HCI_CONN_SCANNING, &conn->flags)) {
460 		hci_connect_le_scan_remove(conn);
461 		return;
462 	}
463 
464 	hci_abort_conn(conn, hci_proto_disconn_ind(conn));
465 }
466 
467 /* Enter sniff mode */
468 static void hci_conn_idle(struct work_struct *work)
469 {
470 	struct hci_conn *conn = container_of(work, struct hci_conn,
471 					     idle_work.work);
472 	struct hci_dev *hdev = conn->hdev;
473 
474 	BT_DBG("hcon %p mode %d", conn, conn->mode);
475 
476 	if (!lmp_sniff_capable(hdev) || !lmp_sniff_capable(conn))
477 		return;
478 
479 	if (conn->mode != HCI_CM_ACTIVE || !(conn->link_policy & HCI_LP_SNIFF))
480 		return;
481 
482 	if (lmp_sniffsubr_capable(hdev) && lmp_sniffsubr_capable(conn)) {
483 		struct hci_cp_sniff_subrate cp;
484 		cp.handle             = cpu_to_le16(conn->handle);
485 		cp.max_latency        = cpu_to_le16(0);
486 		cp.min_remote_timeout = cpu_to_le16(0);
487 		cp.min_local_timeout  = cpu_to_le16(0);
488 		hci_send_cmd(hdev, HCI_OP_SNIFF_SUBRATE, sizeof(cp), &cp);
489 	}
490 
491 	if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) {
492 		struct hci_cp_sniff_mode cp;
493 		cp.handle       = cpu_to_le16(conn->handle);
494 		cp.max_interval = cpu_to_le16(hdev->sniff_max_interval);
495 		cp.min_interval = cpu_to_le16(hdev->sniff_min_interval);
496 		cp.attempt      = cpu_to_le16(4);
497 		cp.timeout      = cpu_to_le16(1);
498 		hci_send_cmd(hdev, HCI_OP_SNIFF_MODE, sizeof(cp), &cp);
499 	}
500 }
501 
502 static void hci_conn_auto_accept(struct work_struct *work)
503 {
504 	struct hci_conn *conn = container_of(work, struct hci_conn,
505 					     auto_accept_work.work);
506 
507 	hci_send_cmd(conn->hdev, HCI_OP_USER_CONFIRM_REPLY, sizeof(conn->dst),
508 		     &conn->dst);
509 }
510 
511 static void le_disable_advertising(struct hci_dev *hdev)
512 {
513 	if (ext_adv_capable(hdev)) {
514 		struct hci_cp_le_set_ext_adv_enable cp;
515 
516 		cp.enable = 0x00;
517 		cp.num_of_sets = 0x00;
518 
519 		hci_send_cmd(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, sizeof(cp),
520 			     &cp);
521 	} else {
522 		u8 enable = 0x00;
523 		hci_send_cmd(hdev, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable),
524 			     &enable);
525 	}
526 }
527 
528 static void le_conn_timeout(struct work_struct *work)
529 {
530 	struct hci_conn *conn = container_of(work, struct hci_conn,
531 					     le_conn_timeout.work);
532 	struct hci_dev *hdev = conn->hdev;
533 
534 	BT_DBG("");
535 
536 	/* We could end up here due to having done directed advertising,
537 	 * so clean up the state if necessary. This should however only
538 	 * happen with broken hardware or if low duty cycle was used
539 	 * (which doesn't have a timeout of its own).
540 	 */
541 	if (conn->role == HCI_ROLE_SLAVE) {
542 		/* Disable LE Advertising */
543 		le_disable_advertising(hdev);
544 		hci_le_conn_failed(conn, HCI_ERROR_ADVERTISING_TIMEOUT);
545 		return;
546 	}
547 
548 	hci_abort_conn(conn, HCI_ERROR_REMOTE_USER_TERM);
549 }
550 
551 struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst,
552 			      u8 role)
553 {
554 	struct hci_conn *conn;
555 
556 	BT_DBG("%s dst %pMR", hdev->name, dst);
557 
558 	conn = kzalloc(sizeof(*conn), GFP_KERNEL);
559 	if (!conn)
560 		return NULL;
561 
562 	bacpy(&conn->dst, dst);
563 	bacpy(&conn->src, &hdev->bdaddr);
564 	conn->hdev  = hdev;
565 	conn->type  = type;
566 	conn->role  = role;
567 	conn->mode  = HCI_CM_ACTIVE;
568 	conn->state = BT_OPEN;
569 	conn->auth_type = HCI_AT_GENERAL_BONDING;
570 	conn->io_capability = hdev->io_capability;
571 	conn->remote_auth = 0xff;
572 	conn->key_type = 0xff;
573 	conn->rssi = HCI_RSSI_INVALID;
574 	conn->tx_power = HCI_TX_POWER_INVALID;
575 	conn->max_tx_power = HCI_TX_POWER_INVALID;
576 
577 	set_bit(HCI_CONN_POWER_SAVE, &conn->flags);
578 	conn->disc_timeout = HCI_DISCONN_TIMEOUT;
579 
580 	/* Set Default Authenticated payload timeout to 30s */
581 	conn->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
582 
583 	if (conn->role == HCI_ROLE_MASTER)
584 		conn->out = true;
585 
586 	switch (type) {
587 	case ACL_LINK:
588 		conn->pkt_type = hdev->pkt_type & ACL_PTYPE_MASK;
589 		break;
590 	case LE_LINK:
591 		/* conn->src should reflect the local identity address */
592 		hci_copy_identity_address(hdev, &conn->src, &conn->src_type);
593 		break;
594 	case SCO_LINK:
595 		if (lmp_esco_capable(hdev))
596 			conn->pkt_type = (hdev->esco_type & SCO_ESCO_MASK) |
597 					(hdev->esco_type & EDR_ESCO_MASK);
598 		else
599 			conn->pkt_type = hdev->pkt_type & SCO_PTYPE_MASK;
600 		break;
601 	case ESCO_LINK:
602 		conn->pkt_type = hdev->esco_type & ~EDR_ESCO_MASK;
603 		break;
604 	}
605 
606 	skb_queue_head_init(&conn->data_q);
607 
608 	INIT_LIST_HEAD(&conn->chan_list);
609 
610 	INIT_DELAYED_WORK(&conn->disc_work, hci_conn_timeout);
611 	INIT_DELAYED_WORK(&conn->auto_accept_work, hci_conn_auto_accept);
612 	INIT_DELAYED_WORK(&conn->idle_work, hci_conn_idle);
613 	INIT_DELAYED_WORK(&conn->le_conn_timeout, le_conn_timeout);
614 	INIT_WORK(&conn->le_scan_cleanup, le_scan_cleanup);
615 
616 	atomic_set(&conn->refcnt, 0);
617 
618 	hci_dev_hold(hdev);
619 
620 	hci_conn_hash_add(hdev, conn);
621 
622 	/* The SCO and eSCO connections will only be notified when their
623 	 * setup has been completed. This is different to ACL links which
624 	 * can be notified right away.
