1 // SPDX-License-Identifier: GPL-2.0-or-later 2 3 /* 4 * zsmalloc memory allocator 5 * 6 * Copyright (C) 2011 Nitin Gupta 7 * Copyright (C) 2012, 2013 Minchan Kim 8 * 9 * This code is released using a dual license strategy: BSD/GPL 10 * You can choose the license that better fits your requirements. 11 * 12 * Released under the terms of 3-clause BSD License 13 * Released under the terms of GNU General Public License Version 2.0 14 */ 15 16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 17 18 /* 19 * lock ordering: 20 * page_lock 21 * pool->lock 22 * class->lock 23 * zspage->lock 24 */ 25 26 #include <linux/module.h> 27 #include <linux/kernel.h> 28 #include <linux/sched.h> 29 #include <linux/bitops.h> 30 #include <linux/errno.h> 31 #include <linux/highmem.h> 32 #include <linux/string.h> 33 #include <linux/slab.h> 34 #include <linux/pgtable.h> 35 #include <asm/tlbflush.h> 36 #include <linux/cpumask.h> 37 #include <linux/cpu.h> 38 #include <linux/vmalloc.h> 39 #include <linux/preempt.h> 40 #include <linux/spinlock.h> 41 #include <linux/sprintf.h> 42 #include <linux/shrinker.h> 43 #include <linux/types.h> 44 #include <linux/debugfs.h> 45 #include <linux/zsmalloc.h> 46 #include <linux/zpool.h> 47 #include <linux/migrate.h> 48 #include <linux/wait.h> 49 #include <linux/pagemap.h> 50 #include <linux/fs.h> 51 #include <linux/local_lock.h> 52 #include "zpdesc.h" 53 54 #define ZSPAGE_MAGIC 0x58 55 56 /* 57 * This must be power of 2 and greater than or equal to sizeof(link_free). 58 * These two conditions ensure that any 'struct link_free' itself doesn't 59 * span more than 1 page which avoids complex case of mapping 2 pages simply 60 * to restore link_free pointer values. 61 */ 62 #define ZS_ALIGN 8 63 64 #define ZS_HANDLE_SIZE (sizeof(unsigned long)) 65 66 /* 67 * Object location (<PFN>, <obj_idx>) is encoded as 68 * a single (unsigned long) handle value. 69 * 70 * Note that object index <obj_idx> starts from 0. 71 * 72 * This is made more complicated by various memory models and PAE. 73 */ 74 75 #ifndef MAX_POSSIBLE_PHYSMEM_BITS 76 #ifdef MAX_PHYSMEM_BITS 77 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS 78 #else 79 /* 80 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just 81 * be PAGE_SHIFT 82 */ 83 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG 84 #endif 85 #endif 86 87 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT) 88 89 /* 90 * Head in allocated object should have OBJ_ALLOCATED_TAG 91 * to identify the object was allocated or not. 92 * It's okay to add the status bit in the least bit because 93 * header keeps handle which is 4byte-aligned address so we 94 * have room for two bit at least. 95 */ 96 #define OBJ_ALLOCATED_TAG 1 97 98 #define OBJ_TAG_BITS 1 99 #define OBJ_TAG_MASK OBJ_ALLOCATED_TAG 100 101 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS) 102 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1) 103 104 #define HUGE_BITS 1 105 #define FULLNESS_BITS 4 106 #define CLASS_BITS 8 107 #define MAGIC_VAL_BITS 8 108 109 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(CONFIG_ZSMALLOC_CHAIN_SIZE, UL)) 110 111 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */ 112 #define ZS_MIN_ALLOC_SIZE \ 113 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS)) 114 /* each chunk includes extra space to keep handle */ 115 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE 116 117 /* 118 * On systems with 4K page size, this gives 255 size classes! There is a 119 * trader-off here: 120 * - Large number of size classes is potentially wasteful as free page are 121 * spread across these classes 122 * - Small number of size classes causes large internal fragmentation 123 * - Probably its better to use specific size classes (empirically 124 * determined). NOTE: all those class sizes must be set as multiple of 125 * ZS_ALIGN to make sure link_free itself never has to span 2 pages. 126 * 127 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN 128 * (reason above) 129 */ 130 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS) 131 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \ 132 ZS_SIZE_CLASS_DELTA) + 1) 133 134 /* 135 * Pages are distinguished by the ratio of used memory (that is the ratio 136 * of ->inuse objects to all objects that page can store). For example, 137 * INUSE_RATIO_10 means that the ratio of used objects is > 0% and <= 10%. 138 * 139 * The number of fullness groups is not random. It allows us to keep 140 * difference between the least busy page in the group (minimum permitted 141 * number of ->inuse objects) and the most busy page (maximum permitted 142 * number of ->inuse objects) at a reasonable value. 143 */ 144 enum fullness_group { 145 ZS_INUSE_RATIO_0, 146 ZS_INUSE_RATIO_10, 147 /* NOTE: 8 more fullness groups here */ 148 ZS_INUSE_RATIO_99 = 10, 149 ZS_INUSE_RATIO_100, 150 NR_FULLNESS_GROUPS, 151 }; 152 153 enum class_stat_type { 154 /* NOTE: stats for 12 fullness groups here: from inuse 0 to 100 */ 155 ZS_OBJS_ALLOCATED = NR_FULLNESS_GROUPS, 156 ZS_OBJS_INUSE, 157 NR_CLASS_STAT_TYPES, 158 }; 159 160 struct zs_size_stat { 161 unsigned long objs[NR_CLASS_STAT_TYPES]; 162 }; 163 164 #ifdef CONFIG_ZSMALLOC_STAT 165 static struct dentry *zs_stat_root; 166 #endif 167 168 static size_t huge_class_size; 169 170 struct size_class { 171 spinlock_t lock; 172 struct list_head fullness_list[NR_FULLNESS_GROUPS]; 173 /* 174 * Size of objects stored in this class. Must be multiple 175 * of ZS_ALIGN. 176 */ 177 int size; 178 int objs_per_zspage; 179 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */ 180 int pages_per_zspage; 181 182 unsigned int index; 183 struct zs_size_stat stats; 184 }; 185 186 /* 187 * Placed within free objects to form a singly linked list. 188 * For every zspage, zspage->freeobj gives head of this list. 189 * 190 * This must be power of 2 and less than or equal to ZS_ALIGN 191 */ 192 struct link_free { 193 union { 194 /* 195 * Free object index; 196 * It's valid for non-allocated object 197 */ 198 unsigned long next; 199 /* 200 * Handle of allocated object. 201 */ 202 unsigned long handle; 203 }; 204 }; 205 206 struct zs_pool { 207 const char *name; 208 209 struct size_class *size_class[ZS_SIZE_CLASSES]; 210 struct kmem_cache *handle_cachep; 211 struct kmem_cache *zspage_cachep; 212 213 atomic_long_t pages_allocated; 214 215 struct zs_pool_stats stats; 216 217 /* Compact classes */ 218 struct shrinker *shrinker; 219 220 #ifdef CONFIG_ZSMALLOC_STAT 221 struct dentry *stat_dentry; 222 #endif 223 #ifdef CONFIG_COMPACTION 224 struct work_struct free_work; 225 #endif 226 /* protect zspage migration/compaction */ 227 rwlock_t lock; 228 atomic_t compaction_in_progress; 229 }; 230 231 static inline void zpdesc_set_first(struct zpdesc *zpdesc) 232 { 233 SetPagePrivate(zpdesc_page(zpdesc)); 234 } 235 236 static inline void zpdesc_inc_zone_page_state(struct zpdesc *zpdesc) 237 { 238 inc_zone_page_state(zpdesc_page(zpdesc), NR_ZSPAGES); 239 } 240 241 static inline void zpdesc_dec_zone_page_state(struct zpdesc *zpdesc) 242 { 243 dec_zone_page_state(zpdesc_page(zpdesc), NR_ZSPAGES); 244 } 245 246 static inline struct zpdesc *alloc_zpdesc(gfp_t gfp, const int nid) 247 { 248 struct page *page = alloc_pages_node(nid, gfp, 0); 249 250 return page_zpdesc(page); 251 } 252 253 static inline void free_zpdesc(struct zpdesc *zpdesc) 254 { 255 struct page *page = zpdesc_page(zpdesc); 256 257 __free_page(page); 258 } 259 260 #define ZS_PAGE_UNLOCKED 0 261 #define ZS_PAGE_WRLOCKED -1 262 263 struct zspage_lock { 264 spinlock_t lock; 265 int cnt; 266 struct lockdep_map dep_map; 267 }; 268 269 struct zspage { 270 struct { 271 unsigned int huge:HUGE_BITS; 272 unsigned int fullness:FULLNESS_BITS; 273 unsigned int class:CLASS_BITS + 1; 274 unsigned int magic:MAGIC_VAL_BITS; 275 }; 276 unsigned int inuse; 277 unsigned int freeobj; 278 struct zpdesc *first_zpdesc; 279 struct list_head list; /* fullness list */ 280 struct zs_pool *pool; 281 struct zspage_lock zsl; 282 }; 283 284 static void zspage_lock_init(struct zspage *zspage) 285 { 286 static struct lock_class_key __key; 287 struct zspage_lock *zsl = &zspage->zsl; 288 289 lockdep_init_map(&zsl->dep_map, "zspage->lock", &__key, 0); 290 spin_lock_init(&zsl->lock); 291 zsl->cnt = ZS_PAGE_UNLOCKED; 292 } 293 294 /* 295 * The zspage lock can be held from atomic contexts, but it needs to remain 296 * preemptible when held for reading because it remains held outside of those 297 * atomic contexts, otherwise we unnecessarily lose preemptibility. 