1 /* 2 * zsmalloc memory allocator 3 * 4 * Copyright (C) 2011 Nitin Gupta 5 * Copyright (C) 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the license that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 */ 13 14 /* 15 * Following is how we use various fields and flags of underlying 16 * struct page(s) to form a zspage. 17 * 18 * Usage of struct page fields: 19 * page->private: points to zspage 20 * page->index: links together all component pages of a zspage 21 * For the huge page, this is always 0, so we use this field 22 * to store handle. 23 * page->page_type: first object offset in a subpage of zspage 24 * 25 * Usage of struct page flags: 26 * PG_private: identifies the first component page 27 * PG_owner_priv_1: identifies the huge component page 28 * 29 */ 30 31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 32 33 /* 34 * lock ordering: 35 * page_lock 36 * pool->lock 37 * zspage->lock 38 */ 39 40 #include <linux/module.h> 41 #include <linux/kernel.h> 42 #include <linux/sched.h> 43 #include <linux/bitops.h> 44 #include <linux/errno.h> 45 #include <linux/highmem.h> 46 #include <linux/string.h> 47 #include <linux/slab.h> 48 #include <linux/pgtable.h> 49 #include <asm/tlbflush.h> 50 #include <linux/cpumask.h> 51 #include <linux/cpu.h> 52 #include <linux/vmalloc.h> 53 #include <linux/preempt.h> 54 #include <linux/spinlock.h> 55 #include <linux/shrinker.h> 56 #include <linux/types.h> 57 #include <linux/debugfs.h> 58 #include <linux/zsmalloc.h> 59 #include <linux/zpool.h> 60 #include <linux/migrate.h> 61 #include <linux/wait.h> 62 #include <linux/pagemap.h> 63 #include <linux/fs.h> 64 #include <linux/local_lock.h> 65 66 #define ZSPAGE_MAGIC 0x58 67 68 /* 69 * This must be power of 2 and greater than or equal to sizeof(link_free). 70 * These two conditions ensure that any 'struct link_free' itself doesn't 71 * span more than 1 page which avoids complex case of mapping 2 pages simply 72 * to restore link_free pointer values. 73 */ 74 #define ZS_ALIGN 8 75 76 #define ZS_HANDLE_SIZE (sizeof(unsigned long)) 77 78 /* 79 * Object location (<PFN>, <obj_idx>) is encoded as 80 * a single (unsigned long) handle value. 81 * 82 * Note that object index <obj_idx> starts from 0. 83 * 84 * This is made more complicated by various memory models and PAE. 85 */ 86 87 #ifndef MAX_POSSIBLE_PHYSMEM_BITS 88 #ifdef MAX_PHYSMEM_BITS 89 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS 90 #else 91 /* 92 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just 93 * be PAGE_SHIFT 94 */ 95 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG 96 #endif 97 #endif 98 99 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT) 100 101 /* 102 * Head in allocated object should have OBJ_ALLOCATED_TAG 103 * to identify the object was allocated or not. 104 * It's okay to add the status bit in the least bit because 105 * header keeps handle which is 4byte-aligned address so we 106 * have room for two bit at least. 107 */ 108 #define OBJ_ALLOCATED_TAG 1 109 110 #define OBJ_TAG_BITS 1 111 #define OBJ_TAG_MASK OBJ_ALLOCATED_TAG 112 113 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS) 114 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1) 115 116 #define HUGE_BITS 1 117 #define FULLNESS_BITS 4 118 #define CLASS_BITS 8 119 #define ISOLATED_BITS 5 120 #define MAGIC_VAL_BITS 8 121 122 #define MAX(a, b) ((a) >= (b) ? (a) : (b)) 123 124 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(CONFIG_ZSMALLOC_CHAIN_SIZE, UL)) 125 126 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */ 127 #define ZS_MIN_ALLOC_SIZE \ 128 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS)) 129 /* each chunk includes extra space to keep handle */ 130 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE 131 132 /* 133 * On systems with 4K page size, this gives 255 size classes! There is a 134 * trader-off here: 135 * - Large number of size classes is potentially wasteful as free page are 136 * spread across these classes 137 * - Small number of size classes causes large internal fragmentation 138 * - Probably its better to use specific size classes (empirically 139 * determined). NOTE: all those class sizes must be set as multiple of 140 * ZS_ALIGN to make sure link_free itself never has to span 2 pages. 141 * 142 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN 143 * (reason above) 144 */ 145 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS) 146 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \ 147 ZS_SIZE_CLASS_DELTA) + 1) 148 149 /* 150 * Pages are distinguished by the ratio of used memory (that is the ratio 151 * of ->inuse objects to all objects that page can store). For example, 152 * INUSE_RATIO_10 means that the ratio of used objects is > 0% and <= 10%. 153 * 154 * The number of fullness groups is not random. It allows us to keep 155 * difference between the least busy page in the group (minimum permitted 156 * number of ->inuse objects) and the most busy page (maximum permitted 157 * number of ->inuse objects) at a reasonable value. 158 */ 159 enum fullness_group { 160 ZS_INUSE_RATIO_0, 161 ZS_INUSE_RATIO_10, 162 /* NOTE: 8 more fullness groups here */ 163 ZS_INUSE_RATIO_99 = 10, 164 ZS_INUSE_RATIO_100, 165 NR_FULLNESS_GROUPS, 166 }; 167 168 enum class_stat_type { 169 /* NOTE: stats for 12 fullness groups here: from inuse 0 to 100 */ 170 ZS_OBJS_ALLOCATED = NR_FULLNESS_GROUPS, 171 ZS_OBJS_INUSE, 172 NR_CLASS_STAT_TYPES, 173 }; 174 175 struct zs_size_stat { 176 unsigned long objs[NR_CLASS_STAT_TYPES]; 177 }; 178 179 #ifdef CONFIG_ZSMALLOC_STAT 180 static struct dentry *zs_stat_root; 181 #endif 182 183 static size_t huge_class_size; 184 185 struct size_class { 186 struct list_head fullness_list[NR_FULLNESS_GROUPS]; 187 /* 188 * Size of objects stored in this class. Must be multiple 189 * of ZS_ALIGN. 190 */ 191 int size; 192 int objs_per_zspage; 193 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */ 194 int pages_per_zspage; 195 196 unsigned int index; 197 struct zs_size_stat stats; 198 }; 199 200 /* 201 * Placed within free objects to form a singly linked list. 202 * For every zspage, zspage->freeobj gives head of this list. 203 * 204 * This must be power of 2 and less than or equal to ZS_ALIGN 205 */ 206 struct link_free { 207 union { 208 /* 209 * Free object index; 210 * It's valid for non-allocated object 211 */ 212 unsigned long next; 213 /* 214 * Handle of allocated object. 215 */ 216 unsigned long handle; 217 }; 218 }; 219 220 struct zs_pool { 221 const char *name; 222 223 struct size_class *size_class[ZS_SIZE_CLASSES]; 224 struct kmem_cache *handle_cachep; 225 struct kmem_cache *zspage_cachep; 226 227 atomic_long_t pages_allocated; 228 229 struct zs_pool_stats stats; 230 231 /* Compact classes */ 232 struct shrinker *shrinker; 233 234 #ifdef CONFIG_ZSMALLOC_STAT 235 struct dentry *stat_dentry; 236 #endif 237 #ifdef CONFIG_COMPACTION 238 struct work_struct free_work; 239 #endif 240 spinlock_t lock; 241 atomic_t compaction_in_progress; 242 }; 243 244 struct zspage { 245 struct { 246 unsigned int huge:HUGE_BITS; 247 unsigned int fullness:FULLNESS_BITS; 248 unsigned int class:CLASS_BITS + 1; 249 unsigned int isolated:ISOLATED_BITS; 250 unsigned int magic:MAGIC_VAL_BITS; 251 }; 252 unsigned int inuse; 253 unsigned int freeobj; 254 struct page *first_page; 255 struct list_head list; /* fullness list */ 256 struct zs_pool *pool; 257 rwlock_t lock; 258 }; 259 260 struct mapping_area { 261 local_lock_t lock; 262 char *vm_buf; /* copy buffer for objects that span pages */ 263 char *vm_addr; /* address of kmap_atomic()'ed pages */ 264 enum zs_mapmode vm_mm; /* mapping mode */ 265 }; 266 267 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */ 268 static void SetZsHugePage(struct zspage *zspage) 269 { 270 zspage->huge = 1; 271 } 272 273 static bool ZsHugePage(struct zspage *zspage) 274 { 275 return zspage->huge; 276 } 277 278 static void migrate_lock_init(struct zspage *zspage); 279 static void migrate_read_lock(struct zspage *zspage); 280 static void migrate_read_unlock(struct zspage *zspage); 281 282 #ifdef CONFIG_COMPACTION 283 static void migrate_write_lock(struct zspage *zspage); 284 static void migrate_write_lock_nested(struct zspage *zspage); 285 static void migrate_write_unlock(struct zspage *zspage); 286 static void kick_deferred_free(struct zs_pool *pool); 287 static void init_deferred_free(struct zs_pool *pool); 288 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage); 289 #else 290 static void migrate_write_lock(struct zspage *zspage) {} 291 static void migrate_write_lock_nested(struct zspage *zspage) {} 292 static void migrate_write_unlock(struct zspage *zspage) {} 293 static void kick_deferred_free(struct zs_pool *pool) {} 294 static void init_deferred_free(struct zs_pool *pool) {} 295 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {} 296 #endif 297 298 static int create_cache(struct zs_pool *pool) 299 { 300 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE, 301 0, 0, NULL); 302 if (!pool->handle_cachep) 303 return 1; 304 305 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage), 306 0, 0, NULL); 307 if (!pool->zspage_cachep) { 308 kmem_cache_destroy(pool->handle_cachep); 309 pool->handle_cachep = NULL; 310 return 1; 311 } 312 313 return 0; 314 } 315 316 static void destroy_cache(struct zs_pool *pool) 317 { 318 kmem_cache_destroy(pool->handle_cachep); 319 kmem_cache_destroy(pool->zspage_cachep); 320 } 321 322 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp) 323 { 324 return (unsigned long)kmem_cache_alloc(pool->handle_cachep, 325 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 326 } 327 328 static void cache_free_handle(struct zs_pool *pool, unsigned long handle) 329 { 330 kmem_cache_free(pool->handle_cachep, (void *)handle); 331 } 332 333 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags) 334 { 335 return kmem_cache_zalloc(pool->zspage_cachep, 336 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 337 } 338 339 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage) 340 { 341 kmem_cache_free(pool->zspage_cachep, zspage); 342 } 343 344 /* pool->lock(which owns the handle) synchronizes races */ 345 static void record_obj(unsigned long handle, unsigned long obj) 346 { 347 *(unsigned long *)handle = obj; 348 } 349 350 /* zpool driver */ 351 352 #ifdef CONFIG_ZPOOL 353 354 static void *zs_zpool_create(const char *name, gfp_t gfp) 355 { 356 /* 357 * Ignore global gfp flags: zs_malloc() may be invoked from 358 * different contexts and its caller must provide a valid 359 * gfp mask. 360 */ 361 return zs_create_pool(name); 362 } 363 364 static void zs_zpool_destroy(void *pool) 365 { 366 zs_destroy_pool(pool); 367 } 368 369 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp, 370 unsigned long *handle) 371 { 372 *handle = zs_malloc(pool, size, gfp); 373 374 if (IS_ERR_VALUE(*handle)) 375 return PTR_ERR((void *)*handle); 376 return 0; 377 } 378 static void zs_zpool_free(void *pool, unsigned long handle) 379 { 380 zs_free(pool, handle); 381 } 382 383 static void *zs_zpool_map(void *pool, unsigned long handle, 384 enum zpool_mapmode mm) 385 { 386 enum zs_mapmode zs_mm; 387 388 switch (mm) { 389 case ZPOOL_MM_RO: 390 zs_mm = ZS_MM_RO; 391 break; 392 case ZPOOL_MM_WO: 393 zs_mm = ZS_MM_WO; 394 break; 395 case ZPOOL_MM_RW: 396 default: 397 zs_mm = ZS_MM_RW; 398 break; 399 } 400 401 return zs_map_object(pool, handle, zs_mm); 402 } 403 static void zs_zpool_unmap(void *pool, unsigned long handle) 404 { 405 zs_unmap_object(pool, handle); 406 } 407 408 static u64 zs_zpool_total_size(void *pool) 409 { 410 return zs_get_total_pages(pool) << PAGE_SHIFT; 411 } 412 413 static struct zpool_driver zs_zpool_driver = { 414 .type = "zsmalloc", 415 .owner = THIS_MODULE, 416 .create = zs_zpool_create, 417 .destroy = zs_zpool_destroy, 418 .malloc_support_movable = true, 419 .malloc = zs_zpool_malloc, 420 .free = zs_zpool_free, 421 .map = zs_zpool_map, 422 .unmap = zs_zpool_unmap, 423 .total_size = zs_zpool_total_size, 424 }; 425 426 MODULE_ALIAS("zpool-zsmalloc"); 427 #endif /* CONFIG_ZPOOL */ 428 429 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */ 430 static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = { 431 .lock = INIT_LOCAL_LOCK(lock), 432 }; 433 434 static __maybe_unused int is_first_page(struct page *page) 435 { 436 return PagePrivate(page); 437 } 438 439 /* Protected by pool->lock */ 440 static inline int get_zspage_inuse(struct zspage *zspage) 441 { 442 return zspage->inuse; 443 } 444 445 446 static inline void mod_zspage_inuse(struct zspage *zspage, int val) 447 { 448 zspage->inuse += val; 449 } 450 451 static inline struct page *get_first_page(struct zspage *zspage) 452 { 453 struct page *first_page = zspage->first_page; 454 455 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page); 456 return first_page; 457 } 458 459 static inline unsigned int get_first_obj_offset(struct page *page) 460 { 461 return page->page_type; 462 } 463 464 static inline void set_first_obj_offset(struct page *page, unsigned int offset) 465 { 466 page->page_type = offset; 467 } 468 469 static inline unsigned int get_freeobj(struct zspage *zspage) 470 { 471 return zspage->freeobj; 472 } 473 474 static inline void set_freeobj(struct zspage *zspage, unsigned int obj) 475 { 476 zspage->freeobj = obj; 477 } 478 479 static void get_zspage_mapping(struct zspage *zspage, 480 unsigned int *class_idx, 481 int *fullness) 482 { 483 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 484 485 *fullness = zspage->fullness; 486 *class_idx = zspage->class; 487 } 488 489 static struct size_class *zspage_class(struct zs_pool *pool, 490 struct zspage *zspage) 491 { 492 return pool->size_class[zspage->class]; 493 } 494 495 static void set_zspage_mapping(struct zspage *zspage, 496 unsigned int class_idx, 497 int fullness) 498 { 499 zspage->class = class_idx; 500 zspage->fullness = fullness; 501 } 502 503 /* 504 * zsmalloc divides the pool into various size classes where each 505 * class maintains a list of zspages where each zspage is divided 506 * into equal sized chunks. Each allocation falls into one of these 507 * classes depending on its size. This function returns index of the 508 * size class which has chunk size big enough to hold the given size. 509 */ 510 static int get_size_class_index(int size) 511 { 512 int idx = 0; 513 514 if (likely(size > ZS_MIN_ALLOC_SIZE)) 515 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, 516 ZS_SIZE_CLASS_DELTA); 517 518 return min_t(int, ZS_SIZE_CLASSES - 1, idx); 519 } 520 521 static inline void class_stat_inc(struct size_class *class, 522 int type, unsigned long cnt) 523 { 524 class->stats.objs[type] += cnt; 525 } 526 527 static inline void class_stat_dec(struct size_class *class, 528 int type, unsigned long cnt) 529 { 530 class->stats.objs[type] -= cnt; 531 } 532 533 static inline unsigned long zs_stat_get(struct size_class *class, int type) 534 { 535 return class->stats.objs[type]; 536 } 537 538 #ifdef CONFIG_ZSMALLOC_STAT 539 540 static void __init zs_stat_init(void) 541 { 542 if (!debugfs_initialized()) { 543 pr_warn("debugfs not available, stat dir not created\n"); 544 return; 545 } 546 547 zs_stat_root = debugfs_create_dir("zsmalloc", NULL); 548 } 549 550 static void __exit zs_stat_exit(void) 551 { 552 debugfs_remove_recursive(zs_stat_root); 553 } 554 555 static unsigned long zs_can_compact(struct size_class *class); 556 557 static int zs_stats_size_show(struct seq_file *s, void *v) 558 { 559 int i, fg; 560 struct zs_pool *pool = s->private; 561 struct size_class *class; 562 int objs_per_zspage; 563 unsigned long obj_allocated, obj_used, pages_used, freeable; 564 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0; 565 unsigned long total_freeable = 0; 566 unsigned long inuse_totals[NR_FULLNESS_GROUPS] = {0, }; 567 568 seq_printf(s, " %5s %5s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %13s %10s %10s %16s %8s\n", 569 "class", "size", "10%", "20%", "30%", "40%", 570 "50%", "60%", "70%", "80%", "90%", "99%", "100%", 571 "obj_allocated", "obj_used", "pages_used", 572 "pages_per_zspage", "freeable"); 573 574 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 575 576 class = pool->size_class[i]; 577 578 if (class->index != i) 579 continue; 580 581 spin_lock(&pool->lock); 