1 /* 2 * AARP: An implementation of the AppleTalk AARP protocol for 3 * Ethernet 'ELAP'. 4 * 5 * Alan Cox <Alan.Cox@linux.org> 6 * 7 * This doesn't fit cleanly with the IP arp. Potentially we can use 8 * the generic neighbour discovery code to clean this up. 9 * 10 * FIXME: 11 * We ought to handle the retransmits with a single list and a 12 * separate fast timer for when it is needed. 13 * Use neighbour discovery code. 14 * Token Ring Support. 15 * 16 * This program is free software; you can redistribute it and/or 17 * modify it under the terms of the GNU General Public License 18 * as published by the Free Software Foundation; either version 19 * 2 of the License, or (at your option) any later version. 20 * 21 * 22 * References: 23 * Inside AppleTalk (2nd Ed). 24 * Fixes: 25 * Jaume Grau - flush caches on AARP_PROBE 26 * Rob Newberry - Added proxy AARP and AARP proc fs, 27 * moved probing from DDP module. 28 * Arnaldo C. Melo - don't mangle rx packets 29 * 30 */ 31 32 #include <linux/config.h> 33 #include <linux/if_arp.h> 34 #include <net/sock.h> 35 #include <net/datalink.h> 36 #include <net/psnap.h> 37 #include <linux/atalk.h> 38 #include <linux/init.h> 39 #include <linux/proc_fs.h> 40 #include <linux/seq_file.h> 41 42 int sysctl_aarp_expiry_time = AARP_EXPIRY_TIME; 43 int sysctl_aarp_tick_time = AARP_TICK_TIME; 44 int sysctl_aarp_retransmit_limit = AARP_RETRANSMIT_LIMIT; 45 int sysctl_aarp_resolve_time = AARP_RESOLVE_TIME; 46 47 /* Lists of aarp entries */ 48 /** 49 * struct aarp_entry - AARP entry 50 * @last_sent - Last time we xmitted the aarp request 51 * @packet_queue - Queue of frames wait for resolution 52 * @status - Used for proxy AARP 53 * expires_at - Entry expiry time 54 * target_addr - DDP Address 55 * dev - Device to use 56 * hwaddr - Physical i/f address of target/router 57 * xmit_count - When this hits 10 we give up 58 * next - Next entry in chain 59 */ 60 struct aarp_entry { 61 /* These first two are only used for unresolved entries */ 62 unsigned long last_sent; 63 struct sk_buff_head packet_queue; 64 int status; 65 unsigned long expires_at; 66 struct atalk_addr target_addr; 67 struct net_device *dev; 68 char hwaddr[6]; 69 unsigned short xmit_count; 70 struct aarp_entry *next; 71 }; 72 73 /* Hashed list of resolved, unresolved and proxy entries */ 74 static struct aarp_entry *resolved[AARP_HASH_SIZE]; 75 static struct aarp_entry *unresolved[AARP_HASH_SIZE]; 76 static struct aarp_entry *proxies[AARP_HASH_SIZE]; 77 static int unresolved_count; 78 79 /* One lock protects it all. */ 80 static DEFINE_RWLOCK(aarp_lock); 81 82 /* Used to walk the list and purge/kick entries. */ 83 static struct timer_list aarp_timer; 84 85 /* 86 * Delete an aarp queue 87 * 88 * Must run under aarp_lock. 89 */ 90 static void __aarp_expire(struct aarp_entry *a) 91 { 92 skb_queue_purge(&a->packet_queue); 93 kfree(a); 94 } 95 96 /* 97 * Send an aarp queue entry request 98 * 99 * Must run under aarp_lock. 100 */ 101 static void __aarp_send_query(struct aarp_entry *a) 102 { 103 static unsigned char aarp_eth_multicast[ETH_ALEN] = 104 { 0x09, 0x00, 0x07, 0xFF, 0xFF, 0xFF }; 105 struct net_device *dev = a->dev; 106 struct elapaarp *eah; 107 int len = dev->hard_header_len + sizeof(*eah) + aarp_dl->header_length; 108 struct sk_buff *skb = alloc_skb(len, GFP_ATOMIC); 109 struct atalk_addr *sat = atalk_find_dev_addr(dev); 110 111 if (!skb) 112 return; 113 114 if (!sat) { 115 kfree_skb(skb); 116 return; 117 } 118 119 /* Set up the buffer */ 120 skb_reserve(skb, dev->hard_header_len + aarp_dl->header_length); 121 skb->nh.raw = skb->h.raw = skb_put(skb, sizeof(*eah)); 122 skb->protocol = htons(ETH_P_ATALK); 123 skb->dev = dev; 124 eah = aarp_hdr(skb); 125 126 /* Set up the ARP */ 127 eah->hw_type = htons(AARP_HW_TYPE_ETHERNET); 128 eah->pa_type = htons(ETH_P_ATALK); 129 eah->hw_len = ETH_ALEN; 130 eah->pa_len = AARP_PA_ALEN; 131 eah->function = htons(AARP_REQUEST); 132 133 memcpy(eah->hw_src, dev->dev_addr, ETH_ALEN); 134 135 eah->pa_src_zero = 0; 136 eah->pa_src_net = sat->s_net; 137 eah->pa_src_node = sat->s_node; 138 139 memset(eah->hw_dst, '\0', ETH_ALEN); 140 141 eah->pa_dst_zero = 0; 142 eah->pa_dst_net = a->target_addr.s_net; 143 eah->pa_dst_node = a->target_addr.s_node; 144 145 /* Send it */ 146 aarp_dl->request(aarp_dl, skb, aarp_eth_multicast); 147 /* Update the sending count */ 148 a->xmit_count++; 149 a->last_sent = jiffies; 150 } 151 152 /* This runs under aarp_lock and in softint context, so only atomic memory 153 * allocations can be used. */ 154 static void aarp_send_reply(struct net_device *dev, struct atalk_addr *us, 155 struct atalk_addr *them, unsigned char *sha) 156 { 157 struct elapaarp *eah; 158 int len = dev->hard_header_len + sizeof(*eah) + aarp_dl->header_length; 159 struct sk_buff *skb = alloc_skb(len, GFP_ATOMIC); 160 161 if (!skb) 162 return; 163 164 /* Set up the buffer */ 165 skb_reserve(skb, dev->hard_header_len + aarp_dl->header_length); 166 skb->nh.raw = skb->h.raw = skb_put(skb, sizeof(*eah)); 167 skb->protocol = htons(ETH_P_ATALK); 168 skb->dev = dev; 169 eah = aarp_hdr(skb); 170 171 /* Set up the ARP */ 172 eah->hw_type = htons(AARP_HW_TYPE_ETHERNET); 173 eah->pa_type = htons(ETH_P_ATALK); 174 eah->hw_len = ETH_ALEN; 175 eah->pa_len = AARP_PA_ALEN; 176 eah->function = htons(AARP_REPLY); 177 178 memcpy(eah->hw_src, dev->dev_addr, ETH_ALEN); 179 180 eah->pa_src_zero = 0; 181 eah->pa_src_net = us->s_net; 182 eah->pa_src_node = us->s_node; 183 184 if (!sha) 185 memset(eah->hw_dst, '\0', ETH_ALEN); 186 else 187 memcpy(eah->hw_dst, sha, ETH_ALEN); 188 189 eah->pa_dst_zero = 0; 190 eah->pa_dst_net = them->s_net; 191 eah->pa_dst_node = them->s_node; 192 193 /* Send it */ 194 aarp_dl->request(aarp_dl, skb, sha); 195 } 196 197 /* 198 * Send probe frames. Called from aarp_probe_network and 199 * aarp_proxy_probe_network. 200 */ 201 202 static void aarp_send_probe(struct net_device *dev, struct atalk_addr *us) 203 { 204 struct elapaarp *eah; 205 int len = dev->hard_header_len + sizeof(*eah) + aarp_dl->header_length; 206 struct sk_buff *skb = alloc_skb(len, GFP_ATOMIC); 207 static unsigned char aarp_eth_multicast[ETH_ALEN] = 208 { 0x09, 0x00, 0x07, 0xFF, 0xFF, 0xFF }; 209 210 if (!skb) 211 return; 212 213 /* Set up the buffer */ 214 skb_reserve(skb, dev->hard_header_len + aarp_dl->header_length); 215 skb->nh.raw = skb->h.raw = skb_put(skb, sizeof(*eah)); 216 skb->protocol = htons(ETH_P_ATALK); 217 skb->dev = dev; 218 eah = aarp_hdr(skb); 219 220 /* Set up the ARP */ 221 eah->hw_type = htons(AARP_HW_TYPE_ETHERNET); 222 eah->pa_type = htons(ETH_P_ATALK); 223 eah->hw_len = ETH_ALEN; 224 eah->pa_len = AARP_PA_ALEN; 225 eah->function = htons(AARP_PROBE); 226 227 memcpy(eah->hw_src, dev->dev_addr, ETH_ALEN); 228 229 eah->pa_src_zero = 0; 230 eah->pa_src_net = us->s_net; 231 eah->pa_src_node = us->s_node; 232 233 memset(eah->hw_dst, '\0', ETH_ALEN); 234 235 eah->pa_dst_zero = 0; 236 eah->pa_dst_net = us->s_net; 237 eah->pa_dst_node = us->s_node; 238 239 /* Send it */ 240 aarp_dl->request(aarp_dl, skb, aarp_eth_multicast); 241 } 242 243 /* 244 * Handle an aarp timer expire 245 * 246 * Must run under the aarp_lock. 247 */ 248 249 static void __aarp_expire_timer(struct aarp_entry **n) 250 { 251 struct aarp_entry *t; 252 253 while (*n) 254 /* Expired ? */ 255 if (time_after(jiffies, (*n)->expires_at)) { 256 t = *n; 257 *n = (*n)->next; 258 __aarp_expire(t); 259 } else 260 n = &((*n)->next); 261 } 262 263 /* 264 * Kick all pending requests 5 times a second. 