298 * 299 * To achieve this, the following rules are enforced on readers and writers: 300 * 301 * - Writers are blocked by both writers and readers, while readers are only 302 * blocked by writers (i.e. normal rwlock semantics). 303 * 304 * - Writers are always atomic (to allow readers to spin waiting for them). 305 * 306 * - Writers always use trylock (as the lock may be held be sleeping readers). 307 * 308 * - Readers may spin on the lock (as they can only wait for atomic writers). 309 * 310 * - Readers may sleep while holding the lock (as writes only use trylock). 311 */ 312 static void zspage_read_lock(struct zspage *zspage) 313 { 314 struct zspage_lock *zsl = &zspage->zsl; 315 316 rwsem_acquire_read(&zsl->dep_map, 0, 0, _RET_IP_); 317 318 spin_lock(&zsl->lock); 319 zsl->cnt++; 320 spin_unlock(&zsl->lock); 321 322 lock_acquired(&zsl->dep_map, _RET_IP_); 323 } 324 325 static void zspage_read_unlock(struct zspage *zspage) 326 { 327 struct zspage_lock *zsl = &zspage->zsl; 328 329 rwsem_release(&zsl->dep_map, _RET_IP_); 330 331 spin_lock(&zsl->lock); 332 zsl->cnt--; 333 spin_unlock(&zsl->lock); 334 } 335 336 static __must_check bool zspage_write_trylock(struct zspage *zspage) 337 { 338 struct zspage_lock *zsl = &zspage->zsl; 339 340 spin_lock(&zsl->lock); 341 if (zsl->cnt == ZS_PAGE_UNLOCKED) { 342 zsl->cnt = ZS_PAGE_WRLOCKED; 343 rwsem_acquire(&zsl->dep_map, 0, 1, _RET_IP_); 344 lock_acquired(&zsl->dep_map, _RET_IP_); 345 return true; 346 } 347 348 spin_unlock(&zsl->lock); 349 return false; 350 } 351 352 static void zspage_write_unlock(struct zspage *zspage) 353 { 354 struct zspage_lock *zsl = &zspage->zsl; 355 356 rwsem_release(&zsl->dep_map, _RET_IP_); 357 358 zsl->cnt = ZS_PAGE_UNLOCKED; 359 spin_unlock(&zsl->lock); 360 } 361 362 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */ 363 static void SetZsHugePage(struct zspage *zspage) 364 { 365 zspage->huge = 1; 366 } 367 368 static bool ZsHugePage(struct zspage *zspage) 369 { 370 return zspage->huge; 371 } 372 373 #ifdef CONFIG_COMPACTION 374 static void kick_deferred_free(struct zs_pool *pool); 375 static void init_deferred_free(struct zs_pool *pool); 376 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage); 377 #else 378 static void kick_deferred_free(struct zs_pool *pool) {} 379 static void init_deferred_free(struct zs_pool *pool) {} 380 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {} 381 #endif 382 383 static int create_cache(struct zs_pool *pool) 384 { 385 char *name; 386 387 name = kasprintf(GFP_KERNEL, "zs_handle-%s", pool->name); 388 if (!name) 389 return -ENOMEM; 390 pool->handle_cachep = kmem_cache_create(name, ZS_HANDLE_SIZE, 391 0, 0, NULL); 392 kfree(name); 393 if (!pool->handle_cachep) 394 return -EINVAL; 395 396 name = kasprintf(GFP_KERNEL, "zspage-%s", pool->name); 397 if (!name) 398 return -ENOMEM; 399 pool->zspage_cachep = kmem_cache_create(name, sizeof(struct zspage), 400 0, 0, NULL); 401 kfree(name); 402 if (!pool->zspage_cachep) { 403 kmem_cache_destroy(pool->handle_cachep); 404 pool->handle_cachep = NULL; 405 return -EINVAL; 406 } 407 408 return 0; 409 } 410 411 static void destroy_cache(struct zs_pool *pool) 412 { 413 kmem_cache_destroy(pool->handle_cachep); 414 kmem_cache_destroy(pool->zspage_cachep); 415 } 416 417 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp) 418 { 419 return (unsigned long)kmem_cache_alloc(pool->handle_cachep, 420 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 421 } 422 423 static void cache_free_handle(struct zs_pool *pool, unsigned long handle) 424 { 425 kmem_cache_free(pool->handle_cachep, (void *)handle); 426 } 427 428 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags) 429 { 430 return kmem_cache_zalloc(pool->zspage_cachep, 431 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 432 } 433 434 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage) 435 { 436 kmem_cache_free(pool->zspage_cachep, zspage); 437 } 438 439 /* class->lock(which owns the handle) synchronizes races */ 440 static void record_obj(unsigned long handle, unsigned long obj) 441 { 442 *(unsigned long *)handle = obj; 443 } 444 445 /* zpool driver */ 446 447 #ifdef CONFIG_ZPOOL 448 449 static void *zs_zpool_create(const char *name, gfp_t gfp) 450 { 451 /* 452 * Ignore global gfp flags: zs_malloc() may be invoked from 453 * different contexts and its caller must provide a valid 454 * gfp mask. 455 */ 456 return zs_create_pool(name); 457 } 458 459 static void zs_zpool_destroy(void *pool) 460 { 461 zs_destroy_pool(pool); 462 } 463 464 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp, 465 unsigned long *handle, const int nid) 466 { 467 *handle = zs_malloc(pool, size, gfp, nid); 468 469 if (IS_ERR_VALUE(*handle)) 470 return PTR_ERR((void *)*handle); 471 return 0; 472 } 473 static void zs_zpool_free(void *pool, unsigned long handle) 474 { 475 zs_free(pool, handle); 476 } 477 478 static void *zs_zpool_obj_read_begin(void *pool, unsigned long handle, 479 void *local_copy) 480 { 481 return zs_obj_read_begin(pool, handle, local_copy); 482 } 483 484 static void zs_zpool_obj_read_end(void *pool, unsigned long handle, 485 void *handle_mem) 486 { 487 zs_obj_read_end(pool, handle, handle_mem); 488 } 489 490 static void zs_zpool_obj_write(void *pool, unsigned long handle, 491 void *handle_mem, size_t mem_len) 492 { 493 zs_obj_write(pool, handle, handle_mem, mem_len); 494 } 495 496 static u64 zs_zpool_total_pages(void *pool) 497 { 498 return zs_get_total_pages(pool); 499 } 500 501 static struct zpool_driver zs_zpool_driver = { 502 .type = "zsmalloc", 503 .owner = THIS_MODULE, 504 .create = zs_zpool_create, 505 .destroy = zs_zpool_destroy, 506 .malloc = zs_zpool_malloc, 507 .free = zs_zpool_free, 508 .obj_read_begin = zs_zpool_obj_read_begin, 509 .obj_read_end = zs_zpool_obj_read_end, 510 .obj_write = zs_zpool_obj_write, 511 .total_pages = zs_zpool_total_pages, 512 }; 513 514 MODULE_ALIAS("zpool-zsmalloc"); 515 #endif /* CONFIG_ZPOOL */ 516 517 static inline bool __maybe_unused is_first_zpdesc(struct zpdesc *zpdesc) 518 { 519 return PagePrivate(zpdesc_page(zpdesc)); 520 } 521 522 /* Protected by class->lock */ 523 static inline int get_zspage_inuse(struct zspage *zspage) 524 { 525 return zspage->inuse; 526 } 527 528 static inline void mod_zspage_inuse(struct zspage *zspage, int val) 529 { 530 zspage->inuse += val; 531 } 532 533 static struct zpdesc *get_first_zpdesc(struct zspage *zspage) 534 { 535 struct zpdesc *first_zpdesc = zspage->first_zpdesc; 536 537 VM_BUG_ON_PAGE(!is_first_zpdesc(first_zpdesc), zpdesc_page(first_zpdesc)); 538 return first_zpdesc; 539 } 540 541 #define FIRST_OBJ_PAGE_TYPE_MASK 0xffffff 542 543 static inline unsigned int get_first_obj_offset(struct zpdesc *zpdesc) 544 { 545 VM_WARN_ON_ONCE(!PageZsmalloc(zpdesc_page(zpdesc))); 546 return zpdesc->first_obj_offset & FIRST_OBJ_PAGE_TYPE_MASK; 547 } 548 549 static inline void set_first_obj_offset(struct zpdesc *zpdesc, unsigned int offset) 550 { 551 /* With 24 bits available, we can support offsets into 16 MiB pages. */ 552 BUILD_BUG_ON(PAGE_SIZE > SZ_16M); 553 VM_WARN_ON_ONCE(!PageZsmalloc(zpdesc_page(zpdesc))); 554 VM_WARN_ON_ONCE(offset & ~FIRST_OBJ_PAGE_TYPE_MASK); 555 zpdesc->first_obj_offset &= ~FIRST_OBJ_PAGE_TYPE_MASK; 556 zpdesc->first_obj_offset |= offset & FIRST_OBJ_PAGE_TYPE_MASK; 557 } 558 559 static inline unsigned int get_freeobj(struct zspage *zspage) 560 { 561 return zspage->freeobj; 562 } 563 564 static inline void set_freeobj(struct zspage *zspage, unsigned int obj) 565 { 566 zspage->freeobj = obj; 567 } 568 569 static struct size_class *zspage_class(struct zs_pool *pool, 570 struct zspage *zspage) 571 { 572 return pool->size_class[zspage->class]; 573 } 574 575 /* 576 * zsmalloc divides the pool into various size classes where each 577 * class maintains a list of zspages where each zspage is divided 578 * into equal sized chunks. Each allocation falls into one of these 579 * classes depending on its size. This function returns index of the 580 * size class which has chunk size big enough to hold the given size. 581 */ 582 static int get_size_class_index(int size) 583 { 584 int idx = 0; 585 586 if (likely(size > ZS_MIN_ALLOC_SIZE)) 587 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, 588 ZS_SIZE_CLASS_DELTA); 589 590 return min_t(int, ZS_SIZE_CLASSES - 1, idx); 591 } 592 593 static inline void class_stat_add(struct size_class *class, int type, 594 unsigned long cnt) 595 { 596 class->stats.objs[type] += cnt; 597 } 598 599 static inline void class_stat_sub(struct size_class *class, int type, 600 unsigned long cnt) 601 { 602 class->stats.objs[type] -= cnt; 603 } 604 605 static inline unsigned long class_stat_read(struct size_class *class, int type) 606 { 607 return class->stats.objs[type]; 608 } 609 610 #ifdef CONFIG_ZSMALLOC_STAT 611 612 static void __init zs_stat_init(void) 613 { 614 if (!debugfs_initialized()) { 615 pr_warn("debugfs not available, stat dir not created\n"); 616 return; 617 } 618 619 zs_stat_root = debugfs_create_dir("zsmalloc", NULL); 620 } 621 622 static void __exit zs_stat_exit(void) 623 { 624 debugfs_remove_recursive(zs_stat_root); 625 } 626 627 static unsigned long zs_can_compact(struct size_class *class); 628 629 static int zs_stats_size_show(struct seq_file *s, void *v) 630 { 631 int i, fg; 632 struct zs_pool *pool = s->private; 633 struct size_class *class; 634 int objs_per_zspage; 635 unsigned long obj_allocated, obj_used, pages_used, freeable; 636 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0; 637 unsigned long total_freeable = 0; 638 unsigned long inuse_totals[NR_FULLNESS_GROUPS] = {0, }; 639 640 seq_printf(s, " %5s %5s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %13s %10s %10s %16s %8s\n", 641 "class", "size", "10%", "20%", "30%", "40%", 642 "50%", "60%", "70%", "80%", "90%", "99%", "100%", 643 "obj_allocated", "obj_used", "pages_used", 644 "pages_per_zspage", "freeable"); 645 646 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 647 648 class = pool->size_class[i]; 649 650 if (class->index != i) 651 continue; 652 653 spin_lock(&class->lock); 654 655 seq_printf(s, " %5u %5u ", i, class->size); 656 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) { 657 inuse_totals[fg] += class_stat_read(class, fg); 658 seq_printf(s, "%9lu ", class_stat_read(class, fg)); 659 } 660 661 obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED); 662 obj_used = class_stat_read(class, ZS_OBJS_INUSE); 663 freeable = zs_can_compact(class); 664 spin_unlock(&class->lock); 665 666 objs_per_zspage = class->objs_per_zspage; 667 pages_used = obj_allocated / objs_per_zspage * 668 class->pages_per_zspage; 669 670 seq_printf(s, "%13lu %10lu %10lu %16d %8lu\n", 671 obj_allocated, obj_used, pages_used, 672 class->pages_per_zspage, freeable); 673 674 total_objs += obj_allocated; 675 total_used_objs += obj_used; 676 total_pages += pages_used; 677 total_freeable += freeable; 678 } 679 680 seq_puts(s, "\n"); 681 seq_printf(s, " %5s %5s ", "Total", ""); 682 683 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) 684 seq_printf(s, "%9lu ", inuse_totals[fg]); 685 686 seq_printf(s, "%13lu %10lu %10lu %16s %8lu\n", 687 total_objs, total_used_objs, total_pages, "", 688 total_freeable); 689 690 return 0; 691 } 692 DEFINE_SHOW_ATTRIBUTE(zs_stats_size); 693 694 static void zs_pool_stat_create(struct zs_pool *pool, const char *name) 695 { 696 if (!zs_stat_root) { 697 pr_warn("no root stat dir, not creating <%s> stat dir\n", name); 698 return; 699 } 700 701 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root); 702 703 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool, 704 &zs_stats_size_fops); 705 } 706 707 static void zs_pool_stat_destroy(struct zs_pool *pool) 708 { 709 debugfs_remove_recursive(pool->stat_dentry); 710 } 711 712 #else /* CONFIG_ZSMALLOC_STAT */ 713 static void __init zs_stat_init(void) 714 { 715 } 716 717 static void __exit zs_stat_exit(void) 718 { 719 } 720 721 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name) 722 { 723 } 724 725 static inline void zs_pool_stat_destroy(struct zs_pool *pool) 726 { 727 } 728 #endif 729 730 731 /* 732 * For each size class, zspages are divided into different groups 733 * depending on their usage ratio. This function returns fullness 734 * status of the given page. 735 */ 736 static int get_fullness_group(struct size_class *class, struct zspage *zspage) 737 { 738 int inuse, objs_per_zspage, ratio; 739 740 inuse = get_zspage_inuse(zspage); 741 objs_per_zspage = class->objs_per_zspage; 742 743 if (inuse == 0) 744 return ZS_INUSE_RATIO_0; 745 if (inuse == objs_per_zspage) 746 return ZS_INUSE_RATIO_100; 747 748 ratio = 100 * inuse / objs_per_zspage; 749 /* 750 * Take integer division into consideration: a page with one inuse 751 * object out of 127 possible, will end up having 0 usage ratio, 752 * which is wrong as it belongs in ZS_INUSE_RATIO_10 fullness group. 753 */ 754 return ratio / 10 + 1; 755 } 756 757 /* 758 * Each size class maintains various freelists and zspages are assigned 759 * to one of these freelists based on the number of live objects they 760 * have. This functions inserts the given zspage into the freelist 761 * identified by <class, fullness_group>. 762 */ 763 static void insert_zspage(struct size_class *class, 764 struct zspage *zspage, 765 int fullness) 766 { 767 class_stat_add(class, fullness, 1); 768 list_add(&zspage->list, &class->fullness_list[fullness]); 769 zspage->fullness = fullness; 770 } 771 772 /* 773 * This function removes the given zspage from the freelist identified 774 * by <class, fullness_group>. 775 */ 776 static void remove_zspage(struct size_class *class, struct zspage *zspage) 777 { 778 int fullness = zspage->fullness; 779 780 VM_BUG_ON(list_empty(&class->fullness_list[fullness])); 781 782 list_del_init(&zspage->list); 783 class_stat_sub(class, fullness, 1); 784 } 785 786 /* 787 * Each size class maintains zspages in different fullness groups depending 788 * on the number of live objects they contain. When allocating or freeing 789 * objects, the fullness status of the page can change, for instance, from 790 * INUSE_RATIO_80 to INUSE_RATIO_70 when freeing an object. This function 791 * checks if such a status change has occurred for the given page and 792 * accordingly moves the page from the list of the old fullness group to that 793 * of the new fullness group. 794 */ 795 static int fix_fullness_group(struct size_class *class, struct zspage *zspage) 796 { 797 int newfg; 798 799 newfg = get_fullness_group(class, zspage); 800 if (newfg == zspage->fullness) 801 goto out; 802 803 remove_zspage(class, zspage); 804 insert_zspage(class, zspage, newfg); 805 out: 806 return newfg; 807 } 808 809 static struct zspage *get_zspage(struct zpdesc *zpdesc) 810 { 811 struct zspage *zspage = zpdesc->zspage; 812 813 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 814 return zspage; 815 } 816 817 static struct zpdesc *get_next_zpdesc(struct zpdesc *zpdesc) 818 { 819 struct zspage *zspage = get_zspage(zpdesc); 820 821 if (unlikely(ZsHugePage(zspage))) 822 return NULL; 823 824 return zpdesc->next; 825 } 826 827 /** 828 * obj_to_location - get (<zpdesc>, <obj_idx>) from encoded object value 829 * @obj: the encoded object value 830 * @zpdesc: zpdesc object resides in zspage 831 * @obj_idx: object index 832 */ 833 static void obj_to_location(unsigned long obj, struct zpdesc **zpdesc, 834 unsigned int *obj_idx) 835 { 836 *zpdesc = pfn_zpdesc(obj >> OBJ_INDEX_BITS); 837 *obj_idx = (obj & OBJ_INDEX_MASK); 838 } 839 840 static void obj_to_zpdesc(unsigned long obj, struct zpdesc **zpdesc) 841 { 842 *zpdesc = pfn_zpdesc(obj >> OBJ_INDEX_BITS); 843 } 844 845 /** 846 * location_to_obj - get obj value encoded from (<zpdesc>, <obj_idx>) 847 * @zpdesc: zpdesc object resides in zspage 848 * @obj_idx: object index 849 */ 850 static unsigned long location_to_obj(struct zpdesc *zpdesc, unsigned int obj_idx) 851 { 852 unsigned long obj; 853 854 obj = zpdesc_pfn(zpdesc) << OBJ_INDEX_BITS; 855 obj |= obj_idx & OBJ_INDEX_MASK; 856 857 return obj; 858 } 859 860 static unsigned long handle_to_obj(unsigned long handle) 861 { 862 return *(unsigned long *)handle; 863 } 864 865 static inline bool obj_allocated(struct zpdesc *zpdesc, void *obj, 866 unsigned long *phandle) 867 { 868 unsigned long handle; 869 struct zspage *zspage = get_zspage(zpdesc); 870 871 if (unlikely(ZsHugePage(zspage))) { 872 VM_BUG_ON_PAGE(!is_first_zpdesc(zpdesc), zpdesc_page(zpdesc)); 873 handle = zpdesc->handle; 874 } else 875 handle = *(unsigned long *)obj; 876 877 if (!