1 /* 2 * zsmalloc memory allocator 3 * 4 * Copyright (C) 2011 Nitin Gupta 5 * Copyright (C) 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the license that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 */ 13 14 /* 15 * Following is how we use various fields and flags of underlying 16 * struct page(s) to form a zspage. 17 * 18 * Usage of struct page fields: 19 * page->private: points to zspage 20 * page->index: links together all component pages of a zspage 21 * For the huge page, this is always 0, so we use this field 22 * to store handle. 23 * page->page_type: first object offset in a subpage of zspage 24 * 25 * Usage of struct page flags: 26 * PG_private: identifies the first component page 27 * PG_owner_priv_1: identifies the huge component page 28 * 29 */ 30 31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 32 33 /* 34 * lock ordering: 35 * page_lock 36 * pool->lock 37 * zspage->lock 38 */ 39 40 #include <linux/module.h> 41 #include <linux/kernel.h> 42 #include <linux/sched.h> 43 #include <linux/bitops.h> 44 #include <linux/errno.h> 45 #include <linux/highmem.h> 46 #include <linux/string.h> 47 #include <linux/slab.h> 48 #include <linux/pgtable.h> 49 #include <asm/tlbflush.h> 50 #include <linux/cpumask.h> 51 #include <linux/cpu.h> 52 #include <linux/vmalloc.h> 53 #include <linux/preempt.h> 54 #include <linux/spinlock.h> 55 #include <linux/shrinker.h> 56 #include <linux/types.h> 57 #include <linux/debugfs.h> 58 #include <linux/zsmalloc.h> 59 #include <linux/zpool.h> 60 #include <linux/migrate.h> 61 #include <linux/wait.h> 62 #include <linux/pagemap.h> 63 #include <linux/fs.h> 64 #include <linux/local_lock.h> 65 66 #define ZSPAGE_MAGIC 0x58 67 68 /* 69 * This must be power of 2 and greater than or equal to sizeof(link_free). 70 * These two conditions ensure that any 'struct link_free' itself doesn't 71 * span more than 1 page which avoids complex case of mapping 2 pages simply 72 * to restore link_free pointer values. 73 */ 74 #define ZS_ALIGN 8 75 76 #define ZS_HANDLE_SIZE (sizeof(unsigned long)) 77 78 /* 79 * Object location (<PFN>, <obj_idx>) is encoded as 80 * a single (unsigned long) handle value. 81 * 82 * Note that object index <obj_idx> starts from 0. 83 * 84 * This is made more complicated by various memory models and PAE. 85 */ 86 87 #ifndef MAX_POSSIBLE_PHYSMEM_BITS 88 #ifdef MAX_PHYSMEM_BITS 89 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS 90 #else 91 /* 92 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just 93 * be PAGE_SHIFT 94 */ 95 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG 96 #endif 97 #endif 98 99 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT) 100 101 /* 102 * Head in allocated object should have OBJ_ALLOCATED_TAG 103 * to identify the object was allocated or not. 104 * It's okay to add the status bit in the least bit because 105 * header keeps handle which is 4byte-aligned address so we 106 * have room for two bit at least. 107 */ 108 #define OBJ_ALLOCATED_TAG 1 109 110 #define OBJ_TAG_BITS 1 111 #define OBJ_TAG_MASK OBJ_ALLOCATED_TAG 112 113 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS) 114 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1) 115 116 #define HUGE_BITS 1 117 #define FULLNESS_BITS 4 118 #define CLASS_BITS 8 119 #define MAGIC_VAL_BITS 8 120 121 #define MAX(a, b) ((a) >= (b) ? (a) : (b)) 122 123 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(CONFIG_ZSMALLOC_CHAIN_SIZE, UL)) 124 125 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */ 126 #define ZS_MIN_ALLOC_SIZE \ 127 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS)) 128 /* each chunk includes extra space to keep handle */ 129 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE 130 131 /* 132 * On systems with 4K page size, this gives 255 size classes! There is a 133 * trader-off here: 134 * - Large number of size classes is potentially wasteful as free page are 135 * spread across these classes 136 * - Small number of size classes causes large internal fragmentation 137 * - Probably its better to use specific size classes (empirically 138 * determined). NOTE: all those class sizes must be set as multiple of 139 * ZS_ALIGN to make sure link_free itself never has to span 2 pages. 140 * 141 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN 142 * (reason above) 143 */ 144 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS) 145 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \ 146 ZS_SIZE_CLASS_DELTA) + 1) 147 148 /* 149 * Pages are distinguished by the ratio of used memory (that is the ratio 150 * of ->inuse objects to all objects that page can store). For example, 151 * INUSE_RATIO_10 means that the ratio of used objects is > 0% and <= 10%. 152 * 153 * The number of fullness groups is not random. It allows us to keep 154 * difference between the least busy page in the group (minimum permitted 155 * number of ->inuse objects) and the most busy page (maximum permitted 156 * number of ->inuse objects) at a reasonable value. 157 */ 158 enum fullness_group { 159 ZS_INUSE_RATIO_0, 160 ZS_INUSE_RATIO_10, 161 /* NOTE: 8 more fullness groups here */ 162 ZS_INUSE_RATIO_99 = 10, 163 ZS_INUSE_RATIO_100, 164 NR_FULLNESS_GROUPS, 165 }; 166 167 enum class_stat_type { 168 /* NOTE: stats for 12 fullness groups here: from inuse 0 to 100 */ 169 ZS_OBJS_ALLOCATED = NR_FULLNESS_GROUPS, 170 ZS_OBJS_INUSE, 171 NR_CLASS_STAT_TYPES, 172 }; 173 174 struct zs_size_stat { 175 unsigned long objs[NR_CLASS_STAT_TYPES]; 176 }; 177 178 #ifdef CONFIG_ZSMALLOC_STAT 179 static struct dentry *zs_stat_root; 180 #endif 181 182 static size_t huge_class_size; 183 184 struct size_class { 185 struct list_head fullness_list[NR_FULLNESS_GROUPS]; 186 /* 187 * Size of objects stored in this class. Must be multiple 188 * of ZS_ALIGN. 189 */ 190 int size; 191 int objs_per_zspage; 192 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */ 193 int pages_per_zspage; 194 195 unsigned int index; 196 struct zs_size_stat stats; 197 }; 198 199 /* 200 * Placed within free objects to form a singly linked list. 201 * For every zspage, zspage->freeobj gives head of this list. 202 * 203 * This must be power of 2 and less than or equal to ZS_ALIGN 204 */ 205 struct link_free { 206 union { 207 /* 208 * Free object index; 209 * It's valid for non-allocated object 210 */ 211 unsigned long next; 212 /* 213 * Handle of allocated object. 214 */ 215 unsigned long handle; 216 }; 217 }; 218 219 struct zs_pool { 220 const char *name; 221 222 struct size_class *size_class[ZS_SIZE_CLASSES]; 223 struct kmem_cache *handle_cachep; 224 struct kmem_cache *zspage_cachep; 225 226 atomic_long_t pages_allocated; 227 228 struct zs_pool_stats stats; 229 230 /* Compact classes */ 231 struct shrinker *shrinker; 232 233 #ifdef CONFIG_ZSMALLOC_STAT 234 struct dentry *stat_dentry; 235 #endif 236 #ifdef CONFIG_COMPACTION 237 struct work_struct free_work; 238 #endif 239 spinlock_t lock; 240 atomic_t compaction_in_progress; 241 }; 242 243 struct zspage { 244 struct { 245 unsigned int huge:HUGE_BITS; 246 unsigned int fullness:FULLNESS_BITS; 247 unsigned int class:CLASS_BITS + 1; 248 unsigned int magic:MAGIC_VAL_BITS; 249 }; 250 unsigned int inuse; 251 unsigned int freeobj; 252 struct page *first_page; 253 struct list_head list; /* fullness list */ 254 struct zs_pool *pool; 255 rwlock_t lock; 256 }; 257 258 struct mapping_area { 259 local_lock_t lock; 260 char *vm_buf; /* copy buffer for objects that span pages */ 261 char *vm_addr; /* address of kmap_atomic()'ed pages */ 262 enum zs_mapmode vm_mm; /* mapping mode */ 263 }; 264 265 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */ 266 static void SetZsHugePage(struct zspage *zspage) 267 { 268 zspage->huge = 1; 269 } 270 271 static bool ZsHugePage(struct zspage *zspage) 272 { 273 return zspage->huge; 274 } 275 276 static void migrate_lock_init(struct