1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved. 4 5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License version 2 as 9 published by the Free Software Foundation; 10 11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 22 SOFTWARE IS DISCLAIMED. 23 */ 24 25 /* Bluetooth HCI connection handling. */ 26 27 #include <linux/export.h> 28 #include <linux/debugfs.h> 29 30 #include <net/bluetooth/bluetooth.h> 31 #include <net/bluetooth/hci_core.h> 32 #include <net/bluetooth/l2cap.h> 33 34 #include "hci_request.h" 35 #include "smp.h" 36 #include "a2mp.h" 37 38 struct sco_param { 39 u16 pkt_type; 40 u16 max_latency; 41 u8 retrans_effort; 42 }; 43 44 static const struct sco_param esco_param_cvsd[] = { 45 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000a, 0x01 }, /* S3 */ 46 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x0007, 0x01 }, /* S2 */ 47 { EDR_ESCO_MASK | ESCO_EV3, 0x0007, 0x01 }, /* S1 */ 48 { EDR_ESCO_MASK | ESCO_HV3, 0xffff, 0x01 }, /* D1 */ 49 { EDR_ESCO_MASK | ESCO_HV1, 0xffff, 0x01 }, /* D0 */ 50 }; 51 52 static const struct sco_param sco_param_cvsd[] = { 53 { EDR_ESCO_MASK | ESCO_HV3, 0xffff, 0xff }, /* D1 */ 54 { EDR_ESCO_MASK | ESCO_HV1, 0xffff, 0xff }, /* D0 */ 55 }; 56 57 static const struct sco_param esco_param_msbc[] = { 58 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000d, 0x02 }, /* T2 */ 59 { EDR_ESCO_MASK | ESCO_EV3, 0x0008, 0x02 }, /* T1 */ 60 }; 61 62 /* This function requires the caller holds hdev->lock */ 63 static void hci_connect_le_scan_cleanup(struct hci_conn *conn) 64 { 65 struct hci_conn_params *params; 66 struct hci_dev *hdev = conn->hdev; 67 struct smp_irk *irk; 68 bdaddr_t *bdaddr; 69 u8 bdaddr_type; 70 71 bdaddr = &conn->dst; 72 bdaddr_type = conn->dst_type; 73 74 /* Check if we need to convert to identity address */ 75 irk = hci_get_irk(hdev, bdaddr, bdaddr_type); 76 if (irk) { 77 bdaddr = &irk->bdaddr; 78 bdaddr_type = irk->addr_type; 79 } 80 81 params = hci_pend_le_action_lookup(&hdev->pend_le_conns, bdaddr, 82 bdaddr_type); 83 if (!params || !params->explicit_connect) 84 return; 85 86 /* The connection attempt was doing scan for new RPA, and is 87 * in scan phase. If params are not associated with any other 88 * autoconnect action, remove them completely. If they are, just unmark 89 * them as waiting for connection, by clearing explicit_connect field. 90 */ 91 params->explicit_connect = false; 92 93 list_del_init(¶ms->action); 94 95 switch (params->auto_connect) { 96 case HCI_AUTO_CONN_EXPLICIT: 97 hci_conn_params_del(hdev, bdaddr, bdaddr_type); 98 /* return instead of break to avoid duplicate scan update */ 99 return; 100 case HCI_AUTO_CONN_DIRECT: 101 case HCI_AUTO_CONN_ALWAYS: 102 list_add(¶ms->action, &hdev->pend_le_conns); 103 break; 104 case HCI_AUTO_CONN_REPORT: 105 list_add(¶ms->action, &hdev->pend_le_reports); 106 break; 107 default: 108 break; 109 } 110 111 hci_update_background_scan(hdev); 112 } 113 114 static void hci_conn_cleanup(struct hci_conn *conn) 115 { 116 struct hci_dev *hdev = conn->hdev; 117 118 if (test_bit(HCI_CONN_PARAM_REMOVAL_PEND, &conn->flags)) 119 hci_conn_params_del(conn->hdev, &conn->dst, conn->dst_type); 120 121 hci_chan_list_flush(conn); 122 123 hci_conn_hash_del(hdev, conn); 124 125 if (hdev->notify) 126 hdev->notify(hdev, HCI_NOTIFY_CONN_DEL); 127 128 hci_conn_del_sysfs(conn); 129 130 debugfs_remove_recursive(conn->debugfs); 131 132 hci_dev_put(hdev); 133 134 hci_conn_put(conn); 135 } 136 137 static void le_scan_cleanup(struct work_struct *work) 138 { 139 struct hci_conn *conn = container_of(work, struct hci_conn, 140 le_scan_cleanup); 141 struct hci_dev *hdev = conn->hdev; 142 struct hci_conn *c = NULL; 143 144 BT_DBG("%s hcon %p", hdev->name, conn); 145 146 hci_dev_lock(hdev); 147 148 /* Check that the hci_conn is still around */ 149 rcu_read_lock(); 150 list_for_each_entry_rcu(c, &hdev->conn_hash.list, list) { 151 if (c == conn) 152 break; 153 } 154 rcu_read_unlock(); 155 156 if (c == conn) { 157 hci_connect_le_scan_cleanup(conn); 158 hci_conn_cleanup(conn); 159 } 160 161 hci_dev_unlock(hdev); 162 hci_dev_put(hdev); 163 hci_conn_put(conn); 164 } 165 166 static void hci_connect_le_scan_remove(struct hci_conn *conn) 167 { 168 BT_DBG("%s hcon %p", conn->hdev->name, conn); 169 170 /* We can't call hci_conn_del/hci_conn_cleanup here since that 171 * could deadlock with another hci_conn_del() call that's holding 172 * hci_dev_lock and doing cancel_delayed_work_sync(&conn->disc_work). 173 * Instead, grab temporary extra references to the hci_dev and 174 * hci_conn and perform the necessary cleanup in a separate work 175 * callback. 176 */ 177 178 hci_dev_hold(conn->hdev); 179 hci_conn_get(conn); 180 181 /* Even though we hold a reference to the hdev, many other 182 * things might get cleaned up meanwhile, including the hdev's 183 * own workqueue, so we can't use that for scheduling. 184 */ 185 schedule_work(&conn->le_scan_cleanup); 186 } 187 188 static void hci_acl_create_connection(struct hci_conn *conn) 189 { 190 struct hci_dev *hdev = conn->hdev; 191 struct inquiry_entry *ie; 192 struct hci_cp_create_conn cp; 193 194 BT_DBG("hcon %p", conn); 195 196 conn->state = BT_CONNECT; 197 conn->out = true; 198 conn->role = HCI_ROLE_MASTER; 199 200 conn->attempt++; 201 202 conn->link_policy = hdev->link_policy; 203 204 memset(&cp, 0, sizeof(cp)); 205 bacpy(&cp.bdaddr, &conn->dst); 206 cp.pscan_rep_mode = 0x02; 207 208 ie = hci_inquiry_cache_lookup(hdev, &conn->dst); 209 if (ie) { 210 if (inquiry_entry_age(ie) <= INQUIRY_ENTRY_AGE_MAX) { 211 cp.pscan_rep_mode = ie->data.pscan_rep_mode; 212 cp.pscan_mode = ie->data.pscan_mode; 213 cp.clock_offset = ie->data.clock_offset | 214 cpu_to_le16(0x8000); 215 } 216 217 memcpy(conn->dev_class, ie->data.dev_class, 3); 218 if (ie->data.ssp_mode > 0) 219 set_bit(HCI_CONN_SSP_ENABLED, &conn->flags); 220 } 221 222 cp.pkt_type = cpu_to_le16(conn->pkt_type); 223 if (lmp_rswitch_capable(hdev) && !(hdev->link_mode & HCI_LM_MASTER)) 224 cp.role_switch = 0x01; 225 else 226 cp.role_switch = 0x00; 227 228 hci_send_cmd(hdev, HCI_OP_CREATE_CONN, sizeof(cp), &cp); 229 } 230 231 int hci_disconnect(struct hci_conn *conn, __u8 reason) 232 { 233 BT_DBG("hcon %p", conn); 234 235 /* When we are master of an established connection and it enters 236 * the disconnect timeout, then go ahead and try to read the 237 * current clock offset. Processing of the result is done 238 * within the event handling and hci_clock_offset_evt function. 