(handle & OBJ_ALLOCATED_TAG)) 878 return false; 879 880 /* Clear all tags before returning the handle */ 881 *phandle = handle & ~OBJ_TAG_MASK; 882 return true; 883 } 884 885 static void reset_zpdesc(struct zpdesc *zpdesc) 886 { 887 struct page *page = zpdesc_page(zpdesc); 888 889 __ClearPageMovable(page); 890 ClearPagePrivate(page); 891 zpdesc->zspage = NULL; 892 zpdesc->next = NULL; 893 __ClearPageZsmalloc(page); 894 } 895 896 static int trylock_zspage(struct zspage *zspage) 897 { 898 struct zpdesc *cursor, *fail; 899 900 for (cursor = get_first_zpdesc(zspage); cursor != NULL; cursor = 901 get_next_zpdesc(cursor)) { 902 if (!zpdesc_trylock(cursor)) { 903 fail = cursor; 904 goto unlock; 905 } 906 } 907 908 return 1; 909 unlock: 910 for (cursor = get_first_zpdesc(zspage); cursor != fail; cursor = 911 get_next_zpdesc(cursor)) 912 zpdesc_unlock(cursor); 913 914 return 0; 915 } 916 917 static void __free_zspage(struct zs_pool *pool, struct size_class *class, 918 struct zspage *zspage) 919 { 920 struct zpdesc *zpdesc, *next; 921 922 assert_spin_locked(&class->lock); 923 924 VM_BUG_ON(get_zspage_inuse(zspage)); 925 VM_BUG_ON(zspage->fullness != ZS_INUSE_RATIO_0); 926 927 next = zpdesc = get_first_zpdesc(zspage); 928 do { 929 VM_BUG_ON_PAGE(!zpdesc_is_locked(zpdesc), zpdesc_page(zpdesc)); 930 next = get_next_zpdesc(zpdesc); 931 reset_zpdesc(zpdesc); 932 zpdesc_unlock(zpdesc); 933 zpdesc_dec_zone_page_state(zpdesc); 934 zpdesc_put(zpdesc); 935 zpdesc = next; 936 } while (zpdesc != NULL); 937 938 cache_free_zspage(pool, zspage); 939 940 class_stat_sub(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage); 941 atomic_long_sub(class->pages_per_zspage, &pool->pages_allocated); 942 } 943 944 static void free_zspage(struct zs_pool *pool, struct size_class *class, 945 struct zspage *zspage) 946 { 947 VM_BUG_ON(get_zspage_inuse(zspage)); 948 VM_BUG_ON(list_empty(&zspage->list)); 949 950 /* 951 * Since zs_free couldn't be sleepable, this function cannot call 952 * lock_page. The page locks trylock_zspage got will be released 953 * by __free_zspage. 954 */ 955 if (!trylock_zspage(zspage)) { 956 kick_deferred_free(pool); 957 return; 958 } 959 960 remove_zspage(class, zspage); 961 __free_zspage(pool, class, zspage); 962 } 963 964 /* Initialize a newly allocated zspage */ 965 static void init_zspage(struct size_class *class, struct zspage *zspage) 966 { 967 unsigned int freeobj = 1; 968 unsigned long off = 0; 969 struct zpdesc *zpdesc = get_first_zpdesc(zspage); 970 971 while (zpdesc) { 972 struct zpdesc *next_zpdesc; 973 struct link_free *link; 974 void *vaddr; 975 976 set_first_obj_offset(zpdesc, off); 977 978 vaddr = kmap_local_zpdesc(zpdesc); 979 link = (struct link_free *)vaddr + off / sizeof(*link); 980 981 while ((off += class->size) < PAGE_SIZE) { 982 link->next = freeobj++ << OBJ_TAG_BITS; 983 link += class->size / sizeof(*link); 984 } 985 986 /* 987 * We now come to the last (full or partial) object on this 988 * page, which must point to the first object on the next 989 * page (if present) 990 */ 991 next_zpdesc = get_next_zpdesc(zpdesc); 992 if (next_zpdesc) { 993 link->next = freeobj++ << OBJ_TAG_BITS; 994 } else { 995 /* 996 * Reset OBJ_TAG_BITS bit to last link to tell 997 * whether it's allocated object or not. 998 */ 999 link->next = -1UL << OBJ_TAG_BITS; 1000 } 1001 kunmap_local(vaddr); 1002 zpdesc = next_zpdesc; 1003 off %= PAGE_SIZE; 1004 } 1005 1006 set_freeobj(zspage, 0); 1007 } 1008 1009 static void create_page_chain(struct size_class *class, struct zspage *zspage, 1010 struct zpdesc *zpdescs[]) 1011 { 1012 int i; 1013 struct zpdesc *zpdesc; 1014 struct zpdesc *prev_zpdesc = NULL; 1015 int nr_zpdescs = class->pages_per_zspage; 1016 1017 /* 1018 * Allocate individual pages and link them together as: 1019 * 1. all pages are linked together using zpdesc->next 1020 * 2. each sub-page point to zspage using zpdesc->zspage 1021 * 1022 * we set PG_private to identify the first zpdesc (i.e. no other zpdesc 1023 * has this flag set). 1024 */ 1025 for (i = 0; i < nr_zpdescs; i++) { 1026 zpdesc = zpdescs[i]; 1027 zpdesc->zspage = zspage; 1028 zpdesc->next = NULL; 1029 if (i == 0) { 1030 zspage->first_zpdesc = zpdesc; 1031 zpdesc_set_first(zpdesc); 1032 if (unlikely(class->objs_per_zspage == 1 && 1033 class->pages_per_zspage == 1)) 1034 SetZsHugePage(zspage); 1035 } else { 1036 prev_zpdesc->next = zpdesc; 1037 } 1038 prev_zpdesc = zpdesc; 1039 } 1040 } 1041 1042 /* 1043 * Allocate a zspage for the given size class 1044 */ 1045 static struct zspage *alloc_zspage(struct zs_pool *pool, 1046 struct size_class *class, 1047 gfp_t gfp, const int nid) 1048 { 1049 int i; 1050 struct zpdesc *zpdescs[ZS_MAX_PAGES_PER_ZSPAGE]; 1051 struct zspage *zspage = cache_alloc_zspage(pool, gfp); 1052 1053 if (!zspage) 1054 return NULL; 1055 1056 zspage->magic = ZSPAGE_MAGIC; 1057 zspage->pool = pool; 1058 zspage->class = class->index; 1059 zspage_lock_init(zspage); 1060 1061 for (i = 0; i < class->pages_per_zspage; i++) { 1062 struct zpdesc *zpdesc; 1063 1064 zpdesc = alloc_zpdesc(gfp, nid); 1065 if (!zpdesc) { 1066 while (--i >= 0) { 1067 zpdesc_dec_zone_page_state(zpdescs[i]); 1068 __zpdesc_clear_zsmalloc(zpdescs[i]); 1069 free_zpdesc(zpdescs[i]); 1070 } 1071 cache_free_zspage(pool, zspage); 1072 return NULL; 1073 } 1074 __zpdesc_set_zsmalloc(zpdesc); 1075 1076 zpdesc_inc_zone_page_state(zpdesc); 1077 zpdescs[i] = zpdesc; 1078 } 1079 1080 create_page_chain(class, zspage, zpdescs); 1081 init_zspage(class, zspage); 1082 1083 return zspage; 1084 } 1085 1086 static struct zspage *find_get_zspage(struct size_class *class) 1087 { 1088 int i; 1089 struct zspage *zspage; 1090 1091 for (i = ZS_INUSE_RATIO_99; i >= ZS_INUSE_RATIO_0; i--) { 1092 zspage = list_first_entry_or_null(&class->fullness_list[i], 1093 struct zspage, list); 1094 if (zspage) 1095 break; 1096 } 1097 1098 return zspage; 1099 } 1100 1101 static bool can_merge(struct size_class *prev, int pages_per_zspage, 1102 int objs_per_zspage) 1103 { 1104 if (prev->pages_per_zspage == pages_per_zspage && 1105 prev->objs_per_zspage == objs_per_zspage) 1106 return true; 1107 1108 return false; 1109 } 1110 1111 static bool zspage_full(struct size_class *class, struct zspage *zspage) 1112 { 1113 return get_zspage_inuse(zspage) == class->objs_per_zspage; 1114 } 1115 1116 static bool zspage_empty(struct zspage *zspage) 1117 { 1118 return get_zspage_inuse(zspage) == 0; 1119 } 1120 1121 /** 1122 * zs_lookup_class_index() - Returns index of the zsmalloc &size_class 1123 * that hold objects of the provided size. 1124 * @pool: zsmalloc pool to use 1125 * @size: object size 1126 * 1127 * Context: Any context. 