zspage *zspage); 277 static void migrate_read_lock(struct zspage *zspage); 278 static void migrate_read_unlock(struct zspage *zspage); 279 static void migrate_write_lock(struct zspage *zspage); 280 static void migrate_write_unlock(struct zspage *zspage); 281 282 #ifdef CONFIG_COMPACTION 283 static void kick_deferred_free(struct zs_pool *pool); 284 static void init_deferred_free(struct zs_pool *pool); 285 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage); 286 #else 287 static void kick_deferred_free(struct zs_pool *pool) {} 288 static void init_deferred_free(struct zs_pool *pool) {} 289 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {} 290 #endif 291 292 static int create_cache(struct zs_pool *pool) 293 { 294 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE, 295 0, 0, NULL); 296 if (!pool->handle_cachep) 297 return 1; 298 299 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage), 300 0, 0, NULL); 301 if (!pool->zspage_cachep) { 302 kmem_cache_destroy(pool->handle_cachep); 303 pool->handle_cachep = NULL; 304 return 1; 305 } 306 307 return 0; 308 } 309 310 static void destroy_cache(struct zs_pool *pool) 311 { 312 kmem_cache_destroy(pool->handle_cachep); 313 kmem_cache_destroy(pool->zspage_cachep); 314 } 315 316 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp) 317 { 318 return (unsigned long)kmem_cache_alloc(pool->handle_cachep, 319 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 320 } 321 322 static void cache_free_handle(struct zs_pool *pool, unsigned long handle) 323 { 324 kmem_cache_free(pool->handle_cachep, (void *)handle); 325 } 326 327 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags) 328 { 329 return kmem_cache_zalloc(pool->zspage_cachep, 330 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 331 } 332 333 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage) 334 { 335 kmem_cache_free(pool->zspage_cachep, zspage); 336 } 337 338 /* pool->lock(which owns the handle) synchronizes races */ 339 static void record_obj(unsigned long handle, unsigned long obj) 340 { 341 *(unsigned long *)handle = obj; 342 } 343 344 /* zpool driver */ 345 346 #ifdef CONFIG_ZPOOL 347 348 static void *zs_zpool_create(const char *name, gfp_t gfp) 349 { 350 /* 351 * Ignore global gfp flags: zs_malloc() may be invoked from 352 * different contexts and its caller must provide a valid 353 * gfp mask. 354 */ 355 return zs_create_pool(name); 356 } 357 358 static void zs_zpool_destroy(void *pool) 359 { 360 zs_destroy_pool(pool); 361 } 362 363 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp, 364 unsigned long *handle) 365 { 366 *handle = zs_malloc(pool, size, gfp); 367 368 if (IS_ERR_VALUE(*handle)) 369 return PTR_ERR((void *)*handle); 370 return 0; 371 } 372 static void zs_zpool_free(void *pool, unsigned long handle) 373 { 374 zs_free(pool, handle); 375 } 376 377 static void *zs_zpool_map(void *pool, unsigned long handle, 378 enum zpool_mapmode mm) 379 { 380 enum zs_mapmode zs_mm; 381 382 switch (mm) { 383 case ZPOOL_MM_RO: 384 zs_mm = ZS_MM_RO; 385 break; 386 case ZPOOL_MM_WO: 387 zs_mm = ZS_MM_WO; 388 break; 389 case ZPOOL_MM_RW: 390 default: 391 zs_mm = ZS_MM_RW; 392 break; 393 } 394 395 return zs_map_object(pool, handle, zs_mm); 396 } 397 static void zs_zpool_unmap(void *pool, unsigned long handle) 398 { 399 zs_unmap_object(pool, handle); 400 } 401 402 static u64 zs_zpool_total_size(void *pool) 403 { 404 return zs_get_total_pages(pool) << PAGE_SHIFT; 405 } 406 407 static struct zpool_driver zs_zpool_driver = { 408 .type = "zsmalloc", 409 .owner = THIS_MODULE, 410 .create = zs_zpool_create, 411 .destroy = zs_zpool_destroy, 412 .malloc_support_movable = true, 413 .malloc = zs_zpool_malloc, 414 .free = zs_zpool_free, 415 .map = zs_zpool_map, 416 .unmap = zs_zpool_unmap, 417 .total_size = zs_zpool_total_size, 418 }; 419 420 MODULE_ALIAS("zpool-zsmalloc"); 421 #endif /* CONFIG_ZPOOL */ 422 423 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */ 424 static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = { 425 .lock = INIT_LOCAL_LOCK(lock), 426 }; 427 428 static __maybe_unused int is_first_page(struct page *page) 429 { 430 return PagePrivate(page); 431 } 432 433 /* Protected by pool->lock */ 434 static inline int get_zspage_inuse(struct zspage *zspage) 435 { 436 return zspage->inuse; 437 } 438 439 440 static inline void mod_zspage_inuse(struct zspage *zspage, int val) 441 { 442 zspage->inuse += val; 443 } 444 445 static inline struct page *get_first_page(struct zspage *zspage) 446 { 447 struct page *first_page = zspage->first_page; 448 449 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page); 450 return first_page; 451 } 452 453 static inline unsigned int get_first_obj_offset(struct page *page) 454 { 455 return page->page_type; 456 } 457 458 static inline void set_first_obj_offset(struct page *page, unsigned int offset) 459 { 460 page->page_type = offset; 461 } 462 463 static inline unsigned int get_freeobj(struct zspage *zspage) 464 { 465 return zspage->freeobj; 466 } 467 468 static inline void set_freeobj(struct zspage *zspage, unsigned int obj) 469 { 470 zspage->freeobj = obj; 471 } 472 473 static struct size_class *zspage_class(struct zs_pool *pool, 474 struct zspage *zspage) 475 { 476 return pool->size_class[zspage->class]; 477 } 478 479 /* 480 * zsmalloc divides the pool into various size classes where each 481 * class maintains a list of zspages where each zspage is divided 482 * into equal sized chunks. Each allocation falls into one of these 483 * classes depending on its size. This function returns index of the 484 * size class which has chunk size big enough to hold the given size. 485 */ 486 static int get_size_class_index(int size) 487 { 488 int idx = 0; 489 490 if (likely(size > ZS_MIN_ALLOC_SIZE)) 491 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, 492 ZS_SIZE_CLASS_DELTA); 493 494 return min_t(int, ZS_SIZE_CLASSES - 1, idx); 495 } 496 497 static inline void class_stat_inc(struct size_class *class, 498 int type, unsigned long cnt) 499 { 500 class->stats.objs[type] += cnt; 501 } 502 503 static inline void class_stat_dec(struct size_class *class, 504 int type, unsigned long cnt) 505 { 506 class->stats.objs[type] -= cnt; 507 } 508 509 static inline unsigned long zs_stat_get(struct size_class *class, int type) 510 { 511 return class->stats.objs[type]; 512 } 513 514 #ifdef CONFIG_ZSMALLOC_STAT 515 516 static void __init zs_stat_init(void) 517 { 518 if (!debugfs_initialized()) { 519 pr_warn("debugfs not available, stat dir not created\n"); 520 return; 521 } 522 523 zs_stat_root = debugfs_create_dir("zsmalloc", NULL); 524 } 525 526 static void __exit zs_stat_exit(void) 527 { 528 debugfs_remove_recursive(zs_stat_root); 529 } 530 531 static unsigned long zs_can_compact(struct size_class *class); 532 533 static int zs_stats_size_show(struct seq_file *s, void *v) 534 { 535 int i, fg; 536 struct zs_pool *pool = s->private; 537 struct size_class *class; 538 int objs_per_zspage; 539 unsigned long obj_allocated, obj_used, pages_used, freeable; 540 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0; 541 unsigned long total_freeable = 0; 542 unsigned long inuse_totals[NR_FULLNESS_GROUPS] = {0, }; 543 544 seq_printf(s, " %5s %5s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %13s %10s %10s %16s %8s\n", 545 "class", "size", "10%", "20%", "30%", "40%", 546 "50%", "60%", "70%", "80%", "90%", "99%", "100%", 547 "obj_allocated", "obj_used", "pages_used", 548 "pages_per_zspage", "freeable"); 549 550 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 551 552 class = pool->size_class[i]; 553 554 if (class->index != i) 555 continue; 556 557 spin_lock(&pool->lock); 558 559 seq_printf(s, " %5u %5u ", i, class->size); 560 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) { 561 inuse_totals[fg] += zs_stat_get(class, fg); 562 