239 */ 240 if (conn->type == ACL_LINK && conn->role == HCI_ROLE_MASTER && 241 (conn->state == BT_CONNECTED || conn->state == BT_CONFIG)) { 242 struct hci_dev *hdev = conn->hdev; 243 struct hci_cp_read_clock_offset clkoff_cp; 244 245 clkoff_cp.handle = cpu_to_le16(conn->handle); 246 hci_send_cmd(hdev, HCI_OP_READ_CLOCK_OFFSET, sizeof(clkoff_cp), 247 &clkoff_cp); 248 } 249 250 return hci_abort_conn(conn, reason); 251 } 252 253 static void hci_add_sco(struct hci_conn *conn, __u16 handle) 254 { 255 struct hci_dev *hdev = conn->hdev; 256 struct hci_cp_add_sco cp; 257 258 BT_DBG("hcon %p", conn); 259 260 conn->state = BT_CONNECT; 261 conn->out = true; 262 263 conn->attempt++; 264 265 cp.handle = cpu_to_le16(handle); 266 cp.pkt_type = cpu_to_le16(conn->pkt_type); 267 268 hci_send_cmd(hdev, HCI_OP_ADD_SCO, sizeof(cp), &cp); 269 } 270 271 bool hci_setup_sync(struct hci_conn *conn, __u16 handle) 272 { 273 struct hci_dev *hdev = conn->hdev; 274 struct hci_cp_setup_sync_conn cp; 275 const struct sco_param *param; 276 277 BT_DBG("hcon %p", conn); 278 279 conn->state = BT_CONNECT; 280 conn->out = true; 281 282 conn->attempt++; 283 284 cp.handle = cpu_to_le16(handle); 285 286 cp.tx_bandwidth = cpu_to_le32(0x00001f40); 287 cp.rx_bandwidth = cpu_to_le32(0x00001f40); 288 cp.voice_setting = cpu_to_le16(conn->setting); 289 290 switch (conn->setting & SCO_AIRMODE_MASK) { 291 case SCO_AIRMODE_TRANSP: 292 if (conn->attempt > ARRAY_SIZE(esco_param_msbc)) 293 return false; 294 param = &esco_param_msbc[conn->attempt - 1]; 295 break; 296 case SCO_AIRMODE_CVSD: 297 if (lmp_esco_capable(conn->link)) { 298 if (conn->attempt > ARRAY_SIZE(esco_param_cvsd)) 299 return false; 300 param = &esco_param_cvsd[conn->attempt - 1]; 301 } else { 302 if (conn->attempt > ARRAY_SIZE(sco_param_cvsd)) 303 return false; 304 param = &sco_param_cvsd[conn->attempt - 1]; 305 } 306 break; 307 default: 308 return false; 309 } 310 311 cp.retrans_effort = param->retrans_effort; 312 cp.pkt_type = __cpu_to_le16(param->pkt_type); 313 cp.max_latency = __cpu_to_le16(param->max_latency); 314 315 if (hci_send_cmd(hdev, HCI_OP_SETUP_SYNC_CONN, sizeof(cp), &cp) < 0) 316 return false; 317 318 return true; 319 } 320 321 u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency, 322 u16 to_multiplier) 323 { 324 struct hci_dev *hdev = conn->hdev; 325 struct hci_conn_params *params; 326 struct hci_cp_le_conn_update cp; 327 328 hci_dev_lock(hdev); 329 330 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); 331 if (params) { 332 params->conn_min_interval = min; 333 params->conn_max_interval = max; 334 params->conn_latency = latency; 335 params->supervision_timeout = to_multiplier; 336 } 337 338 hci_dev_unlock(hdev); 339 340 memset(&cp, 0, sizeof(cp)); 341 cp.handle = cpu_to_le16(conn->handle); 342 cp.conn_interval_min = cpu_to_le16(min); 343 cp.conn_interval_max = cpu_to_le16(max); 344 cp.conn_latency = cpu_to_le16(latency); 345 cp.supervision_timeout = cpu_to_le16(to_multiplier); 346 cp.min_ce_len = cpu_to_le16(0x0000); 347 cp.max_ce_len = cpu_to_le16(0x0000); 348 349 hci_send_cmd(hdev, HCI_OP_LE_CONN_UPDATE, sizeof(cp), &cp); 350 351 if (params) 352 return 0x01; 353 354 return 0x00; 355 } 356 357 void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand, 358 __u8 ltk[16], __u8 key_size) 359 { 360 struct hci_dev *hdev = conn->hdev; 361 struct hci_cp_le_start_enc cp; 362 363 BT_DBG("hcon %p", conn); 364 365 memset(&cp, 0, sizeof(cp)); 366 367 cp.handle = cpu_to_le16(conn->handle); 368 cp.rand = rand; 369 cp.ediv = ediv; 370 memcpy(cp.ltk, ltk, key_size); 371 372 hci_send_cmd(hdev, HCI_OP_LE_START_ENC, sizeof(cp), &cp); 373 } 374 375 /* Device _must_ be locked */ 376 void hci_sco_setup(struct hci_conn *conn, __u8 status) 377 { 378 struct hci_conn *sco = conn->link; 379 380 if (!sco) 381 return; 382 383 BT_DBG("hcon %p", conn); 384 385 if (!status) { 386 if (lmp_esco_capable(conn->hdev)) 387 hci_setup_sync(sco, conn->handle); 388 else 389 hci_add_sco(sco, conn->handle); 390 } else { 391 hci_connect_cfm(sco, status); 392 hci_conn_del(sco); 393 } 394 } 395 396 static void hci_conn_timeout(struct work_struct *work) 397 { 398 struct hci_conn *conn = container_of(work, struct hci_conn, 399 disc_work.work); 400 int refcnt = atomic_read(&conn->refcnt); 401 402 BT_DBG("hcon %p state %s", conn, state_to_string(conn->state)); 403 404 WARN_ON(refcnt < 0); 405 406 /* FIXME: It was observed that in pairing failed scenario, refcnt 407 * drops below 0. Probably this is because l2cap_conn_del calls 408 * l2cap_chan_del for each channel, and inside l2cap_chan_del conn is 409 * dropped. After that loop hci_chan_del is called which also drops 410 * conn. For now make sure that ACL is alive if refcnt is higher then 0, 411 * otherwise drop it. 412 */ 413 if (refcnt > 0) 414 return; 415 416 /* LE connections in scanning state need special handling */ 417 if (conn->state == BT_CONNECT && conn->type == LE_LINK && 418 test_bit(HCI_CONN_SCANNING, &conn->flags)) { 419 hci_connect_le_scan_remove(conn); 420 return; 421 } 422 423 hci_abort_conn(conn, hci_proto_disconn_ind(conn)); 424 } 425 426 /* Enter sniff mode */ 427 static void hci_conn_idle(struct work_struct *work) 428 { 429 struct hci_conn *conn = container_of(work, struct hci_conn, 430 idle_work.work); 431 struct hci_dev *hdev = conn->hdev; 432 433 BT_DBG("hcon %p mode %d", conn, conn->mode); 434 435 if (!lmp_sniff_capable(hdev) || !lmp_sniff_capable(conn)) 436 return; 437 438 if (conn->mode != HCI_CM_ACTIVE || !(conn->link_policy & HCI_LP_SNIFF)) 439 return; 440 441 if (lmp_sniffsubr_capable(hdev) && lmp_sniffsubr_capable(conn)) { 442 struct hci_cp_sniff_subrate cp; 443 cp.handle = cpu_to_le16(conn->handle); 444 cp.max_latency = cpu_to_le16(0); 445 cp.min_remote_timeout = cpu_to_le16(0); 446 cp.min_local_timeout = cpu_to_le16(0); 447 hci_send_cmd(hdev, HCI_OP_SNIFF_SUBRATE, sizeof(cp), &cp); 448 } 449 450 if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) { 451 struct hci_cp_sniff_mode cp; 452 cp.handle = cpu_to_le16(conn->handle); 453 cp.max_interval = cpu_to_le16(hdev->sniff_max_interval); 454 cp.min_interval = cpu_to_le16(hdev->sniff_min_interval); 455 cp.attempt = cpu_to_le16(4); 456 cp.timeout = cpu_to_le16(1); 457 hci_send_cmd(hdev, HCI_OP_SNIFF_MODE, sizeof(cp), &cp); 458 } 459 } 460 461 static void hci_conn_auto_accept(struct work_struct *work) 462 { 463 struct hci_conn *conn = container_of(work, struct hci_conn, 464 auto_accept_work.work); 465 466 hci_send_cmd(conn->hdev, HCI_OP_USER_CONFIRM_REPLY, sizeof(conn->dst), 467 &conn->dst); 468 } 469 470 static void le_disable_advertising(struct hci_dev *hdev) 471 { 472 if (ext_adv_capable(hdev)) { 473 struct hci_cp_le_set_ext_adv_enable cp; 474 475 cp.enable = 0x00; 476 cp.num_of_sets = 0x00; 477 478 hci_send_cmd(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, sizeof(cp), 479 &cp); 480 } else { 481 u8 enable = 0x00; 482 hci_send_cmd(hdev, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), 483 &enable); 484 } 485 } 486 487 static void le_conn_timeout(struct work_struct *work) 488 { 489 struct hci_conn *conn = container_of(work, struct hci_conn, 490 le_conn_timeout.work); 491 struct hci_dev *hdev = conn->hdev; 492 493 BT_DBG(""); 494 495 /* We could end up here due to having done directed advertising, 496 * so clean up the state if necessary. This should however only 497 * happen with broken hardware or if low duty cycle was used 498 * (which doesn't have a timeout of its own). 