xref: /linux/net/appletalk/aarp.c (revision 60b2737de1b1ddfdb90f3ba622634eb49d6f3603)
1 /*
2  *	AARP:		An implementation of the AppleTalk AARP protocol for
3  *			Ethernet 'ELAP'.
4  *
5  *		Alan Cox  <Alan.Cox@linux.org>
6  *
7  *	This doesn't fit cleanly with the IP arp. Potentially we can use
8  *	the generic neighbour discovery code to clean this up.
9  *
10  *	FIXME:
11  *		We ought to handle the retransmits with a single list and a
12  *	separate fast timer for when it is needed.
13  *		Use neighbour discovery code.
14  *		Token Ring Support.
15  *
16  *		This program is free software; you can redistribute it and/or
17  *		modify it under the terms of the GNU General Public License
18  *		as published by the Free Software Foundation; either version
19  *		2 of the License, or (at your option) any later version.
20  *
21  *
22  *	References:
23  *		Inside AppleTalk (2nd Ed).
24  *	Fixes:
25  *		Jaume Grau	-	flush caches on AARP_PROBE
26  *		Rob Newberry	-	Added proxy AARP and AARP proc fs,
27  *					moved probing from DDP module.
28  *		Arnaldo C. Melo -	don't mangle rx packets
29  *
30  */
31 
32 #include <linux/config.h>
33 #include <linux/if_arp.h>
34 #include <net/sock.h>
35 #include <net/datalink.h>
36 #include <net/psnap.h>
37 #include <linux/atalk.h>
38 #include <linux/init.h>
39 #include <linux/proc_fs.h>
40 #include <linux/seq_file.h>
41 
42 int sysctl_aarp_expiry_time = AARP_EXPIRY_TIME;
43 int sysctl_aarp_tick_time = AARP_TICK_TIME;
44 int sysctl_aarp_retransmit_limit = AARP_RETRANSMIT_LIMIT;
45 int sysctl_aarp_resolve_time = AARP_RESOLVE_TIME;
46 
47 /* Lists of aarp entries */
48 /**
49  *	struct aarp_entry - AARP entry
50  *	@last_sent - Last time we xmitted the aarp request
51  *	@packet_queue - Queue of frames wait for resolution
52  *	@status - Used for proxy AARP
53  *	expires_at - Entry expiry time
54  *	target_addr - DDP Address
55  *	dev - Device to use
56  *	hwaddr - Physical i/f address of target/router
57  *	xmit_count - When this hits 10 we give up
58  *	next - Next entry in chain
59  */
60 struct aarp_entry {
61 	/* These first two are only used for unresolved entries */
62 	unsigned long		last_sent;
63 	struct sk_buff_head	packet_queue;
64 	int			status;
65 	unsigned long		expires_at;
66 	struct atalk_addr	target_addr;
67 	struct net_device	*dev;
68 	char			hwaddr[6];
69 	unsigned short		xmit_count;
70 	struct aarp_entry	*next;
71 };
72 
73 /* Hashed list of resolved, unresolved and proxy entries */
74 static struct aarp_entry *resolved[AARP_HASH_SIZE];
75 static struct aarp_entry *unresolved[AARP_HASH_SIZE];
76 static struct aarp_entry *proxies[AARP_HASH_SIZE];
77 static int unresolved_count;
78 
79 /* One lock protects it all. */
80 static DEFINE_RWLOCK(aarp_lock);
81 
82 /* Used to walk the list and purge/kick entries.  */
83 static struct timer_list aarp_timer;
84 
85 /*
86  *	Delete an aarp queue
87  *
88  *	Must run under aarp_lock.
89  */
90 static void __aarp_expire(struct aarp_entry *a)
91 {
92 	skb_queue_purge(&a->packet_queue);
93 	kfree(a);
94 }
95 
96 /*
97  *	Send an aarp queue entry request
98  *
99  *	Must run under aarp_lock.
