1 /* 2 * zsmalloc memory allocator 3 * 4 * Copyright (C) 2011 Nitin Gupta 5 * Copyright (C) 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the license that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 */ 13 14 /* 15 * Following is how we use various fields and flags of underlying 16 * struct page(s) to form a zspage. 17 * 18 * Usage of struct page fields: 19 * page->private: points to zspage 20 * page->freelist(index): links together all component pages of a zspage 21 * For the huge page, this is always 0, so we use this field 22 * to store handle. 23 * page->units: first object offset in a subpage of zspage 24 * 25 * Usage of struct page flags: 26 * PG_private: identifies the first component page 27 * PG_owner_priv_1: identifies the huge component page 28 * 29 */ 30 31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 32 33 #include <linux/module.h> 34 #include <linux/kernel.h> 35 #include <linux/sched.h> 36 #include <linux/magic.h> 37 #include <linux/bitops.h> 38 #include <linux/errno.h> 39 #include <linux/highmem.h> 40 #include <linux/string.h> 41 #include <linux/slab.h> 42 #include <asm/tlbflush.h> 43 #include <asm/pgtable.h> 44 #include <linux/cpumask.h> 45 #include <linux/cpu.h> 46 #include <linux/vmalloc.h> 47 #include <linux/preempt.h> 48 #include <linux/spinlock.h> 49 #include <linux/shrinker.h> 50 #include <linux/types.h> 51 #include <linux/debugfs.h> 52 #include <linux/zsmalloc.h> 53 #include <linux/zpool.h> 54 #include <linux/mount.h> 55 #include <linux/migrate.h> 56 #include <linux/pagemap.h> 57 #include <linux/fs.h> 58 59 #define ZSPAGE_MAGIC 0x58 60 61 /* 62 * This must be power of 2 and greater than of equal to sizeof(link_free). 63 * These two conditions ensure that any 'struct link_free' itself doesn't 64 * span more than 1 page which avoids complex case of mapping 2 pages simply 65 * to restore link_free pointer values. 66 */ 67 #define ZS_ALIGN 8 68 69 /* 70 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single) 71 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N. 72 */ 73 #define ZS_MAX_ZSPAGE_ORDER 2 74 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER) 75 76 #define ZS_HANDLE_SIZE (sizeof(unsigned long)) 77 78 /* 79 * Object location (<PFN>, <obj_idx>) is encoded as 80 * as single (unsigned long) handle value. 81 * 82 * Note that object index <obj_idx> starts from 0. 83 * 84 * This is made more complicated by various memory models and PAE. 85 */ 86 87 #ifndef MAX_POSSIBLE_PHYSMEM_BITS 88 #ifdef MAX_PHYSMEM_BITS 89 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS 90 #else 91 /* 92 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just 93 * be PAGE_SHIFT 94 */ 95 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG 96 #endif 97 #endif 98 99 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT) 100 101 /* 102 * Memory for allocating for handle keeps object position by 103 * encoding <page, obj_idx> and the encoded value has a room 104 * in least bit(ie, look at obj_to_location). 105 * We use the bit to synchronize between object access by 106 * user and migration. 107 */ 108 #define HANDLE_PIN_BIT 0 109 110 /* 111 * Head in allocated object should have OBJ_ALLOCATED_TAG 112 * to identify the object was allocated or not. 113 * It's okay to add the status bit in the least bit because 114 * header keeps handle which is 4byte-aligned address so we 115 * have room for two bit at least. 116 */ 117 #define OBJ_ALLOCATED_TAG 1 118 #define OBJ_TAG_BITS 1 119 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS) 120 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1) 121 122 #define FULLNESS_BITS 2 123 #define CLASS_BITS 8 124 #define ISOLATED_BITS 3 125 #define MAGIC_VAL_BITS 8 126 127 #define MAX(a, b) ((a) >= (b) ? (a) : (b)) 128 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */ 129 #define ZS_MIN_ALLOC_SIZE \ 130 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS)) 131 /* each chunk includes extra space to keep handle */ 132 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE 133 134 /* 135 * On systems with 4K page size, this gives 255 size classes! There is a 136 * trader-off here: 137 * - Large number of size classes is potentially wasteful as free page are 138 * spread across these classes 139 * - Small number of size classes causes large internal fragmentation 140 * - Probably its better to use specific size classes (empirically 141 * determined). NOTE: all those class sizes must be set as multiple of 142 * ZS_ALIGN to make sure link_free itself never has to span 2 pages. 143 * 144 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN 145 * (reason above) 146 */ 147 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS) 148 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \ 149 ZS_SIZE_CLASS_DELTA) + 1) 150 151 enum fullness_group { 152 ZS_EMPTY, 153 ZS_ALMOST_EMPTY, 154 ZS_ALMOST_FULL, 155 ZS_FULL, 156 NR_ZS_FULLNESS, 157 }; 158 159 enum zs_stat_type { 160 CLASS_EMPTY, 161 CLASS_ALMOST_EMPTY, 162 CLASS_ALMOST_FULL, 163 CLASS_FULL, 164 OBJ_ALLOCATED, 165 OBJ_USED, 166 NR_ZS_STAT_TYPE, 167 }; 168 169 struct zs_size_stat { 170 unsigned long objs[NR_ZS_STAT_TYPE]; 171 }; 172 173 #ifdef CONFIG_ZSMALLOC_STAT 174 static struct dentry *zs_stat_root; 175 #endif 176 177 #ifdef CONFIG_COMPACTION 178 static struct vfsmount *zsmalloc_mnt; 179 #endif 180 181 /* 182 * We assign a page to ZS_ALMOST_EMPTY fullness group when: 183 * n <= N / f, where 184 * n = number of allocated objects 185 * N = total number of objects zspage can store 186 * f = fullness_threshold_frac 187 * 188 * Similarly, we assign zspage to: 189 * ZS_ALMOST_FULL when n > N / f 190 * ZS_EMPTY when n == 0 191 * ZS_FULL when n == N 192 * 193 * (see: fix_fullness_group()) 194 */ 195 static const int fullness_threshold_frac = 4; 196 static size_t huge_class_size; 197 198 struct size_class { 199 spinlock_t lock; 200 struct list_head fullness_list[NR_ZS_FULLNESS]; 201 /* 202 * Size of objects stored in this class. Must be multiple 203 * of ZS_ALIGN. 204 */ 205 int size; 206 int objs_per_zspage; 207 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */ 208 int pages_per_zspage; 209 210 unsigned int index; 211 struct zs_size_stat stats; 212 }; 213 214 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */ 215 static void SetPageHugeObject(struct page *page) 216 { 217 SetPageOwnerPriv1(page); 218 } 219 220 static void ClearPageHugeObject(struct page *page) 221 { 222 ClearPageOwnerPriv1(page); 223 } 224 225 static int PageHugeObject(struct page *page) 226 { 227 return PageOwnerPriv1(page); 228 } 229 230 /* 231 * Placed within free objects to form a singly linked list. 232 * For every zspage, zspage->freeobj gives head of this list. 233 * 234 * This must be power of 2 and less than or equal to ZS_ALIGN 235 */ 236 struct link_free { 237 union { 238 /* 239 * Free object index; 240 * It's valid for non-allocated object 241 */ 242 unsigned long next; 243 /* 244 * Handle of allocated object. 245 */ 246 unsigned long handle; 247 }; 248 }; 249 250 struct zs_pool { 251 const char *name; 252 253 struct size_class *size_class[ZS_SIZE_CLASSES]; 254 struct kmem_cache *handle_cachep; 255 struct kmem_cache *zspage_cachep; 256 257 atomic_long_t pages_allocated; 258 259 struct zs_pool_stats stats; 260 261 /* Compact classes */ 262 struct shrinker shrinker; 263 264 #ifdef CONFIG_ZSMALLOC_STAT 265 struct dentry *stat_dentry; 266 #endif 267 #ifdef CONFIG_COMPACTION 268 struct inode *inode; 269 struct work_struct free_work; 270 #endif 271 }; 272 273 struct zspage { 274 struct { 275 unsigned int fullness:FULLNESS_BITS; 276 unsigned int class:CLASS_BITS + 1; 277 unsigned int isolated:ISOLATED_BITS; 278 unsigned int magic:MAGIC_VAL_BITS; 279 }; 280 unsigned int inuse; 281 unsigned int freeobj; 282 struct page *first_page; 283 struct list_head list; /* fullness list */ 284 #ifdef CONFIG_COMPACTION 285 rwlock_t lock; 286 #endif 287 }; 288 289 struct mapping_area { 290 #ifdef CONFIG_PGTABLE_MAPPING 291 struct vm_struct *vm; /* vm area for mapping object that span pages */ 292 #else 293 char *vm_buf; /* copy buffer for objects that span pages */ 294 #endif 295 char *vm_addr; /* address of kmap_atomic()'ed pages */ 296 enum zs_mapmode vm_mm; /* mapping mode */ 297 }; 298 299 #ifdef CONFIG_COMPACTION 300 static int zs_register_migration(struct zs_pool *pool); 301 static void zs_unregister_migration(struct zs_pool *pool); 302 static void migrate_lock_init(struct zspage *zspage); 303 static void migrate_read_lock(struct zspage *zspage); 304 static void migrate_read_unlock(struct zspage *zspage); 305 static void kick_deferred_free(struct zs_pool *pool); 306 static void init_deferred_free(struct zs_pool *pool); 307 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage); 308 #else 309 