seq_printf(s, "%9lu ", zs_stat_get(class, fg)); 563 } 564 565 obj_allocated = zs_stat_get(class, ZS_OBJS_ALLOCATED); 566 obj_used = zs_stat_get(class, ZS_OBJS_INUSE); 567 freeable = zs_can_compact(class); 568 spin_unlock(&pool->lock); 569 570 objs_per_zspage = class->objs_per_zspage; 571 pages_used = obj_allocated / objs_per_zspage * 572 class->pages_per_zspage; 573 574 seq_printf(s, "%13lu %10lu %10lu %16d %8lu\n", 575 obj_allocated, obj_used, pages_used, 576 class->pages_per_zspage, freeable); 577 578 total_objs += obj_allocated; 579 total_used_objs += obj_used; 580 total_pages += pages_used; 581 total_freeable += freeable; 582 } 583 584 seq_puts(s, "\n"); 585 seq_printf(s, " %5s %5s ", "Total", ""); 586 587 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) 588 seq_printf(s, "%9lu ", inuse_totals[fg]); 589 590 seq_printf(s, "%13lu %10lu %10lu %16s %8lu\n", 591 total_objs, total_used_objs, total_pages, "", 592 total_freeable); 593 594 return 0; 595 } 596 DEFINE_SHOW_ATTRIBUTE(zs_stats_size); 597 598 static void zs_pool_stat_create(struct zs_pool *pool, const char *name) 599 { 600 if (!zs_stat_root) { 601 pr_warn("no root stat dir, not creating <%s> stat dir\n", name); 602 return; 603 } 604 605 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root); 606 607 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool, 608 &zs_stats_size_fops); 609 } 610 611 static void zs_pool_stat_destroy(struct zs_pool *pool) 612 { 613 debugfs_remove_recursive(pool->stat_dentry); 614 } 615 616 #else /* CONFIG_ZSMALLOC_STAT */ 617 static void __init zs_stat_init(void) 618 { 619 } 620 621 static void __exit zs_stat_exit(void) 622 { 623 } 624 625 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name) 626 { 627 } 628 629 static inline void zs_pool_stat_destroy(struct zs_pool *pool) 630 { 631 } 632 #endif 633 634 635 /* 636 * For each size class, zspages are divided into different groups 637 * depending on their usage ratio. This function returns fullness 638 * status of the given page. 639 */ 640 static int get_fullness_group(struct size_class *class, struct zspage *zspage) 641 { 642 int inuse, objs_per_zspage, ratio; 643 644 inuse = get_zspage_inuse(zspage); 645 objs_per_zspage = class->objs_per_zspage; 646 647 if (inuse == 0) 648 return ZS_INUSE_RATIO_0; 649 if (inuse == objs_per_zspage) 650 return ZS_INUSE_RATIO_100; 651 652 ratio = 100 * inuse / objs_per_zspage; 653 /* 654 * Take integer division into consideration: a page with one inuse 655 * object out of 127 possible, will end up having 0 usage ratio, 656 * which is wrong as it belongs in ZS_INUSE_RATIO_10 fullness group. 657 */ 658 return ratio / 10 + 1; 659 } 660 661 /* 662 * Each size class maintains various freelists and zspages are assigned 663 * to one of these freelists based on the number of live objects they 664 * have. This functions inserts the given zspage into the freelist 665 * identified by <class, fullness_group>. 666 */ 667 static void insert_zspage(struct size_class *class, 668 struct zspage *zspage, 669 int fullness) 670 { 671 class_stat_inc(class, fullness, 1); 672 list_add(&zspage->list, &class->fullness_list[fullness]); 673 zspage->fullness = fullness; 674 } 675 676 /* 677 * This function removes the given zspage from the freelist identified 678 * by <class, fullness_group>. 679 */ 680 static void remove_zspage(struct size_class *class, struct zspage *zspage) 681 { 682 int fullness = zspage->fullness; 683 684 VM_BUG_ON(list_empty(&class->fullness_list[fullness])); 685 686 list_del_init(&zspage->list); 687 class_stat_dec(class, fullness, 1); 688 } 689 690 /* 691 * Each size class maintains zspages in different fullness groups depending 692 * on the number of live objects they contain. When allocating or freeing 693 * objects, the fullness status of the page can change, for instance, from 694 * INUSE_RATIO_80 to INUSE_RATIO_70 when freeing an object. This function 695 * checks if such a status change has occurred for the given page and 696 * accordingly moves the page from the list of the old fullness group to that 697 * of the new fullness group. 698 */ 699 static int fix_fullness_group(struct size_class *class, struct zspage *zspage) 700 { 701 int newfg; 702 703 newfg = get_fullness_group(class, zspage); 704 if (newfg == zspage->fullness) 705 goto out; 706 707 remove_zspage(class, zspage); 708 insert_zspage(class, zspage, newfg); 709 out: 710 return newfg; 711 } 712 713 static struct zspage *get_zspage(struct page *page) 714 { 715 struct zspage *zspage = (struct zspage *)page_private(page); 716 717 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 718 return zspage; 719 } 720 721 static struct page *get_next_page(struct page *page) 722 { 723 struct zspage *zspage = get_zspage(page); 724 725 if (unlikely(ZsHugePage(zspage))) 726 return NULL; 727 728 return (struct page *)page->index; 729 } 730 731 /** 732 * obj_to_location - get (<page>, <obj_idx>) from encoded object value 733 * @obj: the encoded object value 734 * @page: page object resides in zspage 735 * @obj_idx: object index 736 */ 737 static void obj_to_location(unsigned long obj, struct page **page, 738 unsigned int *obj_idx) 739 { 740 *page = pfn_to_page(obj >> OBJ_INDEX_BITS); 741 *obj_idx = (obj & OBJ_INDEX_MASK); 742 } 743 744 static void obj_to_page(unsigned long obj, struct page **page) 745 { 746 *page = pfn_to_page(obj >> OBJ_INDEX_BITS); 747 } 748 749 /** 750 * location_to_obj - get obj value encoded from (<page>, <obj_idx>) 751 * @page: page object resides in zspage 752 * @obj_idx: object index 753 */ 754 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx) 755 { 756 unsigned long obj; 757 758 obj = page_to_pfn(page) << OBJ_INDEX_BITS; 759 obj |= obj_idx & OBJ_INDEX_MASK; 760 761 return obj; 762 } 763 764 static unsigned long handle_to_obj(unsigned long handle) 765 { 766 return *(unsigned long *)handle; 767 } 768 769 static inline bool obj_allocated(struct page *page, void *obj, 770 unsigned long *phandle) 771 { 772 unsigned long handle; 773 struct zspage *zspage = get_zspage(page); 774 775 if (unlikely(ZsHugePage(zspage))) { 776 VM_BUG_ON_PAGE(!is_first_page(page), page); 777 handle = page->index; 778 } else 779 handle = *(unsigned long *)obj; 780 781 if (!(handle & OBJ_ALLOCATED_TAG)) 782 return false; 783 784 /* Clear all tags before returning the handle */ 785 *phandle = handle & ~OBJ_TAG_MASK; 786 return true; 787 } 788 789 static void reset_page(struct page *page) 790 { 791 __ClearPageMovable(page); 792 ClearPagePrivate(page); 793 set_page_private(page, 0); 794 page_mapcount_reset(page); 795 page->index = 0; 796 } 797 798 static int trylock_zspage(struct zspage *zspage) 799 { 800 struct page *cursor, *fail; 801 802 for (cursor = get_first_page(zspage); cursor != NULL; cursor = 803 get_next_page(cursor)) { 804 if (!trylock_page(cursor)) { 805 fail = cursor; 806 goto unlock; 807 } 808 } 809 810 return 1; 811 unlock: 812 for (cursor = get_first_page(zspage); cursor != fail; cursor = 813 get_next_page(cursor)) 814 unlock_page(cursor); 815 816 return 0; 817 } 818 819 static void __free_zspage(struct zs_pool *pool, struct size_class *class, 820 struct zspage *zspage) 821 { 822 struct page *page, *next; 823 824 assert_spin_locked(&pool->lock); 825 826 VM_BUG_ON(get_zspage_inuse(zspage)); 827 VM_BUG_ON(zspage->fullness != ZS_INUSE_RATIO_0); 828 829 next = page = get_first_page(zspage); 830 do { 831 VM_BUG_ON_PAGE(!PageLocked(page), page); 832 next = get_next_page(page); 833 reset_page(page); 834 unlock_page(page); 835 dec_zone_page_state(page, NR_ZSPAGES); 836 put_page(page); 837 page = next; 838 } while (page != NULL); 839 840 cache_free_zspage(pool, zspage); 841 842 class_stat_dec(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage); 843 atomic_long_sub(class->pages_per_zspage, &pool->pages_allocated); 844 } 845 846 static void free_zspage(struct zs_pool *pool, struct size_class *class, 847 struct zspage *zspage) 848 { 849 VM_BUG_ON(get_zspage_inuse(zspage)); 850 VM_BUG_ON(list_empty(&zspage->list)); 851 852 /* 853 * Since zs_free couldn't be sleepable, this function cannot call 854 * lock_page. The page locks trylock_zspage got will be released 855 * by __free_zspage. 