1 /* 2 * zsmalloc memory allocator 3 * 4 * Copyright (C) 2011 Nitin Gupta 5 * Copyright (C) 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the license that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 */ 13 14 /* 15 * Following is how we use various fields and flags of underlying 16 * struct page(s) to form a zspage. 17 * 18 * Usage of struct page fields: 19 * page->private: points to zspage 20 * page->index: links together all component pages of a zspage 21 * For the huge page, this is always 0, so we use this field 22 * to store handle. 23 * page->page_type: first object offset in a subpage of zspage 24 * 25 * Usage of struct page flags: 26 * PG_private: identifies the first component page 27 * PG_owner_priv_1: identifies the huge component page 28 * 29 */ 30 31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 32 33 /* 34 * lock ordering: 35 * page_lock 36 * pool->migrate_lock 37 * class->lock 38 * zspage->lock 39 */ 40 41 #include <linux/module.h> 42 #include <linux/kernel.h> 43 #include <linux/sched.h> 44 #include <linux/bitops.h> 45 #include <linux/errno.h> 46 #include <linux/highmem.h> 47 #include <linux/string.h> 48 #include <linux/slab.h> 49 #include <linux/pgtable.h> 50 #include <asm/tlbflush.h> 51 #include <linux/cpumask.h> 52 #include <linux/cpu.h> 53 #include <linux/vmalloc.h> 54 #include <linux/preempt.h> 55 #include <linux/spinlock.h> 56 #include <linux/shrinker.h> 57 #include <linux/types.h> 58 #include <linux/debugfs.h> 59 #include <linux/zsmalloc.h> 60 #include <linux/zpool.h> 61 #include <linux/migrate.h> 62 #include <linux/wait.h> 63 #include <linux/pagemap.h> 64 #include <linux/fs.h> 65 #include <linux/local_lock.h> 66 67 #define ZSPAGE_MAGIC 0x58 68 69 /* 70 * This must be power of 2 and greater than or equal to sizeof(link_free). 71 * These two conditions ensure that any 'struct link_free' itself doesn't 72 * span more than 1 page which avoids complex case of mapping 2 pages simply 73 * to restore link_free pointer values. 74 */ 75 #define ZS_ALIGN 8 76 77 /* 78 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single) 79 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N. 80 */ 81 #define ZS_MAX_ZSPAGE_ORDER 2 82 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER) 83 84 #define ZS_HANDLE_SIZE (sizeof(unsigned long)) 85 86 /* 87 * Object location (<PFN>, <obj_idx>) is encoded as 88 * a single (unsigned long) handle value. 89 * 90 * Note that object index <obj_idx> starts from 0. 91 * 92 * This is made more complicated by various memory models and PAE. 93 */ 94 95 #ifndef MAX_POSSIBLE_PHYSMEM_BITS 96 #ifdef MAX_PHYSMEM_BITS 97 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS 98 #else 99 /* 100 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just 101 * be PAGE_SHIFT 102 */ 103 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG 104 #endif 105 #endif 106 107 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT) 108 109 /* 110 * Head in allocated object should have OBJ_ALLOCATED_TAG 111 * to identify the object was allocated or not. 112 * It's okay to add the status bit in the least bit because 113 * header keeps handle which is 4byte-aligned address so we 114 * have room for two bit at least. 115 */ 116 #define OBJ_ALLOCATED_TAG 1 117 #define OBJ_TAG_BITS 1 118 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS) 119 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1) 120 121 #define HUGE_BITS 1 122 #define FULLNESS_BITS 2 123 #define CLASS_BITS 8 124 #define ISOLATED_BITS 3 125 #define MAGIC_VAL_BITS 8 126 127 #define MAX(a, b) ((a) >= (b) ? (a) : (b)) 128 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */ 129 #define ZS_MIN_ALLOC_SIZE \ 130 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS)) 131 /* each chunk includes extra space to keep handle */ 132 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE 133 134 /* 135 * On systems with 4K page size, this gives 255 size classes! There is a 136 * trader-off here: 137 * - Large number of size classes is potentially wasteful as free page are 138 * spread across these classes 139 * - Small number of size classes causes large internal fragmentation 140 * - Probably its better to use specific size classes (empirically 141 * determined). NOTE: all those class sizes must be set as multiple of 142 * ZS_ALIGN to make sure link_free itself never has to span 2 pages. 143 * 144 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN 145 * (reason above) 146 */ 147 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS) 148 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \ 149 ZS_SIZE_CLASS_DELTA) + 1) 150 151 enum fullness_group { 152 ZS_EMPTY, 153 ZS_ALMOST_EMPTY, 154 ZS_ALMOST_FULL, 155 ZS_FULL, 156 NR_ZS_FULLNESS, 157 }; 158 159 enum class_stat_type { 160 CLASS_EMPTY, 161 CLASS_ALMOST_EMPTY, 162 CLASS_ALMOST_FULL, 163 CLASS_FULL, 164 OBJ_ALLOCATED, 165 OBJ_USED, 166 NR_ZS_STAT_TYPE, 167 }; 168 169 struct zs_size_stat { 170 unsigned long objs[NR_ZS_STAT_TYPE]; 171 }; 172 173 #ifdef CONFIG_ZSMALLOC_STAT 174 static struct dentry *zs_stat_root; 175 #endif 176 177 /* 178 * We assign a page to ZS_ALMOST_EMPTY fullness group when: 179 * n <= N / f, where 180 * n = number of allocated objects 181 * N = total number of objects zspage can store 182 * f = fullness_threshold_frac 183 * 184 * Similarly, we assign zspage to: 185 * ZS_ALMOST_FULL when n > N / f 186 * ZS_EMPTY when n == 0 187 * ZS_FULL when n == N 188 * 189 * (see: fix_fullness_group()) 190 */ 191 static const int fullness_threshold_frac = 4; 192 static size_t huge_class_size; 193 194 struct size_class { 195 spinlock_t lock; 196 struct list_head fullness_list[NR_ZS_FULLNESS]; 197 /* 198 * Size of objects stored in this class. Must be multiple 199 * of ZS_ALIGN. 200 */ 201 int size; 202 int objs_per_zspage; 203 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */ 204 int pages_per_zspage; 205 206 unsigned int index; 207 struct zs_size_stat stats; 208 }; 209 210 /* 211 * Placed within free objects to form a singly linked list. 212 * For every zspage, zspage->freeobj gives head of this list. 213 * 214 * This must be power of 2 and less than or equal to ZS_ALIGN 215 */ 216 struct link_free { 217 union { 218 /* 219 * Free object index; 220 * It's valid for non-allocated object 221 */ 222 unsigned long next; 223 /* 224 * Handle of allocated object. 225 */ 226 unsigned long handle; 227 }; 228 }; 229 230 struct zs_pool { 231 const char *name; 232 233 struct size_class *size_class[ZS_SIZE_CLASSES]; 234 struct kmem_cache *handle_cachep; 235 struct kmem_cache *zspage_cachep; 236 237 atomic_long_t pages_allocated; 238 239 struct zs_pool_stats stats; 240 241 /* Compact classes */ 242 struct shrinker shrinker; 243 244 #ifdef CONFIG_ZSMALLOC_STAT 245 struct dentry *stat_dentry; 246 #endif 247 #ifdef CONFIG_COMPACTION 248 struct work_struct free_work; 249 #endif 250 /* protect page/zspage migration */ 251 rwlock_t migrate_lock; 252 }; 253 254 struct zspage { 255 struct { 256 unsigned int huge:HUGE_BITS; 257 unsigned int fullness:FULLNESS_BITS; 258 unsigned int class:CLASS_BITS + 1; 259 unsigned int isolated:ISOLATED_BITS; 260 unsigned int magic:MAGIC_VAL_BITS; 261 }; 262 unsigned int inuse; 263 unsigned int freeobj; 264 struct page *first_page; 265 struct list_head list; /* fullness list */ 266 struct zs_pool *pool; 267 #ifdef CONFIG_COMPACTION 268 rwlock_t lock; 269 #endif 270 }; 271 272 struct mapping_area { 273 local_lock_t lock; 274 char *vm_buf; /* copy buffer for objects that span pages */ 275 char *vm_addr; /* address of kmap_atomic()'ed pages */ 276 enum zs_mapmode vm_mm; /* mapping mode */ 277 }; 278 279 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */ 280 static void SetZsHugePage(struct zspage *zspage) 281 { 282 zspage->huge = 1; 283 } 284 285 static bool ZsHugePage(struct zspage *zspage) 286 { 287 return zspage->huge; 288 } 289 290 #ifdef CONFIG_COMPACTION 291 static void migrate_lock_init(struct zspage *zspage); 292 static void migrate_read_lock(struct zspage *zspage); 293 static void migrate_read_unlock(struct zspage *zspage); 294 static void migrate_write_lock(struct zspage *zspage); 295 static void migrate_write_lock_nested(struct zspage *zspage); 296 static void