xref: /linux/net/bluetooth/hci_conn.c (revision 1f8d99de1d1b4b3764203ae02db57041475dab84)
1 /*
2    BlueZ - Bluetooth protocol stack for Linux
3    Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved.
4 
5    Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License version 2 as
9    published by the Free Software Foundation;
10 
11    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
12    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
13    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
14    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
15    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
16    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 
20    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
21    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
22    SOFTWARE IS DISCLAIMED.
23 */
24 
25 /* Bluetooth HCI connection handling. */
26 
27 #include <linux/export.h>
28 #include <linux/debugfs.h>
29 
30 #include <net/bluetooth/bluetooth.h>
31 #include <net/bluetooth/hci_core.h>
32 #include <net/bluetooth/l2cap.h>
33 
34 #include "hci_request.h"
35 #include "smp.h"
36 #include "a2mp.h"
37 
38 struct sco_param {
39 	u16 pkt_type;
40 	u16 max_latency;
41 	u8  retrans_effort;
42 };
43 
44 static const struct sco_param esco_param_cvsd[] = {
45 	{ EDR_ESCO_MASK & ~ESCO_2EV3, 0x000a,	0x01 }, /* S3 */
46 	{ EDR_ESCO_MASK & ~ESCO_2EV3, 0x0007,	0x01 }, /* S2 */
47 	{ EDR_ESCO_MASK | ESCO_EV3,   0x0007,	0x01 }, /* S1 */
48 	{ EDR_ESCO_MASK | ESCO_HV3,   0xffff,	0x01 }, /* D1 */
49 	{ EDR_ESCO_MASK | ESCO_HV1,   0xffff,	0x01 }, /* D0 */
50 };
51 
52 static const struct sco_param sco_param_cvsd[] = {
53 	{ EDR_ESCO_MASK | ESCO_HV3,   0xffff,	0xff }, /* D1 */
54 	{ EDR_ESCO_MASK | ESCO_HV1,   0xffff,	0xff }, /* D0 */
55 };
56 
57 static const struct sco_param esco_param_msbc[] = {
58 	{ EDR_ESCO_MASK & ~ESCO_2EV3, 0x000d,	0x02 }, /* T2 */
59 	{ EDR_ESCO_MASK | ESCO_EV3,   0x0008,	0x02 }, /* T1 */
60 };
61 
62 /* This function requires the caller holds hdev->lock */
63 static void hci_connect_le_scan_cleanup(struct hci_conn *conn)
64 {
65 	struct hci_conn_params *params;
66 	struct hci_dev *hdev = conn->hdev;
67 	struct smp_irk *irk;
68 	bdaddr_t *bdaddr;
69 	u8 bdaddr_type;
70 
71 	bdaddr = &conn->dst;
72 	bdaddr_type = conn->dst_type;
73 
74 	/* Check if we need to convert to identity address */
75 	irk = hci_get_irk(hdev, bdaddr, bdaddr_type);
76 	if (irk) {
77 		bdaddr = &irk->bdaddr;
78 		bdaddr_type = irk->addr_type;
79 	}
80 
81 	params = hci_pend_le_action_lookup(&hdev->pend_le_conns, bdaddr,
82 					   bdaddr_type);
83 	if (!params || !params->explicit_connect)
84 		return;
85 
86 	/* The connection attempt was doing scan for new RPA, and is
87 	 * in scan phase. If params are not associated with any other
88 	 * autoconnect action, remove them completely. If they are, just unmark
89 	 * them as waiting for connection, by clearing explicit_connect field.
90 	 */
91 	params->explicit_connect = false;
92 
93 	list_del_init(&params->action);
94 
95 	switch (params->auto_connect) {
96 	case HCI_AUTO_CONN_EXPLICIT:
97 		hci_conn_params_del(hdev, bdaddr, bdaddr_type);
98 		/* return instead of break to avoid duplicate scan update */
99 		return;
100 	case HCI_AUTO_CONN_DIRECT:
101 	case HCI_AUTO_CONN_ALWAYS:
102 		list_add(&params->action, &hdev->pend_le_conns);
103 		break;
104 	case HCI_AUTO_CONN_REPORT:
105 		list_add(&params->action, &hdev->pend_le_reports);
106 		break;
107 	default:
108 		break;
109 	}
110 
111 	hci_update_passive_scan(hdev);
112 }
113 
114 static void hci_conn_cleanup(struct hci_conn *conn)
115 {
116 	struct hci_dev *hdev = conn->hdev;
117 
118 	if (test_bit(HCI_CONN_PARAM_REMOVAL_PEND, &conn->flags))
119 		hci_conn_params_del(conn->hdev, &conn->dst, conn->dst_type);
120 
121 	hci_chan_list_flush(conn);
122 
123 	hci_conn_hash_del(hdev, conn);
124 
125 	if (conn->type == SCO_LINK || conn->type == ESCO_LINK) {
126 		switch (conn->setting & SCO_AIRMODE_MASK) {
127 		case SCO_AIRMODE_CVSD:
128 		case SCO_AIRMODE_TRANSP:
129 			if (hdev->notify)
130 				hdev->notify(hdev, HCI_NOTIFY_DISABLE_SCO);
131 			break;
132 		}
133 	} else {
134 		if (hdev->notify)
135 			hdev->notify(hdev, HCI_NOTIFY_CONN_DEL);
136 	}
137 
138 	hci_conn_del_sysfs(conn);
139 
140 	debugfs_remove_recursive(conn->debugfs);
141 
142 	hci_dev_put(hdev);
143 
144 	hci_conn_put(conn);
145 }
146 
147 static void le_scan_cleanup(struct work_struct *work)
148 {
149 	struct hci_conn *conn = container_of(work, struct hci_conn,
150 					     le_scan_cleanup);
151 	struct hci_dev *hdev = conn->hdev;
152 	struct hci_conn *c = NULL;
153 
154 	BT_DBG("%s hcon %p", hdev->name, conn);
155 
156 	hci_dev_lock(hdev);
157 
158 	/* Check that the hci_conn is still around */
159 	rcu_read_lock();
160 	list_for_each_entry_rcu(c, &hdev->conn_hash.list, list) {
161 		if (c == conn)
162 			break;
163 	}
164 	rcu_read_unlock();
165 
166 	if (c == conn) {
167 		hci_connect_le_scan_cleanup(conn);
168 		hci_conn_cleanup(conn);
169 	}
170 
171 	hci_dev_unlock(hdev);
172 	hci_dev_put(hdev);
173 	hci_conn_put(conn);
174 }
175 
176 static void hci_connect_le_scan_remove(struct hci_conn *conn)
177 {
178 	BT_DBG("%s hcon %p", conn->hdev->name, conn);
179 
180 	/* We can't call hci_conn_del/hci_conn_cleanup here since that
181 	 * could deadlock with another hci_conn_del() call that's holding
182 	 * hci_dev_lock and doing cancel_delayed_work_sync(&conn->disc_work).
183 	 * Instead, grab temporary extra references to the hci_dev and
184 	 * hci_conn and perform the necessary cleanup in a separate work
185 	 * callback.
186 	 */
187 
188 	hci_dev_hold(conn->hdev);
189 	hci_conn_get(conn);
190 
191 	/* Even though we hold a reference to the hdev, many other
192 	 * things might get cleaned up meanwhile, including the hdev's
193 	 * own workqueue, so we can't use that for scheduling.
194 	 */
195 	schedule_work(&conn->le_scan_cleanup);
196 }
197 
198 static void hci_acl_create_connection(struct hci_conn *conn)
199 {
200 	struct hci_dev *hdev = conn->hdev;
201 	struct inquiry_entry *ie;
202 	struct hci_cp_create_conn cp;
203 
204 	BT_DBG("hcon %p", conn);
205 
206 	/* Many controllers disallow HCI Create Connection while it is doing
207 	 * HCI Inquiry. So we cancel the Inquiry first before issuing HCI Create
208 	 * Connection. This may cause the MGMT discovering state to become false
209 	 * without user space's request but it is okay since the MGMT Discovery
210 	 * APIs do not promise that discovery should be done forever. Instead,
211 	 * the user space monitors the status of MGMT discovering and it may
212 	 * request for discovery again when this flag becomes false.
213 	 */
214 	if (test_bit(HCI_INQUIRY, &hdev->flags)) {
215 		/* Put this connection to "pending" state so that it will be
216 		 * executed after the inquiry cancel command complete event.
