xref: /linux/mm/zsmalloc.c (revision f86d1fbbe7858884d6754534a0afbb74fc30bc26)
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13 
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *	page->private: points to zspage
20  *	page->index: links together all component pages of a zspage
21  *		For the huge page, this is always 0, so we use this field
22  *		to store handle.
23  *	page->page_type: first object offset in a subpage of zspage
24  *
25  * Usage of struct page flags:
26  *	PG_private: identifies the first component page
27  *	PG_owner_priv_1: identifies the huge component page
28  *
29  */
30 
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32 
33 /*
34  * lock ordering:
35  *	page_lock
36  *	pool->migrate_lock
37  *	class->lock
38  *	zspage->lock
39  */
40 
41 #include <linux/module.h>
42 #include <linux/kernel.h>
43 #include <linux/sched.h>
44 #include <linux/bitops.h>
45 #include <linux/errno.h>
46 #include <linux/highmem.h>
47 #include <linux/string.h>
48 #include <linux/slab.h>
49 #include <linux/pgtable.h>
50 #include <asm/tlbflush.h>
51 #include <linux/cpumask.h>
52 #include <linux/cpu.h>
53 #include <linux/vmalloc.h>
54 #include <linux/preempt.h>
55 #include <linux/spinlock.h>
56 #include <linux/shrinker.h>
57 #include <linux/types.h>
58 #include <linux/debugfs.h>
59 #include <linux/zsmalloc.h>
60 #include <linux/zpool.h>
61 #include <linux/migrate.h>
62 #include <linux/wait.h>
63 #include <linux/pagemap.h>
64 #include <linux/fs.h>
65 #include <linux/local_lock.h>
66 
67 #define ZSPAGE_MAGIC	0x58
68 
69 /*
70  * This must be power of 2 and greater than or equal to sizeof(link_free).
71  * These two conditions ensure that any 'struct link_free' itself doesn't
72  * span more than 1 page which avoids complex case of mapping 2 pages simply
73  * to restore link_free pointer values.
74  */
75 #define ZS_ALIGN		8
76 
77 /*
78  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
79  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
80  */
81 #define ZS_MAX_ZSPAGE_ORDER 2
82 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
83 
84 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
85 
86 /*
87  * Object location (<PFN>, <obj_idx>) is encoded as
88  * a single (unsigned long) handle value.
89  *
90  * Note that object index <obj_idx> starts from 0.
91  *
92  * This is made more complicated by various memory models and PAE.
93  */
94 
95 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
96 #ifdef MAX_PHYSMEM_BITS
97 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
98 #else
99 /*
100  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
101  * be PAGE_SHIFT
102  */
103 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
104 #endif
105 #endif
106 
107 #define _PFN_BITS		(MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
108 
109 /*
110  * Head in allocated object should have OBJ_ALLOCATED_TAG
111  * to identify the object was allocated or not.
112  * It's okay to add the status bit in the least bit because
113  * header keeps handle which is 4byte-aligned address so we
114  * have room for two bit at least.
115  */
116 #define OBJ_ALLOCATED_TAG 1
117 #define OBJ_TAG_BITS 1
118 #define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
119 #define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
120 
121 #define HUGE_BITS	1
122 #define FULLNESS_BITS	2
123 #define CLASS_BITS	8
124 #define ISOLATED_BITS	3
125 #define MAGIC_VAL_BITS	8
126 
127 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
128 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
129 #define ZS_MIN_ALLOC_SIZE \
130 	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
131 /* each chunk includes extra space to keep handle */
132 #define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
133 
134 /*
135  * On systems with 4K page size, this gives 255 size classes! There is a
136  * trader-off here:
137  *  - Large number of size classes is potentially wasteful as free page are
138  *    spread across these classes
139  *  - Small number of size classes causes large internal fragmentation
140  *  - Probably its better to use specific size classes (empirically
141  *    determined). NOTE: all those class sizes must be set as multiple of
142  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
143  *
144  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
145  *  (reason above)
146  */
147 #define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> CLASS_BITS)
148 #define ZS_SIZE_CLASSES	(DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
149 				      ZS_SIZE_CLASS_DELTA) + 1)
150 
151 enum fullness_group {
152 	ZS_EMPTY,
153 	ZS_ALMOST_EMPTY,
154 	ZS_ALMOST_FULL,
155 	ZS_FULL,
156 	NR_ZS_FULLNESS,
157 };
158 
159 enum class_stat_type {
160 	CLASS_EMPTY,
161 	CLASS_ALMOST_EMPTY,
162 	CLASS_ALMOST_FULL,
163 	CLASS_FULL,
164 	OBJ_ALLOCATED,
165 	OBJ_USED,
166 	NR_ZS_STAT_TYPE,
167 };
168 
169 struct zs_size_stat {
170 	unsigned long objs[NR_ZS_STAT_TYPE];
171 };
172 
173 #ifdef CONFIG_ZSMALLOC_STAT
174 static struct dentry *zs_stat_root;
175 #endif
176 
177 /*
178  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
179  *	n <= N / f, where
180  * n = number of allocated objects
181  * N = total number of objects zspage can store
182  * f = fullness_threshold_frac
183  *
184  * Similarly, we assign zspage to:
185  *	ZS_ALMOST_FULL	when n > N / f
186  *	ZS_EMPTY	when n == 0
187  *	ZS_FULL		when n == N
188  *
189  * (see: fix_fullness_group())
190  */
191 static const int fullness_threshold_frac = 4;
192 static size_t huge_class_size;
193 
194 struct size_class {
195 	spinlock_t lock;
196 	struct list_head fullness_list[NR_ZS_FULLNESS];
197 	/*
198 	 * Size of objects stored in this class. Must be multiple
199 	 * of ZS_ALIGN.
200 	 */
201 	int size;
202 	int objs_per_zspage;
203 	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
204 	int pages_per_zspage;
205 
206 	unsigned int index;
207 	struct zs_size_stat stats;
208 };
209 
210 /*
211  * Placed within free objects to form a singly linked list.
212  * For every zspage, zspage->freeobj gives head of this list.
213  *
214  * This must be power of 2 and less than or equal to ZS_ALIGN
215  */
216 struct link_free {
217 	union {
218 		/*
219 		 * Free object index;
220 		 * It's valid for non-allocated object
221 		 */
222 		unsigned long next;
223 		/*
224 		 * Handle of allocated object.
225 		 */
226 		unsigned long handle;
227 	};
228 };
229 
230 struct zs_pool {
231 	const char *name;
232 
233 	struct size_class *size_class[ZS_SIZE_CLASSES];
234 	struct kmem_cache *handle_cachep;
235 	struct kmem_cache *zspage_cachep;
236 
237 	atomic_long_t pages_allocated;
238 
239 	struct zs_pool_stats stats;
240 
241 	/* Compact classes */
242 	struct shrinker shrinker;
243 
244 #ifdef CONFIG_ZSMALLOC_STAT
245 	struct dentry *stat_dentry;
246 #endif
247 #ifdef CONFIG_COMPACTION
248 	struct work_struct free_work;
249 #endif
250 	/* protect page/zspage migration */
251 	rwlock_t migrate_lock;
252 };
253 
254 struct zspage {
255 	struct {
256 		unsigned int huge:HUGE_BITS;
257 		unsigned int fullness:FULLNESS_BITS;
258 		unsigned int class:CLASS_BITS + 1;
259 		unsigned int isolated:ISOLATED_BITS;
260 		unsigned int magic:MAGIC_VAL_BITS;
261 	};
262 	unsigned int inuse;
263 	unsigned int freeobj;
264 	struct page *first_page;
265 	struct list_head list; /* fullness list */
266 	struct zs_pool *pool;
267 #ifdef CONFIG_COMPACTION
268 	rwlock_t lock;
269 #endif
270 };
271 
272 struct mapping_area {
273 	local_lock_t lock;
274 	char *vm_buf; /* copy buffer for objects that span pages */
275 	char *vm_addr; /* address of kmap_atomic()'ed pages */
276 	enum zs_mapmode vm_mm; /* mapping mode */
277 };
278 
279 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
280 static void SetZsHugePage(struct zspage *zspage)
281 {
282 	zspage->huge = 1;
283 }
284 
285 static bool ZsHugePage(struct zspage *zspage)
286 {
287 	return zspage->huge;
288 }
289 
290 #ifdef CONFIG_COMPACTION
291 static void migrate_lock_init(struct zspage *zspage);
292 static void migrate_read_lock(struct zspage *zspage);
293 static void migrate_read_unlock(struct zspage *zspage);
294 static void migrate_write_lock(struct zspage *zspage);
295 static void migrate_write_lock_nested(struct zspage *zspage);
296 static void migrate_write_unlock(struct zspage *zspage);
297 static void kick_deferred_free(struct zs_pool *pool);
298 static void init_deferred_free(struct zs_pool *pool);
299 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
300 #else
301 static void migrate_lock_init(struct zspage *zspage) {}
302 static void migrate_read_lock(struct zspage *zspage) {}
303 static void migrate_read_unlock(struct zspage *zspage) {}
304 static void migrate_write_lock(struct zspage *zspage) {}
305 static void migrate_write_lock_nested(struct zspage *zspage) {}
306 static void migrate_write_unlock(struct zspage *zspage) {}
307 static void kick_deferred_free(struct zs_pool *pool) {}
308 static void init_deferred_free(struct zs_pool *pool) {}
309 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
310 #endif
311 
312 static int create_cache(struct zs_pool *pool)
313 {
314 	pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
315 					0, 0, NULL);
316 	if (!pool->handle_cachep)
317 		return 1;
318 
319 	pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
320 					0, 0, NULL);
321 	if (!pool->zspage_cachep) {
322 		kmem_cache_destroy(pool->handle_cachep);
323 		pool->handle_cachep = NULL;
324 		return 1;
325 	}
326 
327 	return 0;
328 }
329 
330 static void destroy_cache(struct zs_pool *pool)
331 {
332 	kmem_cache_destroy(pool->handle_cachep);
333 	kmem_cache_destroy(pool->zspage_cachep);
334 }
335 
336 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
337 {
338 	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
339 			gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
340 }
341 
342 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
343 {
344 	kmem_cache_free(pool->handle_cachep, (void *)handle);
345 }
346 
347 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
348 {
349 	return kmem_cache_zalloc(pool->zspage_cachep,
350 			flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
351 }
352 
353 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
354 {
355 	kmem_cache_free(pool->zspage_cachep, zspage);
356 }
357 
358 /* class->lock(which owns the handle) synchronizes races */
359 static void record_obj(unsigned long handle, unsigned long obj)
360 {
361 	*(unsigned long *)handle = obj;
362 }
363 
364 /* zpool driver */
365 
366 #ifdef CONFIG_ZPOOL
367 
368 static void *zs_zpool_create(const char *name, gfp_t gfp,
369 			     const struct zpool_ops *zpool_ops,
370 			     struct zpool *zpool)
371 {
372 	/*
373 	 * Ignore global gfp flags: zs_malloc() may be invoked from
374 	 * different contexts and its caller must provide a valid
375 	 * gfp mask.