migrate_write_unlock(struct zspage *zspage); 297 static void kick_deferred_free(struct zs_pool *pool); 298 static void init_deferred_free(struct zs_pool *pool); 299 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage); 300 #else 301 static void migrate_lock_init(struct zspage *zspage) {} 302 static void migrate_read_lock(struct zspage *zspage) {} 303 static void migrate_read_unlock(struct zspage *zspage) {} 304 static void migrate_write_lock(struct zspage *zspage) {} 305 static void migrate_write_lock_nested(struct zspage *zspage) {} 306 static void migrate_write_unlock(struct zspage *zspage) {} 307 static void kick_deferred_free(struct zs_pool *pool) {} 308 static void init_deferred_free(struct zs_pool *pool) {} 309 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {} 310 #endif 311 312 static int create_cache(struct zs_pool *pool) 313 { 314 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE, 315 0, 0, NULL); 316 if (!pool->handle_cachep) 317 return 1; 318 319 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage), 320 0, 0, NULL); 321 if (!pool->zspage_cachep) { 322 kmem_cache_destroy(pool->handle_cachep); 323 pool->handle_cachep = NULL; 324 return 1; 325 } 326 327 return 0; 328 } 329 330 static void destroy_cache(struct zs_pool *pool) 331 { 332 kmem_cache_destroy(pool->handle_cachep); 333 kmem_cache_destroy(pool->zspage_cachep); 334 } 335 336 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp) 337 { 338 return (unsigned long)kmem_cache_alloc(pool->handle_cachep, 339 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 340 } 341 342 static void cache_free_handle(struct zs_pool *pool, unsigned long handle) 343 { 344 kmem_cache_free(pool->handle_cachep, (void *)handle); 345 } 346 347 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags) 348 { 349 return kmem_cache_zalloc(pool->zspage_cachep, 350 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 351 } 352 353 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage) 354 { 355 kmem_cache_free(pool->zspage_cachep, zspage); 356 } 357 358 /* class->lock(which owns the handle) synchronizes races */ 359 static void record_obj(unsigned long handle, unsigned long obj) 360 { 361 *(unsigned long *)handle = obj; 362 } 363 364 /* zpool driver */ 365 366 #ifdef CONFIG_ZPOOL 367 368 static void *zs_zpool_create(const char *name, gfp_t gfp, 369 const struct zpool_ops *zpool_ops, 370 struct zpool *zpool) 371 { 372 /* 373 * Ignore global gfp flags: zs_malloc() may be invoked from 374 * different contexts and its caller must provide a valid 375 * gfp mask. 376 */ 377 return zs_create_pool(name); 378 } 379 380 static void zs_zpool_destroy(void *pool) 381 { 382 zs_destroy_pool(pool); 383 } 384 385 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp, 386 unsigned long *handle) 387 { 388 *handle = zs_malloc(pool, size, gfp); 389 return *handle ? 0 : -1; 390 } 391 static void zs_zpool_free(void *pool, unsigned long handle) 392 { 393 zs_free(pool, handle); 394 } 395 396 static void *zs_zpool_map(void *pool, unsigned long handle, 397 enum zpool_mapmode mm) 398 { 399 enum zs_mapmode zs_mm; 400 401 switch (mm) { 402 case ZPOOL_MM_RO: 403 zs_mm = ZS_MM_RO; 404 break; 405 case ZPOOL_MM_WO: 406 zs_mm = ZS_MM_WO; 407 break; 408 case ZPOOL_MM_RW: 409 default: 410 zs_mm = ZS_MM_RW; 411 break; 412 } 413 414 return zs_map_object(pool, handle, zs_mm); 415 } 416 static void zs_zpool_unmap(void *pool, unsigned long handle) 417 { 418 zs_unmap_object(pool, handle); 419 } 420 421 static u64 zs_zpool_total_size(void *pool) 422 { 423 return zs_get_total_pages(pool) << PAGE_SHIFT; 424 } 425 426 static struct zpool_driver zs_zpool_driver = { 427 .type = "zsmalloc", 428 .owner = THIS_MODULE, 429 .create = zs_zpool_create, 430 .destroy = zs_zpool_destroy, 431 .malloc_support_movable = true, 432 .malloc = zs_zpool_malloc, 433 .free = zs_zpool_free, 434 .map = zs_zpool_map, 435 .unmap = zs_zpool_unmap, 436 .total_size = zs_zpool_total_size, 437 }; 438 439 MODULE_ALIAS("zpool-zsmalloc"); 440 #endif /* CONFIG_ZPOOL */ 441 442 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */ 443 static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = { 444 .lock = INIT_LOCAL_LOCK(lock), 445 }; 446 447 static __maybe_unused int is_first_page(struct page *page) 448 { 449 return PagePrivate(page); 450 } 451 452 /* Protected by class->lock */ 453 static inline int get_zspage_inuse(struct zspage *zspage) 454 { 455 return zspage->inuse; 456 } 457 458 459 static inline void mod_zspage_inuse(struct zspage *zspage, int val) 460 { 461 zspage->inuse += val; 462 } 463 464 static inline struct page *get_first_page(struct zspage *zspage) 465 { 466 struct page *first_page = zspage->first_page; 467 468 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page); 469 return first_page; 470 } 471 472 static inline int get_first_obj_offset(struct page *page) 473 { 474 return page->page_type; 475 } 476 477 static inline void set_first_obj_offset(struct page *page, int offset) 478 { 479 page->page_type = offset; 480 } 481 482 static inline unsigned int get_freeobj(struct zspage *zspage) 483 { 484 return zspage->freeobj; 485 } 486 487 static inline void set_freeobj(struct zspage *zspage, unsigned int obj) 488 { 489 zspage->freeobj = obj; 490 } 491 492 static void get_zspage_mapping(struct zspage *zspage, 493 unsigned int *class_idx, 494 enum fullness_group *fullness) 495 { 496 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 497 498 *fullness = zspage->fullness; 499 *class_idx = zspage->class; 500 } 501 502 static struct size_class *zspage_class(struct zs_pool *pool, 503 struct zspage *zspage) 504 { 505 return pool->size_class[zspage->class]; 506 } 507 508 static void set_zspage_mapping(struct zspage *zspage, 509 unsigned int class_idx, 510 enum fullness_group fullness) 511 { 512 zspage->class = class_idx; 513 zspage->fullness = fullness; 514 } 515 516 /* 517 * zsmalloc divides the pool into various size classes where each 518 * class maintains a list of zspages where each zspage is divided 519 * into equal sized chunks. Each allocation falls into one of these 520 * classes depending on its size. This function returns index of the 521 * size class which has chunk size big enough to hold the given size. 522 */ 523 static int get_size_class_index(int size) 524 { 525 int idx = 0; 526 527 if (likely(size > ZS_MIN_ALLOC_SIZE)) 528 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, 529 ZS_SIZE_CLASS_DELTA); 530 531 return min_t(int, ZS_SIZE_CLASSES - 1, idx); 532 } 533 534 /* type can be of enum type class_stat_type or fullness_group */ 535 static inline void class_stat_inc(struct size_class *class, 536 int type, unsigned long cnt) 537 { 538 class->stats.objs[type] += cnt; 539 } 540 541 /* type can be of enum type class_stat_type or fullness_group */ 542 static inline void class_stat_dec(struct size_class *class, 543 int type, unsigned long cnt) 544 { 545 class->stats.objs[type] -= cnt; 546 } 547 548 /* type can be of enum type class_stat_type or fullness_group */ 549 static inline unsigned long zs_stat_get(struct size_class *class, 550 int type) 551 { 552 return class->stats.objs[type]; 553 } 554 555 #ifdef CONFIG_ZSMALLOC_STAT 556 557 static void __init zs_stat_init(void) 558 { 559 if (!debugfs_initialized()) { 560 pr_warn("debugfs not available, stat dir not created\n"); 561 return; 562 } 563 564 zs_stat_root = debugfs_create_dir("zsmalloc", NULL); 565 } 566 567 static void __exit zs_stat_exit(void) 568 { 569 debugfs_remove_recursive(zs_stat_root); 570 } 571 572 static unsigned long zs_can_compact(struct size_class *class); 573 574 static int zs_stats_size_show(struct seq_file *s, void *v) 575 { 576 int i; 577 struct zs_pool *pool = s->private; 578 struct size_class *class; 579 int objs_per_zspage; 580 unsigned long class_almost_full, class_almost_empty; 581 unsigned long obj_allocated, obj_used, pages_used, freeable; 582 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0; 583 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0; 584 unsigned long total_freeable = 0; 585 586 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n", 587 "class", "size", "almost_full", "almost_empty", 588 "obj_allocated", "obj_used", "pages_used", 589 "pages_per_zspage", "freeable"); 