100  */
101 static void __aarp_send_query(struct aarp_entry *a)
102 {
103 	static unsigned char aarp_eth_multicast[ETH_ALEN] =
104 					{ 0x09, 0x00, 0x07, 0xFF, 0xFF, 0xFF };
105 	struct net_device *dev = a->dev;
106 	struct elapaarp *eah;
107 	int len = dev->hard_header_len + sizeof(*eah) + aarp_dl->header_length;
108 	struct sk_buff *skb = alloc_skb(len, GFP_ATOMIC);
109 	struct atalk_addr *sat = atalk_find_dev_addr(dev);
110 
111 	if (!skb)
112 		return;
113 
114 	if (!sat) {
115 		kfree_skb(skb);
116 		return;
117 	}
118 
119 	/* Set up the buffer */
120 	skb_reserve(skb, dev->hard_header_len + aarp_dl->header_length);
121 	skb->nh.raw      = skb->h.raw = skb_put(skb, sizeof(*eah));
122 	skb->protocol    = htons(ETH_P_ATALK);
123 	skb->dev	 = dev;
124 	eah		 = aarp_hdr(skb);
125 
126 	/* Set up the ARP */
127 	eah->hw_type	 = htons(AARP_HW_TYPE_ETHERNET);
128 	eah->pa_type	 = htons(ETH_P_ATALK);
129 	eah->hw_len	 = ETH_ALEN;
130 	eah->pa_len	 = AARP_PA_ALEN;
131 	eah->function	 = htons(AARP_REQUEST);
132 
133 	memcpy(eah->hw_src, dev->dev_addr, ETH_ALEN);
134 
135 	eah->pa_src_zero = 0;
136 	eah->pa_src_net	 = sat->s_net;
137 	eah->pa_src_node = sat->s_node;
138 
139 	memset(eah->hw_dst, '\0', ETH_ALEN);
140 
141 	eah->pa_dst_zero = 0;
142 	eah->pa_dst_net	 = a->target_addr.s_net;
143 	eah->pa_dst_node = a->target_addr.s_node;
144 
145 	/* Send it */
146 	aarp_dl->request(aarp_dl, skb, aarp_eth_multicast);
147 	/* Update the sending count */
148 	a->xmit_count++;
149 	a->last_sent = jiffies;
150 }
151 
152 /* This runs under aarp_lock and in softint context, so only atomic memory
153  * allocations can be used. */
154 static void aarp_send_reply(struct net_device *dev, struct atalk_addr *us,
155 			    struct atalk_addr *them, unsigned char *sha)
156 {
157 	struct elapaarp *eah;
158 	int len = dev->hard_header_len + sizeof(*eah) + aarp_dl->header_length;
159 	struct sk_buff *skb = alloc_skb(len, GFP_ATOMIC);
160 
161 	if (!skb)
162 		return;
163 
164 	/* Set up the buffer */
165 	skb_reserve(skb, dev->hard_header_len + aarp_dl->header_length);
166 	skb->nh.raw      = skb->h.raw = skb_put(skb, sizeof(*eah));
167 	skb->protocol    = htons(ETH_P_ATALK);
168 	skb->dev	 = dev;
169 	eah		 = aarp_hdr(skb);
170 
171 	/* Set up the ARP */
172 	eah->hw_type	 = htons(AARP_HW_TYPE_ETHERNET);
173 	eah->pa_type	 = htons(ETH_P_ATALK);
174 	eah->hw_len	 = ETH_ALEN;
175 	eah->pa_len	 = AARP_PA_ALEN;
176 	eah->function	 = htons(AARP_REPLY);
177 
178 	memcpy(eah->hw_src, dev->dev_addr, ETH_ALEN);
179 
180 	eah->pa_src_zero = 0;
181 	eah->pa_src_net	 = us->s_net;
182 	eah->pa_src_node = us->s_node;
183 
184 	if (!sha)
185 		memset(eah->hw_dst, '\0', ETH_ALEN);
186 	else
187 		memcpy(eah->hw_dst, sha, ETH_ALEN);
188 
189 	eah->pa_dst_zero = 0;
190 	eah->pa_dst_net	 = them->s_net;
191 	eah->pa_dst_node = them->s_node;
192 
193 	/* Send it */
194 	aarp_dl->request(aarp_dl, skb, sha);
195 }
196 
197 /*
198  *	Send probe frames. Called from aarp_probe_network and
199  *	aarp_proxy_probe_network.
200  */
201 
202 static void aarp_send_probe(struct net_device *dev, struct atalk_addr *us)
203 {
204 	struct elapaarp *eah;
205 	int len = dev->hard_header_len + sizeof(*eah) + aarp_dl->header_length;
206 	struct sk_buff *skb = alloc_skb(len, GFP_ATOMIC);
207 	static unsigned char aarp_eth_multicast[ETH_ALEN] =
208 					{ 0x09, 0x00, 0x07, 0xFF, 0xFF, 0xFF };
209 
210 	if (!skb)
211 		return;
212 
213 	/* Set up the buffer */
214 	skb_reserve(skb, dev->hard_header_len + aarp_dl->header_length);
215 	skb->nh.raw      = skb->h.raw = skb_put(skb, sizeof(*eah));
216 	skb->protocol    = htons(ETH_P_ATALK);
217 	skb->dev	 = dev;
218 	eah		 = aarp_hdr(skb);
219 
220 	/* Set up the ARP */
221 	eah->hw_type	 = htons(AARP_HW_TYPE_ETHERNET);
222 	eah->pa_type	 = htons(ETH_P_ATALK);
223 	eah->hw_len	 = ETH_ALEN;
224 	eah->pa_len	 = AARP_PA_ALEN;
225 	eah->function	 = htons(AARP_PROBE);
226 
227 	memcpy(eah->hw_src, dev->dev_addr, ETH_ALEN);
228 
229 	eah->pa_src_zero = 0;
230 	eah->pa_src_net	 = us->s_net;
231 	eah->pa_src_node = us->s_node;
232 
233 	memset(eah->hw_dst, '\0', ETH_ALEN);
234 
235 	eah->pa_dst_zero = 0;
236 	eah->pa_dst_net	 = us->s_net;
237 	eah->pa_dst_node = us->s_node;
238 
239 	/* Send it */
240 	aarp_dl->request(aarp_dl, skb, aarp_eth_multicast);
241 }
242 
243 /*
244  *	Handle an aarp timer expire
245  *
246  *	Must run under the aarp_lock.