265 * 266 * Must run under the aarp_lock. 267 */ 268 static void __aarp_kick(struct aarp_entry **n) 269 { 270 struct aarp_entry *t; 271 272 while (*n) 273 /* Expired: if this will be the 11th tx, we delete instead. */ 274 if ((*n)->xmit_count >= sysctl_aarp_retransmit_limit) { 275 t = *n; 276 *n = (*n)->next; 277 __aarp_expire(t); 278 } else { 279 __aarp_send_query(*n); 280 n = &((*n)->next); 281 } 282 } 283 284 /* 285 * A device has gone down. Take all entries referring to the device 286 * and remove them. 287 * 288 * Must run under the aarp_lock. 289 */ 290 static void __aarp_expire_device(struct aarp_entry **n, struct net_device *dev) 291 { 292 struct aarp_entry *t; 293 294 while (*n) 295 if ((*n)->dev == dev) { 296 t = *n; 297 *n = (*n)->next; 298 __aarp_expire(t); 299 } else 300 n = &((*n)->next); 301 } 302 303 /* Handle the timer event */ 304 static void aarp_expire_timeout(unsigned long unused) 305 { 306 int ct; 307 308 write_lock_bh(&aarp_lock); 309 310 for (ct = 0; ct < AARP_HASH_SIZE; ct++) { 311 __aarp_expire_timer(&resolved[ct]); 312 __aarp_kick(&unresolved[ct]); 313 __aarp_expire_timer(&unresolved[ct]); 314 __aarp_expire_timer(&proxies[ct]); 315 } 316 317 write_unlock_bh(&aarp_lock); 318 mod_timer(&aarp_timer, jiffies + 319 (unresolved_count ? sysctl_aarp_tick_time : 320 sysctl_aarp_expiry_time)); 321 } 322 323 /* Network device notifier chain handler. */ 324 static int aarp_device_event(struct notifier_block *this, unsigned long event, 325 void *ptr) 326 { 327 int ct; 328 329 if (event == NETDEV_DOWN) { 330 write_lock_bh(&aarp_lock); 331 332 for (ct = 0; ct < AARP_HASH_SIZE; ct++) { 333 __aarp_expire_device(&resolved[ct], ptr); 334 __aarp_expire_device(&unresolved[ct], ptr); 335 __aarp_expire_device(&proxies[ct], ptr); 336 } 337 338 write_unlock_bh(&aarp_lock); 339 } 340 return NOTIFY_DONE; 341 } 342 343 /* Expire all entries in a hash chain */ 344 static void __aarp_expire_all(struct aarp_entry **n) 345 { 346 struct aarp_entry *t; 347 348 while (*n) { 349 t = *n; 350 *n = (*n)->next; 351 __aarp_expire(t); 352 } 353 } 354 355 /* Cleanup all hash chains -- module unloading */ 356 static void aarp_purge(void) 357 { 358 int ct; 359 360 write_lock_bh(&aarp_lock); 361 for (ct = 0; ct < AARP_HASH_SIZE; ct++) { 362 __aarp_expire_all(&resolved[ct]); 363 __aarp_expire_all(&unresolved[ct]); 364 __aarp_expire_all(&proxies[ct]); 365 } 366 write_unlock_bh(&aarp_lock); 367 } 368 369 /* 370 * Create a new aarp entry. This must use GFP_ATOMIC because it 371 * runs while holding spinlocks. 