499 */ 500 if (conn->role == HCI_ROLE_SLAVE) { 501 /* Disable LE Advertising */ 502 le_disable_advertising(hdev); 503 hci_le_conn_failed(conn, HCI_ERROR_ADVERTISING_TIMEOUT); 504 return; 505 } 506 507 hci_abort_conn(conn, HCI_ERROR_REMOTE_USER_TERM); 508 } 509 510 struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst, 511 u8 role) 512 { 513 struct hci_conn *conn; 514 515 BT_DBG("%s dst %pMR", hdev->name, dst); 516 517 conn = kzalloc(sizeof(*conn), GFP_KERNEL); 518 if (!conn) 519 return NULL; 520 521 bacpy(&conn->dst, dst); 522 bacpy(&conn->src, &hdev->bdaddr); 523 conn->hdev = hdev; 524 conn->type = type; 525 conn->role = role; 526 conn->mode = HCI_CM_ACTIVE; 527 conn->state = BT_OPEN; 528 conn->auth_type = HCI_AT_GENERAL_BONDING; 529 conn->io_capability = hdev->io_capability; 530 conn->remote_auth = 0xff; 531 conn->key_type = 0xff; 532 conn->rssi = HCI_RSSI_INVALID; 533 conn->tx_power = HCI_TX_POWER_INVALID; 534 conn->max_tx_power = HCI_TX_POWER_INVALID; 535 536 set_bit(HCI_CONN_POWER_SAVE, &conn->flags); 537 conn->disc_timeout = HCI_DISCONN_TIMEOUT; 538 539 /* Set Default Authenticated payload timeout to 30s */ 540 conn->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT; 541 542 if (conn->role == HCI_ROLE_MASTER) 543 conn->out = true; 544 545 switch (type) { 546 case ACL_LINK: 547 conn->pkt_type = hdev->pkt_type & ACL_PTYPE_MASK; 548 break; 549 case LE_LINK: 550 /* conn->src should reflect the local identity address */ 551 hci_copy_identity_address(hdev, &conn->src, &conn->src_type); 552 break; 553 case SCO_LINK: 554 if (lmp_esco_capable(hdev)) 555 conn->pkt_type = (hdev->esco_type & SCO_ESCO_MASK) | 556 (hdev->esco_type & EDR_ESCO_MASK); 557 else 558 conn->pkt_type = hdev->pkt_type & SCO_PTYPE_MASK; 559 break; 560 case ESCO_LINK: 561 conn->pkt_type = hdev->esco_type & ~EDR_ESCO_MASK; 562 break; 563 } 564 565 skb_queue_head_init(&conn->data_q); 566 567 INIT_LIST_HEAD(&conn->chan_list); 568 569 INIT_DELAYED_WORK(&conn->disc_work, hci_conn_timeout); 570 INIT_DELAYED_WORK(&conn->auto_accept_work, hci_conn_auto_accept); 571 INIT_DELAYED_WORK(&conn->idle_work, hci_conn_idle); 572 INIT_DELAYED_WORK(&conn->le_conn_timeout, le_conn_timeout); 573 INIT_WORK(&conn->le_scan_cleanup, le_scan_cleanup); 574 575 atomic_set(&conn->refcnt, 0); 576 577 hci_dev_hold(hdev); 578 579 hci_conn_hash_add(hdev, conn); 580 if (hdev->notify) 581 hdev->notify(hdev, HCI_NOTIFY_CONN_ADD); 582 583 hci_conn_init_sysfs(conn); 584 585 return conn; 586 } 587 588 int hci_conn_del(struct hci_conn *conn) 589 { 590 struct hci_dev *hdev = conn->hdev; 591 592 BT_DBG("%s hcon %p handle %d", hdev->name, conn, conn->handle); 593 594 cancel_delayed_work_sync(&conn->disc_work); 595 cancel_delayed_work_sync(&conn->auto_accept_work); 596 cancel_delayed_work_sync(&conn->idle_work); 597 598 if (conn->type == ACL_LINK) { 599 struct hci_conn *sco = conn->link; 600 if (sco) 601 sco->link = NULL; 602 603 /* Unacked frames */ 604 hdev->acl_cnt += conn->sent; 605 } else if (conn->type == LE_LINK) { 606 cancel_delayed_work(&conn->le_conn_timeout); 607 608 if (hdev->le_pkts) 609 hdev->le_cnt += conn->sent; 610 else 611 hdev->acl_cnt += conn->sent; 612 } else { 613 struct hci_conn *acl = conn->link; 614 if (acl) { 615 acl->link = NULL; 616 hci_conn_drop(acl); 617 } 618 } 619 620 if (conn->amp_mgr) 621 amp_mgr_put(conn->amp_mgr); 622 623 skb_queue_purge(&conn->data_q); 624 625 /* Remove the connection from the list and cleanup its remaining 626 * state. This is a separate function since for some cases like 627 * BT_CONNECT_SCAN we *only* want the cleanup part without the 628 * rest of hci_conn_del. 629 */ 630 hci_conn_cleanup(conn); 631 632 return 0; 633 } 634 635 struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src, uint8_t src_type) 636 { 637 int use_src = bacmp(src, BDADDR_ANY); 638 struct hci_dev *hdev = NULL, *d; 639 640 BT_DBG("%pMR -> %pMR", src, dst); 641 642 read_lock(&hci_dev_list_lock); 643 644 list_for_each_entry(d, &hci_dev_list, list) { 645 if (!test_bit(HCI_UP, &d->flags) || 646 hci_dev_test_flag(d, HCI_USER_CHANNEL) || 647 d->dev_type != HCI_PRIMARY) 648 continue; 649 650 /* Simple routing: 651 * No source address - find interface with bdaddr != dst 652 * Source address - find interface with bdaddr == src 653 */ 654 655 if (use_src) { 656 bdaddr_t id_addr; 657 u8 id_addr_type; 658 659 if (src_type == BDADDR_BREDR) { 660 if (!lmp_bredr_capable(d)) 661 continue; 662 bacpy(&id_addr, &d->bdaddr); 663 id_addr_type = BDADDR_BREDR; 664 } else { 665 if (!lmp_le_capable(d)) 666 continue; 667 668 hci_copy_identity_address(d, &id_addr, 669 &id_addr_type); 670 671 /* Convert from HCI to three-value type */ 672 if (id_addr_type == ADDR_LE_DEV_PUBLIC) 673 id_addr_type = BDADDR_LE_PUBLIC; 674 else 675 id_addr_type = BDADDR_LE_RANDOM; 676 } 677 678 if (!bacmp(&id_addr, src) && id_addr_type == src_type) { 679 hdev = d; break; 680 } 681 } else { 682 if (bacmp(&d->bdaddr, dst)) { 683 hdev = d; break; 684 } 685 } 686 } 687 688 if (hdev) 689 hdev = hci_dev_hold(hdev); 690 691 read_unlock(&hci_dev_list_lock); 692 return hdev; 693 } 694 EXPORT_SYMBOL(hci_get_route); 695 696 /* This function requires the caller holds hdev->lock */ 697 void hci_le_conn_failed(struct hci_conn *conn, u8 status) 698 { 699 struct hci_dev *hdev = conn->hdev; 700 struct hci_conn_params *params; 701 702 params = hci_pend_le_action_lookup(&hdev->pend_le_conns, &conn->dst, 703 conn->dst_type); 704 if (params && params->conn) { 705 hci_conn_drop(params->conn); 706 hci_conn_put(params->conn); 707 params->conn = NULL; 708 } 709 710 conn->state = BT_CLOSED; 711 712 /* If the status indicates successful cancellation of 713 * the attempt (i.e. Unkown Connection Id) there's no point of 714 * notifying failure since we'll go back to keep trying to 715 * connect. The only exception is explicit connect requests 716 * where a timeout + cancel does indicate an actual failure. 