376 	 */
377 	return zs_create_pool(name);
378 }
379 
380 static void zs_zpool_destroy(void *pool)
381 {
382 	zs_destroy_pool(pool);
383 }
384 
385 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
386 			unsigned long *handle)
387 {
388 	*handle = zs_malloc(pool, size, gfp);
389 	return *handle ? 0 : -1;
390 }
391 static void zs_zpool_free(void *pool, unsigned long handle)
392 {
393 	zs_free(pool, handle);
394 }
395 
396 static void *zs_zpool_map(void *pool, unsigned long handle,
397 			enum zpool_mapmode mm)
398 {
399 	enum zs_mapmode zs_mm;
400 
401 	switch (mm) {
402 	case ZPOOL_MM_RO:
403 		zs_mm = ZS_MM_RO;
404 		break;
405 	case ZPOOL_MM_WO:
406 		zs_mm = ZS_MM_WO;
407 		break;
408 	case ZPOOL_MM_RW:
409 	default:
410 		zs_mm = ZS_MM_RW;
411 		break;
412 	}
413 
414 	return zs_map_object(pool, handle, zs_mm);
415 }
416 static void zs_zpool_unmap(void *pool, unsigned long handle)
417 {
418 	zs_unmap_object(pool, handle);
419 }
420 
421 static u64 zs_zpool_total_size(void *pool)
422 {
423 	return zs_get_total_pages(pool) << PAGE_SHIFT;
424 }
425 
426 static struct zpool_driver zs_zpool_driver = {
427 	.type =			  "zsmalloc",
428 	.owner =		  THIS_MODULE,
429 	.create =		  zs_zpool_create,
430 	.destroy =		  zs_zpool_destroy,
431 	.malloc_support_movable = true,
432 	.malloc =		  zs_zpool_malloc,
433 	.free =			  zs_zpool_free,
434 	.map =			  zs_zpool_map,
435 	.unmap =		  zs_zpool_unmap,
436 	.total_size =		  zs_zpool_total_size,
437 };
438 
439 MODULE_ALIAS("zpool-zsmalloc");
440 #endif /* CONFIG_ZPOOL */
441 
442 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
443 static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = {
444 	.lock	= INIT_LOCAL_LOCK(lock),
445 };
446 
447 static __maybe_unused int is_first_page(struct page *page)
448 {
449 	return PagePrivate(page);
450 }
451 
452 /* Protected by class->lock */
453 static inline int get_zspage_inuse(struct zspage *zspage)
454 {
455 	return zspage->inuse;
456 }
457 
458 
459 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
460 {
461 	zspage->inuse += val;
462 }
463 
464 static inline struct page *get_first_page(struct zspage *zspage)
465 {
466 	struct page *first_page = zspage->first_page;
467 
468 	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
469 	return first_page;
470 }
471 
472 static inline int get_first_obj_offset(struct page *page)
473 {
474 	return page->page_type;
475 }
476 
477 static inline void set_first_obj_offset(struct page *page, int offset)
478 {
479 	page->page_type = offset;
480 }
481 
482 static inline unsigned int get_freeobj(struct zspage *zspage)
483 {
484 	return zspage->freeobj;
485 }
486 
487 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
488 {
489 	zspage->freeobj = obj;
490 }
491 
492 static void get_zspage_mapping(struct zspage *zspage,
493 				unsigned int *class_idx,
494 				enum fullness_group *fullness)
495 {
496 	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
497 
498 	*fullness = zspage->fullness;
499 	*class_idx = zspage->class;
500 }
501 
502 static struct size_class *zspage_class(struct zs_pool *pool,
503 					     struct zspage *zspage)
504 {
505 	return pool->size_class[zspage->class];
506 }
507 
508 static void set_zspage_mapping(struct zspage *zspage,
509 				unsigned int class_idx,
510 				enum fullness_group fullness)
511 {
512 	zspage->class = class_idx;
513 	zspage->fullness = fullness;
514 }
515 
516 /*
517  * zsmalloc divides the pool into various size classes where each
518  * class maintains a list of zspages where each zspage is divided
519  * into equal sized chunks. Each allocation falls into one of these
520  * classes depending on its size. This function returns index of the
521  * size class which has chunk size big enough to hold the given size.
522  */
523 static int get_size_class_index(int size)
524 {
525 	int idx = 0;
526 
527 	if (likely(size > ZS_MIN_ALLOC_SIZE))
528 		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
529 				ZS_SIZE_CLASS_DELTA);
530 
531 	return min_t(int, ZS_SIZE_CLASSES - 1, idx);
532 }
533 
534 /* type can be of enum type class_stat_type or fullness_group */
535 static inline void class_stat_inc(struct size_class *class,
536 				int type, unsigned long cnt)
537 {
538 	class->stats.objs[type] += cnt;
539 }
540 
541 /* type can be of enum type class_stat_type or fullness_group */
542 static inline void class_stat_dec(struct size_class *class,
543 				int type, unsigned long cnt)
544 {
545 	class->stats.objs[type] -= cnt;
546 }
547 
548 /* type can be of enum type class_stat_type or fullness_group */
549 static inline unsigned long zs_stat_get(struct size_class *class,
550 				int type)
551 {
552 	return class->stats.objs[type];
553 }
554 
555 #ifdef CONFIG_ZSMALLOC_STAT
556 
557 static void __init zs_stat_init(void)
558 {
559 	if (!debugfs_initialized()) {
560 		pr_warn("debugfs not available, stat dir not created\n");
561 		return;
562 	}
563 
564 	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
565 }
566 
567 static void __exit zs_stat_exit(void)
568 {
569 	debugfs_remove_recursive(zs_stat_root);
570 }
571 
572 static unsigned long zs_can_compact(struct size_class *class);
573 
574 static int zs_stats_size_show(struct seq_file *s, void *v)
575 {
576 	int i;
577 	struct zs_pool *pool = s->private;
578 	struct size_class *class;
579 	int objs_per_zspage;
580 	unsigned long class_almost_full, class_almost_empty;
581 	unsigned long obj_allocated, obj_used, pages_used, freeable;
582 	unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
583 	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
584 	unsigned long total_freeable = 0;
585 
586 	seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
587 			"class", "size", "almost_full", "almost_empty",
588 			"obj_allocated", "obj_used", "pages_used",
589 			"pages_per_zspage", "freeable");
590 
591 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
592 		class = pool->size_class[i];
593 
594 		if (class->index != i)
595 			continue;
596 
597 		spin_lock(&class->lock);
598 		class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
599 		class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
600 		obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
601 		obj_used = zs_stat_get(class, OBJ_USED);
602 		freeable = zs_can_compact(class);
603 		spin_unlock(&class->lock);
604 
605 		objs_per_zspage = class->objs_per_zspage;
606 		pages_used = obj_allocated / objs_per_zspage *
607 				class->pages_per_zspage;
608 
609 		seq_printf(s, " %5u %5u %11lu %12lu %13lu"
610 				" %10lu %10lu %16d %8lu\n",
611 			i, class->size, class_almost_full, class_almost_empty,
612 			obj_allocated, obj_used, pages_used,
613 			class->pages_per_zspage, freeable);
614 
615 		total_class_almost_full += class_almost_full;
616 		total_class_almost_empty += class_almost_empty;
617 		total_objs += obj_allocated;
618 		total_used_objs += obj_used;
619 		total_pages += pages_used;
620 		total_freeable += freeable;
621 	}
622 
623 	seq_puts(s, "\n");
624 	seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
625 			"Total", "", total_class_almost_full,
626 			total_class_almost_empty, total_objs,
627 			total_used_objs, total_pages, "", total_freeable);
628 
629 	return 0;
630 }
631 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
632 
633 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
634 {
635 	if (!zs_stat_root) {
636 		pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
637 		return;
638 	}
639 
640 	pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
641 
642 	debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
643 			    &zs_stats_size_fops);
644 }
645 
646 static void zs_pool_stat_destroy(struct zs_pool *pool)
647 {
648 	debugfs_remove_recursive(pool->stat_dentry);
649 }
650 
651 #else /* CONFIG_ZSMALLOC_STAT */
652 static void __init zs_stat_init(void)
653 {
654 }
655 
656 static void __exit zs_stat_exit(void)
657 {
658 }
659 
660 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
661 {
662 }
663 
664 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
665 {
666 }
667 #endif
668 
669 
670 /*
671  * For each size class, zspages are divided into different groups
672  * depending on how "full" they are. This was done so that we could
673  * easily find empty or nearly empty zspages when we try to shrink
674  * the pool (not yet implemented). This function returns fullness
675  * status of the given page.