856 */ 857 if (!trylock_zspage(zspage)) { 858 kick_deferred_free(pool); 859 return; 860 } 861 862 remove_zspage(class, zspage); 863 __free_zspage(pool, class, zspage); 864 } 865 866 /* Initialize a newly allocated zspage */ 867 static void init_zspage(struct size_class *class, struct zspage *zspage) 868 { 869 unsigned int freeobj = 1; 870 unsigned long off = 0; 871 struct page *page = get_first_page(zspage); 872 873 while (page) { 874 struct page *next_page; 875 struct link_free *link; 876 void *vaddr; 877 878 set_first_obj_offset(page, off); 879 880 vaddr = kmap_atomic(page); 881 link = (struct link_free *)vaddr + off / sizeof(*link); 882 883 while ((off += class->size) < PAGE_SIZE) { 884 link->next = freeobj++ << OBJ_TAG_BITS; 885 link += class->size / sizeof(*link); 886 } 887 888 /* 889 * We now come to the last (full or partial) object on this 890 * page, which must point to the first object on the next 891 * page (if present) 892 */ 893 next_page = get_next_page(page); 894 if (next_page) { 895 link->next = freeobj++ << OBJ_TAG_BITS; 896 } else { 897 /* 898 * Reset OBJ_TAG_BITS bit to last link to tell 899 * whether it's allocated object or not. 900 */ 901 link->next = -1UL << OBJ_TAG_BITS; 902 } 903 kunmap_atomic(vaddr); 904 page = next_page; 905 off %= PAGE_SIZE; 906 } 907 908 set_freeobj(zspage, 0); 909 } 910 911 static void create_page_chain(struct size_class *class, struct zspage *zspage, 912 struct page *pages[]) 913 { 914 int i; 915 struct page *page; 916 struct page *prev_page = NULL; 917 int nr_pages = class->pages_per_zspage; 918 919 /* 920 * Allocate individual pages and link them together as: 921 * 1. all pages are linked together using page->index 922 * 2. each sub-page point to zspage using page->private 923 * 924 * we set PG_private to identify the first page (i.e. no other sub-page 925 * has this flag set). 926 */ 927 for (i = 0; i < nr_pages; i++) { 928 page = pages[i]; 929 set_page_private(page, (unsigned long)zspage); 930 page->index = 0; 931 if (i == 0) { 932 zspage->first_page = page; 933 SetPagePrivate(page); 934 if (unlikely(class->objs_per_zspage == 1 && 935 class->pages_per_zspage == 1)) 936 SetZsHugePage(zspage); 937 } else { 938 prev_page->index = (unsigned long)page; 939 } 940 prev_page = page; 941 } 942 } 943 944 /* 945 * Allocate a zspage for the given size class 946 */ 947 static struct zspage *alloc_zspage(struct zs_pool *pool, 948 struct size_class *class, 949 gfp_t gfp) 950 { 951 int i; 952 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE]; 953 struct zspage *zspage = cache_alloc_zspage(pool, gfp); 954 955 if (!zspage) 956 return NULL; 957 958 zspage->magic = ZSPAGE_MAGIC; 959 migrate_lock_init(zspage); 960 961 for (i = 0; i < class->pages_per_zspage; i++) { 962 struct page *page; 963 964 page = alloc_page(gfp); 965 if (!page) { 966 while (--i >= 0) { 967 dec_zone_page_state(pages[i], NR_ZSPAGES); 968 __free_page(pages[i]); 969 } 970 cache_free_zspage(pool, zspage); 971 return NULL; 972 } 973 974 inc_zone_page_state(page, NR_ZSPAGES); 975 pages[i] = page; 976 } 977 978 create_page_chain(class, zspage, pages); 979 init_zspage(class, zspage); 980 zspage->pool = pool; 981 zspage->class = class->index; 982 983 return zspage; 984 } 985 986 static struct zspage *find_get_zspage(struct size_class *class) 987 { 988 int i; 989 struct zspage *zspage; 990 991 for (i = ZS_INUSE_RATIO_99; i >= ZS_INUSE_RATIO_0; i--) { 992 zspage = list_first_entry_or_null(&class->fullness_list[i], 993 struct zspage, list); 994 if (zspage) 995 break; 996 } 997 998 return zspage; 999 } 1000 1001 static inline int __zs_cpu_up(struct mapping_area *area) 1002 { 1003 /* 1004 * Make sure we don't leak memory if a cpu UP notification 1005 * and zs_init() race and both call zs_cpu_up() on the same cpu 1006 */ 1007 if (area->vm_buf) 1008 return 0; 1009 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL); 1010 if (!area->vm_buf) 1011 return -ENOMEM; 1012 return 0; 1013 } 1014 1015 static inline void __zs_cpu_down(struct mapping_area *area) 1016 { 1017 kfree(area->vm_buf); 1018 area->vm_buf = NULL; 1019 } 1020 1021 static void *__zs_map_object(struct mapping_area *area, 1022 struct page *pages[2], int off, int size) 1023 { 1024 int sizes[2]; 1025 void *addr; 1026 char *buf = area->vm_buf; 1027 1028 /* disable page faults to match kmap_atomic() return conditions */ 1029 pagefault_disable(); 1030 1031 /* no read fastpath */ 1032 if (area->vm_mm == ZS_MM_WO) 1033 goto out; 1034 1035 sizes[0] = PAGE_SIZE - off; 1036 sizes[1] = size - sizes[0]; 1037 1038 /* copy object to per-cpu buffer */ 1039 addr = kmap_atomic(pages[0]); 1040 memcpy(buf, addr + off, sizes[0]); 1041 kunmap_atomic(addr); 1042 addr = kmap_atomic(pages[1]); 1043 memcpy(buf + sizes[0], addr, sizes[1]); 1044 kunmap_atomic(addr); 1045 out: 1046 return area->vm_buf; 1047 } 1048 1049 static void __zs_unmap_object(struct mapping_area *area, 1050 struct page *pages[2], int off, int size) 1051 { 1052 int sizes[2]; 1053 void *addr; 1054 char *buf; 1055 1056 /* no write fastpath */ 1057 if (area->vm_mm == ZS_MM_RO) 1058 goto out; 1059 1060 buf = area->vm_buf; 1061 buf = buf + ZS_HANDLE_SIZE; 1062 size -= ZS_HANDLE_SIZE; 1063 off += ZS_HANDLE_SIZE; 1064 1065 sizes[0] = PAGE_SIZE - off; 1066 sizes[1] = size - sizes[0]; 1067 1068 /* copy per-cpu buffer to object */ 1069 addr = kmap_atomic(pages[0]); 1070 memcpy(addr + off, buf, sizes[0]); 1071 kunmap_atomic(addr); 1072 addr = kmap_atomic(pages[1]); 1073 memcpy(addr, buf + sizes[0], sizes[1]); 1074 kunmap_atomic(addr); 1075 1076 out: 1077 /* enable page faults to match kunmap_atomic() return conditions */ 1078 pagefault_enable(); 1079 } 1080 1081 static int zs_cpu_prepare(unsigned int cpu) 1082 { 1083 struct mapping_area *area; 1084 1085 area = &per_cpu(zs_map_area, cpu); 1086 return __zs_cpu_up(area); 1087 } 1088 1089 static int zs_cpu_dead(unsigned int cpu) 1090 { 1091 struct mapping_area *area; 1092 1093 area = &per_cpu(zs_map_area, cpu); 1094 __zs_cpu_down(area); 1095 return 0; 1096 } 1097 1098 static bool can_merge(struct size_class *prev, int pages_per_zspage, 1099 int objs_per_zspage) 1100 { 1101 if (prev->pages_per_zspage == pages_per_zspage && 1102 prev->objs_per_zspage == objs_per_zspage) 1103 return true; 1104 1105 return false; 1106 } 1107 1108 static bool zspage_full(struct size_class *class, struct zspage *zspage) 1109 { 1110 return get_zspage_inuse(zspage) == class->objs_per_zspage; 1111 } 1112 1113 static bool zspage_empty(struct zspage *zspage) 1114 { 1115 return get_zspage_inuse(zspage) == 0; 1116 } 1117 1118 /** 1119 * zs_lookup_class_index() - Returns index of the zsmalloc &size_class 1120 * that hold objects of the provided size. 1121 * @pool: zsmalloc pool to use 1122 * @size: object size 1123 * 1124 * Context: Any context. 1125 * 1126 * Return: the index of the zsmalloc &size_class that hold objects of the 1127 * provided size. 1128 */ 1129 unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size) 1130 { 1131 struct size_class *class; 1132 1133 class = pool->size_class[get_size_class_index(size)]; 1134 1135 return class->index; 1136 } 1137 EXPORT_SYMBOL_GPL(zs_lookup_class_index); 1138 1139 unsigned long zs_get_total_pages(struct zs_pool *pool) 1140 { 1141 return atomic_long_read(&pool->pages_allocated); 1142 } 1143 EXPORT_SYMBOL_GPL(zs_get_total_pages); 1144 1145 /** 1146 * zs_map_object - get address of allocated object from handle. 