247  */
248 
249 static void __aarp_expire_timer(struct aarp_entry **n)
250 {
251 	struct aarp_entry *t;
252 
253 	while (*n)
254 		/* Expired ? */
255 		if (time_after(jiffies, (*n)->expires_at)) {
256 			t = *n;
257 			*n = (*n)->next;
258 			__aarp_expire(t);
259 		} else
260 			n = &((*n)->next);
261 }
262 
263 /*
264  *	Kick all pending requests 5 times a second.
265  *
266  *	Must run under the aarp_lock.
267  */
268 static void __aarp_kick(struct aarp_entry **n)
269 {
270 	struct aarp_entry *t;
271 
272 	while (*n)
273 		/* Expired: if this will be the 11th tx, we delete instead. */
274 		if ((*n)->xmit_count >= sysctl_aarp_retransmit_limit) {
275 			t = *n;
276 			*n = (*n)->next;
277 			__aarp_expire(t);
278 		} else {
279 			__aarp_send_query(*n);
280 			n = &((*n)->next);
281 		}
282 }
283 
284 /*
285  *	A device has gone down. Take all entries referring to the device
286  *	and remove them.
287  *
288  *	Must run under the aarp_lock.
289  */
290 static void __aarp_expire_device(struct aarp_entry **n, struct net_device *dev)
291 {
292 	struct aarp_entry *t;
293 
294 	while (*n)
295 		if ((*n)->dev == dev) {
296 			t = *n;
297 			*n = (*n)->next;
298 			__aarp_expire(t);
299 		} else
300 			n = &((*n)->next);
301 }
302 
303 /* Handle the timer event */
304 static void aarp_expire_timeout(unsigned long unused)
305 {
306 	int ct;
307 
308 	write_lock_bh(&aarp_lock);
309 
310 	for (ct = 0; ct < AARP_HASH_SIZE; ct++) {
311 		__aarp_expire_timer(&resolved[ct]);
312 		__aarp_kick(&unresolved[ct]);
313 		__aarp_expire_timer(&unresolved[ct]);
314 		__aarp_expire_timer(&proxies[ct]);
315 	}
316 
317 	write_unlock_bh(&aarp_lock);
318 	mod_timer(&aarp_timer, jiffies +
319 			       (unresolved_count ? sysctl_aarp_tick_time :
320 				sysctl_aarp_expiry_time));
321 }
322 
323 /* Network device notifier chain handler. */
324 static int aarp_device_event(struct notifier_block *this, unsigned long event,
325 			     void *ptr)
326 {
327 	int ct;
328 
329 	if (event == NETDEV_DOWN) {
330 		write_lock_bh(&aarp_lock);
331 
332 		for (ct = 0; ct < AARP_HASH_SIZE; ct++) {
333 			__aarp_expire_device(&resolved[ct], ptr);
334 			__aarp_expire_device(&unresolved[ct], ptr);
335 			__aarp_expire_device(&proxies[ct], ptr);
336 		}
337 
338 		write_unlock_bh(&aarp_lock);
339 	}
340 	return NOTIFY_DONE;
341 }
342 
343 /* Expire all entries in a hash chain */
344 static void __aarp_expire_all(struct aarp_entry **n)
345 {
346 	struct aarp_entry *t;
347 
348 	while (*n) {
349 		t = *n;
350 		*n = (*n)->next;
351 		__aarp_expire(t);
352 	}
353 }
354 
355 /* Cleanup all hash chains -- module unloading */
356 static void aarp_purge(void)
357 {
358 	int ct;
359 
360 	write_lock_bh(&aarp_lock);
361 	for (ct = 0; ct < AARP_HASH_SIZE; ct++) {
362 		__aarp_expire_all(&resolved[ct]);
363 		__aarp_expire_all(&unresolved[ct]);
364 		__aarp_expire_all(&proxies[ct]);
365 	}
366 	write_unlock_bh(&aarp_lock);
367 }
368 
369 /*
370  *	Create a new aarp entry.  This must use GFP_ATOMIC because it
371  *	runs while holding spinlocks.
372  */
373 static struct aarp_entry *aarp_alloc(void)
374 {
375 	struct aarp_entry *a = kmalloc(sizeof(*a), GFP_ATOMIC);
376 
377 	if (a)
378 		skb_queue_head_init(&a->packet_queue);
379 	return a;
380 }
381 
382 /*
383  * Find an entry. We might return an expired but not yet purged entry. We
384  * don't care as it will do no harm.
385  *
386  * This must run under the aarp_lock.