625 	 */
626 	if (conn->type != SCO_LINK && conn->type != ESCO_LINK) {
627 		if (hdev->notify)
628 			hdev->notify(hdev, HCI_NOTIFY_CONN_ADD);
629 	}
630 
631 	hci_conn_init_sysfs(conn);
632 
633 	return conn;
634 }
635 
636 int hci_conn_del(struct hci_conn *conn)
637 {
638 	struct hci_dev *hdev = conn->hdev;
639 
640 	BT_DBG("%s hcon %p handle %d", hdev->name, conn, conn->handle);
641 
642 	cancel_delayed_work_sync(&conn->disc_work);
643 	cancel_delayed_work_sync(&conn->auto_accept_work);
644 	cancel_delayed_work_sync(&conn->idle_work);
645 
646 	if (conn->type == ACL_LINK) {
647 		struct hci_conn *sco = conn->link;
648 		if (sco)
649 			sco->link = NULL;
650 
651 		/* Unacked frames */
652 		hdev->acl_cnt += conn->sent;
653 	} else if (conn->type == LE_LINK) {
654 		cancel_delayed_work(&conn->le_conn_timeout);
655 
656 		if (hdev->le_pkts)
657 			hdev->le_cnt += conn->sent;
658 		else
659 			hdev->acl_cnt += conn->sent;
660 	} else {
661 		struct hci_conn *acl = conn->link;
662 		if (acl) {
663 			acl->link = NULL;
664 			hci_conn_drop(acl);
665 		}
666 	}
667 
668 	if (conn->amp_mgr)
669 		amp_mgr_put(conn->amp_mgr);
670 
671 	skb_queue_purge(&conn->data_q);
672 
673 	/* Remove the connection from the list and cleanup its remaining
674 	 * state. This is a separate function since for some cases like
675 	 * BT_CONNECT_SCAN we *only* want the cleanup part without the
676 	 * rest of hci_conn_del.
677 	 */
678 	hci_conn_cleanup(conn);
679 
680 	return 0;
681 }
682 
683 struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src, uint8_t src_type)
684 {
685 	int use_src = bacmp(src, BDADDR_ANY);
686 	struct hci_dev *hdev = NULL, *d;
687 
688 	BT_DBG("%pMR -> %pMR", src, dst);
689 
690 	read_lock(&hci_dev_list_lock);
691 
692 	list_for_each_entry(d, &hci_dev_list, list) {
693 		if (!test_bit(HCI_UP, &d->flags) ||
694 		    hci_dev_test_flag(d, HCI_USER_CHANNEL) ||
695 		    d->dev_type != HCI_PRIMARY)
696 			continue;
697 
698 		/* Simple routing:
699 		 *   No source address - find interface with bdaddr != dst
700 		 *   Source address    - find interface with bdaddr == src
701 		 */
702 
703 		if (use_src) {
704 			bdaddr_t id_addr;
705 			u8 id_addr_type;
706 
707 			if (src_type == BDADDR_BREDR) {
708 				if (!lmp_bredr_capable(d))
709 					continue;
710 				bacpy(&id_addr, &d->bdaddr);
711 				id_addr_type = BDADDR_BREDR;
712 			} else {
713 				if (!lmp_le_capable(d))
714 					continue;
715 
716 				hci_copy_identity_address(d, &id_addr,
717 							  &id_addr_type);
718 
719 				/* Convert from HCI to three-value type */
720 				if (id_addr_type == ADDR_LE_DEV_PUBLIC)
721 					id_addr_type = BDADDR_LE_PUBLIC;
722 				else
723 					id_addr_type = BDADDR_LE_RANDOM;
724 			}
725 
726 			if (!bacmp(&id_addr, src) && id_addr_type == src_type) {
727 				hdev = d; break;
728 			}
729 		} else {
730 			if (bacmp(&d->bdaddr, dst)) {
731 				hdev = d; break;
732 			}
733 		}
734 	}
735 
736 	if (hdev)
737 		hdev = hci_dev_hold(hdev);
738 
739 	read_unlock(&hci_dev_list_lock);
740 	return hdev;
741 }
742 EXPORT_SYMBOL(hci_get_route);
743 
744 /* This function requires the caller holds hdev->lock */
745 void hci_le_conn_failed(struct hci_conn *conn, u8 status)
746 {
747 	struct hci_dev *hdev = conn->hdev;
748 	struct hci_conn_params *params;
749 
750 	params = hci_pend_le_action_lookup(&hdev->pend_le_conns, &conn->dst,
751 					   conn->dst_type);
752 	if (params && params->conn) {
753 		hci_conn_drop(params->conn);
754 		hci_conn_put(params->conn);
755 		params->conn = NULL;
756 	}
757 
758 	conn->state = BT_CLOSED;
759 
760 	/* If the status indicates successful cancellation of
761 	 * the attempt (i.e. Unknown Connection Id) there's no point of
762 	 * notifying failure since we'll go back to keep trying to
763 	 * connect. The only exception is explicit connect requests
764 	 * where a timeout + cancel does indicate an actual failure.
765 	 */
766 	if (status != HCI_ERROR_UNKNOWN_CONN_ID ||
767 	    (params && params->explicit_connect))
768 		mgmt_connect_failed(hdev, &conn->dst, conn->type,
769 				    conn->dst_type, status);
770 
771 	hci_connect_cfm(conn, status);
772 
773 	hci_conn_del(conn);
774 
775 	/* The suspend notifier is waiting for all devices to disconnect and an
776 	 * LE connect cancel will result in an hci_le_conn_failed. Once the last
777 	 * connection is deleted, we should also wake the suspend queue to
778 	 * complete suspend operations.
779 	 */
780 	if (list_empty(&hdev->conn_hash.list) &&
781 	    test_and_clear_bit(SUSPEND_DISCONNECTING, hdev->suspend_tasks)) {
782 		wake_up(&hdev->suspend_wait_q);
783 	}
784 
785 	/* Since we may have temporarily stopped the background scanning in
786 	 * favor of connection establishment, we should restart it.
787 	 */
788 	hci_update_background_scan(hdev);
789 
790 	/* Re-enable advertising in case this was a failed connection
791 	 * attempt as a peripheral.
792 	 */
793 	hci_req_reenable_advertising(hdev);
794 }
795 
796 static void create_le_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode)
797 {
798 	struct hci_conn *conn;
799 
800 	hci_dev_lock(hdev);
801 
802 	conn = hci_lookup_le_connect(hdev);
803 
804 	if (hdev->adv_instance_cnt)
805 		hci_req_resume_adv_instances(hdev);
806 
807 	if (!status) {
808 		hci_connect_le_scan_cleanup(conn);
809 		goto done;
810 	}
811 
812 	bt_dev_err(hdev, "request failed to create LE connection: "
813 		   "status 0x%2.2x", status);
814 
815 	if (!conn)
816 		goto done;
817 
818 	hci_le_conn_failed(conn, status);
819 
820 done:
821 	hci_dev_unlock(hdev);
822 }
823 
824 static bool conn_use_rpa(struct hci_conn *conn)
825 {
826 	struct hci_dev *hdev = conn->hdev;
827 
828 	return hci_dev_test_flag(hdev, HCI_PRIVACY);
829 }
830 
831 static void set_ext_conn_params(struct hci_conn *conn,
832 				struct hci_cp_le_ext_conn_param *p)
833 {
834 	struct hci_dev *hdev = conn->hdev;
835 
836 	memset(p, 0, sizeof(*p));
837 
838 	p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
839 	p->scan_window = cpu_to_le16(hdev->le_scan_window_connect);
840 	p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
841 	p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
842 	p->conn_latency = cpu_to_le16(conn->le_conn_latency);
843 	p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
844 	p->min_ce_len = cpu_to_le16(0x0000);
845 	p->max_ce_len = cpu_to_le16(0x0000);
846 }
847 
848 static void hci_req_add_le_create_conn(struct hci_request *req,
849 				       struct hci_conn *conn,
850 				       bdaddr_t *direct_rpa)
851 {
852 	struct hci_dev *hdev = conn->hdev;
853 	u8 own_addr_type;
854 
855 	/* If direct address was provided we use it instead of current
856 	 * address.
