1 /* -*- linux-c -*- 2 * INET 802.1Q VLAN 3 * Ethernet-type device handling. 4 * 5 * Authors: Ben Greear <greearb@candelatech.com> 6 * Please send support related email to: vlan@scry.wanfear.com 7 * VLAN Home Page: http://www.candelatech.com/~greear/vlan.html 8 * 9 * Fixes: Mar 22 2001: Martin Bokaemper <mbokaemper@unispherenetworks.com> 10 * - reset skb->pkt_type on incoming packets when MAC was changed 11 * - see that changed MAC is saddr for outgoing packets 12 * Oct 20, 2001: Ard van Breeman: 13 * - Fix MC-list, finally. 14 * - Flush MC-list on VLAN destroy. 15 * 16 * 17 * This program is free software; you can redistribute it and/or 18 * modify it under the terms of the GNU General Public License 19 * as published by the Free Software Foundation; either version 20 * 2 of the License, or (at your option) any later version. 21 */ 22 23 #include <linux/module.h> 24 #include <linux/mm.h> 25 #include <linux/in.h> 26 #include <linux/init.h> 27 #include <asm/uaccess.h> /* for copy_from_user */ 28 #include <linux/skbuff.h> 29 #include <linux/netdevice.h> 30 #include <linux/etherdevice.h> 31 #include <net/datalink.h> 32 #include <net/p8022.h> 33 #include <net/arp.h> 34 35 #include "vlan.h" 36 #include "vlanproc.h" 37 #include <linux/if_vlan.h> 38 #include <net/ip.h> 39 40 /* 41 * Rebuild the Ethernet MAC header. This is called after an ARP 42 * (or in future other address resolution) has completed on this 43 * sk_buff. We now let ARP fill in the other fields. 44 * 45 * This routine CANNOT use cached dst->neigh! 46 * Really, it is used only when dst->neigh is wrong. 47 * 48 * TODO: This needs a checkup, I'm ignorant here. --BLG 49 */ 50 int vlan_dev_rebuild_header(struct sk_buff *skb) 51 { 52 struct net_device *dev = skb->dev; 53 struct vlan_ethhdr *veth = (struct vlan_ethhdr *)(skb->data); 54 55 switch (veth->h_vlan_encapsulated_proto) { 56 #ifdef CONFIG_INET 57 case __constant_htons(ETH_P_IP): 58 59 /* TODO: Confirm this will work with VLAN headers... */ 60 return arp_find(veth->h_dest, skb); 61 #endif 62 default: 63 printk(VLAN_DBG 64 "%s: unable to resolve type %X addresses.\n", 65 dev->name, (int)veth->h_vlan_encapsulated_proto); 66 67 memcpy(veth->h_source, dev->dev_addr, ETH_ALEN); 68 break; 69 }; 70 71 return 0; 72 } 73 74 static inline struct sk_buff *vlan_check_reorder_header(struct sk_buff *skb) 75 { 76 if (VLAN_DEV_INFO(skb->dev)->flags & 1) { 77 if (skb_shared(skb) || skb_cloned(skb)) { 78 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC); 79 kfree_skb(skb); 80 skb = nskb; 81 } 82 if (skb) { 83 /* Lifted from Gleb's VLAN code... */ 84 memmove(skb->data - ETH_HLEN, 85 skb->data - VLAN_ETH_HLEN, 12); 86 skb->mac.raw += VLAN_HLEN; 87 } 88 } 89 90 return skb; 91 } 92 93 /* 94 * Determine the packet's protocol ID. The rule here is that we 95 * assume 802.3 if the type field is short enough to be a length. 96 * This is normal practice and works for any 'now in use' protocol. 97 * 98 * Also, at this point we assume that we ARE dealing exclusively with 99 * VLAN packets, or packets that should be made into VLAN packets based 100 * on a default VLAN ID. 101 * 102 * NOTE: Should be similar to ethernet/eth.c. 103 * 104 * SANITY NOTE: This method is called when a packet is moving up the stack 105 * towards userland. To get here, it would have already passed 106 * through the ethernet/eth.c eth_type_trans() method. 