xref: /linux/net/Kconfig (revision ca31fef11dc83e672415d5925a134749761329bd)
1# SPDX-License-Identifier: GPL-2.0-only
2#
3# Network configuration
4#
5
6menuconfig NET
7	bool "Networking support"
8	select NLATTR
9	select GENERIC_NET_UTILS
10	select BPF
11	help
12	  Unless you really know what you are doing, you should say Y here.
13	  The reason is that some programs need kernel networking support even
14	  when running on a stand-alone machine that isn't connected to any
15	  other computer.
16
17	  If you are upgrading from an older kernel, you
18	  should consider updating your networking tools too because changes
19	  in the kernel and the tools often go hand in hand. The tools are
20	  contained in the package net-tools, the location and version number
21	  of which are given in <file:Documentation/Changes>.
22
23	  For a general introduction to Linux networking, it is highly
24	  recommended to read the NET-HOWTO, available from
25	  <http://www.tldp.org/docs.html#howto>.
26
27if NET
28
29config WANT_COMPAT_NETLINK_MESSAGES
30	bool
31	help
32	  This option can be selected by other options that need compat
33	  netlink messages.
34
35config COMPAT_NETLINK_MESSAGES
36	def_bool y
37	depends on COMPAT
38	depends on WEXT_CORE || WANT_COMPAT_NETLINK_MESSAGES
39	help
40	  This option makes it possible to send different netlink messages
41	  to tasks depending on whether the task is a compat task or not. To
42	  achieve this, you need to set skb_shinfo(skb)->frag_list to the
43	  compat skb before sending the skb, the netlink code will sort out
44	  which message to actually pass to the task.
45
46	  Newly written code should NEVER need this option but do
47	  compat-independent messages instead!
48
49config NET_INGRESS
50	bool
51
52config NET_EGRESS
53	bool
54
55config NET_REDIRECT
56	bool
57
58config SKB_EXTENSIONS
59	bool
60
61menu "Networking options"
62
63source "net/packet/Kconfig"
64source "net/unix/Kconfig"
65source "net/tls/Kconfig"
66source "net/xfrm/Kconfig"
67source "net/iucv/Kconfig"
68source "net/smc/Kconfig"
69source "net/xdp/Kconfig"
70
71config INET
72	bool "TCP/IP networking"
73	help
74	  These are the protocols used on the Internet and on most local
75	  Ethernets. It is highly recommended to say Y here (this will enlarge
76	  your kernel by about 400 KB), since some programs (e.g. the X window
77	  system) use TCP/IP even if your machine is not connected to any
78	  other computer. You will get the so-called loopback device which
79	  allows you to ping yourself (great fun, that!).
80
81	  For an excellent introduction to Linux networking, please read the
82	  Linux Networking HOWTO, available from
83	  <http://www.tldp.org/docs.html#howto>.
84
85	  If you say Y here and also to "/proc file system support" and
86	  "Sysctl support" below, you can change various aspects of the
87	  behavior of the TCP/IP code by writing to the (virtual) files in
88	  /proc/sys/net/ipv4/*; the options are explained in the file
89	  <file:Documentation/networking/ip-sysctl.rst>.
90
91	  Short answer: say Y.
92
93if INET
94source "net/ipv4/Kconfig"
95source "net/ipv6/Kconfig"
96source "net/netlabel/Kconfig"
97source "net/mptcp/Kconfig"
98
99endif # if INET
100
101config NETWORK_SECMARK
102	bool "Security Marking"
103	help
104	  This enables security marking of network packets, similar
105	  to nfmark, but designated for security purposes.
106	  If you are unsure how to answer this question, answer N.
107
108config NET_PTP_CLASSIFY
109	def_bool n
110
111config NETWORK_PHY_TIMESTAMPING
112	bool "Timestamping in PHY devices"
113	select NET_PTP_CLASSIFY
114	help
115	  This allows timestamping of network packets by PHYs (or
116	  other MII bus snooping devices) with hardware timestamping
117	  capabilities. This option adds some overhead in the transmit
118	  and receive paths.