217 		 */
218 		conn->state = BT_CONNECT2;
219 		hci_send_cmd(hdev, HCI_OP_INQUIRY_CANCEL, 0, NULL);
220 		return;
221 	}
222 
223 	conn->state = BT_CONNECT;
224 	conn->out = true;
225 	conn->role = HCI_ROLE_MASTER;
226 
227 	conn->attempt++;
228 
229 	conn->link_policy = hdev->link_policy;
230 
231 	memset(&cp, 0, sizeof(cp));
232 	bacpy(&cp.bdaddr, &conn->dst);
233 	cp.pscan_rep_mode = 0x02;
234 
235 	ie = hci_inquiry_cache_lookup(hdev, &conn->dst);
236 	if (ie) {
237 		if (inquiry_entry_age(ie) <= INQUIRY_ENTRY_AGE_MAX) {
238 			cp.pscan_rep_mode = ie->data.pscan_rep_mode;
239 			cp.pscan_mode     = ie->data.pscan_mode;
240 			cp.clock_offset   = ie->data.clock_offset |
241 					    cpu_to_le16(0x8000);
242 		}
243 
244 		memcpy(conn->dev_class, ie->data.dev_class, 3);
245 	}
246 
247 	cp.pkt_type = cpu_to_le16(conn->pkt_type);
248 	if (lmp_rswitch_capable(hdev) && !(hdev->link_mode & HCI_LM_MASTER))
249 		cp.role_switch = 0x01;
250 	else
251 		cp.role_switch = 0x00;
252 
253 	hci_send_cmd(hdev, HCI_OP_CREATE_CONN, sizeof(cp), &cp);
254 }
255 
256 int hci_disconnect(struct hci_conn *conn, __u8 reason)
257 {
258 	BT_DBG("hcon %p", conn);
259 
260 	/* When we are central of an established connection and it enters
261 	 * the disconnect timeout, then go ahead and try to read the
262 	 * current clock offset.  Processing of the result is done
263 	 * within the event handling and hci_clock_offset_evt function.
264 	 */
265 	if (conn->type == ACL_LINK && conn->role == HCI_ROLE_MASTER &&
266 	    (conn->state == BT_CONNECTED || conn->state == BT_CONFIG)) {
267 		struct hci_dev *hdev = conn->hdev;
268 		struct hci_cp_read_clock_offset clkoff_cp;
269 
270 		clkoff_cp.handle = cpu_to_le16(conn->handle);
271 		hci_send_cmd(hdev, HCI_OP_READ_CLOCK_OFFSET, sizeof(clkoff_cp),
272 			     &clkoff_cp);
273 	}
274 
275 	return hci_abort_conn(conn, reason);
276 }
277 
278 static void hci_add_sco(struct hci_conn *conn, __u16 handle)
279 {
280 	struct hci_dev *hdev = conn->hdev;
281 	struct hci_cp_add_sco cp;
282 
283 	BT_DBG("hcon %p", conn);
284 
285 	conn->state = BT_CONNECT;
286 	conn->out = true;
287 
288 	conn->attempt++;
289 
290 	cp.handle   = cpu_to_le16(handle);
291 	cp.pkt_type = cpu_to_le16(conn->pkt_type);
292 
293 	hci_send_cmd(hdev, HCI_OP_ADD_SCO, sizeof(cp), &cp);
294 }
295 
296 static bool find_next_esco_param(struct hci_conn *conn,
297 				 const struct sco_param *esco_param, int size)
298 {
299 	for (; conn->attempt <= size; conn->attempt++) {
300 		if (lmp_esco_2m_capable(conn->link) ||
301 		    (esco_param[conn->attempt - 1].pkt_type & ESCO_2EV3))
302 			break;
303 		BT_DBG("hcon %p skipped attempt %d, eSCO 2M not supported",
304 		       conn, conn->attempt);
305 	}
306 
307 	return conn->attempt <= size;
308 }
309 
310 static bool hci_enhanced_setup_sync_conn(struct hci_conn *conn, __u16 handle)
311 {
312 	struct hci_dev *hdev = conn->hdev;
313 	struct hci_cp_enhanced_setup_sync_conn cp;
314 	const struct sco_param *param;
315 
316 	bt_dev_dbg(hdev, "hcon %p", conn);
317 
318 	/* for offload use case, codec needs to configured before opening SCO */
319 	if (conn->codec.data_path)
320 		hci_req_configure_datapath(hdev, &conn->codec);
321 
322 	conn->state = BT_CONNECT;
323 	conn->out = true;
324 
325 	conn->attempt++;
326 
327 	memset(&cp, 0x00, sizeof(cp));
328 
329 	cp.handle   = cpu_to_le16(handle);
330 
331 	cp.tx_bandwidth   = cpu_to_le32(0x00001f40);
332 	cp.rx_bandwidth   = cpu_to_le32(0x00001f40);
333 
334 	switch (conn->codec.id) {
335 	case BT_CODEC_MSBC:
336 		if (!find_next_esco_param(conn, esco_param_msbc,
337 					  ARRAY_SIZE(esco_param_msbc)))
338 			return false;
339 
340 		param = &esco_param_msbc[conn->attempt - 1];
341 		cp.tx_coding_format.id = 0x05;
342 		cp.rx_coding_format.id = 0x05;
343 		cp.tx_codec_frame_size = __cpu_to_le16(60);
344 		cp.rx_codec_frame_size = __cpu_to_le16(60);
345 		cp.in_bandwidth = __cpu_to_le32(32000);
346 		cp.out_bandwidth = __cpu_to_le32(32000);
347 		cp.in_coding_format.id = 0x04;
348 		cp.out_coding_format.id = 0x04;
349 		cp.in_coded_data_size = __cpu_to_le16(16);
350 		cp.out_coded_data_size = __cpu_to_le16(16);
351 		cp.in_pcm_data_format = 2;
352 		cp.out_pcm_data_format = 2;
353 		cp.in_pcm_sample_payload_msb_pos = 0;
354 		cp.out_pcm_sample_payload_msb_pos = 0;
355 		cp.in_data_path = conn->codec.data_path;
356 		cp.out_data_path = conn->codec.data_path;
357 		cp.in_transport_unit_size = 1;
358 		cp.out_transport_unit_size = 1;
359 		break;
360 
361 	case BT_CODEC_TRANSPARENT:
362 		if (!find_next_esco_param(conn, esco_param_msbc,
363 					  ARRAY_SIZE(esco_param_msbc)))
364 			return false;
365 		param = &esco_param_msbc[conn->attempt - 1];
366 		cp.tx_coding_format.id = 0x03;
367 		cp.rx_coding_format.id = 0x03;
368 		cp.tx_codec_frame_size = __cpu_to_le16(60);
369 		cp.rx_codec_frame_size = __cpu_to_le16(60);
370 		cp.in_bandwidth = __cpu_to_le32(0x1f40);
371 		cp.out_bandwidth = __cpu_to_le32(0x1f40);
372 		cp.in_coding_format.id = 0x03;
373 		cp.out_coding_format.id = 0x03;
374 		cp.in_coded_data_size = __cpu_to_le16(16);
375 		cp.out_coded_data_size = __cpu_to_le16(16);
376 		cp.in_pcm_data_format = 2;
377 		cp.out_pcm_data_format = 2;
378 		cp.in_pcm_sample_payload_msb_pos = 0;
379 		cp.out_pcm_sample_payload_msb_pos = 0;
380 		cp.in_data_path = conn->codec.data_path;
381 		cp.out_data_path = conn->codec.data_path;
382 		cp.in_transport_unit_size = 1;
383 		cp.out_transport_unit_size = 1;
384 		break;
385 
386 	case BT_CODEC_CVSD:
387 		if (lmp_esco_capable(conn->link)) {
388 			if (!find_next_esco_param(conn, esco_param_cvsd,
389 						  ARRAY_SIZE(esco_param_cvsd)))
390 				return false;
391 			param = &esco_param_cvsd[conn->attempt - 1];
392 		} else {
393 			if (conn->attempt > ARRAY_SIZE(sco_param_cvsd))
394 				return false;
395 			param = &sco_param_cvsd[conn->attempt - 1];
396 		}
397 		cp.tx_coding_format.id = 2;
398 		cp.rx_coding_format.id = 2;
399 		cp.tx_codec_frame_size = __cpu_to_le16(60);
400 		cp.rx_codec_frame_size = __cpu_to_le16(60);
401 		cp.in_bandwidth = __cpu_to_le32(16000);
402 		cp.out_bandwidth = __cpu_to_le32(16000);
403 		cp.in_coding_format.id = 4;
404 		cp.out_coding_format.id = 4;
405 		cp.in_coded_data_size = __cpu_to_le16(16);
406 		cp.out_coded_data_size = __cpu_to_le16(16);
407 		cp.in_pcm_data_format = 2;
408 		cp.out_pcm_data_format = 2;
409 		cp.in_pcm_sample_payload_msb_pos = 0;
410 		cp.out_pcm_sample_payload_msb_pos = 0;
411 		cp.in_data_path = conn->codec.data_path;
412 		cp.out_data_path = conn->codec.data_path;
413 		cp.in_transport_unit_size = 16;
414 		cp.out_transport_unit_size = 16;
415 		break;
416 	default:
417 		return false;
418 	}
419 
420 	cp.retrans_effort = param->retrans_effort;
421 	cp.pkt_type = __cpu_to_le16(param->pkt_type);
422 	cp.max_latency = __cpu_to_le16(param->max_latency);
423 
424 	if (hci_send_cmd(hdev, HCI_OP_ENHANCED_SETUP_SYNC_CONN, sizeof(cp), &cp) < 0)
425 		return false;
426 
427 	return true;
428 }
429 
430 static bool hci_setup_sync_conn(struct hci_conn *conn, __u16 handle)
431 {
432 	struct hci_dev *hdev = conn->hdev;
433 	struct hci_cp_setup_sync_conn cp;
434 	const struct sco_param *param;