1128 * 1129 * Return: the index of the zsmalloc &size_class that hold objects of the 1130 * provided size. 1131 */ 1132 unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size) 1133 { 1134 struct size_class *class; 1135 1136 class = pool->size_class[get_size_class_index(size)]; 1137 1138 return class->index; 1139 } 1140 EXPORT_SYMBOL_GPL(zs_lookup_class_index); 1141 1142 unsigned long zs_get_total_pages(struct zs_pool *pool) 1143 { 1144 return atomic_long_read(&pool->pages_allocated); 1145 } 1146 EXPORT_SYMBOL_GPL(zs_get_total_pages); 1147 1148 void *zs_obj_read_begin(struct zs_pool *pool, unsigned long handle, 1149 void *local_copy) 1150 { 1151 struct zspage *zspage; 1152 struct zpdesc *zpdesc; 1153 unsigned long obj, off; 1154 unsigned int obj_idx; 1155 struct size_class *class; 1156 void *addr; 1157 1158 /* Guarantee we can get zspage from handle safely */ 1159 read_lock(&pool->lock); 1160 obj = handle_to_obj(handle); 1161 obj_to_location(obj, &zpdesc, &obj_idx); 1162 zspage = get_zspage(zpdesc); 1163 1164 /* Make sure migration doesn't move any pages in this zspage */ 1165 zspage_read_lock(zspage); 1166 read_unlock(&pool->lock); 1167 1168 class = zspage_class(pool, zspage); 1169 off = offset_in_page(class->size * obj_idx); 1170 1171 if (off + class->size <= PAGE_SIZE) { 1172 /* this object is contained entirely within a page */ 1173 addr = kmap_local_zpdesc(zpdesc); 1174 addr += off; 1175 } else { 1176 size_t sizes[2]; 1177 1178 /* this object spans two pages */ 1179 sizes[0] = PAGE_SIZE - off; 1180 sizes[1] = class->size - sizes[0]; 1181 addr = local_copy; 1182 1183 memcpy_from_page(addr, zpdesc_page(zpdesc), 1184 off, sizes[0]); 1185 zpdesc = get_next_zpdesc(zpdesc); 1186 memcpy_from_page(addr + sizes[0], 1187 zpdesc_page(zpdesc), 1188 0, sizes[1]); 1189 } 1190 1191 if (!ZsHugePage(zspage)) 1192 addr += ZS_HANDLE_SIZE; 1193 1194 return addr; 1195 } 1196 EXPORT_SYMBOL_GPL(zs_obj_read_begin); 1197 1198 void zs_obj_read_end(struct zs_pool *pool, unsigned long handle, 1199 void *handle_mem) 1200 { 1201 struct zspage *zspage; 1202 struct zpdesc *zpdesc; 1203 unsigned long obj, off; 1204 unsigned int obj_idx; 1205 struct size_class *class; 1206 1207 obj = handle_to_obj(handle); 1208 obj_to_location(obj, &zpdesc, &obj_idx); 1209 zspage = get_zspage(zpdesc); 1210 class = zspage_class(pool, zspage); 1211 off = offset_in_page(class->size * obj_idx); 1212 1213 if (off + class->size <= PAGE_SIZE) { 1214 if (!ZsHugePage(zspage)) 1215 off += ZS_HANDLE_SIZE; 1216 handle_mem -= off; 1217 kunmap_local(handle_mem); 1218 } 1219 1220 zspage_read_unlock(zspage); 1221 } 1222 EXPORT_SYMBOL_GPL(zs_obj_read_end); 1223 1224 void zs_obj_write(struct zs_pool *pool, unsigned long handle, 1225 void *handle_mem, size_t mem_len) 1226 { 1227 struct zspage *zspage; 1228 struct zpdesc *zpdesc; 1229 unsigned long obj, off; 1230 unsigned int obj_idx; 1231 struct size_class *class; 1232 1233 /* Guarantee we can get zspage from handle safely */ 1234 read_lock(&pool->lock); 1235 obj = handle_to_obj(handle); 1236 obj_to_location(obj, &zpdesc, &obj_idx); 1237 zspage = get_zspage(zpdesc); 1238 1239 /* Make sure migration doesn't move any pages in this zspage */ 1240 zspage_read_lock(zspage); 1241 read_unlock(&pool->lock); 1242 1243 class = zspage_class(pool, zspage); 1244 off = offset_in_page(class->size * obj_idx); 1245 1246 if (!ZsHugePage(zspage)) 1247 off += ZS_HANDLE_SIZE; 1248 1249 if (off + mem_len <= PAGE_SIZE) { 1250 /* this object is contained entirely within a page */ 1251 void *dst = kmap_local_zpdesc(zpdesc); 1252 1253 memcpy(dst + off, handle_mem, mem_len); 1254 kunmap_local(dst); 1255 } else { 1256 /* this object spans two pages */ 1257 size_t sizes[2]; 1258 1259 sizes[0] = PAGE_SIZE - off; 1260 sizes[1] = mem_len - sizes[0]; 1261 1262 memcpy_to_page(zpdesc_page(zpdesc), off, 1263 handle_mem, sizes[0]); 1264 zpdesc = get_next_zpdesc(zpdesc); 1265 memcpy_to_page(zpdesc_page(zpdesc), 0, 1266 handle_mem + sizes[0], sizes[1]); 1267 } 1268 1269 zspage_read_unlock(zspage); 1270 } 1271 EXPORT_SYMBOL_GPL(zs_obj_write); 1272 1273 /** 1274 * zs_huge_class_size() - Returns the size (in bytes) of the first huge 1275 * zsmalloc &size_class. 1276 * @pool: zsmalloc pool to use 1277 * 1278 * The function returns the size of the first huge class - any object of equal 1279 * or bigger size will be stored in zspage consisting of a single physical 1280 * page. 1281 * 1282 * Context: Any context. 1283 * 1284 * Return: the size (in bytes) of the first huge zsmalloc &size_class. 1285 */ 1286 size_t zs_huge_class_size(struct zs_pool *pool) 1287 { 1288 return huge_class_size; 1289 } 1290 EXPORT_SYMBOL_GPL(zs_huge_class_size); 1291 1292 static unsigned long obj_malloc(struct zs_pool *pool, 1293 struct zspage *zspage, unsigned long handle) 1294 { 1295 int i, nr_zpdesc, offset; 1296 unsigned long obj; 1297 struct link_free *link; 1298 struct size_class *class; 1299 1300 struct zpdesc *m_zpdesc; 1301 unsigned long m_offset; 1302 void *vaddr; 1303 1304 class = pool->size_class[zspage->class]; 1305 obj = get_freeobj(zspage); 1306 1307 offset = obj * class->size; 1308 nr_zpdesc = offset >> PAGE_SHIFT; 1309 m_offset = offset_in_page(offset); 1310 m_zpdesc = get_first_zpdesc(zspage); 1311 1312 for (i = 0; i < nr_zpdesc; i++) 1313 m_zpdesc = get_next_zpdesc(m_zpdesc); 1314 1315 vaddr = kmap_local_zpdesc(m_zpdesc); 1316 link = (struct link_free *)vaddr + m_offset / sizeof(*link); 1317 set_freeobj(zspage, link->next >> OBJ_TAG_BITS); 1318 if (likely(!ZsHugePage(zspage))) 1319 /* record handle in the header of allocated chunk */ 1320 link->handle = handle | OBJ_ALLOCATED_TAG; 1321 else 1322 zspage->first_zpdesc->handle = handle | OBJ_ALLOCATED_TAG; 1323 1324 kunmap_local(vaddr); 1325 mod_zspage_inuse(zspage, 1); 1326 1327 obj = location_to_obj(m_zpdesc, obj); 1328 record_obj(handle, obj); 1329 1330 return obj; 1331 } 1332 1333 1334 /** 1335 * zs_malloc - Allocate block of given size from pool. 1336 * @pool: pool to allocate from 1337 * @size: size of block to allocate 1338 * @gfp: gfp flags when allocating object 1339 * @nid: The preferred node id to allocate new zspage (if needed) 1340 * 1341 * On success, handle to the allocated object is returned, 1342 * otherwise an ERR_PTR(). 1343 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail. 1344 */ 1345 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp, 1346 const int nid) 1347 { 1348 unsigned long handle; 1349 struct size_class *class; 1350 int newfg; 1351 struct zspage *zspage; 1352 1353 if (unlikely(!size)) 1354 return (unsigned long)ERR_PTR(-EINVAL); 1355 1356 if (unlikely(size > ZS_MAX_ALLOC_SIZE)) 1357 return (unsigned long)ERR_PTR(-ENOSPC); 1358 1359 handle = cache_alloc_handle(pool, gfp); 1360 if (!handle) 1361 return (unsigned long)ERR_PTR(-ENOMEM); 1362 1363 /* extra space in chunk to keep the handle */ 1364 size += ZS_HANDLE_SIZE; 1365 class = pool->size_class[get_size_class_index(size)]; 1366 1367 /* class->lock effectively protects the zpage migration */ 1368 spin_lock(&class->lock); 1369 zspage = find_get_zspage(class); 1370 if (likely(zspage)) { 1371 obj_malloc(pool, zspage, handle); 1372 /* Now move the zspage to another fullness group, if required */ 1373 fix_fullness_group(class, zspage); 1374 class_stat_add(class, ZS_OBJS_INUSE, 1); 1375 1376 goto out; 1377 } 1378 1379 spin_unlock(&class->lock); 1380 1381 zspage = alloc_zspage(pool, class, gfp, nid); 1382 if (!zspage) { 1383 cache_free_handle(pool, handle); 1384 return (unsigned long)ERR_PTR(-ENOMEM); 1385 } 1386 1387 spin_lock(&class->lock); 1388 obj_malloc(pool, zspage, handle); 1389 newfg = get_fullness_group(class, zspage); 1390 insert_zspage(class, zspage, newfg); 1391 atomic_long_add(class->pages_per_zspage, &pool->pages_allocated); 1392 class_stat_add(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage); 1393 class_stat_add(class, ZS_OBJS_INUSE, 1); 1394 1395 /* We completely set up zspage so mark them as movable */ 1396 SetZsPageMovable(pool, zspage); 1397 out: 1398 spin_unlock(&class->lock); 1399 1400 return handle; 1401 } 1402 EXPORT_SYMBOL_GPL(zs_malloc); 1403 1404 static void obj_free(int class_size, unsigned long obj) 1405 { 1406 struct link_free *link; 1407 struct zspage *zspage; 1408 struct zpdesc *f_zpdesc; 1409 unsigned long f_offset; 1410 unsigned int f_objidx; 1411 void *vaddr; 1412 1413 1414 obj_to_location(obj, &f_zpdesc, &f_objidx); 1415 f_offset = offset_in_page(class_size * f_objidx); 1416 zspage = get_zspage(f_zpdesc); 1417 1418 vaddr = kmap_local_zpdesc(f_zpdesc); 1419 link = (struct link_free *)(vaddr + f_offset); 1420 1421 /* Insert this object in containing zspage's freelist */ 1422 if (likely(!ZsHugePage(zspage))) 1423 link->next = get_freeobj(zspage) << OBJ_TAG_BITS; 1424 else 1425 f_zpdesc->handle = 0; 1426 set_freeobj(zspage, f_objidx); 1427 1428 kunmap_local(vaddr); 1429 mod_zspage_inuse(zspage, -1); 1430 } 1431 1432 void zs_free(struct zs_pool *pool, unsigned long handle) 1433 { 1434 struct zspage *zspage; 1435 struct zpdesc *f_zpdesc; 1436 unsigned long obj; 1437 struct size_class *class; 1438 int fullness; 1439 1440 if (IS_ERR_OR_NULL((void *)handle)) 1441 return; 1442 1443 /* 1444 * The pool->lock protects the race with zpage's migration 1445 * so it's safe to get the page from handle. 