xref: /linux/net/8021q/vlan_dev.c (revision f3d9478b2ce468c3115b02ecae7e975990697f15)
1 /* -*- linux-c -*-
2  * INET		802.1Q VLAN
3  *		Ethernet-type device handling.
4  *
5  * Authors:	Ben Greear <greearb@candelatech.com>
6  *              Please send support related email to: vlan@scry.wanfear.com
7  *              VLAN Home Page: http://www.candelatech.com/~greear/vlan.html
8  *
9  * Fixes:       Mar 22 2001: Martin Bokaemper <mbokaemper@unispherenetworks.com>
10  *                - reset skb->pkt_type on incoming packets when MAC was changed
11  *                - see that changed MAC is saddr for outgoing packets
12  *              Oct 20, 2001:  Ard van Breeman:
13  *                - Fix MC-list, finally.
14  *                - Flush MC-list on VLAN destroy.
15  *
16  *
17  *		This program is free software; you can redistribute it and/or
18  *		modify it under the terms of the GNU General Public License
19  *		as published by the Free Software Foundation; either version
20  *		2 of the License, or (at your option) any later version.
21  */
22 
23 #include <linux/module.h>
24 #include <linux/mm.h>
25 #include <linux/in.h>
26 #include <linux/init.h>
27 #include <asm/uaccess.h> /* for copy_from_user */
28 #include <linux/skbuff.h>
29 #include <linux/netdevice.h>
30 #include <linux/etherdevice.h>
31 #include <net/datalink.h>
32 #include <net/p8022.h>
33 #include <net/arp.h>
34 
35 #include "vlan.h"
36 #include "vlanproc.h"
37 #include <linux/if_vlan.h>
38 #include <net/ip.h>
39 
40 /*
41  *	Rebuild the Ethernet MAC header. This is called after an ARP
42  *	(or in future other address resolution) has completed on this
43  *	sk_buff. We now let ARP fill in the other fields.
44  *
45  *	This routine CANNOT use cached dst->neigh!
46  *	Really, it is used only when dst->neigh is wrong.
47  *
48  * TODO:  This needs a checkup, I'm ignorant here. --BLG
49  */
50 int vlan_dev_rebuild_header(struct sk_buff *skb)
51 {
52 	struct net_device *dev = skb->dev;
53 	struct vlan_ethhdr *veth = (struct vlan_ethhdr *)(skb->data);
54 
55 	switch (veth->h_vlan_encapsulated_proto) {
56 #ifdef CONFIG_INET
57 	case __constant_htons(ETH_P_IP):
58 
59 		/* TODO:  Confirm this will work with VLAN headers... */
60 		return arp_find(veth->h_dest, skb);
61 #endif
62 	default:
63 		printk(VLAN_DBG
64 		       "%s: unable to resolve type %X addresses.\n",
65 		       dev->name, (int)veth->h_vlan_encapsulated_proto);
66 
67 		memcpy(veth->h_source, dev->dev_addr, ETH_ALEN);
68 		break;
69 	};
70 
71 	return 0;
72 }
73 
74 static inline struct sk_buff *vlan_check_reorder_header(struct sk_buff *skb)
75 {
76 	if (VLAN_DEV_INFO(skb->dev)->flags & 1) {
77 		if (skb_shared(skb) || skb_cloned(skb)) {
78 			struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
79 			kfree_skb(skb);
80 			skb = nskb;
81 		}
82 		if (skb) {
83 			/* Lifted from Gleb's VLAN code... */
84 			memmove(skb->data - ETH_HLEN,
85 				skb->data - VLAN_ETH_HLEN, 12);
86 			skb->mac.raw += VLAN_HLEN;
87 		}
88 	}
89 
90 	return skb;
91 }
92 
93 /*
94  *	Determine the packet's protocol ID. The rule here is that we
95  *	assume 802.3 if the type field is short enough to be a length.
96  *	This is normal practice and works for any 'now in use' protocol.
97  *
98  *  Also, at this point we assume that we ARE dealing exclusively with
99  *  VLAN packets, or packets that should be made into VLAN packets based
100  *  on a default VLAN ID.
101  *
102  *  NOTE:  Should be similar to ethernet/eth.c.
103  *
104  *  SANITY NOTE:  This method is called when a packet is moving up the stack
105  *                towards userland.  To get here, it would have already passed
106  *                through the ethernet/eth.c eth_type_trans() method.
107  *  SANITY NOTE 2: We are referencing to the VLAN_HDR frields, which MAY be
108  *                 stored UNALIGNED in the memory.  RISC systems don't like
109  *                 such cases very much...