435 
436 	bt_dev_dbg(hdev, "hcon %p", conn);
437 
438 	conn->state = BT_CONNECT;
439 	conn->out = true;
440 
441 	conn->attempt++;
442 
443 	cp.handle   = cpu_to_le16(handle);
444 
445 	cp.tx_bandwidth   = cpu_to_le32(0x00001f40);
446 	cp.rx_bandwidth   = cpu_to_le32(0x00001f40);
447 	cp.voice_setting  = cpu_to_le16(conn->setting);
448 
449 	switch (conn->setting & SCO_AIRMODE_MASK) {
450 	case SCO_AIRMODE_TRANSP:
451 		if (!find_next_esco_param(conn, esco_param_msbc,
452 					  ARRAY_SIZE(esco_param_msbc)))
453 			return false;
454 		param = &esco_param_msbc[conn->attempt - 1];
455 		break;
456 	case SCO_AIRMODE_CVSD:
457 		if (lmp_esco_capable(conn->link)) {
458 			if (!find_next_esco_param(conn, esco_param_cvsd,
459 						  ARRAY_SIZE(esco_param_cvsd)))
460 				return false;
461 			param = &esco_param_cvsd[conn->attempt - 1];
462 		} else {
463 			if (conn->attempt > ARRAY_SIZE(sco_param_cvsd))
464 				return false;
465 			param = &sco_param_cvsd[conn->attempt - 1];
466 		}
467 		break;
468 	default:
469 		return false;
470 	}
471 
472 	cp.retrans_effort = param->retrans_effort;
473 	cp.pkt_type = __cpu_to_le16(param->pkt_type);
474 	cp.max_latency = __cpu_to_le16(param->max_latency);
475 
476 	if (hci_send_cmd(hdev, HCI_OP_SETUP_SYNC_CONN, sizeof(cp), &cp) < 0)
477 		return false;
478 
479 	return true;
480 }
481 
482 bool hci_setup_sync(struct hci_conn *conn, __u16 handle)
483 {
484 	if (enhanced_sco_capable(conn->hdev))
485 		return hci_enhanced_setup_sync_conn(conn, handle);
486 
487 	return hci_setup_sync_conn(conn, handle);
488 }
489 
490 u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency,
491 		      u16 to_multiplier)
492 {
493 	struct hci_dev *hdev = conn->hdev;
494 	struct hci_conn_params *params;
495 	struct hci_cp_le_conn_update cp;
496 
497 	hci_dev_lock(hdev);
498 
499 	params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
500 	if (params) {
501 		params->conn_min_interval = min;
502 		params->conn_max_interval = max;
503 		params->conn_latency = latency;
504 		params->supervision_timeout = to_multiplier;
505 	}
506 
507 	hci_dev_unlock(hdev);
508 
509 	memset(&cp, 0, sizeof(cp));
510 	cp.handle		= cpu_to_le16(conn->handle);
511 	cp.conn_interval_min	= cpu_to_le16(min);
512 	cp.conn_interval_max	= cpu_to_le16(max);
513 	cp.conn_latency		= cpu_to_le16(latency);
514 	cp.supervision_timeout	= cpu_to_le16(to_multiplier);
515 	cp.min_ce_len		= cpu_to_le16(0x0000);
516 	cp.max_ce_len		= cpu_to_le16(0x0000);
517 
518 	hci_send_cmd(hdev, HCI_OP_LE_CONN_UPDATE, sizeof(cp), &cp);
519 
520 	if (params)
521 		return 0x01;
522 
523 	return 0x00;
524 }
525 
526 void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand,
527 		      __u8 ltk[16], __u8 key_size)
528 {
529 	struct hci_dev *hdev = conn->hdev;
530 	struct hci_cp_le_start_enc cp;
531 
532 	BT_DBG("hcon %p", conn);
533 
534 	memset(&cp, 0, sizeof(cp));
535 
536 	cp.handle = cpu_to_le16(conn->handle);
537 	cp.rand = rand;
538 	cp.ediv = ediv;
539 	memcpy(cp.ltk, ltk, key_size);
540 
541 	hci_send_cmd(hdev, HCI_OP_LE_START_ENC, sizeof(cp), &cp);
542 }
543 
544 /* Device _must_ be locked */
545 void hci_sco_setup(struct hci_conn *conn, __u8 status)
546 {
547 	struct hci_conn *sco = conn->link;
548 
549 	if (!sco)
550 		return;
551 
552 	BT_DBG("hcon %p", conn);
553 
554 	if (!status) {
555 		if (lmp_esco_capable(conn->hdev))
556 			hci_setup_sync(sco, conn->handle);
557 		else
558 			hci_add_sco(sco, conn->handle);
559 	} else {
560 		hci_connect_cfm(sco, status);
561 		hci_conn_del(sco);
562 	}
563 }
564 
565 static void hci_conn_timeout(struct work_struct *work)
566 {
567 	struct hci_conn *conn = container_of(work, struct hci_conn,
568 					     disc_work.work);
569 	int refcnt = atomic_read(&conn->refcnt);
570 
571 	BT_DBG("hcon %p state %s", conn, state_to_string(conn->state));
572 
573 	WARN_ON(refcnt < 0);
574 
575 	/* FIXME: It was observed that in pairing failed scenario, refcnt
576 	 * drops below 0. Probably this is because l2cap_conn_del calls
577 	 * l2cap_chan_del for each channel, and inside l2cap_chan_del conn is
578 	 * dropped. After that loop hci_chan_del is called which also drops
579 	 * conn. For now make sure that ACL is alive if refcnt is higher then 0,
580 	 * otherwise drop it.
581 	 */
582 	if (refcnt > 0)
583 		return;
584 
585 	/* LE connections in scanning state need special handling */
586 	if (conn->state == BT_CONNECT && conn->type == LE_LINK &&
587 	    test_bit(HCI_CONN_SCANNING, &conn->flags)) {
588 		hci_connect_le_scan_remove(conn);
589 		return;
590 	}
591 
592 	hci_abort_conn(conn, hci_proto_disconn_ind(conn));
593 }
594 
595 /* Enter sniff mode */
596 static void hci_conn_idle(struct work_struct *work)
597 {
598 	struct hci_conn *conn = container_of(work, struct hci_conn,
599 					     idle_work.work);
600 	struct hci_dev *hdev = conn->hdev;
601 
602 	BT_DBG("hcon %p mode %d", conn, conn->mode);
603 
604 	if (!lmp_sniff_capable(hdev) || !lmp_sniff_capable(conn))
605 		return;
606 
607 	if (conn->mode != HCI_CM_ACTIVE || !(conn->link_policy & HCI_LP_SNIFF))
608 		return;
609 
610 	if (lmp_sniffsubr_capable(hdev) && lmp_sniffsubr_capable(conn)) {
611 		struct hci_cp_sniff_subrate cp;
612 		cp.handle             = cpu_to_le16(conn->handle);
613 		cp.max_latency        = cpu_to_le16(0);
614 		cp.min_remote_timeout = cpu_to_le16(0);
615 		cp.min_local_timeout  = cpu_to_le16(0);
616 		hci_send_cmd(hdev, HCI_OP_SNIFF_SUBRATE, sizeof(cp), &cp);
617 	}
618 
619 	if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) {
620 		struct hci_cp_sniff_mode cp;
621 		cp.handle       = cpu_to_le16(conn->handle);
622 		cp.max_interval = cpu_to_le16(hdev->sniff_max_interval);
623 		cp.min_interval = cpu_to_le16(hdev->sniff_min_interval);
624 		cp.attempt      = cpu_to_le16(4);
625 		cp.timeout      = cpu_to_le16(1);
626 		hci_send_cmd(hdev, HCI_OP_SNIFF_MODE, sizeof(cp), &cp);
627 	}
628 }
629 
630 static void hci_conn_auto_accept(struct work_struct *work)
631 {
632 	struct hci_conn *conn = container_of(work, struct hci_conn,
633 					     auto_accept_work.work);
634 
635 	hci_send_cmd(conn->hdev, HCI_OP_USER_CONFIRM_REPLY, sizeof(conn->dst),
636 		     &conn->dst);
637 }
638 
639 static void le_disable_advertising(struct hci_dev *hdev)
640 {
641 	if (ext_adv_capable(hdev)) {
642 		struct hci_cp_le_set_ext_adv_enable cp;
643 
644 		cp.enable = 0x00;
645 		cp.num_of_sets = 0x00;
646 
647 		hci_send_cmd(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, sizeof(cp),
648 			     &cp);
649 	} else {
650 		u8 enable = 0x00;
651 		hci_send_cmd(hdev, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable),
652 			     &enable);
653 	}
654 }
655 
656 static void le_conn_timeout(struct work_struct *work)
657 {
658 	struct hci_conn *conn = container_of(work, struct hci_conn,
659 					     le_conn_timeout.work);
660 	struct hci_dev *hdev = conn->hdev;
661 
662 	BT_DBG("");
663 
664 	/* We could end up here due to having done directed advertising,
665 	 * so clean up the state if necessary. This should however only
666 	 * happen with broken hardware or if low duty cycle was used
667 	 * (which doesn't have a timeout of its own).