1147 * @pool: pool from which the object was allocated 1148 * @handle: handle returned from zs_malloc 1149 * @mm: mapping mode to use 1150 * 1151 * Before using an object allocated from zs_malloc, it must be mapped using 1152 * this function. When done with the object, it must be unmapped using 1153 * zs_unmap_object. 1154 * 1155 * Only one object can be mapped per cpu at a time. There is no protection 1156 * against nested mappings. 1157 * 1158 * This function returns with preemption and page faults disabled. 1159 */ 1160 void *zs_map_object(struct zs_pool *pool, unsigned long handle, 1161 enum zs_mapmode mm) 1162 { 1163 struct zspage *zspage; 1164 struct page *page; 1165 unsigned long obj, off; 1166 unsigned int obj_idx; 1167 1168 struct size_class *class; 1169 struct mapping_area *area; 1170 struct page *pages[2]; 1171 void *ret; 1172 1173 /* 1174 * Because we use per-cpu mapping areas shared among the 1175 * pools/users, we can't allow mapping in interrupt context 1176 * because it can corrupt another users mappings. 1177 */ 1178 BUG_ON(in_interrupt()); 1179 1180 /* It guarantees it can get zspage from handle safely */ 1181 spin_lock(&pool->lock); 1182 obj = handle_to_obj(handle); 1183 obj_to_location(obj, &page, &obj_idx); 1184 zspage = get_zspage(page); 1185 1186 /* 1187 * migration cannot move any zpages in this zspage. Here, pool->lock 1188 * is too heavy since callers would take some time until they calls 1189 * zs_unmap_object API so delegate the locking from class to zspage 1190 * which is smaller granularity. 1191 */ 1192 migrate_read_lock(zspage); 1193 spin_unlock(&pool->lock); 1194 1195 class = zspage_class(pool, zspage); 1196 off = offset_in_page(class->size * obj_idx); 1197 1198 local_lock(&zs_map_area.lock); 1199 area = this_cpu_ptr(&zs_map_area); 1200 area->vm_mm = mm; 1201 if (off + class->size <= PAGE_SIZE) { 1202 /* this object is contained entirely within a page */ 1203 area->vm_addr = kmap_atomic(page); 1204 ret = area->vm_addr + off; 1205 goto out; 1206 } 1207 1208 /* this object spans two pages */ 1209 pages[0] = page; 1210 pages[1] = get_next_page(page); 1211 BUG_ON(!pages[1]); 1212 1213 ret = __zs_map_object(area, pages, off, class->size); 1214 out: 1215 if (likely(!ZsHugePage(zspage))) 1216 ret += ZS_HANDLE_SIZE; 1217 1218 return ret; 1219 } 1220 EXPORT_SYMBOL_GPL(zs_map_object); 1221 1222 void zs_unmap_object(struct zs_pool *pool, unsigned long handle) 1223 { 1224 struct zspage *zspage; 1225 struct page *page; 1226 unsigned long obj, off; 1227 unsigned int obj_idx; 1228 1229 struct size_class *class; 1230 struct mapping_area *area; 1231 1232 obj = handle_to_obj(handle); 1233 obj_to_location(obj, &page, &obj_idx); 1234 zspage = get_zspage(page); 1235 class = zspage_class(pool, zspage); 1236 off = offset_in_page(class->size * obj_idx); 1237 1238 area = this_cpu_ptr(&zs_map_area); 1239 if (off + class->size <= PAGE_SIZE) 1240 kunmap_atomic(area->vm_addr); 1241 else { 1242 struct page *pages[2]; 1243 1244 pages[0] = page; 1245 pages[1] = get_next_page(page); 1246 BUG_ON(!pages[1]); 1247 1248 __zs_unmap_object(area, pages, off, class->size); 1249 } 1250 local_unlock(&zs_map_area.lock); 1251 1252 migrate_read_unlock(zspage); 1253 } 1254 EXPORT_SYMBOL_GPL(zs_unmap_object); 1255 1256 /** 1257 * zs_huge_class_size() - Returns the size (in bytes) of the first huge 1258 * zsmalloc &size_class. 1259 * @pool: zsmalloc pool to use 1260 * 1261 * The function returns the size of the first huge class - any object of equal 1262 * or bigger size will be stored in zspage consisting of a single physical 1263 * page. 1264 * 1265 * Context: Any context. 1266 * 1267 * Return: the size (in bytes) of the first huge zsmalloc &size_class. 1268 */ 1269 size_t zs_huge_class_size(struct zs_pool *pool) 1270 { 1271 return huge_class_size; 1272 } 1273 EXPORT_SYMBOL_GPL(zs_huge_class_size); 1274 1275 static unsigned long obj_malloc(struct zs_pool *pool, 1276 struct zspage *zspage, unsigned long handle) 1277 { 1278 int i, nr_page, offset; 1279 unsigned long obj; 1280 struct link_free *link; 1281 struct size_class *class; 1282 1283 struct page *m_page; 1284 unsigned long m_offset; 1285 void *vaddr; 1286 1287 class = pool->size_class[zspage->class]; 1288 handle |= OBJ_ALLOCATED_TAG; 1289 obj = get_freeobj(zspage); 1290 1291 offset = obj * class->size; 1292 nr_page = offset >> PAGE_SHIFT; 1293 m_offset = offset_in_page(offset); 1294 m_page = get_first_page(zspage); 1295 1296 for (i = 0; i < nr_page; i++) 1297 m_page = get_next_page(m_page); 1298 1299 vaddr = kmap_atomic(m_page); 1300 link = (struct link_free *)vaddr + m_offset / sizeof(*link); 1301 set_freeobj(zspage, link->next >> OBJ_TAG_BITS); 1302 if (likely(!ZsHugePage(zspage))) 1303 /* record handle in the header of allocated chunk */ 1304 link->handle = handle; 1305 else 1306 /* record handle to page->index */ 1307 zspage->first_page->index = handle; 1308 1309 kunmap_atomic(vaddr); 1310 mod_zspage_inuse(zspage, 1); 1311 1312 obj = location_to_obj(m_page, obj); 1313 1314 return obj; 1315 } 1316 1317 1318 /** 1319 * zs_malloc - Allocate block of given size from pool. 1320 * @pool: pool to allocate from 1321 * @size: size of block to allocate 1322 * @gfp: gfp flags when allocating object 1323 * 1324 * On success, handle to the allocated object is returned, 1325 * otherwise an ERR_PTR(). 1326 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail. 1327 */ 1328 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp) 1329 { 1330 unsigned long handle, obj; 1331 struct size_class *class; 1332 int newfg; 1333 struct zspage *zspage; 1334 1335 if (unlikely(!size)) 1336 return (unsigned long)ERR_PTR(-EINVAL); 1337 1338 if (unlikely(size > ZS_MAX_ALLOC_SIZE)) 1339 return (unsigned long)ERR_PTR(-ENOSPC); 1340 1341 handle = cache_alloc_handle(pool, gfp); 1342 if (!handle) 1343 return (unsigned long)ERR_PTR(-ENOMEM); 1344 1345 /* extra space in chunk to keep the handle */ 1346 size += ZS_HANDLE_SIZE; 1347 class = pool->size_class[get_size_class_index(size)]; 1348 1349 /* pool->lock effectively protects the zpage migration */ 1350 spin_lock(&pool->lock); 1351 zspage = find_get_zspage(class); 1352 if (likely(zspage)) { 1353 obj = obj_malloc(pool, zspage, handle); 1354 /* Now move the zspage to another fullness group, if required */ 1355 fix_fullness_group(class, zspage); 1356 record_obj(handle, obj); 1357 class_stat_inc(class, ZS_OBJS_INUSE, 1); 1358 1359 goto out; 1360 } 1361 1362 spin_unlock(&pool->lock); 1363 1364 zspage = alloc_zspage(pool, class, gfp); 1365 if (!zspage) { 1366 cache_free_handle(pool, handle); 1367 return (unsigned long)ERR_PTR(-ENOMEM); 1368 } 1369 1370 spin_lock(&pool->lock); 1371 obj = obj_malloc(pool, zspage, handle); 1372 newfg = get_fullness_group(class, zspage); 1373 insert_zspage(class, zspage, newfg); 1374 record_obj(handle, obj); 1375 atomic_long_add(class->pages_per_zspage, &pool->pages_allocated); 1376 class_stat_inc(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage); 1377 class_stat_inc(class, ZS_OBJS_INUSE, 1); 1378 1379 /* We completely set up zspage so mark them as movable */ 1380 SetZsPageMovable(pool, zspage); 1381 out: 1382 spin_unlock(&pool->lock); 1383 1384 return handle; 1385 } 1386 EXPORT_SYMBOL_GPL(zs_malloc); 1387 1388 static void obj_free(int class_size, unsigned long obj) 1389 { 1390 struct link_free *link; 1391 struct zspage *zspage; 1392 struct page *f_page; 1393 unsigned long f_offset; 1394 unsigned int f_objidx; 1395 void *vaddr; 1396 1397 obj_to_location(obj, &f_page, &f_objidx); 1398 f_offset = offset_in_page(class_size * f_objidx); 1399 zspage = get_zspage(f_page); 1400 1401 vaddr = kmap_atomic(f_page); 1402 link = (struct link_free *)(vaddr + f_offset); 1403 1404 /* Insert this object in containing zspage's freelist */ 1405 if (likely(!ZsHugePage(zspage))) 1406 link->next = get_freeobj(zspage) << OBJ_TAG_BITS; 1407 else 1408 f_page->index = 0; 1409 set_freeobj(zspage, f_objidx); 1410 1411 kunmap_atomic(vaddr); 1412 mod_zspage_inuse(zspage, -1); 1413 } 1414 1415 void zs_free(struct zs_pool *pool, unsigned long handle) 1416 { 1417 struct zspage *zspage; 1418 struct page *f_page; 1419 unsigned long obj; 1420 struct size_class *class; 1421 int fullness; 1422 1423 if (IS_ERR_OR_NULL((void *)handle)) 1424 return; 1425 1426 /* 1427 * The pool->lock protects the race with zpage's migration 1428 * so it's safe to get the page from handle. 