119
120	  If you are unsure how to answer this question, answer N.
121
122menuconfig NETFILTER
123	bool "Network packet filtering framework (Netfilter)"
124	help
125	  Netfilter is a framework for filtering and mangling network packets
126	  that pass through your Linux box.
127
128	  The most common use of packet filtering is to run your Linux box as
129	  a firewall protecting a local network from the Internet. The type of
130	  firewall provided by this kernel support is called a "packet
131	  filter", which means that it can reject individual network packets
132	  based on type, source, destination etc. The other kind of firewall,
133	  a "proxy-based" one, is more secure but more intrusive and more
134	  bothersome to set up; it inspects the network traffic much more
135	  closely, modifies it and has knowledge about the higher level
136	  protocols, which a packet filter lacks. Moreover, proxy-based
137	  firewalls often require changes to the programs running on the local
138	  clients. Proxy-based firewalls don't need support by the kernel, but
139	  they are often combined with a packet filter, which only works if
140	  you say Y here.
141
142	  You should also say Y here if you intend to use your Linux box as
143	  the gateway to the Internet for a local network of machines without
144	  globally valid IP addresses. This is called "masquerading": if one
145	  of the computers on your local network wants to send something to
146	  the outside, your box can "masquerade" as that computer, i.e. it
147	  forwards the traffic to the intended outside destination, but
148	  modifies the packets to make it look like they came from the
149	  firewall box itself. It works both ways: if the outside host
150	  replies, the Linux box will silently forward the traffic to the
151	  correct local computer. This way, the computers on your local net
152	  are completely invisible to the outside world, even though they can
153	  reach the outside and can receive replies. It is even possible to
154	  run globally visible servers from within a masqueraded local network
155	  using a mechanism called portforwarding. Masquerading is also often
156	  called NAT (Network Address Translation).
157
158	  Another use of Netfilter is in transparent proxying: if a machine on
159	  the local network tries to connect to an outside host, your Linux
160	  box can transparently forward the traffic to a local server,
161	  typically a caching proxy server.
162
163	  Yet another use of Netfilter is building a bridging firewall. Using
164	  a bridge with Network packet filtering enabled makes iptables "see"
165	  the bridged traffic. For filtering on the lower network and Ethernet
166	  protocols over the bridge, use ebtables (under bridge netfilter
167	  configuration).
168
169	  Various modules exist for netfilter which replace the previous
170	  masquerading (ipmasqadm), packet filtering (ipchains), transparent
171	  proxying, and portforwarding mechanisms. Please see
172	  <file:Documentation/Changes> under "iptables" for the location of
173	  these packages.
174
175if NETFILTER
176
177config NETFILTER_ADVANCED
178	bool "Advanced netfilter configuration"
179	depends on NETFILTER
180	default y
181	help
182	  If you say Y here you can select between all the netfilter modules.
183	  If you say N the more unusual ones will not be shown and the
184	  basic ones needed by most people will default to 'M'.
185
186	  If unsure, say Y.
187
188config BRIDGE_NETFILTER
189	tristate "Bridged IP/ARP packets filtering"
190	depends on BRIDGE
191	depends on NETFILTER && INET
192	depends on NETFILTER_ADVANCED
193	select NETFILTER_FAMILY_BRIDGE
194	select SKB_EXTENSIONS
195	help
196	  Enabling this option will let arptables resp. iptables see bridged
197	  ARP resp. IP traffic. If you want a bridging firewall, you probably
198	  want this option enabled.
199	  Enabling or disabling this option doesn't enable or disable
200	  ebtables.