1446 */ 1447 read_lock(&pool->lock); 1448 obj = handle_to_obj(handle); 1449 obj_to_zpdesc(obj, &f_zpdesc); 1450 zspage = get_zspage(f_zpdesc); 1451 class = zspage_class(pool, zspage); 1452 spin_lock(&class->lock); 1453 read_unlock(&pool->lock); 1454 1455 class_stat_sub(class, ZS_OBJS_INUSE, 1); 1456 obj_free(class->size, obj); 1457 1458 fullness = fix_fullness_group(class, zspage); 1459 if (fullness == ZS_INUSE_RATIO_0) 1460 free_zspage(pool, class, zspage); 1461 1462 spin_unlock(&class->lock); 1463 cache_free_handle(pool, handle); 1464 } 1465 EXPORT_SYMBOL_GPL(zs_free); 1466 1467 static void zs_object_copy(struct size_class *class, unsigned long dst, 1468 unsigned long src) 1469 { 1470 struct zpdesc *s_zpdesc, *d_zpdesc; 1471 unsigned int s_objidx, d_objidx; 1472 unsigned long s_off, d_off; 1473 void *s_addr, *d_addr; 1474 int s_size, d_size, size; 1475 int written = 0; 1476 1477 s_size = d_size = class->size; 1478 1479 obj_to_location(src, &s_zpdesc, &s_objidx); 1480 obj_to_location(dst, &d_zpdesc, &d_objidx); 1481 1482 s_off = offset_in_page(class->size * s_objidx); 1483 d_off = offset_in_page(class->size * d_objidx); 1484 1485 if (s_off + class->size > PAGE_SIZE) 1486 s_size = PAGE_SIZE - s_off; 1487 1488 if (d_off + class->size > PAGE_SIZE) 1489 d_size = PAGE_SIZE - d_off; 1490 1491 s_addr = kmap_local_zpdesc(s_zpdesc); 1492 d_addr = kmap_local_zpdesc(d_zpdesc); 1493 1494 while (1) { 1495 size = min(s_size, d_size); 1496 memcpy(d_addr + d_off, s_addr + s_off, size); 1497 written += size; 1498 1499 if (written == class->size) 1500 break; 1501 1502 s_off += size; 1503 s_size -= size; 1504 d_off += size; 1505 d_size -= size; 1506 1507 /* 1508 * Calling kunmap_local(d_addr) is necessary. kunmap_local() 1509 * calls must occurs in reverse order of calls to kmap_local_page(). 1510 * So, to call kunmap_local(s_addr) we should first call 1511 * kunmap_local(d_addr). For more details see 1512 * Documentation/mm/highmem.rst. 1513 */ 1514 if (s_off >= PAGE_SIZE) { 1515 kunmap_local(d_addr); 1516 kunmap_local(s_addr); 1517 s_zpdesc = get_next_zpdesc(s_zpdesc); 1518 s_addr = kmap_local_zpdesc(s_zpdesc); 1519 d_addr = kmap_local_zpdesc(d_zpdesc); 1520 s_size = class->size - written; 1521 s_off = 0; 1522 } 1523 1524 if (d_off >= PAGE_SIZE) { 1525 kunmap_local(d_addr); 1526 d_zpdesc = get_next_zpdesc(d_zpdesc); 1527 d_addr = kmap_local_zpdesc(d_zpdesc); 1528 d_size = class->size - written; 1529 d_off = 0; 1530 } 1531 } 1532 1533 kunmap_local(d_addr); 1534 kunmap_local(s_addr); 1535 } 1536 1537 /* 1538 * Find alloced object in zspage from index object and 1539 * return handle. 1540 */ 1541 static unsigned long find_alloced_obj(struct size_class *class, 1542 struct zpdesc *zpdesc, int *obj_idx) 1543 { 1544 unsigned int offset; 1545 int index = *obj_idx; 1546 unsigned long handle = 0; 1547 void *addr = kmap_local_zpdesc(zpdesc); 1548 1549 offset = get_first_obj_offset(zpdesc); 1550 offset += class->size * index; 1551 1552 while (offset < PAGE_SIZE) { 1553 if (obj_allocated(zpdesc, addr + offset, &handle)) 1554 break; 1555 1556 offset += class->size; 1557 index++; 1558 } 1559 1560 kunmap_local(addr); 1561 1562 *obj_idx = index; 1563 1564 return handle; 1565 } 1566 1567 static void migrate_zspage(struct zs_pool *pool, struct zspage *src_zspage, 1568 struct zspage *dst_zspage) 1569 { 1570 unsigned long used_obj, free_obj; 1571 unsigned long handle; 1572 int obj_idx = 0; 1573 struct zpdesc *s_zpdesc = get_first_zpdesc(src_zspage); 1574 struct size_class *class = pool->size_class[src_zspage->class]; 1575 1576 while (1) { 1577 handle = find_alloced_obj(class, s_zpdesc, &obj_idx); 1578 if (!handle) { 1579 s_zpdesc = get_next_zpdesc(s_zpdesc); 1580 if (!s_zpdesc) 1581 break; 1582 obj_idx = 0; 1583 continue; 1584 } 1585 1586 used_obj = handle_to_obj(handle); 1587 free_obj = obj_malloc(pool, dst_zspage, handle); 1588 zs_object_copy(class, free_obj, used_obj); 1589 obj_idx++; 1590 obj_free(class->size, used_obj); 1591 1592 /* Stop if there is no more space */ 1593 if (zspage_full(class, dst_zspage)) 1594 break; 1595 1596 /* Stop if there are no more objects to migrate */ 1597 if (zspage_empty(src_zspage)) 1598 break; 1599 } 1600 } 1601 1602 static struct zspage *isolate_src_zspage(struct size_class *class) 1603 { 1604 struct zspage *zspage; 1605 int fg; 1606 1607 for (fg = ZS_INUSE_RATIO_10; fg <= ZS_INUSE_RATIO_99; fg++) { 1608 zspage = list_first_entry_or_null(&class->fullness_list[fg], 1609 struct zspage, list); 1610 if (zspage) { 1611 remove_zspage(class, zspage); 1612 return zspage; 1613 } 1614 } 1615 1616 return zspage; 1617 } 1618 1619 static struct zspage *isolate_dst_zspage(struct size_class *class) 1620 { 1621 struct zspage *zspage; 1622 int fg; 1623 1624 for (fg = ZS_INUSE_RATIO_99; fg >= ZS_INUSE_RATIO_10; fg--) { 1625 zspage = list_first_entry_or_null(&class->fullness_list[fg], 1626 struct zspage, list); 1627 if (zspage) { 1628 remove_zspage(class, zspage); 1629 return zspage; 1630 } 1631 } 1632 1633 return zspage; 1634 } 1635 1636 /* 1637 * putback_zspage - add @zspage into right class's fullness list 1638 * @class: destination class 1639 * @zspage: target page 1640 * 1641 * Return @zspage's fullness status 1642 */ 1643 static int putback_zspage(struct size_class *class, struct zspage *zspage) 1644 { 1645 int fullness; 1646 1647 fullness = get_fullness_group(class, zspage); 1648 insert_zspage(class, zspage, fullness); 1649 1650 return fullness; 1651 } 1652 1653 #ifdef CONFIG_COMPACTION 1654 /* 1655 * To prevent zspage destroy during migration, zspage freeing should 1656 * hold locks of all pages in the zspage. 1657 */ 1658 static void lock_zspage(struct zspage *zspage) 1659 { 1660 struct zpdesc *curr_zpdesc, *zpdesc; 1661 1662 /* 1663 * Pages we haven't locked yet can be migrated off the list while we're 1664 * trying to lock them, so we need to be careful and only attempt to 1665 * lock each page under zspage_read_lock(). Otherwise, the page we lock 1666 * may no longer belong to the zspage. This means that we may wait for 1667 * the wrong page to unlock, so we must take a reference to the page 1668 * prior to waiting for it to unlock outside zspage_read_lock(). 1669 */ 1670 while (1) { 1671 zspage_read_lock(zspage); 1672 zpdesc = get_first_zpdesc(zspage); 1673 if (zpdesc_trylock(zpdesc)) 1674 break; 1675 zpdesc_get(zpdesc); 1676 zspage_read_unlock(zspage); 1677 zpdesc_wait_locked(zpdesc); 1678 zpdesc_put(zpdesc); 1679 } 1680 1681 curr_zpdesc = zpdesc; 1682 while ((zpdesc = get_next_zpdesc(curr_zpdesc))) { 1683 if (zpdesc_trylock(zpdesc)) { 1684 curr_zpdesc = zpdesc; 1685 } else { 1686 zpdesc_get(zpdesc); 1687 zspage_read_unlock(zspage); 1688 zpdesc_wait_locked(zpdesc); 1689 zpdesc_put(zpdesc); 1690 zspage_read_lock(zspage); 1691 } 1692 } 1693 zspage_read_unlock(zspage); 1694 } 1695 #endif /* CONFIG_COMPACTION */ 1696 1697 #ifdef CONFIG_COMPACTION 1698 1699 static const struct movable_operations zsmalloc_mops; 1700 1701 static void replace_sub_page(struct size_class *class, struct zspage *zspage, 1702 struct zpdesc *newzpdesc, struct zpdesc *oldzpdesc) 1703 { 1704 struct zpdesc *zpdesc; 1705 struct zpdesc *zpdescs[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, }; 1706 unsigned int first_obj_offset; 1707 int idx = 0; 1708 1709 zpdesc = get_first_zpdesc(zspage); 1710 do { 1711 if (zpdesc == oldzpdesc) 1712 zpdescs[idx] = newzpdesc; 1713 else 1714 zpdescs[idx] = zpdesc; 1715 idx++; 1716 } while ((zpdesc = get_next_zpdesc(zpdesc)) != NULL); 1717 1718 create_page_chain(class, zspage, zpdescs); 1719 first_obj_offset = get_first_obj_offset(oldzpdesc); 1720 set_first_obj_offset(newzpdesc, first_obj_offset); 1721 if (unlikely(ZsHugePage(zspage))) 1722 newzpdesc->handle = oldzpdesc->handle; 1723 __zpdesc_set_movable(newzpdesc, &zsmalloc_mops); 1724 } 1725 1726 static bool zs_page_isolate(struct page *page, isolate_mode_t mode) 1727 { 1728 /* 1729 * Page is locked so zspage couldn't be destroyed. For detail, look at 1730 * lock_zspage in free_zspage. 