668 	 */
669 	if (conn->role == HCI_ROLE_SLAVE) {
670 		/* Disable LE Advertising */
671 		le_disable_advertising(hdev);
672 		hci_le_conn_failed(conn, HCI_ERROR_ADVERTISING_TIMEOUT);
673 		return;
674 	}
675 
676 	hci_abort_conn(conn, HCI_ERROR_REMOTE_USER_TERM);
677 }
678 
679 struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst,
680 			      u8 role)
681 {
682 	struct hci_conn *conn;
683 
684 	BT_DBG("%s dst %pMR", hdev->name, dst);
685 
686 	conn = kzalloc(sizeof(*conn), GFP_KERNEL);
687 	if (!conn)
688 		return NULL;
689 
690 	bacpy(&conn->dst, dst);
691 	bacpy(&conn->src, &hdev->bdaddr);
692 	conn->handle = HCI_CONN_HANDLE_UNSET;
693 	conn->hdev  = hdev;
694 	conn->type  = type;
695 	conn->role  = role;
696 	conn->mode  = HCI_CM_ACTIVE;
697 	conn->state = BT_OPEN;
698 	conn->auth_type = HCI_AT_GENERAL_BONDING;
699 	conn->io_capability = hdev->io_capability;
700 	conn->remote_auth = 0xff;
701 	conn->key_type = 0xff;
702 	conn->rssi = HCI_RSSI_INVALID;
703 	conn->tx_power = HCI_TX_POWER_INVALID;
704 	conn->max_tx_power = HCI_TX_POWER_INVALID;
705 
706 	set_bit(HCI_CONN_POWER_SAVE, &conn->flags);
707 	conn->disc_timeout = HCI_DISCONN_TIMEOUT;
708 
709 	/* Set Default Authenticated payload timeout to 30s */
710 	conn->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
711 
712 	if (conn->role == HCI_ROLE_MASTER)
713 		conn->out = true;
714 
715 	switch (type) {
716 	case ACL_LINK:
717 		conn->pkt_type = hdev->pkt_type & ACL_PTYPE_MASK;
718 		break;
719 	case LE_LINK:
720 		/* conn->src should reflect the local identity address */
721 		hci_copy_identity_address(hdev, &conn->src, &conn->src_type);
722 		break;
723 	case SCO_LINK:
724 		if (lmp_esco_capable(hdev))
725 			conn->pkt_type = (hdev->esco_type & SCO_ESCO_MASK) |
726 					(hdev->esco_type & EDR_ESCO_MASK);
727 		else
728 			conn->pkt_type = hdev->pkt_type & SCO_PTYPE_MASK;
729 		break;
730 	case ESCO_LINK:
731 		conn->pkt_type = hdev->esco_type & ~EDR_ESCO_MASK;
732 		break;
733 	}
734 
735 	skb_queue_head_init(&conn->data_q);
736 
737 	INIT_LIST_HEAD(&conn->chan_list);
738 
739 	INIT_DELAYED_WORK(&conn->disc_work, hci_conn_timeout);
740 	INIT_DELAYED_WORK(&conn->auto_accept_work, hci_conn_auto_accept);
741 	INIT_DELAYED_WORK(&conn->idle_work, hci_conn_idle);
742 	INIT_DELAYED_WORK(&conn->le_conn_timeout, le_conn_timeout);
743 	INIT_WORK(&conn->le_scan_cleanup, le_scan_cleanup);
744 
745 	atomic_set(&conn->refcnt, 0);
746 
747 	hci_dev_hold(hdev);
748 
749 	hci_conn_hash_add(hdev, conn);
750 
751 	/* The SCO and eSCO connections will only be notified when their
752 	 * setup has been completed. This is different to ACL links which
753 	 * can be notified right away.
754 	 */
755 	if (conn->type != SCO_LINK && conn->type != ESCO_LINK) {
756 		if (hdev->notify)
757 			hdev->notify(hdev, HCI_NOTIFY_CONN_ADD);
758 	}
759 
760 	hci_conn_init_sysfs(conn);
761 
762 	return conn;
763 }
764 
765 int hci_conn_del(struct hci_conn *conn)
766 {
767 	struct hci_dev *hdev = conn->hdev;
768 
769 	BT_DBG("%s hcon %p handle %d", hdev->name, conn, conn->handle);
770 
771 	cancel_delayed_work_sync(&conn->disc_work);
772 	cancel_delayed_work_sync(&conn->auto_accept_work);
773 	cancel_delayed_work_sync(&conn->idle_work);
774 
775 	if (conn->type == ACL_LINK) {
776 		struct hci_conn *sco = conn->link;
777 		if (sco)
778 			sco->link = NULL;
779 
780 		/* Unacked frames */
781 		hdev->acl_cnt += conn->sent;
782 	} else if (conn->type == LE_LINK) {
783 		cancel_delayed_work(&conn->le_conn_timeout);
784 
785 		if (hdev->le_pkts)
786 			hdev->le_cnt += conn->sent;
787 		else
788 			hdev->acl_cnt += conn->sent;
789 	} else {
790 		struct hci_conn *acl = conn->link;
791 		if (acl) {
792 			acl->link = NULL;
793 			hci_conn_drop(acl);
794 		}
795 	}
796 
797 	if (conn->amp_mgr)
798 		amp_mgr_put(conn->amp_mgr);
799 
800 	skb_queue_purge(&conn->data_q);
801 
802 	/* Remove the connection from the list and cleanup its remaining
803 	 * state. This is a separate function since for some cases like
804 	 * BT_CONNECT_SCAN we *only* want the cleanup part without the
805 	 * rest of hci_conn_del.
806 	 */
807 	hci_conn_cleanup(conn);
808 
809 	return 0;
810 }
811 
812 struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src, uint8_t src_type)
813 {
814 	int use_src = bacmp(src, BDADDR_ANY);
815 	struct hci_dev *hdev = NULL, *d;
816 
817 	BT_DBG("%pMR -> %pMR", src, dst);
818 
819 	read_lock(&hci_dev_list_lock);
820 
821 	list_for_each_entry(d, &hci_dev_list, list) {
822 		if (!test_bit(HCI_UP, &d->flags) ||
823 		    hci_dev_test_flag(d, HCI_USER_CHANNEL) ||
824 		    d->dev_type != HCI_PRIMARY)
825 			continue;
826 
827 		/* Simple routing:
828 		 *   No source address - find interface with bdaddr != dst
829 		 *   Source address    - find interface with bdaddr == src
830 		 */
831 
832 		if (use_src) {
833 			bdaddr_t id_addr;
834 			u8 id_addr_type;
835 
836 			if (src_type == BDADDR_BREDR) {
837 				if (!lmp_bredr_capable(d))
838 					continue;
839 				bacpy(&id_addr, &d->bdaddr);
840 				id_addr_type = BDADDR_BREDR;
841 			} else {
842 				if (!lmp_le_capable(d))
843 					continue;
844 
845 				hci_copy_identity_address(d, &id_addr,
846 							  &id_addr_type);
847 
848 				/* Convert from HCI to three-value type */
849 				if (id_addr_type == ADDR_LE_DEV_PUBLIC)
850 					id_addr_type = BDADDR_LE_PUBLIC;
851 				else
852 					id_addr_type = BDADDR_LE_RANDOM;
853 			}
854 
855 			if (!bacmp(&id_addr, src) && id_addr_type == src_type) {
856 				hdev = d; break;
857 			}
858 		} else {
859 			if (bacmp(&d->bdaddr, dst)) {
860 				hdev = d; break;
861 			}
862 		}
863 	}
864 
865 	if (hdev)
866 		hdev = hci_dev_hold(hdev);
867 
868 	read_unlock(&hci_dev_list_lock);
869 	return hdev;
870 }
871 EXPORT_SYMBOL(hci_get_route);
872 
873 /* This function requires the caller holds hdev->lock */
874 void hci_le_conn_failed(struct hci_conn *conn, u8 status)
875 {
876 	struct hci_dev *hdev = conn->hdev;
877 	struct hci_conn_params *params;
878 
879 	params = hci_pend_le_action_lookup(&hdev->pend_le_conns, &conn->dst,
880 					   conn->dst_type);
881 	if (params && params->conn) {
882 		hci_conn_drop(params->conn);
883 		hci_conn_put(params->conn);
884 		params->conn = NULL;
885 	}
886 
887 	conn->state = BT_CLOSED;
888 
889 	/* If the status indicates successful cancellation of
890 	 * the attempt (i.e. Unknown Connection Id) there's no point of
891 	 * notifying failure since we'll go back to keep trying to
892 	 * connect. The only exception is explicit connect requests
893 	 * where a timeout + cancel does indicate an actual failure.