1429 */ 1430 spin_lock(&pool->lock); 1431 obj = handle_to_obj(handle); 1432 obj_to_page(obj, &f_page); 1433 zspage = get_zspage(f_page); 1434 class = zspage_class(pool, zspage); 1435 1436 class_stat_dec(class, ZS_OBJS_INUSE, 1); 1437 obj_free(class->size, obj); 1438 1439 fullness = fix_fullness_group(class, zspage); 1440 if (fullness == ZS_INUSE_RATIO_0) 1441 free_zspage(pool, class, zspage); 1442 1443 spin_unlock(&pool->lock); 1444 cache_free_handle(pool, handle); 1445 } 1446 EXPORT_SYMBOL_GPL(zs_free); 1447 1448 static void zs_object_copy(struct size_class *class, unsigned long dst, 1449 unsigned long src) 1450 { 1451 struct page *s_page, *d_page; 1452 unsigned int s_objidx, d_objidx; 1453 unsigned long s_off, d_off; 1454 void *s_addr, *d_addr; 1455 int s_size, d_size, size; 1456 int written = 0; 1457 1458 s_size = d_size = class->size; 1459 1460 obj_to_location(src, &s_page, &s_objidx); 1461 obj_to_location(dst, &d_page, &d_objidx); 1462 1463 s_off = offset_in_page(class->size * s_objidx); 1464 d_off = offset_in_page(class->size * d_objidx); 1465 1466 if (s_off + class->size > PAGE_SIZE) 1467 s_size = PAGE_SIZE - s_off; 1468 1469 if (d_off + class->size > PAGE_SIZE) 1470 d_size = PAGE_SIZE - d_off; 1471 1472 s_addr = kmap_atomic(s_page); 1473 d_addr = kmap_atomic(d_page); 1474 1475 while (1) { 1476 size = min(s_size, d_size); 1477 memcpy(d_addr + d_off, s_addr + s_off, size); 1478 written += size; 1479 1480 if (written == class->size) 1481 break; 1482 1483 s_off += size; 1484 s_size -= size; 1485 d_off += size; 1486 d_size -= size; 1487 1488 /* 1489 * Calling kunmap_atomic(d_addr) is necessary. kunmap_atomic() 1490 * calls must occurs in reverse order of calls to kmap_atomic(). 1491 * So, to call kunmap_atomic(s_addr) we should first call 1492 * kunmap_atomic(d_addr). For more details see 1493 * Documentation/mm/highmem.rst. 1494 */ 1495 if (s_off >= PAGE_SIZE) { 1496 kunmap_atomic(d_addr); 1497 kunmap_atomic(s_addr); 1498 s_page = get_next_page(s_page); 1499 s_addr = kmap_atomic(s_page); 1500 d_addr = kmap_atomic(d_page); 1501 s_size = class->size - written; 1502 s_off = 0; 1503 } 1504 1505 if (d_off >= PAGE_SIZE) { 1506 kunmap_atomic(d_addr); 1507 d_page = get_next_page(d_page); 1508 d_addr = kmap_atomic(d_page); 1509 d_size = class->size - written; 1510 d_off = 0; 1511 } 1512 } 1513 1514 kunmap_atomic(d_addr); 1515 kunmap_atomic(s_addr); 1516 } 1517 1518 /* 1519 * Find alloced object in zspage from index object and 1520 * return handle. 1521 */ 1522 static unsigned long find_alloced_obj(struct size_class *class, 1523 struct page *page, int *obj_idx) 1524 { 1525 unsigned int offset; 1526 int index = *obj_idx; 1527 unsigned long handle = 0; 1528 void *addr = kmap_atomic(page); 1529 1530 offset = get_first_obj_offset(page); 1531 offset += class->size * index; 1532 1533 while (offset < PAGE_SIZE) { 1534 if (obj_allocated(page, addr + offset, &handle)) 1535 break; 1536 1537 offset += class->size; 1538 index++; 1539 } 1540 1541 kunmap_atomic(addr); 1542 1543 *obj_idx = index; 1544 1545 return handle; 1546 } 1547 1548 static void migrate_zspage(struct zs_pool *pool, struct zspage *src_zspage, 1549 struct zspage *dst_zspage) 1550 { 1551 unsigned long used_obj, free_obj; 1552 unsigned long handle; 1553 int obj_idx = 0; 1554 struct page *s_page = get_first_page(src_zspage); 1555 struct size_class *class = pool->size_class[src_zspage->class]; 1556 1557 while (1) { 1558 handle = find_alloced_obj(class, s_page, &obj_idx); 1559 if (!handle) { 1560 s_page = get_next_page(s_page); 1561 if (!s_page) 1562 break; 1563 obj_idx = 0; 1564 continue; 1565 } 1566 1567 used_obj = handle_to_obj(handle); 1568 free_obj = obj_malloc(pool, dst_zspage, handle); 1569 zs_object_copy(class, free_obj, used_obj); 1570 obj_idx++; 1571 record_obj(handle, free_obj); 1572 obj_free(class->size, used_obj); 1573 1574 /* Stop if there is no more space */ 1575 if (zspage_full(class, dst_zspage)) 1576 break; 1577 1578 /* Stop if there are no more objects to migrate */ 1579 if (zspage_empty(src_zspage)) 1580 break; 1581 } 1582 } 1583 1584 static struct zspage *isolate_src_zspage(struct size_class *class) 1585 { 1586 struct zspage *zspage; 1587 int fg; 1588 1589 for (fg = ZS_INUSE_RATIO_10; fg <= ZS_INUSE_RATIO_99; fg++) { 1590 zspage = list_first_entry_or_null(&class->fullness_list[fg], 1591 struct zspage, list); 1592 if (zspage) { 1593 remove_zspage(class, zspage); 1594 return zspage; 1595 } 1596 } 1597 1598 return zspage; 1599 } 1600 1601 static struct zspage *isolate_dst_zspage(struct size_class *class) 1602 { 1603 struct zspage *zspage; 1604 int fg; 1605 1606 for (fg = ZS_INUSE_RATIO_99; fg >= ZS_INUSE_RATIO_10; fg--) { 1607 zspage = list_first_entry_or_null(&class->fullness_list[fg], 1608 struct zspage, list); 1609 if (zspage) { 1610 remove_zspage(class, zspage); 1611 return zspage; 1612 } 1613 } 1614 1615 return zspage; 1616 } 1617 1618 /* 1619 * putback_zspage - add @zspage into right class's fullness list 1620 * @class: destination class 1621 * @zspage: target page 1622 * 1623 * Return @zspage's fullness status 1624 */ 1625 static int putback_zspage(struct size_class *class, struct zspage *zspage) 1626 { 1627 int fullness; 1628 1629 fullness = get_fullness_group(class, zspage); 1630 insert_zspage(class, zspage, fullness); 1631 1632 return fullness; 1633 } 1634 1635 #ifdef CONFIG_COMPACTION 1636 /* 1637 * To prevent zspage destroy during migration, zspage freeing should 1638 * hold locks of all pages in the zspage. 1639 */ 1640 static void lock_zspage(struct zspage *zspage) 1641 { 1642 struct page *curr_page, *page; 1643 1644 /* 1645 * Pages we haven't locked yet can be migrated off the list while we're 1646 * trying to lock them, so we need to be careful and only attempt to 1647 * lock each page under migrate_read_lock(). Otherwise, the page we lock 1648 * may no longer belong to the zspage. This means that we may wait for 1649 * the wrong page to unlock, so we must take a reference to the page 1650 * prior to waiting for it to unlock outside migrate_read_lock(). 1651 */ 1652 while (1) { 1653 migrate_read_lock(zspage); 1654 page = get_first_page(zspage); 1655 if (trylock_page(page)) 1656 break; 1657 get_page(page); 1658 migrate_read_unlock(zspage); 1659 wait_on_page_locked(page); 1660 put_page(page); 1661 } 1662 1663 curr_page = page; 1664 while ((page = get_next_page(curr_page))) { 1665 if (trylock_page(page)) { 1666 curr_page = page; 1667 } else { 1668 get_page(page); 1669 migrate_read_unlock(zspage); 1670 wait_on_page_locked(page); 1671 put_page(page); 1672 migrate_read_lock(zspage); 1673 } 1674 } 1675 migrate_read_unlock(zspage); 1676 } 1677 #endif /* CONFIG_COMPACTION */ 1678 1679 static void migrate_lock_init(struct zspage *zspage) 1680 { 1681 rwlock_init(&zspage->lock); 1682 } 1683 1684 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock) 1685 { 1686 read_lock(&zspage->lock); 1687 } 1688 1689 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock) 1690 { 1691 read_unlock(&zspage->lock); 1692 } 1693 1694 static void migrate_write_lock(struct zspage *zspage) 1695 { 1696 write_lock(&zspage->lock); 1697 } 1698 1699 static void migrate_write_unlock(struct zspage *zspage) 1700 { 1701 write_unlock(&zspage->lock); 1702 } 1703 1704 #ifdef CONFIG_COMPACTION 1705 1706 static const struct movable_operations zsmalloc_mops; 1707 1708 static void replace_sub_page(struct size_class *class, struct zspage *zspage, 1709 struct page *newpage, struct page *oldpage) 1710 { 1711 struct page *page; 1712 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, }; 1713 int idx = 0; 1714 1715 page = get_first_page(zspage); 1716 do { 1717 if (page == oldpage) 1718 pages[idx] = newpage; 1719 else 1720 pages[idx] = page; 1721 idx++; 1722 } while ((page = get_next_page(page)) != NULL); 1723 1724 create_page_chain(class, zspage, pages); 1725 set_first_obj_offset(newpage, get_first_obj_offset(oldpage)); 1726 if (unlikely(ZsHugePage(zspage))) 1727 newpage->index = oldpage->index; 1728 __SetPageMovable(newpage, &zsmalloc_mops); 1729 } 1730 1731 static bool zs_page_isolate(struct page *page, isolate_mode_t mode) 1732 { 1733 /* 1734 * Page is locked so zspage couldn't be destroyed. For detail, look at 1735 * lock_zspage in free_zspage. 