582 583 seq_printf(s, " %5u %5u ", i, class->size); 584 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) { 585 inuse_totals[fg] += zs_stat_get(class, fg); 586 seq_printf(s, "%9lu ", zs_stat_get(class, fg)); 587 } 588 589 obj_allocated = zs_stat_get(class, ZS_OBJS_ALLOCATED); 590 obj_used = zs_stat_get(class, ZS_OBJS_INUSE); 591 freeable = zs_can_compact(class); 592 spin_unlock(&pool->lock); 593 594 objs_per_zspage = class->objs_per_zspage; 595 pages_used = obj_allocated / objs_per_zspage * 596 class->pages_per_zspage; 597 598 seq_printf(s, "%13lu %10lu %10lu %16d %8lu\n", 599 obj_allocated, obj_used, pages_used, 600 class->pages_per_zspage, freeable); 601 602 total_objs += obj_allocated; 603 total_used_objs += obj_used; 604 total_pages += pages_used; 605 total_freeable += freeable; 606 } 607 608 seq_puts(s, "\n"); 609 seq_printf(s, " %5s %5s ", "Total", ""); 610 611 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) 612 seq_printf(s, "%9lu ", inuse_totals[fg]); 613 614 seq_printf(s, "%13lu %10lu %10lu %16s %8lu\n", 615 total_objs, total_used_objs, total_pages, "", 616 total_freeable); 617 618 return 0; 619 } 620 DEFINE_SHOW_ATTRIBUTE(zs_stats_size); 621 622 static void zs_pool_stat_create(struct zs_pool *pool, const char *name) 623 { 624 if (!zs_stat_root) { 625 pr_warn("no root stat dir, not creating <%s> stat dir\n", name); 626 return; 627 } 628 629 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root); 630 631 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool, 632 &zs_stats_size_fops); 633 } 634 635 static void zs_pool_stat_destroy(struct zs_pool *pool) 636 { 637 debugfs_remove_recursive(pool->stat_dentry); 638 } 639 640 #else /* CONFIG_ZSMALLOC_STAT */ 641 static void __init zs_stat_init(void) 642 { 643 } 644 645 static void __exit zs_stat_exit(void) 646 { 647 } 648 649 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name) 650 { 651 } 652 653 static inline void zs_pool_stat_destroy(struct zs_pool *pool) 654 { 655 } 656 #endif 657 658 659 /* 660 * For each size class, zspages are divided into different groups 661 * depending on their usage ratio. This function returns fullness 662 * status of the given page. 663 */ 664 static int get_fullness_group(struct size_class *class, struct zspage *zspage) 665 { 666 int inuse, objs_per_zspage, ratio; 667 668 inuse = get_zspage_inuse(zspage); 669 objs_per_zspage = class->objs_per_zspage; 670 671 if (inuse == 0) 672 return ZS_INUSE_RATIO_0; 673 if (inuse == objs_per_zspage) 674 return ZS_INUSE_RATIO_100; 675 676 ratio = 100 * inuse / objs_per_zspage; 677 /* 678 * Take integer division into consideration: a page with one inuse 679 * object out of 127 possible, will end up having 0 usage ratio, 680 * which is wrong as it belongs in ZS_INUSE_RATIO_10 fullness group. 681 */ 682 return ratio / 10 + 1; 683 } 684 685 /* 686 * Each size class maintains various freelists and zspages are assigned 687 * to one of these freelists based on the number of live objects they 688 * have. This functions inserts the given zspage into the freelist 689 * identified by <class, fullness_group>. 690 */ 691 static void insert_zspage(struct size_class *class, 692 struct zspage *zspage, 693 int fullness) 694 { 695 class_stat_inc(class, fullness, 1); 696 list_add(&zspage->list, &class->fullness_list[fullness]); 697 } 698 699 /* 700 * This function removes the given zspage from the freelist identified 701 * by <class, fullness_group>. 702 */ 703 static void remove_zspage(struct size_class *class, 704 struct zspage *zspage, 705 int fullness) 706 { 707 VM_BUG_ON(list_empty(&class->fullness_list[fullness])); 708 709 list_del_init(&zspage->list); 710 class_stat_dec(class, fullness, 1); 711 } 712 713 /* 714 * Each size class maintains zspages in different fullness groups depending 715 * on the number of live objects they contain. When allocating or freeing 716 * objects, the fullness status of the page can change, for instance, from 717 * INUSE_RATIO_80 to INUSE_RATIO_70 when freeing an object. This function 718 * checks if such a status change has occurred for the given page and 719 * accordingly moves the page from the list of the old fullness group to that 720 * of the new fullness group. 721 */ 722 static int fix_fullness_group(struct size_class *class, struct zspage *zspage) 723 { 724 int class_idx; 725 int currfg, newfg; 726 727 get_zspage_mapping(zspage, &class_idx, &currfg); 728 newfg = get_fullness_group(class, zspage); 729 if (newfg == currfg) 730 goto out; 731 732 remove_zspage(class, zspage, currfg); 733 insert_zspage(class, zspage, newfg); 734 set_zspage_mapping(zspage, class_idx, newfg); 735 out: 736 return newfg; 737 } 738 739 static struct zspage *get_zspage(struct page *page) 740 { 741 struct zspage *zspage = (struct zspage *)page_private(page); 742 743 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 744 return zspage; 745 } 746 747 static struct page *get_next_page(struct page *page) 748 { 749 struct zspage *zspage = get_zspage(page); 750 751 if (unlikely(ZsHugePage(zspage))) 752 return NULL; 753 754 return (struct page *)page->index; 755 } 756 757 /** 758 * obj_to_location - get (<page>, <obj_idx>) from encoded object value 759 * @obj: the encoded object value 760 * @page: page object resides in zspage 761 * @obj_idx: object index 762 */ 763 static void obj_to_location(unsigned long obj, struct page **page, 764 unsigned int *obj_idx) 765 { 766 obj >>= OBJ_TAG_BITS; 767 *page = pfn_to_page(obj >> OBJ_INDEX_BITS); 768 *obj_idx = (obj & OBJ_INDEX_MASK); 769 } 770 771 static void obj_to_page(unsigned long obj, struct page **page) 772 { 773 obj >>= OBJ_TAG_BITS; 774 *page = pfn_to_page(obj >> OBJ_INDEX_BITS); 775 } 776 777 /** 778 * location_to_obj - get obj value encoded from (<page>, <obj_idx>) 779 * @page: page object resides in zspage 780 * @obj_idx: object index 781 */ 782 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx) 783 { 784 unsigned long obj; 785 786 obj = page_to_pfn(page) << OBJ_INDEX_BITS; 787 obj |= obj_idx & OBJ_INDEX_MASK; 788 obj <<= OBJ_TAG_BITS; 789 790 return obj; 791 } 792 793 static unsigned long handle_to_obj(unsigned long handle) 794 { 795 return *(unsigned long *)handle; 796 } 797 798 static inline bool obj_allocated(struct page *page, void *obj, 799 unsigned long *phandle) 800 { 801 unsigned long handle; 802 struct zspage *zspage = get_zspage(page); 803 804 if (unlikely(ZsHugePage(zspage))) { 805 VM_BUG_ON_PAGE(!is_first_page(page), page); 806 handle = page->index; 807 } else 808 handle = *(unsigned long *)obj; 809 810 if (!(handle & OBJ_ALLOCATED_TAG)) 811 return false; 812 813 /* Clear all tags before returning the handle */ 814 *phandle = handle & ~OBJ_TAG_MASK; 815 return true; 816 } 817 818 static void reset_page(struct page *page) 819 { 820 __ClearPageMovable(page); 821 ClearPagePrivate(page); 822 set_page_private(page, 0); 823 page_mapcount_reset(page); 824 page->index = 0; 825 } 826 827 static int trylock_zspage(struct zspage *zspage) 828 { 829 struct page *cursor, *fail; 830 831 for (cursor = get_first_page(zspage); cursor != NULL; cursor = 832 get_next_page(cursor)) { 833 if (!trylock_page(cursor)) { 834 fail = cursor; 835 goto unlock; 836 } 837 } 838 839 return 1; 840 unlock: 841 for (cursor = get_first_page(zspage); cursor != fail; cursor = 842 get_next_page(cursor)) 843 unlock_page(cursor); 844 845 return 0; 846 } 847 848 static void __free_zspage(struct zs_pool *pool, struct size_class *class, 849 struct zspage *zspage) 850 { 851 struct page *page, *next; 852 int fg; 853 unsigned int class_idx; 854 855 get_zspage_mapping(zspage, &class_idx, &fg); 856 857 assert_spin_locked(&pool->lock); 858 859 VM_BUG_ON(get_zspage_inuse(zspage)); 860 VM_BUG_ON(fg != ZS_INUSE_RATIO_0); 861 862 next = page = get_first_page(zspage); 863 do { 864 VM_BUG_ON_PAGE(!PageLocked(page), page); 865 next = get_next_page(page); 866 reset_page(page); 867 unlock_page(page); 868 dec_zone_page_state(page, NR_ZSPAGES); 869 put_page(page); 870 page = next; 871 } while (page != NULL); 872 873 cache_free_zspage(pool, zspage); 874 875 class_stat_dec(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage); 876 atomic_long_sub(class->pages_per_zspage, &pool->pages_allocated); 877 } 878 879 static void free_zspage(struct zs_pool *pool, struct size_class *class, 880 struct zspage *zspage) 881 { 882 VM_BUG_ON(get_zspage_inuse(zspage)); 883 VM_BUG_ON(list_empty(&zspage->list)); 884 885 /* 886 * Since zs_free couldn't be sleepable, this function cannot call 887 * lock_page. The page locks trylock_zspage got will be released 888 * by __free_zspage. 