717 */ 718 if (status != HCI_ERROR_UNKNOWN_CONN_ID || 719 (params && params->explicit_connect)) 720 mgmt_connect_failed(hdev, &conn->dst, conn->type, 721 conn->dst_type, status); 722 723 hci_connect_cfm(conn, status); 724 725 hci_conn_del(conn); 726 727 /* Since we may have temporarily stopped the background scanning in 728 * favor of connection establishment, we should restart it. 729 */ 730 hci_update_background_scan(hdev); 731 732 /* Re-enable advertising in case this was a failed connection 733 * attempt as a peripheral. 734 */ 735 hci_req_reenable_advertising(hdev); 736 } 737 738 static void create_le_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode) 739 { 740 struct hci_conn *conn; 741 742 hci_dev_lock(hdev); 743 744 conn = hci_lookup_le_connect(hdev); 745 746 if (!status) { 747 hci_connect_le_scan_cleanup(conn); 748 goto done; 749 } 750 751 bt_dev_err(hdev, "request failed to create LE connection: " 752 "status 0x%2.2x", status); 753 754 if (!conn) 755 goto done; 756 757 hci_le_conn_failed(conn, status); 758 759 done: 760 hci_dev_unlock(hdev); 761 } 762 763 static bool conn_use_rpa(struct hci_conn *conn) 764 { 765 struct hci_dev *hdev = conn->hdev; 766 767 return hci_dev_test_flag(hdev, HCI_PRIVACY); 768 } 769 770 static void set_ext_conn_params(struct hci_conn *conn, 771 struct hci_cp_le_ext_conn_param *p) 772 { 773 struct hci_dev *hdev = conn->hdev; 774 775 memset(p, 0, sizeof(*p)); 776 777 /* Set window to be the same value as the interval to 778 * enable continuous scanning. 779 */ 780 p->scan_interval = cpu_to_le16(hdev->le_scan_interval); 781 p->scan_window = p->scan_interval; 782 p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 783 p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 784 p->conn_latency = cpu_to_le16(conn->le_conn_latency); 785 p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 786 p->min_ce_len = cpu_to_le16(0x0000); 787 p->max_ce_len = cpu_to_le16(0x0000); 788 } 789 790 static void hci_req_add_le_create_conn(struct hci_request *req, 791 struct hci_conn *conn, 792 bdaddr_t *direct_rpa) 793 { 794 struct hci_dev *hdev = conn->hdev; 795 u8 own_addr_type; 796 797 /* If direct address was provided we use it instead of current 798 * address. 799 */ 800 if (direct_rpa) { 801 if (bacmp(&req->hdev->random_addr, direct_rpa)) 802 hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, 803 direct_rpa); 804 805 /* direct address is always RPA */ 806 own_addr_type = ADDR_LE_DEV_RANDOM; 807 } else { 808 /* Update random address, but set require_privacy to false so 809 * that we never connect with an non-resolvable address. 810 */ 811 if (hci_update_random_address(req, false, conn_use_rpa(conn), 812 &own_addr_type)) 813 return; 814 } 815 816 if (use_ext_conn(hdev)) { 817 struct hci_cp_le_ext_create_conn *cp; 818 struct hci_cp_le_ext_conn_param *p; 819 u8 data[sizeof(*cp) + sizeof(*p) * 3]; 820 u32 plen; 821 822 cp = (void *) data; 823 p = (void *) cp->data; 824 825 memset(cp, 0, sizeof(*cp)); 826 827 bacpy(&cp->peer_addr, &conn->dst); 828 cp->peer_addr_type = conn->dst_type; 829 cp->own_addr_type = own_addr_type; 830 831 plen = sizeof(*cp); 832 833 if (scan_1m(hdev)) { 834 cp->phys |= LE_SCAN_PHY_1M; 835 set_ext_conn_params(conn, p); 836 837 p++; 838 plen += sizeof(*p); 839 } 840 841 if (scan_2m(hdev)) { 842 cp->phys |= LE_SCAN_PHY_2M; 843 set_ext_conn_params(conn, p); 844 845 p++; 846 plen += sizeof(*p); 847 } 848 849 if (scan_coded(hdev)) { 850 cp->phys |= LE_SCAN_PHY_CODED; 851 set_ext_conn_params(conn, p); 852 853 plen += sizeof(*p); 854 } 855 856 hci_req_add(req, HCI_OP_LE_EXT_CREATE_CONN, plen, data); 857 858 } else { 859 struct hci_cp_le_create_conn cp; 860 861 memset(&cp, 0, sizeof(cp)); 862 863 /* Set window to be the same value as the interval to enable 864 * continuous scanning. 865 */ 866 cp.scan_interval = cpu_to_le16(hdev->le_scan_interval); 867 cp.scan_window = cp.scan_interval; 868 869 bacpy(&cp.peer_addr, &conn->dst); 870 cp.peer_addr_type = conn->dst_type; 871 cp.own_address_type = own_addr_type; 872 cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 873 cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 874 cp.conn_latency = cpu_to_le16(conn->le_conn_latency); 875 cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 876 cp.min_ce_len = cpu_to_le16(0x0000); 877 cp.max_ce_len = cpu_to_le16(0x0000); 878 879 hci_req_add(req, HCI_OP_LE_CREATE_CONN, sizeof(cp), &cp); 880 } 881 882 conn->state = BT_CONNECT; 883 clear_bit(HCI_CONN_SCANNING, &conn->flags); 884 } 885 886 static void hci_req_directed_advertising(struct hci_request *req, 887 struct hci_conn *conn) 888 { 889 struct hci_dev *hdev = req->hdev; 890 u8 own_addr_type; 891 u8 enable; 892 893 if (ext_adv_capable(hdev)) { 894 struct hci_cp_le_set_ext_adv_params cp; 895 bdaddr_t random_addr; 896 897 /* Set require_privacy to false so that the remote device has a 898 * chance of identifying us. 899 */ 900 if (hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL, 901 &own_addr_type, &random_addr) < 0) 902 return; 903 904 memset(&cp, 0, sizeof(cp)); 905 906 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND); 907 cp.own_addr_type = own_addr_type; 908 cp.channel_map = hdev->le_adv_channel_map; 909 cp.tx_power = HCI_TX_POWER_INVALID; 910 cp.primary_phy = HCI_ADV_PHY_1M; 911 cp.secondary_phy = HCI_ADV_PHY_1M; 912 cp.handle = 0; /* Use instance 0 for directed adv */ 913 cp.own_addr_type = own_addr_type; 914 cp.peer_addr_type = conn->dst_type; 915 bacpy(&cp.peer_addr, &conn->dst); 916 917 /* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for 918 * advertising_event_property LE_LEGACY_ADV_DIRECT_IND 919 * does not supports advertising data when the advertising set already 920 * contains some, the controller shall return erroc code 'Invalid 921 * HCI Command Parameters(0x12). 