857 	 */
858 	if (direct_rpa) {
859 		if (bacmp(&req->hdev->random_addr, direct_rpa))
860 			hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6,
861 								direct_rpa);
862 
863 		/* direct address is always RPA */
864 		own_addr_type = ADDR_LE_DEV_RANDOM;
865 	} else {
866 		/* Update random address, but set require_privacy to false so
867 		 * that we never connect with an non-resolvable address.
868 		 */
869 		if (hci_update_random_address(req, false, conn_use_rpa(conn),
870 					      &own_addr_type))
871 			return;
872 	}
873 
874 	if (use_ext_conn(hdev)) {
875 		struct hci_cp_le_ext_create_conn *cp;
876 		struct hci_cp_le_ext_conn_param *p;
877 		u8 data[sizeof(*cp) + sizeof(*p) * 3];
878 		u32 plen;
879 
880 		cp = (void *) data;
881 		p = (void *) cp->data;
882 
883 		memset(cp, 0, sizeof(*cp));
884 
885 		bacpy(&cp->peer_addr, &conn->dst);
886 		cp->peer_addr_type = conn->dst_type;
887 		cp->own_addr_type = own_addr_type;
888 
889 		plen = sizeof(*cp);
890 
891 		if (scan_1m(hdev)) {
892 			cp->phys |= LE_SCAN_PHY_1M;
893 			set_ext_conn_params(conn, p);
894 
895 			p++;
896 			plen += sizeof(*p);
897 		}
898 
899 		if (scan_2m(hdev)) {
900 			cp->phys |= LE_SCAN_PHY_2M;
901 			set_ext_conn_params(conn, p);
902 
903 			p++;
904 			plen += sizeof(*p);
905 		}
906 
907 		if (scan_coded(hdev)) {
908 			cp->phys |= LE_SCAN_PHY_CODED;
909 			set_ext_conn_params(conn, p);
910 
911 			plen += sizeof(*p);
912 		}
913 
914 		hci_req_add(req, HCI_OP_LE_EXT_CREATE_CONN, plen, data);
915 
916 	} else {
917 		struct hci_cp_le_create_conn cp;
918 
919 		memset(&cp, 0, sizeof(cp));
920 
921 		cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
922 		cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect);
923 
924 		bacpy(&cp.peer_addr, &conn->dst);
925 		cp.peer_addr_type = conn->dst_type;
926 		cp.own_address_type = own_addr_type;
927 		cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
928 		cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
929 		cp.conn_latency = cpu_to_le16(conn->le_conn_latency);
930 		cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
931 		cp.min_ce_len = cpu_to_le16(0x0000);
932 		cp.max_ce_len = cpu_to_le16(0x0000);
933 
934 		hci_req_add(req, HCI_OP_LE_CREATE_CONN, sizeof(cp), &cp);
935 	}
936 
937 	conn->state = BT_CONNECT;
938 	clear_bit(HCI_CONN_SCANNING, &conn->flags);
939 }
940 
941 static void hci_req_directed_advertising(struct hci_request *req,
942 					 struct hci_conn *conn)
943 {
944 	struct hci_dev *hdev = req->hdev;
945 	u8 own_addr_type;
946 	u8 enable;
947 
948 	if (ext_adv_capable(hdev)) {
949 		struct hci_cp_le_set_ext_adv_params cp;
950 		bdaddr_t random_addr;
951 
952 		/* Set require_privacy to false so that the remote device has a
953 		 * chance of identifying us.
954 		 */
955 		if (hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL,
956 					   &own_addr_type, &random_addr) < 0)
957 			return;
958 
959 		memset(&cp, 0, sizeof(cp));
960 
961 		cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND);
962 		cp.own_addr_type = own_addr_type;
963 		cp.channel_map = hdev->le_adv_channel_map;
964 		cp.tx_power = HCI_TX_POWER_INVALID;
965 		cp.primary_phy = HCI_ADV_PHY_1M;
966 		cp.secondary_phy = HCI_ADV_PHY_1M;
967 		cp.handle = 0; /* Use instance 0 for directed adv */
968 		cp.own_addr_type = own_addr_type;
969 		cp.peer_addr_type = conn->dst_type;
970 		bacpy(&cp.peer_addr, &conn->dst);
971 
972 		/* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for
973 		 * advertising_event_property LE_LEGACY_ADV_DIRECT_IND
974 		 * does not supports advertising data when the advertising set already
975 		 * contains some, the controller shall return erroc code 'Invalid
976 		 * HCI Command Parameters(0x12).
977 		 * So it is required to remove adv set for handle 0x00. since we use
978 		 * instance 0 for directed adv.
979 		 */
980 		__hci_req_remove_ext_adv_instance(req, cp.handle);
981 
982 		hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_PARAMS, sizeof(cp), &cp);
983 
984 		if (own_addr_type == ADDR_LE_DEV_RANDOM &&
985 		    bacmp(&random_addr, BDADDR_ANY) &&
986 		    bacmp(&random_addr, &hdev->random_addr)) {
987 			struct hci_cp_le_set_adv_set_rand_addr cp;
988 
989 			memset(&cp, 0, sizeof(cp));
990 
991 			cp.handle = 0;
992 			bacpy(&cp.bdaddr, &random_addr);
993 
994 			hci_req_add(req,
995 				    HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
996 				    sizeof(cp), &cp);
997 		}
998 
999 		__hci_req_enable_ext_advertising(req, 0x00);
1000 	} else {
1001 		struct hci_cp_le_set_adv_param cp;
1002 
1003 		/* Clear the HCI_LE_ADV bit temporarily so that the
1004 		 * hci_update_random_address knows that it's safe to go ahead
1005 		 * and write a new random address. The flag will be set back on
1006 		 * as soon as the SET_ADV_ENABLE HCI command completes.
1007 		 */
1008 		hci_dev_clear_flag(hdev, HCI_LE_ADV);
1009 
1010 		/* Set require_privacy to false so that the remote device has a
1011 		 * chance of identifying us.
1012 		 */
1013 		if (hci_update_random_address(req, false, conn_use_rpa(conn),
1014 					      &own_addr_type) < 0)
1015 			return;
1016 
1017 		memset(&cp, 0, sizeof(cp));
1018 
1019 		/* Some controllers might reject command if intervals are not
1020 		 * within range for undirected advertising.
1021 		 * BCM20702A0 is known to be affected by this.