110  *  SANITY NOTE 2a:  According to Dave Miller & Alexey, it will always be aligned,
111  *                 so there doesn't need to be any of the unaligned stuff.  It has
112  *                 been commented out now...  --Ben
113  *
114  */
115 int vlan_skb_recv(struct sk_buff *skb, struct net_device *dev,
116                   struct packet_type* ptype, struct net_device *orig_dev)
117 {
118 	unsigned char *rawp = NULL;
119 	struct vlan_hdr *vhdr = (struct vlan_hdr *)(skb->data);
120 	unsigned short vid;
121 	struct net_device_stats *stats;
122 	unsigned short vlan_TCI;
123 	__be16 proto;
124 
125 	/* vlan_TCI = ntohs(get_unaligned(&vhdr->h_vlan_TCI)); */
126 	vlan_TCI = ntohs(vhdr->h_vlan_TCI);
127 
128 	vid = (vlan_TCI & VLAN_VID_MASK);
129 
130 #ifdef VLAN_DEBUG
131 	printk(VLAN_DBG "%s: skb: %p vlan_id: %hx\n",
132 		__FUNCTION__, skb, vid);
133 #endif
134 
135 	/* Ok, we will find the correct VLAN device, strip the header,
136 	 * and then go on as usual.
137 	 */
138 
139 	/* We have 12 bits of vlan ID.
140 	 *
141 	 * We must not drop allow preempt until we hold a
142 	 * reference to the device (netif_rx does that) or we
143 	 * fail.
144 	 */
145 
146 	rcu_read_lock();
147 	skb->dev = __find_vlan_dev(dev, vid);
148 	if (!skb->dev) {
149 		rcu_read_unlock();
150 
151 #ifdef VLAN_DEBUG
152 		printk(VLAN_DBG "%s: ERROR: No net_device for VID: %i on dev: %s [%i]\n",
153 			__FUNCTION__, (unsigned int)(vid), dev->name, dev->ifindex);
154 #endif
155 		kfree_skb(skb);
156 		return -1;
157 	}
158 
159 	skb->dev->last_rx = jiffies;
160 
161 	/* Bump the rx counters for the VLAN device. */
162 	stats = vlan_dev_get_stats(skb->dev);
163 	stats->rx_packets++;
164 	stats->rx_bytes += skb->len;
165 
166 	/* Take off the VLAN header (4 bytes currently) */
167 	skb_pull_rcsum(skb, VLAN_HLEN);
168 
169 	/* Ok, lets check to make sure the device (dev) we
170 	 * came in on is what this VLAN is attached to.
171 	 */
172 
173 	if (dev != VLAN_DEV_INFO(skb->dev)->real_dev) {
174 		rcu_read_unlock();
175 
176 #ifdef VLAN_DEBUG
177 		printk(VLAN_DBG "%s: dropping skb: %p because came in on wrong device, dev: %s  real_dev: %s, skb_dev: %s\n",
178 			__FUNCTION__, skb, dev->name,
179 			VLAN_DEV_INFO(skb->dev)->real_dev->name,
180 			skb->dev->name);
181 #endif
182 		kfree_skb(skb);
183 		stats->rx_errors++;
184 		return -1;
185 	}
186 
187 	/*
188 	 * Deal with ingress priority mapping.
189 	 */
190 	skb->priority = vlan_get_ingress_priority(skb->dev, ntohs(vhdr->h_vlan_TCI));
191 
192 #ifdef VLAN_DEBUG
193 	printk(VLAN_DBG "%s: priority: %lu  for TCI: %hu (hbo)\n",
194 		__FUNCTION__, (unsigned long)(skb->priority),
195 		ntohs(vhdr->h_vlan_TCI));
196 #endif
197 
198 	/* The ethernet driver already did the pkt_type calculations
199 	 * for us...
200 	 */
201 	switch (skb->pkt_type) {
202 	case PACKET_BROADCAST: /* Yeah, stats collect these together.. */
203 		// stats->broadcast ++; // no such counter :-(
204 		break;
205 
206 	case PACKET_MULTICAST:
207 		stats->multicast++;
208 		break;
209 
210 	case PACKET_OTHERHOST:
211 		/* Our lower layer thinks this is not local, let's make sure.
212 		 * This allows the VLAN to have a different MAC than the underlying
213 		 * device, and still route correctly.
214 		 */
215 		if (!compare_ether_addr(eth_hdr(skb)->h_dest, skb->dev->dev_addr)) {
216 			/* It is for our (changed) MAC-address! */
217 			skb->pkt_type = PACKET_HOST;
218 		}
219 		break;
220 	default:
221 		break;
222 	};
223 
224 	/*  Was a VLAN packet, grab the encapsulated protocol, which the layer
225 	 * three protocols care about.