889 */ 890 if (!trylock_zspage(zspage)) { 891 kick_deferred_free(pool); 892 return; 893 } 894 895 remove_zspage(class, zspage, ZS_INUSE_RATIO_0); 896 __free_zspage(pool, class, zspage); 897 } 898 899 /* Initialize a newly allocated zspage */ 900 static void init_zspage(struct size_class *class, struct zspage *zspage) 901 { 902 unsigned int freeobj = 1; 903 unsigned long off = 0; 904 struct page *page = get_first_page(zspage); 905 906 while (page) { 907 struct page *next_page; 908 struct link_free *link; 909 void *vaddr; 910 911 set_first_obj_offset(page, off); 912 913 vaddr = kmap_atomic(page); 914 link = (struct link_free *)vaddr + off / sizeof(*link); 915 916 while ((off += class->size) < PAGE_SIZE) { 917 link->next = freeobj++ << OBJ_TAG_BITS; 918 link += class->size / sizeof(*link); 919 } 920 921 /* 922 * We now come to the last (full or partial) object on this 923 * page, which must point to the first object on the next 924 * page (if present) 925 */ 926 next_page = get_next_page(page); 927 if (next_page) { 928 link->next = freeobj++ << OBJ_TAG_BITS; 929 } else { 930 /* 931 * Reset OBJ_TAG_BITS bit to last link to tell 932 * whether it's allocated object or not. 933 */ 934 link->next = -1UL << OBJ_TAG_BITS; 935 } 936 kunmap_atomic(vaddr); 937 page = next_page; 938 off %= PAGE_SIZE; 939 } 940 941 set_freeobj(zspage, 0); 942 } 943 944 static void create_page_chain(struct size_class *class, struct zspage *zspage, 945 struct page *pages[]) 946 { 947 int i; 948 struct page *page; 949 struct page *prev_page = NULL; 950 int nr_pages = class->pages_per_zspage; 951 952 /* 953 * Allocate individual pages and link them together as: 954 * 1. all pages are linked together using page->index 955 * 2. each sub-page point to zspage using page->private 956 * 957 * we set PG_private to identify the first page (i.e. no other sub-page 958 * has this flag set). 959 */ 960 for (i = 0; i < nr_pages; i++) { 961 page = pages[i]; 962 set_page_private(page, (unsigned long)zspage); 963 page->index = 0; 964 if (i == 0) { 965 zspage->first_page = page; 966 SetPagePrivate(page); 967 if (unlikely(class->objs_per_zspage == 1 && 968 class->pages_per_zspage == 1)) 969 SetZsHugePage(zspage); 970 } else { 971 prev_page->index = (unsigned long)page; 972 } 973 prev_page = page; 974 } 975 } 976 977 /* 978 * Allocate a zspage for the given size class 979 */ 980 static struct zspage *alloc_zspage(struct zs_pool *pool, 981 struct size_class *class, 982 gfp_t gfp) 983 { 984 int i; 985 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE]; 986 struct zspage *zspage = cache_alloc_zspage(pool, gfp); 987 988 if (!zspage) 989 return NULL; 990 991 zspage->magic = ZSPAGE_MAGIC; 992 migrate_lock_init(zspage); 993 994 for (i = 0; i < class->pages_per_zspage; i++) { 995 struct page *page; 996 997 page = alloc_page(gfp); 998 if (!page) { 999 while (--i >= 0) { 1000 dec_zone_page_state(pages[i], NR_ZSPAGES); 1001 __free_page(pages[i]); 1002 } 1003 cache_free_zspage(pool, zspage); 1004 return NULL; 1005 } 1006 1007 inc_zone_page_state(page, NR_ZSPAGES); 1008 pages[i] = page; 1009 } 1010 1011 create_page_chain(class, zspage, pages); 1012 init_zspage(class, zspage); 1013 zspage->pool = pool; 1014 1015 return zspage; 1016 } 1017 1018 static struct zspage *find_get_zspage(struct size_class *class) 1019 { 1020 int i; 1021 struct zspage *zspage; 1022 1023 for (i = ZS_INUSE_RATIO_99; i >= ZS_INUSE_RATIO_0; i--) { 1024 zspage = list_first_entry_or_null(&class->fullness_list[i], 1025 struct zspage, list); 1026 if (zspage) 1027 break; 1028 } 1029 1030 return zspage; 1031 } 1032 1033 static inline int __zs_cpu_up(struct mapping_area *area) 1034 { 1035 /* 1036 * Make sure we don't leak memory if a cpu UP notification 1037 * and zs_init() race and both call zs_cpu_up() on the same cpu 1038 */ 1039 if (area->vm_buf) 1040 return 0; 1041 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL); 1042 if (!area->vm_buf) 1043 return -ENOMEM; 1044 return 0; 1045 } 1046 1047 static inline void __zs_cpu_down(struct mapping_area *area) 1048 { 1049 kfree(area->vm_buf); 1050 area->vm_buf = NULL; 1051 } 1052 1053 static void *__zs_map_object(struct mapping_area *area, 1054 struct page *pages[2], int off, int size) 1055 { 1056 int sizes[2]; 1057 void *addr; 1058 char *buf = area->vm_buf; 1059 1060 /* disable page faults to match kmap_atomic() return conditions */ 1061 pagefault_disable(); 1062 1063 /* no read fastpath */ 1064 if (area->vm_mm == ZS_MM_WO) 1065 goto out; 1066 1067 sizes[0] = PAGE_SIZE - off; 1068 sizes[1] = size - sizes[0]; 1069 1070 /* copy object to per-cpu buffer */ 1071 addr = kmap_atomic(pages[0]); 1072 memcpy(buf, addr + off, sizes[0]); 1073 kunmap_atomic(addr); 1074 addr = kmap_atomic(pages[1]); 1075 memcpy(buf + sizes[0], addr, sizes[1]); 1076 kunmap_atomic(addr); 1077 out: 1078 return area->vm_buf; 1079 } 1080 1081 static void __zs_unmap_object(struct mapping_area *area, 1082 struct page *pages[2], int off, int size) 1083 { 1084 int sizes[2]; 1085 void *addr; 1086 char *buf; 1087 1088 /* no write fastpath */ 1089 if (area->vm_mm == ZS_MM_RO) 1090 goto out; 1091 1092 buf = area->vm_buf; 1093 buf = buf + ZS_HANDLE_SIZE; 1094 size -= ZS_HANDLE_SIZE; 1095 off += ZS_HANDLE_SIZE; 1096 1097 sizes[0] = PAGE_SIZE - off; 1098 sizes[1] = size - sizes[0]; 1099 1100 /* copy per-cpu buffer to object */ 1101 addr = kmap_atomic(pages[0]); 1102 memcpy(addr + off, buf, sizes[0]); 1103 kunmap_atomic(addr); 1104 addr = kmap_atomic(pages[1]); 1105 memcpy(addr, buf + sizes[0], sizes[1]); 1106 kunmap_atomic(addr); 1107 1108 out: 1109 /* enable page faults to match kunmap_atomic() return conditions */ 1110 pagefault_enable(); 1111 } 1112 1113 static int zs_cpu_prepare(unsigned int cpu) 1114 { 1115 struct mapping_area *area; 1116 1117 area = &per_cpu(zs_map_area, cpu); 1118 return __zs_cpu_up(area); 1119 } 1120 1121 static int zs_cpu_dead(unsigned int cpu) 1122 { 1123 struct mapping_area *area; 1124 1125 area = &per_cpu(zs_map_area, cpu); 1126 __zs_cpu_down(area); 1127 return 0; 1128 } 1129 1130 static bool can_merge(struct size_class *prev, int pages_per_zspage, 1131 int objs_per_zspage) 1132 { 1133 if (prev->pages_per_zspage == pages_per_zspage && 1134 prev->objs_per_zspage == objs_per_zspage) 1135 return true; 1136 1137 return false; 1138 } 1139 1140 static bool zspage_full(struct size_class *class, struct zspage *zspage) 1141 { 1142 return get_zspage_inuse(zspage) == class->objs_per_zspage; 1143 } 1144 1145 static bool zspage_empty(struct zspage *zspage) 1146 { 1147 return get_zspage_inuse(zspage) == 0; 1148 } 1149 1150 /** 1151 * zs_lookup_class_index() - Returns index of the zsmalloc &size_class 1152 * that hold objects of the provided size. 1153 * @pool: zsmalloc pool to use 1154 * @size: object size 1155 * 1156 * Context: Any context. 1157 * 1158 * Return: the index of the zsmalloc &size_class that hold objects of the 1159 * provided size. 1160 */ 1161 unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size) 1162 { 1163 struct size_class *class; 1164 1165 class = pool->size_class[get_size_class_index(size)]; 1166 1167 return class->index; 1168 } 1169 EXPORT_SYMBOL_GPL(zs_lookup_class_index); 1170 1171 unsigned long zs_get_total_pages(struct zs_pool *pool) 1172 { 1173 return atomic_long_read(&pool->pages_allocated); 1174 } 1175 EXPORT_SYMBOL_GPL(zs_get_total_pages); 1176 1177 /** 1178 * zs_map_object - get address of allocated object from handle. 1179 * @pool: pool from which the object was allocated 1180 * @handle: handle returned from zs_malloc 1181 * @mm: mapping mode to use 1182 * 1183 * Before using an object allocated from zs_malloc, it must be mapped using 1184 * this function. When done with the object, it must be unmapped using 1185 * zs_unmap_object. 