107 * SANITY NOTE 2: We are referencing to the VLAN_HDR frields, which MAY be 108 * stored UNALIGNED in the memory. RISC systems don't like 109 * such cases very much... 110 * SANITY NOTE 2a: According to Dave Miller & Alexey, it will always be aligned, 111 * so there doesn't need to be any of the unaligned stuff. It has 112 * been commented out now... --Ben 113 * 114 */ 115 int vlan_skb_recv(struct sk_buff *skb, struct net_device *dev, 116 struct packet_type* ptype, struct net_device *orig_dev) 117 { 118 unsigned char *rawp = NULL; 119 struct vlan_hdr *vhdr = (struct vlan_hdr *)(skb->data); 120 unsigned short vid; 121 struct net_device_stats *stats; 122 unsigned short vlan_TCI; 123 __be16 proto; 124 125 /* vlan_TCI = ntohs(get_unaligned(&vhdr->h_vlan_TCI)); */ 126 vlan_TCI = ntohs(vhdr->h_vlan_TCI); 127 128 vid = (vlan_TCI & VLAN_VID_MASK); 129 130 #ifdef VLAN_DEBUG 131 printk(VLAN_DBG "%s: skb: %p vlan_id: %hx\n", 132 __FUNCTION__, skb, vid); 133 #endif 134 135 /* Ok, we will find the correct VLAN device, strip the header, 136 * and then go on as usual. 137 */ 138 139 /* We have 12 bits of vlan ID. 140 * 141 * We must not drop allow preempt until we hold a 142 * reference to the device (netif_rx does that) or we 143 * fail. 144 */ 145 146 rcu_read_lock(); 147 skb->dev = __find_vlan_dev(dev, vid); 148 if (!skb->dev) { 149 rcu_read_unlock(); 150 151 #ifdef VLAN_DEBUG 152 printk(VLAN_DBG "%s: ERROR: No net_device for VID: %i on dev: %s [%i]\n", 153 __FUNCTION__, (unsigned int)(vid), dev->name, dev->ifindex); 154 #endif 155 kfree_skb(skb); 156 return -1; 157 } 158 159 skb->dev->last_rx = jiffies; 160 161 /* Bump the rx counters for the VLAN device. */ 162 stats = vlan_dev_get_stats(skb->dev); 163 stats->rx_packets++; 164 stats->rx_bytes += skb->len; 165 166 /* Take off the VLAN header (4 bytes currently) */ 167 skb_pull_rcsum(skb, VLAN_HLEN); 168 169 /* Ok, lets check to make sure the device (dev) we 170 * came in on is what this VLAN is attached to. 171 */ 172 173 if (dev != VLAN_DEV_INFO(skb->dev)->real_dev) { 174 rcu_read_unlock(); 175 176 #ifdef VLAN_DEBUG 177 printk(VLAN_DBG "%s: dropping skb: %p because came in on wrong device, dev: %s real_dev: %s, skb_dev: %s\n", 178 __FUNCTION__, skb, dev->name, 179 VLAN_DEV_INFO(skb->dev)->real_dev->name, 180 skb->dev->name); 181 #endif 182 kfree_skb(skb); 183 stats->rx_errors++; 184 return -1; 185 } 186 187 /* 188 * Deal with ingress priority mapping. 189 */ 190 skb->priority = vlan_get_ingress_priority(skb->dev, ntohs(vhdr->h_vlan_TCI)); 191 192 #ifdef VLAN_DEBUG 193 printk(VLAN_DBG "%s: priority: %lu for TCI: %hu (hbo)\n", 194 __FUNCTION__, (unsigned long)(skb->priority), 195 ntohs(vhdr->h_vlan_TCI)); 196 #endif 197 198 /* The ethernet driver already did the pkt_type calculations 199 * for us... 200 */ 201 switch (skb->pkt_type) { 202 case PACKET_BROADCAST: /* Yeah, stats collect these together.. */ 203 // stats->broadcast ++; // no such counter :-( 204 break; 205 206 case PACKET_MULTICAST: 207 stats->multicast++; 208 break; 209 210 case PACKET_OTHERHOST: 211 /* Our lower layer thinks this is not local, let's make sure. 212 * This allows the VLAN to have a different MAC than the underlying 213 * device, and still route correctly. 