676  */
677 static enum fullness_group get_fullness_group(struct size_class *class,
678 						struct zspage *zspage)
679 {
680 	int inuse, objs_per_zspage;
681 	enum fullness_group fg;
682 
683 	inuse = get_zspage_inuse(zspage);
684 	objs_per_zspage = class->objs_per_zspage;
685 
686 	if (inuse == 0)
687 		fg = ZS_EMPTY;
688 	else if (inuse == objs_per_zspage)
689 		fg = ZS_FULL;
690 	else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
691 		fg = ZS_ALMOST_EMPTY;
692 	else
693 		fg = ZS_ALMOST_FULL;
694 
695 	return fg;
696 }
697 
698 /*
699  * Each size class maintains various freelists and zspages are assigned
700  * to one of these freelists based on the number of live objects they
701  * have. This functions inserts the given zspage into the freelist
702  * identified by <class, fullness_group>.
703  */
704 static void insert_zspage(struct size_class *class,
705 				struct zspage *zspage,
706 				enum fullness_group fullness)
707 {
708 	struct zspage *head;
709 
710 	class_stat_inc(class, fullness, 1);
711 	head = list_first_entry_or_null(&class->fullness_list[fullness],
712 					struct zspage, list);
713 	/*
714 	 * We want to see more ZS_FULL pages and less almost empty/full.
715 	 * Put pages with higher ->inuse first.
716 	 */
717 	if (head && get_zspage_inuse(zspage) < get_zspage_inuse(head))
718 		list_add(&zspage->list, &head->list);
719 	else
720 		list_add(&zspage->list, &class->fullness_list[fullness]);
721 }
722 
723 /*
724  * This function removes the given zspage from the freelist identified
725  * by <class, fullness_group>.
726  */
727 static void remove_zspage(struct size_class *class,
728 				struct zspage *zspage,
729 				enum fullness_group fullness)
730 {
731 	VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
732 
733 	list_del_init(&zspage->list);
734 	class_stat_dec(class, fullness, 1);
735 }
736 
737 /*
738  * Each size class maintains zspages in different fullness groups depending
739  * on the number of live objects they contain. When allocating or freeing
740  * objects, the fullness status of the page can change, say, from ALMOST_FULL
741  * to ALMOST_EMPTY when freeing an object. This function checks if such
742  * a status change has occurred for the given page and accordingly moves the
743  * page from the freelist of the old fullness group to that of the new
744  * fullness group.
745  */
746 static enum fullness_group fix_fullness_group(struct size_class *class,
747 						struct zspage *zspage)
748 {
749 	int class_idx;
750 	enum fullness_group currfg, newfg;
751 
752 	get_zspage_mapping(zspage, &class_idx, &currfg);
753 	newfg = get_fullness_group(class, zspage);
754 	if (newfg == currfg)
755 		goto out;
756 
757 	remove_zspage(class, zspage, currfg);
758 	insert_zspage(class, zspage, newfg);
759 	set_zspage_mapping(zspage, class_idx, newfg);
760 out:
761 	return newfg;
762 }
763 
764 /*
765  * We have to decide on how many pages to link together
766  * to form a zspage for each size class. This is important
767  * to reduce wastage due to unusable space left at end of
768  * each zspage which is given as:
769  *     wastage = Zp % class_size
770  *     usage = Zp - wastage
771  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
772  *
773  * For example, for size class of 3/8 * PAGE_SIZE, we should
774  * link together 3 PAGE_SIZE sized pages to form a zspage
775  * since then we can perfectly fit in 8 such objects.
776  */
777 static int get_pages_per_zspage(int class_size)
778 {
779 	int i, max_usedpc = 0;
780 	/* zspage order which gives maximum used size per KB */
781 	int max_usedpc_order = 1;
782 
783 	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
784 		int zspage_size;
785 		int waste, usedpc;
786 
787 		zspage_size = i * PAGE_SIZE;
788 		waste = zspage_size % class_size;
789 		usedpc = (zspage_size - waste) * 100 / zspage_size;
790 
791 		if (usedpc > max_usedpc) {
792 			max_usedpc = usedpc;
793 			max_usedpc_order = i;
794 		}
795 	}
796 
797 	return max_usedpc_order;
798 }
799 
800 static struct zspage *get_zspage(struct page *page)
801 {
802 	struct zspage *zspage = (struct zspage *)page_private(page);
803 
804 	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
805 	return zspage;
806 }
807 
808 static struct page *get_next_page(struct page *page)
809 {
810 	struct zspage *zspage = get_zspage(page);
811 
812 	if (unlikely(ZsHugePage(zspage)))
813 		return NULL;
814 
815 	return (struct page *)page->index;
816 }
817 
818 /**
819  * obj_to_location - get (<page>, <obj_idx>) from encoded object value
820  * @obj: the encoded object value
821  * @page: page object resides in zspage
822  * @obj_idx: object index
823  */
824 static void obj_to_location(unsigned long obj, struct page **page,
825 				unsigned int *obj_idx)
826 {
827 	obj >>= OBJ_TAG_BITS;
828 	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
829 	*obj_idx = (obj & OBJ_INDEX_MASK);
830 }
831 
832 static void obj_to_page(unsigned long obj, struct page **page)
833 {
834 	obj >>= OBJ_TAG_BITS;
835 	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
836 }
837 
838 /**
839  * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
840  * @page: page object resides in zspage
841  * @obj_idx: object index
842  */
843 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
844 {
845 	unsigned long obj;
846 
847 	obj = page_to_pfn(page) << OBJ_INDEX_BITS;
848 	obj |= obj_idx & OBJ_INDEX_MASK;
849 	obj <<= OBJ_TAG_BITS;
850 
851 	return obj;
852 }
853 
854 static unsigned long handle_to_obj(unsigned long handle)
855 {
856 	return *(unsigned long *)handle;
857 }
858 
859 static bool obj_allocated(struct page *page, void *obj, unsigned long *phandle)
860 {
861 	unsigned long handle;
862 	struct zspage *zspage = get_zspage(page);
863 
864 	if (unlikely(ZsHugePage(zspage))) {
865 		VM_BUG_ON_PAGE(!is_first_page(page), page);
866 		handle = page->index;
867 	} else
868 		handle = *(unsigned long *)obj;
869 
870 	if (!(handle & OBJ_ALLOCATED_TAG))
871 		return false;
872 
873 	*phandle = handle & ~OBJ_ALLOCATED_TAG;
874 	return true;
875 }
876 
877 static void reset_page(struct page *page)
878 {
879 	__ClearPageMovable(page);
880 	ClearPagePrivate(page);
881 	set_page_private(page, 0);
882 	page_mapcount_reset(page);
883 	page->index = 0;
884 }
885 
886 static int trylock_zspage(struct zspage *zspage)
887 {
888 	struct page *cursor, *fail;
889 
890 	for (cursor = get_first_page(zspage); cursor != NULL; cursor =
891 					get_next_page(cursor)) {
892 		if (!trylock_page(cursor)) {
893 			fail = cursor;
894 			goto unlock;
895 		}
896 	}
897 
898 	return 1;
899 unlock:
900 	for (cursor = get_first_page(zspage); cursor != fail; cursor =
901 					get_next_page(cursor))
902 		unlock_page(cursor);
903 
904 	return 0;
905 }
906 
907 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
908 				struct zspage *zspage)
909 {
910 	struct page *page, *next;
911 	enum fullness_group fg;
912 	unsigned int class_idx;
913 
914 	get_zspage_mapping(zspage, &class_idx, &fg);
915 
916 	assert_spin_locked(&class->lock);
917 
918 	VM_BUG_ON(get_zspage_inuse(zspage));
919 	VM_BUG_ON(fg != ZS_EMPTY);
920 
921 	next = page = get_first_page(zspage);
922 	do {
923 		VM_BUG_ON_PAGE(!PageLocked(page), page);
924 		next = get_next_page(page);
925 		reset_page(page);
926 		unlock_page(page);
927 		dec_zone_page_state(page, NR_ZSPAGES);
928 		put_page(page);
929 		page = next;
930 	} while (page != NULL);
931 
932 	cache_free_zspage(pool, zspage);
933 
934 	class_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
935 	atomic_long_sub(class->pages_per_zspage,
936 					&pool->pages_allocated);
937 }
938 
939 static void free_zspage(struct zs_pool *pool, struct size_class *class,
940 				struct zspage *zspage)
941 {
942 	VM_BUG_ON(get_zspage_inuse(zspage));
943 	VM_BUG_ON(list_empty(&zspage->list));
944 
945 	/*
946 	 * Since zs_free couldn't be sleepable, this function cannot call
947 	 * lock_page. The page locks trylock_zspage got will be released
948 	 * by __free_zspage.