201
202	  If unsure, say N.
203
204source "net/netfilter/Kconfig"
205source "net/ipv4/netfilter/Kconfig"
206source "net/ipv6/netfilter/Kconfig"
207source "net/decnet/netfilter/Kconfig"
208source "net/bridge/netfilter/Kconfig"
209
210endif
211
212source "net/bpfilter/Kconfig"
213
214source "net/dccp/Kconfig"
215source "net/sctp/Kconfig"
216source "net/rds/Kconfig"
217source "net/tipc/Kconfig"
218source "net/atm/Kconfig"
219source "net/l2tp/Kconfig"
220source "net/802/Kconfig"
221source "net/bridge/Kconfig"
222source "net/dsa/Kconfig"
223source "net/8021q/Kconfig"
224source "net/decnet/Kconfig"
225source "net/llc/Kconfig"
226source "drivers/net/appletalk/Kconfig"
227source "net/x25/Kconfig"
228source "net/lapb/Kconfig"
229source "net/phonet/Kconfig"
230source "net/6lowpan/Kconfig"
231source "net/ieee802154/Kconfig"
232source "net/mac802154/Kconfig"
233source "net/sched/Kconfig"
234source "net/dcb/Kconfig"
235source "net/dns_resolver/Kconfig"
236source "net/batman-adv/Kconfig"
237source "net/openvswitch/Kconfig"
238source "net/vmw_vsock/Kconfig"
239source "net/netlink/Kconfig"
240source "net/mpls/Kconfig"
241source "net/nsh/Kconfig"
242source "net/hsr/Kconfig"
243source "net/switchdev/Kconfig"
244source "net/l3mdev/Kconfig"
245source "net/qrtr/Kconfig"
246source "net/ncsi/Kconfig"
247
248config PCPU_DEV_REFCNT
249	bool "Use percpu variables to maintain network device refcount"
250	depends on SMP
251	default y
252	help
253	  network device refcount are using per cpu variables if this option is set.
254	  This can be forced to N to detect underflows (with a performance drop).
255
256config RPS
257	bool
258	depends on SMP && SYSFS
259	default y
260
261config RFS_ACCEL
262	bool
263	depends on RPS
264	select CPU_RMAP
265	default y
266
267config SOCK_RX_QUEUE_MAPPING
268	bool
269
270config XPS
271	bool
272	depends on SMP
273	select SOCK_RX_QUEUE_MAPPING
274	default y
275
276config HWBM
277	bool
278
279config CGROUP_NET_PRIO
280	bool "Network priority cgroup"
281	depends on CGROUPS
282	select SOCK_CGROUP_DATA
283	help
284	  Cgroup subsystem for use in assigning processes to network priorities on
285	  a per-interface basis.
286
287config CGROUP_NET_CLASSID
288	bool "Network classid cgroup"
289	depends on CGROUPS
290	select SOCK_CGROUP_DATA
291	help
292	  Cgroup subsystem for use as general purpose socket classid marker that is
293	  being used in cls_cgroup and for netfilter matching.
294
295config NET_RX_BUSY_POLL
296	bool
297	default y
298
299config BQL
300	bool
301	depends on SYSFS
302	select DQL
303	default y
304
305config BPF_STREAM_PARSER
306	bool "enable BPF STREAM_PARSER"
307	depends on INET
308	depends on BPF_SYSCALL
309	depends on CGROUP_BPF
310	select STREAM_PARSER
311	select NET_SOCK_MSG
312	help
313	  Enabling this allows a TCP stream parser to be used with
314	  BPF_MAP_TYPE_SOCKMAP.
315
316config NET_FLOW_LIMIT
317	bool
318	depends on RPS
319	default y
320	help
321	  The network stack has to drop packets when a receive processing CPU's
322	  backlog reaches netdev_max_backlog. If a few out of many active flows
323	  generate the vast majority of load, drop their traffic earlier to
324	  maintain capacity for the other flows. This feature provides servers
325	  with many clients some protection against DoS by a single (spoofed)
326	  flow that greatly exceeds average workload.