1731 */ 1732 VM_BUG_ON_PAGE(PageIsolated(page), page); 1733 1734 return true; 1735 } 1736 1737 static int zs_page_migrate(struct page *newpage, struct page *page, 1738 enum migrate_mode mode) 1739 { 1740 struct zs_pool *pool; 1741 struct size_class *class; 1742 struct zspage *zspage; 1743 struct zpdesc *dummy; 1744 struct zpdesc *newzpdesc = page_zpdesc(newpage); 1745 struct zpdesc *zpdesc = page_zpdesc(page); 1746 void *s_addr, *d_addr, *addr; 1747 unsigned int offset; 1748 unsigned long handle; 1749 unsigned long old_obj, new_obj; 1750 unsigned int obj_idx; 1751 1752 VM_BUG_ON_PAGE(!zpdesc_is_isolated(zpdesc), zpdesc_page(zpdesc)); 1753 1754 /* The page is locked, so this pointer must remain valid */ 1755 zspage = get_zspage(zpdesc); 1756 pool = zspage->pool; 1757 1758 /* 1759 * The pool migrate_lock protects the race between zpage migration 1760 * and zs_free. 1761 */ 1762 write_lock(&pool->lock); 1763 class = zspage_class(pool, zspage); 1764 1765 /* 1766 * the class lock protects zpage alloc/free in the zspage. 1767 */ 1768 spin_lock(&class->lock); 1769 /* the zspage write_lock protects zpage access via zs_obj_read/write() */ 1770 if (!zspage_write_trylock(zspage)) { 1771 spin_unlock(&class->lock); 1772 write_unlock(&pool->lock); 1773 return -EINVAL; 1774 } 1775 1776 /* We're committed, tell the world that this is a Zsmalloc page. */ 1777 __zpdesc_set_zsmalloc(newzpdesc); 1778 1779 offset = get_first_obj_offset(zpdesc); 1780 s_addr = kmap_local_zpdesc(zpdesc); 1781 1782 /* 1783 * Here, any user cannot access all objects in the zspage so let's move. 1784 */ 1785 d_addr = kmap_local_zpdesc(newzpdesc); 1786 copy_page(d_addr, s_addr); 1787 kunmap_local(d_addr); 1788 1789 for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE; 1790 addr += class->size) { 1791 if (obj_allocated(zpdesc, addr, &handle)) { 1792 1793 old_obj = handle_to_obj(handle); 1794 obj_to_location(old_obj, &dummy, &obj_idx); 1795 new_obj = (unsigned long)location_to_obj(newzpdesc, obj_idx); 1796 record_obj(handle, new_obj); 1797 } 1798 } 1799 kunmap_local(s_addr); 1800 1801 replace_sub_page(class, zspage, newzpdesc, zpdesc); 1802 /* 1803 * Since we complete the data copy and set up new zspage structure, 1804 * it's okay to release migration_lock. 1805 */ 1806 write_unlock(&pool->lock); 1807 spin_unlock(&class->lock); 1808 zspage_write_unlock(zspage); 1809 1810 zpdesc_get(newzpdesc); 1811 if (zpdesc_zone(newzpdesc) != zpdesc_zone(zpdesc)) { 1812 zpdesc_dec_zone_page_state(zpdesc); 1813 zpdesc_inc_zone_page_state(newzpdesc); 1814 } 1815 1816 reset_zpdesc(zpdesc); 1817 zpdesc_put(zpdesc); 1818 1819 return MIGRATEPAGE_SUCCESS; 1820 } 1821 1822 static void zs_page_putback(struct page *page) 1823 { 1824 VM_BUG_ON_PAGE(!PageIsolated(page), page); 1825 } 1826 1827 static const struct movable_operations zsmalloc_mops = { 1828 .isolate_page = zs_page_isolate, 1829 .migrate_page = zs_page_migrate, 1830 .putback_page = zs_page_putback, 1831 }; 1832 1833 /* 1834 * Caller should hold page_lock of all pages in the zspage 1835 * In here, we cannot use zspage meta data. 1836 */ 1837 static void async_free_zspage(struct work_struct *work) 1838 { 1839 int i; 1840 struct size_class *class; 1841 struct zspage *zspage, *tmp; 1842 LIST_HEAD(free_pages); 1843 struct zs_pool *pool = container_of(work, struct zs_pool, 1844 free_work); 1845 1846 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 1847 class = pool->size_class[i]; 1848 if (class->index != i) 1849 continue; 1850 1851 spin_lock(&class->lock); 1852 list_splice_init(&class->fullness_list[ZS_INUSE_RATIO_0], 1853 &free_pages); 1854 spin_unlock(&class->lock); 1855 } 1856 1857 list_for_each_entry_safe(zspage, tmp, &free_pages, list) { 1858 list_del(&zspage->list); 1859 lock_zspage(zspage); 1860 1861 class = zspage_class(pool, zspage); 1862 spin_lock(&class->lock); 1863 class_stat_sub(class, ZS_INUSE_RATIO_0, 1); 1864 __free_zspage(pool, class, zspage); 1865 spin_unlock(&class->lock); 1866 } 1867 }; 1868 1869 static void kick_deferred_free(struct zs_pool *pool) 1870 { 1871 schedule_work(&pool->free_work); 1872 } 1873 1874 static void zs_flush_migration(struct zs_pool *pool) 1875 { 1876 flush_work(&pool->free_work); 1877 } 1878 1879 static void init_deferred_free(struct zs_pool *pool) 1880 { 1881 INIT_WORK(&pool->free_work, async_free_zspage); 1882 } 1883 1884 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) 1885 { 1886 struct zpdesc *zpdesc = get_first_zpdesc(zspage); 1887 1888 do { 1889 WARN_ON(!zpdesc_trylock(zpdesc)); 1890 __zpdesc_set_movable(zpdesc, &zsmalloc_mops); 1891 zpdesc_unlock(zpdesc); 1892 } while ((zpdesc = get_next_zpdesc(zpdesc)) != NULL); 1893 } 1894 #else 1895 static inline void zs_flush_migration(struct zs_pool *pool) { } 1896 #endif 1897 1898 /* 1899 * 1900 * Based on the number of unused allocated objects calculate 1901 * and return the number of pages that we can free. 1902 */ 1903 static unsigned long zs_can_compact(struct size_class *class) 1904 { 1905 unsigned long obj_wasted; 1906 unsigned long obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED); 1907 unsigned long obj_used = class_stat_read(class, ZS_OBJS_INUSE); 1908 1909 if (obj_allocated <= obj_used) 1910 return 0; 1911 1912 obj_wasted = obj_allocated - obj_used; 1913 obj_wasted /= class->objs_per_zspage; 1914 1915 return obj_wasted * class->pages_per_zspage; 1916 } 1917 1918 static unsigned long __zs_compact(struct zs_pool *pool, 1919 struct size_class *class) 1920 { 1921 struct zspage *src_zspage = NULL; 1922 struct zspage *dst_zspage = NULL; 1923 unsigned long pages_freed = 0; 1924 1925 /* 1926 * protect the race between zpage migration and zs_free 1927 * as well as zpage allocation/free 1928 */ 1929 write_lock(&pool->lock); 1930 spin_lock(&class->lock); 1931 while (zs_can_compact(class)) { 1932 int fg; 1933 1934 if (!dst_zspage) { 1935 dst_zspage = isolate_dst_zspage(class); 1936 if (!dst_zspage) 1937 break; 1938 } 1939 1940 src_zspage = isolate_src_zspage(class); 1941 if (!src_zspage) 1942 break; 1943 1944 if (!zspage_write_trylock(src_zspage)) 1945 break; 1946 1947 migrate_zspage(pool, src_zspage, dst_zspage); 1948 zspage_write_unlock(src_zspage); 1949 1950 fg = putback_zspage(class, src_zspage); 1951 if (fg == ZS_INUSE_RATIO_0) { 1952 free_zspage(pool, class, src_zspage); 1953 pages_freed += class->pages_per_zspage; 1954 } 1955 src_zspage = NULL; 1956 1957 if (get_fullness_group(class, dst_zspage) == ZS_INUSE_RATIO_100 1958 || rwlock_is_contended(&pool->lock)) { 1959 putback_zspage(class, dst_zspage); 1960 dst_zspage = NULL; 1961 1962 spin_unlock(&class->lock); 1963 write_unlock(&pool->lock); 1964 cond_resched(); 1965 write_lock(&pool->lock); 1966 spin_lock(&class->lock); 1967 } 1968 } 1969 1970 if (src_zspage) 1971 putback_zspage(class, src_zspage); 1972 1973 if (dst_zspage) 1974 putback_zspage(class, dst_zspage); 1975 1976 spin_unlock(&class->lock); 1977 write_unlock(&pool->lock); 1978 1979 return pages_freed; 1980 } 1981 1982 unsigned long zs_compact(struct zs_pool *pool) 1983 { 1984 int i; 1985 struct size_class *class; 1986 unsigned long pages_freed = 0; 1987 1988 /* 1989 * Pool compaction is performed under pool->lock so it is basically 1990 * single-threaded. Having more than one thread in __zs_compact() 1991 * will increase pool->lock contention, which will impact other 1992 * zsmalloc operations that need pool->lock. 1993 */ 1994 if (atomic_xchg(&pool->compaction_in_progress, 1)) 1995 return 0; 1996 1997 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 1998 class = pool->size_class[i]; 1999 if (class->index != i) 2000 continue; 2001 pages_freed += __zs_compact(pool, class); 2002 } 2003 atomic_long_add(pages_freed, &pool->stats.pages_compacted); 2004 atomic_set(&pool->compaction_in_progress, 0); 2005 2006 return pages_freed; 2007 } 2008 EXPORT_SYMBOL_GPL(zs_compact); 2009 2010 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats) 2011 { 2012 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats)); 2013 } 2014 EXPORT_SYMBOL_GPL(zs_pool_stats); 2015 2016 static unsigned long zs_shrinker_scan(struct shrinker *shrinker, 2017 struct shrink_control *sc) 2018 { 2019 unsigned long pages_freed; 2020 struct zs_pool *pool = shrinker->private_data; 2021 2022 /* 2023 * Compact classes and calculate compaction delta. 