1 /* 2 * zsmalloc memory allocator 3 * 4 * Copyright (C) 2011 Nitin Gupta 5 * Copyright (C) 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the license that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 */ 13 14 /* 15 * Following is how we use various fields and flags of underlying 16 * struct page(s) to form a zspage. 17 * 18 * Usage of struct page fields: 19 * page->private: points to zspage 20 * page->index: links together all component pages of a zspage 21 * For the huge page, this is always 0, so we use this field 22 * to store handle. 23 * page->page_type: PGTY_zsmalloc, lower 24 bits locate the first object 24 * offset in a subpage of a zspage 25 * 26 * Usage of struct page flags: 27 * PG_private: identifies the first component page 28 * PG_owner_priv_1: identifies the huge component page 29 * 30 */ 31 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 33 34 /* 35 * lock ordering: 36 * page_lock 37 * pool->migrate_lock 38 * class->lock 39 * zspage->lock 40 */ 41 42 #include <linux/module.h> 43 #include <linux/kernel.h> 44 #include <linux/sched.h> 45 #include <linux/bitops.h> 46 #include <linux/errno.h> 47 #include <linux/highmem.h> 48 #include <linux/string.h> 49 #include <linux/slab.h> 50 #include <linux/pgtable.h> 51 #include <asm/tlbflush.h> 52 #include <linux/cpumask.h> 53 #include <linux/cpu.h> 54 #include <linux/vmalloc.h> 55 #include <linux/preempt.h> 56 #include <linux/spinlock.h> 57 #include <linux/sprintf.h> 58 #include <linux/shrinker.h> 59 #include <linux/types.h> 60 #include <linux/debugfs.h> 61 #include <linux/zsmalloc.h> 62 #include <linux/zpool.h> 63 #include <linux/migrate.h> 64 #include <linux/wait.h> 65 #include <linux/pagemap.h> 66 #include <linux/fs.h> 67 #include <linux/local_lock.h> 68 69 #define ZSPAGE_MAGIC 0x58 70 71 /* 72 * This must be power of 2 and greater than or equal to sizeof(link_free). 73 * These two conditions ensure that any 'struct link_free' itself doesn't 74 * span more than 1 page which avoids complex case of mapping 2 pages simply 75 * to restore link_free pointer values. 76 */ 77 #define ZS_ALIGN 8 78 79 #define ZS_HANDLE_SIZE (sizeof(unsigned long)) 80 81 /* 82 * Object location (<PFN>, <obj_idx>) is encoded as 83 * a single (unsigned long) handle value. 84 * 85 * Note that object index <obj_idx> starts from 0. 86 * 87 * This is made more complicated by various memory models and PAE. 88 */ 89 90 #ifndef MAX_POSSIBLE_PHYSMEM_BITS 91 #ifdef MAX_PHYSMEM_BITS 92 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS 93 #else 94 /* 95 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just 96 * be PAGE_SHIFT 97 */ 98 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG 99 #endif 100 #endif 101 102 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT) 103 104 /* 105 * Head in allocated object should have OBJ_ALLOCATED_TAG 106 * to identify the object was allocated or not. 107 * It's okay to add the status bit in the least bit because 108 * header keeps handle which is 4byte-aligned address so we 109 * have room for two bit at least. 110 */ 111 #define OBJ_ALLOCATED_TAG 1 112 113 #define OBJ_TAG_BITS 1 114 #define OBJ_TAG_MASK OBJ_ALLOCATED_TAG 115 116 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS) 117 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1) 118 119 #define HUGE_BITS 1 120 #define FULLNESS_BITS 4 121 #define CLASS_BITS 8 122 #define MAGIC_VAL_BITS 8 123 124 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(CONFIG_ZSMALLOC_CHAIN_SIZE, UL)) 125 126 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */ 127 #define ZS_MIN_ALLOC_SIZE \ 128 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS)) 129 /* each chunk includes extra space to keep handle */ 130 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE 131 132 /* 133 * On systems with 4K page size, this gives 255 size classes! There is a 134 * trader-off here: 135 * - Large number of size classes is potentially wasteful as free page are 136 * spread across these classes 137 * - Small number of size classes causes large internal fragmentation 138 * - Probably its better to use specific size classes (empirically 139 * determined). NOTE: all those class sizes must be set as multiple of 140 * ZS_ALIGN to make sure link_free itself never has to span 2 pages. 141 * 142 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN 143 * (reason above) 144 */ 145 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS) 146 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \ 147 ZS_SIZE_CLASS_DELTA) + 1) 148 149 /* 150 * Pages are distinguished by the ratio of used memory (that is the ratio 151 * of ->inuse objects to all objects that page can store). For example, 152 * INUSE_RATIO_10 means that the ratio of used objects is > 0% and <= 10%. 153 * 154 * The number of fullness groups is not random. It allows us to keep 155 * difference between the least busy page in the group (minimum permitted 156 * number of ->inuse objects) and the most busy page (maximum permitted 157 * number of ->inuse objects) at a reasonable value. 158 */ 159 enum fullness_group { 160 ZS_INUSE_RATIO_0, 161 ZS_INUSE_RATIO_10, 162 /* NOTE: 8 more fullness groups here */ 163 ZS_INUSE_RATIO_99 = 10, 164 ZS_INUSE_RATIO_100, 165 NR_FULLNESS_GROUPS, 166 }; 167 168 enum class_stat_type { 169 /* NOTE: stats for 12 fullness groups here: from inuse 0 to 100 */ 170 ZS_OBJS_ALLOCATED = NR_FULLNESS_GROUPS, 171 ZS_OBJS_INUSE, 172 NR_CLASS_STAT_TYPES, 173 }; 174 175 struct zs_size_stat { 176 unsigned long objs[NR_CLASS_STAT_TYPES]; 177 }; 178 179 #ifdef CONFIG_ZSMALLOC_STAT 180 static struct dentry *zs_stat_root; 181 #endif 182 183 static size_t huge_class_size; 184 185 struct size_class { 186 spinlock_t lock; 187 struct list_head fullness_list[NR_FULLNESS_GROUPS]; 188 /* 189 * Size of objects stored in this class. Must be multiple 190 * of ZS_ALIGN. 191 */ 192 int size; 193 int objs_per_zspage; 194 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */ 195 int pages_per_zspage; 196 197 unsigned int index; 198 struct zs_size_stat stats; 199 }; 200 201 /* 202 * Placed within free objects to form a singly linked list. 203 * For every zspage, zspage->freeobj gives head of this list. 204 * 205 * This must be power of 2 and less than or equal to ZS_ALIGN 206 */ 207 struct link_free { 208 union { 209 /* 210 * Free object index; 211 * It's valid for non-allocated object 212 */ 213 unsigned long next; 214 /* 215 * Handle of allocated object. 216 */ 217 unsigned long handle; 218 }; 219 }; 220 221 struct zs_pool { 222 const char *name; 223 224 struct size_class *size_class[ZS_SIZE_CLASSES]; 225 struct kmem_cache *handle_cachep; 226 struct kmem_cache *zspage_cachep; 227 228 atomic_long_t pages_allocated; 229 230 struct zs_pool_stats stats; 231 232 /* Compact classes */ 233 struct shrinker *shrinker; 234 235 #ifdef CONFIG_ZSMALLOC_STAT 236 struct dentry *stat_dentry; 237 #endif 238 #ifdef CONFIG_COMPACTION 239 struct work_struct free_work; 240 #endif 241 /* protect page/zspage migration */ 242 rwlock_t migrate_lock; 243 atomic_t compaction_in_progress; 244 }; 245 246 struct zspage { 247 struct { 248 unsigned int huge:HUGE_BITS; 249 unsigned int fullness:FULLNESS_BITS; 250 unsigned int class:CLASS_BITS + 1; 251 unsigned int magic:MAGIC_VAL_BITS; 252 }; 253 unsigned int inuse; 254 unsigned int freeobj; 255 struct page *first_page; 256 struct list_head list; /* fullness list */ 257 struct zs_pool *pool; 258 rwlock_t lock; 259 }; 260 261 struct mapping_area { 262 local_lock_t lock; 263 char *vm_buf; /* copy buffer for objects that span pages */ 264 char *vm_addr; /* address of kmap_atomic()'ed pages */ 265 enum zs_mapmode vm_mm; /* mapping mode */ 266 }; 267 268 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */ 269 static void SetZsHugePage(struct zspage *zspage) 270 { 271 zspage->huge = 1; 272 } 273 274 static bool ZsHugePage(struct zspage *zspage) 275 { 276 return zspage->huge; 277 } 278 279 static void migrate_lock_init(struct zspage *zspage); 280 static void