226 	 */
227 	/* proto = get_unaligned(&vhdr->h_vlan_encapsulated_proto); */
228 	proto = vhdr->h_vlan_encapsulated_proto;
229 
230 	skb->protocol = proto;
231 	if (ntohs(proto) >= 1536) {
232 		/* place it back on the queue to be handled by
233 		 * true layer 3 protocols.
234 		 */
235 
236 		/* See if we are configured to re-write the VLAN header
237 		 * to make it look like ethernet...
238 		 */
239 		skb = vlan_check_reorder_header(skb);
240 
241 		/* Can be null if skb-clone fails when re-ordering */
242 		if (skb) {
243 			netif_rx(skb);
244 		} else {
245 			/* TODO:  Add a more specific counter here. */
246 			stats->rx_errors++;
247 		}
248 		rcu_read_unlock();
249 		return 0;
250 	}
251 
252 	rawp = skb->data;
253 
254 	/*
255 	 * This is a magic hack to spot IPX packets. Older Novell breaks
256 	 * the protocol design and runs IPX over 802.3 without an 802.2 LLC
257 	 * layer. We look for FFFF which isn't a used 802.2 SSAP/DSAP. This
258 	 * won't work for fault tolerant netware but does for the rest.
259 	 */
260 	if (*(unsigned short *)rawp == 0xFFFF) {
261 		skb->protocol = __constant_htons(ETH_P_802_3);
262 		/* place it back on the queue to be handled by true layer 3 protocols.
263 		 */
264 
265 		/* See if we are configured to re-write the VLAN header
266 		 * to make it look like ethernet...
267 		 */
268 		skb = vlan_check_reorder_header(skb);
269 
270 		/* Can be null if skb-clone fails when re-ordering */
271 		if (skb) {
272 			netif_rx(skb);
273 		} else {
274 			/* TODO:  Add a more specific counter here. */
275 			stats->rx_errors++;
276 		}
277 		rcu_read_unlock();
278 		return 0;
279 	}
280 
281 	/*
282 	 *	Real 802.2 LLC
283 	 */
284 	skb->protocol = __constant_htons(ETH_P_802_2);
285 	/* place it back on the queue to be handled by upper layer protocols.
286 	 */
287 
288 	/* See if we are configured to re-write the VLAN header
289 	 * to make it look like ethernet...
290 	 */
291 	skb = vlan_check_reorder_header(skb);
292 
293 	/* Can be null if skb-clone fails when re-ordering */
294 	if (skb) {
295 		netif_rx(skb);
296 	} else {
297 		/* TODO:  Add a more specific counter here. */
298 		stats->rx_errors++;
299 	}
300 	rcu_read_unlock();
301 	return 0;
302 }
303 
304 static inline unsigned short vlan_dev_get_egress_qos_mask(struct net_device* dev,
305 							  struct sk_buff* skb)
306 {
307 	struct vlan_priority_tci_mapping *mp =
308 		VLAN_DEV_INFO(dev)->egress_priority_map[(skb->priority & 0xF)];
309 
310 	while (mp) {
311 		if (mp->priority == skb->priority) {
312 			return mp->vlan_qos; /* This should already be shifted to mask
313 					      * correctly with the VLAN's TCI
314 					      */
315 		}
316 		mp = mp->next;
317 	}
318 	return 0;
319 }
320 
321 /*
322  *	Create the VLAN header for an arbitrary protocol layer
323  *
324  *	saddr=NULL	means use device source address
325  *	daddr=NULL	means leave destination address (eg unresolved arp)
326  *
327  *  This is called when the SKB is moving down the stack towards the
328  *  physical devices.
329  */
330 int vlan_dev_hard_header(struct sk_buff *skb, struct net_device *dev,
331                          unsigned short type, void *daddr, void *saddr,
332                          unsigned len)
333 {
334 	struct vlan_hdr *vhdr;
335 	unsigned short veth_TCI = 0;
336 	int rc = 0;
337 	int build_vlan_header = 0;
338 	struct net_device *vdev = dev; /* save this for the bottom of the method */
339 
340 #ifdef VLAN_DEBUG
341 	printk(VLAN_DBG "%s: skb: %p type: %hx len: %x vlan_id: %hx, daddr: %p\n",
342 		__FUNCTION__, skb, type, len, VLAN_DEV_INFO(dev)->vlan_id, daddr);
343 #endif
344 
345 	/* build vlan header only if re_order_header flag is NOT set.  This
346 	 * fixes some programs that get confused when they see a VLAN device
347 	 * sending a frame that is VLAN encoded (the consensus is that the VLAN
348 	 * device should look completely like an Ethernet device when the
349 	 * REORDER_HEADER flag is set)	The drawback to this is some extra
350 	 * header shuffling in the hard_start_xmit.  Users can turn off this
351 	 * REORDER behaviour with the vconfig tool.