387  */
388 static struct aarp_entry *__aarp_find_entry(struct aarp_entry *list,
389 					    struct net_device *dev,
390 					    struct atalk_addr *sat)
391 {
392 	while (list) {
393 		if (list->target_addr.s_net == sat->s_net &&
394 		    list->target_addr.s_node == sat->s_node &&
395 		    list->dev == dev)
396 			break;
397 		list = list->next;
398 	}
399 
400 	return list;
401 }
402 
403 /* Called from the DDP code, and thus must be exported. */
404 void aarp_proxy_remove(struct net_device *dev, struct atalk_addr *sa)
405 {
406 	int hash = sa->s_node % (AARP_HASH_SIZE - 1);
407 	struct aarp_entry *a;
408 
409 	write_lock_bh(&aarp_lock);
410 
411 	a = __aarp_find_entry(proxies[hash], dev, sa);
412 	if (a)
413 		a->expires_at = jiffies - 1;
414 
415 	write_unlock_bh(&aarp_lock);
416 }
417 
418 /* This must run under aarp_lock. */
419 static struct atalk_addr *__aarp_proxy_find(struct net_device *dev,
420 					    struct atalk_addr *sa)
421 {
422 	int hash = sa->s_node % (AARP_HASH_SIZE - 1);
423 	struct aarp_entry *a = __aarp_find_entry(proxies[hash], dev, sa);
424 
425 	return a ? sa : NULL;
426 }
427 
428 /*
429  * Probe a Phase 1 device or a device that requires its Net:Node to
430  * be set via an ioctl.
431  */
432 static void aarp_send_probe_phase1(struct atalk_iface *iface)
433 {
434 	struct ifreq atreq;
435 	struct sockaddr_at *sa = (struct sockaddr_at *)&atreq.ifr_addr;
436 
437 	sa->sat_addr.s_node = iface->address.s_node;
438 	sa->sat_addr.s_net = ntohs(iface->address.s_net);
439 
440 	/* We pass the Net:Node to the drivers/cards by a Device ioctl. */
441 	if (!(iface->dev->do_ioctl(iface->dev, &atreq, SIOCSIFADDR))) {
442 		(void)iface->dev->do_ioctl(iface->dev, &atreq, SIOCGIFADDR);
443 		if (iface->address.s_net != htons(sa->sat_addr.s_net) ||
444 		    iface->address.s_node != sa->sat_addr.s_node)
445 			iface->status |= ATIF_PROBE_FAIL;
446 
447 		iface->address.s_net  = htons(sa->sat_addr.s_net);
448 		iface->address.s_node = sa->sat_addr.s_node;
449 	}
450 }
451 
452 
453 void aarp_probe_network(struct atalk_iface *atif)
454 {
455 	if (atif->dev->type == ARPHRD_LOCALTLK ||
456 	    atif->dev->type == ARPHRD_PPP)
457 		aarp_send_probe_phase1(atif);
458 	else {
459 		unsigned int count;
460 
461 		for (count = 0; count < AARP_RETRANSMIT_LIMIT; count++) {
462 			aarp_send_probe(atif->dev, &atif->address);
463 
464 			/* Defer 1/10th */
465 			current->state = TASK_INTERRUPTIBLE;
466 			schedule_timeout(HZ / 10);
467 
468 			if (atif->status & ATIF_PROBE_FAIL)
469 				break;
470 		}
471 	}
472 }
473 
474 int aarp_proxy_probe_network(struct atalk_iface *atif, struct atalk_addr *sa)
475 {
476 	int hash, retval = -EPROTONOSUPPORT;
477 	struct aarp_entry *entry;
478 	unsigned int count;
479 
480 	/*
481 	 * we don't currently support LocalTalk or PPP for proxy AARP;
482 	 * if someone wants to try and add it, have fun
483 	 */
484 	if (atif->dev->type == ARPHRD_LOCALTLK ||
485 	    atif->dev->type == ARPHRD_PPP)
486 		goto out;
487 
488 	/*
489 	 * create a new AARP entry with the flags set to be published --
490 	 * we need this one to hang around even if it's in use
491 	 */
492 	entry = aarp_alloc();
493 	retval = -ENOMEM;
494 	if (!entry)
495 		goto out;
496 
497 	entry->expires_at = -1;
498 	entry->status = ATIF_PROBE;
499 	entry->target_addr.s_node = sa->s_node;
500 	entry->target_addr.s_net = sa->s_net;
501 	entry->dev = atif->dev;
502 
503 	write_lock_bh(&aarp_lock);
504 
505 	hash = sa->s_node % (AARP_HASH_SIZE - 1);
506 	entry->next = proxies[hash];
507 	proxies[hash] = entry;
508 
509 	for (count = 0; count < AARP_RETRANSMIT_LIMIT; count++) {
510 		aarp_send_probe(atif->dev, sa);
511 
512 		/* Defer 1/10th */
513 		current->state = TASK_INTERRUPTIBLE;
514 		write_unlock_bh(&aarp_lock);
515 		schedule_timeout(HZ / 10);
516 		write_lock_bh(&aarp_lock);
517 
518 		if (entry->status & ATIF_PROBE_FAIL)
519 			break;
520 	}
521 
522 	if (entry->status & ATIF_PROBE_FAIL) {
523 		entry->expires_at = jiffies - 1; /* free the entry */