894 	 */
895 	if (status != HCI_ERROR_UNKNOWN_CONN_ID ||
896 	    (params && params->explicit_connect))
897 		mgmt_connect_failed(hdev, &conn->dst, conn->type,
898 				    conn->dst_type, status);
899 
900 	hci_connect_cfm(conn, status);
901 
902 	hci_conn_del(conn);
903 
904 	/* Since we may have temporarily stopped the background scanning in
905 	 * favor of connection establishment, we should restart it.
906 	 */
907 	hci_update_passive_scan(hdev);
908 
909 	/* Enable advertising in case this was a failed connection
910 	 * attempt as a peripheral.
911 	 */
912 	hci_enable_advertising(hdev);
913 }
914 
915 static void create_le_conn_complete(struct hci_dev *hdev, void *data, int err)
916 {
917 	struct hci_conn *conn = data;
918 
919 	hci_dev_lock(hdev);
920 
921 	if (!err) {
922 		hci_connect_le_scan_cleanup(conn);
923 		goto done;
924 	}
925 
926 	bt_dev_err(hdev, "request failed to create LE connection: err %d", err);
927 
928 	if (!conn)
929 		goto done;
930 
931 	hci_le_conn_failed(conn, err);
932 
933 done:
934 	hci_dev_unlock(hdev);
935 }
936 
937 static int hci_connect_le_sync(struct hci_dev *hdev, void *data)
938 {
939 	struct hci_conn *conn = data;
940 
941 	bt_dev_dbg(hdev, "conn %p", conn);
942 
943 	return hci_le_create_conn_sync(hdev, conn);
944 }
945 
946 struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst,
947 				u8 dst_type, bool dst_resolved, u8 sec_level,
948 				u16 conn_timeout, u8 role)
949 {
950 	struct hci_conn *conn;
951 	struct smp_irk *irk;
952 	int err;
953 
954 	/* Let's make sure that le is enabled.*/
955 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
956 		if (lmp_le_capable(hdev))
957 			return ERR_PTR(-ECONNREFUSED);
958 
959 		return ERR_PTR(-EOPNOTSUPP);
960 	}
961 
962 	/* Since the controller supports only one LE connection attempt at a
963 	 * time, we return -EBUSY if there is any connection attempt running.
964 	 */
965 	if (hci_lookup_le_connect(hdev))
966 		return ERR_PTR(-EBUSY);
967 
968 	/* If there's already a connection object but it's not in
969 	 * scanning state it means it must already be established, in
970 	 * which case we can't do anything else except report a failure
971 	 * to connect.
972 	 */
973 	conn = hci_conn_hash_lookup_le(hdev, dst, dst_type);
974 	if (conn && !test_bit(HCI_CONN_SCANNING, &conn->flags)) {
975 		return ERR_PTR(-EBUSY);
976 	}
977 
978 	/* Check if the destination address has been resolved by the controller
979 	 * since if it did then the identity address shall be used.
980 	 */
981 	if (!dst_resolved) {
982 		/* When given an identity address with existing identity
983 		 * resolving key, the connection needs to be established
984 		 * to a resolvable random address.
985 		 *
986 		 * Storing the resolvable random address is required here
987 		 * to handle connection failures. The address will later
988 		 * be resolved back into the original identity address
989 		 * from the connect request.
990 		 */
991 		irk = hci_find_irk_by_addr(hdev, dst, dst_type);
992 		if (irk && bacmp(&irk->rpa, BDADDR_ANY)) {
993 			dst = &irk->rpa;
994 			dst_type = ADDR_LE_DEV_RANDOM;
995 		}
996 	}
997 
998 	if (conn) {
999 		bacpy(&conn->dst, dst);
1000 	} else {
1001 		conn = hci_conn_add(hdev, LE_LINK, dst, role);
1002 		if (!conn)
1003 			return ERR_PTR(-ENOMEM);
1004 		hci_conn_hold(conn);
1005 		conn->pending_sec_level = sec_level;
1006 	}
1007 
1008 	conn->dst_type = dst_type;
1009 	conn->sec_level = BT_SECURITY_LOW;
1010 	conn->conn_timeout = conn_timeout;
1011 
1012 	conn->state = BT_CONNECT;
1013 	clear_bit(HCI_CONN_SCANNING, &conn->flags);
1014 
1015 	err = hci_cmd_sync_queue(hdev, hci_connect_le_sync, conn,
1016 				 create_le_conn_complete);
1017 	if (err) {
1018 		hci_conn_del(conn);
1019 		return ERR_PTR(err);
1020 	}
1021 
1022 	return conn;
1023 }
1024 
1025 static bool is_connected(struct hci_dev *hdev, bdaddr_t *addr, u8 type)
1026 {
1027 	struct hci_conn *conn;
1028 
1029 	conn = hci_conn_hash_lookup_le(hdev, addr, type);
1030 	if (!conn)
1031 		return false;
1032 
1033 	if (conn->state != BT_CONNECTED)
1034 		return false;
1035 
1036 	return true;
1037 }
1038 
1039 /* This function requires the caller holds hdev->lock */
1040 static int hci_explicit_conn_params_set(struct hci_dev *hdev,
1041 					bdaddr_t *addr, u8 addr_type)
1042 {
1043 	struct hci_conn_params *params;
1044 
1045 	if (is_connected(hdev, addr, addr_type))
1046 		return -EISCONN;
1047 
1048 	params = hci_conn_params_lookup(hdev, addr, addr_type);
1049 	if (!params) {
1050 		params = hci_conn_params_add(hdev, addr, addr_type);
1051 		if (!params)
1052 			return -ENOMEM;
1053 
1054 		/* If we created new params, mark them to be deleted in
1055 		 * hci_connect_le_scan_cleanup. It's different case than
1056 		 * existing disabled params, those will stay after cleanup.
1057 		 */
1058 		params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
1059 	}
1060 
1061 	/* We're trying to connect, so make sure params are at pend_le_conns */
1062 	if (params->auto_connect == HCI_AUTO_CONN_DISABLED ||
1063 	    params->auto_connect == HCI_AUTO_CONN_REPORT ||
1064 	    params->auto_connect == HCI_AUTO_CONN_EXPLICIT) {
1065 		list_del_init(&params->action);
1066 		list_add(&params->action, &hdev->pend_le_conns);
1067 	}
1068 
1069 	params->explicit_connect = true;
1070 
1071 	BT_DBG("addr %pMR (type %u) auto_connect %u", addr, addr_type,
1072 	       params->auto_connect);
1073 
1074 	return 0;
1075 }
1076 
1077 /* This function requires the caller holds hdev->lock */
1078 struct hci_conn *hci_connect_le_scan(struct hci_dev *hdev, bdaddr_t *dst,
1079 				     u8 dst_type, u8 sec_level,
1080 				     u16 conn_timeout,
1081 				     enum conn_reasons conn_reason)
1082 {
1083 	struct hci_conn *conn;
1084 
1085 	/* Let's make sure that le is enabled.*/
1086 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
1087 		if (lmp_le_capable(hdev))
1088 			return ERR_PTR(-ECONNREFUSED);
1089 
1090 		return ERR_PTR(-EOPNOTSUPP);
1091 	}
1092 
1093 	/* Some devices send ATT messages as soon as the physical link is
1094 	 * established. To be able to handle these ATT messages, the user-
1095 	 * space first establishes the connection and then starts the pairing
1096 	 * process.
1097 	 *
1098 	 * So if a hci_conn object already exists for the following connection
1099 	 * attempt, we simply update pending_sec_level and auth_type fields
1100 	 * and return the object found.