static int zsmalloc_mount(void) { return 0; } 310 static void zsmalloc_unmount(void) {} 311 static int zs_register_migration(struct zs_pool *pool) { return 0; } 312 static void zs_unregister_migration(struct zs_pool *pool) {} 313 static void migrate_lock_init(struct zspage *zspage) {} 314 static void migrate_read_lock(struct zspage *zspage) {} 315 static void migrate_read_unlock(struct zspage *zspage) {} 316 static void kick_deferred_free(struct zs_pool *pool) {} 317 static void init_deferred_free(struct zs_pool *pool) {} 318 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {} 319 #endif 320 321 static int create_cache(struct zs_pool *pool) 322 { 323 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE, 324 0, 0, NULL); 325 if (!pool->handle_cachep) 326 return 1; 327 328 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage), 329 0, 0, NULL); 330 if (!pool->zspage_cachep) { 331 kmem_cache_destroy(pool->handle_cachep); 332 pool->handle_cachep = NULL; 333 return 1; 334 } 335 336 return 0; 337 } 338 339 static void destroy_cache(struct zs_pool *pool) 340 { 341 kmem_cache_destroy(pool->handle_cachep); 342 kmem_cache_destroy(pool->zspage_cachep); 343 } 344 345 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp) 346 { 347 return (unsigned long)kmem_cache_alloc(pool->handle_cachep, 348 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 349 } 350 351 static void cache_free_handle(struct zs_pool *pool, unsigned long handle) 352 { 353 kmem_cache_free(pool->handle_cachep, (void *)handle); 354 } 355 356 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags) 357 { 358 return kmem_cache_alloc(pool->zspage_cachep, 359 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 360 } 361 362 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage) 363 { 364 kmem_cache_free(pool->zspage_cachep, zspage); 365 } 366 367 static void record_obj(unsigned long handle, unsigned long obj) 368 { 369 /* 370 * lsb of @obj represents handle lock while other bits 371 * represent object value the handle is pointing so 372 * updating shouldn't do store tearing. 373 */ 374 WRITE_ONCE(*(unsigned long *)handle, obj); 375 } 376 377 /* zpool driver */ 378 379 #ifdef CONFIG_ZPOOL 380 381 static void *zs_zpool_create(const char *name, gfp_t gfp, 382 const struct zpool_ops *zpool_ops, 383 struct zpool *zpool) 384 { 385 /* 386 * Ignore global gfp flags: zs_malloc() may be invoked from 387 * different contexts and its caller must provide a valid 388 * gfp mask. 389 */ 390 return zs_create_pool(name); 391 } 392 393 static void zs_zpool_destroy(void *pool) 394 { 395 zs_destroy_pool(pool); 396 } 397 398 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp, 399 unsigned long *handle) 400 { 401 *handle = zs_malloc(pool, size, gfp); 402 return *handle ? 0 : -1; 403 } 404 static void zs_zpool_free(void *pool, unsigned long handle) 405 { 406 zs_free(pool, handle); 407 } 408 409 static void *zs_zpool_map(void *pool, unsigned long handle, 410 enum zpool_mapmode mm) 411 { 412 enum zs_mapmode zs_mm; 413 414 switch (mm) { 415 case ZPOOL_MM_RO: 416 zs_mm = ZS_MM_RO; 417 break; 418 case ZPOOL_MM_WO: 419 zs_mm = ZS_MM_WO; 420 break; 421 case ZPOOL_MM_RW: /* fall through */ 422 default: 423 zs_mm = ZS_MM_RW; 424 break; 425 } 426 427 return zs_map_object(pool, handle, zs_mm); 428 } 429 static void zs_zpool_unmap(void *pool, unsigned long handle) 430 { 431 zs_unmap_object(pool, handle); 432 } 433 434 static u64 zs_zpool_total_size(void *pool) 435 { 436 return zs_get_total_pages(pool) << PAGE_SHIFT; 437 } 438 439 static struct zpool_driver zs_zpool_driver = { 440 .type = "zsmalloc", 441 .owner = THIS_MODULE, 442 .create = zs_zpool_create, 443 .destroy = zs_zpool_destroy, 444 .malloc = zs_zpool_malloc, 445 .free = zs_zpool_free, 446 .map = zs_zpool_map, 447 .unmap = zs_zpool_unmap, 448 .total_size = zs_zpool_total_size, 449 }; 450 451 MODULE_ALIAS("zpool-zsmalloc"); 452 #endif /* CONFIG_ZPOOL */ 453 454 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */ 455 static DEFINE_PER_CPU(struct mapping_area, zs_map_area); 456 457 static bool is_zspage_isolated(struct zspage *zspage) 458 { 459 return zspage->isolated; 460 } 461 462 static __maybe_unused int is_first_page(struct page *page) 463 { 464 return PagePrivate(page); 465 } 466 467 /* Protected by class->lock */ 468 static inline int get_zspage_inuse(struct zspage *zspage) 469 { 470 return zspage->inuse; 471 } 472 473 static inline void set_zspage_inuse(struct zspage *zspage, int val) 474 { 475 zspage->inuse = val; 476 } 477 478 static inline void mod_zspage_inuse(struct zspage *zspage, int val) 479 { 480 zspage->inuse += val; 481 } 482 483 static inline struct page *get_first_page(struct zspage *zspage) 484 { 485 struct page *first_page = zspage->first_page; 486 487 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page); 488 return first_page; 489 } 490 491 static inline int get_first_obj_offset(struct page *page) 492 { 493 return page->units; 494 } 495 496 static inline void set_first_obj_offset(struct page *page, int offset) 497 { 498 page->units = offset; 499 } 500 501 static inline unsigned int get_freeobj(struct zspage *zspage) 502 { 503 return zspage->freeobj; 504 } 505 506 static inline void set_freeobj(struct zspage *zspage, unsigned int obj) 507 { 508 zspage->freeobj = obj; 509 } 510 511 static void get_zspage_mapping(struct zspage *zspage, 512 unsigned int *class_idx, 513 enum fullness_group *fullness) 514 { 515 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 516 517 *fullness = zspage->fullness; 518 *class_idx = zspage->class; 519 } 520 521 static void set_zspage_mapping(struct zspage *zspage, 522 unsigned int class_idx, 523 enum fullness_group fullness) 524 { 525 zspage->class = class_idx; 526 zspage->fullness = fullness; 527 } 528 529 /* 530 * zsmalloc divides the pool into various size classes where each 531 * class maintains a list of zspages where each zspage is divided 532 * into equal sized chunks. Each allocation falls into one of these 533 * classes depending on its size. This function returns index of the 534 * size class which has chunk size big enough to hold the give size. 535 */ 536 static int get_size_class_index(int size) 537 { 538 int idx = 0; 539 540 if (likely(size > ZS_MIN_ALLOC_SIZE)) 541 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, 542 ZS_SIZE_CLASS_DELTA); 543 544 return min_t(int, ZS_SIZE_CLASSES - 1, idx); 545 } 546 547 /* type can be of enum type zs_stat_type or fullness_group */ 548 static inline void zs_stat_inc(struct size_class *class, 549 int type, unsigned long cnt) 550 { 551 class->stats.objs[type] += cnt; 552 } 553 554 /* type can be of enum type zs_stat_type or fullness_group */ 555 static inline void zs_stat_dec(struct size_class *class, 556 int type, unsigned long cnt) 557 { 558 class->stats.objs[type] -= cnt; 559 } 560 561 /* type can be of enum type zs_stat_type or fullness_group */ 562 static inline unsigned long zs_stat_get(struct size_class *class, 563 int type) 564 { 565 return class->stats.objs[type]; 566 } 567 568 #ifdef CONFIG_ZSMALLOC_STAT 569 570 static void __init zs_stat_init(void) 571 { 572 if (!debugfs_initialized()) { 573 pr_warn("debugfs not available, stat dir not created\n"); 574 return; 575 } 576 577 zs_stat_root = debugfs_create_dir("zsmalloc", NULL); 578 if (!zs_stat_root) 579 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n"); 580 } 581 582 static void __exit zs_stat_exit(void) 583 { 584 debugfs_remove_recursive(zs_stat_root); 585 } 586 587 static unsigned long zs_can_compact(struct size_class *class); 588 589 static int zs_stats_size_show(struct seq_file *s, void *v) 590 { 591 int i; 592 struct zs_pool *pool = s->private; 593 struct size_class *class; 594 int objs_per_zspage; 595 unsigned long class_almost_full, class_almost_empty; 596 unsigned long obj_allocated, obj_used, pages_used, freeable; 597 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0; 598 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0; 599 unsigned long total_freeable = 0; 600 601 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n", 602 "class", "size", "almost_full", "almost_empty", 603 "obj_allocated", "obj_used", "pages_used", 604 "pages_per_zspage", "freeable"); 605 606 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 607 class = pool->size_class[i]; 608 609 if (class->index != i) 610 continue; 611 612 spin_lock(&class->lock); 613 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL); 614 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY); 615 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); 616 obj_used = zs_stat_get(class, OBJ_USED); 617 freeable = zs_can_compact(class); 618 spin_unlock(&class->lock); 619 620 objs_per_zspage = class->objs_per_zspage; 621 pages_used = obj_allocated / objs_per_zspage * 622 class->pages_per_zspage; 623 624 seq_printf(s, " %5u %5u %11lu %12lu %13lu" 625 " %10lu %10lu %16d %8lu\n", 626 i, class->size, class_almost_full, class_almost_empty, 627 obj_allocated, obj_used, pages_used, 628 class->pages_per_zspage, freeable); 629 630 total_class_almost_full += class_almost_full; 631 total_class_almost_empty += class_almost_empty; 632 total_objs += obj_allocated; 633 total_used_objs += obj_used; 634 total_pages += pages_used; 635 total_freeable += freeable; 636 } 637 638 seq_puts(s, "\n"); 639 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n", 640 "Total", "", total_class_almost_full, 641 total_class_almost_empty, total_objs, 642 total_used_objs, total_pages, "", total_freeable); 643 644 return 0; 645 } 646 DEFINE_SHOW_ATTRIBUTE(zs_stats_size); 647 648 static void zs_pool_stat_create(struct zs_pool *pool, const char *name) 649 { 650 struct dentry *entry; 651 652 if (!zs_stat_root) { 653 pr_warn("no root stat dir, not creating <%s> stat dir\n", name); 654 return; 655 } 656 657 entry = debugfs_create_dir(name, zs_stat_root); 658 if (!entry) { 659 pr_warn("debugfs dir <%s> creation failed\n", name); 660 return; 661 } 662 pool->stat_dentry = entry; 663 664 entry = debugfs_create_file("classes", S_IFREG | 0444, 665 pool->stat_dentry, pool, 666 &zs_stats_size_fops); 667 if (!entry) { 668 pr_warn("%s: debugfs file entry <%s> creation failed\n", 669 name, "classes"); 670 debugfs_remove_recursive(pool->stat_dentry); 671 pool->stat_dentry = NULL; 672 } 673 } 674 675 static void zs_pool_stat_destroy(struct zs_pool *pool) 676 { 677 debugfs_remove_recursive(pool->stat_dentry); 678 } 679 680 #else /* CONFIG_ZSMALLOC_STAT */ 681 static void __init zs_stat_init(void) 682 { 683 } 684 685 static void __exit zs_stat_exit(void) 686 { 687 } 688 689 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name) 690 { 691 } 692 693 static inline void zs_pool_stat_destroy(struct zs_pool *pool) 694 { 695 } 696 #endif 697 698 699 /* 700 * For each size class, zspages are divided into different groups 701 * depending on how "full" they are. This was done so that we could 702 * easily find empty or nearly empty zspages when we try to shrink 703 * the pool (not yet implemented). This function returns fullness 704 * status of the given page. 705 */ 706 static enum fullness_group get_fullness_group(struct size_class *class, 707 struct zspage *zspage) 708 { 709 int inuse, objs_per_zspage; 710 enum fullness_group fg; 711 712 inuse = get_zspage_inuse(zspage); 713 objs_per_zspage = class->objs_per_zspage; 714 715 if (inuse == 0) 716 fg = ZS_EMPTY; 717 else if (inuse == objs_per_zspage) 718 fg = ZS_FULL; 719 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac) 720 fg = ZS_ALMOST_EMPTY; 721 else 722 fg = ZS_ALMOST_FULL; 723 724 return fg; 725 } 726 727 /* 728 * Each size class maintains various freelists and zspages are assigned 729 * to one of these freelists based on the number of live objects they 730 * have. This functions inserts the given zspage into the freelist 731 * identified by <class, fullness_group>. 732 */ 733 static void insert_zspage(struct size_class *class, 734 struct zspage *zspage, 735 enum fullness_group fullness) 736 { 737 struct zspage *head; 738 739 zs_stat_inc(class, fullness, 1); 740 head = list_first_entry_or_null(&class->fullness_list[fullness], 741 struct zspage, list); 742 /* 743 * We want to see more ZS_FULL pages and less almost empty/full. 744 * Put pages with higher ->inuse first. 745 */ 746 if (head) { 747 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) { 748 list_add(&zspage->list, &head->list); 749 return; 750 } 751 } 752 list_add(&zspage->list, &class->fullness_list[fullness]); 753 } 754 755 /* 756 * This function removes the given zspage from the freelist identified 757 * by <class, fullness_group>. 758 */ 759 static void remove_zspage(struct size_class *class, 760 struct zspage *zspage, 761 enum fullness_group fullness) 762 { 763 VM_BUG_ON(list_empty(&class->fullness_list[fullness])); 764 VM_BUG_ON(is_zspage_isolated(zspage)); 765 766 list_del_init(&zspage->list); 767 zs_stat_dec(class, fullness, 1); 768 } 769 770 /* 771 * Each size class maintains zspages in different fullness groups depending 772 * on the number of live objects they contain. When allocating or freeing 773 * objects, the fullness status of the page can change, say, from ALMOST_FULL 774 * to ALMOST_EMPTY when freeing an object. This function checks if such 775 * a status change has occurred for the given page and accordingly moves the 776 * page from the freelist of the old fullness group to that of the new 777 * fullness group. 778 */ 779 static enum fullness_group fix_fullness_group(struct size_class *class, 780 struct zspage *zspage) 781 { 782 int class_idx; 783 enum fullness_group currfg, newfg; 784 785 get_zspage_mapping(zspage, &class_idx, &currfg); 786 newfg = get_fullness_group(class, zspage); 787 if (newfg == currfg) 788 goto out; 789 790 if (!is_zspage_isolated(zspage)) { 791 remove_zspage(class, zspage, currfg); 792 insert_zspage(class, zspage, newfg); 793 } 794 795 set_zspage_mapping(zspage, class_idx, newfg); 796 797 out: 798 return newfg; 799 } 800 801 /* 802 * We have to decide on how many pages to link together 803 * to form a zspage for each size class. This is important 804 * to reduce wastage due to unusable space left at end of 805 * each zspage which is given as: 806 * wastage = Zp % class_size 807 * usage = Zp - wastage 808 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ... 809 * 810 * For example, for size class of 3/8 * PAGE_SIZE, we should 811 * link together 3 PAGE_SIZE sized pages to form a zspage 812 * since then we can perfectly fit in 8 such objects. 813 */ 814 static int get_pages_per_zspage(int class_size) 815 { 816 int i, max_usedpc = 0; 817 /* zspage order which gives maximum used size per KB */ 818 int max_usedpc_order = 1; 819 820 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { 821 int zspage_size; 822 int waste, usedpc; 823 824 zspage_size = i * PAGE_SIZE; 825 waste = zspage_size % class_size; 826 usedpc = (zspage_size - waste) * 100 / zspage_size; 827 828 if (usedpc > max_usedpc) { 829 max_usedpc = usedpc; 830 max_usedpc_order = i; 831 } 832 } 833 834 return max_usedpc_order; 835 } 836 837 static struct zspage *get_zspage(struct page *page) 838 { 839 struct zspage *zspage = (struct zspage *)page->private; 840 841 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 842 return zspage; 843 } 844 845 static struct page *get_next_page(struct page *page) 846 { 847 if (unlikely(PageHugeObject(page))) 848 return NULL; 849 850 return page->freelist; 851 } 852 853 /** 854 * obj_to_location - get (<page>, <obj_idx>) from encoded object value 855 * @obj: the encoded object value 856 * @page: page object resides in zspage 857 * @obj_idx: object index 858 */ 859 static void obj_to_location(unsigned long obj, struct page **page, 860 unsigned int *obj_idx) 861 { 862 obj >>= OBJ_TAG_BITS; 863 *page = pfn_to_page(obj >> OBJ_INDEX_BITS); 864 *obj_idx = (obj & OBJ_INDEX_MASK); 865 } 866 867 /** 868 * location_to_obj - get obj value encoded from (<page>, <obj_idx>) 869 * @page: page object resides in zspage 870 * @obj_idx: object index 871 */ 872 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx) 873 { 874 unsigned long obj; 875 876 obj = page_to_pfn(page) << OBJ_INDEX_BITS; 877 obj |= obj_idx & OBJ_INDEX_MASK; 878 obj <<= OBJ_TAG_BITS; 879 880 return obj; 881 } 882 883 static unsigned long handle_to_obj(unsigned long handle) 884 { 885 return *(unsigned long *)handle; 886 } 887 888 static unsigned long obj_to_head(struct page *page, void *obj) 889 { 890 if (unlikely(PageHugeObject(page))) { 891 VM_BUG_ON_PAGE(!is_first_page(page), page); 892 return page->index; 893 } else 894 return *(unsigned long *)obj; 895 } 896 897 static inline int testpin_tag(unsigned long handle) 898 { 899 return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle); 900 } 901 902 static inline int trypin_tag(unsigned long handle) 903 { 904 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle); 905 } 906 907 static void pin_tag(unsigned long handle) 908 { 909 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle); 910 } 911 912 static void unpin_tag(unsigned long handle) 913 { 914 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle); 915 } 916 917 static void reset_page(struct page *page) 918 { 919 __ClearPageMovable(page); 920 ClearPagePrivate(page); 921 set_page_private(page, 0); 922 page_mapcount_reset(page); 923 ClearPageHugeObject(page); 924 page->freelist = NULL; 925 } 926 927 static int trylock_zspage(struct zspage *zspage) 928 { 929 struct page *cursor, *fail; 930 931 for (cursor = get_first_page(zspage); cursor != NULL; cursor = 932 