524 		retval = -EADDRINUSE; /* return network full */
525 	} else { /* clear the probing flag */
526 		entry->status &= ~ATIF_PROBE;
527 		retval = 1;
528 	}
529 
530 	write_unlock_bh(&aarp_lock);
531 out:
532 	return retval;
533 }
534 
535 /* Send a DDP frame */
536 int aarp_send_ddp(struct net_device *dev, struct sk_buff *skb,
537 		  struct atalk_addr *sa, void *hwaddr)
538 {
539 	static char ddp_eth_multicast[ETH_ALEN] =
540 		{ 0x09, 0x00, 0x07, 0xFF, 0xFF, 0xFF };
541 	int hash;
542 	struct aarp_entry *a;
543 
544 	skb->nh.raw = skb->data;
545 
546 	/* Check for LocalTalk first */
547 	if (dev->type == ARPHRD_LOCALTLK) {
548 		struct atalk_addr *at = atalk_find_dev_addr(dev);
549 		struct ddpehdr *ddp = (struct ddpehdr *)skb->data;
550 		int ft = 2;
551 
552 		/*
553 		 * Compressible ?
554 		 *
555 		 * IFF: src_net == dest_net == device_net
556 		 * (zero matches anything)
557 		 */
558 
559 		if ((!ddp->deh_snet || at->s_net == ddp->deh_snet) &&
560 		    (!ddp->deh_dnet || at->s_net == ddp->deh_dnet)) {
561 			skb_pull(skb, sizeof(*ddp) - 4);
562 
563 			/*
564 			 *	The upper two remaining bytes are the port
565 			 *	numbers	we just happen to need. Now put the
566 			 *	length in the lower two.
567 			 */
568 			*((__be16 *)skb->data) = htons(skb->len);
569 			ft = 1;
570 		}
571 		/*
572 		 * Nice and easy. No AARP type protocols occur here so we can
573 		 * just shovel it out with a 3 byte LLAP header
574 		 */
575 
576 		skb_push(skb, 3);
577 		skb->data[0] = sa->s_node;
578 		skb->data[1] = at->s_node;
579 		skb->data[2] = ft;
580 		skb->dev     = dev;
581 		goto sendit;
582 	}
583 
584 	/* On a PPP link we neither compress nor aarp.  */
585 	if (dev->type == ARPHRD_PPP) {
586 		skb->protocol = htons(ETH_P_PPPTALK);
587 		skb->dev = dev;
588 		goto sendit;
589 	}
590 
591 	/* Non ELAP we cannot do. */
592 	if (dev->type != ARPHRD_ETHER)
593 		return -1;
594 
595 	skb->dev = dev;
596 	skb->protocol = htons(ETH_P_ATALK);
597 	hash = sa->s_node % (AARP_HASH_SIZE - 1);
598 
599 	/* Do we have a resolved entry? */
600 	if (sa->s_node == ATADDR_BCAST) {
601 		/* Send it */
602 		ddp_dl->request(ddp_dl, skb, ddp_eth_multicast);
603 		goto sent;
604 	}
605 
606 	write_lock_bh(&aarp_lock);
607 	a = __aarp_find_entry(resolved[hash], dev, sa);
608 
609 	if (a) { /* Return 1 and fill in the address */
610 		a->expires_at = jiffies + (sysctl_aarp_expiry_time * 10);
611 		ddp_dl->request(ddp_dl, skb, a->hwaddr);
612 		write_unlock_bh(&aarp_lock);
613 		goto sent;
614 	}
615 
616 	/* Do we have an unresolved entry: This is the less common path */
617 	a = __aarp_find_entry(unresolved[hash], dev, sa);
618 	if (a) { /* Queue onto the unresolved queue */
619 		skb_queue_tail(&a->packet_queue, skb);
620 		goto out_unlock;
621 	}
622 
623 	/* Allocate a new entry */
624 	a = aarp_alloc();
625 	if (!a) {
626 		/* Whoops slipped... good job it's an unreliable protocol 8) */
627 		write_unlock_bh(&aarp_lock);
628 		return -1;
629 	}
630 
631 	/* Set up the queue */
632 	skb_queue_tail(&a->packet_queue, skb);
633 	a->expires_at	 = jiffies + sysctl_aarp_resolve_time;
634 	a->dev		 = dev;
635 	a->next		 = unresolved[hash];
636 	a->target_addr	 = *sa;
637 	a->xmit_count	 = 0;
638 	unresolved[hash] = a;
639 	unresolved_count++;
640 
641 	/* Send an initial request for the address */
642 	__aarp_send_query(a);
643 
644 	/*
645 	 * Switch to fast timer if needed (That is if this is the first
646 	 * unresolved entry to get added)
647 	 */
648 
649 	if (unresolved_count == 1)
650 		mod_timer(&aarp_timer, jiffies + sysctl_aarp_tick_time);
651 
652 	/* Now finally, it is safe to drop the lock. */
653 out_unlock:
654 	write_unlock_bh(&aarp_lock);
655 
656 	/* Tell the ddp layer we have taken over for this frame. */
657 	return 0;
658 
659 sendit:
660 	if (skb->sk)
661 		skb->priority = skb->sk->sk_priority;
662 	dev_queue_xmit(skb);
663 sent:
664 	return 1;
665 }
666 
667 /*
668  *	An entry in the aarp unresolved queue has become resolved. Send
669  *	all the frames queued under it.