1101 	 */
1102 	conn = hci_conn_hash_lookup_le(hdev, dst, dst_type);
1103 	if (conn) {
1104 		if (conn->pending_sec_level < sec_level)
1105 			conn->pending_sec_level = sec_level;
1106 		goto done;
1107 	}
1108 
1109 	BT_DBG("requesting refresh of dst_addr");
1110 
1111 	conn = hci_conn_add(hdev, LE_LINK, dst, HCI_ROLE_MASTER);
1112 	if (!conn)
1113 		return ERR_PTR(-ENOMEM);
1114 
1115 	if (hci_explicit_conn_params_set(hdev, dst, dst_type) < 0) {
1116 		hci_conn_del(conn);
1117 		return ERR_PTR(-EBUSY);
1118 	}
1119 
1120 	conn->state = BT_CONNECT;
1121 	set_bit(HCI_CONN_SCANNING, &conn->flags);
1122 	conn->dst_type = dst_type;
1123 	conn->sec_level = BT_SECURITY_LOW;
1124 	conn->pending_sec_level = sec_level;
1125 	conn->conn_timeout = conn_timeout;
1126 	conn->conn_reason = conn_reason;
1127 
1128 	hci_update_passive_scan(hdev);
1129 
1130 done:
1131 	hci_conn_hold(conn);
1132 	return conn;
1133 }
1134 
1135 struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst,
1136 				 u8 sec_level, u8 auth_type,
1137 				 enum conn_reasons conn_reason)
1138 {
1139 	struct hci_conn *acl;
1140 
1141 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1142 		if (lmp_bredr_capable(hdev))
1143 			return ERR_PTR(-ECONNREFUSED);
1144 
1145 		return ERR_PTR(-EOPNOTSUPP);
1146 	}
1147 
1148 	acl = hci_conn_hash_lookup_ba(hdev, ACL_LINK, dst);
1149 	if (!acl) {
1150 		acl = hci_conn_add(hdev, ACL_LINK, dst, HCI_ROLE_MASTER);
1151 		if (!acl)
1152 			return ERR_PTR(-ENOMEM);
1153 	}
1154 
1155 	hci_conn_hold(acl);
1156 
1157 	acl->conn_reason = conn_reason;
1158 	if (acl->state == BT_OPEN || acl->state == BT_CLOSED) {
1159 		acl->sec_level = BT_SECURITY_LOW;
1160 		acl->pending_sec_level = sec_level;
1161 		acl->auth_type = auth_type;
1162 		hci_acl_create_connection(acl);
1163 	}
1164 
1165 	return acl;
1166 }
1167 
1168 struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst,
1169 				 __u16 setting, struct bt_codec *codec)
1170 {
1171 	struct hci_conn *acl;
1172 	struct hci_conn *sco;
1173 
1174 	acl = hci_connect_acl(hdev, dst, BT_SECURITY_LOW, HCI_AT_NO_BONDING,
1175 			      CONN_REASON_SCO_CONNECT);
1176 	if (IS_ERR(acl))
1177 		return acl;
1178 
1179 	sco = hci_conn_hash_lookup_ba(hdev, type, dst);
1180 	if (!sco) {
1181 		sco = hci_conn_add(hdev, type, dst, HCI_ROLE_MASTER);
1182 		if (!sco) {
1183 			hci_conn_drop(acl);
1184 			return ERR_PTR(-ENOMEM);
1185 		}
1186 	}
1187 
1188 	acl->link = sco;
1189 	sco->link = acl;
1190 
1191 	hci_conn_hold(sco);
1192 
1193 	sco->setting = setting;
1194 	sco->codec = *codec;
1195 
1196 	if (acl->state == BT_CONNECTED &&
1197 	    (sco->state == BT_OPEN || sco->state == BT_CLOSED)) {
1198 		set_bit(HCI_CONN_POWER_SAVE, &acl->flags);
1199 		hci_conn_enter_active_mode(acl, BT_POWER_FORCE_ACTIVE_ON);
1200 
1201 		if (test_bit(HCI_CONN_MODE_CHANGE_PEND, &acl->flags)) {
1202 			/* defer SCO setup until mode change completed */
1203 			set_bit(HCI_CONN_SCO_SETUP_PEND, &acl->flags);
1204 			return sco;
1205 		}
1206 
1207 		hci_sco_setup(acl, 0x00);
1208 	}
1209 
1210 	return sco;
1211 }
1212 
1213 /* Check link security requirement */
1214 int hci_conn_check_link_mode(struct hci_conn *conn)
1215 {
1216 	BT_DBG("hcon %p", conn);
1217 
1218 	/* In Secure Connections Only mode, it is required that Secure
1219 	 * Connections is used and the link is encrypted with AES-CCM
1220 	 * using a P-256 authenticated combination key.
1221 	 */
1222 	if (hci_dev_test_flag(conn->hdev, HCI_SC_ONLY)) {
1223 		if (!hci_conn_sc_enabled(conn) ||
1224 		    !test_bit(HCI_CONN_AES_CCM, &conn->flags) ||
1225 		    conn->key_type != HCI_LK_AUTH_COMBINATION_P256)
1226 			return 0;
1227 	}
1228 
1229 	 /* AES encryption is required for Level 4:
1230 	  *
1231 	  * BLUETOOTH CORE SPECIFICATION Version 5.2 | Vol 3, Part C
1232 	  * page 1319:
1233 	  *
1234 	  * 128-bit equivalent strength for link and encryption keys
1235 	  * required using FIPS approved algorithms (E0 not allowed,
1236 	  * SAFER+ not allowed, and P-192 not allowed; encryption key
1237 	  * not shortened)
1238 	  */
1239 	if (conn->sec_level == BT_SECURITY_FIPS &&
1240 	    !test_bit(HCI_CONN_AES_CCM, &conn->flags)) {
1241 		bt_dev_err(conn->hdev,
1242 			   "Invalid security: Missing AES-CCM usage");
1243 		return 0;
1244 	}
1245 
1246 	if (hci_conn_ssp_enabled(conn) &&
1247 	    !test_bit(HCI_CONN_ENCRYPT, &conn->flags))
1248 		return 0;
1249 
1250 	return 1;
1251 }
1252 
1253 /* Authenticate remote device */
1254 static int hci_conn_auth(struct hci_conn *conn, __u8 sec_level, __u8 auth_type)
1255 {
1256 	BT_DBG("hcon %p", conn);
1257 
1258 	if (conn->pending_sec_level > sec_level)
1259 		sec_level = conn->pending_sec_level;
1260 
1261 	if (sec_level > conn->sec_level)
1262 		conn->pending_sec_level = sec_level;
1263 	else if (test_bit(HCI_CONN_AUTH, &conn->flags))
1264 		return 1;
1265 
1266 	/* Make sure we preserve an existing MITM requirement*/
1267 	auth_type |= (conn->auth_type & 0x01);
1268 
1269 	conn->auth_type = auth_type;
1270 
1271 	if (!test_and_set_bit(HCI_CONN_AUTH_PEND, &conn->flags)) {
1272 		struct hci_cp_auth_requested cp;
1273 
1274 		cp.handle = cpu_to_le16(conn->handle);
1275 		hci_send_cmd(conn->hdev, HCI_OP_AUTH_REQUESTED,
1276 			     sizeof(cp), &cp);
1277 
1278 		/* If we're already encrypted set the REAUTH_PEND flag,
1279 		 * otherwise set the ENCRYPT_PEND.
1280 		 */
1281 		if (test_bit(HCI_CONN_ENCRYPT, &conn->flags))
1282 			set_bit(HCI_CONN_REAUTH_PEND, &conn->flags);
1283 		else
1284 			set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags);
1285 	}
1286 
1287 	return 0;
1288 }
1289 
1290 /* Encrypt the link */
1291 static void hci_conn_encrypt(struct hci_conn *conn)
1292 {
1293 	BT_DBG("hcon %p", conn);
1294 
1295 	if (!test_and_set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) {
1296 		struct hci_cp_set_conn_encrypt cp;
1297 		cp.handle  = cpu_to_le16(conn->handle);
1298 		cp.encrypt = 0x01;
1299 		hci_send_cmd(conn->hdev, HCI_OP_SET_CONN_ENCRYPT, sizeof(cp),
1300 			     &cp);
1301 	}
1302 }
1303 
1304 /* Enable security */
1305 int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type,
1306 		      bool initiator)
1307 {
1308 	BT_DBG("hcon %p", conn);
1309 
1310 	if (conn->type == LE_LINK)
1311 		return smp_conn_security(conn, sec_level);
1312 
1313 	/* For sdp we don't need the link key. */
1314 	if (sec_level == BT_SECURITY_SDP)
1315 		return 1;
1316 
1317 	/* For non 2.1 devices and low security level we don't need the link
1318 	   key. */
1319 	if (sec_level == BT_SECURITY_LOW && !hci_conn_ssp_enabled(conn))
1320 		return 1;
1321 
1322 	/* For other security levels we need the link key. */
1323 	if (!test_bit(HCI_CONN_AUTH, &conn->flags))
1324 		goto auth;
1325 
1326 	/* An authenticated FIPS approved combination key has sufficient
1327 	 * security for security level 4. */
1328 	if (conn->key_type == HCI_LK_AUTH_COMBINATION_P256 &&
1329 	    sec_level == BT_SECURITY_FIPS)
1330 		goto encrypt;
1331 
1332 	/* An authenticated combination key has sufficient security for
1333 	   security level 3. */
1334 	if ((conn->key_type == HCI_LK_AUTH_COMBINATION_P192 ||
1335 	     conn->key_type == HCI_LK_AUTH_COMBINATION_P256) &&
1336 	    sec_level == BT_SECURITY_HIGH)
1337 		goto encrypt;
1338 
1339 	/* An unauthenticated combination key has sufficient security for
1340 	   security level 1 and 2. */
1341 	if ((conn->key_type == HCI_LK_UNAUTH_COMBINATION_P192 ||
1342 	     conn->key_type == HCI_LK_UNAUTH_COMBINATION_P256) &&
1343 	    (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW))
1344 		goto encrypt;
1345 
1346 	/* A combination key has always sufficient security for the security
1347 	   levels 1 or 2. High security level requires the combination key
1348 	   is generated using maximum PIN code length (16).