get_next_page(cursor)) { 933 if (!trylock_page(cursor)) { 934 fail = cursor; 935 goto unlock; 936 } 937 } 938 939 return 1; 940 unlock: 941 for (cursor = get_first_page(zspage); cursor != fail; cursor = 942 get_next_page(cursor)) 943 unlock_page(cursor); 944 945 return 0; 946 } 947 948 static void __free_zspage(struct zs_pool *pool, struct size_class *class, 949 struct zspage *zspage) 950 { 951 struct page *page, *next; 952 enum fullness_group fg; 953 unsigned int class_idx; 954 955 get_zspage_mapping(zspage, &class_idx, &fg); 956 957 assert_spin_locked(&class->lock); 958 959 VM_BUG_ON(get_zspage_inuse(zspage)); 960 VM_BUG_ON(fg != ZS_EMPTY); 961 962 next = page = get_first_page(zspage); 963 do { 964 VM_BUG_ON_PAGE(!PageLocked(page), page); 965 next = get_next_page(page); 966 reset_page(page); 967 unlock_page(page); 968 dec_zone_page_state(page, NR_ZSPAGES); 969 put_page(page); 970 page = next; 971 } while (page != NULL); 972 973 cache_free_zspage(pool, zspage); 974 975 zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage); 976 atomic_long_sub(class->pages_per_zspage, 977 &pool->pages_allocated); 978 } 979 980 static void free_zspage(struct zs_pool *pool, struct size_class *class, 981 struct zspage *zspage) 982 { 983 VM_BUG_ON(get_zspage_inuse(zspage)); 984 VM_BUG_ON(list_empty(&zspage->list)); 985 986 if (!trylock_zspage(zspage)) { 987 kick_deferred_free(pool); 988 return; 989 } 990 991 remove_zspage(class, zspage, ZS_EMPTY); 992 __free_zspage(pool, class, zspage); 993 } 994 995 /* Initialize a newly allocated zspage */ 996 static void init_zspage(struct size_class *class, struct zspage *zspage) 997 { 998 unsigned int freeobj = 1; 999 unsigned long off = 0; 1000 struct page *page = get_first_page(zspage); 1001 1002 while (page) { 1003 struct page *next_page; 1004 struct link_free *link; 1005 void *vaddr; 1006 1007 set_first_obj_offset(page, off); 1008 1009 vaddr = kmap_atomic(page); 1010 link = (struct link_free *)vaddr + off / sizeof(*link); 1011 1012 while ((off += class->size) < PAGE_SIZE) { 1013 link->next = freeobj++ << OBJ_TAG_BITS; 1014 link += class->size / sizeof(*link); 1015 } 1016 1017 /* 1018 * We now come to the last (full or partial) object on this 1019 * page, which must point to the first object on the next 1020 * page (if present) 1021 */ 1022 next_page = get_next_page(page); 1023 if (next_page) { 1024 link->next = freeobj++ << OBJ_TAG_BITS; 1025 } else { 1026 /* 1027 * Reset OBJ_TAG_BITS bit to last link to tell 1028 * whether it's allocated object or not. 1029 */ 1030 link->next = -1UL << OBJ_TAG_BITS; 1031 } 1032 kunmap_atomic(vaddr); 1033 page = next_page; 1034 off %= PAGE_SIZE; 1035 } 1036 1037 set_freeobj(zspage, 0); 1038 } 1039 1040 static void create_page_chain(struct size_class *class, struct zspage *zspage, 1041 struct page *pages[]) 1042 { 1043 int i; 1044 struct page *page; 1045 struct page *prev_page = NULL; 1046 int nr_pages = class->pages_per_zspage; 1047 1048 /* 1049 * Allocate individual pages and link them together as: 1050 * 1. all pages are linked together using page->freelist 1051 * 2. each sub-page point to zspage using page->private 1052 * 1053 * we set PG_private to identify the first page (i.e. no other sub-page 1054 * has this flag set). 1055 */ 1056 for (i = 0; i < nr_pages; i++) { 1057 page = pages[i]; 1058 set_page_private(page, (unsigned long)zspage); 1059 page->freelist = NULL; 1060 if (i == 0) { 1061 zspage->first_page = page; 1062 SetPagePrivate(page); 1063 if (unlikely(class->objs_per_zspage == 1 && 1064 class->pages_per_zspage == 1)) 1065 SetPageHugeObject(page); 1066 } else { 1067 prev_page->freelist = page; 1068 } 1069 prev_page = page; 1070 } 1071 } 1072 1073 /* 1074 * Allocate a zspage for the given size class 1075 */ 1076 static struct zspage *alloc_zspage(struct zs_pool *pool, 1077 struct size_class *class, 1078 gfp_t gfp) 1079 { 1080 int i; 1081 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE]; 1082 struct zspage *zspage = cache_alloc_zspage(pool, gfp); 1083 1084 if (!zspage) 1085 return NULL; 1086 1087 memset(zspage, 0, sizeof(struct zspage)); 1088 zspage->magic = ZSPAGE_MAGIC; 1089 migrate_lock_init(zspage); 1090 1091 for (i = 0; i < class->pages_per_zspage; i++) { 1092 struct page *page; 1093 1094 page = alloc_page(gfp); 1095 if (!page) { 1096 while (--i >= 0) { 1097 dec_zone_page_state(pages[i], NR_ZSPAGES); 1098 __free_page(pages[i]); 1099 } 1100 cache_free_zspage(pool, zspage); 1101 return NULL; 1102 } 1103 1104 inc_zone_page_state(page, NR_ZSPAGES); 1105 pages[i] = page; 1106 } 1107 1108 create_page_chain(class, zspage, pages); 1109 init_zspage(class, zspage); 1110 1111 return zspage; 1112 } 1113 1114 static struct zspage *find_get_zspage(struct size_class *class) 1115 { 1116 int i; 1117 struct zspage *zspage; 1118 1119 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) { 1120 zspage = list_first_entry_or_null(&class->fullness_list[i], 1121 struct zspage, list); 1122 if (zspage) 1123 break; 1124 } 1125 1126 return zspage; 1127 } 1128 1129 #ifdef CONFIG_PGTABLE_MAPPING 1130 static inline int __zs_cpu_up(struct mapping_area *area) 1131 { 1132 /* 1133 * Make sure we don't leak memory if a cpu UP notification 1134 * and zs_init() race and both call zs_cpu_up() on the same cpu 1135 */ 1136 if (area->vm) 1137 return 0; 1138 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL); 1139 if (!area->vm) 1140 return -ENOMEM; 1141 return 0; 1142 } 1143 1144 static inline void __zs_cpu_down(struct mapping_area *area) 1145 { 1146 if (area->vm) 1147 free_vm_area(area->vm); 1148 area->vm = NULL; 1149 } 1150 1151 static inline void *__zs_map_object(struct mapping_area *area, 1152 struct page *pages[2], int off, int size) 1153 { 1154 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages)); 1155 area->vm_addr = area->vm->addr; 1156 return area->vm_addr + off; 1157 } 1158 1159 static inline void __zs_unmap_object(struct mapping_area *area, 1160 struct page *pages[2], int off, int size) 1161 { 1162 unsigned long addr = (unsigned long)area->vm_addr; 1163 1164 unmap_kernel_range(addr, PAGE_SIZE * 2); 1165 } 1166 1167 #else /* CONFIG_PGTABLE_MAPPING */ 1168 1169 static inline int __zs_cpu_up(struct mapping_area *area) 1170 { 1171 /* 1172 * Make sure we don't leak memory if a cpu UP notification 1173 * and zs_init() race and both call zs_cpu_up() on the same cpu 1174 */ 1175 if (area->vm_buf) 1176 return 0; 1177 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL); 1178 if (!area->vm_buf) 1179 return -ENOMEM; 1180 return 0; 1181 } 1182 1183 static inline void __zs_cpu_down(struct mapping_area *area) 1184 { 1185 kfree(area->vm_buf); 1186 area->vm_buf = NULL; 1187 } 1188 1189 static void *__zs_map_object(struct mapping_area *area, 1190 struct page *pages[2], int off, int size) 1191 { 1192 int sizes[2]; 1193 void *addr; 1194 char *buf = area->vm_buf; 1195 1196 /* disable page faults to match kmap_atomic() return conditions */ 1197 pagefault_disable(); 1198 1199 /* no read fastpath */ 1200 if (area->vm_mm == ZS_MM_WO) 1201 goto out; 1202 1203 sizes[0] = PAGE_SIZE - off; 1204 sizes[1] = size - sizes[0]; 1205 1206 /* copy object to per-cpu buffer */ 1207 addr = kmap_atomic(pages[0]); 1208 memcpy(buf, addr + off, sizes[0]); 1209 kunmap_atomic(addr); 1210 addr = kmap_atomic(pages[1]); 1211 memcpy(buf + sizes[0], addr, sizes[1]); 1212 kunmap_atomic(addr); 1213 out: 1214 return area->vm_buf; 1215 } 1216 1217 static void __zs_unmap_object(struct mapping_area *area, 1218 struct page *pages[2], int off, int size) 1219 { 1220 int sizes[2]; 1221 void *addr; 1222 char *buf; 1223 1224 /* no write fastpath */ 1225 if (area->vm_mm == ZS_MM_RO) 1226 goto out; 1227 1228 buf = area->vm_buf; 1229 buf = buf + ZS_HANDLE_SIZE; 1230 size -= ZS_HANDLE_SIZE; 1231 off += ZS_HANDLE_SIZE; 1232 1233 sizes[0] = PAGE_SIZE - off; 1234 sizes[1] = size - sizes[0]; 1235 1236 /* copy per-cpu buffer to object */ 1237 addr = kmap_atomic(pages[0]); 1238 memcpy(addr + off, buf, sizes[0]); 1239 kunmap_atomic(addr); 1240 addr = kmap_atomic(pages[1]); 1241 memcpy(addr, buf + sizes[0], sizes[1]); 1242 kunmap_atomic(addr); 1243 1244 out: 1245 /* enable page faults to match kunmap_atomic() return conditions */ 1246 pagefault_enable(); 1247 } 1248 1249 #endif /* CONFIG_PGTABLE_MAPPING */ 1250 1251 static int zs_cpu_prepare(unsigned int cpu) 1252 { 1253 struct mapping_area *area; 1254 1255 area = &per_cpu(zs_map_area, cpu); 1256 return __zs_cpu_up(area); 1257 } 1258 1259 static int zs_cpu_dead(unsigned int cpu) 1260 { 1261 struct mapping_area *area; 1262 1263 area = &per_cpu(zs_map_area, cpu); 1264 __zs_cpu_down(area); 1265 return 0; 1266 } 1267 1268 static bool can_merge(struct size_class *prev, int pages_per_zspage, 1269 int objs_per_zspage) 1270 { 1271 if (prev->pages_per_zspage == pages_per_zspage && 1272 prev->objs_per_zspage == objs_per_zspage) 1273 return true; 1274 1275 return false; 1276 } 1277 1278 static bool zspage_full(struct size_class *class, struct zspage *zspage) 1279 { 1280 return get_zspage_inuse(zspage) == class->objs_per_zspage; 1281 } 1282 1283 unsigned long zs_get_total_pages(struct zs_pool *pool) 1284 { 1285 return atomic_long_read(&pool->pages_allocated); 1286 } 1287 EXPORT_SYMBOL_GPL(zs_get_total_pages); 1288 1289 /** 1290 * zs_map_object - get address of allocated object from handle. 