670  *
671  *	Must run under aarp_lock.
672  */
673 static void __aarp_resolved(struct aarp_entry **list, struct aarp_entry *a,
674 			    int hash)
675 {
676 	struct sk_buff *skb;
677 
678 	while (*list)
679 		if (*list == a) {
680 			unresolved_count--;
681 			*list = a->next;
682 
683 			/* Move into the resolved list */
684 			a->next = resolved[hash];
685 			resolved[hash] = a;
686 
687 			/* Kick frames off */
688 			while ((skb = skb_dequeue(&a->packet_queue)) != NULL) {
689 				a->expires_at = jiffies +
690 						sysctl_aarp_expiry_time * 10;
691 				ddp_dl->request(ddp_dl, skb, a->hwaddr);
692 			}
693 		} else
694 			list = &((*list)->next);
695 }
696 
697 /*
698  *	This is called by the SNAP driver whenever we see an AARP SNAP
699  *	frame. We currently only support Ethernet.
700  */
701 static int aarp_rcv(struct sk_buff *skb, struct net_device *dev,
702 		    struct packet_type *pt)
703 {
704 	struct elapaarp *ea = aarp_hdr(skb);
705 	int hash, ret = 0;
706 	__u16 function;
707 	struct aarp_entry *a;
708 	struct atalk_addr sa, *ma, da;
709 	struct atalk_iface *ifa;
710 
711 	/* We only do Ethernet SNAP AARP. */
712 	if (dev->type != ARPHRD_ETHER)
713 		goto out0;
714 
715 	/* Frame size ok? */
716 	if (!skb_pull(skb, sizeof(*ea)))
717 		goto out0;
718 
719 	function = ntohs(ea->function);
720 
721 	/* Sanity check fields. */
722 	if (function < AARP_REQUEST || function > AARP_PROBE ||
723 	    ea->hw_len != ETH_ALEN || ea->pa_len != AARP_PA_ALEN ||
724 	    ea->pa_src_zero || ea->pa_dst_zero)
725 		goto out0;
726 
727 	/* Looks good. */
728 	hash = ea->pa_src_node % (AARP_HASH_SIZE - 1);
729 
730 	/* Build an address. */
731 	sa.s_node = ea->pa_src_node;
732 	sa.s_net = ea->pa_src_net;
733 
734 	/* Process the packet. Check for replies of me. */
735 	ifa = atalk_find_dev(dev);
736 	if (!ifa)
737 		goto out1;
738 
739 	if (ifa->status & ATIF_PROBE &&
740 	    ifa->address.s_node == ea->pa_dst_node &&
741 	    ifa->address.s_net == ea->pa_dst_net) {
742 		ifa->status |= ATIF_PROBE_FAIL; /* Fail the probe (in use) */
743 		goto out1;
744 	}
745 
746 	/* Check for replies of proxy AARP entries */
747 	da.s_node = ea->pa_dst_node;
748 	da.s_net  = ea->pa_dst_net;
749 
750 	write_lock_bh(&aarp_lock);
751 	a = __aarp_find_entry(proxies[hash], dev, &da);
752 
753 	if (a && a->status & ATIF_PROBE) {
754 		a->status |= ATIF_PROBE_FAIL;
755 		/*
756 		 * we do not respond to probe or request packets for
757 		 * this address while we are probing this address
758 		 */
759 		goto unlock;
760 	}
761 
762 	switch (function) {
763 		case AARP_REPLY:
764 			if (!unresolved_count)	/* Speed up */
765 				break;
766 
767 			/* Find the entry.  */
768 			a = __aarp_find_entry(unresolved[hash], dev, &sa);
769 			if (!a || dev != a->dev)
770 				break;
771 
772 			/* We can fill one in - this is good. */
773 			memcpy(a->hwaddr, ea->hw_src, ETH_ALEN);
774 			__aarp_resolved(&unresolved[hash], a, hash);
775 			if (!unresolved_count)
776 				mod_timer(&aarp_timer,
777 					  jiffies + sysctl_aarp_expiry_time);
778 			break;
779 
780 		case AARP_REQUEST:
781 		case AARP_PROBE:
782 
783 			/*
784 			 * If it is my address set ma to my address and reply.