1349 	   For pre 2.1 units. */
1350 	if (conn->key_type == HCI_LK_COMBINATION &&
1351 	    (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW ||
1352 	     conn->pin_length == 16))
1353 		goto encrypt;
1354 
1355 auth:
1356 	if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags))
1357 		return 0;
1358 
1359 	if (initiator)
1360 		set_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags);
1361 
1362 	if (!hci_conn_auth(conn, sec_level, auth_type))
1363 		return 0;
1364 
1365 encrypt:
1366 	if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) {
1367 		/* Ensure that the encryption key size has been read,
1368 		 * otherwise stall the upper layer responses.
1369 		 */
1370 		if (!conn->enc_key_size)
1371 			return 0;
1372 
1373 		/* Nothing else needed, all requirements are met */
1374 		return 1;
1375 	}
1376 
1377 	hci_conn_encrypt(conn);
1378 	return 0;
1379 }
1380 EXPORT_SYMBOL(hci_conn_security);
1381 
1382 /* Check secure link requirement */
1383 int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level)
1384 {
1385 	BT_DBG("hcon %p", conn);
1386 
1387 	/* Accept if non-secure or higher security level is required */
1388 	if (sec_level != BT_SECURITY_HIGH && sec_level != BT_SECURITY_FIPS)
1389 		return 1;
1390 
1391 	/* Accept if secure or higher security level is already present */
1392 	if (conn->sec_level == BT_SECURITY_HIGH ||
1393 	    conn->sec_level == BT_SECURITY_FIPS)
1394 		return 1;
1395 
1396 	/* Reject not secure link */
1397 	return 0;
1398 }
1399 EXPORT_SYMBOL(hci_conn_check_secure);
1400 
1401 /* Switch role */
1402 int hci_conn_switch_role(struct hci_conn *conn, __u8 role)
1403 {
1404 	BT_DBG("hcon %p", conn);
1405 
1406 	if (role == conn->role)
1407 		return 1;
1408 
1409 	if (!test_and_set_bit(HCI_CONN_RSWITCH_PEND, &conn->flags)) {
1410 		struct hci_cp_switch_role cp;
1411 		bacpy(&cp.bdaddr, &conn->dst);
1412 		cp.role = role;
1413 		hci_send_cmd(conn->hdev, HCI_OP_SWITCH_ROLE, sizeof(cp), &cp);
1414 	}
1415 
1416 	return 0;
1417 }
1418 EXPORT_SYMBOL(hci_conn_switch_role);
1419 
1420 /* Enter active mode */
1421 void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active)
1422 {
1423 	struct hci_dev *hdev = conn->hdev;
1424 
1425 	BT_DBG("hcon %p mode %d", conn, conn->mode);
1426 
1427 	if (conn->mode != HCI_CM_SNIFF)
1428 		goto timer;
1429 
1430 	if (!test_bit(HCI_CONN_POWER_SAVE, &conn->flags) && !force_active)
1431 		goto timer;
1432 
1433 	if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) {
1434 		struct hci_cp_exit_sniff_mode cp;
1435 		cp.handle = cpu_to_le16(conn->handle);
1436 		hci_send_cmd(hdev, HCI_OP_EXIT_SNIFF_MODE, sizeof(cp), &cp);
1437 	}
1438 
1439 timer:
1440 	if (hdev->idle_timeout > 0)
1441 		queue_delayed_work(hdev->workqueue, &conn->idle_work,
1442 				   msecs_to_jiffies(hdev->idle_timeout));
1443 }
1444 
1445 /* Drop all connection on the device */
1446 void hci_conn_hash_flush(struct hci_dev *hdev)
1447 {
1448 	struct hci_conn_hash *h = &hdev->conn_hash;
1449 	struct hci_conn *c, *n;
1450 
1451 	BT_DBG("hdev %s", hdev->name);
1452 
1453 	list_for_each_entry_safe(c, n, &h->list, list) {
1454 		c->state = BT_CLOSED;
1455 
1456 		hci_disconn_cfm(c, HCI_ERROR_LOCAL_HOST_TERM);
1457 		hci_conn_del(c);
1458 	}
1459 }
1460 
1461 /* Check pending connect attempts */
1462 void hci_conn_check_pending(struct hci_dev *hdev)
1463 {
1464 	struct hci_conn *conn;
1465 
1466 	BT_DBG("hdev %s", hdev->name);
1467 
1468 	hci_dev_lock(hdev);
1469 
1470 	conn = hci_conn_hash_lookup_state(hdev, ACL_LINK, BT_CONNECT2);
1471 	if (conn)
1472 		hci_acl_create_connection(conn);
1473 
1474 	hci_dev_unlock(hdev);
1475 }
1476 
1477 static u32 get_link_mode(struct hci_conn *conn)
1478 {
1479 	u32 link_mode = 0;
1480 
1481 	if (conn->role == HCI_ROLE_MASTER)
1482 		link_mode |= HCI_LM_MASTER;
1483 
1484 	if (test_bit(HCI_CONN_ENCRYPT, &conn->flags))
1485 		link_mode |= HCI_LM_ENCRYPT;
1486 
1487 	if (test_bit(HCI_CONN_AUTH, &conn->flags))
1488 		link_mode |= HCI_LM_AUTH;
1489 
1490 	if (test_bit(HCI_CONN_SECURE, &conn->flags))
1491 		link_mode |= HCI_LM_SECURE;
1492 
1493 	if (test_bit(HCI_CONN_FIPS, &conn->flags))
1494 		link_mode |= HCI_LM_FIPS;
1495 
1496 	return link_mode;
1497 }
1498 
1499 int hci_get_conn_list(void __user *arg)
1500 {
1501 	struct hci_conn *c;
1502 	struct hci_conn_list_req req, *cl;
1503 	struct hci_conn_info *ci;
1504 	struct hci_dev *hdev;
1505 	int n = 0, size, err;
1506 
1507 	if (copy_from_user(&req, arg, sizeof(req)))
1508 		return -EFAULT;
1509 
1510 	if (!req.conn_num || req.conn_num > (PAGE_SIZE * 2) / sizeof(*ci))
1511 		return -EINVAL;
1512 
1513 	size = sizeof(req) + req.conn_num * sizeof(*ci);
1514 
1515 	cl = kmalloc(size, GFP_KERNEL);
1516 	if (!cl)
1517 		return -ENOMEM;
1518 
1519 	hdev = hci_dev_get(req.dev_id);
1520 	if (!hdev) {
1521 		kfree(cl);
1522 		return -ENODEV;
1523 	}
1524 
1525 	ci = cl->conn_info;
1526 
1527 	hci_dev_lock(hdev);
1528 	list_for_each_entry(c, &hdev->conn_hash.list, list) {
1529 		bacpy(&(ci + n)->bdaddr, &c->dst);
1530 		(ci + n)->handle = c->handle;
1531 		(ci + n)->type  = c->type;
1532 		(ci + n)->out   = c->out;
1533 		(ci + n)->state = c->state;
1534 		(ci + n)->link_mode = get_link_mode(c);
1535 		if (++n >= req.conn_num)
1536 			break;
1537 	}
1538 	hci_dev_unlock(hdev);
1539 
1540 	cl->dev_id = hdev->id;
1541 	cl->conn_num = n;
1542 	size = sizeof(req) + n * sizeof(*ci);
1543 
1544 	hci_dev_put(hdev);
1545 
1546 	err = copy_to_user(arg, cl, size);
1547 	kfree(cl);
1548 
1549 	return err ? -EFAULT : 0;
1550 }
1551 
1552 int hci_get_conn_info(struct hci_dev *hdev, void __user *arg)
1553 {
1554 	struct hci_conn_info_req req;
1555 	struct hci_conn_info ci;
1556 	struct hci_conn *conn;
1557 	char __user *ptr = arg + sizeof(req);
1558 
1559 	if (copy_from_user(&req, arg, sizeof(req)))
1560 		return -EFAULT;
1561 
1562 	hci_dev_lock(hdev);
1563 	conn = hci_conn_hash_lookup_ba(hdev, req.type, &req.bdaddr);