1291 * @pool: pool from which the object was allocated 1292 * @handle: handle returned from zs_malloc 1293 * @mm: maping mode to use 1294 * 1295 * Before using an object allocated from zs_malloc, it must be mapped using 1296 * this function. When done with the object, it must be unmapped using 1297 * zs_unmap_object. 1298 * 1299 * Only one object can be mapped per cpu at a time. There is no protection 1300 * against nested mappings. 1301 * 1302 * This function returns with preemption and page faults disabled. 1303 */ 1304 void *zs_map_object(struct zs_pool *pool, unsigned long handle, 1305 enum zs_mapmode mm) 1306 { 1307 struct zspage *zspage; 1308 struct page *page; 1309 unsigned long obj, off; 1310 unsigned int obj_idx; 1311 1312 unsigned int class_idx; 1313 enum fullness_group fg; 1314 struct size_class *class; 1315 struct mapping_area *area; 1316 struct page *pages[2]; 1317 void *ret; 1318 1319 /* 1320 * Because we use per-cpu mapping areas shared among the 1321 * pools/users, we can't allow mapping in interrupt context 1322 * because it can corrupt another users mappings. 1323 */ 1324 BUG_ON(in_interrupt()); 1325 1326 /* From now on, migration cannot move the object */ 1327 pin_tag(handle); 1328 1329 obj = handle_to_obj(handle); 1330 obj_to_location(obj, &page, &obj_idx); 1331 zspage = get_zspage(page); 1332 1333 /* migration cannot move any subpage in this zspage */ 1334 migrate_read_lock(zspage); 1335 1336 get_zspage_mapping(zspage, &class_idx, &fg); 1337 class = pool->size_class[class_idx]; 1338 off = (class->size * obj_idx) & ~PAGE_MASK; 1339 1340 area = &get_cpu_var(zs_map_area); 1341 area->vm_mm = mm; 1342 if (off + class->size <= PAGE_SIZE) { 1343 /* this object is contained entirely within a page */ 1344 area->vm_addr = kmap_atomic(page); 1345 ret = area->vm_addr + off; 1346 goto out; 1347 } 1348 1349 /* this object spans two pages */ 1350 pages[0] = page; 1351 pages[1] = get_next_page(page); 1352 BUG_ON(!pages[1]); 1353 1354 ret = __zs_map_object(area, pages, off, class->size); 1355 out: 1356 if (likely(!PageHugeObject(page))) 1357 ret += ZS_HANDLE_SIZE; 1358 1359 return ret; 1360 } 1361 EXPORT_SYMBOL_GPL(zs_map_object); 1362 1363 void zs_unmap_object(struct zs_pool *pool, unsigned long handle) 1364 { 1365 struct zspage *zspage; 1366 struct page *page; 1367 unsigned long obj, off; 1368 unsigned int obj_idx; 1369 1370 unsigned int class_idx; 1371 enum fullness_group fg; 1372 struct size_class *class; 1373 struct mapping_area *area; 1374 1375 obj = handle_to_obj(handle); 1376 obj_to_location(obj, &page, &obj_idx); 1377 zspage = get_zspage(page); 1378 get_zspage_mapping(zspage, &class_idx, &fg); 1379 class = pool->size_class[class_idx]; 1380 off = (class->size * obj_idx) & ~PAGE_MASK; 1381 1382 area = this_cpu_ptr(&zs_map_area); 1383 if (off + class->size <= PAGE_SIZE) 1384 kunmap_atomic(area->vm_addr); 1385 else { 1386 struct page *pages[2]; 1387 1388 pages[0] = page; 1389 pages[1] = get_next_page(page); 1390 BUG_ON(!pages[1]); 1391 1392 __zs_unmap_object(area, pages, off, class->size); 1393 } 1394 put_cpu_var(zs_map_area); 1395 1396 migrate_read_unlock(zspage); 1397 unpin_tag(handle); 1398 } 1399 EXPORT_SYMBOL_GPL(zs_unmap_object); 1400 1401 /** 1402 * zs_huge_class_size() - Returns the size (in bytes) of the first huge 1403 * zsmalloc &size_class. 1404 * @pool: zsmalloc pool to use 1405 * 1406 * The function returns the size of the first huge class - any object of equal 1407 * or bigger size will be stored in zspage consisting of a single physical 1408 * page. 1409 * 1410 * Context: Any context. 1411 * 1412 * Return: the size (in bytes) of the first huge zsmalloc &size_class. 1413 */ 1414 size_t zs_huge_class_size(struct zs_pool *pool) 1415 { 1416 return huge_class_size; 1417 } 1418 EXPORT_SYMBOL_GPL(zs_huge_class_size); 1419 1420 static unsigned long obj_malloc(struct size_class *class, 1421 struct zspage *zspage, unsigned long handle) 1422 { 1423 int i, nr_page, offset; 1424 unsigned long obj; 1425 struct link_free *link; 1426 1427 struct page *m_page; 1428 unsigned long m_offset; 1429 void *vaddr; 1430 1431 handle |= OBJ_ALLOCATED_TAG; 1432 obj = get_freeobj(zspage); 1433 1434 offset = obj * class->size; 1435 nr_page = offset >> PAGE_SHIFT; 1436 m_offset = offset & ~PAGE_MASK; 1437 m_page = get_first_page(zspage); 1438 1439 for (i = 0; i < nr_page; i++) 1440 m_page = get_next_page(m_page); 1441 1442 vaddr = kmap_atomic(m_page); 1443 link = (struct link_free *)vaddr + m_offset / sizeof(*link); 1444 set_freeobj(zspage, link->next >> OBJ_TAG_BITS); 1445 if (likely(!PageHugeObject(m_page))) 1446 /* record handle in the header of allocated chunk */ 1447 link->handle = handle; 1448 else 1449 /* record handle to page->index */ 1450 zspage->first_page->index = handle; 1451 1452 kunmap_atomic(vaddr); 1453 mod_zspage_inuse(zspage, 1); 1454 zs_stat_inc(class, OBJ_USED, 1); 1455 1456 obj = location_to_obj(m_page, obj); 1457 1458 return obj; 1459 } 1460 1461 1462 /** 1463 * zs_malloc - Allocate block of given size from pool. 1464 * @pool: pool to allocate from 1465 * @size: size of block to allocate 1466 * @gfp: gfp flags when allocating object 1467 * 1468 * On success, handle to the allocated object is returned, 1469 * otherwise 0. 1470 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail. 1471 */ 1472 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp) 1473 { 1474 unsigned long handle, obj; 1475 struct size_class *class; 1476 enum fullness_group newfg; 1477 struct zspage *zspage; 1478 1479 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE)) 1480 return 0; 1481 1482 handle = cache_alloc_handle(pool, gfp); 1483 if (!handle) 1484 return 0; 1485 1486 /* extra space in chunk to keep the handle */ 1487 size += ZS_HANDLE_SIZE; 1488 class = pool->size_class[get_size_class_index(size)]; 1489 1490 spin_lock(&class->lock); 1491 zspage = find_get_zspage(class); 1492 if (likely(zspage)) { 1493 obj = obj_malloc(class, zspage, handle); 1494 /* Now move the zspage to another fullness group, if required */ 1495 fix_fullness_group(class, zspage); 1496 record_obj(handle, obj); 1497 spin_unlock(&class->lock); 1498 1499 return handle; 1500 } 1501 1502 spin_unlock(&class->lock); 1503 1504 zspage = alloc_zspage(pool, class, gfp); 1505 if (!zspage) { 1506 cache_free_handle(pool, handle); 1507 return 0; 1508 } 1509 1510 spin_lock(&class->lock); 1511 obj = obj_malloc(class, zspage, handle); 1512 newfg = get_fullness_group(class, zspage); 1513 insert_zspage(class, zspage, newfg); 1514 set_zspage_mapping(zspage, class->index, newfg); 1515 record_obj(handle, obj); 1516 atomic_long_add(class->pages_per_zspage, 1517 &pool->pages_allocated); 1518 zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage); 1519 1520 /* We completely set up zspage so mark them as movable */ 1521 SetZsPageMovable(pool, zspage); 1522 spin_unlock(&class->lock); 1523 1524 return handle; 1525 } 1526 EXPORT_SYMBOL_GPL(zs_malloc); 1527 1528 static void obj_free(struct size_class *class, unsigned long obj) 1529 { 1530 struct link_free *link; 1531 struct zspage *zspage; 1532 struct page *f_page; 1533 unsigned long f_offset; 1534 unsigned int f_objidx; 1535 void *vaddr; 1536 1537 obj &= ~OBJ_ALLOCATED_TAG; 1538 obj_to_location(obj, &f_page, &f_objidx); 1539 f_offset = (class->size * f_objidx) & ~PAGE_MASK; 1540 zspage = get_zspage(f_page); 1541 1542 vaddr = kmap_atomic(f_page); 1543 1544 /* Insert this object in containing zspage's freelist */ 1545 link = (struct link_free *)(vaddr + f_offset); 1546 link->next = get_freeobj(zspage) << OBJ_TAG_BITS; 1547 kunmap_atomic(vaddr); 1548 set_freeobj(zspage, f_objidx); 1549 mod_zspage_inuse(zspage, -1); 1550 zs_stat_dec(class, OBJ_USED, 1); 1551 } 1552 1553 void zs_free(struct zs_pool *pool, unsigned long handle) 1554 { 1555 struct zspage *zspage; 1556 struct page *f_page; 1557 unsigned long obj; 1558 unsigned int f_objidx; 1559 int class_idx; 1560 struct size_class *class; 1561 enum fullness_group fullness; 1562 bool isolated; 1563 1564 if (unlikely(!handle)) 1565 return; 1566 1567 pin_tag(handle); 1568 obj = handle_to_obj(handle); 1569 obj_to_location(obj, &f_page, &f_objidx); 1570 zspage = get_zspage(f_page); 1571 1572 migrate_read_lock(zspage); 1573 1574 