1022 		 */
1023 		cp.min_interval = cpu_to_le16(0x0020);
1024 		cp.max_interval = cpu_to_le16(0x0020);
1025 
1026 		cp.type = LE_ADV_DIRECT_IND;
1027 		cp.own_address_type = own_addr_type;
1028 		cp.direct_addr_type = conn->dst_type;
1029 		bacpy(&cp.direct_addr, &conn->dst);
1030 		cp.channel_map = hdev->le_adv_channel_map;
1031 
1032 		hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp);
1033 
1034 		enable = 0x01;
1035 		hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable),
1036 			    &enable);
1037 	}
1038 
1039 	conn->state = BT_CONNECT;
1040 }
1041 
1042 struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst,
1043 				u8 dst_type, u8 sec_level, u16 conn_timeout,
1044 				u8 role, bdaddr_t *direct_rpa)
1045 {
1046 	struct hci_conn_params *params;
1047 	struct hci_conn *conn;
1048 	struct smp_irk *irk;
1049 	struct hci_request req;
1050 	int err;
1051 
1052 	/* This ensures that during disable le_scan address resolution
1053 	 * will not be disabled if it is followed by le_create_conn
1054 	 */
1055 	bool rpa_le_conn = true;
1056 
1057 	/* Let's make sure that le is enabled.*/
1058 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
1059 		if (lmp_le_capable(hdev))
1060 			return ERR_PTR(-ECONNREFUSED);
1061 
1062 		return ERR_PTR(-EOPNOTSUPP);
1063 	}
1064 
1065 	/* Since the controller supports only one LE connection attempt at a
1066 	 * time, we return -EBUSY if there is any connection attempt running.
1067 	 */
1068 	if (hci_lookup_le_connect(hdev))
1069 		return ERR_PTR(-EBUSY);
1070 
1071 	/* If there's already a connection object but it's not in
1072 	 * scanning state it means it must already be established, in
1073 	 * which case we can't do anything else except report a failure
1074 	 * to connect.
1075 	 */
1076 	conn = hci_conn_hash_lookup_le(hdev, dst, dst_type);
1077 	if (conn && !test_bit(HCI_CONN_SCANNING, &conn->flags)) {
1078 		return ERR_PTR(-EBUSY);
1079 	}
1080 
1081 	/* When given an identity address with existing identity
1082 	 * resolving key, the connection needs to be established
1083 	 * to a resolvable random address.
1084 	 *
1085 	 * Storing the resolvable random address is required here
1086 	 * to handle connection failures. The address will later
1087 	 * be resolved back into the original identity address
1088 	 * from the connect request.
1089 	 */
1090 	irk = hci_find_irk_by_addr(hdev, dst, dst_type);
1091 	if (irk && bacmp(&irk->rpa, BDADDR_ANY)) {
1092 		dst = &irk->rpa;
1093 		dst_type = ADDR_LE_DEV_RANDOM;
1094 	}
1095 
1096 	if (conn) {
1097 		bacpy(&conn->dst, dst);
1098 	} else {
1099 		conn = hci_conn_add(hdev, LE_LINK, dst, role);
1100 		if (!conn)
1101 			return ERR_PTR(-ENOMEM);
1102 		hci_conn_hold(conn);
1103 		conn->pending_sec_level = sec_level;
1104 	}
1105 
1106 	conn->dst_type = dst_type;
1107 	conn->sec_level = BT_SECURITY_LOW;
1108 	conn->conn_timeout = conn_timeout;
1109 
1110 	hci_req_init(&req, hdev);
1111 
1112 	/* Disable advertising if we're active. For central role
1113 	 * connections most controllers will refuse to connect if
1114 	 * advertising is enabled, and for peripheral role connections we
1115 	 * anyway have to disable it in order to start directed
1116 	 * advertising. Any registered advertisements will be
1117 	 * re-enabled after the connection attempt is finished.
1118 	 */
1119 	if (hci_dev_test_flag(hdev, HCI_LE_ADV))
1120 		__hci_req_pause_adv_instances(&req);
1121 
1122 	/* If requested to connect as peripheral use directed advertising */
1123 	if (conn->role == HCI_ROLE_SLAVE) {
1124 		/* If we're active scanning most controllers are unable
1125 		 * to initiate advertising. Simply reject the attempt.
1126 		 */
1127 		if (hci_dev_test_flag(hdev, HCI_LE_SCAN) &&
1128 		    hdev->le_scan_type == LE_SCAN_ACTIVE) {
1129 			hci_req_purge(&req);
1130 			hci_conn_del(conn);
1131 			return ERR_PTR(-EBUSY);
1132 		}
1133 
1134 		hci_req_directed_advertising(&req, conn);
1135 		goto create_conn;
1136 	}
1137 
1138 	params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
1139 	if (params) {
1140 		conn->le_conn_min_interval = params->conn_min_interval;
1141 		conn->le_conn_max_interval = params->conn_max_interval;
1142 		conn->le_conn_latency = params->conn_latency;
1143 		conn->le_supv_timeout = params->supervision_timeout;
1144 	} else {
1145 		conn->le_conn_min_interval = hdev->le_conn_min_interval;
1146 		conn->le_conn_max_interval = hdev->le_conn_max_interval;
1147 		conn->le_conn_latency = hdev->le_conn_latency;
1148 		conn->le_supv_timeout = hdev->le_supv_timeout;
1149 	}
1150 
1151 	/* If controller is scanning, we stop it since some controllers are
1152 	 * not able to scan and connect at the same time. Also set the
1153 	 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete
1154 	 * handler for scan disabling knows to set the correct discovery
1155 	 * state.
1156 	 */
1157 	if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
1158 		hci_req_add_le_scan_disable(&req, rpa_le_conn);
1159 		hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED);
1160 	}
1161 
1162 	hci_req_add_le_create_conn(&req, conn, direct_rpa);
1163 
1164 create_conn:
1165 	err = hci_req_run(&req, create_le_conn_complete);
1166 	if (err) {
1167 		hci_conn_del(conn);
1168 
1169 		if (hdev->adv_instance_cnt)
1170 			hci_req_resume_adv_instances(hdev);
1171 
1172 		return ERR_PTR(err);
1173 	}
1174 
1175 	return conn;
1176 }
1177 
1178 static bool is_connected(struct hci_dev *hdev, bdaddr_t *addr, u8 type)
1179 {
1180 	struct hci_conn *conn;
1181 
1182 	conn = hci_conn_hash_lookup_le(hdev, addr, type);
1183 	if (!conn)
1184 		return false;
1185 
1186 	if (conn->state != BT_CONNECTED)
1187 		return false;
1188 
1189 	return true;
1190 }
1191 
1192 /* This function requires the caller holds hdev->lock */
1193 static int hci_explicit_conn_params_set(struct hci_dev *hdev,
1194 					bdaddr_t *addr, u8 addr_type)
1195 {
1196 	struct hci_conn_params *params;
1197 
1198 	if (is_connected(hdev, addr, addr_type))
1199 		return -EISCONN;
1200 
1201 	params = hci_conn_params_lookup(hdev, addr, addr_type);
1202 	if (!params) {
1203 		params = hci_conn_params_add(hdev, addr, addr_type);
1204 		if (!params)
1205 			return -ENOMEM;
1206 
1207 		/* If we created new params, mark them to be deleted in
1208 		 * hci_connect_le_scan_cleanup. It's different case than
1209 		 * existing disabled params, those will stay after cleanup.