352 	 */
353 	build_vlan_header = ((VLAN_DEV_INFO(dev)->flags & 1) == 0);
354 
355 	if (build_vlan_header) {
356 		vhdr = (struct vlan_hdr *) skb_push(skb, VLAN_HLEN);
357 
358 		/* build the four bytes that make this a VLAN header. */
359 
360 		/* Now, construct the second two bytes. This field looks something
361 		 * like:
362 		 * usr_priority: 3 bits	 (high bits)
363 		 * CFI		 1 bit
364 		 * VLAN ID	 12 bits (low bits)
365 		 *
366 		 */
367 		veth_TCI = VLAN_DEV_INFO(dev)->vlan_id;
368 		veth_TCI |= vlan_dev_get_egress_qos_mask(dev, skb);
369 
370 		vhdr->h_vlan_TCI = htons(veth_TCI);
371 
372 		/*
373 		 *  Set the protocol type.
374 		 *  For a packet of type ETH_P_802_3 we put the length in here instead.
375 		 *  It is up to the 802.2 layer to carry protocol information.
376 		 */
377 
378 		if (type != ETH_P_802_3) {
379 			vhdr->h_vlan_encapsulated_proto = htons(type);
380 		} else {
381 			vhdr->h_vlan_encapsulated_proto = htons(len);
382 		}
383 	}
384 
385 	/* Before delegating work to the lower layer, enter our MAC-address */
386 	if (saddr == NULL)
387 		saddr = dev->dev_addr;
388 
389 	dev = VLAN_DEV_INFO(dev)->real_dev;
390 
391 	/* MPLS can send us skbuffs w/out enough space.	 This check will grow the
392 	 * skb if it doesn't have enough headroom.  Not a beautiful solution, so
393 	 * I'll tick a counter so that users can know it's happening...	 If they
394 	 * care...
395 	 */
396 
397 	/* NOTE:  This may still break if the underlying device is not the final
398 	 * device (and thus there are more headers to add...)  It should work for
399 	 * good-ole-ethernet though.
400 	 */
401 	if (skb_headroom(skb) < dev->hard_header_len) {
402 		struct sk_buff *sk_tmp = skb;
403 		skb = skb_realloc_headroom(sk_tmp, dev->hard_header_len);
404 		kfree_skb(sk_tmp);
405 		if (skb == NULL) {
406 			struct net_device_stats *stats = vlan_dev_get_stats(vdev);
407 			stats->tx_dropped++;
408 			return -ENOMEM;
409 		}
410 		VLAN_DEV_INFO(vdev)->cnt_inc_headroom_on_tx++;
411 #ifdef VLAN_DEBUG
412 		printk(VLAN_DBG "%s: %s: had to grow skb.\n", __FUNCTION__, vdev->name);
413 #endif
414 	}
415 
416 	if (build_vlan_header) {
417 		/* Now make the underlying real hard header */
418 		rc = dev->hard_header(skb, dev, ETH_P_8021Q, daddr, saddr, len + VLAN_HLEN);
419 
420 		if (rc > 0) {
421 			rc += VLAN_HLEN;
422 		} else if (rc < 0) {
423 			rc -= VLAN_HLEN;
424 		}
425 	} else {
426 		/* If here, then we'll just make a normal looking ethernet frame,
427 		 * but, the hard_start_xmit method will insert the tag (it has to
428 		 * be able to do this for bridged and other skbs that don't come
429 		 * down the protocol stack in an orderly manner.
430 		 */
431 		rc = dev->hard_header(skb, dev, type, daddr, saddr, len);
432 	}
433 
434 	return rc;
435 }
436 
437 int vlan_dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
438 {
439 	struct net_device_stats *stats = vlan_dev_get_stats(dev);
440 	struct vlan_ethhdr *veth = (struct vlan_ethhdr *)(skb->data);
441 
442 	/* Handle non-VLAN frames if they are sent to us, for example by DHCP.
443 	 *
444 	 * NOTE: THIS ASSUMES DIX ETHERNET, SPECIFICALLY NOT SUPPORTING
445 	 * OTHER THINGS LIKE FDDI/TokenRing/802.3 SNAPs...