590 591 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 592 class = pool->size_class[i]; 593 594 if (class->index != i) 595 continue; 596 597 spin_lock(&class->lock); 598 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL); 599 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY); 600 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); 601 obj_used = zs_stat_get(class, OBJ_USED); 602 freeable = zs_can_compact(class); 603 spin_unlock(&class->lock); 604 605 objs_per_zspage = class->objs_per_zspage; 606 pages_used = obj_allocated / objs_per_zspage * 607 class->pages_per_zspage; 608 609 seq_printf(s, " %5u %5u %11lu %12lu %13lu" 610 " %10lu %10lu %16d %8lu\n", 611 i, class->size, class_almost_full, class_almost_empty, 612 obj_allocated, obj_used, pages_used, 613 class->pages_per_zspage, freeable); 614 615 total_class_almost_full += class_almost_full; 616 total_class_almost_empty += class_almost_empty; 617 total_objs += obj_allocated; 618 total_used_objs += obj_used; 619 total_pages += pages_used; 620 total_freeable += freeable; 621 } 622 623 seq_puts(s, "\n"); 624 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n", 625 "Total", "", total_class_almost_full, 626 total_class_almost_empty, total_objs, 627 total_used_objs, total_pages, "", total_freeable); 628 629 return 0; 630 } 631 DEFINE_SHOW_ATTRIBUTE(zs_stats_size); 632 633 static void zs_pool_stat_create(struct zs_pool *pool, const char *name) 634 { 635 if (!zs_stat_root) { 636 pr_warn("no root stat dir, not creating <%s> stat dir\n", name); 637 return; 638 } 639 640 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root); 641 642 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool, 643 &zs_stats_size_fops); 644 } 645 646 static void zs_pool_stat_destroy(struct zs_pool *pool) 647 { 648 debugfs_remove_recursive(pool->stat_dentry); 649 } 650 651 #else /* CONFIG_ZSMALLOC_STAT */ 652 static void __init zs_stat_init(void) 653 { 654 } 655 656 static void __exit zs_stat_exit(void) 657 { 658 } 659 660 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name) 661 { 662 } 663 664 static inline void zs_pool_stat_destroy(struct zs_pool *pool) 665 { 666 } 667 #endif 668 669 670 /* 671 * For each size class, zspages are divided into different groups 672 * depending on how "full" they are. This was done so that we could 673 * easily find empty or nearly empty zspages when we try to shrink 674 * the pool (not yet implemented). This function returns fullness 675 * status of the given page. 676 */ 677 static enum fullness_group get_fullness_group(struct size_class *class, 678 struct zspage *zspage) 679 { 680 int inuse, objs_per_zspage; 681 enum fullness_group fg; 682 683 inuse = get_zspage_inuse(zspage); 684 objs_per_zspage = class->objs_per_zspage; 685 686 if (inuse == 0) 687 fg = ZS_EMPTY; 688 else if (inuse == objs_per_zspage) 689 fg = ZS_FULL; 690 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac) 691 fg = ZS_ALMOST_EMPTY; 692 else 693 fg = ZS_ALMOST_FULL; 694 695 return fg; 696 } 697 698 /* 699 * Each size class maintains various freelists and zspages are assigned 700 * to one of these freelists based on the number of live objects they 701 * have. This functions inserts the given zspage into the freelist 702 * identified by <class, fullness_group>. 703 */ 704 static void insert_zspage(struct size_class *class, 705 struct zspage *zspage, 706 enum fullness_group fullness) 707 { 708 struct zspage *head; 709 710 class_stat_inc(class, fullness, 1); 711 head = list_first_entry_or_null(&class->fullness_list[fullness], 712 struct zspage, list); 713 /* 714 * We want to see more ZS_FULL pages and less almost empty/full. 715 * Put pages with higher ->inuse first. 716 */ 717 if (head && get_zspage_inuse(zspage) < get_zspage_inuse(head)) 718 list_add(&zspage->list, &head->list); 719 else 720 list_add(&zspage->list, &class->fullness_list[fullness]); 721 } 722 723 /* 724 * This function removes the given zspage from the freelist identified 725 * by <class, fullness_group>. 726 */ 727 static void remove_zspage(struct size_class *class, 728 struct zspage *zspage, 729 enum fullness_group fullness) 730 { 731 VM_BUG_ON(list_empty(&class->fullness_list[fullness])); 732 733 list_del_init(&zspage->list); 734 class_stat_dec(class, fullness, 1); 735 } 736 737 /* 738 * Each size class maintains zspages in different fullness groups depending 739 * on the number of live objects they contain. When allocating or freeing 740 * objects, the fullness status of the page can change, say, from ALMOST_FULL 741 * to ALMOST_EMPTY when freeing an object. This function checks if such 742 * a status change has occurred for the given page and accordingly moves the 743 * page from the freelist of the old fullness group to that of the new 744 * fullness group. 745 */ 746 static enum fullness_group fix_fullness_group(struct size_class *class, 747 struct zspage *zspage) 748 { 749 int class_idx; 750 enum fullness_group currfg, newfg; 751 752 get_zspage_mapping(zspage, &class_idx, &currfg); 753 newfg = get_fullness_group(class, zspage); 754 if (newfg == currfg) 755 goto out; 756 757 remove_zspage(class, zspage, currfg); 758 insert_zspage(class, zspage, newfg); 759 set_zspage_mapping(zspage, class_idx, newfg); 760 out: 761 return newfg; 762 } 763 764 /* 765 * We have to decide on how many pages to link together 766 * to form a zspage for each size class. This is important 767 * to reduce wastage due to unusable space left at end of 768 * each zspage which is given as: 769 * wastage = Zp % class_size 770 * usage = Zp - wastage 771 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ... 772 * 773 * For example, for size class of 3/8 * PAGE_SIZE, we should 774 * link together 3 PAGE_SIZE sized pages to form a zspage 775 * since then we can perfectly fit in 8 such objects. 776 */ 777 static int get_pages_per_zspage(int class_size) 778 { 779 int i, max_usedpc = 0; 780 /* zspage order which gives maximum used size per KB */ 781 int max_usedpc_order = 1; 782 783 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { 784 int zspage_size; 785 int waste, usedpc; 786 787 zspage_size = i * PAGE_SIZE; 788 waste = zspage_size % class_size; 789 usedpc = (zspage_size - waste) * 100 / zspage_size; 790 791 if (usedpc > max_usedpc) { 792 max_usedpc = usedpc; 793 max_usedpc_order = i; 794 } 795 } 796 797 return max_usedpc_order; 798 } 799 800 static struct zspage *get_zspage(struct page *page) 801 { 802 struct zspage *zspage = (struct zspage *)page_private(page); 803 804 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 805 return zspage; 806 } 807 808 static struct page *get_next_page(struct page *page) 809 { 810 struct zspage *zspage = get_zspage(page); 811 812 if (unlikely(ZsHugePage(zspage))) 813 return NULL; 814 815 return (struct page *)page->index; 816 } 817 818 /** 819 * obj_to_location - get (<page>, <obj_idx>) from encoded object value 820 * @obj: the encoded object value 821 * @page: page object resides in zspage 822 * @obj_idx: object index 823 */ 824 static void obj_to_location(unsigned long obj, struct page **page, 825 unsigned int *obj_idx) 826 { 827 obj >>= OBJ_TAG_BITS; 828 *page = pfn_to_page(obj >> OBJ_INDEX_BITS); 829 *obj_idx = (obj & OBJ_INDEX_MASK); 830 } 831 832 static void obj_to_page(unsigned long obj, struct page **page) 833 { 834 obj >>= OBJ_TAG_BITS; 835 *page = pfn_to_page(obj >> OBJ_INDEX_BITS); 836 } 837 838 /** 839 * location_to_obj - get obj value encoded from (<page>, <obj_idx>) 840 * @page: page object resides in zspage 841 * @obj_idx: object index 842 */ 843 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx) 844 { 845 unsigned long obj; 846 847 obj = page_to_pfn(page) << OBJ_INDEX_BITS; 848 obj |= obj_idx & OBJ_INDEX_MASK; 849 obj <<= OBJ_TAG_BITS; 850 851 return obj; 852 } 853 854 static unsigned long handle_to_obj(unsigned long handle) 855 { 856 return *(unsigned long *)handle; 857 } 858 859 static bool obj_allocated(struct page *page, void *obj, unsigned long *phandle) 860 { 861 unsigned long handle; 862 struct zspage *zspage = get_zspage(page); 863 864 if (unlikely(ZsHugePage(zspage))) { 865 VM_BUG_ON_PAGE(!is_first_page(page), page); 866 handle = page->index; 867 } else 868 handle = *(unsigned long *)obj; 869 870 if (!