1210 		 */
1211 		params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
1212 	}
1213 
1214 	/* We're trying to connect, so make sure params are at pend_le_conns */
1215 	if (params->auto_connect == HCI_AUTO_CONN_DISABLED ||
1216 	    params->auto_connect == HCI_AUTO_CONN_REPORT ||
1217 	    params->auto_connect == HCI_AUTO_CONN_EXPLICIT) {
1218 		list_del_init(&params->action);
1219 		list_add(&params->action, &hdev->pend_le_conns);
1220 	}
1221 
1222 	params->explicit_connect = true;
1223 
1224 	BT_DBG("addr %pMR (type %u) auto_connect %u", addr, addr_type,
1225 	       params->auto_connect);
1226 
1227 	return 0;
1228 }
1229 
1230 /* This function requires the caller holds hdev->lock */
1231 struct hci_conn *hci_connect_le_scan(struct hci_dev *hdev, bdaddr_t *dst,
1232 				     u8 dst_type, u8 sec_level,
1233 				     u16 conn_timeout,
1234 				     enum conn_reasons conn_reason)
1235 {
1236 	struct hci_conn *conn;
1237 
1238 	/* Let's make sure that le is enabled.*/
1239 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
1240 		if (lmp_le_capable(hdev))
1241 			return ERR_PTR(-ECONNREFUSED);
1242 
1243 		return ERR_PTR(-EOPNOTSUPP);
1244 	}
1245 
1246 	/* Some devices send ATT messages as soon as the physical link is
1247 	 * established. To be able to handle these ATT messages, the user-
1248 	 * space first establishes the connection and then starts the pairing
1249 	 * process.
1250 	 *
1251 	 * So if a hci_conn object already exists for the following connection
1252 	 * attempt, we simply update pending_sec_level and auth_type fields
1253 	 * and return the object found.
1254 	 */
1255 	conn = hci_conn_hash_lookup_le(hdev, dst, dst_type);
1256 	if (conn) {
1257 		if (conn->pending_sec_level < sec_level)
1258 			conn->pending_sec_level = sec_level;
1259 		goto done;
1260 	}
1261 
1262 	BT_DBG("requesting refresh of dst_addr");
1263 
1264 	conn = hci_conn_add(hdev, LE_LINK, dst, HCI_ROLE_MASTER);
1265 	if (!conn)
1266 		return ERR_PTR(-ENOMEM);
1267 
1268 	if (hci_explicit_conn_params_set(hdev, dst, dst_type) < 0) {
1269 		hci_conn_del(conn);
1270 		return ERR_PTR(-EBUSY);
1271 	}
1272 
1273 	conn->state = BT_CONNECT;
1274 	set_bit(HCI_CONN_SCANNING, &conn->flags);
1275 	conn->dst_type = dst_type;
1276 	conn->sec_level = BT_SECURITY_LOW;
1277 	conn->pending_sec_level = sec_level;
1278 	conn->conn_timeout = conn_timeout;
1279 	conn->conn_reason = conn_reason;
1280 
1281 	hci_update_background_scan(hdev);
1282 
1283 done:
1284 	hci_conn_hold(conn);
1285 	return conn;
1286 }
1287 
1288 struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst,
1289 				 u8 sec_level, u8 auth_type,
1290 				 enum conn_reasons conn_reason)
1291 {
1292 	struct hci_conn *acl;
1293 
1294 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1295 		if (lmp_bredr_capable(hdev))
1296 			return ERR_PTR(-ECONNREFUSED);
1297 
1298 		return ERR_PTR(-EOPNOTSUPP);
1299 	}
1300 
1301 	acl = hci_conn_hash_lookup_ba(hdev, ACL_LINK, dst);
1302 	if (!acl) {
1303 		acl = hci_conn_add(hdev, ACL_LINK, dst, HCI_ROLE_MASTER);
1304 		if (!acl)
1305 			return ERR_PTR(-ENOMEM);
1306 	}
1307 
1308 	hci_conn_hold(acl);
1309 
1310 	acl->conn_reason = conn_reason;
1311 	if (acl->state == BT_OPEN || acl->state == BT_CLOSED) {
1312 		acl->sec_level = BT_SECURITY_LOW;
1313 		acl->pending_sec_level = sec_level;
1314 		acl->auth_type = auth_type;
1315 		hci_acl_create_connection(acl);
1316 	}
1317 
1318 	return acl;
1319 }
1320 
1321 struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst,
1322 				 __u16 setting)
1323 {
1324 	struct hci_conn *acl;
1325 	struct hci_conn *sco;
1326 
1327 	acl = hci_connect_acl(hdev, dst, BT_SECURITY_LOW, HCI_AT_NO_BONDING,
1328 			      CONN_REASON_SCO_CONNECT);
1329 	if (IS_ERR(acl))
1330 		return acl;
1331 
1332 	sco = hci_conn_hash_lookup_ba(hdev, type, dst);
1333 	if (!sco) {
1334 		sco = hci_conn_add(hdev, type, dst, HCI_ROLE_MASTER);
1335 		if (!sco) {
1336 			hci_conn_drop(acl);
1337 			return ERR_PTR(-ENOMEM);
1338 		}
1339 	}
1340 
1341 	acl->link = sco;
1342 	sco->link = acl;
1343 
1344 	hci_conn_hold(sco);
1345 
1346 	sco->setting = setting;
1347 
1348 	if (acl->state == BT_CONNECTED &&
1349 	    (sco->state == BT_OPEN || sco->state == BT_CLOSED)) {
1350 		set_bit(HCI_CONN_POWER_SAVE, &acl->flags);
1351 		hci_conn_enter_active_mode(acl, BT_POWER_FORCE_ACTIVE_ON);
1352 
1353 		if (test_bit(HCI_CONN_MODE_CHANGE_PEND, &acl->flags)) {
1354 			/* defer SCO setup until mode change completed */
1355 			set_bit(HCI_CONN_SCO_SETUP_PEND, &acl->flags);
1356 			return sco;
1357 		}
1358 
1359 		hci_sco_setup(acl, 0x00);
1360 	}
1361 
1362 	return sco;
1363 }
1364 
1365 /* Check link security requirement */
1366 int hci_conn_check_link_mode(struct hci_conn *conn)
1367 {
1368 	BT_DBG("hcon %p", conn);
1369 
1370 	/* In Secure Connections Only mode, it is required that Secure
1371 	 * Connections is used and the link is encrypted with AES-CCM
1372 	 * using a P-256 authenticated combination key.