migrate_read_lock(struct zspage *zspage); 281 static void migrate_read_unlock(struct zspage *zspage); 282 static void migrate_write_lock(struct zspage *zspage); 283 static void migrate_write_unlock(struct zspage *zspage); 284 285 #ifdef CONFIG_COMPACTION 286 static void kick_deferred_free(struct zs_pool *pool); 287 static void init_deferred_free(struct zs_pool *pool); 288 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage); 289 #else 290 static void kick_deferred_free(struct zs_pool *pool) {} 291 static void init_deferred_free(struct zs_pool *pool) {} 292 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {} 293 #endif 294 295 static int create_cache(struct zs_pool *pool) 296 { 297 char *name; 298 299 name = kasprintf(GFP_KERNEL, "zs_handle-%s", pool->name); 300 if (!name) 301 return -ENOMEM; 302 pool->handle_cachep = kmem_cache_create(name, ZS_HANDLE_SIZE, 303 0, 0, NULL); 304 kfree(name); 305 if (!pool->handle_cachep) 306 return -EINVAL; 307 308 name = kasprintf(GFP_KERNEL, "zspage-%s", pool->name); 309 if (!name) 310 return -ENOMEM; 311 pool->zspage_cachep = kmem_cache_create(name, sizeof(struct zspage), 312 0, 0, NULL); 313 kfree(name); 314 if (!pool->zspage_cachep) { 315 kmem_cache_destroy(pool->handle_cachep); 316 pool->handle_cachep = NULL; 317 return -EINVAL; 318 } 319 320 return 0; 321 } 322 323 static void destroy_cache(struct zs_pool *pool) 324 { 325 kmem_cache_destroy(pool->handle_cachep); 326 kmem_cache_destroy(pool->zspage_cachep); 327 } 328 329 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp) 330 { 331 return (unsigned long)kmem_cache_alloc(pool->handle_cachep, 332 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 333 } 334 335 static void cache_free_handle(struct zs_pool *pool, unsigned long handle) 336 { 337 kmem_cache_free(pool->handle_cachep, (void *)handle); 338 } 339 340 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags) 341 { 342 return kmem_cache_zalloc(pool->zspage_cachep, 343 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 344 } 345 346 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage) 347 { 348 kmem_cache_free(pool->zspage_cachep, zspage); 349 } 350 351 /* class->lock(which owns the handle) synchronizes races */ 352 static void record_obj(unsigned long handle, unsigned long obj) 353 { 354 *(unsigned long *)handle = obj; 355 } 356 357 /* zpool driver */ 358 359 #ifdef CONFIG_ZPOOL 360 361 static void *zs_zpool_create(const char *name, gfp_t gfp) 362 { 363 /* 364 * Ignore global gfp flags: zs_malloc() may be invoked from 365 * different contexts and its caller must provide a valid 366 * gfp mask. 367 */ 368 return zs_create_pool(name); 369 } 370 371 static void zs_zpool_destroy(void *pool) 372 { 373 zs_destroy_pool(pool); 374 } 375 376 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp, 377 unsigned long *handle) 378 { 379 *handle = zs_malloc(pool, size, gfp); 380 381 if (IS_ERR_VALUE(*handle)) 382 return PTR_ERR((void *)*handle); 383 return 0; 384 } 385 static void zs_zpool_free(void *pool, unsigned long handle) 386 { 387 zs_free(pool, handle); 388 } 389 390 static void *zs_zpool_map(void *pool, unsigned long handle, 391 enum zpool_mapmode mm) 392 { 393 enum zs_mapmode zs_mm; 394 395 switch (mm) { 396 case ZPOOL_MM_RO: 397 zs_mm = ZS_MM_RO; 398 break; 399 case ZPOOL_MM_WO: 400 zs_mm = ZS_MM_WO; 401 break; 402 case ZPOOL_MM_RW: 403 default: 404 zs_mm = ZS_MM_RW; 405 break; 406 } 407 408 return zs_map_object(pool, handle, zs_mm); 409 } 410 static void zs_zpool_unmap(void *pool, unsigned long handle) 411 { 412 zs_unmap_object(pool, handle); 413 } 414 415 static u64 zs_zpool_total_pages(void *pool) 416 { 417 return zs_get_total_pages(pool); 418 } 419 420 static struct zpool_driver zs_zpool_driver = { 421 .type = "zsmalloc", 422 .owner = THIS_MODULE, 423 .create = zs_zpool_create, 424 .destroy = zs_zpool_destroy, 425 .malloc_support_movable = true, 426 .malloc = zs_zpool_malloc, 427 .free = zs_zpool_free, 428 .map = zs_zpool_map, 429 .unmap = zs_zpool_unmap, 430 .total_pages = zs_zpool_total_pages, 431 }; 432 433 MODULE_ALIAS("zpool-zsmalloc"); 434 #endif /* CONFIG_ZPOOL */ 435 436 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */ 437 static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = { 438 .lock = INIT_LOCAL_LOCK(lock), 439 }; 440 441 static __maybe_unused int is_first_page(struct page *page) 442 { 443 return PagePrivate(page); 444 } 445 446 /* Protected by class->lock */ 447 static inline int get_zspage_inuse(struct zspage *zspage) 448 { 449 return zspage->inuse; 450 } 451 452 453 static inline void mod_zspage_inuse(struct zspage *zspage, int val) 454 { 455 zspage->inuse += val; 456 } 457 458 static inline struct page *get_first_page(struct zspage *zspage) 459 { 460 struct page *first_page = zspage->first_page; 461 462 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page); 463 return first_page; 464 } 465 466 #define FIRST_OBJ_PAGE_TYPE_MASK 0xffffff 467 468 static inline unsigned int get_first_obj_offset(struct page *page) 469 { 470 VM_WARN_ON_ONCE(!PageZsmalloc(page)); 471 return page->page_type & FIRST_OBJ_PAGE_TYPE_MASK; 472 } 473 474 static inline void set_first_obj_offset(struct page *page, unsigned int offset) 475 { 476 /* With 24 bits available, we can support offsets into 16 MiB pages. */ 477 BUILD_BUG_ON(PAGE_SIZE > SZ_16M); 478 VM_WARN_ON_ONCE(!PageZsmalloc(page)); 479 VM_WARN_ON_ONCE(offset & ~FIRST_OBJ_PAGE_TYPE_MASK); 480 page->page_type &= ~FIRST_OBJ_PAGE_TYPE_MASK; 481 page->page_type |= offset & FIRST_OBJ_PAGE_TYPE_MASK; 482 } 483 484 static inline unsigned int get_freeobj(struct zspage *zspage) 485 { 486 return zspage->freeobj; 487 } 488 489 static inline void set_freeobj(struct zspage *zspage, unsigned int obj) 490 { 491 zspage->freeobj = obj; 492 } 493 494 static struct size_class *zspage_class(struct zs_pool *pool, 495 struct zspage *zspage) 496 { 497 return pool->size_class[zspage->class]; 498 } 499 500 /* 501 * zsmalloc divides the pool into various size classes where each 502 * class maintains a list of zspages where each zspage is divided 503 * into equal sized chunks. Each allocation falls into one of these 504 * classes depending on its size. This function returns index of the 505 * size class which has chunk size big enough to hold the given size. 506 */ 507 static int get_size_class_index(int size) 508 { 509 int idx = 0; 510 511 if (likely(size > ZS_MIN_ALLOC_SIZE)) 512 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, 513 ZS_SIZE_CLASS_DELTA); 514 515 return min_t(int, ZS_SIZE_CLASSES - 1, idx); 516 } 517 518 static inline void class_stat_add(struct size_class *class, int type, 519 unsigned long cnt) 520 { 521 class->stats.objs[type] += cnt; 522 } 523 524 static inline void class_stat_sub(struct size_class *class, int type, 525 unsigned long cnt) 526 { 527 class->stats.objs[type] -= cnt; 528 } 529 530 static inline unsigned long class_stat_read(struct size_class *class, int type) 531 { 532 return class->stats.objs[type]; 533 } 534 535 #ifdef CONFIG_ZSMALLOC_STAT 536 537 static void __init zs_stat_init(void) 538 { 539 if (!debugfs_initialized()) { 540 pr_warn("debugfs not available, stat dir not created\n"); 541 return; 542 } 543 544 zs_stat_root = debugfs_create_dir("zsmalloc", NULL); 545 } 546 547 static void __exit zs_stat_exit(void) 548 { 549 debugfs_remove_recursive(zs_stat_root); 550 } 551 552 static unsigned long zs_can_compact(struct size_class *class); 553 554 static int zs_stats_size_show(struct seq_file *s, void *v) 555 { 556 int i, fg; 557 struct zs_pool *pool = s->private; 558 struct size_class *class; 559 int objs_per_zspage; 560 unsigned long obj_allocated, obj_used, pages_used, freeable; 561 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0; 562 unsigned long total_freeable = 0; 563 unsigned long inuse_totals[NR_FULLNESS_GROUPS] = {0, }; 564 565 seq_printf(s, " %5s %5s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %13s %10s %10s %16s %8s\n", 566 "class", "size", "10%", "20%", "30%", "40%", 567 "50%", "60%", "70%", "80%", "90%", "99%", "100%", 568 "obj_allocated", "obj_used", "pages_used", 569 "pages_per_zspage", "freeable"); 570 571 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 572 573 class = pool->size_class[i]; 574 575 if (class->index != i) 576 continue; 577 578 spin_lock(&class->lock); 579 580 seq_printf(s, " %5u %5u ", i, class->size); 581 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) { 582 inuse_totals[fg] += class_stat_read(class, fg); 583 seq_printf(s, "%9lu ", class_stat_read(class, fg)); 584 } 585 586 obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED); 587 obj_used = class_stat_read(class, ZS_OBJS_INUSE); 588 freeable = zs_can_compact(class); 589 spin_unlock(&class->lock); 590 591 objs_per_zspage = class->objs_per_zspage; 592 pages_used = obj_allocated / objs_per_zspage * 593 class->pages_per_zspage; 594 595 seq_printf(s, "%13lu %10lu %10lu %16d %8lu\n", 596 obj_allocated, obj_used, pages_used, 597 class->pages_per_zspage, freeable); 598 599 total_objs += obj_allocated; 600 total_used_objs += obj_used; 601 total_pages += pages_used; 602 total_freeable += freeable; 603 } 604 605 seq_puts(s, "\n"); 606 seq_printf(s, " %5s %5s ", "Total", ""); 607 608 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) 609 seq_printf(s, "%9lu ", inuse_totals[fg]); 610 611 seq_printf(s, "%13lu %10lu %10lu %16s %8lu\n", 612 total_objs, total_used_objs, total_pages, "", 613 total_freeable); 614 615 return 0; 616 } 617 DEFINE_SHOW_ATTRIBUTE(zs_stats_size); 618 619 static void zs_pool_stat_create(struct zs_pool *pool, const char *name) 620 { 621 if (!zs_stat_root) { 622 pr_warn("no root stat dir, not creating <%s> stat dir\n", name); 623 return; 624 } 625 626 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root); 627 628 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool, 629 &zs_stats_size_fops); 630 } 631 632 static void zs_pool_stat_destroy(struct zs_pool *pool) 633 { 634 debugfs_remove_recursive(pool->stat_dentry); 635 } 636 637 #else /* CONFIG_ZSMALLOC_STAT */ 638 static void __init zs_stat_init(void) 639 { 640 } 641 642 static void __exit zs_stat_exit(void) 643 { 644 } 645 646 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name) 647 { 648 } 649 650 static inline void zs_pool_stat_destroy(struct zs_pool *pool) 651 { 652 } 653 #endif 654 655 656 /* 657 * For each size class, zspages are divided into different groups 658 * depending on their usage ratio. This function returns fullness 659 * status of the given page. 660 */ 661 static int get_fullness_group(struct size_class *class, struct zspage *zspage) 662 { 663 int inuse, objs_per_zspage, ratio; 664 665 inuse = get_zspage_inuse(zspage); 666 objs_per_zspage = class->objs_per_zspage; 667 668 if (inuse == 0) 669 return ZS_INUSE_RATIO_0; 670 if (inuse == objs_per_zspage) 671 return ZS_INUSE_RATIO_100; 672 673 ratio = 100 * inuse / objs_per_zspage; 674 /* 675 * Take integer division into consideration: a page with one inuse 676 * object out of 127 possible, will end up having 0 usage ratio, 677 * which is wrong as it belongs in ZS_INUSE_RATIO_10 fullness group. 678 */ 679 return ratio / 10 + 1; 680 } 681 682 /* 683 * Each size class maintains various freelists and zspages are assigned 684 * to one of these freelists based on the number of live objects they 685 * have. This functions inserts the given zspage into the freelist 686 * identified by <class, fullness_group>. 687 */ 688 static void insert_zspage(struct size_class *class, 689 struct zspage *zspage, 690 int fullness) 691 { 692 class_stat_add(class, fullness, 1); 693 list_add(&zspage->list, &class->fullness_list[fullness]); 694 zspage->fullness = fullness; 695 } 696 697 /* 698 * This function removes the given zspage from the freelist identified 699 * by <class, fullness_group>. 700 */ 701 static void remove_zspage(struct size_class *class, struct zspage *zspage) 702 { 703 int fullness = zspage->fullness; 704 705 VM_BUG_ON(list_empty(&class->fullness_list[fullness])); 706 707 list_del_init(&zspage->list); 708 class_stat_sub(class, fullness, 1); 709 } 710 711 /* 712 * Each size class maintains zspages in different fullness groups depending 713 * on the number of live objects they contain. When allocating or freeing 714 * objects, the fullness status of the page can change, for instance, from 715 * INUSE_RATIO_80 to INUSE_RATIO_70 when freeing an object. This function 716 * checks if such a status change has occurred for the given page and 717 * accordingly moves the page from the list of the old fullness group to that 718 * of the new fullness group. 719 */ 720 static int fix_fullness_group(struct size_class *class, struct zspage *zspage) 721 { 722 int newfg; 723 724 newfg = get_fullness_group(class, zspage); 725 if (newfg == zspage->fullness) 726 goto out; 727 728 remove_zspage(class, zspage); 729 insert_zspage(class, zspage, newfg); 730 out: 731 return newfg; 732 } 733 734 static struct zspage *get_zspage(struct page *page) 735 { 736 struct zspage *zspage = (struct zspage *)page_private(page); 737 738 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 739 return zspage; 740 } 741 742 static struct page *get_next_page(struct page *page) 743 { 744 struct zspage *zspage = get_zspage(page); 745 746 if (unlikely(ZsHugePage(zspage))) 747 return NULL; 748 749 return (struct page *)page->index; 750 } 751 752 /** 753 * obj_to_location - get (<page>, <obj_idx>) from encoded object value 754 * @obj: the encoded object value 755 * @page: page object resides in zspage 756 * @obj_idx: object index 757 */ 758 static void obj_to_location(unsigned long obj, struct page **page, 759 unsigned int *obj_idx) 760 { 761 *page = pfn_to_page(obj >> OBJ_INDEX_BITS); 762 *obj_idx = (obj & OBJ_INDEX_MASK); 763 } 764 765 static void obj_to_page(unsigned long obj, struct page **page) 766 { 767 *page = pfn_to_page(obj >> OBJ_INDEX_BITS); 768 } 769 770 /** 771 * location_to_obj - get obj value encoded from (<page>, <obj_idx>) 772 * @page: page object resides in zspage 773 * @obj_idx: object index 774 */ 775 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx) 776 { 777 unsigned long obj; 778 779 obj = page_to_pfn(page) << OBJ_INDEX_BITS; 780 obj |= obj_idx & OBJ_INDEX_MASK; 781 782 return obj; 783 } 784 785 static unsigned long handle_to_obj(unsigned long handle) 786 { 787 return *(unsigned long *)handle; 788 } 789 790 static inline bool obj_allocated(struct page *page, void *obj, 791 unsigned long *phandle) 792 { 793 unsigned long handle; 794 struct zspage *zspage = get_zspage(page); 795 796 if (unlikely(ZsHugePage(zspage))) { 797 VM_BUG_ON_PAGE(!is_first_page(page), page); 798 handle = page->index; 799 } else 800 handle = *(unsigned long *)obj; 801 802 if (!(handle & OBJ_ALLOCATED_TAG)) 803 return false; 804 805 /* Clear all tags before returning the handle */ 806 *phandle = handle & ~OBJ_TAG_MASK; 807 return true; 808 } 809 810 static void reset_page(struct page *page) 811 { 812 __ClearPageMovable(page); 813 ClearPagePrivate(page); 814 set_page_private(page, 0); 815 page->index = 0; 816 __ClearPageZsmalloc(page); 817 } 818 819 static int trylock_zspage(struct zspage *zspage) 820 { 821 struct page *cursor, *fail; 822 823 for (cursor = get_first_page(zspage); cursor != NULL; cursor = 824 get_next_page(cursor)) { 825 if (!trylock_page(cursor)) { 826 fail = cursor; 827 goto unlock; 828 } 829 } 830 831 return 1; 832 unlock: 833 for (cursor = get_first_page(zspage); cursor != fail; cursor = 834 get_next_page(cursor)) 835 unlock_page(cursor); 836 837 return 0; 838 } 839 840 static void __free_zspage(struct zs_pool *pool, struct size_class *class, 841 struct zspage *zspage) 842 { 843 struct page *page, *next; 844 845 assert_spin_locked(&class->lock); 846 847 VM_BUG_ON(get_zspage_inuse(zspage)); 848 VM_BUG_ON(zspage->fullness != ZS_INUSE_RATIO_0); 849 850 next = page = get_first_page(zspage); 851 do { 852 VM_BUG_ON_PAGE(!PageLocked(page), page); 853 next = get_next_page(page); 854 reset_page(page); 855 unlock_page(page); 856 dec_zone_page_state(page, NR_ZSPAGES); 857 put_page(page); 858 page = next; 859 } while (page != NULL); 860 861 cache_free_zspage(pool, zspage); 862 863 class_stat_sub(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage); 864 atomic_long_sub(class->pages_per_zspage, &pool->pages_allocated); 865 } 866 867 static void free_zspage(struct zs_pool *pool, struct size_class *class, 868 struct zspage *zspage) 869 { 870 VM_BUG_ON(get_zspage_inuse(zspage)); 871 VM_BUG_ON(list_empty(&zspage->list)); 872 873 /* 874 * Since zs_free couldn't be sleepable, this function cannot call 875 * lock_page. The page locks trylock_zspage got will be released 876 * by __free_zspage. 