922 * So it is required to remove adv set for handle 0x00. since we use 923 * instance 0 for directed adv. 924 */ 925 hci_req_add(req, HCI_OP_LE_REMOVE_ADV_SET, sizeof(cp.handle), &cp.handle); 926 927 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_PARAMS, sizeof(cp), &cp); 928 929 if (own_addr_type == ADDR_LE_DEV_RANDOM && 930 bacmp(&random_addr, BDADDR_ANY) && 931 bacmp(&random_addr, &hdev->random_addr)) { 932 struct hci_cp_le_set_adv_set_rand_addr cp; 933 934 memset(&cp, 0, sizeof(cp)); 935 936 cp.handle = 0; 937 bacpy(&cp.bdaddr, &random_addr); 938 939 hci_req_add(req, 940 HCI_OP_LE_SET_ADV_SET_RAND_ADDR, 941 sizeof(cp), &cp); 942 } 943 944 __hci_req_enable_ext_advertising(req, 0x00); 945 } else { 946 struct hci_cp_le_set_adv_param cp; 947 948 /* Clear the HCI_LE_ADV bit temporarily so that the 949 * hci_update_random_address knows that it's safe to go ahead 950 * and write a new random address. The flag will be set back on 951 * as soon as the SET_ADV_ENABLE HCI command completes. 952 */ 953 hci_dev_clear_flag(hdev, HCI_LE_ADV); 954 955 /* Set require_privacy to false so that the remote device has a 956 * chance of identifying us. 957 */ 958 if (hci_update_random_address(req, false, conn_use_rpa(conn), 959 &own_addr_type) < 0) 960 return; 961 962 memset(&cp, 0, sizeof(cp)); 963 964 /* Some controllers might reject command if intervals are not 965 * within range for undirected advertising. 966 * BCM20702A0 is known to be affected by this. 967 */ 968 cp.min_interval = cpu_to_le16(0x0020); 969 cp.max_interval = cpu_to_le16(0x0020); 970 971 cp.type = LE_ADV_DIRECT_IND; 972 cp.own_address_type = own_addr_type; 973 cp.direct_addr_type = conn->dst_type; 974 bacpy(&cp.direct_addr, &conn->dst); 975 cp.channel_map = hdev->le_adv_channel_map; 976 977 hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp); 978 979 enable = 0x01; 980 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), 981 &enable); 982 } 983 984 conn->state = BT_CONNECT; 985 } 986 987 struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst, 988 u8 dst_type, u8 sec_level, u16 conn_timeout, 989 u8 role, bdaddr_t *direct_rpa) 990 { 991 struct hci_conn_params *params; 992 struct hci_conn *conn; 993 struct smp_irk *irk; 994 struct hci_request req; 995 int err; 996 997 /* Let's make sure that le is enabled.*/ 998 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 999 if (lmp_le_capable(hdev)) 1000 return ERR_PTR(-ECONNREFUSED); 1001 1002 return ERR_PTR(-EOPNOTSUPP); 1003 } 1004 1005 /* Since the controller supports only one LE connection attempt at a 1006 * time, we return -EBUSY if there is any connection attempt running. 1007 */ 1008 if (hci_lookup_le_connect(hdev)) 1009 return ERR_PTR(-EBUSY); 1010 1011 /* If there's already a connection object but it's not in 1012 * scanning state it means it must already be established, in 1013 * which case we can't do anything else except report a failure 1014 * to connect. 1015 */ 1016 conn = hci_conn_hash_lookup_le(hdev, dst, dst_type); 1017 if (conn && !test_bit(HCI_CONN_SCANNING, &conn->flags)) { 1018 return ERR_PTR(-EBUSY); 1019 } 1020 1021 /* When given an identity address with existing identity 1022 * resolving key, the connection needs to be established 1023 * to a resolvable random address. 1024 * 1025 * Storing the resolvable random address is required here 1026 * to handle connection failures. The address will later 1027 * be resolved back into the original identity address 1028 * from the connect request. 1029 */ 1030 irk = hci_find_irk_by_addr(hdev, dst, dst_type); 1031 if (irk && bacmp(&irk->rpa, BDADDR_ANY)) { 1032 dst = &irk->rpa; 1033 dst_type = ADDR_LE_DEV_RANDOM; 1034 } 1035 1036 if (conn) { 1037 bacpy(&conn->dst, dst); 1038 } else { 1039 conn = hci_conn_add(hdev, LE_LINK, dst, role); 1040 if (!conn) 1041 return ERR_PTR(-ENOMEM); 1042 hci_conn_hold(conn); 1043 conn->pending_sec_level = sec_level; 1044 } 1045 1046 conn->dst_type = dst_type; 1047 conn->sec_level = BT_SECURITY_LOW; 1048 conn->conn_timeout = conn_timeout; 1049 1050 hci_req_init(&req, hdev); 1051 1052 /* Disable advertising if we're active. For master role 1053 * connections most controllers will refuse to connect if 1054 * advertising is enabled, and for slave role connections we 1055 * anyway have to disable it in order to start directed 1056 * advertising. 1057 */ 1058 if (hci_dev_test_flag(hdev, HCI_LE_ADV)) 1059 __hci_req_disable_advertising(&req); 1060 1061 /* If requested to connect as slave use directed advertising */ 1062 if (conn->role == HCI_ROLE_SLAVE) { 1063 /* If we're active scanning most controllers are unable 1064 * to initiate advertising. Simply reject the attempt. 1065 */ 1066 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) && 1067 hdev->le_scan_type == LE_SCAN_ACTIVE) { 1068 hci_req_purge(&req); 1069 hci_conn_del(conn); 1070 return ERR_PTR(-EBUSY); 1071 } 1072 1073 hci_req_directed_advertising(&req, conn); 1074 goto create_conn; 1075 } 1076 1077 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); 1078 if (params) { 1079 conn->le_conn_min_interval = params->conn_min_interval; 1080 conn->le_conn_max_interval = params->conn_max_interval; 1081 conn->le_conn_latency = params->conn_latency; 1082 conn->le_supv_timeout = params->supervision_timeout; 1083 } else { 1084 conn->le_conn_min_interval = hdev->le_conn_min_interval; 1085 conn->le_conn_max_interval = hdev->le_conn_max_interval; 1086 conn->le_conn_latency = hdev->le_conn_latency; 1087 conn->le_supv_timeout = hdev->le_supv_timeout; 1088 } 1089 1090 /* If controller is scanning, we stop it since some controllers are 1091 * not able to scan and connect at the same time. Also set the 1092 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete 1093 * handler for scan disabling knows to set the correct discovery 1094 * state. 1095 */ 1096 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 1097 hci_req_add_le_scan_disable(&req); 1098 hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED); 1099 } 1100 1101 hci_req_add_le_create_conn(&req, conn, direct_rpa); 1102 1103 create_conn: 1104 err = hci_req_run(&req, create_le_conn_complete); 1105 if (err) { 1106 hci_conn_del(conn); 1107 return ERR_PTR(err); 1108 } 1109 1110 return conn; 1111 } 1112 1113 static bool is_connected(struct hci_dev *hdev, bdaddr_t *addr, u8 type) 1114 { 1115 struct hci_conn *conn; 1116 1117 conn = hci_conn_hash_lookup_le(hdev, addr, type); 1118 if (!conn) 1119 return false; 1120 1121 if (conn->state != BT_CONNECTED) 1122 return false; 1123 1124 return true; 1125 } 1126 1127 /* This function requires the caller holds hdev->lock */ 1128 static int hci_explicit_conn_params_set(struct hci_dev *hdev, 1129 bdaddr_t *addr, u8 addr_type) 1130 { 1131 struct hci_conn_params *params; 1132 1133 if (is_connected(hdev, addr, addr_type)) 1134 return -EISCONN; 1135 1136 params = hci_conn_params_lookup(hdev, addr, addr_type); 1137 if (!params) { 1138 params = hci_conn_params_add(hdev, addr, addr_type); 1139 if (!params) 1140 return -ENOMEM; 1141 1142 /* If we created new params, mark them to be deleted in 1143 * hci_connect_le_scan_cleanup. It's different case than 1144 * existing disabled params, those will stay after cleanup. 