446 	 */
447 
448 	if (veth->h_vlan_proto != __constant_htons(ETH_P_8021Q)) {
449 		int orig_headroom = skb_headroom(skb);
450 		unsigned short veth_TCI;
451 
452 		/* This is not a VLAN frame...but we can fix that! */
453 		VLAN_DEV_INFO(dev)->cnt_encap_on_xmit++;
454 
455 #ifdef VLAN_DEBUG
456 		printk(VLAN_DBG "%s: proto to encap: 0x%hx (hbo)\n",
457 			__FUNCTION__, htons(veth->h_vlan_proto));
458 #endif
459 		/* Construct the second two bytes. This field looks something
460 		 * like:
461 		 * usr_priority: 3 bits	 (high bits)
462 		 * CFI		 1 bit
463 		 * VLAN ID	 12 bits (low bits)
464 		 */
465 		veth_TCI = VLAN_DEV_INFO(dev)->vlan_id;
466 		veth_TCI |= vlan_dev_get_egress_qos_mask(dev, skb);
467 
468 		skb = __vlan_put_tag(skb, veth_TCI);
469 		if (!skb) {
470 			stats->tx_dropped++;
471 			return 0;
472 		}
473 
474 		if (orig_headroom < VLAN_HLEN) {
475 			VLAN_DEV_INFO(dev)->cnt_inc_headroom_on_tx++;
476 		}
477 	}
478 
479 #ifdef VLAN_DEBUG
480 	printk(VLAN_DBG "%s: about to send skb: %p to dev: %s\n",
481 		__FUNCTION__, skb, skb->dev->name);
482 	printk(VLAN_DBG "  %2hx.%2hx.%2hx.%2xh.%2hx.%2hx %2hx.%2hx.%2hx.%2hx.%2hx.%2hx %4hx %4hx %4hx\n",
483 	       veth->h_dest[0], veth->h_dest[1], veth->h_dest[2], veth->h_dest[3], veth->h_dest[4], veth->h_dest[5],
484 	       veth->h_source[0], veth->h_source[1], veth->h_source[2], veth->h_source[3], veth->h_source[4], veth->h_source[5],
485 	       veth->h_vlan_proto, veth->h_vlan_TCI, veth->h_vlan_encapsulated_proto);
486 #endif
487 
488 	stats->tx_packets++; /* for statics only */
489 	stats->tx_bytes += skb->len;
490 
491 	skb->dev = VLAN_DEV_INFO(dev)->real_dev;
492 	dev_queue_xmit(skb);
493 
494 	return 0;
495 }
496 
497 int vlan_dev_hwaccel_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
498 {
499 	struct net_device_stats *stats = vlan_dev_get_stats(dev);
500 	unsigned short veth_TCI;
501 
502 	/* Construct the second two bytes. This field looks something
503 	 * like:
504 	 * usr_priority: 3 bits	 (high bits)
505 	 * CFI		 1 bit
506 	 * VLAN ID	 12 bits (low bits)
507 	 */
508 	veth_TCI = VLAN_DEV_INFO(dev)->vlan_id;
509 	veth_TCI |= vlan_dev_get_egress_qos_mask(dev, skb);
510 	skb = __vlan_hwaccel_put_tag(skb, veth_TCI);
511 
512 	stats->tx_packets++;
513 	stats->tx_bytes += skb->len;
514 
515 	skb->dev = VLAN_DEV_INFO(dev)->real_dev;
516 	dev_queue_xmit(skb);
517 
518 	return 0;
519 }
520 
521 int vlan_dev_change_mtu(struct net_device *dev, int new_mtu)
522 {
523 	/* TODO: gotta make sure the underlying layer can handle it,
524 	 * maybe an IFF_VLAN_CAPABLE flag for devices?