372 */ 373 static struct aarp_entry *aarp_alloc(void) 374 { 375 struct aarp_entry *a = kmalloc(sizeof(*a), GFP_ATOMIC); 376 377 if (a) 378 skb_queue_head_init(&a->packet_queue); 379 return a; 380 } 381 382 /* 383 * Find an entry. We might return an expired but not yet purged entry. We 384 * don't care as it will do no harm. 385 * 386 * This must run under the aarp_lock. 387 */ 388 static struct aarp_entry *__aarp_find_entry(struct aarp_entry *list, 389 struct net_device *dev, 390 struct atalk_addr *sat) 391 { 392 while (list) { 393 if (list->target_addr.s_net == sat->s_net && 394 list->target_addr.s_node == sat->s_node && 395 list->dev == dev) 396 break; 397 list = list->next; 398 } 399 400 return list; 401 } 402 403 /* Called from the DDP code, and thus must be exported. */ 404 void aarp_proxy_remove(struct net_device *dev, struct atalk_addr *sa) 405 { 406 int hash = sa->s_node % (AARP_HASH_SIZE - 1); 407 struct aarp_entry *a; 408 409 write_lock_bh(&aarp_lock); 410 411 a = __aarp_find_entry(proxies[hash], dev, sa); 412 if (a) 413 a->expires_at = jiffies - 1; 414 415 write_unlock_bh(&aarp_lock); 416 } 417 418 /* This must run under aarp_lock. */ 419 static struct atalk_addr *__aarp_proxy_find(struct net_device *dev, 420 struct atalk_addr *sa) 421 { 422 int hash = sa->s_node % (AARP_HASH_SIZE - 1); 423 struct aarp_entry *a = __aarp_find_entry(proxies[hash], dev, sa); 424 425 return a ? sa : NULL; 426 } 427 428 /* 429 * Probe a Phase 1 device or a device that requires its Net:Node to 430 * be set via an ioctl. 431 */ 432 static void aarp_send_probe_phase1(struct atalk_iface *iface) 433 { 434 struct ifreq atreq; 435 struct sockaddr_at *sa = (struct sockaddr_at *)&atreq.ifr_addr; 436 437 sa->sat_addr.s_node = iface->address.s_node; 438 sa->sat_addr.s_net = ntohs(iface->address.s_net); 439 440 /* We pass the Net:Node to the drivers/cards by a Device ioctl. */ 441 if (!(iface->dev->do_ioctl(iface->dev, &atreq, SIOCSIFADDR))) { 442 (void)iface->dev->do_ioctl(iface->dev, &atreq, SIOCGIFADDR); 443 if (iface->address.s_net != htons(sa->sat_addr.s_net) || 444 iface->address.s_node != sa->sat_addr.s_node) 445 iface->status |= ATIF_PROBE_FAIL; 446 447 iface->address.s_net = htons(sa->sat_addr.s_net); 448 iface->address.s_node = sa->sat_addr.s_node; 449 } 450 } 451 452 453 void aarp_probe_network(struct atalk_iface *atif) 454 { 455 if (atif->dev->type == ARPHRD_LOCALTLK || 456 atif->dev->type == ARPHRD_PPP) 457 aarp_send_probe_phase1(atif); 458 else { 459 unsigned int count; 460 461 for (count = 0; count < AARP_RETRANSMIT_LIMIT; count++) { 462 aarp_send_probe(atif->dev, &atif->address); 463 464 /* Defer 1/10th */ 465 current->state = TASK_INTERRUPTIBLE; 466 schedule_timeout(HZ / 10); 467 468 if (atif->status & ATIF_PROBE_FAIL) 469 break; 470 } 471 } 472 } 473 474 int aarp_proxy_probe_network(struct atalk_iface *atif, struct atalk_addr *sa) 475 { 476 int hash, retval = -EPROTONOSUPPORT; 477 struct aarp_entry *entry; 478 unsigned int count; 479 480 /* 481 * we don't currently support LocalTalk or PPP for proxy AARP; 482 * if someone wants to try and add it, have fun 483 */ 484 if (atif->dev->type == ARPHRD_LOCALTLK || 485 atif->dev->type == ARPHRD_PPP) 486 goto out; 487 488 /* 489 * create a new AARP entry with the flags set to be published -- 490 * we need this one to hang around even if it's in use 491 */ 492 entry = aarp_alloc(); 493 retval = -ENOMEM; 494 if (!entry) 495 goto out; 496 497 entry->expires_at = -1; 498 entry->status = ATIF_PROBE; 499 entry->target_addr.s_node = sa->s_node; 500 entry->target_addr.s_net = sa->s_net; 501 entry->dev = atif->dev; 502 503 write_lock_bh(&aarp_lock); 504 505 hash = sa->s_node % (AARP_HASH_SIZE - 1); 506 entry->next = proxies[hash]; 507 proxies[hash] = entry; 508 509 for (count = 0; count < AARP_RETRANSMIT_LIMIT; count++) { 510 aarp_send_probe(atif->dev, sa); 511 512 /* Defer 1/10th */ 513 current->state = TASK_INTERRUPTIBLE; 514 write_unlock_bh(&aarp_lock); 515 schedule_timeout(HZ / 10); 516 write_lock_bh(&aarp_lock); 