1186 * 1187 * Only one object can be mapped per cpu at a time. There is no protection 1188 * against nested mappings. 1189 * 1190 * This function returns with preemption and page faults disabled. 1191 */ 1192 void *zs_map_object(struct zs_pool *pool, unsigned long handle, 1193 enum zs_mapmode mm) 1194 { 1195 struct zspage *zspage; 1196 struct page *page; 1197 unsigned long obj, off; 1198 unsigned int obj_idx; 1199 1200 struct size_class *class; 1201 struct mapping_area *area; 1202 struct page *pages[2]; 1203 void *ret; 1204 1205 /* 1206 * Because we use per-cpu mapping areas shared among the 1207 * pools/users, we can't allow mapping in interrupt context 1208 * because it can corrupt another users mappings. 1209 */ 1210 BUG_ON(in_interrupt()); 1211 1212 /* It guarantees it can get zspage from handle safely */ 1213 spin_lock(&pool->lock); 1214 obj = handle_to_obj(handle); 1215 obj_to_location(obj, &page, &obj_idx); 1216 zspage = get_zspage(page); 1217 1218 /* 1219 * migration cannot move any zpages in this zspage. Here, pool->lock 1220 * is too heavy since callers would take some time until they calls 1221 * zs_unmap_object API so delegate the locking from class to zspage 1222 * which is smaller granularity. 1223 */ 1224 migrate_read_lock(zspage); 1225 spin_unlock(&pool->lock); 1226 1227 class = zspage_class(pool, zspage); 1228 off = offset_in_page(class->size * obj_idx); 1229 1230 local_lock(&zs_map_area.lock); 1231 area = this_cpu_ptr(&zs_map_area); 1232 area->vm_mm = mm; 1233 if (off + class->size <= PAGE_SIZE) { 1234 /* this object is contained entirely within a page */ 1235 area->vm_addr = kmap_atomic(page); 1236 ret = area->vm_addr + off; 1237 goto out; 1238 } 1239 1240 /* this object spans two pages */ 1241 pages[0] = page; 1242 pages[1] = get_next_page(page); 1243 BUG_ON(!pages[1]); 1244 1245 ret = __zs_map_object(area, pages, off, class->size); 1246 out: 1247 if (likely(!ZsHugePage(zspage))) 1248 ret += ZS_HANDLE_SIZE; 1249 1250 return ret; 1251 } 1252 EXPORT_SYMBOL_GPL(zs_map_object); 1253 1254 void zs_unmap_object(struct zs_pool *pool, unsigned long handle) 1255 { 1256 struct zspage *zspage; 1257 struct page *page; 1258 unsigned long obj, off; 1259 unsigned int obj_idx; 1260 1261 struct size_class *class; 1262 struct mapping_area *area; 1263 1264 obj = handle_to_obj(handle); 1265 obj_to_location(obj, &page, &obj_idx); 1266 zspage = get_zspage(page); 1267 class = zspage_class(pool, zspage); 1268 off = offset_in_page(class->size * obj_idx); 1269 1270 area = this_cpu_ptr(&zs_map_area); 1271 if (off + class->size <= PAGE_SIZE) 1272 kunmap_atomic(area->vm_addr); 1273 else { 1274 struct page *pages[2]; 1275 1276 pages[0] = page; 1277 pages[1] = get_next_page(page); 1278 BUG_ON(!pages[1]); 1279 1280 __zs_unmap_object(area, pages, off, class->size); 1281 } 1282 local_unlock(&zs_map_area.lock); 1283 1284 migrate_read_unlock(zspage); 1285 } 1286 EXPORT_SYMBOL_GPL(zs_unmap_object); 1287 1288 /** 1289 * zs_huge_class_size() - Returns the size (in bytes) of the first huge 1290 * zsmalloc &size_class. 1291 * @pool: zsmalloc pool to use 1292 * 1293 * The function returns the size of the first huge class - any object of equal 1294 * or bigger size will be stored in zspage consisting of a single physical 1295 * page. 1296 * 1297 * Context: Any context. 1298 * 1299 * Return: the size (in bytes) of the first huge zsmalloc &size_class. 1300 */ 1301 size_t zs_huge_class_size(struct zs_pool *pool) 1302 { 1303 return huge_class_size; 1304 } 1305 EXPORT_SYMBOL_GPL(zs_huge_class_size); 1306 1307 static unsigned long obj_malloc(struct zs_pool *pool, 1308 struct zspage *zspage, unsigned long handle) 1309 { 1310 int i, nr_page, offset; 1311 unsigned long obj; 1312 struct link_free *link; 1313 struct size_class *class; 1314 1315 struct page *m_page; 1316 unsigned long m_offset; 1317 void *vaddr; 1318 1319 class = pool->size_class[zspage->class]; 1320 handle |= OBJ_ALLOCATED_TAG; 1321 obj = get_freeobj(zspage); 1322 1323 offset = obj * class->size; 1324 nr_page = offset >> PAGE_SHIFT; 1325 m_offset = offset_in_page(offset); 1326 m_page = get_first_page(zspage); 1327 1328 for (i = 0; i < nr_page; i++) 1329 m_page = get_next_page(m_page); 1330 1331 vaddr = kmap_atomic(m_page); 1332 link = (struct link_free *)vaddr + m_offset / sizeof(*link); 1333 set_freeobj(zspage, link->next >> OBJ_TAG_BITS); 1334 if (likely(!ZsHugePage(zspage))) 1335 /* record handle in the header of allocated chunk */ 1336 link->handle = handle; 1337 else 1338 /* record handle to page->index */ 1339 zspage->first_page->index = handle; 1340 1341 kunmap_atomic(vaddr); 1342 mod_zspage_inuse(zspage, 1); 1343 1344 obj = location_to_obj(m_page, obj); 1345 1346 return obj; 1347 } 1348 1349 1350 /** 1351 * zs_malloc - Allocate block of given size from pool. 1352 * @pool: pool to allocate from 1353 * @size: size of block to allocate 1354 * @gfp: gfp flags when allocating object 1355 * 1356 * On success, handle to the allocated object is returned, 1357 * otherwise an ERR_PTR(). 1358 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail. 1359 */ 1360 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp) 1361 { 1362 unsigned long handle, obj; 1363 struct size_class *class; 1364 int newfg; 1365 struct zspage *zspage; 1366 1367 if (unlikely(!size)) 1368 return (unsigned long)ERR_PTR(-EINVAL); 1369 1370 if (unlikely(size > ZS_MAX_ALLOC_SIZE)) 1371 return (unsigned long)ERR_PTR(-ENOSPC); 1372 1373 handle = cache_alloc_handle(pool, gfp); 1374 if (!handle) 1375 return (unsigned long)ERR_PTR(-ENOMEM); 1376 1377 /* extra space in chunk to keep the handle */ 1378 size += ZS_HANDLE_SIZE; 1379 class = pool->size_class[get_size_class_index(size)]; 1380 1381 /* pool->lock effectively protects the zpage migration */ 1382 spin_lock(&pool->lock); 1383 zspage = find_get_zspage(class); 1384 if (likely(zspage)) { 1385 obj = obj_malloc(pool, zspage, handle); 1386 /* Now move the zspage to another fullness group, if required */ 1387 fix_fullness_group(class, zspage); 1388 record_obj(handle, obj); 1389 class_stat_inc(class, ZS_OBJS_INUSE, 1); 1390 1391 goto out; 1392 } 1393 1394 spin_unlock(&pool->lock); 1395 1396 zspage = alloc_zspage(pool, class, gfp); 1397 if (!zspage) { 1398 cache_free_handle(pool, handle); 1399 return (unsigned long)ERR_PTR(-ENOMEM); 1400 } 1401 1402 spin_lock(&pool->lock); 1403 obj = obj_malloc(pool, zspage, handle); 1404 newfg = get_fullness_group(class, zspage); 1405 insert_zspage(class, zspage, newfg); 1406 set_zspage_mapping(zspage, class->index, newfg); 1407 record_obj(handle, obj); 1408 atomic_long_add(class->pages_per_zspage, &pool->pages_allocated); 1409 class_stat_inc(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage); 1410 class_stat_inc(class, ZS_OBJS_INUSE, 1); 1411 1412 /* We completely set up zspage so mark them as movable */ 1413 SetZsPageMovable(pool, zspage); 1414 out: 1415 spin_unlock(&pool->lock); 1416 1417 return handle; 1418 } 1419 EXPORT_SYMBOL_GPL(zs_malloc); 1420 1421 static void obj_free(int class_size, unsigned long obj) 1422 { 1423 struct link_free *link; 1424 struct zspage *zspage; 1425 struct page *f_page; 1426 unsigned long f_offset; 1427 unsigned int f_objidx; 1428 void *vaddr; 1429 1430 obj_to_location(obj, &f_page, &f_objidx); 1431 f_offset = offset_in_page(class_size * f_objidx); 1432 zspage = get_zspage(f_page); 1433 1434 vaddr = kmap_atomic(f_page); 1435 link = (struct link_free *)(vaddr + f_offset); 1436 1437 /* Insert this object in containing zspage's freelist */ 1438 if (likely(!ZsHugePage(zspage))) 1439 link->next = get_freeobj(zspage) << OBJ_TAG_BITS; 1440 else 1441 f_page->index = 0; 1442 set_freeobj(zspage, f_objidx); 1443 1444 kunmap_atomic(vaddr); 1445 mod_zspage_inuse(zspage, -1); 1446 } 1447 1448 void zs_free(struct zs_pool *pool, unsigned long handle) 1449 { 1450 struct zspage *zspage; 1451 struct page *f_page; 1452 unsigned long obj; 1453 struct size_class *class; 1454 int fullness; 1455 1456 if (IS_ERR_OR_NULL((void *)handle)) 1457 return; 1458 1459 /* 1460 * The pool->lock protects the race with zpage's migration 1461 * so it's safe to get the page from handle. 