525 	 */
526 	if (VLAN_DEV_INFO(dev)->real_dev->mtu < new_mtu)
527 		return -ERANGE;
528 
529 	dev->mtu = new_mtu;
530 
531 	return 0;
532 }
533 
534 int vlan_dev_set_ingress_priority(char *dev_name, __u32 skb_prio, short vlan_prio)
535 {
536 	struct net_device *dev = dev_get_by_name(dev_name);
537 
538 	if (dev) {
539 		if (dev->priv_flags & IFF_802_1Q_VLAN) {
540 			/* see if a priority mapping exists.. */
541 			VLAN_DEV_INFO(dev)->ingress_priority_map[vlan_prio & 0x7] = skb_prio;
542 			dev_put(dev);
543 			return 0;
544 		}
545 
546 		dev_put(dev);
547 	}
548 	return -EINVAL;
549 }
550 
551 int vlan_dev_set_egress_priority(char *dev_name, __u32 skb_prio, short vlan_prio)
552 {
553 	struct net_device *dev = dev_get_by_name(dev_name);
554 	struct vlan_priority_tci_mapping *mp = NULL;
555 	struct vlan_priority_tci_mapping *np;
556 
557 	if (dev) {
558 		if (dev->priv_flags & IFF_802_1Q_VLAN) {
559 			/* See if a priority mapping exists.. */
560 			mp = VLAN_DEV_INFO(dev)->egress_priority_map[skb_prio & 0xF];
561 			while (mp) {
562 				if (mp->priority == skb_prio) {
563 					mp->vlan_qos = ((vlan_prio << 13) & 0xE000);
564 					dev_put(dev);
565 					return 0;
566 				}
567 				mp = mp->next;
568 			}
569 
570 			/* Create a new mapping then. */
571 			mp = VLAN_DEV_INFO(dev)->egress_priority_map[skb_prio & 0xF];
572 			np = kmalloc(sizeof(struct vlan_priority_tci_mapping), GFP_KERNEL);
573 			if (np) {
574 				np->next = mp;
575 				np->priority = skb_prio;
576 				np->vlan_qos = ((vlan_prio << 13) & 0xE000);
577 				VLAN_DEV_INFO(dev)->egress_priority_map[skb_prio & 0xF] = np;
578 				dev_put(dev);
579 				return 0;
580 			} else {
581 				dev_put(dev);
582 				return -ENOBUFS;
583 			}
584 		}
585 		dev_put(dev);
586 	}
587 	return -EINVAL;
588 }
589 
590 /* Flags are defined in the vlan_dev_info class in include/linux/if_vlan.h file. */
591 int vlan_dev_set_vlan_flag(char *dev_name, __u32 flag, short flag_val)
592 {
593 	struct net_device *dev = dev_get_by_name(dev_name);
594 
595 	if (dev) {
596 		if (dev->priv_flags & IFF_802_1Q_VLAN) {
597 			/* verify flag is supported */
598 			if (flag == 1) {
599 				if (flag_val) {
600 					VLAN_DEV_INFO(dev)->flags |= 1;
601 				} else {
602 					VLAN_DEV_INFO(dev)->flags &= ~1;
603 				}
604 				dev_put(dev);
605 				return 0;
606 			} else {
607 				printk(KERN_ERR  "%s: flag %i is not valid.\n",
608 					__FUNCTION__, (int)(flag));
609 				dev_put(dev);
610 				return -EINVAL;
611 			}
612 		} else {
613 			printk(KERN_ERR
614 			       "%s: %s is not a vlan device, priv_flags: %hX.\n",
615 			       __FUNCTION__, dev->name, dev->priv_flags);
616 			dev_put(dev);
617 		}
618 	} else {
619 		printk(KERN_ERR  "%s: Could not find device: %s\n",
620 			__FUNCTION__, dev_name);
621 	}
622 
623 	return -EINVAL;
624 }
625 
626 
627 int vlan_dev_get_realdev_name(const char *dev_name, char* result)
628 {
629 	struct net_device *dev = dev_get_by_name(dev_name);
630 	int rv = 0;
631 	if (dev) {
632 		if (dev->priv_flags & IFF_802_1Q_VLAN) {
633 			strncpy(result, VLAN_DEV_INFO(dev)->real_dev->name, 23);
634 			rv = 0;
635 		} else {
636 			rv = -EINVAL;
637 		}
638 		dev_put(dev);
639 	} else {
640 		rv = -ENODEV;
641 	}
642 	return rv;
643 }
644 
645 int vlan_dev_get_vid(const char *dev_name, unsigned short* result)
646 {
647 	struct net_device *dev = dev_get_by_name(dev_name);
648 	int rv = 0;
649 	if (dev) {
650 		if (dev->priv_flags & IFF_802_1Q_VLAN) {
651 			*result = VLAN_DEV_INFO(dev)->vlan_id;
652 			rv = 0;
653 		} else {
654 			rv = -EINVAL;
655 		}
656 		dev_put(dev);
657 	} else {
658 		rv = -ENODEV;
659 	}
660 	return rv;
661 }
662 
663 
664 int vlan_dev_set_mac_address(struct net_device *dev, void *addr_struct_p)