get_zspage_mapping(zspage, &class_idx, &fullness); 1575 class = pool->size_class[class_idx]; 1576 1577 spin_lock(&class->lock); 1578 obj_free(class, obj); 1579 fullness = fix_fullness_group(class, zspage); 1580 if (fullness != ZS_EMPTY) { 1581 migrate_read_unlock(zspage); 1582 goto out; 1583 } 1584 1585 isolated = is_zspage_isolated(zspage); 1586 migrate_read_unlock(zspage); 1587 /* If zspage is isolated, zs_page_putback will free the zspage */ 1588 if (likely(!isolated)) 1589 free_zspage(pool, class, zspage); 1590 out: 1591 1592 spin_unlock(&class->lock); 1593 unpin_tag(handle); 1594 cache_free_handle(pool, handle); 1595 } 1596 EXPORT_SYMBOL_GPL(zs_free); 1597 1598 static void zs_object_copy(struct size_class *class, unsigned long dst, 1599 unsigned long src) 1600 { 1601 struct page *s_page, *d_page; 1602 unsigned int s_objidx, d_objidx; 1603 unsigned long s_off, d_off; 1604 void *s_addr, *d_addr; 1605 int s_size, d_size, size; 1606 int written = 0; 1607 1608 s_size = d_size = class->size; 1609 1610 obj_to_location(src, &s_page, &s_objidx); 1611 obj_to_location(dst, &d_page, &d_objidx); 1612 1613 s_off = (class->size * s_objidx) & ~PAGE_MASK; 1614 d_off = (class->size * d_objidx) & ~PAGE_MASK; 1615 1616 if (s_off + class->size > PAGE_SIZE) 1617 s_size = PAGE_SIZE - s_off; 1618 1619 if (d_off + class->size > PAGE_SIZE) 1620 d_size = PAGE_SIZE - d_off; 1621 1622 s_addr = kmap_atomic(s_page); 1623 d_addr = kmap_atomic(d_page); 1624 1625 while (1) { 1626 size = min(s_size, d_size); 1627 memcpy(d_addr + d_off, s_addr + s_off, size); 1628 written += size; 1629 1630 if (written == class->size) 1631 break; 1632 1633 s_off += size; 1634 s_size -= size; 1635 d_off += size; 1636 d_size -= size; 1637 1638 if (s_off >= PAGE_SIZE) { 1639 kunmap_atomic(d_addr); 1640 kunmap_atomic(s_addr); 1641 s_page = get_next_page(s_page); 1642 s_addr = kmap_atomic(s_page); 1643 d_addr = kmap_atomic(d_page); 1644 s_size = class->size - written; 1645 s_off = 0; 1646 } 1647 1648 if (d_off >= PAGE_SIZE) { 1649 kunmap_atomic(d_addr); 1650 d_page = get_next_page(d_page); 1651 d_addr = kmap_atomic(d_page); 1652 d_size = class->size - written; 1653 d_off = 0; 1654 } 1655 } 1656 1657 kunmap_atomic(d_addr); 1658 kunmap_atomic(s_addr); 1659 } 1660 1661 /* 1662 * Find alloced object in zspage from index object and 1663 * return handle. 1664 */ 1665 static unsigned long find_alloced_obj(struct size_class *class, 1666 struct page *page, int *obj_idx) 1667 { 1668 unsigned long head; 1669 int offset = 0; 1670 int index = *obj_idx; 1671 unsigned long handle = 0; 1672 void *addr = kmap_atomic(page); 1673 1674 offset = get_first_obj_offset(page); 1675 offset += class->size * index; 1676 1677 while (offset < PAGE_SIZE) { 1678 head = obj_to_head(page, addr + offset); 1679 if (head & OBJ_ALLOCATED_TAG) { 1680 handle = head & ~OBJ_ALLOCATED_TAG; 1681 if (trypin_tag(handle)) 1682 break; 1683 handle = 0; 1684 } 1685 1686 offset += class->size; 1687 index++; 1688 } 1689 1690 kunmap_atomic(addr); 1691 1692 *obj_idx = index; 1693 1694 return handle; 1695 } 1696 1697 struct zs_compact_control { 1698 /* Source spage for migration which could be a subpage of zspage */ 1699 struct page *s_page; 1700 /* Destination page for migration which should be a first page 1701 * of zspage. */ 1702 struct page *d_page; 1703 /* Starting object index within @s_page which used for live object 1704 * in the subpage. */ 1705 int obj_idx; 1706 }; 1707 1708 static int migrate_zspage(struct zs_pool *pool, struct size_class *class, 1709 struct zs_compact_control *cc) 1710 { 1711 unsigned long used_obj, free_obj; 1712 unsigned long handle; 1713 struct page *s_page = cc->s_page; 1714 struct page *d_page = cc->d_page; 1715 int obj_idx = cc->obj_idx; 1716 int ret = 0; 1717 1718 while (1) { 1719 handle = find_alloced_obj(class, s_page, &obj_idx); 1720 if (!handle) { 1721 s_page = get_next_page(s_page); 1722 if (!s_page) 1723 break; 1724 obj_idx = 0; 1725 continue; 1726 } 1727 1728 /* Stop if there is no more space */ 1729 if (zspage_full(class, get_zspage(d_page))) { 1730 unpin_tag(handle); 1731 ret = -ENOMEM; 1732 break; 1733 } 1734 1735 used_obj = handle_to_obj(handle); 1736 free_obj = obj_malloc(class, get_zspage(d_page), handle); 1737 zs_object_copy(class, free_obj, used_obj); 1738 obj_idx++; 1739 /* 1740 * record_obj updates handle's value to free_obj and it will 1741 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which 1742 * breaks synchronization using pin_tag(e,g, zs_free) so 1743 * let's keep the lock bit. 1744 */ 1745 free_obj |= BIT(HANDLE_PIN_BIT); 1746 record_obj(handle, free_obj); 1747 unpin_tag(handle); 1748 obj_free(class, used_obj); 1749 } 1750 1751 /* Remember last position in this iteration */ 1752 cc->s_page = s_page; 1753 cc->obj_idx = obj_idx; 1754 1755 return ret; 1756 } 1757 1758 static struct zspage *isolate_zspage(struct size_class *class, bool source) 1759 { 1760 int i; 1761 struct zspage *zspage; 1762 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL}; 1763 1764 if (!source) { 1765 fg[0] = ZS_ALMOST_FULL; 1766 fg[1] = ZS_ALMOST_EMPTY; 1767 } 1768 1769 for (i = 0; i < 2; i++) { 1770 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]], 1771 struct zspage, list); 1772 if (zspage) { 1773 VM_BUG_ON(is_zspage_isolated(zspage)); 1774 remove_zspage(class, zspage, fg[i]); 1775 return zspage; 1776 } 1777 } 1778 1779 return zspage; 1780 } 1781 1782 /* 1783 * putback_zspage - add @zspage into right class's fullness list 1784 * @class: destination class 1785 * @zspage: target page 1786 * 1787 * Return @zspage's fullness_group 1788 */ 1789 static enum fullness_group putback_zspage(struct size_class *class, 1790 struct zspage *zspage) 1791 { 1792 enum fullness_group fullness; 1793 1794 VM_BUG_ON(is_zspage_isolated(zspage)); 1795 1796 fullness = get_fullness_group(class, zspage); 1797 insert_zspage(class, zspage, fullness); 1798 set_zspage_mapping(zspage, class->index, fullness); 1799 1800 return fullness; 1801 } 1802 1803 #ifdef CONFIG_COMPACTION 1804 /* 1805 * To prevent zspage destroy during migration, zspage freeing should 1806 * hold locks of all pages in the zspage. 1807 */ 1808 static void lock_zspage(struct zspage *zspage) 1809 { 1810 struct page *page = get_first_page(zspage); 1811 1812 do { 1813 lock_page(page); 1814 } while ((page = get_next_page(page)) != NULL); 1815 } 1816 1817 static struct dentry *zs_mount(struct file_system_type *fs_type, 1818 int flags, const char *dev_name, void *data) 1819 { 1820 static const struct dentry_operations ops = { 1821 .d_dname = simple_dname, 1822 }; 1823 1824 return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC); 1825 } 1826 1827 static struct file_system_type zsmalloc_fs = { 1828 .name = "zsmalloc", 1829 .mount = zs_mount, 1830 .kill_sb = kill_anon_super, 1831 }; 1832 1833 static int zsmalloc_mount(void) 1834 { 1835 int ret = 0; 1836 1837 zsmalloc_mnt = kern_mount(&zsmalloc_fs); 1838 if (IS_ERR(zsmalloc_mnt)) 1839 ret = PTR_ERR(zsmalloc_mnt); 1840 1841 return ret; 1842 } 1843 1844 static void zsmalloc_unmount(void) 1845 { 1846 kern_unmount(zsmalloc_mnt); 1847 } 1848 1849 static void migrate_lock_init(struct zspage *zspage) 1850 { 1851 rwlock_init(&zspage->lock); 1852 } 1853 1854 static void migrate_read_lock(struct zspage *zspage) 1855 { 1856 read_lock(&zspage->lock); 1857 } 1858 1859 static void migrate_read_unlock(struct zspage *zspage) 1860 { 1861 read_unlock(&zspage->lock); 1862 } 1863 1864 static void migrate_write_lock(struct zspage *zspage) 1865 { 1866 write_lock(&zspage->lock); 1867 } 1868 1869 static void migrate_write_unlock(struct zspage *zspage) 1870 { 1871 write_unlock(&zspage->lock); 1872 } 1873 1874 /* Number of isolated subpage for *page migration* in this zspage */ 1875 static void inc_zspage_isolation(struct zspage *zspage) 1876 { 1877 zspage->isolated++; 1878 } 1879 1880 static void dec_zspage_isolation(struct zspage *zspage) 1881 { 1882 zspage->isolated--; 1883 } 1884 1885 static void replace_sub_page(struct size_class *class, struct zspage *zspage, 1886 struct page *newpage, struct page *oldpage) 1887 { 1888 struct page *page; 1889 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, }; 1890 int idx = 0; 1891 1892 page = get_first_page(zspage); 1893 do { 1894 if (page == oldpage) 1895 pages[idx] = newpage; 1896 else 1897 pages[idx] = page; 1898 idx++; 1899 } while ((page = get_next_page(page)) != NULL); 1900 1901 create_page_chain(class, zspage, pages); 1902 set_first_obj_offset(newpage, get_first_obj_offset(oldpage)); 1903 if (unlikely(PageHugeObject(oldpage))) 1904 newpage->index = oldpage->index; 1905 __SetPageMovable(newpage, page_mapping(oldpage)); 1906 } 1907 1908 static bool zs_page_isolate(struct page *page, isolate_mode_t mode) 1909 { 1910 struct zs_pool *pool; 1911 struct size_class *class; 1912 int class_idx; 1913 enum fullness_group fullness; 1914 struct zspage *zspage; 1915 struct address_space *mapping; 1916 1917 /* 1918 * Page is locked so zspage couldn't be destroyed. For detail, look at 1919 * lock_zspage in free_zspage. 