1145 */ 1146 params->auto_connect = HCI_AUTO_CONN_EXPLICIT; 1147 } 1148 1149 /* We're trying to connect, so make sure params are at pend_le_conns */ 1150 if (params->auto_connect == HCI_AUTO_CONN_DISABLED || 1151 params->auto_connect == HCI_AUTO_CONN_REPORT || 1152 params->auto_connect == HCI_AUTO_CONN_EXPLICIT) { 1153 list_del_init(¶ms->action); 1154 list_add(¶ms->action, &hdev->pend_le_conns); 1155 } 1156 1157 params->explicit_connect = true; 1158 1159 BT_DBG("addr %pMR (type %u) auto_connect %u", addr, addr_type, 1160 params->auto_connect); 1161 1162 return 0; 1163 } 1164 1165 /* This function requires the caller holds hdev->lock */ 1166 struct hci_conn *hci_connect_le_scan(struct hci_dev *hdev, bdaddr_t *dst, 1167 u8 dst_type, u8 sec_level, 1168 u16 conn_timeout) 1169 { 1170 struct hci_conn *conn; 1171 1172 /* Let's make sure that le is enabled.*/ 1173 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 1174 if (lmp_le_capable(hdev)) 1175 return ERR_PTR(-ECONNREFUSED); 1176 1177 return ERR_PTR(-EOPNOTSUPP); 1178 } 1179 1180 /* Some devices send ATT messages as soon as the physical link is 1181 * established. To be able to handle these ATT messages, the user- 1182 * space first establishes the connection and then starts the pairing 1183 * process. 1184 * 1185 * So if a hci_conn object already exists for the following connection 1186 * attempt, we simply update pending_sec_level and auth_type fields 1187 * and return the object found. 1188 */ 1189 conn = hci_conn_hash_lookup_le(hdev, dst, dst_type); 1190 if (conn) { 1191 if (conn->pending_sec_level < sec_level) 1192 conn->pending_sec_level = sec_level; 1193 goto done; 1194 } 1195 1196 BT_DBG("requesting refresh of dst_addr"); 1197 1198 conn = hci_conn_add(hdev, LE_LINK, dst, HCI_ROLE_MASTER); 1199 if (!conn) 1200 return ERR_PTR(-ENOMEM); 1201 1202 if (hci_explicit_conn_params_set(hdev, dst, dst_type) < 0) { 1203 hci_conn_del(conn); 1204 return ERR_PTR(-EBUSY); 1205 } 1206 1207 conn->state = BT_CONNECT; 1208 set_bit(HCI_CONN_SCANNING, &conn->flags); 1209 conn->dst_type = dst_type; 1210 conn->sec_level = BT_SECURITY_LOW; 1211 conn->pending_sec_level = sec_level; 1212 conn->conn_timeout = conn_timeout; 1213 1214 hci_update_background_scan(hdev); 1215 1216 done: 1217 hci_conn_hold(conn); 1218 return conn; 1219 } 1220 1221 struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst, 1222 u8 sec_level, u8 auth_type) 1223 { 1224 struct hci_conn *acl; 1225 1226 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 1227 if (lmp_bredr_capable(hdev)) 1228 return ERR_PTR(-ECONNREFUSED); 1229 1230 return ERR_PTR(-EOPNOTSUPP); 1231 } 1232 1233 acl = hci_conn_hash_lookup_ba(hdev, ACL_LINK, dst); 1234 if (!acl) { 1235 acl = hci_conn_add(hdev, ACL_LINK, dst, HCI_ROLE_MASTER); 1236 if (!acl) 1237 return ERR_PTR(-ENOMEM); 1238 } 1239 1240 hci_conn_hold(acl); 1241 1242 if (acl->state == BT_OPEN || acl->state == BT_CLOSED) { 1243 acl->sec_level = BT_SECURITY_LOW; 1244 acl->pending_sec_level = sec_level; 1245 acl->auth_type = auth_type; 1246 hci_acl_create_connection(acl); 1247 } 1248 1249 return acl; 1250 } 1251 1252 struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst, 1253 __u16 setting) 1254 { 1255 struct hci_conn *acl; 1256 struct hci_conn *sco; 1257 1258 acl = hci_connect_acl(hdev, dst, BT_SECURITY_LOW, HCI_AT_NO_BONDING); 1259 if (IS_ERR(acl)) 1260 return acl; 1261 1262 sco = hci_conn_hash_lookup_ba(hdev, type, dst); 1263 if (!sco) { 1264 sco = hci_conn_add(hdev, type, dst, HCI_ROLE_MASTER); 1265 if (!sco) { 1266 hci_conn_drop(acl); 1267 return ERR_PTR(-ENOMEM); 1268 } 1269 } 1270 1271 acl->link = sco; 1272 sco->link = acl; 1273 1274 hci_conn_hold(sco); 1275 1276 sco->setting = setting; 1277 1278 if (acl->state == BT_CONNECTED && 1279 (sco->state == BT_OPEN || sco->state == BT_CLOSED)) { 1280 set_bit(HCI_CONN_POWER_SAVE, &acl->flags); 1281 hci_conn_enter_active_mode(acl, BT_POWER_FORCE_ACTIVE_ON); 1282 1283 if (test_bit(HCI_CONN_MODE_CHANGE_PEND, &acl->flags)) { 1284 /* defer SCO setup until mode change completed */ 1285 set_bit(HCI_CONN_SCO_SETUP_PEND, &acl->flags); 1286 return sco; 1287 } 1288 1289 hci_sco_setup(acl, 0x00); 1290 } 1291 1292 return sco; 1293 } 1294 1295 /* Check link security requirement */ 1296 int hci_conn_check_link_mode(struct hci_conn *conn) 1297 { 1298 BT_DBG("hcon %p", conn); 1299 1300 /* In Secure Connections Only mode, it is required that Secure 1301 * Connections is used and the link is encrypted with AES-CCM 1302 * using a P-256 authenticated combination key. 1303 */ 1304 if (hci_dev_test_flag(conn->hdev, HCI_SC_ONLY)) { 1305 if (!hci_conn_sc_enabled(conn) || 1306 !test_bit(HCI_CONN_AES_CCM, &conn->flags) || 1307 conn->key_type != HCI_LK_AUTH_COMBINATION_P256) 1308 return 0; 1309 } 1310 1311 if (hci_conn_ssp_enabled(conn) && 1312 !test_bit(HCI_CONN_ENCRYPT, &conn->flags)) 1313 return 0; 1314 1315 return 1; 1316 } 1317 1318 /* Authenticate remote device */ 1319 static int hci_conn_auth(struct hci_conn *conn, __u8 sec_level, __u8 auth_type) 1320 { 1321 BT_DBG("hcon %p", conn); 1322 1323 if (conn->pending_sec_level > sec_level) 1324 sec_level = conn->pending_sec_level; 1325 1326 if (sec_level > conn->sec_level) 1327 conn->pending_sec_level = sec_level; 1328 else if (test_bit(HCI_CONN_AUTH, &conn->flags)) 1329 return 1; 1330 1331 /* Make sure we preserve an existing MITM requirement*/ 1332 auth_type |= (conn->auth_type & 0x01); 1333 1334 conn->auth_type = auth_type; 1335 1336 if (!test_and_set_bit(HCI_CONN_AUTH_PEND, &conn->flags)) { 1337 struct hci_cp_auth_requested cp; 1338 1339 cp.handle = cpu_to_le16(conn->handle); 1340 hci_send_cmd(conn->hdev, HCI_OP_AUTH_REQUESTED, 1341 sizeof(cp), &cp); 1342 1343 /* If we're already encrypted set the REAUTH_PEND flag, 1344 * otherwise set the ENCRYPT_PEND. 1345 */ 1346 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) 1347 set_bit(HCI_CONN_REAUTH_PEND, &conn->flags); 1348 else 1349 set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags); 1350 } 1351 1352 return 0; 1353 } 1354 1355 /* Encrypt the the link */ 1356 static void hci_conn_encrypt(struct hci_conn *conn) 1357 { 1358 BT_DBG("hcon %p", conn); 1359 1360 if (!test_and_set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) { 1361 struct hci_cp_set_conn_encrypt cp; 1362 cp.handle = cpu_to_le16(conn->handle); 1363 cp.encrypt = 0x01; 1364 