(handle & OBJ_ALLOCATED_TAG)) 871 return false; 872 873 *phandle = handle & ~OBJ_ALLOCATED_TAG; 874 return true; 875 } 876 877 static void reset_page(struct page *page) 878 { 879 __ClearPageMovable(page); 880 ClearPagePrivate(page); 881 set_page_private(page, 0); 882 page_mapcount_reset(page); 883 page->index = 0; 884 } 885 886 static int trylock_zspage(struct zspage *zspage) 887 { 888 struct page *cursor, *fail; 889 890 for (cursor = get_first_page(zspage); cursor != NULL; cursor = 891 get_next_page(cursor)) { 892 if (!trylock_page(cursor)) { 893 fail = cursor; 894 goto unlock; 895 } 896 } 897 898 return 1; 899 unlock: 900 for (cursor = get_first_page(zspage); cursor != fail; cursor = 901 get_next_page(cursor)) 902 unlock_page(cursor); 903 904 return 0; 905 } 906 907 static void __free_zspage(struct zs_pool *pool, struct size_class *class, 908 struct zspage *zspage) 909 { 910 struct page *page, *next; 911 enum fullness_group fg; 912 unsigned int class_idx; 913 914 get_zspage_mapping(zspage, &class_idx, &fg); 915 916 assert_spin_locked(&class->lock); 917 918 VM_BUG_ON(get_zspage_inuse(zspage)); 919 VM_BUG_ON(fg != ZS_EMPTY); 920 921 next = page = get_first_page(zspage); 922 do { 923 VM_BUG_ON_PAGE(!PageLocked(page), page); 924 next = get_next_page(page); 925 reset_page(page); 926 unlock_page(page); 927 dec_zone_page_state(page, NR_ZSPAGES); 928 put_page(page); 929 page = next; 930 } while (page != NULL); 931 932 cache_free_zspage(pool, zspage); 933 934 class_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage); 935 atomic_long_sub(class->pages_per_zspage, 936 &pool->pages_allocated); 937 } 938 939 static void free_zspage(struct zs_pool *pool, struct size_class *class, 940 struct zspage *zspage) 941 { 942 VM_BUG_ON(get_zspage_inuse(zspage)); 943 VM_BUG_ON(list_empty(&zspage->list)); 944 945 /* 946 * Since zs_free couldn't be sleepable, this function cannot call 947 * lock_page. The page locks trylock_zspage got will be released 948 * by __free_zspage. 949 */ 950 if (!trylock_zspage(zspage)) { 951 kick_deferred_free(pool); 952 return; 953 } 954 955 remove_zspage(class, zspage, ZS_EMPTY); 956 __free_zspage(pool, class, zspage); 957 } 958 959 /* Initialize a newly allocated zspage */ 960 static void init_zspage(struct size_class *class, struct zspage *zspage) 961 { 962 unsigned int freeobj = 1; 963 unsigned long off = 0; 964 struct page *page = get_first_page(zspage); 965 966 while (page) { 967 struct page *next_page; 968 struct link_free *link; 969 void *vaddr; 970 971 set_first_obj_offset(page, off); 972 973 vaddr = kmap_atomic(page); 974 link = (struct link_free *)vaddr + off / sizeof(*link); 975 976 while ((off += class->size) < PAGE_SIZE) { 977 link->next = freeobj++ << OBJ_TAG_BITS; 978 link += class->size / sizeof(*link); 979 } 980 981 /* 982 * We now come to the last (full or partial) object on this 983 * page, which must point to the first object on the next 984 * page (if present) 985 */ 986 next_page = get_next_page(page); 987 if (next_page) { 988 link->next = freeobj++ << OBJ_TAG_BITS; 989 } else { 990 /* 991 * Reset OBJ_TAG_BITS bit to last link to tell 992 * whether it's allocated object or not. 993 */ 994 link->next = -1UL << OBJ_TAG_BITS; 995 } 996 kunmap_atomic(vaddr); 997 page = next_page; 998 off %= PAGE_SIZE; 999 } 1000 1001 set_freeobj(zspage, 0); 1002 } 1003 1004 static void create_page_chain(struct size_class *class, struct zspage *zspage, 1005 struct page *pages[]) 1006 { 1007 int i; 1008 struct page *page; 1009 struct page *prev_page = NULL; 1010 int nr_pages = class->pages_per_zspage; 1011 1012 /* 1013 * Allocate individual pages and link them together as: 1014 * 1. all pages are linked together using page->index 1015 * 2. each sub-page point to zspage using page->private 1016 * 1017 * we set PG_private to identify the first page (i.e. no other sub-page 1018 * has this flag set). 1019 */ 1020 for (i = 0; i < nr_pages; i++) { 1021 page = pages[i]; 1022 set_page_private(page, (unsigned long)zspage); 1023 page->index = 0; 1024 if (i == 0) { 1025 zspage->first_page = page; 1026 SetPagePrivate(page); 1027 if (unlikely(class->objs_per_zspage == 1 && 1028 class->pages_per_zspage == 1)) 1029 SetZsHugePage(zspage); 1030 } else { 1031 prev_page->index = (unsigned long)page; 1032 } 1033 prev_page = page; 1034 } 1035 } 1036 1037 /* 1038 * Allocate a zspage for the given size class 1039 */ 1040 static struct zspage *alloc_zspage(struct zs_pool *pool, 1041 struct size_class *class, 1042 gfp_t gfp) 1043 { 1044 int i; 1045 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE]; 1046 struct zspage *zspage = cache_alloc_zspage(pool, gfp); 1047 1048 if (!zspage) 1049 return NULL; 1050 1051 zspage->magic = ZSPAGE_MAGIC; 1052 migrate_lock_init(zspage); 1053 1054 for (i = 0; i < class->pages_per_zspage; i++) { 1055 struct page *page; 1056 1057 page = alloc_page(gfp); 1058 if (!page) { 1059 while (--i >= 0) { 1060 dec_zone_page_state(pages[i], NR_ZSPAGES); 1061 __free_page(pages[i]); 1062 } 1063 cache_free_zspage(pool, zspage); 1064 return NULL; 1065 } 1066 1067 inc_zone_page_state(page, NR_ZSPAGES); 1068 pages[i] = page; 1069 } 1070 1071 create_page_chain(class, zspage, pages); 1072 init_zspage(class, zspage); 1073 zspage->pool = pool; 1074 1075 return zspage; 1076 } 1077 1078 static struct zspage *find_get_zspage(struct size_class *class) 1079 { 1080 int i; 1081 struct zspage *zspage; 1082 1083 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) { 1084 zspage = list_first_entry_or_null(&class->fullness_list[i], 1085 struct zspage, list); 1086 if (zspage) 1087 break; 1088 } 1089 1090 return zspage; 1091 } 1092 1093 static inline int __zs_cpu_up(struct mapping_area *area) 1094 { 1095 /* 1096 * Make sure we don't leak memory if a cpu UP notification 1097 * and zs_init() race and both call zs_cpu_up() on the same cpu 1098 */ 1099 if (area->vm_buf) 1100 return 0; 1101 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL); 1102 if (!area->vm_buf) 1103 return -ENOMEM; 1104 return 0; 1105 } 1106 1107 static inline void __zs_cpu_down(struct mapping_area *area) 1108 { 1109 kfree(area->vm_buf); 1110 area->vm_buf = NULL; 1111 } 1112 1113 static void *__zs_map_object(struct mapping_area *area, 1114 struct page *pages[2], int off, int size) 1115 { 1116 int sizes[2]; 1117 void *addr; 1118 char *buf = area->vm_buf; 1119 1120 /* disable page faults to match kmap_atomic() return conditions */ 1121 pagefault_disable(); 1122 1123 /* no read fastpath */ 1124 if (area->vm_mm == ZS_MM_WO) 1125 goto out; 1126 1127 sizes[0] = PAGE_SIZE - off; 1128 sizes[1] = size - sizes[0]; 1129 1130 /* copy object to per-cpu buffer */ 1131 addr = kmap_atomic(pages[0]); 1132 memcpy(buf, addr + off, sizes[0]); 1133 kunmap_atomic(addr); 1134 addr = kmap_atomic(pages[1]); 1135 memcpy(buf + sizes[0], addr, sizes[1]); 1136 kunmap_atomic(addr); 1137 out: 1138 return area->vm_buf; 1139 } 1140 1141 static void __zs_unmap_object(struct mapping_area *area, 1142 struct page *pages[2], int off, int size) 1143 { 1144 int sizes[2]; 1145 void *addr; 1146 char *buf; 1147 1148 /* no write fastpath */ 1149 if (area->vm_mm == ZS_MM_RO) 1150 goto out; 1151 1152 buf = area->vm_buf; 1153 buf = buf + ZS_HANDLE_SIZE; 1154 size -= ZS_HANDLE_SIZE; 1155 off += ZS_HANDLE_SIZE; 1156 1157 sizes[0] = PAGE_SIZE - off; 1158 sizes[1] = size - sizes[0]; 1159 1160 /* copy per-cpu buffer to object */ 1161 addr = kmap_atomic(pages[0]); 1162 memcpy(addr + off, buf, sizes[0]); 1163 kunmap_atomic(addr); 1164 addr = kmap_atomic(pages[1]); 1165 memcpy(addr, buf + sizes[0], sizes[1]); 1166 kunmap_atomic(addr); 1167 1168 out: 1169 /* enable page faults to match kunmap_atomic() return conditions */ 1170 pagefault_enable(); 1171 } 1172 1173 static int zs_cpu_prepare(unsigned int cpu) 1174 { 1175 struct mapping_area *area; 1176 1177 area = &per_cpu(zs_map_area, cpu); 1178 return __zs_cpu_up(area); 1179 } 1180 1181 static int zs_cpu_dead(unsigned int cpu) 1182 { 1183 struct mapping_area *area; 1184 1185 area = &per_cpu(zs_map_area, cpu); 1186 __zs_cpu_down(area); 1187 return 0; 1188 } 1189 1190 static bool can_merge(struct size_class *prev, int pages_per_zspage, 1191 int objs_per_zspage) 1192 { 1193 if (prev->pages_per_zspage == pages_per_zspage && 1194 prev->objs_per_zspage == objs_per_zspage) 1195 return true; 1196 1197 return false; 1198 } 1199 1200 static bool zspage_full(struct size_class *class, struct zspage *zspage) 1201 { 1202 return get_zspage_inuse(zspage) == class->objs_per_zspage; 1203 } 1204 1205 unsigned long zs_get_total_pages(struct zs_pool *pool) 1206 { 1207 return atomic_long_read(&pool->pages_allocated); 1208 } 1209 EXPORT_SYMBOL_GPL(zs_get_total_pages); 1210 1211 /** 1212 * zs_map_object - get address of allocated object from handle. 