1920 */ 1921 VM_BUG_ON_PAGE(!PageMovable(page), page); 1922 VM_BUG_ON_PAGE(PageIsolated(page), page); 1923 1924 zspage = get_zspage(page); 1925 1926 /* 1927 * Without class lock, fullness could be stale while class_idx is okay 1928 * because class_idx is constant unless page is freed so we should get 1929 * fullness again under class lock. 1930 */ 1931 get_zspage_mapping(zspage, &class_idx, &fullness); 1932 mapping = page_mapping(page); 1933 pool = mapping->private_data; 1934 class = pool->size_class[class_idx]; 1935 1936 spin_lock(&class->lock); 1937 if (get_zspage_inuse(zspage) == 0) { 1938 spin_unlock(&class->lock); 1939 return false; 1940 } 1941 1942 /* zspage is isolated for object migration */ 1943 if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) { 1944 spin_unlock(&class->lock); 1945 return false; 1946 } 1947 1948 /* 1949 * If this is first time isolation for the zspage, isolate zspage from 1950 * size_class to prevent further object allocation from the zspage. 1951 */ 1952 if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) { 1953 get_zspage_mapping(zspage, &class_idx, &fullness); 1954 remove_zspage(class, zspage, fullness); 1955 } 1956 1957 inc_zspage_isolation(zspage); 1958 spin_unlock(&class->lock); 1959 1960 return true; 1961 } 1962 1963 static int zs_page_migrate(struct address_space *mapping, struct page *newpage, 1964 struct page *page, enum migrate_mode mode) 1965 { 1966 struct zs_pool *pool; 1967 struct size_class *class; 1968 int class_idx; 1969 enum fullness_group fullness; 1970 struct zspage *zspage; 1971 struct page *dummy; 1972 void *s_addr, *d_addr, *addr; 1973 int offset, pos; 1974 unsigned long handle, head; 1975 unsigned long old_obj, new_obj; 1976 unsigned int obj_idx; 1977 int ret = -EAGAIN; 1978 1979 /* 1980 * We cannot support the _NO_COPY case here, because copy needs to 1981 * happen under the zs lock, which does not work with 1982 * MIGRATE_SYNC_NO_COPY workflow. 1983 */ 1984 if (mode == MIGRATE_SYNC_NO_COPY) 1985 return -EINVAL; 1986 1987 VM_BUG_ON_PAGE(!PageMovable(page), page); 1988 VM_BUG_ON_PAGE(!PageIsolated(page), page); 1989 1990 zspage = get_zspage(page); 1991 1992 /* Concurrent compactor cannot migrate any subpage in zspage */ 1993 migrate_write_lock(zspage); 1994 get_zspage_mapping(zspage, &class_idx, &fullness); 1995 pool = mapping->private_data; 1996 class = pool->size_class[class_idx]; 1997 offset = get_first_obj_offset(page); 1998 1999 spin_lock(&class->lock); 2000 if (!get_zspage_inuse(zspage)) { 2001 /* 2002 * Set "offset" to end of the page so that every loops 2003 * skips unnecessary object scanning. 2004 */ 2005 offset = PAGE_SIZE; 2006 } 2007 2008 pos = offset; 2009 s_addr = kmap_atomic(page); 2010 while (pos < PAGE_SIZE) { 2011 head = obj_to_head(page, s_addr + pos); 2012 if (head & OBJ_ALLOCATED_TAG) { 2013 handle = head & ~OBJ_ALLOCATED_TAG; 2014 if (!trypin_tag(handle)) 2015 goto unpin_objects; 2016 } 2017 pos += class->size; 2018 } 2019 2020 /* 2021 * Here, any user cannot access all objects in the zspage so let's move. 2022 */ 2023 d_addr = kmap_atomic(newpage); 2024 memcpy(d_addr, s_addr, PAGE_SIZE); 2025 kunmap_atomic(d_addr); 2026 2027 for (addr = s_addr + offset; addr < s_addr + pos; 2028 addr += class->size) { 2029 head = obj_to_head(page, addr); 2030 if (head & OBJ_ALLOCATED_TAG) { 2031 handle = head & ~OBJ_ALLOCATED_TAG; 2032 if (!testpin_tag(handle)) 2033 BUG(); 2034 2035 old_obj = handle_to_obj(handle); 2036 obj_to_location(old_obj, &dummy, &obj_idx); 2037 new_obj = (unsigned long)location_to_obj(newpage, 2038 obj_idx); 2039 new_obj |= BIT(HANDLE_PIN_BIT); 2040 record_obj(handle, new_obj); 2041 } 2042 } 2043 2044 replace_sub_page(class, zspage, newpage, page); 2045 get_page(newpage); 2046 2047 dec_zspage_isolation(zspage); 2048 2049 /* 2050 * Page migration is done so let's putback isolated zspage to 2051 * the list if @page is final isolated subpage in the zspage. 2052 */ 2053 if (!is_zspage_isolated(zspage)) 2054 putback_zspage(class, zspage); 2055 2056 reset_page(page); 2057 put_page(page); 2058 page = newpage; 2059 2060 ret = MIGRATEPAGE_SUCCESS; 2061 unpin_objects: 2062 for (addr = s_addr + offset; addr < s_addr + pos; 2063 addr += class->size) { 2064 head = obj_to_head(page, addr); 2065 if (head & OBJ_ALLOCATED_TAG) { 2066 handle = head & ~OBJ_ALLOCATED_TAG; 2067 if (!testpin_tag(handle)) 2068 BUG(); 2069 unpin_tag(handle); 2070 } 2071 } 2072 kunmap_atomic(s_addr); 2073 spin_unlock(&class->lock); 2074 migrate_write_unlock(zspage); 2075 2076 return ret; 2077 } 2078 2079 static void zs_page_putback(struct page *page) 2080 { 2081 struct zs_pool *pool; 2082 struct size_class *class; 2083 int class_idx; 2084 enum fullness_group fg; 2085 struct address_space *mapping; 2086 struct zspage *zspage; 2087 2088 VM_BUG_ON_PAGE(!PageMovable(page), page); 2089 VM_BUG_ON_PAGE(!PageIsolated(page), page); 2090 2091 zspage = get_zspage(page); 2092 get_zspage_mapping(zspage, &class_idx, &fg); 2093 mapping = page_mapping(page); 2094 pool = mapping->private_data; 2095 class = pool->size_class[class_idx]; 2096 2097 spin_lock(&class->lock); 2098 dec_zspage_isolation(zspage); 2099 if (!is_zspage_isolated(zspage)) { 2100 fg = putback_zspage(class, zspage); 2101 /* 2102 * Due to page_lock, we cannot free zspage immediately 2103 * so let's defer. 2104 */ 2105 if (fg == ZS_EMPTY) 2106 schedule_work(&pool->free_work); 2107 } 2108 spin_unlock(&class->lock); 2109 } 2110 2111 static const struct address_space_operations zsmalloc_aops = { 2112 .isolate_page = zs_page_isolate, 2113 .migratepage = zs_page_migrate, 2114 .putback_page = zs_page_putback, 2115 }; 2116 2117 static int zs_register_migration(struct zs_pool *pool) 2118 { 2119 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb); 2120 if (IS_ERR(pool->inode)) { 2121 pool->inode = NULL; 2122 return 1; 2123 } 2124 2125 pool->inode->i_mapping->private_data = pool; 2126 pool->inode->i_mapping->a_ops = &zsmalloc_aops; 2127 return 0; 2128 } 2129 2130 static void zs_unregister_migration(struct zs_pool *pool) 2131 { 2132 flush_work(&pool->free_work); 2133 iput(pool->inode); 2134 } 2135 2136 /* 2137 * Caller should hold page_lock of all pages in the zspage 2138 * In here, we cannot use zspage meta data. 2139 */ 2140 static void async_free_zspage(struct work_struct *work) 2141 { 2142 int i; 2143 struct size_class *class; 2144 unsigned int class_idx; 2145 enum fullness_group fullness; 2146 struct zspage *zspage, *tmp; 2147 LIST_HEAD(free_pages); 2148 struct zs_pool *pool = container_of(work, struct zs_pool, 2149 free_work); 2150 2151 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 2152 class = pool->size_class[i]; 2153 if (class->index != i) 2154 continue; 2155 2156 spin_lock(&class->lock); 2157 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages); 2158 spin_unlock(&class->lock); 2159 } 2160 2161 2162 list_for_each_entry_safe(zspage, tmp, &free_pages, list) { 2163 list_del(&zspage->list); 2164 lock_zspage(zspage); 2165 2166 get_zspage_mapping(zspage, &class_idx, &fullness); 2167 VM_BUG_ON(fullness != ZS_EMPTY); 2168 class = pool->size_class[class_idx]; 2169 spin_lock(&class->lock); 2170 __free_zspage(pool, pool->size_class[class_idx], zspage); 2171 spin_unlock(&class->lock); 2172 } 2173 }; 2174 2175 static void kick_deferred_free(struct zs_pool *pool) 2176 { 2177 schedule_work(&pool->free_work); 2178 } 2179 2180 static void init_deferred_free(struct zs_pool *pool) 2181 { 2182 INIT_WORK(&pool->free_work, async_free_zspage); 2183 } 2184 2185 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) 2186 { 2187 struct page *page = get_first_page(zspage); 2188 2189 do { 2190 WARN_ON(!trylock_page(page)); 2191 __SetPageMovable(page, pool->inode->i_mapping); 2192 unlock_page(page); 2193 } while ((page = get_next_page(page)) != NULL); 2194 } 2195 #endif 2196 2197 /* 2198 * 2199 * Based on the number of unused allocated objects calculate 2200 * and return the number of pages that we can free. 2201 */ 2202 static unsigned long zs_can_compact(struct size_class *class) 2203 { 2204 unsigned long obj_wasted; 2205 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); 2206 unsigned long obj_used = zs_stat_get(class, OBJ_USED); 2207 2208 if (obj_allocated <= obj_used) 2209 return 0; 2210 2211 obj_wasted = obj_allocated - obj_used; 2212 obj_wasted /= class->objs_per_zspage; 2213 2214 return obj_wasted * class->pages_per_zspage; 2215 } 2216 2217 static void __zs_compact(struct zs_pool *pool, struct size_class *class) 2218 { 2219 struct zs_compact_control cc; 2220 struct zspage *src_zspage; 2221 struct zspage *dst_zspage = NULL; 2222 2223 spin_lock(&class->lock); 2224 while ((src_zspage = isolate_zspage(class, true))) { 2225 2226 if (!zs_can_compact(class)) 2227 break; 2228 2229 cc.obj_idx = 0; 2230 cc.s_page = get_first_page(src_zspage); 2231 2232 while ((dst_zspage = isolate_zspage(class, false))) { 2233 cc.d_page = get_first_page(dst_zspage); 2234 /* 2235 * If there is no more space in dst_page, resched 2236 * and see if anyone had allocated another zspage. 