949 	 */
950 	if (!trylock_zspage(zspage)) {
951 		kick_deferred_free(pool);
952 		return;
953 	}
954 
955 	remove_zspage(class, zspage, ZS_EMPTY);
956 	__free_zspage(pool, class, zspage);
957 }
958 
959 /* Initialize a newly allocated zspage */
960 static void init_zspage(struct size_class *class, struct zspage *zspage)
961 {
962 	unsigned int freeobj = 1;
963 	unsigned long off = 0;
964 	struct page *page = get_first_page(zspage);
965 
966 	while (page) {
967 		struct page *next_page;
968 		struct link_free *link;
969 		void *vaddr;
970 
971 		set_first_obj_offset(page, off);
972 
973 		vaddr = kmap_atomic(page);
974 		link = (struct link_free *)vaddr + off / sizeof(*link);
975 
976 		while ((off += class->size) < PAGE_SIZE) {
977 			link->next = freeobj++ << OBJ_TAG_BITS;
978 			link += class->size / sizeof(*link);
979 		}
980 
981 		/*
982 		 * We now come to the last (full or partial) object on this
983 		 * page, which must point to the first object on the next
984 		 * page (if present)
985 		 */
986 		next_page = get_next_page(page);
987 		if (next_page) {
988 			link->next = freeobj++ << OBJ_TAG_BITS;
989 		} else {
990 			/*
991 			 * Reset OBJ_TAG_BITS bit to last link to tell
992 			 * whether it's allocated object or not.
993 			 */
994 			link->next = -1UL << OBJ_TAG_BITS;
995 		}
996 		kunmap_atomic(vaddr);
997 		page = next_page;
998 		off %= PAGE_SIZE;
999 	}
1000 
1001 	set_freeobj(zspage, 0);
1002 }
1003 
1004 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1005 				struct page *pages[])
1006 {
1007 	int i;
1008 	struct page *page;
1009 	struct page *prev_page = NULL;
1010 	int nr_pages = class->pages_per_zspage;
1011 
1012 	/*
1013 	 * Allocate individual pages and link them together as:
1014 	 * 1. all pages are linked together using page->index
1015 	 * 2. each sub-page point to zspage using page->private
1016 	 *
1017 	 * we set PG_private to identify the first page (i.e. no other sub-page
1018 	 * has this flag set).
1019 	 */
1020 	for (i = 0; i < nr_pages; i++) {
1021 		page = pages[i];
1022 		set_page_private(page, (unsigned long)zspage);
1023 		page->index = 0;
1024 		if (i == 0) {
1025 			zspage->first_page = page;
1026 			SetPagePrivate(page);
1027 			if (unlikely(class->objs_per_zspage == 1 &&
1028 					class->pages_per_zspage == 1))
1029 				SetZsHugePage(zspage);
1030 		} else {
1031 			prev_page->index = (unsigned long)page;
1032 		}
1033 		prev_page = page;
1034 	}
1035 }
1036 
1037 /*
1038  * Allocate a zspage for the given size class
1039  */
1040 static struct zspage *alloc_zspage(struct zs_pool *pool,
1041 					struct size_class *class,
1042 					gfp_t gfp)
1043 {
1044 	int i;
1045 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1046 	struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1047 
1048 	if (!zspage)
1049 		return NULL;
1050 
1051 	zspage->magic = ZSPAGE_MAGIC;
1052 	migrate_lock_init(zspage);
1053 
1054 	for (i = 0; i < class->pages_per_zspage; i++) {
1055 		struct page *page;
1056 
1057 		page = alloc_page(gfp);
1058 		if (!page) {
1059 			while (--i >= 0) {
1060 				dec_zone_page_state(pages[i], NR_ZSPAGES);
1061 				__free_page(pages[i]);
1062 			}
1063 			cache_free_zspage(pool, zspage);
1064 			return NULL;
1065 		}
1066 
1067 		inc_zone_page_state(page, NR_ZSPAGES);
1068 		pages[i] = page;
1069 	}
1070 
1071 	create_page_chain(class, zspage, pages);
1072 	init_zspage(class, zspage);
1073 	zspage->pool = pool;
1074 
1075 	return zspage;
1076 }
1077 
1078 static struct zspage *find_get_zspage(struct size_class *class)
1079 {
1080 	int i;
1081 	struct zspage *zspage;
1082 
1083 	for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1084 		zspage = list_first_entry_or_null(&class->fullness_list[i],
1085 				struct zspage, list);
1086 		if (zspage)
1087 			break;
1088 	}
1089 
1090 	return zspage;
1091 }
1092 
1093 static inline int __zs_cpu_up(struct mapping_area *area)
1094 {
1095 	/*
1096 	 * Make sure we don't leak memory if a cpu UP notification
1097 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1098 	 */
1099 	if (area->vm_buf)
1100 		return 0;
1101 	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1102 	if (!area->vm_buf)
1103 		return -ENOMEM;
1104 	return 0;
1105 }
1106 
1107 static inline void __zs_cpu_down(struct mapping_area *area)
1108 {
1109 	kfree(area->vm_buf);
1110 	area->vm_buf = NULL;
1111 }
1112 
1113 static void *__zs_map_object(struct mapping_area *area,
1114 			struct page *pages[2], int off, int size)
1115 {
1116 	int sizes[2];
1117 	void *addr;
1118 	char *buf = area->vm_buf;
1119 
1120 	/* disable page faults to match kmap_atomic() return conditions */
1121 	pagefault_disable();
1122 
1123 	/* no read fastpath */
1124 	if (area->vm_mm == ZS_MM_WO)
1125 		goto out;
1126 
1127 	sizes[0] = PAGE_SIZE - off;
1128 	sizes[1] = size - sizes[0];
1129 
1130 	/* copy object to per-cpu buffer */
1131 	addr = kmap_atomic(pages[0]);
1132 	memcpy(buf, addr + off, sizes[0]);
1133 	kunmap_atomic(addr);
1134 	addr = kmap_atomic(pages[1]);
1135 	memcpy(buf + sizes[0], addr, sizes[1]);
1136 	kunmap_atomic(addr);
1137 out:
1138 	return area->vm_buf;
1139 }
1140 
1141 static void __zs_unmap_object(struct mapping_area *area,
1142 			struct page *pages[2], int off, int size)
1143 {
1144 	int sizes[2];
1145 	void *addr;
1146 	char *buf;
1147 
1148 	/* no write fastpath */
1149 	if (area->vm_mm == ZS_MM_RO)
1150 		goto out;
1151 
1152 	buf = area->vm_buf;
1153 	buf = buf + ZS_HANDLE_SIZE;
1154 	size -= ZS_HANDLE_SIZE;
1155 	off += ZS_HANDLE_SIZE;
1156 
1157 	sizes[0] = PAGE_SIZE - off;
1158 	sizes[1] = size - sizes[0];
1159 
1160 	/* copy per-cpu buffer to object */
1161 	addr = kmap_atomic(pages[0]);
1162 	memcpy(addr + off, buf, sizes[0]);
1163 	kunmap_atomic(addr);
1164 	addr = kmap_atomic(pages[1]);
1165 	memcpy(addr, buf + sizes[0], sizes[1]);
1166 	kunmap_atomic(addr);
1167 
1168 out:
1169 	/* enable page faults to match kunmap_atomic() return conditions */
1170 	pagefault_enable();
1171 }
1172 
1173 static int zs_cpu_prepare(unsigned int cpu)
1174 {
1175 	struct mapping_area *area;
1176 
1177 	area = &per_cpu(zs_map_area, cpu);
1178 	return __zs_cpu_up(area);
1179 }
1180 
1181 static int zs_cpu_dead(unsigned int cpu)
1182 {
1183 	struct mapping_area *area;
1184 
1185 	area = &per_cpu(zs_map_area, cpu);
1186 	__zs_cpu_down(area);
1187 	return 0;
1188 }
1189 
1190 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1191 					int objs_per_zspage)
1192 {
1193 	if (prev->pages_per_zspage == pages_per_zspage &&
1194 		prev->objs_per_zspage == objs_per_zspage)
1195 		return true;
1196 
1197 	return false;
1198 }
1199 
1200 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1201 {
1202 	return get_zspage_inuse(zspage) == class->objs_per_zspage;
1203 }
1204 
1205 unsigned long zs_get_total_pages(struct zs_pool *pool)
1206 {
1207 	return atomic_long_read(&pool->pages_allocated);
1208 }
1209 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1210 
1211 /**
1212  * zs_map_object - get address of allocated object from handle.
1213  * @pool: pool from which the object was allocated
1214  * @handle: handle returned from zs_malloc
1215  * @mm: mapping mode to use
1216  *
1217  * Before using an object allocated from zs_malloc, it must be mapped using
1218  * this function. When done with the object, it must be unmapped using
1219  * zs_unmap_object.
1220  *
1221  * Only one object can be mapped per cpu at a time. There is no protection
1222  * against nested mappings.
1223  *
1224  * This function returns with preemption and page faults disabled.
1225  */
1226 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1227 			enum zs_mapmode mm)
1228 {
1229 	struct zspage *zspage;
1230 	struct page *page;
1231 	unsigned long obj, off;
1232 	unsigned int obj_idx;
1233 
1234 	struct size_class *class;
1235 	struct mapping_area *area;
1236 	struct page *pages[2];
1237 	void *ret;
1238 
1239 	/*
1240 	 * Because we use per-cpu mapping areas shared among the
1241 	 * pools/users, we can't allow mapping in interrupt context
1242 	 * because it can corrupt another users mappings.