1213 * @pool: pool from which the object was allocated 1214 * @handle: handle returned from zs_malloc 1215 * @mm: mapping mode to use 1216 * 1217 * Before using an object allocated from zs_malloc, it must be mapped using 1218 * this function. When done with the object, it must be unmapped using 1219 * zs_unmap_object. 1220 * 1221 * Only one object can be mapped per cpu at a time. There is no protection 1222 * against nested mappings. 1223 * 1224 * This function returns with preemption and page faults disabled. 1225 */ 1226 void *zs_map_object(struct zs_pool *pool, unsigned long handle, 1227 enum zs_mapmode mm) 1228 { 1229 struct zspage *zspage; 1230 struct page *page; 1231 unsigned long obj, off; 1232 unsigned int obj_idx; 1233 1234 struct size_class *class; 1235 struct mapping_area *area; 1236 struct page *pages[2]; 1237 void *ret; 1238 1239 /* 1240 * Because we use per-cpu mapping areas shared among the 1241 * pools/users, we can't allow mapping in interrupt context 1242 * because it can corrupt another users mappings. 1243 */ 1244 BUG_ON(in_interrupt()); 1245 1246 /* It guarantees it can get zspage from handle safely */ 1247 read_lock(&pool->migrate_lock); 1248 obj = handle_to_obj(handle); 1249 obj_to_location(obj, &page, &obj_idx); 1250 zspage = get_zspage(page); 1251 1252 /* 1253 * migration cannot move any zpages in this zspage. Here, class->lock 1254 * is too heavy since callers would take some time until they calls 1255 * zs_unmap_object API so delegate the locking from class to zspage 1256 * which is smaller granularity. 1257 */ 1258 migrate_read_lock(zspage); 1259 read_unlock(&pool->migrate_lock); 1260 1261 class = zspage_class(pool, zspage); 1262 off = (class->size * obj_idx) & ~PAGE_MASK; 1263 1264 local_lock(&zs_map_area.lock); 1265 area = this_cpu_ptr(&zs_map_area); 1266 area->vm_mm = mm; 1267 if (off + class->size <= PAGE_SIZE) { 1268 /* this object is contained entirely within a page */ 1269 area->vm_addr = kmap_atomic(page); 1270 ret = area->vm_addr + off; 1271 goto out; 1272 } 1273 1274 /* this object spans two pages */ 1275 pages[0] = page; 1276 pages[1] = get_next_page(page); 1277 BUG_ON(!pages[1]); 1278 1279 ret = __zs_map_object(area, pages, off, class->size); 1280 out: 1281 if (likely(!ZsHugePage(zspage))) 1282 ret += ZS_HANDLE_SIZE; 1283 1284 return ret; 1285 } 1286 EXPORT_SYMBOL_GPL(zs_map_object); 1287 1288 void zs_unmap_object(struct zs_pool *pool, unsigned long handle) 1289 { 1290 struct zspage *zspage; 1291 struct page *page; 1292 unsigned long obj, off; 1293 unsigned int obj_idx; 1294 1295 struct size_class *class; 1296 struct mapping_area *area; 1297 1298 obj = handle_to_obj(handle); 1299 obj_to_location(obj, &page, &obj_idx); 1300 zspage = get_zspage(page); 1301 class = zspage_class(pool, zspage); 1302 off = (class->size * obj_idx) & ~PAGE_MASK; 1303 1304 area = this_cpu_ptr(&zs_map_area); 1305 if (off + class->size <= PAGE_SIZE) 1306 kunmap_atomic(area->vm_addr); 1307 else { 1308 struct page *pages[2]; 1309 1310 pages[0] = page; 1311 pages[1] = get_next_page(page); 1312 BUG_ON(!pages[1]); 1313 1314 __zs_unmap_object(area, pages, off, class->size); 1315 } 1316 local_unlock(&zs_map_area.lock); 1317 1318 migrate_read_unlock(zspage); 1319 } 1320 EXPORT_SYMBOL_GPL(zs_unmap_object); 1321 1322 /** 1323 * zs_huge_class_size() - Returns the size (in bytes) of the first huge 1324 * zsmalloc &size_class. 1325 * @pool: zsmalloc pool to use 1326 * 1327 * The function returns the size of the first huge class - any object of equal 1328 * or bigger size will be stored in zspage consisting of a single physical 1329 * page. 1330 * 1331 * Context: Any context. 1332 * 1333 * Return: the size (in bytes) of the first huge zsmalloc &size_class. 1334 */ 1335 size_t zs_huge_class_size(struct zs_pool *pool) 1336 { 1337 return huge_class_size; 1338 } 1339 EXPORT_SYMBOL_GPL(zs_huge_class_size); 1340 1341 static unsigned long obj_malloc(struct zs_pool *pool, 1342 struct zspage *zspage, unsigned long handle) 1343 { 1344 int i, nr_page, offset; 1345 unsigned long obj; 1346 struct link_free *link; 1347 struct size_class *class; 1348 1349 struct page *m_page; 1350 unsigned long m_offset; 1351 void *vaddr; 1352 1353 class = pool->size_class[zspage->class]; 1354 handle |= OBJ_ALLOCATED_TAG; 1355 obj = get_freeobj(zspage); 1356 1357 offset = obj * class->size; 1358 nr_page = offset >> PAGE_SHIFT; 1359 m_offset = offset & ~PAGE_MASK; 1360 m_page = get_first_page(zspage); 1361 1362 for (i = 0; i < nr_page; i++) 1363 m_page = get_next_page(m_page); 1364 1365 vaddr = kmap_atomic(m_page); 1366 link = (struct link_free *)vaddr + m_offset / sizeof(*link); 1367 set_freeobj(zspage, link->next >> OBJ_TAG_BITS); 1368 if (likely(!ZsHugePage(zspage))) 1369 /* record handle in the header of allocated chunk */ 1370 link->handle = handle; 1371 else 1372 /* record handle to page->index */ 1373 zspage->first_page->index = handle; 1374 1375 kunmap_atomic(vaddr); 1376 mod_zspage_inuse(zspage, 1); 1377 1378 obj = location_to_obj(m_page, obj); 1379 1380 return obj; 1381 } 1382 1383 1384 /** 1385 * zs_malloc - Allocate block of given size from pool. 1386 * @pool: pool to allocate from 1387 * @size: size of block to allocate 1388 * @gfp: gfp flags when allocating object 1389 * 1390 * On success, handle to the allocated object is returned, 1391 * otherwise 0. 1392 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail. 1393 */ 1394 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp) 1395 { 1396 unsigned long handle, obj; 1397 struct size_class *class; 1398 enum fullness_group newfg; 1399 struct zspage *zspage; 1400 1401 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE)) 1402 return 0; 1403 1404 handle = cache_alloc_handle(pool, gfp); 1405 if (!handle) 1406 return 0; 1407 1408 /* extra space in chunk to keep the handle */ 1409 size += ZS_HANDLE_SIZE; 1410 class = pool->size_class[get_size_class_index(size)]; 1411 1412 /* class->lock effectively protects the zpage migration */ 1413 spin_lock(&class->lock); 1414 zspage = find_get_zspage(class); 1415 if (likely(zspage)) { 1416 obj = obj_malloc(pool, zspage, handle); 1417 /* Now move the zspage to another fullness group, if required */ 1418 fix_fullness_group(class, zspage); 1419 record_obj(handle, obj); 1420 class_stat_inc(class, OBJ_USED, 1); 1421 spin_unlock(&class->lock); 1422 1423 return handle; 1424 } 1425 1426 spin_unlock(&class->lock); 1427 1428 zspage = alloc_zspage(pool, class, gfp); 1429 if (!zspage) { 1430 cache_free_handle(pool, handle); 1431 return 0; 1432 } 1433 1434 spin_lock(&class->lock); 1435 obj = obj_malloc(pool, zspage, handle); 1436 newfg = get_fullness_group(class, zspage); 1437 insert_zspage(class, zspage, newfg); 1438 set_zspage_mapping(zspage, class->index, newfg); 1439 record_obj(handle, obj); 1440 atomic_long_add(class->pages_per_zspage, 1441 &pool->pages_allocated); 1442 class_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage); 1443 class_stat_inc(class, OBJ_USED, 1); 1444 1445 /* We completely set up zspage so mark them as movable */ 1446 SetZsPageMovable(pool, zspage); 1447 spin_unlock(&class->lock); 1448 1449 return handle; 1450 } 1451 EXPORT_SYMBOL_GPL(zs_malloc); 1452 1453 static void obj_free(int class_size, unsigned long obj) 1454 { 1455 struct link_free *link; 1456 struct zspage *zspage; 1457 struct page *f_page; 1458 unsigned long f_offset; 1459 unsigned int f_objidx; 1460 void *vaddr; 1461 1462 obj_to_location(obj, &f_page, &f_objidx); 1463 f_offset = (class_size * f_objidx) & ~PAGE_MASK; 1464 zspage = get_zspage(f_page); 1465 1466 vaddr = kmap_atomic(f_page); 1467 1468 /* Insert this object in containing zspage's freelist */ 1469 link = (struct link_free *)(vaddr + f_offset); 1470 if (likely(!ZsHugePage(zspage))) 1471 link->next = get_freeobj(zspage) << OBJ_TAG_BITS; 1472 else 1473 f_page->index = 0; 1474 kunmap_atomic(vaddr); 1475 set_freeobj(zspage, f_objidx); 1476 mod_zspage_inuse(zspage, -1); 1477 } 1478 1479 void zs_free(struct zs_pool *pool, unsigned long handle) 1480 { 1481 struct zspage *zspage; 1482 struct page *f_page; 1483 unsigned long obj; 1484 struct size_class *class; 1485 enum fullness_group fullness; 1486 1487 if (unlikely(!handle)) 1488 return; 1489 1490 /* 1491 * The pool->migrate_lock protects the race with zpage's migration 1492 * so it's safe to get the page from handle. 