877 */ 878 if (!trylock_zspage(zspage)) { 879 kick_deferred_free(pool); 880 return; 881 } 882 883 remove_zspage(class, zspage); 884 __free_zspage(pool, class, zspage); 885 } 886 887 /* Initialize a newly allocated zspage */ 888 static void init_zspage(struct size_class *class, struct zspage *zspage) 889 { 890 unsigned int freeobj = 1; 891 unsigned long off = 0; 892 struct page *page = get_first_page(zspage); 893 894 while (page) { 895 struct page *next_page; 896 struct link_free *link; 897 void *vaddr; 898 899 set_first_obj_offset(page, off); 900 901 vaddr = kmap_atomic(page); 902 link = (struct link_free *)vaddr + off / sizeof(*link); 903 904 while ((off += class->size) < PAGE_SIZE) { 905 link->next = freeobj++ << OBJ_TAG_BITS; 906 link += class->size / sizeof(*link); 907 } 908 909 /* 910 * We now come to the last (full or partial) object on this 911 * page, which must point to the first object on the next 912 * page (if present) 913 */ 914 next_page = get_next_page(page); 915 if (next_page) { 916 link->next = freeobj++ << OBJ_TAG_BITS; 917 } else { 918 /* 919 * Reset OBJ_TAG_BITS bit to last link to tell 920 * whether it's allocated object or not. 921 */ 922 link->next = -1UL << OBJ_TAG_BITS; 923 } 924 kunmap_atomic(vaddr); 925 page = next_page; 926 off %= PAGE_SIZE; 927 } 928 929 set_freeobj(zspage, 0); 930 } 931 932 static void create_page_chain(struct size_class *class, struct zspage *zspage, 933 struct page *pages[]) 934 { 935 int i; 936 struct page *page; 937 struct page *prev_page = NULL; 938 int nr_pages = class->pages_per_zspage; 939 940 /* 941 * Allocate individual pages and link them together as: 942 * 1. all pages are linked together using page->index 943 * 2. each sub-page point to zspage using page->private 944 * 945 * we set PG_private to identify the first page (i.e. no other sub-page 946 * has this flag set). 947 */ 948 for (i = 0; i < nr_pages; i++) { 949 page = pages[i]; 950 set_page_private(page, (unsigned long)zspage); 951 page->index = 0; 952 if (i == 0) { 953 zspage->first_page = page; 954 SetPagePrivate(page); 955 if (unlikely(class->objs_per_zspage == 1 && 956 class->pages_per_zspage == 1)) 957 SetZsHugePage(zspage); 958 } else { 959 prev_page->index = (unsigned long)page; 960 } 961 prev_page = page; 962 } 963 } 964 965 /* 966 * Allocate a zspage for the given size class 967 */ 968 static struct zspage *alloc_zspage(struct zs_pool *pool, 969 struct size_class *class, 970 gfp_t gfp) 971 { 972 int i; 973 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE]; 974 struct zspage *zspage = cache_alloc_zspage(pool, gfp); 975 976 if (!zspage) 977 return NULL; 978 979 zspage->magic = ZSPAGE_MAGIC; 980 migrate_lock_init(zspage); 981 982 for (i = 0; i < class->pages_per_zspage; i++) { 983 struct page *page; 984 985 page = alloc_page(gfp); 986 if (!page) { 987 while (--i >= 0) { 988 dec_zone_page_state(pages[i], NR_ZSPAGES); 989 __ClearPageZsmalloc(pages[i]); 990 __free_page(pages[i]); 991 } 992 cache_free_zspage(pool, zspage); 993 return NULL; 994 } 995 __SetPageZsmalloc(page); 996 997 inc_zone_page_state(page, NR_ZSPAGES); 998 pages[i] = page; 999 } 1000 1001 create_page_chain(class, zspage, pages); 1002 init_zspage(class, zspage); 1003 zspage->pool = pool; 1004 zspage->class = class->index; 1005 1006 return zspage; 1007 } 1008 1009 static struct zspage *find_get_zspage(struct size_class *class) 1010 { 1011 int i; 1012 struct zspage *zspage; 1013 1014 for (i = ZS_INUSE_RATIO_99; i >= ZS_INUSE_RATIO_0; i--) { 1015 zspage = list_first_entry_or_null(&class->fullness_list[i], 1016 struct zspage, list); 1017 if (zspage) 1018 break; 1019 } 1020 1021 return zspage; 1022 } 1023 1024 static inline int __zs_cpu_up(struct mapping_area *area) 1025 { 1026 /* 1027 * Make sure we don't leak memory if a cpu UP notification 1028 * and zs_init() race and both call zs_cpu_up() on the same cpu 1029 */ 1030 if (area->vm_buf) 1031 return 0; 1032 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL); 1033 if (!area->vm_buf) 1034 return -ENOMEM; 1035 return 0; 1036 } 1037 1038 static inline void __zs_cpu_down(struct mapping_area *area) 1039 { 1040 kfree(area->vm_buf); 1041 area->vm_buf = NULL; 1042 } 1043 1044 static void *__zs_map_object(struct mapping_area *area, 1045 struct page *pages[2], int off, int size) 1046 { 1047 int sizes[2]; 1048 void *addr; 1049 char *buf = area->vm_buf; 1050 1051 /* disable page faults to match kmap_atomic() return conditions */ 1052 pagefault_disable(); 1053 1054 /* no read fastpath */ 1055 if (area->vm_mm == ZS_MM_WO) 1056 goto out; 1057 1058 sizes[0] = PAGE_SIZE - off; 1059 sizes[1] = size - sizes[0]; 1060 1061 /* copy object to per-cpu buffer */ 1062 addr = kmap_atomic(pages[0]); 1063 memcpy(buf, addr + off, sizes[0]); 1064 kunmap_atomic(addr); 1065 addr = kmap_atomic(pages[1]); 1066 memcpy(buf + sizes[0], addr, sizes[1]); 1067 kunmap_atomic(addr); 1068 out: 1069 return area->vm_buf; 1070 } 1071 1072 static void __zs_unmap_object(struct mapping_area *area, 1073 struct page *pages[2], int off, int size) 1074 { 1075 int sizes[2]; 1076 void *addr; 1077 char *buf; 1078 1079 /* no write fastpath */ 1080 if (area->vm_mm == ZS_MM_RO) 1081 goto out; 1082 1083 buf = area->vm_buf; 1084 buf = buf + ZS_HANDLE_SIZE; 1085 size -= ZS_HANDLE_SIZE; 1086 off += ZS_HANDLE_SIZE; 1087 1088 sizes[0] = PAGE_SIZE - off; 1089 sizes[1] = size - sizes[0]; 1090 1091 /* copy per-cpu buffer to object */ 1092 addr = kmap_atomic(pages[0]); 1093 memcpy(addr + off, buf, sizes[0]); 1094 kunmap_atomic(addr); 1095 addr = kmap_atomic(pages[1]); 1096 memcpy(addr, buf + sizes[0], sizes[1]); 1097 kunmap_atomic(addr); 1098 1099 out: 1100 /* enable page faults to match kunmap_atomic() return conditions */ 1101 pagefault_enable(); 1102 } 1103 1104 static int zs_cpu_prepare(unsigned int cpu) 1105 { 1106 struct mapping_area *area; 1107 1108 area = &per_cpu(zs_map_area, cpu); 1109 return __zs_cpu_up(area); 1110 } 1111 1112 static int zs_cpu_dead(unsigned int cpu) 1113 { 1114 struct mapping_area *area; 1115 1116 area = &per_cpu(zs_map_area, cpu); 1117 __zs_cpu_down(area); 1118 return 0; 1119 } 1120 1121 static bool can_merge(struct size_class *prev, int pages_per_zspage, 1122 int objs_per_zspage) 1123 { 1124 if (prev->pages_per_zspage == pages_per_zspage && 1125 prev->objs_per_zspage == objs_per_zspage) 1126 return true; 1127 1128 return false; 1129 } 1130 1131 static bool zspage_full(struct size_class *class, struct zspage *zspage) 1132 { 1133 return get_zspage_inuse(zspage) == class->objs_per_zspage; 1134 } 1135 1136 static bool zspage_empty(struct zspage *zspage) 1137 { 1138 return get_zspage_inuse(zspage) == 0; 1139 } 1140 1141 /** 1142 * zs_lookup_class_index() - Returns index of the zsmalloc &size_class 1143 * that hold objects of the provided size. 1144 * @pool: zsmalloc pool to use 1145 * @size: object size 1146 * 1147 * Context: Any context. 1148 * 1149 * Return: the index of the zsmalloc &size_class that hold objects of the 1150 * provided size. 1151 */ 1152 unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size) 1153 { 1154 struct size_class *class; 1155 1156 class = pool->size_class[get_size_class_index(size)]; 1157 1158 return class->index; 1159 } 1160 EXPORT_SYMBOL_GPL(zs_lookup_class_index); 1161 1162 unsigned long zs_get_total_pages(struct zs_pool *pool) 1163 { 1164 return atomic_long_read(&pool->pages_allocated); 1165 } 1166 EXPORT_SYMBOL_GPL(zs_get_total_pages); 1167 1168 /** 1169 * zs_map_object - get address of allocated object from handle. 