1373 	 */
1374 	if (hci_dev_test_flag(conn->hdev, HCI_SC_ONLY)) {
1375 		if (!hci_conn_sc_enabled(conn) ||
1376 		    !test_bit(HCI_CONN_AES_CCM, &conn->flags) ||
1377 		    conn->key_type != HCI_LK_AUTH_COMBINATION_P256)
1378 			return 0;
1379 	}
1380 
1381 	 /* AES encryption is required for Level 4:
1382 	  *
1383 	  * BLUETOOTH CORE SPECIFICATION Version 5.2 | Vol 3, Part C
1384 	  * page 1319:
1385 	  *
1386 	  * 128-bit equivalent strength for link and encryption keys
1387 	  * required using FIPS approved algorithms (E0 not allowed,
1388 	  * SAFER+ not allowed, and P-192 not allowed; encryption key
1389 	  * not shortened)
1390 	  */
1391 	if (conn->sec_level == BT_SECURITY_FIPS &&
1392 	    !test_bit(HCI_CONN_AES_CCM, &conn->flags)) {
1393 		bt_dev_err(conn->hdev,
1394 			   "Invalid security: Missing AES-CCM usage");
1395 		return 0;
1396 	}
1397 
1398 	if (hci_conn_ssp_enabled(conn) &&
1399 	    !test_bit(HCI_CONN_ENCRYPT, &conn->flags))
1400 		return 0;
1401 
1402 	return 1;
1403 }
1404 
1405 /* Authenticate remote device */
1406 static int hci_conn_auth(struct hci_conn *conn, __u8 sec_level, __u8 auth_type)
1407 {
1408 	BT_DBG("hcon %p", conn);
1409 
1410 	if (conn->pending_sec_level > sec_level)
1411 		sec_level = conn->pending_sec_level;
1412 
1413 	if (sec_level > conn->sec_level)
1414 		conn->pending_sec_level = sec_level;
1415 	else if (test_bit(HCI_CONN_AUTH, &conn->flags))
1416 		return 1;
1417 
1418 	/* Make sure we preserve an existing MITM requirement*/
1419 	auth_type |= (conn->auth_type & 0x01);
1420 
1421 	conn->auth_type = auth_type;
1422 
1423 	if (!test_and_set_bit(HCI_CONN_AUTH_PEND, &conn->flags)) {
1424 		struct hci_cp_auth_requested cp;
1425 
1426 		cp.handle = cpu_to_le16(conn->handle);
1427 		hci_send_cmd(conn->hdev, HCI_OP_AUTH_REQUESTED,
1428 			     sizeof(cp), &cp);
1429 
1430 		/* If we're already encrypted set the REAUTH_PEND flag,
1431 		 * otherwise set the ENCRYPT_PEND.
1432 		 */
1433 		if (test_bit(HCI_CONN_ENCRYPT, &conn->flags))
1434 			set_bit(HCI_CONN_REAUTH_PEND, &conn->flags);
1435 		else
1436 			set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags);
1437 	}
1438 
1439 	return 0;
1440 }
1441 
1442 /* Encrypt the link */
1443 static void hci_conn_encrypt(struct hci_conn *conn)
1444 {
1445 	BT_DBG("hcon %p", conn);
1446 
1447 	if (!test_and_set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) {
1448 		struct hci_cp_set_conn_encrypt cp;
1449 		cp.handle  = cpu_to_le16(conn->handle);
1450 		cp.encrypt = 0x01;
1451 		hci_send_cmd(conn->hdev, HCI_OP_SET_CONN_ENCRYPT, sizeof(cp),
1452 			     &cp);
1453 	}
1454 }
1455 
1456 /* Enable security */
1457 int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type,
1458 		      bool initiator)
1459 {
1460 	BT_DBG("hcon %p", conn);
1461 
1462 	if (conn->type == LE_LINK)
1463 		return smp_conn_security(conn, sec_level);
1464 
1465 	/* For sdp we don't need the link key. */
1466 	if (sec_level == BT_SECURITY_SDP)
1467 		return 1;
1468 
1469 	/* For non 2.1 devices and low security level we don't need the link
1470 	   key. */
1471 	if (sec_level == BT_SECURITY_LOW && !hci_conn_ssp_enabled(conn))
1472 		return 1;
1473 
1474 	/* For other security levels we need the link key. */
1475 	if (!test_bit(HCI_CONN_AUTH, &conn->flags))
1476 		goto auth;
1477 
1478 	/* An authenticated FIPS approved combination key has sufficient
1479 	 * security for security level 4. */
1480 	if (conn->key_type == HCI_LK_AUTH_COMBINATION_P256 &&
1481 	    sec_level == BT_SECURITY_FIPS)
1482 		goto encrypt;
1483 
1484 	/* An authenticated combination key has sufficient security for
1485 	   security level 3. */
1486 	if ((conn->key_type == HCI_LK_AUTH_COMBINATION_P192 ||
1487 	     conn->key_type == HCI_LK_AUTH_COMBINATION_P256) &&
1488 	    sec_level == BT_SECURITY_HIGH)
1489 		goto encrypt;
1490 
1491 	/* An unauthenticated combination key has sufficient security for
1492 	   security level 1 and 2. */
1493 	if ((conn->key_type == HCI_LK_UNAUTH_COMBINATION_P192 ||
1494 	     conn->key_type == HCI_LK_UNAUTH_COMBINATION_P256) &&
1495 	    (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW))
1496 		goto encrypt;
1497 
1498 	/* A combination key has always sufficient security for the security
1499 	   levels 1 or 2. High security level requires the combination key
1500 	   is generated using maximum PIN code length (16).
1501 	   For pre 2.1 units. */
1502 	if (conn->key_type == HCI_LK_COMBINATION &&
1503 	    (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW ||
1504 	     conn->pin_length == 16))
1505 		goto encrypt;
1506 
1507 auth:
1508 	if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags))
1509 		return 0;
1510 
1511 	if (initiator)
1512 		set_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags);
1513 
1514 	if (!hci_conn_auth(conn, sec_level, auth_type))
1515 		return 0;
1516 
1517 encrypt:
1518 	if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) {
1519 		/* Ensure that the encryption key size has been read,
1520 		 * otherwise stall the upper layer responses.