1493 */ 1494 read_lock(&pool->migrate_lock); 1495 obj = handle_to_obj(handle); 1496 obj_to_page(obj, &f_page); 1497 zspage = get_zspage(f_page); 1498 class = zspage_class(pool, zspage); 1499 spin_lock(&class->lock); 1500 read_unlock(&pool->migrate_lock); 1501 1502 obj_free(class->size, obj); 1503 class_stat_dec(class, OBJ_USED, 1); 1504 fullness = fix_fullness_group(class, zspage); 1505 if (fullness != ZS_EMPTY) 1506 goto out; 1507 1508 free_zspage(pool, class, zspage); 1509 out: 1510 spin_unlock(&class->lock); 1511 cache_free_handle(pool, handle); 1512 } 1513 EXPORT_SYMBOL_GPL(zs_free); 1514 1515 static void zs_object_copy(struct size_class *class, unsigned long dst, 1516 unsigned long src) 1517 { 1518 struct page *s_page, *d_page; 1519 unsigned int s_objidx, d_objidx; 1520 unsigned long s_off, d_off; 1521 void *s_addr, *d_addr; 1522 int s_size, d_size, size; 1523 int written = 0; 1524 1525 s_size = d_size = class->size; 1526 1527 obj_to_location(src, &s_page, &s_objidx); 1528 obj_to_location(dst, &d_page, &d_objidx); 1529 1530 s_off = (class->size * s_objidx) & ~PAGE_MASK; 1531 d_off = (class->size * d_objidx) & ~PAGE_MASK; 1532 1533 if (s_off + class->size > PAGE_SIZE) 1534 s_size = PAGE_SIZE - s_off; 1535 1536 if (d_off + class->size > PAGE_SIZE) 1537 d_size = PAGE_SIZE - d_off; 1538 1539 s_addr = kmap_atomic(s_page); 1540 d_addr = kmap_atomic(d_page); 1541 1542 while (1) { 1543 size = min(s_size, d_size); 1544 memcpy(d_addr + d_off, s_addr + s_off, size); 1545 written += size; 1546 1547 if (written == class->size) 1548 break; 1549 1550 s_off += size; 1551 s_size -= size; 1552 d_off += size; 1553 d_size -= size; 1554 1555 if (s_off >= PAGE_SIZE) { 1556 kunmap_atomic(d_addr); 1557 kunmap_atomic(s_addr); 1558 s_page = get_next_page(s_page); 1559 s_addr = kmap_atomic(s_page); 1560 d_addr = kmap_atomic(d_page); 1561 s_size = class->size - written; 1562 s_off = 0; 1563 } 1564 1565 if (d_off >= PAGE_SIZE) { 1566 kunmap_atomic(d_addr); 1567 d_page = get_next_page(d_page); 1568 d_addr = kmap_atomic(d_page); 1569 d_size = class->size - written; 1570 d_off = 0; 1571 } 1572 } 1573 1574 kunmap_atomic(d_addr); 1575 kunmap_atomic(s_addr); 1576 } 1577 1578 /* 1579 * Find alloced object in zspage from index object and 1580 * return handle. 1581 */ 1582 static unsigned long find_alloced_obj(struct size_class *class, 1583 struct page *page, int *obj_idx) 1584 { 1585 int offset = 0; 1586 int index = *obj_idx; 1587 unsigned long handle = 0; 1588 void *addr = kmap_atomic(page); 1589 1590 offset = get_first_obj_offset(page); 1591 offset += class->size * index; 1592 1593 while (offset < PAGE_SIZE) { 1594 if (obj_allocated(page, addr + offset, &handle)) 1595 break; 1596 1597 offset += class->size; 1598 index++; 1599 } 1600 1601 kunmap_atomic(addr); 1602 1603 *obj_idx = index; 1604 1605 return handle; 1606 } 1607 1608 struct zs_compact_control { 1609 /* Source spage for migration which could be a subpage of zspage */ 1610 struct page *s_page; 1611 /* Destination page for migration which should be a first page 1612 * of zspage. */ 1613 struct page *d_page; 1614 /* Starting object index within @s_page which used for live object 1615 * in the subpage. */ 1616 int obj_idx; 1617 }; 1618 1619 static int migrate_zspage(struct zs_pool *pool, struct size_class *class, 1620 struct zs_compact_control *cc) 1621 { 1622 unsigned long used_obj, free_obj; 1623 unsigned long handle; 1624 struct page *s_page = cc->s_page; 1625 struct page *d_page = cc->d_page; 1626 int obj_idx = cc->obj_idx; 1627 int ret = 0; 1628 1629 while (1) { 1630 handle = find_alloced_obj(class, s_page, &obj_idx); 1631 if (!handle) { 1632 s_page = get_next_page(s_page); 1633 if (!s_page) 1634 break; 1635 obj_idx = 0; 1636 continue; 1637 } 1638 1639 /* Stop if there is no more space */ 1640 if (zspage_full(class, get_zspage(d_page))) { 1641 ret = -ENOMEM; 1642 break; 1643 } 1644 1645 used_obj = handle_to_obj(handle); 1646 free_obj = obj_malloc(pool, get_zspage(d_page), handle); 1647 zs_object_copy(class, free_obj, used_obj); 1648 obj_idx++; 1649 record_obj(handle, free_obj); 1650 obj_free(class->size, used_obj); 1651 } 1652 1653 /* Remember last position in this iteration */ 1654 cc->s_page = s_page; 1655 cc->obj_idx = obj_idx; 1656 1657 return ret; 1658 } 1659 1660 static struct zspage *isolate_zspage(struct size_class *class, bool source) 1661 { 1662 int i; 1663 struct zspage *zspage; 1664 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL}; 1665 1666 if (!source) { 1667 fg[0] = ZS_ALMOST_FULL; 1668 fg[1] = ZS_ALMOST_EMPTY; 1669 } 1670 1671 for (i = 0; i < 2; i++) { 1672 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]], 1673 struct zspage, list); 1674 if (zspage) { 1675 remove_zspage(class, zspage, fg[i]); 1676 return zspage; 1677 } 1678 } 1679 1680 return zspage; 1681 } 1682 1683 /* 1684 * putback_zspage - add @zspage into right class's fullness list 1685 * @class: destination class 1686 * @zspage: target page 1687 * 1688 * Return @zspage's fullness_group 1689 */ 1690 static enum fullness_group putback_zspage(struct size_class *class, 1691 struct zspage *zspage) 1692 { 1693 enum fullness_group fullness; 1694 1695 fullness = get_fullness_group(class, zspage); 1696 insert_zspage(class, zspage, fullness); 1697 set_zspage_mapping(zspage, class->index, fullness); 1698 1699 return fullness; 1700 } 1701 1702 #ifdef CONFIG_COMPACTION 1703 /* 1704 * To prevent zspage destroy during migration, zspage freeing should 1705 * hold locks of all pages in the zspage. 1706 */ 1707 static void lock_zspage(struct zspage *zspage) 1708 { 1709 struct page *curr_page, *page; 1710 1711 /* 1712 * Pages we haven't locked yet can be migrated off the list while we're 1713 * trying to lock them, so we need to be careful and only attempt to 1714 * lock each page under migrate_read_lock(). Otherwise, the page we lock 1715 * may no longer belong to the zspage. This means that we may wait for 1716 * the wrong page to unlock, so we must take a reference to the page 1717 * prior to waiting for it to unlock outside migrate_read_lock(). 1718 */ 1719 while (1) { 1720 migrate_read_lock(zspage); 1721 page = get_first_page(zspage); 1722 if (trylock_page(page)) 1723 break; 1724 get_page(page); 1725 migrate_read_unlock(zspage); 1726 wait_on_page_locked(page); 1727 put_page(page); 1728 } 1729 1730 curr_page = page; 1731 while ((page = get_next_page(curr_page))) { 1732 if (trylock_page(page)) { 1733 curr_page = page; 1734 } else { 1735 get_page(page); 1736 migrate_read_unlock(zspage); 1737 wait_on_page_locked(page); 1738 put_page(page); 1739 migrate_read_lock(zspage); 1740 } 1741 } 1742 migrate_read_unlock(zspage); 1743 } 1744 1745 static void migrate_lock_init(struct zspage *zspage) 1746 { 1747 rwlock_init(&zspage->lock); 1748 } 1749 1750 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock) 1751 { 1752 read_lock(&zspage->lock); 1753 } 1754 1755 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock) 1756 { 1757 read_unlock(&zspage->lock); 1758 } 1759 1760 static void migrate_write_lock(struct zspage *zspage) 1761 { 1762 write_lock(&zspage->lock); 1763 } 1764 1765 static void migrate_write_lock_nested(struct zspage *zspage) 1766 { 1767 write_lock_nested(&zspage->lock, SINGLE_DEPTH_NESTING); 1768 } 1769 1770 static void migrate_write_unlock(struct zspage *zspage) 1771 { 1772 write_unlock(&zspage->lock); 1773 } 1774 1775 /* Number of isolated subpage for *page migration* in this zspage */ 1776 static void inc_zspage_isolation(struct zspage *zspage) 1777 { 1778 zspage->isolated++; 1779 } 1780 1781 static void dec_zspage_isolation(struct zspage *zspage) 1782 { 1783 VM_BUG_ON(zspage->isolated == 0); 1784 zspage->isolated--; 1785 } 1786 1787 static const struct movable_operations zsmalloc_mops; 1788 1789 static void replace_sub_page(struct size_class *class, struct zspage *zspage, 1790 struct page *newpage, struct page *oldpage) 1791 { 1792 struct page *page; 1793 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, }; 1794 int idx = 0; 1795 1796 page = get_first_page(zspage); 1797 do { 1798 if (page == oldpage) 1799 pages[idx] = newpage; 1800 else 1801 pages[idx] = page; 1802 idx++; 1803 } while ((page = get_next_page(page)) != NULL); 1804 1805 create_page_chain(class, zspage, pages); 1806 set_first_obj_offset(newpage, get_first_obj_offset(oldpage)); 1807 if (unlikely(ZsHugePage(zspage))) 1808 newpage->index = oldpage->index; 1809 __SetPageMovable(newpage, &zsmalloc_mops); 1810 } 1811 1812 static bool zs_page_isolate(struct page *page, isolate_mode_t mode) 1813 { 1814 struct zspage *zspage; 1815 1816 /* 1817 * Page is locked so zspage couldn't be destroyed. For detail, look at 1818 * lock_zspage in free_zspage. 