517 518 if (entry->status & ATIF_PROBE_FAIL) 519 break; 520 } 521 522 if (entry->status & ATIF_PROBE_FAIL) { 523 entry->expires_at = jiffies - 1; /* free the entry */ 524 retval = -EADDRINUSE; /* return network full */ 525 } else { /* clear the probing flag */ 526 entry->status &= ~ATIF_PROBE; 527 retval = 1; 528 } 529 530 write_unlock_bh(&aarp_lock); 531 out: 532 return retval; 533 } 534 535 /* Send a DDP frame */ 536 int aarp_send_ddp(struct net_device *dev, struct sk_buff *skb, 537 struct atalk_addr *sa, void *hwaddr) 538 { 539 static char ddp_eth_multicast[ETH_ALEN] = 540 { 0x09, 0x00, 0x07, 0xFF, 0xFF, 0xFF }; 541 int hash; 542 struct aarp_entry *a; 543 544 skb->nh.raw = skb->data; 545 546 /* Check for LocalTalk first */ 547 if (dev->type == ARPHRD_LOCALTLK) { 548 struct atalk_addr *at = atalk_find_dev_addr(dev); 549 struct ddpehdr *ddp = (struct ddpehdr *)skb->data; 550 int ft = 2; 551 552 /* 553 * Compressible ? 554 * 555 * IFF: src_net == dest_net == device_net 556 * (zero matches anything) 557 */ 558 559 if ((!ddp->deh_snet || at->s_net == ddp->deh_snet) && 560 (!ddp->deh_dnet || at->s_net == ddp->deh_dnet)) { 561 skb_pull(skb, sizeof(*ddp) - 4); 562 563 /* 564 * The upper two remaining bytes are the port 565 * numbers we just happen to need. Now put the 566 * length in the lower two. 567 */ 568 *((__be16 *)skb->data) = htons(skb->len); 569 ft = 1; 570 } 571 /* 572 * Nice and easy. No AARP type protocols occur here so we can 573 * just shovel it out with a 3 byte LLAP header 574 */ 575 576 skb_push(skb, 3); 577 skb->data[0] = sa->s_node; 578 skb->data[1] = at->s_node; 579 skb->data[2] = ft; 580 skb->dev = dev; 581 goto sendit; 582 } 583 584 /* On a PPP link we neither compress nor aarp. */ 585 if (dev->type == ARPHRD_PPP) { 586 skb->protocol = htons(ETH_P_PPPTALK); 587 skb->dev = dev; 588 goto sendit; 589 } 590 591 /* Non ELAP we cannot do. */ 592 if (dev->type != ARPHRD_ETHER) 593 return -1; 594 595 skb->dev = dev; 596 skb->protocol = htons(ETH_P_ATALK); 597 hash = sa->s_node % (AARP_HASH_SIZE - 1); 598 599 /* Do we have a resolved entry? */ 600 if (sa->s_node == ATADDR_BCAST) { 601 /* Send it */ 602 ddp_dl->request(ddp_dl, skb, ddp_eth_multicast); 603 goto sent; 604 } 605 606 write_lock_bh(&aarp_lock); 607 a = __aarp_find_entry(resolved[hash], dev, sa); 608 609 if (a) { /* Return 1 and fill in the address */ 610 a->expires_at = jiffies + (sysctl_aarp_expiry_time * 10); 611 ddp_dl->request(ddp_dl, skb, a->hwaddr); 612 write_unlock_bh(&aarp_lock); 613 goto sent; 614 } 615 616 /* Do we have an unresolved entry: This is the less common path */ 617 a = __aarp_find_entry(unresolved[hash], dev, sa); 618 if (a) { /* Queue onto the unresolved queue */ 619 skb_queue_tail(&a->packet_queue, skb); 620 goto out_unlock; 621 } 622 623 /* Allocate a new entry */ 624 a = aarp_alloc(); 625 if (!a) { 626 /* Whoops slipped... good job it's an unreliable protocol 8) */ 627 write_unlock_bh(&aarp_lock); 628 return -1; 629 } 630 631 /* Set up the queue */ 632 skb_queue_tail(&a->packet_queue, skb); 633 a->expires_at = jiffies + sysctl_aarp_resolve_time; 634 a->dev = dev; 635 a->next = unresolved[hash]; 636 a->target_addr = *sa; 637 a->xmit_count = 0; 638 unresolved[hash] = a; 639 unresolved_count++; 640 641 /* Send an initial request for the address */ 642 __aarp_send_query(a); 643 644 /* 645 * Switch to fast timer if needed (That is if this is the first 646 * unresolved entry to get added) 647 */ 648 649 if (unresolved_count == 1) 650 mod_timer(&aarp_timer, jiffies + sysctl_aarp_tick_time); 651 652 /* Now finally, it is safe to drop the lock. */ 653 out_unlock: 654 write_unlock_bh(&aarp_lock); 655 656 /* Tell the ddp layer we have taken over for this frame. */ 657 return 0; 658 659 sendit: 660 if (skb->sk) 661 skb->priority = skb->sk->sk_priority; 662 dev_queue_xmit(skb); 663 sent: 664 return 1; 665 } 666 667 /* 668 * An entry in the aarp unresolved queue has become resolved. Send 669 * all the frames queued under it. 670 * 671 * Must run under aarp_lock. 672 */ 673 static void __aarp_resolved(struct aarp_entry **list, struct aarp_entry *a, 674 int hash) 675 { 676 struct sk_buff *skb; 677 678 while (*list) 679 if (*list == a) { 680 unresolved_count--; 681 *list = a->next; 682 683 /* Move into the resolved list */ 684 a->next = resolved[hash]; 685 resolved[hash] = a; 686 687 /* Kick frames off */ 688 while ((skb = skb_dequeue(&a->packet_queue)) != NULL) { 689 a->expires_at = jiffies + 690 sysctl_aarp_expiry_time * 10; 691 ddp_dl->request(ddp_dl, skb, a->hwaddr); 692 } 693 } else 694 list = &((*list)->next); 695 } 696 697 /* 698 * This is called by the SNAP driver whenever we see an AARP SNAP 699 * frame. We currently only support Ethernet. 700 */ 701 static int aarp_rcv(struct sk_buff *skb, struct net_device *dev, 702 struct packet_type *pt) 703 { 704 struct elapaarp *ea = aarp_hdr(skb); 705 int hash, ret = 0; 706 __u16 function; 707 struct aarp_entry *a; 708 struct atalk_addr sa, *ma, da; 709 struct atalk_iface *ifa; 710 711 /* We only do Ethernet SNAP AARP. */ 712 if (dev->type != ARPHRD_ETHER) 713 goto out0; 714 715 /* Frame size ok? */ 716 if (!skb_pull(skb, sizeof(*ea))) 717 goto out0; 718 719 function = ntohs(ea->function); 720 721 /* Sanity check fields. */ 722 if (function < AARP_REQUEST || function > AARP_PROBE || 723 ea->hw_len != ETH_ALEN || ea->pa_len != AARP_PA_ALEN || 724 ea->pa_src_zero || ea->pa_dst_zero) 725 goto out0; 726 727 /* Looks good. */ 728 hash = ea->pa_src_node % (AARP_HASH_SIZE - 1); 729 730 /* Build an address. */ 731 sa.s_node = ea->pa_src_node; 732 sa.s_net = ea->pa_src_net; 733 734 /* Process the packet. Check for replies of me. */ 735 ifa = atalk_find_dev(dev); 736 if (!ifa) 737 goto out1; 738 739 if (ifa->status & ATIF_PROBE && 740 ifa->address.s_node == ea->pa_dst_node && 741 ifa->address.s_net == ea->pa_dst_net) { 742 ifa->status |= ATIF_PROBE_FAIL; /* Fail the probe (in use) */ 743 goto out1; 744 } 745 746 /* Check for replies of proxy AARP entries */ 747 da.s_node = ea->pa_dst_node; 748 da.s_net = ea->pa_dst_net; 749 750 write_lock_bh(&aarp_lock); 751 a = __aarp_find_entry(proxies[hash], dev, &da); 752 753 if (a && a->status & ATIF_PROBE) { 754 a->status |= ATIF_PROBE_FAIL; 755 /* 756 * we do not respond to probe or request packets for 757 * this address while we are probing this address 758 */ 759 goto unlock; 760 } 761 762 switch (function) { 763 case AARP_REPLY: 764 if (!unresolved_count) /* Speed up */ 765 break; 766 767 /* Find the entry. */ 768 a = __aarp_find_entry(unresolved[hash], dev, &sa); 769 if (!a || dev != a->dev) 770 break; 771 772 /* We can fill one in - this is good. */ 773 memcpy(a->hwaddr, ea->hw_src, ETH_ALEN); 774 __aarp_resolved(&unresolved[hash], a, hash); 775 if (!unresolved_count) 776 mod_timer(&aarp_timer, 777 jiffies + sysctl_aarp_expiry_time); 778 break; 779 780 case AARP_REQUEST: 781 case AARP_PROBE: 782 783 /* 784 * If it is my address set ma to my address and reply. 