1243 	 */
1244 	BUG_ON(in_interrupt());
1245 
1246 	/* It guarantees it can get zspage from handle safely */
1247 	read_lock(&pool->migrate_lock);
1248 	obj = handle_to_obj(handle);
1249 	obj_to_location(obj, &page, &obj_idx);
1250 	zspage = get_zspage(page);
1251 
1252 	/*
1253 	 * migration cannot move any zpages in this zspage. Here, class->lock
1254 	 * is too heavy since callers would take some time until they calls
1255 	 * zs_unmap_object API so delegate the locking from class to zspage
1256 	 * which is smaller granularity.
1257 	 */
1258 	migrate_read_lock(zspage);
1259 	read_unlock(&pool->migrate_lock);
1260 
1261 	class = zspage_class(pool, zspage);
1262 	off = (class->size * obj_idx) & ~PAGE_MASK;
1263 
1264 	local_lock(&zs_map_area.lock);
1265 	area = this_cpu_ptr(&zs_map_area);
1266 	area->vm_mm = mm;
1267 	if (off + class->size <= PAGE_SIZE) {
1268 		/* this object is contained entirely within a page */
1269 		area->vm_addr = kmap_atomic(page);
1270 		ret = area->vm_addr + off;
1271 		goto out;
1272 	}
1273 
1274 	/* this object spans two pages */
1275 	pages[0] = page;
1276 	pages[1] = get_next_page(page);
1277 	BUG_ON(!pages[1]);
1278 
1279 	ret = __zs_map_object(area, pages, off, class->size);
1280 out:
1281 	if (likely(!ZsHugePage(zspage)))
1282 		ret += ZS_HANDLE_SIZE;
1283 
1284 	return ret;
1285 }
1286 EXPORT_SYMBOL_GPL(zs_map_object);
1287 
1288 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1289 {
1290 	struct zspage *zspage;
1291 	struct page *page;
1292 	unsigned long obj, off;
1293 	unsigned int obj_idx;
1294 
1295 	struct size_class *class;
1296 	struct mapping_area *area;
1297 
1298 	obj = handle_to_obj(handle);
1299 	obj_to_location(obj, &page, &obj_idx);
1300 	zspage = get_zspage(page);
1301 	class = zspage_class(pool, zspage);
1302 	off = (class->size * obj_idx) & ~PAGE_MASK;
1303 
1304 	area = this_cpu_ptr(&zs_map_area);
1305 	if (off + class->size <= PAGE_SIZE)
1306 		kunmap_atomic(area->vm_addr);
1307 	else {
1308 		struct page *pages[2];
1309 
1310 		pages[0] = page;
1311 		pages[1] = get_next_page(page);
1312 		BUG_ON(!pages[1]);
1313 
1314 		__zs_unmap_object(area, pages, off, class->size);
1315 	}
1316 	local_unlock(&zs_map_area.lock);
1317 
1318 	migrate_read_unlock(zspage);
1319 }
1320 EXPORT_SYMBOL_GPL(zs_unmap_object);
1321 
1322 /**
1323  * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1324  *                        zsmalloc &size_class.
1325  * @pool: zsmalloc pool to use
1326  *
1327  * The function returns the size of the first huge class - any object of equal
1328  * or bigger size will be stored in zspage consisting of a single physical
1329  * page.
1330  *
1331  * Context: Any context.
1332  *
1333  * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1334  */
1335 size_t zs_huge_class_size(struct zs_pool *pool)
1336 {
1337 	return huge_class_size;
1338 }
1339 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1340 
1341 static unsigned long obj_malloc(struct zs_pool *pool,
1342 				struct zspage *zspage, unsigned long handle)
1343 {
1344 	int i, nr_page, offset;
1345 	unsigned long obj;
1346 	struct link_free *link;
1347 	struct size_class *class;
1348 
1349 	struct page *m_page;
1350 	unsigned long m_offset;
1351 	void *vaddr;
1352 
1353 	class = pool->size_class[zspage->class];
1354 	handle |= OBJ_ALLOCATED_TAG;
1355 	obj = get_freeobj(zspage);
1356 
1357 	offset = obj * class->size;
1358 	nr_page = offset >> PAGE_SHIFT;
1359 	m_offset = offset & ~PAGE_MASK;
1360 	m_page = get_first_page(zspage);
1361 
1362 	for (i = 0; i < nr_page; i++)
1363 		m_page = get_next_page(m_page);
1364 
1365 	vaddr = kmap_atomic(m_page);
1366 	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1367 	set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1368 	if (likely(!ZsHugePage(zspage)))
1369 		/* record handle in the header of allocated chunk */
1370 		link->handle = handle;
1371 	else
1372 		/* record handle to page->index */
1373 		zspage->first_page->index = handle;
1374 
1375 	kunmap_atomic(vaddr);
1376 	mod_zspage_inuse(zspage, 1);
1377 
1378 	obj = location_to_obj(m_page, obj);
1379 
1380 	return obj;
1381 }
1382 
1383 
1384 /**
1385  * zs_malloc - Allocate block of given size from pool.
1386  * @pool: pool to allocate from
1387  * @size: size of block to allocate
1388  * @gfp: gfp flags when allocating object
1389  *
1390  * On success, handle to the allocated object is returned,
1391  * otherwise 0.
1392  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1393  */
1394 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1395 {
1396 	unsigned long handle, obj;
1397 	struct size_class *class;
1398 	enum fullness_group newfg;
1399 	struct zspage *zspage;
1400 
1401 	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1402 		return 0;
1403 
1404 	handle = cache_alloc_handle(pool, gfp);
1405 	if (!handle)
1406 		return 0;
1407 
1408 	/* extra space in chunk to keep the handle */
1409 	size += ZS_HANDLE_SIZE;
1410 	class = pool->size_class[get_size_class_index(size)];
1411 
1412 	/* class->lock effectively protects the zpage migration */
1413 	spin_lock(&class->lock);
1414 	zspage = find_get_zspage(class);
1415 	if (likely(zspage)) {
1416 		obj = obj_malloc(pool, zspage, handle);
1417 		/* Now move the zspage to another fullness group, if required */
1418 		fix_fullness_group(class, zspage);
1419 		record_obj(handle, obj);
1420 		class_stat_inc(class, OBJ_USED, 1);
1421 		spin_unlock(&class->lock);
1422 
1423 		return handle;
1424 	}
1425 
1426 	spin_unlock(&class->lock);
1427 
1428 	zspage = alloc_zspage(pool, class, gfp);
1429 	if (!zspage) {
1430 		cache_free_handle(pool, handle);
1431 		return 0;
1432 	}
1433 
1434 	spin_lock(&class->lock);
1435 	obj = obj_malloc(pool, zspage, handle);
1436 	newfg = get_fullness_group(class, zspage);
1437 	insert_zspage(class, zspage, newfg);
1438 	set_zspage_mapping(zspage, class->index, newfg);
1439 	record_obj(handle, obj);
1440 	atomic_long_add(class->pages_per_zspage,
1441 				&pool->pages_allocated);
1442 	class_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1443 	class_stat_inc(class, OBJ_USED, 1);
1444 
1445 	/* We completely set up zspage so mark them as movable */
1446 	SetZsPageMovable(pool, zspage);
1447 	spin_unlock(&class->lock);
1448 
1449 	return handle;
1450 }
1451 EXPORT_SYMBOL_GPL(zs_malloc);
1452 
1453 static void obj_free(int class_size, unsigned long obj)
1454 {
1455 	struct link_free *link;
1456 	struct zspage *zspage;
1457 	struct page *f_page;
1458 	unsigned long f_offset;
1459 	unsigned int f_objidx;
1460 	void *vaddr;
1461 
1462 	obj_to_location(obj, &f_page, &f_objidx);
1463 	f_offset = (class_size * f_objidx) & ~PAGE_MASK;
1464 	zspage = get_zspage(f_page);
1465 
1466 	vaddr = kmap_atomic(f_page);
1467 
1468 	/* Insert this object in containing zspage's freelist */
1469 	link = (struct link_free *)(vaddr + f_offset);
1470 	if (likely(!ZsHugePage(zspage)))
1471 		link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1472 	else
1473 		f_page->index = 0;
1474 	kunmap_atomic(vaddr);
1475 	set_freeobj(zspage, f_objidx);
1476 	mod_zspage_inuse(zspage, -1);
1477 }
1478 
1479 void zs_free(struct zs_pool *pool, unsigned long handle)
1480 {
1481 	struct zspage *zspage;
1482 	struct page *f_page;
1483 	unsigned long obj;
1484 	struct size_class *class;
1485 	enum fullness_group fullness;
1486 
1487 	if (unlikely(!handle))
1488 		return;
1489 
1490 	/*
1491 	 * The pool->migrate_lock protects the race with zpage's migration
1492 	 * so it's safe to get the page from handle.