1521 		 */
1522 		if (!conn->enc_key_size)
1523 			return 0;
1524 
1525 		/* Nothing else needed, all requirements are met */
1526 		return 1;
1527 	}
1528 
1529 	hci_conn_encrypt(conn);
1530 	return 0;
1531 }
1532 EXPORT_SYMBOL(hci_conn_security);
1533 
1534 /* Check secure link requirement */
1535 int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level)
1536 {
1537 	BT_DBG("hcon %p", conn);
1538 
1539 	/* Accept if non-secure or higher security level is required */
1540 	if (sec_level != BT_SECURITY_HIGH && sec_level != BT_SECURITY_FIPS)
1541 		return 1;
1542 
1543 	/* Accept if secure or higher security level is already present */
1544 	if (conn->sec_level == BT_SECURITY_HIGH ||
1545 	    conn->sec_level == BT_SECURITY_FIPS)
1546 		return 1;
1547 
1548 	/* Reject not secure link */
1549 	return 0;
1550 }
1551 EXPORT_SYMBOL(hci_conn_check_secure);
1552 
1553 /* Switch role */
1554 int hci_conn_switch_role(struct hci_conn *conn, __u8 role)
1555 {
1556 	BT_DBG("hcon %p", conn);
1557 
1558 	if (role == conn->role)
1559 		return 1;
1560 
1561 	if (!test_and_set_bit(HCI_CONN_RSWITCH_PEND, &conn->flags)) {
1562 		struct hci_cp_switch_role cp;
1563 		bacpy(&cp.bdaddr, &conn->dst);
1564 		cp.role = role;
1565 		hci_send_cmd(conn->hdev, HCI_OP_SWITCH_ROLE, sizeof(cp), &cp);
1566 	}
1567 
1568 	return 0;
1569 }
1570 EXPORT_SYMBOL(hci_conn_switch_role);
1571 
1572 /* Enter active mode */
1573 void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active)
1574 {
1575 	struct hci_dev *hdev = conn->hdev;
1576 
1577 	BT_DBG("hcon %p mode %d", conn, conn->mode);
1578 
1579 	if (conn->mode != HCI_CM_SNIFF)
1580 		goto timer;
1581 
1582 	if (!test_bit(HCI_CONN_POWER_SAVE, &conn->flags) && !force_active)
1583 		goto timer;
1584 
1585 	if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) {
1586 		struct hci_cp_exit_sniff_mode cp;
1587 		cp.handle = cpu_to_le16(conn->handle);
1588 		hci_send_cmd(hdev, HCI_OP_EXIT_SNIFF_MODE, sizeof(cp), &cp);
1589 	}
1590 
1591 timer:
1592 	if (hdev->idle_timeout > 0)
1593 		queue_delayed_work(hdev->workqueue, &conn->idle_work,
1594 				   msecs_to_jiffies(hdev->idle_timeout));
1595 }
1596 
1597 /* Drop all connection on the device */
1598 void hci_conn_hash_flush(struct hci_dev *hdev)
1599 {
1600 	struct hci_conn_hash *h = &hdev->conn_hash;
1601 	struct hci_conn *c, *n;
1602 
1603 	BT_DBG("hdev %s", hdev->name);
1604 
1605 	list_for_each_entry_safe(c, n, &h->list, list) {
1606 		c->state = BT_CLOSED;
1607 
1608 		hci_disconn_cfm(c, HCI_ERROR_LOCAL_HOST_TERM);
1609 		hci_conn_del(c);
1610 	}
1611 }
1612 
1613 /* Check pending connect attempts */
1614 void hci_conn_check_pending(struct hci_dev *hdev)
1615 {
1616 	struct hci_conn *conn;
1617 
1618 	BT_DBG("hdev %s", hdev->name);
1619 
1620 	hci_dev_lock(hdev);
1621 
1622 	conn = hci_conn_hash_lookup_state(hdev, ACL_LINK, BT_CONNECT2);
1623 	if (conn)
1624 		hci_acl_create_connection(conn);
1625 
1626 	hci_dev_unlock(hdev);
1627 }
1628 
1629 static u32 get_link_mode(struct hci_conn *conn)
1630 {
1631 	u32 link_mode = 0;
1632 
1633 	if (conn->role == HCI_ROLE_MASTER)
1634 		link_mode |= HCI_LM_MASTER;
1635 
1636 	if (test_bit(HCI_CONN_ENCRYPT, &conn->flags))
1637 		link_mode |= HCI_LM_ENCRYPT;
1638 
1639 	if (test_bit(HCI_CONN_AUTH, &conn->flags))
1640 		link_mode |= HCI_LM_AUTH;
1641 
1642 	if (test_bit(HCI_CONN_SECURE, &conn->flags))
1643 		link_mode |= HCI_LM_SECURE;
1644 
1645 	if (test_bit(HCI_CONN_FIPS, &conn->flags))
1646 		link_mode |= HCI_LM_FIPS;
1647 
1648 	return link_mode;
1649 }
1650 
1651 int hci_get_conn_list(void __user *arg)
1652 {
1653 	struct hci_conn *c;
1654 	struct hci_conn_list_req req, *cl;
1655 	struct hci_conn_info *ci;
1656 	struct hci_dev *hdev;
1657 	int n = 0, size, err;
1658 
1659 	if (copy_from_user(&req, arg, sizeof(req)))
1660 		return -EFAULT;
1661 
1662 	if (!req.conn_num || req.conn_num > (PAGE_SIZE * 2) / sizeof(*ci))
1663 		return -EINVAL;
1664 
1665 	size = sizeof(req) + req.conn_num * sizeof(*ci);
1666 
1667 	cl = kmalloc(size, GFP_KERNEL);
1668 	if (!cl)
1669 		return -ENOMEM;
1670 
1671 	hdev = hci_dev_get(req.dev_id);
1672 	if (!hdev) {
1673 		kfree(cl);
1674 		return -ENODEV;
1675 	}
1676 
1677 	ci = cl->conn_info;
1678 
1679 	hci_dev_lock(hdev);
1680 	list_for_each_entry(c, &hdev->conn_hash.list, list) {
1681 		bacpy(&(ci + n)->bdaddr, &c->dst);
1682 		(ci + n)->handle = c->handle;
1683 		(ci + n)->type  = c->type;
1684 		(ci + n)->out   = c->out;
1685 		(ci + n)->state = c->state;
1686 		(ci + n)->link_mode = get_link_mode(c);
1687 		if (++n >= req.conn_num)
1688 			break;
1689 	}
1690 	hci_dev_unlock(hdev);
1691 
1692 	cl->dev_id = hdev->id;
1693 	cl->conn_num = n;
1694 	size = sizeof(req) + n * sizeof(*ci);
1695 
1696 	hci_dev_put(hdev);
1697 
1698 	err = copy_to_user(arg, cl, size);
1699 	kfree(cl);
1700 
1701 	return err ? -EFAULT : 0;
1702 }
1703 
1704 int hci_get_conn_info(struct hci_dev *hdev, void __user *arg)
1705 {
1706 	struct hci_conn_info_req req;
1707 	struct hci_conn_info ci;
1708 	struct hci_conn *conn;
1709 	char __user *ptr = arg + sizeof(req);
1710 
1711 	if (copy_from_user(&req, arg, sizeof(req)))
1712 		return -EFAULT;
1713 
1714 	hci_dev_lock(hdev);
1715 	conn = hci_conn_hash_lookup_ba(hdev, req.type, &req.bdaddr);
1716 	if (conn) {
1717 		bacpy(&ci.bdaddr, &conn->dst);
1718 		ci.handle = conn->handle;
1719 		ci.type  = conn->type;
1720 		ci.out   = conn->out;
1721 		ci.state = conn->state;
1722 		ci.link_mode = get_link_mode(conn);
1723 	}
1724 	hci_dev_unlock(hdev);
1725 
1726 	if (!conn)
1727 		return -ENOENT;
1728 