1736 */ 1737 VM_BUG_ON_PAGE(PageIsolated(page), page); 1738 1739 return true; 1740 } 1741 1742 static int zs_page_migrate(struct page *newpage, struct page *page, 1743 enum migrate_mode mode) 1744 { 1745 struct zs_pool *pool; 1746 struct size_class *class; 1747 struct zspage *zspage; 1748 struct page *dummy; 1749 void *s_addr, *d_addr, *addr; 1750 unsigned int offset; 1751 unsigned long handle; 1752 unsigned long old_obj, new_obj; 1753 unsigned int obj_idx; 1754 1755 /* 1756 * We cannot support the _NO_COPY case here, because copy needs to 1757 * happen under the zs lock, which does not work with 1758 * MIGRATE_SYNC_NO_COPY workflow. 1759 */ 1760 if (mode == MIGRATE_SYNC_NO_COPY) 1761 return -EINVAL; 1762 1763 VM_BUG_ON_PAGE(!PageIsolated(page), page); 1764 1765 /* The page is locked, so this pointer must remain valid */ 1766 zspage = get_zspage(page); 1767 pool = zspage->pool; 1768 1769 /* 1770 * The pool's lock protects the race between zpage migration 1771 * and zs_free. 1772 */ 1773 spin_lock(&pool->lock); 1774 class = zspage_class(pool, zspage); 1775 1776 /* the migrate_write_lock protects zpage access via zs_map_object */ 1777 migrate_write_lock(zspage); 1778 1779 offset = get_first_obj_offset(page); 1780 s_addr = kmap_atomic(page); 1781 1782 /* 1783 * Here, any user cannot access all objects in the zspage so let's move. 1784 */ 1785 d_addr = kmap_atomic(newpage); 1786 copy_page(d_addr, s_addr); 1787 kunmap_atomic(d_addr); 1788 1789 for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE; 1790 addr += class->size) { 1791 if (obj_allocated(page, addr, &handle)) { 1792 1793 old_obj = handle_to_obj(handle); 1794 obj_to_location(old_obj, &dummy, &obj_idx); 1795 new_obj = (unsigned long)location_to_obj(newpage, 1796 obj_idx); 1797 record_obj(handle, new_obj); 1798 } 1799 } 1800 kunmap_atomic(s_addr); 1801 1802 replace_sub_page(class, zspage, newpage, page); 1803 /* 1804 * Since we complete the data copy and set up new zspage structure, 1805 * it's okay to release the pool's lock. 1806 */ 1807 spin_unlock(&pool->lock); 1808 migrate_write_unlock(zspage); 1809 1810 get_page(newpage); 1811 if (page_zone(newpage) != page_zone(page)) { 1812 dec_zone_page_state(page, NR_ZSPAGES); 1813 inc_zone_page_state(newpage, NR_ZSPAGES); 1814 } 1815 1816 reset_page(page); 1817 put_page(page); 1818 1819 return MIGRATEPAGE_SUCCESS; 1820 } 1821 1822 static void zs_page_putback(struct page *page) 1823 { 1824 VM_BUG_ON_PAGE(!PageIsolated(page), page); 1825 } 1826 1827 static const struct movable_operations zsmalloc_mops = { 1828 .isolate_page = zs_page_isolate, 1829 .migrate_page = zs_page_migrate, 1830 .putback_page = zs_page_putback, 1831 }; 1832 1833 /* 1834 * Caller should hold page_lock of all pages in the zspage 1835 * In here, we cannot use zspage meta data. 1836 */ 1837 static void async_free_zspage(struct work_struct *work) 1838 { 1839 int i; 1840 struct size_class *class; 1841 struct zspage *zspage, *tmp; 1842 LIST_HEAD(free_pages); 1843 struct zs_pool *pool = container_of(work, struct zs_pool, 1844 free_work); 1845 1846 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 1847 class = pool->size_class[i]; 1848 if (class->index != i) 1849 continue; 1850 1851 spin_lock(&pool->lock); 1852 list_splice_init(&class->fullness_list[ZS_INUSE_RATIO_0], 1853 &free_pages); 1854 spin_unlock(&pool->lock); 1855 } 1856 1857 list_for_each_entry_safe(zspage, tmp, &free_pages, list) { 1858 list_del(&zspage->list); 1859 lock_zspage(zspage); 1860 1861 spin_lock(&pool->lock); 1862 class = zspage_class(pool, zspage); 1863 __free_zspage(pool, class, zspage); 1864 spin_unlock(&pool->lock); 1865 } 1866 }; 1867 1868 static void kick_deferred_free(struct zs_pool *pool) 1869 { 1870 schedule_work(&pool->free_work); 1871 } 1872 1873 static void zs_flush_migration(struct zs_pool *pool) 1874 { 1875 flush_work(&pool->free_work); 1876 } 1877 1878 static void init_deferred_free(struct zs_pool *pool) 1879 { 1880 INIT_WORK(&pool->free_work, async_free_zspage); 1881 } 1882 1883 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) 1884 { 1885 struct page *page = get_first_page(zspage); 1886 1887 do { 1888 WARN_ON(!trylock_page(page)); 1889 __SetPageMovable(page, &zsmalloc_mops); 1890 unlock_page(page); 1891 } while ((page = get_next_page(page)) != NULL); 1892 } 1893 #else 1894 static inline void zs_flush_migration(struct zs_pool *pool) { } 1895 #endif 1896 1897 /* 1898 * 1899 * Based on the number of unused allocated objects calculate 1900 * and return the number of pages that we can free. 1901 */ 1902 static unsigned long zs_can_compact(struct size_class *class) 1903 { 1904 unsigned long obj_wasted; 1905 unsigned long obj_allocated = zs_stat_get(class, ZS_OBJS_ALLOCATED); 1906 unsigned long obj_used = zs_stat_get(class, ZS_OBJS_INUSE); 1907 1908 if (obj_allocated <= obj_used) 1909 return 0; 1910 1911 obj_wasted = obj_allocated - obj_used; 1912 obj_wasted /= class->objs_per_zspage; 1913 1914 return obj_wasted * class->pages_per_zspage; 1915 } 1916 1917 static unsigned long __zs_compact(struct zs_pool *pool, 1918 struct size_class *class) 1919 { 1920 struct zspage *src_zspage = NULL; 1921 struct zspage *dst_zspage = NULL; 1922 unsigned long pages_freed = 0; 1923 1924 /* 1925 * protect the race between zpage migration and zs_free 1926 * as well as zpage allocation/free 1927 */ 1928 spin_lock(&pool->lock); 1929 while (zs_can_compact(class)) { 1930 int fg; 1931 1932 if (!dst_zspage) { 1933 dst_zspage = isolate_dst_zspage(class); 1934 if (!dst_zspage) 1935 break; 1936 } 1937 1938 src_zspage = isolate_src_zspage(class); 1939 if (!src_zspage) 1940 break; 1941 1942 migrate_write_lock(src_zspage); 1943 migrate_zspage(pool, src_zspage, dst_zspage); 1944 migrate_write_unlock(src_zspage); 1945 1946 fg = putback_zspage(class, src_zspage); 1947 if (fg == ZS_INUSE_RATIO_0) { 1948 free_zspage(pool, class, src_zspage); 1949 pages_freed += class->pages_per_zspage; 1950 } 1951 src_zspage = NULL; 1952 1953 if (get_fullness_group(class, dst_zspage) == ZS_INUSE_RATIO_100 1954 || spin_is_contended(&pool->lock)) { 1955 putback_zspage(class, dst_zspage); 1956 dst_zspage = NULL; 1957 1958 spin_unlock(&pool->lock); 1959 cond_resched(); 1960 spin_lock(&pool->lock); 1961 } 1962 } 1963 1964 if (src_zspage) 1965 putback_zspage(class, src_zspage); 1966 1967 if (dst_zspage) 1968 putback_zspage(class, dst_zspage); 1969 1970 spin_unlock(&pool->lock); 1971 1972 return pages_freed; 1973 } 1974 1975 unsigned long zs_compact(struct zs_pool *pool) 1976 { 1977 int i; 1978 struct size_class *class; 1979 unsigned long pages_freed = 0; 1980 1981 /* 1982 * Pool compaction is performed under pool->lock so it is basically 1983 * single-threaded. Having more than one thread in __zs_compact() 1984 * will increase pool->lock contention, which will impact other 1985 * zsmalloc operations that need pool->lock. 1986 */ 1987 if (atomic_xchg(&pool->compaction_in_progress, 1)) 1988 return 0; 1989 1990 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 1991 class = pool->size_class[i]; 1992 if (class->index != i) 1993 continue; 1994 pages_freed += __zs_compact(pool, class); 1995 } 1996 atomic_long_add(pages_freed, &pool->stats.pages_compacted); 1997 atomic_set(&pool->compaction_in_progress, 0); 1998 1999 return pages_freed; 2000 } 2001 EXPORT_SYMBOL_GPL(zs_compact); 2002 2003 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats) 2004 { 2005 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats)); 2006 } 2007 EXPORT_SYMBOL_GPL(zs_pool_stats); 2008 2009 static unsigned long zs_shrinker_scan(struct shrinker *shrinker, 2010 struct shrink_control *sc) 2011 { 2012 unsigned long pages_freed; 2013 struct zs_pool *pool = shrinker->private_data; 2014 2015 /* 2016 * Compact classes and calculate compaction delta. 