214 */ 215 if (!compare_ether_addr(eth_hdr(skb)->h_dest, skb->dev->dev_addr)) { 216 /* It is for our (changed) MAC-address! */ 217 skb->pkt_type = PACKET_HOST; 218 } 219 break; 220 default: 221 break; 222 }; 223 224 /* Was a VLAN packet, grab the encapsulated protocol, which the layer 225 * three protocols care about. 226 */ 227 /* proto = get_unaligned(&vhdr->h_vlan_encapsulated_proto); */ 228 proto = vhdr->h_vlan_encapsulated_proto; 229 230 skb->protocol = proto; 231 if (ntohs(proto) >= 1536) { 232 /* place it back on the queue to be handled by 233 * true layer 3 protocols. 234 */ 235 236 /* See if we are configured to re-write the VLAN header 237 * to make it look like ethernet... 238 */ 239 skb = vlan_check_reorder_header(skb); 240 241 /* Can be null if skb-clone fails when re-ordering */ 242 if (skb) { 243 netif_rx(skb); 244 } else { 245 /* TODO: Add a more specific counter here. */ 246 stats->rx_errors++; 247 } 248 rcu_read_unlock(); 249 return 0; 250 } 251 252 rawp = skb->data; 253 254 /* 255 * This is a magic hack to spot IPX packets. Older Novell breaks 256 * the protocol design and runs IPX over 802.3 without an 802.2 LLC 257 * layer. We look for FFFF which isn't a used 802.2 SSAP/DSAP. This 258 * won't work for fault tolerant netware but does for the rest. 259 */ 260 if (*(unsigned short *)rawp == 0xFFFF) { 261 skb->protocol = __constant_htons(ETH_P_802_3); 262 /* place it back on the queue to be handled by true layer 3 protocols. 263 */ 264 265 /* See if we are configured to re-write the VLAN header 266 * to make it look like ethernet... 267 */ 268 skb = vlan_check_reorder_header(skb); 269 270 /* Can be null if skb-clone fails when re-ordering */ 271 if (skb) { 272 netif_rx(skb); 273 } else { 274 /* TODO: Add a more specific counter here. */ 275 stats->rx_errors++; 276 } 277 rcu_read_unlock(); 278 return 0; 279 } 280 281 /* 282 * Real 802.2 LLC 283 */ 284 skb->protocol = __constant_htons(ETH_P_802_2); 285 /* place it back on the queue to be handled by upper layer protocols. 286 */ 287 288 /* See if we are configured to re-write the VLAN header 289 * to make it look like ethernet... 290 */ 291 skb = vlan_check_reorder_header(skb); 292 293 /* Can be null if skb-clone fails when re-ordering */ 294 if (skb) { 295 netif_rx(skb); 296 } else { 297 /* TODO: Add a more specific counter here. */ 298 stats->rx_errors++; 299 } 300 rcu_read_unlock(); 301 return 0; 302 } 303 304 static inline unsigned short vlan_dev_get_egress_qos_mask(struct net_device* dev, 305 struct sk_buff* skb) 306 { 307 struct vlan_priority_tci_mapping *mp = 308 VLAN_DEV_INFO(dev)->egress_priority_map[(skb->priority & 0xF)]; 309 310 while (mp) { 311 if (mp->priority == skb->priority) { 312 return mp->vlan_qos; /* This should already be shifted to mask 313 * correctly with the VLAN's TCI 314 */ 315 } 316 mp = mp->next; 317 } 318 return 0; 319 } 320 321 /* 322 * Create the VLAN header for an arbitrary protocol layer 323 * 324 * saddr=NULL means use device source address 325 * daddr=NULL means leave destination address (eg unresolved arp) 326 * 327 * This is called when the SKB is moving down the stack towards the 328 * physical devices. 