2024 * Can run concurrently with a manually triggered 2025 * (by user) compaction. 2026 */ 2027 pages_freed = zs_compact(pool); 2028 2029 return pages_freed ? pages_freed : SHRINK_STOP; 2030 } 2031 2032 static unsigned long zs_shrinker_count(struct shrinker *shrinker, 2033 struct shrink_control *sc) 2034 { 2035 int i; 2036 struct size_class *class; 2037 unsigned long pages_to_free = 0; 2038 struct zs_pool *pool = shrinker->private_data; 2039 2040 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2041 class = pool->size_class[i]; 2042 if (class->index != i) 2043 continue; 2044 2045 pages_to_free += zs_can_compact(class); 2046 } 2047 2048 return pages_to_free; 2049 } 2050 2051 static void zs_unregister_shrinker(struct zs_pool *pool) 2052 { 2053 shrinker_free(pool->shrinker); 2054 } 2055 2056 static int zs_register_shrinker(struct zs_pool *pool) 2057 { 2058 pool->shrinker = shrinker_alloc(0, "mm-zspool:%s", pool->name); 2059 if (!pool->shrinker) 2060 return -ENOMEM; 2061 2062 pool->shrinker->scan_objects = zs_shrinker_scan; 2063 pool->shrinker->count_objects = zs_shrinker_count; 2064 pool->shrinker->batch = 0; 2065 pool->shrinker->private_data = pool; 2066 2067 shrinker_register(pool->shrinker); 2068 2069 return 0; 2070 } 2071 2072 static int calculate_zspage_chain_size(int class_size) 2073 { 2074 int i, min_waste = INT_MAX; 2075 int chain_size = 1; 2076 2077 if (is_power_of_2(class_size)) 2078 return chain_size; 2079 2080 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { 2081 int waste; 2082 2083 waste = (i * PAGE_SIZE) % class_size; 2084 if (waste < min_waste) { 2085 min_waste = waste; 2086 chain_size = i; 2087 } 2088 } 2089 2090 return chain_size; 2091 } 2092 2093 /** 2094 * zs_create_pool - Creates an allocation pool to work from. 2095 * @name: pool name to be created 2096 * 2097 * This function must be called before anything when using 2098 * the zsmalloc allocator. 2099 * 2100 * On success, a pointer to the newly created pool is returned, 2101 * otherwise NULL. 2102 */ 2103 struct zs_pool *zs_create_pool(const char *name) 2104 { 2105 int i; 2106 struct zs_pool *pool; 2107 struct size_class *prev_class = NULL; 2108 2109 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 2110 if (!pool) 2111 return NULL; 2112 2113 init_deferred_free(pool); 2114 rwlock_init(&pool->lock); 2115 atomic_set(&pool->compaction_in_progress, 0); 2116 2117 pool->name = kstrdup(name, GFP_KERNEL); 2118 if (!pool->name) 2119 goto err; 2120 2121 if (create_cache(pool)) 2122 goto err; 2123 2124 /* 2125 * Iterate reversely, because, size of size_class that we want to use 2126 * for merging should be larger or equal to current size. 2127 */ 2128 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2129 int size; 2130 int pages_per_zspage; 2131 int objs_per_zspage; 2132 struct size_class *class; 2133 int fullness; 2134 2135 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; 2136 if (size > ZS_MAX_ALLOC_SIZE) 2137 size = ZS_MAX_ALLOC_SIZE; 2138 pages_per_zspage = calculate_zspage_chain_size(size); 2139 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size; 2140 2141 /* 2142 * We iterate from biggest down to smallest classes, 2143 * so huge_class_size holds the size of the first huge 2144 * class. Any object bigger than or equal to that will 2145 * endup in the huge class. 2146 */ 2147 if (pages_per_zspage != 1 && objs_per_zspage != 1 && 2148 !huge_class_size) { 2149 huge_class_size = size; 2150 /* 2151 * The object uses ZS_HANDLE_SIZE bytes to store the 2152 * handle. We need to subtract it, because zs_malloc() 2153 * unconditionally adds handle size before it performs 2154 * size class search - so object may be smaller than 2155 * huge class size, yet it still can end up in the huge 2156 * class because it grows by ZS_HANDLE_SIZE extra bytes 2157 * right before class lookup. 2158 */ 2159 huge_class_size -= (ZS_HANDLE_SIZE - 1); 2160 } 2161 2162 /* 2163 * size_class is used for normal zsmalloc operation such 2164 * as alloc/free for that size. Although it is natural that we 2165 * have one size_class for each size, there is a chance that we 2166 * can get more memory utilization if we use one size_class for 2167 * many different sizes whose size_class have same 2168 * characteristics. So, we makes size_class point to 2169 * previous size_class if possible. 2170 */ 2171 if (prev_class) { 2172 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) { 2173 pool->size_class[i] = prev_class; 2174 continue; 2175 } 2176 } 2177 2178 class = kzalloc(sizeof(struct size_class), GFP_KERNEL); 2179 if (!class) 2180 goto err; 2181 2182 class->size = size; 2183 class->index = i; 2184 class->pages_per_zspage = pages_per_zspage; 2185 class->objs_per_zspage = objs_per_zspage; 2186 spin_lock_init(&class->lock); 2187 pool->size_class[i] = class; 2188 2189 fullness = ZS_INUSE_RATIO_0; 2190 while (fullness < NR_FULLNESS_GROUPS) { 2191 INIT_LIST_HEAD(&class->fullness_list[fullness]); 2192 fullness++; 2193 } 2194 2195 prev_class = class; 2196 } 2197 2198 /* debug only, don't abort if it fails */ 2199 zs_pool_stat_create(pool, name); 2200 2201 /* 2202 * Not critical since shrinker is only used to trigger internal 2203 * defragmentation of the pool which is pretty optional thing. If 2204 * registration fails we still can use the pool normally and user can 2205 * trigger compaction manually. Thus, ignore return code. 2206 */ 2207 zs_register_shrinker(pool); 2208 2209 return pool; 2210 2211 err: 2212 zs_destroy_pool(pool); 2213 return NULL; 2214 } 2215 EXPORT_SYMBOL_GPL(zs_create_pool); 2216 2217 void zs_destroy_pool(struct zs_pool *pool) 2218 { 2219 int i; 2220 2221 zs_unregister_shrinker(pool); 2222 zs_flush_migration(pool); 2223 zs_pool_stat_destroy(pool); 2224 2225 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 2226 int fg; 2227 struct size_class *class = pool->size_class[i]; 2228 2229 if (!class) 2230 continue; 2231 2232 if (class->index != i) 2233 continue; 2234 2235 for (fg = ZS_INUSE_RATIO_0; fg < NR_FULLNESS_GROUPS; fg++) { 2236 if (list_empty(&class->fullness_list[fg])) 2237 continue; 2238 2239 pr_err("Class-%d fullness group %d is not empty\n", 2240 class->size, fg); 2241 } 2242 kfree(class); 2243 } 2244 2245 destroy_cache(pool); 2246 kfree(pool->name); 2247 kfree(pool); 2248 } 2249 EXPORT_SYMBOL_GPL(zs_destroy_pool); 2250 2251 static int __init zs_init(void) 2252 { 2253 #ifdef CONFIG_ZPOOL 2254 zpool_register_driver(&zs_zpool_driver); 2255 #endif 2256 zs_stat_init(); 2257 return 0; 2258 } 2259 2260 static void __exit zs_exit(void) 2261 { 2262 #ifdef CONFIG_ZPOOL 2263 zpool_unregister_driver(&zs_zpool_driver); 2264 #endif 2265 zs_stat_exit(); 2266 } 2267 2268 module_init(zs_init); 2269 module_exit(zs_exit); 2270 2271 MODULE_LICENSE("Dual BSD/GPL"); 2272 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 2273 MODULE_DESCRIPTION("zsmalloc memory allocator"); 2274