1493 	 */
1494 	read_lock(&pool->migrate_lock);
1495 	obj = handle_to_obj(handle);
1496 	obj_to_page(obj, &f_page);
1497 	zspage = get_zspage(f_page);
1498 	class = zspage_class(pool, zspage);
1499 	spin_lock(&class->lock);
1500 	read_unlock(&pool->migrate_lock);
1501 
1502 	obj_free(class->size, obj);
1503 	class_stat_dec(class, OBJ_USED, 1);
1504 	fullness = fix_fullness_group(class, zspage);
1505 	if (fullness != ZS_EMPTY)
1506 		goto out;
1507 
1508 	free_zspage(pool, class, zspage);
1509 out:
1510 	spin_unlock(&class->lock);
1511 	cache_free_handle(pool, handle);
1512 }
1513 EXPORT_SYMBOL_GPL(zs_free);
1514 
1515 static void zs_object_copy(struct size_class *class, unsigned long dst,
1516 				unsigned long src)
1517 {
1518 	struct page *s_page, *d_page;
1519 	unsigned int s_objidx, d_objidx;
1520 	unsigned long s_off, d_off;
1521 	void *s_addr, *d_addr;
1522 	int s_size, d_size, size;
1523 	int written = 0;
1524 
1525 	s_size = d_size = class->size;
1526 
1527 	obj_to_location(src, &s_page, &s_objidx);
1528 	obj_to_location(dst, &d_page, &d_objidx);
1529 
1530 	s_off = (class->size * s_objidx) & ~PAGE_MASK;
1531 	d_off = (class->size * d_objidx) & ~PAGE_MASK;
1532 
1533 	if (s_off + class->size > PAGE_SIZE)
1534 		s_size = PAGE_SIZE - s_off;
1535 
1536 	if (d_off + class->size > PAGE_SIZE)
1537 		d_size = PAGE_SIZE - d_off;
1538 
1539 	s_addr = kmap_atomic(s_page);
1540 	d_addr = kmap_atomic(d_page);
1541 
1542 	while (1) {
1543 		size = min(s_size, d_size);
1544 		memcpy(d_addr + d_off, s_addr + s_off, size);
1545 		written += size;
1546 
1547 		if (written == class->size)
1548 			break;
1549 
1550 		s_off += size;
1551 		s_size -= size;
1552 		d_off += size;
1553 		d_size -= size;
1554 
1555 		if (s_off >= PAGE_SIZE) {
1556 			kunmap_atomic(d_addr);
1557 			kunmap_atomic(s_addr);
1558 			s_page = get_next_page(s_page);
1559 			s_addr = kmap_atomic(s_page);
1560 			d_addr = kmap_atomic(d_page);
1561 			s_size = class->size - written;
1562 			s_off = 0;
1563 		}
1564 
1565 		if (d_off >= PAGE_SIZE) {
1566 			kunmap_atomic(d_addr);
1567 			d_page = get_next_page(d_page);
1568 			d_addr = kmap_atomic(d_page);
1569 			d_size = class->size - written;
1570 			d_off = 0;
1571 		}
1572 	}
1573 
1574 	kunmap_atomic(d_addr);
1575 	kunmap_atomic(s_addr);
1576 }
1577 
1578 /*
1579  * Find alloced object in zspage from index object and
1580  * return handle.
1581  */
1582 static unsigned long find_alloced_obj(struct size_class *class,
1583 					struct page *page, int *obj_idx)
1584 {
1585 	int offset = 0;
1586 	int index = *obj_idx;
1587 	unsigned long handle = 0;
1588 	void *addr = kmap_atomic(page);
1589 
1590 	offset = get_first_obj_offset(page);
1591 	offset += class->size * index;
1592 
1593 	while (offset < PAGE_SIZE) {
1594 		if (obj_allocated(page, addr + offset, &handle))
1595 			break;
1596 
1597 		offset += class->size;
1598 		index++;
1599 	}
1600 
1601 	kunmap_atomic(addr);
1602 
1603 	*obj_idx = index;
1604 
1605 	return handle;
1606 }
1607 
1608 struct zs_compact_control {
1609 	/* Source spage for migration which could be a subpage of zspage */
1610 	struct page *s_page;
1611 	/* Destination page for migration which should be a first page
1612 	 * of zspage. */
1613 	struct page *d_page;
1614 	 /* Starting object index within @s_page which used for live object
1615 	  * in the subpage. */
1616 	int obj_idx;
1617 };
1618 
1619 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1620 				struct zs_compact_control *cc)
1621 {
1622 	unsigned long used_obj, free_obj;
1623 	unsigned long handle;
1624 	struct page *s_page = cc->s_page;
1625 	struct page *d_page = cc->d_page;
1626 	int obj_idx = cc->obj_idx;
1627 	int ret = 0;
1628 
1629 	while (1) {
1630 		handle = find_alloced_obj(class, s_page, &obj_idx);
1631 		if (!handle) {
1632 			s_page = get_next_page(s_page);
1633 			if (!s_page)
1634 				break;
1635 			obj_idx = 0;
1636 			continue;
1637 		}
1638 
1639 		/* Stop if there is no more space */
1640 		if (zspage_full(class, get_zspage(d_page))) {
1641 			ret = -ENOMEM;
1642 			break;
1643 		}
1644 
1645 		used_obj = handle_to_obj(handle);
1646 		free_obj = obj_malloc(pool, get_zspage(d_page), handle);
1647 		zs_object_copy(class, free_obj, used_obj);
1648 		obj_idx++;
1649 		record_obj(handle, free_obj);
1650 		obj_free(class->size, used_obj);
1651 	}
1652 
1653 	/* Remember last position in this iteration */
1654 	cc->s_page = s_page;
1655 	cc->obj_idx = obj_idx;
1656 
1657 	return ret;
1658 }
1659 
1660 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1661 {
1662 	int i;
1663 	struct zspage *zspage;
1664 	enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1665 
1666 	if (!source) {
1667 		fg[0] = ZS_ALMOST_FULL;
1668 		fg[1] = ZS_ALMOST_EMPTY;
1669 	}
1670 
1671 	for (i = 0; i < 2; i++) {
1672 		zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1673 							struct zspage, list);
1674 		if (zspage) {
1675 			remove_zspage(class, zspage, fg[i]);
1676 			return zspage;
1677 		}
1678 	}
1679 
1680 	return zspage;
1681 }
1682 
1683 /*
1684  * putback_zspage - add @zspage into right class's fullness list
1685  * @class: destination class
1686  * @zspage: target page
1687  *
1688  * Return @zspage's fullness_group
1689  */
1690 static enum fullness_group putback_zspage(struct size_class *class,
1691 			struct zspage *zspage)
1692 {
1693 	enum fullness_group fullness;
1694 
1695 	fullness = get_fullness_group(class, zspage);
1696 	insert_zspage(class, zspage, fullness);
1697 	set_zspage_mapping(zspage, class->index, fullness);
1698 
1699 	return fullness;
1700 }
1701 
1702 #ifdef CONFIG_COMPACTION
1703 /*
1704  * To prevent zspage destroy during migration, zspage freeing should
1705  * hold locks of all pages in the zspage.
1706  */
1707 static void lock_zspage(struct zspage *zspage)
1708 {
1709 	struct page *curr_page, *page;
1710 
1711 	/*
1712 	 * Pages we haven't locked yet can be migrated off the list while we're
1713 	 * trying to lock them, so we need to be careful and only attempt to
1714 	 * lock each page under migrate_read_lock(). Otherwise, the page we lock
1715 	 * may no longer belong to the zspage. This means that we may wait for
1716 	 * the wrong page to unlock, so we must take a reference to the page
1717 	 * prior to waiting for it to unlock outside migrate_read_lock().
1718 	 */
1719 	while (1) {
1720 		migrate_read_lock(zspage);
1721 		page = get_first_page(zspage);
1722 		if (trylock_page(page))
1723 			break;
1724 		get_page(page);
1725 		migrate_read_unlock(zspage);
1726 		wait_on_page_locked(page);
1727 		put_page(page);
1728 	}
1729 
1730 	curr_page = page;
1731 	while ((page = get_next_page(curr_page))) {
1732 		if (trylock_page(page)) {
1733 			curr_page = page;
1734 		} else {
1735 			get_page(page);
1736 			migrate_read_unlock(zspage);
1737 			wait_on_page_locked(page);
1738 			put_page(page);
1739 			migrate_read_lock(zspage);
1740 		}
1741 	}
1742 	migrate_read_unlock(zspage);
1743 }
1744 
1745 static void migrate_lock_init(struct zspage *zspage)
1746 {
1747 	rwlock_init(&zspage->lock);
1748 }
1749 
1750 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
1751 {
1752 	read_lock(&zspage->lock);
1753 }
1754 
1755 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
1756 {
1757 	read_unlock(&zspage->lock);
1758 }
1759 
1760 static void migrate_write_lock(struct zspage *zspage)
1761 {
1762 	write_lock(&zspage->lock);
1763 }
1764 
1765 static void migrate_write_lock_nested(struct zspage *zspage)
1766 {
1767 	write_lock_nested(&zspage->lock, SINGLE_DEPTH_NESTING);
1768 }
1769 
1770 static void migrate_write_unlock(struct zspage *zspage)
1771 {
1772 	write_unlock(&zspage->lock);
1773 }
1774 
1775 /* Number of isolated subpage for *page migration* in this zspage */
1776 static void inc_zspage_isolation(struct zspage *zspage)
1777 {
1778 	zspage->isolated++;
1779 }
1780 
1781 static void dec_zspage_isolation(struct zspage *zspage)
1782 {
1783 	VM_BUG_ON(zspage->isolated == 0);
1784 	zspage->isolated--;
1785 }
1786 
1787 static const struct movable_operations zsmalloc_mops;
1788 
1789 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1790 				struct page *newpage, struct page *oldpage)
1791 {
1792 	struct page *page;
1793 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1794 	int idx = 0;
1795 
1796 	page = get_first_page(zspage);
1797 	do {
1798 		if (page == oldpage)
1799 			pages[idx] = newpage;
1800 		else
1801 			pages[idx] = page;
1802 		idx++;
1803 	} while ((page = get_next_page(page)) != NULL);
1804 
1805 	create_page_chain(class, zspage, pages);
1806 	set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1807 	if (unlikely(ZsHugePage(zspage)))
1808 		newpage->index = oldpage->index;
1809 	__SetPageMovable(newpage, &zsmalloc_mops);
1810 }
1811 
1812 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1813 {
1814 	struct zspage *zspage;
1815 
1816 	/*
1817 	 * Page is locked so zspage couldn't be destroyed. For detail, look at
1818 	 * lock_zspage in free_zspage.