785 * We can treat probe and request the same. Probe 786 * simply means we shouldn't cache the querying host, 787 * as in a probe they are proposing an address not 788 * using one. 789 * 790 * Support for proxy-AARP added. We check if the 791 * address is one of our proxies before we toss the 792 * packet out. 793 */ 794 795 sa.s_node = ea->pa_dst_node; 796 sa.s_net = ea->pa_dst_net; 797 798 /* See if we have a matching proxy. */ 799 ma = __aarp_proxy_find(dev, &sa); 800 if (!ma) 801 ma = &ifa->address; 802 else { /* We need to make a copy of the entry. */ 803 da.s_node = sa.s_node; 804 da.s_net = da.s_net; 805 ma = &da; 806 } 807 808 if (function == AARP_PROBE) { 809 /* 810 * A probe implies someone trying to get an 811 * address. So as a precaution flush any 812 * entries we have for this address. 813 */ 814 struct aarp_entry *a; 815 816 a = __aarp_find_entry(resolved[sa.s_node % 817 (AARP_HASH_SIZE - 1)], 818 skb->dev, &sa); 819 820 /* 821 * Make it expire next tick - that avoids us 822 * getting into a probe/flush/learn/probe/ 823 * flush/learn cycle during probing of a slow 824 * to respond host addr. 825 */ 826 if (a) { 827 a->expires_at = jiffies - 1; 828 mod_timer(&aarp_timer, jiffies + 829 sysctl_aarp_tick_time); 830 } 831 } 832 833 if (sa.s_node != ma->s_node) 834 break; 835 836 if (sa.s_net && ma->s_net && sa.s_net != ma->s_net) 837 break; 838 839 sa.s_node = ea->pa_src_node; 840 sa.s_net = ea->pa_src_net; 841 842 /* aarp_my_address has found the address to use for us. 843 */ 844 aarp_send_reply(dev, ma, &sa, ea->hw_src); 845 break; 846 } 847 848 unlock: 849 write_unlock_bh(&aarp_lock); 850 out1: 851 ret = 1; 852 out0: 853 kfree_skb(skb); 854 return ret; 855 } 856 857 static struct notifier_block aarp_notifier = { 858 .notifier_call = aarp_device_event, 859 }; 860 861 static unsigned char aarp_snap_id[] = { 0x00, 0x00, 0x00, 0x80, 0xF3 }; 862 863 void __init aarp_proto_init(void) 864 { 865 aarp_dl = register_snap_client(aarp_snap_id, aarp_rcv); 866 if (!aarp_dl) 867 printk(KERN_CRIT "Unable to register AARP with SNAP.\n"); 868 init_timer(&aarp_timer); 869 aarp_timer.function = aarp_expire_timeout; 870 aarp_timer.data = 0; 871 aarp_timer.expires = jiffies + sysctl_aarp_expiry_time; 872 add_timer(&aarp_timer); 873 register_netdevice_notifier(&aarp_notifier); 874 } 875 876 /* Remove the AARP entries associated with a device. */ 877 void aarp_device_down(struct net_device *dev) 878 { 879 int ct; 880 881 write_lock_bh(&aarp_lock); 882 883 for (ct = 0; ct < AARP_HASH_SIZE; ct++) { 884 __aarp_expire_device(&resolved[ct], dev); 885 __aarp_expire_device(&unresolved[ct], dev); 886 __aarp_expire_device(&proxies[ct], dev); 887 } 888 889 write_unlock_bh(&aarp_lock); 890 } 891 892 #ifdef CONFIG_PROC_FS 893 struct aarp_iter_state { 894 int bucket; 895 struct aarp_entry **table; 896 }; 897 898 /* 899 * Get the aarp entry that is in the chain described 900 * by the iterator. 901 * If pos is set then skip till that index. 902 * pos = 1 is the first entry 903 */ 904 static struct aarp_entry *iter_next(struct aarp_iter_state *iter, loff_t *pos) 905 { 906 int ct = iter->bucket; 907 struct aarp_entry **table = iter->table; 908 loff_t off = 0; 909 struct aarp_entry *entry; 910 911 rescan: 912 while(ct < AARP_HASH_SIZE) { 913 for (entry = table[ct]; entry; entry = entry->next) { 914 if (!pos || ++off == *pos) { 915 iter->table = table; 916 iter->bucket = ct; 917 return entry; 918 } 919 } 920 ++ct; 921 } 922 923 if (table == resolved) { 924 ct = 0; 925 table = unresolved; 926 goto rescan; 927 } 928 if (table == unresolved) { 