1462 */ 1463 spin_lock(&pool->lock); 1464 obj = handle_to_obj(handle); 1465 obj_to_page(obj, &f_page); 1466 zspage = get_zspage(f_page); 1467 class = zspage_class(pool, zspage); 1468 1469 class_stat_dec(class, ZS_OBJS_INUSE, 1); 1470 obj_free(class->size, obj); 1471 1472 fullness = fix_fullness_group(class, zspage); 1473 if (fullness == ZS_INUSE_RATIO_0) 1474 free_zspage(pool, class, zspage); 1475 1476 spin_unlock(&pool->lock); 1477 cache_free_handle(pool, handle); 1478 } 1479 EXPORT_SYMBOL_GPL(zs_free); 1480 1481 static void zs_object_copy(struct size_class *class, unsigned long dst, 1482 unsigned long src) 1483 { 1484 struct page *s_page, *d_page; 1485 unsigned int s_objidx, d_objidx; 1486 unsigned long s_off, d_off; 1487 void *s_addr, *d_addr; 1488 int s_size, d_size, size; 1489 int written = 0; 1490 1491 s_size = d_size = class->size; 1492 1493 obj_to_location(src, &s_page, &s_objidx); 1494 obj_to_location(dst, &d_page, &d_objidx); 1495 1496 s_off = offset_in_page(class->size * s_objidx); 1497 d_off = offset_in_page(class->size * d_objidx); 1498 1499 if (s_off + class->size > PAGE_SIZE) 1500 s_size = PAGE_SIZE - s_off; 1501 1502 if (d_off + class->size > PAGE_SIZE) 1503 d_size = PAGE_SIZE - d_off; 1504 1505 s_addr = kmap_atomic(s_page); 1506 d_addr = kmap_atomic(d_page); 1507 1508 while (1) { 1509 size = min(s_size, d_size); 1510 memcpy(d_addr + d_off, s_addr + s_off, size); 1511 written += size; 1512 1513 if (written == class->size) 1514 break; 1515 1516 s_off += size; 1517 s_size -= size; 1518 d_off += size; 1519 d_size -= size; 1520 1521 /* 1522 * Calling kunmap_atomic(d_addr) is necessary. kunmap_atomic() 1523 * calls must occurs in reverse order of calls to kmap_atomic(). 1524 * So, to call kunmap_atomic(s_addr) we should first call 1525 * kunmap_atomic(d_addr). For more details see 1526 * Documentation/mm/highmem.rst. 1527 */ 1528 if (s_off >= PAGE_SIZE) { 1529 kunmap_atomic(d_addr); 1530 kunmap_atomic(s_addr); 1531 s_page = get_next_page(s_page); 1532 s_addr = kmap_atomic(s_page); 1533 d_addr = kmap_atomic(d_page); 1534 s_size = class->size - written; 1535 s_off = 0; 1536 } 1537 1538 if (d_off >= PAGE_SIZE) { 1539 kunmap_atomic(d_addr); 1540 d_page = get_next_page(d_page); 1541 d_addr = kmap_atomic(d_page); 1542 d_size = class->size - written; 1543 d_off = 0; 1544 } 1545 } 1546 1547 kunmap_atomic(d_addr); 1548 kunmap_atomic(s_addr); 1549 } 1550 1551 /* 1552 * Find alloced object in zspage from index object and 1553 * return handle. 1554 */ 1555 static unsigned long find_alloced_obj(struct size_class *class, 1556 struct page *page, int *obj_idx) 1557 { 1558 unsigned int offset; 1559 int index = *obj_idx; 1560 unsigned long handle = 0; 1561 void *addr = kmap_atomic(page); 1562 1563 offset = get_first_obj_offset(page); 1564 offset += class->size * index; 1565 1566 while (offset < PAGE_SIZE) { 1567 if (obj_allocated(page, addr + offset, &handle)) 1568 break; 1569 1570 offset += class->size; 1571 index++; 1572 } 1573 1574 kunmap_atomic(addr); 1575 1576 *obj_idx = index; 1577 1578 return handle; 1579 } 1580 1581 static void migrate_zspage(struct zs_pool *pool, struct zspage *src_zspage, 1582 struct zspage *dst_zspage) 1583 { 1584 unsigned long used_obj, free_obj; 1585 unsigned long handle; 1586 int obj_idx = 0; 1587 struct page *s_page = get_first_page(src_zspage); 1588 struct size_class *class = pool->size_class[src_zspage->class]; 1589 1590 while (1) { 1591 handle = find_alloced_obj(class, s_page, &obj_idx); 1592 if (!handle) { 1593 s_page = get_next_page(s_page); 1594 if (!s_page) 1595 break; 1596 obj_idx = 0; 1597 continue; 1598 } 1599 1600 used_obj = handle_to_obj(handle); 1601 free_obj = obj_malloc(pool, dst_zspage, handle); 1602 zs_object_copy(class, free_obj, used_obj); 1603 obj_idx++; 1604 record_obj(handle, free_obj); 1605 obj_free(class->size, used_obj); 1606 1607 /* Stop if there is no more space */ 1608 if (zspage_full(class, dst_zspage)) 1609 break; 1610 1611 /* Stop if there are no more objects to migrate */ 1612 if (zspage_empty(src_zspage)) 1613 break; 1614 } 1615 } 1616 1617 static struct zspage *isolate_src_zspage(struct size_class *class) 1618 { 1619 struct zspage *zspage; 1620 int fg; 1621 1622 for (fg = ZS_INUSE_RATIO_10; fg <= ZS_INUSE_RATIO_99; fg++) { 1623 zspage = list_first_entry_or_null(&class->fullness_list[fg], 1624 struct zspage, list); 1625 if (zspage) { 1626 remove_zspage(class, zspage, fg); 1627 return zspage; 1628 } 1629 } 1630 1631 return zspage; 1632 } 1633 1634 static struct zspage *isolate_dst_zspage(struct size_class *class) 1635 { 1636 struct zspage *zspage; 1637 int fg; 1638 1639 for (fg = ZS_INUSE_RATIO_99; fg >= ZS_INUSE_RATIO_10; fg--) { 1640 zspage = list_first_entry_or_null(&class->fullness_list[fg], 1641 struct zspage, list); 1642 if (zspage) { 1643 remove_zspage(class, zspage, fg); 1644 return zspage; 1645 } 1646 } 1647 1648 return zspage; 1649 } 1650 1651 /* 1652 * putback_zspage - add @zspage into right class's fullness list 1653 * @class: destination class 1654 * @zspage: target page 1655 * 1656 * Return @zspage's fullness status 1657 */ 1658 static int putback_zspage(struct size_class *class, struct zspage *zspage) 1659 { 1660 int fullness; 1661 1662 fullness = get_fullness_group(class, zspage); 1663 insert_zspage(class, zspage, fullness); 1664 set_zspage_mapping(zspage, class->index, fullness); 1665 1666 return fullness; 1667 } 1668 1669 #ifdef CONFIG_COMPACTION 1670 /* 1671 * To prevent zspage destroy during migration, zspage freeing should 1672 * hold locks of all pages in the zspage. 1673 */ 1674 static void lock_zspage(struct zspage *zspage) 1675 { 1676 struct page *curr_page, *page; 1677 1678 /* 1679 * Pages we haven't locked yet can be migrated off the list while we're 1680 * trying to lock them, so we need to be careful and only attempt to 1681 * lock each page under migrate_read_lock(). Otherwise, the page we lock 1682 * may no longer belong to the zspage. This means that we may wait for 1683 * the wrong page to unlock, so we must take a reference to the page 1684 * prior to waiting for it to unlock outside migrate_read_lock(). 1685 */ 1686 while (1) { 1687 migrate_read_lock(zspage); 1688 page = get_first_page(zspage); 1689 if (trylock_page(page)) 1690 break; 1691 get_page(page); 1692 migrate_read_unlock(zspage); 1693 wait_on_page_locked(page); 1694 put_page(page); 1695 } 1696 1697 curr_page = page; 1698 while ((page = get_next_page(curr_page))) { 1699 if (trylock_page(page)) { 1700 curr_page = page; 1701 } else { 1702 get_page(page); 1703 migrate_read_unlock(zspage); 1704 wait_on_page_locked(page); 1705 put_page(page); 1706 migrate_read_lock(zspage); 1707 } 1708 } 1709 migrate_read_unlock(zspage); 1710 } 1711 #endif /* CONFIG_COMPACTION */ 1712 1713 static void migrate_lock_init(struct zspage *zspage) 1714 { 1715 rwlock_init(&zspage->lock); 1716 } 1717 1718 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock) 1719 { 1720 read_lock(&zspage->lock); 1721 } 1722 1723 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock) 1724 { 1725 read_unlock(&zspage->lock); 1726 } 1727 1728 #ifdef CONFIG_COMPACTION 1729 static void migrate_write_lock(struct zspage *zspage) 1730 { 1731 write_lock(&zspage->lock); 1732 } 1733 1734 static void migrate_write_lock_nested(struct zspage *zspage) 1735 { 1736 write_lock_nested(&zspage->lock, SINGLE_DEPTH_NESTING); 1737 } 1738 1739 static void migrate_write_unlock(struct zspage *zspage) 1740 { 1741 write_unlock(&zspage->lock); 1742 } 1743 1744 /* Number of isolated subpage for *page migration* in this zspage */ 1745 static void inc_zspage_isolation(struct zspage *zspage) 1746 { 1747 zspage->isolated++; 1748 } 1749 1750 static void dec_zspage_isolation(struct zspage *zspage) 1751 { 1752 VM_BUG_ON(zspage->isolated == 0); 1753 zspage->isolated--; 1754 } 1755 1756 static const struct movable_operations zsmalloc_mops; 1757 1758 static void replace_sub_page(struct size_class *class, struct zspage *zspage, 1759 struct page *newpage, struct page *oldpage) 1760 { 1761 struct page *page; 1762 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, }; 1763 int idx = 0; 1764 1765 page = get_first_page(zspage); 1766 do { 1767 if (page == oldpage) 1768 pages[idx] = newpage; 1769 else 1770 pages[idx] = page; 1771 idx++; 1772 } while ((page = get_next_page(page)) != NULL); 1773 1774 create_page_chain(class, zspage, pages); 1775 set_first_obj_offset(newpage, get_first_obj_offset(oldpage)); 1776 if (unlikely(ZsHugePage(zspage))) 1777 newpage->index = oldpage->index; 1778 __SetPageMovable(newpage, &zsmalloc_mops); 1779 } 1780 1781 static bool zs_page_isolate(struct page *page, isolate_mode_t mode) 1782 { 1783 struct zs_pool *pool; 1784 struct zspage *zspage; 1785 1786 /* 1787 * Page is locked so zspage couldn't be destroyed. For detail, look at 1788 * lock_zspage in free_zspage. 