329 */ 330 int vlan_dev_hard_header(struct sk_buff *skb, struct net_device *dev, 331 unsigned short type, void *daddr, void *saddr, 332 unsigned len) 333 { 334 struct vlan_hdr *vhdr; 335 unsigned short veth_TCI = 0; 336 int rc = 0; 337 int build_vlan_header = 0; 338 struct net_device *vdev = dev; /* save this for the bottom of the method */ 339 340 #ifdef VLAN_DEBUG 341 printk(VLAN_DBG "%s: skb: %p type: %hx len: %x vlan_id: %hx, daddr: %p\n", 342 __FUNCTION__, skb, type, len, VLAN_DEV_INFO(dev)->vlan_id, daddr); 343 #endif 344 345 /* build vlan header only if re_order_header flag is NOT set. This 346 * fixes some programs that get confused when they see a VLAN device 347 * sending a frame that is VLAN encoded (the consensus is that the VLAN 348 * device should look completely like an Ethernet device when the 349 * REORDER_HEADER flag is set) The drawback to this is some extra 350 * header shuffling in the hard_start_xmit. Users can turn off this 351 * REORDER behaviour with the vconfig tool. 352 */ 353 build_vlan_header = ((VLAN_DEV_INFO(dev)->flags & 1) == 0); 354 355 if (build_vlan_header) { 356 vhdr = (struct vlan_hdr *) skb_push(skb, VLAN_HLEN); 357 358 /* build the four bytes that make this a VLAN header. */ 359 360 /* Now, construct the second two bytes. This field looks something 361 * like: 362 * usr_priority: 3 bits (high bits) 363 * CFI 1 bit 364 * VLAN ID 12 bits (low bits) 365 * 366 */ 367 veth_TCI = VLAN_DEV_INFO(dev)->vlan_id; 368 veth_TCI |= vlan_dev_get_egress_qos_mask(dev, skb); 369 370 vhdr->h_vlan_TCI = htons(veth_TCI); 371 372 /* 373 * Set the protocol type. 374 * For a packet of type ETH_P_802_3 we put the length in here instead. 375 * It is up to the 802.2 layer to carry protocol information. 376 */ 377 378 if (type != ETH_P_802_3) { 379 vhdr->h_vlan_encapsulated_proto = htons(type); 380 } else { 381 vhdr->h_vlan_encapsulated_proto = htons(len); 382 } 383 } 384 385 /* Before delegating work to the lower layer, enter our MAC-address */ 386 if (saddr == NULL) 387 saddr = dev->dev_addr; 388 389 dev = VLAN_DEV_INFO(dev)->real_dev; 390 391 /* MPLS can send us skbuffs w/out enough space. This check will grow the 392 * skb if it doesn't have enough headroom. Not a beautiful solution, so 393 * I'll tick a counter so that users can know it's happening... If they 394 * care... 395 */ 396 397 /* NOTE: This may still break if the underlying device is not the final 398 * device (and thus there are more headers to add...) It should work for 399 * good-ole-ethernet though. 400 */ 401 if (skb_headroom(skb) < dev->hard_header_len) { 402 struct sk_buff *sk_tmp = skb; 403 skb = skb_realloc_headroom(sk_tmp, dev->hard_header_len); 404 kfree_skb(sk_tmp); 405 if (skb == NULL) { 406 struct net_device_stats *stats = vlan_dev_get_stats(vdev); 407 stats->tx_dropped++; 408 return -ENOMEM; 409 } 410 VLAN_DEV_INFO(vdev)->cnt_inc_headroom_on_tx++; 411 #ifdef VLAN_DEBUG 412 printk(VLAN_DBG "%s: %s: had to grow skb.\n", __FUNCTION__, vdev->name); 413 #endif 414 } 415 416 if (build_vlan_header) { 417 /* Now make the underlying real hard header */ 418 rc = dev->hard_header(skb, dev, ETH_P_8021Q, daddr, saddr, len + VLAN_HLEN); 419 420 if (rc > 0) { 421 rc += VLAN_HLEN; 422 } else if (rc < 0) { 423 rc -= VLAN_HLEN; 424 } 425 } else { 426 /* If here, then we'll just make a normal looking ethernet frame, 427 * but, the hard_start_xmit method will insert the tag (it has to 428 * be able to do this for bridged and other skbs that don't come 429 * down the protocol stack in an orderly manner. 