1819 	 */
1820 	VM_BUG_ON_PAGE(!PageMovable(page), page);
1821 	VM_BUG_ON_PAGE(PageIsolated(page), page);
1822 
1823 	zspage = get_zspage(page);
1824 	migrate_write_lock(zspage);
1825 	inc_zspage_isolation(zspage);
1826 	migrate_write_unlock(zspage);
1827 
1828 	return true;
1829 }
1830 
1831 static int zs_page_migrate(struct page *newpage, struct page *page,
1832 		enum migrate_mode mode)
1833 {
1834 	struct zs_pool *pool;
1835 	struct size_class *class;
1836 	struct zspage *zspage;
1837 	struct page *dummy;
1838 	void *s_addr, *d_addr, *addr;
1839 	int offset;
1840 	unsigned long handle;
1841 	unsigned long old_obj, new_obj;
1842 	unsigned int obj_idx;
1843 
1844 	/*
1845 	 * We cannot support the _NO_COPY case here, because copy needs to
1846 	 * happen under the zs lock, which does not work with
1847 	 * MIGRATE_SYNC_NO_COPY workflow.
1848 	 */
1849 	if (mode == MIGRATE_SYNC_NO_COPY)
1850 		return -EINVAL;
1851 
1852 	VM_BUG_ON_PAGE(!PageMovable(page), page);
1853 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
1854 
1855 	/* The page is locked, so this pointer must remain valid */
1856 	zspage = get_zspage(page);
1857 	pool = zspage->pool;
1858 
1859 	/*
1860 	 * The pool migrate_lock protects the race between zpage migration
1861 	 * and zs_free.
1862 	 */
1863 	write_lock(&pool->migrate_lock);
1864 	class = zspage_class(pool, zspage);
1865 
1866 	/*
1867 	 * the class lock protects zpage alloc/free in the zspage.
1868 	 */
1869 	spin_lock(&class->lock);
1870 	/* the migrate_write_lock protects zpage access via zs_map_object */
1871 	migrate_write_lock(zspage);
1872 
1873 	offset = get_first_obj_offset(page);
1874 	s_addr = kmap_atomic(page);
1875 
1876 	/*
1877 	 * Here, any user cannot access all objects in the zspage so let's move.
1878 	 */
1879 	d_addr = kmap_atomic(newpage);
1880 	memcpy(d_addr, s_addr, PAGE_SIZE);
1881 	kunmap_atomic(d_addr);
1882 
1883 	for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
1884 					addr += class->size) {
1885 		if (obj_allocated(page, addr, &handle)) {
1886 
1887 			old_obj = handle_to_obj(handle);
1888 			obj_to_location(old_obj, &dummy, &obj_idx);
1889 			new_obj = (unsigned long)location_to_obj(newpage,
1890 								obj_idx);
1891 			record_obj(handle, new_obj);
1892 		}
1893 	}
1894 	kunmap_atomic(s_addr);
1895 
1896 	replace_sub_page(class, zspage, newpage, page);
1897 	/*
1898 	 * Since we complete the data copy and set up new zspage structure,
1899 	 * it's okay to release migration_lock.
1900 	 */
1901 	write_unlock(&pool->migrate_lock);
1902 	spin_unlock(&class->lock);
1903 	dec_zspage_isolation(zspage);
1904 	migrate_write_unlock(zspage);
1905 
1906 	get_page(newpage);
1907 	if (page_zone(newpage) != page_zone(page)) {
1908 		dec_zone_page_state(page, NR_ZSPAGES);
1909 		inc_zone_page_state(newpage, NR_ZSPAGES);
1910 	}
1911 
1912 	reset_page(page);
1913 	put_page(page);
1914 
1915 	return MIGRATEPAGE_SUCCESS;
1916 }
1917 
1918 static void zs_page_putback(struct page *page)
1919 {
1920 	struct zspage *zspage;
1921 
1922 	VM_BUG_ON_PAGE(!PageMovable(page), page);
1923 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
1924 
1925 	zspage = get_zspage(page);
1926 	migrate_write_lock(zspage);
1927 	dec_zspage_isolation(zspage);
1928 	migrate_write_unlock(zspage);
1929 }
1930 
1931 static const struct movable_operations zsmalloc_mops = {
1932 	.isolate_page = zs_page_isolate,
1933 	.migrate_page = zs_page_migrate,
1934 	.putback_page = zs_page_putback,
1935 };
1936 
1937 /*
1938  * Caller should hold page_lock of all pages in the zspage
1939  * In here, we cannot use zspage meta data.
1940  */
1941 static void async_free_zspage(struct work_struct *work)
1942 {
1943 	int i;
1944 	struct size_class *class;
1945 	unsigned int class_idx;
1946 	enum fullness_group fullness;
1947 	struct zspage *zspage, *tmp;
1948 	LIST_HEAD(free_pages);
1949 	struct zs_pool *pool = container_of(work, struct zs_pool,
1950 					free_work);
1951 
1952 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
1953 		class = pool->size_class[i];
1954 		if (class->index != i)
1955 			continue;
1956 
1957 		spin_lock(&class->lock);
1958 		list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
1959 		spin_unlock(&class->lock);
1960 	}
1961 
1962 	list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
1963 		list_del(&zspage->list);
1964 		lock_zspage(zspage);
1965 
1966 		get_zspage_mapping(zspage, &class_idx, &fullness);
1967 		VM_BUG_ON(fullness != ZS_EMPTY);
1968 		class = pool->size_class[class_idx];
1969 		spin_lock(&class->lock);
1970 		__free_zspage(pool, class, zspage);
1971 		spin_unlock(&class->lock);
1972 	}
1973 };
1974 
1975 static void kick_deferred_free(struct zs_pool *pool)
1976 {
1977 	schedule_work(&pool->free_work);
1978 }
1979 
1980 static void zs_flush_migration(struct zs_pool *pool)
1981 {
1982 	flush_work(&pool->free_work);
1983 }
1984 
1985 static void init_deferred_free(struct zs_pool *pool)
1986 {
1987 	INIT_WORK(&pool->free_work, async_free_zspage);
1988 }
1989 
1990 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
1991 {
1992 	struct page *page = get_first_page(zspage);
1993 
1994 	do {
1995 		WARN_ON(!trylock_page(page));
1996 		__SetPageMovable(page, &zsmalloc_mops);
1997 		unlock_page(page);
1998 	} while ((page = get_next_page(page)) != NULL);
1999 }
2000 #else
2001 static inline void zs_flush_migration(struct zs_pool *pool) { }
2002 #endif
2003 
2004 /*
2005  *
2006  * Based on the number of unused allocated objects calculate
2007  * and return the number of pages that we can free.
2008  */
2009 static unsigned long zs_can_compact(struct size_class *class)
2010 {
2011 	unsigned long obj_wasted;
2012 	unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2013 	unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2014 
2015 	if (obj_allocated <= obj_used)
2016 		return 0;
2017 
2018 	obj_wasted = obj_allocated - obj_used;
2019 	obj_wasted /= class->objs_per_zspage;
2020 
2021 	return obj_wasted * class->pages_per_zspage;
2022 }
2023 
2024 static unsigned long __zs_compact(struct zs_pool *pool,
2025 				  struct size_class *class)
2026 {
2027 	struct zs_compact_control cc;
2028 	struct zspage *src_zspage;
2029 	struct zspage *dst_zspage = NULL;
2030 	unsigned long pages_freed = 0;
2031 
2032 	/* protect the race between zpage migration and zs_free */
2033 	write_lock(&pool->migrate_lock);
2034 	/* protect zpage allocation/free */
2035 	spin_lock(&class->lock);
2036 	while ((src_zspage = isolate_zspage(class, true))) {
2037 		/* protect someone accessing the zspage(i.e., zs_map_object) */
2038 		migrate_write_lock(src_zspage);
2039 
2040 		if (!zs_can_compact(class))
2041 			break;
2042 
2043 		cc.obj_idx = 0;
2044 		cc.s_page = get_first_page(src_zspage);
2045 
2046 		while ((dst_zspage = isolate_zspage(class, false))) {
2047 			migrate_write_lock_nested(dst_zspage);
2048 
2049 			cc.d_page = get_first_page(dst_zspage);
2050 			/*
2051 			 * If there is no more space in dst_page, resched
2052 			 * and see if anyone had allocated another zspage.