1170 * @pool: pool from which the object was allocated 1171 * @handle: handle returned from zs_malloc 1172 * @mm: mapping mode to use 1173 * 1174 * Before using an object allocated from zs_malloc, it must be mapped using 1175 * this function. When done with the object, it must be unmapped using 1176 * zs_unmap_object. 1177 * 1178 * Only one object can be mapped per cpu at a time. There is no protection 1179 * against nested mappings. 1180 * 1181 * This function returns with preemption and page faults disabled. 1182 */ 1183 void *zs_map_object(struct zs_pool *pool, unsigned long handle, 1184 enum zs_mapmode mm) 1185 { 1186 struct zspage *zspage; 1187 struct page *page; 1188 unsigned long obj, off; 1189 unsigned int obj_idx; 1190 1191 struct size_class *class; 1192 struct mapping_area *area; 1193 struct page *pages[2]; 1194 void *ret; 1195 1196 /* 1197 * Because we use per-cpu mapping areas shared among the 1198 * pools/users, we can't allow mapping in interrupt context 1199 * because it can corrupt another users mappings. 1200 */ 1201 BUG_ON(in_interrupt()); 1202 1203 /* It guarantees it can get zspage from handle safely */ 1204 read_lock(&pool->migrate_lock); 1205 obj = handle_to_obj(handle); 1206 obj_to_location(obj, &page, &obj_idx); 1207 zspage = get_zspage(page); 1208 1209 /* 1210 * migration cannot move any zpages in this zspage. Here, class->lock 1211 * is too heavy since callers would take some time until they calls 1212 * zs_unmap_object API so delegate the locking from class to zspage 1213 * which is smaller granularity. 1214 */ 1215 migrate_read_lock(zspage); 1216 read_unlock(&pool->migrate_lock); 1217 1218 class = zspage_class(pool, zspage); 1219 off = offset_in_page(class->size * obj_idx); 1220 1221 local_lock(&zs_map_area.lock); 1222 area = this_cpu_ptr(&zs_map_area); 1223 area->vm_mm = mm; 1224 if (off + class->size <= PAGE_SIZE) { 1225 /* this object is contained entirely within a page */ 1226 area->vm_addr = kmap_atomic(page); 1227 ret = area->vm_addr + off; 1228 goto out; 1229 } 1230 1231 /* this object spans two pages */ 1232 pages[0] = page; 1233 pages[1] = get_next_page(page); 1234 BUG_ON(!pages[1]); 1235 1236 ret = __zs_map_object(area, pages, off, class->size); 1237 out: 1238 if (likely(!ZsHugePage(zspage))) 1239 ret += ZS_HANDLE_SIZE; 1240 1241 return ret; 1242 } 1243 EXPORT_SYMBOL_GPL(zs_map_object); 1244 1245 void zs_unmap_object(struct zs_pool *pool, unsigned long handle) 1246 { 1247 struct zspage *zspage; 1248 struct page *page; 1249 unsigned long obj, off; 1250 unsigned int obj_idx; 1251 1252 struct size_class *class; 1253 struct mapping_area *area; 1254 1255 obj = handle_to_obj(handle); 1256 obj_to_location(obj, &page, &obj_idx); 1257 zspage = get_zspage(page); 1258 class = zspage_class(pool, zspage); 1259 off = offset_in_page(class->size * obj_idx); 1260 1261 area = this_cpu_ptr(&zs_map_area); 1262 if (off + class->size <= PAGE_SIZE) 1263 kunmap_atomic(area->vm_addr); 1264 else { 1265 struct page *pages[2]; 1266 1267 pages[0] = page; 1268 pages[1] = get_next_page(page); 1269 BUG_ON(!pages[1]); 1270 1271 __zs_unmap_object(area, pages, off, class->size); 1272 } 1273 local_unlock(&zs_map_area.lock); 1274 1275 migrate_read_unlock(zspage); 1276 } 1277 EXPORT_SYMBOL_GPL(zs_unmap_object); 1278 1279 /** 1280 * zs_huge_class_size() - Returns the size (in bytes) of the first huge 1281 * zsmalloc &size_class. 1282 * @pool: zsmalloc pool to use 1283 * 1284 * The function returns the size of the first huge class - any object of equal 1285 * or bigger size will be stored in zspage consisting of a single physical 1286 * page. 1287 * 1288 * Context: Any context. 1289 * 1290 * Return: the size (in bytes) of the first huge zsmalloc &size_class. 1291 */ 1292 size_t zs_huge_class_size(struct zs_pool *pool) 1293 { 1294 return huge_class_size; 1295 } 1296 EXPORT_SYMBOL_GPL(zs_huge_class_size); 1297 1298 static unsigned long obj_malloc(struct zs_pool *pool, 1299 struct zspage *zspage, unsigned long handle) 1300 { 1301 int i, nr_page, offset; 1302 unsigned long obj; 1303 struct link_free *link; 1304 struct size_class *class; 1305 1306 struct page *m_page; 1307 unsigned long m_offset; 1308 void *vaddr; 1309 1310 class = pool->size_class[zspage->class]; 1311 obj = get_freeobj(zspage); 1312 1313 offset = obj * class->size; 1314 nr_page = offset >> PAGE_SHIFT; 1315 m_offset = offset_in_page(offset); 1316 m_page = get_first_page(zspage); 1317 1318 for (i = 0; i < nr_page; i++) 1319 m_page = get_next_page(m_page); 1320 1321 vaddr = kmap_atomic(m_page); 1322 link = (struct link_free *)vaddr + m_offset / sizeof(*link); 1323 set_freeobj(zspage, link->next >> OBJ_TAG_BITS); 1324 if (likely(!ZsHugePage(zspage))) 1325 /* record handle in the header of allocated chunk */ 1326 link->handle = handle | OBJ_ALLOCATED_TAG; 1327 else 1328 /* record handle to page->index */ 1329 zspage->first_page->index = handle | OBJ_ALLOCATED_TAG; 1330 1331 kunmap_atomic(vaddr); 1332 mod_zspage_inuse(zspage, 1); 1333 1334 obj = location_to_obj(m_page, obj); 1335 record_obj(handle, obj); 1336 1337 return obj; 1338 } 1339 1340 1341 /** 1342 * zs_malloc - Allocate block of given size from pool. 1343 * @pool: pool to allocate from 1344 * @size: size of block to allocate 1345 * @gfp: gfp flags when allocating object 1346 * 1347 * On success, handle to the allocated object is returned, 1348 * otherwise an ERR_PTR(). 1349 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail. 1350 */ 1351 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp) 1352 { 1353 unsigned long handle; 1354 struct size_class *class; 1355 int newfg; 1356 struct zspage *zspage; 1357 1358 if (unlikely(!size)) 1359 return (unsigned long)ERR_PTR(-EINVAL); 1360 1361 if (unlikely(size > ZS_MAX_ALLOC_SIZE)) 1362 return (unsigned long)ERR_PTR(-ENOSPC); 1363 1364 handle = cache_alloc_handle(pool, gfp); 1365 if (!handle) 1366 return (unsigned long)ERR_PTR(-ENOMEM); 1367 1368 /* extra space in chunk to keep the handle */ 1369 size += ZS_HANDLE_SIZE; 1370 class = pool->size_class[get_size_class_index(size)]; 1371 1372 /* class->lock effectively protects the zpage migration */ 1373 spin_lock(&class->lock); 1374 zspage = find_get_zspage(class); 1375 if (likely(zspage)) { 1376 obj_malloc(pool, zspage, handle); 1377 /* Now move the zspage to another fullness group, if required */ 1378 fix_fullness_group(class, zspage); 1379 class_stat_add(class, ZS_OBJS_INUSE, 1); 1380 1381 goto out; 1382 } 1383 1384 spin_unlock(&class->lock); 1385 1386 zspage = alloc_zspage(pool, class, gfp); 1387 if (!zspage) { 1388 cache_free_handle(pool, handle); 1389 return (unsigned long)ERR_PTR(-ENOMEM); 1390 } 1391 1392 spin_lock(&class->lock); 1393 obj_malloc(pool, zspage, handle); 1394 newfg = get_fullness_group(class, zspage); 1395 insert_zspage(class, zspage, newfg); 1396 atomic_long_add(class->pages_per_zspage, &pool->pages_allocated); 1397 class_stat_add(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage); 1398 class_stat_add(class, ZS_OBJS_INUSE, 1); 1399 1400 /* We completely set up zspage so mark them as movable */ 1401 SetZsPageMovable(pool, zspage); 1402 out: 1403 spin_unlock(&class->lock); 1404 1405 return handle; 1406 } 1407 EXPORT_SYMBOL_GPL(zs_malloc); 1408 1409 static void obj_free(int class_size, unsigned long obj) 1410 { 1411 struct link_free *link; 1412 struct zspage *zspage; 1413 struct page *f_page; 1414 unsigned long f_offset; 1415 unsigned int f_objidx; 1416 void *vaddr; 1417 1418 obj_to_location(obj, &f_page, &f_objidx); 1419 f_offset = offset_in_page(class_size * f_objidx); 1420 zspage = get_zspage(f_page); 1421 1422 vaddr = kmap_atomic(f_page); 1423 link = (struct link_free *)(vaddr + f_offset); 1424 1425 /* Insert this object in containing zspage's freelist */ 1426 if (likely(!ZsHugePage(zspage))) 1427 link->next = get_freeobj(zspage) << OBJ_TAG_BITS; 1428 else 1429 f_page->index = 0; 1430 set_freeobj(zspage, f_objidx); 1431 1432 kunmap_atomic(vaddr); 1433 mod_zspage_inuse(zspage, -1); 1434 } 1435 1436 void zs_free(struct zs_pool *pool, unsigned long handle) 1437 { 1438 struct zspage *zspage; 1439 struct page *f_page; 1440 unsigned long obj; 1441 struct size_class *class; 1442 int fullness; 1443 1444 if (IS_ERR_OR_NULL((void *)handle)) 1445 return; 1446 1447 /* 1448 * The pool->migrate_lock protects the race with zpage's migration 1449 * so it's safe to get the page from handle. 