430 */ 431 rc = dev->hard_header(skb, dev, type, daddr, saddr, len); 432 } 433 434 return rc; 435 } 436 437 int vlan_dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) 438 { 439 struct net_device_stats *stats = vlan_dev_get_stats(dev); 440 struct vlan_ethhdr *veth = (struct vlan_ethhdr *)(skb->data); 441 442 /* Handle non-VLAN frames if they are sent to us, for example by DHCP. 443 * 444 * NOTE: THIS ASSUMES DIX ETHERNET, SPECIFICALLY NOT SUPPORTING 445 * OTHER THINGS LIKE FDDI/TokenRing/802.3 SNAPs... 446 */ 447 448 if (veth->h_vlan_proto != __constant_htons(ETH_P_8021Q)) { 449 int orig_headroom = skb_headroom(skb); 450 unsigned short veth_TCI; 451 452 /* This is not a VLAN frame...but we can fix that! */ 453 VLAN_DEV_INFO(dev)->cnt_encap_on_xmit++; 454 455 #ifdef VLAN_DEBUG 456 printk(VLAN_DBG "%s: proto to encap: 0x%hx (hbo)\n", 457 __FUNCTION__, htons(veth->h_vlan_proto)); 458 #endif 459 /* Construct the second two bytes. This field looks something 460 * like: 461 * usr_priority: 3 bits (high bits) 462 * CFI 1 bit 463 * VLAN ID 12 bits (low bits) 464 */ 465 veth_TCI = VLAN_DEV_INFO(dev)->vlan_id; 466 veth_TCI |= vlan_dev_get_egress_qos_mask(dev, skb); 467 468 skb = __vlan_put_tag(skb, veth_TCI); 469 if (!skb) { 470 stats->tx_dropped++; 471 return 0; 472 } 473 474 if (orig_headroom < VLAN_HLEN) { 475 VLAN_DEV_INFO(dev)->cnt_inc_headroom_on_tx++; 476 } 477 } 478 479 #ifdef VLAN_DEBUG 480 printk(VLAN_DBG "%s: about to send skb: %p to dev: %s\n", 481 __FUNCTION__, skb, skb->dev->name); 482 printk(VLAN_DBG " %2hx.%2hx.%2hx.%2xh.%2hx.%2hx %2hx.%2hx.%2hx.%2hx.%2hx.%2hx %4hx %4hx %4hx\n", 483 veth->h_dest[0], veth->h_dest[1], veth->h_dest[2], veth->h_dest[3], veth->h_dest[4], veth->h_dest[5], 484 veth->h_source[0], veth->h_source[1], veth->h_source[2], veth->h_source[3], veth->h_source[4], veth->h_source[5], 485 veth->h_vlan_proto, veth->h_vlan_TCI, veth->h_vlan_encapsulated_proto); 486 #endif 487 488 stats->tx_packets++; /* for statics only */ 489 stats->tx_bytes += skb->len; 490 491 skb->dev = VLAN_DEV_INFO(dev)->real_dev; 492 dev_queue_xmit(skb); 493 494 return 0; 495 } 496 497 int vlan_dev_hwaccel_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) 498 { 499 struct net_device_stats *stats = vlan_dev_get_stats(dev); 500 unsigned short veth_TCI; 501 502 /* Construct the second two bytes. This field looks something 503 * like: 504 * usr_priority: 3 bits (high bits) 505 * CFI 1 bit 506 * VLAN ID 12 bits (low bits) 507 */ 508 veth_TCI = VLAN_DEV_INFO(dev)->vlan_id; 509 veth_TCI |= vlan_dev_get_egress_qos_mask(dev, skb); 510 skb = __vlan_hwaccel_put_tag(skb, veth_TCI); 511 512 stats->tx_packets++; 513 stats->tx_bytes += skb->len; 514 515 skb->dev = VLAN_DEV_INFO(dev)->real_dev; 516 dev_queue_xmit(skb); 517 518 return 0; 519 } 520 521 int vlan_dev_change_mtu(struct net_device *dev, int new_mtu) 522 { 523 /* TODO: gotta make sure the underlying layer can handle it, 524 * maybe an IFF_VLAN_CAPABLE flag for devices? 