785 			 * We can treat probe and request the same.  Probe
786 			 * simply means we shouldn't cache the querying host,
787 			 * as in a probe they are proposing an address not
788 			 * using one.
789 			 *
790 			 * Support for proxy-AARP added. We check if the
791 			 * address is one of our proxies before we toss the
792 			 * packet out.
793 			 */
794 
795 			sa.s_node = ea->pa_dst_node;
796 			sa.s_net  = ea->pa_dst_net;
797 
798 			/* See if we have a matching proxy. */
799 			ma = __aarp_proxy_find(dev, &sa);
800 			if (!ma)
801 				ma = &ifa->address;
802 			else { /* We need to make a copy of the entry. */
803 				da.s_node = sa.s_node;
804 				da.s_net = da.s_net;
805 				ma = &da;
806 			}
807 
808 			if (function == AARP_PROBE) {
809 				/*
810 				 * A probe implies someone trying to get an
811 				 * address. So as a precaution flush any
812 				 * entries we have for this address.
813 				 */
814 				struct aarp_entry *a;
815 
816 				a = __aarp_find_entry(resolved[sa.s_node %
817 							  (AARP_HASH_SIZE - 1)],
818 						      skb->dev, &sa);
819 
820 				/*
821 				 * Make it expire next tick - that avoids us
822 				 * getting into a probe/flush/learn/probe/
823 				 * flush/learn cycle during probing of a slow
824 				 * to respond host addr.
825 				 */
826 				if (a) {
827 					a->expires_at = jiffies - 1;
828 					mod_timer(&aarp_timer, jiffies +
829 							sysctl_aarp_tick_time);
830 				}
831 			}
832 
833 			if (sa.s_node != ma->s_node)
834 				break;
835 
836 			if (sa.s_net && ma->s_net && sa.s_net != ma->s_net)
837 				break;
838 
839 			sa.s_node = ea->pa_src_node;
840 			sa.s_net = ea->pa_src_net;
841 
842 			/* aarp_my_address has found the address to use for us.
843 			*/
844 			aarp_send_reply(dev, ma, &sa, ea->hw_src);
845 			break;
846 	}
847 
848 unlock:
849 	write_unlock_bh(&aarp_lock);
850 out1:
851 	ret = 1;
852 out0:
853 	kfree_skb(skb);
854 	return ret;
855 }
856 
857 static struct notifier_block aarp_notifier = {
858 	.notifier_call = aarp_device_event,
859 };
860 
861 static unsigned char aarp_snap_id[] = { 0x00, 0x00, 0x00, 0x80, 0xF3 };
862 
863 void __init aarp_proto_init(void)
864 {
865 	aarp_dl = register_snap_client(aarp_snap_id, aarp_rcv);
866 	if (!aarp_dl)
867 		printk(KERN_CRIT "Unable to register AARP with SNAP.\n");
868 	init_timer(&aarp_timer);
869 	aarp_timer.function = aarp_expire_timeout;
870 	aarp_timer.data	    = 0;
871 	aarp_timer.expires  = jiffies + sysctl_aarp_expiry_time;
872 	add_timer(&aarp_timer);
873 	register_netdevice_notifier(&aarp_notifier);
874 }
875 
876 /* Remove the AARP entries associated with a device. */
877 void aarp_device_down(struct net_device *dev)
878 {
879 	int ct;
880 
881 	write_lock_bh(&aarp_lock);
882 
883 	for (ct = 0; ct < AARP_HASH_SIZE; ct++) {
884 		__aarp_expire_device(&resolved[ct], dev);
885 		__aarp_expire_device(&unresolved[ct], dev);
886 		__aarp_expire_device(&proxies[ct], dev);
887 	}
888 
889 	write_unlock_bh(&aarp_lock);
890 }
891 
892 #ifdef CONFIG_PROC_FS
893 struct aarp_iter_state {
894 	int bucket;
895 	struct aarp_entry **table;
896 };
897 
898 /*
899  * Get the aarp entry that is in the chain described
900  * by the iterator.
901  * If pos is set then skip till that index.