1450 */ 1451 read_lock(&pool->migrate_lock); 1452 obj = handle_to_obj(handle); 1453 obj_to_page(obj, &f_page); 1454 zspage = get_zspage(f_page); 1455 class = zspage_class(pool, zspage); 1456 spin_lock(&class->lock); 1457 read_unlock(&pool->migrate_lock); 1458 1459 class_stat_sub(class, ZS_OBJS_INUSE, 1); 1460 obj_free(class->size, obj); 1461 1462 fullness = fix_fullness_group(class, zspage); 1463 if (fullness == ZS_INUSE_RATIO_0) 1464 free_zspage(pool, class, zspage); 1465 1466 spin_unlock(&class->lock); 1467 cache_free_handle(pool, handle); 1468 } 1469 EXPORT_SYMBOL_GPL(zs_free); 1470 1471 static void zs_object_copy(struct size_class *class, unsigned long dst, 1472 unsigned long src) 1473 { 1474 struct page *s_page, *d_page; 1475 unsigned int s_objidx, d_objidx; 1476 unsigned long s_off, d_off; 1477 void *s_addr, *d_addr; 1478 int s_size, d_size, size; 1479 int written = 0; 1480 1481 s_size = d_size = class->size; 1482 1483 obj_to_location(src, &s_page, &s_objidx); 1484 obj_to_location(dst, &d_page, &d_objidx); 1485 1486 s_off = offset_in_page(class->size * s_objidx); 1487 d_off = offset_in_page(class->size * d_objidx); 1488 1489 if (s_off + class->size > PAGE_SIZE) 1490 s_size = PAGE_SIZE - s_off; 1491 1492 if (d_off + class->size > PAGE_SIZE) 1493 d_size = PAGE_SIZE - d_off; 1494 1495 s_addr = kmap_atomic(s_page); 1496 d_addr = kmap_atomic(d_page); 1497 1498 while (1) { 1499 size = min(s_size, d_size); 1500 memcpy(d_addr + d_off, s_addr + s_off, size); 1501 written += size; 1502 1503 if (written == class->size) 1504 break; 1505 1506 s_off += size; 1507 s_size -= size; 1508 d_off += size; 1509 d_size -= size; 1510 1511 /* 1512 * Calling kunmap_atomic(d_addr) is necessary. kunmap_atomic() 1513 * calls must occurs in reverse order of calls to kmap_atomic(). 1514 * So, to call kunmap_atomic(s_addr) we should first call 1515 * kunmap_atomic(d_addr). For more details see 1516 * Documentation/mm/highmem.rst. 1517 */ 1518 if (s_off >= PAGE_SIZE) { 1519 kunmap_atomic(d_addr); 1520 kunmap_atomic(s_addr); 1521 s_page = get_next_page(s_page); 1522 s_addr = kmap_atomic(s_page); 1523 d_addr = kmap_atomic(d_page); 1524 s_size = class->size - written; 1525 s_off = 0; 1526 } 1527 1528 if (d_off >= PAGE_SIZE) { 1529 kunmap_atomic(d_addr); 1530 d_page = get_next_page(d_page); 1531 d_addr = kmap_atomic(d_page); 1532 d_size = class->size - written; 1533 d_off = 0; 1534 } 1535 } 1536 1537 kunmap_atomic(d_addr); 1538 kunmap_atomic(s_addr); 1539 } 1540 1541 /* 1542 * Find alloced object in zspage from index object and 1543 * return handle. 1544 */ 1545 static unsigned long find_alloced_obj(struct size_class *class, 1546 struct page *page, int *obj_idx) 1547 { 1548 unsigned int offset; 1549 int index = *obj_idx; 1550 unsigned long handle = 0; 1551 void *addr = kmap_atomic(page); 1552 1553 offset = get_first_obj_offset(page); 1554 offset += class->size * index; 1555 1556 while (offset < PAGE_SIZE) { 1557 if (obj_allocated(page, addr + offset, &handle)) 1558 break; 1559 1560 offset += class->size; 1561 index++; 1562 } 1563 1564 kunmap_atomic(addr); 1565 1566 *obj_idx = index; 1567 1568 return handle; 1569 } 1570 1571 static void migrate_zspage(struct zs_pool *pool, struct zspage *src_zspage, 1572 struct zspage *dst_zspage) 1573 { 1574 unsigned long used_obj, free_obj; 1575 unsigned long handle; 1576 int obj_idx = 0; 1577 struct page *s_page = get_first_page(src_zspage); 1578 struct size_class *class = pool->size_class[src_zspage->class]; 1579 1580 while (1) { 1581 handle = find_alloced_obj(class, s_page, &obj_idx); 1582 if (!handle) { 1583 s_page = get_next_page(s_page); 1584 if (!s_page) 1585 break; 1586 obj_idx = 0; 1587 continue; 1588 } 1589 1590 used_obj = handle_to_obj(handle); 1591 free_obj = obj_malloc(pool, dst_zspage, handle); 1592 zs_object_copy(class, free_obj, used_obj); 1593 obj_idx++; 1594 obj_free(class->size, used_obj); 1595 1596 /* Stop if there is no more space */ 1597 if (zspage_full(class, dst_zspage)) 1598 break; 1599 1600 /* Stop if there are no more objects to migrate */ 1601 if (zspage_empty(src_zspage)) 1602 break; 1603 } 1604 } 1605 1606 static struct zspage *isolate_src_zspage(struct size_class *class) 1607 { 1608 struct zspage *zspage; 1609 int fg; 1610 1611 for (fg = ZS_INUSE_RATIO_10; fg <= ZS_INUSE_RATIO_99; fg++) { 1612 zspage = list_first_entry_or_null(&class->fullness_list[fg], 1613 struct zspage, list); 1614 if (zspage) { 1615 remove_zspage(class, zspage); 1616 return zspage; 1617 } 1618 } 1619 1620 return zspage; 1621 } 1622 1623 static struct zspage *isolate_dst_zspage(struct size_class *class) 1624 { 1625 struct zspage *zspage; 1626 int fg; 1627 1628 for (fg = ZS_INUSE_RATIO_99; fg >= ZS_INUSE_RATIO_10; fg--) { 1629 zspage = list_first_entry_or_null(&class->fullness_list[fg], 1630 struct zspage, list); 1631 if (zspage) { 1632 remove_zspage(class, zspage); 1633 return zspage; 1634 } 1635 } 1636 1637 return zspage; 1638 } 1639 1640 /* 1641 * putback_zspage - add @zspage into right class's fullness list 1642 * @class: destination class 1643 * @zspage: target page 1644 * 1645 * Return @zspage's fullness status 1646 */ 1647 static int putback_zspage(struct size_class *class, struct zspage *zspage) 1648 { 1649 int fullness; 1650 1651 fullness = get_fullness_group(class, zspage); 1652 insert_zspage(class, zspage, fullness); 1653 1654 return fullness; 1655 } 1656 1657 #ifdef CONFIG_COMPACTION 1658 /* 1659 * To prevent zspage destroy during migration, zspage freeing should 1660 * hold locks of all pages in the zspage. 1661 */ 1662 static void lock_zspage(struct zspage *zspage) 1663 { 1664 struct page *curr_page, *page; 1665 1666 /* 1667 * Pages we haven't locked yet can be migrated off the list while we're 1668 * trying to lock them, so we need to be careful and only attempt to 1669 * lock each page under migrate_read_lock(). Otherwise, the page we lock 1670 * may no longer belong to the zspage. This means that we may wait for 1671 * the wrong page to unlock, so we must take a reference to the page 1672 * prior to waiting for it to unlock outside migrate_read_lock(). 1673 */ 1674 while (1) { 1675 migrate_read_lock(zspage); 1676 page = get_first_page(zspage); 1677 if (trylock_page(page)) 1678 break; 1679 get_page(page); 1680 migrate_read_unlock(zspage); 1681 wait_on_page_locked(page); 1682 put_page(page); 1683 } 1684 1685 curr_page = page; 1686 while ((page = get_next_page(curr_page))) { 1687 if (trylock_page(page)) { 1688 curr_page = page; 1689 } else { 1690 get_page(page); 1691 migrate_read_unlock(zspage); 1692 wait_on_page_locked(page); 1693 put_page(page); 1694 migrate_read_lock(zspage); 1695 } 1696 } 1697 migrate_read_unlock(zspage); 1698 } 1699 #endif /* CONFIG_COMPACTION */ 1700 1701 static void migrate_lock_init(struct zspage *zspage) 1702 { 1703 rwlock_init(&zspage->lock); 1704 } 1705 1706 static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock) 1707 { 1708 read_lock(&zspage->lock); 1709 } 1710 1711 static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock) 1712 { 1713 read_unlock(&zspage->lock); 1714 } 1715 1716 static void migrate_write_lock(struct zspage *zspage) 1717 { 1718 write_lock(&zspage->lock); 1719 } 1720 1721 static void migrate_write_unlock(struct zspage *zspage) 1722 { 1723 write_unlock(&zspage->lock); 1724 } 1725 1726 #ifdef CONFIG_COMPACTION 1727 1728 static const struct movable_operations zsmalloc_mops; 1729 1730 static void replace_sub_page(struct size_class *class, struct zspage *zspage, 1731 struct page *newpage, struct page *oldpage) 1732 { 1733 struct page *page; 1734 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, }; 1735 int idx = 0; 1736 1737 page = get_first_page(zspage); 1738 do { 1739 if (page == oldpage) 1740 pages[idx] = newpage; 1741 else 1742 pages[idx] = page; 1743 idx++; 1744 } while ((page = get_next_page(page)) != NULL); 1745 1746 create_page_chain(class, zspage, pages); 1747 set_first_obj_offset(newpage, get_first_obj_offset(oldpage)); 1748 if (unlikely(ZsHugePage(zspage))) 1749 newpage->index = oldpage->index; 1750 __SetPageMovable(newpage, &zsmalloc_mops); 1751 } 1752 1753 static bool zs_page_isolate(struct page *page, isolate_mode_t mode) 1754 { 1755 /* 1756 * Page is locked so zspage couldn't be destroyed. For detail, look at 1757 * lock_zspage in free_zspage. 