2017 * Can run concurrently with a manually triggered 2018 * (by user) compaction. 2019 */ 2020 pages_freed = zs_compact(pool); 2021 2022 return pages_freed ? pages_freed : SHRINK_STOP; 2023 } 2024 2025 static unsigned long zs_shrinker_count(struct shrinker *shrinker, 2026 struct shrink_control *sc) 2027 { 2028 int i; 2029 struct size_class *class; 2030 unsigned long pages_to_free = 0; 2031 struct zs_pool *pool = shrinker->private_data; 2032 2033 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2034 class = pool->size_class[i]; 2035 if (class->index != i) 2036 continue; 2037 2038 pages_to_free += zs_can_compact(class); 2039 } 2040 2041 return pages_to_free; 2042 } 2043 2044 static void zs_unregister_shrinker(struct zs_pool *pool) 2045 { 2046 shrinker_free(pool->shrinker); 2047 } 2048 2049 static int zs_register_shrinker(struct zs_pool *pool) 2050 { 2051 pool->shrinker = shrinker_alloc(0, "mm-zspool:%s", pool->name); 2052 if (!pool->shrinker) 2053 return -ENOMEM; 2054 2055 pool->shrinker->scan_objects = zs_shrinker_scan; 2056 pool->shrinker->count_objects = zs_shrinker_count; 2057 pool->shrinker->batch = 0; 2058 pool->shrinker->private_data = pool; 2059 2060 shrinker_register(pool->shrinker); 2061 2062 return 0; 2063 } 2064 2065 static int calculate_zspage_chain_size(int class_size) 2066 { 2067 int i, min_waste = INT_MAX; 2068 int chain_size = 1; 2069 2070 if (is_power_of_2(class_size)) 2071 return chain_size; 2072 2073 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { 2074 int waste; 2075 2076 waste = (i * PAGE_SIZE) % class_size; 2077 if (waste < min_waste) { 2078 min_waste = waste; 2079 chain_size = i; 2080 } 2081 } 2082 2083 return chain_size; 2084 } 2085 2086 /** 2087 * zs_create_pool - Creates an allocation pool to work from. 2088 * @name: pool name to be created 2089 * 2090 * This function must be called before anything when using 2091 * the zsmalloc allocator. 2092 * 2093 * On success, a pointer to the newly created pool is returned, 2094 * otherwise NULL. 2095 */ 2096 struct zs_pool *zs_create_pool(const char *name) 2097 { 2098 int i; 2099 struct zs_pool *pool; 2100 struct size_class *prev_class = NULL; 2101 2102 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 2103 if (!pool) 2104 return NULL; 2105 2106 init_deferred_free(pool); 2107 spin_lock_init(&pool->lock); 2108 atomic_set(&pool->compaction_in_progress, 0); 2109 2110 pool->name = kstrdup(name, GFP_KERNEL); 2111 if (!pool->name) 2112 goto err; 2113 2114 if (create_cache(pool)) 2115 goto err; 2116 2117 /* 2118 * Iterate reversely, because, size of size_class that we want to use 2119 * for merging should be larger or equal to current size. 2120 */ 2121 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2122 int size; 2123 int pages_per_zspage; 2124 int objs_per_zspage; 2125 struct size_class *class; 2126 int fullness; 2127 2128 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; 2129 if (size > ZS_MAX_ALLOC_SIZE) 2130 size = ZS_MAX_ALLOC_SIZE; 2131 pages_per_zspage = calculate_zspage_chain_size(size); 2132 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size; 2133 2134 /* 2135 * We iterate from biggest down to smallest classes, 2136 * so huge_class_size holds the size of the first huge 2137 * class. Any object bigger than or equal to that will 2138 * endup in the huge class. 2139 */ 2140 if (pages_per_zspage != 1 && objs_per_zspage != 1 && 2141 !huge_class_size) { 2142 huge_class_size = size; 2143 /* 2144 * The object uses ZS_HANDLE_SIZE bytes to store the 2145 * handle. We need to subtract it, because zs_malloc() 2146 * unconditionally adds handle size before it performs 2147 * size class search - so object may be smaller than 2148 * huge class size, yet it still can end up in the huge 2149 * class because it grows by ZS_HANDLE_SIZE extra bytes 2150 * right before class lookup. 2151 */ 2152 huge_class_size -= (ZS_HANDLE_SIZE - 1); 2153 } 2154 2155 /* 2156 * size_class is used for normal zsmalloc operation such 2157 * as alloc/free for that size. Although it is natural that we 2158 * have one size_class for each size, there is a chance that we 2159 * can get more memory utilization if we use one size_class for 2160 * many different sizes whose size_class have same 2161 * characteristics. So, we makes size_class point to 2162 * previous size_class if possible. 2163 */ 2164 if (prev_class) { 2165 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) { 2166 pool->size_class[i] = prev_class; 2167 continue; 2168 } 2169 } 2170 2171 class = kzalloc(sizeof(struct size_class), GFP_KERNEL); 2172 if (!class) 2173 goto err; 2174 2175 class->size = size; 2176 class->index = i; 2177 class->pages_per_zspage = pages_per_zspage; 2178 class->objs_per_zspage = objs_per_zspage; 2179 pool->size_class[i] = class; 2180 2181 fullness = ZS_INUSE_RATIO_0; 2182 while (fullness < NR_FULLNESS_GROUPS) { 2183 INIT_LIST_HEAD(&class->fullness_list[fullness]); 2184 fullness++; 2185 } 2186 2187 prev_class = class; 2188 } 2189 2190 /* debug only, don't abort if it fails */ 2191 zs_pool_stat_create(pool, name); 2192 2193 /* 2194 * Not critical since shrinker is only used to trigger internal 2195 * defragmentation of the pool which is pretty optional thing. If 2196 * registration fails we still can use the pool normally and user can 2197 * trigger compaction manually. Thus, ignore return code. 2198 */ 2199 zs_register_shrinker(pool); 2200 2201 return pool; 2202 2203 err: 2204 zs_destroy_pool(pool); 2205 return NULL; 2206 } 2207 EXPORT_SYMBOL_GPL(zs_create_pool); 2208 2209 void zs_destroy_pool(struct zs_pool *pool) 2210 { 2211 int i; 2212 2213 zs_unregister_shrinker(pool); 2214 zs_flush_migration(pool); 2215 zs_pool_stat_destroy(pool); 2216 2217 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 2218 int fg; 2219 struct size_class *class = pool->size_class[i]; 2220 2221 if (!class) 2222 continue; 2223 2224 if (class->index != i) 2225 continue; 2226 2227 for (fg = ZS_INUSE_RATIO_0; fg < NR_FULLNESS_GROUPS; fg++) { 2228 if (list_empty(&class->fullness_list[fg])) 2229 continue; 2230 2231 pr_err("Class-%d fullness group %d is not empty\n", 2232 class->size, fg); 2233 } 2234 kfree(class); 2235 } 2236 2237 destroy_cache(pool); 2238 kfree(pool->name); 2239 kfree(pool); 2240 } 2241 EXPORT_SYMBOL_GPL(zs_destroy_pool); 2242 2243 static int __init zs_init(void) 2244 { 2245 int ret; 2246 2247 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare", 2248 zs_cpu_prepare, zs_cpu_dead); 2249 if (ret) 2250 goto out; 2251 2252 #ifdef CONFIG_ZPOOL 2253 zpool_register_driver(&zs_zpool_driver); 2254 #endif 2255 2256 zs_stat_init(); 2257 2258 return 0; 2259 2260 out: 2261 return ret; 2262 } 2263 2264 static void __exit zs_exit(void) 2265 { 2266 #ifdef CONFIG_ZPOOL 2267 zpool_unregister_driver(&zs_zpool_driver); 2268 #endif 2269 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE); 2270 2271 zs_stat_exit(); 2272 } 2273 2274 module_init(zs_init); 2275 module_exit(zs_exit); 2276 2277 MODULE_LICENSE("Dual BSD/GPL"); 2278 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 2279