1819 */ 1820 VM_BUG_ON_PAGE(!PageMovable(page), page); 1821 VM_BUG_ON_PAGE(PageIsolated(page), page); 1822 1823 zspage = get_zspage(page); 1824 migrate_write_lock(zspage); 1825 inc_zspage_isolation(zspage); 1826 migrate_write_unlock(zspage); 1827 1828 return true; 1829 } 1830 1831 static int zs_page_migrate(struct page *newpage, struct page *page, 1832 enum migrate_mode mode) 1833 { 1834 struct zs_pool *pool; 1835 struct size_class *class; 1836 struct zspage *zspage; 1837 struct page *dummy; 1838 void *s_addr, *d_addr, *addr; 1839 int offset; 1840 unsigned long handle; 1841 unsigned long old_obj, new_obj; 1842 unsigned int obj_idx; 1843 1844 /* 1845 * We cannot support the _NO_COPY case here, because copy needs to 1846 * happen under the zs lock, which does not work with 1847 * MIGRATE_SYNC_NO_COPY workflow. 1848 */ 1849 if (mode == MIGRATE_SYNC_NO_COPY) 1850 return -EINVAL; 1851 1852 VM_BUG_ON_PAGE(!PageMovable(page), page); 1853 VM_BUG_ON_PAGE(!PageIsolated(page), page); 1854 1855 /* The page is locked, so this pointer must remain valid */ 1856 zspage = get_zspage(page); 1857 pool = zspage->pool; 1858 1859 /* 1860 * The pool migrate_lock protects the race between zpage migration 1861 * and zs_free. 1862 */ 1863 write_lock(&pool->migrate_lock); 1864 class = zspage_class(pool, zspage); 1865 1866 /* 1867 * the class lock protects zpage alloc/free in the zspage. 1868 */ 1869 spin_lock(&class->lock); 1870 /* the migrate_write_lock protects zpage access via zs_map_object */ 1871 migrate_write_lock(zspage); 1872 1873 offset = get_first_obj_offset(page); 1874 s_addr = kmap_atomic(page); 1875 1876 /* 1877 * Here, any user cannot access all objects in the zspage so let's move. 1878 */ 1879 d_addr = kmap_atomic(newpage); 1880 memcpy(d_addr, s_addr, PAGE_SIZE); 1881 kunmap_atomic(d_addr); 1882 1883 for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE; 1884 addr += class->size) { 1885 if (obj_allocated(page, addr, &handle)) { 1886 1887 old_obj = handle_to_obj(handle); 1888 obj_to_location(old_obj, &dummy, &obj_idx); 1889 new_obj = (unsigned long)location_to_obj(newpage, 1890 obj_idx); 1891 record_obj(handle, new_obj); 1892 } 1893 } 1894 kunmap_atomic(s_addr); 1895 1896 replace_sub_page(class, zspage, newpage, page); 1897 /* 1898 * Since we complete the data copy and set up new zspage structure, 1899 * it's okay to release migration_lock. 1900 */ 1901 write_unlock(&pool->migrate_lock); 1902 spin_unlock(&class->lock); 1903 dec_zspage_isolation(zspage); 1904 migrate_write_unlock(zspage); 1905 1906 get_page(newpage); 1907 if (page_zone(newpage) != page_zone(page)) { 1908 dec_zone_page_state(page, NR_ZSPAGES); 1909 inc_zone_page_state(newpage, NR_ZSPAGES); 1910 } 1911 1912 reset_page(page); 1913 put_page(page); 1914 1915 return MIGRATEPAGE_SUCCESS; 1916 } 1917 1918 static void zs_page_putback(struct page *page) 1919 { 1920 struct zspage *zspage; 1921 1922 VM_BUG_ON_PAGE(!PageMovable(page), page); 1923 VM_BUG_ON_PAGE(!PageIsolated(page), page); 1924 1925 zspage = get_zspage(page); 1926 migrate_write_lock(zspage); 1927 dec_zspage_isolation(zspage); 1928 migrate_write_unlock(zspage); 1929 } 1930 1931 static const struct movable_operations zsmalloc_mops = { 1932 .isolate_page = zs_page_isolate, 1933 .migrate_page = zs_page_migrate, 1934 .putback_page = zs_page_putback, 1935 }; 1936 1937 /* 1938 * Caller should hold page_lock of all pages in the zspage 1939 * In here, we cannot use zspage meta data. 1940 */ 1941 static void async_free_zspage(struct work_struct *work) 1942 { 1943 int i; 1944 struct size_class *class; 1945 unsigned int class_idx; 1946 enum fullness_group fullness; 1947 struct zspage *zspage, *tmp; 1948 LIST_HEAD(free_pages); 1949 struct zs_pool *pool = container_of(work, struct zs_pool, 1950 free_work); 1951 1952 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 1953 class = pool->size_class[i]; 1954 if (class->index != i) 1955 continue; 1956 1957 spin_lock(&class->lock); 1958 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages); 1959 spin_unlock(&class->lock); 1960 } 1961 1962 list_for_each_entry_safe(zspage, tmp, &free_pages, list) { 1963 list_del(&zspage->list); 1964 lock_zspage(zspage); 1965 1966 get_zspage_mapping(zspage, &class_idx, &fullness); 1967 VM_BUG_ON(fullness != ZS_EMPTY); 1968 class = pool->size_class[class_idx]; 1969 spin_lock(&class->lock); 1970 __free_zspage(pool, class, zspage); 1971 spin_unlock(&class->lock); 1972 } 1973 }; 1974 1975 static void kick_deferred_free(struct zs_pool *pool) 1976 { 1977 schedule_work(&pool->free_work); 1978 } 1979 1980 static void zs_flush_migration(struct zs_pool *pool) 1981 { 1982 flush_work(&pool->free_work); 1983 } 1984 1985 static void init_deferred_free(struct zs_pool *pool) 1986 { 1987 INIT_WORK(&pool->free_work, async_free_zspage); 1988 } 1989 1990 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) 1991 { 1992 struct page *page = get_first_page(zspage); 1993 1994 do { 1995 WARN_ON(!trylock_page(page)); 1996 __SetPageMovable(page, &zsmalloc_mops); 1997 unlock_page(page); 1998 } while ((page = get_next_page(page)) != NULL); 1999 } 2000 #else 2001 static inline void zs_flush_migration(struct zs_pool *pool) { } 2002 #endif 2003 2004 /* 2005 * 2006 * Based on the number of unused allocated objects calculate 2007 * and return the number of pages that we can free. 2008 */ 2009 static unsigned long zs_can_compact(struct size_class *class) 2010 { 2011 unsigned long obj_wasted; 2012 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); 2013 unsigned long obj_used = zs_stat_get(class, OBJ_USED); 2014 2015 if (obj_allocated <= obj_used) 2016 return 0; 2017 2018 obj_wasted = obj_allocated - obj_used; 2019 obj_wasted /= class->objs_per_zspage; 2020 2021 return obj_wasted * class->pages_per_zspage; 2022 } 2023 2024 static unsigned long __zs_compact(struct zs_pool *pool, 2025 struct size_class *class) 2026 { 2027 struct zs_compact_control cc; 2028 struct zspage *src_zspage; 2029 struct zspage *dst_zspage = NULL; 2030 unsigned long pages_freed = 0; 2031 2032 /* protect the race between zpage migration and zs_free */ 2033 write_lock(&pool->migrate_lock); 2034 /* protect zpage allocation/free */ 2035 spin_lock(&class->lock); 2036 while ((src_zspage = isolate_zspage(class, true))) { 2037 /* protect someone accessing the zspage(i.e., zs_map_object) */ 2038 migrate_write_lock(src_zspage); 2039 2040 if (!zs_can_compact(class)) 2041 break; 2042 2043 cc.obj_idx = 0; 2044 cc.s_page = get_first_page(src_zspage); 2045 2046 while ((dst_zspage = isolate_zspage(class, false))) { 2047 migrate_write_lock_nested(dst_zspage); 2048 2049 cc.d_page = get_first_page(dst_zspage); 2050 /* 2051 * If there is no more space in dst_page, resched 2052 * and see if anyone had allocated another zspage. 