665 {
666 	struct sockaddr *addr = (struct sockaddr *)(addr_struct_p);
667 	int i;
668 
669 	if (netif_running(dev))
670 		return -EBUSY;
671 
672 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
673 
674 	printk("%s: Setting MAC address to ", dev->name);
675 	for (i = 0; i < 6; i++)
676 		printk(" %2.2x", dev->dev_addr[i]);
677 	printk(".\n");
678 
679 	if (memcmp(VLAN_DEV_INFO(dev)->real_dev->dev_addr,
680 		   dev->dev_addr,
681 		   dev->addr_len) != 0) {
682 		if (!(VLAN_DEV_INFO(dev)->real_dev->flags & IFF_PROMISC)) {
683 			int flgs = VLAN_DEV_INFO(dev)->real_dev->flags;
684 
685 			/* Increment our in-use promiscuity counter */
686 			dev_set_promiscuity(VLAN_DEV_INFO(dev)->real_dev, 1);
687 
688 			/* Make PROMISC visible to the user. */
689 			flgs |= IFF_PROMISC;
690 			printk("VLAN (%s):  Setting underlying device (%s) to promiscious mode.\n",
691 			       dev->name, VLAN_DEV_INFO(dev)->real_dev->name);
692 			dev_change_flags(VLAN_DEV_INFO(dev)->real_dev, flgs);
693 		}
694 	} else {
695 		printk("VLAN (%s):  Underlying device (%s) has same MAC, not checking promiscious mode.\n",
696 		       dev->name, VLAN_DEV_INFO(dev)->real_dev->name);
697 	}
698 
699 	return 0;
700 }
701 
702 static inline int vlan_dmi_equals(struct dev_mc_list *dmi1,
703                                   struct dev_mc_list *dmi2)
704 {
705 	return ((dmi1->dmi_addrlen == dmi2->dmi_addrlen) &&
706 		(memcmp(dmi1->dmi_addr, dmi2->dmi_addr, dmi1->dmi_addrlen) == 0));
707 }
708 
709 /** dmi is a single entry into a dev_mc_list, a single node.  mc_list is
710  *  an entire list, and we'll iterate through it.
711  */
712 static int vlan_should_add_mc(struct dev_mc_list *dmi, struct dev_mc_list *mc_list)
713 {
714 	struct dev_mc_list *idmi;
715 
716 	for (idmi = mc_list; idmi != NULL; ) {
717 		if (vlan_dmi_equals(dmi, idmi)) {
718 			if (dmi->dmi_users > idmi->dmi_users)
719 				return 1;
720 			else
721 				return 0;
722 		} else {
723 			idmi = idmi->next;
724 		}
725 	}
726 
727 	return 1;
728 }
729 
730 static inline void vlan_destroy_mc_list(struct dev_mc_list *mc_list)
731 {
732 	struct dev_mc_list *dmi = mc_list;
733 	struct dev_mc_list *next;
734 
735 	while(dmi) {
736 		next = dmi->next;
737 		kfree(dmi);
738 		dmi = next;
739 	}
740 }
741 
742 static void vlan_copy_mc_list(struct dev_mc_list *mc_list, struct vlan_dev_info *vlan_info)
743 {
744 	struct dev_mc_list *dmi, *new_dmi;
745 
746 	vlan_destroy_mc_list(vlan_info->old_mc_list);
747 	vlan_info->old_mc_list = NULL;
748 
749 	for (dmi = mc_list; dmi != NULL; dmi = dmi->next) {
750 		new_dmi = kmalloc(sizeof(*new_dmi), GFP_ATOMIC);
751 		if (new_dmi == NULL) {
752 			printk(KERN_ERR "vlan: cannot allocate memory. "
753 			       "Multicast may not work properly from now.\n");
754 			return;
755 		}
756 
757 		/* Copy whole structure, then make new 'next' pointer */
758 		*new_dmi = *dmi;
759 		new_dmi->next = vlan_info->old_mc_list;
760 		vlan_info->old_mc_list = new_dmi;
761 	}
762 }
763 
764 static void vlan_flush_mc_list(struct net_device *dev)
765 {
766 	struct dev_mc_list *dmi = dev->mc_list;
767 
768 	while (dmi) {
769 		printk(KERN_DEBUG "%s: del %.2x:%.2x:%.2x:%.2x:%.2x:%.2x mcast address from vlan interface\n",
770 		       dev->name,
771 		       dmi->dmi_addr[0],
772 		       dmi->dmi_addr[1],
773 		       dmi->dmi_addr[2],
774 		       dmi->dmi_addr[3],
775 		       dmi->dmi_addr[4],
776 		       dmi->dmi_addr[5]);
777 		dev_mc_delete(dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
778 		dmi = dev->mc_list;
779 	}
780 
781 	/* dev->mc_list is NULL by the time we get here. */
782 	vlan_destroy_mc_list(VLAN_DEV_INFO(dev)->old_mc_list);