hci_send_cmd(conn->hdev, HCI_OP_SET_CONN_ENCRYPT, sizeof(cp), 1365 &cp); 1366 } 1367 } 1368 1369 /* Enable security */ 1370 int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type, 1371 bool initiator) 1372 { 1373 BT_DBG("hcon %p", conn); 1374 1375 if (conn->type == LE_LINK) 1376 return smp_conn_security(conn, sec_level); 1377 1378 /* For sdp we don't need the link key. */ 1379 if (sec_level == BT_SECURITY_SDP) 1380 return 1; 1381 1382 /* For non 2.1 devices and low security level we don't need the link 1383 key. */ 1384 if (sec_level == BT_SECURITY_LOW && !hci_conn_ssp_enabled(conn)) 1385 return 1; 1386 1387 /* For other security levels we need the link key. */ 1388 if (!test_bit(HCI_CONN_AUTH, &conn->flags)) 1389 goto auth; 1390 1391 /* An authenticated FIPS approved combination key has sufficient 1392 * security for security level 4. */ 1393 if (conn->key_type == HCI_LK_AUTH_COMBINATION_P256 && 1394 sec_level == BT_SECURITY_FIPS) 1395 goto encrypt; 1396 1397 /* An authenticated combination key has sufficient security for 1398 security level 3. */ 1399 if ((conn->key_type == HCI_LK_AUTH_COMBINATION_P192 || 1400 conn->key_type == HCI_LK_AUTH_COMBINATION_P256) && 1401 sec_level == BT_SECURITY_HIGH) 1402 goto encrypt; 1403 1404 /* An unauthenticated combination key has sufficient security for 1405 security level 1 and 2. */ 1406 if ((conn->key_type == HCI_LK_UNAUTH_COMBINATION_P192 || 1407 conn->key_type == HCI_LK_UNAUTH_COMBINATION_P256) && 1408 (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW)) 1409 goto encrypt; 1410 1411 /* A combination key has always sufficient security for the security 1412 levels 1 or 2. High security level requires the combination key 1413 is generated using maximum PIN code length (16). 1414 For pre 2.1 units. */ 1415 if (conn->key_type == HCI_LK_COMBINATION && 1416 (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW || 1417 conn->pin_length == 16)) 1418 goto encrypt; 1419 1420 auth: 1421 if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) 1422 return 0; 1423 1424 if (initiator) 1425 set_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags); 1426 1427 if (!hci_conn_auth(conn, sec_level, auth_type)) 1428 return 0; 1429 1430 encrypt: 1431 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) { 1432 /* Ensure that the encryption key size has been read, 1433 * otherwise stall the upper layer responses. 1434 */ 1435 if (!conn->enc_key_size) 1436 return 0; 1437 1438 /* Nothing else needed, all requirements are met */ 1439 return 1; 1440 } 1441 1442 hci_conn_encrypt(conn); 1443 return 0; 1444 } 1445 EXPORT_SYMBOL(hci_conn_security); 1446 1447 /* Check secure link requirement */ 1448 int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level) 1449 { 1450 BT_DBG("hcon %p", conn); 1451 1452 /* Accept if non-secure or higher security level is required */ 1453 if (sec_level != BT_SECURITY_HIGH && sec_level != BT_SECURITY_FIPS) 1454 return 1; 1455 1456 /* Accept if secure or higher security level is already present */ 1457 if (conn->sec_level == BT_SECURITY_HIGH || 1458 conn->sec_level == BT_SECURITY_FIPS) 1459 return 1; 1460 1461 /* Reject not secure link */ 1462 return 0; 1463 } 1464 EXPORT_SYMBOL(hci_conn_check_secure); 1465 1466 /* Switch role */ 1467 int hci_conn_switch_role(struct hci_conn *conn, __u8 role) 1468 { 1469 BT_DBG("hcon %p", conn); 1470 1471 if (role == conn->role) 1472 return 1; 1473 1474 if (!test_and_set_bit(HCI_CONN_RSWITCH_PEND, &conn->flags)) { 1475 struct hci_cp_switch_role cp; 1476 bacpy(&cp.bdaddr, &conn->dst); 1477 cp.role = role; 1478 hci_send_cmd(conn->hdev, HCI_OP_SWITCH_ROLE, sizeof(cp), &cp); 1479 } 1480 1481 return 0; 1482 } 1483 EXPORT_SYMBOL(hci_conn_switch_role); 1484 1485 /* Enter active mode */ 1486 void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active) 1487 { 1488 struct hci_dev *hdev = conn->hdev; 1489 1490 BT_DBG("hcon %p mode %d", conn, conn->mode); 1491 1492 if (conn->mode != HCI_CM_SNIFF) 1493 goto timer; 1494 1495 if (!test_bit(HCI_CONN_POWER_SAVE, &conn->flags) && !force_active) 1496 goto timer; 1497 1498 if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) { 1499 struct hci_cp_exit_sniff_mode cp; 1500 cp.handle = cpu_to_le16(conn->handle); 1501 hci_send_cmd(hdev, HCI_OP_EXIT_SNIFF_MODE, sizeof(cp), &cp); 1502 } 1503 1504 timer: 1505 if (hdev->idle_timeout > 0) 1506 queue_delayed_work(hdev->workqueue, &conn->idle_work, 1507 msecs_to_jiffies(hdev->idle_timeout)); 1508 } 1509 1510 /* Drop all connection on the device */ 1511 void hci_conn_hash_flush(struct hci_dev *hdev) 1512 { 1513 struct hci_conn_hash *h = &hdev->conn_hash; 1514 struct hci_conn *c, *n; 1515 1516 BT_DBG("hdev %s", hdev->name); 1517 1518 list_for_each_entry_safe(c, n, &h->list, list) { 1519 c->state = BT_CLOSED; 1520 1521 hci_disconn_cfm(c, HCI_ERROR_LOCAL_HOST_TERM); 1522 hci_conn_del(c); 1523 } 1524 } 1525 1526 /* Check pending connect attempts */ 1527 void hci_conn_check_pending(struct hci_dev *hdev) 1528 { 1529 struct hci_conn *conn; 1530 1531 BT_DBG("hdev %s", hdev->name); 1532 1533 hci_dev_lock(hdev); 1534 1535 conn = hci_conn_hash_lookup_state(hdev, ACL_LINK, BT_CONNECT2); 1536 if (conn) 1537 hci_acl_create_connection(conn); 1538 1539 hci_dev_unlock(hdev); 1540 } 1541 1542 static u32 get_link_mode(struct hci_conn *conn) 1543 { 1544 u32 link_mode = 0; 1545 1546 if (conn->role == HCI_ROLE_MASTER) 1547 link_mode |= HCI_LM_MASTER; 1548 1549 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) 1550 link_mode |= HCI_LM_ENCRYPT; 1551 1552 if (test_bit(HCI_CONN_AUTH, &conn->flags)) 1553 link_mode |= HCI_LM_AUTH; 1554 1555 if (test_bit(HCI_CONN_SECURE, &conn->flags)) 1556 link_mode |= HCI_LM_SECURE; 1557 1558 if (test_bit(HCI_CONN_FIPS, &conn->flags)) 1559 link_mode |= HCI_LM_FIPS; 1560 1561 return link_mode; 1562 } 1563 1564 int hci_get_conn_list(void __user *arg) 1565 { 1566 struct hci_conn *c; 1567 struct hci_conn_list_req req, *cl; 1568 struct hci_conn_info *ci; 1569 struct hci_dev *hdev; 1570 int n = 0, size, err; 1571 1572 if (copy_from_user(&req, arg, sizeof(req))) 1573 return -EFAULT; 1574 1575 if (!req.conn_num || req.conn_num > (PAGE_SIZE * 2) / sizeof(*ci)) 1576 return -EINVAL; 1577 1578 size = sizeof(req) + req.conn_num * sizeof(*ci); 1579 1580 cl = kmalloc(size, GFP_KERNEL); 1581 if (!cl) 1582 return -ENOMEM; 1583 1584 hdev = hci_dev_get(req.dev_id); 1585 if (!hdev) { 1586 kfree(cl); 1587 return -ENODEV; 1588 } 1589 1590 ci = cl->conn_info; 1591 1592 hci_dev_lock(hdev); 1593 list_for_each_entry(c, &hdev->conn_hash.list, list) { 1594 