2053 			 */
2054 			if (!migrate_zspage(pool, class, &cc))
2055 				break;
2056 
2057 			putback_zspage(class, dst_zspage);
2058 			migrate_write_unlock(dst_zspage);
2059 			dst_zspage = NULL;
2060 			if (rwlock_is_contended(&pool->migrate_lock))
2061 				break;
2062 		}
2063 
2064 		/* Stop if we couldn't find slot */
2065 		if (dst_zspage == NULL)
2066 			break;
2067 
2068 		putback_zspage(class, dst_zspage);
2069 		migrate_write_unlock(dst_zspage);
2070 
2071 		if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2072 			migrate_write_unlock(src_zspage);
2073 			free_zspage(pool, class, src_zspage);
2074 			pages_freed += class->pages_per_zspage;
2075 		} else
2076 			migrate_write_unlock(src_zspage);
2077 		spin_unlock(&class->lock);
2078 		write_unlock(&pool->migrate_lock);
2079 		cond_resched();
2080 		write_lock(&pool->migrate_lock);
2081 		spin_lock(&class->lock);
2082 	}
2083 
2084 	if (src_zspage) {
2085 		putback_zspage(class, src_zspage);
2086 		migrate_write_unlock(src_zspage);
2087 	}
2088 
2089 	spin_unlock(&class->lock);
2090 	write_unlock(&pool->migrate_lock);
2091 
2092 	return pages_freed;
2093 }
2094 
2095 unsigned long zs_compact(struct zs_pool *pool)
2096 {
2097 	int i;
2098 	struct size_class *class;
2099 	unsigned long pages_freed = 0;
2100 
2101 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2102 		class = pool->size_class[i];
2103 		if (!class)
2104 			continue;
2105 		if (class->index != i)
2106 			continue;
2107 		pages_freed += __zs_compact(pool, class);
2108 	}
2109 	atomic_long_add(pages_freed, &pool->stats.pages_compacted);
2110 
2111 	return pages_freed;
2112 }
2113 EXPORT_SYMBOL_GPL(zs_compact);
2114 
2115 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2116 {
2117 	memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2118 }
2119 EXPORT_SYMBOL_GPL(zs_pool_stats);
2120 
2121 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2122 		struct shrink_control *sc)
2123 {
2124 	unsigned long pages_freed;
2125 	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2126 			shrinker);
2127 
2128 	/*
2129 	 * Compact classes and calculate compaction delta.
2130 	 * Can run concurrently with a manually triggered
2131 	 * (by user) compaction.
2132 	 */
2133 	pages_freed = zs_compact(pool);
2134 
2135 	return pages_freed ? pages_freed : SHRINK_STOP;
2136 }
2137 
2138 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2139 		struct shrink_control *sc)
2140 {
2141 	int i;
2142 	struct size_class *class;
2143 	unsigned long pages_to_free = 0;
2144 	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2145 			shrinker);
2146 
2147 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2148 		class = pool->size_class[i];
2149 		if (!class)
2150 			continue;
2151 		if (class->index != i)
2152 			continue;
2153 
2154 		pages_to_free += zs_can_compact(class);
2155 	}
2156 
2157 	return pages_to_free;
2158 }
2159 
2160 static void zs_unregister_shrinker(struct zs_pool *pool)
2161 {
2162 	unregister_shrinker(&pool->shrinker);
2163 }
2164 
2165 static int zs_register_shrinker(struct zs_pool *pool)
2166 {
2167 	pool->shrinker.scan_objects = zs_shrinker_scan;
2168 	pool->shrinker.count_objects = zs_shrinker_count;
2169 	pool->shrinker.batch = 0;
2170 	pool->shrinker.seeks = DEFAULT_SEEKS;
2171 
2172 	return register_shrinker(&pool->shrinker);
2173 }
2174 
2175 /**
2176  * zs_create_pool - Creates an allocation pool to work from.
2177  * @name: pool name to be created
2178  *
2179  * This function must be called before anything when using
2180  * the zsmalloc allocator.
2181  *
2182  * On success, a pointer to the newly created pool is returned,
2183  * otherwise NULL.
2184  */
2185 struct zs_pool *zs_create_pool(const char *name)
2186 {
2187 	int i;
2188 	struct zs_pool *pool;
2189 	struct size_class *prev_class = NULL;
2190 
2191 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2192 	if (!pool)
2193 		return NULL;
2194 
2195 	init_deferred_free(pool);
2196 	rwlock_init(&pool->migrate_lock);
2197 
2198 	pool->name = kstrdup(name, GFP_KERNEL);
2199 	if (!pool->name)
2200 		goto err;
2201 
2202 	if (create_cache(pool))
2203 		goto err;
2204 
2205 	/*
2206 	 * Iterate reversely, because, size of size_class that we want to use
2207 	 * for merging should be larger or equal to current size.
2208 	 */
2209 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2210 		int size;
2211 		int pages_per_zspage;
2212 		int objs_per_zspage;
2213 		struct size_class *class;
2214 		int fullness = 0;
2215 
2216 		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2217 		if (size > ZS_MAX_ALLOC_SIZE)
2218 			size = ZS_MAX_ALLOC_SIZE;
2219 		pages_per_zspage = get_pages_per_zspage(size);
2220 		objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2221 
2222 		/*
2223 		 * We iterate from biggest down to smallest classes,
2224 		 * so huge_class_size holds the size of the first huge
2225 		 * class. Any object bigger than or equal to that will
2226 		 * endup in the huge class.
2227 		 */
2228 		if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2229 				!huge_class_size) {
2230 			huge_class_size = size;
2231 			/*
2232 			 * The object uses ZS_HANDLE_SIZE bytes to store the
2233 			 * handle. We need to subtract it, because zs_malloc()
2234 			 * unconditionally adds handle size before it performs
2235 			 * size class search - so object may be smaller than
2236 			 * huge class size, yet it still can end up in the huge
2237 			 * class because it grows by ZS_HANDLE_SIZE extra bytes
2238 			 * right before class lookup.
2239 			 */
2240 			huge_class_size -= (ZS_HANDLE_SIZE - 1);
2241 		}
2242 
2243 		/*
2244 		 * size_class is used for normal zsmalloc operation such
2245 		 * as alloc/free for that size. Although it is natural that we
2246 		 * have one size_class for each size, there is a chance that we
2247 		 * can get more memory utilization if we use one size_class for
2248 		 * many different sizes whose size_class have same
2249 		 * characteristics. So, we makes size_class point to
2250 		 * previous size_class if possible.
2251 		 */
2252 		if (prev_class) {
2253 			if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2254 				pool->size_class[i] = prev_class;
2255 				continue;
2256 			}
2257 		}
2258 
2259 		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2260 		if (!class)
2261 			goto err;
2262 
2263 		class->size = size;
2264 		class->index = i;
2265 		class->pages_per_zspage = pages_per_zspage;
2266 		class->objs_per_zspage = objs_per_zspage;
2267 		spin_lock_init(&class->lock);
2268 		pool->size_class[i] = class;
2269 		for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2270 							fullness++)
2271 			INIT_LIST_HEAD(&class->fullness_list[fullness]);
2272 
2273 		prev_class = class;
2274 	}
2275 
2276 	/* debug only, don't abort if it fails */
2277 	zs_pool_stat_create(pool, name);
2278 
2279 	/*
2280 	 * Not critical since shrinker is only used to trigger internal
2281 	 * defragmentation of the pool which is pretty optional thing.  If
2282 	 * registration fails we still can use the pool normally and user can
2283 	 * trigger compaction manually. Thus, ignore return code.
2284 	 */
2285 	zs_register_shrinker(pool);
2286 
2287 	return pool;
2288 
2289 err:
2290 	zs_destroy_pool(pool);
2291 	return NULL;
2292 }
2293 EXPORT_SYMBOL_GPL(zs_create_pool);
2294 
2295 void zs_destroy_pool(struct zs_pool *pool)
2296 {
2297 	int i;
2298 
2299 	zs_unregister_shrinker(pool);
2300 	zs_flush_migration(pool);
2301 	zs_pool_stat_destroy(pool);
2302 
2303 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2304 		int fg;
2305 		struct size_class *class = pool->size_class[i];
2306 
2307 		if (!class)
2308 			continue;
2309 
2310 		if (class->index != i)
2311 			continue;
2312 
2313 		for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2314 			if (!list_empty(&class->fullness_list[fg])) {
2315 				pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2316 					class->size, fg);
2317 			}
2318 		}
2319 		kfree(class);
2320 	}
2321 
2322 	destroy_cache(pool);
2323 	kfree(pool->name);
2324 	kfree(pool);
2325 }
2326 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2327 
2328 static int __init zs_init(void)
2329 {
2330 	int ret;
2331 
2332 	ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2333 				zs_cpu_prepare, zs_cpu_dead);
2334 	if (ret)
2335 		goto out;
2336 
2337 #ifdef CONFIG_ZPOOL
2338 	zpool_register_driver(&zs_zpool_driver);
2339 #endif
2340 
2341 	zs_stat_init();
2342 
2343 	return 0;
2344 
2345 out:
2346 	return ret;
2347 }
2348 
2349 static void __exit zs_exit(void)
2350 {
2351 #ifdef CONFIG_ZPOOL
2352 	zpool_unregister_driver(&zs_zpool_driver);
2353 #endif
2354 	cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2355 
2356 	zs_stat_exit();
2357 }
2358 
2359 module_init(zs_init);
2360 module_exit(zs_exit);
2361 
2362 MODULE_LICENSE("Dual BSD/GPL");
2363 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2364