783 	VLAN_DEV_INFO(dev)->old_mc_list = NULL;
784 }
785 
786 int vlan_dev_open(struct net_device *dev)
787 {
788 	if (!(VLAN_DEV_INFO(dev)->real_dev->flags & IFF_UP))
789 		return -ENETDOWN;
790 
791 	return 0;
792 }
793 
794 int vlan_dev_stop(struct net_device *dev)
795 {
796 	vlan_flush_mc_list(dev);
797 	return 0;
798 }
799 
800 int vlan_dev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
801 {
802 	struct net_device *real_dev = VLAN_DEV_INFO(dev)->real_dev;
803 	struct ifreq ifrr;
804 	int err = -EOPNOTSUPP;
805 
806 	strncpy(ifrr.ifr_name, real_dev->name, IFNAMSIZ);
807 	ifrr.ifr_ifru = ifr->ifr_ifru;
808 
809 	switch(cmd) {
810 	case SIOCGMIIPHY:
811 	case SIOCGMIIREG:
812 	case SIOCSMIIREG:
813 		if (real_dev->do_ioctl && netif_device_present(real_dev))
814 			err = real_dev->do_ioctl(real_dev, &ifrr, cmd);
815 		break;
816 
817 	case SIOCETHTOOL:
818 		err = dev_ethtool(&ifrr);
819 	}
820 
821 	if (!err)
822 		ifr->ifr_ifru = ifrr.ifr_ifru;
823 
824 	return err;
825 }
826 
827 /** Taken from Gleb + Lennert's VLAN code, and modified... */
828 void vlan_dev_set_multicast_list(struct net_device *vlan_dev)
829 {
830 	struct dev_mc_list *dmi;
831 	struct net_device *real_dev;
832 	int inc;
833 
834 	if (vlan_dev && (vlan_dev->priv_flags & IFF_802_1Q_VLAN)) {
835 		/* Then it's a real vlan device, as far as we can tell.. */
836 		real_dev = VLAN_DEV_INFO(vlan_dev)->real_dev;
837 
838 		/* compare the current promiscuity to the last promisc we had.. */
839 		inc = vlan_dev->promiscuity - VLAN_DEV_INFO(vlan_dev)->old_promiscuity;
840 		if (inc) {
841 			printk(KERN_INFO "%s: dev_set_promiscuity(master, %d)\n",
842 			       vlan_dev->name, inc);
843 			dev_set_promiscuity(real_dev, inc); /* found in dev.c */
844 			VLAN_DEV_INFO(vlan_dev)->old_promiscuity = vlan_dev->promiscuity;
845 		}
846 
847 		inc = vlan_dev->allmulti - VLAN_DEV_INFO(vlan_dev)->old_allmulti;
848 		if (inc) {
849 			printk(KERN_INFO "%s: dev_set_allmulti(master, %d)\n",
850 			       vlan_dev->name, inc);
851 			dev_set_allmulti(real_dev, inc); /* dev.c */
852 			VLAN_DEV_INFO(vlan_dev)->old_allmulti = vlan_dev->allmulti;
853 		}
854 
855 		/* looking for addresses to add to master's list */
856 		for (dmi = vlan_dev->mc_list; dmi != NULL; dmi = dmi->next) {
857 			if (vlan_should_add_mc(dmi, VLAN_DEV_INFO(vlan_dev)->old_mc_list)) {
858 				dev_mc_add(real_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
859 				printk(KERN_DEBUG "%s: add %.2x:%.2x:%.2x:%.2x:%.2x:%.2x mcast address to master interface\n",
860 				       vlan_dev->name,
861 				       dmi->dmi_addr[0],
862 				       dmi->dmi_addr[1],
863 				       dmi->dmi_addr[2],
864 				       dmi->dmi_addr[3],
865 				       dmi->dmi_addr[4],
866 				       dmi->dmi_addr[5]);
867 			}
868 		}
869 
870 		/* looking for addresses to delete from master's list */
871 		for (dmi = VLAN_DEV_INFO(vlan_dev)->old_mc_list; dmi != NULL; dmi = dmi->next) {
872 			if (vlan_should_add_mc(dmi, vlan_dev->mc_list)) {
873 				/* if we think we should add it to the new list, then we should really
874 				 * delete it from the real list on the underlying device.
875 				 */
876 				dev_mc_delete(real_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0);
877 				printk(KERN_DEBUG "%s: del %.2x:%.2x:%.2x:%.2x:%.2x:%.2x mcast address from master interface\n",
878 				       vlan_dev->name,
879 				       dmi->dmi_addr[0],
880 				       dmi->dmi_addr[1],
881 				       dmi->dmi_addr[2],
882 				       dmi->dmi_addr[3],
883 				       dmi->dmi_addr[4],
884 				       dmi->dmi_addr[5]);
885 			}
886 		}
887 
888 		/* save multicast list */
889 		vlan_copy_mc_list(vlan_dev->mc_list, VLAN_DEV_INFO(vlan_dev));
890 	}
891 }
892