bacpy(&(ci + n)->bdaddr, &c->dst); 1595 (ci + n)->handle = c->handle; 1596 (ci + n)->type = c->type; 1597 (ci + n)->out = c->out; 1598 (ci + n)->state = c->state; 1599 (ci + n)->link_mode = get_link_mode(c); 1600 if (++n >= req.conn_num) 1601 break; 1602 } 1603 hci_dev_unlock(hdev); 1604 1605 cl->dev_id = hdev->id; 1606 cl->conn_num = n; 1607 size = sizeof(req) + n * sizeof(*ci); 1608 1609 hci_dev_put(hdev); 1610 1611 err = copy_to_user(arg, cl, size); 1612 kfree(cl); 1613 1614 return err ? -EFAULT : 0; 1615 } 1616 1617 int hci_get_conn_info(struct hci_dev *hdev, void __user *arg) 1618 { 1619 struct hci_conn_info_req req; 1620 struct hci_conn_info ci; 1621 struct hci_conn *conn; 1622 char __user *ptr = arg + sizeof(req); 1623 1624 if (copy_from_user(&req, arg, sizeof(req))) 1625 return -EFAULT; 1626 1627 hci_dev_lock(hdev); 1628 conn = hci_conn_hash_lookup_ba(hdev, req.type, &req.bdaddr); 1629 if (conn) { 1630 bacpy(&ci.bdaddr, &conn->dst); 1631 ci.handle = conn->handle; 1632 ci.type = conn->type; 1633 ci.out = conn->out; 1634 ci.state = conn->state; 1635 ci.link_mode = get_link_mode(conn); 1636 } 1637 hci_dev_unlock(hdev); 1638 1639 if (!conn) 1640 return -ENOENT; 1641 1642 return copy_to_user(ptr, &ci, sizeof(ci)) ? -EFAULT : 0; 1643 } 1644 1645 int hci_get_auth_info(struct hci_dev *hdev, void __user *arg) 1646 { 1647 struct hci_auth_info_req req; 1648 struct hci_conn *conn; 1649 1650 if (copy_from_user(&req, arg, sizeof(req))) 1651 return -EFAULT; 1652 1653 hci_dev_lock(hdev); 1654 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &req.bdaddr); 1655 if (conn) 1656 req.type = conn->auth_type; 1657 hci_dev_unlock(hdev); 1658 1659 if (!conn) 1660 return -ENOENT; 1661 1662 return copy_to_user(arg, &req, sizeof(req)) ? -EFAULT : 0; 1663 } 1664 1665 struct hci_chan *hci_chan_create(struct hci_conn *conn) 1666 { 1667 struct hci_dev *hdev = conn->hdev; 1668 struct hci_chan *chan; 1669 1670 BT_DBG("%s hcon %p", hdev->name, conn); 1671 1672 if (test_bit(HCI_CONN_DROP, &conn->flags)) { 1673 BT_DBG("Refusing to create new hci_chan"); 1674 return NULL; 1675 } 1676 1677 chan = kzalloc(sizeof(*chan), GFP_KERNEL); 1678 if (!chan) 1679 return NULL; 1680 1681 chan->conn = hci_conn_get(conn); 1682 skb_queue_head_init(&chan->data_q); 1683 chan->state = BT_CONNECTED; 1684 1685 list_add_rcu(&chan->list, &conn->chan_list); 1686 1687 return chan; 1688 } 1689 1690 void hci_chan_del(struct hci_chan *chan) 1691 { 1692 struct hci_conn *conn = chan->conn; 1693 struct hci_dev *hdev = conn->hdev; 1694 1695 BT_DBG("%s hcon %p chan %p", hdev->name, conn, chan); 1696 1697 list_del_rcu(&chan->list); 1698 1699 synchronize_rcu(); 1700 1701 /* Prevent new hci_chan's to be created for this hci_conn */ 1702 set_bit(HCI_CONN_DROP, &conn->flags); 1703 1704 hci_conn_put(conn); 1705 1706 skb_queue_purge(&chan->data_q); 1707 kfree(chan); 1708 } 1709 1710 void hci_chan_list_flush(struct hci_conn *conn) 1711 { 1712 struct hci_chan *chan, *n; 1713 1714 BT_DBG("hcon %p", conn); 1715 1716 list_for_each_entry_safe(chan, n, &conn->chan_list, list) 1717 hci_chan_del(chan); 1718 } 1719 1720 static struct hci_chan *__hci_chan_lookup_handle(struct hci_conn *hcon, 1721 __u16 handle) 1722 { 1723 struct hci_chan *hchan; 1724 1725 list_for_each_entry(hchan, &hcon->chan_list, list) { 1726 if (hchan->handle == handle) 1727 return hchan; 1728 } 1729 1730 return NULL; 1731 } 1732 1733 struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle) 1734 { 1735 struct hci_conn_hash *h = &hdev->conn_hash; 1736 struct hci_conn *hcon; 1737 struct hci_chan *hchan = NULL; 1738 1739 rcu_read_lock(); 1740 1741 list_for_each_entry_rcu(hcon, &h->list, list) { 1742 hchan = __hci_chan_lookup_handle(hcon, handle); 1743 if (hchan) 1744 break; 1745 } 1746 1747 rcu_read_unlock(); 1748 1749 return hchan; 1750 } 1751 1752 u32 hci_conn_get_phy(struct hci_conn *conn) 1753 { 1754 u32 phys = 0; 1755 1756 hci_dev_lock(conn->hdev); 1757 1758 /* BLUETOOTH CORE SPECIFICATION Version 5.2 | Vol 2, Part B page 471: 1759 * Table 6.2: Packets defined for synchronous, asynchronous, and 1760 * CSB logical transport types. 1761 */ 1762 switch (conn->type) { 1763 case SCO_LINK: 1764 /* SCO logical transport (1 Mb/s): 1765 * HV1, HV2, HV3 and DV. 1766 */ 1767 phys |= BT_PHY_BR_1M_1SLOT; 1768 1769 break; 1770 1771 case ACL_LINK: 1772 /* ACL logical transport (1 Mb/s) ptt=0: 1773 * DH1, DM3, DH3, DM5 and DH5. 1774 */ 1775 phys |= BT_PHY_BR_1M_1SLOT; 1776 1777 if (conn->pkt_type & (HCI_DM3 | HCI_DH3)) 1778 phys |= BT_PHY_BR_1M_3SLOT; 1779 1780 if (conn->pkt_type & (HCI_DM5 | HCI_DH5)) 1781 phys |= BT_PHY_BR_1M_5SLOT; 1782 1783 /* ACL logical transport (2 Mb/s) ptt=1: 1784 * 2-DH1, 2-DH3 and 2-DH5. 1785 */ 1786 if (!(conn->pkt_type & HCI_2DH1)) 1787 phys |= BT_PHY_EDR_2M_1SLOT; 1788 1789 if (!(conn->pkt_type & HCI_2DH3)) 1790 phys |= BT_PHY_EDR_2M_3SLOT; 1791 1792 if (!(conn->pkt_type & HCI_2DH5)) 1793 phys |= BT_PHY_EDR_2M_5SLOT; 1794 1795 /* ACL logical transport (3 Mb/s) ptt=1: 1796 * 3-DH1, 3-DH3 and 3-DH5. 1797 */ 1798 if (!(conn->pkt_type & HCI_3DH1)) 1799 phys |= BT_PHY_EDR_3M_1SLOT; 1800 1801 if (!(conn->pkt_type & HCI_3DH3)) 1802 phys |= BT_PHY_EDR_3M_3SLOT; 1803 1804 if (!(conn->pkt_type & HCI_3DH5)) 1805 phys |= BT_PHY_EDR_3M_5SLOT; 1806 1807 break; 1808 1809 case ESCO_LINK: 1810 /* eSCO logical transport (1 Mb/s): EV3, EV4 and EV5 */ 1811 phys |= BT_PHY_BR_1M_1SLOT; 1812 1813 if (!(conn->pkt_type & (ESCO_EV4 | ESCO_EV5))) 1814 phys |= BT_PHY_BR_1M_3SLOT; 1815 1816 /* eSCO logical transport (2 Mb/s): 2-EV3, 2-EV5 */ 1817 if (!(conn->pkt_type & ESCO_2EV3)) 1818 phys |= BT_PHY_EDR_2M_1SLOT; 1819 1820 if (!(conn->pkt_type & ESCO_2EV5)) 1821 phys |= BT_PHY_EDR_2M_3SLOT; 1822 1823 /* eSCO logical transport (3 Mb/s): 3-EV3, 3-EV5 */ 1824 if (!(conn->pkt_type & ESCO_3EV3)) 1825 phys |= BT_PHY_EDR_3M_1SLOT; 1826 1827 if (!(conn->pkt_type & ESCO_3EV5)) 1828 phys |= BT_PHY_EDR_3M_3SLOT; 1829 1830 break; 1831 1832 case LE_LINK: 1833 if (conn->le_tx_phy & HCI_LE_SET_PHY_1M) 1834 phys |= BT_PHY_LE_1M_TX; 1835 1836 if (conn->le_rx_phy & HCI_LE_SET_PHY_1M) 1837 phys |= BT_PHY_LE_1M_RX; 1838 1839 if (conn->le_tx_phy & HCI_LE_SET_PHY_2M) 1840 phys |= BT_PHY_LE_2M_TX; 1841 1842 if (conn->le_rx_phy & HCI_LE_SET_PHY_2M) 1843 phys |= BT_PHY_LE_2M_RX; 1844 1845 if (conn->le_tx_phy & HCI_LE_SET_PHY_CODED) 1846 phys |= BT_PHY_LE_CODED_TX; 1847 1848 if (conn->le_rx_phy & HCI_LE_SET_PHY_CODED) 1849 phys |= BT_PHY_LE_CODED_RX; 1850 1851 break; 1852 } 1853 1854 hci_dev_unlock(conn->hdev); 1855 1856 return phys; 1857 } 1858