1729 	return copy_to_user(ptr, &ci, sizeof(ci)) ? -EFAULT : 0;
1730 }
1731 
1732 int hci_get_auth_info(struct hci_dev *hdev, void __user *arg)
1733 {
1734 	struct hci_auth_info_req req;
1735 	struct hci_conn *conn;
1736 
1737 	if (copy_from_user(&req, arg, sizeof(req)))
1738 		return -EFAULT;
1739 
1740 	hci_dev_lock(hdev);
1741 	conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &req.bdaddr);
1742 	if (conn)
1743 		req.type = conn->auth_type;
1744 	hci_dev_unlock(hdev);
1745 
1746 	if (!conn)
1747 		return -ENOENT;
1748 
1749 	return copy_to_user(arg, &req, sizeof(req)) ? -EFAULT : 0;
1750 }
1751 
1752 struct hci_chan *hci_chan_create(struct hci_conn *conn)
1753 {
1754 	struct hci_dev *hdev = conn->hdev;
1755 	struct hci_chan *chan;
1756 
1757 	BT_DBG("%s hcon %p", hdev->name, conn);
1758 
1759 	if (test_bit(HCI_CONN_DROP, &conn->flags)) {
1760 		BT_DBG("Refusing to create new hci_chan");
1761 		return NULL;
1762 	}
1763 
1764 	chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1765 	if (!chan)
1766 		return NULL;
1767 
1768 	chan->conn = hci_conn_get(conn);
1769 	skb_queue_head_init(&chan->data_q);
1770 	chan->state = BT_CONNECTED;
1771 
1772 	list_add_rcu(&chan->list, &conn->chan_list);
1773 
1774 	return chan;
1775 }
1776 
1777 void hci_chan_del(struct hci_chan *chan)
1778 {
1779 	struct hci_conn *conn = chan->conn;
1780 	struct hci_dev *hdev = conn->hdev;
1781 
1782 	BT_DBG("%s hcon %p chan %p", hdev->name, conn, chan);
1783 
1784 	list_del_rcu(&chan->list);
1785 
1786 	synchronize_rcu();
1787 
1788 	/* Prevent new hci_chan's to be created for this hci_conn */
1789 	set_bit(HCI_CONN_DROP, &conn->flags);
1790 
1791 	hci_conn_put(conn);
1792 
1793 	skb_queue_purge(&chan->data_q);
1794 	kfree(chan);
1795 }
1796 
1797 void hci_chan_list_flush(struct hci_conn *conn)
1798 {
1799 	struct hci_chan *chan, *n;
1800 
1801 	BT_DBG("hcon %p", conn);
1802 
1803 	list_for_each_entry_safe(chan, n, &conn->chan_list, list)
1804 		hci_chan_del(chan);
1805 }
1806 
1807 static struct hci_chan *__hci_chan_lookup_handle(struct hci_conn *hcon,
1808 						 __u16 handle)
1809 {
1810 	struct hci_chan *hchan;
1811 
1812 	list_for_each_entry(hchan, &hcon->chan_list, list) {
1813 		if (hchan->handle == handle)
1814 			return hchan;
1815 	}
1816 
1817 	return NULL;
1818 }
1819 
1820 struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle)
1821 {
1822 	struct hci_conn_hash *h = &hdev->conn_hash;
1823 	struct hci_conn *hcon;
1824 	struct hci_chan *hchan = NULL;
1825 
1826 	rcu_read_lock();
1827 
1828 	list_for_each_entry_rcu(hcon, &h->list, list) {
1829 		hchan = __hci_chan_lookup_handle(hcon, handle);
1830 		if (hchan)
1831 			break;
1832 	}
1833 
1834 	rcu_read_unlock();
1835 
1836 	return hchan;
1837 }
1838 
1839 u32 hci_conn_get_phy(struct hci_conn *conn)
1840 {
1841 	u32 phys = 0;
1842 
1843 	/* BLUETOOTH CORE SPECIFICATION Version 5.2 | Vol 2, Part B page 471:
1844 	 * Table 6.2: Packets defined for synchronous, asynchronous, and
1845 	 * CPB logical transport types.
1846 	 */
1847 	switch (conn->type) {
1848 	case SCO_LINK:
1849 		/* SCO logical transport (1 Mb/s):
1850 		 * HV1, HV2, HV3 and DV.
1851 		 */
1852 		phys |= BT_PHY_BR_1M_1SLOT;
1853 
1854 		break;
1855 
1856 	case ACL_LINK:
1857 		/* ACL logical transport (1 Mb/s) ptt=0:
1858 		 * DH1, DM3, DH3, DM5 and DH5.
1859 		 */
1860 		phys |= BT_PHY_BR_1M_1SLOT;
1861 
1862 		if (conn->pkt_type & (HCI_DM3 | HCI_DH3))
1863 			phys |= BT_PHY_BR_1M_3SLOT;
1864 
1865 		if (conn->pkt_type & (HCI_DM5 | HCI_DH5))
1866 			phys |= BT_PHY_BR_1M_5SLOT;
1867 
1868 		/* ACL logical transport (2 Mb/s) ptt=1:
1869 		 * 2-DH1, 2-DH3 and 2-DH5.
1870 		 */
1871 		if (!(conn->pkt_type & HCI_2DH1))
1872 			phys |= BT_PHY_EDR_2M_1SLOT;
1873 
1874 		if (!(conn->pkt_type & HCI_2DH3))
1875 			phys |= BT_PHY_EDR_2M_3SLOT;
1876 
1877 		if (!(conn->pkt_type & HCI_2DH5))
1878 			phys |= BT_PHY_EDR_2M_5SLOT;
1879 
1880 		/* ACL logical transport (3 Mb/s) ptt=1:
1881 		 * 3-DH1, 3-DH3 and 3-DH5.
1882 		 */
1883 		if (!(conn->pkt_type & HCI_3DH1))
1884 			phys |= BT_PHY_EDR_3M_1SLOT;
1885 
1886 		if (!(conn->pkt_type & HCI_3DH3))
1887 			phys |= BT_PHY_EDR_3M_3SLOT;
1888 
1889 		if (!(conn->pkt_type & HCI_3DH5))
1890 			phys |= BT_PHY_EDR_3M_5SLOT;
1891 
1892 		break;
1893 
1894 	case ESCO_LINK:
1895 		/* eSCO logical transport (1 Mb/s): EV3, EV4 and EV5 */
1896 		phys |= BT_PHY_BR_1M_1SLOT;
1897 
1898 		if (!(conn->pkt_type & (ESCO_EV4 | ESCO_EV5)))
1899 			phys |= BT_PHY_BR_1M_3SLOT;
1900 
1901 		/* eSCO logical transport (2 Mb/s): 2-EV3, 2-EV5 */
1902 		if (!(conn->pkt_type & ESCO_2EV3))
1903 			phys |= BT_PHY_EDR_2M_1SLOT;
1904 
1905 		if (!(conn->pkt_type & ESCO_2EV5))
1906 			phys |= BT_PHY_EDR_2M_3SLOT;
1907 
1908 		/* eSCO logical transport (3 Mb/s): 3-EV3, 3-EV5 */
1909 		if (!(conn->pkt_type & ESCO_3EV3))
1910 			phys |= BT_PHY_EDR_3M_1SLOT;
1911 
1912 		if (!(conn->pkt_type & ESCO_3EV5))
1913 			phys |= BT_PHY_EDR_3M_3SLOT;
1914 
1915 		break;
1916 
1917 	case LE_LINK:
1918 		if (conn->le_tx_phy & HCI_LE_SET_PHY_1M)
1919 			phys |= BT_PHY_LE_1M_TX;
1920 
1921 		if (conn->le_rx_phy & HCI_LE_SET_PHY_1M)
1922 			phys |= BT_PHY_LE_1M_RX;
1923 
1924 		if (conn->le_tx_phy & HCI_LE_SET_PHY_2M)
1925 			phys |= BT_PHY_LE_2M_TX;
1926 
1927 		if (conn->le_rx_phy & HCI_LE_SET_PHY_2M)
1928 			phys |= BT_PHY_LE_2M_RX;
1929 
1930 		if (conn->le_tx_phy & HCI_LE_SET_PHY_CODED)
1931 			phys |= BT_PHY_LE_CODED_TX;
1932 
1933 		if (conn->le_rx_phy & HCI_LE_SET_PHY_CODED)
1934 			phys |= BT_PHY_LE_CODED_RX;
1935 
1936 		break;
1937 	}
1938 
1939 	return phys;
1940 }
1941