2053 */ 2054 if (!migrate_zspage(pool, class, &cc)) 2055 break; 2056 2057 putback_zspage(class, dst_zspage); 2058 migrate_write_unlock(dst_zspage); 2059 dst_zspage = NULL; 2060 if (rwlock_is_contended(&pool->migrate_lock)) 2061 break; 2062 } 2063 2064 /* Stop if we couldn't find slot */ 2065 if (dst_zspage == NULL) 2066 break; 2067 2068 putback_zspage(class, dst_zspage); 2069 migrate_write_unlock(dst_zspage); 2070 2071 if (putback_zspage(class, src_zspage) == ZS_EMPTY) { 2072 migrate_write_unlock(src_zspage); 2073 free_zspage(pool, class, src_zspage); 2074 pages_freed += class->pages_per_zspage; 2075 } else 2076 migrate_write_unlock(src_zspage); 2077 spin_unlock(&class->lock); 2078 write_unlock(&pool->migrate_lock); 2079 cond_resched(); 2080 write_lock(&pool->migrate_lock); 2081 spin_lock(&class->lock); 2082 } 2083 2084 if (src_zspage) { 2085 putback_zspage(class, src_zspage); 2086 migrate_write_unlock(src_zspage); 2087 } 2088 2089 spin_unlock(&class->lock); 2090 write_unlock(&pool->migrate_lock); 2091 2092 return pages_freed; 2093 } 2094 2095 unsigned long zs_compact(struct zs_pool *pool) 2096 { 2097 int i; 2098 struct size_class *class; 2099 unsigned long pages_freed = 0; 2100 2101 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2102 class = pool->size_class[i]; 2103 if (!class) 2104 continue; 2105 if (class->index != i) 2106 continue; 2107 pages_freed += __zs_compact(pool, class); 2108 } 2109 atomic_long_add(pages_freed, &pool->stats.pages_compacted); 2110 2111 return pages_freed; 2112 } 2113 EXPORT_SYMBOL_GPL(zs_compact); 2114 2115 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats) 2116 { 2117 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats)); 2118 } 2119 EXPORT_SYMBOL_GPL(zs_pool_stats); 2120 2121 static unsigned long zs_shrinker_scan(struct shrinker *shrinker, 2122 struct shrink_control *sc) 2123 { 2124 unsigned long pages_freed; 2125 struct zs_pool *pool = container_of(shrinker, struct zs_pool, 2126 shrinker); 2127 2128 /* 2129 * Compact classes and calculate compaction delta. 2130 * Can run concurrently with a manually triggered 2131 * (by user) compaction. 2132 */ 2133 pages_freed = zs_compact(pool); 2134 2135 return pages_freed ? pages_freed : SHRINK_STOP; 2136 } 2137 2138 static unsigned long zs_shrinker_count(struct shrinker *shrinker, 2139 struct shrink_control *sc) 2140 { 2141 int i; 2142 struct size_class *class; 2143 unsigned long pages_to_free = 0; 2144 struct zs_pool *pool = container_of(shrinker, struct zs_pool, 2145 shrinker); 2146 2147 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2148 class = pool->size_class[i]; 2149 if (!class) 2150 continue; 2151 if (class->index != i) 2152 continue; 2153 2154 pages_to_free += zs_can_compact(class); 2155 } 2156 2157 return pages_to_free; 2158 } 2159 2160 static void zs_unregister_shrinker(struct zs_pool *pool) 2161 { 2162 unregister_shrinker(&pool->shrinker); 2163 } 2164 2165 static int zs_register_shrinker(struct zs_pool *pool) 2166 { 2167 pool->shrinker.scan_objects = zs_shrinker_scan; 2168 pool->shrinker.count_objects = zs_shrinker_count; 2169 pool->shrinker.batch = 0; 2170 pool->shrinker.seeks = DEFAULT_SEEKS; 2171 2172 return register_shrinker(&pool->shrinker); 2173 } 2174 2175 /** 2176 * zs_create_pool - Creates an allocation pool to work from. 2177 * @name: pool name to be created 2178 * 2179 * This function must be called before anything when using 2180 * the zsmalloc allocator. 2181 * 2182 * On success, a pointer to the newly created pool is returned, 2183 * otherwise NULL. 2184 */ 2185 struct zs_pool *zs_create_pool(const char *name) 2186 { 2187 int i; 2188 struct zs_pool *pool; 2189 struct size_class *prev_class = NULL; 2190 2191 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 2192 if (!pool) 2193 return NULL; 2194 2195 init_deferred_free(pool); 2196 rwlock_init(&pool->migrate_lock); 2197 2198 pool->name = kstrdup(name, GFP_KERNEL); 2199 if (!pool->name) 2200 goto err; 2201 2202 if (create_cache(pool)) 2203 goto err; 2204 2205 /* 2206 * Iterate reversely, because, size of size_class that we want to use 2207 * for merging should be larger or equal to current size. 2208 */ 2209 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2210 int size; 2211 int pages_per_zspage; 2212 int objs_per_zspage; 2213 struct size_class *class; 2214 int fullness = 0; 2215 2216 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; 2217 if (size > ZS_MAX_ALLOC_SIZE) 2218 size = ZS_MAX_ALLOC_SIZE; 2219 pages_per_zspage = get_pages_per_zspage(size); 2220 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size; 2221 2222 /* 2223 * We iterate from biggest down to smallest classes, 2224 * so huge_class_size holds the size of the first huge 2225 * class. Any object bigger than or equal to that will 2226 * endup in the huge class. 2227 */ 2228 if (pages_per_zspage != 1 && objs_per_zspage != 1 && 2229 !huge_class_size) { 2230 huge_class_size = size; 2231 /* 2232 * The object uses ZS_HANDLE_SIZE bytes to store the 2233 * handle. We need to subtract it, because zs_malloc() 2234 * unconditionally adds handle size before it performs 2235 * size class search - so object may be smaller than 2236 * huge class size, yet it still can end up in the huge 2237 * class because it grows by ZS_HANDLE_SIZE extra bytes 2238 * right before class lookup. 2239 */ 2240 huge_class_size -= (ZS_HANDLE_SIZE - 1); 2241 } 2242 2243 /* 2244 * size_class is used for normal zsmalloc operation such 2245 * as alloc/free for that size. Although it is natural that we 2246 * have one size_class for each size, there is a chance that we 2247 * can get more memory utilization if we use one size_class for 2248 * many different sizes whose size_class have same 2249 * characteristics. So, we makes size_class point to 2250 * previous size_class if possible. 2251 */ 2252 if (prev_class) { 2253 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) { 2254 pool->size_class[i] = prev_class; 2255 continue; 2256 } 2257 } 2258 2259 class = kzalloc(sizeof(struct size_class), GFP_KERNEL); 2260 if (!class) 2261 goto err; 2262 2263 class->size = size; 2264 class->index = i; 2265 class->pages_per_zspage = pages_per_zspage; 2266 class->objs_per_zspage = objs_per_zspage; 2267 spin_lock_init(&class->lock); 2268 pool->size_class[i] = class; 2269 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS; 2270 fullness++) 2271 INIT_LIST_HEAD(&class->fullness_list[fullness]); 2272 2273 prev_class = class; 2274 } 2275 2276 /* debug only, don't abort if it fails */ 2277 zs_pool_stat_create(pool, name); 2278 2279 /* 2280 * Not critical since shrinker is only used to trigger internal 2281 * defragmentation of the pool which is pretty optional thing. If 2282 * registration fails we still can use the pool normally and user can 2283 * trigger compaction manually. Thus, ignore return code. 2284 */ 2285 zs_register_shrinker(pool); 2286 2287 return pool; 2288 2289 err: 2290 zs_destroy_pool(pool); 2291 return NULL; 2292 } 2293 EXPORT_SYMBOL_GPL(zs_create_pool); 2294 2295 void zs_destroy_pool(struct zs_pool *pool) 2296 { 2297 int i; 2298 2299 zs_unregister_shrinker(pool); 2300 zs_flush_migration(pool); 2301 zs_pool_stat_destroy(pool); 2302 2303 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 2304 int fg; 2305 struct size_class *class = pool->size_class[i]; 2306 2307 if (!class) 2308 continue; 2309 2310 if (class->index != i) 2311 continue; 2312 2313 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) { 2314 if (!list_empty(&class->fullness_list[fg])) { 2315 pr_info("Freeing non-empty class with size %db, fullness group %d\n", 2316 class->size, fg); 2317 } 2318 } 2319 kfree(class); 2320 } 2321 2322 destroy_cache(pool); 2323 kfree(pool->name); 2324 kfree(pool); 2325 } 2326 EXPORT_SYMBOL_GPL(zs_destroy_pool); 2327 2328 static int __init zs_init(void) 2329 { 2330 int ret; 2331 2332 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare", 2333 zs_cpu_prepare, zs_cpu_dead); 2334 if (ret) 2335 goto out; 2336 2337 #ifdef CONFIG_ZPOOL 2338 zpool_register_driver(&zs_zpool_driver); 2339 #endif 2340 2341 zs_stat_init(); 2342 2343 return 0; 2344 2345 out: 2346 return ret; 2347 } 2348 2349 static void __exit zs_exit(void) 2350 { 2351 #ifdef CONFIG_ZPOOL 2352 zpool_unregister_driver(&zs_zpool_driver); 2353 #endif 2354 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE); 2355 2356 zs_stat_exit(); 2357 } 2358 2359 module_init(zs_init); 2360 module_exit(zs_exit); 2361 2362 MODULE_LICENSE("Dual BSD/GPL"); 2363 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 2364