2237 */ 2238 if (!migrate_zspage(pool, class, &cc)) 2239 break; 2240 2241 putback_zspage(class, dst_zspage); 2242 } 2243 2244 /* Stop if we couldn't find slot */ 2245 if (dst_zspage == NULL) 2246 break; 2247 2248 putback_zspage(class, dst_zspage); 2249 if (putback_zspage(class, src_zspage) == ZS_EMPTY) { 2250 free_zspage(pool, class, src_zspage); 2251 pool->stats.pages_compacted += class->pages_per_zspage; 2252 } 2253 spin_unlock(&class->lock); 2254 cond_resched(); 2255 spin_lock(&class->lock); 2256 } 2257 2258 if (src_zspage) 2259 putback_zspage(class, src_zspage); 2260 2261 spin_unlock(&class->lock); 2262 } 2263 2264 unsigned long zs_compact(struct zs_pool *pool) 2265 { 2266 int i; 2267 struct size_class *class; 2268 2269 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2270 class = pool->size_class[i]; 2271 if (!class) 2272 continue; 2273 if (class->index != i) 2274 continue; 2275 __zs_compact(pool, class); 2276 } 2277 2278 return pool->stats.pages_compacted; 2279 } 2280 EXPORT_SYMBOL_GPL(zs_compact); 2281 2282 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats) 2283 { 2284 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats)); 2285 } 2286 EXPORT_SYMBOL_GPL(zs_pool_stats); 2287 2288 static unsigned long zs_shrinker_scan(struct shrinker *shrinker, 2289 struct shrink_control *sc) 2290 { 2291 unsigned long pages_freed; 2292 struct zs_pool *pool = container_of(shrinker, struct zs_pool, 2293 shrinker); 2294 2295 pages_freed = pool->stats.pages_compacted; 2296 /* 2297 * Compact classes and calculate compaction delta. 2298 * Can run concurrently with a manually triggered 2299 * (by user) compaction. 2300 */ 2301 pages_freed = zs_compact(pool) - pages_freed; 2302 2303 return pages_freed ? pages_freed : SHRINK_STOP; 2304 } 2305 2306 static unsigned long zs_shrinker_count(struct shrinker *shrinker, 2307 struct shrink_control *sc) 2308 { 2309 int i; 2310 struct size_class *class; 2311 unsigned long pages_to_free = 0; 2312 struct zs_pool *pool = container_of(shrinker, struct zs_pool, 2313 shrinker); 2314 2315 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2316 class = pool->size_class[i]; 2317 if (!class) 2318 continue; 2319 if (class->index != i) 2320 continue; 2321 2322 pages_to_free += zs_can_compact(class); 2323 } 2324 2325 return pages_to_free; 2326 } 2327 2328 static void zs_unregister_shrinker(struct zs_pool *pool) 2329 { 2330 unregister_shrinker(&pool->shrinker); 2331 } 2332 2333 static int zs_register_shrinker(struct zs_pool *pool) 2334 { 2335 pool->shrinker.scan_objects = zs_shrinker_scan; 2336 pool->shrinker.count_objects = zs_shrinker_count; 2337 pool->shrinker.batch = 0; 2338 pool->shrinker.seeks = DEFAULT_SEEKS; 2339 2340 return register_shrinker(&pool->shrinker); 2341 } 2342 2343 /** 2344 * zs_create_pool - Creates an allocation pool to work from. 2345 * @name: pool name to be created 2346 * 2347 * This function must be called before anything when using 2348 * the zsmalloc allocator. 2349 * 2350 * On success, a pointer to the newly created pool is returned, 2351 * otherwise NULL. 2352 */ 2353 struct zs_pool *zs_create_pool(const char *name) 2354 { 2355 int i; 2356 struct zs_pool *pool; 2357 struct size_class *prev_class = NULL; 2358 2359 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 2360 if (!pool) 2361 return NULL; 2362 2363 init_deferred_free(pool); 2364 2365 pool->name = kstrdup(name, GFP_KERNEL); 2366 if (!pool->name) 2367 goto err; 2368 2369 if (create_cache(pool)) 2370 goto err; 2371 2372 /* 2373 * Iterate reversely, because, size of size_class that we want to use 2374 * for merging should be larger or equal to current size. 2375 */ 2376 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2377 int size; 2378 int pages_per_zspage; 2379 int objs_per_zspage; 2380 struct size_class *class; 2381 int fullness = 0; 2382 2383 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; 2384 if (size > ZS_MAX_ALLOC_SIZE) 2385 size = ZS_MAX_ALLOC_SIZE; 2386 pages_per_zspage = get_pages_per_zspage(size); 2387 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size; 2388 2389 /* 2390 * We iterate from biggest down to smallest classes, 2391 * so huge_class_size holds the size of the first huge 2392 * class. Any object bigger than or equal to that will 2393 * endup in the huge class. 2394 */ 2395 if (pages_per_zspage != 1 && objs_per_zspage != 1 && 2396 !huge_class_size) { 2397 huge_class_size = size; 2398 /* 2399 * The object uses ZS_HANDLE_SIZE bytes to store the 2400 * handle. We need to subtract it, because zs_malloc() 2401 * unconditionally adds handle size before it performs 2402 * size class search - so object may be smaller than 2403 * huge class size, yet it still can end up in the huge 2404 * class because it grows by ZS_HANDLE_SIZE extra bytes 2405 * right before class lookup. 2406 */ 2407 huge_class_size -= (ZS_HANDLE_SIZE - 1); 2408 } 2409 2410 /* 2411 * size_class is used for normal zsmalloc operation such 2412 * as alloc/free for that size. Although it is natural that we 2413 * have one size_class for each size, there is a chance that we 2414 * can get more memory utilization if we use one size_class for 2415 * many different sizes whose size_class have same 2416 * characteristics. So, we makes size_class point to 2417 * previous size_class if possible. 2418 */ 2419 if (prev_class) { 2420 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) { 2421 pool->size_class[i] = prev_class; 2422 continue; 2423 } 2424 } 2425 2426 class = kzalloc(sizeof(struct size_class), GFP_KERNEL); 2427 if (!class) 2428 goto err; 2429 2430 class->size = size; 2431 class->index = i; 2432 class->pages_per_zspage = pages_per_zspage; 2433 class->objs_per_zspage = objs_per_zspage; 2434 spin_lock_init(&class->lock); 2435 pool->size_class[i] = class; 2436 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS; 2437 fullness++) 2438 INIT_LIST_HEAD(&class->fullness_list[fullness]); 2439 2440 prev_class = class; 2441 } 2442 2443 /* debug only, don't abort if it fails */ 2444 zs_pool_stat_create(pool, name); 2445 2446 if (zs_register_migration(pool)) 2447 goto err; 2448 2449 /* 2450 * Not critical since shrinker is only used to trigger internal 2451 * defragmentation of the pool which is pretty optional thing. If 2452 * registration fails we still can use the pool normally and user can 2453 * trigger compaction manually. Thus, ignore return code. 2454 */ 2455 zs_register_shrinker(pool); 2456 2457 return pool; 2458 2459 err: 2460 zs_destroy_pool(pool); 2461 return NULL; 2462 } 2463 EXPORT_SYMBOL_GPL(zs_create_pool); 2464 2465 void zs_destroy_pool(struct zs_pool *pool) 2466 { 2467 int i; 2468 2469 zs_unregister_shrinker(pool); 2470 zs_unregister_migration(pool); 2471 zs_pool_stat_destroy(pool); 2472 2473 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 2474 int fg; 2475 struct size_class *class = pool->size_class[i]; 2476 2477 if (!class) 2478 continue; 2479 2480 if (class->index != i) 2481 continue; 2482 2483 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) { 2484 if (!list_empty(&class->fullness_list[fg])) { 2485 pr_info("Freeing non-empty class with size %db, fullness group %d\n", 2486 class->size, fg); 2487 } 2488 } 2489 kfree(class); 2490 } 2491 2492 destroy_cache(pool); 2493 kfree(pool->name); 2494 kfree(pool); 2495 } 2496 EXPORT_SYMBOL_GPL(zs_destroy_pool); 2497 2498 static int __init zs_init(void) 2499 { 2500 int ret; 2501 2502 ret = zsmalloc_mount(); 2503 if (ret) 2504 goto out; 2505 2506 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare", 2507 zs_cpu_prepare, zs_cpu_dead); 2508 if (ret) 2509 goto hp_setup_fail; 2510 2511 #ifdef CONFIG_ZPOOL 2512 zpool_register_driver(&zs_zpool_driver); 2513 #endif 2514 2515 zs_stat_init(); 2516 2517 return 0; 2518 2519 hp_setup_fail: 2520 zsmalloc_unmount(); 2521 out: 2522 return ret; 2523 } 2524 2525 static void __exit zs_exit(void) 2526 { 2527 #ifdef CONFIG_ZPOOL 2528 zpool_unregister_driver(&zs_zpool_driver); 2529 #endif 2530 zsmalloc_unmount(); 2531 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE); 2532 2533 zs_stat_exit(); 2534 } 2535 2536 module_init(zs_init); 2537 module_exit(zs_exit); 2538 2539 MODULE_LICENSE("Dual BSD/GPL"); 2540 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 2541