327
328menu "Network testing"
329
330config NET_PKTGEN
331	tristate "Packet Generator (USE WITH CAUTION)"
332	depends on INET && PROC_FS
333	help
334	  This module will inject preconfigured packets, at a configurable
335	  rate, out of a given interface.  It is used for network interface
336	  stress testing and performance analysis.  If you don't understand
337	  what was just said, you don't need it: say N.
338
339	  Documentation on how to use the packet generator can be found
340	  at <file:Documentation/networking/pktgen.rst>.
341
342	  To compile this code as a module, choose M here: the
343	  module will be called pktgen.
344
345config NET_DROP_MONITOR
346	tristate "Network packet drop alerting service"
347	depends on INET && TRACEPOINTS
348	help
349	  This feature provides an alerting service to userspace in the
350	  event that packets are discarded in the network stack.  Alerts
351	  are broadcast via netlink socket to any listening user space
352	  process.  If you don't need network drop alerts, or if you are ok
353	  just checking the various proc files and other utilities for
354	  drop statistics, say N here.
355
356endmenu
357
358endmenu
359
360source "net/ax25/Kconfig"
361source "net/can/Kconfig"
362source "net/bluetooth/Kconfig"
363source "net/rxrpc/Kconfig"
364source "net/kcm/Kconfig"
365source "net/strparser/Kconfig"
366
367config FIB_RULES
368	bool
369
370menuconfig WIRELESS
371	bool "Wireless"
372	depends on !S390
373	default y
374
375if WIRELESS
376
377source "net/wireless/Kconfig"
378source "net/mac80211/Kconfig"
379
380endif # WIRELESS
381
382source "net/rfkill/Kconfig"
383source "net/9p/Kconfig"
384source "net/caif/Kconfig"
385source "net/ceph/Kconfig"
386source "net/nfc/Kconfig"
387source "net/psample/Kconfig"
388source "net/ife/Kconfig"
389
390config LWTUNNEL
391	bool "Network light weight tunnels"
392	help
393	  This feature provides an infrastructure to support light weight
394	  tunnels like mpls. There is no netdevice associated with a light
395	  weight tunnel endpoint. Tunnel encapsulation parameters are stored
396	  with light weight tunnel state associated with fib routes.
397
398config LWTUNNEL_BPF
399	bool "Execute BPF program as route nexthop action"
400	depends on LWTUNNEL && INET
401	default y if LWTUNNEL=y
402	help
403	  Allows to run BPF programs as a nexthop action following a route
404	  lookup for incoming and outgoing packets.
405
406config DST_CACHE
407	bool
408	default n
409
410config GRO_CELLS
411	bool
412	default n
413
414config SOCK_VALIDATE_XMIT
415	bool
416
417config NET_SELFTESTS
418	def_tristate PHYLIB
419	depends on PHYLIB && INET
420
421config NET_SOCK_MSG
422	bool
423	default n
424	help
425	  The NET_SOCK_MSG provides a framework for plain sockets (e.g. TCP) or
426	  ULPs (upper layer modules, e.g. TLS) to process L7 application data
427	  with the help of BPF programs.
428
429config NET_DEVLINK
430	bool
431	default n
432
433config PAGE_POOL
434	bool
435
436config FAILOVER
437	tristate "Generic failover module"
438	help
439	  The failover module provides a generic interface for paravirtual
440	  drivers to register a netdev and a set of ops with a failover
441	  instance. The ops are used as event handlers that get called to
442	  handle netdev register/unregister/link change/name change events
443	  on slave pci ethernet devices with the same mac address as the
444	  failover netdev. This enables paravirtual drivers to use a
445	  VF as an accelerated low latency datapath. It also allows live
446	  migration of VMs with direct attached VFs by failing over to the
447	  paravirtual datapath when the VF is unplugged.
448
449config ETHTOOL_NETLINK
450	bool "Netlink interface for ethtool"
451	default y
452	help
453	  An alternative userspace interface for ethtool based on generic
454	  netlink. It provides better extensibility and some new features,
455	  e.g. notification messages.
456
457endif   # if NET
458