525 */ 526 if (VLAN_DEV_INFO(dev)->real_dev->mtu < new_mtu) 527 return -ERANGE; 528 529 dev->mtu = new_mtu; 530 531 return 0; 532 } 533 534 int vlan_dev_set_ingress_priority(char *dev_name, __u32 skb_prio, short vlan_prio) 535 { 536 struct net_device *dev = dev_get_by_name(dev_name); 537 538 if (dev) { 539 if (dev->priv_flags & IFF_802_1Q_VLAN) { 540 /* see if a priority mapping exists.. */ 541 VLAN_DEV_INFO(dev)->ingress_priority_map[vlan_prio & 0x7] = skb_prio; 542 dev_put(dev); 543 return 0; 544 } 545 546 dev_put(dev); 547 } 548 return -EINVAL; 549 } 550 551 int vlan_dev_set_egress_priority(char *dev_name, __u32 skb_prio, short vlan_prio) 552 { 553 struct net_device *dev = dev_get_by_name(dev_name); 554 struct vlan_priority_tci_mapping *mp = NULL; 555 struct vlan_priority_tci_mapping *np; 556 557 if (dev) { 558 if (dev->priv_flags & IFF_802_1Q_VLAN) { 559 /* See if a priority mapping exists.. */ 560 mp = VLAN_DEV_INFO(dev)->egress_priority_map[skb_prio & 0xF]; 561 while (mp) { 562 if (mp->priority == skb_prio) { 563 mp->vlan_qos = ((vlan_prio << 13) & 0xE000); 564 dev_put(dev); 565 return 0; 566 } 567 mp = mp->next; 568 } 569 570 /* Create a new mapping then. */ 571 mp = VLAN_DEV_INFO(dev)->egress_priority_map[skb_prio & 0xF]; 572 np = kmalloc(sizeof(struct vlan_priority_tci_mapping), GFP_KERNEL); 573 if (np) { 574 np->next = mp; 575 np->priority = skb_prio; 576 np->vlan_qos = ((vlan_prio << 13) & 0xE000); 577 VLAN_DEV_INFO(dev)->egress_priority_map[skb_prio & 0xF] = np; 578 dev_put(dev); 579 return 0; 580 } else { 581 dev_put(dev); 582 return -ENOBUFS; 583 } 584 } 585 dev_put(dev); 586 } 587 return -EINVAL; 588 } 589 590 /* Flags are defined in the vlan_dev_info class in include/linux/if_vlan.h file. */ 591 int vlan_dev_set_vlan_flag(char *dev_name, __u32 flag, short flag_val) 592 { 593 struct net_device *dev = dev_get_by_name(dev_name); 594 595 if (dev) { 596 if (dev->priv_flags & IFF_802_1Q_VLAN) { 597 /* verify flag is supported */ 598 if (flag == 1) { 599 if (flag_val) { 600 VLAN_DEV_INFO(dev)->flags |= 1; 601 } else { 602 VLAN_DEV_INFO(dev)->flags &= ~1; 603 } 604 dev_put(dev); 605 return 0; 606 } else { 607 printk(KERN_ERR "%s: flag %i is not valid.\n", 608 __FUNCTION__, (int)(flag)); 609 dev_put(dev); 610 return -EINVAL; 611 } 612 } else { 613 printk(KERN_ERR 614 "%s: %s is not a vlan device, priv_flags: %hX.\n", 615 __FUNCTION__, dev->name, dev->priv_flags); 616 dev_put(dev); 617 } 618 } else { 619 printk(KERN_ERR "%s: Could not find device: %s\n", 620 __FUNCTION__, dev_name); 621 } 622 623 return -EINVAL; 624 } 625 626 627 int vlan_dev_get_realdev_name(const char *dev_name, char* result) 628 { 629 struct net_device *dev = dev_get_by_name(dev_name); 630 int rv = 0; 631 if (dev) { 632 if (dev->priv_flags & IFF_802_1Q_VLAN) { 633 strncpy(result, VLAN_DEV_INFO(dev)->real_dev->name, 23); 634 rv = 0; 635 } else { 636 rv = -EINVAL; 637 } 638 dev_put(dev); 639 } else { 640 rv = -ENODEV; 641 } 642 return rv; 643 } 644 645 int vlan_dev_get_vid(const char *dev_name, unsigned short* result) 646 { 647 struct net_device *dev = dev_get_by_name(dev_name); 648 int rv = 0; 649 if (dev) { 650 if (dev->priv_flags & IFF_802_1Q_VLAN) { 651 *result = VLAN_DEV_INFO(dev)->vlan_id; 652 rv = 0; 653 } else { 654 rv = -EINVAL; 655 } 656 dev_put(dev); 657 } else { 658 rv = -ENODEV; 659 } 660 return rv; 661 } 662 663 664 int vlan_dev_set_mac_address(struct net_device *dev, void *addr_struct_p) 665 { 666 struct sockaddr *addr = (struct sockaddr *)(addr_struct_p); 667 int i; 668 669 if (netif_running(dev)) 670 return -EBUSY; 671 672 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 673 674 printk("%s: Setting MAC address to ", dev->name); 675 for (i = 0; i < 6; i++) 676 printk(" %2.2x", dev->dev_addr[i]); 677 printk(".