902  * pos = 1 is the first entry
903  */
904 static struct aarp_entry *iter_next(struct aarp_iter_state *iter, loff_t *pos)
905 {
906 	int ct = iter->bucket;
907 	struct aarp_entry **table = iter->table;
908 	loff_t off = 0;
909 	struct aarp_entry *entry;
910 
911  rescan:
912 	while(ct < AARP_HASH_SIZE) {
913 		for (entry = table[ct]; entry; entry = entry->next) {
914 			if (!pos || ++off == *pos) {
915 				iter->table = table;
916 				iter->bucket = ct;
917 				return entry;
918 			}
919 		}
920 		++ct;
921 	}
922 
923 	if (table == resolved) {
924 		ct = 0;
925 		table = unresolved;
926 		goto rescan;
927 	}
928 	if (table == unresolved) {
929 		ct = 0;
930 		table = proxies;
931 		goto rescan;
932 	}
933 	return NULL;
934 }
935 
936 static void *aarp_seq_start(struct seq_file *seq, loff_t *pos)
937 {
938 	struct aarp_iter_state *iter = seq->private;
939 
940 	read_lock_bh(&aarp_lock);
941 	iter->table     = resolved;
942 	iter->bucket    = 0;
943 
944 	return *pos ? iter_next(iter, pos) : SEQ_START_TOKEN;
945 }
946 
947 static void *aarp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
948 {
949 	struct aarp_entry *entry = v;
950 	struct aarp_iter_state *iter = seq->private;
951 
952 	++*pos;
953 
954 	/* first line after header */
955 	if (v == SEQ_START_TOKEN)
956 		entry = iter_next(iter, NULL);
957 
958 	/* next entry in current bucket */
959 	else if (entry->next)
960 		entry = entry->next;
961 
962 	/* next bucket or table */
963 	else {
964 		++iter->bucket;
965 		entry = iter_next(iter, NULL);
966 	}
967 	return entry;
968 }
969 
970 static void aarp_seq_stop(struct seq_file *seq, void *v)
971 {
972 	read_unlock_bh(&aarp_lock);
973 }
974 
975 static const char *dt2str(unsigned long ticks)
976 {
977 	static char buf[32];
978 
979 	sprintf(buf, "%ld.%02ld", ticks / HZ, ((ticks % HZ) * 100 ) / HZ);
980 
981 	return buf;
982 }
983 
984 static int aarp_seq_show(struct seq_file *seq, void *v)
985 {
986 	struct aarp_iter_state *iter = seq->private;
987 	struct aarp_entry *entry = v;
988 	unsigned long now = jiffies;
989 
990 	if (v == SEQ_START_TOKEN)
991 		seq_puts(seq,
992 			 "Address  Interface   Hardware Address"
993 			 "   Expires LastSend  Retry Status\n");
994 	else {
995 		seq_printf(seq, "%04X:%02X  %-12s",
996 			   ntohs(entry->target_addr.s_net),
997 			   (unsigned int) entry->target_addr.s_node,
998 			   entry->dev ? entry->dev->name : "????");
999 		seq_printf(seq, "%02X:%02X:%02X:%02X:%02X:%02X",
1000 			   entry->hwaddr[0] & 0xFF,
1001 			   entry->hwaddr[1] & 0xFF,
1002 			   entry->hwaddr[2] & 0xFF,
1003 			   entry->hwaddr[3] & 0xFF,
1004 			   entry->hwaddr[4] & 0xFF,
1005 			   entry->hwaddr[5] & 0xFF);
1006 		seq_printf(seq, " %8s",
1007 			   dt2str((long)entry->expires_at - (long)now));
1008 		if (iter->table == unresolved)
1009 			seq_printf(seq, " %8s %6hu",
1010 				   dt2str(now - entry->last_sent),
1011 				   entry->xmit_count);
1012 		else
1013 			seq_puts(seq, "                ");
1014 		seq_printf(seq, " %s\n",
1015 			   (iter->table == resolved) ? "resolved"
1016 			   : (iter->table == unresolved) ? "unresolved"
1017 			   : (iter->table == proxies) ? "proxies"
1018 			   : "unknown");
1019 	}
1020 	return 0;
1021 }
1022 
1023 static struct seq_operations aarp_seq_ops = {
1024 	.start  = aarp_seq_start,
1025 	.next   = aarp_seq_next,
1026 	.stop   = aarp_seq_stop,
1027 	.show   = aarp_seq_show,
1028 };
1029 
1030 static int aarp_seq_open(struct inode *inode, struct file *file)
1031 {
1032 	struct seq_file *seq;
1033 	int rc = -ENOMEM;
1034 	struct aarp_iter_state *s = kmalloc(sizeof(*s), GFP_KERNEL);
1035 
1036 	if (!s)
1037 		goto out;
1038 
1039 	rc = seq_open(file, &aarp_seq_ops);
1040 	if (rc)
1041 		goto out_kfree;
1042 
1043 	seq	     = file->private_data;
1044 	seq->private = s;
1045 	memset(s, 0, sizeof(*s));
1046 out:
1047 	return rc;
1048 out_kfree:
1049 	kfree(s);
1050 	goto out;
1051 }
1052 
1053 struct file_operations atalk_seq_arp_fops = {
1054 	.owner		= THIS_MODULE,
1055 	.open           = aarp_seq_open,
1056 	.read           = seq_read,
1057 	.llseek         = seq_lseek,
1058 	.release	= seq_release_private,
1059 };
1060 #endif
1061 
1062 /* General module cleanup. Called from cleanup_module() in ddp.c. */
1063 void aarp_cleanup_module(void)
1064 {
1065 	del_timer_sync(&aarp_timer);
1066 	unregister_netdevice_notifier(&aarp_notifier);
1067 	unregister_snap_client(aarp_dl);
1068 	aarp_purge();
1069 }
1070