1758 */ 1759 VM_BUG_ON_PAGE(PageIsolated(page), page); 1760 1761 return true; 1762 } 1763 1764 static int zs_page_migrate(struct page *newpage, struct page *page, 1765 enum migrate_mode mode) 1766 { 1767 struct zs_pool *pool; 1768 struct size_class *class; 1769 struct zspage *zspage; 1770 struct page *dummy; 1771 void *s_addr, *d_addr, *addr; 1772 unsigned int offset; 1773 unsigned long handle; 1774 unsigned long old_obj, new_obj; 1775 unsigned int obj_idx; 1776 1777 VM_BUG_ON_PAGE(!PageIsolated(page), page); 1778 1779 /* We're committed, tell the world that this is a Zsmalloc page. */ 1780 __SetPageZsmalloc(newpage); 1781 1782 /* The page is locked, so this pointer must remain valid */ 1783 zspage = get_zspage(page); 1784 pool = zspage->pool; 1785 1786 /* 1787 * The pool migrate_lock protects the race between zpage migration 1788 * and zs_free. 1789 */ 1790 write_lock(&pool->migrate_lock); 1791 class = zspage_class(pool, zspage); 1792 1793 /* 1794 * the class lock protects zpage alloc/free in the zspage. 1795 */ 1796 spin_lock(&class->lock); 1797 /* the migrate_write_lock protects zpage access via zs_map_object */ 1798 migrate_write_lock(zspage); 1799 1800 offset = get_first_obj_offset(page); 1801 s_addr = kmap_atomic(page); 1802 1803 /* 1804 * Here, any user cannot access all objects in the zspage so let's move. 1805 */ 1806 d_addr = kmap_atomic(newpage); 1807 copy_page(d_addr, s_addr); 1808 kunmap_atomic(d_addr); 1809 1810 for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE; 1811 addr += class->size) { 1812 if (obj_allocated(page, addr, &handle)) { 1813 1814 old_obj = handle_to_obj(handle); 1815 obj_to_location(old_obj, &dummy, &obj_idx); 1816 new_obj = (unsigned long)location_to_obj(newpage, 1817 obj_idx); 1818 record_obj(handle, new_obj); 1819 } 1820 } 1821 kunmap_atomic(s_addr); 1822 1823 replace_sub_page(class, zspage, newpage, page); 1824 /* 1825 * Since we complete the data copy and set up new zspage structure, 1826 * it's okay to release migration_lock. 1827 */ 1828 write_unlock(&pool->migrate_lock); 1829 spin_unlock(&class->lock); 1830 migrate_write_unlock(zspage); 1831 1832 get_page(newpage); 1833 if (page_zone(newpage) != page_zone(page)) { 1834 dec_zone_page_state(page, NR_ZSPAGES); 1835 inc_zone_page_state(newpage, NR_ZSPAGES); 1836 } 1837 1838 reset_page(page); 1839 put_page(page); 1840 1841 return MIGRATEPAGE_SUCCESS; 1842 } 1843 1844 static void zs_page_putback(struct page *page) 1845 { 1846 VM_BUG_ON_PAGE(!PageIsolated(page), page); 1847 } 1848 1849 static const struct movable_operations zsmalloc_mops = { 1850 .isolate_page = zs_page_isolate, 1851 .migrate_page = zs_page_migrate, 1852 .putback_page = zs_page_putback, 1853 }; 1854 1855 /* 1856 * Caller should hold page_lock of all pages in the zspage 1857 * In here, we cannot use zspage meta data. 1858 */ 1859 static void async_free_zspage(struct work_struct *work) 1860 { 1861 int i; 1862 struct size_class *class; 1863 struct zspage *zspage, *tmp; 1864 LIST_HEAD(free_pages); 1865 struct zs_pool *pool = container_of(work, struct zs_pool, 1866 free_work); 1867 1868 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 1869 class = pool->size_class[i]; 1870 if (class->index != i) 1871 continue; 1872 1873 spin_lock(&class->lock); 1874 list_splice_init(&class->fullness_list[ZS_INUSE_RATIO_0], 1875 &free_pages); 1876 spin_unlock(&class->lock); 1877 } 1878 1879 list_for_each_entry_safe(zspage, tmp, &free_pages, list) { 1880 list_del(&zspage->list); 1881 lock_zspage(zspage); 1882 1883 class = zspage_class(pool, zspage); 1884 spin_lock(&class->lock); 1885 class_stat_sub(class, ZS_INUSE_RATIO_0, 1); 1886 __free_zspage(pool, class, zspage); 1887 spin_unlock(&class->lock); 1888 } 1889 }; 1890 1891 static void kick_deferred_free(struct zs_pool *pool) 1892 { 1893 schedule_work(&pool->free_work); 1894 } 1895 1896 static void zs_flush_migration(struct zs_pool *pool) 1897 { 1898 flush_work(&pool->free_work); 1899 } 1900 1901 static void init_deferred_free(struct zs_pool *pool) 1902 { 1903 INIT_WORK(&pool->free_work, async_free_zspage); 1904 } 1905 1906 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) 1907 { 1908 struct page *page = get_first_page(zspage); 1909 1910 do { 1911 WARN_ON(!trylock_page(page)); 1912 __SetPageMovable(page, &zsmalloc_mops); 1913 unlock_page(page); 1914 } while ((page = get_next_page(page)) != NULL); 1915 } 1916 #else 1917 static inline void zs_flush_migration(struct zs_pool *pool) { } 1918 #endif 1919 1920 /* 1921 * 1922 * Based on the number of unused allocated objects calculate 1923 * and return the number of pages that we can free. 1924 */ 1925 static unsigned long zs_can_compact(struct size_class *class) 1926 { 1927 unsigned long obj_wasted; 1928 unsigned long obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED); 1929 unsigned long obj_used = class_stat_read(class, ZS_OBJS_INUSE); 1930 1931 if (obj_allocated <= obj_used) 1932 return 0; 1933 1934 obj_wasted = obj_allocated - obj_used; 1935 obj_wasted /= class->objs_per_zspage; 1936 1937 return obj_wasted * class->pages_per_zspage; 1938 } 1939 1940 static unsigned long __zs_compact(struct zs_pool *pool, 1941 struct size_class *class) 1942 { 1943 struct zspage *src_zspage = NULL; 1944 struct zspage *dst_zspage = NULL; 1945 unsigned long pages_freed = 0; 1946 1947 /* 1948 * protect the race between zpage migration and zs_free 1949 * as well as zpage allocation/free 1950 */ 1951 write_lock(&pool->migrate_lock); 1952 spin_lock(&class->lock); 1953 while (zs_can_compact(class)) { 1954 int fg; 1955 1956 if (!dst_zspage) { 1957 dst_zspage = isolate_dst_zspage(class); 1958 if (!dst_zspage) 1959 break; 1960 } 1961 1962 src_zspage = isolate_src_zspage(class); 1963 if (!src_zspage) 1964 break; 1965 1966 migrate_write_lock(src_zspage); 1967 migrate_zspage(pool, src_zspage, dst_zspage); 1968 migrate_write_unlock(src_zspage); 1969 1970 fg = putback_zspage(class, src_zspage); 1971 if (fg == ZS_INUSE_RATIO_0) { 1972 free_zspage(pool, class, src_zspage); 1973 pages_freed += class->pages_per_zspage; 1974 } 1975 src_zspage = NULL; 1976 1977 if (get_fullness_group(class, dst_zspage) == ZS_INUSE_RATIO_100 1978 || rwlock_is_contended(&pool->migrate_lock)) { 1979 putback_zspage(class, dst_zspage); 1980 dst_zspage = NULL; 1981 1982 spin_unlock(&class->lock); 1983 write_unlock(&pool->migrate_lock); 1984 cond_resched(); 1985 write_lock(&pool->migrate_lock); 1986 spin_lock(&class->lock); 1987 } 1988 } 1989 1990 if (src_zspage) 1991 putback_zspage(class, src_zspage); 1992 1993 if (dst_zspage) 1994 putback_zspage(class, dst_zspage); 1995 1996 spin_unlock(&class->lock); 1997 write_unlock(&pool->migrate_lock); 1998 1999 return pages_freed; 2000 } 2001 2002 unsigned long zs_compact(struct zs_pool *pool) 2003 { 2004 int i; 2005 struct size_class *class; 2006 unsigned long pages_freed = 0; 2007 2008 /* 2009 * Pool compaction is performed under pool->migrate_lock so it is basically 2010 * single-threaded. Having more than one thread in __zs_compact() 2011 * will increase pool->migrate_lock contention, which will impact other 2012 * zsmalloc operations that need pool->migrate_lock. 2013 */ 2014 if (atomic_xchg(&pool->compaction_in_progress, 1)) 2015 return 0; 2016 2017 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2018 class = pool->size_class[i]; 2019 if (class->index != i) 2020 continue; 2021 pages_freed += __zs_compact(pool, class); 2022 } 2023 atomic_long_add(pages_freed, &pool->stats.pages_compacted); 2024 atomic_set(&pool->compaction_in_progress, 0); 2025 2026 return pages_freed; 2027 } 2028 EXPORT_SYMBOL_GPL(zs_compact); 2029 2030 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats) 2031 { 2032 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats)); 2033 } 2034 EXPORT_SYMBOL_GPL(zs_pool_stats); 2035 2036 static unsigned long zs_shrinker_scan(struct shrinker *shrinker, 2037 struct shrink_control *sc) 2038 { 2039 unsigned long pages_freed; 2040 struct zs_pool *pool = shrinker->private_data; 2041 2042 /* 2043 * Compact classes and calculate compaction delta. 