\n"); 678 679 if (memcmp(VLAN_DEV_INFO(dev)->real_dev->dev_addr, 680 dev->dev_addr, 681 dev->addr_len) != 0) { 682 if (!(VLAN_DEV_INFO(dev)->real_dev->flags & IFF_PROMISC)) { 683 int flgs = VLAN_DEV_INFO(dev)->real_dev->flags; 684 685 /* Increment our in-use promiscuity counter */ 686 dev_set_promiscuity(VLAN_DEV_INFO(dev)->real_dev, 1); 687 688 /* Make PROMISC visible to the user. */ 689 flgs |= IFF_PROMISC; 690 printk("VLAN (%s): Setting underlying device (%s) to promiscious mode.\n", 691 dev->name, VLAN_DEV_INFO(dev)->real_dev->name); 692 dev_change_flags(VLAN_DEV_INFO(dev)->real_dev, flgs); 693 } 694 } else { 695 printk("VLAN (%s): Underlying device (%s) has same MAC, not checking promiscious mode.\n", 696 dev->name, VLAN_DEV_INFO(dev)->real_dev->name); 697 } 698 699 return 0; 700 } 701 702 static inline int vlan_dmi_equals(struct dev_mc_list *dmi1, 703 struct dev_mc_list *dmi2) 704 { 705 return ((dmi1->dmi_addrlen == dmi2->dmi_addrlen) && 706 (memcmp(dmi1->dmi_addr, dmi2->dmi_addr, dmi1->dmi_addrlen) == 0)); 707 } 708 709 /** dmi is a single entry into a dev_mc_list, a single node. mc_list is 710 * an entire list, and we'll iterate through it. 711 */ 712 static int vlan_should_add_mc(struct dev_mc_list *dmi, struct dev_mc_list *mc_list) 713 { 714 struct dev_mc_list *idmi; 715 716 for (idmi = mc_list; idmi != NULL; ) { 717 if (vlan_dmi_equals(dmi, idmi)) { 718 if (dmi->dmi_users > idmi->dmi_users) 719 return 1; 720 else 721 return 0; 722 } else { 723 idmi = idmi->next; 724 } 725 } 726 727 return 1; 728 } 729 730 static inline void vlan_destroy_mc_list(struct dev_mc_list *mc_list) 731 { 732 struct dev_mc_list *dmi = mc_list; 733 struct dev_mc_list *next; 734 735 while(dmi) { 736 next = dmi->next; 737 kfree(dmi); 738 dmi = next; 739 } 740 } 741 742 static void vlan_copy_mc_list(struct dev_mc_list *mc_list, struct vlan_dev_info *vlan_info) 743 { 744 struct dev_mc_list *dmi, *new_dmi; 745 746 vlan_destroy_mc_list(vlan_info->old_mc_list); 747 vlan_info->old_mc_list = NULL; 748 749 for (dmi = mc_list; dmi != NULL; dmi = dmi->next) { 750 new_dmi = kmalloc(sizeof(*new_dmi), GFP_ATOMIC); 751 if (new_dmi == NULL) { 752 printk(KERN_ERR "vlan: cannot allocate memory. " 753 "Multicast may not work properly from now.\n"); 754 return; 755 } 756 757 /* Copy whole structure, then make new 'next' pointer */ 758 *new_dmi = *dmi; 759 new_dmi->next = vlan_info->old_mc_list; 760 vlan_info->old_mc_list = new_dmi; 761 } 762 } 763 764 static void vlan_flush_mc_list(struct net_device *dev) 765 { 766 struct dev_mc_list *dmi = dev->mc_list; 767 768 while (dmi) { 769 printk(KERN_DEBUG "%s: del %.2x:%.2x:%.2x:%.2x:%.2x:%.2x mcast address from vlan interface\n", 770 dev->name, 771 dmi->dmi_addr[0], 772 dmi->dmi_addr[1], 773 dmi->dmi_addr[2], 774 dmi->dmi_addr[3], 775 dmi->dmi_addr[4], 776 dmi->dmi_addr[5]); 777 dev_mc_delete(dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); 778 dmi = dev->mc_list; 779 } 780 781 /* dev->mc_list is NULL by the time we get here. */ 782 vlan_destroy_mc_list(VLAN_DEV_INFO(dev)->old_mc_list); 783 VLAN_DEV_INFO(dev)->old_mc_list = NULL; 784 } 785 786 int vlan_dev_open(struct net_device *dev) 787 { 788 if (!