1564 	if (conn) {
1565 		bacpy(&ci.bdaddr, &conn->dst);
1566 		ci.handle = conn->handle;
1567 		ci.type  = conn->type;
1568 		ci.out   = conn->out;
1569 		ci.state = conn->state;
1570 		ci.link_mode = get_link_mode(conn);
1571 	}
1572 	hci_dev_unlock(hdev);
1573 
1574 	if (!conn)
1575 		return -ENOENT;
1576 
1577 	return copy_to_user(ptr, &ci, sizeof(ci)) ? -EFAULT : 0;
1578 }
1579 
1580 int hci_get_auth_info(struct hci_dev *hdev, void __user *arg)
1581 {
1582 	struct hci_auth_info_req req;
1583 	struct hci_conn *conn;
1584 
1585 	if (copy_from_user(&req, arg, sizeof(req)))
1586 		return -EFAULT;
1587 
1588 	hci_dev_lock(hdev);
1589 	conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &req.bdaddr);
1590 	if (conn)
1591 		req.type = conn->auth_type;
1592 	hci_dev_unlock(hdev);
1593 
1594 	if (!conn)
1595 		return -ENOENT;
1596 
1597 	return copy_to_user(arg, &req, sizeof(req)) ? -EFAULT : 0;
1598 }
1599 
1600 struct hci_chan *hci_chan_create(struct hci_conn *conn)
1601 {
1602 	struct hci_dev *hdev = conn->hdev;
1603 	struct hci_chan *chan;
1604 
1605 	BT_DBG("%s hcon %p", hdev->name, conn);
1606 
1607 	if (test_bit(HCI_CONN_DROP, &conn->flags)) {
1608 		BT_DBG("Refusing to create new hci_chan");
1609 		return NULL;
1610 	}
1611 
1612 	chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1613 	if (!chan)
1614 		return NULL;
1615 
1616 	chan->conn = hci_conn_get(conn);
1617 	skb_queue_head_init(&chan->data_q);
1618 	chan->state = BT_CONNECTED;
1619 
1620 	list_add_rcu(&chan->list, &conn->chan_list);
1621 
1622 	return chan;
1623 }
1624 
1625 void hci_chan_del(struct hci_chan *chan)
1626 {
1627 	struct hci_conn *conn = chan->conn;
1628 	struct hci_dev *hdev = conn->hdev;
1629 
1630 	BT_DBG("%s hcon %p chan %p", hdev->name, conn, chan);
1631 
1632 	list_del_rcu(&chan->list);
1633 
1634 	synchronize_rcu();
1635 
1636 	/* Prevent new hci_chan's to be created for this hci_conn */
1637 	set_bit(HCI_CONN_DROP, &conn->flags);
1638 
1639 	hci_conn_put(conn);
1640 
1641 	skb_queue_purge(&chan->data_q);
1642 	kfree(chan);
1643 }
1644 
1645 void hci_chan_list_flush(struct hci_conn *conn)
1646 {
1647 	struct hci_chan *chan, *n;
1648 
1649 	BT_DBG("hcon %p", conn);
1650 
1651 	list_for_each_entry_safe(chan, n, &conn->chan_list, list)
1652 		hci_chan_del(chan);
1653 }
1654 
1655 static struct hci_chan *__hci_chan_lookup_handle(struct hci_conn *hcon,
1656 						 __u16 handle)
1657 {
1658 	struct hci_chan *hchan;
1659 
1660 	list_for_each_entry(hchan, &hcon->chan_list, list) {
1661 		if (hchan->handle == handle)
1662 			return hchan;
1663 	}
1664 
1665 	return NULL;
1666 }
1667 
1668 struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle)
1669 {
1670 	struct hci_conn_hash *h = &hdev->conn_hash;
1671 	struct hci_conn *hcon;
1672 	struct hci_chan *hchan = NULL;
1673 
1674 	rcu_read_lock();
1675 
1676 	list_for_each_entry_rcu(hcon, &h->list, list) {
1677 		hchan = __hci_chan_lookup_handle(hcon, handle);
1678 		if (hchan)
1679 			break;
1680 	}
1681 
1682 	rcu_read_unlock();
1683 
1684 	return hchan;
1685 }
1686 
1687 u32 hci_conn_get_phy(struct hci_conn *conn)
1688 {
1689 	u32 phys = 0;
1690 
1691 	/* BLUETOOTH CORE SPECIFICATION Version 5.2 | Vol 2, Part B page 471:
1692 	 * Table 6.2: Packets defined for synchronous, asynchronous, and
1693 	 * CPB logical transport types.
1694 	 */
1695 	switch (conn->type) {
1696 	case SCO_LINK:
1697 		/* SCO logical transport (1 Mb/s):
1698 		 * HV1, HV2, HV3 and DV.
1699 		 */
1700 		phys |= BT_PHY_BR_1M_1SLOT;
1701 
1702 		break;
1703 
1704 	case ACL_LINK:
1705 		/* ACL logical transport (1 Mb/s) ptt=0:
1706 		 * DH1, DM3, DH3, DM5 and DH5.
1707 		 */
1708 		phys |= BT_PHY_BR_1M_1SLOT;
1709 
1710 		if (conn->pkt_type & (HCI_DM3 | HCI_DH3))
1711 			phys |= BT_PHY_BR_1M_3SLOT;
1712 
1713 		if (conn->pkt_type & (HCI_DM5 | HCI_DH5))
1714 			phys |= BT_PHY_BR_1M_5SLOT;
1715 
1716 		/* ACL logical transport (2 Mb/s) ptt=1:
1717 		 * 2-DH1, 2-DH3 and 2-DH5.
1718 		 */
1719 		if (!(conn->pkt_type & HCI_2DH1))
1720 			phys |= BT_PHY_EDR_2M_1SLOT;
1721 
1722 		if (!(conn->pkt_type & HCI_2DH3))
1723 			phys |= BT_PHY_EDR_2M_3SLOT;
1724 
1725 		if (!(conn->pkt_type & HCI_2DH5))
1726 			phys |= BT_PHY_EDR_2M_5SLOT;
1727 
1728 		/* ACL logical transport (3 Mb/s) ptt=1:
1729 		 * 3-DH1, 3-DH3 and 3-DH5.
1730 		 */
1731 		if (!(conn->pkt_type & HCI_3DH1))
1732 			phys |= BT_PHY_EDR_3M_1SLOT;
1733 
1734 		if (!(conn->pkt_type & HCI_3DH3))
1735 			phys |= BT_PHY_EDR_3M_3SLOT;
1736 
1737 		if (!(conn->pkt_type & HCI_3DH5))
1738 			phys |= BT_PHY_EDR_3M_5SLOT;
1739 
1740 		break;
1741 
1742 	case ESCO_LINK:
1743 		/* eSCO logical transport (1 Mb/s): EV3, EV4 and EV5 */
1744 		phys |= BT_PHY_BR_1M_1SLOT;
1745 
1746 		if (!(conn->pkt_type & (ESCO_EV4 | ESCO_EV5)))
1747 			phys |= BT_PHY_BR_1M_3SLOT;
1748 
1749 		/* eSCO logical transport (2 Mb/s): 2-EV3, 2-EV5 */
1750 		if (!(conn->pkt_type & ESCO_2EV3))
1751 			phys |= BT_PHY_EDR_2M_1SLOT;
1752 
1753 		if (!(conn->pkt_type & ESCO_2EV5))
1754 			phys |= BT_PHY_EDR_2M_3SLOT;
1755 
1756 		/* eSCO logical transport (3 Mb/s): 3-EV3, 3-EV5 */
1757 		if (!(conn->pkt_type & ESCO_3EV3))
1758 			phys |= BT_PHY_EDR_3M_1SLOT;
1759 
1760 		if (!(conn->pkt_type & ESCO_3EV5))
1761 			phys |= BT_PHY_EDR_3M_3SLOT;
1762 
1763 		break;
1764 
1765 	case LE_LINK:
1766 		if (conn->le_tx_phy & HCI_LE_SET_PHY_1M)
1767 			phys |= BT_PHY_LE_1M_TX;
1768 
1769 		if (conn->le_rx_phy & HCI_LE_SET_PHY_1M)
1770 			phys |= BT_PHY_LE_1M_RX;
1771 
1772 		if (conn->le_tx_phy & HCI_LE_SET_PHY_2M)
1773 			phys |= BT_PHY_LE_2M_TX;
1774 
1775 		if (conn->le_rx_phy & HCI_LE_SET_PHY_2M)
1776 			phys |= BT_PHY_LE_2M_RX;
1777 
1778 		if (conn->le_tx_phy & HCI_LE_SET_PHY_CODED)
1779 			phys |= BT_PHY_LE_CODED_TX;
1780 
1781 		if (conn->le_rx_phy & HCI_LE_SET_PHY_CODED)
1782 			phys |= BT_PHY_LE_CODED_RX;
1783 
1784 		break;
1785 	}
1786 
1787 	return phys;
1788 }
1789