1789 */ 1790 VM_BUG_ON_PAGE(PageIsolated(page), page); 1791 1792 zspage = get_zspage(page); 1793 pool = zspage->pool; 1794 spin_lock(&pool->lock); 1795 inc_zspage_isolation(zspage); 1796 spin_unlock(&pool->lock); 1797 1798 return true; 1799 } 1800 1801 static int zs_page_migrate(struct page *newpage, struct page *page, 1802 enum migrate_mode mode) 1803 { 1804 struct zs_pool *pool; 1805 struct size_class *class; 1806 struct zspage *zspage; 1807 struct page *dummy; 1808 void *s_addr, *d_addr, *addr; 1809 unsigned int offset; 1810 unsigned long handle; 1811 unsigned long old_obj, new_obj; 1812 unsigned int obj_idx; 1813 1814 /* 1815 * We cannot support the _NO_COPY case here, because copy needs to 1816 * happen under the zs lock, which does not work with 1817 * MIGRATE_SYNC_NO_COPY workflow. 1818 */ 1819 if (mode == MIGRATE_SYNC_NO_COPY) 1820 return -EINVAL; 1821 1822 VM_BUG_ON_PAGE(!PageIsolated(page), page); 1823 1824 /* The page is locked, so this pointer must remain valid */ 1825 zspage = get_zspage(page); 1826 pool = zspage->pool; 1827 1828 /* 1829 * The pool's lock protects the race between zpage migration 1830 * and zs_free. 1831 */ 1832 spin_lock(&pool->lock); 1833 class = zspage_class(pool, zspage); 1834 1835 /* the migrate_write_lock protects zpage access via zs_map_object */ 1836 migrate_write_lock(zspage); 1837 1838 offset = get_first_obj_offset(page); 1839 s_addr = kmap_atomic(page); 1840 1841 /* 1842 * Here, any user cannot access all objects in the zspage so let's move. 1843 */ 1844 d_addr = kmap_atomic(newpage); 1845 copy_page(d_addr, s_addr); 1846 kunmap_atomic(d_addr); 1847 1848 for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE; 1849 addr += class->size) { 1850 if (obj_allocated(page, addr, &handle)) { 1851 1852 old_obj = handle_to_obj(handle); 1853 obj_to_location(old_obj, &dummy, &obj_idx); 1854 new_obj = (unsigned long)location_to_obj(newpage, 1855 obj_idx); 1856 record_obj(handle, new_obj); 1857 } 1858 } 1859 kunmap_atomic(s_addr); 1860 1861 replace_sub_page(class, zspage, newpage, page); 1862 dec_zspage_isolation(zspage); 1863 /* 1864 * Since we complete the data copy and set up new zspage structure, 1865 * it's okay to release the pool's lock. 1866 */ 1867 spin_unlock(&pool->lock); 1868 migrate_write_unlock(zspage); 1869 1870 get_page(newpage); 1871 if (page_zone(newpage) != page_zone(page)) { 1872 dec_zone_page_state(page, NR_ZSPAGES); 1873 inc_zone_page_state(newpage, NR_ZSPAGES); 1874 } 1875 1876 reset_page(page); 1877 put_page(page); 1878 1879 return MIGRATEPAGE_SUCCESS; 1880 } 1881 1882 static void zs_page_putback(struct page *page) 1883 { 1884 struct zs_pool *pool; 1885 struct zspage *zspage; 1886 1887 VM_BUG_ON_PAGE(!PageIsolated(page), page); 1888 1889 zspage = get_zspage(page); 1890 pool = zspage->pool; 1891 spin_lock(&pool->lock); 1892 dec_zspage_isolation(zspage); 1893 spin_unlock(&pool->lock); 1894 } 1895 1896 static const struct movable_operations zsmalloc_mops = { 1897 .isolate_page = zs_page_isolate, 1898 .migrate_page = zs_page_migrate, 1899 .putback_page = zs_page_putback, 1900 }; 1901 1902 /* 1903 * Caller should hold page_lock of all pages in the zspage 1904 * In here, we cannot use zspage meta data. 1905 */ 1906 static void async_free_zspage(struct work_struct *work) 1907 { 1908 int i; 1909 struct size_class *class; 1910 unsigned int class_idx; 1911 int fullness; 1912 struct zspage *zspage, *tmp; 1913 LIST_HEAD(free_pages); 1914 struct zs_pool *pool = container_of(work, struct zs_pool, 1915 free_work); 1916 1917 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 1918 class = pool->size_class[i]; 1919 if (class->index != i) 1920 continue; 1921 1922 spin_lock(&pool->lock); 1923 list_splice_init(&class->fullness_list[ZS_INUSE_RATIO_0], 1924 &free_pages); 1925 spin_unlock(&pool->lock); 1926 } 1927 1928 list_for_each_entry_safe(zspage, tmp, &free_pages, list) { 1929 list_del(&zspage->list); 1930 lock_zspage(zspage); 1931 1932 get_zspage_mapping(zspage, &class_idx, &fullness); 1933 VM_BUG_ON(fullness != ZS_INUSE_RATIO_0); 1934 class = pool->size_class[class_idx]; 1935 spin_lock(&pool->lock); 1936 __free_zspage(pool, class, zspage); 1937 spin_unlock(&pool->lock); 1938 } 1939 }; 1940 1941 static void kick_deferred_free(struct zs_pool *pool) 1942 { 1943 schedule_work(&pool->free_work); 1944 } 1945 1946 static void zs_flush_migration(struct zs_pool *pool) 1947 { 1948 flush_work(&pool->free_work); 1949 } 1950 1951 static void init_deferred_free(struct zs_pool *pool) 1952 { 1953 INIT_WORK(&pool->free_work, async_free_zspage); 1954 } 1955 1956 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) 1957 { 1958 struct page *page = get_first_page(zspage); 1959 1960 do { 1961 WARN_ON(!trylock_page(page)); 1962 __SetPageMovable(page, &zsmalloc_mops); 1963 unlock_page(page); 1964 } while ((page = get_next_page(page)) != NULL); 1965 } 1966 #else 1967 static inline void zs_flush_migration(struct zs_pool *pool) { } 1968 #endif 1969 1970 /* 1971 * 1972 * Based on the number of unused allocated objects calculate 1973 * and return the number of pages that we can free. 1974 */ 1975 static unsigned long zs_can_compact(struct size_class *class) 1976 { 1977 unsigned long obj_wasted; 1978 unsigned long obj_allocated = zs_stat_get(class, ZS_OBJS_ALLOCATED); 1979 unsigned long obj_used = zs_stat_get(class, ZS_OBJS_INUSE); 1980 1981 if (obj_allocated <= obj_used) 1982 return 0; 1983 1984 obj_wasted = obj_allocated - obj_used; 1985 obj_wasted /= class->objs_per_zspage; 1986 1987 return obj_wasted * class->pages_per_zspage; 1988 } 1989 1990 static unsigned long __zs_compact(struct zs_pool *pool, 1991 struct size_class *class) 1992 { 1993 struct zspage *src_zspage = NULL; 1994 struct zspage *dst_zspage = NULL; 1995 unsigned long pages_freed = 0; 1996 1997 /* 1998 * protect the race between zpage migration and zs_free 1999 * as well as zpage allocation/free 2000 */ 2001 spin_lock(&pool->lock); 2002 while (zs_can_compact(class)) { 2003 int fg; 2004 2005 if (!dst_zspage) { 2006 dst_zspage = isolate_dst_zspage(class); 2007 if (!dst_zspage) 2008 break; 2009 migrate_write_lock(dst_zspage); 2010 } 2011 2012 src_zspage = isolate_src_zspage(class); 2013 if (!src_zspage) 2014 break; 2015 2016 migrate_write_lock_nested(src_zspage); 2017 2018 migrate_zspage(pool, src_zspage, dst_zspage); 2019 fg = putback_zspage(class, src_zspage); 2020 migrate_write_unlock(src_zspage); 2021 2022 if (fg == ZS_INUSE_RATIO_0) { 2023 free_zspage(pool, class, src_zspage); 2024 pages_freed += class->pages_per_zspage; 2025 } 2026 src_zspage = NULL; 2027 2028 if (get_fullness_group(class, dst_zspage) == ZS_INUSE_RATIO_100 2029 || spin_is_contended(&pool->lock)) { 2030 putback_zspage(class, dst_zspage); 2031 migrate_write_unlock(dst_zspage); 2032 dst_zspage = NULL; 2033 2034 spin_unlock(&pool->lock); 2035 cond_resched(); 2036 spin_lock(&pool->lock); 2037 } 2038 } 2039 2040 if (src_zspage) { 2041 putback_zspage(class, src_zspage); 2042 migrate_write_unlock(src_zspage); 2043 } 2044 2045 if (dst_zspage) { 2046 putback_zspage(class, dst_zspage); 2047 migrate_write_unlock(dst_zspage); 2048 } 2049 spin_unlock(&pool->lock); 2050 2051 return pages_freed; 2052 } 2053 2054 unsigned long zs_compact(struct zs_pool *pool) 2055 { 2056 int i; 2057 struct size_class *class; 2058 unsigned long pages_freed = 0; 2059 2060 /* 2061 * Pool compaction is performed under pool->lock so it is basically 2062 * single-threaded. Having more than one thread in __zs_compact() 2063 * will increase pool->lock contention, which will impact other 2064 * zsmalloc operations that need pool->lock. 2065 */ 2066 if (atomic_xchg(&pool->compaction_in_progress, 1)) 2067 return 0; 2068 2069 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2070 class = pool->size_class[i]; 2071 if (class->index != i) 2072 continue; 2073 pages_freed += __zs_compact(pool, class); 2074 } 2075 atomic_long_add(pages_freed, &pool->stats.pages_compacted); 2076 atomic_set(&pool->compaction_in_progress, 0); 2077 2078 return pages_freed; 2079 } 2080 EXPORT_SYMBOL_GPL(zs_compact); 2081 2082 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats) 2083 { 2084 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats)); 2085 } 2086 EXPORT_SYMBOL_GPL(zs_pool_stats); 2087 2088 static unsigned long zs_shrinker_scan(struct shrinker *shrinker, 2089 struct shrink_control *sc) 2090 { 2091 unsigned long pages_freed; 2092 struct zs_pool *pool = shrinker->private_data; 2093 2094 /* 2095 * Compact classes and calculate compaction delta. 