(VLAN_DEV_INFO(dev)->real_dev->flags & IFF_UP)) 789 return -ENETDOWN; 790 791 return 0; 792 } 793 794 int vlan_dev_stop(struct net_device *dev) 795 { 796 vlan_flush_mc_list(dev); 797 return 0; 798 } 799 800 int vlan_dev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 801 { 802 struct net_device *real_dev = VLAN_DEV_INFO(dev)->real_dev; 803 struct ifreq ifrr; 804 int err = -EOPNOTSUPP; 805 806 strncpy(ifrr.ifr_name, real_dev->name, IFNAMSIZ); 807 ifrr.ifr_ifru = ifr->ifr_ifru; 808 809 switch(cmd) { 810 case SIOCGMIIPHY: 811 case SIOCGMIIREG: 812 case SIOCSMIIREG: 813 if (real_dev->do_ioctl && netif_device_present(real_dev)) 814 err = real_dev->do_ioctl(real_dev, &ifrr, cmd); 815 break; 816 817 case SIOCETHTOOL: 818 err = dev_ethtool(&ifrr); 819 } 820 821 if (!err) 822 ifr->ifr_ifru = ifrr.ifr_ifru; 823 824 return err; 825 } 826 827 /** Taken from Gleb + Lennert's VLAN code, and modified... */ 828 void vlan_dev_set_multicast_list(struct net_device *vlan_dev) 829 { 830 struct dev_mc_list *dmi; 831 struct net_device *real_dev; 832 int inc; 833 834 if (vlan_dev && (vlan_dev->priv_flags & IFF_802_1Q_VLAN)) { 835 /* Then it's a real vlan device, as far as we can tell.. */ 836 real_dev = VLAN_DEV_INFO(vlan_dev)->real_dev; 837 838 /* compare the current promiscuity to the last promisc we had.. */ 839 inc = vlan_dev->promiscuity - VLAN_DEV_INFO(vlan_dev)->old_promiscuity; 840 if (inc) { 841 printk(KERN_INFO "%s: dev_set_promiscuity(master, %d)\n", 842 vlan_dev->name, inc); 843 dev_set_promiscuity(real_dev, inc); /* found in dev.c */ 844 VLAN_DEV_INFO(vlan_dev)->old_promiscuity = vlan_dev->promiscuity; 845 } 846 847 inc = vlan_dev->allmulti - VLAN_DEV_INFO(vlan_dev)->old_allmulti; 848 if (inc) { 849 printk(KERN_INFO "%s: dev_set_allmulti(master, %d)\n", 850 vlan_dev->name, inc); 851 dev_set_allmulti(real_dev, inc); /* dev.c */ 852 VLAN_DEV_INFO(vlan_dev)->old_allmulti = vlan_dev->allmulti; 853 } 854 855 /* looking for addresses to add to master's list */ 856 for (dmi = vlan_dev->mc_list; dmi != NULL; dmi = dmi->next) { 857 if (vlan_should_add_mc(dmi, VLAN_DEV_INFO(vlan_dev)->old_mc_list)) { 858 dev_mc_add(real_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); 859 printk(KERN_DEBUG "%s: add %.2x:%.2x:%.2x:%.2x:%.2x:%.2x mcast address to master interface\n", 860 vlan_dev->name, 861 dmi->dmi_addr[0], 862 dmi->dmi_addr[1], 863 dmi->dmi_addr[2], 864 dmi->dmi_addr[3], 865 dmi->dmi_addr[4], 866 dmi->dmi_addr[5]); 867 } 868 } 869 870 /* looking for addresses to delete from master's list */ 871 for (dmi = VLAN_DEV_INFO(vlan_dev)->old_mc_list; dmi != NULL; dmi = dmi->next) { 872 if (vlan_should_add_mc(dmi, vlan_dev->mc_list)) { 873 /* if we think we should add it to the new list, then we should really 874 * delete it from the real list on the underlying device. 875 */ 876 dev_mc_delete(real_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); 877 printk(KERN_DEBUG "%s: del %.2x:%.2x:%.2x:%.2x:%.2x:%.2x mcast address from master interface\n", 878 vlan_dev->name, 879 dmi->dmi_addr[0], 880 dmi->dmi_addr[1], 881 dmi->dmi_addr[2], 882 dmi->dmi_addr[3], 883 dmi->dmi_addr[4], 884 dmi->dmi_addr[5]); 885 } 886 } 887 888 /* save multicast list */ 889 vlan_copy_mc_list(vlan_dev->mc_list, VLAN_DEV_INFO(vlan_dev)); 890 } 891 } 892