2044 * Can run concurrently with a manually triggered 2045 * (by user) compaction. 2046 */ 2047 pages_freed = zs_compact(pool); 2048 2049 return pages_freed ? pages_freed : SHRINK_STOP; 2050 } 2051 2052 static unsigned long zs_shrinker_count(struct shrinker *shrinker, 2053 struct shrink_control *sc) 2054 { 2055 int i; 2056 struct size_class *class; 2057 unsigned long pages_to_free = 0; 2058 struct zs_pool *pool = shrinker->private_data; 2059 2060 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2061 class = pool->size_class[i]; 2062 if (class->index != i) 2063 continue; 2064 2065 pages_to_free += zs_can_compact(class); 2066 } 2067 2068 return pages_to_free; 2069 } 2070 2071 static void zs_unregister_shrinker(struct zs_pool *pool) 2072 { 2073 shrinker_free(pool->shrinker); 2074 } 2075 2076 static int zs_register_shrinker(struct zs_pool *pool) 2077 { 2078 pool->shrinker = shrinker_alloc(0, "mm-zspool:%s", pool->name); 2079 if (!pool->shrinker) 2080 return -ENOMEM; 2081 2082 pool->shrinker->scan_objects = zs_shrinker_scan; 2083 pool->shrinker->count_objects = zs_shrinker_count; 2084 pool->shrinker->batch = 0; 2085 pool->shrinker->private_data = pool; 2086 2087 shrinker_register(pool->shrinker); 2088 2089 return 0; 2090 } 2091 2092 static int calculate_zspage_chain_size(int class_size) 2093 { 2094 int i, min_waste = INT_MAX; 2095 int chain_size = 1; 2096 2097 if (is_power_of_2(class_size)) 2098 return chain_size; 2099 2100 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { 2101 int waste; 2102 2103 waste = (i * PAGE_SIZE) % class_size; 2104 if (waste < min_waste) { 2105 min_waste = waste; 2106 chain_size = i; 2107 } 2108 } 2109 2110 return chain_size; 2111 } 2112 2113 /** 2114 * zs_create_pool - Creates an allocation pool to work from. 2115 * @name: pool name to be created 2116 * 2117 * This function must be called before anything when using 2118 * the zsmalloc allocator. 2119 * 2120 * On success, a pointer to the newly created pool is returned, 2121 * otherwise NULL. 2122 */ 2123 struct zs_pool *zs_create_pool(const char *name) 2124 { 2125 int i; 2126 struct zs_pool *pool; 2127 struct size_class *prev_class = NULL; 2128 2129 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 2130 if (!pool) 2131 return NULL; 2132 2133 init_deferred_free(pool); 2134 rwlock_init(&pool->migrate_lock); 2135 atomic_set(&pool->compaction_in_progress, 0); 2136 2137 pool->name = kstrdup(name, GFP_KERNEL); 2138 if (!pool->name) 2139 goto err; 2140 2141 if (create_cache(pool)) 2142 goto err; 2143 2144 /* 2145 * Iterate reversely, because, size of size_class that we want to use 2146 * for merging should be larger or equal to current size. 2147 */ 2148 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2149 int size; 2150 int pages_per_zspage; 2151 int objs_per_zspage; 2152 struct size_class *class; 2153 int fullness; 2154 2155 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; 2156 if (size > ZS_MAX_ALLOC_SIZE) 2157 size = ZS_MAX_ALLOC_SIZE; 2158 pages_per_zspage = calculate_zspage_chain_size(size); 2159 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size; 2160 2161 /* 2162 * We iterate from biggest down to smallest classes, 2163 * so huge_class_size holds the size of the first huge 2164 * class. Any object bigger than or equal to that will 2165 * endup in the huge class. 2166 */ 2167 if (pages_per_zspage != 1 && objs_per_zspage != 1 && 2168 !huge_class_size) { 2169 huge_class_size = size; 2170 /* 2171 * The object uses ZS_HANDLE_SIZE bytes to store the 2172 * handle. We need to subtract it, because zs_malloc() 2173 * unconditionally adds handle size before it performs 2174 * size class search - so object may be smaller than 2175 * huge class size, yet it still can end up in the huge 2176 * class because it grows by ZS_HANDLE_SIZE extra bytes 2177 * right before class lookup. 2178 */ 2179 huge_class_size -= (ZS_HANDLE_SIZE - 1); 2180 } 2181 2182 /* 2183 * size_class is used for normal zsmalloc operation such 2184 * as alloc/free for that size. Although it is natural that we 2185 * have one size_class for each size, there is a chance that we 2186 * can get more memory utilization if we use one size_class for 2187 * many different sizes whose size_class have same 2188 * characteristics. So, we makes size_class point to 2189 * previous size_class if possible. 2190 */ 2191 if (prev_class) { 2192 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) { 2193 pool->size_class[i] = prev_class; 2194 continue; 2195 } 2196 } 2197 2198 class = kzalloc(sizeof(struct size_class), GFP_KERNEL); 2199 if (!class) 2200 goto err; 2201 2202 class->size = size; 2203 class->index = i; 2204 class->pages_per_zspage = pages_per_zspage; 2205 class->objs_per_zspage = objs_per_zspage; 2206 spin_lock_init(&class->lock); 2207 pool->size_class[i] = class; 2208 2209 fullness = ZS_INUSE_RATIO_0; 2210 while (fullness < NR_FULLNESS_GROUPS) { 2211 INIT_LIST_HEAD(&class->fullness_list[fullness]); 2212 fullness++; 2213 } 2214 2215 prev_class = class; 2216 } 2217 2218 /* debug only, don't abort if it fails */ 2219 zs_pool_stat_create(pool, name); 2220 2221 /* 2222 * Not critical since shrinker is only used to trigger internal 2223 * defragmentation of the pool which is pretty optional thing. If 2224 * registration fails we still can use the pool normally and user can 2225 * trigger compaction manually. Thus, ignore return code. 2226 */ 2227 zs_register_shrinker(pool); 2228 2229 return pool; 2230 2231 err: 2232 zs_destroy_pool(pool); 2233 return NULL; 2234 } 2235 EXPORT_SYMBOL_GPL(zs_create_pool); 2236 2237 void zs_destroy_pool(struct zs_pool *pool) 2238 { 2239 int i; 2240 2241 zs_unregister_shrinker(pool); 2242 zs_flush_migration(pool); 2243 zs_pool_stat_destroy(pool); 2244 2245 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 2246 int fg; 2247 struct size_class *class = pool->size_class[i]; 2248 2249 if (!class) 2250 continue; 2251 2252 if (class->index != i) 2253 continue; 2254 2255 for (fg = ZS_INUSE_RATIO_0; fg < NR_FULLNESS_GROUPS; fg++) { 2256 if (list_empty(&class->fullness_list[fg])) 2257 continue; 2258 2259 pr_err("Class-%d fullness group %d is not empty\n", 2260 class->size, fg); 2261 } 2262 kfree(class); 2263 } 2264 2265 destroy_cache(pool); 2266 kfree(pool->name); 2267 kfree(pool); 2268 } 2269 EXPORT_SYMBOL_GPL(zs_destroy_pool); 2270 2271 static int __init zs_init(void) 2272 { 2273 int ret; 2274 2275 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare", 2276 zs_cpu_prepare, zs_cpu_dead); 2277 if (ret) 2278 goto out; 2279 2280 #ifdef CONFIG_ZPOOL 2281 zpool_register_driver(&zs_zpool_driver); 2282 #endif 2283 2284 zs_stat_init(); 2285 2286 return 0; 2287 2288 out: 2289 return ret; 2290 } 2291 2292 static void __exit zs_exit(void) 2293 { 2294 #ifdef CONFIG_ZPOOL 2295 zpool_unregister_driver(&zs_zpool_driver); 2296 #endif 2297 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE); 2298 2299 zs_stat_exit(); 2300 } 2301 2302 module_init(zs_init); 2303 module_exit(zs_exit); 2304 2305 MODULE_LICENSE("Dual BSD/GPL"); 2306 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 2307 MODULE_DESCRIPTION("zsmalloc memory allocator"); 2308