2096 * Can run concurrently with a manually triggered 2097 * (by user) compaction. 2098 */ 2099 pages_freed = zs_compact(pool); 2100 2101 return pages_freed ? pages_freed : SHRINK_STOP; 2102 } 2103 2104 static unsigned long zs_shrinker_count(struct shrinker *shrinker, 2105 struct shrink_control *sc) 2106 { 2107 int i; 2108 struct size_class *class; 2109 unsigned long pages_to_free = 0; 2110 struct zs_pool *pool = shrinker->private_data; 2111 2112 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2113 class = pool->size_class[i]; 2114 if (class->index != i) 2115 continue; 2116 2117 pages_to_free += zs_can_compact(class); 2118 } 2119 2120 return pages_to_free; 2121 } 2122 2123 static void zs_unregister_shrinker(struct zs_pool *pool) 2124 { 2125 shrinker_free(pool->shrinker); 2126 } 2127 2128 static int zs_register_shrinker(struct zs_pool *pool) 2129 { 2130 pool->shrinker = shrinker_alloc(0, "mm-zspool:%s", pool->name); 2131 if (!pool->shrinker) 2132 return -ENOMEM; 2133 2134 pool->shrinker->scan_objects = zs_shrinker_scan; 2135 pool->shrinker->count_objects = zs_shrinker_count; 2136 pool->shrinker->batch = 0; 2137 pool->shrinker->private_data = pool; 2138 2139 shrinker_register(pool->shrinker); 2140 2141 return 0; 2142 } 2143 2144 static int calculate_zspage_chain_size(int class_size) 2145 { 2146 int i, min_waste = INT_MAX; 2147 int chain_size = 1; 2148 2149 if (is_power_of_2(class_size)) 2150 return chain_size; 2151 2152 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { 2153 int waste; 2154 2155 waste = (i * PAGE_SIZE) % class_size; 2156 if (waste < min_waste) { 2157 min_waste = waste; 2158 chain_size = i; 2159 } 2160 } 2161 2162 return chain_size; 2163 } 2164 2165 /** 2166 * zs_create_pool - Creates an allocation pool to work from. 2167 * @name: pool name to be created 2168 * 2169 * This function must be called before anything when using 2170 * the zsmalloc allocator. 2171 * 2172 * On success, a pointer to the newly created pool is returned, 2173 * otherwise NULL. 2174 */ 2175 struct zs_pool *zs_create_pool(const char *name) 2176 { 2177 int i; 2178 struct zs_pool *pool; 2179 struct size_class *prev_class = NULL; 2180 2181 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 2182 if (!pool) 2183 return NULL; 2184 2185 init_deferred_free(pool); 2186 spin_lock_init(&pool->lock); 2187 atomic_set(&pool->compaction_in_progress, 0); 2188 2189 pool->name = kstrdup(name, GFP_KERNEL); 2190 if (!pool->name) 2191 goto err; 2192 2193 if (create_cache(pool)) 2194 goto err; 2195 2196 /* 2197 * Iterate reversely, because, size of size_class that we want to use 2198 * for merging should be larger or equal to current size. 2199 */ 2200 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2201 int size; 2202 int pages_per_zspage; 2203 int objs_per_zspage; 2204 struct size_class *class; 2205 int fullness; 2206 2207 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; 2208 if (size > ZS_MAX_ALLOC_SIZE) 2209 size = ZS_MAX_ALLOC_SIZE; 2210 pages_per_zspage = calculate_zspage_chain_size(size); 2211 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size; 2212 2213 /* 2214 * We iterate from biggest down to smallest classes, 2215 * so huge_class_size holds the size of the first huge 2216 * class. Any object bigger than or equal to that will 2217 * endup in the huge class. 2218 */ 2219 if (pages_per_zspage != 1 && objs_per_zspage != 1 && 2220 !huge_class_size) { 2221 huge_class_size = size; 2222 /* 2223 * The object uses ZS_HANDLE_SIZE bytes to store the 2224 * handle. We need to subtract it, because zs_malloc() 2225 * unconditionally adds handle size before it performs 2226 * size class search - so object may be smaller than 2227 * huge class size, yet it still can end up in the huge 2228 * class because it grows by ZS_HANDLE_SIZE extra bytes 2229 * right before class lookup. 2230 */ 2231 huge_class_size -= (ZS_HANDLE_SIZE - 1); 2232 } 2233 2234 /* 2235 * size_class is used for normal zsmalloc operation such 2236 * as alloc/free for that size. Although it is natural that we 2237 * have one size_class for each size, there is a chance that we 2238 * can get more memory utilization if we use one size_class for 2239 * many different sizes whose size_class have same 2240 * characteristics. So, we makes size_class point to 2241 * previous size_class if possible. 2242 */ 2243 if (prev_class) { 2244 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) { 2245 pool->size_class[i] = prev_class; 2246 continue; 2247 } 2248 } 2249 2250 class = kzalloc(sizeof(struct size_class), GFP_KERNEL); 2251 if (!class) 2252 goto err; 2253 2254 class->size = size; 2255 class->index = i; 2256 class->pages_per_zspage = pages_per_zspage; 2257 class->objs_per_zspage = objs_per_zspage; 2258 pool->size_class[i] = class; 2259 2260 fullness = ZS_INUSE_RATIO_0; 2261 while (fullness < NR_FULLNESS_GROUPS) { 2262 INIT_LIST_HEAD(&class->fullness_list[fullness]); 2263 fullness++; 2264 } 2265 2266 prev_class = class; 2267 } 2268 2269 /* debug only, don't abort if it fails */ 2270 zs_pool_stat_create(pool, name); 2271 2272 /* 2273 * Not critical since shrinker is only used to trigger internal 2274 * defragmentation of the pool which is pretty optional thing. If 2275 * registration fails we still can use the pool normally and user can 2276 * trigger compaction manually. Thus, ignore return code. 2277 */ 2278 zs_register_shrinker(pool); 2279 2280 return pool; 2281 2282 err: 2283 zs_destroy_pool(pool); 2284 return NULL; 2285 } 2286 EXPORT_SYMBOL_GPL(zs_create_pool); 2287 2288 void zs_destroy_pool(struct zs_pool *pool) 2289 { 2290 int i; 2291 2292 zs_unregister_shrinker(pool); 2293 zs_flush_migration(pool); 2294 zs_pool_stat_destroy(pool); 2295 2296 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 2297 int fg; 2298 struct size_class *class = pool->size_class[i]; 2299 2300 if (!class) 2301 continue; 2302 2303 if (class->index != i) 2304 continue; 2305 2306 for (fg = ZS_INUSE_RATIO_0; fg < NR_FULLNESS_GROUPS; fg++) { 2307 if (list_empty(&class->fullness_list[fg])) 2308 continue; 2309 2310 pr_err("Class-%d fullness group %d is not empty\n", 2311 class->size, fg); 2312 } 2313 kfree(class); 2314 } 2315 2316 destroy_cache(pool); 2317 kfree(pool->name); 2318 kfree(pool); 2319 } 2320 EXPORT_SYMBOL_GPL(zs_destroy_pool); 2321 2322 static int __init zs_init(void) 2323 { 2324 int ret; 2325 2326 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare", 2327 zs_cpu_prepare, zs_cpu_dead); 2328 if (ret) 2329 goto out; 2330 2331 #ifdef CONFIG_ZPOOL 2332 zpool_register_driver(&zs_zpool_driver); 2333 #endif 2334 2335 zs_stat_init(); 2336 2337 return 0; 2338 2339 out: 2340 return ret; 2341 } 2342 2343 static void __exit zs_exit(void) 2344 { 2345 #ifdef CONFIG_ZPOOL 2346 zpool_unregister_driver(&zs_zpool_driver); 2347 #endif 2348 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE); 2349 2350 zs_stat_exit(); 2351 } 2352 2353 module_init(zs_init); 2354 module_exit(zs_exit); 2355 2356 MODULE_LICENSE("Dual BSD/GPL"); 2357 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 2358