929 ct = 0; 930 table = proxies; 931 goto rescan; 932 } 933 return NULL; 934 } 935 936 static void *aarp_seq_start(struct seq_file *seq, loff_t *pos) 937 { 938 struct aarp_iter_state *iter = seq->private; 939 940 read_lock_bh(&aarp_lock); 941 iter->table = resolved; 942 iter->bucket = 0; 943 944 return *pos ? iter_next(iter, pos) : SEQ_START_TOKEN; 945 } 946 947 static void *aarp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 948 { 949 struct aarp_entry *entry = v; 950 struct aarp_iter_state *iter = seq->private; 951 952 ++*pos; 953 954 /* first line after header */ 955 if (v == SEQ_START_TOKEN) 956 entry = iter_next(iter, NULL); 957 958 /* next entry in current bucket */ 959 else if (entry->next) 960 entry = entry->next; 961 962 /* next bucket or table */ 963 else { 964 ++iter->bucket; 965 entry = iter_next(iter, NULL); 966 } 967 return entry; 968 } 969 970 static void aarp_seq_stop(struct seq_file *seq, void *v) 971 { 972 read_unlock_bh(&aarp_lock); 973 } 974 975 static const char *dt2str(unsigned long ticks) 976 { 977 static char buf[32]; 978 979 sprintf(buf, "%ld.%02ld", ticks / HZ, ((ticks % HZ) * 100 ) / HZ); 980 981 return buf; 982 } 983 984 static int aarp_seq_show(struct seq_file *seq, void *v) 985 { 986 struct aarp_iter_state *iter = seq->private; 987 struct aarp_entry *entry = v; 988 unsigned long now = jiffies; 989 990 if (v == SEQ_START_TOKEN) 991 seq_puts(seq, 992 "Address Interface Hardware Address" 993 " Expires LastSend Retry Status\n"); 994 else { 995 seq_printf(seq, "%04X:%02X %-12s", 996 ntohs(entry->target_addr.s_net), 997 (unsigned int) entry->target_addr.s_node, 998 entry->dev ? entry->dev->name : "????"); 999 seq_printf(seq, "%02X:%02X:%02X:%02X:%02X:%02X", 1000 entry->hwaddr[0] & 0xFF, 1001 entry->hwaddr[1] & 0xFF, 1002 entry->hwaddr[2] & 0xFF, 1003 entry->hwaddr[3] & 0xFF, 1004 entry->hwaddr[4] & 0xFF, 1005 entry->hwaddr[5] & 0xFF); 1006 seq_printf(seq, " %8s", 1007 dt2str((long)entry->expires_at - (long)now)); 1008 if (iter->table == unresolved) 1009 seq_printf(seq, " %8s %6hu", 1010 dt2str(now - entry->last_sent), 1011 entry->xmit_count); 1012 else 1013 seq_puts(seq, " "); 1014 seq_printf(seq, " %s\n", 1015 (iter->table == resolved) ? "resolved" 1016 : (iter->table == unresolved) ? "unresolved" 1017 : (iter->table == proxies) ? "proxies" 1018 : "unknown"); 1019 } 1020 return 0; 1021 } 1022 1023 static struct seq_operations aarp_seq_ops = { 1024 .start = aarp_seq_start, 1025 .next = aarp_seq_next, 1026 .stop = aarp_seq_stop, 1027 .show = aarp_seq_show, 1028 }; 1029 1030 static int aarp_seq_open(struct inode *inode, struct file *file) 1031 { 1032 struct seq_file *seq; 1033 int rc = -ENOMEM; 1034 struct aarp_iter_state *s = kmalloc(sizeof(*s), GFP_KERNEL); 1035 1036 if (!s) 1037 goto out; 1038 1039 rc = seq_open(file, &aarp_seq_ops); 1040 if (rc) 1041 goto out_kfree; 1042 1043 seq = file->private_data; 1044 seq->private = s; 1045 memset(s, 0, sizeof(*s)); 1046 out: 1047 return rc; 1048 out_kfree: 1049 kfree(s); 1050 goto out; 1051 } 1052 1053 struct file_operations atalk_seq_arp_fops = { 1054 .owner = THIS_MODULE, 1055 .open = aarp_seq_open, 1056 .read = seq_read, 1057 .llseek = seq_lseek, 1058 .release = seq_release_private, 1059 }; 1060 #endif 1061 1062 /* General module cleanup. Called from cleanup_module() in ddp.c. */ 1063 void aarp_cleanup_module(void) 1064 { 1065 del_timer_sync(&aarp_timer); 1066 unregister_netdevice_notifier(&aarp_notifier); 1067 unregister_snap_client(aarp_dl); 1068 aarp_purge(); 1069 } 1070